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Chemical Risk Assessment Requires 
Understanding Dose-Response

 NRC (1983): Risk is a function of inherent chemical hazard, extent of exposure, and 
the dose-response relationship (including toxicokinetics) 

 Hazard: To estimate the impact of potentially harmful chemicals we use animal 
and in vitro studies and extrapolate to humans
 Next generation risk assessment (NGRA) is working to develop new approach 

methods (NAMs) that cover key biological pathways

 Exposure: Must consider the context (consumer/ambient/occupational), 
route, frequency, and extent of contact with the chemical
 Concurrent development of NAMs for exposure includes high 

throughput toxicokinetics and exposure models and measurements

 Dose-response: Must understand quantitative relationship between 
magnitude of exposure and amount of effect
 NGRA requires tools for in vitro-in vivo extrapolation (IVIVE)

NRC, 1983
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Next Generation Risk Assessment 
(NGRA) is Built Upon 

New Approach Methods (NAMs)
 We attempt to estimate points of departure in vitro using high

throughput screening (HTS) for bioactivity as a surrogate for hazard

 Tox21:  Examining >8,000 chemicals using ~50 assays intended to
identify interactions with biological pathways (Schmidt, 2009)

 ToxCast (Toxicity Forecaster): >4000 chemicals (including a subset
of Tox21) for >2000 additional assay endpoints (invitrodb version
3.5) (Kavlock et al., 2012)

 To use HTS assays as an alternative to traditional animal studies we
must link in vitro bioactivity concentrations and potentially toxic
doses via in vitro-in vivo extrapolation (IVIVE).
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In Vitro - In Vivo Extrapolation (IVIVE)
IVIVE is the use of in vitro experimental data to predict phenomena in vivo (Coecke et al., 2013, Wetmore, 2015a) 

 In Vitro Disposition:
 Difference between nominal and effective concentration of chemical
 Partitioning to plate wall, nutrients, volatilization

In vitro to in vivo extrapolation (IVIVE)
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In Vitro - In Vivo Extrapolation (IVIVE)
IVIVE is the use of in vitro experimental data to predict phenomena in vivo (Coecke et al., 2013, Wetmore, 2015a) 

 In Vitro Disposition:
 Difference between nominal and effective concentration of chemical
 Partitioning to plate wall, nutrients, volatilization

 IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics): 
 Fate of molecules/chemicals in body
 Considers absorption, distribution, metabolism,

 excretion (ADME)

 IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics): 
 Effect of molecules/chemicals at biological 

target in vivo
 Assay design/selection important
 Perturbation as adverse/therapeutic 

effect, reversible/irreversible effects

In vitro to in vivo extrapolation (IVIVE)
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Most Chemicals lack Toxicokinetic Data
§ Most non-pharmaceutical chemicals – for example, flame retardants, plasticizers, 

pesticides, solvents – do not have human in vivo TK data. 
§ Non-pesticidal chemicals are unlikely to have any in vivo TK data, even from animals
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High Throughput Toxicokinetics (HTTK)

 To provide toxicokinetic data for larger numbers of chemicals collect in vitro, high 
throughput toxicokinetic (HTTK) data 
(for example, Rotroff et al., 2010, Wetmore et al., 2012, 2015)

 HTTK methods have been used by the pharmaceutical industry to determine range of 
efficacious doses and to prospectively evaluate success of planned clinical trials
 (Jamei, et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for bioactive in vitro 
concentrations from HTS (that is, in vitro-in vivo extrapolation, or IVIVE) 
(for example, Wetmore et al., 2015)

 A secondary goal is to provide open-source data and models for evaluation and use by 
the broader scientific community (Pearce et al., 2017)
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In Vitro - In Vivo Extrapolation (IVIVE)

 Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
 Needed for anywhere from dozens to thousands of chemicals
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In Vitro - In Vivo Extrapolation (IVIVE)

 Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models
 Needed for anywhere from dozens to thousands of chemicals
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data
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Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

httk
Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

Pearce et al. (2017)
Ring et al. (2017)

Linakis et al. (2020)
Kapraun et al. (2022)
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IVIVE by Scaling Factor

 There are many approaches to IVIVE, but we choose a relatively simple one:
 We make various assumptions that allow conversion of an in vitro concentration [𝑿𝑿] (µM) 

into an administered equivalent dose (AED) with units of mg/kg body weight/day:

 AED is the external dose rate that would be needed to cause a given steady-state 
plasma concentration

 FIVIVE is a scaling factor that varies by chemical

𝐀𝐀𝐀𝐀𝐀𝐀 =  𝑭𝑭𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰  ×  [𝑿𝑿]
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IVIVE by Scaling Factor
 For a given chemical, FIVIVE = 1 / Css,95

 Css,95 is the steady-state plasma concentration as the result of a 1 mg/kg/day exposure
 HTTK can predict Css,95 using “reverse dosimetry” IVIVE (Tan et al., 2007)

𝐀𝐀𝐀𝐀𝐀𝐀𝟗𝟗𝟗𝟗 =
[𝑿𝑿]
𝑪𝑪𝒔𝒔𝒔𝒔,𝟗𝟗𝟗𝟗

 The “95” refers to the upper 95th percentile – due to human variability and
measurement uncertainty there are a range of possible Css values

 All of this assumes that the individuals have enough time to come to “steady-state”
with respect to their daily exposures

µ𝑴𝑴 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝟏𝟏

𝑴𝑴𝑴𝑴
𝒎𝒎𝒎𝒎
𝑳𝑳

Don’t forget:
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IVIVE Allows Chemical Prioritization

In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015)
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10

10-3

10-7

Ad
m

in
ist

er
ed

 E
qu

iv
al

en
t D

os
e 

or
 

Pr
ed

ic
te

d 
Ex

po
su

re
 (m

g/
kg

 B
W

/d
ay

)

Ring et al. (2017)

CDC NHANES:
U.S. Centers for 
Disease Control 
and Prevention 
National Health 
and Nutrition 
Examination 
Survey



20 of 43 Office of Research and Development

IVIVE Allows Chemical Prioritization
CDC NHANES:
U.S. Centers for 
Disease Control 
and Prevention 
National Health 
and Nutrition 
Examination 
Survey

In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015)
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IVIVE Allows Chemical Prioritization
CDC NHANES:
U.S. Centers for 
Disease Control 
and Prevention 
National Health 
and Nutrition 
Examination 
Survey
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In Vitro Screening + IVIVE can estimate doses needed to cause bioactivity (Wetmore et al., 2015)

Exposure 
intake rates 
can be 
inferred from 
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(Stanfield et al., 2022)

Higher priority chemicals
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Adding Caco-2 Data to HTTK

 HTTK is limited by
what TK processes
can be rapidly
characterized
in vitro

 Caco-2 membrane
permeability data
are now available
for thousands of
chemicals

Honda et al. (in prep.)
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Quantitative Structure-Property 
Relationship (QSPR) Model

 Machine learning by the method of random forests (Breiman, 2001) was used to build a model for predicting 
Caco-2 apical:basal membrane permeability

 Predictions are made using chemical structure descriptors (PaDEL) and predicted  physcio-chemical 
properties (OPERA)

 We explored different ways of clustering the measurements to make the most useful predictions

Reported values are median and 95% interval Honda et al. (in prep.)
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Quantitative Structure-Property 
Relationship (QSPR) Model

 Machine learning by the method of random forests (Breiman, 2001) was used to build a model for predicting 
Caco-2 apical:basal membrane permeability (10-6 cm/s)

 Predictions are made using chemical structure descriptors (PaDEL) and predicted  physcio-chemical 
properties (OPERA)

 We explored different ways of clustering the measurements to make the most useful predictions

 The model for three bins had reasonable accuracy and predicted 
distinct permeabilities: 0.2, 2, and 20 10-6 cm/s

Reported values are median and 95% interval Honda et al. (in prep.)
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QSPR Model Evaluation

 QSPR model 
was evaluated 
using 10% of 
Caco-2 
dataset that 
was withheld 
from model 
training

 68% Balanced 
Accuracy

Office of Research and Development Honda et al. (in prep.)
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Modifying HTTK

 We modified EPA’s HTTK software (Pearce et al., 2017) 
to consider that systemic bioavailability (Fbio) can be 
predicted rapidly for many thousands of chemicals using:

𝑭𝑭𝒃𝒃𝒃𝒃𝒃𝒃 =  𝑭𝑭𝒂𝒂𝒃𝒃𝒔𝒔  × 𝑭𝑭𝒎𝒎𝒈𝒈𝒈𝒈 × 𝑭𝑭𝒉𝒉𝒉𝒉𝒉𝒉 
 HTTK already included first-pass hepatic metabolism 

(Fhep – Rowland, et al. 1973) using in vitro measurement 
of intrinsic hepatic clearance

 We now using Caco-2 data to predict fraction absorbed 
from gut (Fabs – Darwich et al., 2010) and fraction surviving 
gut metabolism/transit (Fgut – Yang et al., 2007)

 We had previously assumed Fabs = Fgut = 1
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Evaluating Impact of In Vitro 
Permeability Data on HTTK

 Over the next few slides, we compare the R package “httk” model predictions for 
differing aspects of oral bioavailability 

 We use a library of chemicals that have in vitro, chemical-specific measures of 
metabolism (intrinsic hepatic clearance – Clint), plasma protein binding (fraction unbound 
in plasma fup) and now Caco-2 membrane permeability

 The httk chemicals include pharmaceuticals but are more representative of the broader 
chemical classes found occuring in commerce and the environment

 No new in vivo data was collected, rather we use data collected by other, cited 
publications  
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Fhep Model Evaluation

 We evaluated the 
HTTK predictions for 
each component of 
systemic bioavailability 
using in vivo data 
(Varma et al., 201) for 
various chemicals
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Fabs Model Evaluation

 We evaluated the 
HTTK predictions for 
each component of 
systemic bioavailability 
using in vivo data 
(Varma et al., 201) for 
various chemicals
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Fgut Model Evaluation

 We evaluated the 
HTTK predictions for 
each component of 
systemic bioavailability 
using in vivo data 
(Varma et al., 201) for 
various chemicals
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Fbio Model Evaluation

 We also evaluated HTTK 
predictions for overall 
systemic bioavailaibility 
using in vivo data
(Kim et al., 2014) for 
various chemicals
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Summarizing Model Evaluations

 Adding Caco-2 data improved Fbio predictions for HTTK from R2 0.2 to 0.37
 Using QSPR gives R2 of 0.3
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Comparing with ADMet / 
Gastro-Plus
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Summarizing Model Evaluations

 ADMet Predictor is largely trained to pharmaceuticals
 Includes a much more sophisticated gut model (multiple compartments)
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Comparing with Fbio Estimated 
in Rat

Musther et al., 2014
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Summarizing Model Evaluations

 Rat in vivo bioavailability is less correlated with human in vivo than Caco-2 predictions
 Musther et al. (2014) found R2 of 0.28 (using 122 chemicals)



38 of 43 Office of Research and Development

Impact on Risk Prioritizations
 The impact on risk 

prioritizations has been 
minimal so far

 Reduced Fbio works to 
increase predicted 
Administered Equivalent 
dose, therefore increasing 
margin of exposure

 However, most chemicals 
examined so far have been 
predicted to be well 
absorbed from gut

 The QSPR allows 
prioritization of chemicals 
without in vitro Caco-2 data

Office of Research and Development
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Means of Obtaining HTTK
 SimCYP SimRFlow Tool (in use by EU-ToxRisk) (Khalidi et al., 2022)

https://www.certara.com/software/simcyp-pbpk/

 NICEATM Web-ICE (in use by US NTP) (Bell et al., 2020)
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive

 CompTox Chemicals Dashboard (in use by US EPA) (Williams et al., 2017)
https://comptox.epa.gov/dashboard/

 TKPlate (in use by EFSA) (Dorne et al., 2018)
https://zenodo.org/record/2548850

 R package “httk” (general informatics community, including EPA) (Pearce et al., 2017)
https://CRAN.R-project.org/package=httk
All these tools make use of some or all data/models from R package “httk”

https://www.certara.com/software/simcyp-pbpk/
https://ntp.niehs.nih.gov/whatwestudy/niceatm/comptox/ct-ivive/ivive
https://comptox.epa.gov/dashboard/
https://zenodo.org/record/2548850
https://cran.r-project.org/package=httk
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Summary
 HTTK is an approach that provides toxicokinetic predictions for high throughput 

in vivo-in vitro extrapolation to inform chemical risk assessment when in vivo 
toxicokinetic data are unavailable
 HTTK relies on rapid in vitro measurements of chemical properties
 EPA’s HTTK approach has now been modified to use membrane permeability to predict Fabs and Fgut

 First-pass hepatic metabolism was already included

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA
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Summary
 HTTK is an approach that provides toxicokinetic predictions for high throughput 

in vivo-in vitro extrapolation to inform chemical risk assessment when in vivo 
toxicokinetic data are unavailable
 HTTK relies on rapid in vitro measurements of chemical properties
 EPA’s HTTK approach has now been modified to use membrane permeability to predict Fabs and Fgut

 First-pass hepatic metabolism was already included

 In vitro Caco-2 membrane permeability have been collected from the literature 
(largely pharmaceuticals) and generated by EPA (non-drug commercial chemicals)

 These data were used to develop a machine learning-based quantitative structure-
property relationship (QSPR) model

 Both in vitro Caco-2 measurements and QSPR-derived values predict human oral 
absorption of chemicals better than animal experiments

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA
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