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Introduction

 Toxicokinetics (TK) provide a bridge between hazard (e.g., what tissue 
concentration causes an effect?) and exposure (e.g., what dose do we 
get exposed to?)

 Traditional TK methods are resource intensive

 Relatively high throughput TK (HTTK) methods have been used by the 
pharmaceutical industry to prospectively evaluate success of planned 
clinical trials (Jamei, et al., 2009; Wang, 2010)
• A key application of HTTK has been “reverse dosimetry” (also called 

Reverse TK or RTK) (Tan et al., 2006)
• RTK can approximately convert in vitro HTS results to daily doses needed 

to produce similar levels in a human for comparison to exposure data  
(Wetmore, et al., 2012)

• How accurate do predictions need to be?
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Lex Parsimoniae
“Law of Parsimony”

“Among competing hypotheses, the one with the fewest 
assumptions should be selected.” William of Ockham

“…when you have eliminated the impossible, whatever 
remains, however improbable, must be the truth…” 
Sherlock Holmes (Arthur Conan Doyle)

“PBPK? My immediate response: Junk in, junk out. The take-
home is that most of the models [are] only as good as your 
understanding of the complexity of the system.” 
Louis Guillette, Medical University of South Carolina

“As far as the laws of mathematics refer to reality, they are not 
certain; and as far as they are certain, they do not refer to 
reality.” Albert Einstein

Orrin Pilkey & 
Olinda Pilkey-Jarvis 

(2007)
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Accuracy vs. Precision

“Models can offer a 
means of avoiding the 
conclusions derived 
from actual 
experiments.” Kristin 
Shrader-Frechette, 
University of Notre 
Dame

“Essentially, 
all models are wrong, 
but some are useful.” 
George Box, University 
of Wisconsin

Nate Silver (2012)

1. Think probabilistically: 
Evaluate model performance 
systematically across as many 
chemicals (and chemistries) 
as possible

2. Forecasts change:  Today’s 
forecast reflects the best 
available data today but we 
must accept that new data 
and new models will cause 
predictions to be revised

3. Look for consensus: Evaluate 
as many models and 
predictors/predictions as 
possible
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Complexity should fit the 
data…

“Since all models are 
wrong the scientist 
cannot obtain a 
‘correct’ one by 
excessive elaboration. 
On the contrary[,] 
following William of 
Occam[, they] should 
seek an economical 
description of natural 
phenomena.” George 
Box, University of 
Wisconsin

Cho et al., 1990
PK of MDMA

Jones et al., 2012
PK of Statins
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High-Throughput Bioactivity

 Tox21:  Examining >10,000 chemicals using 
~50 assays intended to identify 
interactions with biological pathways 
(Schmidt, 2009)

 ToxCast: For a subset (>1000) of Tox21 
chemicals ran >800 additional assay 
endpoints (Judson et al., 2010)

 Most assays conducted in dose-response 
format (identify 50% activity concentration 
– AC50 – and efficacy if data described by a 
Hill function)

 All data is public: 
http://actor.epa.gov/dashboard2 
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Pharmacokinetics Allows 
Context for High Throughput 

Screening
Endocrine disruption AOP (Judson et al., in prep.) ToxCast 

Bioactivity 
Converted to 
mg/kg/day 
with HTTK 
(Wetmore et 
al., 2012)

ExpoCast
Exposure 
Predictions
(Wambaugh 
et al., 2014)

DOCKET NUMBER: EPA–HQ–OPP–2014–0614 

ToxCast Chemicals

December, 2014 Panel:
“Scientific Issues Associated with Integrated Endocrine 
Bioactivity and Exposure-Based Prioritization and Screening“
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The Need for In Vitro 
Toxicokinetics

Studies like Wetmore et al. (2012),addressed the 
need for TK data using in vitro methods
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ToxCast in vitro Bioactive 
Concentrations

 One point for each chemical-in vitro assay combination with a 
systematic (Hill function) concentration response curve

 How can we use toxicokinetics to convert these to human doses?

Wetmore et al. (2012)
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High Throughput Toxicokinetics 
(HTTK)

 In vitro plasma protein 
binding and metabolic 
clearance assays allow 
approximate hepatic and 
renal clearances to be 
calculated

 At steady state this allows 
conversion from 
concentration to 
administered dose

 100% bioavailability 
assumed

Jamei et al. (2009)
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Steady-State is Linear with 
Dose
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Wetmore et al. (2012)
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HTTK Allows Steady-State In Vitro-
In Vivo Extrapolation (IVIVE)
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 Swap the axes (this is the “reverse” part of reverse dosimetry)
 Can divide bioactive concentration by Css for for a 1 mg/kg/day dose 

to get oral equivalent dose
Wetmore et al. (2012)
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ToxCast in vitro Bioactive 
Concentrations

 It appears harder to prioritize on bioactive in vitro 
concentration without in vivo context

Wetmore et al. (2012)
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HTTK Oral Equivalents

 Translation from in vitro to steady-state oral equivalent doses 
allow greater discrimination between effective chemical 
potencies

Wetmore et al. (2012)



Reverse Dosimetry with HTTK
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High 
Throughput 

In Vitro 
Bioactive 

Concentration

Simulated 
Human
In Vivo
Doses Populations 
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Sensitive

HTTK
in vitro

data

Monte Carlo
Simulation of Biological

Variability

Combination of 
higher exposure 
and sensitivities 

Images from Thinkstock
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Variability in this Steady-State TK 
Model
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Jamei et al. (2009)
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Monte Carlo (MC) Approach to Variability:
SimCYP (Pharma) Approach
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Steady-State In Vitro-In Vivo 
Extrapolation (IVIVE)

 The higher the predicted Css, the lower the oral equivalent dose, so the upper 95% predicted 
Css from the MC has a lower oral equivalent dose
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Characterizing Accuracy of 
HTTK

Pharmaceuticals:
Sohlenius-Sternbeck et al. (2010)

Wang (2010): In vitro predictions typically within a factor of three for pharmaceuticals

Environmental 
chemicals:
Yoon et al. (2014)

Hepatocytes and passive GFR alone tend to underestimate clearance
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543 Chemicals with httk R 
Package

https://cran.r-project.org/web/packages/httk/
Can access this from the R GUI: “Packages” then “Install Packages”
443 with PBTK models

Lead developer Robert Peace

https://cran.r-project.org/web/packages/httk/
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Comparison Between httk and 
SimCYP

• In the Rotroff et al. (2010) and 
Wetmore et al. (2012, 2013, 2014, 
2015) papers SimCYP was used to 
predict distributions of Css from in 
vitro data

• We can reproduce the results 
from those publications for most 
chemicals using our 
implementation of Monte Carlo. 

• Any one chemical’s median and 
quantiles are connected by a dotted 
line.

The RED assay for measuring protein binding fails in some cases because the amount of free chemical is 
below the limit of detection. For those chemicals a default value of 0.5% free was used. We have 
replaced the default value with random draws from a uniform distribution from 0 to 1%. 

Wambaugh et al. (2015)
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Using in vivo Data to Evaluate RTK

Wambaugh et al. (2015)

• When we compare the Css predicted 
from in vitro HTTK with in vivo Css
values determined from the 
literature we find limited correlation 
(R2 ~0.34)

• The dashed line indicates the 
identity (perfect predictor) line: 
• Over-predict for 65
• Under-predict for 22

• The white lines indicate the 
discrepancy between measured and 
predicted values (the residual)
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Toxicokinetic Triage

 Through comparison to in 
vivo data, a cross-
validated (random forest) 
predictor of success or 
failure of HTTK has been 
constructed

 Add categories for 
chemicals that do not 
reach steady-state or for 
which plasma binding 
assay fails

 All chemicals can be 
placed into one of seven 
confidence categories

Wambaugh et al. (2015)
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New In Vivo PK Data Set

 Could the difference be related to inhomogeneous 
Css data?
• Initially relying on Obach (2008) data plus data curated by 

TNO (Sieto Bosgra lead) from literature

 Only 13 non-pharmaceuticals examined so far
 Cross lab study:

• 20 chemicals examined by NHEERL (Mike Hughes lead)
• 8 chemicals examined by RTI (Tim Fennell lead)
• 2 overlap chemicals (Bensulide and Propyzamide)
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An In Vivo Toxicokinetic 
Library

Work by Mike Hughes, Caroline Ring, Tim Fennell (RTI) and many more
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Evaluating Steady-state Conc.
(1 mg/kg/day exposure)

Similar to pharmaceuticals in Sohlenius-Sternbeck et al., 2010
Work by Mike Hughes, Caroline Ring, Tim Fennell (RTI) and many more
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Three Compartment (SimCYP 
Steady-state) Model

Good enough for prioritizing chemicals…
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Pharmacokinetics Allows 
Context for High Throughput 

Screening
Endocrine disruption AOP (Judson et al., in prep.) ToxCast 

Bioactivity 
Converted to 
mg/kg/day 
with HTTK 
(Wetmore et 
al., 2012)

ExpoCast
Exposure 
Predictions
(Wambaugh 
et al., 2014)

ToxCast Chemicals

December, 2014 Panel:
“Scientific Issues Associated with Integrated Endocrine 
Bioactivity and Exposure-Based Prioritization and 
Screening“

DOCKET NUMBER: EPA–HQ–OPP–2014–0614 
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A General Physiologically-based 
Pharmacokinetic (PBPK) Model

Some tissues (e.g. arterial blood) are simple compartments, 
while others (e.g. kidney) are compound compartments 
consisting of separate blood and tissue sections with constant 
partitioning (i.e., tissue specific partition coefficients)

Exposures are absorbed from reservoirs (gut lumen)

Some specific tissues (lung, kidney, gut, and liver) are 
modeled explicitly, others (e.g. fat, brain, bones) are lumped 
into the “Rest of Body” compartment.

Blood flows move the chemical throughout the body. The 
total blood flow to all tissues equals the cardiac output.

The only ways chemicals “leaves” the body are through 
metabolism (change into a metabolite) in the liver or 
excretion by glomerular filtration into the proximal tubules of 
the kidney (which filter into the lumen of the kidney). 

Inhaled Gas

Qliver

Qgut

Qgut

Kidney Blood

Gut Blood

Gut Lumen

QGFR
Kidney Tissue

Liver Blood

Liver Tissue

Qrest

Lung Blood

Lung Tissue Qcardiac

Qmetab

Body Blood

Rest of Body

Qkidney

Arterial  BloodVe
no

us
  B

lo
od



Office of Research and Development32 of 41

Physiological Data
Volume (L/kg) Blood Flow (ml/min/kg)

Tissue Mouse Rat Dog Human Rabbit Mouse Rat Dog Human Rabbit
Adipose 0.07 0.07 0.05 0.21 0.05 10.80 1.60 3.50 3.71 12.80
Bone 0.05 0.04 0.04 0.07 0.04 23.31 36.11 1.30 3.36 36.11
Brain 0.02 0.01 0.01 0.02 0.01 13.20 5.20 4.50 10.00 5.20
Gut 0.04 0.03 0.04 0.02 0.05 72.50 39.20 23.00 16.43 44.40
Heart 0.00 0.00 0.01 0.00 0.00 14.00 15.60 5.40 3.43 6.40
Kidneys 0.02 0.01 0.01 0.00 0.01 65.00 36.80 21.60 17.71 32.00
Liver 0.05 0.03 0.03 0.02 0.04 90.00 47.20 30.90 20.71 70.80
Lung 0.01 0.00 0.01 0.01 0.01 2.00 6.22 10.56 2.00 6.22
Muscle 0.37 0.39 0.44 0.38 0.54 45.50 30.00 25.00 10.71 62.00
Skin 0.15 0.17 0.17 0.03 0.04 20.50 23.20 10.00 4.29 23.20
Spleen 0.00 0.00 0.00 0.00 0.00 5.50 4.07 1.65 1.10 3.60
Rest 0.03 0.05 0.00 0.05 0.03 110.19 90.00 5.59 2.97 90.00

Volumes and flows 
from Schmitt (2008) + 
Nisha Sipes (Rabbit)

Other parameters 
from Davies and 

Morris (1993) + Nisha 
Sipes (Rabbit)

Units Mouse Rat Dog Human Rabbit
Total Body Water ml/kg 725.00 668.00 603.60 600.00 716
Plasma Volume ml/kg 50.00 31.20 51.50 42.86 44
Cardiac Output ml/min/kg 400.00 296.00 120.00 80.00 212
Average BW kg 0.02 0.25 10.00 70.00 2.5
Total Plasma Protein g/ml 0.06 0.07 0.09 0.07 0.057
Plasma albumin g/ml 0.03 0.03 0.03 0.04 0.0387
Plasma a-1-AGP g/ml 0.01 0.02 0.00 0.00 0.0013
Hematocrit fraction 0.45 0.46 0.42 0.44 0.36
Urine ml/min/kg 0.035 0.139 0.021 0.014 0.0417
Bile ml/min/kg 0.069 0.063 0.008 0.003 0.0833
GFR ml/min/kg 14.0 5.2 6.1 1.8 3.12
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Schmitt (2008) Tissue 
Composition Data

Fraction of total volumea Fraction of cell volumeb Fraction of total lipid

Tissue Cells Interstitium Water Lipid Protein Neutral Lipidc
Neutral 
Phospholipidc

Acidic 
Phospholipidc pHd

Adipose 0.86 0.14 0.03 0.92 0.06 1 0.0022 0.0006 7.10
Bone 0.9 0.1 0.26 0.02 0.21 0.85 0.11 0.04 7.00
Brain 1 0.004 0.79 0.11 0.08 0.39 0.48 0.13 7.10
Gut 0.9 0.096 0.78 0.07 0.15 0.69 0.26 0.05 7.00
Heart 0.86 0.14 0.7 0.11 0.19 0.48 0.43 0.09 7.10
Kidneys 0.78 0.22 0.73 0.06 0.21 0.26 0.61 0.13 7.22
Liver 0.82 0.18 0.68 0.08 0.21 0.29 0.59 0.11 7.23
Lung 0.5 0.5 0.74 0.04 0.11 0.51 0.38 0.11 6.60
Muscle 0.88 0.12 0.76 0.01 0.19 0.49 0.42 0.09 6.81
Skin 0.69 0.31 0.47 0.14 0.41 0.9 0.08 0.02 7.00
Spleen 0.79 0.21 0.75 0.02 0.23 0.3 0.54 0.15 7.00
Red blood 
cells 1 – 0.63 0.01 0.33 0.3 0.59 0.1 7.20

a Values taken from (Kawai et al., 1994). Original values given as fraction of total organ volume were rescaled to tissue volume by 
subtracting vascular volume

b Values taken from (ICRP, 1975). Original values given as fraction of total tissue mass were rescaled to cellular volume as follows: 
Water fraction of total tissue reduced by interstitial volume and subsequently all values normalized by cellular fraction.

c Data taken from (Rodgers et al., 2005a).
d Values taken from ([Waddell and Bates, 1969], [Malan et al., 1985], [Wood and Schaefer, 1978], [Schanker and Less, 1977], 

[Harrison and Walker, 1979] and [Civelek et al., 1996]). Mean values were calculated when more than one value was found 
for the same tissue.

e Data taken from (Gomez et al., 2002).
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Prediction of Ionization

• Neutral and ionized species of the same 
molecule will partition differently into 
environmental and biological media

• Better models are needed for predicting 
pKa at different pH for chemicals C
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Project lead Cory Strope (Hamner)
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Predicted PK Metrics

Human hepatic concentration 
of various chemicals as a 
function of 28 daily doses (10 
mg/kg/day) 

Can predict mean and peak 
concentration and time 
integrated area under the 
curve (AUC) for various tissues
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Evaluating HTPBPK Predictions 
with In Vitro Data

 HTPBPK predictions for the 
AUC (time integrated plasma 
concentration or Area Under 
the Curve)

 in vivo measurements from 
the literature for various 
treatments (dose and route) 
of rat. 

 Predictions are generally 
conservative – i.e., predicted 
AUC higher than measured

 Oral dose AUC ~6.4x higher 
than intravenous dose AUC

36Wambaugh et al. (2015)
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Evaluation Leads to Insight
Examining the impact of lumping – default is liver, kidney, rest of body
What if we separate rest of body into richly and slowly perfused?

Work by Robert Pearce
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Evaluation Leads to Refined 
Models

Ongoing refinements of tissue-specific partition coefficient predictions:
Handling high log P, better treatment of ionization (Pearce et al. manuscript)

Work by Robert Pearce

Membrane
Affinity

Membrane
Affinity
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Summary

 Toxicokinetics (TK) provides a bridge between hazard and exposure by 
predicting tissue concentrations due to exposure 

 We must keep in mind the purpose – simple models appear to allow 
meaningful prioritization of further research

 A primary application of HTTK is “Reverse Dosimetry” or RTK
• Can infer daily doses that produce plasma concentrations equivalent to 

the bioactive concentrations,
 We can also use QSAR to build provisional PBTK models
But we must consider parsimony and domain of applicability:

• Do not build beyond the evaluation data
• Carefully determine whether, when, and why model errors are 

conservative
• Collect PK data from in vivo studies to allow larger, systematic studies

 R package “httk” freely available on CRAN allows statistical analyses

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA
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