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Goal: Improve InVitro to InVivo Extrapolation

InVitro Toolbox

Routes of Exposure

Intestine Optimization . ORGANS-ON-CHIPS
Skin Relevant Endpoints (AOPs) Vo N T o
Lung ] New Biomarkers . _ —
Systemic Exposure S
Liver Establishing Dose Response o
Kidney Data interpretation: Models .
Heart Validation

Brain Integrated Organ Platforms
Organ Integration

Blood
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Choosing the Right In Vitro System

Test platform selection
Many different technologies from which to choose
Every system has strengths and weaknesses
Select the best system to answer your primary question

Tissue and Cell Quality
Need highest quality tissue or cells
Should mimic in vivo organs as closely as possible

Moving toward Human relevant data
Predict human ADME and safety



Criteria for Selecting a Cell Model

Liver as an example

Well characterized
Plateable, good morphology, longevity in culture

Key metabolic functions
CYP activity and inducibility
Transporter polarization/function
Liver metabolic function (albumin, urea)
Donor Information
Basic history
Genotyping
Large donor pools (500-1000 vials)

Consistent performance



All-Human Hepatic Triculture System

All human-derived cells
* Feeder Cells are human, not rodent

* Hepatocytes and feeder cells are primary
human cells

Self-assembled organization

Native cell-cell interactions

Stable morphology & hepatic function

Sustained metabolic activity

Learn More:
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All-Human Hepatic Triculture System at 28 Days




All-Human Hepatic Triculture System Tight Junction Formation and Functional Bile Canaliculi
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All-Human Hepatic Triculture System
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Why Do We Need Integrated Organ Models!?

To study relevant routes of exposure and subsequent organ delivery

To study the effects of multiple organs on the test chemical

To evaluate movement across multiple biological barriers

Develop pharmacokinetic data and estimate key parameters (e.g., AUC)
Understand repeated dosing in a dynamic model

IVIVE — Provide in vitro prediction of chemical behavior in humans

Provide Human Risk Assessment Data



Key Platform Properties

Adaptability

Able to incorporate many tissue or cell
models

Plastics must have low non-specific binding

Simulated blood flow

Isolated organ compartments
(communication via blood)

Fluid volumes and tissue mass that allows
multiple time point sampling
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Human Dynamic Multiple Organ Plate
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Human Dynamlc Multlple Organ Plate
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Study Process: Movement, Metabolism, and Toxicity of a Test Material

* Two organ System
* Non-specific binding S

- Cytotoxicity range finder single chamber

-
-
L
¥

Simulated

* Confirm metabolites R N Jhsat
% : +
* Development of LC/MS/MS methods »,[ : | | l

* Dose selection for full system
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Metabolism of Diclofenac
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Evaluation of Cytotoxicity in Individual Organ Chambers

%Viable vs. Vehicle Control

MTT Assay
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Evaluate and Optimize Metabolite Identification

Metabolism of Diclofenac in Primary Human Hepatocytes
Metabolite: 4-Hydroxydiclofenac
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Metabolism of Diclofenac in Primary Human Hepatocytes
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Verify that the Test Chemical is Absorbed

—_— ——

Dermal Permeability of Diclofenac

100

Initial Absorption
of Diclofenac

9]
o

Across Skin

% Dose Applied
LC/MS/MS

0 10 20 30
Time (hr)

Dermal bioavailability between formulations can be evaluated
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Important Pharmacokinetic Parameters

Diclofenac - 30 ug
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Important Pharmacokinetic Parameters

PK of Oral and IV Paracetamol When Co-administered with IV Morphine 263

Table 1 Plasma pharmacokinetic parameters of oral paracetamol

Parameter Paracetamol dose® p value®

First (before®) Second (during”) Third (during®) Fourth (after”)

n 11 11 11 11

AUC 6 (pg-h/mL)* Mean (SD) 31.00 (5.11) 28.51 (5.96) 25.31 (11.59) 52.38 (13.48) <0.001
CV% 16.5% 20.9% 45.8% 25.7%

AUCq ;5 (png-h/mL) Mean (SD) 82.50 (23.28)

Cinax (ng/mL) Mean (SD) 116 (4.11) 7.29 (1.82) 7.25 (3.95) 13.5 (3.31) 0.188
CV% 35.5% 25.0% 54.5% 24.6%

Cs (pg/mL) Mean (SD) 2.93 (0.633) 3.71 (0.694) 4.83 (1.97) 6.83 (2.22) <0.001
CV% 21.6% 18.7% 40.8% 32.5%

Tinax (h) Mean (SD) 1.48 (0.61) 1.64 (0.78) 3.26 (2.30) 2.84 (1.05) 0.031
CV% 40.9% 47.5% 70.5% 37.0%

K. (/h) Mean (SD) 0.1904 (0.0171)

fi2 (h) Mean (SD) 3.67 (0.33)

Estimate Intestinal permeability and estimate ADME parameters
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Evaluating Kinetics and Toxicity

Acetaminophen

Analgesic and Antipyretic
NSAID
MW = 1552  cLogP = 0.50

Cycloheximide

Antifungal
Protein synthesis inhibitor
Chylomicron flow inhibitor

MW = 281 .4

cLogP = 0.86
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Simulated Oral Administration Three Organ Model

Basolateral ot ' Simulated
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APAP — Kinetics and Toxicity

Intestinal Tissue Viability
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APAP — Cytotoxicity Gene Panels

- AKR1A1 BAX Bcl2 CYP1A1l | CYP1A2 | CYP3A4 | GPX-1 GSR IL-8 KEAP-1 | NFE2L2 TNFa
Intestine | 0.174 0.203 0.116 0.295 0.192 0.206 0.545 0.125 0.525
Liver 1.509 1.358 1.196 1.630 2.495 3.589 1.235 1.771 1.334 2.167 1.831
Kidney 0.831 0.952 3.616 0.404 0.688 3.321 1.501 1.289 0.975 1.057 1.222

Green highlighted cells are >2-fold induction which is considered a biologically relevant induction in qPCR. ‘“>” means the Ct value was too high.

‘“No amp” means there was no detectable amplification of the gene.

Fold Induction vs Control
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Fold Induction vs Control

Kidney Gene Expression - APAP Exposure

The black dotted line represents a 2-fold induction, which is considered a biologically relevant induction in qPCR.




Cycloheximide — Kinetics and Toxicity

Tissue Viability (% of Control)
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Cyclohexamide Gene Expression

[Cyclohexamide | AKR1A1 [ BAX Bcl2 | CYP1A1 | CYP1A2 | CYP3A4 | GPX-1 | GSR IL-8 | KEAP-1 | NFE2L2 | TNFa
Intestine 0.929 | 2.010 6.286 1131 | 2901 | 1218 | 5212 | 1.144 | 10.281
Liver 1.677 | 1862 | 1.270 | 17.282 | 13.398 | 5465 | 2101 | 2143 | 0170 | 2.015 | 1.374
Kidney 1410 | 2475 | 1.965 | 4.566 1156 | 4197 | 1615 | 1529 | 1.860 | 5.640

Green highlighted cells are >2-fold induction which is considered a biologically relevant induction in qPCR. ‘‘>” means the Ct value was too high.

“No amp” means there was no detectable amplification of the gene

Fold Induction vs Control

Intestinal Gene Expression - Cyclohexamide Exposure

Fold Induction vs Control

Liver Gene Expression - Cyclohexamide Exposure

Fold Induction vs Control

Kidney Gene Expression - Cyclohexamide Exposure

The black dotted line represents a 2-fold induction, which is considered a biologically relevant induction in qPCR.
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Basic Goals of the Collaboration

Evaluate the Human Dynamic Multiple Organ Plate system

Can it provide a rapid cost-effective means of assessing human risk
|dentifying target organs for toxicity

Can it be used to dial in mechanisms of toxicity



Compound Selection Based on Current FDA Issues

Fatty Acids Aspartic Acid, Canosine,
Beta-alanine

Acrolein g Adylic Aad S — Pyruvic Acad

GI}THIB 4 Serine, Cysteine

ACRYLAMIDE

s

ASPARAGINE —_— 3-Aminopropionamide

201 5 mean acrylamide level pg/kg (FSA Food Survey January 2017) for processed foods

Acrylamide i1s a chemicalthat can form in some foods during high-temperature cooking processes,
such as frying, roasting, and baking. Acrylamide in food forms from sugars and an amino acid that
are naturally present in food
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Acrylamide Metaboli

Figure 1. Presumed metabolic scheme of
acrvlamude. The scheme was partly adop-
ted from Boeticher et al. (22), Dybing et al.
(6), and Fennell et al. (24). Not all of the
metabolites shown have been confirmed
unequivocally in humans. In the present
study, only acrylamide. glycidamide,
AAMA, and GAMA have been quantified,
with glycidamide concentrations being
lower than the lower limit of quantification
(2.5 ng/mL) 1n all samples.
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Acrylamide - Intestine - HuDMOP
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Developing Pharmacokinetic and Toxicology Data in a Single System
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LIVER: Acrylamide Induced Loss of ATP

FDA human Acrylamide in Primary Hepatocyte ATP
assay, 72hr Exposure

120

100

% Viability vs. Control

20
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Acrylamide (weg/mil)
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LIVER: Acrylamide Depletion of GSH

FDA Acylamide human Primary Hepatocyte GSH/GSSG Assay,
72hr Expsoure n=3

140000
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100000
= 80000
o
E £0000 m G556
m GSH
40000
.
- ] e =
Vehicle 10 20 40
Acrylamide [ug/mi}

Direct loss of GSH a strong indication of a reactive molecule and potential mutagenicity
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|dentifying Acrylamide Organ Toxicity

FDA HuDMOP Epilntestinal Viability, MTT assay post 72hr FDA human Acrylamide in Primary Hepatocyte ATP
exposure assay, 72hr Exposure
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The System identified Liver and Kidney as potential sites of toxicity which agrees with animal and human literature
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Development of PBPK Models to Enable Better IVIVE

(a) Buprenorphine Norbuprenorphine
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In Summary, Human Dynamic Multiple Organ Plate

Selection of technology and cell or tissue should match question

An in vitro integrated organ system, combined with well characterized cell
models, can provide kinetic and cytotoxicity data

Parameterization of the system should allow PBPK models and accurate IVIVE

Learn More:
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