U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Use of Exposure and Outcome Assessment in Epidemiologic Studies of TCE

Mark Purdue, PhD Division of Cancer Epidemiology and Genetics, NCI

Outline

- 1) The importance of exposure specificity
- 2) Exposure metrics used in statistical analyses
- 3) Assessing the quality of exposure & outcome assessment in TCE studies

1)The importance of exposure specificity

Exposure Sensitivity and Specificity

Sensitivity = N_{11} / N_{10}

1- Sens = False Negative Rate

Specificity = $N_{00} / N_{\bullet 1}$ 1- Spec = False Positive Rate

Exposure Sensitivity and Specificity

- Imperfect sensitivity and specificity introduce exposure misclassification
- If independent of outcome status, likely effect (with some caveats) is to bias associations towards the null
- For exposures with low prevalence, the bias from low specificity is particularly strong

1) Prevalence = 10%; Sensitivity = 100%; Specificity = 100%

1) Prevalence = 10%; Sensitivity = 99%; Specificity = 99%

1) Prevalence = 10%; Sensitivity = 80%; Specificity = 99%

1) Prevalence = 10%; Sensitivity = 99%; Specificity = 80%

1) **Prevalence = 5%;** Sensitivity = 99%; Specificity = 80%

1) **Prevalence = 1%;** Sensitivity = 99%; Specificity = 80%

Summary

- Assessing exposure with high specificity important for minimizing bias due to measurement error
- Especially so for rare exposures (like TCE)

Specificity and Exposure Assessment Approach

1) Cohorts

High Specificity

• Biomonitoring

- Onsite exposure measurement (e.g., air monitoring)
- Site-specific processes, tasks

Low Specificity

• Other sources

Specificity and Exposure Assessment Approach

1) Case-control studies

High Specificity	Expert review (using subject-specific data re. exposures, tasks)	
	Job task - expos	sure matrix (JEM)
Low Specificity	Self-reported exposure	Job-exposure matrix (JEM)

Job-Exposure Matrix

Exposure probability, intensity assigned on the basis of:

- Occupation (and, in some studies, industry)
- Calendar period of employment

Limitation: assumes that exposure is uniform within categories of occupation & calendar period

Job-Exposure Matrix

Exposure probability, intensity assigned on the basis of:

- Occupation (and, in some studies, industry)
- Calendar period of employment

Limitation: assumes that exposure is uniform within categories of occupation & calendar period

TCE Exposure Probability

Mechanic			High
Industrial Machinery Mechanic			High
Aircraft Mechanic			High
Gas Station Attendant		Medium	
Solvents, General		Medium	
Assembly Worker		Medium	
Welder	Low		
Electrician	Low		
Handyman	Low		
Machinist	Low		
Plumber	Low		

Self-Reported Degreasing Among Controls (Purdue 2010)

Job / Task - Exposure Matrix

More detailed matrix for assigning exposure that incorporates information on selected job tasks performed within a given occupation

Assumption of uniformity in exposure within JTEM task / occupation / period categories more robust than for JEM

2) Exposure metrics used in statistical analyses

Qualitative Exposure Metrics

- Ever vs. never exposed
- Highest exposure probability across jobs

Crude; do not take into account variation in duration or intensity

(Semi-) Quantitative Metrics: Overview

Three most common metrics:

- Exposure duration
- Average intensity
- Cumulative exposure (e.g., ppm*years, lifetime hours, lifetime ppm*hours)

(Semi-) Quantitative Metrics: Pros and Cons

Exposure duration:

Good when high % of subjects have uniform, high exposure intensity

Problematic when average intensity varies widely.

(Semi-) Quantitative Metrics: Pros and Cons

Average intensity:

Good when duration irrelevant to risk or subjects had similar duration

Problematic when duration relevant & varies considerably between subjects, and effects from peaks

(Semi-) Quantitative Metrics: Pros and Cons

Cumulative exposure

Good when risk increases linearly with total exposure accumulation

Problematic with nonlinear effects, effects from peaks

Exposure Metrics: Summary

- No single exposure metric has been identified as best (dependent on underlying toxicology)
- Exposure metrics restricted to high-probability / -confidence jobs recommended (i.e., maximize specificity)
- Result for highest-exposed category can be important for detecting potential association (i.e., maximize contrast)

Outcomes

- Incidence vs. Mortality
 - Mortality a weaker surrogate for incidence for cancers with high survival

SEER 5-Year Relative Survival, 1988-200)1
8%	
32%	
60% (non-HIV/AIDS)	
66%	
	SEER 5-Year Relative Survival, 1988-200 8% 32% 60% (non-HIV/AIDS) 66%

- Specificity (e.g., NHL vs. "lymphosarcoma")
- NHL subtype important to the extent that there are differences in association by subtype (unclear)

3) Assessing the quality of exposure & outcome assessment in TCE studies

Cohort Studies

Group 1: Exposure assessment using urinary TCA measurements (TCE metabolite); cancer incidence endpoints

Anttila

Axelson

Hansen 2001

Hansen 2013 (pooled analysis with updated F/U)

Limitations:

- U-TCA a biomarker of recent exposure
- Limited number of measurements per person
- Concentrations suggest generally low exposure levels
- U-TCA also metabolite of other chlorinated solvents (Perc, 1,1,1-TCA

Cohort Studies

Group 2: Assessment using company records, walkthroughs, interviews; 1+ exposure metrics used

Boice* Lipworth Morgan* Radican*†

Zhao* ‡

* Conducted analyses by level of intensity or cumulative exposure
† air-sampling measurements were available
‡ Cancer incidence

Cohort Studies

Group 3: Ever/never exposed only, use of generic JEM, or other issues

Bahr	Poorly described design; used prevalent cases
Greenland	Incomplete access to worker records; ever/never exposed
Henschler†	Ever vs. never exposed; based on reported cluster
Raaschou-Nielsen*	Exposure not based on subject-level tasks or exposures
Wilcosky	Individual-level exposure uncertain; ever/never exposed; broad lymphoma disease category
Vlaanderen * ‡	Generic JEM involving job categories, calendar period

* Cancer incidence

- + Highly exposed study population
- ‡ Population-based cohort

Case-Control Studies

Group 1: Exposure assessment by expert review

Charbotel* † Christensen * Cocco 2010 * <u>Cocco 2013 *</u> ‡ Costantini Gold * Miligi * ‡ Moore * Pesch Purdue * ‡ Seidler ‡ Vamvakas*†

* Analyses (some or all) restricted to high-prob or high-conf exposure

+ High-prevalence study population

‡ Analyses by NHL subtype

Cocco 2013: pooled analysis, includes multiple studies listed here

Case-Control Studies

Wang $+, \pm$

Group 2: Exposure assessment by generic JEM or self-report

Bruning * Deng Dosemeci Hardell Nordstrom Persson

- * Highly exposed study population
- ‡ Some analyses restricted to high-prob or high-conf exposure
- + Analyses by NHL subtype

Case-Control Studies

Investigations of gene*environment interaction (Deng et al. -- NHL; Moore et al. -- Kidney)

- Observed TCE associations found to vary across genotypes of selected polymorphisms
- However, these findings have not been replicated in other studies
- Without replication, interpret reported evidence of such interaction with caution

Studies in Arnsberg, Germany

- Area with long history, high prevalence, of industrial TCE use
- Very high exposure levels described in studies
- But, study design limitations:

1)Henschler (cohort): based on a reported RCC cluster

2)Vamvakas, Bruning (case-control): choice of control groups; potential recall bias from self-reported exposures

In reviewing TCE literature, assess how influential these studies are on overall conclusions (i.e., review with & without)

Heterogeneity Between Studies

Factors to consider in evaluating differences in findings between studies

- Cohort vs. case-control
- Cohorts: incidence vs. mortality; internal vs. external reference group
- Case-control: source of control group
- Quality of exposure assessment
- Specificity in outcome ascertainment
- Populations with high exposure intensity/prevalence
- Individual potentially influential studies

Conclusion

When evaluating evidence from cohort and case-control studies, essential to consider

- Quality of exposure assessment (specificity)
- Results across levels of exposure metrics
- How endpoints defined