SOT 2011, Washington, D.C.

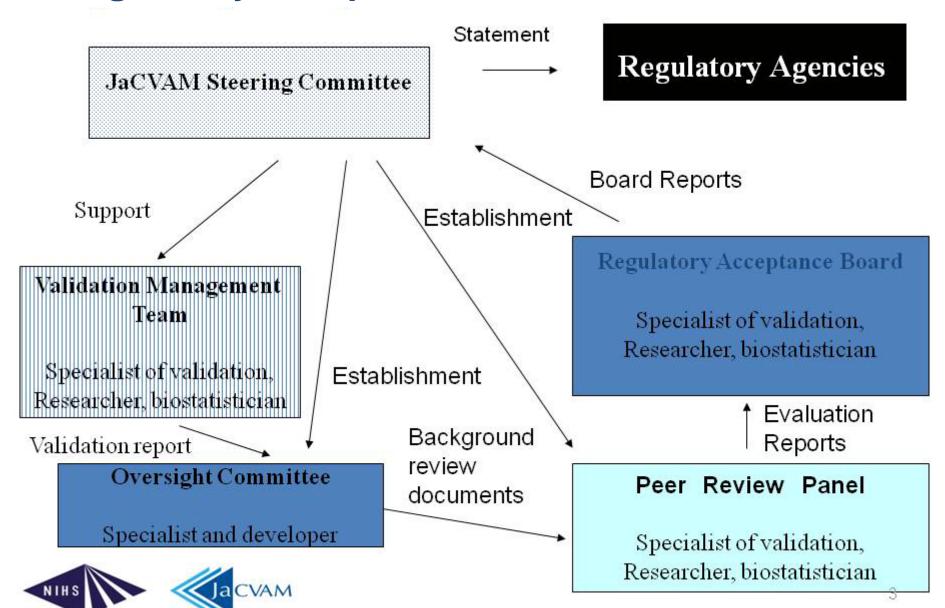
The International Cooperation on Alternative Test Methods (ICATM): Translating Science to Provide Improved Public Health Safety Assessment Tools

The Japanese Center for the Validation of Alternative Methods (JaCVAM): Recent ICATM contributions and Future plans

Hajime Kojima, JaCVAM, NIHS, Japan

JaCVAM: Japanese Center for the Validation of Alternative Methods

This center created at National Institute of Health Sciences (NIHS) in Japan, 2005. by the Ministry of Health, Labour and Welfare (MHLW).


JaCVAM's Goals

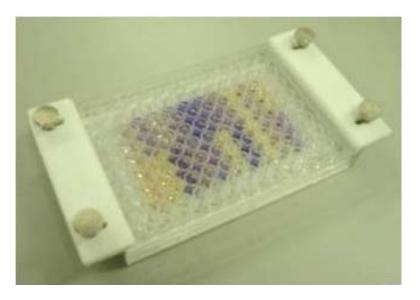
- To promote the 3Rs in animal experiments for the evaluation of chemical substance safety in Japan
- To establish guidelines for new alternative experimental methods through international collaboration.

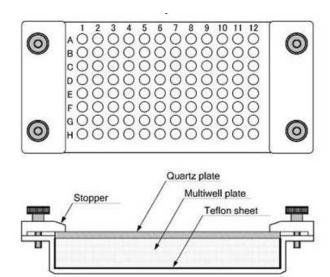
Framework for validation, peer review and regulatory acceptance of alternative methods

Accepted methods by the JaCVAM regulatory acceptance board

- The Bovine Corneal Opacity and Permeability (BCOP)
 Test Method for Identifying Ocular Corrosives and
 Severe Irritants
- The Isolated Chicken Eye (ICE) for Identifying Ocular Corrosives and Severe Irritants
- Skin sensitization assay, LLNA: DA
- Skin sensitization assay, LLNA: BrdU-ELISA
- In vitro skin irritation testing: EPISKIN
- In vitro skin corrosion testing: Vitrolife-Skin, EpiDerm
- In vitro cytotoxicity test methods for estimating starting doses for acute oral systemic toxicity tests

To establish guidelines for new alternative experimental methods through international collaboration

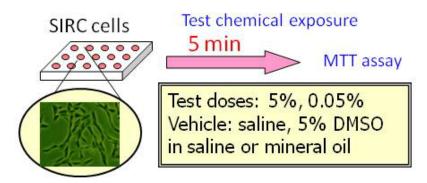

Jacvam Organized Recent and On-going validation studies

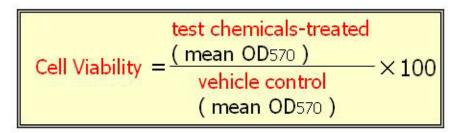

- h-CLAT assay for skin sensitization testing
- In vivo/in vitro Comet assay for genotoxicity testing
- Stably Transfected Transcriptional Activation (STTA) antagonist assay for endocrine disruptor screening
- ROS assay for phototoxicity testing (in preparation)

High throughput ROS assay

- Quartz reaction container for multiwell assay
- Solar simulator
 - Overnight assay (18 hr):LTX-01 (Xe lamp, 18 W/m²; Nagano Science)
 - Short-time assay (1 hr): Suntest CPS (Xe lamp, 250 W/m²; Atlas)
- Colorimetric determination of reactive oxygen species;
 - 1. Singlet oxygen (${}^{1}O_{2}$); bleaching of p-nitrosodimethylaniline (RNO)
 - 2. Superoxide (O_2^-) ; reduction of Nitroblue tetrazolium (NBT)

Japanese developed methods undergoing National or International peer review

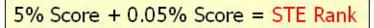

- SIRC assay for eye irritation testing
- MATREX assay for eye irritation testing
- LabCyte assay for skin irritation testing
- 3T3 cell transformation assay
- Bhas cell transformation assay
- Short time exposure assay for eye irritation testing


The Short Time Exposure (STE) test

3 x10³ of SIRC cells were plated into each well of a 96-well microplate and cultured in EMEM/FBS for 5 days (Or 6.0 x10³/well for 4 days). The test procedure afterwards is as follows.

Category Classification

	Non Irritant (NI)	Irritant (I)	
cell viability	> 70%	≤ 70%	



Rank Classification

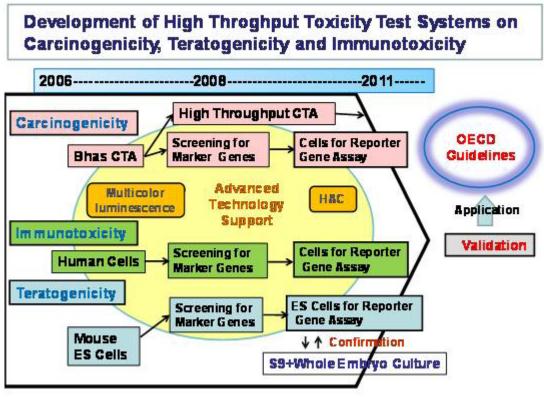
STE Score

5%	Score	0.05%	Score
70 < CV	0	70 < CV	1
70 ≥ CV	1	70 ≥ CV	2

CV: Cell viability

____ 1: Minimally irritating

2 : Moderately irritating


3 : Severely irritating

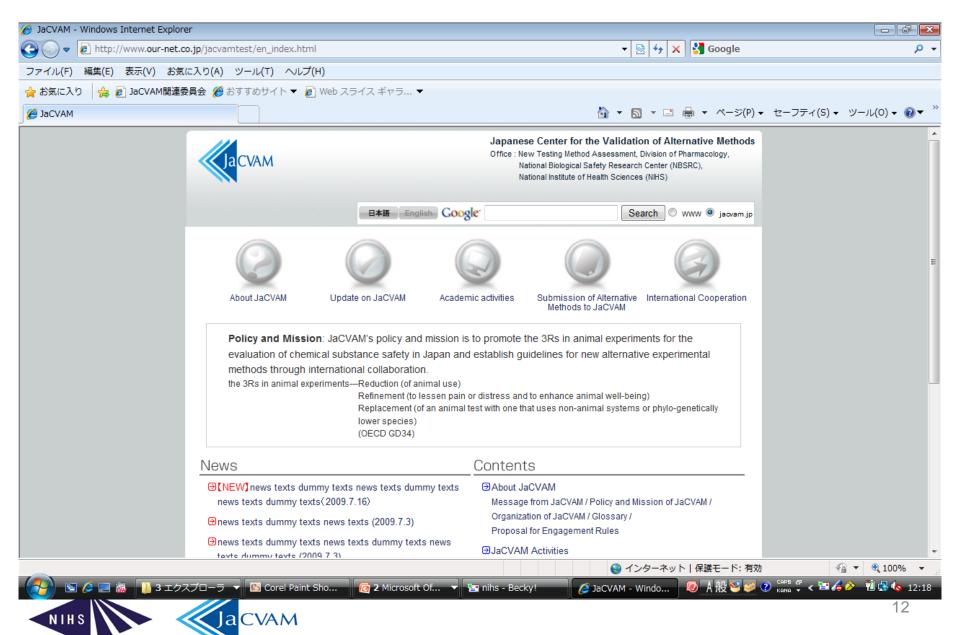
Future plans

 Compellation on development of several alternative methods to Japanese colleague for hazard identification

Long Term Future Plans

- alternative methods for long term toxicology testing
- alternative methods for risk assessment

Utilization of New technology


(-omics, pharmacokinetic (PK) modeling, new reporter gene cells, new materials, iPS and ES

Thank you for your attention

