NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 313

TOXICOLOGY AND CARCINOGENESIS STUDIES OF MIREX

(1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1*H*-cyclobuta[*cd*]pentalene)

(CAS NO. 2385-85-5)

IN F344/N RATS

(FEED STUDIES)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
National Institutes of Health

NOTE TO THE READER

The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation.

The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease.

The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. All NTP toxicology and carcinogenesis studies are subjected to a comprehensive audit before being presented for public review. This Technical Report has been reviewed and approved by the NTP Board of Scientific Counselors' Peer Review Panel in public session; the interpretations described herein represent the official scientific position of the NTP.

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential.

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge while supplies last from the NTP Public Information Office, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3991).

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF MIREX

 $\substack{(1,1a,2,2,3,3a,4,5,5,5a,5b,6\text{-}Dodecachlorooctahydro-1,3,4\text{-}metheno-1\textit{H}-cyclobuta[\textit{cd}]pentalene)}$

(CAS NO. 2385-85-5)

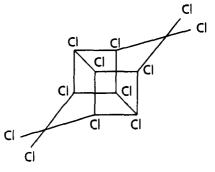
IN F344/N RATS

(FEED STUDIES)

James Huff, Ph.D., Study Scientist

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

February 1990


NTP TR 313

NIH Publication No. 90-2569

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
National Institutes of Health

CONTENTS

		00.112.110	PAGE
ABST	RACT .		. 3
EXPL	ANATION	OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	. 6
CONT	RIBUTOR	s	. 7
PEER	REVIEW	PANEL	. 8
SUMM	IARY OF	PEER REVIEW COMMENTS	. 9
I,	INTROD	UCTION	. 11
П.	MATERI	ALS AND METHODS	. 19
III.	RESULT	S: TWO-YEAR STUDIES	. 27
IV.	DISCUSS	SION AND CONCLUSIONS	. 47
V.	REFERE	NCES	. 51
		APPENDIXES	
APPE	NDIX A	SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX	. 57
APPE	NDIX B	SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX	. 87
APPE	NDIX C	GENETIC TOXICOLOGY OF MIREX	. 131
APPE	NDIX D	FEED AND COMPOUND CONSUMPTION BY RATS IN THE TWO-YEAR FEED STUDIES OF MIREX	. 135
A DDF	NDIY F	AUDIT SUMMARY	139

Mirex

Synonyms and trade names: 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1*H*-cyclobuta[*cd*]pentalene; Hexachloropentadiene dimer; dodecachloropentacyclodecane; perchloropentacyclodecane; hexachlorocyclopentadiene dimer; Dechlorane®; Ferriamicide®

CAS NO. 2385-85-5

 $C_{10}Cl_{12}$

Molecular weight 545.6

ABSTRACT

Mirex (95% pure), formerly used as a systemic insecticide and as a fire retardant, was studied for toxicologic and carcinogenic effects by administering diets containing 0, 0.1, 1.0, 10, 25, or 50 ppm mirex to groups of 52 F344/N rats of each sex for 104 weeks. Doses selected for the 2-year studies were based primarily on the effects on body weights and survival of rats in a 26-week study. During the first 6 months of the 2-year study, because of good survival and the absence of observable toxic effects in female rats, additional groups (termed second study) of 52 F344/N female rats were started at higher dietary concentrations of 0, 50, and 100 ppm mirex. Based on feed consumption data, the estimated average intake per day was 0, 0.007, 0.075, 0.75, 1.95, and 3.85 mg mirex/kg body weight for male rats and female rats in the first study, and 0, 3.9, and 7.7 mg/kg for female rats in the additional study.

Body Weights, Feed Consumption, and Survival in Two-Year Studies: Mean body weights of male rats that received 25 or 50 ppm mirex were 5%-18% lower than those of the controls throughout most of the study; mean body weights of female rats that received 50 or 100 ppm mirex were 4%-18% lower than those of the controls after week 40; mean body weights of groups receiving 0.1, 1.0, or 10 ppm were similar to those of controls. Feed consumption by dosed male rats was 83%-91% that by controls, and that by dosed female rats was 86%-99% that by controls. The top dietary exposure groups of rats received the equivalent of 3.85 mg mirex/kg body weight, whereas the 100-ppm group of female rats (second study) averaged 7.7 mg/kg. At the end of the study, survival of male rats that received 25 or 50 ppm mirex was lower than that of controls, whereas survival of all dosed groups of female rats was similar to that of controls (male: control, 44/52; 0.1 ppm, 37/52; 1 ppm, 36/52; 10 ppm, 37/52; 25 ppm, 19/52; 50 ppm, 15/52; female--first study: 38/52; 38/52; 35/52; 35/52; 41/52; 35/52; female--second study: control, 44/52; 50 ppm, 44/52; 100 ppm, 39/52).

Nonneoplastic and Neoplastic Effects in the Two-Year Studies: The most notable compound-related effects were observed in the liver of male and female rats. Fatty metamorphosis, cytomegaly, angiectasis (males only), and necrosis of the liver were observed at increased incidences in dosed rats. The incidences of neoplastic nodules of the liver were dose related, and in the 10-, 25-, and 50-ppm groups of males and the 50- and 100-ppm groups of females (second study), they were markedly greater than those in controls (52/group-male: control, 3; 0.1 ppm, 5; 10 ppm, 14; 25 ppm,

15; 50 ppm, 26; female (second study): control, 2; 50 ppm, 23; 100 ppm, 30). In the first study in female rats, the incidences of neoplastic nodules were not significantly different between control and dosed groups (10; 5; 4; 5; 9; 7). The 10 neoplastic nodules of the liver seen in the control group (19%) was significantly greater than the mean incidence observed historically (57/2,015; 2.8%). The incidences of hepatocellular carcinomas in control and dosed groups were relatively low and were not significantly different between groups.

The incidences of pheochromocytomas of the adrenal gland occurred with a positive trend in male rats (8/51; 7/52; 13/52; 11/52; 18/51; 19/51); the incidences in the 25- and 50-ppm male rats were greater than that in controls; malignant pheochromocytomas were observed in 2 controls and in 2 mirex-exposed male rats. The incidence of pheochromocytomas in 50-ppm female rats in the first study was marginally greater than that in controls (control, 1/51; 50 ppm, 6/52); this borderline increase was not observed in the second female rat study and thus is not considered to be due to the dietary administration of mirex.

Nephropathy occurred at similar incidences in control and mirex-exposed groups of male and female rats; however, the severity of this nonneoplastic lesion was judged to be slightly greater in the groups given 25, 50, or 100 ppm mirex (male: severe vs. moderate in controls; female: moderate to severe vs. moderate). Hyperplasia of the transitional epithelium of the kidney pelvis was observed in dosed male rats (0/51; 2/51; 2/52; 5/52; 14/51; 9/52). Transitional cell papillomas of the renal pelvis in male rats occurred with a positive trend (P < 0.02) (0/51; 0/51; 0/52; 1/51; 3/52). The highest incidence previously observed in untreated male F344/N rats in NTP studies is 1/48, and the mean historical incidence is 5/1,968 (0.3%).

In both the first and second studies in female rats, the incidence of mononuclear cell leukemia showed dose-related increases (first study: 8/52; 8/52; 11/52; 14/52; 18/52; 18/52; second study: 6/52; 9/52; 14/52). When the data from both studies are combined, the incidences are significantly increased in the 10-, 25-, 50-, and 100-ppm groups. The mean historical incidence is 19% (375/2,021).

For the thyroid gland, there was a positive trend for follicular cell neoplasms in male rats (0/51; 1/50; 0/47; 1/47; 0/35; 4/49) and a negative trend for C-cell neoplasms in male rats (8/51; 6/50; 4/47; 7/47; 3/35; 0/49) and in female rats in the first study (12/50; 13/50; 7/48; 9/47; 6/48; 2/46). Neither observation is considered to be associated with the dietary administration of mirex.

Genetic Toxicology: Mirex was not mutagenic in the Salmonella typhimurium-microsome assay when tested in a preincubation protocol in the presence or absence of exogenous metabolic activation in strains TA98, TA100, TA1535, or TA1537. Mirex did not induce either sister chromatid exchanges or chromosomal aberrations in Chinese hamster ovary cells in the presence or absence of S9.

Conclusions: Under the conditions of these 2-year feed studies of mirex, there is clear evidence of carcinogenic activity* for male and female F344/N rats, as primarily indicated by marked increased incidences of benign neoplastic nodules of the liver, as well as by increased incidences of pheochromocytomas of the adrenal gland and transitional cell papillomas of the kidney in males and by increased incidences of mononuclear cell leukemia in females.

Nonneoplastic effects induced by mirex administration include cytomegaly, fatty metamorphosis, angiectasis (males only), and cellular necrosis in the liver.

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 6.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on pages 9-10.

SUMMARY OF THE TWO-YEAR FEED AND GENETIC TOXICOLOGY STUDIES OF MIREX

Male F344/N Rats	Female F344/N Rats						
Dietary concentrations 0, 0.1, 1, 10, 25, or 50 ppm mirex	0, 0.1, 1, 10, 25, or 50 ppm mirex (first study) and 0, 50, or 100 ppm (second study)						
Body weights in the 2-year study Exposed lower than controls	Exposed lower than controls						
Survival rates in the 2-year study 44/52; 37/52; 36/52; 37/52; 19/52; 15/52	38/52; 38/52; 35/52; 35/52; 41/52; 35/52 (first study); 44/52; 44/52; 39/52 (second study)						
Nonneoplastic effects Fatty metamorphosis, cytomegaly, angiectasis, and necrosis of the liver; hyperplasia of the transitional epithelium of the kidney pelvis	Fatty metamorphosis, cytomegaly, and necrosis of the liver						
Neoplastic effects Hepatocellular neoplastic nodules; pheochromocytomas of the adrenal gland; transitional cell papillomas of the kidney	Hepatocellular neoplastic nodules; mononuclear cell leukemia						
Level of evidence of carcinogenic activity Clear evidence	Clear evidence						
Genetic toxicology Not mutagenic in S. typhimurium TA98, TA100, TA1535, or chromosomal aberrations in Chinese hamster ovary cells wit	TA1537; did not induce either sister chromatid exchanges or th or without S9						

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence including: animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results ("Clear Evidence" and "Some Evidence"); one category for uncertain findings ("Equivocal Evidence"); one category for no observable effects ("No Evidence"); and one category for experiments that because of major flaws cannot be evaluated ("Inadequate Study"). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Reports series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following quintet is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemically related.
- No Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenic Activity is demonstrated by studies that because of major qualitative or quantitative limitations cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. This should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- The adequacy of the experimental design and conduct;
- Occurrence of common versus uncommon neoplasia;
- Progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- Some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- Combining benign and malignant tumor incidences known or thought to represent stages of progression in the same organ or tissue;
- Latency in tumor induction;
- Multiplicity in site-specific neoplasia;
- Metastases:
- Supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- The presence or absence of dose relationships;
- The statistical significance of the observed tumor increase;
- The concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- Survival-adjusted analyses and false positive or false negative concerns;
- Structure-activity correlations; and
- In some cases, genetic toxicology.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of Mirex is based on 2-year studies that began in June 1977 or January 1978 and ended in June 1979 or January 1980 at Frederick Cancer Research Center (Frederick, Maryland).

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

James Huff, Ph.D., Study Scientist

Charles Alden, Ph.D.
Jack Bishop, Ph.D.
John Bucher, Ph.D.
Scot L. Eustis, D.V.M., Ph.D.
Joseph K. Haseman, Ph.D.

C.W. Jameson, Ph.D. E.E. McConnell, D.V.M. G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report for Rats on 1/11/83)

Gary A. Boorman, D.V.M., Ph.D. (Chair) NTP Scot L. Eustis, D.V.M., Ph.D. (NTP) R. Maronpot, D.V.M. (NTP) J. Popp, D.V.M., Ph.D. (Chemical Industry Institute of Toxicology) H. Solleveld, D.V.M., Ph.D. (NTP) R. Squire, D.V.M., Ph.D. (Johns Hopkins University)

Principal Contributor at Frederick Cancer Research Center (Conducted Studies)

Donald Creasia, Ph.D.

Principal Contributor at Experimental Pathology Laboratories, Inc. (Provided Pathology Quality Assurance)

J. Hardisty, D.V.M.

Principal Contributor at Clements Associates (Evaluated Tissues)

Dawn Goodman, V.D.M.

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D. Abigail C. Jacobs, Ph.D.

John Warner, M.S. Naomi Levy, B.A.

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on Mirex on March 4, 1987, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Robert A. Scala, Ph.D. (Chair)
Senior Scientific Advisor, Medicine and Environmental Health Department
Research and Environmental Health Division, Exxon Corporation
East Millstone, New Jersey

Michael A. Gallo, Ph.D.

Associate Professor, Director of Toxicology Department of Environmental and Community Medicine, UMDNJ - Rutgers Medical School Piscataway, New Jersey Frederica Perera, Dr. P.H.*
Division of Environmental Sciences
School of Public Health,
Columbia University
New York, New York

Ad Hoc Subcommittee Panel of Experts

Charles C. Capen, D.V.M., Ph.D.
Department of Veterinary Pathobiology
Ohio State University
Columbus, Ohio

Vernon M. Chinchilli, Ph.D. (Principal Reviewer)
Department of Biostatistics
Medical College of Virginia
Virginia Commonwealth University
Richmond, Virginia

John J. Crowley, Ph.D.*
Division of Public Health Science
The Fred Hutchinson Cancer Research Center
Seattle, Washington

Kim Hooper, Ph.D.
Hazard Evaluation System and
Information Services
Department of Health Services
State of California
Berkeley, California

Donald H. Hughes, Ph.D. (Principal Reviewer) Scientific Coordinator, Regulatory Services Division, The Procter and Gamble Company Cincinnati, Ohio Franklin E. Mirer, Ph.D.*
Director, Health and Safety Department
International Union, United Auto
Workers, Detroit, Michigan

James A. Popp, D.V.M., Ph.D. (Principal Reviewer) Head, Department of Experimental Pathology and Toxicology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

I.F.H. Purchase, B.V.Sc., Ph.D., F.R.C. Path.*
Director, Central Toxicology Laboratory
Imperial Chemical Industries, PLC
Alderley Park, England

Andrew Sivak, Ph.D.
Vice President, Biomedical Science
Arthur D. Little, Inc.
Cambridge, Massachusetts

^{*}Unable to attend

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF MIREX

On March 4, 1987, the draft Technical Report on the toxicology and carcinogenesis studies of mirex received public review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

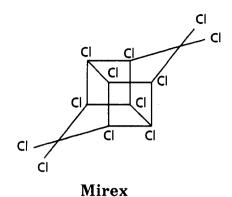
Dr. J. Huff, NIEHS, began the discussion by reviewing the experimental design, results, and proposed conclusions (clear evidence of carcinogenic activity for male or female rats).

Dr. Popp, a principal reviewer, deferred comment on the conclusions until the Panel discussed some of the major issues concerning the studies. These issues included: apparent nonreproducibility of liver neoplasms for female rats fed 50 ppm mirex in the original study and in a second study started several months later at 50 and 100 ppm; and an unusually high incidence of liver neoplasms in control female animals from the original study. Dr. Huff responded that there was no logical explanation either for the differences between studies or the high control tumor incidence in females from the first study.

As a second principal reviewer, Dr. Chinchilli agreed with the conclusions as written. He expressed concern over the less than complete record keeping on certain aspects of the study. He asked that either more details be given about the process used for randomization of animals or that a statement be added that detailed records are not available.

As a third principal reviewer, Dr. Hughes opined that the conclusions should be equivocal evidence of carcinogenic activity because the primary liver effect was increased nodules, the liver response in females was not the same in both studies, adrenal gland responses were mainly increases in benign pheochromocytomas, the renal transitional cell papilloma response in males was weak, and the mononuclear cell leukemia response was weak in females and equivocal in males and there was no evidence of early onset in exposed animals. Further, he questioned whether these were valid studies on which to base conclusions since not all records were available.

In response to the reviewers, Dr. Huff stated that staff had confidence that the data were scientifically valid and reportable and that the spectrum of neoplastic responses taken together supported the category of evidence selected. The liver and kidney lesions are rare occurrences in F344/N rats. Further, these findings in the liver are supported by other long-term studies reported in the literature, and ample evidence exists that the target organ for this nonmetabolized chemical is the liver. He reminded the Panel of other recent peer-reviewed studies with conclusions of clear evidence of carcinogenic activity based on increased incidences of neoplastic nodules and incidences lower than those reported here. Also, the audit revealed that the archived records necessary to support these conclusions are available, as are all the pathology materials and specimens.


In other discussions, Dr. Gallo also emphasized the liver as a primary target organ, noting that mirex is known to be a potent inducer of cytochrome P450 enzymes. He speculated that cross-contamination between rooms housing exposed and control female animals might have been involved in the high incidence of neoplastic nodules of the liver in control female rats in the first study. Dr. S. Eustis, NIEHS, noted that neoplastic nodules in control animals were primarily composed of basophilic cells, whereas nodules in exposed animals were primarily either clear cell or eosinophilic cell types, a clear indication that mirex caused these effects.

SUMMARY OF PEER REVIEW COMMENTS (Continued)

Dr. Hooper moved that the Technical Report on mirex be accepted with the revisions discussed and the conclusions as written for male and female rats, clear evidence of carcinogenic activity. Dr. Sivak seconded the motion, and the Technical Report was accepted by the Panel with six affirmative votes and one negative vote (Dr. Hughes).

I. INTRODUCTION

Physical and Chemical Properties
Degradation and Persistence
Bioaccumulation
Disposition and Metabolism
Toxicity
Reproductive Effects
Mutagenicity
Carcinogenicity
Human Exposure
Study Rationale

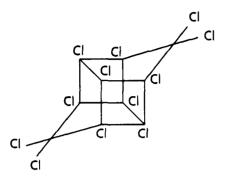
Synonyms and trade names: 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1*H*-cyclobuta[*cd*]pentalene; Hexachloropentadiene dimer; dodecachloropentacyclodecane; perchloropentacyclodecane; hexachlorocyclopentadiene dimer; Dechlorane®; Ferriamicide®

CAS NO. 2385-85-5

C₁₀Cl₁₂ Molecular weight 545.6

Mirex is a chlorinated insecticide once used to combat the fire ant Solenopsis sp. First prepared by Prins (1946) by the dimerization of hexachlorocyclopentadiene in the presence of aluminum chloride and carbon tetrachloride, mirex was patented in 1955 and introduced in 1959 by the Allied Chemical Corporation for use in pesticidal formulations (Waters et al., 1977a,b). Although principally used as a pesticide, mirex was also marketed under the trade name Dechlorane® for use in flame-retardant coatings for various materials.

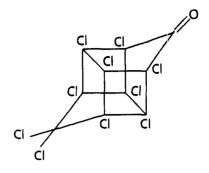
In 1976, the Allied Chemical Corporation ceased production of mirex and formally transferred all registrations on mirex to the Mississippi Department of Agriculture together with the right to manufacture and sell mirex bait (Pest. Chem. News, 1976a). The U.S. Environmental Protection Agency (EPA) and the state of Mississippi agreed to phase out all mirex registrations. Cancellation for mirex 10:5 bait (a dilute form of mirex) became effective at the end of 1977. Selective ground application was permitted only until June 1978 (Holden, 1976). In December 1986, the EPA revoked all existing tolerances for residues of mirex (Fed. Regist., 1986).


A literature collection of 325 abstracts from 1947 to 1976 was published by Waters and Black

(1976). Waters et al. (1977a,b) summarized the available information on mirex up to 1977; the International Programme on Chemical Safety published an Environmental Health Criteria Document and a Health and Safety Guide summarizing information on mirex and mirex breakdown products and containing recommendations and evaluations (IPCS, 1984, 1988).

Physical and Chemical Properties

Physically, mirex is an odorless, snow-white crystalline solid that is insoluble in water but soluble in organic solvents such as methyl ethyl ketone, carbon tetrachloride, benzene, xylene, and dioxane. Mirex is reportedly unaffected by sulfuric, hydrochloric, or nitric acids; zinc dust; or sulfur trioxide (Brooks, 1974). Structurally, mirex is closely related to chlordecone (more commonly known as Kepone®); chlordecone and photomirex (8-monohydromirex) have been identified as slow degradation products of mirex.


Mirex, highly lipophilic, acts mainly as a stomach poison after ingestion, having little contact insecticidal activity (Brooks, 1974). It provides effective control of fire ants, harvester ants, and Texas leaf-cutting ants at a relatively low rate of application (Heath and Spann, 1973; Carlson et al., 1976).

Mirex

Degradation and Persistence

Mirex does not occur naturally in the environment. The chemical stability of mirex causes it to be highly persistent in the environment, as illustrated by various experiments (Shapley, 1971). Photodegradation under the influence of ultraviolet radiation is slow, with photomirex being the major product. The environmental half-life of mirex is many years (IPCS, 1984). Exposure to sunlight and ultraviolet light caused only slow degradation; resultant compounds included chlordecone hydrate, undecachloropentacyclodecane, and nonachloropentacyclodecan-5-one hydrate (Ivie et al., 1974a). These breakdown products are as stable as mirex (IPCS, 1984). Mirex was more stable than DDT in the presence of ultraviolet light (Baker and Applegate, 1974) and was not degraded by a variety of soil bacteria (Jones and Hodges, 1974). However, anaerobic sludge organisms appeared to degrade mirex to the 10-monohydro and possibly the 9-monohydro derivatives (Andrade et al., 1975). Unchanged mirex and a number of mirex-related organochlorine compounds (including chlordecone) were detected in two soil samples 12 and 5 years after application of relatively large quantities of mirex (Carlson et al., 1976). In one instance, mirex was applied at a rate of 1 pound per acre (the usual rate of application is 1.7 g per acre) to experimental plots near Gulfport, Mississippi. Analysis of soil samples 12 years later showed that approximately 65% of the mirex was still present unchanged. In a second instance, an aircraft carrying mirex crashed near Sebring, Florida, depositing its

Chlordecone

(Kepone®)

entire load in a shallow pond. Five years later, up to 80% of the mirex was still present. In both cases, chlordecone and two monohydro and two dihydro mirex derivatives were identified. Lowe et al. (1971) reported that approximately 34% of the original mirex was still present after fire ant bait had been soaked in open seawater for 9 months.

Bioaccumulation

The accumulation of mirex in an estuarine food web was studied after mirex was applied three times (1.25 pounds of bait per acre) at 6-month intervals (Borthwick et al., 1973). Mirex migrated from treated lands and high marsh to estuarine biota, and significant concentrations were found in predators such as raccoons and birds. Similar results were obtained by Hyde et al. (1973a), who reported accumulation of mirex residues in a variety of species, including animals raised for human consumption, after mirex bait had been applied six times over a 4-year period. Mirex residues ranging from 0.001 to 0.125 ppm were detected in 67/77 (87%) samples of fat taken from beef cattle raised in mirextreated areas of Mississippi and Georgia (Ford et al., 1973). Mirex was identified in the blubber of 48 beluga whales sampled between 1982 and 1986 in the St. Lawrence River Estuary (Lum et al., 1987). Since there are no known sources of mirex in Quebec, it has been postulated that migrating eels (in which mirex has been measured) and suspended particulate material transported the mirex from Lake Ontario.

Mirex residues were found in birds collected from South Carolina, Georgia, and Florida (Oberheu, 1972; Kreitzer, 1974). Marine unicellular algae species exhibited bioconcentration factors of 3,200-7,300 (Hollister et al., 1975).

In four experiments, each lasting 28 days, mirex leached from bait was applied to an estuarine environment (Tagatz et al., 1975). Toxic responses were highest in summer and lowest in spring. Bioconcentrating factors for mirex were 40,800 for minnows, 10,000 for pink and grass shrimp, and 2,300 for blue crabs.

Disposition and Metabolism

After ingestion, mirex is only partly absorbed; the remainder is generally excreted unaltered in the feces; mirex is also absorbed after inhalation and dermal exposure (IPCS, 1984). Mirex excretion occurs mainly via the feces, with small amounts excreted in urine (Mehendale et al., 1972); traces also have been detected in milk (Gaines and Kimbrough, 1970). Excretion kinetics appear to be biphasic--the initial "fast" phase lasting 38 hours and the "slow" phase projected to last up to 100 days (Mehendale et al., 1972). Mirex binds firmly to soluble liver proteins (Byard et al., 1975) and appears to be retained in fatty tissues (Mehendale et al., 1972; Kutz et al., 1974); these factors may contribute to the long biologic half-life of several months. Mirex was shown to bind to hepatocytes at 37° C and physiologic pH (Rosenbaum and Charles, 1986).

A survey conducted by EPA showed mirex to be present in 52/284 samples of human tissue at levels up to 1.32 ppm on a wet weight basis (Pest. Chem. News, 1976b; USEPA, 1978). Mirex residues of up to 0.16-5.94 ppm were detected in six samples of human adipose tissue from persons living in states where mirex had been used for pest control (Kutz et al., 1974).

Catfish raised in an area that received an application of mirex contained mirex levels from 0.008 to 2.59 ppm (Collins et al., 1973). A build-up of the insecticide was observed in the fish, suggesting that the accumulation occurred via

the food chain rather than by direct consumption.

In laying hens fed 1.06 ppm mirex in the diet, the insecticide appeared to be readily absorbed from the digestive tract and distributed throughout the body (Woodham et al., 1975). At 27 weeks, the highest levels were found in fat at a concentration of 15 ppm; levels in other organs were: kidney, 2 ppm; liver, 0.5 ppm; breast, 0.1 ppm. After 39 weeks of dosing, all tissue levels were increased by 60%-300%. In other feed experiments, males often showed higher tissue levels of mirex than did females (Ivie et al., 1974b). Mirex accumulates in egg yolks, indicating that laying hens may lose large quantities of mirex through the eggs. Levels up to 200 ppm mirex in eggs appear to be tolerated without adverse effects on various reproductive indices such as egg hatching and chick growth and survival (Ivie et al., 1974c).

After rats received a single gavage dose of 6 mg/ kg of uniformly labeled [14C]mirex, approximately 60% was excreted unchanged in the feces and 0.7% in urine within 48 hours (Mehendale et al., 1972). Of the remainder, about 34% was stored in body tissues: 27.8% in fat, 3.2% in muscle, 1.75% in liver, 0.76% in kidney, and 0.23% in the intestines. Corticosterone and adrenalectomy affect the mirex distribution in rats. Forty-eight hours after administration of a single 100 mg/kg dose of [14C]mirex by gavage, the absorption of [14C] mirex was decreased in the brain of adrenalectomized rats receiving corticosterone supplements and the [14C]mirex concentration per liver was greater in intact than in adrenalectomized rats with or without corticosterone supplements (Brown and Yarborough, 1988).

Rats and Japanese quail fed diets containing [14C]mirex accumulated the [14C]mirex in all body tissues and especially in adipose tissue (Ivie et al., 1974b). After 16 months, the concentration of mirex in fat had increased over dietary levels 120-fold in rats and 185-fold in male quail. No indication of a plateau was noted. A further 10 months on normal diet produced only a 40% decline in tissue concentration. Mirex readily

traverses the placental barrier and accumulates in the rat fetus (Gaines and Kimbrough, 1970).

No metabolic products were identified following incubation of mirex with liver preparations from mice, rats, and rabbits (Mehendale et al., 1972). However, Stein et al. (1976) reported a nonpolar mirex derivative (tentatively identified as undecachloropentacyclodecane) in the feces of monkeys fed [14C]mirex. These investigators suggested that bacteria in the lower gut may have been responsible for the degradation, as no metabolites were detected in other tissues (such as fat) where the level of radioactivity was several orders of magnitude above that in the feces.

Toxicity

Several marine species appear to be extremely sensitive to mirex. Crawfish are susceptible to mirex toxicity (Carter and Graves, 1973), with the third instar stage being the most vulnerable (Ludke et al., 1971). Survival of channel catfish was reduced by 33% after treatment of ponds with mirex bait (1.25 pounds per acre); residues present in the edible parts of the fish averaged 0.018 ppm (Hyde, 1973). In contrast, mirex was reported to have no detrimental effect on honeybee colonies adjacent to treated areas (Glancey et al., 1970). No mirex was detected in bees, honey, or pollen from such colonies.

Toxic effects of mirex in mammalian systems, as studied in laboratory animals, are generally characterized by decreased body weight and increased liver weight (Gaines and Kimbrough, 1970; Davison and Cox, 1974; Abraham et al., 1974; Byard and Pittman, 1975; Larson et al., 1979). The increased liver weight in rats is accompanied by increased ornithine decarboxylase and thymidine kinase activity, as well as by increased incorporation of [3H]thymidine into DNA, 36 or 48 hours after exposure to mirex (Yarbrough et al., 1986). Mirex is not metabolized by the liver; however, several reports indicate that mirex induces liver enzymes. Increased cytochrome P450 (Baker et al., 1972; Davison and Cox, 1974; Fouse and Hodgson, 1987; Crouch and Ebel, 1987), together with proliferation of smooth endoplasmic reticulum and increased numbers of osmiophilic dense bodies, have been reported in rats and mice (Gaines and Kimbrough, 1970; Baker, 1974). Mirex can potentiate hepatotoxic effects of other chemicals. Hepatotoxicity, as measured by the leakage of enzymes from hepatocytes in vitro after in vivo exposure to acetaminophen, was enhanced by prior exposure of male C57BL/6 mice in vivo to mirex (Fouse and Hodgson, 1987). In addition, increased demethylase activity has been observed in mice (Abraham et al., 1974; Baker et al., 1972) as well as increased total DNA, total protein, mitochondrial respiratory activity, and microsomal mixed function oxidase enzyme activity (Byard et al., 1975). Mirex is much weaker than chlordecane in potentiating liver damage in rats caused by chloroform, as measured by histologic examination and serum enymes (Mehendale and Klingensmith, 1988).

Conversely, a decrease in the level of glucose-6-phosphatase activity (Abraham et al., 1974; Byard et al., 1975) as well as glycogen depletion (Abraham et al., 1974; Kendall, 1974a) were measured in both rats and mice. A 60%-65% loss in liver glutamic oxaloacetic transaminase activity was observed in rats receiving 10-200 ppm mirex in the diet for 4 weeks; lactic dehydrogenase (LDH) also was significantly reduced in rats after ingestion of 10 ppm mirex for 4 weeks (Abston and Yarbrough, 1974). A crystalline extract of LDH from rabbit muscle was competitively inhibited by mirex, both with respect to pyruvate (substrate) and NADH (coenzyme) (Hendrickson and Bowden, 1975).

Single doses of mirex which are not toxic to rats cause death in adrenalectomized animals but not in adrenalectomized animals given supplementary doses of corticosterone (Erwin and Yarbrough, 1983).

Toxic reactions following intraperitoneal administrations of mirex in corn oil at LD_{50} levels in rats and mice resemble the signs of DDT intoxication-hair loss, listlessness, and diarrhea. Fatty changes in the liver were manifested as periportal liposis in mice fed mirex, whereas intraperitoneal injection resulted in fibrous white patchy lesions on the liver surface with interior necrosis (Kendall, 1974b).

In humans, symptoms and signs of mirex exposure include gastrointestinal irritation with

nausea, vomiting, diarrhea, malaise, headache, central nervous system excitation (including tremor, paresthesia, ataxia, confusion, convulsions, ventricular fibrillation, central nervous system depression, and central nervous system respiratory paralysis) (National Clearinghouse for Poison Control Centers, 1976).

Reproductive Effects

White leghorn chickens, Coturnix quail (Davison and Cox, 1974), and Japanese quail (Davison et al., 1975) showed normal reproduction after being fed mirex in the diet for 12 weeks (160 ppm for chickens and 80 ppm for quail). However, eggs of mallards fed 1 ppm mirex showed slightly thicker and heavier shells, whereas at 100 ppm, the egg shells were thinner (Hyde, 1973). Reduced survival of the ducklings was observed; no other adverse effects were reported (Hyde et al., 1973b).

Various reproductive effects of mirex have been reported in rats and mice. Female rats fed 5 ppm mirex produced normal litters, whereas dams fed 25 ppm mirex had fewer offspring born alive, fewer offspring survived to weaning, and many pups developed cataracts (Gaines and Kimbrough, 1970). Offspring born to mothers dosed with mirex but nursed by undosed mothers showed normal survival to weaning and fewer cataracts. Thus, mirex appears to be cataractogenic in mouse and rat neonates only after lactogenic exposure (Chernoff et al., 1976). Gas chromatography of milk from dams dosed with mirex showed an average concentration of 11.3 ppm mirex (Gaines and Kimbrough, 1970).

Mirex administration in feed resulted in reduced litter size in BALB/c and CFW mice; additionally, BALB/c mice showed a significant increase in parent mortality (Ware and Good, 1967). In this experiment, fetuses were not evaluated for congenital defects. An investigation of the teratogenic potential of mirex in rats indicated that low doses of mirex (1.5-3.0 mg/kg administered as a single daily oral dose on days 6-15 of gestation) produced no signs of maternal toxicity and no adverse fetal effects (Khera et al., 1976). Maternal toxicity and subsequent fetal visceral abnormalities were noted in offspring of females receiving 6.0 or 12.5 mg/kg; in addition,

decreased fetal survival and reduced fetal weight were observed at 12.5 mg/kg. A dominant lethal assay of males given 0, 1.5, 3.0, or 6.0 mg/kg by gavage daily for 10 days showed no significant difference in reproductive indices between experimental and control groups, even though mirex was detected in the testes of the exposed group.

Mutagenicity

The genetic toxicity of mirex has been examined in both prokaryotic and eukaryotic cells. Results of reverse mutation assays with numerous strains of Salmonella typhimurium (Hallett et al., 1978; Schoeny et al., 1979; Rinkus and Legator, 1980; Probst and Hill, 1980; Probst et al., 1981) and similar assays using Escherichia coli strains WP2 and WP2 uvrA- (Probst and Hill, 1980; Probst et al., 1981) were uniformly negative; all these bacterial assays were conducted with and without exogenous metabolic activation from induced liver S9 preparations. Likewise, S. typhimurium-microsome studies with a preincubation protocol and Salmonella strains TA98, TA100, TA1535, or TA1537 in the presence or absence of Aroclor 1254-induced male Sprague Dawley rat or Syrian hamster liver S9 showed no mutagenic activity for mirex at doses of up to 10,000 µg/plate (Mortelmans et al., 1986; National Toxicology Program [NTP] data shown in Table C1).

No unscheduled DNA synthesis was detected in cultured rat, mouse, or hamster hepatocytes after exposure to mirex (Probst and Hill, 1980; Probst et al., 1981; Williams, 1980; Maslansky and Williams, 1981; Telang et al., 1981). Results from experiments on induction of gene mutation at the HGPRT locus in rat hepatocytemediated cultured human fibroblasts were negative (Tong et al., 1981). Mirex at exposure concentrations up to 260 µg/ml did not increase the number of sister chromatid exchanges or chromosomal aberrations in cultured Chinese hamster ovary (CHO) cells in the presence or absence of Aroclor 1254-induced male Sprague Dawley rat liver S9 (NTP data shown in Tables C2 and C3). The only in vivo mutagenicity assay reported for mirex was a dominant lethal study in Wistar rats in which no significant difference was reported in either viable embryos or deciduomas in pregnant females mated to males dosed by gavage on each of 10 consecutive days with 1.5, 3.0, or 6.0 mg/kg (Khera et al., 1976).

Chlordecone, the keto-analog of mirex, has been evaluated in a series of short-term mutagenicity assays. Like mirex, chlordecone was not mutagenic in the S. typhimurium-microsome assay at concentrations up to 10,000 µg/plate (Mortelmans et al., 1986) with or without exogenous metabolic activation. Bacterial reverse mutation assay results from other investigators were also reported to be negative (Hallett et al., 1978; Schoeny et al., 1979; Probst and Hill, 1980; Probst et al., 1981). No unscheduled DNA synthesis was observed after exposure of cultured F344 rat hepatocytes to chlordecone (Williams. 1979, 1980; Probst and Hill, 1980; Probst et al., 1981), and no gene mutations were produced in rat liver epithelial cells after chlordecone treatment (Williams, 1979, 1980; Telang et al., 1981). In in vitro cytogenetic studies (Galloway et al., 1987), treatment of CHO cells with up to 20 µg/ml chlordecone in the presence or absence of Aroclor 1254-induced rat liver S9 did not induce chromosomal aberrations: sister chromatid exchange rates were increased, however, after exposure of the cells to chlordecone at concentrations of 1.6-10 µg/ml only in the absence of exogenous metabolic activation. The only in vivo mutagenicity data for chlordecone were reported in an abstract by Simon et al. (1978) who stated that no dominant lethal mutations were produced in the offspring of male rats orally administered 3.6 or 11.4 mg/kg chlordecone per day for 5 days.

Carcinogenicity

Groups of 18 male and 18 female (C57BL/6×C3H/Anf)F₁ mice and 18 male and 18 female (C57BL/6×AKR)F₁ mice were given mirex (98% pure) at doses of 10 mg/kg in 0.5% gelatin by gavage from 7 days to 4 weeks of age; then the mice were fed diets containing 26 ppm mirex (Innes et al., 1969; IARC, 1979). All mice were dead by 70 weeks. "Hepatomas" were observed in 6/18 (33%) males and 8/16 (50%) females of the first strain compared with 8/79

(10%) male and 0/87 female controls and in 5/15 (33%) males and 10/16 (63%) females of the second strain compared with 5/90 (6%) male and 1/82 (1%) female controls. In a companion experiment with the same strains and numbers of mice, 1,000 mg mirex/kg body weight was given by subcutaneous injection in 0.5% gelatin on the 28th day of life (NTIS, 1968). At 78 weeks of age, the remaining mice (16, 17, 17, 15) were killed and necropsies were performed. The incidences of hepatomas in male and female mice were 2/18 and 0/17 in the first strain and 4/17 and 1/18 in the second strain; 1/18 gelatin vehicle control males and 1/161 dimethyl sulfoxide "negative" control males of the second strain had hepatomas, whereas none of the controls of the first strain had liver neoplasia.

Mirex (99% pure) was given in feed at 50 and 100 ppm for 18 months to groups of 26 male and 26 female CD rats (Ulland et al., 1977; IARC, 1979); for the first 10 weeks of the study, the dietary levels were 40 and 80 ppm. The animals were observed for another 6 months, and then survivors were killed and necropsies were performed. Groups of 20 male and 20 female rats were used as controls. Administration of mirex had no appreciable effect on growth rate, but the survival rate in all but the low dose female group was decreased, indicating a dose-related (and possible sex-related) effect. At necropsy, the liver of all animals administered mirex--except for the low dose females--appeared enlarged, mottled, or spotted. A wide spectrum of liver changes was observed, ranging from fatty metamorphosis and megalocytosis of hepatocytes, cystic degeneration and necrosis, and biliary hyperplasia with periportal fibrosis, to circumscribed areas of cellular alteration. Neoplastic nodules of the liver were increased in males (control, 0/20; 50 ppm, 2/26; 100 ppm, 7/26) and in females (0/20; 4/26; 4/26); carcinomas were observed in one low dose and four high dose males and in one high dose female.

In 1979, the International Agency for Research on Cancer (IARC, 1979) evaluated the available data and decided, "There is sufficient evidence that mirex is carcinogenic in mice and rats. In the absence of adequate data in humans, it is reasonable for practical purposes to regard mirex as if it presented a carcinogenic risk to

humans." IARC (1987) reevaluated the available data and came to the same conclusion; mirex was placed into the overall evaluation category of Group 2B: possibly carcinogenic to humans.

For the related chemical chlordecone (98% pure), 2-year dietary studies were conducted in groups of 50 male and 50 female Osborne-Mendel rats and B6C3F₁ mice (NCI, 1976; IARC, 1979). Doses were reduced during the course of the studies, due to toxicity; time-weighted concentrations for male rats were 0, 8, 24 ppm; for female rats, 0, 18, 26 ppm; for male mice, 0, 20, 23 ppm; and for female mice, 0, 20, 40 ppm. Exposure was discontinued at week 80, and the animals were killed and necropsies performed at week 112 (rats) and week 90 (mice). For rats, hepatocellular carcinomas were found in males (control, 0/105; low dose, 0/50; high dose, 3/44; two low dose males had neoplastic nodules) and in females (0/100; 0/50; 10/45; one control and two high dose females had neoplastic nodules). Extensive hyperplasia, fatty infiltration, and cellular degeneration of the liver were observed in male and female rats in both dose groups. For mice, hepatocellular carcinomas were found in males (6/19; 39/48; 43/49) and in females (0/10;26/50; 23/49). IARC (1979, 1987) came to the same conclusions for chlordecone as for mirex.

Human Exposure

In early 1974, the EPA expressed concern over the widespread use of mirex because of: (1) adverse effects on reproduction as demonstrated in laboratory animals, (2) detectable amounts found in human adipose tissue from a limited sampling of the population, (3) tumorigenic implications in mice, (4) effects on mammalian energy metabolism, (5) mortality in birds, (6) potential to move in a saltwater environment, (7) effects on certain aquatic organisms, and (8) persistence in the environment (Pest. Chem. News, 1974). In 1978, the EPA issued a report on human population exposure to mirex and kepone. Mirex was detected in human adipose tissue (52/184, 18%), and yet none was found in 1,500 breast milk samples taken throughout the United States (USEPA, 1978).

Study Rationale

Mirex was nominated to the National Cancer Institute for carcinogenesis study in rodents because of widespread environmental exposure. Since there were positive results already in mice, only rats were exposed to mirex in the studies reported in the Technical Report. The dietary route of administration was chosen because this was a likely means of human exposure.

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF MIREX PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS

TWO-YEAR STUDIES

Study Design
Source and Specifications of Animals
Animal Maintenance
Clinical Examinations and Pathology
Statistical Methods

PROCUREMENT AND CHARACTERIZATION OF MIREX

Mirex (1,1a,2,2,3,3a,4,5,5,5a,5b,6-dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta[cd]pentalene) was obtained from the Agricultural Department of Allied Chemical Company (Baltimore, Maryland) in a 10-pound container as a fine powder (lot no. 083173). Gas chromatographic analysis indicated that the study material was approximately 95% pure. However, because data records for this analysis were incomplete, a retrospective purity analysis was performed on the residual study material by a different analytical laboratory. The identity of the study material was confirmed by infrared (Figure 1) and ultraviolet spectrophotometry and by low and high resolution mass spectrometry (Figure 2). All spectroscopic data were consistent with reference spectra and the structure of mirex. The purity of mirex was determined to be greater than 96% by thin-layer chromatography, capillary gas chromatography, and Karl Fischer water analysis. The residual study material contained 1% water and a 2% impurity that was identified as dechlorane 604 by infrared and ultraviolet spectrophotometry and by low- and high-resolution mass specrometry (Figure 3).

PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS

No data records were located for the preparation, analysis, or stability of the formulated diets used during the 2-year studies of mirex. A retrospective feed homogeneity and stability study was conducted to confirm that adequate uniform feed blends of mirex could be prepared with relative ease. Results of these studies indicate that homogeneous feed blends of mirex can be prepared easily at 0.1 and 50 ppm by spiking a small premix blend of feed with mirex dissolved in acetone, allowing the acetone to evaporate, and then blending the premix with the approximate amount of feed to yield the required concentration of mirex. These formulated diets were shown to be stable for at least 3 weeks when stored at temperatures ranging from -20°

to 25° C. Formulated diets of mirex were analyzed by extraction with hexane followed by gas chromatographic analysis on a GP 4% SE-30/6% SP2401 column with an electron capture detector. Because no records are available, the methods of preparing the diet/mirex mixtures are not known. Nonetheless, available information from the "dose preparation log" shows that the correct amounts of mirex were weighed and mixed with the appropriate amounts of feed to give the target concentrations needed for the different dose groups. Further, numerous entries in the "chemical/vehicle analysis" sheets show that sample analyses of the different dietary concentrations of mirex contained the desired levels of mirex. Moreover, homogenicity samples taken from "left, bottom, right" of the mirex-diet containers for the 0.1-, 1-, 10-, 25-, and 50-ppm mixtures verify uniform and adequate mixtures. Thus, although specific documentation regarding the exact procedure used to incorporate mirex into the feed is not in the archival records, the collective available information is sufficient to support that the mixtures were adequately and accurately prepared and that the animals did receive the appropriate mirex-containing diets.

TWO-YEAR STUDIES

Study Design

Dose selection was based on results of earlier short-term studies (primarily on the reduction of body weights and on differences in survival); although the data and records from these studies are considered incomplete and not adequate enough for reporting, there was enough information present to select the dietary concentrations for the 2-year studies. In brief, groups of five male and five female rats (strain not specified) received diets for 26 weeks containing mirex at concentrations of 0, 25, 50, 80, 100, 150, 200, 400, or 1,000 ppm. Final mean body weights were decreased 11% for the 100-ppm male group, 8% for the 150-ppm male group, 25% for the 400ppm male group, and 13% or 17% for the 80- to 200-ppm female groups; all animals in the 400and 1,000-ppm groups died before the end of the 26 weeks.

FIGURE 1. INFRARED ABSORPTION SPECTRUM OF MIREX (LOT NO. 083173)

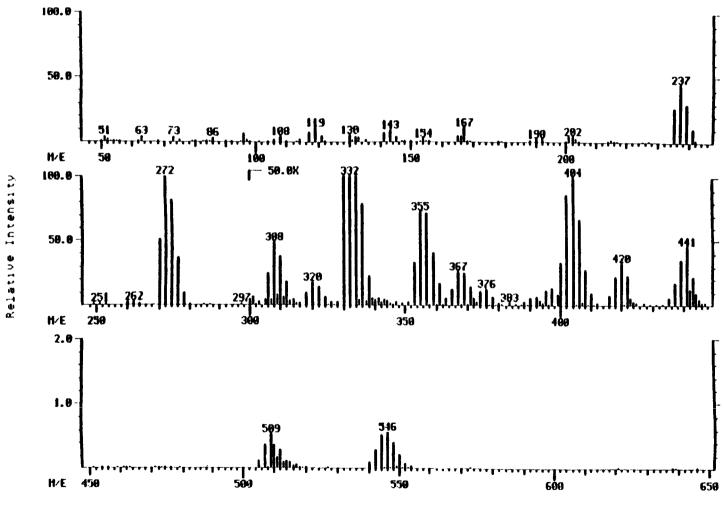


FIGURE 2. MASS SPECTRUM OF MIREX (LOT NO. 083173)

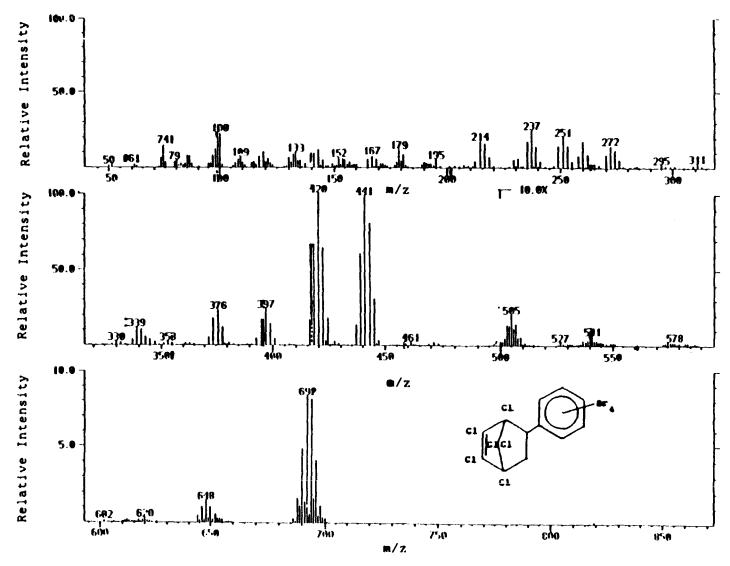


FIGURE 3. MASS SPECTRUM OF THE IMPURITY DECHLORANE 604 FOUND IN MIREX LOT NO. 083173

For the 2-year studies, groups of 52 rats of each sex were fed diets containing 0, 0.1, 1, 10, 25, or 50 ppm mirex in feed for 104 weeks. Several months after the first study had started, it was decided, based on lack of clinical signs and only random and minor variations in the rate of weight gain, that females could tolerate greater concentrations of mirex in feed. In the second study, groups of 52 female rats were fed diets containing 0, 50, or 100 ppm mirex. Further, these dietary concentrations were the same as those used by Ulland et al. (1977) for their study with female CD rats.

Source and Specifications of Animals

The male and female F344/N rats used in this study were produced at Frederick Cancer Research Center or at Harlan Industries (second female rat study). Breeding stock for the foundation colony at the production facility originated at the National Institutes of Health Repository. Animals shipped for study were progeny of defined microflora-associated parents that were transferred from isolators to barrier-maintained rooms. Animals were transferred or shipped to the study laboratory at 4 weeks of age. The animals were quarantined at the study facility for 4 weeks. Thereafter, five animals of each sex were killed and given a complete necropsy to assess their health status. The rats were placed on study at 7-8 weeks of age.

Animal Maintenance

Rats were housed four per cage in polycarbonate cages. Feed and water were available ad libitum. Available details of animal maintenance are given in Table 1.

Clinical Examinations and Pathology

All animals were observed two times per day, and clinical signs were recorded once per week; the available records on clinical observations were not considered adequate for reporting. Body weights by cage were recorded once per week for the first 12 weeks of the studies and once every 4 weeks thereafter. Mean body

weights were calculated for each group. Moribund animals were killed, as were animals that survived to the end of the studies. A necropsy was performed on all animals, including those found dead. In some cases, a particular organ was not saved or was autolyzed (e.g., pancreas and thyroid gland in male rats). Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study in each group.

Examinations for grossly visible lesions were performed at necropsy. All major tissues were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned, and stained with hematoxylin and eosin for microscopic evaluation. Tissues examined microscopically are listed in Table 1.

The pathology diagnoses and evaluation of the long-term studies of mirex in rats was first performed by a pathologist at the Frederick Cancer Research Center. Both the pathology quality assessment review and the Pathology Working Group (PWG) review identified major discrepancies and deficiencies, largely in diagnoses, that did not permit an objective evaluation of the studies. As a result, the pathology was reassigned to an independent pathologist (Clement Associates) for a complete re-evaluation. The pathology quality assessment review also identified a marked disparity between the number of liver sections evaluated in some groups of dosed male and female rats and their corresponding control groups. This numerical disparity introduced a potential bias in the interpretation of the pathologic findings, and additional liver sections from control groups were prepared and examined to preclude any possibility of sampling bias. This re-evaluation by a pathologist at Clement Associates was subjected to an independent quality assessment review and a subsequent PWG review and was deemed satisfactory. The pathology data stored in the computerized Carcinogenesis Bioassay Data System and reported in this Technical Report represent a consensus of the opinions of the Clement pathologist and the members of the PWG.

TABLE 1. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE TWO-YEAR FEED STUDIES OF MIREX

EXPERIMENTAL DESIGN

Study Laboratory Frederick Cancer Research Center (Frederick, MD)

Size of Study Groups 52 males and 52 females

Doses First study: 0, 0.1, 1, 10, 25, or 50 ppm mirex in feed;

second study: female rats--0, 50, or 100 ppm mirex in feed

Date of First Dose First study: 6/7/77; second study: 1/10/78

Duration of Dosing 104 wk

Type and Frequency of Observation Observed $2 \times d$; weighed $1 \times wk$ for 12 wk and then $1 \times 4 wk$

Necropsy and Histologic Examination Necropsy performed on all animals; the following tissues were examined histo-

logically: adrenal glands, bone marrow, brain, esophagus, heart, kidneys, liver, lungs and bronchi, mammary gland, submandibular and/or mesenteric lymph nodes, pancreas, parathyroid, pituitary gland, prostate/testes or ovaries/uterus, salivary glands, skin, small and large intestine, spleen, stomach, thymus, thy-

roid gland, tissue masses, trachea, and urinary bladder

ANIMALS AND ANIMAL MAINTENANCE

Strain and Species F344/N rats

Animal Source Frederick Cancer Research Center (Frederick, MD) (first study);

Harlan Industries (Indianapolis, IN) (second study)

Time Held Before Study 4wk

Age When Placed on Study 7-8 wk

Age When Killed First study: male--112-113 wk; female--112-114 wk;

second study: female--112-114 wk

Necropsy Dates First study: 6/12/79-6/29/79; second study: female--1/19/80-1/24/80

Method of Animal Distribution Such that average cage weights were approximately equal; detailed records are

not available.

Animal Identification Ear notch

Feed Wayne Sterilizable Lab-Blox Mash® (Allied Mills, Chicago, IL);

available ad libitum

Water Tap water acidified to pH 2.5 with 1 N HCl in glass bottles; available ad libitum

Cages Polycarbonate (Lab Products, Rochelle Park, NJ)

Animals per Cage

Other Chemicals on Study in the

Same Room

None

Animal Room Environment Temp--22°-24° C; hum--45%-55%; fluorescent light 12 h/d; 15 room air changes/h

Statistical Methods

Data Recording: Data on this experiment were recorded in the Carcinogenesis Bioassay Data System.

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found to be missing or dead from other than natural causes; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a doserelated trend. When significant survival differences were detected, additional analyses using these procedures were carried out to determine the time point at which significant differences in the survival curves were first detected. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: The majority of tumors in this study were considered to be incidental to the cause of death or not rapidly lethal. Thus, the primary statistical method used was an incidental tumor analysis, which assumed that the diagnosed tumors were discovered as the result of death from an unrelated cause and thus did not affect the risk of death. In this approach, the proportions of tumor-bearing animals in dosed and control groups were compared in each of five time intervals: weeks 0-52, weeks 53-78, weeks 79-92, week 93 to the week before the terminal-kill period, and the terminal-kill period. The denominators of these proportions were the number of animals actually examined for tumors during the time interval. The individual time interval comparisons were then combined to obtain a single overall result.

In addition to incidental tumor analysis, alternative methods of statistical analysis were used, and the results of these tests are summarized in the appendixes. These include the life table test (Cox, 1972; Tarone, 1975), appropriate for rapidly lethal tumors, and the Fisher exact test and the Cochran-Armitage trend test (Armitage, 1971; Gart et al., 1979), procedures based on the overall proportion of tumor-bearing animals.

Tests of significance include pairwise comparisons of each dosed group with controls and a test for an overall dose-response trend. Continuity-corrected tests were used in the analysis of tumor incidence, and reported P values are one-sided. The procedures described above also were used to evaluate selected nonneoplastic lesions. (For further discussion of these statistical methods, see Haseman, 1984.)

Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984, 1985) are included for those tumors appearing to show compound-related effects.

III. RESULTS: TWO-YEAR STUDIES

Body Weights and Feed Consumption Survival

Pathology and Statistical Analyses of Results

Body Weights and Feed Consumption

Mean body weights of male rats that received 25 or 50 ppm mirex were 5%-9% lower than those of the controls beginning at about weeks 12-16, 7%-11% lower at week 60, and 11%-18% lower at week 100 (Table 2; Figure 4). Mean body weights of female rats were 5%-10% lower than those of the controls after week 24 in the 50-ppm group (first study), week 52 in the 50-ppm group (second study), or week 40 in the 100-ppm group; 17% lower after week 84 in the 50-ppm group (first study); and 12%-18% lower after week 64 in the 100-ppm group (Tables 2 and 3; Figures 4 and 5). The average daily feed consumption per rat in the 0.1-ppm, 1-ppm, 10-ppm, 25-ppm and 50-ppm groups in the first studies was 83%, 84%,

87%, 91%, and 89% that by the controls for males and 86%, 99%, 86%, 92%, and 89% for females (Tables D1 and D2). The average amount of mirex consumed per day in the first studies was approximately 0.007, 0.07, 0.7, 1.8, and 3.8 mg/kg for the 0.1-ppm, 1-ppm, 10-ppm, 25-ppm, and 50-ppm groups of male rats and 0.007, 0.08, 0.7, 2.0, and 3.9 mg/kg of female rats. For the second study in female rats, the feed consumption data are incomplete and the available data indicate a wide range of values, and thus, average amounts of mirex per body weight could not be reliably calculated. However, based on the feed consumption data for the first study in female rats, average estimated mirex doses would have been 0, 3.9,and 7.7mg/kg.

TABLE 2. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE FIRST TWO-YEAR FEED STUDIES OF MIREX

Weeks on Study	Contr Av. Wt. 1 (grams)	Vo. of		0.1 ppm Wt. (% N of Cont) 1		Av. Wt. (grams)	1 ppm Wt. (% of Cont)	No. of Surv	Av. Wt. (grams)	Wt. (% of Cont)	No. of	Av. Wt. (grams)	Wt. (% of Cont)	No. of	Av. Wt. (grams)	50 ppm Wt. (% of Cont)	No. of
MALE							<u></u>	******									
0	121	52	121	100	52	121	100	52	123	102	52	123	102	52	124	102	52
2	205 227	52 52	199 225	97 99	52	206 227	100	52	206	100	52	205	100	52 52	200	98	52
4 6	263	52 52	225 258	98	52 52	262	100 100	52 52	225 260	99 99	52 52	230 264	101 100	52 52	231 255	102 97	52 52
8	273	52	267	98	52	270	99	52	269	99	52	272	100	52	264	97	52
10	297	52	285	96	52	289	97	52	293	99	52	295	99	52	288	97	52
12	308	52	296	96	52	301	98	52	300	97	52	299	97	52	290	94	52
16	327	52	315	96 97	52	320	98	52	318	97	52	311	95	52	298	91	52
20 24	345 364	52 52	3 33 352	97 97	52 52	338 357	98 98	52 52	337 359	98 99	52 52	325 348	94 96	52 52	314 334	91 92	52 52
28	381	52	366	96	52 52	372	98	52 52	375	98	52 52	363	95	52 52	348	91	52 52
32	393	52	378	96	52	381	97	52	389	99	52	373	95	52	355	90	51
36	398	52	386	97	52	391	98	52	395	99	52	380	95	52	364	91	50
40	401	52	391	98	52	394	98	52	401	100	52	382	95	52	368	92	50
44	405	52	394	97	52	397	98	52	400	99	52	382	94	52	370	91	50
48 52	415 416	52 52	406 413	98 99	52 52	411 416	99 100	52 52	412 421	99 101	51 51	393 397	95 95	52 52	375 378	90 91	50 50
60	413	52 52	412	100	52	415	100	50	418	101	51	395	96	51	377	91	50
68	432	52	426	99	51	426	99	49	433	100	50	403	93	50	386	89	48
76	419	51	420	100	51	424	101	47	420	100	50	385	92	47	360	86	48
64 92	411 423	49	411 423	100 100	51	416	101	45	412	100	49	379	92	42	343	83	44
100	423 418	49 47	423	99	49 46	425 425	100 102	40 36	420 405	99 97	45 42	392 371	93 89	38 27	360 344	85 82	39 23
FEMAL		••					125	4-			••	•••				-	
0	100	52	100	100	52	100	100	52	100	100	52	100	100	52	100	100	52
2	146	52	145	99	52	144	99	52	142	97	52	142	97	52	142	97	52
4	156	52	155	99	52	154	99	52	153	98	52	159	102	52	158	101	52
6	174 175	52 52	173 173	99 99	52 52	172 172	99 98	52 52	171 170	98 97	52 52	170 170	98 97	52 52	172 172	99 98	52 52
10	190	52 52	183	98	52 52	182	98 96	52 52	180	97 95	52 52	182	97 96	52 52	183	98 98	52 52
12	194	52	191	98	52	188	97	52	185	95	52	186	96	52	185	95	52
16	209	52	207	99	52	206	99	52	200	96	52	203	97	52	200	96	52
20	211 219	52 52	208	99 99	52 52	209 217	99 99	52 52	203	96 96	52 52	207	98	52 52	200 204	95 93	52 52
24 28	219 227	52 52	216 223	99	52 52	217 225	99 99	52 52	211 218	96 96	52 52	215 219	98 96	52 52	204 213	93 94	52 52
32	231	52	227	98	52	230	100	52	223	97	52	225	97	52	216	94	52
36	238	52	232	97	52	234	98	52	228	96	52	229	96	52	220	92	52
40	243	52	237	98	52	240	99	52	233	96	52	235	97	52	224	92	52
44	246	52	241	98 97	52	244	99	52 52	239 239	97	52	239	97	52	228 229	93 93	52 52
48 52	246 249	52 52	239 243	97 98	52 52	243 248	99 100	52 52	239 243	97 98	52 52	238 244	97 98	52 51	229 232	93 93	52 51
52 60	264	52 52	243 25 6	97	52 52	248 261	99	52 52	243 257	96 97	52 52	244 257	96 97	51 51	242	92	51
68	285	52	278	98	51	282	99	52	275	96	52	272	95	50	256	90	51
76	287	52	283	99	51	286	100	52	280	98	52	279	97	50	258	90	50
64	302	49	288	95	48	284	94	49	288	95	49	284	94	50	255	84	47
92	315 320	45	298 298	95 93	46 43	303 307	96 96	43 39	302	96	47	299	95	49	267	85 83	45 38

TABLE 3. MEAN BODY WEIGHTS AND SURVIVAL OF FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX

Weeks	Co	ntrol		50 ppm		100 ppm				
on Study	Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)			
0	128	52	130	102	52	133	104	52		
4	147	52	147	100	52	150	102	52		
8	164	52	165	101	52	168	102	52		
12	168	52	172	102	52	174	104	52		
16	179	52	180	101	52	184	103	52		
20	187	52	189	101	52	188	101	52		
24	195	52	193	99	52	193	99	52		
28	199	52	19 8	99	52	197	99	52		
32	206	52	205	100	52	202	98	52		
36	213	52	208	98	52	207	97	52		
40	224	52	213	95	52	209	93	52		
44	231	52	222	96	52	216	94	52		
48	235	52	225	96	52	218	93	52		
52	244	51	233	95	52	224	92	52		
56	250	50	237	95	52	226	90	52		
60	259	50	246	95	52	232	90	52		
64	269	50	252	94	52	238	88	52		
68	276	50	260	94	52	243	88	52		
72	282	50	266	94	52	249	88	52		
76	282	50	270	96	51	252	89	52		
80	287	50	273	95	51	255	89	52		
84	290	49	273	94	51	251	87	50		
88	298	48	278	93	51	253	85	48		
92	285	48	265	93	51	242	85	47		
96	296	46	275	93	50	247	83	44		
100	289	44	264	91	49	247	85	40		
104	289	44	267	92	44	238	82	39		

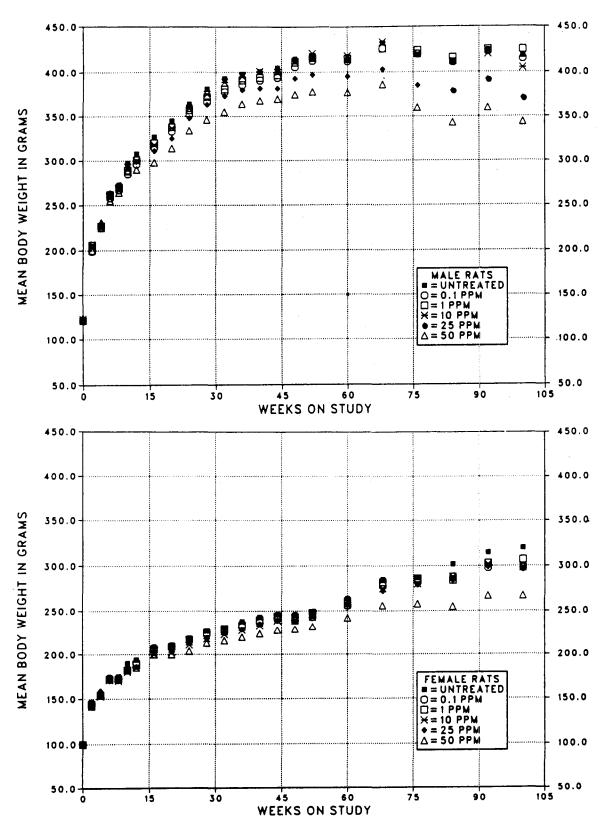


FIGURE 4. GROWTH CURVES FOR RATS FED DIETS CONTAINING MIREX FOR TWO YEARS (FIRST STUDY)

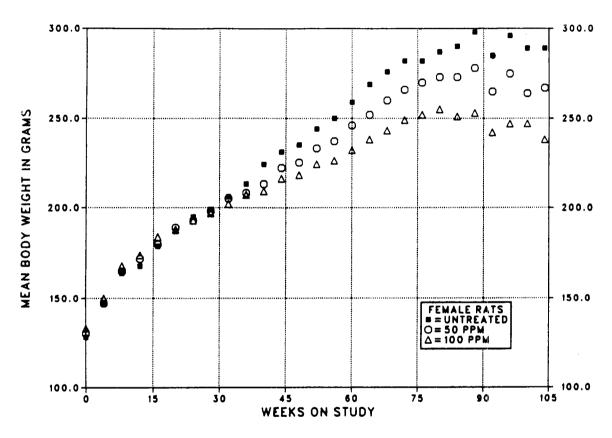


FIGURE 5. GROWTH CURVES FOR FEMALE RATS FED DIETS CONTAINING MIREX FOR TWO YEARS (SECOND STUDY)

Survival

Estimates of the probabilities of survival for male and female rats fed diets containing mirex and for controls are shown in Table 4 and in the Kaplan and Meier curves in Figures 6 and 7. The survival of the 25- and 50-ppm groups of male rats was lower (P<0.001) than that of the controls after week 86 and week 87, respectively. No significant differences in survival were observed between any groups of female rats in either the first or second studies.

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of rats with neoplastic or nonneoplastic lesions of the liver, adrenal gland, kidney, hematopoietic system, pituitary gland, and thyroid gland. For two lesions (adrenal gland benign and malignant pheochromocytomas and mononuclear cell leukemia), the incidence data from the two studies in female rats were combined for statistical purposes.

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary tumors that occurred with an incidence of at least 5% in at least one animal group, and historical control incidences for the neoplasms mentioned in this section are presented in Appendixes A and B for male and female rats, respectively.

TABLE 4. SURVIVAL OF RATS IN THE TWO-YEAR FEED STUDIES OF MIREX

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm	100 ppm
MALE (a)							
Animals initially in study	52	52	52	52	52	52	
Nonaccidental deaths before termination (b)	8	15	16	15	33	37	
Killed at termination	42	32	33	34	15	11	
Died during termination period	2	5	3	3	4	4	
Survival P values (c)	< 0.001	0.159	0.072	0.140	< 0.001	< 0.001	
FEMALE (FIRST STUDY) (a)							
Animals initially in study	52	52	52	52	52	52	
Nonaccidental deaths before termination (b)	14	14	17	17	11	17	
Killed at termination	36	33	30	34	35	32	
Died during termination period	2	5	5	1	6	3	
Survival P values (c)	0.933	0.946	0.676	0.812	0.530	0.670	
FEMALE (SECOND STUDY) (d)							
Animals initially in study	52					52	52
Nonaccidental deaths before termination (b)						8	13
Killed at termination	43					43	37
Died during termination period	1					1	2
Survival P values (c)	0.266					0.897	0.358

⁽a) Termination period for the first study: male--weeks 105-107; female--weeks 107-109

⁽b) Includes animals killed in a moribund condition

⁽c) The result of the life table trend test is in the control column, and the results of the life table pairwise comparisons with the controls are in the dosed columns.

⁽d) Termination period for the second study: weeks 105-106

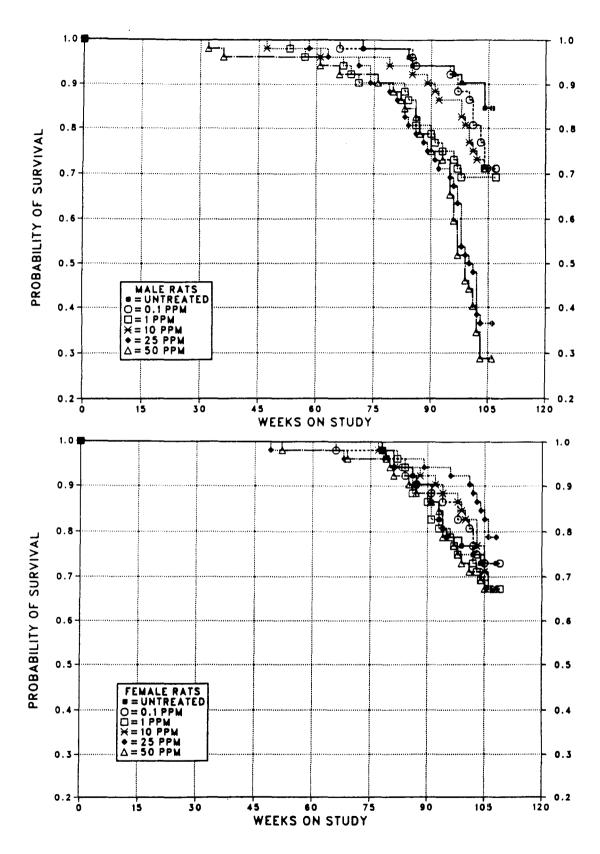


FIGURE 6. KAPLAN-MEIER SURVIVAL CURVES FOR RATS FED DIETS CONTAINING MIREX FOR TWO YEARS (FIRST STUDY)

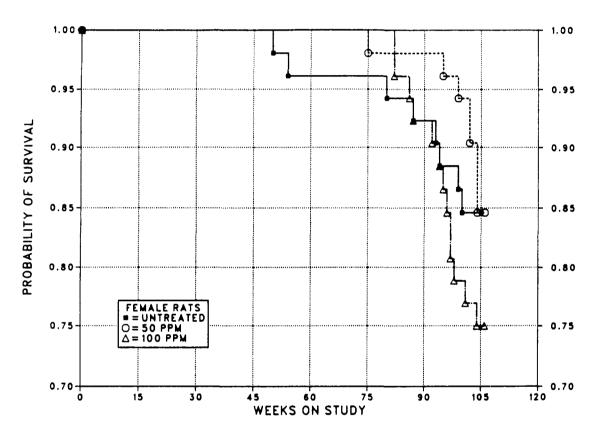


FIGURE 7. KAPLAN-MEIER SURVIVAL CURVES FOR FEMALE RATS FED DIETS CONTAINING MIREX FOR TWO YEARS (SECOND STUDY)

Liver: Several lesions attributable to the administration of mirex were present in the liver (Table 5). These consisted of cytomegaly, fatty metamorphosis, angiectasis (males only), and cellular necrosis. Cytomegaly was observed at increased incidences in the 10-, 25-, and 50-ppm groups of males and the 10-, 25-, 50-, and 100ppm groups of females. The lesion consisted of generalized centrilobular cytomegaly that increased in both incidence and severity with increased dose. In more severely affected rats, there was bridging of centrilobular areas with involvement of virtually the entire hepatic lobules. Variable atrophy of periportal hepatocytes was associated with the centrilobular change and resulted in some distortion of the hepatic lobular architecture. The enlarged hepatocytes (cytomegaly) had abundant eosinophilic cytoplasm, and some had clear or vacuolated cytoplasm. The presence of cytoplasmic vacuoles is consistent with the intracellular accumulation of fat, and the lesion was diagnosed as fatty metamorphosis. Necrosis of hepatocytes, either focal and/or centrilobular, was observed at increased incidences in dosed groups of male and female rats. Angiectasis, consisting of dilated sinusoids filled with blood or proteinaceous material, occurred more frequently in dosed groups of male rats. This lesion often occurred within foci of cellular alteration or neoplastic nodules.

Neoplastic nodules of the liver in male and female (second study) rats, hepatocellular carcinomas in males, and neoplastic nodules or hepatocellular carcinomas (combined) in males and females (second study) occurred with positive trends, and the incidences in the 10-, 25-, and 50-ppm groups of males and the 50- and 100-ppm

TABLE 5. NUMBER OF RATS WITH LIVER LESIONS IN THE TWO-YEAR FEED STUDIES OF MIREX

			Conc	<u>entrati</u> on	(ppm)		
Lesion	Control	0.1	1	10	25	50	100
ALE (a)							
Fatty metamorphosis	10	11	13	*20	**21	**26	
Hepatocytomegaly	2	**12	2	**40	**43	**44	
Necrosis	7	11	10	12	**28	**38	••
Angiectasis	20	20	19	**42	**38	**39	
Neoplastic nodule	3	5	5	**14	**15	**26	••
Hepatocellular carcinoma	3	0	2	2	3	4	
EMALE (a)							
Fatty metamorphosis							
First study	11	13	18	**36	**45	**43	
Second study	14					**34	**39
Hepatocytomegaly							
First study	4	2	3	*14	**39	**45	
Second study	4			**		**49	**49
Necrosis							
First study	3	4	3	**15	8	**13	
Second study	4					7	**17
Angiectasis							
First study	3	8	3	2	2	*9	
Second study	6					7	10
Neoplastic nodule							
First study	10	5	4	5	9	7	
Second study	2					**23	**30
Hepatocellular carcinoma	_					-	
First study	0	0	0	0	1	2	
Second study	Ö					ō	1

⁽a) Fifty-two rats were examined in each group.

^{*}P<0.05 vs. controls

^{**}P<0.01 vs. controls

groups of females (second study) were greater than those in the controls (Table 6). There were no differences in incidences of liver neoplasia in the first study in female rats; the number of benign tumors in the control group was unusually high compared with the historical incidence for female F344/N rats (3% \pm 3%; 57/2,015; Table B7). The possibility exists that the

TABLE 6. LIVER TUMORS IN RATS IN THE TWO-YEAR FEED STUDIES OF MIREX (a,b)

MALE	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
Neoplastic Nodule (c)						
Overall Rates	3/52 (6%)	5/52 (10%)	5/52 (10%)	14/52 (27%)	15/52 (29%)	26/52 (50%
Adjusted Rates	6.8%	12.6%	13.9%	36.5%	60.6%	81.4%
Terminal Rates	3/44 (7%)	4/37 (11%)	5/36 (14%)	13/37 (35%)	10/19 (53%)	10/15 (67%
Week of First Observation	105	85	105	91	98	66
Life Table Tests	P<0.001	$P \approx 0.279$	P = 0.251	P = 0.001	P < 0.001	P<0.001
Incidental Tumor Tests	P<0.001	P = 0.278	P = 0.251	P = 0.002	P<0.001	P<0.001
Hepatocellular Carcinoma (d)						
Overali Rates	3/52 (6%)	0/52 (0%)	2/52 (4%)	2/52 (4%)	3/52 (6%)	4/52 (8%)
Adjusted Rates	6.8%	0.0%	5 6%	5.4%	12 4%	20.3%
Terminal Rates	3/44 (7%)	0/37 (0%)	2/36 (6%)	2/37 (5%)	1/19 (5%)	2/15 (13%)
Week of First Observation	105		105	105	100	95
Life Table Tests	P = 0.002	$P \approx 0.153N$	P = 0.591N	P = 0.579N	P = 0.302	P = 0.094
Incidental Tumor Tests	P = 0.047	P = 0.153N	P = 0.591N	P = 0.579N	P = 0.601	P = 0.297
Neoplastic Nodule or Hepatocellular Ca						
Overall Rates	6/52 (12%)	5/52 (10%)	6/52 (12%)	15/52 (29%)	16/52 (31%)	28/52 (54%
Adjusted Rates	13 6%	12.6%	16 7%	39.2%	62 1%	86.1%
Terminal Rates	6/44 (14%)	4/37 (11%)	6/36 (17%)	14/37 (38%)	10/19 (53%)	11/15 (73%
Week of First Observation	105	85	105	91	98	66
Life Table Tests	P<0.001	P = 0.607N	P = 0.475	P = 0.008	P<0.001	P<0.001
Incidental Tumor Tests	P<0.001	P = 0.609N	P = 0.475	P = 0.010	P<0.001	P<0.001
FEMALE (FIRST STUDY)						
Neoplastic Nodule (f)						
Overall Rates	10/52 (19%)	5/52 (10%)	4/52 (8%)	5/52 (10%)	9/52 (17%)	7/52 (13%)
Adjusted Rates	25 3%	13.2%	11.4%	14.3%	21.2%	19.0%
Terminal Rates	9/38 (24%)	5/38 (13%)	4/35 (11%)	5/35 (14%)	8/41 (20%)	6/35 (17%)
Week of First Observation	87	107	107	107	96	94
Life Table Tests	P = 0.329	P = 0.130N	P = 0.098N	P = 0.165N	P = 0.424N	P = 0.356N
Incidental Tumor Tests	$P \approx 0.326$	P = 0.135N	P = 0.090N	P = 0.180N	P = 0.500N	P=0.347N
Hepatocellular Carcinoma Overall Rates	0/52 (0%)	0/52 (0%)	0/52 (0%)	0/52 (0%)	1/52 (2%)	2/52 (4%)
Overali nates	0/32 (0%)	0/32 (0%)	0/32 (0%)	0/32 (0%)	1/32 (2-76)	2132 (470)
Neoplastic Nodule or Hepatocellular Ca Overall Rates	rcinoma (g) 10/52 (19%)	5/52 (10%)	4/52 (8%)	5/52 (10%)	10/52 (19%)	9/52 (17%)
Adjusted Rates	25 3%	13 2%	11 4%	14.3%	23 0%	24.6%
Terminal Rates						
Week of First Observation	9/38 (24%) 87	5/38 (13%) 107	4/35 (11%) 107	5/35 (14%) 107	8/41 (20%) 96	8/35 (23%) 94
Life Table Tests	P=0 117	P=0 130N				P=0 571N
Incidental Tumor Tests	P = 0.117 P = 0.119	P=0 135N P=0 135N	P = 0.098N P = 0.090N	P = 0.165N P = 0.180N	P = 0.518N P = 0.593N	P = 0.571N P = 0.563N
FEMALE (SECOND STUDY)		Control		opm	100 ppm	
· ·		Contract	, ou	, p.m.	100 ppm	
Neoplastic Nodule (f)		0/50 /400	00.0	0.74400)	20/50 / 500	
Overall Rates		2/52 (4%)		2(44%)	30/52 (58%)	
Adjusted Rates		4 5%	49 8		69.4%	
Terminal Rates		2/44 (5%)		4 (48%)	26/39 (67%)	
Week of First Observation		105	95	2 001	82	
Life Table Tests		P<0.001		0.001	P<0 001	
Incidental Tumor Tests		P<0 001	P<0	0.001	P<0.001	
Hepatocellular Carcinoma Overall Rates		0/52 (0%)	0/52	(0%)	1/52 (2%)	
Neoplastic Nodule or Hepatocellular Car	reinoma (g)					
Overail Rates	Umationes (5)	2/52 (4%)	23/5	2 (44%)	31/52 (60%)	
Adjusted Rates		4.5%	49.8		70.0%	
Terminal Rates		2/44 (5%)		4 (48%)	26/39 (67%)	
Week of First Observation		105	95		82	
week of First Observation						
Life Table Tests		P<0.001	P<0	001	P<0.001	

⁽a) The statistical analyses used are discussed in Section II (Statistical Methods) and Table A3 (footnotes); the incidence of hepatocellular neoplasms in controls in the (a) The statistical analyses used are discussed in Section II (Statistical Methods) and I also B3 (toothotes); the incidence of nepatocellular neoplasms in first study in female rats was significantly different from that in the second study, and therefore, the two control groups were not combined for analysis.

(b) The estimated dose in milligrams per kilograms per day is given in Section III (Body Weights and Feed Consumption) and in Appendix D.

(c) No 2-year studies by this laboratory are included in the historical data base; historical incidence in NTP studies (mean ± SD): 83/1,969 (4% ± 5%) (d) Historical incidence in NTP studies (mean ± SD): 19/1,969 (1% ± 1%)

⁽e) Historical incidence in NTP studies (mean \pm SD): 101/1,969 (5% \pm 5%) (f) Historical incidence in NTP studies (mean \pm SD): 57/2,015 (3% \pm 3%)

⁽g) Historical incidence in NTP studies (mean \pm SD): 59/2,015 (3% \pm 3%)

additional sampling of liver sections may have contributed to this higher incidence. The two studies are not reported with combined statistical analyses because the two control groups were different (P=0.008); however, the combined analyses did show a positive trend (P<0.0012), and the incidences in both the 50-ppm and 100-ppm groups were significantly increased (P<0.001) compared with that in the control composite (control: 12/104, 11%; 0.1 ppm: 5/52, 10%; 1 ppm: 4/52, 8%; 10 ppm: 5/52, 10%; 25 ppm: 10/52, 19%; 50 ppm: 32/104, 31%; 100 ppm: 31/52, 58%).

The neoplastic nodules observed in dosed rats usually consisted of enlarged hepatocytes with eosinophilic or clear cytoplasm arranged in irregular distorted cords one or two cell layers thick. The eosinophilic cell type predominated in males, and the clear cell type was more common in females. Neoplastic nodules consisting of cells with basophilic cytoplasm were seen in small numbers in control and dosed groups.

Adrenal Gland: The incidences of medullary hyperplasia of the adrenal gland were not increased in dosed male or female rats (Table 7). The incidences of pheochromocytomas or malignant pheochromocytomas (combined) occurred with positive trends in male rats, and the incidences in both the 25- and 50-ppm groups of male rats were significantly increased compared with that in controls. The incidence in the 50ppm group of female rats (first study) was of borderline significance compared with that in controls; this was not observed in the second study, and combining the two studies for statistical analyses showed no differences among groups. Most neoplasms were benign pheochromocytomas; malignant pheochromocytomas were diagnosed in two control and one 10- and one 50-ppm males and in one 50-ppm (first study) and one 100-ppm female. For this lesion, the most appropriate analyses are for the combination of benign and malignant pheochromocytomas (McConnell et al., 1986).

TABLE 7. ADRENAL GLAND LESIONS IN RATS IN THE TWO-YEAR FEED STUDIES OF MIREX

MALE	Cont	rol	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
Medullary Hyperplasia							
Overall Rates	8/51	(16%)	4/52 (8%)	2/52 (4%)	10/52 (19%)	6/51 (12%)	9/51 (18%)
Pheochromocytoma or Malig	nant Pheoc	hromocy	toma (a)				
Overall Rates	10/51	(20%)	7/52 (13%)	13/52 (25%)	12/52 (23%)	18/51 (35%)	20/51 (39%
Adjusted Rates	22.79	-	16.4%	32.0%	29.2%	61.5%	66.4%
Terminal Rates	10/44	(23%)	4/37 (11%)	9/36 (25%)	9/37 (24%)	9/19 (47%)	7/15 (47%)
Week of First Observation	105		86	86	79	86	80
Life Table Tests	P<0		P = 0.423N	P = 0.164	P = 0.258	P<0.001	P<0.001
Incidental Tumor Tests	P<0	001	P = 0.334N	P = 0.236	P = 0.336	P = 0.008	P = 0.009
FEMALE (FIRST STUDY)							
Medullary Hyperplasia							
Overall Rates	1/51	(2%)	1/52 (2%)	2/52 (4%)	5/51 (10%)	0/51 (0%)	2/52 (4%)
Pheochromocytoma or Malig	nant Pheoc	hromocy	toma (b)				
Overall Rates	1/51		3/52 (6%)	5/52 (10%)	1/51 (2%)	2/51 (4%)	6/52 (12%)
Adjusted Rates	2.6%		7 2%	13.7%	2.9%	5.0%	16.6%
Terminal Rates	1/38	(3%)	2/38 (5%)	4/35 (11%)	1/35 (3%)	2/40 (5%)	5/35 (14%)
Week of First Observation	107		87	102	107	107	104
Life Table Tests	P = 0	.096	P = 0.307	P = 0.089	P = 0.743	P = 0.518	$P \approx 0.048$
Incidental Tumor Tests	P = 0	096	P = 0.291	P = 0.094	P = 0.743	P = 0.518	$P \approx 0.056$
FEMALE (SECOND STUDY)		Co	ntrol	50 ppr	n	100 ppm	
Medullary Hyperplasia							
Overall Rates		1/5	2 (2%)	0/52 (0	%)	0/52 (0%)	
Pheochromocytoma or Malig	nant Pheoc	hromocy	toma (b)				
Overall Rates			2 (6%)	2/52 (49	%)	2/52 (4%)	
Adjusted Rates		6.8	1%	4.0%		5.1%	
Terminal Rates		3/4	4 (7%)	0/44 (04	%)	2/39 (5%)	
Week of First Observation		10	5	99		105	
Life Table Tests		P =	0.455N	P = 0.48	33N	P = 0.555N	
Incidental Tumor Tests		P≃	=0.363N	P = 0.40	00N	P = 0.555N	
COMBINED ANALYSIS (c)	Control	0.1 ppr	n 1 ppm	10 ppm	25 ppm	50 ppm	100 ppm
Pheochromocytoma or Malig	nant Pheoc	hromocy	toma				
Overall Rates	4/103 (4%)	3/52 (69	6) 5/52 (10°	%) 1/51 (2%)	2/51 (4%)	8/104 (8%)	2/52 (4%)
Adjusted Rates	4.9%	7.1%	13.4%	2 5%	4.7%	9.5%	5.1%
Terminal Rates	4/82 (5%)	2/39 (59	6) 4/36 (11°	%) 1/40(3%)	2/43 (5%)	5/80 (6%)	2/39 (5%)
Week of First Observation	105	87	102	108	107	99	105
Life Table Tests	P = 0.539	P = 0.42			P = 0.649N		P = 0.651
Incidental Tumor Tests	P = 0.561N	P = 0.44	1 P = 0.109	P = 0.446N	P = 0.649N	P = 0.223	P = 0.651

⁽a) No 2-year studies by this laboratory are included in the historical data base; historical incidence in NTP studies (mean \pm SD): 452/1,950 (23% \pm 12%) (b) No 2-year studies by this laboratory are included in the historical data base; historical incidence in NTP studies

⁽mean \pm SD): 94/2,001 (5% \pm 4%) (c) Results of comparison of the 0.1-, 1-, 10-, 25-, 50- (combined incidence from first and second studies), and 100-ppm groups with controls (combined incidence from first and second studies)

Kidney: Nephropathy occurred at similar incidences in control and dosed groups of male and female rats. However, the severity was judged to be dose related and greater in groups of male and female rats receiving 25 ppm or more mirex (Table 8). Parathyroid hyperplasia is likely a secondary physiologic response to the nephrop-

athy, and male rats showed dose-related incidences of this lesion (6/32; 12/39; 13/39; 18/40; 22/50; 24/45). Hyperplasia of the transitional epithelium overlying the renal pelvis was observed at increased incidences in dosed male rats (Table 9). This lesion has also been shown to accompany severe nephropathy.

TABLE 8. INCIDENCES AND SEVERITY OF NEPHROPATHY IN RATS IN THE TWO-YEAR FEED STUDIES OF MIREX

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm	100 ppr
MALE							
Incidence of nephropathy	50/51	50/51	45/52	49/52	51/51	52/52	
Severity (a)							
No grade (autolysis)	2	2	1	2	11	6	
Mild	7	4	5	1	5	1	
Moderate	31	39	32	14	10	3	
Marked	10	5	7	32	25	42	
Mean severity (b)	3.1	3.0	3.0	3.7	3.5	3.9	
FEMALE (FIRST STUDY)							
Incidence of nephropathy	34/51	35/52	44/52	47/51	46/50	42/52	
Severity (a)							
No grade (autolysis)	••			3	1	1	
Mild	17	17	15	22	9	8	
Moderate	16	17	24	16	29	28	
Marked	1	1	5	6	7	5	
Mean severity (b)	2.5	2.5	2.8	2.6	3.0	2.9	
FEMALE (SECOND STUD	Y)						
Incidence of nephropathy	45/51					51/52	52/52
Severity (a)							
Mild	15					7	7
Moderate	27					35	28
Marked	3					9	17
Mean severity (b)	2.7					3.0	3.2

⁽a) Number of animals with indicate severity

⁽b) Mean severity of animals with lesion of diagnosed severity; 2 = mild; 3 = moderate; 4 = marked.

TABLE 9. KIDNEY LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX

			Concentrati	on (ppm)_		
	Control	0.1	1	10	25	50
Epithelial Hyperplasia of the	Renal Pelvis					
Overall Rates	0/51 (0%)	2/51 (4%)	2/52 (4%)	5/52 (10%)	14/51 (27%)	9/52 (17%)
Transitional Cell Papilloma (a)					
Overall Rates	0/51 (0%)	0/51 (0%)	0/52 (0%)	0/52 (0%)	1/51 (2%)	3/52 (6%)
Adjusted Rates	0.0%	0.0%	0.0%	0.0%	3.0%	15.7%
Terminal Rates	0/44 (0%)	0/37 (0%)	0/36(0%)	0/37 (0%)	0/19 (0%)	1/15 (7%)
Week of First Observation					98	101
Life Table Tests	P<0.001	(b)	(b)	(b)	P = 0.425	P = 0.018
Incidental Tumor Tests	P = 0.018	(b)	(b)	(b)	P = 0.742	P = 0.193

⁽a) No 2-year studies by this laboratory are included in the historical data base; historical incidence of transitional cell neoplasms in NTP studies (mean \pm SD): 5/1.968 (0.3% \pm 0.7%)

Transitional cell papillomas in male rats occurred with a positive trend (Table 9). The incidence in the 50-ppm group was significantly greater than that in controls by the life table test but not by the incidental tumor test, which is the more appropriate analysis. These papillomas are uncommon in untreated male F344/N rats (historical incidence, 0.3%). The transitional cell papillomas differed from hyperplasia primarily by their complexity of structure. The transitional cell papillomas consisted of a single or stratified epithelium arranged in branching, papillary formations.

Hematopoietic System: Mononuclear cell leukemia in male and female rats occurred with positive trends in both studies (Table 10). The incidences of mononuclear cell leukemia in the 25-ppm group of males and in the 25- and 50 ppm groups of females in the first study and in

the 100-ppm group of females in the second study were greater (P<0.05) than those in controls. Because this is most often a life-threatening or lethal lesion, the life table analysis is given preference: in the first study in female rats, most leukemia (except in the 25-ppm group) occurred before the end of the study (40/77, 52%). In the second study in females, most of these lesions were observed incidentally at the end of the study (23/29, 79%); yet in each study, both types of analyses showed positive trends and marginal increases in the 25- and 50ppm (first study) and in the 100-ppm (second study) groups. Since the incidences in female control groups in both studies were similar, combined statistical analyses were done; the marginal positive trends remained, and the 10-, 25-, 50-, and 100-ppm groups showed increased incidences compared with controls.

⁽b) No P value is reported because no tumors were observed in the dosed and control groups.

TABLE 10. HEMATOPOIETIC SYSTEM TUMORS IN RATS IN THE TWO-YEAR FEED STUDIES OF MIREX

MALE	Control	0.1	ppm	1 ppm	10 ppm	25 ppm	50 ppm
Mononuclear Cell Leukemia	\ ,						
Overall Rates	16/52 (31	,	(33%)	15/52 (29%)	22/52 (42%)	21/52 (40%)	10/52 (19%)
Adjusted Rates	35.4%	38.5		36.9%	48.6%	60.7%	31.1%
Terminal Rates	15/44 (34		37 (30%)	11/36 (31%)	14/37 (38%)	8/19 (42%)	1/15 (7%)
Week of First Observation	85	85		84	91	58	66
Life Table Tests	P = 0.046		0.317	P = 0.420	P = 0.066	P = 0.001	P = 0.264
Incidental Tumor Tests	P = 0.101	IN P=	0.484	P = 0.573	P = 0.160	P = 0.152	P = 0.195N
FEMALE (FIRST STUDY)							
Mononuclear Cell Leukemia	(b)						
Overall Rates	8/52 (159	%) 8/52	2(15%)	11/52 (21%)	14/52 (27%)	18/52 (35%)	18/52 (35%)
Adjusted Rates	18.3%	18.0		23.4%	30.4%	39.3%	40.6%
Terminal Rates	4/38 (119	%) 3/38	3 (8%)	1/35 (3%)	5/35 (14%)	14/41 (34%)	10/35 (29%)
Week of First Observation	91	79		82	77	49	69
Life Table Tests	P = 0.008	5 P=0	0.586N	P = 0.296	P = 0.132	P = 0.044	P = 0.023
Incidental Tumor Tests	P = 0.003	3 P=	0.581N	P = 0.398	P = 0.183	P = 0.039	P = 0.027
FEMALE (SECOND STUDY)		Contro	ol	50 pp	m	100 ppm	
Mononuclear Cell Leukemia	(b)						
Overall Rates	,	6/52 (1)	2%)	9/52 (1	7%)	14/52 (27%)	ı
Adjusted Rates		12.8%		18.8%		34.9%	
Terminal Rates		4/44 (9	%)	6/44 (1	4%)	13/39 (33%)	ı
Week of First Observation		80		95		98	
Life Table Tests		P = 0.01	18	P = 0.3	14	P = 0.024	
Incidental Tumor Tests		P = 0.03	39	P = 0.2	87	P = 0.042	
COMBINED ANALYSIS (c)	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm	100 ppm
Mononuclear Cell Leukemia							
Overall Rates	14/104 (13%)	8/52 (15%)	11/52 (21	%) 14/52 (279	%) 18/52 (35%)	27/104 (26%)	14/52 (27%)
Adjusted Rates	15.4%	18.0%	23.3%	29.5%	37.2%	29.0%	34.9%
Terminal Rates			1/36 (3%)) 14/44 (32%)	16/80 (20%)	13/39 (33%)
Week of First Observation		79	82	77	49	69	98
Life Table Tests		P = 0.445			P = 0.006	P = 0.025	P = 0.030

⁽a) No 2-year studies by this laboratory are included in the historical data base; historical incidence in NTP studies (mean \pm SD): 583/1,977 (29% \pm 12%)

⁽b) No 2-year studies by this laboratory are included in the historical data base; historical incidence in NTP studies (mean \pm SD): 375/2,021 (19% \pm 7%)

⁽c) Results of comparison of the 0.1-, 1-, 10-, 25-, 50- (combined incidence from first and second studies), and 100-ppm groups with controls (combined incidence from first and second studies)

Pituitary Gland: The incidences of adenomas (20/52; 24/51; 31/50; 24/51; 30/52; 22/50) and adenomas or carcinomas (combined) in the 1-and 25-ppm groups of females were greater (P < 0.05) than those in controls in the first study; however, there was no dose response effect (Tables B5 and B6). The incidences in male rats and in females in the second study indicated negative (P < 0.05) trends (adenomas or carcinomas, combined-male: 12/52; 11/52; 13/51; 10/50; 9/52; 3/47; female: 32/52; 26/52; 22/52). Almost all lesions were adenomas.

Thyroid Gland: The incidences of follicular cell adenomas and follicular cell adenomas or carcinomas (combined) occurred with a positive trend in dosed male rats, and the incidence of adenomas

or carcinomas (combined) in the 50-ppm group of male rats was marginally (P=0.048) greater than that in controls (Table 11).

The incidences of C-cell adenomas and C-cell adenomas or carcinomas (combined) occurred with negative trends in male (P=0.043) and female (P=0.003) rats (in the first study but not in the second study) (Table 11). The incidence of C-cell adenomas or carcinomas (combined) in the 50-ppm group of females was lower (P=0.009) than that in controls in the first study but not in the second study. Statistical analyses of the two female rat studies combined showed a negative trend (P=0.009), and the 50-ppm groups were marginally decreased (P=0.026) but not the 100-ppm group.

TABLE 11. THYROID GLAND LESIONS IN RATS IN THE TWO-YEAR FEED STUDIES OF MIREX

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
MALE						
Follicular Cell Hyperplasia						
Overall Rates	0/51 (0%)	0/50 (0%)	0/47 (0%)	0/47 (0%)	0/35 (0%)	1/49 (2%)
Follicular Cell Adenoma	0/51 (00)	0/50 (0%)	0(47 (07)	1 (47 (00)	0/05 (00)	0/40/60()
Overall Rates Adjusted Rates	0/51 (0%) 0.0%	0/50 (0%) 0.0%	0/47 (0%) 0.0%	1/47 (2%) 2.7%	0/35 (0%) 0.0%	3/49 (6%) 14.4%
Terminal Rates	0/44 (0%)	0/37 (0%)	0/36 (0%)	1/37 (3%)	0/18 (0%)	1/15 (7%)
Week of First Observation	0/44 (0 %)	0/37 (0.40)	0/30 (0 %)	105	0/10 (0 %)	99
Life Table Tests	P<0.001	(a)	(a)	P=0.465	(a)	P=0.024
Incidental Tumor Tests	P = 0.017	(a)	(a)	P = 0.465	(a)	P = 0.193
ollicular Cell Carcinoma						
Overall Rates	0/51 (0%)	1/50 (2%)	0/47 (0%)	0/47 (0%)	0/35 (0%)	1/49 (2%)
ollicular Cell Adenoma or Carcinoma (b)						
Overall Rates	0/51 (0%)	1/50 (2%)	0/47 (0%)	1/47 (2%)	0/35 (0%)	4/49 (8%)
Adjusted Rates	0.0%	2.7%	0.0%	2.7%	0.0%	20.5%
Terminal Rates	0/44 (0%)	1/37 (3%)	0/36 (0%)	1/37 (3%)	0/18 (0%)	2/15 (13%)
Week of First Observation	D < 0.001	105 B=0.485	(0)	105 $P = 0.465$	(0)	99 P=0.005
Life Table Tests Incidental Tumor Tests	P < 0.001 P = 0.004	P = 0.465 P = 0.465	(a) (a)	P = 0.465 P = 0.465	(a) (a)	P=0.005 P=0.048
	r = 0.004	r = 0.400	(d)	1 -0.400	(a)	1 -0.040
Cell Hyperplasia Overall Rates	9/51 (18%)	3/50 (6%)	1/47 (2%)	1/47 (2%)	1/35 (3%)	2/49 (4%)
-Cell Adenoma or Carcinoma						
Overall Rates	8/51 (16%)	6/50 (12%)	4/47 (9%)	7/47 (15%)	3/35 (9%)	0/49 (0%)
Adjusted Rates	18.2%	15.6%	11.1%	17.7%	16.7%	0.0%
Terminal Rates	8/44 (18%)	5/37 (14%)	4/36 (11%)	5/37 (14%)	3/18 (17%)	0/15 (0%)
Week of First Observation	105	103	105	100	105	
Life Table Tests	P = 0.126N	P = 0.521N	P = 0.287N	P = 0.580	P = 0.588N	P = 0.092N
Incidental Tumor Tests	P = 0.043N	P = 0.476N	P = 0.287N	P = 0.604N	P = 0.588N	P = 0.092N
EMALE (FIRST STUDY)						
ollicular Cell Adenoma or Carcinoma						
Overall Rates	1/50 (2%)	2/50 (4%)	0/48 (0%)	2/47 (4%)	0/48 (0%)	1/46 (2%)
-Cell Hyperplasia						
Overall Rates	4/50 (8%)	2/50 (4%)	3/48 (6%)	1/47 (2%)	4/48 (8%)	5/46 (11%)
-Cell Adenoma						
Overall Rates	10/50 (20%)	9/50 (18%)	6/48 (13%)	5/47 (11%)	6/48 (13%)	2/46 (4%)
Adjusted Rates	25.3%	22.7% 8/38 (21%)	17.0%	14.3% 5/35 (14%)	14.1% 4/39 (10%)	5.9% 2/34 (6%)
Terminal Rates Week of First Observation	9/38 (24%) 91	8/38 (21%) 91	5/34 (15%) 104	5/35 (14%) 107	4/39 (10%) 96	2/34 (6%)
Week of First Observation Life Table Tests	91 P=0.018N	P=0.500N	P=0.276N	P=0.165N	P=0,185N	P=0.024N
Incidental Tumor Tests	P = 0.022N	P = 0.541N	P = 0.259N	P = 0.189N	P = 0.237N	P=0.027N
-Cell Carcinoma						
Overall Rates	3/50 (6%)	4/50 (8%)	1/48 (2%)	4/47 (9%)	0/48 (0%)	0/46 (0%)
Adjusted Rates	7.9%	9.9%	2.9%	10.5%	0.0%	0.0%
Terminal Rates	3/38 (8%)	3/38 (8%)	1/34 (3%)	3/35 (9%)	0/39 (0%)	0/34 (0%)
Week of First Observation	107	94	107 P = 0.245N	92 P=0.467	P = 0.116N	P=0.141N
Life Table Tests Incidental Tumor Tests	P = 0.029N P = 0.034N	P = 0.505 P = 0.512	P = 0.345N P = 0.345N	P = 0.467 P = 0.410	P = 0.116N P = 0.116N	P = 0.141N P = 0.141N
C-Cell Adenoma or Carcinoma (c)						
Overall Rates	12/50 (24%)	13/50 (26%)	7/48 (15%)	9/47 (19%)	6/48 (13%)	2/46 (4%)
Adjusted Rates	30.5%	32.0%	19.9%	24.5%	14.1%	5.9%
Terminal Rates	11/38 (29%)	11/38 (29%)	6/34 (18%)	8/35 (23%)	4/39 (10%)	2/34 (6%)
Week of First Observation	91	91	104	92	96	107
Life Table Tests	P = 0.002N	P = 0.503	P = 0.220N	P = 0.377N	P = 0.084N	P=0.008N
Incidental Tumor Tests	P = 0.003N	P = 0.470	P = 0.205N	P = 0.445N	P = 0.112N	P = 0.009N

TABLE 11. THYROID GLAND LESIONS IN RATS IN THE TWO-YEAR FEED STUDIES OF MIREX (Continued)

	Control	50 ppm	100 ppm	
PEWALE (CROOME GRAPE)				
FEMALE (SECOND STUDY)				
Follicular Cell Adenoma Overali Rates	1/49 (2%)	1/49 (2%)	1/49 (2%)	
C-Cell Hyperplasia Overall Rates	5/49 (10%)	3/49 (6%)	3/49 (6%)	
C-Cell Adenoma Overall Rates	5/49 (10%)	3/49 (6%)	5/49 (10%)	
C-Cell Carcinoma Overall Rates	2/49 (4%)	3/49 (6%)	0/49 (0%)	
C-Cell Adenoma or Carcinoma Overall Rates	7/49 (14%)	6/49 (12%)	5/49 (10%)	

⁽a) No P value is presented because no tumors were observed in the control and the indicated dose groups.
(b) No 2-year studies by this laboratory are included in the historical data base; historical incidence in NTP studies (mean ± SD): 27/1,928 (1% ± 2%) (c) No 2-year studies by this laboratory are included in the historical data base; historical incidence in NTP studies (mean ± SD): 182/1,952 (9% ± 5%)

IV. DISCUSSION AND CONCLUSIONS

Long-term toxicology and carcinogenesis studies were initiated by administering diets containing 0, 0.1, 1, 10, 25, or 50 ppm mirex to groups of 52 male and 52 female F344/N rats. During the first few months of the studies, there was concern that the doses selected for the female rats could perhaps have been higher. At that time, no chemical-related clinical signs were observed and no effects on body weight gain or survival were present. Thus, a second study was begun approximately 6 months after the first study was initiated. The second study was designed with two dose groups (50 and 100 ppm) and a control group, providing a top dose twice that used in the first study, a low dose that duplicated the top dose of the first study, and a second concurrent control group.

No studies were done in mice because at the time these studies were begun in F344/N rats, sufficient evidence was available that mirex was carcinogenic for the liver in mice (Innes et al., 1969; IARC, 1979); during the early phases of the rat studies, Ulland et al. (1977) reported that mirex caused liver neoplasms in CD rats (IARC, 1979). Because relatively small numbers of animals were used (26 per group), because dietary exposure lasted just 18 months, followed by a 6month observation period with no exposure (likely due to reduced survival), and because few neoplasms were observed, the studies in F344/N rats were continued to better define the effects overall, especially at lower exposures (Ulland et al. used dietary concentrations of 50 and 100 ppm mirex).

Mean body weights of male rats that received 25 or 50 ppm were lower than those of controls throughout much of the study, whereas body weights of dosed female rats were similar to those of controls until about week 68 of the first study, after which the 50-ppm group had body weights of 82%-90% those of controls. In the second study, weight gains of the 50-ppm group were affected less than in the first study, and the 100-ppm group had mean body weights 82%-90% those of controls after about week 56. Survival of male rats that received 25 or 50 ppm mirex was lower than that of controls only after weeks 86-87 of the study. Many of these male rats dying of "natural causes" had neoplasms of the

liver and/or adrenal gland as well as severe nephropathy. Survival of dosed females was similar to that of controls in both studies.

The most notable compound-related effects were observed in the liver of male and female rats. Fatty metamorphosis, cytomegaly, angiectasis (males only), and necrosis were dose related. No significant differences in incidences of hepatocellular carcinomas were observed, but the incidences of neoplastic nodules of the liver were markedly increased in both dosed male and female rats. Particularly strong dose-response relationships were evident in neoplastic nodules in male rats and in female rats in the second study (see Table 6). The incidence of neoplastic nodules was unusually high in the first study control group (19%), approximately sevenfold greater than the mean historical incidence (2.9%) and twice the highest incidence observed in any previous untreated control group (Table B7a). Comparison of both concurrent female control groups shows clearly that they are statistically different with respect to the number of animals with liver neoplasms. The rats were obtained from different sources for the first and second studies, but uniformly high incidences were not observed across the dose groups in the first study, suggesting that the control incidence represented either a chance clustering of naturally occurring neoplastic nodules (so-called "spontaneous" or background neoplasms of unknown etiology) or the incidence could have been influenced by the additional sections taken from the controls to avoid sample bias, since the higher exposed groups had more sections.

In another study of mirex, in male and female CD rats, similar patterns of increased incidences with dose were reported for both nonneoplastic and neoplastic liver effects at comparable exposure levels (Ulland et al., 1977). In mice, the liver was also shown to be the target organ for toxic effects of mirex (Innes et al., 1968; IARC, 1979). For the related chemical chlordecone, 2-year dietary studies in Osborne-Mendel and B6C3F₁ mice at lower doses showed increased incidences in carcinomas of the liver in both sexes of both species, particularly in mice (NCI, 1976).

The incidences of pheochromocytomas or malignant pheochromocytomas (combined) of the adrenal gland increased with a dose-related trend in male rats, and the incidences in the 25and 50-ppm groups were greater than those in controls. The magnitude and dose response of the lesions in males were considered sufficient to make an association with mirex administration. The control incidence agreed well with the mean historical incidence for untreated control male rats (Table A4e), and the increases at the two top doses occurred despite lessened survival. In females, however, the incidence of pheochromocytomas in the 50-ppm group was marginally increased in the first study and not observed in the second study, suggesting that the neoplasms in females were unrelated to mirex administration.

Transitional cell papillomas of the kidney occurred with a positive trend in male rats (see Table 9). These lesions were observed in the two top dose groups (25 ppm, 1/51, and 50 ppm, 3/52). Transitional cell papillomas and carcinomas are uncommon in historical controls (0.3%; Table A4c). Transitional cell hyperplasia was also increased in dosed male rats. Although this finding strengthens the association of mirex administration with proliferative lesions of the transitional epithelium in the kidney, the biologic importance of these lesions is somewhat uncertain because the rarity of neoplasia has made it difficult to fully assess the potential for progression from hyperplasia to papilloma and from papilloma to carcinoma. In addition, the occurrence of transitional cell hyperplasia may also be associated with the increased severity of nephropathy observed in dosed rats in the current studies. Nonetheless, these hyperplastic and neoplastic lesions are considered to be related to the dietary administration of mirex.

Mononuclear cell leukemia in female rats showed positive dose-related trends in both studies. Increased incidences were observed in the 25- and 50-ppm groups in the first study, and the incidence in the 100-ppm group was increased in the second study (see Table 10). An association of mononuclear cell leukemia with mirex administration is indicated primarily because the rather marginal increases occurred in both studies. If one combines the two studies, since the incidences of leukemia did not differ statistically

between the two control groups (13% and 15%), the incidences in the 10-, 25-, 50-, and 100-ppm groups were greater than the combined control incidence, lending further support to the association of mononuclear cell leukemia with mirex administration. In male rats, the increase observed in the 25-ppm group and the slight increase in the 10-ppm group were not supported by the incidence in the 50-ppm animals (see Table 10). Poor survival in the 25- and 50-ppm groups may have limited the expression of mononuclear cell leukemia in these groups, but the present evidence was considered to be insufficient to relate the incidences of mononuclear cell leukemia in male rats with mirex administration.

The incidence of follicular cell neoplasms in the thyroid gland was marginally increased in the top dose group of male rats (see Table 11). Even though the historical control incidence of these neoplasms is low (1.4%; Table A4d), the absence of an effect in the next lower dose group of males and the lack of an increase in either study in female rats make an association between follicular cell tumors and exposure to mirex unlikely. Conversely, negative trends (i.e., decreases in neoplasms in the exposed groups compared with controls) were observed for C-cell neoplasia in male rats and in female rats (first study). These decreases could be related to mirex administration; yet the biologic reasoning for this is unclear. In addition, the decrease in males was very marginal, and the decrease in females was due largely to the relatively low incidence in the top dose group compared with the higher than average control incidence; and neither the 50nor the 100-ppm female group in the second study exhibited a decreased incidence.

Neither mirex nor the structural analog chlordecone has been shown to induce any consistent effects in genetic toxicity assays in the presence or absence of exogenous metabolic activation, with the exception of one study in which an increase in the rates of sister chromatid exchanges was observed after exposure of CHO cells to chlordecone (Galloway et al., 1987). Mirex has generally been classified as metabolically inert (Waters and Black, 1976), but reductive dechlorination has been predicted as a pathway of degradation in vivo (Rinkus and Legator, 1980). McCann and Ames (1976) have

IV. DISCUSSION AND CONCLUSIONS

suggested that microsomal enzymes in S9 fractions may be unable to dechlorinate pesticides such as mirex, chlordecone, and dieldrin, which are carcinogenic and yet lack activity in the Ames assay (Schoeny et al., 1979).

Under the conditions of these 2-year feed studies of mirex, there is clear evidence of carcinogenic activity* for male and female F344/N rats, as primarily indicated by marked increased incidences of benign neoplastic nodules of the

liver, as well as by increased incidences of pheochromocytomas of the adrenal gland and transitional cell papillomas of the kidney in males and by increased incidences of mononuclear cell leukemia in females.

Nonneoplastic effects induced by mirex administration include cytomegaly, fatty metamorphosis, angiectasis (males only), and cellular necrosis in the liver.

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 6.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on pages 9-10.

V. REFERENCES

- 1. Abraham, R.; Koepke, U.; Goldberg, L.; Coulston, F. (1974) Individual and combined effects of mirex and polychlorinated biphenyls on mouse liver cells. Toxicol. Appl. Pharmacol. 29:128-129.
- 2. Abston, P.; Yarbrough, J. (1974) In vivo effects of dietary mirex on hepatic lactic dehydrogenase and glutamic oxalacetic transaminase levels of the rat. J. Agric. Food Chem. 22:66-68.
- 3. Andrade, P., Jr.; Wheeler, W.; Carlson, D. (1975) Identification of a mirex metabolite. Bull. Environ. Contam. Toxicol. 14:473-479.
- 4. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.
- 5. Baker, D.; Applegate, H. (1974) Effect of ultraviolet radiation on the persistence of pesticides. Tex. J. Sci. 25:53-59.
- 6. Baker, R. (1974) Interaction between the hepatic microsomal mixed-function oxidase enzyme system and pesticides. Diss. Abstr. Int. 35:4792B.
- 7. Baker, R.; Coons, L.; Mailman, R.; Hodgson, E. (1972) Induction of hepatic mixed-function oxidases by the insecticide mirex (dodecachloro-octahydro-1,3,4-metheno-2*H*-cyclobuta[*cd*]pentalene). Environ. Res. 5:418-424.
- 8. Borthwick, P.; Duke, T.; Wilson, A., Jr.; Lowe, J.; Patrick, J., Jr.; Oberheu, J. (1973). Residues in fish, wildlife, and estuaries: Accumulation and movement of mirex in selected estuaries of South Carolina, 1969-1971. Pestic. Monit. J. 7:6-26.
- 9. Brooks, G. (1974) Chlorinated Insecticides. Vol. I. Technology and Application. Cleveland, OH: CRC Press, pp. 35, 96-98, 102-103, 182-183.
- 10. Brown, L.D.; Yarbrough, J.D. (1988) Mirex uptake and tissue disposition in intact and adrenalectomized rats. Toxicol. Appl. Pharmacol. 92:343-350.

- 11. Byard, J.; Pittman, K. (1975) Early liver changes produced by mirex and their reversibility. Toxicol. Appl. Pharmacol. 33:130.
- 12. Byard, J.; Koepke, U.; Abraham, R.; Golberg, L.; Coultson, F. (1975) Biochemical changes in the liver of mice fed mirex. Toxicol. Appl. Pharmacol. 33:70-77.
- 13. Carlson, D.; Konyha, K.; Wheeler, W.; Marshall, G.; Zaylskie, R. (1976) Mirex in the environment: Its degradation to kepone and related compounds. Science 194:939-941.
- 14. Carter, F.; Graves, J. (1973) Measuring effects of insecticides on aquatic animals. La. Agric. 16:14-15.
- 15. Chernoff, N.; Scotti, T.; Linder, R. (1976) Cataractogenic properties of mirex in rats with notes on kepone. Toxicol. Appl. Pharmacol. 37:188.
- 16. Collins, H.; Davis, J.; Markin, G. (1973) Residues of mirex in channel catfish and other aquatic organisms. Bull. Environ. Contam. Toxicol. 10:73-77.
- 17. Cox, D.R. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.
- 18. Crouch, L.S.; Ebel, R.E. (1987) Influence of chlordecone and mirex exposure on benzo[a]pyrene metabolism of rat-liver microsomes. Xenobiotica 17:25-34.
- 19. Davison, K.; Cox, J. (1974) Some effects of mirex on chickens, quail, and rats. Fed. Proc. 33:220.
- 20. Davison, K.; Cox, J.; Graham, C. (1975) The effect of mirex on reproduction of Japanese quail and on characteristics of eggs from Japanese quail and chickens. Arch. Environ. Contam. Toxicol. 3:84-95.
- 21. Ervin, M.G.; Yarbrough, J.D. (1983) Adrenalectomy and the adaptive liver response in mirex-treated rats. Pestic. Biochem. Physiol. 20:330-339.

- 22. Federal Register (Fed. Regist.) (1986) Revocation of dodecachlorooctahydro-1,3,4-metheno-2H-cyclobuta[cd]pentalene tolerances. 40 CFR Part 180. Vol. 51, No. 242, Dec. 17.
- 23. Ford, J.; Hawthorne, J.; Markin, G. (1973) Residues of mirex and certain other chlorinated hydrocarbon insecticides in beef fat--1971. Pestic. Monit. J. 7:87-94.
- 24. Fouse, B.L.; Hodgson, E. (1987) Effect of chlordecone and mirex on the acute hepatotoxicity of acetaminophen in mice. Gen. Pharmacol. 18:623-630.
- 25. Gaines, T.; Kimbrough, R. (1970) Oral toxicity of mirex in adult and suckling rats. Arch. Environ. Health 21:7-14.
- 26. Galloway, S.M.; Bloom, A.D.; Resnick, M.; Margolin, B.H.; Nakamura, F.; Archer, P.; Zeiger, E. (1985) Development of a standard protocol for in vitro cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. Environ. Mutagen. 7:1-51.
- 27. Galloway, S.M.; Armstrong, M.J.; Reuben, C.; Colman, S.; Brown, B.; Cannon, C.; Bloom, A.D.; Nakamura, F.; Ahmed, M.; Duk, S.; Rimpo, J.; Margolin, B.H.; Resnick, M.A.; Anderson, B.; Zeiger, E. (1987) Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. Environ. Molec. Mutagen. 10(Suppl. 10):1-175.
- 28. Gart, J.J.; Chu, K.C.; Tarone, R.E. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62:957-974.
- 29. Glancey, B.M.; Roberts, W.; Spence, J. (1970) Effect on honeybee populations of exposure to bait containing mirex for control of imported fire ants. Am. Bee J. 110:314.
- 30. Hallett, D.J.; Khera, K.S.; Stoltz, D.R.; Chu, I.; Villeneuve, D.C.; Trivett, G. (1978) Photomirex: Synthesis and assessment of acute toxicity, tissue distribution and mutagenicity. J. Agric. Food Chem. 26:388-391.

- 31. Haseman, J.K. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.
- 32. Haseman, J.K.; Huff, J.; Boorman, G.A. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12:126-135.
- 33. Haseman, J.K.; Huff, J.; Rao, G.N.; Arnold, J.; Boorman, G.A.; McConnell, E.E. (1985) Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. J. Natl. Cancer Inst. 75:975-984.
- 34. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. Suppl. 1:3-142.
- 35. Heath, R.; Spann, J. (1973) Reproductive and related residues in birds fed mirex. Deichmann, W., Ed.: Pesticides and the Environment. A Continuing Controversy. New York: Intercontinental Medical Book Corp., pp. 421-435.
- 36. Hendrickson, C.; Bowden, J. (1975) A proposed mechanism for the in vitro inhibition of NADH-linked dehydrogenases by halogenated hydrocarbon pesticides: Evidence for an "association complex" for lactic acid dehydrogenase. Fed. Proc. 34:506.
- 37. Holden, C. (1976) Mirex: Persistent pesticide on its way out. Science 194:301-303.
- 38. Hollister, T.; Walsh, G.; Forester, J. (1975) Mirex and marine unicellular algae: Accumulation, population growth, and oxygen evolution. Bull. Environ. Contam. Toxicol. 14:753-759.
- 39. Hyde, K. (1973) Studies of the responses of selected wildlife species to mirex bait exposure. Diss. Abstr. Int. 33:3693B-3694B.
- 40. Hyde, K.; Graves, J.; Fowler, J.; Bonner, F.; Impson, J.; Newsom, J.; Haygood, J. (1973a) Accumulation of mirex in food chains. La. Agric. 17:10-11.

- 41. Hyde, K.; Graves, J.; Watts, A.; Bonner, F. (1973b) Reproductive success of mallard ducks fed mirex. J. Wildl. Manage. 37:479-484.
- 42. Innes, J.; Ulland, B.; Valerio, M.; Petrucelli, L.; Fishbein, L.; Hart, E.; Pallotta, A.; Bates, R.; Falk, H.; Gart, J.; Klein, M.; Mitchell, I.; Peters, J. (1969) Bioassay of pesticides and industrial chemicals for tumorigenicity in mice: A preliminary note. J. Natl. Cancer Inst. 42:1101-1114.
- 43. International Agency for Research on Cancer (IARC) (1979) Mirex. Some Halogenated Hydrocarbons. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 20. Lyon, France: IARC, pp. 283-301.
- 44. International Agency for Research on Cancer (IARC) (1987) Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Suppl. 7. Lyon, France: IARC, p. 66.
- 45. International Programme on Chemical Safety (IPCS) (1984) Mirex. Environmental Health Criteria 44. Geneva: World Health Organization. 70 p.
- 46. International Programme on Chemical Safety (IPCS) (1988) Health and Safety Guide for Mirex. First Draft. Internal Technical Report. United Nations Environment Programme, International Labour Organization, and World Health Organization.
- 47. Ivie, G.; Dorough, H.; Alley, E. (1974a) Photodecomposition of mirex on silica gel chromatoplates exposed to natural and artificial light. J. Agric. Food Chem. 22:933-936.
- 48. Ivie, G.; Dorough, H.; Bryant, H. (1974b) Fate of carbon-14-labeled mirex in Japanese quail. Bull. Environ. Contam. Toxicol. 11:129-135.
- 49. Ivie, G.; Gibson, J.; Bryant, H.; Begin, J.; Barnett, J.; Dorough, H. (1974c) Accumulation, distribution, and excretion of mirex-14C in animals exposed for long periods to the insecticide in the diet. J. Agric. Food Chem. 22:646-653.

- 50. Jones, A.; Hodges, C. (1974) Persistence of mirex and its effects on soil microorganisms. J. Agric. Food Chem. 22:435-439.
- 51. Kaplan, E.L.; Meier, P. (1958) Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53:457-481.
- 52. Kendall, M. (1974a) Acute hepatotoxic effects of mirex in the rat. Bull. Environ. Contam. Toxicol. 12:617-621.
- 53. Kendall, M. (1974b) Acute histopathologic alterations induced in livers of rat, mouse, and quail by the fire-ant poison, mirex. Anat. Rec. 178:388.
- 54. Khera, K.S.; Villeneuve, D.C.; Terry, G.; Panopio, L.; Nash, L.; Trivett, G. (1976) Mirex: A teratogenicity, dominant lethal and tissue distribution study in rats. Food Cosmet. Toxicol. 14:25-29.
- 55. Kreitzer, J. (1974) Residues of organochlorine pesticides, mercury, and PCB's (polychlorinated biphenyls) in mourning doves from eastern United States, 1970-1971. Pestic. Monit. J. 7:195-199.
- 56. Kutz, F.; Yobs, A.; Johnson, W.; Wiersma, G. (1974) Mirex residues in human adipose tissue. Environ. Entomol. 3:882-884.
- 57. Larson, P.S.; Egle, J.L., Jr.; Hennigar, G.R.; Borzelleca, J.F. (1979) Acute and subchronic toxicity of mirex in the rat, dog, and rabbit. Toxicol. Appl. Pharmacol. 49:271-277.
- 58. Lowe, J.; Parrish, P.; Wilson, A., Jr.; Wilson, P.; Duke, T. (1971) Effects of mirex on selected estuarine organisms. Trans. N. Am. Wildl. Nat. Resour. Conf. 36:171-186.
- 59. Ludke, J.; Finley, M.; Lusk, C. (1971) Toxicity of mirex to crayfish, *Procambarus blandingi*. Bull. Environ. Contam. Toxicol. 6:89-96.
- 60. Lum, K.R.; Kaiser, K.L.E.; Comba, M.E. (1987) Export of mirex from Lake Ontario to the St. Lawrence Estuary. Sci. Total Environ. 67:41-51.

- 61. Maslansky, C.J.; Williams, G.M. (1981) Evidence for an epigenetic mode of action in organochlorine pesticide hepatocarcinogenicity: Lack of genotoxicity in rat, mouse, and hamster hepatocytes. J. Toxicol. Environ. Health 8:121-130.
- 62. McCann, J.; Ames, B. (1976) Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 73:950-954.
- 63. McConnell, E.E.; Solleveld, H.A.; Swenberg, J.A.; Boorman, G.A. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. 76:283-289.
- 64. Mehendale, H.M.; Klingensmith, J.S. (1988) In vivo metabolism of CCl₄ by rats pretreated with chlordecone, mirex, or phenobarbital. Toxicol. Appl. Pharmacol. 93:247-256.
- 65. Mehendale, H.; Fishbein, L.; Fields, M.; Matthews, H. (1972) Fate of mirex-14C in the rat and plants. Bull. Environ. Contam. Toxicol. 8:200-207.
- 66. Mortelmans, K.; Haworth, S.; Lawlor, T.; Speck, W.; Tainer, B.; Zeiger, E. (1986) Salmonella mutagenicity tests. II. Results from the testing of 270 chemicals. Environ. Mutagen. 8(Suppl. 7):1-119.
- 67. National Cancer Institute (NCI) (1976) Report on Carcinogenesis Bioassay of Technical Grade Chlordecone (Kepone). NCI Brief Communication. DHEW Publ. No. (NIH) 76-1278. NCI, Carcinogenesis Program, Division of Cancer Cause and Prevention. 23 p.
- 68. National Clearinghouse for Poison Control Centers (1976) Mirex.
- 69. National Technical Information Service (NTIS) (1968) Evaluation of Carcinogenic, Teratogenic, and Mutagenic Activities of Selected Pesticides and Industrial Chemicals. Vol. I. Carcinogenic Study. PB-223 159. Prepared for National Cancer Institute by Bionetics Research Laboratories, Inc.

- 70. Oberheu, J. (1972) Occurrence of mirex in starlings collected in seven southeastern states, 1970. Pestic. Monit. J. 6:41-42.
- 71. Pesticide Chemical News (Pest. Chem. News) (1974) EPA extends use modifications of mirex but expresses "reluctance." March 6, pp. 19-20.
- 72. Pesticide Chemical News (Pest. Chem. News) (1976a) Mirex hearing will resume after July 4, findings of fact due August 6. June 9, pp. 8-9
- 73. Pesticide Chemical News (Pest. Chem. News) (1976b) Mirex human tissue sample results to date show 52 of 284 samples positive. October 20, p. 14.
- 74. Prins, H. (1946) Synthesis of polychloro compounds with aluminum chloride. VI. Elimination of hydrogen chloride from polychloro compounds and the formation of cyclic compounds. Synthesis of perchlorocyclopentadiene. Rec. Tray. Chim. 65:455-467.
- 75. Probst, G.S.; Hill, L.E. (1980) Chemically-induced DNA repair synthesis in primary rat hepatocytes: A correlation with bacterial mutagenicity. Ann. N.Y. Acad. Sci. 349:405-406.
- 76. Probst, G.S.; McMahon, R.E.; Hill, L.E.; Thompson, C.Z.; Epp, J.K.; Neal, S.B. (1981) Chemically-induced unscheduled DNA synthesis in primary rat hepatocyte cultures: Comparison with bacterial mutagenicity using 218 compounds. Environ. Mutagen. 3:11-32.
- 77. Rinkus, S.J.; Legator, M.S. (1980) The need for both *in vitro* and *in vivo* systems in mutagenicity screening. Chemical Mutagens: Principles and Methods for Their Detection. New York: Plenum Press, Vol. 6, pp. 365-473.
- 78. Rosenbaum, D.P.; Charles, A.K. (1986) In vitro binding of mirex by mouse hepatocytes. J. Toxicol. Environ. Health 17:385-393.

- 79. Schoeny, R.S.; Smith, C.C.; Loper, J.C. (1979) Non-mutagenicity for Salmonella of the chlorinated hydrocarbons Aroclor 1254, 1,2,4-trichlorobenzene, mirex and kepone. Mutat. Res. 68:125-132.
- 80. Shapley, D. (1971) Mirex and the fire ant: Decline in the fortunes of "perfect" pesticide. Science 172:358-360.
- 81. Simon, G.S.; Kipps, B.R.; Tardiff, R.G.; Borzelleca, J.F. (1978) Failure of kepone and hexachlorobenzene to induce dominant lethal mutations in the rat. Toxicol. Appl. Pharmacol. 45:330-331.
- 82. Stein, V.; Pittman, K.; Kennedy, M. (1976) Characterization of a mirex metabolite from monkeys. Bull. Environ. Contam. Toxicol. 15:140-146.
- 83. Tagatz, M.; Borthwick, P.; Forester, J. (1975) Seasonal effects of leached mirex on selected estuarine animals. Arch. Environ. Contam. Toxicol. 3:371-383.
- 84. Tarone, R.E. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.
- 85. Telang, S.; Tong, C.; Williams, G.M. (1981) Induction of mutagenesis by carcinogenic polycyclic aromatic hydrocarbons but not by organochlorine pesticides in the ARL/HGPRT mutagenesis assay. Environ. Mutagen. 3:359.
- 86. Tong, C.; Fazio, M.E.; Williams, G.M. (1981) Rat hepatocyte-mediated mutagenesis of human cells by carcinogenic polycyclic aromatic hydrocarbons but not organochlorine pesticides. Proc. Soc. Exp. Biol. Med. 167:572-575.
- 87. Ulland, B.; Page, N.; Squire, R.; Weisburger, E.; Cypher, R. (1977) A carcinogenicity assay of mirex in Charles River CD rats. J. Natl. Cancer Inst. 58:133-140.

- 88. U.S. Environmental Protection Agency (USEPA) (1978) Human Population Exposures to Mirex and Kepone. EPA-600/1-78-045. Washington, DC: USEPA, Office of Health and Ecological Effects.
- 89. Ware, G.; Good, E. (1967) Effect of insecticides on reproduction in the laboratory mouse. II. Mirex, telodrin, and DDT. Toxicol. Appl. Pharmacol. 10:54-61.
- 90. Waters, E.; Black, S. (1976) Mirex II. An Abstracted Literature Collection: 1947-1976. ORNL/TIRC-76/4. Oak Ridge, TN: Oak Ridge National Laboratory. 98 p.
- 91. Waters, E.; Gerstner, H.; Huff, J. (1977a) Mirex: A risk benefit evaluation. Environmental Chemicals; Human and Animal Health. Savage, E., Ed.: Proc. 5th Annu. Conf., 1977. Fort Collins, CO, pp. 49-77.
- 92. Waters, E.; Huff, J.; Gerstner, H. (1977b) Mirex. An overview. Environ. Res. 14:212-222.
- 93. Williams, G.M. (1979) Liver cell culture systems for the study of hepatocarcinogenesis. Carcinogenesis. Adv. Med. Oncol. Res. Ed. Proc. 12th Int. Cancer Cong. 1:273-280.
- 94. Williams, G.M. (1980) Classification of genotoxic and epigenetic hepatocarcinogens using liver culture assays. Ann. N.Y. Acad. Sci. 349:273-282.
- 95. Woodham, D.; Bond, C.; Ahrens, E.; Medley, J. (1975) The cumulation and disappearance of mirex residues. III. In eggs and tissues of hens fed two concentrations of the insecticide in their diet. Bull. Environ. Contam. Toxicol. 14:98-104.
- 96. Yarbrough, J.D.; Grimley, J.M.; Karl, P.I. (1986) The relationship of ornithine decarboxylase and thymidine kinase to mirex-induced liver growth. Am. J. Physiol. 251:G859-865.

APPENDIX A

SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX

		PAGE
TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX	59
TABLE A2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX	62
TABLE A3	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX	74
TABLE A4a	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT	80
TABLE A4b	HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT	80
TABLE A4c	HISTORICAL INCIDENCE OF KIDNEY TRANSITIONAL CELL TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT	81
TABLE A4d	HISTORICAL INCIDENCE OF THYROID GLAND FOLLICULAR CELL TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT	81
TABLE A4e	HISTORICAL INCIDENCE OF ADRENAL GLAND TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT	82
TABLE A5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX	83

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX

	Intrea Contr		0.1 pp	m	1 ppr	n	10 pp	m	25 pp	m	50 pp	m
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATH	52 52 52		52 52 52		52 52 52		52 52 52		52 52 52		52 52 52	
NTEGUMENTARY SYSTEM		· - · · · - · · -										
*Skin Papilloma, NOS Squamous cell papilloma Squamous cell carcinoma	(52) 1 2	(2%) (4%)	(52)		(52) 1	(2%)	(52)	(2%)	(52)	(2%)	(52)	
Basal cell carcinoma Trichoepithelioma Sebaceous adenoma	1	(2%)	1	(2%)			1	(2%)				
Sebaceous adenocarcinoma Keratoacanthoma	$\frac{1}{2}$	(2%) (4%)			_			(2%)			1	(2%)
Fibrosarcoma *Subcutaneous tissue Sarcoma, NOS	(52)		(52)		(52)	(2%)	(52) 1	(2%)	(52)		(52)	
Fibroma Fibrosarcoma	4	(8%)	4	(8%)	3	(6%)	7	(13%)	3 1	(6%) (2%)	1	(2%)
RESPIRATORY SYSTEM #Lung Carcinoma, NOS, metastatic	(52)		(52)		(52)		(52)		(52) 1		(51)	
Squamous cell carcinoma, metasi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma		(4%)			1	(2%)	2	(4%)	1	(2%)	1	(2%) (2%)
Sebaceous adenocarcinoma, meta Pheochromocytoma, metastatic		(2%)			1	(276)		(2%)				(2 70)
HEMATOPOLETIC SYSTEM *Multiple organs	(52)		(52)		(52)		(52)		(52)		(52)	
Malignant lymphoma, NOS Malig lymphoma, histiocytic typ Leukemia, mononuclear cell	1	(2%) (29%)	1 1 17	(2%) (2%)	1	(2%) (29%)	1 20	(2%) (38%)	19	(2%) (37%)	9	(17%
#Spleen Fibrosarcoma	(52)	(29%)	(51)	(33%)	15 (50)	(29%)	(51) 2	(4%)	(48)	(31%)	(52)	
Malignant lymphoma, NOS Leukemia, mononuclear cell #Mediastinal lymph node	1 (51)	(2%)	(52)		(52)		2 (52)	(4%)	2 (48)	(4%)	1 1 (48)	
Alveolar/bronchiolar carcinoma, #Thymus Papillary carcinoma			(47)		(42)			(2%) (3%)	(42)		(41)	(2%)
CIRCULATORY SYSTEM			(50)						(50)		(7.0)	
*Eye/lacrimal gland Hemangioma #Spleen	(52) 1 (52)	(2%)	(52) (51)		(52)		(52)		(52)		(52)	
Hemangiosarcoma *Mesenteric artery	(52)		1 (52)	(2%)	(52)		(52)		(52)		(52)	
Hemangiosarcoma, invasive	(52)	(00)	(52)	(2%)	(52)		(52)		(52)		(52)	
Hemangioma #Kidney Hemangiosarcoma	(51)	(2%)	(51) 1	(2%)	(52)		(52)		(51)		(52)	
DIGESTIVE SYSTEM	(52)		(52)		(52)		(52)	-	(52)		(52)	
Neoplastic nodule Hepatocellular carcinoma	3 3	(6%) (6%)		(10%)	5 2	(10%) (4%)		(27%) (4%)		(29%) (6%)	26 4	
Pheochromocytoma, metastatic #Pancreas Acinar cell adenoma	(51) 3	(2%) (6%)	(50)		(51)		(47) 1	(2%)	(48) 2	(4%)	(51) 1	(2%)
*Oropharynx Squamous cell carcinoma	(52)		(52)		(52) 1	(2%)	(52)		(52)		(52)	
#Stomach Papillomatosis #Ileum	(51)		(51) (47)		(48) (47)		(51)		(38)		(44) 1 (35)	(2%)
Leiomyosarcoma	,00)			(2%)	(/		1407		,007		(55)	

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untreated Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
JRINARY SYSTEM		(51)	(#0)	(70)	(#4)	(50)
#Kidney Tubular cell adenoma	(51) 1 (2%)	(51)	(52)	(52)	(51)	(52)
Tubular cell adenocarcinoma	1 (2%)					
Sarcoma, NOS	- (,				1 (2%)	
Liposarcoma		1 (2%)				
#Kidney/pelvis	(51)	(51)	(52)	(52)	(51)	(52)
Transitional cell papilloma					1 (2%)	3 (6%)
NDOCRINE SYSTEM						
#Pituitary	(52)	(52)	(51)	(50)	(52)	(47)
Carcinoma, NOS Adenoma, NOS	10 (00%)	11 (21%)	1 (2%)	10 (20%)	9 (17%)	3 (6%)
#Pituitary intermedia	12 (23%) (52)	11 (21%) (52)	12 (24%) (51)	10 (20%) (50)	9 (17%) (52)	(47)
Adenoma, NOS	(02)	(02)	(O1)	100)	(O2)	1 (2%)
#Adrenal	(51)	(52)	(52)	(52)	(51)	(51)
Cortical adenoma		2 (4%)	2 (4%)			1 (2%)
Cortical carcinoma		1 (2%)		1 (2%)		
Pheochromocytoma	8 (16%)	7 (13%)	13 (25%)	11 (21%)	18 (35%)	19 (37%)
Pheochromocytoma, malignant	2 (4%)			1 (2%)		1 (2%)
Ganglioneuroma #Adrenal/capsule	(E1)	1 (2%)	(EO)	(50)	/E1\	(51)
#Adrenal/capsule Adenoma, NOS	(51)	(52)	(52) 1 (2%)	(52)	(51)	(91)
#Thyroid	(51)	(50)	(47)	(47)	(35)	(49)
Follicular cell adenoma	(01)	(00)	(40)	1 (2%)	(00)	3 (6%)
Follicular cell carcinoma		1 (2%)		1 (5/0/		1 (2%)
C-cell adenoma	5 (10%)	4 (8%)	2 (4%)	5 (11%)	3 (9%)	
C-cell carcinoma	3 (6%)	2 (4%)	2 (4%)	2 (4%)		
#Parathyroid	(32)	(39)	(39)	(40)	(50)	(45)
Adenoma, NOS	1 (3%)	1 (3%)		(400)	2 (4%)	1 (2%)
#Pancreatic islets	(51)	(50)	(51)	(47)	(48)	(51)
Islet cell adenoma Islet cell carcinoma	8 (16%) 6 (12%)	3 (6%) 15 (30%)	7 (14%) 4 (8%)	4 (9%) 9 (19%)	1 (2%) 5 (10%)	5 (10%) 1 (2%)
	- (11.70)		4 (5.0)			- (0)
EPRODUCTIVE SYSTEM	(52)	(52)	(50)	(52)	(52)	(52)
*Mammary gland Fibroadenoma	1 (2%)	1 (2%)	(52) 1 (2%)	5 (10%)	1 (2%)	(32)
*Preputial gland	(52)	(52)	(52)	(52)	(52)	(52)
Carcinoma, NOS	(02)	(02)	1 (2%)	(04)	1 (2%)	
Papillomatosis	1 (2%)		2 (2/0)		0/	
Adenoma, NOS	1 (2%)		1 (2%)	1 (2%)	2 (4%)2	
#Prostate	(50)	(50)	(50)	(52)	(52)	(47)
Carcinoma, NOS				1 (2%)		
Adenoma, NOS	2 (4%)	6 (12%)	4 (8%)	2 (4%)	(#0)	3 (6%)
#Testis Interstitial cell tumor	(52)	(52)	(51)	(52) 48 (92%)	(52) 39 (75%)	(51) 42 (82%
*Epididymis	50 (96%) (52)	51 (98%) (52)	43 (84%) (52)	48 (92%) (52)	(52)	(52)
Mesothelioma, NOS	(02)	1 (2%)	(02)	(02)	(02)	(52)
ERVOUS SYSTEM						
#Brain	(52)	(52)	(52)	(51)	(52)	(50)
Carcinoma, NOS, invasive			1 (2%)			
Glioma, NOS					2 (4%)	
Astrocytoma	1 (2%)			1 /00/		
Oligodendroglioma				1 (2%)		
PECIAL SENSE ORGANS		(50)	/#6:	(80)	(7.0)	(50)
*Eye	(52)	(52)	(52)	(52)	(52)	(52)
Undifferentiated carcinoma *Harderian gland	(52)	(52)	1 (2%) (52)	(52)	(52)	(52)
Carcinoma, NOS	(42)	(02)	(04)	(02)	1 (2%)	(04)
*Zymbal gland	(52)	(52)	(52)	(52)	(52)	(52)
Carcinoma, NOS				1 (2%)	1 (2%)	•
Squamous cell carcinoma					1 (2%)	_
Sebaceous adenoma		1 (2%)	1 (2%)	1 (2%)	1 (2%)	1 (2%)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX (Continued)

-	Intreated Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
MUSCULOSKELETAL SYSTEM *Vertebra Liposarcoma	(52)	(52)	(52)	(52)	(52)	(52) 1 (2%)
Osteosarcoma *Femur Fibrosarcoma	1 (2%) (52)	(52)	(52) 1 (2%)	(52)	(52)	(52)
BODY CAVITIES *Abdominal cavity	(52)	(52)	(52)	(52)	(52)	(52)
Sarcoma, NOS	(32)	1 (2%)	(02)	(02)	102/	(02)
*Tunica vaginalis Mesothelioma, NOS	(52) 2 (4%)	(52) 1 (2%)	(52)	(52)	(52) 1 (2%)	(52)
ALL OTHER SYSTEMS	(50)				(50)	(52)
*Multiple organs Undiff. carcinoma, metastatic Mesothelioma, NOS	(52)	(52)	(52) 1 (2%)	(52)	(52)	1 (2%)
ANIMAL DISPOSITION SUMMARY						-
Animals initially in study	52	52	52	52	52	52
Natural death	5	19	13	17	31	38
Moribund sacrifice Terminal sacrifice	5 42	1 32	6 33	1 34	6 15	3 11
TUMOR SUMMARY						
Total animals with primary tumors**		51	49	51	51	48
Total primary tumors Total animals with benign tumors	147	143	127	160	137 44	135 46
Total benign tumors Total benign tumors	52 105	51 92	48 91	50 99	44 82	46 87
Total animals with malignant tumors		92 36	26	35	33	19
Total malignant tumors	37	44	31	47	39	21
Total animals with secondary tumors		1	2	2	2	
Total secondary tumors Total animals with tumors uncertain		1	2	2	2	
benign or malignant	5	7	5	14	16	27
Total uncertain tumors	5	7	5	14	16	27

^{*}Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.

**Primary tumors: all tumors except secondary tumors

#Number of animals examined microscopically at this site

##Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX: UNTREATED CONTROL

	SIU	ט	•	OI.	TAR	110	ĽA		114 1	KI	·A	LE	,	JUI		110	L										
ANIMAL NUMBER	0 1 1		0 7 9	0 2 7	0 3 5	0 2 1	0 3 9	0 4 3	0 5 1	0 0 1	0 0 3	0 0 5	0 7	0 9	0 1 3	0 1 5	0 1 7	0 1 9	0 2 3	0 2 5	0 2 9	0 3 1	0 3 3	0 3 7	0 4 1	0 4 5	0 4 7
WEEKS ON STUDY	7 2		0 8 4	0 8 5	9	9	1 0 4	1 0 4	1 0 4	1 0 5																	
INTEGUMENTARY SYSTEM Skin	-																										
Papilloma, NOS Squamous cell papilloma Trichoepithelioma Sebaceous adenocarcinoma		-	+	+	+	N	+	+	+	x	+	+	N	+	X	+	+	+	N	N	+	+	+	+	+	+	+
Keratoacanthoma Subcutaneous tissue Fibroma	4	+	+ X	+	X +	N	*	*	+	+	+	+	N	+	+	+	+	+	N	N	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma		+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+
Sebaceous adenocarcinoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen		+	++	++	++	++	++	++	++	++	+	+	+	++	++	++	++	++	++	++	++	+	++	+	++	++	++
Leukemia, mononuclear cell Lymph nodes Thymus	-	-	+	++	++	++	++	++	+	+	+	+	+	++	++	+	+	+	+	+	+	+	+	+	++	++	++
CIRCULATORY SYSTEM Heart		-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver	_	-	++	+	++	++	++	++	++	++	++	++	++	++	++	++	++	++	+	++	++	++	+	+	++	++	+ +
Neoplastic nodule Hepatocellular carcinoma Pheochromocytoma, metastatic Hemangioma				•						·				·				x		X		x	X				
Bile duct Pancreas Acinar cell adenoma Esophagus		-	+	+	++	+	+	+	+ X	+	+	+	+	+	+	+	+	+ +	+	+	+ X +	+	++	+ +	+	+	+
Esophagus Stomach Small intestine Large intestine		-	+++	++++	+++	++++	++++	+++	- - +	++++	++++	++++	++++	+++++	++++	+++	+++	+++	++++	+++++	++++	+ + +	++++	++++	+ + +	+++	+ + +
URINARY SYSTEM Kidney			+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	_	+	+		+	+	+	+	+	+
Tubular cell adenoma Tubular cell adenocarcinoma Urinary bladder	-	-	+	+	+	+	+	+	+	+	_	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	-		+	+	+	† X	+ X	+ X	+	+	+ X	+ X	+	+	+ X	+	+	+ X	+	+	+	+	+	+	+	+ X	+ X
Adrenal Pheochromocytoma Pheochromocytoma, malignant	-	-	+	+	+	+	+	+	+	*	X	+	+	+	+	+	*	+	*	+	+	+	+	+	+	X X	+
Thyroid C-cell adenoma C-cell carcinoma	1	٠	+	-	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+
Parathyroid Adenoma, NOS Pancreatic islets	+	-	+	_	+	_	_	_	_	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	_
Islet cell adenoma Islet cell carcinoma			X		,	x	,	X			,		X	X			X	X		,	,	,	•	x	,	,	
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	-	-	N	+	N	N	N	+	+	+	+	N	+	+	N	N	N	+	+	+	+	N	N	+	+	+ X	N
Testis Interstitial cell tumor Prostate	X	-	+ X +	* *	+ X +	* *	* X	* X +	* X +	* X +	* X -	* X +	* * +	* X +	* X +	+ X +	+ X +	+ X +	* *	+ X +	+ X +	* X +	+ X +	X +	+ X +	+	+ X +
Adenoma, NOS Preputial/clitoral gland Papillomatosis Adenoma, NOS	ı	1	N	N	N	N	N	N	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N
NERVOUS SYSTEM Brain Astrocytoma		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Lacrimal gland Hemangioma		1	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	,	1	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Tunica vaginalis Mesothelioma, NOS	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Leukemia, mononuclear cell		1	N	N X	N X	N	N	N	N	N	N X	N	N		N X	N	N	N X	N	N	N	N X	N	N	N	N	N X

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: UNTREATED CONTROL (Continued)

									(, O11	UIII.	ued	.,														
ANIMAL NUMBER	0 4 9	0 5 3	5 5	0 5 7	0 5 9	0 6 1	0 6 3	0 6 5	0 6 7	0 6 9	0 7 1	0 7 3	0 7 5	0 7 7	0 8 1	0 8 3	0 8 5	0 8 7	0 8 9	0 9 1	9 3	0 9 5	0 9 7	9	1 0 1	1 0 3	TOTAL:
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	0 5	0 5	1 0 5	0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 6	0	0 6	1 0 6	1 0 6	1 0 6	1 0 6	0 6	1 0 6	0 6	1 0 6	1 0 6	TISSUE
NTEGUMENTARY SYSTEM				·																							+==
kın Papılloma, NOS Squamous cell papılloma Trichoepithelioma	+	X	N	+	+	×	X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*52 1 2 1
Sebaceous adenocarcinoma Keratoacanthoma ubcutaneous tissue Fibroma	+	+	N	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	*52 4
ESPIRATORY SYSTEM ungs and bronchi Alveolar/bronchiolar carcinoma Sebaceous adenocarcinoma, metas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 2 1
rachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
one marrow pleen	++	++	+	++	+	++	+	++	++	+	++	++	++	+	++	++	++	++	++	++	++	+	+ + v	++	+	++	52 52
Leukemia, mononuclear cell ymph nodes hymus	++	+	+	+	+	++	+	+	+	+	++	++	+	++	+	++	+	+	+	+	+	+	X + +	+	+	++	51 47
IRCULATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
IGESTIVE SYSTEM alivary gland iver	+ +	++	++	++	++	+ + X	++	++	++	++	++	++	++	++	+	+ + X	+ +	++	++	++	+	+	++	++	+	++	52 52
Neoplastic nodule Hepatocellular carcinoma Pheochromocytoma, metastatic Hemangioma			x		x	X										Х											3 1 1
ıle duct ancreas Acınar cell adenoma	++	+	+	+ + X	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	52 51 3
sophagus comach	++	+	+	+	+	+	+	+	+	+	+	+	++	+	+	++	+	+	+	++	+	+	+	++	+	+	48 51
nall intestine arge intestine	+ +	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	50 51
RINARY SYSTEM idney Tubular cell adenoma	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Tubular cell adenocarcinoma rinary bladder	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 49
NDOCRINE SYSTEM ituitary Adenoma, NOS	+	+	+ X	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+ X	+	+	+	+	52 12
drenal Pheochromocytoma Pheochromocytoma, malignant	+	+	+ x	+	+	+	+	+	+	χ ⁺	+	+	+	+	+ X	+	+	+	+	+	X	*	+	+	+	+	51 8 2
hyroid C cell adenoma C cell carcinoma	+	+ X	X X	x	+	+	+	+	X	+	+ v	+	+ X	+	+	+	*	+	+	+	+	+	+	+	+	+	51 5 3
arathyroid Adenoma, NOS	-	+	+	_	+	+	+	+	* X	-	X -	+	~	+	+	-	_	-	+	-	-	+	-	+	-	+	32
Adelionia, 1405 ancreatic islets Islet cell adenoma Islet cell carcinoma	+	+	+ X	+	+	+	+	+	+	*	*	+	+	+	X	+ X	+	+	+ X	+	+	+	+	+	+	+	51 8 6
EPRODUCTIVE SYSTEM	N	+	+	+	+	N	N	N	N	+	N	N	+	N	+	N	N	N	N	+	+	+	+	N	+	+	*52
Fibroadenoma estis Interstitial cell tumor	+ X	*	+	* X	*X	*	* X	+ X	+ X	*	* X	* X	* X	*	*	*X	*	*	X	*	x	*	*X	*X	* X	*	52 50
rostate Adenoma, NOS reputial/clitoral gland Papillomatosis Adenoma, NOS	h N	h N	X N	+ N	+ N	+ N	h N	N +	h N	+ N	N +	n +	+ N	N +	+ N	N +	+ N	n N	N +	+ N	h N	h N	+ N	+ N	+ N	N +	50 2 *52 1 1
ERVOUS SYSTEM rain Astrocytoma	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
PECIAL SENSE ORGANS acrimal gland Hemangioma	N	N	N	N		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	*52
USCULOSKELETAL SYSTEM one Osteosarcoma	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*52
ODY CAVITIES unica vaginalis Mesothelioma, NOS	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*52
LL OTHER SYSTEMS (ultiple organs, NOS Malignant lymphoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N v	И	N	N	N Y	N	N	N	N	N	N	N	N	N Y	*52 1
Animals necropsied			X								X 	X	X				X					Х		X		X	15

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX: 0.1 ppm

			31	. 01	, ,	OI.	143	111	EX	. u	• -	hħr	ш													
ANIMAL NUMBER	1 9 9	2 1 9	1 7 1	2 4 5	2 3 1	2 3 5	2 2 1	2 0 9	2 2 3	2 2 7	1 7 3	1 7 9	1 6 3	1 9 7	2 1 7	1 7 7	1 8 9	1 4 7	1 6 5	1 7 5	1 4 5	1 4 9	1 5 1	1 5 3	1 5 5	1 5 7
WEEKS ON STUDY	0 6 6	0 8 5	0 8 6	9 5	0 9 7	0 9 7	1 0 0	1 0 1	1 0 1	1 0 1	1 0 3	1 0 3	1 0 4	1 0 4	1 0 4	1 0 5	1 0 5	1 0 6	1 0 6	1 0 6	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7
INTEGUMENTARY SYSTEM Skin Basal cell carcinoma Subcutaneous tissue Fibroma	+ +	+	+	+	+	+	+	+	+ + X	+	+	+	+ + X	+	+	+	+	+	+	+ + X	+	+	+	N N	+	+ +
RESPIRATORY SYSTEM Lungs and bronch Trachea	+ -	++	+	+	++	+	+	+	++	++	++	++	++	++	++	++	++	+	++	<u>+</u>	++	++	++	++	++	++
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangiosarcoma Lymph nodes	+ + +	+ +	++++	_ - +	+ +	+ +	+ +	+ +	++++	+++	+ + X +	+ +	+ + +	+ + +	+ + +	- + +	+ +	+ + +	+ +	- + +	+++	+++	+ +	+++	+ +	+++++++++++++++++++++++++++++++++++++++
Thymus CIRCULATORY SYSTEM Heart	- +	+	<u>:</u> +	+	÷ +	÷ +	÷ + +	+	÷ +	+	+	÷ +	+	+	+	+	÷ +	+	÷ +	+	+	+	+	÷ +	÷ +	+
Blood vessels Hemangiosarcoma, invasive DIGESTIVE SYSTEM	N	N	N 	N	N	N	N	N	N	N	N X	N —	N	N	N 	N 	N	N	N	N	N	N	N ——	N ——	N	N
Salivary gland Liver Neoplastic nodule Bile duct	+++++++++++++++++++++++++++++++++++++++	+ X	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	++	+	+ X	+++++	+	++	+	++	+++++++++++++++++++++++++++++++++++++++	++
Pancreas Esophagus Stomach Small intestine Leiomyosarcoma	++++++	++++	+ + +	+ -+ +	++++	+ + + +	+ -	+ + + +	+ + + +	+ + + +	++++	++++	+ + + +	++++	++++	+ + + +	+ + + +	+ + + +	++++	++++	++++	++++	++++	+ + + +	+++-	+ + + + +
Large intestine URINARY SYSTEM	- -	_	-	_	+	+	_	+	+	+	_	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+
Kidney Liposarcoma Hemangiosarcoma Urinary bladder	+	+	+	+	+	* +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal	+ +	+	+	+	+	+ X +	+	+	+	+	+	+	+	+ X +	+	+	+	+	+ X +	* X +	+	+	+	+ X +	++	+ X +
Cortical adenoma Cortical carcinoma Pheochromocytoma Ganglioneuroma		х	x	x		Х					x	х				x		x	x							
Thyroid Follicular cell carcinoma C cell adenoma C cell carcinoma Parathyroid	+	+	+	_	+	+	_	+	+	+	+	x	+	+	+	+	+	X	*	+	+	+	+	+	+	+
Adenoma, NOS Pancreatic islets Islet cell adenoma Islet cell carcinoma	+	+	+	×	+ X	+	-	+	+	+	+	+ X	+	+ X	+ X	+ X	+ X	+	+	+	+ X	+	+ X	+ X	+	+ X
REPRODUCTIVE SYSTEM Mammary gland	N	+	+	+	N	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	N
Fibroadenoma Tests Interstitial cell tumor Prostate Adenoma, NOS	+	* X +	+ X +	+ X +	+ X +	+ X +	+ X +	+ X +	+ X +	* X +	+ X +	+ X + X	+ X +	+ X +	+ X + X	+ X +	+ X +	+ X + X	+ X + N	* * -	+ X +	+ X +	+ X +	+ X + X	+ X +	+ X +
Epididymis Mesothelioma, NOS NERVOUS SYSTEM	_ N	N	N	N X		N 	IN	N		IN			N	IN .	N		N	IN	IN .				IN	N	N	
Brain SPECIAL SENSE ORGANS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Zymbal gland Sebaceous adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N 	N	N	N	N	N	N
BODY CAVITIES Pertoneum Sarcoma, NOS Tunica vaginalis Mesothelioma, NOS	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Malignant lymphoma, histiocytic type	N	N	N X	N	N	N			N		N	N	N		N		N	N		N	N		N	N	N	N
Leukemia, mononuclear cell		X			Х		Х	X		Х				X		X			Х			X				

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: 0.1 ppm (Continued)

ANIMAL NUMBER	1 5 9	1 6 1	1 6 7	1 6 9	1 8 1	1 8 3	1 8 5	1 8 7	1 9 1	1 9 3	1 9 5	2 0 1	2 0 3	2 0 5	2 0 7	2 1 1	2 1 3	2 1 5	2 5	2 9	3	2 3 7	2 3 9	2 4 1	2 4 3	2 4 7	TOTAL:
WEEKS ON STUDY	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	TISSUES															
NTEGUMENTARY SYSTEM																											
Skin Basal cell carcinoma Subcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	* *	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+ X	+	+	*52 1 *52 4
RESPIRATORY SYSTEM Lungs and bronchi Trachea	+ +	++	+	+	++	++	+	++	++	++	++	+	+	++	++	++	++	++	++	++	+	++	++	+	++	++	52 48
HEMATOPOIETIC SYSTEM Bone marrow Spleen	++	+	+	+	++	++	+	+	++	++	++	++	++	+	++	++	++	++	++	++	++	++	++	++	++	++	49 51
Hemangiosarcoma Lymph nodes Thymus	++	+	+	+	++	++	+	+	++	+	+	+	+	+	+	+	++	+	++	+ +	+	+	+	+	++	++	52 47
CIRCULATORY SYSTEM Heart Blood vessels Hemangiosarcoma, invasive	+ N	, N	+ N	, N	+ N	+ N	+ N	+ N	, N	+ N	+ N	52 *52 1															
DIGESTIVE SYSTEM Salivary gland Liver	+ +	++	++	++	++	++	++	++	++	++	++	+ +	++	++	++	++	++	++	++	++	++	++	++	++	+	++	52 52
Neoplastic nodule Bile duct Pancreas	+ +	+	+	+	+	+	+	+	+	+	Х + +	+	+	+	+	X + +	+	X + +	++	+	+	+	+	+	++	++	5 52 50
Esophagus Stomach	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	++	+	+	+	+	+	+	52 51
Small intestine Leiomyosarcoma Large intestine	+	÷ +	+	+	+	X +	+	+	+	+	÷ +	+	+	÷ +	+	÷ +	+	+	+	÷ +	+	+	+	+	÷ +	÷ +	47 1 45
URINARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Liposarcoma Hemangiosarcoma Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	1 1 51
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	 X	+ X	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+ X	+	+	+	+	+	+ X	+	+	52 11
Adrenal Cortical adenoma Cortical carcinoma Pheochromocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	52 2 1 7
Ganglioneuroma Phyroid Follicular cell carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	50 1
C cell adenoma C cell carcinoma Parathyroid			х -	+	+	+	X +	_	+	X	X	+	+	+	+	_	_	+	+	_	+	+	+	+	_	~	4 2 39
Adenoma, NOS Pancreatic islets	1	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	50
Islet cell adenoma Islet cell carcinoma		•	·		X	X	·	,			·		X	•		X	•	X	·	X	,	·		x	x	•	3 15
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	N	+	+	N	+	+	+	N	N	+	N	N	N	*	+	+	N	N	+	+	+	+	+	+	N	N	*52
lestis Interstitial cell tumor	X	X	X,	X	X	X	X,	X,	X	X	X	X	X	X	*	X	X	X,	X	X,	X	X	X	X	X	X,	52 51
Prostate Adenoma, NOS Epiddymis Mesothelioma, NOS	h N	X N	X N	+ N	N +	h N	N T	n N	N	h N	+ N	+ N	N +	n N	h N	+ N	n +	n H	+ N	N +	+ N	N +	N +	N +	N +	h N	50 6 *52 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
SPECIAL SENSE ORGANS Lymbal gland Sebaceous adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*	*52
BODY CAVITIES Pentoneum Sarcoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*52
Funica vaginalis Mesothelioma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	*52 1
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Malignant lymphoma, histocytic type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	*52 1 1
Leukemia, mononuclear cell							X		X				X			X		X	X			X	Λ			X	17

^{*} Animals necropsied

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX: 1 ppm

			-	•		•	r D		4 E .1 4		. P	P	•													
ANIMAL. NUMBER	2 5 1	2 5 5	3 4 5	3 2 7	3 3 5	2 7 1	3 1	2 8 3	3 1 5	3 9	2 5 9	2 6 1	3 1 7	2 6 3	2 7 3	3 5 1	2 6 5	9 9	3 0 7	2 4 9	2 5 3	2 5 7	2 6 7	2 6 9	2 7 5	2 7 7
WEEKS ON STUDY	0 5 3	0 5 7	0 6 7	0 6 9	0 7 1	0 8 3	0 8 4	0 8 6	0 8 6	0 8 6	9	9 1	9 3	9 6	9 7	9 8	1 0 5	1 0 5	1 0 5	1 0 6						
INTEGUMENTARY SYSTEM Skin Papilloma, NOS	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Fibrosarcoma Subcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronch Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	++	++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+	++++	+ + + -	+ + -	+ + -	+ + + +	+ + + +	- + +	+ - + +	+ + -	+ + +	+ + +	- + +	- + + +	+ + + +	+ + + -	+ + + +	+ + + +	+ - + +	+ + + +	+ + +	+ + + +	+ + + +	++++	+ + +	+ + + +
CIRCULATORY SYSTEM Heart	_ _	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Oral cavity Squamous cell carcinoma Salivary gland	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N X +	N +						
Liver Neoplastic nodule Hepatocellular carcinoma Bile duct	+	+	+	÷ +	+	+	+	+	+	+	+	+	+	÷ +	+	+	+	+	÷ +	+	* *	+	* *	+	+	* X
Pancreas Esophagus Stomach Small intestine Large intestine	+ + + +	+ - + + +	++	+++++	+++++	+++-+	+++++	++++	+	++++	+++++	+++++	++	+++	+++++	++++	++++	+++++	+ + +	++++	+++++	+++++	+++++	++++	++++	+++++
URINARY SYSTEM Kidney Urinary bladder	++	++	++	++	+	++	++	+	++	++	++	++	++	+	++	++	++	++	++	++	++	++	++	++	+	++
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS	+	+	+	+	+	+	+ x	+	+	+ X	+	+ X	_	+	+ x	+	+	+	+	+	+	+	+	+	+	+
Adrenal Adenoma, NOS Cortical adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	X + X	+	+	+	+
Pheochromocytoma Thyroid C cell adenoma C cell carcinoma	-	+	+	+	+	+	+	~	<u>x</u>	<u>x</u>	+	+	X +	-	X +	+	X +	X +	X +	+	+	X +	*	+	+	X +
Parathyroid Pancreatic islets Islet cell adenoma Islet cell carcinoma	+	+	+	+	+	+	+	++	+	+	+ X	+	+	+	+ X	+	+	+ X	=	+	+ + X	+	+	+ X	+	+
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	+	+	+	+	+	N	N	N	+	+	N	+ X	N	+	N	+	+	N	+	N	N	+	N	N	N	N
Testis Interstital cell tumor Prostate Adenoma, NOS Preputsal/clitoral gland	+ + N	+ + N	+ + N	+ X + N	+ + N	+ X + N	+ + N	- - N	+ X + N	+ + N	+ X + N	+ X + N	+ + N	+ X + N	+ + N	+ X + N	+ X + N	+ X + N	X - N	+ X + N	+ X + N	+ X + N	+ X + N	+ X + N	+ X + N	+ X + X N
Carcinoma, NOS Adenoma NOS NERVOUS SYSTEM	_	x														<u> </u>										
Brain Carcinoma, NOS, invasive	_ +	+	+	+	+	+	+	+	+	X X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Eye Undifferentiated carcinoma Zymbal gland Sebaceous adenoma		N N		N + X	N N	N N	N N	N N	N N		N N	X N		N N		N N	N N		N N	N N			N N	N N	N N	
MUSCULOSKELETAL SYSTEM Bone Fibrosarcoma	_ N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Undifferentiated carcinoma, metastatic Malignant lymphoma, NOS	N	N	N	N	N	N		N X	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Leukemia, mononuclear cell							X		X				X	X							X	X			X	

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: 1 ppm (Continued)

ANIMAL NUMBER	2 7 9	2 8 1	2 8 5	2 8 7	2 8 9	9 1	9	9 5	2 9 7	3 0 1	3 0 3	3 0 5	3 0 9	3 1 1	3	3 1 9	3 2 1	3 2 3	3 2 5	3 2 9	3 3	3 3 7	3 4	3 4 3	3 4 7	3 4 9	TOTAL
WEEKS ON STUDY	1 0 6	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	0 7	1 0 7	1 0 7	1 0 7	TISSUES											
NTEGUMENTARY SYSTEM	·																		_								
Skin Papilloma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	*52 1
Fibrosarcoma Subcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	* X	+	+	+	X +	+	x	+	+	+	+	+	+	+	+	+	+	+	*52 3
RESPIRATORY SYSTEM											_																
ungs and bronchi Alveolar/bronchiolar carcinoma 'rachea	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 1 44
EMATOPOLETIC SYSTEM	-																								_		
Sone marrow pleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 50
ymph nodes hymus	++	++	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	++	+	+	+	+	+	+	+	52 42
CIRCULATORY SYSTEM		+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
DIGESTIVE SYSTEM	N N	N	NI.	NI.	N	N			N.	N	N	N	N	N.	N	N		N	NT.	N	N	N.	NI	N	N		*52
Squamous cell carcinoma	N	N	N	N	TA.	14	N	N	, IN	.IN	N	N	N	N	N	N	N	N	N	ıN Ji	TA.	N	N	N	'i 1A	N	1 52
Salivary gland Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
Neoplastic nodule Hepatocellular carcinoma								Х										X X					x				52 5 2
Bile duct Pancreas	+ +	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 51
Sophagus Stomach	++	+	+	+	+	+	+	++	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	50 48
mall intestine	+	÷	+	+	÷	÷	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	÷	÷	+	+	47 47
Large intestine																							+			+	47
JRINARY SYSTEM Vidney Jrinary bladder	+	+	++	+	++	+	++	+	+	++	+	++	++	++	+	++	++	+	+	++	+	+	++	+	+	++	52 49
ENDOCRINE SYSTEM	<u> </u>									_																	<u>-</u>
Pituitary Carcinoma, NOS	1	+	+	+	+	+	+	*	+	+	+	-	+	+	т-	+	+		+	+	+	+	+	+	+	т	51 1
Adenoma, NOS Adrenal	+	X +	+	X +	+	X +	+	+	X +	+	+	X	+	+	X +	+	+	X +	+	+	+	X +	+	+	+	+	12 52
Adenoma, NOS Cortical adenoma												X															1 2
Pheochromocytoma			X	X						X		Α.						X									13
Phyroid C cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	X X	+	+	+	+	+	+	+	+	+	+	+	+	+	47
C cell carcinoma Parathyroid	+	X	+	_	+	_	+	+	+	+	4	+	+	+	X +	+	_	_	+	+	+	_	+	+	+	+	2 39
Pancreatic islets Islet cell adenoma	+	*X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X X	*X	51
Islet cell carcinoma		А				X						Х									X				Λ.	Λ.	4
REPRODUCTIVE SYSTEM	-																								_		+50
fammary gland Fibroadenoma	+	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	+	N	N	N	+	N	N	+	+	*52
Cestis Interstitial cell tumor	x +	*X	*X	*	*X	*X	*X	+ X	*	*	*X	+ X	*X	*X	X X	*X	*	*	*	*	X X	*	*	*	*X	*	51 43
Prostate Adenoma, NOS	+	+	+	+ X	+	+ X	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	50 4
Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	N	N	N	Ň	N	Ñ	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	Ň	N	N	N	N	N	*52 1 1
VERVOUS SYSTEM	-			_																			-				ļ
Brain Carcinoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 1
PECIAL SENSE ORGANS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	NT	N	N	N	NT.	*52
ye Undifferentiated carcinoma ymbal gland Sebaceous adenoma	N	N	N	N	N	N	N	N	N	N	N		N		N	N	N	N	N	N	N	N	N		N		1 *52 1
MUSCULOSKELETAL SYSTEM Sone Fibrosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*52 1
ALL OTHER SYSTEMS Multiple organs, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*52
Undiff carcinoma, metastatic Malignant lymphoma, NOS Leukemia, mononuclear cell					x		x	x		x		x						x					x			x	1 1 15

^{*} Animals necropsied

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX: 10 ppm

			.	LU	υī	O1	F M	шп	EA	: 1	v j	ppu	11													
ANIMAL NUMBER	4 5	3 9 5	1 9	4 3 1	4 3	3 8 7	4 0 3	3 9 9	3	4 1 3	4 0 7	4 3 9	4 9	3 8 9	4 2 5	3 6 1	3 5 3	3 5 5	3 5 7	3 5 9	3 3	3 6 5	3 6 7	3 6 9	3 7 1	3 7 3
WEEKS ON STUDY	0 4 7	0 6 1	0 7 9	0 8 5	0 8 9	0 9 1	0 9 2	0 9 8	9	9	0	0	1 0 1	1 0 2	1 0 4	0 5	1 0 6	0 6	1 0 6	1 0 6	1 0 6	0	1 0 6	1 0 6	1 0 6	0 6
INTEGUMENTARY SYSTEM	·																									
Skin Squamous cell papilloma Sebaceous adenoma Keratoacanthoma Subcutaneous tissue Sarcoma, NOS Fibroma	+	N N X	+ + x	+	+	+	+	+	+	+ + x	+	N N	+ + x	+	+	+	+	+	+	+	+	+ + x	+	+	* *	+
RESPIRATORY SYSTEM	-																									
Lungs and bronch Alveolar/bronchiolar carcinoma Pheochromocytoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	* *	+	+	*	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM	.																									
Bone marrow Spleen Fibrosarcoma	+	_	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+
Leukemia, mononuclear cell Lymph nodes Alveolar/bronchiolar carcinoma, metastatic Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	X + +	+	+	+ X +	+	+	+	+	+	+	X +	+	+
Papillary carcinoma																							X			
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule	++	+	+	+	+	+ + X	+	+	+	+	+	++	+	+	+	+	+	+	++	+ + X	+ + X	+	++	+	+	+
Hepatocellular carcinoma Bile duct Pancreas Acinar cell adenoma	+	+	+	+ +	+	+	<i>+</i> +	++	+	+	+	++	+	++	+	+ +	++	+	X + +	+	+	+	+ +	+	+ +	+
Esophagus Stomach	+	+	-	++	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	++	++	+	+	+	+
Small intestine Large intestine	-	_	+	+	_	-	+	+	_	++	+	+	+	+	_	+	+	++	+	+	++	+	++	+	++	++
URINARY SYSTEM	-																									
Kidney Urinary bladder	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary	-							_																	+	
Adenoma, NOS Adrenal		_	_	_	+				X	T	+		_	+	_	T	+		_	X	_	X			X	+
Cortical carcinoma Pheochromocytoma Pheochromocytoma, malignant	'		x	,	'		,	·	x	x	,	,	,		•	x	•	x	Ţ		x	•		•		
Thyroid Follicular cell adenoma C cell adenoma	-	-	+	+	_	+	+	+	_	+	+	+	+	+ X		+	+ X	X X	+	+	+	+	+	+	+	+
C cell carcinoma Parathyroid		+	+	+	+	+	_	+	+	+	X	_	+	_	_	+	+	+	+	X	+	+	+	_	_	+
Pancreatic islets Islet cell adenoma Islet cell carcinoma	-	_	÷	÷	+	-	+	+	÷	+	+	*	÷	+ X	-	+	+	×	+	4	÷	-	÷	+	+	÷
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	+	N	N	N	N	N	+	+	+	N	+	+ X	N	+	+	N	N	+	N	+	N	+	+ X	+ X	N	N
Testis Interstitial cell tumor	+	+	+	*X	*	* X	*X	*	* X	*X	*	, X	*X	*	X	*X	*	*	* X	+ X	X	*X	X X	* X	*X	+ X
Prostate Carcinoma, NOS Adenoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+-	+	+	+	+	+	+
Preputial/clitoral gland Adenoma, NOS	N	N	N	N	N	N	N	1/4	N	N	N	N	N	N	N	N	N	N	N	N	N	Ŋ	N	N	N	W
NERVOUS SYSTEM Brain Oligodendroghoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<u>.</u> +	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS Sebaceous adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, histiocytic type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N
Leukemia, mononuclear cell						X	X	X		X	X	X	X					X			21				X	

⁺ Tissue examined microscopically
- Required tissue not examined microscopically
X Tumor incidence
N Necropsy, no autolysis, no microscopic examination
S Animal missexed

No tissue information submitted
C Necropsy, no histology due to protocol
A. Autolysis
M Animal missing
B No necropsy performed

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: 10 ppm (Continued)

+ + + + + + + + + + + + + + + + + + + +		+ + + + + + + x	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + X + + +	+ + + + + + + + + + + + + + + + + + + +	1 0 6 + X + + + + + + + + + + + + + + + + +	1 0 6 + X + X + + X + + + + + + + + + + + +	+ + + +	+ + +	+ + +	+ + + X	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	TOTAL. TISSUES TUMORS *52 1 1 1 *52 1 7
+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + *	+ + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ X + +	+ + + + + + + + + + + + + + + + + + + +		+	+ + + +	+ + + +	+ + + +	+ + X	+ +	+ + +	+ +	+ +	+ + +	+ +	+ +	+ + +	+ +	+	1 1 1 *52 1
+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + .	+ + + + + + + + X	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + +	+ + + + + + + .	+ X + + +	+ + + + +		+	+ + + + + + + + + + + + + + + + + + + +	+ + +	+ + +	+ + X	+ +	+	+ + +	+ +	+ +	+	+	+	+	+	1 1 1 *52 1
+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + *	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + +	+ + + + + + +	+ + + + + + .	+ X + +	+ + + + + +	+ + +	+	+ + + +	+ + +	+ + +	+ + X	+	+	+	+	+	+	+	+	+	+	*52 1
+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + *	+ + + + + + +	+ + + + + + + +	+ + + + + +	+ + + + + .	+ X + + +	+ + + + +	+ + + +	+ X + + +	+ + + +	+ +	+ + +	+ + X	+	+	+	+	+	+	+	+	+	+ + +	1
+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + .	+ + + + + + + X	+ + + + + +	+ + + + + +	+ + + + + +	+ + + + + .	+ + + +	+ + + +	+ + + +	+ + +	+ + +	+	+	+ X	+	+	+	+	+	+	+	+	+	+	7
+ + + + + + + +	+ + + + + + .	+ + + + + + + *	+ + + + + + +	+ + + + + + +	+ + + + +	+ + + + .	+ + + +	+ + + +	+ + + +	+ + + + + + + + + + + + + + + + + + + +	+ + +	+	+	+ X	+	+	+	+	+	+	+	+	+	+	
+ + + + + + + +	+ + + + + + .	+ + + + + + *	+ + + + +	+ + + + +	+ + + + +	+ + + +	+ + +	+ + +	+ + +	+ + + +	+	+	+	X											52
+ + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + *	+ + + + +	+ + + + + +	+ + + + +	+ + + + .	+ + +	+ + +	+ + +	+ + + +	+	+	+	-											2
++++++++	++++++	+ + + + + *	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+ + +	+ +	+++	++	+ +	+			T	+	+	+	+	+	+	+	+	+	+	51
+++++++++	+ + + + + + + + + + + + + + + + + + + +	+ + + + + *	+ + +	+ + + + +	+ + + +	+ +	++	+	+	+	+														17
+ + + + +	+ + + + + + + .	+ + + + X	+ + +	+ +	+	+	ı				+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	47 51
+ + + + +	+ + + + + +	+ + + + *	+ + +	+	+	+							Х							Х					$\frac{2}{2}$
+ + + +	+ + + +	+ + + X	+	+	+		т	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 1
+ + + +	+ + +	+ + X	+	+		+	+	+	+	+		+	+	-	+	+	+	+	+	-	+	_	+	+	40
+ + + +	+ + +	+ + + X	+	+																					
++++	+ +	+ + X			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
++	+	+ X		_					_																52
+		x	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	52
+				х	Х			А				Х				X X	X		X	Х					14
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 47
+	+	+	+	+	+	_	+	_	+	+	+	X	_	+	+	+	+	_	+	+	+	+	+	+	1 45
+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51 46
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	42
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 50
+ X	*	+	+	+	*	+	+	+	+	+	+	+	+ X	*	+	+ X	+ X	+	+	+	+	+	-	+	50 10
+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	52 1
X	X	X							X					X			X		X						11
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
																							X	X	5
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	_	+	_	+	+	+	+	+	_	2 40
+	+	+	+	+	+ X	+	+	+	+	+ X	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	47
X	X						X							Х		X	X			X				X	9
+	+	N	+ X	N	N	N	N	N	+	N	N	N	+	+	N	N	+ X	N	N	N	N	N	N	N	*52 5
*X	+ ¥	x	т Х	x X	*X	*	*X	*X	*X	*	*	*X	+	*X	*	*	Λ X	*	*	*	*X	*X	*	*	52 48
+		7	+	+	+	+	+	7	+	+	+	+	+	+	+	7	+	+	+	+	+	+	+	+	52
	NT	N.º	X	ħ.f	N T	N T	ħ.T	N.T	B.f	N.T	Ŋ.T	N.T	N.T	X	N.T	N.T	N.T	NT.	N .T	Ŋ.T	N.T	ħ.t	N.T	NT.	2
	IA	IN	IA	N X	IN	14	IA	IN	IA	IN	N	N	IA	IN	IN	N	14	IN	IA	N	IN	iN	IN	IA	*52 1
N																									
N	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	51
+																									
+	+	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	+ X	N	N	N	N	N	N	*52 1
+	X																								i
+		N	N	N7	N	N7	M	N	NI	NT.	M	ŊŢ	N	N7	N7	N	N [†]	N	N	N	M	M	N	N	*52
+ + x	N7		TA							14	7.4	14		74	TA	TA	14		14			īN	IA	14	1 20
	_	X	X	X N N N	+ N N N X X N N N N N N N N N N N	+ N N N N X X N N N N N N N N N N N N N	+ N N N N N N X X N N N N N N N N N N N	+ N N N N N N N X N N N N N N N N	+ N N N N N N N N X N N N N N N N N	+ N N N N N N N N N X N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N	+ N N N N N N N N N N N N N N N N N N N

^{*} Animals necropsied

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX: 25 ppm

			3		<i>-</i> 1	O1	. TA1	IIR	JU A	. 4	o F	, Pri	•													
ANIMAL NUMBER	5 0 5	5 8 5	5 0 1	4 9 9	5 2 9	5 8 1	5 3 5	5 2 7	5 9 7	5 2 5	5 0 7	5 5 7	5 4 7	5 3 3	5 8 9	5 8 7	5 5 9	5 6 9	5 9	5 0 3	5 4 9	5 6 7	5 7 5	5 9 1	5 4 3	5 1 1
WEEKS ON STUDY	0 5 8	0 6 3	0 7 1	0 7 4	0 7 4	0 7 9	0 8 1	0 8 3	0 8 3	0 8 4	0 8 6	0 8 8	0 8 9	0 9 1	9 2	0 9 5	9 6	9 7	9 7	0 9 8	9 8	9 8	9 8	9 8	9	1 0 0
INTEGUMENTARY SYSTEM Skin	+	N			1							_	_	N				_				_		_		
Squamous cell carcinoma Subcutaneous tissue		_										-								7		,	,	1		
Fibroma Fibrosarcoma	+	N	+ X	*	X	+	+	+	_	X	+	+	_	N	+	+	+	+	+	~	+	+	+	7	+	+
RESPIRATORY SYSTEM	_ _	_	+	+				_	_			_	+		_		_	_	+		_	+	+	_		
Carcinoma, NOS, metastatic Squamous cell carcinoma, metastatic Trachea	+	x	_	_	_	_	_	_	+	+	_	+	+	X +	+	+	_	+	+	, +	+	+	+	+	+	+
EMATOPOIETIC SYSTEM	- -																									
one marrow pleen	+	_	+	+	+	_	+	+	+	+	+	+	+	+	+	+	-	=	+	+	+	+	+	+	+	+
Leukemia, mononuclear cell ymph nodes hymus	++	_	+	+	++	+	+	+	++	+	++	+	++	++	+ +	++	-	+	++	F	+	+	++	+	+	+
IRCULATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NGESTIVE SYSTEM ahvary gland aver	+ +	+ +	++	++	+	+ +	+	+ +	++	++	++	+	++	+	+ + +	++	+	-	++	+ +	++	++	++	++	+	++
Neoplastic nodule Hepatocellular carcinoma ile duct		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	X +	+	+	X +
ancreas Acınar cell adenoma	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	_	-	+	+	+	+	+	+	+	+
sophagus comach	+ +	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
mall intestine arge intestine	++	_	_	_	+	<u>-</u>	÷ +	<u>-</u>	+	_	+	-	+	+	+	_	÷ -	-	+	+	<u>-</u>	<u>-</u>	++	+	<u>-</u>	++
RINARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+
Sarcoma, NOS idney/pelvis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	_	+	+	+	+	+	+	+	+
Transitional cell papilloma rinary bladder	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+
NDOCRINE SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma, NOS drenal	+	+	+	+	+	+	+	+	X +	+	+	+	X +	+	+	+	_	+	+	+	+	+	+	+	X	X +
Pheochromocytoma hyroid		_		_		_	_	_		_	X	_	·	_		x	_	X	X		_		+	X	_	X
C-cell adenoma		_		_	,			_				_	i	_			_	_		i	_	_	·		_	
arathyroid Adenoma, NOS				T.							_	т				Τ.	т		X				X			T .
ancreatic islets Islet cell adenoma Islet cell carcinoma	*	+	X	+	+	+	+	x	+	+	+	_	+	+	+	+	-	_	+	+	+	+	+	+	+	+
EPRODUCTIVE SYSTEM Iammary gland Fibroadenoma	+	N	N	+	N	+	N	+	N	N	N	N	+	+	N	+	+	+	N	N	+	+	+	+	N	+
estis Interstitial cell tumor	+	+	+	+	+	+	+	+	+	*X	+	+ X	+	*X	*X	*X	*X	*X	+ X	*X	*X	*X	X	*X	+	+ X
rostate reputial/clitoral gland	+ N	, N	, N	, N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	, +	+ N	+ N	+ N	+ N	+ N	+ N							
Carcinoma, NOS Adenoma, NOS	"	•	14	1,	1,	1,	•••	.,	٠,	1,	.,	**	1,	.,	.,	•	.,	.,	•			•	•	•	.,	X
ERVOUS SYSTEM	_ _					_				_		+	+	+	+		-	+			+	+	+	+	+	_
Glioma, NOS		7	7	-	7	•	7		т.	т	•	_	т.	,	_	•	r	1		Т	x		Ċ	'	,	ĺ
PECIAL SENSE ORGANS arderian gland	N	N	N	N	N	N	N	N	N	N	N	N	N		N	N	N	N	N	N	N	N	N	N	N	N
Carcinoma, NOS ymbal gland	N	+	N	N	N	N	N	N	N	N	N	N	N	X N	N	N	N	N	+	N	N	N	N	N	N	N
Carcinoma, NOS Squamous cell carcinoma Sebaceous adenoma		x																	x x							
ODY CAVITIES unica vaginalis Mesothelioma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X
LL OTHER SYSTEMS fultiple organs, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Malignant lymphoma, NOS Leukemia, mononuclear cell	х			X			x	X	X			x			X					Х			X			X

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: 25 ppm (Continued)

ANIMAL NUMBER	5 3 7	4 9 7	5 1 3	5 2 3	5 6 5	5 7 1	5 8 3	5 3 9	5 7 3	5 9 3	5 0 9	5 1 5	5 1 7	5 1 9	5 2 1	5 3 1	5 4 1	5 4 5	5 5 1	5 5 3	5 5 5	5 6 1	5 6 3	5 7 7	5 7 9	5 9 5	TOTAL
WEEKS ON STUDY	1 0 1	1 0 2	1 0 2	1 0 2	1 0 2	1 0 2	1 0 3	1 0 5	1 0 5	1 0 5	1 0 6	0 6	0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	0 6	0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	TISSUES
INTEGUMENTARY SYSTEM																											****
Skin Squamous cell carcinoma Subcutaneous tissue Fibroma Fibrosarcoma	+	+	+	+	+	+	+	+	+	* * * X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*52 1 *52 3 1
RESPIRATORY SYSTEM Lungs and bronchi Carcinoma, NOS, metastatic Squamous cell carcinoma, metastati Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 1 1 40
HEMATOPOIETIC SYSTEM	-																										
Bone marrow Spleen Leukemia, mononuclear cell Lymph nodes Thymus	+	+ X + +	+ + + +	+ + + +	++++	+++	++++	+ + + +	++++	+ + + +	+ + -	+ + + +	+ + + +	++++	+ + + +	+ X + +	+ + + +	++-	++++	+++++	++++	+ + + +	+ + + +	+ + + +	++++	+ + + +	40 48 2 48 42
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule	- + X	++	+ + X	+ + X	++	++	++	++	++	++	+ + X	+ + X	++	+++	+ + X	+ + X	+ + X	+ + X	+ + X	+ + X	++	++	+ + X	+	<i>+</i> +	+ + X	50 52 15
Hepatocellular carcinoma Bile duct Pancreas Acinar cell adenoma Esophagus	+ - +	+ + +	+++++	X + +	++++++	+++++	+ X +	+ + + +	+++++	+++++	X + +	+++++	++++	++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+ X -	+++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	++	+++++	+++++++++++++++++++++++++++++++++++++++	+ + +	3 52 48 2 48
Stomach Small intestine Large intestine	_ 	++	+++	+ + +	++++	+	+++	+++	++++	+ +	+ + +	+ + +	+++	+++	+++	+++	+++	++++	+++	+++	+++	+++	++++	+++	+++	++++	44 38 36
URINARY SYSTEM Kidney Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Kidney/pelvis Transitional cell papilloma Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51 1 50
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	+	+	+	+	+	+	+	+	* X	+	+	+ X	+	+	+	+ X	+	+	* X	+	+	+ X	+	+	52 9
Adrenal Pheochromocytoma	+	+	+	X	+	X	X	+	X	X	X	+	X	+	X,	+	X	+	+	X,	+	+	+	+	X X	X	51 18
Thyroid C cell adenoma Parathyroid	_	-	+	+	+	_	+	+	+	+	X +	+	+	X +	+	+	+	+	+	+	+	+	+	X +	+	+	35 3 50
Adenoma, NOS Pancreatic islets Islet cell adenoma Islet cell carcinoma	-	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+ X	+	* X	+ X	+	+	+	+	+	+	+	+	2 48 1 5
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	N	+	N	+	+	+	+	N	N	+	N	N	+	N	N	N	+	N	+ X	N	N	N	N	+	N	N	*52
Testis Interstitial cell tumor	+ X	*X	*X	X X	*X	*	*	+	*	*X	*X	*	*	*X	*X	*	*	*X	*	*X	*X	*X	*	X X	*X	*X	52 39
Prostate Preputsal/clitoral gland Carcinoma, NOS Adenoma, NOS	, N	, N	n N	, N	, N	N N	N +	N +	N +	, N	N N	'n	N X	N +	N X	N N	, N	† N	, N	N N	N +	N +	, N	N +	N N	'n	52 *52 1 2
NERVOUS SYSTEM Brain Ghoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	52 2
SPECIAL SENSE ORGANS Harderian gland	N	N	N	N	N		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N		*52
Carcinoma, NOS Zymbal gland Carcinoma, NOS Squamous cell carcinoma Sebaceous adenoma	N										N												N				1 *52 1 1 1
BODY CAVITIES Tunica vaginalis Mesothelioma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*52
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Leukemia, mononuclear cell	N X	N	N X	N	N	N X	N	N X	N	N	N	N	N	N X	N	N	N		N X		N	N		N X	N	N	*52 1 19

^{*} Animals necropsied

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX: 50 ppm

			_						ΕX		• г															
ANIMAL NUMBER	8 8 5	8 0 3	8 2 9	8 2 7	8 1 7	8	7 9 5	8 6 9	7 9 7	8 0 9	8 1 9	8 1 5	8 7 1	8 7 9	8 0 5	8 4 1	8 5 9	8 7 5	7 9	8 0 1	8 7 7	8 3 1	8 3 7	8 4 9	8 7	8 0 7
WEEKS ON STUDY	3 2	0 3 6	0 6 1	6	0 7 6	0 8 0	0 8 2	0 8 3	0 8 6	0 8 7	0 8 7	0 9 0	9	9	0 9 5	9 5	0 9 5	0 9 5	0 9 6	0 9 6	0 9 6	0 9 7	0 9 7	0 9 7	0 9 7	0 9 9
INTEGUMENTARY SYSTEM													_	-												
Skin Keratoacanthoma Subcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+	* X +	+ X	+	+	+
RESPIRATORY SYSTEM Lungs and bronch: Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	+	-+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X +	* X +
HEMATOPOIETIC SYSTEM Bone marrow Spieen Malignant lymphoma, NOS	+ +	++	++	++	++	+++	++	++	++	+++	+++	+ +	+++	++	+++	- * X	++	++	++	++	++	+++	+ +	++	+ +	+ +
Leukemia, mononuclear cell Lymph nodes Thymus Papillary carcinoma	++	+	+	++	_	++	+	++	_	+	++	+++	++	++	+	-	++	++	+	+++	+	+	+	+	+	++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule	++	++	+	+ + X	+	+	++	++	+ + X	++	+++	++	+	+	+ + X	+ + X	+ + X	+ + X	+ + X	-	++	+ + X	++	+ + X	+ + X	++
Henatocellular carcinoma Bile duct Pancreas Acinar cell adenoma	++	+	+	+	+	++	+	+	++	+	++	++	+	++	++	X + +	++	+	+	+	+	+	+	+	+	+
Esophagus Stomach Papillomatosis	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	⊦ ⊁ X	+	+	+	+	+	+
Small intestine Large intestine	++	+	+	+	+	+	_	_	_	_	+	+	_	_	+	_	+	+	_	+	+	-	_	_	+	+
URINARY SYSTEM Kidney Kidney/pelvis	+ +	++	+	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	+	++	++	++	++	++	+ +
Transitional cell papilloma Urinary bladder	+	+	+	+	+	+	-	+	+	+	+	+	-	+	+	+	+	+	+	٠	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	-	-	+	+	-	+	_	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adrenal Cortical adenoma Pheochromocytoma	+	+	+	+	+	+ X	+	+	-	+ X	+ X	+	+	+	+ X	+	+	+	+	+ X	+ X	+	+	+	X X	+
Pheochromocytoma, malignant Thyroid Follicular cell adenoma Follicular cell carcinoma	-	+	+	+	-	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	*
Parathyroid Adenoma, NOS Pancreatic islets	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X +	+
Islet cell adenoma Islet cell carcinoma																										
REPRODUCTIVE SYSTEM Mammary gland Testis	+ +	N +	+	+ +	++	++	+	N +	N +	+	++	N +	++	+ +	+ +	N +	+ +	++	+	+ +	++	+	+	++	N +	+
Interstitial cell tumor Prostate Adenoma, NOS	+	+	+		+	+	-	X	X +	+	+	X +	Х + Х	X +	X	X	<u>x</u>	X +	X +	+	X	X	X +	X +	X	X +
NERVOUS SYSTEM Brain	+	+	+	+	+	+		+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Sebaceous adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	+ X	N	И	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM Bone Liposarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X

^{+:} Tissue examined microscopically
-: Required tissue not examined microscopically
X: Tumor incidence
N: Necropsy, no autolysis, no microscopic examination
S: Animal missexed

No tissue information submitted
C: Necropsy, no histology due to protocol
A: Autolysis
H: Animal missing
B: No necropsy performed

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: 50 ppm (Continued)

ANIMAL NUMBER	8 3 9	8 6 7	8 4 3	8 4 5	8 7 3	7 9 3	8 5 5	8 5 7	8 1 3	8 5 3	8 9 5	8 2 1	8 6 1	8 6 3	8 1 1	8 2 3	8 2 5	8 3 3	8 3 5	8 4 7	8 5 1	8 6 5	8 3	8 8 9	8 9 1	8 9 3	TOTAL:
WEEKS ON STUDY	9 9	9 9	1 0 0	1 0 1	1 0 1	1 0 2	1 0 2	1 0 2	1 0 3	1 0 3	1 0 3	1 0 5	1 0 5	1 0 5	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	TISSUES
INTEGUMENTARY SYSTEM Skin														1.			,	_	1					1.			*52
Keratoacanthoma Subcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 *52 1
RESPIRATORY SYSTEM Lungs and bronch Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51 1 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen	++	++	++	++	++	++	++	++	++	++	++	++	+ +	++	++	++	+ +	++	++	++	++	++	++	++	++	++	51 52
Malignant lymphoma, NOS Leukemia, mononuclear cell Lymph nodes Thymus Papillary carcinoma	++	+ + X	++	++	++	+ +	X + +	++	+	++	++	+ +	++	++	++	++	++	++	++	+	++	++	+	-+	+	++	1 1 48 41 1
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
DIGESTIVE SYSTEM Salivary gland Liver	++	+ +	+	++	++	++	++	++	+ + X	++	++	++	++	+ + X	+ + X	+	++	+ + X	+ +	++	+	++	+	++	+	++	51 52
Neoplastic nodule Hepatocellular carcinoma Bile duct Pancreas	+ +	++	* + +	++	++	* + + +	* + +	+	+ +	* + +	X + +	+	++	* + +	* + +	+ +	+	* + + + + + + + + + + + + + + + + + + +	X + +	X + +	X + +	++	* + +	**************************************	X X + +	* + + + + + + + + + + + + + + + + + + +	26 4 52 51
Acınar cell adenoma Esophagus Stomach Papıllomatosis	++	+	+	+	+	+	+	++	+	+	++	+	++	+ +	+	+	+ +	+	++	+ +	X +	+	<i>+</i> +	++	+	+	1 46 44 1
Small intestine Large intestine	++	+	+	+	+	+	+	+	=	_	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	35 30
URINARY SYSTEM Kidney Kidney/pelvis Transitional cell papilloma	+ +	++	+	+	+ + X	+	+	+	+	+ + X	+	+	+	+	++	+	+	+	+ + X	+	+	+	+	++	+	+	52 52 3
Urnary bladder ENDOCRINE SYSTEM	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pituitary Adenoma, NOS Adrenal Cortical adenoma	+	+	+	+ X +	+	+ X +	+	+	+	+	+	+	+	+	+	+	+	* *	+	+	+ X +	+	+	+	+	+	47 4 51 1
Pheochromocytoma Pheochromocytoma, malignant Thyroid Follicular cell adenoma	X	+	X +	+	+	+	X + X	X +	X +	+	+	X +	X +	х + х	X +	+	+	X +	+	+	+	+	+	+	X +	X +	19 1 49 3
Follicular cell carcinoma Parathyroid Adenoma, NOS	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	X +	-	+	+	+	+	+	+	45 1
Pancreatic islets Islet cell adenoma Islet cell carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	*	X X	*	+	+	+	+ X	+	+	*	+	51 5 1
REPRODUCTIVE SYSTEM Mammary gland Testis	+ +	++	N +	N +	++	+	++	N +	++	N +	+	N +	N +	++	++	N + X	N +	N +	++	N +	N +	++	N +	N +	++	N +	*52 51
Interstitial cell tumor Prostate Adenoma, NOS	X + X	X +	X +	X +	X +	X +	X	X	X +	X +	X	X X	X +	X	X +	X +	X +	X +	X +	X +	X +	X +	X +	X +	X +	X +	42 47 3
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Zymbal gland Sebaceous adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*52 1
MUSCULOSKELETAL SYSTEM Bone Liposarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	*52
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, NOS Leukemia, mononuclear cell	N	N	N	N X	N	N	N	N	N	N X	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	*52 1 9

^{*} Animals necropsied

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
Skin: Papilloma or Squamous Cell	Papilloma or	Carcinoma				
Overall Rates (a)	3/52 (6%)	0/52 (0%)	1/52 (2%)	1/52 (2%)	1/52 (2%)	0/52 (0%)
Adjusted Rates (b)	6.8%	0.0%	2.8%	2.7%	5.3%	0.0%
Terminal Rates (c)	3/44 (7%)	0/37 (0%)	1/36 (3%)	1/37 (3%)	1/19 (5%)	0/15 (0%)
Week of First Observation	105	0/01 (0/0)	105	105	105	0.20 (0,0)
Life Table Tests (d)	P=0.458N	P = 0.153N	P = 0.379N	P = 0.369N	P = 0.629N	P = 0.361 N
Incidental Tumor Tests (d)	P = 0.458N	P = 0.153N	P = 0.379N	P = 0.369N	P = 0.629N	P = 0.361 N
Cochran-Armitage Trend Test (d)	P = 0.197N				,,,	
Fisher Exact Test (d)		P = 0.121 N	P = 0.309N	P=0.309N	P = 0.309N	P = 0.121 N
Subcutaneous Tissue: Fibroma						
Overall Rates (a)	4/52 (8%)	4/52 (8%)	3/52 (6%)	7/52 (13%)	3/52 (6%)	1/52 (2%)
Adjusted Rates (b)	8.3%	9.8%	8.3%	16.8%	9.4%	3.2%
Terminal Rates (c)	1/44(2%)	2/37 (5%)	3/36 (8%)	4/37 (11%)	1/19 (5%)	0/15 (0%)
Week of First Observation	84	101	105	79	74	97
Life Table Tests (d)	P = 0.452N	P = 0.568	P = 0.609N	P = 0.196	P = 0.527	P = 0.463 N
Incidental Tumor Tests (d)	P = 0.041 N	P = 0.440N	P = 0.511N	P = 0.414	P = 0.136N	P = 0.009N
Cochran-Armitage Trend Test (d)	P = 0.102N					
Fisher Exact Test (d)		P = 0.642	P = 0.500N	P = 0.263	P = 0.500N	P = 0.181N
Subcutaneous Tissue: Fibroma or I						
Overall Rates (a)	4/52 (8%)	4/52 (8%)	3/52 (6%)	7/52 (13%)	4/52 (8%)	1/52 (2%)
Adjusted Rates (b)	8.3%	9.8%	8.3%	16.8%	11.2%	3.2%
Terminal Rates (c)	1/44 (2%)	2/37 (5%)	3/36 (8%)	4/37 (11%)	1/19 (5%)	0/15 (0%)
Week of First Observation	84 D-0.510N	101 D=0.500	105	79 B=0.100	71 D=0.276	97 D=0.462N
Life Table Tests (d)	P = 0.513N	P = 0.568	P = 0.609N	P = 0.196	P = 0.376 P = 0.182N	P = 0.463N P = 0.009N
Incidental Tumor Tests (d)	P = 0.054N	P = 0.440N	P = 0.511N	P = 0.414	P = 0.182N	P=0.009N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.131 N	P = 0.642	P = 0.500N	P = 0.263	P = 0.642	P = 0.181N
Cubantana Timo Dilum Can						
Subcutaneous Tissue: Fibroma, San	,		0/50/00/	0/50/150()	A (E.O. 4.O.O)	1/59 (90%)
Overall Rates (a)	4/52 (8%)	4/52 (8%)	3/52 (6%)	8/52 (15%)	4/52 (8%)	1/52 (2%)
Adjusted Rates (b)	8.3%	9.8%	8.3%	18.4%	11.2% 1/19 (5%)	3.2%
Terminal Rates (c) Week of First Observation	1/44 (2%)	2/37 (5%)	3/36 (8%)	4/37 (11%)		0/15 (0%) 97
	84 D-0.400N	101	105	61 B-0.129	71 D-0.276	P = 0.463N
Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.490N	P = 0.568	P = 0.609N	P = 0.132 P = 0.300	P = 0.376	P = 0.463N P = 0.009N
	P = 0.047N P = 0.125N	P = 0.440N	P = 0.511N	P = 0.300	P = 0.182N	F = 0.009N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.125N	P = 0.642	P = 0.500N	P = 0.179	P = 0.642	P = 0.181N
			1 -0.00011	1 -0.110	1 - 0.042	1 - 0.1011
Integumentary System: Fibroma or			4/E0 (00%)	H/E0/10/	A/E9 (90)	1/50 (00)
Overall Rates (a)	4/52 (8%)	4/52 (8%)	4/52 (8%)	7/52 (13%)	4/52 (8%)	1/52 (2%)
Adjusted Rates (b)	8.3%	9.8%	11.1%	16.8%	11.2%	3.2%
Terminal Rates (c)	1/44 (2%)	2/37 (5%)	4/36 (11%)	4/37 (11%)	1/19 (5%)	0/15 (0%) 97
Week of First Observation	84 D = 0.471N	101	105	79 D0.100	71 B=0.276	
Life Table Tests (d)	P = 0.471N	P = 0.568	P = 0.526	P = 0.196	P = 0.376	P = 0.463N
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.046N	P = 0.440N	P = 0.623	P = 0.414	P = 0.182N	P = 0.009N
Fisher Exact Test (d)	P = 0.105N	P = 0.642	P = 0.642	P = 0.263	P = 0.642	P = 0.181N
Integumentary System: Fibroma, S	arcoma or F	ihrosarcoma				
Overall Rates (a)	4/52 (8%)	4/52 (8%)	4/52 (8%)	8/52 (15%)	4/52 (8%)	1/52 (2%)
Overall Males (a)	8.3%	9.8%	11.1%	18.4%	11.2%	3.2%
			4/36 (11%)	4/37 (11%)	1/19 (5%)	0/15 (0%)
Adjusted Rates (b)		2/37 (5%)	44/300 (1 1 2/0 1			
Adjusted Rates (b) Terminal Rates (c)	1/44(2%)	2/37 (5%) 101				
Adjusted Rates (b) Terminal Rates (c) Week of First Observation	1/44 (2%) 84	101	105	61	71	97
Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d)	1/44 (2%) 84 P=0.451N	101 P=0.568	105 $P = 0.526$	61 $P = 0.132$	71 P=0.376	97 P=0.463N
Adjusted Rates (b) Terminal Rates (c) Week of First Observation	1/44 (2%) 84	101	105	61	71	

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX (Continued)

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
Hematopoietic System: Mononucle	ar Cell Leuk	emia				
Overall Rates (a)	16/52 (31%)	17/52 (33%)	15/52 (29%)	22/52 (42%)	21/52 (40%)	10/52 (19%)
Adjusted Rates (b)	35.4%	38.5%	36.9%	48.6%	60.7%	31.1%
Terminal Rates (c)	15/44 (34%)	11/37 (30%)	11/36 (31%)	14/37 (38%)	8/19 (42%)	1/15 (7%)
Week of First Observation	85	85	84	91	58	66
Life Table Tests (d)	P = 0.046	P = 0.317	P = 0.420	P = 0.066	P = 0.001	P = 0.264
Incidental Tumor Tests (d)	P = 0.101 N	P = 0.484	P = 0.573	P = 0.160	P = 0.152	P = 0.195N
Cochran-Armitage Trend Test (d)	P = 0.122N					
Fisher Exact Test (d)		P = 0.500	P=0.500N	P = 0.154	P = 0.206	P=0.129N
Liver: Neoplastic Nodule						
Overall Rates (a)	3/52 (6%)	5/52 (10%)	5/52 (10%)	14/52 (27%)	15/52 (29%)	26/52 (50%)
Adjusted Rates (b)	6.8%	12.6%	13.9%	36.5%	60.6%	81.4%
Terminal Rates (c)	3/44 (7%)	4/37 (11%)	5/36 (14%)	13/37 (35%)	10/19 (53%)	10/15 (67%)
Week of First Observation	105	85	105	91	98	66
Life Table Tests (d)	P<0.001	P = 0.279	P = 0.251	P = 0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.278	P = 0.251	P = 0.002	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001					
Fisher Exact Test (d)		P = 0.358	P = 0.358	P = 0.003	P = 0.002	P<0.001
Liver: Hepatocellular Carcinoma						
Overall Rates (a)	3/52 (6%)	0/52 (0%)	2/52 (4%)	2/52 (4%)	3/52 (6%)	4/52 (8%)
Adjusted Rates (b)	6.8%	0.0%	5.6%	5.4%	12.4%	20.3%
Terminal Rates (c)	3/44 (7%)	0/37 (0%)	2/36 (6%)	2/37 (5%)	1/19 (5%)	2/15 (13%)
Week of First Observation	105	D 0.17037	105	105	100	95
Life Table Tests (d)	P = 0.002	P = 0.153N	P = 0.591N	P = 0.579N	P = 0.302	P = 0.094
Incidental Tumor Tests (d)	P = 0.047	P = 0.153N	P = 0.591N	P = 0.579N	P = 0.601	P = 0.297
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.105	P = 0.121N	P = 0.500N	P = 0.500N	P = 0.661	P = 0.500
Liver: Neoplastic Nodule or Hepa	tocellular Cai	rcinoma				
Overall Rates (a)	6/52 (12%)	5/52 (10%)	6/52 (12%)	15/52 (29%)	16/52 (31%)	28/52 (54%)
Adjusted Rates (b)	13.6%	12.6%	16.7%	39.2%	62.1%	86.1%
Terminal Rates (c)	6/44 (14%)	4/37 (11%)	6/36 (17%)	14/37 (38%)	10/19 (53%)	11/15 (73%)
Week of First Observation	105	85	105	91	98	66
Life Table Tests (d)	P<0.001	P = 0.607N	P = 0.475	P = 0.008	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.609N	P = 0.475	P = 0.010	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001	2 0.0001.	- 01110	2 0.020		
Fisher Exact Test (d)	1 101001	P = 0.500 N	P = 0.620	P = 0.024	P = 0.015	P<0.001
Pancreas: Acinar Cell Adenoma						
Overall Rates (a)	3/51 (6%)	0/50 (0%)	0/51 (0%)	1/47 (2%)	2/48 (4%)	1/51 (2%)
Adjusted Rates (b)	6.6%	0.0%	0.0%	2.8%	10.0%	6.7%
Terminal Rates (c)	2/44 (5%)	0/37 (0%)	0/35 (0%)	1/36 (3%)	1/19 (5%)	1/15 (7%)
Week of First Observation	104			105	103	105
Life Table Tests (d)	P = 0.170	P = 0.155N	P = 0.169N	P = 0.384N	P = 0.497	P = 0.719N
Incidental Tumor Tests (d)	P = 0.472	P = 0.100N	P = 0.166N	P = 0.330N	P = 0.539N	P = 0.457N
Cochran-Armitage Trend Test (d)	P = 0.524					
Fisher Exact Test (d)		P = 0.125N	P = 0.121 N	P = 0.340N	P = 0.529N	P = 0.309N
Kidney: Transitional Cell Papillon						
Overall Rates (a)	0/51 (0%)	0/51 (0%)	0/52 (0%)	0/52 (0%)	1/51 (2%)	3/52 (6%)
Adjusted Rates (b)	0.0%	0.0%	0.0%	0.0%	3.0%	15.7%
Terminal Rates (c)	0/44 (0%)	0/37 (0%)	0/36 (0%)	0/37 (0%)	0/19 (0%)	1/15 (7%)
Week of First Observation					98	101
Life Table Tests (d)	P<0.001	(e)	(e)	(e)	P = 0.425	P = 0.018
Incidental Tumor Tests (d)	P = 0.018	(e)	(e)	(e)	P = 0.742	P = 0.193
Cochran-Armitage Trend Test (d)	P = 0.002					
Fisher Exact Test (d)	1 -0.002	(e)	(e)	(e)	P = 0.500	P = 0.125

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX (Continued)

Dituitary Gland: Adenoma		Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
Overall Rates (a)	Pituitary Gland: Adenoma					`	
Adjusted Rates (b) 25.4% 27.8% 30.3% 26.7% 34.8% 15.0%		12/52 (23%)	11/52 (21%)	12/51 (24%)	10/50 (20%)	9/52 (17%)	3/47 (6%)
Terminal Rates (c)		,					
Life Table Tests (d)							
Incidental Tumor Tests (d)							
Page	Life Table Tests (d)	P = 0.381N	P = 0.517	P = 0.372	P = 0.586	P = 0.205	P = 0.373N
Pituitary Gland: Adenoma or Carcinoma Overall Rates (a) Adjusted Rates (b) 25.4% 27.8% 31.9% 26.7% 34.8% 15.0% 10.1% 10.	Incidental Tumor Tests (d)			P = 0.434	P = 0.488N	P = 0.434N	P = 0.016N
Pituitary Gland: Adenoma or Carcinoma Overall Rates (a) Adjusted Rates (b) 25.4% 27.8% 31.9% 26.7% 34.8% 15.0% 10.1% 10.	Cochran-Armitage Trend Test (d)	P = 0.009N		-			
Overail Rates (a) 12/52 (23%) 11/52 (21%) 13/51 (25%) 10/50 (20%) 9/52 (17%) 3/47 (6%)			P = 0.500N	P = 0.571	P = 0.446N	P = 0.313N	P = 0.019N
Adjusted Rates (b) 25.4% 27.8% 31.9% 26.7% 34.8% 15.0%							
Terminal Rates (c)				13/51 (25%)			
Week of First Observation							
Life Table Tests (d)							
Incidental Tumor Tests (d)					. –		
Cochran-Armitage Trend Test (d)							
Packer P			P = 0.452N	P = 0.394	P = 0.488N	P = 0.434N	P = 0.016N
Adrenal Gland: Adenoma or Cortical Adenoma Overall Rates (a) 0/51 (0%) 2/52 (4%) 3/52 (6%) 0/52 (0%) 0/51 (0%) 1/51 (2%) Adjusted Rates (b) 0.0% 4.0% 8.3% 0.0% 0.0% 3.2% Terminal Rates (c) 0/44 (0%) 0/37 (0%) 3/36 (8%) 0/37 (0%) 0/19 (0%) 0/15 (0%) Week of First Observation Life Table Tests (d) P=0.524N P=0.242 P=0.088 (e) (e) P=0.413 Incidental Tumor Tests (d) P=0.327N Fisher Exact Test (d) P=0.327N Fisher Exact Test (d) P=0.524N P=0.327N Fisher Exact Test (d) P=0.524N P=0.327N Fisher Exact Test (d) P=0.525 P=0.125 (e) (e) P=0.500 Adrenal Gland: Cortical Adenoma or Carcinoma Overall Rates (a) 0/51 (0%) 3/52 (6%) 2/52 (4%) 1/52 (2%) 0/51 (0%) 1/51 (2%) Adjusted Rates (b) 0.0% 6.3% 5.6% 2.7% 0.0% 3.2% Terminal Rates (c) 0/44 (0%) 0/37 (0%) 2/36 (6%) 1/37 (3%) 0/19 (0%) 0/15 (0%) Week of First Observation 85 105 105 97 Life Table Tests (d) P=0.523N P=0.119 P=0.195 P=0.465 (e) P=0.807 Cochran-Armitage Trend Test (d) P=0.300N Fisher Exact Test (d) P=0.300N Fisher Exact Test (d) P=0.300N Fisher Exact Test (d) P=0.451N P=0.195 P=0.252 P=0.505 (e) P=0.500 Adrenal Gland: Adenoma or Cortical Adenoma or Carcinoma Overall Rates (c) 0.0% 6.3% 8.3% 2.7% 0.0% 3.2% Terminal Rates (c) 0/44 (0%) 0/37 (0%) 3/36 (8%) 1/37 (3%) 0/19 (0%) 1/51 (2%) Adjusted Rates (b) 0.0% 6.3% 8.3% 2.7% 0.0% 3.2% Terminal Rates (c) 0/44 (0%) 0/37 (0%) 3/36 (8%) 1/37 (3%) 0/19 (0%) 1/51 (2%) Adjusted Rates (b) 0.0% 6.3% 8.3% 2.7% 0.0% 3.2% Terminal Rates (c) 0/44 (0%) 0/37 (0%) 3/36 (8%) 1/37 (3%) 0/19 (0%) 1/51 (0%) 3.2% Terminal Rates (c) 0/44 (0%) 0/37 (0%) 3/36 (8%) 1/37 (3%) 0/19 (0%) 1/51 (0%) 3.2% Terminal Rates (c) 0/44 (0%) 0/37 (0%) 3/36 (8%) 1/37 (3%) 0/19 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (2%) 0/51 (0%) 1/51 (0%) 1/51 (0%) 1/51 (0%) 1/51 (0%) 1/		P = 0.007N			D 0 1 1037	D 0.04037	D 001017
Overall Rates (a)	Fisher Exact Test (d)		P = 0.500N	P = 0.478	P = 0.446N	P = 0.313N	P=0.019N
Adjusted Rates (b) 0.0% 4.0% 9.38.3% 0.0% 0.0% 3.2% Terminal Rates (c) 0/44 (0%) 0/37 (0%) 3/36 (8%) 0/37 (0%) 0/19 (0%) 0/15 (0%) Week of First Observation 85 105 97 Life Table Tests (d) P=0.524N P=0.242 P=0.088 (e) (e) P=0.413 Incidental Tumor Tests (d) P=0.245N P=0.242 P=0.088 (e) (e) P=0.807 Cochran-Armitage Trend Test (d) P=0.327N Fisher Exact Test (d) P=0.328N Fisher Exact Test (d) P=0.328N Fisher Exact Test (d) P=0.300N Fisher Exact Test (d) P=0.461N P=0.125 P=0.252 P=0.505 (e) P=0.500 Fisher Exact Test (d) P=0.461N P=0.125 P=0.088 P=0.465 (e) P=0.500 Fisher Exact Test (d) P=0.461N P=0.119 P=0.088 P=0.465 (e) P=0.500 Fisher Exact Test (d) P=0.461N P=0.119 P=0.088 P=0.465 (e) P=0.807 Cochran-Armitage Trend Test (d) P=0.143N P=0.119 P=0.088 P=0.465 (e) P=0.807 Cochran-Armitage Trend Test (d) P=0.143N P=0.119 P=0.088 P=0.465 (e) P=0.807 Cochran-Armitage Trend Test (d) P=0.143N P=0.119 P=0.088 P=0.465 (e) P=0.807 Cochran-Armitage Trend Test (d) P=0.143N P=0.119 P=0.088 P=0.465 (e) P=0.500 Fisher Exact Test (d) P=0.226N Fisher Exact Test (d) P=0.143N P=0.125 P=0.125 P=0.505 (e) P=0.500 Fisher Exact Test (d) P=0.143N P=0.119 P=0.088 P=0.465 (e) P=0.807 Cochran-Armitage Trend Test (d) P=0.125 P=0.125 P=0.505 (e) P=0.500 P=0.500 Fisher Exact Test (d) P=0.126N P=0.125 P=0.125 P=0.505 (e) P=0.500 P=0.001 P=0.500 P=0.001 P=0.500 P=0.001 P=0.500 P=0.001 P=0.50	Adrenal Gland: Adenoma or Corti	cal Adenoma					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Overall Rates (a)	0/51 (0%)	2/52 (4%)	3/52 (6%)	0/52 (0%)	0/51 (0%)	1/51 (2%)
Week of First Observation		0.0%	4.0%	8.3%		0.0%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0/44(0%)	0/37 (0%)	3/36 (8%)	0/37 (0%)	0/19 (0%)	0/15 (0%)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Week of First Observation		85	105			97
Cochran-Armitage Trend Test (d)				P = 0.088	(e)	(e)	P = 0.413
Adrenal Gland: Cortical Adenoma or Carcinoma P=0.252 P=0.125 (e) (e) P=0.500 Adrenal Gland: Cortical Adenoma or Carcinoma Overall Rates (a) 0/51 (0%) 3/52 (6%) 2/52 (4%) 1/52 (2%) 0/51 (0%) 1/51 (2%) Adjusted Rates (b) 0.0% 6.3% 5.6% 2.7% 0.0% 3.2% Terminal Rates (c) 0/44 (0%) 0/37 (0%) 2/36 (6%) 1/37 (3%) 0/19 (0%) 0/15 (0%) Week of First Observation 85 105 105 97 105 97 Life Table Tests (d) P=0.1271N P=0.119 P=0.195 P=0.465 (e) P=0.413 Incidental Tumor Tests (d) P=0.171N P=0.231 P=0.195 P=0.465 (e) P=0.807 Cochran-Armitage Trend Test (d) P=0.300N P=0.125 P=0.252 P=0.505 (e) P=0.500 Adrenal Gland: Adenoma or Cortical Adenoma or Carcinoma Overall Rates (a) 0/51 (0%) 3/52 (6%) 3/52 (6%) 1/52 (2%) 0/51 (0%) 1/51 (2%) Adjusted			P = 0.332	P = 0.088	(e)	(e)	P = 0.807
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P = 0.327N	P = 0.252	P = 0.125	(e)	(e)	P = 0.500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Adrenal Gland: Cortical Adenoma	or Carcinom	ıa				
Adjusted Rates (b)				2/52 (4%)	1/52 (2%)	0/51 (0%)	1/51 (2%)
Terminal Rates (c) 0/44 (0%) 0/37 (0%) 2/36 (6%) 1/37 (3%) 0/19 (0%) 0/15 (0%) Week of First Observation 85 105 105 97 Life Table Tests (d) P = 0.523N P = 0.119 P = 0.465 (e) P = 0.413 Incidental Tumor Tests (d) P = 0.171N P = 0.231 P = 0.195 P = 0.465 (e) P = 0.807 Cochran-Armitage Trend Test (d) P = 0.300N P = 0.125 P = 0.252 P = 0.505 (e) P = 0.807 Adrenal Gland: Adenoma or Cortical Adenoma Or Carcinoma Overall Rates (a) 0/51 (0%) 3/52 (6%) 3/52 (6%) 1/52 (2%) 0/51 (0%) 1/51 (2%) Adjusted Rates (b) 0.0% 6.3% 8.3% 2.7% 0.0% 3.2% Terminal Rates (c) 0/44 (0%) 0/37 (0%) 3/36 (8%) 1/37 (3%) 0/19 (0%) 0/15 (0%) Week of First Observation 85 105 105 97 Life Table Tests (d) P = 0.143N P = 0.119 P = 0.088 P = 0.465 (e)						0.0%	3.2%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0, 11 (0,0)					
$\begin{array}{c} \mbox{Incidental Tumor Tests (d)} \\ \mbox{Cochran-Armitage Trend Test (d)} \\ \mbox{Fisher Exact Test (d)} \\ \mbox{Fisher Exact Test (d)} \\ \mbox{P} = 0.300N \\ \mbox{Fisher Exact Test (d)} \\ \mbox{P} = 0.300N \\ \mbox{Fisher Exact Test (d)} \\ \mbox{P} = 0.125 \\ \mbox{P} = 0.252 \\ \mbox{P} = 0.505 \\ \mbox{P} = 0.505 \\ \mbox{P} = 0.500 \\ \mbox{Adrenal Gland: Adenoma or Cortical Adenoma or Carcinoma} \\ \mbox{Overall Rates (a)} \\ \mbox{Overall Rates (a)} \\ \mbox{Adjusted Rates (b)} \\ \mbox{O.0\%} \\ \mbox{Adjusted Rates (b)} \\ \mbox{O.0\%} \\ \m$		P = 0.523N				(e)	
$ \begin{array}{c} Cochran-Armitage\ Trend\ Test\ (d) \\ Fisher\ Exact\ Test\ (d) \\ \hline \\ Adrenal\ Gland;\ Adenoma\ or\ Cortical\ Adenoma\ or\ Carcinoma \\ \hline Overall\ Rates\ (a) \\ Overall\ Rates\ (a) \\ Adjusted\ Rates\ (b) \\ Cochran-Rrmitage\ Trend\ Test\ (d) \\ \hline \\ Cochran-Armitage\ Trend\ Test\ (d) \\ \hline \\ Cochran-Rrmitage\ Test\ (d) \\ \hline \\ Cochran-Rrmitage\ Trend\ Test\ (d) \\ \hline \\ Cochran-Armitage\ Trend\ Test\ (d) \\ \hline \\ Cochran-Armit$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,,,,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 0.5001	P = 0.125	P = 0.252	P = 0.505	(e)	P = 0.500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Adrenal Gland: Adenoma or Corti	cal Adenoma	or Carcinon	ıa			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1/52 (2%)	0/51 (0%)	1/51 (2%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Adjusted Rates (b)	0.0%	6.3%	8.3%	2.7%	0.0%	3.2%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Terminal Rates (c)	0/44 (0%)	0/37 (0%)	3/36 (8%)	1/37 (3%)	0/19 (0%)	0/15 (0%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			85	105			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Life Table Tests (d)	P = 0.451N	P = 0.119	P = 0.088	P = 0.465	(e)	P = 0.413
Fisher Exact Test (d) $P=0.125 P=0.125 P=0.505 (e) P=0.500$ Adrenal Gland: Pheochromocytoma Overall Rates (a) 8/51 (16%) 7/52 (13%) 13/52 (25%) 11/52 (21%) 18/51 (35%) 19/51 (37% Adjusted Rates (b) 18.2% 16.4% 32.0% 26.6% 61.5% 65.2% Terminal Rates (c) 8/44 (18%) 4/37 (11%) 9/36 (25%) 8/37 (22%) 9/19 (47%) 7/15 (47%) Week of First Observation 105 86 79 86 80 Life Table Tests (d) P<0.001 P=0.599 P=0.075 P=0.192 P<0.001 P<0.001 Incidental Tumor Tests (d) P<0.001 P=0.524N P=0.117 P=0.263 P=0.003 P=0.004 Cochran-Armitage Trend Test (d) P<0.001	Incidental Tumor Tests (d)	P = 0.143N	P = 0.231	P = 0.088	P = 0.465	(e)	P = 0.807
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cochran-Armitage Trend Test (d)	P = 0.226N					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fisher Exact Test (d)		P = 0.125	P = 0.125	P = 0.505	(e)	P = 0.500
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							19/51 (37%)
Week of First Observation 105 86 86 79 86 80 Life Table Tests (d) P<0.001				32.0%			
Life Table Tests (d) P<0.001 P=0.599 P=0.075 P=0.192 P<0.001 P<0.001 Incidental Tumor Tests (d) P<0.001 P=0.524N P=0.117 P=0.263 P=0.003 P=0.004 Cochran-Armitage Trend Test (d) P<0.001		8/44 (18%)	4/37 (11%)				
Incidental Tumor Tests (d) P<0.001 P=0.524N P=0.117 P=0.263 P=0.003 P=0.004 Cochran-Armitage Trend Test (d) P<0.001							
Cochran-Armitage Trend Test (d) P<0.001							
			P = 0.524N	P = 0.117	P = 0.263	P = 0.003	P = 0.004
Fisher Exact Test (d) $P = 0.484N$ $P = 0.177$ $P = 0.323$ $P = 0.020$ $P = 0.012$		P<0.001	.			D 0.000	D 0.010
	Fisher Exact Test (d)		P = 0.484N	P = 0.177	P = 0.323	P = 0.020	P = 0.012

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX (Continued)

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
Adrenal Gland: Pheochromocytom	a or Maligna	nt Pheochro	mocytoma			
Overall Rates (a)	10/51 (20%)	7/52 (13%)	13/52 (25%)	12/52 (23%)	18/51 (35%)	20/51 (39%)
Adjusted Rates (b)	22.7%	16.4%	32.0%	29.2%	61.5%	66.4%
Terminal Rates (c)	10/44 (23%)	4/37 (11%)	9/36 (25%)	9/37 (24%)	9/19 (47%)	7/15 (47%)
Week of First Observation	105	86	86	79	86	80
Life Table Tests (d)	P<0.001	P = 0.423N	P = 0.164	P = 0.258	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.334N	P = 0.236	P = 0.336	P = 0.008	P = 0.009
Cochran-Armitage Trend Test (d)	P = 0.001					
Fisher Exact Test (d)		P = 0.283N	P = 0.338	P = 0.425	P = 0.060	P = 0.025
Thyroid Gland: Follicular Cell Ade	enoma					
Overall Rates (a)	0/51 (0%)	0/50 (0%)	0/47 (0%)	1/47 (2%)	0/35 (0%)	3/49 (6%)
Adjusted Rates (b)	0.0%	0.0%	0.0%	2.7%	0.0%	14.4%
Terminal Rates (c)	0/44(0%)	0/37 (0%)	0/36(0%)	1/37 (3%)	0/18 (0%)	1/15 (7%)
Week of First Observation				105		99
Life Table Tests (d)	P<0.001	(e)	(e)	P = 0.465	(e)	P = 0.024
Incidental Tumor Tests (d)	P = 0.017	(e)	(e)	P = 0.465	(e)	P = 0.193
Cochran-Armitage Trend Test (d)	P = 0.006					
Fisher Exact Test (d)		(e)	(e)	P = 0.480	(e)	P = 0.114
Thyroid Gland: Follicular Cell Ade	enoma or Car	rcinoma				
Overall Rates (a)	0/51 (0%)	1/50 (2%)	0/47 (0%)	1/47 (2%)	0/35 (0%)	4/49 (8%)
Adjusted Rates (b)	0.0%	2.7%	0.0%	2.7%	0.0%	20.5%
Terminal Rates (c)	0/44(0%)	1/37 (3%)	0/36 (0%)	1/37 (3%)	0/18 (0%)	2/15 (13%)
Week of First Observation		105		105		99
Life Table Tests (d)	P<0.001	P = 0.465	(e)	P = 0.465	(e)	P = 0.005
Incidental Tumor Tests (d)	P = 0.004	P = 0.465	(e)	P = 0.465	(e)	P = 0.048
Cochran-Armitage Trend Test (d)	P = 0.005					
Fisher Exact Test (d)		P = 0.495	(e)	P = 0.480	(e)	P = 0.054
Thyroid Gland: C-Cell Adenoma						
Overall Rates (a)	5/51 (10%)	4/50 (8%)	2/47 (4%)	5/47 (11%)	3/35 (9%)	0/49 (0%)
Adjusted Rates (b)	11.4%	10.3%	5.6%	13.1%	16.7%	0.0%
Terminal Rates (c)	5/44 (11%)	3/37 (8%)	2/36 (6%)	4/37 (11%)	3/18 (17%)	0/15 (0%)
Week of First Observation	105	103	105	102	105	
Life Table Tests (d)	P = 0.338N	P = 0.603 N	P = 0.304N	P = 0.517	P = 0.442	P = 0.206N
Incidental Tumor Tests (d)	P = 0.181N	P = 0.550N	P = 0.304N	P = 0.541	P = 0.442	P = 0.206N
Cochran-Armitage Trend Test (d)	P = 0.059N					
Fisher Exact Test (d)		P = 0.513N	P = 0.253N	P = 0.576	P = 0.580N	P = 0.031N
Thyroid Gland: C-Cell Carcinoma						
Overall Rates (a)	3/51 (6%)	2/50 (4%)	2/47 (4%)	2/47 (4%)	0/35 (0%)	0/49 (0%)
Adjusted Rates (b)	6.8%	5.4%	5.6%	5.0%	0.0%	0.0%
Terminal Rates (c)	3/44 (7%)	2/37 (5%)	2/36 (6%)	1/37 (3%)	0/18 (0%)	0/15 (0%)
Week of First Observation	105	105	105	100	D 0 04 037	D 0.00137
Life Table Tests (d)	P = 0.149N	P = 0.579N	P = 0.591N	P = 0.573N	P = 0.316N	P = 0.361N
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.093N P = 0.051N	P = 0.579N	P = 0.591N	P = 0.546N	P = 0.316N	P = 0.361N
Fisher Exact Test (d)	r = 0.03114	P = 0.509N	P = 0.539N	P = 0.539N	P = 0.203 N	P = 0.129N
Thyroid Gland: C-Cell Adenoma of	r Carcinoma					
Overall Rates (a)	8/51 (16%)	6/50 (12%)	4/47 (9%)	7/47 (15%)	3/35 (9%)	0/49 (0%)
Adjusted Rates (b)	18.2%	15.6%	11.1%	17.7%	16.7%	0.0%
Terminal Rates (c)	18.2% 8/44 (18%)	5/37 (14%)	4/36 (11%)	5/37 (14%)	3/18 (17%)	0.0%
Week of First Observation	105	103	105	100	105	0/10 (070)
Life Table Tests (d)						D=0.009N
Incidental Tumor Tests (d)	P = 0.126N P = 0.043N	P = 0.521N P = 0.476N	P = 0.287N P = 0.287N	P = 0.580 P = 0.604N	P = 0.588N P = 0.588N	P = 0.092N P = 0.092N
Cochran-Armitage Trend Test (d)	P = 0.043N P = 0.008N	F-U.4/019	F-0.40(IN	r = 0.0041N	F-0.00019	F - 0.094N
Fisher Exact Test (d)	1 - 0.00014	P = 0.403N	P = 0.220N	P = 0.569N	P = 0.265N	P = 0.003N
		- 0.40014	7 -0,22014	2 - 0.00514	1 -0.20014	1 - 0.00014

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX (Continued)

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
Pancreatic Islets: Islet Cell Adeno	ma				· · · · · · · · · · · · · · · · · · ·	
Overall Rates (a)	8/51 (16%)	3/50 (6%)	7/51 (14%)	4/47 (9%)	1/48 (2%)	5/51 (10%)
Adjusted Rates (b)	17.1%	8.1%	18.5%	10.5%	5.3%	33.3%
Terminal Rates (c)	6/44 (14%)	3/37 (8%)	5/35 (14%)	3/36 (8%)	1/19 (5%)	5/15 (33%)
Week of First Observation	84	105	90	100	105	105
Life Table Tests (d)	P = 0.246	P = 0.161N	P = 0.540	P = 0.283N	P = 0.155N	P = 0.248
Incidental Tumor Tests (d)	P = 0.537	P = 0.130N	P = 0.541N	P = 0.198N	P = 0.046N	P = 0.473
Cochran-Armitage Trend Test (d)	P = 0.235N	1 0.10011	1 - 0.04111	1 - 0.10011	1 0.01011	
Fisher Exact Test (d)	1 - 0.20021	P = 0.106N	P=0.500N	P = 0.220N	P = 0.019N	P = 0.277N
Pancreatic Islets: Islet Cell Carcin	ioma					
Overall Rates (a)	6/51 (12%)	15/50 (30%)	4/51 (8%)	9/47 (19%)	5/48 (10%)	1/51 (2%)
Adjusted Rates (b)	13.2%	36.2%	11.4%	24.2%	19.3%	6.7%
Terminal Rates (c)	5/44 (11%)	11/37 (30%)	4/35 (11%)	8/36 (22%)	3/19 (16%)	1/15 (7%)
Week of First Observation	98	97	105	102	71	105
Life Table Tests (d)	P = 0.171N	P = 0.011	P = 0.521N	P = 0.170	P = 0.315	P = 0.366N
Incidental Tumor Tests (d)	P = 0.021N	P = 0.027	P = 0.518N	P = 0.202	P = 0.639	P = 0.216N
Cochran-Armitage Trend Test (d)	P = 0.004N	. 0.021	1 0102011	- 0.202	- 0.000	
Fisher Exact Test (d)	1 -0.00411	P = 0.021	P = 0.370N	P = 0.232	P = 0.543 N	P = 0.056N
Pancreatic Islets: Islet Cell Adeno	ma or Carcin	oma				
Overall Rates (a)	14/51 (27%)	18/50 (36%)	11/51 (22%)	13/47 (28%)	6/48 (13%)	6/51 (12%)
Adjusted Rates (b)	29.5%	43.6%	29.4%	33.9%	24.4%	40.0%
Terminal Rates (c)	11/44 (25%)	14/37 (38%)	9/35 (26%)	11/36 (31%)	4/19 (21%)	6/15 (40%)
Week of First Observation	84	97	90	100	71	105
Life Table Tests (d)	P = 0.429N	P = 0.133	P = 0.570N	P = 0.455	P = 0.472N	P = 0.474
Incidental Tumor Tests (d)	P = 0.053N	P = 0.249	P = 0.454N	P = 0.572	P = 0.109N	P = 0.439N
Cochran-Armitage Trend Test (d)	P = 0.003N	1 - 0.240	1 -0.40411	1 -0.012	1 -0.10011	1 0.1001
Fisher Exact Test (d)	1 - 0.00011	P = 0.239	P = 0.323N	P = 0.580	P = 0.054N	P = 0.040 N
Mammary: Fibroadenoma						
Overall Rates (a)	1/52 (2%)	1/52 (2%)	1/52 (2%)	5/52 (10%)	1/52 (2%)	0/52 (0%)
Adjusted Rates (b)	2.3%	2.7%	2.4%	12.9%	5.3%	0.0%
Terminal Rates (c)	1/44 (2%)	1/37 (3%)	0/36 (0%)	4/37 (11%)	1/19 (5%)	0/15(0%)
Week of First Observation	105	105	91	100	105	
Life Table Tests (d)	P = 0.538N	P = 0.723	P = 0.718	P = 0.072	P = 0.564	P = 0.714N
Incidental Tumor Tests (d)	P = 0.354N	P = 0.723	P = 0.663N	P = 0.089	P = 0.564	P = 0.714N
Cochran-Armitage Trend Test (d)	P = 0.226N					
Fisher Exact Test (d)		P = 0.752	P = 0.752	P = 0.102	P = 0.752	P = 0.500N
Preputial Gland: Adenoma or Car						
Overall Rates (a)	(f) 2/52 (4%		2/52 (4%)	1/52(2%)	3/52 (6%)	0/52 (0%)
Adjusted Rates (b)	4.5%	0.0%	4.7%	2.7%	13.8%	0.0%
Terminal Rates (c)	2/44 (5%	0/37 (0%)	1/36 (3%)	1/37 (3%)	2/19 (11%)	0/15 (0%)
Week of First Observation	105		57	105	100	
Life Table Tests (d)	P = 0.525		P = 0.637	P = 0.560N		P = 0.494N
Incidental Tumor Tests (d)	P = 0.543	P = 0.277N	P = 0.633N	P = 0.560N	P = 0.302	P = 0.494N
Cochran-Armitage Trend Test (d)	P = 0.385	2N				
Fisher Exact Test (d)		P = 0.248N	P = 0.691	P = 0.500N	P = 0.500	P = 0.248N
Prostate: Adenoma	0/F0 / 1~	0/50/40~	4/80/00	9/59 / 4% >	0/59 (0%)	0.(457 (00)
Overall Rates (a)	2/50 (4%			2/52 (4%)	0/52 (0%)	3/47 (6%)
Adjusted Rates (b)	4.7%	15.4%	11.4%	5.4%	0.0%	12.3%
Terminal Rates (c)	2/43 (5%			2/37 (5%)	0/19 (0%)	1/15 (7%)
Week of First Observation	105	103	105	105		90
Life Table Tests (d)	P = 0.466		P = 0.246	P = 0.640	P = 0.431N	P = 0.187
Incidental Tumor Tests (d)	P = 0.38'		P = 0.246	P = 0.640	P = 0.431N	P = 0.433
Cochran-Armitage Trend Test (d)	P = 0.236	6N				
Fisher Exact Test (d)		P = 0.134	P = 0.339		P = 0.238N	P = 0.470

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX (Continued)

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
Prostate: Adenoma or Carcinoma						
Overall Rates (a)	2/50 (4%)	6/50 (12%)	4/50 (8%)	3/52 (6%)	0/52 (0%)	3/47 (6%)
Adjusted Rates (b)	4.7%	15.4%	11.4%	8.1%	0.0%	12.3%
Terminal Rates (c)	2/43 (5%)	4/36 (11%)	4/35 (11%)	3/37 (8%)	0/19 (0%)	1/15 (7%)
Week of First Observation	105	103	105	105		90
Life Table Tests (d)	P = 0.457	P = 0.091	P = 0.246	P = 0.431	P = 0.431N	P = 0.187
Incidental Tumor Tests (d)	P = 0.396N	P = 0.155	P = 0.246	P = 0.431	P = 0.431N	P = 0.433
Cochran-Armitage Trend Test (d)	P = 0.225N					
Fisher Exact Test (d)		P = 0.134	P = 0.339	P = 0.519	P = 0.238N	P = 0.470
Testis: Interstitial Cell Tumor						
Overall Rates (a)	50/52 (96%)	51/52 (98%)	43/51 (84%)	48/52 (92%)	39/52 (75%)	42/51 (82%)
Adjusted Rates (b)	96.2%	100.0%	100.0%	98.0%	97.5%	100.0%
Terminal Rates (c)	42/44 (95%)	37/37 (100%)	36/36 (100%)	36/37 (97%)	18/19 (95%)	15/15 (100%
Week of First Observation	72	85	69	85	84	83
Life Table Tests (d)	P<0.001	P = 0.060	P = 0.391	P = 0.158	P<0.001	P < 0.001
Incidental Tumor Tests (d)	P = 0.183 N	P = 0.540	P = 0.234N	P = 0.531 N	P = 0.080N	P = 0.289N
Cochran-Armitage Trend Test (d)	P = 0.003 N					
Fisher Exact Test (d)		P = 0.500	P = 0.043N	P = 0.339N	P = 0.002N	P = 0.024N
All Sites: Benign Tumors						
Overall Rates (a)	52/52 (100%)	51/52 (98%)	48/52 (92%)	50/52 (96%)	44/52 (85%)	46/52 (88%)
Adjusted Rates (b)	100.0%	100.0%	100.0%	100.0%	97.8%	100.0%
Terminal Rates (c)	44/44 (100%)	37/37 (100%)	36/36 (100%)	37/37 (100%)	18/19 (95%)	15/15 (100%)
Week of First Observation	72	85	57	7 9	74	80
Life Table Tests (d)	P<0.001	P = 0.110	P = 0.148	P = 0.135	P<0.001	P<0.001
Incidental Tumor Tests (d)	P = 0.091 N	P = 0.500N	P = 0.366N	P = 0.500 N	P = 0.060N	P = 0.223 N
Cochran-Armitage Trend Test (d)	P = 0.005 N					
Fisher Exact Test (d)		P = 0.500N	P = 0.059N	P = 0.248N	P = 0.003N	P = 0.014N
All Sites: Malignant Tumors						
Overall Rates (a)	28/52 (54%)	36/52 (69%)	26/52 (50%)	35/52 (67%)	33/52 (63%)	19/52 (37%)
Adjusted Rates (b)	58.2%	74.7%	58.6%	75.9%	80.4%	59.4%
Terminal Rates (c)	24/44 (55%)	25/37 (68%)	18/36 (50%)	26/37 (70%)	12/19 (63%)	5/15 (33%)
Week of First Observation	85	85	83	61	58	66
Life Table Tests (d)	P = 0.010	P = 0.023	P = 0.351	P = 0.027	P<0.001	P = 0.057
Incidental Tumor Tests (d)	P = 0.016N	P = 0.097	P = 0.489N	P = 0.081	P = 0.247	P = 0.117N
Cochran-Armitage Trend Test (d)	P = 0.010N					
Fisher Exact Test (d)		P = 0.079	P = 0.422N	P = 0.114	P = 0.213	P = 0.058N
All Sites: All Tumors						
Overall Rates (a)	52/52 (100%)		49/52 (94%)	51/52 (98%)	51/52 (98%)	48/52 (92%)
Adjusted Rates (b)	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
Terminal Rates (c)			36/36 (100%)			
Week of First Observation	72	85	57	61	58	66
Life Table Tests (d)	P<0.001	P = 0.110	P = 0.106	P = 0.097	P<0.001	P<0.001
Incidental Tumor Tests (d)	P = 0.575	P = 0.500N	P = 0.500N	(g)	P = 0.814N	P = 0.534N
Cochran-Armitage Trend Test (d)	P = 0.074N	D 0 50037	D 0.1003*	D 0 50037	D 0 50027	D 0.05037
Fisher Exact Test (d)		P = 0.500N	P = 0.122N	P = 0.500N	P = 0.500N	P = 0.059N

⁽a) Number of tumor-bearing animals/number of animals examined at the site

⁽b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

⁽e) No P value is reported because no tumors were observed in the dosed and control groups.

⁽f) Includes one diagnosis of papillomatosis

⁽g) No P value is presented because the tumor incidences in the control and 10-ppm groups were 100% in each of the four time intervals during which tumors were observed

TABLE A4a. HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT (a,b)

	Inc	cidence in Control	
	Neoplastic Nodule	Carcinoma	Neoplastic Nodule or Carcinoma
verall Historical Incidence	· · · · · · · · · · · · · · · · · · ·		
TOTAL SD (c)	83/1,969 (4.2%) 4.5 4%	19/1,969 (1.0%) 1.37%	101/1,969 (5.1%) 4.60%
Range (d)	12/50	0/50	12/50
High Low	0/50	3/50 0/ 9 0	0/50

⁽a) Data as of August 30, 1985, for studies of at least 104 weeks

TABLE A4b. HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT (a,b)

	·	
	Incidence of Leukemia in Controls	
Overall Historical Incidence		
TOTAL SD(c)	583/1,977 (29.5%) 11.59%	
Range (d) High Low	30/50 5/50	

⁽a) Data as of August 30, 1985, for studies of at least 104 weeks

⁽b) No 2-year studies by this laboratory are included in the historical data base.

⁽c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.

⁽b) No 2-year studies by this laboratory are included in the historical data base.

⁽c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.

TABLE A4c. HISTORICAL INCIDENCE OF KIDNEY TRANSITIONAL CELL TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT (a,b)

TABLE A4d. HISTORICAL INCIDENCE OF THYROID GLAND FOLLICULAR CELL TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT (a,b)

		Incidence in Conti	ols
	Adenoma	Carcinoma	Adenoma or Carcinoma
Overall Historical Incidence			
TOTAL SD (e)	(c) 16/1,928 (0.8%) 1.41%	(d) 11/1,928 (0.6%) 0.91%	(c,d) 27/1,928 (1.4%) 1.75%
Range (f) High Low	2/49 0/50	2/89 0/50	3/50 0/50

⁽a) Data as of August 30, 1985, for studies of at least 104 weeks

⁽a) Data as of August 30, 1985, for studies of at least 104 weeks

⁽b) No 2-year studies by this laboratory are included in the historical data base.

⁽c) Standard deviation

⁽d) Includes three papillomas and two carcinomas. One carcinoma, NOS, was also observed; the inclusion of this tumor would not affect the reported range.

⁽e) Range and SD are presented for groups of 35 or more animals.

⁽b) No 2-year studies by this laboratory are included in the historical data base.

⁽c) Includes one cystadenoma and one papillary cystadenoma

⁽d) Includes one papillary adenocarcinoma

⁽e) Standard deviation

⁽f) Range and SD are presented for groups of 35 or more animals.

TABLE A4e. HISTORICAL INCIDENCE OF ADRENAL GLAND TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT (a,b)

		Incidence in Contr	ols
	Pheochromocytoma	Malignant Pheochromocytoma	Pheochromocytoma or Malignant Pheochromocytoma
Overall Historical Incidence			
TOTAL	427/1,950 (21.9%)	30/1,950 (1.5%)	452/1,950 (23.2%)
SD(c)	12.41%	2.00%	12.39%
Range (d)			
High	31/49	4/49	32/49
Low	2/50	0/50	3/50

⁽a) Data as of August 30, 1985, for studies of at least 104 weeks(b) No 2-year studies by this laboratory are included in the historical data base.(c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.

TABLE A5. SUMMARY OF THE INCIDENCE OF IN MALE RATS IN NONNEOPLASTIC LESIONS IN THE TWO-YEAR FEED STUDY OF MIREX

τ	Jntrea Contr		0.1 pp	m	1 ppi	n	10 p	pm	25 pp	m	50 p	pm
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATH	52 52 52	<u></u>	52 52 52		52 52 52		52 52 52	- 2.0.p-	52 52 52		52 52 52	
INTEGUMENTARY SYSTEM *Skin Epidermal inclusion cyst Ulcer, NOS Inflammation, acute Hyperplasia, epithelial	(52)		(52)		(52)			(2%) (2%)	(52) 1 1	(2%) (2%)	(52)	(2%)
RESPIRATORY SYSTEM *Nasal cavity	(52)		(52)		(52)		(52)		(52)		(52)	
Inflammation, acute #Lung Congestion, chronic passive	(52)		(52)	(2%)	(52)	(6%)	(52)	(15%)	1 (52) 6	(2%) (12%)	(51)	(8%)
Inflammation, NOS Inflammation, interstitial Inflammation, acute focal Pneumonia, chronic murine	1	(2%)		(2%) (12%)			. 3	(6%)	1		1	(2%) (2%)
Inflammation, granulomatous fo Necrosis, focal Hyperplasia, alveolar epithelium Metaplasia, cartilaginous	1 7	(2%) (13%) (2%)			1	(2%)	2	(4%)	1	(2%) (2%)		
HEMATOPOIETIC SYSTEM #Bone marrow	(52)		(49)		. (48)		(47)		(40)		(51)	
Fibrosis Fibrosis, focal							1 3	(2%) (6%)				
#Spleen Fibrosis Fibrosis, focal	(52)	(4%)	(51) 4 1	(8%) (2 %)	(50) 1	(2%)	(51) 7	(14%)	(48) 6 1	(13%) (2%)	(52) 9 1	(17%) (2%)
Adhesion, NOS Necrosis, NOS	_	(2.0)		(2%)			1	(2%)	•	(= .07	•	(= .0)
Infarct, NOS Hemosiderosis Atrophy, NOS	1	(2%)		(2%)	2	(4%)					1	(2%)
Hyperplasia, lymphoid Hematopoiesis #Splenic capsule Fibrosis	(52)		(51)		(50) 1	(4%) (2%)	(51)		1 2 (48)	(2%) (4%)	(52)	
Fibrosis, focal #Mesenteric lymph node Fibrosis	(51)	(4%)	(52)		(52) 1	(2%) (2%)	(52)		(48)		(48)	
Necrosis, focal #Thymus Cyst, NOS	(47)	(2%) (6%)	(47)		(42) 1	(2%)	(40) 2	(5%)	(42)	(2%)	(41) 1	(2%)
Hyperplasia, epithelial	15	(32%)	10	(21%)	7	(17%)	2	(5%)	8	(19%)	7	(17%)
IRCULATORY SYSTEM *Mediastinum Periarteritis	(52)		(52)		(52)		(52)		(52)		(52)	(00)
#Lung Thrombosis, NOS	(52)		(52)		(52)		(52)		(52)		(51)	(2%) (2%)
#Heart Inflammation, acute/chronic	(52)		(52)		(52) 1	(2%)	(52)		(52)		(52)	(270)
Inflammation, chronic #Left atrium	50 (52)	(96%)	51 (52)	(98%)	50 (52)	(96%)	50 (52)	(96%)	50 (52)	(96%)	46 (52)	(88%)
Thrombosis, NOS #Left ventricle	1 (52)	(2%)	7 (52)	(13%)	6 (52)	(12%)	7 (52)	(13%)	8 (52)	(15%)	5 (52)	(10%)
Thrombosis, NOS #Cardiac valve	(52)		(52)		(52)		(52)		(52)		(52)	(2%)
Inflammation, chronic #Mitral valve Thrombosis, NOS	(52)	(2%)	(52) 1	(2%)	(52)		(52)		(52)		(52)	
Inflammation, chronic *Aorta	1 (52)	(2%)	1 (52)	(2%)	(52)		(52)		(52)		(52)	
Mineralization *Renal artery		(6%)	1 (52)	(2%)	(52)		(52)		(52)		1 (52)	(2%)
Thrombosis *Hepatic artery	(52)	(2%)	(52)		(52)		(52)		(52)		(52)	
Thrombosis, NOS *Superior mesenteric vein Thrombosis	(52)	(2%)	(52)		(52)			(2%)	(52)		(52)	

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untrea Contr		0.1 pp	m	1 ppr	n	10 p	pm	25 pp	m	50 p	pm
CIRCULATORY SYSTEM (Continu	ed)											
#Liver	(52)		(52)		(52)		(52)		(52)		(52)	
Thrombosis	1	(2%)										
*Mesentery	(52)	(00)	(52)	(00)	(52)		(52)	(0°)	(52)	(CAL)	(52)	
Periarteritis	3	(6%)	4	(8%)			3	(6%)	4	(8%)		
DIGESTIVE SYSTEM												
#Salivary gland	(52)		(52)		(52)	1041	(52)		(50)		(51)	
Calculus, unkn gross or micro #Liver	(52)		(52)		(52)	(2%)	(52)		(52)		(52)	
Inflammation, acute focal		(2%)	(32)		(32)		(32)		(32)		(32)	
Fibrosis	-	(= .0)	1	(2%)	1	(2%)					2	(4%)
Degeneration, NOS			1	(2%)	ī	(2%)						
Necrosis, NOS			2	(4%)	1	(2%)	2	(4%)	4	(8%)	18	(35%)
Necrosis, focal	6	(12%)	9	(17%)	7	(13%)	5	(10%)	17	(33%)	8	(15%)
Metamorphosis, fatty	10	(19%)	11	(21%)	13	(25%)	20	(38%)	21	(40%)	26	(50%)
Pigmentation, NOS			1	(2%)								
Cytoplasmic change, NOS					1	(2%)						
Basophilic cyto change	47	(90%)	38	(73%)	41	(79%)	39	(75%)	27	(52%)	22	(42%)
Eosinophilic cyto change					1	(2%)	2	(4%)	2	(4%)		
Hepatocytomegaly	2	(4%)	12	(23%)	2	(4%)	40	(77%)	43	(83%)	44	(85%)
Atrophy, NOS	3	(6%)				.04:	2	(4%)			3	(6%)
Hypertrophy, focal					1	(2%)						.==
Angiectasis	20	(38%)	20	(38%)	19	(37%)	42	(81%)	38	(73%)	39	(75%)
Regeneration, NOS #Liver/centrilobular	1	(2%)	(50)		(=0)		(#0)		(7.0)		(70)	
	(52) 1	(2%)	(52)	(00)	(52)	(00)	(52)		(52)	(00)	(52)	(2%)
Degeneration, NOS Necrosis, NOS	1	(2%)	3	(6%)	3	(6%) (2%)	5	(10%)	1 7	(2%) (13%)	1 12	(2%) (23%)
Necrosis, focal	1	(270)			1	(2%)	3	(10%)	r	(1.370)	12	(23%)
Atrophy, NOS	5	(10%)	5	(10%)	2	(4%)	3	(6%)	4	(8%)	1	(2%)
#Bile duct	(52)	(10/0)	(52)	(10 %)	(52)	(4/0)	(52)	(0 10)	(52)	(0 /0)	(52)	(270)
Cyst. NOS	.02)		(02)		(02)		1	(2%)	1	(2%)	1	(2%)
Hyperplasia, NOS	52	(100%)	51	(98%)	46	(88%)	46	(88%)	50	(96%)	47	(90%)
#Pancreatic duct	(51)		(50)	,	(51)	,	(47)		(48)		(51)	
Hyperplasia, NOS			1	(2%)	(/							
#Pancreatic acinus	(51)		(50)		(51)		(47)		(48)		(51)	
Atrophy, NOS	13	(25%)	7	(14%)	6	(12%)	9	(19%)	5	(10%)	4	(8%)
Hyperplasia, NOS	4	(8%)	2	(4%)			2	(4%)	1	(2%)	3	(6%)
Hyperlasia, focal	3	(6%)										
#Stomach	(51)		(51)		(48)		(51)		(44)		(44)	
Diverticulum	1	(2%)										
Inflammation, chronic	_										1	(2%)
Inflammation, proliferative	1	(2%)			(40)		(71)		(44)			
#Gastric mucosa	(51)	0.00	(51)	(00)	(48)	(400)	(51)		(44)		(44)	,00°
Ulcer, NOS Erosion	$\frac{1}{2}$	2(%)	3	(6%)	2	(4%)	2	(40()	σ.	(1.10%)	1	(2%)
Hyperplasia, epithelial	Z	(4%)	2 1	(4%) (2%)			2	(4%)	ъ	(11%)	4	(9%)
Hyperplasia, focal			1	(2%)								
#Forestomach	(51)		(51)	(2/0)	(48)		(51)		(44)		(44)	
Ulcer. NOS	(01)			(2%)	1	(2%)	3	(6%)	4	(9%)		(5%)
Inflammation, acute	1	(2%)	-		•	/	•	/	1	(2%)	-	/
Inflammation, chronic	-	/	1	(2%)					•			
Erosion			•								2	(5%)
Hyperplasia, epithelial	2	(4%)	2	(4%)	2	(4%)			1	(2%)	2	(5%)
#Duodenum	(50)		(47)		(47)		(46)		(38)		(35)	
Ulcer, NOS									3	(8%)		
Erosion				(2%)								
*Rectum	(52)		(52)		(52)		(52)		(52)		(52)	
Polyp, inflammatory	1	(2%)										
RINARY SYSTEM												
#Kidney	(51)		(51)		(52)		(52)		(51)		(52)	
Inflammation, acute focal					1	(2%)						
Abscess, NOS					1	(2%)	1	(2%)				
Nephropathy	50	(98%)	50	(98%)	45	(87%)	49	(94%)	51	(100%)	52	(100%
Necrosis, focal									1	(2%)		
Infarct, NOS	1	(2%)	1	(2%)			1	(2%)				
Hyperplasia, tubular cell						(2%)			1	(2%)		
#Kidney/pelvis	(51)		(51)		(52)		(52)		(51)		(52)	
Inflammation, acute focal			_		_	(100)	_		1	(2%)	_	
			2	(4%)	2	(4%)	5	(10%)	14	(27%)	9	(17%)
Hyperplasia, epithelial #Renal papilla	(51)											

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untrea Contr		0.1 pp	m	1 ppr	n	10 p	pm	25 pp	m	50 p	pm
URINARY SYSTEM (Continued) #Urinary bladder	(49)		(51)		(49)		(50)		(50)		(49)	
Ulcer, NOS			1	(2%)								
Inflammation, acute necrotizin #Urinary bladder/submucosa Hemorrhage	(49)		(51)		(49)		(50) 1	(2%)	(50)	(2%)	(49)	
ENDOCRINE SYSTEM												
#Pituitary	(52)		(52)		(51)		(50)		(52)		(47)	
Cyst, NOS Necrosis, focal	2	(4%)	1	(2%)	2	(4%)	3	(6%)	1	(2%)	1 1	(2%) $(2%)$
Pigmentation, NOS	1	(2%)										(270)
Hypertrophy, focal	٠	(2/0)	1	(2%)	1	(2%)	1	(2%)	1	(2%)		
Hyperplasia, NOS	3	(6%)	3	(6%)	2	(4%)	1	(2%)			2	(4%)
Hyperplasia, focal	2	(4%)	1	(2%)			3	(6%)	1	(2%)	2	(4%)
Angiectasis			1	(2%)								
#Adrenal	(51)		(52)		(52)		(52)		(51)		(51)	
Necrosis, NOS							2	(4%)				
Necrosis, cortical							1	(2%)				
Cytoplasmic change, NOS Hypertrophy, focal	1	(2%)					1	(2%)				
Angiectasis	1	(2%)							1	(2%)		
#Adrenal cortex	(51)	(270)	(52)		(52)		(52)		(51)	(2 70)	(51)	
Degeneration, NOS	(01)		(02)		1	(2%)	1	(2%)	(01)		(32)	
Necrosis, focal	1	(2%)			_	•,	_					
Metamorphosis, fatty	6	(12%)	8	(15%)	4	(8%)	4	(8%)	9	(18%)	8	(16%
Hyperplasia, NOS	5	(10%)			1	(2%)	2	(4%)	2	(4%)	2	(4%)
Hyperplasia, focal					1	(2%)						
#Zona fasciculata	(51)		(52)		(52)		(52) 1	(2%)	(51)		(51)	
Hyperplasia, NOS #Adrenal medulla	(51)		(52)		(52)		(52)	(270)	(51)		(51)	
Hyperplasia, NOS	8	(16%)	4	(8%)	2	(4%)	10	(19%)	6	(12%)	9	(18%
#Thyroid	(51)	(10.0)	(50)	(0.0)	(47)	(470)	(47)	(20.0)	(35)	(== 10)	(49)	(
Cystic follicles	2	(4%)	1	(2%)			5	(11%)	4	(11%)	6	(12%
Hyperplasia, C-cell	9	(18%)	3	(6%)	1	(2%)	1	(2%)	1	(3%)	2	(4%)
Hyperplasia, follicular cell			(00)		(00)		(40)		(50)		1	(2%)
#Parathyroid	(32)	0.00	(39)		(39)		(40)	(E 01)	(50)	(0.01)	(45)	(2%)
Ectopia Hyperplasia, NOS	1	(3%) (19%)	12	(31%)	12	(31%)	2 18	(5%) (45%)	4 22	(8%) (44%)	$\frac{1}{24}$	(53%
Hyperplasia, NOS Hyperplasia, focal	0	(19%)	12	(31%)	12	(31%)	10	(4370)	22	(4470)	24	(00%
#Pancreatic islets	(51)		(50)		(51)	(0 10)	(47)		(48)		(51)	
Hyperplasia, NOS	12	(24%)	7	(14%)		(16%)	13	(28%)	14	(29%)	3	(6%)
Hyperplasia, focal	1	(2%)										
EPRODUCTIVE SYSTEM *Mammary gland	(52)		(52)		(52)		(52)		(52)		(52)	
Galactocele	(32)		3	(6%)		(2%)	2	(4%)	(02)		10-27	
Cyst, NOS									1	(2%)		
Cystic ducts	9	(17%)	9	(17%)	1	(2%)	4	(8%)	2	(4%)	2	(4%)
Inflammation, granulomatous					1	(2%)	1	(2%)				
*Penis	(52)		(52)		(52)		(52)		(52)	1000	(52)	
Ulcer, NOS *Preputial gland	(52)		(52)		(52)		(52)		(52)	(2%)	(52)	
Cyst, NOS	(32)		(52)		(32)		(32)		(32)		2	(4%)
Cystic ducts									1	(2%)	ī	(2%)
Inflammation, chronic	2	(4%)							-	,	1	
Atrophy, NOS											1	(2%)
#Prostate	(50)		(50)		(50)		(52)		(52)		(47)	
Inflammation, acute							1	(2%)	1	(2%)		
Inflammation, active chronic		(0.01)	1	(2%)	~	(14%)	2	(4%)	3	(6%)		
Inflammation, chronic Inflammation, granulomatous	4	(8%)	2 1	(4%) (2%)	•	(14%)	2	(4.70)	3	(070)		
Hyperplasia, NOS	13	(26%)	10	(20%)	10	(20%)	4	(8%)	4	(8%)	2	(4%)
Hyperplasia, focal		(4%)		.== .07	-0	.=07	•		•	/	_	/
*Seminal vesicle	(52)		(52)		(52)		(52)		(52)		(52)	
Inflammation, chronic	2	(4%)							2	(4%)		
Atrophy, NOS					1	(2%)	.= 4:					
#Testis	(52)		(52)		(51)	(0 0)	(52)	1901	(52)		(51)	
Granuloma, spermatic		(90)			1	(2%)	1	(2%)				
		(2%)										
Infarct, NOS Atrophy, NOS		·			1	(2%)	1	(2%)			2	(4%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untreated Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
REPRODUCTIVE SYSTEM (Continu *Epididymis	ed) (52)	(52)	(52)	(52)	(52)	(52)
Inflammation, chronic *Scrotum Necrosis, fat	(52)	1 (2%) (52)	(52)	(52)	(52)	(52) 1 (2%)
NERVOUS SYSTEM #Brain Compression, NOS Hydrocephalus, NOS	(52)	(52)	(52) 1 (2%) 2 (4%)	(51)	(52)	(50)
Necrosis, NOS Necrosis, focal Necrosis, hemorrhagic *Spinal cord Necrosis, NOS Malacia Necrosis, hemorrhagic	(52) 2 (4%)	3 (6%) (52) 2 (4%)	1 (2%)	1 (2%) (52) 1 (2%)	1 (2%) 3 (6%) (52) 1 (2%)	2 (4%) (52)
SPECIAL SENSE ORGANS *Eye/lacrimal gland Atrophy, NOS	(52)	(52)	(52)	(52) 1 (2%)	(52)	(52)
MUSCULOSKELETAL SYSTEM *Vertebra Fibrous osteodystrophy	(52)	(52)	(52)	(52)	(52) 2 (4%)	(52) 2 (4%)
Exostosis *Intervertebral disc Rupture	(52) 2 (4%)	1 (2%) (52)	(52)	(52)	(52)	(52)
ODY CAVITIES *Abdominal cavity Steatitis	(52)	(52) 2 (4%)	(52) 2 (4%)	(52) 2 (4%)	(52)	(52) 3 (6%)
Inflammation, granulomatous Necrosis, fat Necrosis, hemorrhagic *Mesentery Inflammation, granulomatous Necrosis, fat	1 (2%) (52) 1 (2%) 1 (2%)	3 (6%) (52)	1 (2%) (52)	1 (2%) 2 (4%) (52)	1 (2%) 3 (6%) (52)	1 (2%) (52)
ALL OTHER SYSTEMS *Multiple organs Mineralization Congestion, NOS	(52)	(52) 1 (2%)	(52) 1 (2%) 1 (2%)	(52)	(52) 5 (10%)	(52) 3 (6%)
Adipose tissue Necrosis, NOS				1		

SPECIAL MORPHOLOGY SUMMARY

^{*}Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. #Number of animals examined microscopically at this site.

APPENDIX B

SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX

		PAGE
TABLE B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX	88
TABLE B2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX	91
TABLE B3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX	94
ΓABLE B4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX	106
TABLE B5	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX	112
TABLE B6	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX	117
ΓABLE B7a	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT	121
ΓABLE B7b	HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT	121
FABLE B7c	HISTORICAL INCIDENCE OF PITUITARY GLAND TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT	121
ΓABLE B7d	HISTORICAL INCIDENCE OF ADRENAL GLAND TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT	122
ΓABLE B7e	HISTORICAL INCIDENCE OF THYROID GLAND C-CELL TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT	122
TABLE B8	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX	123
TABLE B9	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX	127

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX

τ	Intreated Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
NIMALS INITIALLY IN STUDY NIMALS NECROPSIED NIMALS EXAMINED HISTOPATH	52 52 52	52 52 52 52	52 52 52	52 52 52	52 52 52	52 52 52
NTEGUMENTARY SYSTEM *Subcutaneous tissue Fibroma Fibrosarcoma	(52) 1 (2%)	(52) 2 (4%)	(52)	(52) 1 (2%) 1 (2%)	(52)	(52) 1 (2%)
#Trachea C-cell carcinoma, invasive #Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma C-cell carcinoma, metastatic Fibrosarcoma, metastatic	(47) (52)	(47) 1 (2%) (52) 1 (2%)	(45) (52) 1 (2%)	(47) (52) 2 (4%) 1 (2%)	(46) (52) 1 (2%)	(44) (52) 1 (2%)
IEMATOPOIETIC SYSTEM *Multiple organs Malig. lymphoma, histiocytic typ Leukemia, mononuclear cell #Spleen Leukemia, mononuclear cell #Thymus Carcinoma, NOS	(52) 8 (15%) (50)	(52) 1 (2%) 8 (15%) (52) (47)	(52) 10 (19%) (52) (42) 1 (2%)	(52) 13 (25%) (50) 1 (2%) (42)	(52) 17 (33%) (51) 1 (2%) (48)	(52) 14 (27% (50) 4 (8%) (41) 1 (2%)
#Spieen Hemangioma Hemangiosarcoma #Pancreas Hemangiosarcoma, invasive	(50)	(52) 1 (2%) (52) 1 (2%)	(52) (51)	(50)	(51)	(50) 1 (2%) (50)
*Tongue *Tongue Squamous cell papilloma #Liver Neoplastic nodule Hepatocellular carcinoma #Pancreas Acinar cell adenoma #Jejunum Papillary adenoma	(52) 2 (4%) (52) 10 (19%) (50) (49)	(52) (52) 5 (10%) (52)	(52) (52) 4 (8%) (51) 1 (2%) (49)	(52) (52) 5 (10%) (49) (48)	(52) (52) 9 (17%) 1 (2%) (50) 1 (2%) (47) 1 (2%)	(52) (52) 7 (13% 2 (4%) (50) (47)
IRINARY SYSTEM #Kidney Sarcoma, NOS Lipoma #Urinary bladder Transitional cell carcinoma Sarcoma, NOS, invasive	(51)	(52) (51)	(52) (52)	(51) (51) 1 (2%) 1 (2%)	(51) (47)	(52) 1 (2%) 1 (2%) (50)
#Pituitary Carcinoma, NOS Adenoma, NOS Fibrosarcoma, invasive #Adrenal Cortical adenoma Cortical carcinoma Pheochromocytoma Pheochromocytoma, malignant Ganglineuroma #Thyroid Follicular cell adenoma Follicular cell adenoma	(52) 2 (4%) 20 (38%) (51) 3 (6%) 1 (2%) (50) 1 (2%)	(51) 1 (2%) 24 (47%) (52) 2 (4%) 3 (6%) (50) 2 (4%)	(50) 1 (2%) 31 (62%) (52) 5 (10%) 5 (10%)	(51) 2 (4%) 24 (47%) 1 (2%) (51) 3 (6%) 1 (2%) (47) 1 (2%)	(52) 1 (2%) 30 (58%) (51) 4 (8%) 2 (4%)	(50) 22 (44% (52) 3 (6%) 1 (2%) 5 (10% 1 (2%) (46) 1 (2%)

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untrea Contr		0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
ENDOCRINE SYSTEM (Continued) #Pancreatic islets Islet cell adenoma Islet cell carcinoma	(50) 2	(4%) (4%)	(52)	(51) 1 (2%) 1 (2%)	(49) 1 (2%) 3 (6%)	(50) 4 (8%) 1 (2%)	(50)
REPRODUCTIVE SYSTEM *Mammary gland Adenocarcinoma, NOS Fibroma	(52) 1	(2%)	(52)	(52) 3 (6%)	(52)	(52) 1 (2%) 1 (2%)	(52) 2 (4%)
Fibroadenoma *Preputial gland Carcinoma, NOS	12 (52)	(23%)	8 (15%) (52)	11 (21%) (52)	17 (33%) (52)	10 (19%) (52)	3 (6%) (52) 1 (2%)
*Clitoral gland Adenoma, NOS Cystadenoma, NOS	(52)		(52) 1 (2%)	(52) 1 (2%) 2 (4%)	(52) 1 (2%)	(52)	(52)
#Uterus Adenocarcinoma, NOS Leiomyoma	(51) 2	(4%)	(51)	(52) 1 (2%)	(52)	(52) 1 (2%)	(52) 1 (2%) 1 (2%)
Endometrial stromal polyp Endometrial stromal sarcoma #Cervix uteri	(51)	(27%)	8 (16%)	10 (19%) 1 (2%) (52)	13 (25%) (52)	12 (23%) 2 (4%) (52)	15 (29% (52)
Sarcoma, NOS Endometrial stromal polyp #Ovary	(51)		(51)	(52)	1 (2%)	1 (2%) (52)	(51)
Granulosa cell tumor Fibrosarcoma	(82)		1 (2%)	(02)	1 (2%)	(32)	(02)
NERVOUS SYSTEM #Brain	(52)		(52)	(8.1)	(52)	(50)	(50)
Carcinoma, NOS, invasive Astrocytoma	2	(4%) (4%)	1 (2%) 1 (2%)	(51) 1 (2%)	2 (4%) 1 (2%)	(52) 1 (2%)	(52) 1 (2%)
SPECIAL SENSE ORGANS *Zymbal gland Sebaceous adenoma	(52)		(52)	(52)	(52)	(52)	(52) 1 (2%)
MUSCULOSKELETAL SYSTEM None							
BODY CAVITIES *Thoracic cavity	(52)		(52)	(52)	(52)	(52)	(52)
Mesothelioma, NOS *Abdominal cavity	(52)	(2%)	(52)	(52)	(52)	(52)	(52)
Osteoma Fibrosarcoma	1	(2%)			1 (2%)		
ALL OTHER SYSTEMS *Multiple organs	(52)		(52)	(52)	(52)	(52)	(52)
Adenocarcinoma, NOS, metasti Fibrosarcoma, metastic		(2%)					1 (2%)
NIMAL DISPOSITION SUMMAR' Animals initially in study	Y 52	 -	52	52	52	52	52
Natural death	13		10	14	15	16	18
Moribund sacrifice Terminal sacrifice	3 36		9 33	8 30	3 34	1 35	2 32

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX (Continued)

	ntreated Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
UMOR SUMMARY						
Total animals with primary tumors**	48	48	49	47	50	49
Total primary tumors	99	83	98	102	108	93
Total animals with benign tumors	40	37	44	40	43	36
Total benign tumors	66	57	73	68	73	56
Total animals with malignant tumors	19	18	20	26	24	25
Total malignant tumors	22	20	21	29	26	30
Total animals with secondary tumors	## 3	3	1	6	2	1
Total secondary tumors	3	4	1	7	2	1
Total animals with tumors uncertain-						
benign or malignant	11	6	4	5	9	7
Total uncertain tumors	11	6	4	5	9	7

^{*}Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.

^{**}Primary tumors: all tumors except secondary tumors

[#]Number of animals examined microscopically at this site
##Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX

Untre	ated	Control	50 p	om	100 p	pm
ANIMALS INITIALLY IN STUDY	52		52		52	
ANIMALS NECROPSIED	52		52		52	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	52		52		52	
INTEGUMENTARY SYSTEM						
*Skin	(52)		(52)		(52)	
Squamous cell papilloma	1	(2%)				
Squamous cell carcinoma			1	(2%)		
Basal cell tumor	1	(2%)				
*Subcutaneous tissue	(52)		(52)		(52)	
Carcinoma, NOS, unclear primary or metastatic	1	(2%)				
RESPIRATORY SYSTEM						
#Lung	(52)		(52)		(52)	
Squamous cell carcinoma, metastatic			1	(2%)		
Alveolar/bronchiolar adenoma		(4%)				(2%)
Alveolar/bronchiolar carcinoma	1	(2%)	3	(6%)		(6%)
Pheochromocytoma, metastatic					1	(2%)
HEMATOPOIETIC SYSTEM						
*Multiple organs	(52)		(52)		(52)	
Malignant lymphoma, histiocytic type		(2%)				
Leukemia, mononuclear cell	5	(10%)	6	(12%)	12	(23%)
#Spleen	(51)		(52)		(49)	
Leukemia, mononuclear cell	1	(2%)	3	(6%)	2	(4%)
CIRCULATORY SYSTEM						
*Subcutaneous tissue	(52)		(52)		(52)	
Hemangiosarcoma			,		1	(2%)
*Vertebra	(52)		(52)		(52)	
Hemangiosarcoma					1	(2%)
#Heart	(52)		(52)		(52)	
Hemangiosarcoma, metastatic					1	(2%)
DIGESTIVE SYSTEM						
*Tongue	(52)		(52)		(52)	
Squamous cell papilloma		(2%)		(2%)	,	
#Liver	(52)	: - /	(52)	. = . = .	(52)	
Neoplastic nodule		(4%)		(44%)		(58%)
Hepatocellular carcinoma						(2%)
#Pancreas	(50)		(52)		(51)	
Acinar cell adenoma					1	(2%)
Mixed tumor, benign				(2%)		
#Stomach	(51)		(51)		(52)	
Squamous cell papilloma					1	(2%)
URINARY SYSTEM					1	
#Kidney	(52)		(52)		(52)	
Sarcoma, NOS	,					(2%)
#Kidney/pelvis	(52)		(52)		(52)	
Transitional cell carcinoma	1	(2%)				
#Urinary bladder	(50)	(29%)	(50)		(49)	
Transitional cell papilloma		(2%)	, , ,		,,	

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untreated	Control	50 p	om	100 p	pm
ENDOCRINE SYSTEM						
#Pituitary	(52)		(52)		(52)	
Carcinoma, NOS		(2%)		(6%)	(+-/	
Adenoma, NOS	31	(60%)	23	(44%)	22	(42%)
#Adrenal	(52)		(52)		(52)	
Cortical adenoma	5	(10%)	6	(12%)		
Cortical carcinoma	2	(4%)				
Pheochromocytoma	3	(6%)	2	(4%)	1	(2%)
Pheochromocytoma, malignant					1	(2%)
#Thyroid	(49)		(49)		(49)	
Follicular cell adenoma		(2%)	_	(2%)		(2%)
C-cell adenoma		(10%)		(6%)	5	(10%)
C-cell carcinoma	_	(4%)	_	(6%)		
#Pancreatic islets	(50)		(52)		(51)	
Islet cell adenoma		(2%)	2	(4%)	1	(2%)
Islet cell carcinoma	4	(8%)	9	(17%)	6	(12%)
REPRODUCTIVE SYSTEM						
*Mammary gland	(52)		(52)		(52)	
Adenoma, NOS	(32)			(2%)	(02)	
Adenocarcinoma, NOS	1	(2%)	•			
Fibroadenoma		(6%)	6	(12%)	3	(6%)
#Uterus	(52)	(+11)	(51)	(,	(52)	, , , ,
Undifferentiated carcinoma	(,			(2%)	(/	
Papillary adenoma	1	(2%)	_	(=)		
Endometrial stromal polyp		(23%)	8	(16%)	8	(15%)
NERVOUS SYSTEM						
#Brain	(52)		(52)		(52)	
Carcinoma, NOS, invasive		(2%)		(4%)	\	
Osteosarcoma, invasive		,			1	(2%)
Astrocytoma					1	(2%)
SPECIAL SENSE ORGANS None						
MUSCULOSKELETAL SYSTEM						
*Skull	(52)		(52)		(52)	
Osteosarcoma					1	(2%)
BODY CAVITIES None				, , , , , , , , , , , , , , , , , , ,		
ALL OTHER SYSTEMS				····		
*Multiple organs	(52)		(52)		(52)	
Undifferentiated carcinoma, metasta				(2%)		
Fibrosarcoma				(2%)		
ANIMAL DISPOSITION SUMMARY			- L U.			
	52		52		52	
Animals initially in study			~-			
Animals initially in study Natural death	7		7		14	
Animals initially in study Natural death Moribund sacrifice	7 2		7 2		14 1	

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untreated Control	50 ppm	100 ppm
CUMOR SUMMARY			
Total animals with primary tumors**	49	47	48
Total primary tumors	90	107	104
Total animals with benign tumors	41	36	31
Total benign tumors	68	54	44
Total animals with malignant tumors	17	24	24
Total malignant tumors	19	30	30
Total animals with secondary tumors##	1	4	3
Total secondary tumors	1	4	3
Total animals with tumors uncertain			
benign or malignant	2	23	30
Total uncertain tumors	2	23	30
Total animals with tumors uncertain			
primary or metastatic	1		
Total uncertain tumors	1		

^{*}Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.

**Primary tumors: all tumors except secondary tumors

#Number of animals examined microscopically at this site

^{##}Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX: UNTREATED CONTROL

ANIMAL NUMBER		0 6 4	1 4	0 5 0	0 2 4	0 5 4	0 1 2	0 9 4	0	9 8	0 7 6	0 4 6	0 0 4	0 8 0	0 4 4	0 0 2	0	0 0 8	0 1 6	0 1 8	0 2 0	0 2 2	0 2 6	0 2 8	0 3 0	0 3 2	0 3 4
WEEKS ON STUDY		0 7 8	0 8 1	0 8 1	0 8 6	0 8 7	9	9	9	9	0 9 4	0 9 5	9	1 0 2	1 0 4	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	0 7
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma		N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	N	+	N	*	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Trachea		+	++	+	+	+	++	++	+++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	+ -
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus		<u>-</u> - -	+ + + +	- + +	+ + +	+ + + +	+ + + +	+ + +	+ + + +	+ + + +	+ + -	+ + + +	+ + + +	+ + + -	+ + + +	+ + + +	+ + -	+ + + +	+ + -	+ + + +	+ + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + -	+ + + +
CIRCULATORY SYSTEM Heart		+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	•	+
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma Salivary gland Liver Neoplastic nodule Bile duct Pancreas Esophagus Stomach Small intestine Large intestine		N -++	N ++ +++++	N + + +	N ++ +++++	N + + X + + + + + + + + + + + + + + + +	N +++++++	N ++ +++++	Z ++ +++++	N + + + + + + + + + + + + + + + + + + +	N ++ +++-+	N + + + + + + + + + + + + + + + + + + +	N ++ +++++	N + + + + + + + + + + + + + + + + + + +	N +++++++	N + + X + + + + + + + + + + + + + + + +	N +++++++	N X + + + + + + + + + + + + + + + + + +	N ++ ++++	N + + X + + + + + + + + + + + + + + + +	N + + + + + + + + + + + + + + + + + + +	N +++++++	N +++++++	N + + + + + + + + + + + + + + + + + + +	N + + + + + + + + + + + + + + + + + + +	N + + + + + + + + + + + + + + + + + + +	N + + + + + + + + + + + + + + + + + + +
URINARY SYSTEM Kidney Urinary bladder			++	++	++	++	++	++	++	++	++	+	+	++	+ +	+	++	+	++	++	+++	++	++	++	++	++	++
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma		+	+ X +	+	+ X +	+	+ X +	+	+	+ X +	+	+	+ X +	+	* X +	+ X +	+	+	+	+	+ X +	+ X +	+	+ X +	+	+ X +	+
Ganglioneuroma Thyroid Follicular cell carcinoma C-cell adenoma C-cell carcinoma Parathyroid		_	+	+	+	+	+	+ X +	+	+	+	+	+	-	+	+	+	X +	+	+	+	+ X +	+	+	+	+	+ X -
Pancreatic islets Islet cell adenoma Islet ceil carcinoma		-	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x X	+	+	+	+	+	+ X	+
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Fibroadenoma Uterus Adenocarcinoma, NOS Endometriai stromal polyp Ovary		N -	+ + +	+ + +	+ X +	+ X +	+ +	+ +	+ + +	+ +	+ + +	+ + +	+ +	+ + X +	+ + +	+ +	+ +	N + +	+ X +	+ +	N + X +	N + +	+ X +	N + +	N + X +	+ + X +	+ + +
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive Astrocytoma	i i	+	+	+	+	+	+ X	+	+	+	+	+ X	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+
BODY CAVITIES Pleura Mesothelioma, NOS Peritoneum Fibrosarcoma		N N X	N N	N N	N N	N N	N N	N N	N N	N N	N X N	N N	N N	N N	N N	N N	N N	N N	N N	N	N N	N N	N N	N N	N N	N N	N N
ALL OTHER SYSTEMS Multiple organs, NOS Fibrosarcoma, metastatic Leukemia, mononuclear cell		N X	N	N	N	N	N		N X		N	N X	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N

^{+:} Tissue examined microscopically
-: Required tissue not examined microscopically
X: Tumor incidence
N: Necropsy, no autolysis, no microscopic examination
S: Animal missexed
@: Multiple occurrence of morphology

[:] No tissue information submitted
C: Necropsy, no histology due to protocol
A: Autolysis
M: Animal missing
B: No necropsy performed

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: UNTREATED CONTROL (Continued)

									(0	on	1111	ueu	,														
ANIMAL NUMBER	0 3 6	0 3 8	0 4 0	0 4 2	0 4 8	0 5 2	0 5 6	0 5 8	0 6 0	0 6 2	0 6 6	0 6 8	0 7 0	0 7 2	0 7 4	0 7 8	0 8 2	0 8 4	0 8 6	0 8 8	1 0 0	1 0 2	1 0 4	9	9 2	0 9 6	mom a t
WEEKS ON STUDY	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 8	1 0 8	1 0 8	TOTAL: TISSUES TUMORS
NTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*52
RESPIRATORY SYSTEM ungs and bronchi rachea	++	++	+	++	+	++	++	+	++	++	++	+	+	++	++	++	++	++	++	++	++	++	++	+	+	+ +	52 47
IEMATOPOIETIC SYSTEM Sone marrow pleen ymph nodes Thymus	+++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+++++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + -	+ + + +	+ + + +	+ + + +	+ + +	+ + + +	++++	+ + + +	+ + + +	+ + + +	50 50 51 42
CIRCULATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
DIGESTIVE SYSTEM Dral cavity Squamous cell papilloma Salivary gland Liver Neoplastic nodule Bile duct Pancreas Stophagus Stomach Small intestine Large intestine	N + + + + + + + + + + + + + + + + + + +	N + + + + + + + + + + + + + + + + + + +	N + + X + + + + + +	Z ++ +++++	Z ++ +++++	N ++ ++++	N + + X + + + + + + + + + + + + + + + +	Z ++ +++++	N ++++++	N X + + X + + + + + +	Z ++ +++++	N ++ ++++	Z ++ ++++	Z ++ +++++	Z ++ +++++	N ++ ++++	Z ++++++	N ++ +++++	N + + + + + + + + + + + + + + + + + + +	N ++ +++++	N ++ +++++	N + + X + + + + + + + + + + + + + + + +	N + + + + + + + + + + + + + + + + + + +	N ++ +++++	N ++ ++++	N + + + + + + + + + + + + + + + + + + +	*52 2 51 52 10 52 50 51 50 49
JRINARY SYSTEM Kidney Jrinary bladder	++	+	++	++	++	++	++	+	++	++	++	+	+	++	++	++	+ +	++	+	+	+	++	++	++	++	++	51 50
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenai Cortical adenoma Pheochromocytoma	+	+ + x	+	+	+	+	+	+ X +	+ X +	+	+	+	+	+ X +	+ *	+ X +	+ X +	+ X +	+ X +	+ X +	+ X +	+	+ *	+	+ X +	* x + x	52 2 20 51 3 1
Ganglioneuroma 'hyroid 'Follicular cell carcinoma C-cell adenoma C-cell carcinoma 'arathyroid 'ancreatic islets Islet cell adenoma Islet cell carcinoma	+ X + +	+	+ + +	+ X + +	+++	+ X + +	+ + +	+ X + +	+ X X + +	+ X - + X	+ - +	+ + X	+++	+ + +	+ X + +	+ + +	+ +	+++	++++	+ X + +	+ + + .	+ X + +	+++	+++	+ X + +	+ + +	1 50 1 10 3 39 50 2
EPRODUCTIVE SYSTEM fammary gland Adenocarcinoma, NOS Fibroadenoma terus Adenocarcinoma, NOS Endometrial stromal polyp vary	+ + +	+ X +	N + +	N + X +	+ + +	+ + +	N + X +	+ X +	N + X +	+ X + X +	+ + X +	+ +	+ + +	N + X +	N + X +	+ X +	+ X +	+ +	+ X +	+ X X +	+ X +	N + X +	+ X +	+ +	+ X + X +	+ X +	*52 1 12 51 2 14 51
IERVOUS SYSTEM Frain Carcinoma, NOS, invasive Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	52 2 2
ODY CAVITIES leura Mesothelioma, NOS eritoneum Fibrosarcoma	N	N N	N	N	N N	N N	N N	N	N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N	N	N N	N N	N	N N	*52 1 *52 1
ALL OTHER SYSTEMS Multiple organs, NOS Fibrosarcoma, metastatic Leukemia, mononuclear cell	N	N	N X	N	N X	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	*52 1 8

^{*} Animals necropsied

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX: 0.1 ppm

													• •													
ANIMAL NUMBER	2 0 0	2 1 8	1 8 0	1 8 2	2 1 0	2 0 8	1 4 8	1 5 2	1 8 4	2 4 0	2 1 6	2 2 0	1 8 6	2 1 2	1 4 6	1 5 0	5 4	1 5 6	1 5 8	1 6 0	1 6 2	1 6 4	1 6 6	1 6 8	1 7 0	1 7 2
WEEKS ON STUDY	0 6 6	0 7 9	0 8 4	0 8 4	0 8 7	9 1	0 9 4	9 8	0 9 8	0 1	1 0 2	1 0 2	1 0 3	1 0 5	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi C-cell carcinoma, metastatic Trachea C-cell carcinoma, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangiosarcoma Lymph nodes Thymus	++++	+ + + +	+ + X +	+ + + +	+++++	+ + + + +	- + + +	+ + + +	+ + + +	+++	+++++	++++++	- + + +	+ + + +	++++++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + -	+++++	+ + + +	+ + + +	+ + + +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Pancreas Hemangiosarcoma, invasive Esophagus Stomach Small intestine Large intestine	++ ++ ++++	+++++++	+ + + X + + +	++++++	++++++	+ + + + + + +	+ + + + - + + -	++++++	+++++	++ ++ ++++	++++++	+++++++	+++++	++++++	++++++	+ + + + + + + + + + + + + + + + + + + +	++++++	++++++	++++++	++++++	++++++	+ + X + + + +	+ + + + + + + + + + + + + + + + + + + +	++++++	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
URINARY SYSTEM Kidney Urinary bladder	++	++	+	++	++	++	++	++	++	++	++	+ +	++	++	++	++	++	+	+	++	++	++	++	++	++	++
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular cell carcinoma C-cell adenoma	+ X +	+ + +	+ + +	+ X +	+ + X -	+ + X	+ + +	+ X +	+ X +	+ + +	+ X +	+ + +	+ + +	+ +	+ + X +	+ X +	+ X +	+ X +	+ +	+ X +	+ X +	+ X + +	+ X + X	+ X +	+ X +	+ + +
C-cell carcinoma Parathyroid Pancreatic islets Islet cell carcinoma	++	+	++	+	_ +	+ +	X + +	++	-	++	-	-	++	+	++	++	++	++	+ + X	+	+	++	- +	+ +	+	++
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Preputial/elitoral gland Adenoma, NOS Uterus Endometrial stromal polyp Ovary Granulosa cell tumor	+ N +	+ N + +	+ X N + +	+ N + +	* X N + + +	+ X N + X +	+ X N + +	+ N + +	+ N + +	+ N + X	+ N + +	+ N X +	+ N + +	+ N + +	+ N + X +	+ X N + +	+ N + +	N N -	N N + +	- N + +	+ X N + +	+ N + +	N N + +	+ N + +	N N + +	N + +
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive Astrocytoma	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, histiocytic type Leukemia, mononuclear cell	N	N X	N	N	N	N	N X	N	N	N X	N	N		N X	N	N	N	N	N	N	N	N	N	N	N	N

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: 0.1 ppm (Continued)

ANIMAL NUMBER	1 7 4	1 7 6	1 7 8	1 8 8	1 9 0	1 9 2	1 9 4	1 9 6	1 9 8	2 0 2	2 0 4	2 0 6	2 1 4	2 2 2	2 2 4	2 2 6	2 2 8	2 3 0	2 3 2	2 3 4	3 6	2 3 8	2 4 2	2 4 4	2 4 6	2 4 8	mon a r
WEEKS ON STUDY	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	0 9	1 0 9	1 0 9	0	1 0 9	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	*52
RESPIRATORY SYSTEM Lungs and bronchi C-cell carcinoma, metastatic Trachea C-cell carcinoma, invasive	+ +	+	+	+	+	+	+	+	* X * X	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+	+	++	52 1 47 1
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangiosarcoma Lymph nodes Thymus	+ + +	+ + + +	+ + + +	- + + +	+++++	+++++	+ + + +	+ + + +	++++	+++++	+ + + + +	+ + + + +	+ + + + +	+ + + + +	+ + + + +	+ + + -	+ + + +	+ + + +	++++	+ + + +	++++	+ + + +	+ + + +	+++-	++++	+ + + +	49 52 1 52 47
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Pancreas Hemangiosarcoma, invasive Esophagus Stomach Small intestine Large intestine	+ + X + + + + + + + + + + + + + + + + +	++ ++ +++	++ ++ ++	1+ ++ +++	++++++	++ ++ ++-	+ + X + + + + + + + + + + + + + + + + +	++ ++ +++	++ ++ ++	++ ++ -++	++++-++	++ ++ -++	++ ++ +++	++++++	++++++	++ ++ +++	++ ++ +++	++++++	++ ++++	++ ++ +++	++++++	+ + X + + +	+ + X + + + +	++++++	++ ++ +++	++ ++ +++	51 52 5 52 52 52 1 45 52 52 49
URINARY SYSTEM Kidney Urinary bladder	++	++	+ +	++	++	++	++	++	++	++	+ +	+ +	++	++	++	++	++	+ +	++	+ +	++	+ +	++	++	++	++	52 51
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma	+ *	+	+ X +	+	+	+	+	+ X +	+ X +	+ X +	-+	+	+ X + X	+	+	+ X +	+ X +	+	+	+ X +	+	+	+	+ X +	+ X +	+ X +	51 1 24 52 2
Pheochromocytoma Thyroid Folicular cell carcinoma C-cell adenoma C-cell arcrinoma Parathyroid Pancreatic islets Islet cell carcinoma	+ X + +	+ + +	+++	+	+ X + +	+ + +	+ X + +	+ + +	+ X - +	X + X + + X	+ X + +	+++	+ + +	++++	+ X + +	+ X + +	+++	+ X + +	+++	+++	+++	+ <u>x</u> +	+ + +	+ + +	+ + +	+ X + +	3 50 2 9 4 43 52 2
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Preputial/icitoral gland Adenoma, NOS Uterus Endometrial stromal polyp Ovary Granulosa cell tumor	N N + +	+ N + +	+ N + X +	+ N + X +	+ N + +	+ N + +	+ N + +	+ X N + X +	+ N + +	+ N + +	N N + X +	+ X N + +	+ N + +	+ N + +	+ N + +	+ N + +	+ N + +	+ N + X +	+ N + +	N N + +	N N + +	N N + +	N N + +	+ N + X +	N N + +	N N + +	*52 8 *52 1 51 8 51 1
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	52
ALL OTHER SYSTEMS Multiple organs, NOS Malig. lymphoma, histiocytic type Leukemia, mononuclear cell	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N X	N	N X		N	N	N	N	N	N	N	*52 1 8

^{*} Animals necropsied

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX: 1 ppm

												_	_													
ANIMAL NUMBER	3 3 6	3 1 0	3 4 6	3 1 4	3 4 0	3 4 4	7 0	2 9 2	3 2 6	3 2 0	3 3 2	3 0 2	2 6 0	9	3 0 4	3 0 8	3 5 2	2 5 6	2 8 2	2 5 0	2 5 2	2 5 4	2 5 8	2 6 2	2 6 4	2 6 6
WEEKS ON STUDY	0 7 8	0 8 2	0 8 4	0 8 6	0 8 6	0 8 6	9	0 9 1	9	9	0 9 6	0 9 7	9 8	1 0 2	1 0 3	1 0 4	1 0 6	1 0 7	1 0 7	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +
HEMATOPOIETIC SYSTEM Bone marrow Spleen Leukemia, mononuclear cell Lymph nodes Thymus Carcinoma, NOS	+++-	++	+++	+ + + -	+ +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + -	+ + + -	+ + X + +	+ + + +	+ + + +	+ + + +	++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bille duct Pancreas Acinar cell adenoma Esophagus Stomach Small intestine Large intestine	+++-+	++++	++ ++ +++	++++++	+++	++ ++ -++	++++++	+++++++	+ + + + + + + + + + + + + + + + + + + +	++ ++ ++++	++ ++ +++	++ ++ -++	-+ ++ -++	++ ++ -++	++ ++ +++	++ ++ +++	++ ++ -++	+++++	++++++	+ + X + + + + + + + + + + + + + + + + +	++ ++ +++	++++++	++++++	++++++	+ + X + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
URINARY SYSTEM Kidney Urinary bladder	++	+	++	+	++	+	++	++	++	++	++	+ +	++	++	++	+ +	++	++	++	++	++	++	++	++	++	++
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma Thyroid	+	+ X +	+ + +	+ X +	+ +	+ X +	+ +	+ + +	+ X +	+ X +	+ + +	+ +	+ + +	+ X + X +	+ X + X	+ X +	+ + +	+ +	+ + +	+ X + X	+ X +	+ X +	+ X +	+ X +	+ + X +	+ X +
C-cell adenoma C-cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma Islet cell carcinoma	+	+	+	+	++	++	++	++	+	++	-	+++	+++	++	++	+ +	+++	++	+ + X	+	+	+ +	+ + X	++	++	* + + +
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Fibroadenoma	+	+	+ X	* X	+	+	+	+	+ X	N	+	+ X	+	+ X	+	+ X	+	+	+	+ X	+ X	+	+ X	+	+	+
Preputial/clitoral gland Adenoma, NOS Cystadenoma, NOS Uterus	N +	N +	N +	N	N +	N +	N +	N +	N	N +	N +	X N +	N +	X N +	, ,	X N +	N +	N +	N +	X N +	X N +	N +	N +	N +	N +	N
Adenocarcinoma, NOS Endometrial stromal polyp Endometrial stromal sarcoma Ovary	+	+	+	+	+	+	+	X	+	+	X +	+	+	+	+	+	+	x +	+	+	+	+	+	+	x +	+
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N X	N	N X	N X	N	N X	N	N	N	N X	N X	N X	N	N X	N X	N	N	N	N X	N	N	N	N	N	N

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: 1 ppm (Continued)

ANIMAL NUMBER	2 6	2	3	2 7	2	2	2 8	2 8	2 8	2	2 9	2	2 9	3	3	3	3	3	3 2	3	3	3	3	3	3	3 5	T
	8	2	8	4	В	8	ŏ	4	8	8	Ŏ	6	8	ŏ	6	$\hat{2}$	6	2	4	8	ŏ	4	8	2	8	ŏ	TOTAL:
WEEKS ON STUDY	1 0 8	1 0 8	1 0 8	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	0	1 0 9	1 0 9	1 0 9	1 0 9	1 0 9	TISSUES
RESPIRATORY SYSTEM Lungs and bronchi	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	52
Alveolar/bronchiolar carcinoma Trachea	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X	+	+	+	+	1 45
HEMATOPOIETIC SYSTEM Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+		+	+	+	49
Spieen Leukemia, mononuclear cell	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 1
Lymph nodes Thymus Carcinoma, NOS	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 42 1
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	52
DIGESTIVE SYSTEM Salivary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				+			+		+	51
Liver Neoplastic nodule	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+ X	+	+	+	+	+	÷	52 4
Bile duct Pancreas Acinar cell adenoma	+	+	+	+ + X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 51
Esophagus Stomach	++	- +	+	- +	+	+	- +	+	++	- +	+	+	+	- +	+	++	- +	+	+	-	+	-+	-	+	++	- +	29 50
Small intestine Large intestine	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 46
URINARY SYSTEM Kidney	+	+		+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	52
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	50
Adenoma, NOS Adrenal	X +	+	X +	+	X +	X +	X +	+	+	X +	Х + Х	X +	X +	+	X +	X +	X +	X +	+	+	+	X +	X +	X +	X +	+	31 52
Cortical adenoma Pheochromocytoma Thyroid	+		Х			X					X	X					X								X		5 .5
C-cell adenoma C-cell carcinoma	+	+	+	+	+	+	+	X	+	+	+ X	+	+	+	+	+	+	+	+	+	X	X	+	+	+	+	48 6 1
Parathyroid Pancreatic islets	++	+	+	++	++	+ +	++	+	+	++	+	++	++	+	++	++	++	+	++	++	+	+	+	++	+	++	45 51
Islet cell adenoma Islet cell carcinoma																											1
REPRODUCTIVE SYSTEM Mammary gland	N	N	+	+	+	N	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	<u>+</u>	+	*52
Adenocarcinoma, NOS Fibroadenoma Preputial/clitoral gland	N	N	X N	N	N	N	N	N	N	N	N	N	N	N	X N	N	N	N	X N	N	N	N	N	N	X X N	N	3 11 *52
Adenoma, NOS Cystadenoma, NOS	1	.,	1.4	7.4	7.4	7.4	14	ī,A	14	14	N X	.*	7.4		74	7.4	7.4	14	X	14	.,	7.4	14	X	14		1 2
Uterus Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	x X	+	+	+	+	+	+	+	+	+	+	+	+	52 1
Endometrial stromal polyp Endometrial stromal sarcoma Ovary	+	+	+	+	X +	X +	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	X +	+	X +	X	+	Х +	10 1 52
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	51
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N		N	N	N	N	N	N	N	*52 10

^{*} Animals necropsied

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX: 10 ppm

		I I	2121	כינ	10	υı	(O	r r	1111	t E Z	٠.	10	hh,	11												
ANIMAL NUMBER	3 7 4	4 5 2	3 6 8	4 1 6	3 9 2	4	3 9 0	4 1 2	3 5 4	3 6 0	3 6 2	4 5 0	3 5	3 7 2	3 9 4	3 5 8	4 2 6	3 6 4	3 6 6	3 7 0	3 7 6	3 7 8	3 8 0	3 8 2	3 8 4	3 8 6
WEEKS ON STUDY	0 7 7	0 7 9	0 8 2	0 8 8	0 9 2	0 9 4	0 9 8	9	1 0 0	1 0 3	1 0 3	1 0 3	1 0 5	1 0 5	1 0 5	1 0 6	1 0 6	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8
NTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma Fibrosarcoma	+	+	+	N	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi C-cell carcinoma, metastatic Fribrosarcoma, metastatic frachea	+	+	+	+	+	+	+	+	+	+	+	+	+ X +	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Sone marrow Spleen Leukemia, mononuclear cell ymph nodes hymus	+ + + + +	+ + + +	- - + -		+ + + +	+ + + +	+ + +	+ + + +	++++	+ + -	+ + +	+ + +	+ + + +	+ + + +	+ + + +	+ + X +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + -	+ + + +	+++++	+ + + +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Pancreas Espondarus Stomach Small intestine Large intestine	+ + + + + + + + + + + + + + + + + + + +	+++++	+++++-	+ +	+ + + + + + + -	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+++++	+++-+-	-++-++	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + +	++++++	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + -	+++++++	+++++++	+++++++	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + +	+ + + + + + + +	++ ++-++	+ + + + + + + +	+++++++
JRINARY SYSTEM Kidney Jinary bladder Transitional cell carcinoma Sarcoma, NOS, invasive	++	++	++	- + X	++	+	++	+	+	+	++	+	+	++	+ +	+	+ +	+ +	+	+ +	+ +	+ +	+ +	++	+++	++
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Fibrosarcoma, invasive	+	+ X	+	-	+	+ X	+ X	+	+	+ X	+ X	+	+ X X	+ X	+ X	* X	+ X	+	+	+ X	+	+	+ X	+ X	+ X	+
Adrenal Cortical adenoma Pheochromocytoma	+	+	+		+	+	+	+	+	+	+	+	+	*	+	+	* X	+	+	+	+	+	+	+	+	+
Fhyroid Follicular cell adenoma Follicular cell carcinoma C-cell adenoma C-cell carcinoma Parathyroid Pancreatic isiets Islet cell adenoma Islet cell carcinoma	-+	+	+ -	-	+ X + +	+ + +	+ -	+ + +	++	+ X - +	+++	+ + +	+ + + X	+ + +	+ + +	+ + +	++	+++	+++	+ X + +	+ + +	+ + +	+++	+++	+++	+ + +
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Preputial/clitoral gland Cystadenoma, NOS	+ X N	N N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	X N	+ N	+ N	+ X N	+ N	+ X N	+ N	X N	+ X N	N	X N	+ N	+ X N	+ N	h +	N N
Iterus Sarcoma, NOS Endometrial stromal polyp Vary Fibrosarcoma	+	+	+	+ X +	+	+ X +	+	+	+	+ X +	+ X +	+	+	+	+	+	+ X +	+	+	+	+	+	+	+ X +	+ X +	+ X +
VERVOUS SYSTEM Brain Carcinoma, NOS, invasive Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X	+	+	+	+ X	+	+	+	+	+	+
BODY CAVITIES Peritoneum Osteoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N X	N X	N X	N	N	N	N X	N X	N X	N	N	N	N	N	N X	N	N X	N	N X	N	N	N	N	N	N	N

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: 10 ppm (Continued)

ANIMAL NUMBER	3 8 8	3 9 6	3 9 8	4 0 0	4 0 2	4 0 4	4 0 6	4 0 8	1 0	1 4	4 1 8	4 2 0	2 2	4 2 4	4 2 8	4 3 0	4 3 2	4 3 4	4 3 6	3	4 4 2	4 4	4 6	4 8	4 5 4	4 5 6	TOTAL
WEEKS ON STUDY	1 0 8	1 0 8	0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	0 8	0 8	1 0 8	1 0 8	0 8	1 0 8	1 0 8	1 0 8	0 8	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma Fibrosarcoma	+	+	*X	+	+	N	+	+	+	+	+	+	+	+	N	+	+	N	+	+	+	+	+	+	N	+	*52 1 1
RESPIRATORY SYSTEM Lungs and bronchi C-cell carcinoma, metastatic Fibrosarcoma, metastatic Trachea	+	+	+	+	+	+	+	+	* X +	+ X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 2 1 47
HEMATOPOIETIC SYSTEM Bone marrow Spleen Leukemia, mononuclear cell Lymph nodes Thymus	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	++++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + -	+ + + +	+ + + +	+ + + -	+ + + +	+ + + +	++++	++++	+ + + +	+ + + +	+ + + +	++++	+ + + -	+ + + +	+ + + +	50 50 1 51 42
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Pancreas Esophagus Stomach Small intestine Large intestine	+ + X + + + +	+++++++	+ + X + + + + +	+ + X + + + + +	++ +++++	++ ++ +++	++ ++ +++	+ + X + + + + + + +	+ + + + + + + + +	+++++++	+ + + + + + + + + +	++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++	++ +++++	+++++++	++ +++++	++ +++++	++ ++-++	+ + X + + + + + + + + + + + + + + + + +	++ +++++	++ ++++++	+++++++	++ +++++	+++++++	+ + + + + + -	51 52 5 52 49 35 51 48
URINARY SYSTEM Kidney Urinary bladder Transitional cell carcinoma Sarcoma, NOS, invasive	++	+	+++	+++	+	+	++	+	+	+	++	++	+ + X	+	+	+	+ +	++	++	+ +	+	++	++	+	+	+	51 51 1
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Fibrosarcoma, invasive Adrenal Cortical adenoma Pheochromocytoma Thyroid	+ *	+	+	+	+	+ X +	+	+	+ + X	+ X +	+ X +	+	+ X +	+	+	+ X +	+ X +	+ X +	+	+ X +	+	+	+ X +	+ X +	+ X +	+ X +	51 2 24 1 51 3 1 47
Follicular cell adenoma Follicular cell carcinoma C-cell adenoma C-cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma Islet cell acroinoma	++	+ +	X + +	X + +	+ +	+ +	+ +	+ + *	X + + X	X - +	++	++	+++	X + +	++	++	X + +	++	++	- +	+ +	+ +	+ +	* + +	+ + X	X + +	1 1 5 4 46 49 1 3
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Preputial/icitoral gland Cystadenoma, NOS Utarus Sarcoma, NOS Endometrial stromal polyp Ovary Fibrosarcoma	N N + X + X	+ N + +	+ N + +	+ N + X +	+ N +	N N +	+ X N + X +	+ N + +	N N +	+ N +	N N +	+ N + X +	+ X N +	+ X N +	N N +	+ X N + X +	+ X N +	N N + +	N N + X +	+ N + +	+ N + +	+ N +	+ X N +	+ X N +	+ X N + +	+ X N X +	*52 17 *52 1 52 1 13 52 1
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive Astrocytoma	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 2 1
BODY CAVITIES Peritoneum Osteoma	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*52
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N X	N	N	N X	N	N	N	N		N	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N	N	*52 13

^{*} Animals necropsied

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX: 25 ppm

			· C. I	פנ			U.			***			PP.													
ANIMAL NUMBER	5 2 0	5 1 8	5 5 8	5 7 0	5 0 4	5 5 2	5 1 4	5 6	5 2 6	5 0 8	5 1 2	9	5 0 0	5 1 0	5 5 6	5 7 4	5 7 6	5 0 2	5 0 6	5 1 6	5 2 2	5 2 4	5 2 8	5 3 0	5 3 2	5 3 4
WEEKS ON STUDY	0 4 9	6 8	0 8 9	9 6	1 0 1	1 0 2	1 0 3	1 0 4	0 5	1 0 6	1 0 6	1 0 7	0 7	1 0 7	1 0 7	1 0 7	1 0 7	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	+	+	N	+	+	+	+ X	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Fibrosarcoma, metastatic Trachea	+ +	+	+	+	+	+	+ X +	+	+	+	++	+	+	+	++	++	+	+	+	++	+	+ +	+	+	+	+ +
HEMATOPOIETIC SYSTEM Bone marrow Spleen marrow Leukemia, mononuclear cell	+ +	++	+ +	++	+	+	++	+ +	++	+	++	+ +	+	++	+	+ +	+ +	++	+ + X	+ +	+ +	+ +	+ +	+ +	+	++
Lymph nodes Thymus CIRCULATORY SYSTEM	+	+	+	+	+	+	+ 	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+		+
Heart DIGESTIVE SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Salivary gland Liver Neoplastic nodule Hepatocellular carcinoma	++	+	+	+ X	+	+	+	++	+	+	+ + X	+	+ X	+	+	+	+	+	+	++	++	+	+ X	+	++	+ +
Bile duct Pancreas Acinar cell adenoma	++	+	++	++	+	+	+	++	+	+	+ +	++	++	+	+ -	++	++	+	+	+	++	+	+	+	+	+ + X
Esophagus Stomach Small intestine Papillary adenoma	+++	++	+++	++	- -	++	+++	- -	+++	+ + X	+++	+++	+ - -	+++	-	+++	+	++	++	++	+++	+++	++	++	+	+ + + + +
Large intestine URINARY SYSTEM Kidney	++	+	+	+ +	+		+ +	+	++	++	+	+	<u>-</u> +	+ +		+ +	+	+	+ +	+	+	+	+	+	+	
Urinary bladder ENDOCRINE SYSTEM Pituitary	+	+	 +	+		+ +	+	- +	+	+	+ +	+	+ +	+ + +	+	+	<u>-</u>	+	+	+	+ +	+	+		+	+
Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma	+	+	X +	+	X +	X +	+	+	+	X +	+	+	X +	+	<u>x</u>	X +	+ X	X	X +	+	+	X +	X +	X +	X +	X
Pheochromocytoma Thyroid C-cell adenoma	+	-	+	*X	+	+	+	-	*	+	+	+	+	+	-	Х +	-	+	+	X	*	+	+	+	+	+
Parathyroid Pancreatic islets Islet cell adenoma Islet cell carcinoma	+	+	+	+	+	+	+ X	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+ +
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	N	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	N	+	+	+	N	+	+	+	+	N
Fibroma Fibroadenoma Uterus Leiomyoma	+	+	+	+	+	X +	+	X	+	+	X +	X +	+	+	+	+	+	+	+		+	+	+	+	X +	+
Endometrial stromal polyp Endometrial stromal sarcoma Ovary	+	+	+	+	+	+	x +	+	+	+	+	+	X +	+	+	+	+	X X +	+	+	+	+	X +	+	+	+
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive	+	+	+	+	, X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N X	N X	N	N X	N	N	N	N X	N	N	N	N X	N X	N X	N X	N X	N X	N	N	И	N	N	N	N	N	N

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: 25 ppm (Continued)

ANIMAL NUMBER	5 3 6	5 3 8	5 4 0	5 4 2	5 4 4	5 4 6	5 4 8	5 0	5 5 4	5 6 0	5 6 2	5 6 4	5 6 8	5 7 2	5 7 8	5 8 0	5 8 2	5 8 4	5 8 6	5 8 8	5 9 0	5 9 2	5 9 4	5 9 6	5 9 8	6 0 0	TOTAL
WEEKS ON STUDY	1 0 8	0 8	0 8	1 0 8	0 8	0 8	1 0 8	0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	*	*52 2
RESPIRATORY SYSTEM Lungs and bronchi Fibrosarcoma, metastatic Trachea	+	+	+	+	+	+ +	+	+	+	++	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	52 1 46
HEMATOPOIETIC SYSTEM Bone marrow Spleen Leukemia, mononuclear celi	+ +	++	++	++	++	++	++	+ +	++	++	++	+	++	++	++	+	+	+	++	++	++	++	++	+	++	+	49 51 1
Lymph nodes Thymus	++	+	+	+	+	+	+	+	+	++	++	+	+	+	++	+	+	+	+	+	+	+	+	++	++	+	52 48
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule	++	+	+	++	+	+	+	+	++	++	+	+ + X	+ + X	+	+	+ X	+ + X	+	+	+ + X	+ + X	+	+	+	+	+	52 52 9
Hepatocellular carcinoma Bile duct Pancreas Acinar cell adenoma	++	++	++	+	+	+	+	++	++	++	++	+	+	++	+	+	+	+	++	++	+	+	++	+	+	+	52 50 1
Esophagus Stomach Small intestine	+++++	+ + +	+ + +	+ + +	+++	- + +	- + +	+ + +	- + +	+ + +	++++	+++	+++	+++	- + +	- + +	- + +	++	++++	+++	+ + +	+++	+ + +	+++	++++	+ + +	42 48 47
Papillary adenoma Large intestine URINARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	42
Kidney Urinary bladder	++	+	+	+	++	++	+	+	+	++	++	+	+	+	++	+	++	+ +	+	+	+	+	+	+	++	++	51 47
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 1
Adenoma, NOS Adrenai Cortical adenoma Pheochromocytoma	X +	+	+	X +	X +	X +	*	X +	+	+	X +	X +	+	+	X +	X +	X + X	X +	X +	X +	+	X +	+	X +	Х + Х	X +	30 51 4 2
Thyroid C-cell adenoma Parathyroid Pancreatic islets	+ +	+ + +	+ + +	+ + +	* X +	+ + X	+ X + +	+++	+ ++	+ +	+ +	+ +	+ +	+ +	+	+ +	+	+	+ +	+	+	* * +	+	+ +	++++	+ +	48 6 44 50
Islet cell adenoma Islet cell carcinoma		т	т	_		x	т	_	_	Ŧ	<i>T</i>	*	Τ.	т	T	т	_	т	T	T		т	T	т	5	7	4 1
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Fibroma	+	+	+	+	+	+	+	+	N	N	+	+	+	N	+	N	N	+	+	+	+	*	+	N	N	+	*52 1 1
Fibroadenoma Uterus Leiomyoma Endometrial stromal polyp Endometrial stromal sarroma	+	+	X +	+	+ X	+	+	X +	+ X	+	+	+	X + X	+	+	+ X	+	x + x @	+ DX	X +	+	+	+	*	+ X X	х + х	10 52 1 12 2
Ovary NERVOUS SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
Brain Carcinoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N X	N	N	N X	N	N	N	N	N	N	N X	N X	N	N	N	N	N	N	N	N X	N X	N X	N	N	N	*52 17

^{*} Animals necropsied

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX: 50 ppm

				, ,	10	υ.	•	L 1	ATTE	, Li	1.	00	PP.	LEX												
ANIMAL NUMBER	8 4 2	8 6 4	8 0 2	8 4 4	8 3 8	8 3 6	8 1 8	8 1 6	7 9 8	8 2 6	8 8 0	8 2 8	8 5 0	8 5 2	8 1 2	8 9 2	8 9 4	8 3 2	8 7 6	8 8	7 9 4	7 9 6	8 0 0	8 0 4	8 0 6	8 0 8
WEEKS ON STUDY	0 5 2	0 6 9	0 8 0	0 8 1	0 8 5	0 8 7	9 1	0 9 3	9	9	0 9 4	0 9 7	0 9 8	9 9	1 0 1	1 0 4	1 0 5	1 0 7	1 0 7	1 0 7	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma	N	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+ X	+	. +	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+	+	+	+	+	+	+	+	+ +	+ +	+	+	+ +	+	+	+	+	+	+	+	+	+	+ +	+	+ +	++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangioma	+ +	++	+	++	+ +	++	+	+ + X	+	++	++	+	++	++	++	+ +	++	+	++	- +	+	++	+ +	+ +	++	+
Leukemia, mononuclear cell Lymph nodes Thymus Carcinoma, NOS	++	++	++	+	+	+	+ +	+	+	+	+	+	++	X + X	+	++	++	++	+	X + ~ X	++	++	++	<u>+</u>	++	+ +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule	+ +	++	+	+	++	+	+	++	++	++	+ + X	++	++	+	++	++	++	++	+	++	++	++	++	++	+++	+++
Hepatocellular carcinoma Bile duct Pancreas Esophagus Stomach	+ + - +	+ + + +	+ + - +	++++	++++	+ + +	+ + + +	+ + - +	++++	++++	++++	++++	+ + +	+ + + +	+ + +	+ + + +	+ + + +	+ + + +	+ + +	X + - + +	+ + - +	+ + - +	+ + + +	+ + + +	+ + + +	+ + + +
Small intestine Large intestine	++	+	+	+	+	=	-	+	+	+	<u>+</u> 	+	+	+	+	=	+	=	+	_	+	+	+	‡ —	+	+ —
URINARY SYSTEM Kidney Sarcoma, NOS Lipoma Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Cortical adenoma Cortical carcinoma	+ +	+ X +	+	+	+ X +	+	+ +	+	+ X +	+	+	+ X +	+	++	+ X +	+ +	+ +	+	* * *	 +	+ + X	+	+	+	+ X +	+ X +
Pheochromocytoma Pheochromocytoma, malignant Thyroid	+	+	+	-	+	+	+	_	_	*X	+	+	+	_	+	x -	+	+	+	_	+	+	+	X	+	+
Follicular cell carcinoma C-cell adenoma Parathyroid	+	+	+	+	_	+	+	_	+	х +	+	+	+	+	-	_	_	<u>x</u>	_	+	+	+	+	. —	+	+
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	+	N	+	N	+	+	N	+	+	+	N	+	+	+	+	+	N	N	+	+	+	+	+	+	+	+
Fibroadenoma Preputial/clitoral gland Carcinoma, NOS	N	N	N	N	N	N	N	X N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Uterus Adenocarcinoma, NOS Leiomyoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+
Endometrial stromal polyp Ovary	+	+	* +	+	_	* +	* +	+	+	+	+	+	+	X +	X +	+	+	+	+	+	+	+	+	X +	X +	+
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Sebaceous adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	+ X	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Adenocarcinoma, NOS, metastatic	N			N	N	N		N				N		N	N	N	N	N X		N	N	N	N	N	N	N
Leukemia, mononuclear cell		X	X				X		X	X	X		X						X						Х	

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: 50 ppm (Continued)

ANIMAL NUMBER	8 1 0	8 1 4	8 2 0	8 2 2	8 2 4	8 3 0	8 3 4	8 4 0	8 4 6	8 4 8	8 5 4	8 5 6	8 5 8	8 6 0	8 6 2	8 6 6	8 6 8	8 7 0	8 7 2	8 7 4	8 7 8	8 8 2	8 8 4	8	8 9 0	8 9 6	TOTAL:
WEEKS ON STUDY	1 0 8	1 0 8	0 8	0 8	0 8	1 0 8	1 0 8	0 8	0 8	0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	0 8	1 0 8	1 0 8	1 0 8	1 0 8	1 0 8	0 8	1 0 8	1 0 8	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*52
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	52
Trachea	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	44
HEMATOPOIETIC SYSTEM Bone marrow Spleen	+ +	++	++	++	++	++	++	++	++	++	++	++	+++	++	++	++	++	++	++	++	+	++	++	++	++	++	50 50
Hemangioma Leukemia, mononuclear cell Lymph nodes Thymus Carcinoma, NOS	++	+	++	+	++	+	+	+ + X	+	X + +	+	+	+	X + +	++	+	+	+	+	+	+	++	++	+	+	++	52 41 1
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
DIGESTIVE SYSTEM Salivary gland Liver	+ +	++	+	++	++	+	+ +	++	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	++	52 52
Neoplastic nodule Hepatocellular carcinoma Bile duct	X	· +	+	X +	+	x +	X +	+	+	X	· +	+	·	, +	, +	· +	+	+	+	· +	X +	, +	X +	+	+	+	7 2 52
Pancreas Esophagus	++	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	50 38
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	51
Small intestine Large intestine	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47 40
URINARY SYSTEM Kidney Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	 *	+	+	+	52
Lipoma Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	50
ENDOCRINE SYSTEM Pituitary	+	<u>+</u>	+	+	+	+	_	+	<u>+</u>	+	+	+	+	+	<u>+</u>	+	<u>+</u>	+	+	+	+	+	+	+	+	<u>+</u>	50
Adenoma, NOS Adrenal Cortical adenoma Cortical carcinoma	+	X +	Х + Х	+	X +	X +	+	X +	X +	+	+	X +	+	+	X +	+	X + X	+	X +	+	X +	+	X +	X +	+	X +	22 52 3 1
Pheochromocytoma Pheochromocytoma, malignant Thyroid		X							X	ı			X			X		_	1.		_			_	_	_	5 1 46
Folicular cell carcinoma C-cell adenoma Parathyroid		+	+	+	·	T	~		+	+	+	+	T	X	+	+	⊤	+		τ +	+	+	+	+	+	+	1 2 43
REPRODUCTIVE SYSTEM Mammary gland	+	N	+	+		+	+	N	+	+	+	+	+	N	+	N	+	+	+	+	+	+	+	N	+	+	*52
Adenocarcinoma, NOS Fibroadenoma Preputial/clitoral gland	N	N	X N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	X X	X N	X N	N	N	N	N	N	N	2 3 *52
Carcinoma, NOS Uterus Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	52 1
Leiomyoma Endometrial stromal polyp Ovary	+	+	+	+	+	+	+	+	X +	+	X +	+	+	X	+	+	+	+	X	X	+	X +	X +	X +	+	X +	1 15 51
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 1
SPECIAL SENSE ORGANS Zymbal gland Sebaceous adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*52
ALL OTHER SYSTEMS Multiple organs, NOS Adenocarcinoma, NOS, metastatic	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*52 1
Leukemia, mononuclear ceil						X		X									X	X							X		14

^{*} Animals necropsied

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX: UNTREATED CONTROL

								te.				LLP													
0 4 0	0 2 2	0 2 8	0 7 2	0 4 4	0 8 4	0 0 2	0 7 0	0 0 4	0	0 0 8	0 1 0	0 1 2	0 1 4	0 1 6	0 1 8	0 2 0	0 2 4	0 2 6	0 3 0	0 3 2	0 3 4	0 3 6	0 3 8	0 4 2	0 4 6
0 5 0	0 5 4	0 8 0	0 8 7	9	0 9 4	9	1 0 0	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
_													_							_					
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+
_	_	+	+	· _	· -	_	·	_	_		· +		_		_		_	+	+	+	_	_	_	+	X
							<u> </u>																		<u>.</u>
+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	++	+	+	++	+	++	++	++	+	++	+	++	+	+	+	++	+	+	++	++	++	+	+	++
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
N		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	_	Ξ	Ξ	_	_	+	+	_	_	+	+	_	Ξ	+	+	-	+
+	+	+	_	+	-	÷ +	+	+	++	+	+	+	++	+	+	+	+	++	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X +	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	X +	X +	+	X +	+	X +	X +	+	+	X +	X +	X +	X +	X +	X +	X +	+	X +	+	X +	+	+	+ X
											v								X						A
+	+	+	~	-	-	+	+	+ v	+	+	+	X	+	+ Y	+	+	+	+	+	+	+	+ ¥	+	+	+
_		4	_	_	_	_	_	1		_	_				4	_	_	_	_	_	_		_	_	X +
+	+	+	-	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
						X															X				X
+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+ v	+	+	+	+	+	+	+	+
X	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	· +	+	+	+	X	+	+	+	+	+		+	+	+	+	+	+	+	+	X	+	+
+	+	+	- <u>-</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
																								N	
	4 0 0 5 0 + + + + + + + + + + + + + + + +	4	4 2 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 8 7 0 0 0 0 5 5 8 8 8 0 4 0 7 +	4 2 2 7 4 0 2 8 7 4 0 0 0 0 0 5 5 8 8 9 0 4 0 7 3 + + + + + + + + + + + + + + + + + + + + + N N N N N N N - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +	4 2 2 7 4 8 0 0 0 0 0 0 5 5 8 8 9 9 0 4 0 7 3 4 + + + + + + + + + + + + + + + + +	4 2 2 7 4 8 0 0 0 0 0 0 0 0 0 5 5 8 8 8 9 9 9 0 4 0 7 3 4 9 + + + + + + + + + + + + + + + + + + + + +	4 2 2 7 4 8 0 7 0 0 0 0 0 0 0 5 5 8 8 9 9 9 0 0 4 0 7 3 4 9 0 + + + + + + + + + + + + + + + + + +	4 2 2 7 4 8 0 7 0 0 0 0 0 0 0 0 1 5 5 8 8 9 9 9 9 0 0 4 0 7 3 4 9 0 5 + + + + + + + + + + + + + + + + + +	4 2 2 3 7 4 8 0 7 0 0 0 0 0 0 0 0 0 0	4	4	4	4	4	4 2 2 7 4 8 0 7 0 0 0 1 1 1 1 1 1 1	4 2 2 7 4 8 0 7 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	4 2 2 3 7 4 8 0 7 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	4 2 2 7 4 8 0 7 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	4 2 2 7 4 8 0 7 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 4 4 8 0 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 2 2 7 4 4 8 0 7 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	4 2 2 2 7 4 4 8 0 7 0 0 0 0 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	4 2 2 2 7 4 4 8 0 7 0 0 0 0 1 1 1 1 1 2 2 2 3 3 3 3 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0	4 2 2 2 7 4 4 8 0 7 0 0 0 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	4 2 2 2 7 4 4 8 0 7 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

^{+:} Tissue examined microscopically
-: Required tissue not examined microscopically
X: Tumor incidence
N: Necropsy, no autolysis, no microscopic examination
S: Animal missexed

[:] No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: UNTREATED CONTROL (Continued)

									, •	on	LIII	ueu	.,														
ANIMAL NUMBER	0 4 8	0 5 0	0 5 2	0 5 4	0 5 6	0 5 8	0 6 0	0 6 2	0 6 4	0 6 6	0 6 8	0 7 4	0 7 6	0 7 8	0 8 0	0 8 2	0 8 6	0 8 8	9	9	9	9 6	0 9 8	1 0 0	1 0 2	1 0 4	TOTAL:
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TISSUES
INTEGUMENTARY SYSTEM Skin	+			_		N	_																	_			*52
Squamous cell papilloma Basal cell tumor Subcutaneous tissue	+	+	+	+	+	N	+	+	+	+	+	+	+	+	т Х +	+	+	+	+	+	* +	+	+	+	+	+	1 1 1 *52
Carcinoma, NOS, unclear pri or met RESPIRATORY SYSTEM																											
Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	*	+	+	52 2 1
Trachea HEMATOPOIETIC SYSTEM		+	+	+	+	+	+	+	+		+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	49
Bone marrow Spleen Leukemia, mononuclear cell	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	++	48 51 1
Lymph nodes Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51 44
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma Salivary gland	N +	N	N X +	N +	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*52 1 50
Liver Neoplastic nodule	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	Ŧ	+	+	+ X	+	+	+	+	+	52 2
Bile duct Pancreas	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 50
Esophagus Stomach Small intestine Large intestine	+ + + +	+ + +	+++	- + +	+ + +	++++	+ + +	+ + +	+++	+++	+ + +	+ + + +	+ + +	++++	++++	+ + + +	+ + + +	+ + + +	+++	+ + + +	+ + +	++++	-+++	+++	+ + +	+++	32 51 50 48
URINARY SYSTEM Kidney Kidney/pelvis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 52
Transitional cell carcinoma Urinary bladder Transitional cell papilloma	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50 1
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	52
Adenoma, NOS Adrenal Cortical adenoma Cortical carcinoma	X + X	+	Х + Х	X +	Х + Х	+	X +	*	X +	+	+ X	X +	X +	+	+	+	X +	X +	X +	X +	X	X +	+	X +	X +	X +	31 52 5
Pheochromocytoma Thyroid Follicular cell adenoma C-cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	X +	X +	+	+	+ X	+	+	+	3 49 1 5
C-cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma	++	+	+	++	+	++	++	++	+	++	++	+	X + +	+	+ +	++	+	++	++	+	++	+	++	+ +	+	+ +	52 50 1
Islet cell carcinoma REPRODUCTIVE SYSTEM Mammary gland						N.	<u> </u>	N	+	<u>х</u>	<u> </u>		+			N								N			*52
Adenocarcinoma, NOS Fibroadenoma													,			• •				,			X		,	Ċ	1 3
Papillary adenoma Endometrial stromal polyp Ovary	X +	+ X +	* *	+ X +	+ X +	+ X +	+	+ X +	+ X +	+	+	+	+	+	+	т Х +	+	+	+ X +	+	+	+	+	+	+	+	52 1 12 52
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	52
ALL OTHER SYSTEMS Multiple organs, NOS Malig. lymphoma, histiocytic type Leukemia, mononuclear cell	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	*52 1 5
	·																										-

^{*} Animals necropsied

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX: 50 ppm

	I W U-			. F)		ט פ	,	יעי		F	VII.		48.	00	PP	-11										
ANIMAL NUMBER	2 0 2	1 6 6	1 1 4	1 6 0	1 7 4	1 2 6	1 5 4	1 9 0	1 5 6	1 0 6	0 8	1 1 0	1 1 2	1 6	1 8	1 2 0	1 2 2	1 2 4	1 2 8	1 3 0	1 3 2	1 3 4	1 3 6	1 3 8	1 4 0	1 4 2
WEEKS ON STUDY	0 7 5	0 9 5	9 9	1 0 2	1 0 2	1 0 4	1 0 4	1 0 4	1 0 5	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	0 6	0 6	0 6	1 0 6	1 0 6	0 6	0 6	1 0 6	1 0 6	1 0 6	0 6	1 0 6
INTEGUMENTARY SYSTEM Skin Squamous cell carcinoma	+	+	+	+	*	+	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcinoma, metastatic Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	* X +	+	+	+	+	+	+	+	+ X +	+	+	+	+	+	+	+	+	+	+	+	+ X +	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Leukemia, mononuclear cell Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	- + +	+ + +	+ + +	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + X +	+ + +	+ + +	+ + +	+ + +	+++	+++	+ + +	+ + +	+++	+ + +	+++-	+++
CIRCULATORY SYSTEM Heart	- -		+		 	+	+	+	+	+		+	+	-	-	-	-	 +		- - -			-	+		+
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma Salivary gland Liver Neoplastic nodule Bile duct Pancreas Mixed tumor, benign Esophagus Stomach Small intestine Large intestine	N + + + + + + + + + + + + + + + + + + +	N + + X + + + + + + + + + + + + + + + +	N ++ +++++	N -+++++	N ++ ++++	Z ++ +++++	N + + X + + + + + + + + + + + + + + + +	N + + + + + + + + + + + + + + + + + + +	N ++ ++++	Z ++ ++ ++++	N + + X + + + + + + + + + + + + + + + +	Z ++ ++ +++	N ++X++ ++++	N + + X + + + + + + + + + + + + + + + +	N ++ +++++	Z ++ ++ ++ ++	N + + X + + + + + + + + + + + + + + + +	N ++X++++++	N + + X + + + + + + + + + + + + + + + +	N + + + + + + + + + + + + + + + + + + +	N + + X + + + + + + + + + + + + + + + +	Z ++ ++ ++++	N + + X + + + + + + + + + + + + + + + +	N + + X + + + + + + + + + + + + + + + +	Z ++ ++ ++++	N + + X + + + + + + + + + + + + + + + +
URINARY SYSTEM Kidney Urinary bladder	++	+	++	++	+	 + +	++	++	++	+	++	++	+	++	+	++	++	++	++	++	+	+	+	++	++	++
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adenoma, NOS Cortical adenoma Pheochromocytoma Thyroid	+	+	+ X + X	+	+ X + X	+	+ X +	* X +	+ X +	+	+	+	+	+ *	+ X +	+	+	+ X +	+ X +	+ X +	+	+ X +	+ X +	+ X +	+ X +	+ +
Follicular cell adenoma C-cell adenoma C-cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma Islet cell adenoma Islet cell carcinoma	++	- +	- +	- +	++	+	X + +	++	X + + X	+ + X	X + +	++	++	- + X	++	++	++	X + + X	++	+	- +	+ + X	++	++	**************************************	++
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Fibroadenoma Uterus Undifferentiated carcinoma Endometrial stromal polyp	+ X +	+	+	+	+	+	+	+	+	N +	+ + X	+	+ X ~	+	† X +	+	+ X + X	+	+ + X	+	+	N +	+ X +	+	+	+
Ovary NERVOUS SYSTEM Brain	- +	+	+	+	+	+	+	+ + X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma, NOS, invasive ALL OTHER SYSTEMS Multiple organs, NOS Undifferentiated carcinoma, metastatic Fibrosarcoma Leukemia, mononuclear cell	N	N X	N	N X	N	N X	N X		N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N X	N

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: 50 ppm (Continued)

ANIMAL NUMBER	1 4 4	1 4 6	1 4 8	1 5 0	1 5 2	1 5 8	6 2	1 6 4	1 6 8	1 7 0	1 7 2	1 7 6	1 7 8	1 8 0	1 8 2	1 8 4	1 8 6	1 8 8	1 9 2	1 9 4	1 9 6	9 8	0 0	2 0 4	2 0 6	2 0 8	
WEEKS ON STUDY	1 0 6	1 0 6	0 6	0	0 6	1 0 6	0 6	0 6	1 0 6	1 0 6	0	0	1 0 6	0 6	1 0 6	0 6	1 0 6	0 6	0	1 0 6	1 0 6	1 0 6	0 6	1 0 6	1 0 6	1 0 6	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Squamous cell carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*52
RESPIRATORY SYSTEM																_			,		_						
Lungs and bronchi Squamous cell carcinoma, metastati Alveolar/bronchiolar carcinoma Trachea	+	* X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 1 3 52
HEMATOPOIETIC SYSTEM Bone marrow	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Spleen Leukemia, mononuclear cell Lymph nodes Thymus	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	++++	+++	+ + +	+ + +	+	+ + +	+++	+++	+	++++	+ + +	+ + +	+++	+ X + +	+ + +	+++	+ + +	+ X + +	52 3 52 46
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*52
Salivary gland Liver Neoplastic nodule	++	+	+	+	+	+ X	+	+ X	+ * X	+	++	+	+	++	+	+	+ + X	+ X	+ X	+	+ X	+ + X	+ X	+	+ X	+ X	51 52 23
Bile duct Pancreas Mixed tumor, benign	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	52 52 1
Esophagus Stomach Small intestine Large intestine	+ + +	+ + + +	+ + +	+ + + +	+ + +	+ + + +	+ + +	+ + +	+ + +	+ + + +	++++	+ + + +	+ + + +	++++	++++	++++	++++	+ + + +	+ + +	+ + + +	+ + +	+ + + +	+ + +	+ + + +	+ + + +	+ + + +	52 51 52 52
URINARY SYSTEM Kidney Urinary bladder	++	+ +	+	++	+	++	++	++	+ +	++	++	+	++	++	++	++	++	+	+	+ +	+	+ +	+	+ +	+	+	52 50
ENDOCRINE SYSTEM Pituitary	+	<u> </u>	_			_	_																				52
Carcinoma, NOS Adenoma, NOS Adrenal	+	X +	т Х +	X +	х + х	т Х +	X	+ X	X +	+	+	+	+	+	X +	X +	+	X +	Х +	+	+	X +	+	X	+	X	3 23 52
Cortical adenoma Pheochromocytoma Thyroid Follicular cell adenoma	X +	+	+	+	х + Х	+	+	x +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	6 2 49 1
C-cell adenoma C-cell carcinoma Parathyroid	+	+	+	_	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	3 3 45
Pancreatic islets Islet cell adenoma Islet cell carcinoma	X	+	+	+	+	X X	+	+	+ X	+	+	+	+ X	+ X	+ X	+	+	+	+	+	+	+	+	+	+	+	52 2 9
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*52
Fibroadenoma Uterus Undifferentiated carcinoma	+	+	+	+ X	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	6 51 1
Endometrial stromal polyp Ovary	X +	+	+	+	+	+	+	+	+	+	X +	+	X +	X +	+	X +	+	+	+	+	+	+	+	+	+	+	52
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive	+	, X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 2
ALL OTHER SYSTEMS Multiple organs, NOS Undiff. carcinoma, metastatic Fibrosarcoma Leukemia, mononuclear cell	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	*52 1 1 6

^{*} Animals necropsied

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX: 100 ppm

_						- ~		~ -	•					TOO		m										
ANIMAL NUMBER	2 8 4	3 1 0	2 5 2	2 3 6	2 2 6	3 0 0	2 8 2	2 8 0	2 4 8	9 4	2 7 2	2 6 8	2 8 6	2 1 0	2 1 2	2 1 4	2 1 6	2 1 8	2 2 0	2 2 2	2 2 4	2 2 8	2 3 0	2 3 2	2 3 4	2 3 8
WEEKS ON STUDY	0 8 2	0 8 2	0 8 6	0 8 7	0 9 2	0 9 4	9 5	0 9 6	0 9 7	0 9 7	9 8	1 0 1	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
INTEGUMENTARY SYSTEM Subcutaneous tissue Hemangiosarcoma	+	+ X	+	N	+	+	+	+	+	+	+,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Pheochromocytoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X +
HEMATOPOIETIC SYSTEM Bone marrow Spleen Leukemia, mononuclear cell Lymph nodes Thymus	+ + + -	+++++	+++-	+ - + -	+ + + +	+ + + +	+ + + +	- - + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+++++	+ + + + +	+ + + +	+ + + +	+ + + +	+ + +	+ + + +	+ + X + +
CIRCULATORY SYSTEM Heart Hemangiosarcoma, metastatic	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Hepatoceilular carcinoma Bile duct Pancreas Acinar cell adenoma Esophagus Stomach Squamous cell papilloma Small intestine Large intestine	+ + X X + + + + + + -	+ + X + + + + +	+ + X + + + + + + + + + + + + + + + + +	++ ++ ++	++ ++ ++	++ ++ ++	+++++++	+ + X + - + +	+++++++	+ + + + + X + +	++ ++ ++	+ + X + + + + +	+++++++	+ + X + + + + +	+ + X + + + + +	++ ++ ++	+ + X + + + + +	+++++++	+ + X + + + + +	++++++++	+ + X + + + + +	++++++++	+ + X + + + + +	++++++++	+ + X + + + +	+ + X + + + +
URINARY SYSTEM Kidney Sarroma, NOS Urnary bladder	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+ +	+	+	+	+	++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Pheochromocytoma	+ X +	+	+	+ X +	+	+	+	+	+	+ X +	+	+	* X +	+	+	+ X +	+ X +	+ X +	+ X +	+	+ X +	+	+	+	+ X +	+
Pheochromocytoma, malignant Thyroid Follicular cell adenoma C-cell adenoma Parathyroid Pancreatic islets Islet cell adenoma Islet cell carcinoma	++++	+ + +	+ + +	- +	+++	+ - +	+++	+	+++	+ - +	+ X + +	+++	+	+++	+++	+ + X	+ X + +	+++	+ X + +	+++	+++	+++	+++	+++	+++++	+++
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Uterus Endometnal stromal polyp Ovary	+ * X +	+ + +	+ + +	+ X +	+ + +	+ + +	+ + +	+ + +	N + +	+ + +	+ + +	+ + +	+ + +	* X +	* X +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ * X +	+ + +	+ + +	+ + +	+ + +
NERVOUS SYSTEM Brain Osteosarcoma, invasive Astrocytoma	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
MUSCULOSKELETAL SYSTEM Bone Hemangiosarcoma Osteosarcoma	N	N	N	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N X	N X	N	N	N X	N	N	N X	N	N	N

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: 100 ppm (Continued)

ANIMAL NUMBER	2 4 0	2 4 2	2 4 4	2 4 6	2 5 0	2 5 4	2 5 6	2 5 8	2 6 0	2 6 2	2 6 4	2 6 6	2 7 0	2 7 4	2 7 6	2 7 8	2 8 8	9 0	2 9 2	2 9 6	2 9 8	3 0 2	3 0 4	3 0 6	3 0 8	3 1 2	TOTAL:
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 6	0 6	1 0 6	1 0 6	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Hemangiosarcoma	+	N	+	+	+	+	+	+	+	+	+	+	. +	+	+	+	+	N	+	+	+	+	+	+	+	+	*52 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Pheochromocytoma, metastatic Trachea	+	+	+	+	+	+ X +	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	+ X +	+	+ x -	+	+	52 1 3 1 47
HEMATOPOIETIC SYSTEM Bone marrow Spleen Leukemia, mononuclear cell Lymph nodes Thymus	++++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + -	++++	+ + + +	+ + + +	+ + + +	+ + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	++++	+ + + +	+ + X + +	+ + + +	++++	+ + + +	+ + + +	++++	+ + + +	51 49 2 52 48
CIRCULATORY SYSTEM Heart Hemangiosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	52 1
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Hepatocellular carcinoma Bile duct Pancreas Acinar cell adenoma Esophagus Stomach Squemous cell papilloma	+ + X + +	+ + X + +	+ + X + +	+ + X + + +	+++++++	+ + X + +	+ + X + +	+ + X + + +	+ + X + +	+ + X + + X + +	++++++	++++++	+ + X + + +	+++++++	++++++	+ + X + + +	++++++	+ + X + + +	+ + X + + +	+ + X + +	+ + X + + +	+ + X + + +	++++++	+++++	+ + X + + +	+ + X + + +	52 52 30 1 52 51 1 47 52
Small intestine Large intestine URINARY SYSTEM Kidney	++	+	+ + +	++	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+ + +	+	+	+	+	++	51 48 52
Sarcoma, NOS Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 49
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Pheochromocytoma Pheochromocytoma, malignant Thyroid Follicular cell adenoma C-cell adenoma Parathyroid Pancreatic islets Islet cell adenoma Islet cell adenoma	+ X + + + +	+ X + + + +	+ X + + X	+ + + ++	+ X + +	+ X + + + X	+ X + X + X + +	+ X + +	+ + + + +	+ + + + +	+ X + + - + X	+ X + +	+ + + + + +	+ + + + X	+ + + ++	+ X + +	+ + + ++	+ + - - x	+ + + -+	+ + + + +	+ + X + +	+ X + +	+ + X + +	+ + X +	+ X + +	+ + + + +	52 22 52 1 49 1 5 42 51 1 6
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Uterus Endometrial stromai polyp Ovary	+ + +	+ + +	+ X +	+ + +	+ X +	+ + +	+ X +	+ + +	+ + +	+ + +	+ + +	+ X +	+ + +	N + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ X +	N + X +	*52 3 52 8 52
NERVOUS SYSTEM Brain Osteosarcoma, invasive Astrocytoma	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	52 1 1
MUSCULOSKELETAL SYSTEM Bone Hemangiosarcoma Osteosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*52 1 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear ceil	N	N	N X	N	N	N	N X	N	N	N	N	N	N X	N X	N	N	N X	N	N	N	N X	N	N	N X	N	N	*52 12

^{*} Animals necropsied

TABLE B5. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
Hematopoietic System: Mononucle	ar Cell Leuk	emia				
Overall Rates (a)	8/52 (15%)	8/52 (15%)	11/52 (21%)	14/52 (27%)	18/52 (35%)	18/52 (35%)
Adjusted Rates (b)	18.3%	18.0%	23.4%	30.4%	39.3%	40.6%
Terminal Rates (c)	4/38 (11%)	3/38 (8%)	1/35 (3%)	5/35 (14%)	14/41 (34%)	10/35 (29%)
Week of First Observation	91	79	82	77	49	69
Life Table Tests (d)	P = 0.005	P = 0.586N	P=0.296	P = 0.132	P=0.044	P = 0.023
Incidental Tumor Tests (d)	P=0.003	P = 0.581N	P = 0.398	P = 0.183	P = 0.039	P = 0.027
Cochran-Armitage Trend Test (d)	P=0.003		- 0.000		- 0.000	
Fisher Exact Test (d)		P = 0.607	P = 0.306	P = 0.115	P = 0.020	P = 0.020
Liver: Neoplastic Nodule						
Overall Rates (a)	10/52 (19%)	5/52 (10%)	4/52 (8%)	5/52 (10%)	9/52 (17%)	7/52 (13%)
Adjusted Rates (b)	25.3%	13.2%	11.4%	14.3%	21.2%	19.0%
Terminal Rates (c)	9/38 (24%)	5/38 (13%)	4/35 (11%)	5/35 (14%)	8/41 (20%)	6/35 (17%)
Week of First Observation	87	107	107	107	96	94
Life Table Tests (d)	P = 0.329	P = 0.130N	P = 0.098N	P = 0.165N	$P = 0.424 \dot{N}$	P = 0.356N
Incidental Tumor Tests (d)	P = 0.326	P = 0.135N	P = 0.090N	P = 0.180N	P = 0.500N	P = 0.347N
Cochran-Armitage Trend Test (d)	P = 0.345	- 0.1.001	2 0.0001		2 0.0001	- 0.0 - 7 - 7
Fisher Exact Test (d)	1 - 0.010	P = 0.132N	P = 0.075N	P = 0.132N	P = 0.500N	P = 0.298N
Liver: Neoplastic Nodule or Hepat	ocellular Cai	rcinoma				
Overall Rates (a)	10/52 (19%)	5/52 (10%)	4/52 (8%)	5/52 (10%)	10/52 (19%)	9/52 (17%)
Adjusted Rates (b)	25.3%	13.2%	11.4%	14.3%	23.0%	24.6%
Terminal Rates (c)	9/38 (24%)	5/38 (13%)	4/35 (11%)	5/35 (14%)	8/41 (20%)	8/35 (23%)
Week of First Observation	87	107	107	107	96	94
Life Table Tests (d)	P=0.117	P = 0.130N	P = 0.098N	P = 0.165N	P = 0.518N	P = 0.571N
Incidental Tumor Tests (d)	P = 0.117	P = 0.135N P = 0.135N	P = 0.090N	P = 0.180N	P = 0.516N P = 0.593N	P = 0.563N
Cochran-Armitage Trend Test (d)	P = 0.119 P = 0.130	F = 0.155N	F - 0.0301V	F - 0.160N	F - 0.0331N	F = 0.5651V
Fisher Exact Test (d)	F = 0.130	P = 0.132N	P = 0.075N	P = 0.132N	P = 0.598	P = 0.500N
Pituitary Gland: Adenoma						
Overall Rates (a)	20/52 (38%)	24/51 (47%)	31/50 (62%)	24/51 (47%)	30/52 (58%)	22/50 (44%)
Adjusted Rates (b)	45.7%	58.0%	71.6%	54.0%	68.0%	56.8%
Terminal Rates (c)	15/38 (39%)	20/37 (54%)	23/35 (66%)	15/35 (43%)	27/41 (66%)	17/33 (52%)
Week of First Observation	81	84	82	79	89	69
Life Table Tests (d)	P = 0.528	P = 0.264	P = 0.018	P = 0.244	P = 0.090	P = 0.261
Incidental Tumor Tests (d)	P = 0.528 P = 0.518N	P = 0.243	P = 0.018 P = 0.015	P = 0.244 P = 0.278	P = 0.030 P = 0.021	P = 0.293
Cochran-Armitage Trend Test (d)		F = 0.243	F = 0.015	F=0.276	P = 0.021	r = 0.233
Fisher Exact Test (d)	P = 0.454N	P = 0.247	P = 0.014	P = 0.247	P = 0.038	P = 0.357
		r - 0.241	r = 0.014	F = 0.247	r = 0.036	F = 0.557
Pituitary Gland: Adenoma or Card						00/50
Overall Rates (a)	22/52 (42%)	25/51 (49%)	32/50 (64%)	26/51 (51%)	31/52 (60%)	22/50 (44%)
Adjusted Rates (b)	49.4%	58.8%	73.9%	57.5%	68.7%	56.8%
Terminal Rates (c)	16/38 (42%)	20/37 (54%)	24/35 (69%)	16/35 (46%)	27/41 (66%)	17/33 (52%)
Week of First Observation	81	66	82	79	89	69
Life Table Tests (d)	P = 0.408N	P = 0.335	P = 0.028	P = 0.247	P = 0.140	P = 0.393
Incidental Tumor Tests (d)	P = 0.373N	P = 0.318	P = 0.023	P = 0.308	P = 0.038	P = 0.451
Cochran-Armitage Trend Test (d)	P = 0.325N					
Fisher Exact Test (d)		P = 0.314	P = 0.023	P = 0.247	P = 0.058	P = 0.511
Adrenal Gland: Cortical Adenoma						
Overall Rates (a)	3/51 (6%)	2/52 (4%)	5/52 (10%)	3/51 (6%)	4/51 (8%)	3/52 (6%)
Adjusted Rates (b)	7.9%	5.3%	13.8%	7.8%	10.0%	8.6%
Terminal Rates (c)	3/38 (8%)	2/38 (5%)	4/35 (11%)	1/35 (3%)	4/40 (10%)	3/35 (9%)
Week of First Observation	107	107	103	105	107	107
Life Table Tests (d)	P = 0.559	P = 0.500N	P = 0.316	P = 0.637	P = 0.528	P = 0.625
Incidental Tumor Tests (d)	P = 0.548N	P = 0.500N	P = 0.327	P = 0.606N	P = 0.528	P = 0.625
Cochran-Armitage Trend Test (d)	P = 0.551 N					
Fisher Exact Test (d)		P = 0.491N	P = 0.369	P = 0.661	P = 0.500	P = 0.652N

TABLE B5. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX (Continued)

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
Adrenal Gland: Cortical Adenoma	or Carcinom	а				
Overall Rates (a)	3/51 (6%)	2/52 (4%)	5/52 (10%)	3/51 (6%)	4/51 (8%)	4/52 (8%)
Adjusted Rates (b)	7.9%	5.3%	13.8%	7.8%	10.0%	11.4%
Terminal Rates (c)	3/38 (8%)	2/38 (5%)	4/35 (11%)	1/35 (3%)	4/40 (10%)	4/35 (11%)
Week of First Observation	107	107	103	105	107	107
Life Table Tests (d)	P=0.380	P = 0.500N	P=0.316	P = 0.637	P=0.528	P=0.455
Incidental Tumor Tests (d)	P = 0.400	P = 0.500N	P = 0.327	P = 0.606N	P = 0.528	P = 0.455
Cochran-Armitage Trend Test (d)	P = 0.398	1 -0.50011	1 -0.021	1 -0.00011	1 -0.020	1 -0.400
Fisher Exact Test (d)	r = 0.556	P = 0.491N	P = 0.369	P = 0.661	P = 0.500	P = 0.511
Adrenal Gland: Pheochromocytom	a					
Overall Rates (a)	1/51 (2%)	3/52 (6%)	5/52 (10%)	1/51 (2%)	2/51 (4%)	5/52 (10%
Adjusted Rates (b)	2.6%	7.2%	13.7%	2.9%	5.0%	13.8%
Terminal Rates (c)	1/38 (3%)	2/38 (5%)	4/35 (11%)	1/35 (3%)	2/40 (5%)	4/35 (11%
Week of First Observation	107	87	102	107	107	104
Life Table Tests (d)	P = 0.199	P = 0.307	P = 0.089	P = 0.743	P≈0.518	P = 0.088
Incidental Tumor Tests (d)						
	P = 0.199	P = 0.291	P = 0.094	P = 0.743	P = 0.518	P = 0.102
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.213	P=0.316	P = 0.107	P = 0.752	P = 0.500	P = 0.107
Adrenal Gland: Pheochromocytom	a an Maliana	nt Dhaochra	maaytama			
Overall Rates (a)	1/51 (2%)	3/52 (6%)	5/52 (10%)	1/51 (2%)	2/51 (4%)	6/52 (12%
	2.6%			2.9%	5.0%	16.6%
Adjusted Rates (b)		7.2%	13.7%			
Terminal Rates (c)	1/38 (3%)	2/38 (5%)	4/35 (11%)	1/35 (3%)	2/40 (5%)	5/35 (14%
Week of First Observation	107	87	102	107	107	104
Life Table Tests (d)	P = 0.096	P = 0.307	P = 0.089	P = 0.743	P = 0.518	P = 0.048
Incidental Tumor Tests (d)	P = 0.096	P = 0.291	P = 0.094	P = 0.743	P = 0.518	P = 0.056
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.106	P = 0.316	P = 0.107	P = 0.752	P = 0.500	P = 0.059
		r = 0.310	F = 0.101	1 -0.102	1 -0.000	1 = 0.000
Thyroid Gland: C-Cell Adenoma						
Overall Rates (a)	10/50 (20%)	9/50 (18%)	6/48 (13%)	5/47 (11%)	6/48 (13%)	2/46 (4%)
Adjusted Rates (b)	25.3%	22.7%	17.0%	14.3%	14.1%	5.9%
Terminal Rates (c)	9/38 (24%)	8/38 (21%)	5/34 (15%)	5/35 (14%)	4/39 (10%)	2/34 (6%)
Week of First Observation	91	91	104	107	96	107
Life Table Tests (d)	P = 0.018N	P = 0.500N	P = 0.276N	P = 0.165N	P = 0.185N	P = 0.0241
Incidental Tumor Tests (d)	P = 0.022N	P = 0.541N	P = 0.259N	P = 0.189N	P = 0.237N	P = 0.0271
Cochran-Armitage Trend Test (d)	P = 0.021N	2 0.01111	. 0.2001	. 00	- 010	
Fisher Exact Test (d)	1 ~0.02114	P = 0.500N	P = 0.233N	P = 0.160N	P = 0.233N	P = 0.0201
Chamaid Clands C Call Consinums						
Thyroid Gland: C-Cell Carcinoma Overall Rates (a)	3/50 (6%)	4/50 (8%)	1/48 (2%)	4/47 (9%)	0/48 (0%)	0/46 (0%)
Adjusted Rates (b)	7.9%	9.9%	2.9%	10.5%	0.0%	0.0%
Terminal Rates (c)	3/38 (8%)	3/38 (8%)	1/34 (3%)	3/35 (9%)	0/39 (0%)	0/34 (0%)
Week of First Observation	107	94	107	92	0/05 (0 /0)	0/04(0/0)
Life Table Tests (d)	P = 0.029N	P = 0.505	P = 0.345N	P = 0.467	P = 0.116N	P = 0.1411
Incidental Tumor Tests (d)		P = 0.503 P = 0.512	P = 0.345N	P = 0.410	P = 0.116N	P = 0.141
	P = 0.034N	P = 0.312	F - 0.34314	F ~ 0.410	F = 0.110M	F - 0.141.
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.032N	P = 0.500	P = 0.324N	P = 0.465	P = 0.129N	P = 0.137
	. C!					
Thyroid Gland: C-Cell Adenoma or		10/50 (00%)	# (40 (4 F %)	0/45/10%	0140 (100)	0/40/400
Overall Rates (a)	12/50 (24%)	13/50 (26%)	7/48 (15%)	9/47 (19%)	6/48 (13%)	2/46 (4%)
Adjusted Rates (b)	30.5%	32.0%	19.9%	24.5%	14.1%	5.9%
	11/38 (29%)	11/38 (29%)	6/34 (18%)	8/35 (23%)	4/39 (10%)	2/34 (6%)
Terminal Rates (c)		91	104	92	96	107
Terminal Rates (c) Week of First Observation	91	91				
Terminal Rates (c)	91 P=0.002N	P = 0.503	P = 0.220N	P = 0.377N	P = 0.084N	
Terminal Rates (c) Week of First Observation				P = 0.377N P = 0.445N	P = 0.084N P = 0.112N	
Terminal Rates (c) Week of First Observation Life Table Tests (d)	P = 0.002N	P = 0.503	P = 0.220N			P = 0.008 P = 0.009

TABLE B5. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX (Continued)

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
Pancreatic Islets: Islet Cell Adence	ma					
Overall Rates (a)	2/50 (4%)	0/52 (0%)	1/51 (2%)	1/49 (2%)	4/50 (8%)	0/50 (0%)
Adjusted Rates (b)	5.3%	0.0%	2.9%	2.9%	9.7%	0.0%
Terminal Rates (c)	2/38 (5%)	0/38 (0%)	1/35 (3%)	1/35 (3%)	3/40 (7%)	0/34(0%)
Week of First Observation	107		107	107	106	
Life Table Tests (d)	P = 0.587N	P = 0.238N	P = 0.529N	P = 0.529N	P = 0.368	P = 0.263N
Incidental Tumor Tests (d)	P = 0.576N	P = 0.238N	P = 0.529N	P = 0.529N	P = 0.358	P = 0.263N
Cochran-Armitage Trend Test (d)	P = 0.576N					
Fisher Exact Test (d)		P = 0.238N	P = 0.492N	P = 0.508N	P = 0.339	P = 0.247N
Pancreatic Islets: Islet Cell Carcin	noma					
Overall Rates (a)	2/50 (4%)	2/52 (4%)	1/51 (2%)	3/49 (6%)	1/50 (2%)	0/50 (0%)
Adjusted Rates (b)	5.3%	5.3%	2.9%	8.1%	2.2%	0.0%
Terminal Rates (c)	2/38 (5%)	2/38 (5%)	1/35 (3%)	2/35 (6%)	0/40 (0%)	0/34(0%)
Week of First Observation	107	107	107	105	103	
Life Table Tests (d)	P = 0.136N	P = 0.695	P = 0.529N	P = 0.475	P = 0.469N	P = 0.263 N
Incidental Tumor Tests (d)	P = 0.128N	P = 0.695	P = 0.529N	P = 0.511	P = 0.488N	P = 0.263N
Cochran-Armitage Trend Test (d)	P = 0.135N					
Fisher Exact Test (d)		P = 0.676N	P = 0.492N	P = 0.490	P = 0.500N	P = 0.247N
Pancreatic Islets: Islet Cell Adend	ma or Carcir	noma				
Overall Rates (a)	4/50 (8%)	2/52 (4%)	2/51 (4%)	4/49 (8%)	5/50 (10%)	0/50 (0%)
Adjusted Rates (b)	10.5%	5.3%	5.7%	10.9%	11.6%	0.0%
Terminal Rates (c)	4/38 (11%)	2/38 (5%)	2/35 (6%)	3/35 (9%)	3/40 (7%)	0/34(0%)
Week of First Observation	107	107	107	105	103	
Life Table Tests (d)	P = 0.203N	P = 0.336N	P = 0.375N	P = 0.607	P = 0.544	P = 0.078N
Incidental Tumor Tests (d)	P = 0.190N	P = 0.336N	P = 0.375N	P = 0.635	P = 0.525	P = 0.078N
Cochran-Armitage Trend Test (d)	P = 0.197N					
Fisher Exact Test (d)		P = 0.320N	P = 0.329N	P = 0.631	P = 0.500	P = 0.059N
Mammary Gland: Fibroadenoma						
Overall Rates (a)	12/52 (23%)	8/52 (15%)	11/52 (21%)	17/52 (33%)	10/52 (19%)	3/52 (6%)
Adjusted Rates (b)	29.3%	17.8%	27.5%	42.9%	23.0%	7.8%
Terminal Rates (c)	10/38 (26%)	4/38 (11%)	7/35 (20%)	13/35 (37%)	8/41 (20%)	2/35 (6%)
Week of First Observation	86	84	84	77	102	93
Life Table Tests (d)	P = 0.017N	P = 0.235N	P = 0.568N	P = 0.149	P = 0.330 N	P = 0.020N
Incidental Tumor Tests (d)	P = 0.017N	P = 0.254N	P = 0.507N	P = 0.161	P = 0.462 N	P = 0.018N
Cochran-Armitage Trend Test (d)	P = 0.014N					
Fisher Exact Test (d)		P = 0.228N	P = 0.500N	P = 0.191	P = 0.405 N	P = 0.012N
Mammary Gland: Adenocarcinoma	a					
Overall Rates (a)	1/52 (2%)	0/52 (0%)	3/52 (6%)	0/52 (0%)	1/52 (2%)	2/52 (4%)
Adjusted Rates (b)	2.6%	0.0%	7.0%	0.0%	2.4%	5.7%
Terminal Rates (c)	1/38 (3%)	0/38 (0%)	1/35 (3%)	0/35 (0%)	1/41 (2%)	2/35 (6%)
Week of First Observation	107		86		107	107
Life Table Tests (d)	P = 0.370	P = 0.500N	P = 0.290	P = 0.516N	P = 0.745N	P = 0.471
Incidental Tumor Tests (d)	P = 0.322	P = 0.500N	P = 0.341	P = 0.516N	P = 0.745N	P = 0.471
Cochran-Armitage Trend Test (d)	P = 0.376					
Fisher Exact Test (d)		P = 0.500N	P = 0.309	P = 0.500N	P = 0.752	P = 0.500
Mammary Gland: Fibroma or Fibr		0.50.4.55				0.000
Overall Rates (a)	12/52 (23%)	8/52 (15%)	11/52 (21%)	17/52 (33%)	11/52 (21%)	3/52 (6%)
Adjusted Rates (b)	29.3%	17.8%	27.5%	42.9%	24.8%	7.8%
Terminal Rates (c)	10/38 (26%)	4/38 (11%)	7/35 (20%)	13/35 (37%)	8/41 (20%)	2/35 (6%)
Week of First Observation	86	84	84	77	102	93
Life Table Tests (d)	P = 0.022N	P = 0.235N	P = 0.568N	P = 0.149	P = 0.416N	P = 0.020N
Incidental Tumor Tests (d)	P = 0.021N	P = 0.254N	P = 0.507N	P = 0.161	P = 0.552N	P = 0.018N
Cochran-Armitage Trend Test (d)	P = 0.018N	n 0	D 0 77777	D 0:5:	D 0 = 0.01-	D 0010
Fisher Exact Test (d)		P = 0.228N	P = 0.500N	P = 0.191	P = 0.500N	P = 0.012N

TABLE B5. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX (Continued)

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
Mammary Gland: Fibroadenoma or	Adenocarci	noma		 	· · · · · · · · · · · · · · · · · · ·	
Overall Rates (a)	13/52 (25%)	8/52 (15%)	13/52 (25%)	17/52 (33%)	11/52 (21%)	5/52 (10%)
Adjusted Rates (b)	31.8%	17.8%	30.5%	42.9%	25.3%	13.4%
Terminal Rates (c)	11/38 (29%)	4/38 (11%)	7/35 (20%)	13/35 (37%)	9/41 (22%)	4/35 (11%)
Week of First Observation	86	84	84	77	102	93
Life Table Tests (d)	P = 0.041N	P = 0.172N	P = 0.516	P = 0.204	P = 0.328N	P = 0.051N
Incidental Tumor Tests (d)	P = 0.046N	P = 0.185N	P = 0.574N	P = 0.219	P = 0.456N	P = 0.049N
Cochran-Armitage Trend Test (d)	P = 0.035N					
Fisher Exact Test (d)		P = 0.164N	P = 0.589	P = 0.258	P = 0.408N	P = 0.034N
Mammary Gland: Fibroma, Fibroad	lenoma, or A					
Overall Rates (a)	13/52 (25%)	8/52 (15%)	13/52 (25%)	17/52 (33%)	12/52 (23%)	5/52 (10%)
Adjusted Rates (b)	31.8%	17.8%	30.5%	42.9%	27.0%	13. 4 %
Terminal Rates (c)	11/38 (29%)	4/38 (11%)	7/35 (20%)	13/35 (37%)	9/41 (22%)	4/35 (11%)
Week of First Observation	86	84	84	77	102	93
Life Table Tests (d)	$P \approx 0.050N$	P = 0.172N	P = 0.516	P = 0.204	P = 0.411N	P = 0.051 N
Incidental Tumor Tests (d)	$P \approx 0.054 N$	$P \approx 0.185N$	P = 0.574N	P = 0.219	P = 0.543N	P = 0.049N
Cochran-Armitage Trend Test (d)	P = 0.042N					
Fisher Exact Test (d)		P = 0.164N	P = 0.589	P = 0.258	P = 0.500N	P = 0.034N
Clitoral Gland: Adenoma or Cystac	enoma					•
Overall Rates (a)	0/52 (0%)	1/52 (2%)	3/52 (6%)	1/52 (2%)	0/52 (0%)	0/52 (0%)
Adjusted Rates (b)	0.0%	2.4%	8.6%	2.9%	0.0%	0.0%
Terminal Rates (c)	0/38 (0%)	0/38 (0%)	3/35 (9%)	1/35 (3%)	0/41 (0%)	0/35 (0%)
Week of First Observation		102	107	107		
Life Table Tests (d)	P = 0.126N	P = 0.510	P = 0.107	P = 0.484	(e)	(e)
Incidental Tumor Tests (d)	P = 0.121N	P = 0.527	P = 0.107	P = 0.484	(e)	(e)
Cochran-Armitage Trend Test (d)	P = 0.127N					
Fisher Exact Test (d)		P = 0.500	P = 0.121	P = 0.500	(e)	(e)
Clitoral Gland: Adenoma, Cystadene						
Overall Rates (a)	1/52 (0%)	1/52 (2%)	3/52 (6%)	1/52 (2%)	0/52 (0%)	1/52(2%)
Adjusted Rates (b)	0.0%	2.4%	8.6%	2.9%	0.0%	2.9%
Terminal Rates (c)	0/38 (0%)	0/38 (0%)	3/35 (9%)	1/35 (3%)	0/41 (0%)	1/35 (3%)
Week of First Observation		102	107	107		107
Life Table Tests (d)	P = 0.411N	P = 0.510	P = 0.107	P = 0.484	(e)	P = 0.484
Incidental Tumor Tests (d)	P = 0.398N	P = 0.527	P = 0.107	P = 0.484	(e)	P = 0.484
Cochran-Armitage Trend Test (d)						
Fisher Exact Test (d)	P = 0.406N	P = 0.500	P = 0.121	P = 0.500	(e)	P = 0.500
Uterus: Endometrial Stromal Polyp		0.54	10/80 175	10/50 050	40/50 00~	4 F /F G / G G = 1
Overall Rates (a)	14/51 (27%)	8/51 (16%)	10/52 (19%)	13/52 (25%)	12/52 (23%)	15/52 (29%)
Adjusted Rates (b)	35.9%	20.6%	26.4%	32.6%	28.4%	36.4%
Terminal Rates (c)	13/38 (34%)	7/37 (19%)	8/35 (23%)	9/35 (26%)	11/41 (27%)	10/35 (29%)
Week of First Observation	102	91	91	94	103	80
Life Table Tests (d)	P = 0.138	P = 0.123N	P = 0.310N	P = 0.565N	P = 0.317N	P = 0.410
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.129 P = 0.154	P = 0.126N	P = 0.285N	P = 0.463 N	P = 0.318N	P = 0.440
Fisher Exact Test (d)	. 0.10.	P = 0.114N	P = 0.226N	P = 0.476N	P = 0.388N	P = 0.525
Uterus: Endometrial Stromal Polyp	or Sarcoma					
Overall Rates (a)	14/51 (27%)	8/51 (16%)	11/52 (21%)	13/52 (25%)	12/52 (23%)	15/52 (29%
Adjusted Rates (b)	35.9%	20.6%	29.1%	32.6%	28.4%	36.4%
Terminal Rates (c)	13/38 (34%)	7/37 (19%)	9/35 (26%)	9/35 (26%)	11/41 (27%)	10/35 (29%
Week of First Observation	102	91	91	94	103	80
Week of First Observation				P = 0.565N	P = 0.317N	P = 0.410
	P = 0.162	P = 0.123N	P = 0.402N	F = 0.0001	F U,31/11	r - 0.410
Life Table Tests (d)	P = 0.162 P = 0.152	P = 0.123N P = 0.126N	P = 0.402N P = 0.374N	P = 0.363N P = 0.463N		P = 0.440
	P=0.162 P=0.152 P=0.179	P = 0.123N P = 0.126N			P = 0.317N P = 0.318N	

TABLE B5. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX (Continued)

	Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
All Sites: Benign Tumors						
Overall Rates (a)	40/52 (77%)	37/52 (71%)	44/52 (85%)	40/52 (77%)	43/52 (83%)	36/52 (69%)
Adjusted Rates (b)	86.8%	78.4%	93.5%	86.8%	87.7%	77.9%
Terminal Rates (c)	32/38 (84%)	28/38 (74%)	32/35 (91%)	29/35 (83%)	35/41 (85%)	25/35 (71%)
Week of First Observation	81	84	82	77	89	69
Life Table Tests (d)	P = 0.305N	P = 0.341N	P = 0.134	P = 0.417	P = 0.550N	P = 0.471 N
Incidental Tumor Tests (d)	P = 0.298N	P = 0.345N	P = 0.180	P = 0.542	P = 0.208	P = 0.374N
Cochran-Armitage Trend Test (d)	P = 0.211N					
Fisher Exact Test (d)		P = 0.328N	P = 0.228	P = 0.592N	P = 0.313	P = 0.254N
All Sites: Malignant Tumors						
Overall Rates (a)	19/52 (37%)	18/52 (35%)	20/52 (38%)	26/52 (50%)	24/52 (46%)	25/52 (48%)
Adjusted Rates (b)	41.6%	39.2%	42.7%	53.4%	49.6%	57.2%
Terminal Rates (c)	12/38 (32%)	11/38 (29%)	9/35 (26%)	13/35 (37%)	17/41 (41%)	17/35 (49%)
Week of First Observation	78	66	82	77	49	69
Life Table Tests (d)	P = 0.099	P = 0.489N	P = 0.428	P = 0.136	P = 0.346	P = 0.135
Incidental Tumor Tests (d)	P = 0.081	P = 0.486N	P = 0.566	P = 0.148	P = 0.286	P = 0.159
Cochran-Armitage Trend Test (d)	P = 0.078					
Fisher Exact Test (d)		P = 0.500 N	P = 0.500	P = 0.117	P = 0.213	P = 0.161
All Sites: All Tumors						
Overall Rates (a)	48/52 (92%)	48/52 (92%)	49/52 (94%)	47/52 (90%)	50/52 (96%)	49/52 (94%)
Adjusted Rates (b)	94.1%	92.3%	98.0%	92.1%	96.2%	100.0%
Terminal Rates (c)	35/38 (92%)	34/38 (89%)	34/35 (97%)	31/35 (89%)	39/41 (95%)	35/35 (100%
Week of First Observation	78	66	82	77	49	69
Life Table Tests (d)	P = 0.366	P = 0.544N	P = 0.289	P = 0.496	P = 0.430N	P = 0.280
Incidental Tumor Tests (d)	P = 0.247 P = 0.330	$P = 0.631 \mathrm{N}$	P = 0.493	P = 0.469N	P = 0.418	P = 0.357
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	r=0.330	P = 0.642N	P = 0.500	P = 0.500N	P = 0.339	P = 0.500

⁽a) Number of tumor-bearing animals/number of animals examined at the site

⁽b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

⁽e) No P value is reported because no tumors were observed in the dosed and control groups.

TABLE B6. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX

	Control	50 ppm	100 ppm
Lung: Alveolar/Bronchiolar Carcinoma			
Overall Rates (a)	1/52 (2%)	3/52 (6%)	3/52 (6%)
Adjusted Rates (b)	2.3%	6.8%	7.7%
Terminal Rates (c)	1/44 (2%)	3/44 (7%)	3/39 (8%)
Week of First Observation	105	105	105
Life Table Tests (d)	P = 0.197	P=0.305	P = 0.263
Incidental Tumor Tests (d)	P = 0.197	P = 0.305	P = 0.263
Cochran-Armitage Trend Test (d)	P = 0.239	- 3,333	
Fisher Exact Test (d)	- 000	P = 0.309	P = 0.309
ung: Alveolar/Bronchiolar Adenoma or	Carcinoma		
Overall Rates (a)	3/52 (6%)	3/52 (6%)	4/52 (8%)
Adjusted Rates (b)	6.8%	6.8%	10.3%
Terminal Rates (c)	3/44 (7%)	3/44 (7%)	4/39 (10%)
Week of First Observation	105	105	105
Life Table Tests (d)	P = 0.358	P=0.663	P = 0.434
Incidental Tumor Tests (d)	P = 0.358	P=0.663	P = 0.434
Cochran-Armitage Trend Test (d)	P = 0.421		
Fisher Exact Test (d)		P = 0.661	P = 0.500
Hematopoietic System: Mononuclear Cell	Leukemia		
Overall Rates (a)	6/52 (12%)	9/52 (17%)	14/52 (27%)
Adjusted Rates (b)	12.8%	18.8%	34.9%
Terminal Rates (c)	4/44 (9%)	6/44 (14%)	13/39 (33%)
Week of First Observation	80	95	98
Life Table Tests (d)	P=0.018	P = 0.314	P = 0.024
Incidental Tumor Tests (d)	P = 0.018 P = 0.039	P = 0.314 P = 0.287	P = 0.042
Cochran-Armitage Trend Test (d)	P = 0.039 P = 0.029	F = 0.201	r = 0.042
Fisher Exact Test (d)	F = 0.029	P = 0.289	P = 0.040
Liver: Neoplastic Nodule			
Overall Rates (a)	2/52 (4%)	23/52 (44%)	30/52 (58%)
Adjusted Rates (b)	4.5%	49.8%	69.4%
Terminal Rates (c)	2/44 (5%)	21/44 (48%)	26/39 (67%)
Week of First Observation	105	95	82
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001	1 (0.001	1 (0.001
Fisher Exact Test (d)	1,0001	D < 0.001	P<0.001
		P<0.001	r \0.001
Liver: Neoplastic Nodule or Hepatocellul Overall Rates (a)	ar Carcinoma 2/52 (4%)	23/52 (44%)	31/52 (60%)
Adjusted Rates (b)	2/52 (4%) 4.5%		
Terminal Rates (c)	4.5% 2/44 (5%)	49.8% 21/44 (48%)	70.0% 26/39 (67%)
Week of First Observation	105	21/44 (48%) 95	26/39 (6 /%) 82
Life Table Tests (d)	P<0.001	95 P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001 P<0.001	P<0.001 P<0.001	P<0.001 P<0.001
Cochran-Armitage Trend Test (d)	P<0.001 P<0.001	r < 0.001	F ~ 0.001
Fisher Exact Test (d)	F < 0.001	P<0.001	P<0.001
Pituitary Gland: Adenoma			
	21/59 (60%)	99/59 (440/.)	22/52 (420/-)
Overall Rates (a)	31/52 (60%)	23/52 (44%)	22/52 (42%)
Adjusted Rates (b)	65.9%	48.8%	50.7%
Terminal Rates (c)	28/44 (64%)	20/44 (45%)	18/39 (46%)
Week of First Observation	87	99	82
Life Table Tests (d)	P = 0.136N	P = 0.086N	P = 0.165N
Incidental Tumor Tests (d)	P = 0.042N	P = 0.070N	P = 0.058N
Cochran-Armitage Trend Test (d)	P = 0.048N		D 0.050
Fisher Exact Test (d)		P = 0.085N	P = 0.058N

TABLE B6. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX (Continued)

Pituitary Gland: Carcinoma 1/52 (2%) Adjusted Rates (a) 1/52 (2%) Adjusted Rates (b) 2.3% Terminal Rates (c) 1/44 (2%) Week of First Observation 105 Life Table Tests (d) P = 0.413N Incidental Tumor Tests (d) P = 0.354N Cochran-Armitage Trend Test (d) P = 0.378N Fisher Exact Test (d) P = 0.0378N Fisher Exact Test (d) P = 0.06N P = 0.026N P = 0.031N P = 0.	50 ppm	100 ppm
Overall Rates (a) 1/52 (2%) Adjusted Rates (b) 2.3% Terminal Rates (c) 1/44 (2%) Week of First Observation 105 Life Table Tests (d) P = 0.413N Incidental Tumor Tests (d) P = 0.378N Fisher Exact Test (d) P = 0.378N Fisher Exact Test (d) P = 0.378N Pituitary Gland: Adenoma or Carcinoma Overall Rates (a) 32/52 (62%) Adjusted Rates (b) 68.0% Terminal Rates (c) 29/44 (66%) Week of First Observation 87 Life Table Tests (d) P = 0.106N Incidental Tumor Tests (d) P = 0.026N Cochran-Armitage Trend Test (d) P = 0.031N Fisher Exact Test (d) P = 0.031N Fisher Exact Test (d) P = 0.057N Adjusted Rates (b) 11.4% Terminal Rates (c) 5/44 (11%) Week of First Observation 105 Life Table Tests (d) P = 0.057N Incidental Tumor Tests (d) P = 0.057N Incidental Tumor Tests (d) P = 0.057N Occhran-Armitage Trend Test (d) P = 0.042N Fisher Exact Test (d) P = 0.042N Adjusted Rates (b) 15.9% Adrenal Gland: Cortical Adenoma or Carcinoma Overall Rates (a) 7/52 (13%) Adjusted Rates (b) 15.9% Adjusted Rates (b) 15.9% Terminal Rates (c) 7/44 (16%) Week of First Observation 105 Life Table Tests (d) P = 0.015N Cochran-Armitage Trend Test (d) P = 0.0178 Cochran-Armitage Trend Test (d) P = 0.222N Fisher Exact Test (d) P = 0.222N Adjusted Rates (b) 6.8% Adjusted Rates (c) 3/52 (6%) Adjusted Rates (c) 3/52 (6%) Adjusted Rates (c) 3/52 (6		
Adjusted Rates (b)	3/52 (6%)	0/52 (0%)
Terminal Rates (c) 1/44 (2%) Week of First Observation 105 Life Table Tests (d) P = 0.413N Incidental Tumor Tests (d) P = 0.354N Cochran-Armitage Trend Test (d) P = 0.378N Fisher Exact Test (d) Fisher Exact Test (d) Pituitary Gland: Adenoma or Carcinoma Overall Rates (a) 32/52 (62%) Adjusted Rates (b) 68.0% Terminal Rates (c) 29/44 (66%) Week of First Observation 87 Life Table Tests (d) P = 0.06N Incidental Tumor Tests (d) P = 0.026N Cochran-Armitage Trend Test (d) P = 0.031N Fisher Exact Test (d) P = 0.031N Fisher Exact Test (d) P = 0.031N Fisher Exact Test (d) P = 0.057N Adjusted Rates (b) 11.4% Terminal Rates (c) 5/44 (11%) Week of First Observation 105 Life Table Tests (d) P = 0.057N Cochran-Armitage Trend Test (d) P = 0.057N Cochran-Armitage Trend Test (d) P = 0.042N Fisher Exact Test (d) P = 0.042N Fisher Exact Test (d) P = 0.015N Cochran-Armitage Trend Test (d) P = 0.015N Life Table Tests (d) P = 0.015N Cochran-Armitage Trend Test (d) P = 0.015N Cochran-Armitage Trend Test (d) P = 0.015N Cochran-Armitage Trend Test (d) P = 0.015N Cochran-Armitage Tend Test (d) P = 0.0257N Pisher Exact T	6.6%	0.0%
Week of First Observation	2/44 (5%)	0/39 (0%)
Life Table Tests (d) P=0.413N Incidental Tumor Tests (d) P=0.354N Cochran-Armitage Trend Test (d) P=0.378N Fisher Exact Test (d)	104	0.00 (0.0)
Incidental Tumor Tests (d)	P=0.313	P = 0.524N
Cochran-Armitage Trend Test (d)	P = 0.356	P = 0.524N
Pituitary Gland: Adenoma or Carcinoma	1 -0.000	1 -0.02414
Overall Rates (a) 32/52 (62%) Adjusted Rates (b) 68.0% Terminal Rates (c) 29/44 (66%) Week of First Observation 87 Life Table Tests (d) P=0.106N Incidental Tumor Tests (d) P=0.026N Cochran-Armitage Trend Test (d) P=0.031N Fisher Exact Test (d) Fisher Exact Test (d) Adjusted Rates (b) 11.4% Terminal Rates (c) 5/44 (11%) Week of First Observation 105 Life Table Tests (d) P=0.057N Cochran-Armitage Trend Test (d) P=0.057N Cochran-Armitage Trend Test (d) P=0.042N Fisher Exact Test (d) P=0.042N Adjusted Rates (b) 15.9% Terminal Rates (a) 7/52 (13%) Adjusted Rates (b) 105 Life Table Tests (d) P=0.015N Cochran-Armitage Trend Test (d) P=0.015N Cochran-Armitage Trend Test (d) P=0.015N Adrenal Gland: Pheochromocytoma Overall Rates (a) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)<	P = 0.309	P = 0.500N
Overall Rates (a) 32/52 (62%) Adjusted Rates (b) 68.0% Terminal Rates (c) 29/44 (66%) Week of First Observation 87 Life Table Tests (d) P=0.106N Incidental Tumor Tests (d) P=0.026N Cochran-Armitage Trend Test (d) P=0.031N Fisher Exact Test (d) Fisher Exact Test (d) Adjusted Rates (a) 5/52 (10%) Adjusted Rates (b) 11.4% Terminal Rates (c) 5/44 (11%) Week of First Observation 105 Life Table Tests (d) P=0.057N Incidental Tumor Tests (d) P=0.057N Cochran-Armitage Trend Test (d) P=0.042N Fisher Exact Test (d) P=0.042N Adjusted Rates (b) 15.9% Terminal Rates (c) 7/44 (16%) Week of First Observation 105 Life Table Tests (d) P=0.015N Cochran-Armitage Trend Test (d) P=0.015N Cochran-Armitage Trend Test (d) P=0.015N Cochran-Armitage Trend Test (d) P=0.0257N Incidental Tumor Tests (d) P=		
Adjusted Rates (b) 68.0% Terminal Rates (c) 29/44 (66%) Week of First Observation 87 Life Table Tests (d) P=0.106N Incidental Tumor Tests (d) P=0.026N Cochran-Armitage Trend Test (d) P=0.031N Fisher Exact Test (d) Adrenal Gland: Cortical Adenoma Overall Rates (a) 5/52 (10%) Adjusted Rates (b) 11.4% Terminal Rates (c) 5/44 (11%) Week of First Observation 105 Life Table Tests (d) P=0.057N Cochran-Armitage Trend Test (d) P=0.057N Cochran-Armitage Trend Test (d) P=0.042N Fisher Exact Test (d) Adrenal Gland: Cortical Adenoma or Carcinoma Overall Rates (a) 7/52 (13%) Adjusted Rates (b) 15.9% Adjusted Rates (b) 15.9% Terminal Rates (c) 7/44 (16%) Week of First Observation 105 Life Table Tests (d) P=0.015N Incidental Tumor Tests (d) P=0.015N Cochran-Armitage Trend Test (d) P=0.015N Cochran-Armitage Trend Test (d) P=0.011N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P=0.257N Incidental Tumor Tests (d) P=0.222N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	26/52 (50%)	22/52 (42%)
Terminal Rates (c) Week of First Observation Life Table Tests (d) P = 0.106N Incidental Tumor Tests (d) P = 0.026N Cochran-Armitage Trend Test (d) Fisher Exact Test (d) Adrenal Gland: Cortical Adenoma Overall Rates (a) Adjusted Rates (b) Life Table Tests (d) P = 0.057N Incidental Tumor Tests (d) P = 0.057N Incidental Tumor Tests (d) P = 0.057N Incidental Tumor Tests (d) Fisher Exact Test (d) Adrenal Gland: Cortical Adenoma or Carcinoma Overall Rates (c) Adjusted Rates (b) Life Table Tests (d) Fisher Exact Test (d) Adrenal Gland: Cortical Adenoma or Carcinoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Veek of First Observation Life Table Tests (d) P = 0.015N Incidental Tumor Tests (d) P = 0.015N Incidental Tumor Tests (d) P = 0.015N Cochran-Armitage Trend Test (d) P = 0.015N Cochran-Armitage Trend Test (d) P = 0.015N Cochran-Armitage Trend Test (d) P = 0.011N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma Overall Rates (a) Adjusted Rates (b) Adrenal Gland: Pheochromocytoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) P = 0.257N Incidental Tumor Tests (d) P = 0.178N Cochran-Armitage Trend Test (d) P = 0.222N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) Adjusted Rates (b) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) Adjusted Rates (b) Adjusted Rates (b) Adjusted Rates (b) Adjusted Rates (c) Adjusted Rates (b) Adjusted Rates (c) Adjusted Rates (d) Adjusted Rates		
Week of First Observation	54.0%	50.7%
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) P = 0.026N Fisher Exact Test (d) Adrenal Gland: Cortical Adenoma Overall Rates (a) Adjusted Rates (b) Life Table Tests (d) Adrenal Gland: Cortical Adenoma Overall Rates (c) Solution Life Table Tests (d) Incidental Tumor Tests (d) Fisher Exact Test (d) Adrenal Gland: Cortical Adenoma Overall Rates (a) Adjusted Rates (b) Cochran-Armitage Trend Test (d) Fisher Exact Test (d) Adrenal Gland: Cortical Adenoma or Carcinoma Overall Rates (a) Adjusted Rates (b) Incidental Tumor Tests (d) Ferminal Rates (c) Week of First Observation Life Table Tests (d) Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma Overall Rates (a) Adjusted Rates (b) Adrenal Gland: Pheochromocytoma Overall Rates (c) Adrenal Gland: Pheochromocytoma Overall Rates (d) Decomposition Life Table Tests (d) Adrenal Gland: Pheochromocytoma Overall Rates (c) Adrenal Gland: Pheochromocytoma Overall Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma Overall Rates (b) Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) Adjusted Rates (b) Genal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) Adjusted Rates (b) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) Adjusted Rates (b) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) Adjusted Rates (b) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) Adjusted Rates (b) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (c) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (c) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom	22/44 (50%)	18/39 (46%)
Incidental Tumor Tests (d)	99	82 B 0 104N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d) Addrenal Gland: Cortical Adenoma	P = 0.163 N	P = 0.124N
Adrenal Gland: Cortical Adenoma	P = 0.127N	P = 0.039N
Adrenal Gland: Cortical Adenoma Overall Rates (a) 5/52 (10%) Adjusted Rates (b) 11.4% Terminal Rates (c) 5/44 (11%) Week of First Observation 105 Life Table Tests (d) P=0.057N Incidental Tumor Tests (d) P=0.057N Cochran-Armitage Trend Test (d) P=0.042N Fisher Exact Test (d) Adrenal Gland: Cortical Adenoma or Carcinoma Overall Rates (a) 7/52 (13%) Adjusted Rates (b) 15.9% Terminal Rates (c) 7/44 (16%) Week of First Observation 105 Life Table Tests (d) P=0.015N Incidental Tumor Tests (d) P=0.015N Cochran-Armitage Trend Test (d) P=0.011N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma Overall Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P=0.257N Incidental Tumor Tests (d) P=0.178N Cochran-Armitage Trend Test (d) P=0.178N Cochran-Armitage Trend Test (d) P=0.178N Cochran-Armitage Trend Test (d) P=0.222N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	D 04	D 0.00535
Overall Rates (a) 5/52 (10%) Adjusted Rates (b) 11.4% Terminal Rates (c) 5/44 (11%) Week of First Observation 105 Life Table Tests (d) P = 0.057N Incidental Tumor Tests (d) P = 0.057N Cochran-Armitage Trend Test (d) P = 0.042N Fisher Exact Test (d) P = 0.042N Adrenal Gland: Cortical Adenoma or Carcinoma 0verall Rates (a) Overall Rates (a) 7/52 (13%) Adjusted Rates (b) 15.9% Terminal Rates (c) 7/44 (16%) Week of First Observation 105 Life Table Tests (d) P = 0.015N Cochran-Armitage Trend Test (d) P = 0.011N Fisher Exact Test (d) P = 0.011N Adrenal Gland: Pheochromocytoma 0verall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	P = 0.162N	P = 0.039N
Adjusted Rates (b) 11.4% Terminal Rates (c) 5/44 (11%) Week of First Observation 105 Life Table Tests (d) P=0.057N Incidental Tumor Tests (d) P=0.042N Fisher Exact Test (d) Adrenal Gland: Cortical Adenoma or Carcinoma Overall Rates (a) 7/52 (13%) Adjusted Rates (b) 15.9% Terminal Rates (c) 7/44 (16%) Week of First Observation 105 Life Table Tests (d) P=0.015N Incidental Tumor Tests (d) P=0.015N Cochran-Armitage Trend Test (d) P=0.011N Fisher Exact Test (d) Adjusted Rates (b) 6.8% Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Adrenal Gland: Pheochromocytoma Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P=0.257N Incidental Tumor Tests (d) P=0.257N Incidental Tumor Tests (d) P=0.178N Cochran-Armitage Trend Test (d) P=0.178N Cochran-Armitage Trend Test (d) P=0.222N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)		
Terminal Rates (c)	6/52 (12%)	0/52(0%)
Week of First Observation 105 Life Table Tests (d) P=0.057N Incidental Tumor Tests (d) P=0.042N Cochran-Armitage Trend Test (d) P=0.042N Fisher Exact Test (d) P=0.042N Adrenal Gland: Cortical Adenoma or Carcinoma 7/52 (13%) Overall Rates (a) 7/52 (13%) Adjusted Rates (b) 15.9% Terminal Rates (c) 7/44 (16%) Week of First Observation 105 Life Table Tests (d) P=0.015N Cochran-Armitage Trend Test (d) P=0.015N Cochran-Armitage Trend Test (d) P=0.011N Adrenal Gland: Pheochromocytoma 3/52 (6%) Adjusted Rates (b) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P=0.257N Incidental Tumor Tests (d) P=0.178N Cochran-Armitage Trend Test (d) P=0.222N Fisher Exact Test (d) P=0.222N Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	13.6%	0.0%
Life Table Tests (d)	6/44 (14%)	0/39(0%)
Incidental Tumor Tests (d)	105	
Incidental Tumor Tests (d)	P = 0.500	P = 0.045N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d) Adrenal Gland: Cortical Adenoma or Carcinoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Advek of First Observation Life Table Tests (d) Adrenal Gland: Pheochromocytoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) 3/52 (6%) 6.8% Terminal Rates (c) 3/44 (7%)	P = 0.500	P = 0.045N
## Fisher Exact Test (d) Adrenal Gland: Cortical Adenoma or Carcinoma 7/52 (13%) Adjusted Rates (a) 7/52 (13%) Adjusted Rates (b) 15.9% Terminal Rates (c) 7/44 (16%) Week of First Observation 105 Life Table Tests (d) P = 0.015 N Incidental Tumor Tests (d) P = 0.015 N Cochran-Armitage Trend Test (d) P = 0.011 N Fisher Exact Test (d) P = 0.011 N ### Adrenal Gland: Pheochromocytoma 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P = 0.257 N Incidental Tumor Tests (d) P = 0.178 N Cochran-Armitage Trend Test (d) P = 0.222 N Fisher Exact Test (d) Fisher Exact Test (d) P = 0.222 N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Advental Gland: Pheochromocytoma or Malignant Pheochromocytoma Overall Rates (a) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Advental Gland: Pheochromocytoma 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Advental Gland: Pheochromocytoma 3/52 (6%) Adjusted Rates (c) 3/44 (7%) 3/44 (7		
Overall Rates (a) 7/52 (13%) Adjusted Rates (b) 15.9% Terminal Rates (c) 7/44 (16%) Week of First Observation 105 Life Table Tests (d) P=0.015N Incidental Tumor Tests (d) P=0.015N Cochran-Armitage Trend Test (d) P=0.011N Fisher Exact Test (d) P=0.011N Adrenal Gland: Pheochromocytoma 3/52 (6%) Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P=0.257N Incidental Tumor Tests (d) P=0.178N Cochran-Armitage Trend Test (d) P=0.222N Fisher Exact Test (d) P=0.222N Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	P = 0.500	P = 0.028N
Overall Rates (a) 7/52 (13%) Adjusted Rates (b) 15.9% Terminal Rates (c) 7/44 (16%) Week of First Observation 105 Life Table Tests (d) P = 0.015N Incidental Tumor Tests (d) P = 0.015N Cochran-Armitage Trend Test (d) P = 0.011N Fisher Exact Test (d) P = 0.011N Adrenal Gland: Pheochromocytoma 3/52 (6%) Overall Rates (a) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P = 0.257N Incidental Tumor Tests (d) P = 0.178N Cochran-Armitage Trend Test (d) P = 0.222N Fisher Exact Test (d) P = 0.222N Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)		
Adjusted Rates (b) 15.9% Terminal Rates (c) 7/44 (16%) Week of First Observation 105 Life Table Tests (d) P = 0.015N Incidental Tumor Tests (d) P = 0.015N Cochran-Armitage Trend Test (d) P = 0.011N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P = 0.257N Incidental Tumor Tests (d) P = 0.178N Cochran-Armitage Trend Test (d) P = 0.178N Cochran-Armitage Trend Test (d) P = 0.222N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	6/52 (12%)	0/52 (0%)
Terminal Rates (c)	13.6%	0.0%
Week of First Observation 105 Life Table Tests (d) P = 0.015N Incidental Tumor Tests (d) P = 0.015N Cochran-Armitage Trend Test (d) P = 0.011N Fisher Exact Test (d) P = 0.011N Adrenal Gland: Pheochromocytoma 3/52 (6%) Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P = 0.257N Incidental Tumor Tests (d) P = 0.178N Cochran-Armitage Trend Test (d) P = 0.222N Fisher Exact Test (d) P = 0.222N Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	6/44 (14%)	0/39 (0%)
Life Table Tests (d)		0/39(0%)
Incidental Tumor Tests (d)	105	D 001411
Cochran-Armitage Trend Test (d) P = 0.011N Fisher Exact Test (d) P = 0.011N Adrenal Gland: Pheochromocytoma 3/52 (6%) Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P = 0.257N Incidental Tumor Tests (d) P = 0.178N Cochran-Armitage Trend Test (d) P = 0.222N Fisher Exact Test (d) P = 0.222N Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	P = 0.500N	P = 0.014N
Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P = 0.257N Incidental Tumor Tests (d) P = 0.178N Cochran-Armitage Trend Test (d) P = 0.222N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	P = 0.500N	P = 0.014N
Adrenal Gland: Pheochromocytoma Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P = 0.257N Incidental Tumor Tests (d) P = 0.178N Cochran-Armitage Trend Test (d) P = 0.222N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)		
Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P=0.257N Incidental Tumor Tests (d) P=0.178N Cochran-Armitage Trend Test (d) P=0.222N Fisher Exact Test (d) Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	P = 0.500N	P = 0.006N
Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P=0.257N Incidental Tumor Tests (d) P=0.178N Cochran-Armitage Trend Test (d) P=0.222N Fisher Exact Test (d) Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)		
Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%) Week of First Observation 105 Life Table Tests (d) P=0.257N Incidental Tumor Tests (d) P=0.178N Cochran-Armitage Trend Test (d) P=0.222N Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	2/52(4%)	1/52(2%)
Terminal Rates (c) 3/44 (7%)	4.0%	2.6%
Week of First Observation 105 Life Table Tests (d) P = 0.257N Incidental Tumor Tests (d) P = 0.178N Cochran-Armitage Trend Test (d) P = 0.222N Fisher Exact Test (d) P = 0.222N Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	0/44(0%)	1/39 (3%)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	99	105
Incidental Tumor Tests (d) $P = 0.178N$ Cochran-Armitage Trend Test (d) $P = 0.222N$ Fisher Exact Test (d) $P = 0.222N$ Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) $3/52$ (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) $3/44$ (7%)	P = 0.483N	P = 0.349N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) 3/44 (7%)	P = 0.400N	P = 0.349N
Fisher Exact Test (d) Adrenal Gland: Pheochromocytoma or Malignant Pheochromocytom Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)		
Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	P = 0.500 N	P = 0.309N
Overall Rates (a) 3/52 (6%) Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	na	
Adjusted Rates (b) 6.8% Terminal Rates (c) 3/44 (7%)	2/52 (4%)	2/52 (4%)
Terminal Rates (c) 3/44 (7%)	4.0%	5.1%
	0/44(0%)	2/39 (5%)
Week of Pinet Observation 105		
Week of First Observation 105	99 D = 0.492N	105 D=0 555N
Life Table Tests (d) P=0.455N	P = 0.483N	P=0.555N
Incidental Tumor Tests (d) P=0.363N	P = 0.400N	P = 0.555N
Cochran-Armitage Trend Test (d) P=0.406N Fisher Exact Test (d)	P = 0.500N	P = 0.500N

TABLE B6. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX (Continued)

	Control	50 ppm	100 ppm
Thyroid Gland: C-Cell Adenoma			
Overall Rates (a)	5/49 (10%)	3/49 (6%)	5/49 (10%)
Adjusted Rates (b)	11.4%	6.8%	12.7%
Terminal Rates (c)	5/44 (11%)	3/44 (7%)	4/38 (11%)
Week of First Observation	105	105	98
Life Table Tests (d)	P=0.486	P = 0.356N	P=0.539
Incidental Tumor Tests (d)	P=0.541	P = 0.356N	P=0.619
Cochran-Armitage Trend Test (d)	P=0.571	1 -0.00011	1 - 0.010
Fisher Exact Test (d)	1 - 0.011	P = 0.357 N	P = 0.630
Γhyroid Gland: C-Cell Carcinoma			
Overall Rates (a)	2/49 (4%)	3/49 (6%)	0/49 (0%)
Adjusted Rates (b)	4.5%	6.6%	0.0%
Terminal Rates (c)	2/44 (5%)	2/44 (5%)	0/38 (0%)
Week of First Observation	105	104	
Life Table Tests (d)	P=0.236N	P = 0.506	P = 0.271N
Incidental Tumor Tests (d)	P = 0.170N	P = 0.579	P = 0.271N
Cochran-Armitage Trend Test (d)	P = 0.202N	. 5,010	
Fisher Exact Test (d)	1 - 0,20211	P = 0.500	P = 0.247 N
Thyroid Gland: C-Cell Adenoma or Carcin	oma		
Overall Rates (a)	7/49 (14%)	6/49 (12%)	5/49 (10%)
Adjusted Rates (b)	15.9%	13.2%	12.7%
Terminal Rates (c)	7/44 (16%)	5/44 (11%)	4/38 (11%)
Week of First Observation	105	104	98
Life Table Tests (d)	P=0.417N	P = 0.496N	P = 0.482N
Incidental Tumor Tests (d)	P = 0.324N	P = 0.449N	P = 0.407N
Cochran-Armitage Trend Test (d)	P = 0.322N	1 -0.44014	1 -0.10114
Fisher Exact Test (d)	1 - 0.52211	P = 0.500 N	P = 0.380N
Pancreatic Islets: Islet Cell Carcinoma			
Overall Rates (a)	4/50 (8%)	9/52 (17%)	6/51 (12%)
Adjusted Rates (b)	8.8%	20.5%	15.4%
Terminal Rates (c)	3/44 (7%)	9/44 (20%)	6/39 (15%)
Week of First Observation	99	105	105
Life Table Tests (d)	P = 0.247	P = 0.121	P = 0.298
Incidental Tumor Tests (d)	P = 0.273	P = 0.142	P = 0.351
Cochran-Armitage Trend Test (d)	P = 0.339	. 0.1.12	2 0.001
Fisher Exact Test (d)	1 - 0.000	P = 0.133	P = 0.383
Pancreatic Islets: Islet Cell Adenoma or C	arcinoma		
Overall Rates (a)	5/50 (10%)	11/52 (21%)	7/51 (14%)
Adjusted Rates (b)	11.1%	25.0%	17.9%
Terminal Rates (c)	4/44 (9%)	11/44 (25%)	7/39 (18%)
Week of First Observation	99	105	105
Life Table Tests (d)	P=0.249	P = 0.089	P=0.299
Incidental Tumor Tests (d)	P = 0.273	P = 0.105	P = 0.348
Cochran-Armitage Trend Test (d)	P = 0.354	1 = 0.100	1 . 0.0 10
Fisher Exact Test (d)	1 - 0.004	P = 0.100	P = 0.394
Mammary Gland: Fibroadenoma			
Overall Rates (a)	3/52 (6%)	6/52 (12%)	3/52 (6%)
Adjusted Rates (b)	6.4%	13.1%	7.7%
Terminal Rates (c)	2/44 (5%)	5/44 (11%)	3/39 (8%)
		75	105
	au		
Week of First Observation	50 P=0.518		
Week of First Observation Life Table Tests (d)	P = 0.518	P = 0.249	P = 0.615
Week of First Observation			

TABLE B6. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX (Continued)

	Control	50 ppm	100 ppm
Mammary Gland: Adenoma or Fibroade	noma		
Overall Rates (a)	3/52 (6%)	7/52 (13%)	3/52 (6%)
Adjusted Rates (b)	6.4%	15.3%	7.7%
Terminal Rates (c)	2/44 (5%)	6/44 (14%)	3/39 (8%)
Week of First Observation	50	75	105
Life Table Tests (d)	P=0.511	P=0.165	P=0.615
Incidental Tumor Tests (d)	P = 0.292	P = 0.083	P = 0.445
Cochran-Armitage Trend Test (d)	P = 0.570	1 - 0.000	1 - 0.1120
Fisher Exact Test (d)	1 - 0.010	P = 0.159	P = 0.661
Uterus: Endometrial Stromal Polyp			
Overall Rates (a)	12/52 (23%)	8/51 (16%)	8/52 (15%)
Adjusted Rates (b)	27.3%	18.6%	18.7%
Terminal Rates (c)	12/44 (27%)	8/43 (19%)	6/39 (15%)
Week of First Observation	105	106	82
Life Table Tests (d)	P = 0.260N	$P = 0.241 \mathrm{N}$	P = 0.315N
Incidental Tumor Tests (d)	P = 0.196N	P = 0.241N	P = 0.241N
Cochran-Armitage Trend Test (d)	P = 0.186N	4 0,4 111	
Fisher Exact Test (d)	1 -0.10011	P = 0.243 N	P = 0.228N
All City D. Co. M.			
All Sites: Benign Tumors	44.50 (50%)	20/50 (20%)	01/50/0000
Overall Rates (a)	41/52 (79%)	36/52 (69%)	31/52 (60%)
Adjusted Rates (b)	85.4%	74.9%	70.2%
Terminal Rates (c)	37/44 (84%)	32/44 (73%)	26/39 (67%)
Week of First Observation	50	75	82
Life Table Tests (d)	P = 0.128N	P = 0.189N	P = 0.153N
Incidental Tumor Tests (d)	P = 0.055N	P = 0.219N	P = 0.054N
Cochran-Armitage Trend Test (d)	P = 0.022N		D 0.0001
Fisher Exact Test (d)		P = 0.186N	P = 0.028N
All Sites: Malignant Tumors			
Overall Rates (a)	17/52 (33%)	24/52 (46%)	24/52 (46%)
Adjusted Rates (b)	35.4%	48.0%	52.7%
Terminal Rates (c)	13/44 (30%)	18/44 (41%)	18/39 (46%)
Week of First Observation	80	95	82
Life Table Tests (d)	P = 0.057	P = 0.154	P = 0.071
Incidental Tumor Tests (d)	P = 0.184	P = 0.166	P = 0.193
Cochran-Armitage Trend Test (d)	P = 0.098		
Fisher Exact Test (d)		P = 0.114	P = 0.114
All Sites: All Tumors			
Overall Rates (a)	49/52 (94%)	47/52 (90%)	48/52 (92%)
Adjusted Rates (b)	96.1%	90.4%	96.0%
Terminal Rates (c)	42/44 (95%)	39/44 (89%)	37/39 (95%)
Week of First Observation	50	75	82
Life Table Tests (d)	P = 0.232	P = 0.372 N	P = 0.262
Incidental Tumor Tests (d)	P = 0.395N	P = 0.358N	P = 0.419N
Cochran-Armitage Trend Test (d)	P = 0.427N		
Fisher Exact Test (d)		P = 0.358N	P = 0.500N

⁽a) Number of tumor-bearing animals/number of animals examined at the site

⁽b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

TABLE B7a. HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a,b)

	Incidence in Controls								
Neoplastic	Hepatocellular	Neoplastic Nodule or							
Nodule	Carcinoma	Hepatocellular Carcinoma							
ence									
57/2,015 (2.8%)	3/2,015 (0.1%)	59/2,015 (2.9%)							
2.86%	0.70%	3.04%							
5/50	2/50	5/50							
0/50	0/88	0/50							
	Nodule ence 57/2,015 (2.8%) 2.86%	Neoplastic Hepatocellular Carcinoma ence 57/2,015 (2.8%) 3/2,015 (0.1%) 2.86% 0.70% 5/50 2/50							

⁽a) Data as of August 30, 1985, for studies of at least 104 weeks

TABLE 87b. HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a,b)

	Incidence of Leukemia in Controls
Overall Historical Incidence	
TOTAL SD(c)	375/2,021 (18.6%) 6.55%
Range (d) High Low	19/50 3/50

⁽a) Data as of August 30, 1985, for studies of at least 104 weeks

TABLE B7c. HISTORICAL INCIDENCE OF PITUITARY GLAND TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a,b)

		Incidence in Controls							
Overall Historical Incidence	Adenoma (c)	Carcinoma (d) Adenoma or Carcinom							
Overall Historical Inci	dence								
TOTAL SD(e)	862/1,952 (44.2%) 11.56%	71/1,952 (3.6%) 3.97%	931/1,952(47.7%) 11.02%						
Range (f) High Low	33/47 7/39	8/49 0/50	33/47 9/39						

⁽a) Data as of August 30, 1985, for studies of at least 104 weeks

⁽b) No 2-year studies by Frederick Cancer Research Center are included in the historical data base.

⁽c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.

⁽b) No 2-year studies by Frederick Cancer Research Center are included in the historical data base.

⁽c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.

⁽b) No 2-year studies by Frederick Cancer Research Center are included in the historical data base.

⁽c) Includes all adenomas diagnosed as NOS, chromophobe, acidophil, or basophil (d) Includes all adenocarcinomas, NOS, carcinomas, NOS, and chromophobe carcinomas

⁽e) Standard deviation

⁽f) Range and SD are presented for groups of 35 or more animals.

TABLE B7d. HISTORICAL INCIDENCE OF ADRENAL GLAND TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a,b)

	Incidence in Controls								
	Pheochromocytoma	ocytoma Malignant Pheochromocy Pheochromocytoma Malignant Pheochr							
Overall Historical Incidence									
TOTAL SD (c)	87/2,001 (4.3%) 3.68%	7/2,001 (0.3%) 0.77%	94/2,001 (4.7%) 3.59%						
Range (d) High Low	8/50 0/50	1/40 0/50	8/50 0/50						

⁽a) Data as of August 30, 1985, for studies of at least 104 weeks

TABLE B7e. HISTORICAL INCIDENCE OF THYROID GLAND C-CELL TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a,b)

		Incidence in Controls							
verall Historical Incidence TOTAL SD (c) Range (d)	Adenoma	Carcinoma	Adenoma or Carcinoma						
Overall Historical Inc	dence								
·	114/1,952 (5.8%) 5.02%	71/1,952 (3.6%) 2.55%	182/1,952 (9.3%) 5.46%						
	0.70	F (F 0	4.1 (7.0						
High Low	9/50 0/86	5/50 0/50	11/50 0/50						

⁽b) No 2-year studies by Frederick Cancer Research Center are included in the historical data base.

⁽c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.

⁽a) Data as of August 30, 1985, for studies of at least 104 weeks
(b) No 2-year studies by Frederick Cancer Research Center are included in the historical data base.

⁽c) Standard deviation

⁽d) Range and SD are presented for groups of 35 or more animals.

TABLE B8. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX

	Untrea Contr		0.1 pp	m	1 ppi	n	10 p	pm	25 pp	m	50 p	pm
NIMALS INITIALLY IN STUDY INIMALS NECROPSIED INIMALS EXAMINED HISTOPATH	52 52 52		52 52 52		52 52 52		52 52 52		52 52 52		52 52 52	
NTEGUMENTARY SYSTEM None						-						
RESPIRATORY SYSTEM #Tracheal mucosa	(47)		(47)		(45)		(47)	<u> </u>	(46)		(44)	
Metaplasia, squamous			1	(2%)								
#Lung Congestion, chronic passive	(52)		(52)		(52)	(6%)	(52)		(52)		(52)	(6%)
Inflammation, interstitial Hyperplasia, alveolar epitheliu	m 2	(4%)			v	, , ,	1	(2%)			1	(2%)
EMATOPOIETIC SYSTEM #Bone marrow	(50)		(49)		(49)		(50)		(49)		(50)	
Fibrosis	1	(2%)	(43)		(40)				(43)		(30)	
Fibrosis, focal #Spleen	(50)		(52)		(52)		(50)	(4%)	(51)		(50)	
Fibrosis		(2%)			(52)							(2%)
Fibrosis, focal Infarct, NOS			3	(6%)		(20%)	2	(4%)	2	(4%)		
Atrophy, NOS					1	(2%)	1 1	(2%) (2%)				
Depletion, lymphoid Hematopoiesis	7	(14%)	5	(10%)	5	(10%)	7	(14%)	1 1	(2%) (2%)	1	(2%)
#Splenic sinusoids	(50)	(14%)	(52)	(10%)	(52)	(10%)	(50)	(14%)	(51)	(270)	(50)	
Angiectasis #Mediastinal lymph node	(51)		(52)		(52)		(51)		(52)		(52)	(2%)
Congestion, NOS	(01)						1	(2%)				
#Mesenteric lymph node Inflammation, acute necrotizing	(51)		(52)		(52)		(51)		(52)		(52) 1	(2%)
Fibrosis					1	(2%)	1	(2%)				(2 /0)
#Thymus Cyst, NOS	(42)		(47)	(6%)	(42) 4	(10%)	(42)	(7%)	(48)	(4%)	(41) 6	(15%
Hyperplasia, epithelial	5	(12%)	5	(11%)	7	(17%)	8	(19%)	5	(10%)		(32%
IRCULATORY SYSTEM			**						.50			_
#Heart Mineralization	(52) 1	(2%)	(52)		(52)		(52)		(52)		(52)	
Inflammation, chronic	44	(85%)	44	(85%)	45	(87%)	44	(85%)	49	(94%)	47	(90%
#Left atrium Thrombosis, NOS	(52)		(52) 1	(2%)	(52)	(6%)	(52) 2	(4%)	(52)		(52)	
#Cardiac valve	(52)		(52)		(52)		(52)		(52)		(52)	(00)
Inflammation, chronic *Hepatic vein	(52)		(52)		(52)		(52)		(52)		(52)	(2%)
Thrombosis, NOS			1 (50)	(2%)					/FO:			
#Pancreas Periarteritis	(50) 1	(2%)	(52)		(51) 1	(2%)	(49)		(50)		(50)	
#Stomach	(50)				_							
Periarteritis *Mesentery	(52)	(2%)	(52)		(52)		(52)		(52)		(52)	
Periarteritis			1	(2%)	1	(2%)						
#Kidney Periarteritis	(51)		(52)		(52)		(51)	(2%)	(51)		(52)	
#Adrenal	(51)		(52)		(52)		(51)		(51)		(52)	
Periarteritis							1	(2%)				
IGESTIVE SYSTEM #Salivary gland	(51)		(51)		(51)		(51)		(52)		(52)	
Abscess, NOS #Liver	(52)		(52)		(52)		(52)	(2%)	(52)		(52)	
Inflammation, acute focal	(32)		(32)				(32)		102		1	(2%)
Inflammation, chronic Inflammation, granulomatous					1 1	(2%) (2%)						
Necrosis, NOS	2	(4%)	4	(8%)	1	(2%)	7	(13%)	4	(8%)	4	(8%)
Necrosis, focal	1	(2%)	10	(950/-)	1	(2%)	4 36	(8%)	4 45	(8%) (87%)	3 43	(6%)
Metamorphosis, fatty	11	(21%)	13	(25%)	18	(35%) (2%)	36	(69%)	40	101701	1	(83% (2%)
Pigmentation, NOS Basophilic cyto change		(90%)			1	(470)					34	

TABLE B8. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untreate Control		0.1 pp	m	1 ppr	n	10 p	pm	25 pp	m	50 p	pm
DIGESTIVE SYSTEM							-			-		
#Liver (Continued)	(52)		(52)		(52)		(52)		(52)		(52)	
Hepatocytomegaly	4 (8	8%)	2	(4%)	3	(6%)	14	(27%)	39	(75%)	45	(87%)
Atrophy, NOS Angiectasis	3 (6	6%)	1 8	(2%)	2 3	(4%) (6%)	2	(4%)	2	(4%)	9	(17%)
#Liver/caudate lobe	(52)	G-70)	(52)	(15%)	(52)	(0.70)	(52)	(470)	(52)	(470)	(52)	(1170)
Infarct, NOS	(32)		1	(2%)	(02)		(02)		(02)		(02)	
#Liver/centrilobular	(52)		(52)	,,,	(52)		(52)		(52)		(52)	
Degeneration, NOS							1	(2%)	1	(2%)	2	(4%)
Necrosis, NOS					1	(2%)	4	(8%)			6	(12%)
Atrophy, NOS		8%)	4	(8%)	7	(13%)	1	(2%)	3	(6%)	2	(4%)
#Liver/Kupffer cell Pigmentation, NOS	(52)	2%)	(52) 1	(2%)	(52) 1	(2%)	(52)		(52)		(52)	
#Bile duct	(52)	2%)	(52)	(2%)	(52)	(240)	(52)		(52)		(52)	
Cvst. NOS		2%)	(32)		(32)		(32)		(32)		1	(2%)
Hyperplasia, NOS		44%)	29	(56%)	29	(56%)	35	(67%)	37	(71%)	26	(50%)
#Pancreas	(50)	44/0/	(52)	(00.0)	(51)	(00.0)	(49)	(01.0)	(50)	(14.0)	(50)	(00,0)
Inflammation, chronic	(55)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.01,		,,		1	(2%)	(/	
Fibrosis					1	(2%)			•			
Necrosis, fat					1	(2%)						
Eosinophilic cyto change					1	(2%)	2	(4%)			1	(2%)
#Pancreatic acinus	(50)		(52)		(51)		(49)		(50)		(50)	_
Atrophy, NOS		8%)	1	(2%)	3	(6%)	2	(4%)	5	(10%)	3	(6%)
#Stomach	(50)		(52)		(50)		(51)		(48)		(51)	. 0∼∶
Inflammation, chronic #Gastric mucosa	(50)		/FO:		(50)		(# 1 \		(48)		(51)	(2%)
Ulcer, NOS		4%)	(52) 2	(4%)	(50)	(6%)	(51)		(48)	(2%)	(91)	
Erosion	2 (*	4-70)	2	(4%)	3	(070)	3	(6%)	-	(270)	2	(4%)
Hyperplasia, epithelial				(37 707				(0.0)	1	(2%)	-	(4,0)
#Gastric submucosa	(50)		(52)		(50)		(51)		(48)	. = ,	(51)	
Cyst, NOS		2%)	()		,/		10-2/		()		\/	
#Forestomach	(50)		(52)		(50)		(51)		(48)		(51)	
Ulcer, NOS			5	(10%)	4	(8%)	3	(6%)	1	(2%)	2	(4%)
Inflammation, acute	1 (2%)			1	(2%)	1	(2%)				
Inflammation, acute necrotizing	g										1	(2%)
Inflammation, chronic Hyperplasia, epithelial	1 (5	2%)	1 5	(2%) (10%)	5	(10%)	3	(6%)	1	(2%)	1	(2%)
URINARY SYSTEM												
#Kidney	(51)		(52)		(52)		(51)		(51)		(52)	
Mineralization	1 (2%)										
Hydronephrosis					. 1	(2%)				.000	40	(0.10)
Nephropathy	34 (67%)	42	(81%)	45	(87%)	47	(92%)	47	(92%)	42	(81%)
Infarct, NOS #Kidney/cortex	(51)		(52)		(52)	(2%)	(51)		(51)		(52)	
Cyst, NOS	(91)		(34)		(52)	(2%)	(31)		(31)		(02)	
#Kidney/pelvis	(51)		(52)		(52)		(51)		(51)		(52)	
Mineralization		6%)	2	(4%)		(2%)	,02/		(->=/			
Hyperplasia, epithelial			1	(2%)								
ENDOCRINE SYSTEM #Pituitary	(52)		(51)	***	(50)		(5i)		(52)		(50)	
Cyst. NOS	(32)		(91)			(4%)	(01)		(32)			(4%)
Hemorrhagic cyst	3 (6%)			2	· * /V/					~	0/
Hyperplasia, NOS		6%)	7	(14%)	3	(6%)	5	(10%)	2	(4%)	4	(8%)
#Adrenal	(51)		(52)		(52)		(51)		(51)		(52)	
Necrosis, hemorrhagic												(2%)
Necrosis, cortical											1	(2%)
#Adrenal cortex	(51)		(52)		(52)	100	(51)		(51)		(52)	
Degeneration, NOS	n //	C 07. \		(4%)	1	(2%)	6	(12%)	6	(12%)	4	(8%)
Metamorphosis, fatty Cytoplasmic change, NOS		(6%) (4%)	2 5	(4%) (10%)	9 4	(17%) (8%)	5	(12%)	1	(2%)	4	(070)
Cytoplasmic vacuolization	٠ ،	T (U)	3	(10/0)	1	(2%)	3	.10/0/	•	.= .~/		
Hypertrophy, NOS					i	(2%)	1	(2%)				
Hyperplasia, NOS	4 (1	8%)	3	(6%)	4	(8%)		(12%)	5	(10%)	5	(10%)
#Adrenal medulla	(51)		(52)		(52)		(51)		(51)		(52)	
Hyperplasia, NOS		2%)	1	(2%)	2	(4%)	5	(10%)			2	(4%)
#Thyroid	(50)		(50)		(48)		(47)		(48)		(46)	
											1	(2%)
Ectopia												
Ectopia Cystic follicles			1	(2%)			1	(2%)	5	(10%)	2	
Ectopia	ltr 4 ()		1	(2%) (2%) (4%)	_	(6%)		(2%) (2%)		(10%) (8%)	2	

TABLE B8. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untrea Contr		0.1 pp	m	1 ppr	n	10 p	pm	25 pp	m	50 p	pm
ENDOCRINE SYSTEM (Continued)								_				
#Parathyroid Hyperplasia, NOS	(39) 2	(5%)	(43) 2	(5%)	(45) 1	(2%)	(46) 1	(2%)	(44) 2	(5%)	(43) 5	(12%)
Hyperplasia, focal	2	(5%)	2	(0''0)	1	(2%)		(470)	4	(5%)	J	(1270)
#Pancreatic islets	(50)		(52)		(51)	(= .07	(49)		(50)		(50)	
Hyperplasia, NOS	10	(20%)	8	(15%)	11	(22%)	14	(29%)	12	(24%)	8	(16%)
REPRODUCTIVE SYSTEM												
*Mammary gland	(52)		(52)		(52)		(52)		(52)		(52)	
Galactocele	2	(4%)			1	(2%)			1	(2%)	1	(2%)
Cyst, NOS Cystic ducts	7	(13%)	5	(1000)		(13%)	8	(15%)	10	(19%)	1 5	(2%) (10%)
Abscess. NOS	7	(13%)	ō	(10%)	7	(2%)	8	(2%)	10	(19%)	9	(10%)
Necrosis, NOS					1	(2 10)	-	(2 70)			1	(2%)
Fibrocystic disease	12	(23%)	15	(29%)	14	(27%)	15	(29%)	10	(19%)	3	(6%)
*Preputial gland	(52)		(52)		(52)	•	(52)		(52)		(52)	
Cyst, NOS												(2%)
*Clitoral gland	(52)		(52)		(52)	(00/)	(52)		(52)		(52)	
Cyst, NOS Inflammation, granulomatous					1 1	(2%) (2%)						
*Vagina	(52)		(52)		(52)	14 10)	(52)		(52)		(52)	
Inflammation, chronic	,,		(52)		.52/				1	(2%)	,54,	
#Uterus	(51)		(51)		(52)		(52)		(52)		(52)	
Hydrometra	2	(4%)										(2%)
Cyst, NOS								.0~			1	(2%)
Angiectasis							1 (70)	(2%)	/# Ch		150	
#Cervix uteri Hyperplasia, epithelial	(51)		(51)		(52)		(52) 1	(2%)	(52)		(52)	
#Uterus/endometrium	(51)		(51)		(52)		(52)	1470)	(52)		(52)	
Cyst, NOS	1	(2%)	1	(2%)	1	(2%)	(32)		(02)		(32)	
Hyperplasia, NOS	•		ĩ	(2%)	ī	(2%)	1	(2%)				
Hyperplasia, cystic	6	(12%)	10	(20%)	7	(13%)	4	(8%)	6	(12%)	8	(15%)
#Ovary	(51)		(51)		(52)		(52)		(52)		(51)	
Parovarian cyst	1	(2%)			1	(2%)						
NERVOUS SYSTEM												
#Brain Hemorrhage	(52)	(Der)	(52)		(51)		(52)		(52)		(52)	
Malacia	1	(2%)	1	(2%)								
Necrosis, hemorrhagic	2	(4%)	i	(2%)	1	(2%)	1	(2%)				
SPECIAL SENSE ORGANS		 -	·									
*Eye/conjunctiva	(52)		(52)		(52)		(52)		(52)		(52)	
Abscess, NOS							1	(2%)				
*Eye/lacrimal gland	(52)		(52)		(52)		(52)		(52)	.0~	(52)	
Atrophy, NOS	180		/#C1		(50)	(2%)	(FO)		(50)	(2%)	(52)	
*Zymbal gland Inflammation, granulomatous	(52)		(52)		(52)		(52)		(52)			(2%)
MUSCULOSKELETAL SYSTEM												
*Bone	(52)		(52)		(52)		(52)		(52)		(52)	
Healed fracture			•				1	(2%)				
Fibrosis, focal										(2%)		
*Vertebra Fibrous osteodystrophy	(52)		(52)		(52)		(52)		(52) 1	(2%)	(52)	
BODY CAVITIES						 						
*Abdominal cavity	(52)		(52)		(52)		(52)		(52)		(52)	
Steatitis	(04)		1	(2%)	,02/		,5=/		,02,			
Necrosis, fat	1	(2%)		(2%)	=	(10%)	6	(12%)	3	(6%)	1	(2%)

TABLE B8. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untreated Control	0.1 ppm	1 ppm	10 ppm	25 ppm	50 ppm
ALL OTHER SYSTEMS Adipose tissue Inflammation, granulomatous Necrosis, NOS			1	1	3	
SPECIAL MORPHOLOGY SUMMA	ARY					

^{*}Number of animals receiving complete necropsy exaamination; all gross lesions including masses examined microscopically. #Number of animals examined microscopically at this site

TABLE B9. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX

Untr	eated	Control	50 pj	om	100 p	pm
ANIMALS INITIALLY IN STUDY	52		52		52	
ANIMALS NECROPSIED	52		52		52	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	52		52		52	
NTEGUMENTARY SYSTEM		· · · · · · · · · · · · · · · · · · ·				
*Skin_	(52)	_	(52)		(52)	
Inflammation, acute	1	(2%)				
RESPIRATORY SYSTEM						
#Lung	(52)	(CO)	(52)		(52)	
Hyperplasia, alveolar epithelium	3	(6%)			3	
IEMATOPOIETIC SYSTEM						
*Multiple organs	(52)		(52)		(52)	
Myeloproliferative disorder				(2%)	=	
#Bone marrow	(48)		(51)	.00	(51)	
Fibrosis		(2%)	1	(2%)		
Hyperplasia, NOS #Spleen		(2%)	(52)		(40)	
#Spieen Fibrosis	(51)	(2%)	(52)		(49)	
Fibrosis, focal	1	(470)			9	(4%)
Infarct, NOS	1	(2%)			2	(T/O)
Hyperplasia, hematopoietic	•	(270)			1	(2%)
Hematopoiesis	1	(2%)	3	(6%)		(4%)
Myelopoiesis	-	-		(2%)	_	•
#Mesenteric lymph node	(51)		(52)		(52)	
Fibrosis, focal				(2%)		
#Liver	(52)		(52)		(52)	
Hematopoiesis		(2%)				
#Thymus	(44)		(46)		(48)	
Cyst, NOS		(16%)		(9%)		(6%)
Hyperplasia, epithelial	9	(20%)	10	(22%)	· · · · · · · · · · · · · · · · · · ·	(15%)
CIRCULATORY SYSTEM						
#Heart	(52)	/a	(52)		(52)	
Abscess, NOS		(2%)	40	(0.00()	4.0	(00 <i>0</i> //)
Inflammation, chronic #Left atrium		(88%)	(52)	(88%)	(52)	(88%)
Thrombosis, NOS	(52)	(2%)	(32)		(32)	
#Endocardium	(52)	(2 10)	(52)		(52)	
Hyperplasia, NOS	(04)			(2%)	(02)	
#Liver	(52)		(52)	\ / - /	(52)	
Thrombosis, NOS			2	(4%)		
#Pancreas	(50)		(52)	•	(51)	
Periarteritis				(2%)		
#Kidney	(52)		(52)	_	(52)	
Periarteritis			1	(2%)		
DIGESTIVE SYSTEM						
*Intestinal mucosa	(52)		(52)		(52)	
Ectopia						(2%)
*Tongue	(52)		(52)	.=	(52)	
T (1) 4.*		(2%)		(2%)		
Inflammation, granulomatous			(52)		(52)	
#Liver	(52)			/A ~ :		
#Liver Abscess, NOS		(00)	1	(2%)		
#Liver Abscess, NOS Inflammation, granulomatous	1	(2%)	1 1	(2%)	^	(100)
#Liver Abscess, NOS	1	(2%) (2%) (6%)	1 1 3			(12%) (19%)

TABLE B9. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untreated	Control	50 pp	om	100 p	pm
DIGESTIVE SYSTEM						
#Liver (Continued)	(52)		(52)		(52)	
Necrosis, hemorrhagic	(02)		(0-)			(2%)
Metamorphosis, fatty	14	(27%)	34	(65%)	39	(75%)
Pigmentation, NOS		(2%)	• •	(22.11)		(4%)
Basophilic cyto change	48	(92%)	40	(77%)	27	(52%)
Ground glass cyto change	3	(6%)		(2%)		
Eosinophilic cyto change	1	(2%)				
Clear cell change	5	(10%)				
Hepatocytomegaly	4	(8%)	49	(94%)	49	(94%)
Atrophy, NOS					3	(6%)
Atrophy, focal						(2%)
Angiectasis	6	(12%)	7	(13%)	10	(19%)
#Liver/centrilobular	(52)		(52)		(52)	
Degeneration, NOS	1	(2%)				
Atrophy, NOS			1	(2%)	2	(4%)
#Bile duct	(52)		(52)		(52)	
Hyperplasia, NOS	33	(63%)	43	(83%)	30	(58%)
#Pancreas	(50)		(52)		(51)	
Eosinophilic cyto change			1	(2%)	1	(2%)
#Pancreatic acinus	(50)		(52)		(51)	
Atrophy, NOS		(8%)		(8%)		(18%)
Hyperplasia, NOS		(6%)		(2%)		(2%)
#Peripancreatic tissue	(50)		(52)		(51)	
Necrosis, fat				(2%)		
#Gastric mucosa	(51)		(51)		(52)	
Ulcer, NOS			2	(4%)	1	(2%)
Erosion		(4%)				
#Forestomach	(51)		(51)		(52)	
Ulcer, NOS				(8%)		(13%)
Inflammation, acute			1	(2%)		(4%)
Inflammation, acute focal					1	(2%)
Inflammation, active chronic	1	(2%)				
Inflammation, chronic					1	(2%)
Ulcer, perforated		(2%)		(2%)	_	(100)
Hyperplasia, epithelial	2	(4%)	5	(10%)	7 	(13%)
URINARY SYSTEM						
#Kidney	(52)	(00)	(52)		(52)	
Abscess, NOS		(2%)		(00%)	**	(100%)
Nephropathy		(87%)		(98%)		(100%)
#Kidney/pelvis	(52)	(20%)	(52)		(52)	
Mineralization #Uringry bladder		(2%)	(ED)		(40)	
#Urinary bladder Hyperplasia, epithelial	(50)		(50)		(49)	(2%)
NDOCRINE SYSTEM						
#Pituitary	(52)		(52)		(52)	
Hemorrhagic cyst			1	(2%)		
Necrosis, focal		(2%)				
Hyperplasia, NOS		(10%)		(12%)		(6%)
#Adrenal	(52)		(52)		(52)	
Necrosis, focal						(2%)
#Adrenal cortex	(52)		(52)		(52)	
Degeneration, NOS				(2%)		
Metamorphosis, fatty		(15%)		(17%)		(27%)
Cytoplasmic change, NOS		(8%)		(13%)		(6%)
Hyperplasia, NOS		(6%)		(10%)		(10%)
					(FO)	
#Adrenal medulla Hyperplasia, NOS	(52)	(2%)	(52)		(52)	

TABLE B9. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untreated	Control	50 pj	om	100 ppm		
ENDOCRINE SYSTEM (Continued)							
#Thyroid	(49)		(49)		(49)		
Cystic follicles	(43)		(40)			(8%)	
Hyperplasia, C-cell	5	(10%)	3	(6%)		(6%)	
Hyperplasia, follicular cell		(=)		(6%)		(4%)	
#Parathyroid	(52)		(45)		(42)		
Ectopia	1	(2%)	3	(7%)			
Hyperplasia, NOS		(2%)		(9%)	_	(14%)	
#Pancreatic islets	(50)		(52)		(51)		
Hyperplasia, NOS	12	(24%)	9	(17%)	6	(12%)	
REPRODUCTIVE SYSTEM							
*Mammary gland	(52)		(52)		(52)		
Galactocele	1	(2%)	2	(4%)			
Cystic ducts	5	(10%)	7	(13%)		(4%)	
Fibrocystic disease	16	(31%)	7	(13%)	2	(4%)	
*Clitoral gland	(52)		(52)		(52)		
Cystic ducts			_	(2%)			
#Uterus	(52)		(51)		(52)		
Hydrometra	1	(2%)				(9 <i>0</i>)	
Angiectasis	/FAL		/ P.4 S		_	(2%)	
#Cervix uteri	(52)	(00)	(51)		(52)		
Metaplasia, squamous #Uterus/endometrium		(2%)	/E4\		(52)		
	(52)		(51)			(20%)	
Cyst, NOS	0	(6%)	a	(4%)		(2%) $(19%)$	
Hyperplasia, cystic		(0%)	(52)	(470)	(52)	(1370)	
#Ovary Cyst, NOS	(52)		(52)			(4%)	
Parovarian cyst	1	(2%)	1	(2%)	2	1 70 /	
I atovatian cyst		(470)		(270)			
NERVOUS SYSTEM							
#Brain	(52)		(52)		(52)	(90%)	
Hemorrhage		(90)			1	(2%)	
Necrosis, hemorrhagic		(2%)	(52)		(52)		
*Spinal cord	(52)			(2%)	(32)		
Cyst, NOS Hemorrhage				(2%) (2%)			
11emorrnage			1	(470)			
SPECIAL SENSE ORGANS							
*Eye	(52)	.00	(52)		(52)		
Inflammation, chronic	1	(2%)					
MUSCULOSKELETAL SYSTEM							
*Vertebra	(52)		(52)		(52)		
Fibrous osteodystrophy					1	(2%)	
BODY CAVITIES							
*Abdominal cavity	(52)		(52)		(52)		
Necrosis, fat	2	(4%)			1	(2%)	
*Peritoneum	(52)		(52)		(52)		
Inflammation, acute			1	(2%)			

TABLE B9. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE SECOND TWO-YEAR FEED STUDY OF MIREX (Continued)

	Untreated Control	50 ppm	100 ppm
ALL OTHER SYSTEMS *Multiple organs Inflammation, chronic	(52)	(52)	(52) 1 (2%)
Adipose tissue Inflammation, granulomatous	1	1	1

SPECIAL MORPHOLOGY SUMMARY None

^{*} Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. #Number of animals examined microscopically at this site

APPENDIX C

GENETIC TOXICOLOGY OF

MIREX

		PAGE
TABLE C1	MUTAGENICITY OF MIREX IN SALMONELLA TYPHIMURIUM	132
TABLE C2	INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY MIREX	133
TABLE C3	INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY MIREX	134

TABLE C1. MUTAGENICITY OF MIREX IN SALMONELLA TYPHIMURIUM (a)

Q4	D			- S9				s/Plate (b	,c)			0 (4)		
Strain	Dose	Tria			al 2	Trial		amster)	al 2	Tui	+ <u>S</u>	9 (rat) Trial	0	
	(µg/plate)	111	ai i	1 11	aı z	iriai	•	111	ai Z	111	ai i	Iriai	. <i>2</i>	
TA100														
	0	126 ±	7.5	93 ±	11.2	145 ±	4.5	141 ±	3.6	165 ±	9.7	141 ±	8.0	
	100	112 ±	4.7	86 ±	4.9	140 ±	5.8	133 ±	1.8	173 ±	3.1	118 ±	0.9	
	333	124 ±	8.8	100 ±	8.2	164 ±	4.3	131 ±	23.1	172 ±	8.7	128 ±	5.6	
	1,000	104 ±	5.4	99 ±	11.8	139 ±	13.6	122 ±	6.1	175 ±	8.0	128 ±	6.8	
	3,333	105 ±	4.8	86 ±	5.8	141 ±	13.0	114 ±	4.3	170 ±	15.0	127 ±	5.6	
	10,000	111 ±	5.7	97 ±	9.6	149 ±	16.3	133 ±	5.2	137 ±	3.5	109 ±	7.6	
	Trial summary Positive		Negative		tive	Negat	ive	Nega	tive	Negat	tive	Negat	tive	
	ntrol (d)	1,129 \pm	6.8	1,334 ±	108.7	1,136 ±	4.8	2,186 \pm	45.1	$2,463 \pm$	27.0	2,193 ±	185.8	
TA1535	5 0	3 ±	1.3	11 ±	0.9	3 ±	0.9	11 ±	2.8	5 ±	0.9	10 ±	1.7	
	100	4 ±	0.7	13 ±	3.5	3 ±	1.0	11 ±	2.5	6 ±	1.0	16 ±	1.5	
	333	3 ±	0.6	10 ±	4.0	3 ±	1.5	9 ±	1.5	6 ±	0.3	12 ±	2.5	
	1,000	5 ±	2.3	8 ±	2.3	2 ±	0.9	7 ±	0.6	4 ±	0.9	13 ±	1.2	
	3,333	4 ±	1.9	9±	0.9	4 ±	2.1	7 ±	1.5	2 ±	0.7	14 ±	3.1	
	10,000	2 ±	0.0	9 ±	1.5	i ±	0.7	12 ±	1.8	2 ±	0.3	13 ±	1.0	
	ial summary sitive	Negat	ive	Negat	tive	Negat	ive	Nega	tive	Negat	tive	Negat	tive	
	ntrol(d)	39 ±	2.1	1,173 \pm	24.1	88 ±	7.0	158 ±	7.4	78 ±	3.2	220 ±	18.2	
TA1537	7 0	5 ±	0.9	9 ±	0.9	5 ±	0.9	16 ±	1.5	5 ±	0.3	19 ±	2.3	
	100	1 ±	0.6	5 ±	0.7	4 ±	1.5	18 ±	0.6	3 ±	1.8	12 ±	2.3	
	333	3 ±	0.6	6 ±	0.9	3 ±	1.2	20 ±	1.5	3 ±	0.3	17 ±	3.0	
	1,000	2 ±	0.9	8 ±	3.0	1 ±	0.9	13 ±	3.7	4 ±	0.6	17 ±	2.9	
	3,333	$\stackrel{\scriptstyle 2}{{}}\stackrel{\scriptstyle \perp}{\pm}$	1.2	7 ±	$\frac{3.0}{2.2}$	3 ±	0.9	12 ±	3.5	4 ±	0.6	16 ±	3.0	
	10,000	3 ±	0.3	8 ±	$\frac{2.2}{2.7}$	2 ±	0.7	10 ±	2.6	5 ±	0.3	16 ±	2.2	
	ial summary sitive	Negat	ive	Nega	tive	Negat	ive	Nega	tive	Nega	tive	Nega	tive	
	ntrol(d)	186 ±	27.0	265 ±	68.4	88 ±	9.8	386 ±	37.3	49 ±	3.5	490 ±	28.1	
TA98	0	34 ±	0.5	19 ±	1.9	45 ±	3.2	34 ±	2.3	49 ±	0.5	34 ±	1.2	
	100	37 ±	2.6	21 ±	1.2	60 ±	4.3	26 ±	0.3	51 ±	1.8	40 ±	1.2	
	333	43 ±	2.0	19 ±	3.2	47 ±	3.1	24 ±	4.2	57 ±	4.0	24 ±	2.6	
	1,000	35 ±	4.3	19 ±	2.6	58 ±	2.6	35 ±	5.5	55 ±	2.5	29 ±	5.9	
	3,333	46 ±	3.8	27 ±	6.3	58 ±	1.9	32 ±	2.6	50 ±	6.9	31 ±	4.3	
	10,000	40 ±	3.0	32 ±	3.8	51 ±	5.0	31 ±	3.8		13.0	31 ±	7.1	
	al summary	Negat	ive	Nega	tive	Negat	ive	Nega	tive	Negative		Negative		
	ntrol(d)	286 ±	31.3	$248 \pm$	28.2	$1,522 \pm 2$	205.3	1,633 \pm	99.3	1,496 ±	74.4	1,546 ±	103.7	

⁽a) Study performed at Case Western Reserve University. The detailed protocol is presented by Haworth et al. (1983). Cells and study compound or solvent (dimethyl sulfoxide) were incubated in the absence of exogenous metabolic activation (-S9) or with Aroclor 1254-induced S9 from male Syrian hamster liver or male Sprague Dawley rat liver. High dose was limited by toxicity or solubility but did not exceed 10 mg/plate; 0 µg/plate dose is the solvent control.

⁽b) Revertants are presented as mean ± standard error from three plates.

⁽c) Precipitate on plate noted in each trial at doses of 1,000 µg/plate and above.

⁽d) Positive control; 2-aminoanthracene was used on all strains in the presence of S9. In the absence of metabolic activation, 4-nitro-o-phenylenediamine was used with TA98, sodium azide was used with TA100 and TA1535, and 9-aminoacridine was used with TA1537.

TABLE C2. INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY MIREX (a)

Compound	Dose (µg/ml)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hours in BrdU	Relative SCEs/Cell (percent) (b)
-S9 (c)	-			 			·	
Compound Dose (µg/ml) Total Chromosomes No. of SCEs Chromosome SCEs Hours (perce (h)								
Dimethyl sulfoxide		50	1,046	426	0.41	8.5	26.0	
Mirex	83.2	50	1,047	412	0.39	8.2	26.0	101.2 96.5 105.9
Mitomycin C	0.005	50	1,050	514	0.49	10.3	26.0	121.2
Trial 2Summary: Negati	ve							
Dimethyl sulfoxide		50	1,052	409	0.39	8.2	26.0	••
Mirex	83.2	50	1,044	314	0.30	6.3	26.0	98.8 76.8 85.4
Mitomycin C	0.005	25	526	610	1.16	24.4	26.0	297.6
+ S9 (d)								
Summary: Negative								
Dimethyl sulfoxide		50	1,047	461	0.44	9.2	26.0	
Mirex								103.3 106.5 105.4
Cyclophosphamide	1	25	526	443	0.84	17.7	26.0	192.4

⁽a) Study performed at Columbia University. SCE = sister chromatid exchange; BrdU = bromodeoxyuridine. A detailed description of the SCE protocol is presented by Galloway et al. (1985). Briefly, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) as described in (c) or (d) below and cultured for sufficient time to reach second metaphase division. Cells were then collected by mitotic shake-off, fixed, air-dried, and stained.

⁽b) SCEs/cell in treated culture expressed as a percent of the SCEs/cell in the control culture

⁽c) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent for 2 hours at 37° C. Then BrdU was added, and incubation was continued for 24 hours. Cells were washed, fresh medium containing BrdU and colcemid was added, and incubation was continued for 2-3 hours.

⁽d) In the presence of S9, cells were incubated with study compound or solvent for 2 hours at 37° C. Then cells were washed, and medium containing BrdU was added. Cells were incubated for a further 26 hours, with colcemid present for the final 2-3 hours. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

TABLE C3. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY MIREX (a)

		-S9 (b)					+ S9_(c)		
Dose (µg/ml)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs	Dose (µg/ml)	Totai Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs
Trial 1					Trial 2		<u></u>		
Dimethyl sulfo	xide				Dimethyl s	sulfoxide			
	100	3	0.03	3		100	5	0.05	5
Mirex					Mirex				
26 83.2 260	100 100 100	4 6 5	0.04 0.06 0.05	4 6 5	26 83.2 260	100 100 100	8 8 8	0.08 0.08 0.08	8 7 7
Sui	nmary: N	egative				Summary	: Negative		
Mitomycin C					Cyclophosi	phamide			
0.150	50	20	0.40	32	15	50	16	0.32	30

⁽a) Study performed at Columbia University. Abs = aberrations. Harvest time--12 hours. A detailed presentation of the technique for detecting chromosomal aberrations is presented by Galloway et al. (1985). Briefly, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) as indicated in (b) or (c). Cells were arrested in first metaphase by addition of colcemid and harvested by mitotic shake-off, fixed, and stained in 6% Giemsa.

⁽b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) for 8-10 hours at 37° C. Cells were then washed, and fresh medium containing colcemid was added for an additional 2-3 hours followed by harvest.

⁽c) In the presence of S9, cells were incubated with study compound or solvent (dimethyl sulfoxide) for 2 hours at 37°C. Cells were then washed, medium was added, and incubation was continued for 8-10 hours. Colcemid was added for the last 2-3 hours of incubation before harvest. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

APPENDIX D

FEED AND COMPOUND CONSUMPTION BY RATS IN THE TWO-YEAR FEED STUDIES OF MIREX

		PAGE
TABLE D1	FEED AND COMPOUND CONSUMPTION BY MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX	136
TABLE D2	FEED AND COMPOUND CONSUMPTION BY FEMALE RATS IN THE FIRST TWO- YEAR FEED STUDY OF MIREX	137

TABLE DI. FEED AND COMPOUND CONSUMPTION BY MALE RATS IN THE TWO-YEAR FEED STUDY OF MIREX

	Con	trol		0.1 ppm			l ppm			10 ppm			25 ppm			50 ppm	
Wook	Grams Food/ Day (a)	Body Welght (grams)	Grams Food/ Day (a)	Body Weight (grams)	Dose/ Day (h)	Grams Food/ Day (a)	Body Weight (grams)	Dose/ Day (b)	Grams Food/ Day (a)	Body Weight (grams)	Dose/ Day (b)	Grams Feed/ Day (a)	Body Weight (grams)	Done/ Day (b)	Grams Fued/ Day (a)	Body Weight (grams)	Dose Da (h
2	30	205	26	199	0.013	24	206	0.12	23	206	1.1	24	205	2.9	23	200	5.
4	30	227	26	225	0.012	24	227	0.11	23	225	1.0	24	230	2.6	23	231	5.
6	35	263	28	258	0.011	25	262	0.10	30	260	1.2	34	264	3.2	30	255	5.
8	35	273	28	267	0.010	25	270	0.09	30	269	1.1	34	272	3.1	30	264	5.
10	35	297	25	285	0.009	27	289	0.09	26	293	0.9	27	295	2.3	28	288	4.
12	35	308	25	296	0.008	27	301	0.09	26	300	0.9	27	299	2.3	28	290	4.
16	25	327	25	315	0.008	28	320	0.09	24	318	0.8	25	311	2.0	30	298	5.
20	22	345	19	333	0.006	20	338	0.06	20	337	0.6	22	325	1.7	25	314	4.
24	33	364	25	352	0.007	27	357	0.08	27	359	0.8	24	348	1.7	20	334	3.
28	33	381	21	366	0.006	26	372	0.07	33	375	0.9	31	363	2.1	23	346	3.
32	11	393	25	378	0.007	25	381	0.07	25	389	0.6	31	373	2.1	25	355	3.
36	44	398	37	386	0.010	32	391	0.08	34	395	0.9	39	380	2.6	40	364	5.
40	33	401	19	391	0.005	25	394	0.06	25	401	0.6	23	382	1.5	23	368	3.
44	31	405	26	394	0.007	26	397	0.07	22	400	0.6	25	382	1.6	30	370	4.
48	18	415	17	406	0.004	16	411	0.04	17	412	0.4	18	393	1.1	18	375	2.
52	19	416	16	413	0.004	16	416	0.04	17	421	0.4	19	397	1.2	20	378	2.
60	15	413	17	412	0.004	16	415	0.04	(c) 17	418	0.4	15	395	0.9	17	377	2.
68	21	432	17	426	0.004	18	426	0.04	17	433	0.4	20	403	1.2	20	386	2.
76	18	419	12	420	0.003	14	424	0.03	17	420	0.4	19	385	1.2	19	360	2.
84	23	411	16	411	0.004	16	416	0.04	18	412	0.4	18	379	1.2	19	343	2.
92	17	423	14	423	0.003	15	425	0.04	15	420	0.4	13	392	0.8	12	360	1.
100	18	418	15	415	0.004	16	425	0.04	17	405	0.4	15	371	1.0	16	344	2
lean	26.4	360.6	21.8	353.2	0.007	22.2	357.4	0.07	22.9	357.6	0.7	24.0	342.9	1.8	23.6	327.3	3
D(d)	8.6		6.0		0.003	5.3		0.03	5.7		0.3	6.8		0.7	6.3		1
V (e)	32.6		27.5		42.9	23.9		42.9	24.9		42.9	28.3		38.9	26.7		34.

⁽a) Grams of feed removed from feed hopper per animal per day; not corrected for scatter.
(b) Estimated milligrams of mirex consumed per day per kilogram of body weight
(c) Feed consumption data not available; value presented is the mean of values reported for weeks 52 and 68

⁽d) Standard deviation

⁽e) Coefficient of variation = (standard deviation/mean) × 100

TABLE D2. FEED AND COMPOUND CONSUMPTION BY FEMALE RATS IN THE FIRST TWO-YEAR FEED STUDY OF MIREX

	Con	trol		0.1 ppm			1 ppm			10 ppm			25 ppm			50 ppm	
Wook	Grams Food/ Day (a)	Body Weight (grams)	Grams Food/ Day (a)	Body Weight (grams)	Dose/ Day (b)	Grams Food/ Day (s)	Body Weight (grams)	Dose/ Day (b)	Grams Feed/ Day (a)	Body Weight (grams)	Dose/ Day (b)	Grams Feed/ Day (a)	Body Weight (grams)	Dose/ Day (b)	Grams Food/ Day (a)	Body Weight (grams)	Dose Dag (h
2	20	146	17	145	0.012	18	144	0.13	17	142	1.2	18	142	3.2	15	142	5.:
4	20	156	17	155	0.011	18	154	0.12	17	153	1.1	18	159	2.8	15	158	4.
6	26	174	20	173	0.012	26	172	0.15	21	171	1.2	20	170	2.9	19	172	5.
8	26	175	20	173	0.012	26	172	0.15	21	170	1.2	20	170	2.9	19	172	5.
10	22	190	18	183	0.010	21	182	0.12	16	180	0.9	19	182	2.6	18	183	4.
12	22	194	18	191	0.009	21	188	0.11	16	185	0.9	19	186	2.6	18	185	4.
16	17	209	21	207	0.010	37	206	0.18	18	200	0.9	20	203	2.5	18	200	4.
20	15	211	15	208	0.007	13	209	0.06	12	203	0.6	15	207	1.8	12	200	3.
24	16	219	15	216	0.007	15	217	0.07	19	211	0.9	27	215	3.1	16	204	3.
28	14	227	14	223	0.006	15	225	0.07	18	218	0.8	19	219	2.2	18	213	4.
32	15	231	15	227	0.007	16	230	0.07	15	223	0.7	16	225	1.8	18	216	4.
36	27	238	21	232	0.009	23	234	0.10	25	228	1.1	22	229	2.4	26	220	5.
40	20	243	15	237	0.006	31	240	0.13	16	233	0.7	18	235	1.9	19	224	4.
44	28	246	21	241	0.009	16	244	0.07	16	239	0.7	15	239	1.6	23	228	5.
48	11	246	10	239	0.004	12	243	0.05	11	239	0.5	12	238	1.3	12	229	2.
52	12	249	11	243	0.005	12	248	0.05	11	243	0.5	11	244	1.1	12	232	2.
60	17	264	13	256	0.005	13	261	0.05	12	257	0.5	15	257	1.5	11	242	2.
68	16	285	13	278	0.005	12	282	0.04	13	275	0.5	13	272	1.2	16	256	3.
76	13	287	10	283	0.004	11	286	0.04	11	280	0.4	12	279	1.1	12	258	2.
84	13	302	13	288	0.005	13	284	0.05	11	288	0.4	15	284	1.3	13	255	2.
92	16	315	14	298	0.005	14	303	0.05	12	302	0.4	12	299	1.0	13	267	2.
100	13	320	11	298	0.004	11	307	0.04	12	298	0.4	11	296	0.9	12	267	2.
Mean	18.1	233.0	15.5	227.0	0.007	17.9	228.7	0.08	15.5	224.5	0.7	16.7	225.0	2.0	16.1	214.7	3.
SD (c)	5.2		3.6		0.003	7.0		0.04	3.9		0.3	4.1		0.8	3.9		1
CV (d)	28.7		23.2		42.9	39.1		50.0	25.2		42.9	24.6		40.0	24.2		30.

⁽a) Grams of feed removed from feed hopper per animal per day; not corrected for scatter.
(b) Estimated milligrams of mirex consumed per day per kilogram of body weight

⁽c) Standard deviation

⁽d) Coefficient of variation = (standard deviation/mean) × 100

APPENDIX E

AUDIT SUMMARY

APPENDIX E. AUDIT SUMMARY

The experimental data, documents, pathology materials, and draft Technical Report for the 2-year toxicology and carcinogenesis studies of mirex in rats were audited for accuracy, consistency, and completeness. The laboratory experiments were conducted for the National Cancer Institute by the Frederick Cancer Research Center (FCRC), Frederick, Maryland. Two studies were conducted: In the first study, animal exposures to mirex began in June 1977 and ended in June 1979; the second study in female rats began in January 1978 and ended in January 1980. Both studies were completed before October 1, 1981, the date when the NTP implemented its requirement that studies be conducted in compliance with Good Laboratory Practice (GLP) regulations of the Food and Drug Administration. The retrospective audit was conducted at the FCRC in December 1984 and January 1985 by Dynamac Corporation. The individuals who conducted the audit are listed in the full audit report, which is on file at the NIEHS. The audit included a review of:

- (1) All records concerning animal receipt, quarantine, randomization, and disposition prior to study start.
- (2) All chemistry records.
- (3) Body weight (by cage) and clinical observation data for a random 10% sample of the study animals.
- (4) Feed consumption data for approximately 10% of the animals.
- (5) All inlife records concerning environmental conditions, palpable masses, and mortality.
- (6) All postmortem records for individual animals concerning identification, disposition and condition codes, and correlation between gross observations and microscopic diagnoses.
- (7) Wet tissues from a random 10% sample of the study animals to verify animal identification and to examine for untrimmed lesions.
- (8) Slides and blocks of tissues from all control and high dose animals to examine for inventory and correspondence.
- (9) Tabulated pathology diagnoses for a random 10% of study animals to verify computer data entry.

The audit indicated that records were not available for environmental conditions or for the randomization procedure used for the second study. Records indicated that analyses of the chemical/vehicle mixtures for the high dose group in the second study were not done except for the final 4 months of the study. Other chemistry records showed no major discrepancies.

Clinical observations were intermittently recorded, did not include all animals, and were occasionally inconsistent regarding sequential recordings. This information was not complete or reliable enough to be interpreted as is usually done. An audit of the correlation between masses noted inlife and at necropsy showed that 43/64 observations recorded for male rats and 52/64 observations for female rats were noted at necropsy; the majority of those not recorded at necropsy included small, apparently cutaneous masses on the head, neck, legs, or tail which either regressed or could not be correlated because of inadequate description for the location of these masses on the necropsy record forms.

Wet tissues were present for all rats on study with the exception of one control male and one high dose female; animals were properly identified. Because of an apparent disproportionate number of liver tissue samples taken from the high dose groups, additional and comparative liver sections were made for the male and female control groups and the high dose male group after the initial Pathology Working Group (PWG) review of the study. A second PWG was convened to review the liver sections. Any discrepancies noted during the subsequent review of the pathology materials were considered minor in nature and not clustered in any one group of study animals.

The audit findings were reviewed by NTP staff. Although some omissions and discrepancies were noted in the audited experiments, the materials and documents at the NTP Archives are considered adequate to support the data and results presented in this Technical Report.