

Application of Genomic Benchmark Dose Analysis to the Elk River Chemical Spill

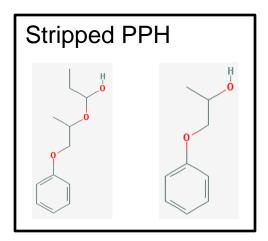
Scott S. Auerbach PhD DABT

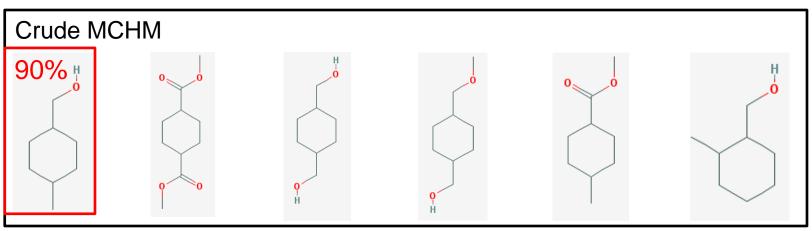
SOT Workshop on Bioactivity-Based Margin of Exposure Safety Assessment: The Next Stop along the Road to 21st Century Safety Assessments

March 15, 2016

Disclaimer

The statements, opinions or conclusions contained herein do not necessarily represent the statements, opinions or conclusions of NTP, NIEHS, NIH or the United States government




- On January 9, 2014 approximately 10,000 gallons of liquid (crude MCHM and stripped PPH) was leaked from a tank into the Elk River
- The leak occurred 1.5 miles upstream of the water intake facility serving 300,000 people across 9 counties in the Charleston, WV area
- The main chemical from the spill (4-methylcyclohexanemethanol; MCHM) made it into the water supply and was detectable by residents (licorice smell)
- CDC issued a Drinking Water Advisory Level (DWAL) of 1 ppm for MCHM and 1.2 ppm for PPH (propylene glycol phenyl ether) which limited exposure to the chemicals
- Despite the efforts of CDC, along with state and local authorities, a number residents manifest symptoms chemical exposure including rash, skin irritation, diarrhea, nausea, and respiratory illness
- Exposure continued at low levels for a couple months after spill

Spilled chemicals

July 2014

NCEH/ATSDR (CDC) request the NTP undertake research to address lingering uncertainties in the toxicology dossier for a number the spilled chemicals

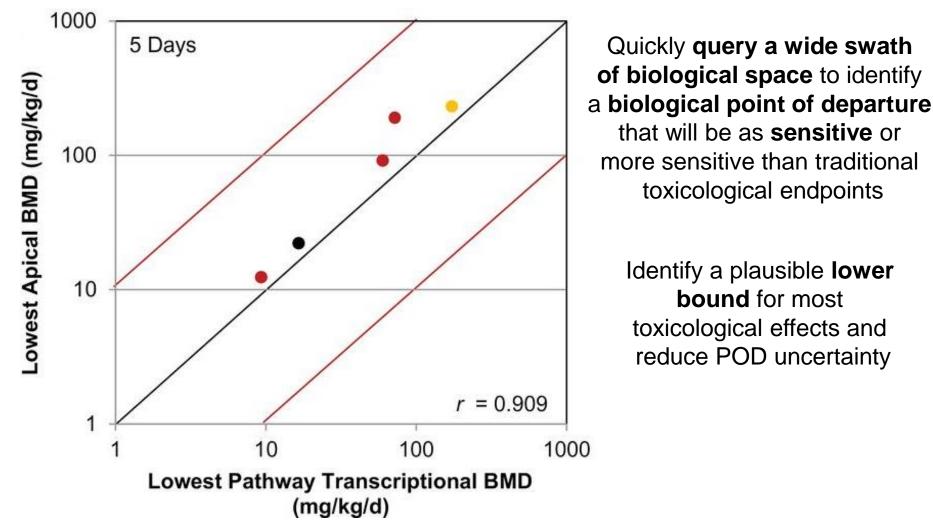
> "A research effort aimed at providing meaningful information to public health decision-makers **over the coming year** would be most useful."

-CDC Nomination letter to NTP

- Reduce uncertainty around the point of departure and safety factors used to develop the drinking water advisory levels
 - NOEL/NOAEL Remember these numbers
 - MCHM: 100 mg/kg/day kidney and liver effects
 - PPH: 40 mg/kg/day maternal toxicity
 - Drinking Water Advisory Level
 - MCHM: 1 ppm, which equals 0.1 mg/kg/day for a child
 - PPH: 1.2 ppm, which equals 0.04 mg/kg/day for a pregnant woman
- Determine if there are life-stage specific hazards
- Screen minor components of the mixture to determine if there are significant deviations in potency or toxicological properties

NTP Studies on Elk River Chemicals

				Stu	dies			
Test Article [Abbreviation, CAS Number]	Rat Prenatal Toxicity	Mouse Dermal Irritation and Hypersensitivity	5-Day Rat Toxicogenomic	Bacterial Mutagenicity	Zebrafish Developmental	Nematode Toxicity	High Throughput Screening	Structure Activity Relationship (SAR) Analysis
4-Methylcyclohexanemethanol [MCHM, 34885-03-5]	Х	Х	X	Х	Х	Х	Х	Х
Dipropylene glycol phenyl ether [DiPPH, 51730-94-0]				Х	Х	Х		Х
Propylene glycol phenyl ether [PPH, 770-35-4]			Х	х	Х	Х	Х	Х
1,4-Cyclohexanedimethanol [CHDM; 105-08-8]				Х	Х	Х	Х	Х
2-Methylcyclohexanemethanol [2MCHM, 2105-40-0]				Х	Х	Х		Х
4-(Methoxymethyl)cyclohexanemethanol [MMCHM, 98955-27-2]				Х	Х	Х		Х
Dimethyl 1,4-cyclohexanedicarboxylate [DMCHDC, 94-60-0]				Х	Х	Х	Х	Х
Methyl 4-methylcyclohexanecarboxylate [MMCHC, 51181-40-9]				Х	Х	Х		Х
Technical product ["crude MCHM"]		Х	Х	Х	Х	Х		


Guideline studies Non-guideline studies

http://ntp.niehs.nih.gov/results/areas/wvspill/studies/index.html

Poster 2864: Mouse Dermal Irritation and Hypersensitivity Studies (Wed morning)

Genomic Pathway Level Benchmark Dose

Thomas et. al., Tox Sci, 2013

- **Model**: Harlan Sprague Dawley Rat (male)
- Route: Oral (corn oil gavage)
- Dose range:
 - 0.1 to 500 mg/kg/day (MCHM and Crude MCHM)
 - 1 to 2000 mg/kg/day (PPH)
 - 6 dose levels plus control group
- Dosing regiment: 5 repeated doses, euthanize 24 hrs. after last dose
- Organs for transcriptomics: Liver and Kidney
- Other endpoints: Clinical observations, body and organ weights, clinical pathology, micronuclei

- MCHM: All effects were marginal and occurred at 300 and or 500 mg/kg/day
 - Increased liver weight (trend); increased triglycerides; decreased serum glucose and eosinophils; No effect on micronuclei
- Crude MCHM: All effects were marginal and occurred at 300 and or 500 mg/kg/day
 - Increased liver weight; decreased thymus weight; increased triglycerides, creatinine, total protein, albumin and mean cell volume; decreased serum glucose and eosinophils; No effect on micronuclei
- PPH: All effects were limited to the 500, 1000 and/or the 2000 mg/kg/day dose groups
 - Mortality and clinical signs at the 1000 and 2000 mg/kg/day groups; increase ALT and decreased monocytes

- Black et. al, Tox. Sci, 2014; Thomas et. al., 2013
- Identifies genomic BMDs that approximate apical BMDs
- <u>All probe sets</u> are fit to 4 different models (power, linear, poly2 and poly3)
- "Best fit model" for each probe set is selected and BMD and BMDL are reported
- Probe sets considered to have acceptable fits (fit pvalue threshold) in the "best fit models" are passed into the gene, pathway, biological process analysis
- Pathways are populated by the genes and a mean or median BMD/BMDL is determined for pathways that contain 5 or more genes

Genomic BMD Results (Published Approach)

Chemical	Organ	ANO (FDR< (n=31,	R?
MCHM	Liver	18	
MC	Kidney	0	
cMCHM	Liver	38	R
cMO	Kidney	0	
Hdd	Liver	20	$\left(\right)$
ЪР	Kidney	31	~ ~

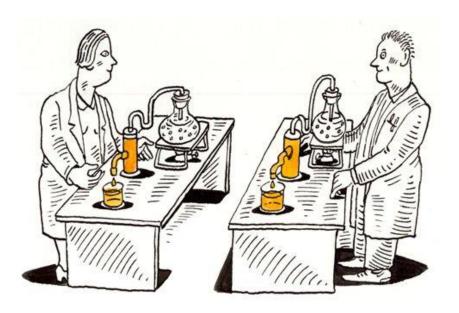
Modeling the noise

- Identified ~100 microarrays from vehicle treated rat liver (TG-Gates, 7 day) with no batch effect
 - http://toxico.nibio.go.jp/english/index.html
- Randomly sample arrays to create 5 null data sets of 30 microarrays
 - Dose levels 0, 0.1, 1, 10, 100, 1000
 - 5 samples per dose group
- Ran null sets through BMDExpress using published approach (i.e., all probe sets fit to models)

Null Data Sets (Published Standard)

Null Set	ANOVA (FDR<0.05) (31,000)	Individual Genes (n=14073)	Genes (n=206)		MSigDB Pathways (n=4725)
Set 1		2672	101	3108	2881 3, 6)
Set 2	Dver	IY Pe	ermi	SSIV	e 805 8, 5)
Set 3	0	4670 (5, 4)	134 (19, 10)	4031 (14, 7)	3691 (13, 7)
Set 4	0	3635 (5, 4)	106 (18, 7)	3647 (12, 7)	3401 (12, 6)
Set 5	0	5116 (5, 3)	149 (13, 6)	4451 (10, 5)	3910 (12, 6)

Active count (Lowest BMD, BMD_L)



Eliminating the noise

Reproducibility

Modeling the noise

- 5 null data sets
- 12 different gene filters with a complete BMD Analysis
 - Statistical Threshold
 - Multiple testing correction
 - Fold change
- Ranked the filtering methods based on lowest number of "active" genes and pathways with BMDs
- If the multiple methods reported "0" genes or pathways with BMDs than we ranked the more permissive method higher

Genes

ANOVA (p-value)	Multiple Testing Correction	Fold Change	Individual Genes (n=14073) # Active Genes (Permissivity Rank)	Rank
0.1	Yes	None	0 (10)	1
0.01	No	2	0 (11)	2
0.05	Yes	None	0 (12)	3
0.001	No	None	1(9)	4
0.01	No	1.7	2 (7)	5
0.05	No	2	3 (8)	6
0.01	No	1.5	3 (6)	7
0.05	No	1.7	8 (5)	8
0.005	No	None	10 (4)	9
0.05	No	1.5	13 (3)	10
0.01	No	1.2	20 (2)	11
0.05	No	1.2	70 (1)	12

Pathways

ANOVA (p-value)	Multiple Testing Correction	Fold Change	MSigDB Pathways (n=4725) # Active Pathways (Permissivity Rank)	Rank
0.01	No	1.2	0 (2)	1
0.005	No	None	0 (4)	2
0.05	No	1.7	0 (5)	3
0.01	No	1.5	0 (6)	4
0.01	No	1.7	0 (7)	5
0.05	No	2	0 (8)	6
0.001	No	None	0 (9)	7
0.1	Yes	None	0 (10)	8
0.01	No	2	0 (11)	9
0.05	Yes	None	0 (12)	10
0.05	No	1.5	4 (3)	11
0.05	No	1.2	12 (1)	12

Paired chemical studies

- 3, 7, 14 and 28 day liver studies from TG-Gates
 - 3 dose levels and control
- Chemical pairs
 - Gemfibrozil and Clofibrate
 - WY-14,643 and Fenofibrate
 - Naproxen and Ibuprofen
- 12 different gene filters with a complete BMD Analysis
 - Statistical Threshold; Multiple testing correction; Fold change
- Reproducibility Metric
 - Percent of overlapping genes/pathways with a BMD

Genes

ANOVA (p-value)	Multiple Testing Correction	Fold Change	Individual Genes (n=14073) % Overlapping	Rank
0.05	No	1.2	15.1	1
0.05	No	1.5	14.5	2
0.05	No	1.7	14.3	3
0.05	No	2	12.2	4
0.01	No	1.5	12.6	5
0.01	No	1.7	12.6	6
0.01	No	2	12.2	7
0.01	No	1.2	12	8
0.1	Yes	None	10.3	9
0.001	No	None	8	10
0.05	Yes	None	8	11
0.005	No	None	5.8	12

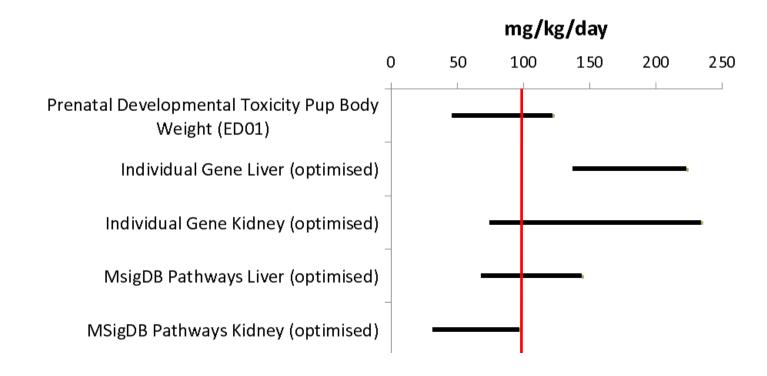
Pathways

ANOVA	Multiple Testing Correction	Fold Change	MSigDB Pathways (n=4725) % Overlapping	Rank
0.05	No	1.2	37.9	1
0.1	Yes	None	18.7	2
0.01	No	1.2	18.4	3
0.05	No	1.5	16.3	4
0.05	No	1.7	12.6	5
0.05	No	2	11.1	6
0.01	No	1.5	10.8	7
0.05	Yes	None	10	8
0.01	No	1.7	9.1	9
0.01	No	2	8.4	10
0.001	No	None	5.9	11
0.005	No	None	4.7	12

Genes

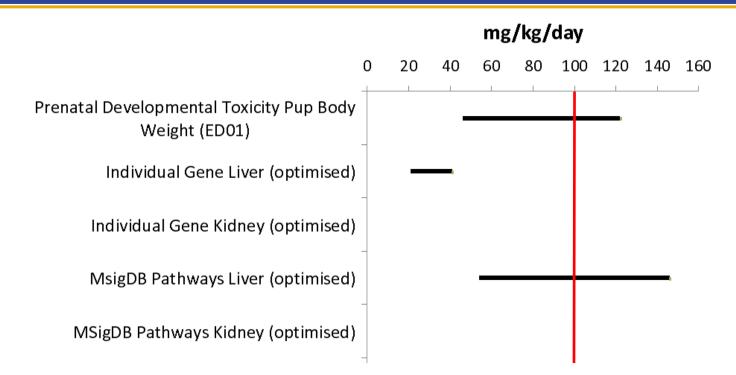
ANOVA		Fold	Noise Elimination	Reproducibility	Overall
(p-value)		Change	Rank	Rank	Rank
0.01	No	1.7	5	5	1

Pathways

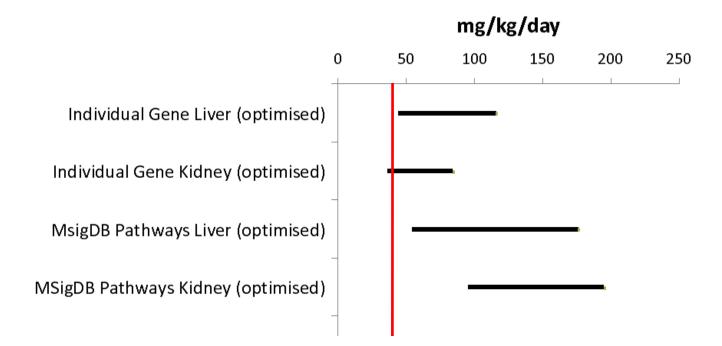

ANOVA (p-value)	Multiple Testing Correction	Fold Change	Noise Elimination Rank	Reproducibility Rank	Overall Rank
0.01	No	1.2	1	3	1

Elk River with Optimized Modeling Approach

Chemical	Organ	Individual Genes (n=14073) Active Count <u>Method:</u> 0.01 No MTC, 1.7 FC	MSigDB Pathways (n=4725) Active Count <u>Method:</u> 0.01 No MTC, 1.2 FC
MCHM	Liver	14	28
MC	Kidney	6	44
cMCHM	Liver	18	27
cMC	Kidney	0	0
НД	Liver	24	32
H H	Kidney	33	156

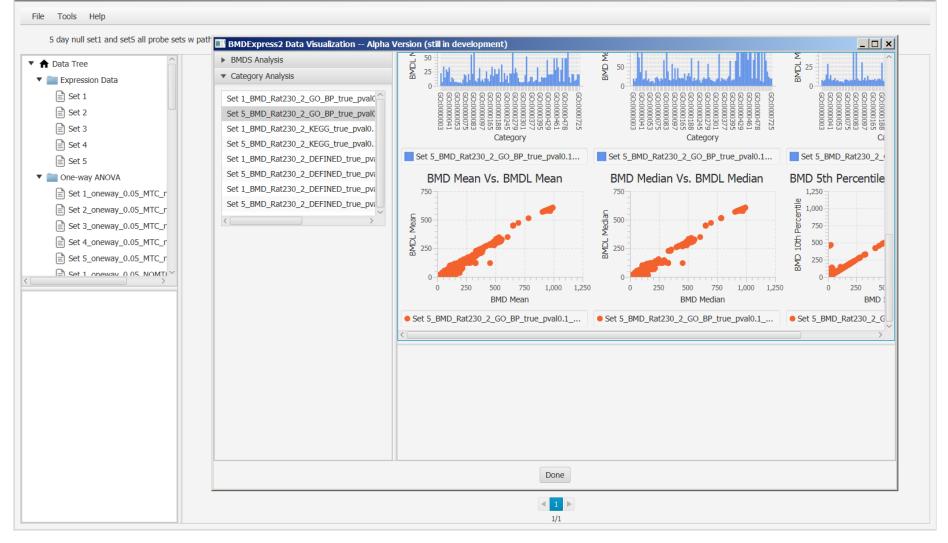

MCHM: Apical vs. Genomic

Rat 28-Day Study of MCHM (NOAEL)


Crude MCHM: Apical vs. Genomic

Rat 28-Day Study of MCHM (NOAEL)

PPH: Apical vs. Genomic


Maternal Toxicity in Rat Teratology (NOAEL)

BMDExpress 2.0

_ | | | × |

BMDExpress 2.00.147 BETA

- A best practices in genomic benchmark dose modeling needs to be established
- Published approach used here is likely not appropriate for weak signal chemicals
 - >99% of the genes reported were noise
- Optimized methods like the ones described here will help in balancing signal/noise and increase the reproducibility of genomic BMD results
- Both gene level and pathway level BMD/BMD_L performed well in estimating the most sensitive apical NOAEL or BMD/BMD_L therefore reducing the uncertainty around the PODs used for the develop the DWAL

- Chemistry: Brad Collins (lead), Suramya Waidyanatha, MPI (Contractor)
- SAR: Scott Masten (lead), Neepa Choksi (ILS, contractor), Stephen Ferguson
- **HTS**: Tox21 Consortium
- **Nematode Toxicity**: Windy Boyd (lead)
- **Zebrafish Toxicity**: Ray Tice (lead), Robert Tanguay and Lisa Truong (Oregon State U, contractor)
- **Genotoxicity**: Kristine Witt (lead), Les Recio (ILS, contractor)
- Dermal Irritancy/ Immune Toxicity: Dori Germolec (lead), Burleson Research Technologies, Inc (contractor)
- **5 Day Toxicogenomics**: Molly Vallant, Battelle (contractor), Dan Svoboda (Sciome), Jason Phillips (Sciome)
- **Prenatal Developmental Toxicity**: Chad Blystone (lead), Helen Cunny, Paul Foster, Barry McIntyre, Vicki Sutherland, Southern Research (contractor)
- Analysis: Jennifer Fostel and Vistronix team; Grace Kissling; Laura Betz (SSS, contractor)
- **Communications**: Mary Wolfe, Yun Xie, Robin Mackar
- Leadership: John Bucher, Nigel Walker, Scott Masten, Ray Tice, Rick Paules

Acknowledgements

auerbachs@niehs.nih.gov

Extra slides

Most Sensitive Genes

Chemical	Organ	Gene	Full Gene Name
MCHM	Liver	Ces2c	carboxylesterase 2C
MC	Kidney	Pxmp4	peroxisomal membrane protein 4
cMCHM	Liver	Dusp6	dual specificity phosphatase 6
cMC	Kidney		
Hdd	Liver	Gpt	glutamic-pyruvate transaminase
ЦЦ	Kidney	Ccnb1	cyclin B1

Most Sensitive Pathways

Chemical	Organ	Pathway/Gene Set Name
MCHM	Liver	REACTOME_METAL_ION_SLC_TRANSPORTERS
MC	Kidney	WEST_ADRENOCORTICAL_TUMOR_MARKERS_UP
cMCHM	Liver	KEGG_PYRUVATE_METABOLISM
cMC	Kidney	
Hdd	Liver	MOOTHA_GLUCONEOGENESIS
4 H	Kidney	KUMAMOTO_RESPONSE_TO_NUTLIN_3A_DN