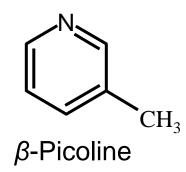
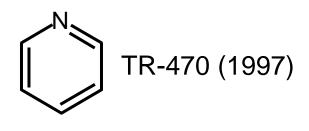


Draft NTP Technical Report TR-580 on β-Picoline

Michael E. Wyde, PhD, DABT National Institute of Environmental Health Sciences

NTP Technical Reports Peer Review Meeting February 8-9, 2012


Background


- Nominated by NIEHS for toxicity and carcinogenicity testing based on its high U.S. production volume and potential for human exposure
- Used as a solvent, as a laboratory reagent, and intermediate in the manufacture of insecticides, waterproofing agents, niacin, and niacinamide.
- Released into environment via wastewater effluents
- Exposure to general population primarily occurs via contaminated drinking water

Toxicology

- Reduced appetite and activity, acute gastrointestinal inflammation, hemorrhagic lungs, liver discoloration, slight growth inhibition, and fatty liver in acute studies
- Negative in mutagenicity assays
 - Salmonella and micronucleus
- β -Picoline is a structural derivative of pyridine

Pyridine

Subchronic Studies – Rats

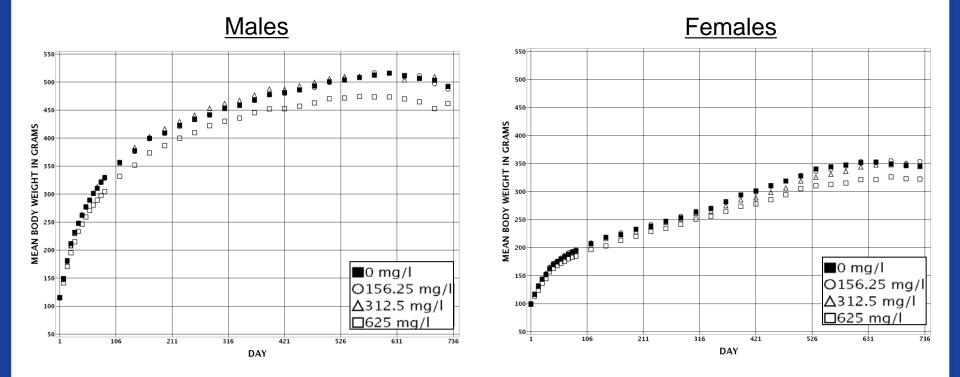
- Fischer 344/N rats were administered β-picoline in drinking water 0, 78, 156, 312, 625, or 1250 mg/L for 13 weeks
- Decreased terminal group mean body weights and reduced water consumption relative to control in both sexes at ≥625 mg/L
 - Reduced WC attributed to an aversion to the palatablility of β-picoline at both concentrations

Subchronic Studies – Rats

- Concentration of renal α2u-globulin significantly increased at ≥ 312 mg/L in males
- Increased severity of chronic progressive nephropathy and hyaline droplet accumulation in proximal renal tubules in males
- Kidney lesions were consistent with α2u-globulin nephropathy
- In females, there was a increasing trend in the incidence of mineralization of the renal medulla

Subchronic Studies – Mice

- Male and female B6C3F1 mice were administered βpicoline in drinking water at 0, 78, 156, 312, 625, or 1250 mg/L for 13 weeks
- No significant treatment-related effects on clinical observations, survival, body weight, organ weights, clinical pathology, water consumption, gross or microscopic lesions


Dose Selection Rationale

- Results were similar to those for the structuralderivative pyridine, however β-picoline exposure did not elicit liver effects, or as broad a spectrum or profound a response in the kidney in rats
- Based on subchronic results, the chronic administered exposures for β -picoline in dosed-water were:
 - Male and female F344/N rats at 0, 156.25, 312.5, 625 mg/L
 - Male and female B6C3F1 mice at 0, 312.5, 625, or 1250 mg/L

Chronic Rat Study Results

- No treatment-related effect on survival
- Slight decrease in body weight at 625 mg/L (↓6-10%)

Alveolar/Bronchiolar Neoplasms

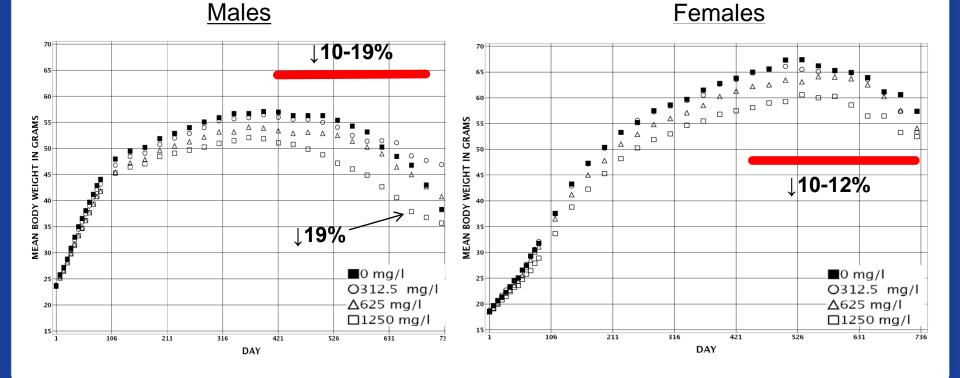
mg/l	0	156.25	312.5	625
Female Rats				
Alveolar/bronchiolar adenoma ^a	0*	3	2	5*
Alveolar/bronchiolar carcinoma ^b	0	1	0	0
Alveolar/bronchiolar adenoma or carcinoma ^c	0*	4	2	5*

* P ≤ 0.05

^a Historical incidence: 4/100 (0-8% drinking water), 25/1200 (0-8% all routes)

^b Historical incidence: 0/100 (drinking water), 3/1200 (0-2% all routes)

^c Historical incidence: 4/100 (0-8%, drinking water), 27/1200 (0-8% all routes)


Non-neoplastic lung lesions

mg/l	0	156.25	312.5	625
Female Rats				
Alveolar epithelium hyperplasia	7	14	14	11
Alveolar epithelium squamous metaplasia	0	3	1	1

Chronic Mouse Study Results

- Slightly positive trend in the survival of males (48, 52, 54, 66%), no treatment-related effect on survival in females
- Decreased body weight at 1250 mg/L

Alveolar/Bronchiolar Neoplasms

mg/l	0	312.5	625	1250
Male Mice				
Alveolar/bronchiolar adenoma ^a	6	11	16*	8
Adenoma, multiple	0	0	2	2
Alveolar/bronchiolar carcinoma ^b	9	9	8	9
Carcinoma, multiple	0	2	0	3
Alveolar/bronchiolar adenoma or carcinoma ^c	14	19	21	15

* P < 0.05

^a Historical incidence: 21/100 (12-30%, drinking water), 172/1150 (2-30% all routes)

^b Historical incidence: 12/100 (6-18%, drinking water), 144/1150 (4-24% all routes)

^c Historical incidence: 30/100 (28-32%, drinking water), 301/1150 (14-40% all routes)

Alveolar/Bronchiolar Neoplasms

mg/l	0	312.5	625	1250
Female Mice				
Alveolar/bronchiolar adenoma ^a	5*	6	4	11
Adenoma, multiple	0	1	0	1
Alveolar/bronchiolar carcinoma ^b	7	8	10	13
Carcinoma, multiple	0	2	2	4
Alveolar/bronchiolar adenoma or carcinoma ^c	11*	13	13	21*

* P < 0.05

^a Historical incidence: 6/100 (2-10%, drinking water), 60/1196 (0-12% all routes)

^b Historical incidence: 9/100 (4-14%, drinking water), 44/1196 (0-14% all routes)

^c Historical incidence: 13/100 (4-22%, drinking water), 100/1196 (2-22% all routes)

Non-neoplastic lung lesions

mg/l	0	312.5	625	1250
Male Mice				
Alveolar epithelium hyperplasia	4	6	6	7
Female Mice				
Alveolar epithelium hyperplasia	2	4	3	8*
Bronchiole hyperplasia	0	0	3	1

* P < 0.05

Liver Neoplasms

mg/l	0	312.5	625	1250
Female Mice				
Hepatocellular adenoma ^a	38	46*	46	39
Hepatocellular carcinoma ^b	11**	20*	26**	23**
Hepatoblastoma ^c	1	3	4	4
Hepatoblastoma or carcinoma ^d	12**	21*	28**	24**

* P < 0.05; ** P < 0.01

^a Historical incidence: 52/98 (29-78%, drinking water), 380/1195 (2-78% all routes)
^b Historical incidence: 19/98 (16-22%, drinking water), 144/1195 (0-46% all routes)
^c Historical incidence: 1/98 (0-2%, drinking water), 4/1195 (0-2% all routes)
^d Historical incidence: 20/98 (16-24%, drinking water), 148/1195 (0-46% all routes)

Non-neoplastic lesions of the nose

mg/l	0	312.5	625	1250
Male Mice				
Olfactory epithelium atrophy	3	4	8	7
Olfactory epithelium respiratory metaplasia	8	12	30**	41**
Female Mice				
Olfactory epithelium atrophy	1	2	2	7*
Olfactory epithelium respiratory metaplasia	2	2	7	14**

Conclusions for Carcinogenic Activity

- Male F344/N rats
 - No evidence
- Female F344/N rats
 - **Some evidence** based on incidences of alveolar/bronchiolar adenomas and combined incidences of alveolar/bronchiolar adenomas and carcinomas
- Male B3C6F1 mice
 - Equivocal evidence based on incidences of alveolar/bronchiolar adenomas and combined incidences of A/B adenomas and carcinomas
- Female B3C6F1 mice
 - Clear evidence based on the combined incidences of alveolar/bronchiolar adenomas and carcinomas in the lung and hepatocellular carcinoma and hepatoblastoma in the liver