
National Cancer Institute
CARCINOGENESIS
Technical Report Series
No. 160
1979

CAS No. 137-17-7

NCI-CG-TR-160

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

BIOASSAY OF 2,4,5-TRIMETHYLANILINE FOR POSSIBLE CARCINOGENICITY

Carcinogenesis Testing Program Division of Cancer Cause and Prevention National Cancer Institute National Institutes of Health Bethesda, Maryland 20014

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

DHEW Publication No. (NIH) 79-1716

.

BIOASSAY OF 2,4,5-TRIMETHYLANILINE FOR POSSIBLE CARCINOGENICITY

Carcinogenesis Testing Program Division of Cancer Cause and Prevention National Cancer Institute National Institutes of Health

FOREWORD: This report presents the results of the bioassay of 2,4,5-trimethylaniline conducted for the Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute (NCI), National Institutes of Health, Bethesda, This is one of a series of experiments designed to Maryland. determine whether selected chemicals have the capacity to produce cancer in animals. A negative result, in which the test animals do not have a greater incidence of cancer than control animals, does not necessarily mean that the test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of circumstances. A positive result demonstrates that the test chemical is carcinogenic for animals under the conditions of the test and indicates that exposure to the chemical is a potential risk to man. The actual determination of the risk to man from chemicals that are carcinogenic in animals requires a wider analysis.

CONTRIBUTORS: This bioassay of 2,4,5-trimethylaniline was conducted by The NCI Frederick Cancer Research Center (FCRC) (1), Frederick, Maryland, operated for NCI (2) by Litton Bionetics, Inc.

The manager of the bioassay at FCRC was Dr. B. Ulland, the toxicologist was Dr. E. Gordon, and Drs. R. Cardy and D. Creasia compiled the data. Ms. S. Toms was responsible for management of data, Mr. D. Cameron for management of histopathology, Mr. L. Callahan for management of the computer branch, and Mr. R. Cypher for management of the facilities. Mr. A. Butler performed the computer services. Necropsies were performed by Drs. B. Ulland, R. Schueler, R. Ball, and R. Cardy. Histopathologic evaluations were performed by Drs. M. D. Reuber and R. N. Empson, Jr., and the diagnoses included in this report represent their interpretation. Animal pathology tables and survival tables were compiled at EG&G Mason Research Institute (3). The statistical analyses were performed by Dr. J. R. Joiner (4) and Ms. P. L. Yong (4), using methods selected for the bioassay program by Dr. J. J. Gart (5). The chemicals used in this bioassay were analyzed at FCRC (1) by Dr. W. Zielinsky. The chemical analyses and narrative were reviewed and approved by Dr. W. Lijinsky (1).

This report was prepared at Tracor Jitco (4) under the direction of NCI. Those responsible for the report at Tracor Jitco were Dr. C. R. Angel, Acting Director of the Bioassay Program; Dr. S. S. Olin, Deputy Director for Science; Dr. J. F. Robens, toxicologist; Dr. R. L. Schueler, pathologist; Dr. G. L. Miller, Ms. L. A. Owen, Ms. M. S. King, and Mr. W. D. Reichardt, bioscience writers; and Dr. E. W. Gunberg, technical editor, assisted by Ms. Y. E. Presley.

The following scientists at NCI were responsible for evaluating the bioassay, interpreting the results, and reporting the findings: Dr. Kenneth C. Chu, Dr. Cipriano Cueto, Jr., Dr. J. Fielding Douglas, Dr. Richard A. Griesemer, Dr. Thomas E. Hamm, Dr. William V. Hartwell, Dr. Morton H. Levitt, Dr. Harry A. Milman, Dr. Thomas W. Orme, Dr. A. R. Patel, Dr. Sherman F. Stinson, Dr. Jerrold M. Ward, and Dr. Carrie E. Whitmire.

- Frederick Cancer Research Center, P.O. Box B, Frederick, Maryland.
- (2) Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- (3) EG&G Mason Research Institute, 1530 East Jefferson Street, Rockville, Maryland.
- (4) Tracor Jitco, Inc., 1776 East Jefferson Street, Rockville, Maryland.
- (5) Mathematical Statistics and Applied Mathematics Section, Biometry Branch, Field Studies and Statistics, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.

SUMMARY

A bioassay of 2,4,5-trimethylaniline for possible carcinogenicity was conducted by administering the test chemical in feed to F344 rats and B6C3F1 mice.

Groups of 50 rats and 50 mice of each sex were administered 2,4,5-trimethylaniline at one of two doses, either 200 or 800 ppm for the rats and either 50 or 100 ppm for the mice, for 101 weeks. Matched controls consisted of 20 untreated rats and 20 untreated mice of each sex. All surviving animals were killed at the end of administration of the test chemical.

Mean body weights of the dosed male and female rats were generally lower than those of corresponding controls; mean body weights of the dosed mice were only slightly lower in the males than in the corresponding controls and were unaffected or affected irregularly in the females. Survival was not affected significantly when the rats or mice were administered the test chemical and was 70% or greater in all dosed or control groups. Sufficient numbers of animals were at risk for the development of late-appearing tumors.

In the rats, hepatocellular carcinomas or neoplastic nodules occurred at incidences that were dose related in both males and females less than or equal to 0.001), and in direct (P comparisons the incidences were significantly higher in the high-dose males, high-dose females, and low-dose females (P less than or equal to 0.004) than in corresponding controls (males: controls 1/19, low-dose 6/50, high-dose 20/50; females: controls low-dose 12/49, high-dose 27/50). addition. 0/20,In alveolar/bronchiolar carcinomas or adenomas occurred in the female rats at incidences that were dose related (P = 0.003), and in a direct comparison the incidence was significantly higher in the high-dose group (P = 0.017) than in the corresponding control group (controls 0/20, low-dose 3/43, high-dose 11/50).

female mice, hepatocellular carcinomas occurred at In the incidences that were dose related (P_{i}) less than or equal to 0.001), in direct comparisons the incidences and were significantly higher (P less than or equal to 0.001) in the lowand high-dose animals than in corresponding controls (controls 0/20, 1ow-dose 18/49, high-dose 40/50). Because historical records of this laboratory for control B6C3F1 male mice show a relatively high incidence of hepatocellular carcinomas, an increased incidence of these tumors in 2,4,5-trimethylaniline

dosed male mice as compared with matched controls could not be clearly associated with administration of the test compound.

It is concluded that under the conditions of this bioassay, 2,4,5-trimethylaniline was carcinogenic for male and female F344 rats and female B6C3F1 mice, inducing hepatocellular carcinomas or neoplastic nodules in the rats of each sex, alveolar/bronchiolar carcinomas in the female rats, and hepatocellular carcinomas in the female rats.

TABLE OF CONTENTS

			Page
I.	Intro	duction	1
II.	Mater	ials and Methods	3
	A.	Chemical	
	В.	Dietary Preparation	
	C.	Animals	
	D.	Animal Maintenance	
	Ε.	Subchronic Studies	7
	F.	Chronic Studies	10
	G.	Clinical and Pathologic Examinations	·12
	H.	Data Recording and Statistical Analyses	13
III	. Resu	lts - Rats	19
	Α.	Body Weights and Clinical Signs (Rats)	
	в.	Survival (Rats)	19
	с.	Pathology (Rats)	22
	D.	Statistical Analyses of Results (Rats)	25
IV.	Resu	lts - Mice	29
	Α.	Body Weights and Clinical Signs (Mice)	29
	в.	Survival (Mice)	29
	c.	Pathology (Mice)	32
	D.	Statistical Analyses of Results (Mice)	
v.	Disc	ussion	39
VI.	Bib1	iography	43

APPENDIXES

Appendix A	Summary of the Incidence of Neoplasms in Rats Administered 2,4,5-Trimethylaniline in the Diet	45
Table Al	Summary of the Incidence of Neoplasms in Male Rats Administered 2,4,5-Trimethylaniline in the Diet	47

Page

Table A2	Summary of the Incidence of Neoplasms in Female Rats Administered 2,4,5-Trimethylaniline in the Diet	51
Appendix B	Summary of the Incidence of Neoplasms in Mice Administered 2,4,5-Trimethylaniline in the Diet	55
Table Bl	Summary of the Incidence of Neoplasms in Male Mice Administered 2,4,5-Trimethylaniline in the Diet	57
Table B2	Summary of the Incidence of Neoplasms in Female Mice Administered 2,4,5-Trimethylaniline in the Diet	61
Appendix C	Summary of the Incidence of Nonneoplastic Lesions in Rats Administered 2,4,5- Trimethylaniline in the Diet	65
Table Cl	Summary of the Incidence of Nonneoplastic Lesions in Male Rats Administered 2,4,5-Trimethylaniline in the Diet	67
Table C2	Summary of the Incidence of Nonneoplastic Lesions in Female Rats Administered 2,4,5-Trimethylaniline in the Diet	72
Appendix D	Summary of the Incidence of Nonneoplastic Lesions in Mice Administered 2,4,5-Trimethylaniline in the Diet	77
Table Dl	Summary of the Incidence of Nonneoplastic Lesions in Male Mice Administered 2,4,5-Trimethylaniline in the Diet	79
Table D2	Summary of the Incidence of Nonneoplastic Lesions in Female Mice Administered 2,4,5- Trimethylaniline in the Diet	82
Appendix E	Analyses of the Incidence of Primary Tumors in Rats Administered 2,4,5-Trimethylaniline in the Diet	85

Page

Table El	Analyses of the Incidence of Primary Tumors in Male Rats Administered 2,4,5-Trimethylaniline in the Diet	87
Table E2	Analyses of the Incidence of Primary Tumors in Female Rats Administered 2,4,5-Trimethylaniline in the Diet	94
Appendix F	Analyses of the Incidence of Primary Tumors in Mice Administered 2,4,5-Trimethylaniline in the Diet	101
Table Fl	Analyses of the Incidence of Primary Tumors in Male Mice Administered 2,4,5-Trimethylaniline in the Diet	103
Table F2	Analyses of the Incidence of Primary Tumors in Female Mice Administered 2,4,5- Trimethylaniline in the Diet	106

TABLES

Table l	2,4,5-Trimethylaniline Subchronic Feeding Studies in Rats	8
Table 2	2,4,5-Trimethylaniline Subchronic Feeding Studies in Mice	9
Table 3	2,4,5-Trimethylaniline Chronic Feeding Studies in Rats and Mice	11

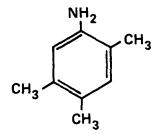

FIGURES

Figure	1	Growth Curves for Rats Administered 2,4,5-Trimethylaniline in the Diet	20
Figure	2	Survival Curves for Rats Administered 2,4,5-Trimethylaniline in the Diet	21
Figure	3	Growth Curves for Mice Administered 2,4,5-Trimethylaniline in the Diet	30
Figure	4	Survival Curves for Mice Administered 2,4,5-Trimethylaniline in the Diet	31

x

I. INTRODUCTION

2,4,5-Trimethylaniline (CAS 137-17-7; NCI CO2299), or pseudocumidine, is a component of a mixture of aromatic amines used in the synthesis of the red dye Ponceau 3R. This dye is produced by diazotizing a mixture of amine

2, 4, 5-Trimethylaniline

intermediates, some of which have been identified as methyl-, dimethyl-, or trimethylanilines, and coupling them with 2-naphthol-3,6-disulfonic acid. Ponceau 3R is therefore a complex mixture containing some 1-(2,4,5-trimethylphenylazo)-2-naphthol-3,6disulfonic acid (Grice et al., 1961; Hansen et al., 1963).

Ponceau 3R has been used as a color additive in foods since 1907. It was certified as FD&C (Food Drug and Cosmetic) Red No. 1 from 1940 until 1960, at which time it was withdrawn from general use. Provisional recertification as Ext. D&C (External Drug and Cosmetic) Red No. 15 was granted shortly thereafter in 1961, but revoked in 1968 (Hansen et al., 1963; Code of Federal Regulations, 1977).

The acute oral LD_{50} of 2,4,5-trimethylaniline in male Osborne-Mendel rats when administered in an aqueous solution by stomach tube was 1,585 mg/kg, which was intermediate in relation to six anilines derived from Ponceau 3R (Lindstrom et al., 1969). Administration of 2,4,5-trimethylaniline in the diet at 375 to 5,000 ppm, for 90 days resulted in increased liver and kidney weights; at 750 to 5,000 ppm slight focal bile duct proliferation was found (Lindstrom et al., 1969).

Ponceau 3R was found to produce liver tumors of the hepatocytes and bile duct in rats (Hansen et al., 1963; Grice et al., 1961). The azo linkage of some components of Ponceau 3R are cleaved in give 1-amino-2-naphtho1-3,6-disulfonic acid and the vivo to various aniline moieties, including 2,4,5-trimethylaniline; however, since the naphthol derivative is a component of other nontoxic food dyes, these carcinogenic effects have been attributed to the anilines (Lindstrom et al., 1969). Earlier 2-year studies conducted by the National Cancer Institute in male Charles River and in male female HaM/ICR rats and mice suggested that 2,4,5trimethylaniline was carcinogenic in the mice and possibly also in the rats (Homburger et al., 1972; Weisburger et al., in 2,4,5-Trimethylaniline was selected for study in the press). Carcinogenesis Testing Program, using an expanded bioassay protocol.

II. MATERIALS AND METHODS

A. Chemical

2,4,5-Trimethylaniline was obtained from Research Organic/ Inorganic Chemical as a fine, gray-white powder. Its melting point was 64° C. Elemental analysis showed 78.6% carbon, 9,9% hydrogen, and 10.2% nitrogen (theoretical: 80.0% C, 9.6% H, and 10.4% N). Analysis by gas-liquid chromatography indicated two components, one of which was greater than 99.9%. Its infrared spectrum was consistent with its chemical structure, and mass spectral analysis gave a molecular ion at m/e 135 and a base peak at m/e 120.

The test material was stored at 5°C until used.

B. Dietary Preparation

Test diets containing 2,4,5-trimethylaniline were prepared at Frederick Cancer Research Center (FCRC) every 1 to 1-1/2 weeks in 6- to 12-kg batches at the appropriate doses. A known weight of the chemical was first mixed with an equal weight of autoclaved Wayne[®] Sterilizable Lab Meal containing 4% fat (Allied Mills, Inc., Chicago, Ill.), using a mortar and pestle. The mixing was continued with second and third additions of feed, and final mixing was performed with the remaining quantity of feed for a minimum of 15 minutes in a Patterson-Kelly[®] twin-shell blender. The diets were routinely stored at 7[°]C until used.

C. Animals

Male and female F344 (Fischer) rats and B6C3F1 mice were obtained as 4-week-old weanlings, all within 3 days of the same age, from the NCI FCRC (Frederick, Md), which is monitored by the Division of Cancer Treatment, NCI. The animals were housed within the test facility for 2 weeks and were then assigned four rats of the same sex to a cage and five mice of the same sex to a cage. The initial weights for male rats were 90 to 105 g, averaging at least 100 g; for female rats, 80 to 95 g, averaging at least 90 g; for male mice, 18 to 22 g, averaging at least 19.5 g; and for female mice, 17 to 21 g, averaging at least 18.5 g. Individual animals were identified by ear punch.

D. Animal Maintenance

The animals were housed in polycarbonate cages (Lab Products Inc., Garfield, N. J.), $19 \times 10-1/2 \times 8$ inches for the rats and $11-1/2 \times 7-1/2 \times 5$ inches for the mice. The cages were suspended from aluminum racks (Scientific Cages, Inc., Bryan, Tex.) and were covered by nonwoven polyester-fiber 12-mil-thick filter paper (Hoeltge, Inc., Cincinnati, Ohio). The bedding used was Absorb-dri[®] hardwood chips (Northeastern Products, Inc., Warrenburg, N. Y). The feed supplied was presterilized Wayne $^{m{ extsf{B}}}$ Sterilizable Lab Meal containing 4% fat, provided ad libitum in suspended stainless steel hoppers and replenished as required, at least three times per week. Water, acidified to pH 2.5, was supplied ad libitum from glass bottles with sipper tubes suspended through the tops of the cages.

The contaminated bedding was disposed of through an enclosed vacuum line that led to a holding tank from which the bedding was fed periodically into an incinerator. The cages were sanitized twice per week and the feed hoppers twice per month at 82 to 88°C in a tunnel-type cagewasher (Industrial Washing Machine Corp., Mataway, N. J.), using the detergents, Clout[®] (Pharmacal Research Laboratories, Greenwich, Conn.) or Oxford D'Chlor (Oxford Chemicals, Atlanta, Ga.). The glass bottles and sipper

tubes were sanitized at 82 to 88°C in a tunnel-type bottle washer (Consolidated Equipment Supply Co., Mercersburg, Pa.) three times per week, using a Calgen Commercial Division detergent (St. Louis, Mo.). The racks for the cages were sanitized at or above 82°C in a rack washer (Consolidated Equipment Co.) once per month, using the Calgen Commercial Division detergent, and the filter paper was changed at the same time.

The animal rooms were maintained at 22 to 24°C and 45 to 55% relative humidity. Incoming air was passed through a filter of 65% efficiency and a bag filter of 95% efficiency at the intake and expelled without recirculation through a "Z"-type roughing filter of 30% efficiency and a bag system of 90 to 95% efficiency at the exhaust (American Air Filters, Louisville, Ky.; Mine Safety Appliances, Pittsburgh, Pa.). Room air was changed 15 times per hour. The air pressure was maintained negative to a clean hallway and positive to a return hallway. Fluorescent lighting was provided automatically on a 12-hour-per-day cycle.

Rats administered 2,4,5-trimethylaniline and their corresponding controls were housed in the same room as rats on feeding studies of the following chemicals:

```
(CAS 128-37-0) butylated hydroxytoluene (BHT)
(CAS 88-96-0) phthalamide
```

Mice administered 2,4,5-trimethylaniline and their corresponding controls were housed in the same room as mice on feeding studies of the following chemicals:

```
(CAS 156-62-7) calcium cyanamide
(CAS 999-81-5) (2-chloroethy1) trimethylammonium chloride (CCC)
(CAS 95-80-7) 2,4-diaminotoluene
(CAS 19010-66-3) lead dimethyldithiocarbamate
(CAS 86-30-6) N-nitrosodiphenylamine
(CAS 88-96-0) phthalamide
(CAS 120-62-7) piperonyl sulfoxide
```

E. Subchronic Studies

Subchronic feeding studies were conducted to estimate the maximum tolerated doses (MTD's) of 2,4,5-trimethylaniline, on the basis of which two concentrations (referred to in this report as "low" and "high" doses) were selected for administration in the chronic studies. Groups of five rats and five mice of each sex were fed diets containing 2,4,5-trimethylaniline at one of several doses for 7 weeks, followed by 1 week of observation, and groups of five control animals of each species and sex were administered basal diet only. Each animal was weighed twice per week. Tables 1 and 2 show doses fed, the survival of animals in each dosed group at the end of the study, and the mean body weights of each

	Mal	.e	Female		
Dose (ppm)	Survival (a)	Mean Weight at Week 7 as % of Control	Survival (a)	Mean Weight at Week 7 as % of Control	
RATS					
0	5/5	100	5/5	100	
1,000	5/5	93	5/5	91	
1,500	5/5	92	5/5	83	
2,000	5/5	86	5/5	84	
3,200(Ъ)	5/5	67	5/5	73	
4,600	5/5	56	3/5	64	

Table 1. 2,4,5-Trimethylaniline Subchronic Feeding Studies in Rats

(a) Number surviving/number in group.

(b) Small amounts of bile-duct hyperplasia and periportal edema were observed in livers. Focal hyperplasia and hepatocellular hypertrophy were occasionally noted.

	Mal	.e	Female		
Dose (ppm)	<u>Survival (a)</u>	Mean Weight at Week 7 as % of Control	Survival (a)	Mean Weight at Week 7 as % of Control	
MICE					
First Study					
0	4/5	100	5/5	100	
1,000	5/5	86	5/5	87	
1,500	5/5	83	5/5	82	
2,000	5/5	80	2/5	90	
3,200	5/5	71	5/5	79	
4,600	5/5	72	5/5	74	
Second Study					
0	5/5	100	5/5	100	
25	5/5	107	5/5	100	
50	5/5	100	5/5	102	
100	5/5	101	5/5	82	
200	5/5	105	5/5	95	
500	5/5	97	5/5	92	
1,000(Ъ)	5/5	82	5/5	84	

Table 2. 2,4,5-Trimethylaniline Subchronic Feeding Studies in Mice

(a) Number surviving/number in group.

(b) Very slight to moderate increase in splenic hematopoiesis in one female and three males. A trace of Kupffer-cell pigmentation in livers of four males and five females. dosed group at week 7, expressed as percentages of mean body weights of controls. At the end of the subchronic studies, all animals were killed using CO_2 and necropsied. Histopathologic findings are included as footnotes to tables 1 and 2.

Ten percent depression in body weight was one of the main criteria used for the estimation of MTD's. The doses required to produce this response were determined by the following procedure: first, least squares regressions of mean body weights versus days on study were used to estimate mean body weights of each of the dosed groups at day 49. Next, probits of the percent weights of the dosed groups at day 49 relative to weights of corresponding control groups were plotted against the logarithms of the doses, and least squares regressions fitted to the data were used to estimate the doses required to induce 10% depression in weight.

The low and high doses were set at 200 and 800 ppm for rats and at 50 and 100 ppm for mice.

F. Chronic Studies

The test groups, doses administered, and durations of the chronic feeding studies are shown in table 3.

Species, Sex, and Test Group	Initial No. Animals (a)	2,4,5-Trimethyl- aniline in Diet (b) (ppm)	Time on Study (weeks)
RATS			
Male			
Matched-Control	20	0	101
Low-Dose	50	200	101
High-Dose	50	800	101
Female			
Matched-Control	20	0	101
Low-Dose	50	200	101
High-Dose	50	800	101
MICE			
Male			
Matched-Control	20	0	101
Low-Dose	50	50	101
High-Dose	50	100	101
Female			
Matched-Control	20	0	101
Low-Dose	50	50	101
High-Dose	50	100	101

Table 3. 2,4,5-Trimethylaniline Chronic Feeding Studies in Rats and Mice

(a) All animals were 6 weeks of age when placed on study.

(b) Test and control diets were provided ad libitum 7 days per week.

G. Clinical and Pathologic Examinations

All animals were observed twice daily. Observations for sick, tumor-bearing, and moribund animals were recorded daily. Clinical examination and palpation for masses were performed each month, and the animals were weighed at least once per month. Moribund animals and those that survived to the end of the bioassay were killed using CO₂ and necropsied.

and microscopic examinations of major tissues, major Gross The tissues were organs, and all gross lesions were performed. preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. The following tissues were examined microscopically: skin, lungs and bronchi, trachea, bone marrow (femur), spleen, lymph nodes (mesenteric and submandibular), heart, thymus, salivary glands (parotid, submaxillary), liver, pancreas, sublingual, and esophagus, stomach (glandular and nonglandular), small and large intestines, bladder, pituitary, adrenal, kidney, urinary thyroid, parathyroid, testis, prostate, mammary gland, uterus, ovary, brain (cerebrum and cerebellum), and a11 tissue masses. Peripheral blood smears also were made for all animals, whenever possible.

Necropsies were also performed on all animals found dead, unless precluded in whole or in part by autolysis or cannibalization. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and does not necessarily represent the number of animals that were placed on study in each group.

H. Data Recording and Statistical Analyses

Pertinent data on this experiment have been recorded in an automatic data processing system, the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental clinical observations, survival, body weight, design, and individual pathologic results, recommended as by the International Union Against Cancer (Berenblum, 1969). Data tables were generated for verification of data transcription and for statistical review.

These data were analyzed using the appropriate statistical techniques described in this section. Those analyses of the experimental results that bear on the possibility of

carcinogenicity are discussed in the statistical narrative section.

Probabilities of survival were estimated by the product-limit procedure of Kaplan and Meier (1958) and are presented in this report in the form of graphs. Animals were statistically censored as of the time that they died of other than natural causes or were found to be missing; animals dying from natural causes were not statistically censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) extensions of Cox's methods for testing for a dose-related trend. One-tailed P values have been reported for all tests except the departure from linearity test, which is only reported when its two-tailed P value is less than 0.05.

The incidence of neoplastic or nonneoplastic lesions has been given the ratio of the number of animals bearing such lesions at a specific anatomic site (numerator) to the number of animals in which that site is examined (denominator). In most instances, the denominators included only those animals for which that site was examined histologically. However, when macroscopic examination was required to detect lesions prior to histologic sampling (e.g., skin or mammary tumors), or when lesions could

have appeared at multiple sites (e.g., lymphomas), the denominators consist of the numbers of animals necropsied.

The purpose of the statistical analyses of tumor incidence is to determine whether animals receiving the test chemical developed a significantly higher proportion of tumors than did the control animals. As a part of these analyses, the one-tailed Fisher exact test (Cox, 1970) was used to compare the tumor incidence of a control group with that of a group of dosed animals at each dose level. When results for a number of dosed groups (k) are compared simultaneously with those for a control group, a correction to ensure an overall significance level of 0.05 may be made. The Bonferroni inequality (Miller, 1966) requires that the P value for any comparison be less than or equal to 0.05/k. In cases where this correction was used, it is discussed in the narrative section. It is not, however, presented in the tables, where the Fisher exact P values are shown.

The Cochran-Armitage test for linear trend in proportions, with continuity correction (Armitage, 1971), was also used. Under the assumption of a linear trend, this test determines if the slope of the dose-response curve is different from zero at the onetailed 0.05 level of significance. Unless otherwise noted, the direction of the significant trend is a positive dose relation-

ship. This method also provides a two-tailed test of departure from linear trend.

A time-adjusted analysis was applied when numerous early deaths resulted from causes that were not associated with the formation of tumors. In this analysis, deaths that occurred before the first tumor was observed were excluded by basing the statistical tests on animals that survived at least 52 weeks, unless a tumor was found at the anatomic site of interest before week 52. When such an early tumor was found, comparisons were based exclusively on animals that survived at least as long as the animal in which the first tumor was found. Once this reduced set of data was obtained, the standard procedures for analyses of the incidence of tumors (Fisher exact tests, Cochran-Armitage tests, etc.) were followed.

When appropriate, life-table methods were used to analyze the incidence of tumors. Curves of the proportions surviving without an observed tumor were computed as in Saffiotti et al. (1972). The week during which an animal died naturally or was sacrificed was entered as the time point of tumor observation. Cox's methods of comparing these curves were used for two groups; Tarone's extension to testing for linear trend was used for three groups. The statistical tests for the incidence of tumors which

used life-table methods were one-tailed and, unless otherwise noted, in the direction of a positive dose relationship. Significant departures from linearity (P less than 0.05, twotailed test) were also noted.

The approximate 95 percent confidence interval for the relative risk of each dosed group compared with its control was calculated from the exact interval on the odds ratio (Gart, 1971). The relative risk is defined as p_t/p_c where p_t is the true binomial probability of the incidence of a specific type of tumor in a dosed group of animals and p_c is the true probability of the spontaneous incidence of the same type of tumor in a control group. The hypothesis of equality between the true proportion of a specific tumor in a dosed group and the proportion in a control group corresponds to a relative risk of unity. Values in excess of unity represent the condition of a larger proportion in the dosed group than in the control.

The lower and upper limits of the confidence interval of the relative risk have been included in the tables of statistical analyses. The interpretation of the limits is that in approximately 95% of a large number of identical experiments, the true ratio of the risk in a dosed group of animals to that in a control group would be within the interval calculated from the,

experiment. When the lower limit of the confidence interval is greater than one, it can be inferred that a statistically significant result (P less than 0.025 one-tailed test when the control incidence is not zero, P less than 0.050 when the control incidence is zero) has occurred. When the lower limit is less than unity, but the upper limit is greater than unity, the lower limit indicates the absence of a significant result while the upper limit indicates that there is a theoretical possibility of the induction of tumors by the test chemical, which could not be detected under the conditions of this test.

III. RESULTS - RATS

A. Body Weights and Clinical Signs (Rats)

Mean body weights of low- and high-dose males and high-dose females were lower than those of corresponding controls throughout the bioassay (figure 1); mean body weights of low-dose females were lower than those of corresponding controls only after week 46. Other clinical signs were common to both control and dosed groups of rats.

B. Survival (Rats)

Estimates of the probabilities of survival for male and female rats administered 2,4,5-trimethylaniline in the diet at the doses of this bioassay, together with those of the matched controls, are shown in the Kaplan and Meier curves in figure 2. The result of the Tarone test for dose-related trend in mortality is not significant in either sex.

In male rats, 43/50 (86%) of the high-dose group, 37/50 (74%) of the low-dose group, and 16/20 (80%) of the matched-control group

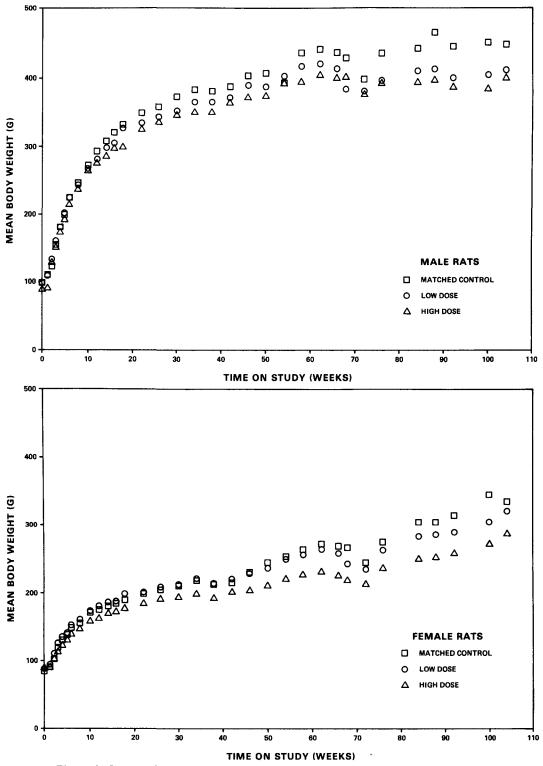


Figure 1. Growth Curves for Rats Administered 2,4,5-Trimethylaniline in the Diet

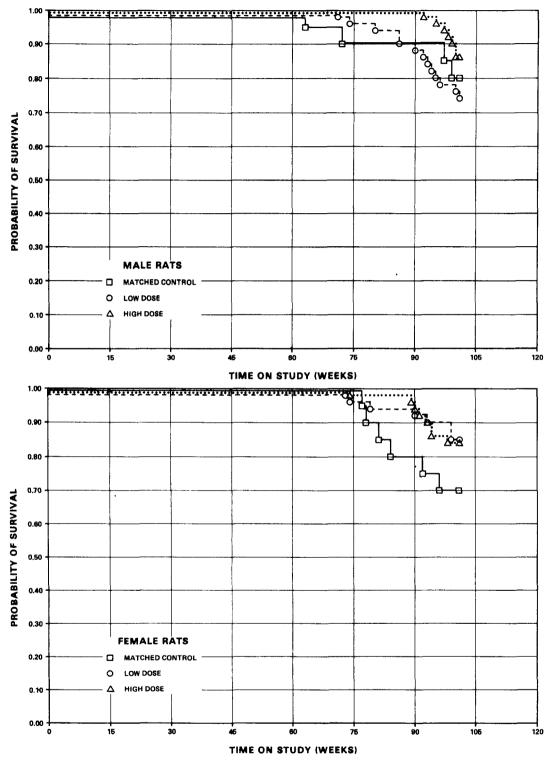


Figure 2. Survival Curves for Rats Administered 2,4,5-Trimethylaniline in the Diet

lived to the end of the bioassay. In females, 42/50 (84%) of each dosed group and 14/20 (70%) of the matched-control group lived to the end of the bioassay.

Sufficient numbers of rats of each sex were at risk for the development of late-appearing tumors.

C. Pathology (Rats)

Histopathologic findings on neoplasms in rats are summarized in Appendix A, tables Al and A2; findings on nonneoplastic lesions are summarized in Appendix C, tables Cl and C2.

Neoplasms were observed with greatest frequency in the livers and lungs of dosed male and female rats.

Hepatocellular carcinomas generally were observed on gross examination; histologically they were well-differentiated or differentiated, and few were undifferentiated. poorly а carcinomas. The cells in well-differentiated carcinomas had vesicular nuclei and eosinophilic cytoplasm and grew in cords two or several cells in thickness. Cells in poorly differentiated carcinomas had basophilic or eosinophilic cytoplasms and grew in sheets. Undifferentiated carcinoma cells varied greatly in size and shape and were quite anaplastic. Bile-duct carcinomas were well differentiated. Cells varied in size but usually tended to be columnar and formed ducts. Neoplastic nodules were distinct, small, early lesions in which the cells were clearly demarcated from, and compressed the adjacent parenchymal cells, at least focally. Cells had lightly staining eosinophilic cytoplasm and occasional double nuclei. The incidences of the different neoplasms of the liver in the rats were as follows:

		Male		Female		
	Matched Control	Low Dose	High Dose	Matched Control	Low Dose	High Dose
Number of Tissues Examined	19	50	50	20	49	50
Hepatocellular Carcinoma	0	3(6%)	11(22%)	0	0	9(18%)
Neoplastic Nodule	1(5%)	3(6%)	11(22%)	0	12(24%)	20(40%)
Bile-Duct Carcinoma	0	0	4(8%)	0	0	1(2%)
Number of Animals with Tumors	1(5%)	6(12%)	20(40%)	0	12(24%)	27(54%)

Alveolar/bronchiolar carcinomas of the lung were welldifferentiated papillary adenocarcinomas or poorly differentiated carcinomas. Cells in the well-differentiated carcinomas were columnar and formed papillary growths as well as glands. Cells in poorly differentiated carcinomas were small cells growing in sheets. The incidences of alveolar/bronchiolar carcinomas and adenomas in the rats were as follows:

	Male			Female		
	Matched Control	Low Dose	High Dose	Matched Control	Low Dose	High Dose
Number of Tissues Examined	20	49	50	20	43	50
Alveolar/Bronchiol Carcinoma	ar 1(5%)	0	2(4%)	0	2(5%)	2(4%)
Alveolar/Bronchiol Adenoma	ar O	0	5(10%)	0	1(2%)	9(18%)
Number of Animals with Tumors	1(5%)	0	7(14%)	0	3(7%)	11(22%)

There also were neoplasms of the hematopoietic system and vascular system in some groups of rats; however, these occurred in both control and dosed groups.

A variety of nonneoplastic lesions and disorders were encountered with regularity in both control and dosed rats. Such lesions were considered to be common in aged F344 rats.

Based on the histopathologic examination, the incidence of

neoplasms of the liver and the lung was increased in the male and female rats administered 2,4,5-trimethylaniline.

D. Statistical Analyses of Results (Rats)

Tables El and E2 in Appendix E contain the statistical analyses of the incidences of those primary tumors that occurred in at least two animals of one group and at an incidence of at least 5% in one or more than one group.

In male rats, the result of the Cochran-Armitage test for dose-related trend in the incidence of hepatocellular carcinomas is significant (P = 0.002). The result of the Fisher exact test shows that the incidence of the tumors in the high-dose group is significantly higher (P = 0.020) than that in the matched-control group. When the incidence of either hepatocellular carcinomas or neoplastic nodules in male rats is analyzed, increased significance is observed in the Cochran-Armitage test for linear trend (P less than 0.001) and in the Fisher exact test (P = 0.004) between the high-dose and control groups. In females, the result of the Cochran-Armitage test on the incidence of hepatocellular carcinomas is significant (P less than 0.001). The Fisher exact comparison of the incidences of tumors in the high-dose and matched-control

groups shows a P value of 0.039, which is above the 0.025 level required for significance when the Bonferroni inequality criterion is used for multiple comparison. However, when the incidence of either hepatocellular carcinomas or neoplastic nodules in female rats is analyzed, significant results of the Cochran-Armitage test (P less than 0.001) and Fisher exact test (P less than or equal to 0.010) between each dosed group and the control group are observed. The statistical conclusion is that the incidence of liver tumors in rats of each sex is associated with the administration of 2,4,5-trimethylaniline.

In female rats, the result of the Cochran-Armitage test for the incidence of lung tumors is significant (P = 0.003), and the result of the Fisher exact test shows that the incidence of tumors in the high-dose group is significantly higher (P = 0.017) than that in the matched-control group. The statistical conclusion is that the incidence of lung tumors in female rats is associated with the administration of the test chemical.

In male rats, the results of the Cochran-Armitage test on the incidence of lung tumors, the incidence of bile-duct carcinoma of the liver, and the incidence of C-cell carcinoma of the thyroid are significant, but the results of the Fisher exact test are not significant.

Significant dose-related trends in the negative direction are observed in the incidence of hematopoietic tumors and in the incidence of mesotheliomas of the tunica vaginalis in male rats. In females, the incidence of endometrial stromal polyps is higher in the matched-control group than in the low-dose group.

In summary, the incidences of lung tumors in female rats and hepatic tumors in rats of each sex were associated with the administration of 2,4,5-trimethylaniline.

•

IV. RESULTS - MICE

A. Body Weights and Clinical Signs (Mice)

Mean body weights of the dosed male mice were slightly lower than those of the corresponding controls throughout the bioassay for the high-dose group and after week 16 for the low-dose group (figure 3). Mean body weights of the high-dose females were essentially the same as those of the corresponding controls throughout the bioassay; mean body weights of the low-dose females were slightly lower than those of the controls for the first 30 weeks and slightly higher thereafter. Clinical signs occurred at comparable incidences in control and dosed groups of both male and female mice.

B. Survival (Mice)

Estimates of the probabilities of survival for male and female mice administered 2,4,5-trimethylaniline in the diet at the doses of this bioassay, together with those of the matched controls, are shown in the Kaplan and Meier curves in figure 4. The result

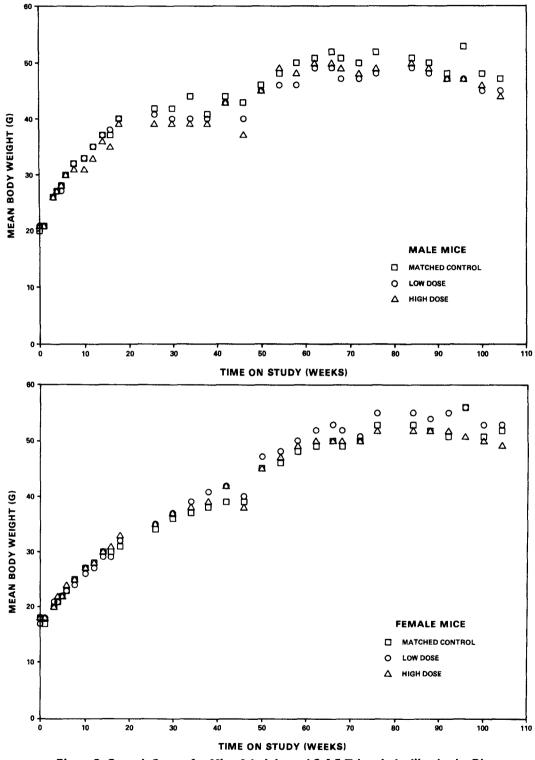


Figure 3. Growth Curves for Mice Administered 2,4,5-Trimethylaniline in the Diet

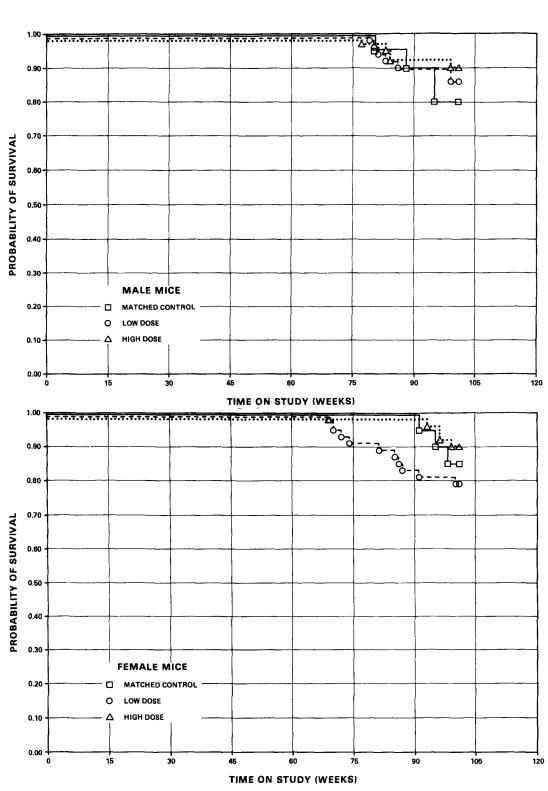


Figure 4. Survival Curves for Mice Administered 2,4,5-Trimethylaniline in the Diet

of the Tarone test for dose-related trend in mortality is not significant in either sex.

In male mice, 38/50 (76%) of the high-dose group, 43/50 (86%) of the low-dose group, and 16/20 (80%) of the matched-control group lived to the end of the bioassay. In females, 45/50 (90%) of the high-dose group, 39/50 (78%) of the low-dose group, and 17/20 (85%) of the matched-control group lived to the end of the bioassay.

Sufficient numbers of mice of each sex were at risk for the development of late-appearing tumors.

C. Pathology (Mice)

Histopathologic findings on neoplasms in mice are summarized in Appendix B, tables Bl and B2; findings on nonneoplastic lesions are summarized in Appendix D, tables Dl and D2.

Neoplasms were observed with greatest frequency in the liver, hematopoietic system, and vascular system in mice administered 2,4,5-trimethylaniline.

The incidence of hepatocellular carcinomas was increased in dosed

male and female mice when compared with their respective controls. These tumors generally were observed on gross examination; histologically they were well-differentiated or poorly differentiated, and a few were undifferentiated, carcinomas. The cells in welldifferentiated carcinomas had vesicular nuclei and eosinophilic cytoplasm and grew in cords two or several cells in thickness. Cells in poorly differentiated carcinomas had basophilic or eosinophilic cytoplasms and grew in sheets. Undifferentiated carcinoma cells varied greatly in size and shape and were quite anaplastic. Carcinomas of the liver metastasized to the lungs in one control male, two low-dose males, and one high-dose male. The incidences of neoplasms of the liver and gallbladder in the mice were as follows:

	Male		Female			
	Matched Control	Low Dose	High Dose	Matched Control	Low Dose	High Dose
Number of Tissues Examined	20	50	50	20	49	50
Hepatocellular Carcinoma	5(25%)	26(52%)	27(54%)	0	18(36%)	40(80%)
Bile-Duct Carcinoma	0	2(4%)	2(4%)	0	0	0
Hyperplastic Nodule	1(5%)	3(6%)	7(14%)	0	4(8%)	13(26%)
Gallbladder Carcinoma	0	1(2%)	0	0	0	0
Number of Animals with Tumors	5(25%)	27(54%)	27(54%)	0	18(36%)	40(80%)

Neoplasms of the hematopoietic system were all diagnosed as lymphomas. The incidences of these hematopoietic neoplasms were not, however, higher in dosed groups than in corresponding controls.

Incidences of neoplasms of the lung and of the vascular system were slightly increased in female mice administered 2,4,5trimethylaniline when compared with controls. Carcinomas of the lung were well-differentiated papillary adenocarcinomas or poorly differentiated carcinomas. Cells in the well-differentiated carcinomas were columnar and formed papillary growths as well as glands. Cells in poorly differentiated carcinomas were small cells growing in sheets. The incidences of alveolar/bronchiolar adenomas and carcinomas were as follows:

	Male				Female	
	Matched Control	Low Dose	High Dose	Matched Control	Low Dose	High Dose
Number of Tissues Examined	20	50	50	19	49	48
Alveolar/Bronchiol Carcinoma	ar 4(20%)	7(14%)	1(2%)	0	4(8%)	6(12%)
Alveolar/Bronchiol Adenoma	ar 0	2(4%)	0	0	1(2%)	0
Number of Animals with Tumors	4(20%)	9(18%)	1(2%)	0	5(10%)	6(12%)

Hemangiomas and hemangiosarcomas in female mice receiving 2,4,5-trimethylaniline most often were seen in lymph nodes, but they also were present in the bone, skeletal muscle, liver, testis, and adipose tissue. Hemangiosarcomas were made up of proliferating endothelial cells that formed blood-filled vascular channels and generally were invasive. The incidences of the different neoplasms of the vascular system were as follows:

	Male		Female			
	Matched Control	Low Dose	High Dose	Matched Control	Low Dose	High Dose
Number of Tissues Examined	20	50	50	20	49	50
Hemangiosarcoma	2(10%)	3(6%)	6(12%)	1(5%)	11(22%)	7(14%)
Hemangioma	0	0	0	0	1(2%)	0
Number of Animals with Tumors	2(10%)	3(6%)	6(12%)	1(5%)	11(22%)	7(14%)

A variety of nonneoplastic lesions and disorders were encountered with regularity in both control and dosed mice. Such lesions were considered common in aged B6C3F1 mice.

Based on the histopathologic examination, incidences of neoplasms of the liver were increased in male and female B6C3F1 mice administered 2,4,5-trimethylaniline, and incidences of neoplasms of the lung and of the vascular system were increased in females.

D. Statistical Analyses of Results (Mice)

Tables Fl and F2 in Appendix F contain the statistical analyses of the incidences of those primary tumors that occurred in at least two animals of one group and at an incidence of at least 5% in one or more than one group.

In male mice, the result of the Cochran-Armitage test for the incidence of hepatocellular carcinomas is significant (P = 0.039). The Fisher exact comparison of the incidences of tumors in the matched-control group and the low-dose group shows a P value of 0.035, which is above the 0.025 level required for significance when the Bonferroni inequality criterion is used for multiple comparison. The comparison between the control and high-dose groups shows a P value of 0.025, which is at the critical point when the Bonferroni inequality criterion is used for multiple comparison. The historical records of this laboratory for control B6C3F1 male mice having hepatocellular carcinomas show an incidence of 137/422 (32%), with incidences in individual control groups as high as 11/19 (58%) and 10/20 (50%), as compared with 4/20 (20%) in the control group in this bioassay, 26/50 (52%) in the low-dose group, and 27/50 (54%) in the high-dose group. In females, the result of the Cochran-Armitage test for the incidence of hepatocellular carcinomas is

significant (P less than 0.001), and the results of the Fisher exact test show that the incidence of these tumors in each dosed group is significantly higher (P less than or equal to 0.001) than that in the matched-control group. The statistical conclusion is that the incidence of hepatocellular carcinomas in female mice is associated with the administration of 2,4,5trimethylaniline.

In female mice, the result of the Cochran-Armitage test for the incidence of carcinomas of the pituitary is significant (P = 0.043), but the results of the Fisher exact test are not significant. When the incidence of the combination of carcinomas or adenomas of the pituitary in female mice is analyzed, the results of the statistical test are not significant.

In male mice, significant results in the negative direction are observed in the incidence of lung tumors. In females, a significant trend in the negative direction is observed in the incidence of lymphomas.

V. DISCUSSION

Mean body weights of the dosed male and female rats were generally lower than those of corresponding controls; mean body weights of the dosed mice were only slightly lower in the males than in the corresponding controls and were unaffected or affected irregularly in the females. Survival was not affected significantly when the rats or mice were administered the test chemical and was 70% or greater in all dosed or control groups. Sufficient numbers of animals were at risk for the development of late-appearing tumors.

In the rats, hepatocellular carcinomas or neoplastic nodules occurred at incidences that were dose related in both males and females (P less than or equal to 0.001), and in direct comparisons the incidences were significantly higher in the high-dose males, high-dose females, and low-dose females (P less than or equal to 0.004) than in corresponding controls (males: controls 1/19, low-dose 6/50, high-dose 20/50; females: controls 0/20, low-dose 12/49, high-dose 27/50). In addition, alveolar/ bronchiolar carcinomas or adenomas occurred in the female rats at incidences that were dose related (P = 0.003), and in a direct

comparison the incidence was significantly higher in the highdose group (P = 0.017) than in the corresponding control group (controls 0/20, low-dose 3/43, high-dose 11/50).

In the mice, hepatocellular carcinomas occurred at incidences that were dose related in both males and females (P less than or equal to 0.039), and in direct comparisons the incidences were significantly higher (P less than or equal to 0.025) in the highdose males, high-dose females, and low-dose females than in corresponding controls (males: controls 5/20, low-dose 26/50, high-dose 27/50; females: controls 0/20, low-dose 18/49, highdose 40/50). However, the comparison between the controls and the high-dose males shows a P value of 0.025, which is at the critical point when the Bonferroni inequality criterion is used The historical records for multiple comparison. of this laboratory for control B6C3F1 male mice having hepatocellular carcinomas show an incidence of 137/422 (32%), with incidences of individual control groups as high as 11/19 (58%) and 10/20 (50%). Thus, in male mice these tumors cannot be clearly associated with administration of 2,4,5-trimethylaniline.

In prior investigations of the carcinogenicity of 2,4,5-trimethylaniline administered in the diet in 2-year studies, hepatic and pulmonary tumors occurred in increased incidences in male and

female HaM/ICR mice, but marginal results were obtained using male Sprague-Dawley rats (Homburger et al., 1972; Weisburger et al., in press). The low and high doses of test chemical used in these studies were 3,000 and 6,000 ppm for 5 months and 1,500 and 3,000 ppm for the subsequent 13 months for the rats and 6,000 and 12,000 ppm for 18 months for the mice. The occurrence of hepatic tumors in B6C3F1 mice administered 2,4,5-trimethylaniline in the present bioassay is consistent with the occurrence of these tumors in the HaM/ICR mice of the earlier studies. The occurrence of hepatic tumors in male and female F344 rats and pulmonary tumors in female F344 rats administered 2,4,5-trimethylaniline in the present bioassay differs, however, from the marginal results obtained in the earlier studies using male Sprague-Dawley rats. Although the doses of test chemical used in the earlier studies were higher than those used in the present bioassay, especially for the mice, the duration of administration was shorter in the earlier studies. The induction of liver adenomas or carcinomas in rats of various strains administered Ponceau 3R in the feed (Grice et al., 1961; Hansen et al., 1963) may be attributable to the in vivo cleavage of the dye to yield its aniline moieties, among which 2,4,5-trimethylaniline is a predominant component (Lindstrom et al., 1969).

It is concluded that under the conditions of this bioassay,

2,4,5-trimethylaniline was carcinogenic for male and female F344 rats and female B6C3F1 mice, inducing hepatocellular carcinomas or neoplastic nodules in the rats of each sex, alveolar/bronchiolar carcinomas in the female rats, and hepatocellular carcinomas in female mice.

VI. BIBLIOGRAPHY

Armitage, P., <u>Statistical Methods</u> in <u>Medical Research</u>, John Wiley & Sons, Inc., New York, 1971, pp. 362-365.

Berenblum. I., ed., <u>Carcinogenicity</u> <u>Testing</u>: <u>A</u> <u>Report of the</u> <u>Panel on Carcinogenicity of the Cancer Research</u> <u>Commission of the</u> <u>UICC, Vol. 2. International Union Against Cancer, Geneva, 1969.</u>

Code of Federal Regulations, 21 CFR 81.30, 1977.

Cox, D. R., Regression models and life tables. J. R. Statist. Soc. B 34:187-220, 1972.

Cox, D. R., <u>Analysis of Binary Data</u>, Methuen and Co., Ltd., London, 1970, pp. 48-52.

Gart, J. J., The comparison of proportions: a review of significance tests, confidence limits and adjustments for stratification. <u>Rev. Int. Stat.</u> Inst. 39:148-169, 1971.

Grice, H. C., Mannell, W. A., and Allmark, M. G., Liver tumors in rats fed Ponceau 3R. Toxicol. Appl. Pharmacol. 3:509-520, 1961.

Hansen, W. H., Kent, J. D., Fitzhugh, O. G., and Nelson, A. A., Chronic oral toxicity of Ponceau 3R. <u>Toxicol</u>. <u>Appl</u>. <u>Pharmacol</u>. 5:105-118, 1963.

Homburger, F., Friedell, G. H., Weisburger, E. K., and Weisburger, J. H., Carcinogenicity of simple aromatic amine derivatives in mice and rats. <u>Toxicol</u>. <u>Appl</u>. <u>Pharmacol</u>. 22(2):280, 1972.

Kaplan, E. L. and Meier, P., Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53:457-481, 1958.

Lindstrom, H. V., Bowie, W. C., Wallace, W. C, Nelson, A. A., and Fitzhugh, O. G., The toxicity and metabolism of mesidine and pseudocumidine in rats. J. <u>Pharmacol. Exptl</u> <u>Therap.</u> 167(2):223-234, 1969.

Linhart, M. S., Cooper, J. A., Martin, R. L., Page, N. P., and Peters, J. A., Carcinogenesis bioassay data system. <u>Comp. and</u> Biomed. Res. 7:230-248, 1974. Miller, R. G., Jr., <u>Simultaneous</u> <u>Statistical</u> <u>Inference</u>, McGraw-Hill Book Co., New York, 1966, pp. 6-10.

Saffiotti, U., Montesano, R., Sellakumar, A. R., Cefis, F., and Kaufman, D. G., Respiratory tract carcinogenesis in hamsters induced by different numbers of administrations of benzo(a) pyrene and ferric oxide. Cancer Res. 32:1073-1081, 1972.

Tarone, R. E., Tests for trend in life table analysis. <u>Biometrika</u> 62:679-682, 1975.

Weisburger, E. K., Russfield, A. B., Homburger, F., Weisburger, J. H., Boger, E., Van Dongen, C. G., and Chu, K. C., Testing of 21 environmental aromatic amines or derivatives for long-term toxicity or carcinogenicity, National Cancer Institute, Bethesda, Md. (in press). APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS ADMINISTERED 2,4,5-TRIMETHYLANILINE ..

TABLE A1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS ADMINISTERED 2, 4, 5-TRIMETHYLANILINE IN THE DIET

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	20 20 20	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN Squamous cell carcinoma	(20)	(50)	(50) 1 (2%)
*SUBCUT TISSUE SQUAMOUS CELL PAPILLOMA SQUAMOUS CELL CARCINOMA FIBROMA	(20) 1 (5%)	(50)	(50)
	1 (5%)		1 (2%)
RESPIRATORY SYSTEM			
	(20)	(49) 1 (2%)	(50)
CARCINOMA, NOS, METASTATIC ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA	1 (5%)	1 (2%)	5 (10%) 2 (4%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS	(20)	(50) 2 (4%)	(50)
MALIGNANT LYMPHOMA, NOS Leukemia,nos Monocytic leukemia	4 (20%)	10 (20%) 1 (2%)	3 (6%)
#LYMPH NODE Malignant Lymphoma, Nos	(20)	(50) 1 (2%)	(50)
CIRCULATORY SYSTEM			
*MAMMARY GLAND HEMANGIOSARCOMA	(20)	(50) 1 (2%)	(50)
#SPLEEN HEMANGIOSARCOMA	(20)	(49)	(49)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	MATCHED Control	LOW DOSE	HIGH DOSE
#LIVER LYMPHANGIOMA	(19)	(50)	(50) 1 (2%)
DIGESTIVE SYSTEM			
#SALIVARY GLAND Adenocarcinoma, nos	(20) 1 (5%)	(50)	(49)
#LIVER BILE DUCT CARCINOMA	(19)	(50)	(50) 4 (8%)
NEOPLASTIC NODULE HEPATOCELLULAR CARCINOMA	1 (5%)	3 (6%) 3 (6%)	11 (22%) 11 (22%)
#PANCREAS Acinar-cell Adenoma	(19)	(50)	(48) 1 (2%)
#STOMACH Squamous cell papilloma	(19)	(50)	(50) 1 (2%)
#PEYERS PATCH LEIOMYOSARCOMA	(20)	(50) 1 (2%)	(50)
#COLON Adenomatous polyp, nos	(19) 1 (5%)	(50)	(50)
URINARY SYSTEM			
NONE			
ENDOCRINE SYSTEM			
#PITUITARY CARCINOMA,NOS ADENOMA, NOS	(20) 5 (25%) 3 (15%)	(50) 6 (12%) 11 (22%)	(50) 10 (20%) 15 (30%)
#ADRENAL CORTICAL CARCINOMA PHEOCHROMOCYTOMA GANGLIONEUROMA	(20) 2 (10%)	(50) 5 (10%)	(50) 2 (4%) 5 (10%) 1 (2%)
#THYROID FOLLICULAR-CELL ADENOMA	(20)	(50)	(50)

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

		LOW DOSE	HIGH DOSE
FOLLICULAR-CELL CARCINOMA C-CELL ADENOMA C-CELL CARCINOMA		1 (2%)	2 (4%) 4 (8%)
#PANCREATIC ISLETS ISLET-CELL ADENOMA ISLET-CELL CARCINOMA	(19)	(50) 2 (4%) 1 (2%)	(48) 1 (2%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND FIBROMA LEIOMYOSARCOMA FIBROADENOMA	(20)	(50) 1 (2%) 1 (2%) 1 (2%)	(50) 1 (2%)
#TESTIS INTERSTITIAL-CELL TUMOR INTERSTITIAL-CELL TUMOR, MALIGNA	(20) 6 (30%) 8 (40%)	(50) 10 (20%) 32 (64%)	(49) 13 (27% 32 (65%
NERVOUS SYSTEM			
#BRAIN ASTROCYTOMA OLIGODENDROGLIOMA	1 (5%)	(49) 1 (2%)	
SPECIAL SENSE ORGANS			
NONE			
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
*PERITONEUM MESOTHELIOMA, METASTATIC	(20)	(50) 1 (2%)	(50)
*TUNICA VAGINALIS Mesothelioma, nos	(20)	(50)	(50)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	MATCHED Control	LOW DOSE	
MESOTHELIOMA, MALIGNANT			
ALL OTHER SYSTEMS			
HEAD Adenocarcinoma, nos, metastatic	1		
ORBITAL REGION CARCINOMA,NOS		11	
NIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY Natural deatha Moribund sacrifice Scheduled sacrifice	20 3 1	50 10 3	50 3 4
ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	16	37	43
INCLUDES AUTOLYZED ANIMALS			
UMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	19 39	48 99	50 127
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	10 15	25 31	32 46
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	15 21	44 65	45 70
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS	1 1	2 2	
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or Malignant Total uncertain tumors	3 3	3 3	1 1 1 1
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			
PRIMARY TUMORS: ALL TUMORS EXCEPT SEC SECONDARY TUMORS: METASTATIC TUMORS (JACENT ORGAN

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

TABLE A2.

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS MISSING	20	50 1	50
ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	20 20	49 49	50 50
INTEGUMENTARY SYSTEM			
*SKIN Squamous cell carcinoma	(20)	(49)	(50) 2 (4%)
*SUBCUT TISSUE Squamous cell carcinoma	(20)	(49) 1 (2%)	(50)
RESPIRATORY SYSTEM			
#LUNG CARCINOMA,NOS	(20)	(43)	(50)
ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA		1 (2%) 2 (5%)	9 (18%) 2 (4%)
HEMATOPOIETIC SYSTEM			
<pre>*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS</pre>	(20)	(49) 4 (8%)	(50) 5 (10%
LEUKEMIA, NOS	1 (5%)	4 (0/4)	1 (2%)
#SPLEEN Malignant Lymphoma, Nos	(20)	(49) 1 (2%)	(49)
<pre>*INTESTINAL TRACT Malignant Lymphoma, Nos</pre>	(20)	(49)	(50) 1 (2%)
#LIVER Malignant Lymphoma, nos	(20)	(49)	(50) 1 (2%)

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS ADMINISTERED 2, 4, 5-TRIMETHYLANILINE IN THE DIET

CIRCULATORY SYSTEM

NONE

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	MATCHED Control	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM			
#SALIVARY GLAND CARCINOSARCOMA	(20)	(49) 1 (2%)	(49)
#LIVER BILE DUCT CARCINOMA NEOPLASTIC NODULE HEPATOCELLULAR CARCINOMA	(20)	(49) 12 (24%)	1 (2%) 20 (40%)
URINARY SYSTEM			
#URINARY BLADDER LEIOMYOSARCOMA	(19)	(49)	
ENDOCRINE SYSTEM			
#PITUITARY Carcinoma,nos Adenoma, nos	(20) 3 (15%) 5 (25%)	(48) 12 (25%) 10 (21%)	(49) 5 (10%) 17 (35%)
#ADRENAL Cortical Adenoma Pheochromocytoma	(20) 2 (10%)	(49) 2 (4%) 2 (4%)	(49) 1 (2%)
#THYROID FOLLICULAR-CELL CARCINOMA C-CELL ADENOMA C-CELL CAR€INOMA	(20) 1 (5%)	(46) 6 (13%) 1 (2%)	1 (2%) 5 (10%)
<pre>#PANCREATIC ISLETS ISLET-CELL CARCINOMA</pre>		(49)	(49) 1 (2%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND CARCINOMA,NOS SQUAMOUS CELL CARCINOMA ADENOCARCINOMA, NOS CYSTADENOMA, NOS CYSTADENOCARCINOMA, NOS	(20)	(49) 1 (2%) 6 (12%) 2 (4%)	(50) 1 (2%) 4 (8%) 1 (2%)

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

	MATCHED Control	LOW DOSE	HIGH DOSE
FIBROMA FIBROADENOMA	2 (10%) 5 (25%)	2 (4%) 8 (16%)	1 (2%) 7 (14%)
#UTERUS ENDOMETRIAL STROMAL POLYP	(20) 6 (30%)	(49) 1 (2%)	(49) 7 (14%)
#OVARY GRANULOSA-CELL CARCINOMA	(20)	(49)	(49) 1 (2%)
NERVOUS SYSTEM			
#BRAIN Astrocytoma	(20)	(48)	1 (2%)
SPECIAL SENSE ORGANS			
*MIDDLE EAR squamous cell carcinoma	(20)	(49) 1 (2%)	(50)
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
NONE			
ALL OTHER SYSTEM5			
NONE			
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ MORIBUND SACRIFICE SCHEDULED SACRIFICE	20 3 3	50 4 3	50 3 5
ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	14	42 1	42
a includes autolyzed animals			

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

	MATCHED Control	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	17 25	39 77	45 107
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	16 20	25 32	31 48
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	5 5	24 33	29 39
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or malignant Total uncertain tumors		12 12	20 20
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			
PRIMARY TUMORS: ALL TUMORS EXCEPT SEC SECONDARY TUMORS: METASTATIC TUMORS O			DJACENT ORGA

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE ADMINISTERED 2,4,5-TRIMETHYLANILINE

TABLE B1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE ADMINISTERED 2, 4, 5-TRIMETHYLANILINE IN THE DIET

	MATCHED CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED Animals examined histopathologically	20 20 20	50 50 50	50 50 50 50
INTEGUMENTARY SYSTEM NONE			
RESPIRATORY SYSTEM			
#LUNG BILE DUCT CARCINOMA, METASTATIC HEPATOCELLULAR CARCINOMA, METAST ALVEOLAR/BRONCHIOLAR ADENOMA	(20) 1 (5%)	(50) 1 (2%) 2 (4%) 2 (4%)	(50) 1 (2%)
ALVEOLAR/BRONCHIOLAR ADENDHA ALVEOLAR/BRONCHIOLAR CARCINOMA TUBULAR-CELL ADENOCARCINOMA, MET	4 (20%)	2 (4%) 7 (14%)	1 (2%) 1 (2%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS Malignant Lymphoma, Nos	(20) 2 (10%)	(50) 4 (8%)	(50) 5 (10%)
#SPLEEN Malignant Lymphoma, Nos	(19)	(50) 2 (4%)	(49)
#LYMPH NODE TUBULAR-CELL ADENOCARCINOMA, MET	(20)	(50)	(50)
MALIGNANT LYMPHOMA, NOS Malig.lymphoma, histiocytic type	1 (5%)	1 (2%)	1 (2%) 1 (2%)
#MESENTERIC L. NODE Malignant Lymphoma, nos Malig.lymphoma, histiocytic Type	(20)	(50) 1 (2%) 1 (2%)	(50)
#PEYERS PATCH Malignant Lymphoma, Nos	(19)	(45) 2 (4%)	(45)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	MATCHED Control	LOW DOSE	HIGH DOSE
CIRCULATORY SYSTEM			
*MULTIPLE ORGANS Hemangiosarcoma	(20)	(50) 2 (4%)	(50) 1 (2%)
#BONE MARROW Hemangiosarcoma	(20)	(50)	(50) 2 (4%)
#SPLEEN Hemangiosarcoma	(19) 2 (11%)	(50)	(49)
*ADIPOSE TISSUE Hemangiosarcoma	(20)	(50)	(50) 1 (2%)
#LIVER HEMANGIOSARCOMA	(20)	(50)	(50) 2 (4%)
#TESTIS HEMANGIOSARCOMA	(20)	(50) 1 (2%)	(50)
DIGESTIVE SYSTEM			
<pre>*INTESTINAL TRACT ADENOCARCINOMA, NOS</pre>	(20)	(50) 1 (2%)	(50)
#LIVER Bile Duct carcinoma	(20)	(50) 2 (4%)	(50) 2 (4%)
HEPATOCELLULAR CARCINOMA	5 (25%)	26 (52%)	27 (54%)
*GALLBLADDER CARCINOMA,NOS	(20)	(50) 1 (2%)	(50)
URINARY SYSTEM			
#KIDNEY TUBULAR-CELL ADENOCARCINOMA	(20)		
ENDOCRINE SYSTEM			
#THYROID Follicular-cell carcinoma	(19)	(50)	(48)

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

	MATCHED Control	LOW DOSE	HIGH DOSE
#PANCREATIC ISLETS ISLET-CELL ADENOMA	(19) 1 (5%)	(49)	
REPRODUCTIVE SYSTEM			
NONE			
NERVOUS SYSTEM			
NONE			
SPECIAL SENSE ORGANS			
*HARDERIAN GLAND ADENOCARCINOMA, NOS PAPILLARY CYSTADENOCARCINOMA,NOS		(50) 1 (2%) 2 (4%)	(50)
IUSCULOSKELETAL SYSTEM		* * * * * *	***
*INTERCOSTAL MUSCLE HEPATOCELLULAR CARCINOMA, METAST	(20)	(50) 1 (2%)	(50)
BODY CAVITIES			
*MEDIASTINUM Hepatocellular carcinoma, metast	(20)	(50) 1 (2%)	
ALL OTHER SYSTEMS			
DIAPHRAGM HEPATOCELLULAR CARCINOMA, METAST		11	
* NUMBER OF ANIMALS WITH TISSUE EXAMI < NUMBER OF ANIMALS NECROPSIED	NED MICROSCOPI	CALLY	

	MATCHED Control	LOW DOSE	NIGH DOSE
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ MORIBUND SACRIFICE	20 4	50 7	50 4
SCHEDULED SACRIFICE ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	16	43	8 38
a INCLUDES AUTOLYZED ANIMALS			
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TŮMORS* Total primary tumors	12 15	34 56	32 45
TOTAL ANIMALS WITH BENIGN TUMORS Total benign tumors	1 1	2 2	
TOTAL ANIMALS WITH MALIGNANT TUMORS Total Malignant tumors	11 1 4	33 54	32 45
TOTAL ANIMALS WITH SECONDARY TUMORS# Total secondary tumors	1	2 6	2 3
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or Malignant Total Uncertain Tumors			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Primary or metastatic Total uncertain tumors			
* PRIMARY TUMORS: ALL TUMORS EXCEPT SE # Secondary Tumors: Metastatic Tumors			ADJACENT ORGA

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

TABLE B2.

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS MISSING	20	50 1	50
ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	20 20	49 49	50 50
INTEGUMENTARY SYSTEM			
*SUBCUT TISSUE LIPOMA NEUROFIBROSARCOMA	(20) 1 (5%)	(49) 1 (2%)	(50)
RESPIRATORY SYSTEM			
#LUNG ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA	(19)	(49) 1 (2%) 4 (8%)	(4 8) 6 (13%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS Malignant Lymphoma, Nos Malig.lymphoma, Histiocytic Type	(20) 3 (15%) 2 (10%)	(49) 13 (27%)	(50) 3 (6%) 2 (4%)
#SPLEEN Malignant Lymphoma, Nos	(19) 1 (5%)	(49) 2 (4%)	(49) 2 (4%)
#LYMPH NODE Malignant Lymphoma, Nos	(20)	(49)	(49) 3 (6%)
#LIVER Malignant Lymphoma, Nos	(20) 1 (5%)	(49)	(50)
#KIDNEY Malignant Lymphoma, Nos	(20) 1 (5%)	(49)	(49)
#THYMUS Malignant Lymphoma, NOS	(18) 1 (6%)	(46) 1 (2%)	(44)

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE ADMINISTERED 2, 4, 5-TRIMETHYLANILINE IN THE DIET

	MATCHED Control	LOW DOSE	HIGH DOSE
CIRCULATORY SYSTEM			
*MULTIPLE ORGANS Hemangiosarcoma	(20)	(49) 1 (2%)	(50)
*SKIN Hemangiosarcoma	(20)	(49)	(50) 1 (2%)
#BONE MARROW Hemangiosarcoma	(20)	(49) 7 (14%)	(49)
#SPLEEN Hemangiosarcoma	(19)	(49) 1 (2%)	(49)
#LYMPH NODE Hemangiosarcoma	(20)	(49)	(49) 1 (2%)
#MESENTERIC L. NODE Hemangiosarcoma	(20)	(49)	(49) 1 (2%)
*ADIPOSE TISSUE HEMANGIOSARCOMA	(20)	(49) 1 (2%)	(50)
*BONE Hemangiosarcoma	(20) 1 (5%)	(49)	(50) 3 (6%)
#LIVER HEMANGIOSARCOMA	(20)	(49) 1 (2%)	(50) 1 (2%)
#OVARY Hemangioma	(19)	(47) 1 (2%)	(49)
DIGESTIVE SYSTEM			
#LIVER Hepatocellular carcinoma	(20)	(49) 18 (37%)	(50) 40 (80%)
#CECUM LEIOMYOSARCOMA	(17)	(48) 1 (2%)	(47)
URINARY SYSTEM			
#KIDNEY CARCINOMA,NOS	(20)	(49)	(49)

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

TABLE B2.	FEMALE MICE	: NEOPLASMS	(CONTINUED)

	MATCHED Control	LOW DOSE	HIGH DOSE
ENDOCRINE SYSTEM			
#PITUITARY Carcinoma,nos Adenoma, nos	(19) 1 (5%)	(48) 1 (2%)	4 (8%)
#ADRENAL Cortical Carcinoma	(20)	(49) 1 (2%)	(49) 1 (2%)
#THYROID Follicular-cell Adenoma	(20) 1 (5%)	(45)	(49)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND Carcinoma, Nos	(20)	(49) 1 (2%)	(50)
NERVOUS SYSTEM			
NONE			
SPECIAL SENSE ORGANS			
*HARDERIAN GLAND ADENDCARCINOMA, NOS PAPILLARY ADENOCARCINOMA	(20)	(49) 2 (4%)	(50) 1 (2%)
MUSCULOSKELETAL SYSTEM			
NONE		~~~~~~~~~	
BODY CAVITIES			
NONE		~	
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS LEIOMYOSARCOMA	(20) 1 (5%)	(49)	(50)

	MATCHED Control	LOW DOSE	HIGH DOSE
SITE UNKNOWN LEIOMYOSARCOMA	1		
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ MORIBUND SACRIFICE SCHEDULED SACRIFICE ACCIDENTALLY KILLED	20 3	50 10	50 5
TERMINAL SACRIFICE Animal missing	17	39 1	45
a INCLUDES AUTOLYZED ANIMALS			
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* Total primary tumors	12 15	41 59	45 71
TOTAL ANIMALS WITH BENIGN TUMORS Total Benign Tumors	22	4 4	1 1
TOTAL ANIMALS WITH MALIGNANT TUMORS Total malignant tumors	12 13	41 55	45 70
TOTAL ANIMALS WITH SECONDARY TUMORS# Total secondary tumors			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or Malignant Total Uncertain Tumors			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Primary or metastatic Total uncertain tumors			
PRIMARY TUMORS: ALL TUMORS EXCEPT SE # SECONDARY TUMORS: METASTATIC TUMORS PRIMARY TUMORS: METASTATIC TUMORS			DJACENT ORGA

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS ADMINISTERED 2,4,5-TRIMETHYLANILINE

TABLE C1.

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY Animals necropsied Animals examined histopathologically	20 20 20 20	50 50 50	50 50 50 50
INTEGUMENTARY SYSTEM			
*SKIN Abscess, nos	(20) 1 (5%)	(50)	(50)
*SUBCUT TISSUE EPIDERMAL INCLUSION CYST	(20) 1 (5%)	(50)	(50)
RESPIRATORY SYSTEM			
<pre>#TRACHEA LYMPHOCYTIC INFLAMMATORY INFILTR</pre>	(20) 1 (5%)	(50)	(50) 2 (4%)
#LUNG INFLAMMATION, SUPPURATIVE	(20) 1 (5%)	(49)	(50)
HYPERPLASIA, ALVEOLAR EPITHELIUM		4 (8%)	11 (22%)
<pre>#BONE MARROW HYPERPLASIA, NOS</pre>	(20)	(50)	(50) 1 (2%)
#SPLEEN CONGESTION, ACUTE	(20)	(49)	(49)
HEMOSIDEROSIS Hyperplasia, nos Hematopoiesis		1 (2%) 1 (2%)	2 (4%)
#SPLENIC SINUSOIDS Hyperplasia, Nos	(20)	(49)	(49) 1 (2%)
#LYMPH NODE Hyperplasia, Nos	(20)	(50) 14 (28%)	(50) 25 (50%)

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS ADMINISTERED 2, 4, 5-TRIMETHYLANILINE IN THE DIET

	MATCHED Control	LOW DOSE	HIGH DOSE
CIRCULATORY SYSTEM			
#SPLEEN Thrombosis, nos	(20) 1 (5%)	(49)	(49)
#LYMPH NODE Lymphangiectasis	(20)	(50)	(50) 1 (2%)
<pre>#MANDIBULAR L. NODE LYMPHANGIECTASIS</pre>	(20)	(50)	(50) 1 (2%)
#HEART FIBROSIS, FOCAL PERIARTERITIS	(20) 1 (5%)	(50) 1 (2%) 2 (4%)	(48) 1 (2%)
#HEART/ATRIUM Thrombosis, Nos	(20)	(50) 1 (2%)	(48)
<pre>#HEART/VENTRICLE THROMBOSIS, NOS</pre>	(20)	(50) 1 (2%)	(48)
#MYOCARDIUM Fibrosis Fibrosis, Focal	(20) 1 (5%) 13 (65%)	(50) 7 (14%) 10 (20%)	(48) 9 (19%) 25 (52%)
#ENDOCARDIUM OF LEFT Hyperplasia, Nos	(20) 1 (5%)	(50)	(48)
<pre>#PANCREAS PERIARTERITIS</pre>	(19) 1 (5%)	(50)	(48) 3 (6%)
<pre>*MESENTERY PERIARTERITIS </pre>	(20) 1 (5%)	(50) 1 (2%)	(50) 5 (10%)
DIGESTIVE SYSTEM			
#LIVER METAMORPHOSIS FATTY HEMOSIDEROSIS Hyperplasia, Nos	(19)	(50) 2 (4%) 1 (2%)	(50) 4 (8%) 1 (2%) 20 (40%)
HYPERPLASIA, FOCAL Hyperplasia, diffuse	1 (5%)	1 (2%) 1 (2%)	5 (10%) 1 (2%)
<pre>#LIVER/CENTRILOBULAR NECROSIS, NOS</pre>	(19)	(50) 2 (4%)	(50)

	MATCHED Control	LOW DOSE	HIGH DOSE
METAMORPHOSIS FATTY		1 (2%)	
#PANCREAS	(19)	(50)	(48)
INFLAMMATION, CHRONIC Inflammation, Chronic Focal	1 (5%)	1 (2%)	1 (2%) 3 (6%)
#STOMACH Inflammation, focal	(19)	(50)	(50) 1 (2%)
JRINARY SYSTEM			
#KIDNEY	(20)	(50)	
INFLAMMATION, INTERSTITIAL Inflammation, Chronic Focal	1 (5%)	15 (30%)	
INFLAMMATION, CHRONIC DIFFUSE Hyperplasia, tubular cell Hyperplasia, diffuse		1 (2%)	2 (4%)
HYPERPLASIA, DIFFUSE		*****	1 (2%)
ENDOCRINE SYSTEM			
<pre>#PITUITARY CYST, NOS</pre>	(20) 2 (10%)	(50)	(50)
HYPERPLASIA, FOCAL	2 (10%)		1 (2%)
#ADRENAL CORTEX	(20)	(50)	(50)
NODULE Hyp erp lasia, nos		1 (2%)	1 (2%)
#ADRENAL MEDULLA	(20)	(50)	(50)
HYPERPLASIA, NOS Hyperplasia, focal	1 (5%)		5 (18% 1 (2%)
*THYROID	(20)	(58)	(58)
HYPERPLASIA, C-CELL		8 (16%)	18 (36%
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND DILATATION/DUCTS	(20)	(50)	(50) 5 (10%
ATROPHY, NOS Hypertrophy, Nos		1 (2%)	2 (104
HYPERPLASIA, NOS	1 (5%)	1 (2%)	2 (4%)

-

	MATCHED Control	LOW DOSE	HIGH DOSE
HYPERPLASIA, DIFFUSE		1 (2%)	
<pre>#PROSTATE INFLAMMATION, FOCAL INFLAMMATION, SUPPURATIVE INFLAMMATION, ACUTE FOCAL INFLAMMATION ACTIVE CHRONIC FIBROSIS ATROPHY, NOS HYPERPLASIA, NOS HYPERPLASIA, FOCAL HYPERPLASIA, FOCAL HYPERPLASIA, CYSTIC *SEMINAL VESICLE INFLAMMATION, SUPPURATIVE</pre>		(49) 3 (6%) 18 (37%) 1 (2%) 6 (12%) (50) 1 (2%)	(48) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 21 (44%) 5 (10%) 1 (2%) (50)
<pre>#TESTIS ATROPHY, NOS HYPERPLASIA, INTERSTITIAL CELL *EPIDIDYMIS INFLAMMATION, CHRONIC</pre>	(20)	(50) 41 (82%) 9 (18%) (50)	(50)
NERVOUS SYSTEM #BRAIN Hydrocephalus, Nos	(20)	(49)	(50)
SPECIAL SENSE ORGANS None			
MUSCULOSKELETAL SYSTEM None			
BODY CAVITIES None			

	MATCHED		HIGH DOSE
	CONTROL	LOW DOSE	
ALL OTHER SYSTEMS			
SITE UNKNOWN Abscess, nos			1
SPECIAL MORPHOLOGY SUMMARY			
NO LESION REPORTED	1	1	
<pre># NUMBER OF ANIMALS WITH TISSUE EXAMINE * NUMBER OF ANIMALS NECROPSIED</pre>	D MICROSCOPIC	ALLY	

TABLE C2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS ADMINISTERED 2, 4, 5-TRIMETHYLANILINE IN THE DIET

- -

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS MISSING	20	50 1	50
ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	20 20	49 	50 50
INTEGUMENTARY SYSTEM			
NONE			
RESPIRATORY SYSTEM			
#TRACHEA Lymphocytic inflammatory infiltr	(20) 1 (5%)	(49)	(49)
#LUNG/BRONCHUS Lymphocytic inflammatory infiltr	(20)	(43)	(50) 1 (2%)
#LUNG/BRONCHIOLE Lymphocytic inflammatory infiltr	(20)	(43)	(50) 1 (2%)
#LUNG HYPERPLASIA, ALVEOLAR EPITHELIUM	(20)	(43) 1 (2%)	(50) 7 (14%)
HEMATOPOIETIC SYSTEM			
#BONE MARROW Hyperplasia, nos Hyperplasia, hematopoietic	(20) 1 (5%) 1 (5%)	(49) 1 (2%)	(50) 2 (4%)
#SPLEEN Hemosiderosis	(20) 3 (15%)	(49) 27 (55%)	(49) 12 (24%)
HYPERPLASIA, NOS Hyperplasia, hematopoietic Hyperplasia, lymphoid		1 (2%)	
HEMATOPOIESIS	(5%)	2 (4%)	
#LYMPH NODE Hyperplasia, Nos	(20)	(49) 29 (59%)	(50) 29 (58%)

	MATCHED Control	LOW DOSE	HIGH DOSE
#MANDIBULAR L. NODE INFLAMMATION, NECROTIZING HYPERPLASIA, LYMPHOID	(20) 1 (5%) 2 (10%)	(49)	(50)
CIRCULATORY SYSTEM			
#MANDIBULAR L. NODE Lymphangiectasis	(20) 1 (5%)	(49)	(50)
#MESENTERIC L. NODE Lymphangiectasis	(20) 1 (5%)	(49)	(50)
#MYOCARDIUM FIBROSIS FIBROSIS, FOCAL	(20) 5 (25%) 4 (20%)	(49) 1 (2%)	(48) 6 (13%)
*PULMONARY ARTERY Calcification, focal	(20)	(49) 1 (2%)	(50)
*MESENTERY PERIARTERITIS	(20)		(50) 1 (2%)
DIGESTIVE SYSTEM			
#LIVER Metamorphosis fatty Hepatocytomegaly	(20)	(49) 2 (4%) 1 (2%)	(50) 3 (6%)
HYPERPLASIA, NOS Hyperplasia, focal Hyperplasia, diffuse	14 (70%)	1 (2%) 24 (49%) 1 (2%)	3 (6%) 24 (48%)
#BILE DUCT Cyst, Nos	(20)	(49)	(50) 1 (2%)
#PANCREAS Inflammation, Chronic Focal	(20)	(49) 1 (2%)	(49) 2 (4%)
#GASTRIC MUCOSA Hyperplasia, Nos	(20)	(49) 1 (2%)	(50)
#GASTRIC SUBMUCOSA Inflammation, nos	(20)	(49)	(50)

	MATCHED Control	LOW DOSE	HIGH DOSE
#COLON NEMATODIASIS	(19)	(48) 2 (4%)	(49)
URINARY SYSTEM			
#KIDNEY HYDRONEPHROSIS INFLAMMATION, INTERSTITIAL PYELONEPHRITIS SUPPURATIVE INFLAMMATION, CHRONIC FOCAL	(20) 1 (5%) 1 (5%) 1 (5%)	(49)	(49)
#URINARY BLADDER ULCER, NOS	(19) 1 (5%)	(49)	(49)
ENDOCRINE SYSTEM			
#PITUITARY CYST, NOS HEMORRHAGIC CYST HYPERPLASIA, NOS HYPERPLASIA, FOCAL	(20) 1 (5%)	(48) 1 (2%) 3 (6%) 1 (2%)	(49) 1 (2%) 13 (27%)
#ADRENAL CORTEX Nodule	(20)	(49) 2 (4%)	(49)
#ADRENAL MEDULLA Hyperplasia, nos	(20)	(49) 1 (2%)	(49) 1 (2%)
#THYROID Hyperplasia, C-Cell	(20) 2 (10%)	(46) 9 (20%)	(49) 4 (8%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND DILATATION, NOS DILATATION/DUCTS CYST, NOS HYPERPLASIA, NOS HYPERPLASIA, DIFFUSE HYPERPLASIA, CYSTIC	(20) 7 (35%) 1 (5%)	(49) 1 (2%) 19 (39%) 1 (2%)	(50) 1 (2%) 1 (2%) 8 (16%) 1 (2%)
#UTERUS/ENDOMETRIUM CYST, NOS	(20)	(49) 1 (2%)	(49)

	MATCHED Control	LOW DOSE	HIGH DOSE
INFLAMMATION, SUPPURATIVE Hyperplasia, nos		1 (2%) 1 (2%)	
#OVARY FOLLICULAR CYST, NOS HYPERPLASIA, STROMAL	(20) 1 (5%)	3 (44)	
IERVOUS SYSTEM			
<pre>#BRAIN HEMORRHAGE INFLAMMATION, FOCAL INFLAMMATION, CHRONIC INFLAMMATION, CHRONIC FOCAL</pre>	(20) 1 (5%) 1 (5%)	(48) 1 (2%)	(48) 1 (2%)
#MEDULLA OBLONGATA Abscess, nos	(20)	(48) 1 (2%)	(48)
1USCULOSKELETAL SYSTEM			
*MUSCLE HIP/THIGH Inflammation, Necrotizing	(20)	(49)	(50) 1 (2%)
BODY CAVITIES			
NONE			
ALL OTHER SYSTEMS			
NONE			
SPECIAL MORPHOLOGY SUMMARY			
ANIMAL MISSING/NO NECROPSY		1	

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE ADMINISTERED 2,4,5-TRIMETHYLANILINE

.

TABLE D1.

	MATCHED Control	LOW DOSE	HIGH DOSE
	20 20 20	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SUBCUT TISSUE Abscess, Nos	(20)	4 7 7 1/2 1	(50)
RESPIRATORY SYSTEM			
#LUNG HEMOSIDEROSIS HYPERPLASIA, ALVEOLAR EPITHELIUM	(20) 1 (5%)	(50) 1 (2%)	(50)
HEMATOPOIETIC SYSTEM			
#BONE MARROW Hyperplasia, Nos	(20)	(50)	(50) 1 (2%)
#SPLEEN Hyperplasia, NOS	(19) 1 (5%)		
#LYMPH NODE Hyperplasia, Nos	(20) 2 (10%)	(50) 7 (14%)	(50) 14 (28%)
#THYMUS Hyperplasia, NOS		(41)	1 (2%)
CIRCULATORY SYSTEM			
PERIARTERITIS		(50)	1 (2%)
DIGESTIVE SYSTEM			
#LIVER NECROSIS, FOCAL	(20)	(50)	(50)

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE ADMINISTERED 2, 4, 5-TRIMETHYLANILINE IN THE DIET

	MATCHED Control	LOW DOSE	HIGH DOSE
INFARCT, NOS			1 (2%)
METAMORPHOSIS FATTY Hyperplastic nodule	1 (5%) 1 (5%)	3 (6%)	
HYPERPLASIA, NOS Hyperplasia, focal	1 (5%)	1 (2%)	5 (10% 1 (2%)
#LIVER/CENTRILOBULAR	(20)	(50)	(50)
NECROSIS, DIFFUSE Hyperplasia, nos		11 (22%)	1 (2%) 8 (16%
<pre>#BILE DUCT Lymphocytic inflammatory infiltr</pre>	(20)	(50)	(50) 1 (2%)
#PANCREAS Inflammation, chronic	(19)	(49) 1 (2%)	(49)
#GASTRIC MUCOSA NECROSIS, FOCAL	(20)	(50)	(50) 1 (2%)
URINARY SYSTEM			
	(20)	(50)	(50) 1 (2%)
ENDOCRINE SYSTEM			
NONE			
REPRODUCTIVE SYSTEM			
NONE			
NERVOUS SYSTEM			
NONE			
SPECIAL SENSE ORGANS			
NONE			
MUSCULOSKELETAL SYSTEM			
NONE			

TABLE	D1. MA	LE MIC	E: NONNEOP	LASTIC	LESIONS	(CONTINUED)
	-	-				

	MATCHED		
	CONTROL	LOW DOSE	HIGH DOSE
BODY CAVITIES			
NONE			
ALL OTHER SYSTEMS			
ADIPOSE TISSUE Infarct, Nos	1		
SPECIAL MORPHOLOGY SUMMARY			
NO LESION REPORTED Auto/necropsy/histo perf	5	2 1	2
# NUMBER OF ANIMALS WITH TISSUE EXAMINED * NUMBER OF ANIMALS NECROPSIED	MICROSCOPIC	ALLY	

TABLE D2.

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS MISSING	20	50 1	50
ANIMALS NECROPSIED Animals examined histopathologically	20 20	49 49	50 50
INTEGUMENTARY SYSTEM			
*SUBCUT TISSUE INFLAMMATION VESICULAR GRANULOMA	(20) 1 (5%)	(49)	(50)
RESPIRATORY SYSTEM			
NONE			
EMATOPOIETIC SYSTEM			
#SPLEEN Atrophy, Nos	(19)	(49)	(49) 1 (2%)
HYPERPLASIA, NOS Hyperplasia, lymphoid	2 (11%)	8 (16%) 2 (4%)	14 (29%)
#LYMPH NODE Hyperplasia, Nos	(20) 3 (15%)	(49) 4 (8%)	(49) 12 (24%)
#THYMUS Hyperplasia, Nos	(18)	(46)	(44) 1 (2%)
CIRCULATORY SYSTEM			
NONE			
DIGESTIVE SYSTEM			
#LIVER INFLAMMATION, NECROTIZING	(20)	(49)	(50)
NECROSIS, FOCAL	1 (5%)		3 (6%)

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE ADMINISTERED 2, 4, 5-TRIMETHYLANILINE IN THE DIET

	MATCHED Control	LOW DOSE	HIGH DOSE
METAMORPHOSIS FATTY Hyperplastic Nodule		2 (4%) 4 (8%)	13 (26%)
<pre>#LIVER/CENTRILOBULAR HYPERPLASIA, NOS</pre>	(20)	(49) 1 (2%)	(50)
<pre>#PANCREAS DILATATION/DUCTS HYPERPLASIA, NOS</pre>	(20)	(49)	(50) 1 (2%) 1 (2%)
URINARY SYSTEM			
NONE			
ENDOCRINE SYSTEM			
#THYROID Hyperplasia, C-Cell	(20)	(45)	(49) 1 (2%)
REPRODUCTIVE SYSTEM			
#UTERUS/ENDOMETRIUM INFLAMMATION, FOCAL HYPERPLASIA, NOS HYPERPLASIA, CYSTIC	(20) 12 (60%) 2 (10%)	(48) 23 (48%)	(49) 1 (2%) 36 (73%) 1 (2%)
#DVARY CYST, NOS CORPUS LUTEUM CYST MULTIPLE CYSTS HEMORRHAGIC CYST	(19) 2 (11%)	(47) 4 (9%) 1 (2%) 1 (2%)	(49) 3 (6%) 1 (2%) 4 (8%)
NERVOUS SYSTEM None			
SPECIAL SENSE ORGANS None			
MUSCULOSKELETAL SYSTEM			
# NUMBER OF ANIMALS WITH TISSUE * NUMBER OF ANIMALS NECROPSIED	EXAMINED MICROSCOPI	CALLY	

TABLE D2. FEMALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

	IATCHED ONTROL	LOW DOSE	HIGH DOSE
BODY CAVITIES			
NONE			
ALL OTHER SYSTEMS			
NONE			
SPECIAL MORPHOLOGY SUMMARY			
NO LESION REPORTED Animal missing/no necropsy		5 1	
<pre># NUMBER OF ANIMALS WITH TISSUE EXAMINED M * NUMBER OF ANIMALS NECROPSIED</pre>	ICROSCOPI	CALLY	

APPENDIX E

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS IN

RATS ADMINISTERED 2,4,5-TRIMETHYLANILINE

Table El	. Analyses	of the	Incidence	of Pri	mary	Tumors	in
Male Rats	Administered	1 2,4,5-	-Trimethyla	aniline	in t	he Diet	(a)

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Lung: Alveolar/Bronchiolar Carcinoma			
or Adenoma (b)	1/20 (5)	0/49 (0)	7/50 (14)
? Values (c,d)	P = 0.009	N.S.	N.S.
Relative Risk (f)		0.000	2.800
Lower Limit		0.000	0.403
Upper Limit		7.624	123.407
Veeks to First Observed Tumor	101		98
ematopoietic System: Lymphoma or		·····	
Leukemia (b)	4/20 (20)	14/50 (28)	3/50 (6)
Values (c,d)	P = 0.006 (N)	N.S.	N.S.
Relative Risk (f)		1.400	0.300
Lower Limit		0.520	0.049
Upper Limit		5.303	1.642
leeks to First Observed Tumor	72	74	95

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Liver: Bile-Duct Carcinoma (b)	0/19 (0)	0/50 (0)	4/50 (8)
P Values (c,d)	P = 0.015		N.S.
Re lative Risk (f)			Infinite
Lover Limit			0.368
Upper Limit			Infinite
Weeks to First Observed Tumor			100
Liver: Hepatocellular Carcinoma (b)	0/19 (0)	3/50 (6)	11/50 (22)
P Values (c,d)	P = 0.002	N.S.	P = 0.020
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.238	1.320
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		101	97

.

Table El. Analyses of the Incidence of Primary Tumors in Male Rats Administered 2,4,5-Trimethylaniline in the Diet (a)

Table El. Analyses of the Incidence of Primary Tumors in Male Rats Administered 2,4,5-Trimethylaniline in the Diet (a)

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Liver: Hepatocellular Carcinoma			
or Neoplastic Nodule (b)	1/19 (5)	6/50 (12)	20/50 (40)
P Values (c,d)	P less than 0.001	N.S.	P = 0.004
Relative Risk (f)		2.280	7.600
Lower Limit		0.311	1.394
Upper Limit		102.629	304.933
Weeks to First Observed Tumor	101	92	97
Pituitary: Carcinoma, NOS (b)	5/20 (25)	6/50 (12)	10/50 (20)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.480	0.800
Lower Limit		0.143	0.296
Upper Limit		1.807	2.689
Weeks to First Observed Tumor	101	101	98

yes

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Pituitary: Carcinoma, NOS, or			
Adenoma, NOS (b)	8/20 (40)	17/50 (34)	25/50 (50)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)	·	0.850	1.250
Lower Limit		0.435	0.689
Upper Limit		1.957	2.700
Weeks to First Observed Tumor	101	74	101
Adrenal: Pheochromocytoma (b)	2/20 (10)	5/50 (10)	5/50 (10)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		1.000	1.000
Lower Limit		0.184	0.184
Upper Limit		10.007	10.007
Weeks to First Observed Tumor	101	92	02

.

Table El.	Analyses of	the Incidence	of Primary	v Tumors in
Male Rats Adu	ministered 2,	,4,5-Trimethy1a	aniline in	the Diet (a)

.

Table El.	Analyses of	the Incidence	of Primary	Tumors in
Male Rats Ad	ministered 2,	4,5-Trimethy1	aniline in	the Diet (a)

Topography: Morphology	Matched Control	Low Dose	High Dose
Thyroid: C-cell Carcinoma (b)	0/20 (0)	1/50 (2)	4/50 (8)
P Values (c,d)	P = 0.047	N.S.	N.S.
Relative Risk (f) Lower Limit Upper Limit		Infinite 0.022 Infinite	Infinite 0.386 Infinite
Weeks to First Observed Tumor		101	101
Thyroid: C-cell Carcinoma or Adenoma (b)	0/20 (0)	2/50 (4)	5/50 (10)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f) Lower Limit Upper Limit		Infinite 0.123 Infinite	Infinite 0.525 Infinite
Weeks to First Observed Tumor	101	101	101

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Pancreatic Islets: Islet-cell			
Carcinoma or Adenoma (b)	0/19 (0)	3/50 (6)	1/48 (2)
P Values (c,d)	N.S.	n.s.	N.S.
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.238	0.022
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		101	101
Testis: Interstitial-cell Tumor (b)	14/20 (70)	41/50 (82)	40/49 (82)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		1.171	1.166
Lower Limit		0.871	0.865
Upper Limit		1.704	1.699
Weeks to First Observed Tumor	97	86	92

Table El. Analyses of the Incidence of Primary Tumors in Male Rats Administered 2,4,5-Trimethylaniline in the Diet (a)

Table El.	Analyses of	the	Incidence	of Prim	ıary	Tumors in	
Male Rats Ad	ministered 2	,4,5	-Trimethyla	aniline	in	the Diet (a	1)

(с	on	t	i	nu	ed)

Topography: Morphology	Matched Control	Low Dose	High Dose
Tunica Vaginalis: Mesothelioma (b)	2/20 (10)	1/50 (2)	0/50 (0)
P Values (c,d)	P = 0.047(N)	N.S.	N.S.
Relative Risk (f) Lower Limit Upper Limit		0.200 0.004 3.681	0.000 0.000 1.345
Weeks to First Observed Tumor	101	95	

- (a) Dosed groups received 200 or 800 ppm.
- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in a dosed group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the matched-control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in the control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Lung: Alveolar/Bronchiolar			
Carcinoma (b)	0/20 (0)	2/43 (5)	2/50 (4)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.143	0.123
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		101	101
Lung: Alveolar/Bronchiolar Carcinoma			
or Adenoma (b)	0/20 (0)	3/43 (7)	11/50 (22)
P Values (c,d)	P = 0.003	N.S.	P = 0.017
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.291	1.384
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		101	93

Table E2.	Analyses of the	Incidence of H	Primary Tumors	in Female Rats
	Administered 2,4,	5-Trimethylanil	line in the Di	et (a)

	Matched	Low	High	
Topography: Morphology	Control	Dose	Dose	
Hematopoietic System: Lymphoma or				
Leukemia (b)	1/20 (5)	5/49 (10)	8/50 (16)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f)		2.041	3.200	
Lower Limit		0.254	0.482	
Upper Limit		94.440	138.771	
Weeks to First Observed Tumor	77	79	89	
Liver: Hepatocellular Carcinoma (b)	0/20 (0)	0/49 (0)	9/50 (18)	
P Values (c,d)	P less than 0.001		P = 0.039	
Relative Risk (f)			Infinite	
Lower Limit			1.096	
Upper Limit			Infinite	
Weeks to First Observed Tumor			89	

Table E2. Analyses of the Incidence of Primary Tumors in Female Rats Administered 2,4,5-Trimethylaniline in the Diet (a)

	Matched	Low	High	
Topography: Morphology	Control	Dose	Dose	
Liver: Hepatocellular Carcinoma				
or Neoplastic Nodule (b)	0/20 (0)	12/49 (24)	27/50 (54)	
P Values (c,d)	P less than 0.001	P = 0.010	P less than 0.001	
Relative Risk (f)		Infinite	Infinite	
Lower Limit		1.561	3.725	
Upper Limit		Infinite	Infinite	
Weeks to First Observed Tumor		101	89	
Pituitary: Carcinoma, NOS (b)	3/20 (15)	12/48 (25)	5/49 (10)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f)		1.667	0.680	
Lower Limit		0.524	0.150	
Upper Limit		8.505	4.092	
Weeks to First Observed Tumor	81	90	101	

Table E2.	Analyses of	the Incidence	of Primary	Tumors in	Female Rats
4 (be	Administered	2,4,5-Trimethy	laniline in	the Diet	(a)

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Pituitary: Carcinoma, NOS, or			
Adenoma, NOS (b)	8/20 (40)	22/48 (46)	22/49 (45)
P Values (c,d)	N.S.	n.s.	N.S.
Relative Risk (f)		1.146	1.122
Lower Limit		0.618	0.605
Upper Limit		2.516	2.471
Weeks to First Observed Tumor	81	90	90
Adrenal: Cortical Adenoma (b)	2/20 (10)	2/49 (4)	1/49 (2)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.408	0.204
Lower Limit		0.032	0.004
Upper Limit		5.381	3.754
Weeks to First Observed Tumor	101	101	101

Table E2. Analyses of the Incidence of Primary Tumors in Female Rats Administered 2,4,5-Trimethylaniline in the Diet (a)

97

.

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Thyroid: C-cell Carcinoma or Adenoma (b)	1/20 (5)	7/46 (15)	7/49 (14)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		3.043	2.857
Lower Limit		0.439	0.411
Upper Limit		133.816	125.833
Weeks to First Observed Tumor	101	74	74
Mammary Gland: Fibroma (b)	2/20 (10)	2/49 (4)	1/50 (2)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.408	0.200
Lower Limit		0.032	0.004
Upper Limit		5.381	3.681
Weeks to First Observed Tumor	92	90	101

Table E2.	Analyses o	E the	Incidence	of Prim	ary	Tumors	in	Female	Rats
- >	Administered	2,4,	5-Trimethy	laniline	in	the Die	et (a)	

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Mammary Gland: Adenocarcinoma,			
NOS (b)	0/20 (0)	6/49 (12)	4/50 (8)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.680	0.386
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		93	101
Mammary Gland: Fibroadenoma (b)	5/20 (25)	8/49 (16)	7/50 (14)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.653	0.560
Lower Limit		0.222	0.180
Upper Limit		2.293	2.029
Weeks to First Observed Tumor	96	90	89

Table E2. Analyses of the Incidence of Primary Tumors in Female Rats Administered 2,4,5-Trimethylaniline in the Diet (a)

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Uterus: Endometrial Stromal Polyp (b) 7/49 (14)		6/20 (30)	1/49 (2)
P Values (c,d)	N.S.	P = 0.002(N)	N.S.
Departure from Linear Trend (e)	P = 0.001		
Relative Risk (f)		0.068	0.476
Lower Limit		0.002	0.163
Upper Limit		0.516	1.537
Weeks to First Observed Tumor	77	101	94

Table E2. Analyses of the Incidence of Primary Tumors in Female Rats Administered 2,4,5-Trimethylaniline in the Diet (a)

100

. .

(a) Dosed groups received 200 or 800 ppm.

(b) Number of tumor-bearing animals/number of animals examined at site (percent).

(c) Beneath the incidence of tumors in a dosed group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the matched-control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.

- (d) A negative trend (N) indicates a lower incidence in a dosed group than in the control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

APPENDIX F

- ---

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS IN MICE ADMINISTERED 2,4,5-TRIMETHYLANILINE

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Lung: Alveolar/Bronchiolar Carcinoma (b)	4/20 (20)	7/50 (14)	1/50 (2)
P Values (c,d)	P = 0.010(N)	N.S.	P = 0.021(N)
Relative Risk (f)		0.700	0.100
Lower Limit		0.207	0.002
Upper Limit		2.994	0.944
Weeks to First Observed Tumor	95	79	83
Lung: Alveolar/Bronchiolar Carcinoma			<u> </u>
or Adenoma (b)	4/20 (20)	9/50 (18)	1/50 (2)
P Values (c,d)	P = 0.009(N)	N.S.	P = 0.021(N)
Relative Risk (f)		0.900	0.100
Relative Risk (f) Lower Limit		0.900 0.294	0.100 0.002
		-	

Table F1. Analyses of the Incidence of Primary Tumors in Male Mice Administered 2,4,5-Trimethylaniline in the Diet (a)

•

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Hematopoietic System: Lymphoma (b)	3/20 (15)	11/50 (22)	7/50 (14)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		1.467	0.933
Lower Limit		0.450	0.245
Upper Limit		7.594	5.215
Weeks to First Observed Tumor	80	81	101
All Sites: Hemangiosarcoma (b)	2/20 (10)	3/50 (6)	6/50 (12)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.600	1.200
Lower Limit		0.076	0.243
Upper Limit		6.860	11.574
Weeks to First Observed Tumor	88	101	101

Table Fl. Analyses of the Incidence of Primary Tumors in Male Mice Administered 2,4,5-Trimethylaniline in the Diet (a)

Table Fl.	Analyses c	of the	Incidence	of Primary	Tumors in
Male Mice Adm	inistered	2,4,5-	-Trimethyla	miline in	the Diet (a)

Topography: Morphology	Matched Control	Low Dose	High Dose
Liver: Hepatocellular Carcinoma (b)	5/20 (25)	26/50 (52)	27/50 (54)
P Values (c,d)	P = 0.039	P = 0.035	P = 0.025
Relative Risk (f) Lower Limit Upper Limit		2.080 0.956 6.030	2.160 0.999 6.222
Weeks to First Observed Tumor	101	81	84

- (a) Dosed groups received 50 or 100 ppm.
- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in a dosed group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the matched-control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in the control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

105

(acational)

Topography: Morphology	Matched Control	Low Dose	High Dose
Lung: Alveolar/Bronchiolar Carcinoma (b)	0/19 (0)	4/49 (8)	6/48 (13)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f) Lower Limit Upper Limit		Infinite 0.375 Infinite	Infinite 0.662 Infinite
Weeks to First Observed Tumor		85	96
Lung: Alveolar/Bronchiolar Carcinoma			
or Adenoma (b)	0/19 (0)	5/49 (10)	6/48 (13)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.511	0.662
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		85	96

Table F2. Analyses of the Incidence of Primary Tumors in Female Mice Administered 2,4,5-Trimethylaniline in the Diet (a)

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Hematopoietic System: Lymphoma (b)	9/20 (45)	16/49 (33)	11/50 (22)
P Values (c,d)	P = 0.035(N)	N.S.	N.S.
Relative Risk (f)		0.726	0.489
Lower Limit		0.383	0.232
Upper Limit		1.588	1.152
Weeks to First Observed Tumor	91	69	69
All Sites: Hemangiosarcoma or			
Hemangioma (b)	1/20 (5)	11/49 (22)	7/50 (14)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		4.490	2.800
Lower Limit		0.737	0.403
Upper Limit		188.359	123.407
Weeks to First Observed Tumor	101	70	101

Table F2. Analyses of the Incidence of Primary Tumors in Female Mice Administered 2,4,5-Trimethylaniline in the Diet (a)

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Liver: Hepatocellular Carcinoma (b)	0/20 (0)	18/49 (37)	40/50 (80)
P Values (c,d)	P less than 0.001	P = 0.001	P less than 0.001
Relative Risk (f) Lower Limit Upper Limit		Infinite 2.451 Infinite	Infinite 5.727 Infinite
Weeks to First Observed Tumor		101	96
Pituitary: Carcinoma, NOS (b)	0/19 (0)	0/48 (0)	4/50 (8)
P Values (c,d)	P = 0.043		N.S.
Relative Risk (f)			Infinite
Lower Limit			0.368
Upper Limit			Infinite
Weeks to First Observed Tumor		·	101

Table F2.	Analyses of	the	Incidence	of Prim	ary	Tumors	in Female	Mice
A	dministered	2,4,	5-Trimethy	laniline	in	the Die	et (a)	

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Pituitary: Carcinoma, NOS,			
or Adenoma, NOS (b)	1/19(5)	1/48(2)	5/50(10)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.396	1.900
Lower Limit		0.005	0.238
Upper Limit		30.454	87.985
Weeks to First Observed Tumor	95	101	101

Table F2. Analyses of the Incidence of Primary Tumors in Female Mice Administered 2,4,5-Trimethylaniline in the Diet (a)

109

(a) Dosed groups received 50 or 100 ppm.

- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in a dosed group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed grou is the probability level for the Fisher exact test for the comparison of that dosed group with the matched-control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in the control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

Review of the Bioassay of 2,4,5-Trimethylaniline* for Carcinogenicity by the Data Evaluation/Risk Assessment Subgroup of the Clearinghouse on Environmental Carcinogens

December 13, 1978

The Clearinghouse on Environmental Carcinogens was established in May, 1976, in compliance with DHEW Committee Regulations and the Provisions of the Federal Advisory Committee Act. The purpose of the Clearinghouse is to advise the Director of the National Cancer Institute on the Institute's bloassay program to identify and evaluate chemical carcinogens in the environment to which humans may be exposed. The members of the Clearinghouse have been drawn from academia, industry, organized labor, public interest groups, and State health officials. Members have been selected on the basis of their experience in carcinogenesis or related fields and, collectively, provide expertise in chemistry, biochemistry, biostatistics, toxicology, pathology, and epidemiology. Representatives of various Governmental agencies participate as ad hoc members. The Data Evaluation/Risk Assessment Subgroup of the Clearinghouse is charged with the responsibility of providing a peer review of reports prepared on NCI-sponsored bioassays of chemicals studied for carcinogenicity. It is in this context that the below critique is given on the bioassay of 2,4,5-Trimethylaniline for carcinogenicity.

The primary reviewer for the report on the bioassay of 2,4,5-Trimethylaniline said that the compound was carcinogenic in both sexes of treated rats and in treated female mice. Since the study was well designed and conducted, he concluded that 2,4,5-Trimethylaniline may pose a carcinogenic risk to humans.

The secondary reviewer said that the results were sufficiently significant as to obviate the experimental shortcomings. It was moved that the report on the bioassay of 2,4,5-Trimethylaniline be accepted as written. The motion was seconded and approved without objection.

Clearinghouse Member. resent:

Arnold L. Brown (Chairman), University of Wisconsin Medical School Joseph Highland, Environmental Defense Fund William Lijinsky, Frederick Cancer Research Center Henry Pitot, University of Wisconsin Medical Center Verne A. Ray, Pfizer Medical Research Laboratory Verald K. Rowe, Dow Chemical USA Michael Shimkin, University of California at San Diego Louise Strong, University of Texas Health Sciences Center Kenneth Wilcox, Michigan State Health Department

* Subsequent to this review, changes may have been made in the bioassay report either as a result of the review or other reasons. Thus, certain comments and criticisms reflected in the review may no longer be appropriate.

DU.S. GOVERNMENT PRINTING OFFICE: 1979-281-217/3045

DHEW Publication No. (NIH) 79-1716