Adverse Outcome Pathway for Effects of Anticoagulant Rodenticides on Predatory Birds

Barnett A. Rattner and Rebecca S. Lazarus USGS, Patuxent Wildlife Research Center, Beltsville, MD, USA

Vascular endothelial damage

Adapted from Cleveland Clinic Center for Continuing Education

Anticoagulant Rodenticides

Block Vitamin K cycle

Inhibits formation active clotting Factors II, VII, IX, and X, resulting in hemorrhage

1st Generation Anticoagulant Rodenticides – FGARs Warfarin (1948)

Diphacinone (1960) intermediate generation
Chlorophacinone (1971) intermediate generation
Multiple feeding to cause death (short half-life)
Genetic changes in rats (Scotland, Europe, Japan) – "Resistance"

2nd Generation Anticoagulant Rodenticides - SGARs Brodifacoum (1979), Bromadiolone, Difethialone, Difenacoum

> Single feeding can cause death More toxic, longer half-life (potentially PBT) Greater hazard to Non-target Species

Widespread Use

Residential, Urban, Agriculture, Island Restoration

Primary Exposure Humans (AAPCC: >12,000 calls/yr) Companion animals (APCC: 8,000 calls/yr)

It's the yummy surprise that attracts unwanted little rodents.

When a frantic client calls because her dog has eaten mouse bait, knowledge is your lifeline. What type of rodenticide? How much did the pet eat? What's the pet's weight? These factors can determine if it's a minor problem or a serious emergency. That's why we developed the Cats, Dogs and Rodenticides Risk Side to the series of the s

guide your first critical steps. For over 30 years, the ASPCA'Animal Poison Control Center has been the only center in North America dedicated solely to animals. Our team of board-certified veterinary toxicologists* utilize our exclusive AnTox' database to provide you with lifesaving information 24/7/365. It's no surprise so many veterinarians trust us in a crisis.

Be prepared. Go to www.aspcapro.org/freebies to order your **Cats**, **Dogs and Rodenticides Risk Sile** and other free tools. Or scan the code with your Smartphone. Add 888-426-4435 to your contacts list and speed dial.

For more information visit www.aspcapro.org. No animals were harmed during the production of this ar

American Board of Toxicology, Inc. www.abrox.org A consultation fee may apply

Exposure in Predatory Birds and Mammals High detection rates in liver of wildlife (principally SGARs)

Canada	70% of 164 owls	Albert et al. 2010
France	73% of 30 raptors	Lambert et al. 2007
France	12% of 122 mustelids	Fournier-Chambrillon et al. 2004
Scotland	47% of 773 raptors	Hughes et al. 2013
Britain	37% of 351 raptors	Walker et al. 2008
Britain	26% of 717 barn owls	Newton et al.1999
Britain	31% of 100 polecats	Shore et al. 2003
New Zealand	Various species	Eason et al. 1995, 20 <u>02</u>
United States	79% of 58 fishers	Gabriel et al. 2012
United States	90% of 39 bobcat	Riley et al. 2007
United States	49% of 265 raptors	Stone et al. 2003
unice Setes	86% of 161 raptors	Murray 2011

science for a changing world

Ankley et al. 2010. Environmental Toxicology & Chemistry

Toxicant

Warfarin hydroxycoumarin Log Kow 2.6

Diphacinone indandione Log Kow 4.27

Brodifacoum hydroxycoumarin Log Kow 8.5

Structure Activity Relationship Models

Warfarin OH Br Brodifacoum

Macromolecular Interactions

Vitamin K cycle

Macromolecular Interactions

science for a changing world

Macromolecular Interactions

https://ahdc.vet.cornell.edu/clinpath/modules/coags/introf.htm

Macromolecular to the Cellular Response Cell-based Model of Hemostasis

Hoffman and Monroe. 2001. Thrombosis and Haemostasis

Macromolecular to the Cellular Response Cell-based Model of Hemostasis

Hoffman and Monroe. 2001. Thrombosis and Haemostasis

Lag for Onset of Coagulopathy

Clearance of "functional" clotting factors in humans

Clotting Factor	II	VII	IX	Х
Half-Life	48-120 hr	2-6 hr	18-40 hr	30-70 hr

Appearance of "des-carboxy dysfunctional" factors

Other Cellular Responses

Vitamin K cycle-related

-reduced bone density

- anti-inflammatory and immune signaling

-inhibits cell proliferation

Uncouple oxidative phosphorylation (mitochondrial toxicity)

Peroxisome proliferator-activated receptor

Multiple Organ Response

Hemorrhage due to coagulopathy: Skin Musculoskeletal Respiratory Renal Gastrointestinal Reproductive Central Nervous System

Gabriel et al. 2012. PLOS ONE

Blood Loss and Anemia

Reduced RBC count and hematocrit resulting in pallor

Metabolic acidosis — Increased cardiac output Hypovolemic shock Severe hypoperfusion Localized ischemia, hypoxia Organ dysfunction Necrosis

– Plausible Linkage

Organism Response

Lethargy ("weakness, fatigue") ↓ Body condition, reduced fitness ↑ Blood loss from minor trauma Susceptibility to disease (notoedric mange) Alter predator-prey dynamics?

Reproductive toxicants

_Hypothetical _ Linkage

Recovery or Death

http://www.urbancarnivores.com/notoedric-mange-a-disease-of/

Population Response

Incidence of confirmed poisoning of total exposures (~10%)

Canada	6 of	114 owls
France	3 of	16 mustelids
Scotland	15 of	362 raptors
Britain	9 of	187 barn owls
USA	4 of	46 fishers
	9 of	139 raptors

Albert et al. 2010 Fournier-Chambrillon et al. 2004 Hughes et al. 2013 Newton et al. 1999 Gabriel et al. 2012 Murray 2011

Species of Special Conservation Status

WekaNeRed kiteFraSan Joaquin kit foxUSBald eagleUSBarn owlCa

New Zealand France US US Canada

Adverse Outcome Pathway

Adverse Outcome Pathway

Adverse Outcome Pathway

Data Gaps and Research Needs

Interspecific differences in sensitivity (raptors > granivores)

- -VKOR activity
- -Are there sensitive sub-populations or conserved across species -Metabolism and elimination

Relative potency of ARs for VKOR (additive tox models for mixtures)

Role of vitamin K status

Significance of sublethal effects at individual- and population-level

Quantitative estimates non-target predator mortality

Regulatory Application

Perkins et al. 2014. Advancing AOPs for Integrated Toxicology and Regulatory Applications

Toxicity Reference Values Cumulative Probability Survival Curves

Regulatory Application of the AR-AOP?

The train already left the station –

major regulatory decisions already made in U.S. EPA, EC and EU in the past 5 years without AOP framework

AR-AOP could provide biological plausibility for a decision (EIA)

Good communication tool for regulatory agencies and public

Increase confidence in a risk assessment by using Weight of Evidence Approach in an AOP Framework

Conclusions

Mechanism of action at molecular level well-known

Relative potency of ARs only partially understood

Limited demographic studies in areas of high AR use

Development of mechanistic dynamic models in silico

Look at other toxicants (Pb) that may have same AO (anemia) through a different MIE

Questions?

