

Draft NTP Technical Report TR582 on Vinylidene Chloride in F344/N Rats and B6C3F1/N Mice

(Inhalation Studies)

$$c = c + C$$

Michael Wyde, Ph.D.

National Institute of Environmental Health Sciences

NTP Technical Reports Peer Review Meeting October 29, 2013

Background

- Nominated by Agency for Toxic Substances and Disease Registry (ATSDR) based on insufficient critical information concerning health effects
- Used as intermediate in organic synthesis reactions and in production of polyvinylidene chloride polymers and copolymers
- Occupational exposure via inhalation or dermal contact; primary source of environmental contamination through air emissions and effluent waters from processing facilities
 - Common in household products, artificial turf, pipes, in lacquer resins and latex, and flame-resistant carpet backing
- US annual production estimated at 79,000 tons (2003)
- ACGIH Threshold Limit Value (TLV) 5 ppm; EPA Category C carcinogen – a possible human carcinogen

NTP Program of Study for VDC

- 2-Week inhalation toxicity studies in male and female Fisher 344/N rats and B6C3F₁/N mice
- 3-Month inhalation studies in rats and mice
- 2-year inhalation studies in rats and in mice
- Genotoxicity testing
 - Salmonella, Drosophila reciprocal translocation/sexlinked recessive lethal, mouse lymphoma, micronucleus

Genetic Toxicity Test Results for Vinylidene Chloride

Test	Result
Bacterial Mutagenicity	Negative (+/- S9)
Mouse Lymphoma Cell Mutagenicity	Positive (+ S9) Equivocal (- S9)
Drosophila Sex-Linked Recessive Lethals	Negative
Erythrocyte Micronucleus	Negative (♂/♀ Mice)

Vinylidene Chloride 2-Week Studies

- Male and female F344/N rats (up to 400 ppm)
 - No survival in males or females at 200 or 400 ppm
 - Decreased body weight gain in 100 ppm females
 - Increased kidney weights and centrilobular hepatocyte necrosis and cytoplasmic alteration in males and females
- Male and female B6C3F1/N mice (up to 400 ppm)
 - No survival in females at 200 or 400 ppm, or in males at ≥ 100 ppm
 - Decreased body weight gain in 25 and 50 ppm males
 - Increased lung weight in females; increased liver weights in males and females
 - Liver necrosis in 100 ppm males and females and regeneration in 100 ppm females
 - Tubule necrosis, regeneration, granular casts in male kidney (25-50ppm)

3-Month Studies

- Male and female F344/N rats and B6C3F1/N mice (n=10)
- Exposure concentrations
 - Rats: 0, 6.25, 12.5, 25, 50, and 100 ppm
 - Female mice: 0, 6.25, 12.5, 25, 50, and 100 ppm
 - Male mice: 0, 6.25, 12.5, 25, and 50 ppm
- 6 hours a day, 5 days a week

3-Month Results in Rats

- No effect on mortality, body weight gain, hematological indices in males or females
- Increases in kidney weights in females ≥12.5 ppm
- In the liver, cytoplasmic vacuolization (females ≥50 ppm) and centrilobular cytoplasmic alteration (males ≥12.5 ppm) were observed
 - Transient increase in sorbitol dehydrogenase and alanine aminotransferase
- Increased olfactory epithelium atrophy, mineralization, and necrosis, and turbinate atrophy in male and females
 - Nasal lesions were not considered to be sufficient to preclude 100 ppm as exposure concentration for the chronic rat studies
 - Selected 0, 25, 50, and 100 ppm for chronic inhalation studies in rats

3-Month Results in Mice

- Decreased survival in 50 ppm males and 100 ppm females
- Lower mean body weight in all exposed females (9-18%) and ≥12.5 ppm males (10-16%)
- Exposure concentration-related decreases in red blood cell indices, males affected at lower exposure concentrations than females
- Increased liver weight in females at ≥12.5 ppm; increased kidney and lung weights in 100 ppm females
- Lesions observed in 100 ppm females:
 - <u>Liver</u> necrosis, centrilobular hypertrophy; <u>lung</u> histiocytic inflammation and necrosis of the bronchus epithelium; respiratory epithelium necrosis and turbinate atrophy in <u>nose</u>
- Increased incidence of squamous metaplasia of the respiratory epithelium of the larynx of ≥ 50 ppm females and 50 ppm males
- Increased incidence and severity of nephropathy in males at ≥12.5 ppm

Exposure Selection for Chronic Studies in Mice

- Chronic exposure concentration selection primarily dependent on survival and body weight reductions
 - Increased mortality in males at 50 ppm; only observed decreased body weight in males at 25 ppm (absence of other overt toxicity)
 - Smaller decrease in body weight in 6.25, 12.5, and 25 ppm females (9-12%) compared to the 50 ppm group (18%)
 - No treatment-related histopathology
- Selected 0, 6.25, 12.5, and 25 ppm for chronic inhalation studies in mice

Chronic Rat Studies

Vinylidene Chloride

$$CI$$
 $C = C$

Decreased Survival in 100 ppm Females

DOSE	Control	25 ppm	50 ppm	100 ppm
SURVIVAL AT END OF STUDY (KAPLAN-MEIER)	60.0%	52.0%	58.0%	38.0%
SIGNIFICANCE (B) (LIFE TABLE)	P=0.046	P=0.337	P=0.709	P=0.029

Chronic Study Results – Histopathological Findings

Systemic Neoplasms

Malignant mesothelioma (males), Mononuclear cell leukemia (females)

Thyroid gland (females)

C-cell adenoma, carcinoma

Kidney (males)

- Neoplasms: Renal tubular adenoma (step sections), renal tubular carcinoma
- Non-neoplastic: Renal tubular hyperplasia

Nose (males and females)

- Neoplasms: Respiratory epithelium adenoma (males)
- Non-neoplastic lesions: Turbinate atrophy, turbinate hyperostosis, chronic active inflammation, olfactory epithelial metaplasia, respiratory inflammatory polyp (females only)

Liver (males and females)

Non-neoplastic: chronic inflammation, diffuse fatty change, necrosis, cystic degeneration

Incidence of Malignant Mesotheliomas in Rats

SYSTEMIC LESIONS	0 ppm	25ppm	50ppm	100ppm
Males				
Mesothelioma, malignanta	1**	12**	28**	23**
Females				
Mesothelioma, malignant ^b	0	1	1	0

^{*} p<0.05; ** p < 0.01; (n=50)

- Grossly observed fluid in the abdomen and multiple nodules on the peritoneum particularly on the testicular tunics and epididymides
 - Lesions clearly associated with exposure to VDC, resulting from the occurrence of mesothelioma

^a Historical control same route 1/200 (range 0-2%), all routes 26/699 (range 0-8%)

b Historical control same route 0/200, all routes 0/700

Incidence of Thyroid Gland and Systemic Neoplasms in Female Rats

THYROID	0 ppm	25 ppm	50 ppm	100 ppm
C-cell adenoma ^a	3**	4	6	11*
C-cell carcinoma ^b	0	6*	2	2
C-cell adenoma or carcinoma ^c	3**	10*	8	13**
SYSTEMIC				
Mononuclear Cell Leukemiad	10**	11	13	25**

^{*}p < 0.05, **p < 0.01; n=50

^a Historical control same route 13/200 (range 6-8%), all routes 81/690 (range 6-22%)

b Historical control same route 1/200 (range 0-2%), all routes 6/690 (range 0-7%)

^c Historical control same route 14/200 (range 6-8%), all routes 87/690 (range 6-22%)

d Historical control same route 58/200 (range 20-34%), all routes 165/700 (range 10-36%)

Incidence of Kidney Lesions in Males

KIDNEY (Standard Single Sections)	0 ppm	25 ppm	50 ppm	100 ppm
Renal tubule, hyperplasia ^a	0	1 [2.0]	1 [1.0]	1 [4.0]
Renal tubule, carcinomab	0	2	1	1

^a Data presented as Incidence [Average severity grade]; 1=minimal, 2=mild, 3=moderate, 4=marked

^b Historical control same route 0/200; all routes 1/697 (range 0-2%)

Vinylidene Chloride-Induced Lesions in the Nose (Males)

NOSE	0 ppm	25 ppm	50 ppm	100 ppm
Respiratory epithelium adenomab	0**	0	1	4
Turbinate atrophy	0	50 [2.2]**	50 [3.2]**	50 [3.8]**
Turbinate hyperostosis	0	49 [2.1]**	50 [2.6]**	50 [2.9]**
Olfactory epithelium, respiratory metaplasia	3 [1.0]	49 [2.5]**	49 [3.2]**	48 [3.5]**
Olfactory epithelium, squamous metaplasia	0	0	1 [2.0]	5 [1.2]*
Respiratory epithelium, hyperplasia	5 [1.6]	8 [1.5]	22 [2.5]**	31 [2.3]**
Inflammation, chronic active	9 [1.2]	36 [2.0]**	45 [2.7]**	48 [3.2]**
Thrombosis	4 [2.3]	4 [3.0]	11 [3.3]*	7 [2.7]

^{*} p < 0.05, **p < 0.01, n=50

^a Data presented as Incidence [Average severity grade]; 1=minimal, 2=mild, 3=moderate, 4=marked

b Historical control same route 0/198, all routes 0/697

Nonneoplastic Lesions in the Liver

Males	0 ppm	25 ppm	50 ppm	100 ppm
Inflammation, chronic	28 [1.0]	46 [1.2]**	46 [1.3]**	44 [1.9]**
Fatty change, diffuse	4 [2.0]	19 [1.7]**	18 [1.7]**	26 [2.0]**
Necrosis	2 [2.5]	6 [2.8]	8 [2.6]*	6 [2.3]
Degeneration, cystic	2 [2.0]	5 [2.8]	7 [1.9]	12 [2.1]**
Females				
Inflammation, chronic	42 [1.0]	48 [1.4]*	49 [1.4]**	48 [2.1]**
Fatty change, diffuse	19 [1.2]	30 [1.7]*	26 [1.7]	30 [2.0]**
Necrosis	0	3 [1.7]	5 [2.2]*	11 [1.8]**
Degeneration, cystic	0	2 [3.0]	4 [2.3]*	7 [2.7]**

Data presented as Incidence [Average severity grade]; 1=minimal, 2=mild, 3=moderate, 4=marked p < 0.05, **p < 0.01, n=50

Evidence for Carcinogenic Activity in Rats

Males

- <u>Clear evidence</u> in male rats based on increased incidences of malignant mesothelioma.
- Increased incidences of renal tubule carcinomas and respiratory epithelium adenomas in the nose were also related to vinylidene chloride exposure

Females

- <u>Some evidence</u> in female rats based on increased incidences of Ccell adenoma or carcinoma in the thyroid gland and systemic mononuclear cell leukemia
- Occurrences of malignant mesothelioma may have been related to vinylidene chloride exposure

Treatment-Related Nonneoplastic Lesions in Rats

Males

- Kidney renal tubular hyperplasia
- Nose turbinate atrophy and hyperostosis, olfactory epithelial hyperplasia, olfactory epithelial respiratory and squamous metaplasia, chronic active inflammation
- Liver chronic inflammation, diffuse fatty change, necrosis, cystic degeneration

Females

- Nose turbinate atrophy and hyperostosis, olfactory epithelial respiratory and squamous metaplasia, respiratory epithelial hyperplasia, chronic active inflammation
- Liver chronic inflammation, diffuse fatty change, necrosis, cystic degeneration

Chronic Mouse Studies

Vinylidene Chloride

$$CI$$
 $C = C$

Survival in Mice Exposed to Vinylidene Chloride

- Decreased survival in males at 25 ppm and females at 6.25 and 25 ppm
- Increased survival in 6.25 ppm males

Body Weights in Mice Exposed to Vinylidene Chloride

- Mean body weights were decreased in 12.5 ppm males (10-17%) and 25 ppm males (10-24%)
- Mean body weights were decreased in 25 ppm females (12-23%)

Chronic Study Results – Histopathological Findings

Kidney

- Neoplasms: Renal tubular adenoma, carcinoma (males)
- Non-neoplastic: Renal tubular hyperplasia and cyst (males)

Liver

 Neoplastic: Hepatocellular adenoma and carcinoma (females), hepatocholangiocarcinoma (males and females)

Systemic

Hemangioma or Hemangiosarcoma (females)

Lungs

Alveolar/bronchiolar adenoma or carcinoma (females)

Small intestine

- Carcinoma
- Nose (males and females)
 - Non-neoplastic: Hyperostosis, turbinate atrophy; olfactory epithelial metaplasia, respiratory; hyaline droplet accumulation of olfactory epithelium; respiratory epithelial hyperplasia

Incidences of Kidney Lesions in Male Mice

Neoplasms	0 ppm	6.25 ppm	12.5 ppm	25 ppm
Renal tubule adenoma ^a	0**	5*	19**	10**
Renal tubule carcinomab	0**	7*	31**	18**
Renal tubule adenoma or carcinoma ^c	0**	11**	37**	27**
Nonneoplastic lesions				
Renal tubule, hyperplasia	0	8 [1.8]**	22 [1.7]**	16 [1.7]**

^{*} p<0.05; ** p < 0.01; (n=50)

^a Historical control same route 0/298, all routes 8/944 (range 0-4%)

^b Historical control same route 0/298, all routes 3/944 (range 0-4%)

^c Historical control same route 0/298, all routes 11/944 (range 0-6%)

Incidences of Hemangioma and Hemangiosarcoma in Female Mice

LIVER	0ppm	6.25ppm	12.5ppm	25ppm
Hemangiosarcoma	1**	1	1	6*
ALL ORGANS				
Hemangioma ^a	0	2	2	2
Hemangiosarcoma ^b	4	4	4	9
Hemangioma or Hemangiosarcoma ^c	4*	6	6	11*

^{*} p<0.05; ** p < 0.01; (n=50)

^aHistorical control same route 0/300, all routes 5/950 (range 0-2%)

bHistorical control same route 21/300 (range 4-10%), all routes 50/950 (range 0-12%)

[°]Historical control same route 21/300 (range 4-10%), all routes 55/950 (range 2-14%)

Incidence of Liver Neoplasms in Mice

Females	0 ppm	6.25 ppm	12.5 ppm	25 ppm
Hepatocellular adenoma ^a	25*	21	36*	29
Hepatocellular carcinomab	8*	14	12	17*
Hepatocellular adenoma or carcinomac	28**	30	37*	38**
Hepatocholangiocarcinoma ^d	0	1	1	2
Males				
Hepatocholangiocarcinoma ^e	1	2	2	3

^{*} p<0.05; ** p < 0.01; (n=50)

^aHistorical control same route 105/300 (range 28-50%), all routes 378/948 (range 14-78%)

bHistorical control same route 44/300 (range 10-20%), all routes 152/948 (range 4-46%)

[°]Historical control same route 133/300 (range 32-56%), all routes 448/948 (range 20-82%)

dHistorical control same route 0/300, all routes 0/948

eHistorical control same route 2/299 (range 0-2%), all routes 10/949 (range 0-8%)

Incidences of Neoplasms in the Lung and Small Instestine of Female Mice

LUNG	0ppm	6.25ppm	12.5ppm	25ppm
Alveolar/bronchiolar adenoma	3	4	2	2
Alveolar/bronchiolar carcinoma ^a	1*	2	7*	5
Alveolar/bronchiolar adenoma or carcinoma	4	5	9	7
SMALL INTESTINE				
Carcinomab	1	1	1	3
Adenoma or Carcinoma ^c	2	1	2	4

^{*} p<0.05; ** p < 0.01; (n=50)

^aHistorical control same route 13/299 (range 0-10%), all routes 38/949 (range 0-14%)

bHistorical control same route 2/300 (range 0-2%), all routes 5/950 (range 0-2%)

^cHistorical control same route 4/300 (range 0-4%), all routes 10/950 (range 0-4%)

Nonneoplastic Lesions of the Nose

Males	0 ppm	6.25 ppm	12.5 ppm	25 ppm
Turbinate atrophy	0	46 [1.1]**	46 [2.1]**	47 [2.8]**
Hyperostosis	1 [2.0]	27 [1.3]**	45 [2.1]**	48 [2.2]**
Olfactory epithelium, hyaline droplet accumulation	2 [1.0]	5 [1.0]	13 [1.3]**	11 [1.3]**
Olfactory epithelium, respiratory metaplasia	17 [1.2]	39 [1.2]**	47 [1.6]**	48 [1.8]**
Females				
Turbinate atrophy	0	46 [1.0]**	50 [2.3]**	49 [2.8]**
Hyperostosis	0	13 [1.2]**	45 [2.0]**	48 [2.2]**
Olfactory epithelium, hyaline droplet accumulation	18 [1.6]	18 [1.5]	13 [1.4]	32 [1.8]**
Olfactory epithelium, respiratory metaplasia	3 [1.0]	29 [1.1]**	49 [1.6]**	50 [1.9]**
Respiratory epithelium hyperplasia	33 [1.1]	41 [1.2]	39 [1.5]	43 [1.8]**

Evidence for Carcinogenic Activity in Mice

Males

- <u>Clear evidence</u> in male mice based on increased incidences of renal tubule adenoma and carcinoma
- Increased incidences of hepatocholangiocarcinoma may have been related to vinylidene chloride exposure.

Females

- <u>Clear evidence</u> in female mice based on increased incidences systemic hemangioma or hemangiosarcoma (combined)
- Hepatocholangiocarcinoma and hepatocellular adenoma and carcinoma (combined) in the liver of female mice were also considered to be related to vinylidene chloride exposure.
- Increased incidences of alveolar/bronchiolar carcinoma in the lungs and carcinoma of the small intestine may have been related to treatment.

Treatment-Related Nonneoplastic Lesions in Mice

Males

- Kidney renal tubule hyperplasia, cysts
- Nose turbinate atrophy and hyperostosis, olfactory epithelium respiratory metaplasia, olfactory epithelium hyaline droplet accumulation

Females

 Nose - turbinate atrophy and hyperostosis, olfactory epithelium respiratory metaplasia, olfactory epithelium hyaline droplet accumulation, respiratory epithelium hyperplasia

END