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PBPK Modeling Results Consideration of Population Variability Incorporation of Exposure Information for Risk

Background and Purpose

Assessment Considerations

A battery of in vitro assays has been developed for assessing developmental neurotoxicity (DNT), with the aim of
replacing traditional in vivo guideline studies for DNT risk assessment. These in vitro assays hold many advantages
over costly and lengthy in vivo studies. However, at present, there is no standardized approach to translate in vitro

Table 1. C_,, Distribution by PBPK model, Compartment, and Life-stage Interindividual variability in toxicokinetics is known to impact chemical toxicity, raising the question of default
uncertainty factors and the degree of risk within a population. To address the extent of population variability and better

understand chemical risk, population variability was modeled in GP.
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physiologically-based pharmacokinetic (PBPK) modeling platform.
Plasma 1.78 1.89 1.52 1.74 1.32 2.76 1.69 3.03 100 at each of the ages. assessment.
. - - i 0.21-40.72 0.19-19.96 0.11-38.91 0.17-18.42) | (0.01-37.89)  (0.22-37.22) | (0.02-41.44)  (0.22-38.66
;Ilzrzvge Eztﬁgazeﬁgf I]c:’er:)i::tigr':l; IZrI]\éE,saFglgoA%g;] ;ogr:t]se(;upr(?:m Tm(-)t(:](:(l)lzghprS?trgzcs(;I?:est:gP(Etfg ((a;cflzaaned to: ( ) ) ]! ) )| ) )| ) ) » The population variability ranges from 40% to 70% from the 50t to 95t percentile for these chemicals in the four » Bioactivity exposure ratios (BERs) provide quantitative metrics for risk assessment. Based on SEEM2 exposure
"~ _ 9 y - P 9 gnhp package, fo: R, RMSE 0.77, 1.30 0.74,1.28 0.40, 4.62 0.47, 4.00 compartments of interest (Table 3). predictions (Ring et al., 2019), the majority of chemicals had BERs greater than 100, while three chemicals
) Eviluate mdo:el dlffeien::)dsRan;i I(;mtljtlatlons. ble. int b b i ciol Fetal Venous . 2(1)-‘1‘? " . 21-?(2) A . 01:2 o . 20-5192 42 » No significant differences in the degree of variability are seen between the different compartments or the four ages had BERs less than 100 and thus may be of relatively higher concern.
« Enhance adherence to ndable, accessible, interoperable, reusable) principles. 20-11. 27-12.45 .01-16. 27-18. : i . . . . . .
(,I N I i I P . ) princip ( ) ¢ )| ) | ) for this subset of chemicals. Fig. 7: Comparison of IVIVE-derived AEDs to In Vivo Effective Concentrations and Exposures
+ Explore the degree of population variability in this DNT-IVIVE approach. R2. RMSE 0.60, 1.09 0.71, 0.84
Calculate metrics for risk assessment. Fetus 0.64 3.73 1.39 2.78 Table 3. Distribution of C_,, Values Across a Population in GP at 24GW. £ 2 °
(0.10-6.18) (0.32-6.69) (0.10-6.01)  (0.34-4.96) £ 5 E:
A) Chlorpyrifos B) Fipronil C) MGK 264 D) Tetracycline E) Pyraclostrobin 3 £ g BER = AED mg[kg/d
R2, RMSE 0.07, 1.15 0.39, 0.69 = oy 8 @ £ 2 h (E osure mg/k /d)
Neutral, low Cl,, & Neutral, Cl,,=0, Neutral, high Cl,,,, MPA, CI,,=0, MPB, high Cl,,,, R - - £ S AP 9gIrg
. 2.22 1.76 2.29 3.54 3.28 3.58 f,., 4.7 logP low f,., 4 logP low f,,, 3.7 logP f,,=0.5, logP=-1.3 low f,,, logP=4 2 g e 3 2 = s - 2 s £
i Brain (0.28-5.34) (0.31-4.68) | (0.01-967)  (149-0.04) | (0.02-12.93)  (1.23-9.20) ’ ’ ’ ’ ’ . 2 ¢ > & & § 8 88 g 3§ 8
Methods Overview . c R e B . Conax UM 501795t %ile; % variation 72 § § £ & 3 § 2 & & 2
R?, RMSE 0.09, 1.54 0.13, 1.59 10 » < ©& w T I = 5 & & @~
Maternal Plasma 0.44-0.61; 37% 0.70-0.91; 29% 0.38-0.53; 39% 0.26-0.44; 67% 0.63-0.88; 42% X
*R? and RMSE values for the correlation between httk and GP predicted C,,..,. 1079 °
Methods Maternal Brain 3.85-5.28; 37% 1.34-1.84; 38% 1.35-1.93; 37% 0.30-0.50; 70% 2.51-3.46; 44% S 10 )‘( X BER=30 »
. . .pe [
A set of chemicals was identified based on: - Predicted maternal plasma and fetal venous C,,, values at 24GW fell within 3.2-fold, or “on the order,” (Wambaugh Fetus 0.67-0.92; 38% 0.25-0.37; 48% 0.20-0.28; 56% 0.37-0.63; 72% 0.37-0.58; 37% E’ 10 T L S S S S S S—
1. lde.nt/flcat/on gf l?NT b/c.Jact/.wty_from ToxCast data on EPA in vitro DNT assays. et al., 2015) of one another for 90/91 chemicals, highlighting the similarity of predictions between the two programs. Fetal Venous 0.35:0.51: 43% 0.33-0.46; 40% 0.27-0.37: 41% 0.26-0.44: 68% 0.43-0.61: 39% = 101- X J M 9 . x ) . Exposure
2. Existence of in vitro toxicokinetic data generated by EPA. + Fetal concentrations are similar in the two pregnancy models at 24GW but show greater variation at 15GW. < 1071 . . ° X in vivo POD
Chemicals were processed through our DNT-IVIVE approach (Fig. 1), incorporating: + Predictions of plasma and brain C,,, at 2w and 6m postpartum are less well-aligned between GP and httk than Hepatic clearance (Cl;y,); fraction unbound in plasma (f,,); monoprotic acid (MPA); monoprotic base (MPB) 10 ¢ : 2:( :E;’
3. PBPK modeling at four life-stages spanning critical periods of neurodevelopment in GP and httk to derive in the pregnancy model based on median and R? values.
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compartment in both GP and httk. i 0.18 0.05 0.10 0.05
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Minimum AEDs generally fell below in vivo DNT PODs, suggesting that using in vitro metrics may be more
conservative than in vivo data for risk evaluation.

Physicochemical Properties, etc/

Fig. 3: Compartmental Distribution
|Fetus Cinax/ PlasmaC,a at 24GW|

AEDs for 10 Lowest
Chemicals

102 =

= Abamectin

= Methotrexate

=~ Heptachlor

= Rotenone

=1 Cytarabine HCI

=+ Emamectin benzoate
=+ Tamoxifen

=+ Esfenvalerate

=~ Pyraclostrobin

o®

avormS
saen®
...aaa.-ccc..u.a.aaa-ncoo;-coOtC'"

ITITIT N TET R T T NI I Tn T T

Conclusions

| 3. PBPK Modeling I
Approach

* Experimental toxicokinetic data for hepatic clearance and fraction unbound in plasma (f,) incorporated

AED (mglkg/d)

PBPK modeling was performed in GP and httk to assess the broader applicability of our DNT-IVIVE approach and

* Model defaults used for remaining parameters (e.g. physicochemical properties, body weights) evaluate model differences and limitations.

« Chemical C,, values in fetus and brain predicted by both models, particularly in httk, frequently exceeded plasma
10:4= concentrations, suggesting plasma may not be an appropriate metric for estimating DNT risk.
* While AEDs vary by chemical, life-stage, and model, httk generally provides lower (and thus more conservative) httk generally produced the lowest AEDs, thereby providing a more conservative approach than GP for DNT, as
predictions of AED than GP. might be preferred for risk assessment.
» AEDs are generally lower for infant brain at 6m than for fetus at 24GW. .

* 1 mg/kg/day oral dose modeled for 24 hr
» 15 and 24 gestation weeks (GW) to model 2" and 3™ trimester, respectively, using pregnancy PBPK models
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Perfluorooctanoic acid
Pirimiphos-methyl
Triphenyl phosphate
Auramine hydrochloride
d-cis,trans -Allethrin
Benz(a)anthracene
Benzo(b)fluoranthene
Diethylhexyl phthalate

* Metrics: plasma, fetal venous, fetus, brain (httk only) However, AEDs are similar across platforms, with in vivo PODs falling in the range of in vitro-derived AEDs

for both programs, suggesting this DNT-IVIVE approach is readily transferable across modeling platforms,
albeit with varying limitations regarding model accessibility and complexity, which must be considered
appropriately within the context of use.

* 2w and 6m postpartum modeling in standard PBPK models scaled by age (GP) or body weight (httk)
* Preliminary httk-brain-adipose model used to derive brain concentrations in httk

* Metrics: plasma, brain 102

| Brain Cpoay / Plasma Cnax at 6m| . . . . - ,
A multi-model approach, as we have performed here, can build confidence in predictions and point to

critical factors that determine tissue concentrations.

- In Vivo PODs Align with In Vitro AEDs
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critical for such applications.
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Future Directions:

Methotrexate AEDs + This DNT-IVIVE approach can be integrated with future-generated bioactivity and toxicokinetic data and allows for
+ T varying degrees of complexity based on chemical risk evaluation and availability of in vitro data.
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Range of AEDs derived from DNT-
IVIVE of all endpoints active in the
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chemicals with the lowest AEDs,
abamectin and methotrexate, for
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brain (red).
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Experimental data on chemical distribution, particularly in humans and for environmental chemicals, is needed to
provide greater confidence in these models.
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Fui, Was identified as a parameter that might explain major outliers
as the 3 chemicals with the greatest differences were those with the
predicted F,,,, whereas httk assumes a F,, of 1 (Fig. 4, purple oval).

* Invivo DNT PODs fall within the range of AEDs for bioactive endpoints for both programs, showing the concordance of
in vitro-derived DNT-IVIVE predictions with in vivo data.

Assume fraction absorbed of 1 + This predictive toxicology DNT-IVIVE approach incorporates the intricacies of fetal development and allows for

life-stage, chemical, and endpoint-specific estimations of in vivo exposures that could elicit bioactivity at the site of brain
development.

* Most of the F,,, are >90%, so the httk assumption is similar. . .
Fig. 4: Distribution

of Fy;, in GP.
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