
NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 369

FOREWORD

The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation.

The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease.

The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. All NTP toxicology and carcinogenesis studies are subjected to a comprehensive audit before being presented for public review. This Technical Report has been reviewed and approved by the NTP Board of Scientific Counselors' Peer Review Panel in public session; the interpretations described herein represent the official scientific position of the NTP.

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential.

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge while supplies last from the NTP Public Information Office, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3991).

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF α-METHYLBENZYL ALCOHOL

(CAS NO. 98-85-1)

IN F344/N RATS AND B6C3F1 MICE

(GAVAGE STUDIES)

Michael P. Dieter, Ph.D., Study Scientist

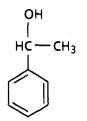
NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

January 1990

NTP TR 369

NIH Publication No. 89-2824

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health


CONTENTS

ABSTR	RACT	3
EXPLA	ANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	6
CONTI	RIBUTORS	7
PEER	REVIEW PANEL (MARCH 13, 1989)	8
SUMM	IARY OF PEER REVIEW COMMENTS (MARCH 13, 1989)	9
PEER	REVIEW PANEL (JUNE 27, 1989)	11
SUMM	IARY OF PEER REVIEW COMMENTS (JUNE 27, 1989)	12
I.	INTRODUCTION	13
II.	MATERIALS AND METHODS	17
ш.	RESULTS	25
	RATS	26
	MICE	38
	GENETIC TOXICOLOGY	46
IV.	DISCUSSION AND CONCLUSIONS	47
v.	REFERENCES	51

APPENDIXES

APPENDIX A	SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL	57
APPENDIX B	SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL	81
APPENDIX C	SUMMARY OF LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL	103
APPENDIX D	SUMMARY OF LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL	1 23
APPENDIX E	SENTINEL ANIMAL PROGRAM	143
APPENDIX F	INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION	147
APPENDIX G	CHEMICAL CHARACTERIZATION, ANALYSIS, AND DOSE PREPARATION OF α-METHYLBENZYL ALCOHOL FOR THE TOXICOLOGY STUDIES	153
APPENDIX H	GENETIC TOXICOLOGY OF a-METHYLBENZYL ALCOHOL	161
APPENDIX I	AUDIT SUMMARY	169

PAGE

a-METHYLBENZYL ALCOHOL

CAS No. 98-85-1

C₈H₁₀O Molecular weight 122.2

Synonyms: Styrallyl alcohol; styralyl alcohol; a-methylbenzenemethanol; phenylmethylcarbinol; 1-phenethyl alcohol

ABSTRACT

Toxicology and carcinogenesis studies of a-methylbenzyl alcohol (greater than 99% pure), a cosmetic ingredient and food flavoring agent, were conducted by administering the chemical in corn oil by gavage to groups of F344/N rats and B6C3F₁ mice of each sex for 16 days, 13 weeks, or 2 years. Genetic toxicology studies were conducted in *Salmonella typhimurium*, mouse lymphoma cells, and Chinese hamster ovary (CHO) cells. a-Methylbenzyl alcohol was nominated for study by the National Cancer Institute because of the potential for widespread human exposure.

Sixteen-Day and Thirteen-Week Studies: The doses used in 16-day studies for rats and mice ranged between 125 and 2,000 mg/kg. Six of 10 rats and all mice dosed at 2,000 mg/kg died. In addition, because 7/9 mice dosed at 1,000 mg/kg died, the doses selected for the 13-week studies for mice (47-750 mg/kg) were half those used for rats (93-1,500 mg/kg).

In the 13-week studies, deaths of 1/10 male and 3/10 female rats dosed at 1,500 mg/kg were compound related; none of the mice died. Body weight gain was reduced in rats at 1,500 mg/kg; there were no significant histopathologic lesions in either rats or mice. The only compound-related effects were ataxia, labored breathing, and lethargy for up to 30 minutes after dosing in rats and mice given the two highest doses and increases in liver weight to body weight ratios for male rats given the three highest doses and for female rats at all doses.

Based on the pattern of mortality and the effects on body weight gain in the short-term studies, doses of 375 and 750 mg/kg a-methylbenzyl alcohol were administered in corn oil by gavage, 5 days per week for 103 weeks, to groups of 50 rats and 50 mice of each sex.

Two-Year Studies: Significant reduction in body weight gain commenced at weeks 20-30 in high dose male and female rats, and body weights were 20%-30% below those of vehicle controls at study termination. In the low dose groups, body weight reduction occurred only in male rats during the last 10 weeks of the study. After 80 weeks, 60% of the high dose rats and 80%-100% of the low dose and vehicle control rats were alive; thereafter, the number of deaths in the chemically exposed groups increased sharply so that, at the end of 2 years, final survival for vehicle control, low dose, and high dose rats was 35/50, 8/50, and 1/50 for males and 34/50, 25/50, and 11/50 for females. There were a large number of gavage accidents in these studies (1, 9, and 8 for male rats and 1, 4, and 14 for female rats), but these accidents did not contribute to the increase in mortality after week 80, as all but 4 of these occurred earlier.

3

Mortality in the last quarter of the study was thought to be due to the effects of cumulative toxicity of a-methylbenzyl alcohol on a renal excretory system already compromised by aging. Renal nephropathy that commonly occurs during aging was found in all groups of rats, but the severity was greater in the male rats dosed with a-methylbenzyl alcohol. In addition, a collection of nonneoplastic lesions (parathyroid hyperplasia, calcification of the heart and glandular stomach, and fibrous osteodystrophy of bone) was found in the dosed male rats; these lesions were probably secondary to mineral imbalance arising from renal dysfunction.

Since survival was poor in low and high dose male and high dose female rats, the sensitivity of the study for detecting a carcinogenic effect in these groups was reduced. Despite this limitation, there were dose-related increases in the incidences of renal tubular cell adenomas or adenocarcinomas (combined) in male rats (vehicle control, 0/50; low dose, 2/50; high dose, 5/50). In addition, transitional cell papillomas of the urinary bladder were observed in one high dose male and two high dose female rats.

In mice, a reduction in body weight gain was apparent in the high dose groups of males and females. Final survival rates in mice were similar among groups (male: 39/49; 40/50; 28/50; female: 41/50; 41/50; 38/50). No neoplastic or nonneoplastic lesions were attributed to a-methylbenzyl alcohol administration in mice of either sex.

Genetic Toxicology: a-Methylbenzyl alcohol was not mutagenic in S. typhimurium strains TA98, TA100, TA1535, or TA1537 when tested in the presence or absence of exogenous metabolic activation. a-Methylbenzyl alcohol produced a positive response without activation in the mouse L5178Y/TK^{+/-} lymphoma assay for induction of trifluorothymidine resistance; it was not tested with activation. In cytogenetic tests with CHO cells, a-methylbenzyl alcohol induced chromosomal aberrations in the presence, but not the absence, of metabolic activation; no induction of sister chromatid exchanges was observed in CHO cells after exposure to a-methylbenzyl alcohol.

Conclusions: Under the conditions of these 2-year gavage studies, there was some evidence of carcinogenic activity* of a-methylbenzyl alcohol for male F344/N rats, as shown by increased incidences of renal tubular cell adenomas and adenomas or adenocarcinomas (combined). There was no evidence of carcinogenic activity for female F344/N rats administered 375 or 750 mg/kg. Renal toxicity characterized by severe nephropathy and related secondary lesions was observed in the dosed rats, and excessive mortality occurred during the last quarter of the studies. Poor survival reduced the sensitivity of the studies for detecting the presence of a carcinogenic response both in chemically exposed groups of male rats and in the high dose group of female rats. There was no evidence of carcinogenic activity of a-methylbenzyl alcohol for male or female B6C3F₁ mice administered 375 or 750 mg/kg for 2 years.

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 6.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on pages 9, 10, and 12.

Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female B6C3F ₁ Mice
Doses 0, 375, or 750 mg/kg a-methylbenzyl alcohol in corn oil, 5 d/wk	0, 375, or 750 mg/kg a-methylbenzyl alcohol in corn oil, 5 d/wk	0, 375, or 750 mg/kg a-methylbenzyl alcohol in corn oil, 5 d/wk	0, 375, or 750 mg/kg a-methylbenzyl alcohol in corn oil, 5 d/wk
Body weights in the 2-year Dosed lower than vehicle controls	study High dose lower than vehicle controls	High dose lower than vehicle controls	High dose lower than vehicle controls
Survival rates in the 2-year 35/50; 8/50; 1/50	study 34/50; 26/50; 11/50	39/49; 40/50; 28/50	41/50; 41/50; 38/50
Nonneoplastic effect s Nephropathy and renal tubular cell hyperplasia	Mild nephropathy	None	None
Neoplastic effects Renal tubular cell adenomas or adenocarcinomas (combined) (0/50; 2/50; 5/50)	None	None	None
Level of evidence of carcino Some evidence	genic activity No evidence	No evidence	No evidence
Other considerations Poor survival reduced sensitivity of study	Poor survival reduced sensitivity of high dose group		

SUMMARY OF THE TWO-YEAR GAVAGE STUDIES OF α -METHYLBENZYL ALCOHOL

.

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence including: animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals tory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results ("Clear Evidence" and "Some Evidence"); one category for uncertain findings ("Equivocal Evidence"); one category for no observable effects ("No Evidence"); and one category for experiments that because of major flaws cannot be evaluated ("Inadequate Study"). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Reports series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following quintet is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemically related.
- No Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenic Activity is demonstrated by studies that because of major qualitative or quantitative limitations cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. This should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- The adequacy of the experimental design and conduct;
- Occurrence of common versus uncommon neoplasia;
- Progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- Some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- Combining benign and malignant tumor incidences known or thought to represent stages of progression in the same organ or tissue:
- Latency in tumor induction;
- Multiplicity in site-specific neoplasia;
- Metastases;
- Supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- The presence or absence of dose relationships;
- The statistical significance of the observed tumor increase;
- The concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- Survival-adjusted analyses and false positive or false negative concerns;
- Structure-activity correlations; and
- In some cases, genetic toxicology.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of a-Methylbenzyl Alcohol is based on 13-week studies that began in May 1980 and ended in August 1980 and on 2-year studies that began in April 1981 and ended in April 1983 at Microbiological Associates (Bethesda, MD).

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

Michael P. Dieter, Ph.D., Study Scientist

John R. Bucher, Ph.D.Joseph K. Haseman, Ph.D.Scot L. Eustis, D.V.M., Ph.D.James Huff, Ph.D.

(Discipline Leaders and Principal Contributors)

Jack Bishop, Ph.D. Douglas W. Bristol, Ph.D. R. Chhabra, Ph.D. R. Griesemer, D.V.M., Ph.D. C.W. Jameson, Ph.D. G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D. Douglas Walters, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report for Rats on 10/27/87)

John Seely, D.V.M. (Chair) (PATHCO, Inc.) Ken Ayers, D.V.M. (Burroughs Wellcome Laboratories) Scot L. Eustis, D.V.M., Ph.D. (NTP) Bradley Hamilton, D.V.M., Ph.D. Experimental Pathology Laboratories, Inc. Micheal Jokinen, D.V.M. (NTP) Margarita McDonald, D.V.M., Ph.D. (NTP)

(Evaluated Slides and Prepared Pathology Report for Mice on 7/9/87)

Michael Stedham, D.V.M. (Chair) Pathology Associates, Inc. Ken Ayers, D.V.M. (Burroughs Wellcome Laboratories) Gary Boorman, D.V.M., Ph.D. (NTP) Scot L. Eustis, D.V.M., Ph.D. (NTP) Micheal Jokinen, D.V.M. (NTP) Margarita McDonald, D.V.M., Ph.D. (NTP)

Principal Contributors at Microbiological Associates (Conducted Studies and Evaluated Tissues)

Marshall Dinowitz, Sc.D. L. Mulligan R. Montali, D.V.M. G. Parker, D.V.M.

Principal Contributors at Experimental Pathology Laboratories, Inc. (Provided Pathology Quality Assurance)

Bradley Hamilton, D.V.M., Ph.D.

D. Banas, D.V.M.

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D. Abigail C. Jacobs, Ph.D. John Warner, M.S. Naomi Levy, B.A.

PEER REVIEW PANEL (March 13, 1989)

The members of the Peer Review Panel who evaluated the draft Technical Report on a-methylbenzyl alcohol on March 13, 1989, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Robert A. Scala, Ph.D. (Chair) Senior Scientific Advisor, Medicine and Environmental Health Department Research and Environmental Health Division, Exxon Corporation East Millstone, NJ

Michael A. Gallo, Ph.D. Associate Professor, Director of Toxicology Department of Environmental and Community Medicine, UMDNJ - Robert Wood Johnson Medical School, Piscataway, NJ Frederica Perera, Dr. P.H. Division of Environmental Sciences School of Public Health Columbia University New York, NY

Ad Hoc Subcommittee Panel of Experts

John Ashby, Ph.D. Imperial Chemical Industries, PLC Central Toxicology Laboratory Alderley Park, England

Robert H. Garman, D.V.M. Bushy Run Laboratories Export, PA Consultants in Veterinary Pathology Murrysville, PA

Lois Swirsky Gold, Ph.D. (Principal Reviewer) University of California Lawrence Berkeley Laboratory Berkeley, CA

Curtis D. Klaassen, Ph.D. Professor, Department of Pharmacology and Toxicology University of Kansas Medical Center Kansas City, KS William Lijinsky, Ph.D. (Principal Reviewer) Director, Chemical Carcinogenesis Frederick Cancer Research Facility Frederick, MD

Barbara McKnight, Ph.D. (Principal Reviewer) Assistant Professor Department of Biostatistics University of Washington, Seattle, WA

Franklin E. Mirer, Ph.D.* Director, Health and Safety Department International Union, United Auto Workers, Detroit, MI

Paul M. Newberne, D.V.M., Ph.D. Professor, Mallory Institute of Pathology Boston, MA

James A. Popp, D.V.M., Ph.D. Head, Department of Experimental Pathology and Toxicology Chemical Industry Institute of Toxicology Research Triangle Park, NC

*Unable to attend

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF a-METHYLBENZYL ALCOHOL (March 13, 1989)

On March 13, 1989, the draft Technical Report on the toxicology and carcinogenesis studies of amethylbenzyl alcohol received public review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, NC.

Dr. M.P. Dieter, NIEHS, began the discussion by reviewing the experimental design, results, and proposed conclusions (some evidence of carcinogenic activity for male rats, no evidence of carcinogenic activity for female rats, no evidence of carcinogenic activity for male and female mice).

Dr. McKnight, a principal reviewer, stated that her main concern was the large number of purportedly accidental gavage-related deaths in rats. These apparent dose-related deaths raised questions about whether the animals in the different dose groups were treated differently, apart from the chemical effect. She said that if the "accidental" deaths were not a result of toxic effects of the chemical, then more explanation should be provided as to why the frequency of death increased so clearly with dose.

Dr. Gold, the second principal reviewer, agreed with the conclusion for male rats in principle but wanted more discussion about the severity of nephropathy and incidence of hyperplasia in the animals with adenomas and adenocarcinomas and how these nonneoplastic lesions compared with those in animals without such tumors. Dr. Dieter reported that four male rats in the low dose group and four in the high dose group had tubular cell hyperplasia and none had tubular cell tumors. Of the seven animals with tumors, none had hyperplasia, whereas all had marked severity for nephropathy. Dr. Gold also thought that the rat studies might be considered inadequate because of the large number of accidental deaths and poor survival. She asked for a description of NTP policy on maintaining a dose level throughout a study rather than reducing the dose when there are survival problems. Dr. J. Huff, NIEHS, stated that there is no set policy on changing exposure concentrations during the studies. Since the chemical is a food flavoring agent, Dr. Gold questioned why corn oil gavage, rather than feed, was chosen as the route of administration. Dr. Dieter said that the chemical was not stable in feed, that a high enough concentration could not be obtained in water, and that microencapsulation would be the route of choice today.

Dr. Lijinsky, the third principal reviewer, said that the studies were conducted with less than typical adequacy and that comments should be added about the nature of the gavage errors and how many deaths in each group were gavage related. If gavage-related deaths were too numerous, then consideration should be given to repeating the studies. He thought that the confusion over the numbers of accidental deaths made it difficult to assess whether the top doses in rats were optimal doses.

Dr. Dieter said that the apparent deaths resulting from the gavage technique did not appear to be random and that a cluster of accidents occurred between weeks 48 and 53 of the studies. There was a similar pattern of early mortality in the benzyl alcohol studies (NTP TR 343), which were conducted in the same laboratory. Dr. S. Eustis, NIEHS, added that the deaths were not due to simple mechanical trauma; i.e., there were no indications that gavage needles punctured the esophagus or trachea or that material was deposited directly in the lung for any of these deaths. The material in the lung resembled aspirated stomach contents. Dr. Huff commented that animals in gavage studies often quickly become aware of and anxious about receiving the chemical, whereas vehicle controls seem to be less so. Dr. Ashby further speculated that the smell or irritant properties along with a depressant

SUMMARY OF PEER REVIEW COMMENTS (Continued)

effect of the chemical could have contributed to the animals' being more difficult to handle, leading to greater difficulty in administering the mixture and, hence, to a greater likelihood of gavage error. As for the decision to continue the studies in rats, Dr. Dieter noted that there was reasonable survival in all groups through week 80; a steady and increasing rate of mortality ensued after that time. The NTP staff decided that the neoplastic effects were of major importance despite markedly reduced survival, and although the studies had these flaws, the increases in chemically induced neoplasms could not be discounted. Dr. Dieter stated that the later mortality was primarily due to a combination of nephropathy and chemical toxicity.

Dr. McKnight moved that the conclusion for male rats be changed to inadequate study of carcinogenic activity. Dr. Lijinsky seconded the motion, which was rejected by five panelists (Drs. Ashby, Garman, Klaassen, Perera, and Popp) to four (Drs. Gold, Lijinsky, McKnight, and Newberne), with one abstention (Dr. Gallo). Dr. Garman moved that the conclusion for male rats be accepted as written, some evidence of carcinogenic activity, with reservations concerning poor survival as written. Dr. Perera seconded the motion. Dr. Ashby moved to amend the motion to change the conclusion to equivocal evidence of carcinogenic activity; this was tabled for lack of a second. Dr. Garman's motion was rejected by five negative votes (Drs. Ashby, Gold, Lijinsky, McKnight, and Newberne) to three affirmative votes (Drs. Garman, Perera, and Popp), with two abstentions (Drs. Gallo and Klaassen).

In further discussion, most Panel members agreed that the tumor response in male rats was likely associated with chemical administration but considered the study in male rats to be confounded due to technical errors. Dr. Huff thought that the effects of gavage were receiving disproportionate attention and urged that this issue not affect consideration of other aspects of the studies. He asked the Panel if they indeed believed that, in order to address public health concerns, the male rat study should be repeated. Unconvinced, Dr. Klaassen made a motion to change the conclusion for male rats to inadequate study of carcinogenic activity. Dr. Ashby seconded the motion, which was accepted by six votes (Drs. Ashby, Gold, Klaassen, Lijinsky, McKnight, and Newberne) to three (Drs. Garman, Perera, and Popp), with one abstention (Dr. Gallo). Dr. Klaassen moved that the conclusions be accepted as written for female rats and male and female mice, no evidence of carcinogenic activity. Dr. Popp seconded the motion, which was accepted by nine panelists, with one abstention (Dr. Gallo). In discussion following this vote, questions were raised about the inconsistency of judging the study in female rats adequate when there was similarly poor survival, also likely due to gavage technique. Dr. Klaassen moved that the conclusion for female rats be changed to inadequate study of carcinogenic activity. Dr. Newberne seconded the motion, which was accepted by four votes (Drs. Ashby, Klaassen, Lijinsky, and Newberne) to two (Drs. Garman and Perera), with four abstentions (Drs. Gallo, Gold, McKnight, and Popp).

Dr. Scala asked Dr. Ashby to draft a statement that would convey to the NTP a sense of why a majority of the members of the Panel deemed the studies of a-methylbenzyl alcohol in rats to be inadequate. Such a statement was drafted, approved by the members of the Panel present on the day following the meeting, and presented to the NTP for action. The statement recommended that the NTP review the technical conduct of the studies in rats with two possible outcomes: (1) if the review confirms the technical adequacy of the overall study procedures, the levels of evidence as originally written in the report should be affirmed; or (2) if the NTP concludes that the rat studies were flawed, then the studies should be reclassified as inadequate and repeat studies should be considered.

PEER REVIEW PANEL (June 27, 1989)

The members of the Peer Review Panel who evaluated the draft Technical Report on a-methylbenzyl alcohol on June 27, 1989, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Robert A. Scala, Ph.D. (Chair) Senior Scientific Advisor, Medicine and Environmental Health Department Research and Environmental Health Division, Exxon Corporation East Millstone, NJ

Michael A. Gallo, Ph.D. Associate Professor, Director of Toxicology Department of Environmental and Community Medicine, UMDNJ - Robert Wood Johnson Medical School, Piscataway, NJ Frederica Perera, Dr. P.H. Division of Environmental Sciences School of Public Health Columbia University New York, NY

Ad Hoc Subcommittee Panel of Experts

John Ashby, Ph.D. Imperial Chemical Industries, PLC Central Toxicology Laboratory Alderley Park, England

Robert H. Garman, D.V.M. Bushy Run Laboratories Export, PA Consultants in Veterinary Pathology Murrysville, PA

Lois Swirsky Gold, Ph.D. University of California Lawrence Berkeley Laboratory Berkeley, CA

Curtis D. Klaassen, Ph.D. Professor, Department of Pharmacology and Toxicology University of Kansas Medical Center Kansas City, KS William Lijinsky, Ph.D. Director, Chemical Carcinogenesis Frederick Cancer Research Facility Frederick, MD

Barbara McKnight, Ph.D. Assistant Professor, Department of Biostatistics, University of Washington Seattle, WA

Franklin E. Mirer, Ph.D. Director, Health and Safety Department International Union, United Auto Workers, Detroit, MI

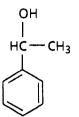
Paul M. Newberne, D.V.M., Ph.D.* Professor, Mallory Institute of Pathology Boston, MA

James A. Popp, D.V.M., Ph.D. Head, Department of Experimental Pathology and Toxicology Chemical Industry Institute of Toxicology Research Triangle Park, NC

*Unable to attend

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF a-METHYLBENZYL ALCOHOL (June 27, 1989)

At the peer review meeting on June 27, 1989, Dr. S. Eustis, NIEHS, began with a general discussion of the problem of deaths resulting from poor gavage technique and how to determine whether gavage was a factor in an animal's death. Speaking to the a-methylbenzyl alcohol studies, Dr. Eustis reported that dosing records, temperature and humidity data, clinical observations, and individual animal data records were reviewed by the study scientist, Dr. Dieter (NIEHS), and by the pathology staff. In addition, pathology diagnoses and slides from all early-death animals were re-examined to determine as accurately as possible the causes of death. This review revealed no evidence that environmental conditions, infectious disease, or other previously unreported factors contributed to the lowered survival in low and high dose male rats and high dose female rats. The majority of the early deaths recorded as accidental were associated with evidence that gavage was a factor. Review of the pathology data and slides confirmed that the preponderance of early deaths in dosed male rats could be attributed to exacerbation of chronic nephropathy by the chemical. In female rats, reduced survival in the high dose group seemed to be due primarily to the gavage-related deaths. In summary, Dr. Eustis stated that, after reviewing all pertinent clinical records and audit reports on these studies, the staff believed that the conduct of the studies was technically adequate.


Dr. Eustis then described further investigations of the kidney in male rats. To aid in the interpretation of the pathology data, three additional sections from each animal were taken, which showed additional tubular cell neoplasms in low and high dose male rats. The incidences of tubular cell neoplasms found during the original evaluation of one section per kidney were as follows: vehicle control, 0/50; low dose, 2/50; and high dose, 5/50. The overall incidences of tubular cell neoplasms observed in the original evaluation and the additional sections combined were 1/50, 13/50, and 14/50. The increased tumor incidences were significant (P < 0.001) in both the low and high dose groups compared with those in the vehicle controls.

Dr. Scala commented that, unless the Panel or the NTP wanted to recommend changing the level of evidence in male rats, no further action was required; however, he thought that a motion reflecting a sense of the Panel would be appropriate for the record. Dr. Popp moved that, based on the additional studies and evaluation conducted by the NTP and on the report presented by Dr. Eustis, the previously raised questions concerning the conduct of the studies were now answered to the satisfaction of the Panel; furthermore, the original levels of evidence, some evidence of carcinogenic activity for male rats and no evidence of carcinogenic activity for female rats, were still appropriate. Dr. Lijinsky seconded the motion. After further discussion, Dr. Mirer offered an amendment intended to confine the sense of the motion to the conduct of the study by deleting the sentence concerning the levels of evidence. Dr. Gold seconded the amendment, which was accepted unanimously. Dr. Popp's motion, minus the deleted sentence, was then accepted unanimously.

Dr. Scala concluded the review of a-methylbenzyl alcohol by noting that if the NTP intends to change the level of evidence for male rats, such a recommendation should be brought back to the Panel for evaluation.

I. INTRODUCTION

Physical Properties and Purity Production, Use, and Exposure Short-Term Toxicity Reproductive Toxicity Absorption, Distribution, and Metabolism Genetic Toxicity Carcinogenicity Study Rationale

a-METHYLBENZYL ALCOHOL

CAS No. 98-85-1

 $C_{8}H_{10}O$

Molecular weight 122.2

Synonyms: Styrallyl alcohol; styralyl alcohol; a-methylbenzenemethanol; phenylmethylcarbinol; 1-phenethyl alcohol

Physical Properties and Purity

a-Methylbenzyl alcohol is a colorless compound that is a liquid at room temperature and a solid below 21° C. It exists as two optically active isomers; the commercial product is composed of the racemic mixture. The chemical is insoluble in water, miscible in diethyl ether and ethanol, and soluble in most other organic solvents (Fenaroli, 1975). a-Methylbenzyl alcohol has a boiling point of 204° C, a melting point of 20.7° C, a specific gravity of 1.0129, and an index of refraction of 1.5272 at 20° C (Condensed Chemical Dictionary, 1981). Food-grade a-methylbenzyl alcohol was obtained from Givaudan Corporation in two lots. Cumulative data indicated that both lots were greater than 99% pure; the first lot was tested for and met Food Chemical Codex specifications for assay, total ketone impurities, specific gravity, and refractive index.

Production, Use, and Exposure

a-Methylbenzyl alcohol is coproduced with propylene oxide by reaction of α-peroxyethylbenzene (formed by oxidation of ethyl benzene) with propylene (Kirk-Othmer, 1982).

There were only two domestic sources of a-methylbenzyl alcohol reported in 1977, with production levels of 100-500 million pounds; 10,000-100,000 pounds was imported (USEPA, 1988).

a-Methylbenzyl alcohol is used in cosmetics such as perfumes, creams, and soaps as a fragrance additive and is an intermediate in styrene production. This chemical is also added to foods as a flavoring agent and has been measured in nonalcoholic beverages, ice creams, ices, candy, baked goods, gelatins and puddings, and chewing gums at concentrations ranging between 0.3 and 9.0 ppm (Opdyke, 1974; Fenaroli, 1975). a-Methylbenzyl alcohol has been detected at low concentrations $(1.7 \times 10^{-5} \text{ g/liter})$ in river water (Rosen et al., 1963) and was gualitatively detected in finished drinking water samples by two Environmental Protection Agency laboratories (Shackelford and Keith, 1976; USEPA, 1976). Over 14,000 workers were potentially exposed to amethylbenzyl alcohol between 1981 and 1983 (NIOSH, 1988).

Short-Term Toxicity

a-Methylbenzyl alcohol was an irritant in rabbits at a dermal dose of 10 mg per 24 hours (Smyth and Carpenter, 1944), caused moderately irritant effects to the skin at a dose of 500 mg per 24 hours (Opdyke, 1974), and severe effects to the eyes at a dose of 2 mg (Carpenter and Smyth, 1946). There were reports that provided estimates for an oral LD₅₀ of 400 mg/kg in rats (Smyth and Carpenter, 1944), a subcutaneous LD₅₀ of 250 mg/kg in mice (Rohrbach and Robineau, 1958), an intravenous LD_{L0} of 200 mg/kg in dogs (Hjort and Kaufmann, 1920), and a percutaneous LD₅₀ of greater than 2,500 mg/kg in rabbits (Opdyke, 1974).

Reproductive Toxicity

Dermal studies with female CrL:COBS CD (SD) BR strain rats were conducted at doses of 0, 0.14, 0.43, or 1.40 ml/kg per day during days 6-15 of pregnancy (USEPA, 1986). Clinical signs of toxicity were observed in the high dose group, and 3/35 animals died by day 20 of pregnancy. The remaining animals were killed. Body weight gain was decreased, leukocyte counts were increased, and clinicopathologic evidence of hepatotoxicity was present in dosed animals. a-Methylbenzyl alcohol exposure caused an increased incidence of embryo-fetal deaths, primarily early in pregnancy, and a decrease in litter size and weight. In addition, increased incidences of teratologic defects were observed, including anophthalmia and microphthalmia, ventricular septal defects, defects and irregularities affecting the thorax, kinky tail, defects of the thoracic ribs, and occurrence of cervical rib(s). No effects on liver or kidney weights were seen. The compound at the low and mid doses did not affect maternal toxicity or reproductive toxicity.

Absorption, Distribution, and Metabolism

A single oral dose of 460 mg/kg a-methylbenzyl alcohol was rapidly excreted by rabbits, with 82% of the dose appearing as urinary metabolites within 24 hours. Fifty percent of the material was a-methylbenzyl alcohol glucuronide, 30% was hippuric acid, and 1%-2% was mandelic acid (Smith et al., 1954). Rats excreted a small amount of a subcutaneous dose of methylbenzyl alcohol (0.15%) as acetophenone in urine (Hopkins et al., 1972). Rats displayed substrate stereoselectivity in the metabolism of racemic mixtures of a-methylbenzyl alcohol, excreting the R (+) isomer largely as the glucuronide, whereas the S (-) isomer underwent further oxidative metabolism (Testa and Jenner, 1976).

Genetic Toxicity

Few mutagenicity data are available for amethylbenzyl alcohol. It did not cause growth inhibition due to DNA damage in two strains of *Escherichia coli* exposed to 50 µl/plate without S9 metabolic activation (Fluck et al., 1976). Zeiger et al. (1987) reported no induction of gene reversion by a-methylbenzyl alcohol in four strains of Salmonella treated according to a preincubation protocol with up to 6,666 µl/plate, with and without S9 (see Appendix H). Kojima et al. (1976) reported the induction of petite colony mutants of *Saccharomyces sake* after they were exposed to 0.20% a-methylbenzyl alcohol.

Mutagenicity information is available for three metabolites of a-methylbenzyl alcohol identified by Hopkins et al. (1972): acetophenone, mandelic acid, and hippuric acid. All test results were negative for these three metabolites, including assays for DNA damage in *E. coli* and *Bacillus subtilis* (Fluck et al., 1976; Kikuchi et al., 1977; Oda et al., 1978) and gene reversion in *Salmonella typhimurium* (Commoner, 1976; Milvy and Garro, 1976; Kikuchi et al., 1977; Florin et al., 1980; Elliger et al., 1984; Nohmi et al., 1985). No tests for genetic effects of these metabolites in higher organisms have been reported.

Carcinogenicity

There were no references to human or animal carcinogenicity data for a-methylbenzyl alcohol per se. However, a-methylbenzyl alcohol is a member of the benzylic acid series and has potential alkylating ability based on the benzyl carbonium ion.

Study Rationale

a-Methylbenzyl alcohol was nominated by the National Cancer Institute for study as a representative of the class of benzyl alcohols because there was limited toxicity information for these, because of their potential for mutagenicity or carcinogenicity based on chemical structure, and because several benzyl alcohols, including amethylbenzyl alcohol, have been identified in drinking water.

a-Methylbenzyl Alcohol, NTP TR 369

16

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF α-METHYLBENZYL ALCOHOL CHARACTERIZATION OF DOSE MIXTURES SINGLE-ADMINISTRATION STUDIES SIXTEEN-DAY STUDIES THIRTEEN-WEEK STUDIES TWO-YEAR STUDIES

Study Design Source and Specifications of Animals Animal Maintenance Clinical Examinations and Pathology Statistical Methods

17

PROCUREMENT AND CHARACTERIZATION OF a-METHYLBENZYL ALCOHOL

Food-grade α -methylbenzyl alcohol was obtained as a colorless liquid in two lots from Givaudan Corporation (Clifton, NJ). Purity and identity analyses were conducted at Midwest Research Institute (Kansas City, MO) (Appendix G).

The study chemical was identified by the analytical chemistry laboratory as α -methylbenzyl alcohol by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. Both lots of α -methylbenzyl alcohol were found be be greater than 99% pure, as determined by elemental analysis, Karl Fischer water analysis, determination of ketone concentration by reaction of the study material with an alkaline solution of hydroxylamine hydrochloride followed by backtitration with 0.1 N or 0.5 N hydrochloric acid, thin-layer chromatography, and gas chromatography.

The identity of the study chemical at the study laboratory was confirmed by infrared spectroscopy. The stability of the study chemical was monitored by gas chromatography. No deterioration of the study material was seen over the course of the studies.

CHARACTERIZATION OF DOSE MIXTURES

a-Methylbenzyl alcohol dissolved in corn oil at 4.96 mg/ml or 150 mg/ml was found by gas chromatography to be stable for at least 14 days when stored at room temperature. Dose mixtures at 75 mg/ml were found be be stable for at least 21 days when stored at 5° C. Dose mixtures were stored no longer than 15 days at 4° C for the 13-week studies and no longer than 3 weeks at 5° C for the 2-year studies.

Periodic analysis of formulated a-methylbenzyl alcohol mixtures was conducted at the study laboratory and at the analytical chemistry laboratory by gas chromatography. Dose mixtures were analyzed one time during the 13-week studies. The results of the analysis indicated that all doses were within $\pm 1\%$ of the target concentrations.

During the 2-year studies, the dose mixtures were analyzed at approximately 8-week intervals. For the a-methylbenzyl alcohol studies, dose analyses were conducted 13-15 times at 1to 2-month intervals throughout the studies and all the mixtures were formulated within $\pm 10\%$ of the target concentrations (Table G4). Results of periodic referee analysis performed by the analytical chemistry laboratory indicated good agreement with the results from the study laboratory (Table G5).

SINGLE-ADMINISTRATION STUDIES

A single-administration study was conducted at a dose range of 50-800 mg/kg; one female mouse in the highest dose group, 800 mg/kg, died. The data were insufficient for dose selection for the 16-day studies, and the single-administration studies were repeated at higher doses. The second study is the one presented in this report.

Male and female F344/N rats and B6C3F₁ mice were obtained from Charles River Breeding Laboratories and observed for 14 days before the studies began. Groups of five rats and five mice of each sex were fasted overnight and then administered a single dose of 0, 313, 625, 1,250, 2,500, or 5,000 mg/kg a-methylbenzyl alcohol in corn oil by gavage. Animals were weighed at the start and end of the studies. Animals were observed two times per day for 14 days. A necropsy was performed on all animals. Details of animal maintenance are presented in Table 1.

SIXTEEN-DAY STUDIES

Male and female F344/N rats and $B6C3F_1$ mice were obtained from Charles River Breeding Laboratories and were held for 13 days (rats) and 14 days (mice) before the studies began. The rats were 6-7 weeks old when placed on study, and the mice were 6-8 weeks old.

Groups of five rats and four or five mice of each sex were administered 0, 125, 250, 500, 1,000, or 2,000 mg/kg a-methylbenzyl alcohol in corn oil by gavage, 5 days per week for 12 doses over 16 days.

Single-Administration Studies	Sixteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
EXPERIMENTAL DESIGN			
Size of Study Groups 5 males and 5 females of each species	4 or 5 males and 5 females of each species	10 males and 10 females of each species	49 or 50 males and 50 females of each species
Doses 0, 313, 625, 1,250, 2,500, or 5,000 mg/kg a-methylbenzyl alcohol in corn oil by gavage; dose vol10 ml/kg	0, 125, 250, 500, 1,000, or 2,000 mg/kg a-methylben- zyl alcohol in corn oil by gavage; dose volrats: 5 ml/kg; mice: 10 ml/kg	Rats0, 93, 187, 375, 750, or 1,500 mg/kg a-methylbenzyl alcohol in corn oil by gavage; mice0, 46.9, 93.8, 187.5, 375, or 750 mg/kg; dose volrats: 5 ml/kg; mice: 10 ml/kg	0, 375, or 750 mg/kg a-methyl- benzyl alcohol in corn oil by gavage; dose volrats: 5 ml/kg mice: 10 ml/kg
Date of First Dose 11/7/79	Rats2/5/80; mice2/6/80	5/19/80	Rats4/27/81; mice4/6/81
Date of Last Dose N/A	Rats2/20/80; mice2/21/80	8/15/80	Rats4/15/83; mice3/25/83
Duration of Dosing Single dose	12 doses over 16 d	5 d/wk for 13 wk	5 d/wk for 103 wk
Type and Frequency of Ob Observed $2 \times d$; weighed initially and at the end of the studies	observation Observed $2 \times d$; weighed initially and $1 \times wk$ thereafter	Same as 16-d studies	Observed $2 \times d$; weighed initially, $1 \times wk$ for $12 wk$, and then at least $1 \times mo$
Necropsy and Histologic E Necropsy performed on all animals	xaminations Necropsy performed on all animals; histologic exams performed on 2 male and 2 female rats in the 1,000 mg/kg groups, 2 male and 2 female mice in the 500 mg/kg groups, and 1 male and 1 female of each spe- cies in the vehicle control groups	Necropsy performed on all animals; tissues examined histologically for vehicle con- trol and highest dose groups and for all animals dying be- fore the end of the studies. Spleen examined for all rats receiving 750 mg/kg and male rats receiving 375 mg/kg. Liver weighed at necropsy	Necropsy and histologic exams performed on all rats, all male mice, vehicle control and high dose female mice, and low dose female mice with gross lesions or that died before the end of th study; the following tissues we examined: adrenal glands, brain, duodenum, esophagus, femur including marrow, gall- bladder (mice), gross lesions, heart, kidneys, large intestine larynx or anterior trachea, live lungs and mainstem bronchi, mammary gland, mandibular lymph nodes, mesenteric lymp nodes (mice), nasal turbinates. ovaries or testes, pancreas, pai thyroids, pituitary gland, pre- putial or clitoral gland, prostai or uterus, salivary glands, skii spleen, stomach, thymus (mice thyroid gland, and urinary bla der. Tissues examined for low dose female mice: stomach and uterus
ANIMALS AND ANIMAL	MAINTENANCE		
Strain and Species			

TABLE 1. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF $\alpha\text{-}METHYLBENZYL$ ALCOHOL

TABLE 1. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF α -METHYLBENZYL ALCOHOL (Continued)

Single-Administration Studies	Sixteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
ANIMALS AND ANIMAL N	MAINTENANCE (Continue	ed)	
Animal Source Charles River Breeding Laboratories (Portage, MI)	Charles River Breeding Laboratories (Portage, MI)	Charles River Breeding Laboratories (Portage, MI)	Charles River Breeding Laboratories (Kingston, NY)
Study Laboratory Microbiological Associates	Microbiological Associates	Microbiological Associates	Microbiological Associates
Method of Animal Identific Ear punch	ation Ear clip	Ear clip	Ear tag
Time Held Before Study 14 d	Rats13 d; mice14 d	19 d	Rats19 d; mice26 d
Age When Placed on Study Rats6-7 wk; mice6-8 wk	7 Rats6-7 wk; mice6-8 wk	Rats7-8 wk; mice8-9 wk	Rats7-8 wk; mice9-10 wk
Age When Killed Rats8-9 wk; mice8-10 wk	Rats8-9 wk; mice8-10 wk	Rats20-21 wk; mice21-22 wk	Rats112-113 wk; mice113-114 wk
Necropsy Dates 11/21/79	Rats2/21/80; mice2/22/80	Rats8/18/80-8/19/80; mice8/19/80-8/20/80	Rats4/25/83-4/27/83; mice4/4/83-4/6/83
Method of Animal Distribu Animals distributed to weight classes and then assigned to cages and to groups by a table of random numbers		Same as single- administration studies	Same as single-administration studies
Diet Purina Lab Block® (Ralston Purina, Richmond, IN); available ad libitum	NIH 07 Rat and Mouse Ration (Zeigler Bros., Inc., Gardners, PA); available ad libitum	Same as 16-d studies	Same as 16-d studies
Bedding Hardwood chips (P.J. Murphy, Co., Moonachie, NJ)	Hardwood chips (P.J. Murphy Forest Products Corp., Rochelle Park, NJ)	Same as 16-d studies	Same as 16-d studies
Water Automatic watering system (Edstrom Industries, Waterford, WI); available ad libitum	Same as single- administration studies	Same as single- administration studies	Same as single-administration studies
Cages Polycarbonate (Lab Prod- ucts, Inc., or Hazleton Sys- tems, Inc., Aberdeen, MD)	Polycarbonate (Lab Prod- ucts, Inc., Rochelle Park, NJ, or Hazleton Systems, Inc., Aberdeen, MD)	Same as 16-d studies	Same as 16-d studies
Cage Filters Spun-bonded polyester, Dupont 2024 [®] (Snow Filtration, Cincinnati, OH)	Same as single- administration studies	Same as single- administration studies	Same as single-administration studies
Animals per Cage 5	5	5	5

TABLE 1. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF α -METHYLBENZYL ALCOHOL (Continued)

Single-Administration Studies	Sixteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
ANIMALS AND ANIMAL	MAINTENANCE (Continue	ed)	
Other Chemicals on Study None	in the Same Room None	None	None
Animal Room Environment Temp58°-76° F; hum55%- 70%; fluorescent light 12 h/d; 12-15 room air changes/h	Temp52°-89° F; hum 40%-70%; fluorescent light 12 h/d; 12-15 room air changes/h	Temp74° ± 2° F; hum 50% ± 10%; fluorescent light 12 h/d; 12-15 room air changes/h	Temp66°-86° F; hum22%- 80%; fluorescent light 12 h/d; 12-15 room air changes/h

Five animals were housed per cage. Water and feed were available ad libitum. The rats and mice were observed two times per day and were weighed on day 1, after 1 week, and at the end of the studies. Details of animal maintenance are presented in Table 1. A necropsy was performed on all animals. Histologic examinations were performed on two male and two female rats in the 1,000 mg/kg groups, two male and two female mice in the 500 mg/kg groups, and one male and one female of each species in the vehicle control groups.

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxic effects of repeated administration of α -methylbenzyl alcohol and to determine the doses to be used in the 2-year studies.

Four- to five-week-old male and female F344/N rats and 5- to 6-week-old male and female $B6C3F_1$ mice were obtained from Charles River Breeding Laboratories, observed for 19 days, and then assigned to cages and groups according to a table of random numbers. Rats were 7-8 weeks old when placed on study, and mice were 8-9 weeks old.

Groups of 10 rats of each sex were administered 0, 93, 187, 375, 750, or 1,500 mg/kg α -methylbenzyl alcohol in corn oil by gavage, 5 days per week for 13 weeks. Groups of 10 mice of each sex were administered 0, 46.9, 93.8, 187.5, 375, or 750 mg/kg on the same schedule.

Animals were observed two times per day. Individual animal weights were recorded one time per week. Further experimental details are summarized in Table 1.

At the end of the 13-week studies, survivors were killed. A necropsy was performed on all animals. The liver was weighed at necropsy. Histologic examinations were performed on all animals in the vehicle control groups, on male and female rats in the 1,500 mg/kg groups, on male and female mice in the 750 mg/kg groups, and on all animals that died before the end of the studies. The spleen was examined for male and female rats in the 750 mg/kg groups and for male rats in the 375 mg/kg group. Tissues and groups examined are listed in Table 1.

TWO-YEAR STUDIES

Study Design

Groups of 50 rats and 49 or 50 mice of each sex were administered 0, 375, or 750 mg/kg α -methylbenzyl alcohol in corn oil by gavage, 5 days per week for 103 weeks.

Source and Specifications of Animals

The male and female F344/N rats and B6C3F₁ (C57BL/6N, female \times C3H/HeN MTV⁻, male) mice used in these studies were produced under strict barrier conditions at Charles River Breeding Laboratories. Breeding stock for the foundation colonies at the production facility originated at the National Institutes of Health Repository.

Animals shipped for study were progeny of defined microflora-associated parents that were transferred from isolators to barrier-maintained rooms. Animals were shipped to the study laboratory at 4-5 weeks (rats) or 5-6 weeks (mice) of age. Rats were quarantined at the study laboratory for 19 days and mice for 26 days. Thereafter, a complete necropsy was performed on five animals of each sex and species to assess their health status. The rats were placed on study at 7-8 weeks of age and the mice at 9-10 weeks. The health of the animals was monitored during the course of the studies according to the protocols of the National Toxicology Program (NTP) Sentinel Animal Program (Appendix E).

A quality control skin grafting program has been in effect since early 1978 to monitor the genetic integrity of the inbred mice used to produce the hybrid $B6C3F_1$ study animal. In mid-1981, data were obtained that showed incompatibility between the NIH C3H reference colony and the C3H colony from an NTP supplier. In August 1981, inbred parental lines of mice were further tested for genetic integrity via isozyme and protein electrophoresis profiles that demonstrate phenotype expressions of known genetic loci.

The C57BL/6N mice were homogeneous at all loci tested. Eighty-five percent of the C3H mice monitored were variant at one to three loci, indicating some heterogeneity in the C3H line from this supplier. Nevertheless, the genome of this line is more homogeneous than that of randomly bred stocks.

Male mice from the C3H colony and female mice from the C57BL/6N colony were used as parents for the hybrid $B6C3F_1$ mice used in these studies. The influence of the potential genetic nonuniformity in the hybrid mice on these results is not known, but results of the studies are not affected because concurrent controls were included in each study.

Animal Maintenance

Animals were housed five per cage. Feed (Appendix F) and water were available ad libitum. Cages were not rotated during the studies. Further details of animal maintenance are given in Table 1.

Clinical Examinations and Pathology

All animals were observed two times per day. Body weights were recorded one time per week for the first 12 weeks of the study and at least one time per month thereafter. Mean body weights were calculated for each group. Animals found moribund and those surviving to the end of the studies were humanely killed. A necropsy was performed on all animals, including those found dead, unless they were missexed. Some tissues were excessively autolyzed or cannibalized, and thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study.

During necropsy, all organs and tissues were examined for grossly visible lesions. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Histopathologic examination of tissues was performed according to an "inverse pyramid" design (McConnell, 1983a,b). That is, complete histopathologic examinations (Table 1) were performed on all high dose and vehicle control animals and on low dose animals dying through month 21 of the study. In addition, histopathologic examinations were performed on all grossly visible lesions in all dose groups. Potential target organs for chemically related neoplastic and nonneoplastic effects were identified from the short-term studies or the literature and were determined by examination of the pathology data; these target organs/ tissues in the lower dose group were examined histopathologically. Mortality in the highest dose group exceeded that in the vehicle control group by 15%, so complete histopathologic examinations were performed on all rats in the low dose group in addition to those in the high dose group.

When the pathology evaluation was completed by the laboratory pathologist and the pathology data entered into the Carcinogenesis Bioassay Data System, the slides, paraffin blocks, and residual formalin-fixed tissues were sent to the NTP Archives. The slides, blocks, and residual wet tissues were audited for accuracy of labeling and animal identification and for thoroughness of tissue trimming. The slides, individual animal necropsy records, and pathology tables were sent to an independent pathology quality assessment laboratory. The individual animal records and pathology tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tissues with a tumor diagnosis, all potential target tissues, and all tissues from a randomly selected 10% of the animals were re-evaluated microscopically by a quality assessment pathologist. Nonneoplastic lesions were evaluated for accuracy and consistency of diagnosis only in the potential target organs, in the randomly selected 10% of animals, and in tissues with unusual incidence patterns or trends. Tissues are generally not evaluated in a "blinded" fashion (i.e., without knowledge of dose group) unless the lesions in question are subtle. Potential target organs selected for review were the kidney, nasal cavity, and salivary gland for male rats, kidney and spleen for female rats, and forestomach for mice.

The quality assessment report and slides were submitted to a Pathology Working Group (PWG) Chairperson, who reviewed microscopically all potential target tissues and any other tissues for which there was a disagreement in diagnosis between the laboratory and quality assessment pathologists. Representative examples of potential chemical-related nonneoplastic lesions and neoplasms and examples of disagreements in diagnosis between the laboratory and quality assessment pathologists were shown to the PWG. The PWG included the quality assessment pathologist and other pathologists experienced in rodent toxicology, who examined the tissues without knowledge of dose group or previously rendered diagnoses. When the consensus diagnosis of the PWG differed from that of the laboratory pathologist, the diagnosis was changed to reflect the opinion of the PWG. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final pathology data represent a consensus of contractor pathologists and the NTP Pathology Working Group. For subsequent analysis of pathology data, the diagnosed lesions for each tissue type are combined according to the guidelines of McConnell et al. (1986).

Statistical Methods

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found to be missing or dead from other than natural causes; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a doserelated trend. When significant survival differences were detected, additional analyses using these procedures were carried out to determine the time point at which significant differences in the survival curves were first detected. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data: life table tests, incidental tumor analysis, and Fisher exact/Cochran-Armitage trend analyses. Tests of significance include pairwise comparisons of each dosed group with vehicle controls and tests for overall dose-response trends. For studies in which administration of the study compound has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death. Continuity-corrected tests are used in the analysis of tumor incidence, and reported P values are one-sided. The procedures described below also were used to evaluate selected nonneoplastic lesions.

Life Table Analyses--The first method of analysis assumed that all tumors of a given type observed in animals dying before the end of the study were fatal; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumor-bearing animals in the dosed and vehicle control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the study, were then combined by the Mantel-Haenszel method (1959) to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of Cox (1972) and of Tarone (1975). The underlying variable considered by this analysis is time to death due to tumor. If the tumor is rapidly lethal, then time to death due to tumor closely approximates time to tumor onset. In this case, the life table test also provides a comparison of the time-specific tumor incidences.

Incidental Tumor Analyses--The second method of analysis assumed that all tumors of a given type observed in animals that died before the end of the study were incidental; i.e., they were merely observed at necropsy in animals dying of an unrelated cause. According to this approach, the proportions of tumor-bearing animals in dosed and vehicle control groups were compared in each of five time intervals: weeks 0-52, weeks 53-78, weeks 79-92, week 93 to the week before the terminal-kill period, and the terminal-kill period. The denominators of these proportions were the number of animals actually examined for tumors during the time interval. The individual time interval comparisons were then combined by the previously described method to obtain a single overall result. (See Haseman, 1984, for the computational details of both methods.)

Fisher Exact/Cochran-Armitage Trend Analyses--In addition to survival-adjusted methods, the results of the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) are given in the appendixes containing the analyses of tumor incidence. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences.

Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984, 1985) are included for those tumors appearing to show compound-related effects.

III. RESULTS

RATS

SINGLE-ADMINISTRATION STUDIES SIXTEEN-DAY STUDIES THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

MICE

SINGLE-ADMINISTRATION STUDIES

SIXTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

GENETIC TOXICOLOGY

25

SINGLE-ADMINISTRATION STUDIES

All rats that received 2,500 or 5,000 mg/kg and 1/5 male rats that received 1,250 mg/kg died within 4 days after dosing (Table 2). On the day of dosing, rats that received 625 mg/kg or more were ataxic or lethargic. All survivors were normal from day 4 to the end of the studies. Final mean body weights were not related to the dose administered.

SIXTEEN-DAY STUDIES

Two of five male rats and 4/5 female rats that received 2,000 mg/kg died before the end of the studies (Table 3). The final mean body weights of rats that received 500, 1,000, or 2,000 were 5%, 7%, or 21% lower than that of the vehicle controls for males and 8%, 7%, or 15% lower for females. One male and one female rat that received 2,000 mg/kg exhibited labored breathing and were lethargic after dosing. Hemorrhagic gastrointestinal tracts were observed in one female and two male rats in this dose group. No compound-related histopathologic lesions were observed in two male and two female rats dosed at 1,000 mg/kg.

THIRTEEN-WEEK STUDIES

Deaths of 1/10 male rats and 3/10 female rats that received 1,500 mg/kg were considered to be

TABLE 2. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE SINGLE-ADMINISTRATION
GAVAGE STUDIES OF α-METHYLBENZYL ALCOHOL

		Mean	Final Weight Relative		
Dose (mg/kg)	Survival (a)	Initial (b)	Final	Change (c)	to Vehicle Controls (percent)
IALE					
0	5/5	140 ± 0	221 ± 9	$+81 \pm 9$	
313	5/5	135 ± 3	201 ± 4	$+66 \pm 2$	91
625	5/5	139 ± 10	203 ± 9	$+64 \pm 4$	92
1,250	(d) 4/5	143 ± 8	212 ± 8	$+65 \pm 14$	96
2,500	(e) 0/5	143 ± 13	(f)	(f)	(f)
5,000	(g) 0/5	135 ± 5	(f)	(f)	(f)
FEMALE					
0	5/5	109 ± 4	141 ± 4	$+32 \pm 2$	
313	5/5	114 ± 2	141 ± 4	$+27 \pm 2$	100
625	5/5	114 ± 10	140 ± 3	$+26 \pm 6$	99
1,250	5/5	107 ± 2	138 ± 1	$+31 \pm 3$	98
2,500	(h) 0/5	108 ± 4	(f)	(f)	(f)
5,000	(g) 0/5	106 ± 4	(f)	(f)	(f)

(a) Number surviving/number initially in group

(b) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

(c) Mean weight change of the survivors \pm standard error of the mean

(d) Day of death: 1

(e) Day of death: 1,1,1,1,4

(f) No data are reported due to 100% mortality in this group.

(g) Day of death: all 1

(h) Day of death: 1,1,2,2,3

		Mean	Body Weights	Final Weight Relative to Vehicle Controls (percent)	
Dose (mg/kg)	Survival (a)				
IALE					
0	5/5	108 ± 3	191 ± 5	$+83 \pm 4$	
125	5/5	108 ± 4	186 ± 4	$+78 \pm 3$	97
250	5/5	112 ± 5	186 ± 6	$+74 \pm 2$	97
500	5/5	110 ± 3	181 ± 1	$+71 \pm 3$	95
1,000	5/5	110 ± 4	178 ± 4	$+68 \pm 3$	93
2,000	(d) 3/5	108 ± 6	151 ± 7	$+42 \pm 8$	7 9
EMALE					
0	5/5	98 ± 3	142 ± 3	$+44 \pm 3$	
125	5/5	94 ± 2	135 ± 2	$+41 \pm 2$	95
250	5/5	91 ± 3	135 ± 4	$+44 \pm 2$	95
500	5/5	95 ± 1	130 ± 2	$+35 \pm 1$	92
1,000	5/5	96 ± 2	132 ± 4	$+36 \pm 3$	93
2,000	(e) 1/5	95 ± 3	120	+20	85

TABLE 3. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE SIXTEEN-DAY GAVAGE STUDIES OF α-METHYLBENZYL ALCOHOL

(a) Number surviving/number initially in group

(b) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

(d) Day of death: 2,2

(e) Day of death: 1,1,2,15

compound related (Table 4). Other deaths were described as being related to the gavage procedure. The final mean body weight of rats that received 1,500 mg/kg was 12% lower than that of vehicle controls for males and 7% lower for females. Throughout the studies, rats that received 750 or 1,500 mg/kg exhibited ataxia, rapid breathing, and lethargy for up to 30 minutes after dosing; after 30 minutes, these clinical signs subsided. The liver weight to body weight ratios for male rats in the 375, 750, and 1,500 mg/kg groups and for all dosed female groups were significantly greater than those for vehicle controls (Table 5). A minimal-to-mild increase in brown pigment, characteristic of hemosiderin, was seen in macrophages in the spleen of 10/10males receiving 750 mg/kg and 9/10 males receiving 1,500 mg/kg, but none was seen in males receiving 375 mg/kg. A similar pigment was seen in the spleen of 6/10 females receiving 1,500 mg/kg, but none was seen in females receiving 750 mg/kg. All 10 serum samples from vehicle control rats had positive titers against rat coronavirus.

Dose Selection Rationale: Because there were no deaths or life-threatening histopathologic lesions attributed to a-methylbenzyl alcohol at 375 or 750 mg/kg, these doses were selected for male and female rats for the 2-year studies, administered in corn oil by gavage, 5 days per week.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of high dose male rats were 4%-11% lower than those of vehicle controls from week 3 to week 56 and 12%-32% lower thereafter (Table 6 and Figure 1). Mean body weights of low dose male rats were 10%-20% lower than those of vehicle controls from week 93 to the end of the study. Mean body weights of high dose female rats were 6%-10% lower than those of vehicle controls from week 16 to week 44 and 12%-19% lower thereafter. Mean body weights of low dose and vehicle control female rats were similar. Male and female rats were lethargic for a short time after they were dosed.

		Final Weight Relative				
Dose (mg/kg)	Survival (a)	Initial (b)	nitial (b) Final		to Vehicle Controls (percent)	
IALE						
0	10/10	180 ± 4	359 ± 5	$+179 \pm 6$		
93	10/10	178 ± 3	361 ± 8	$+183 \pm 5$	101	
187	10/10	170 ± 3	355 ± 5	$+185 \pm 6$	99	
375	10/10	176 ± 3	338 ± 8	$+162 \pm 7$	94	
750	9/10	180 ± 3	342 ± 4	$+162 \pm 4$	95	
1,500	(d) 7/10	178 ± 3	317 ± 8	$+138 \pm 8$	88	
EMALE						
0	10/10	122 ± 2	213 ± 9	$+91 \pm 9$		
93	9/10	123 ± 2	213 ± 5	$+89 \pm 3$	100	
187	9/10	123 ± 3	209 ± 4	$+86 \pm 5$	98	
375	9/10	117 ± 2	203 ± 3	$+85 \pm 1$	95	
750	8/10	118 ± 2	195 ± 4	$+77 \pm 4$	92	
1,500	(e) 6/10	125 ± 2	198 ± 6	$+73 \pm 6$	93	

TABLE 4. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF α -METHYLBENZYL ALCOHOL

(a) Number surviving/number initially in group; deaths at 750 mg/kg or less were related to gavage procedure. (b) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

(d) Week of death: 1; the other two deaths were judged to be related to the gavage procedure.

(e) Week of death: 1,1,2; the other death was judged to be related to the gavage procedure.

TABLE 5. LIVER WEIGHT TO BODY WEIGHT RATIOS FOR RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF α-METHYLBENZYL ALCOHOL (a)

Dose (mg/kg)	Number Weighed	Necropsy Body Weight (grams)	Liver Weight (mg)	Liver Weight/ Necropsy Body Weight (mg/g)
MALE		······		
0	10	363 ± 4.8	$16,497 \pm 618$	45.5 ± 1.56
93	10	356 ± 7.5	$16,551 \pm 794$	46.3 ± 1.55
187	10	356 ± 4.4	$16,631 \pm 587$	46.7 ± 1.47
375	10	347 ± 5.9	$18,089 \pm 579$	$**52.0 \pm 1.06$
750	9 7	342 ± 4.9	$17,979 \pm 406$	$**52.5 \pm 0.98$
1,500	7	$**323 \pm 9.0$	$18,379 \pm 564$	**57.0 \pm 1.24
FEMALE				
0	10	205 ± 3.5	$7,755 \pm 249$	37.8 ± 1.06
93		214 ± 4.3	**9,279 ± 404	$**43.3 \pm 1.30$
187	9 9 9 8 6	207 ± 4.0	$8,746 \pm 246$	$*42.4 \pm 1.27$
375	9	204 ± 2.2	$*8,808 \pm 117$	**43.2 ± 0.59
750	8	199 ± 3.2	**9,549 ± 348	$**48.0 \pm 1.24$
1,500	6	200 ± 5.6	$**10.625 \pm 281$	$**53.3 \pm 0.73$

(a) Mean \pm standard error; P values vs. the vehicle controls by Dunnett's test (Dunnett, 1955).

*P<0.05 **P<0.01

Weeks Vehicle Control		Control		375 mg/kg			750 mg/kg	
on	Av. Wt.	No. of	Av. Wt.	Wt. (percent of	No. of	Av. Wt.	Wt. (percent of	No. of
Study	(grams)	Survivors	(grams)	veh. controls)	Survivors	(grams)	veh. controls)	Survivors
MALE							· · · · · · · · · · · · · · · · · · ·	
1	201	49	198	99	50	185	92	48
2	208	49	221	106	50	203	98 98	48
3	247	49	234	95	50	223	90	46
4	267	49	258	97	50	240	90	46
5	285	49	273	96	50	259	91	46
6	286	49	278	97	50	269	94	46
7	294	49	277	94	50	280	95	46
8	310	49	303	98	48	297	96	46
9 11	328 332	49 49	317 324	97 98	48 48	309 313	94 94	46 46
11	345	49	324	98 97	48	313	94 94	46
16	370	49	364	98	48	357	96	46
20	401	49	393	98	48	372	93	46
24	422	49	411	97	48	385	91	46
28	434	49	429	99	48	400	92	46
32	450	49	444	99	48	413	92	45
36	456	49	454	100	48	416	91	45
40	464	49	461	99	48	423	91	44
44 48	475 488	49 49	476 482	100	48 47	435	92	44 44
48 52	488	49	482	99 97	47	436 442	89 91	44
56	487	49	489	100	43	436	90	40
60	502	49	492	98	43	442	88	42
64	500	49	496	99	43	436	87	39
69	502	49	492	98	42	416	83	39
72	507	49	495	98	42	430	85	35
76	510	49	505	99	41	422	83	32
80	505	49	482	95	41	410	81	28
84	499	48	468	94	37	412	83	17
88	508	47	472	93	31	394	78	11
93	495	43	446	90	23	388	78	3
100 103	485 471	37 35	413 378	85 80	13 8	388 321	80 68	1 1
FEMALE								
1	141	50	142	101	50	136	96	47
2	152	50	161	106	50	146	96	46
3	164	50	163	99	50	149	91	46
4	169	50	168	99	50	165	98	46
5	176	50	175	99	50	170	97	46
6	179	50	177	99	50	170	95	45
7	185	50	182	98	50	176	95	45
8	190	50	189	99	50	184	97	45
9 11	194 197	50 50	192 196	99 99	50 50	186 189	96 96	45 45
12	204	50	199	99 98	50 50	185	96 97	45
16	215	50	210	98	50	203	94	45
20	225	50	217	96	50	209	93	45
24	231	50	224	97	50	214	93	45
28	238	50	230	97	50	218	92	45
32	243	50	238	98	50	224	92	45
36	242	50	243	100	50	224	93	45
40	250	49	247	99	50	224	90	44
44	259	49	256	99	50	233 235	90	42 39
48 52	269 274	49	263 268	98 98	50 46	235 241	87 88	39
52 56	274	49 49	268	98 98	40 45	241 240	85	36 32
60	295	49	290	98	45 45	240	84	32
64	302	49	292	97	45	253	84	29
69	310	48	291	94	45	262	85	28
72	319	48	311	97	44	264	83	28
76	318	47	311	98	43	266	84	29 28 28 28 28 27
80	321	44	319	99	43 42	271	84	27
84	319	44	315	99	42	280	88	23
88	321	44	318	99	39	271	84	22
93	328	41	317	97	35	$272 \\ 272$	83 82	19 13
100 103	332 334	37 35	322 320	97 96	29 27	272 271	82 81	13

TABLE 6. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF $\alpha\text{-}METHYLBENZYL ALCOHOL$

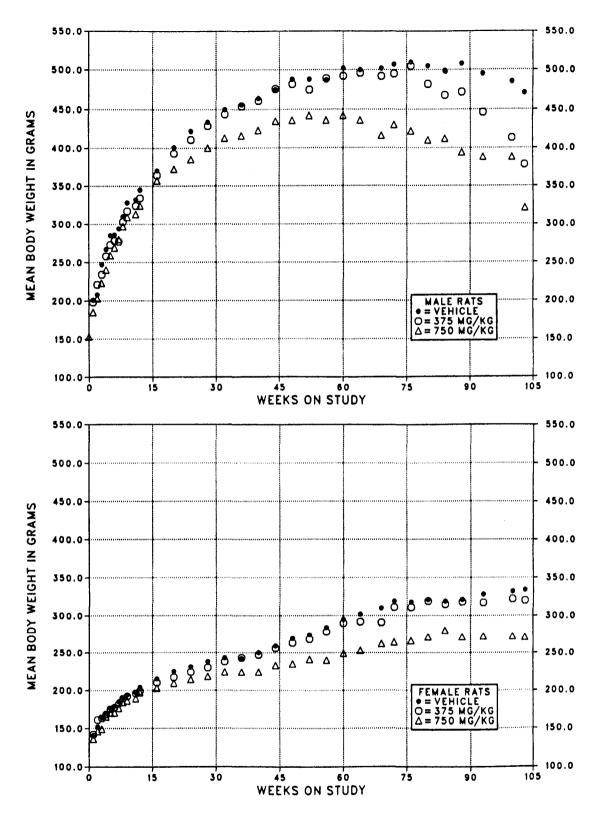


FIGURE 1. GROWTH CURVES FOR RATS EXPOSED TO a-METHYLBENZYL ALCOHOL BY GAVAGE FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female rats administered a-methylbenzyl alcohol at the doses used in these studies and for vehicle controls are shown in Table 7 and in the Kaplan and Meier curves in Figure 2. The survival of both the low (after week 86) and the high (after week 65) dose groups of male rats was significantly lower than that of the vehicle controls. The survival of the high dose group of female rats was significantly lower than that of the vehicle controls after week 40. Because the deaths of 18 male and 19 female rats were judged to be accidental, survival curves that do not exclude any animals are presented for comparison in Figure 3.

The increased mortality in high dose females and part of that in dosed males is attributable to early deaths recorded as accidental. The majority of these were associated with convincing evidence that gavage was a major factor in the animals' deaths. This evidence included clinical observation of death shortly after gavage; evidence of the oil vehicle in the trachea, lungs, or thoracic cavity at necropsy; foreign body pneumonia or pleuritis; and/or perforation of the esophagus. During the standard audit procedures used by the National Toxiciology Program (NTP) (see Audit Summary, Appendix I), these data were corroborated. In addition, the NTP study scientist and pathologists reviewed clinical observations, dosing records, temperature and humidity data, individual animal necropsy records, and tissue sections from all early-death animals to determine as accurately as possible the causes of death. This review revealed no evidence that environmental conditions, infectious disease, or other previously unreported factors contributed to the lower survival in low and high dose male rats and high dose female rats. The review of the pathology data and histologic slides also confirmed that the preponderance of early deaths in dosed male rats can be attributed to the exacerbation of spontaneous nephropathy by a-methylbenzyl alcohol (see page 34 and Table 8).

TABLE 7. SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES	OF a-METHYLBENZYL
ALCOHOL	

	Vehicle Control	375 mg/kg	750 mg/kg
MALE (a)			
Animals initially in study	50	50	50
Natural deaths	12	30	37
Moribund kills	2	3	4
Killed accidentally	1	9	8
Animals surviving until study termination	35	8	1
Gurvival P values (b)	< 0.001	< 0.001	< 0.001
FEMALE (a)			
Animals initially in study	50	50	50
Natural deaths	13	(c) 21	24
foribund kills	2	0	1
Killed accidentally	1	4	14
Animals surviving until study termination	34	26	11
Survival P values (b)	< 0.001	0.275	< 0.001

(a) Termination period: week 104

(b) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

(c) One animal died during the termination period and was combined, for statistical purposes, with those killed at termination.

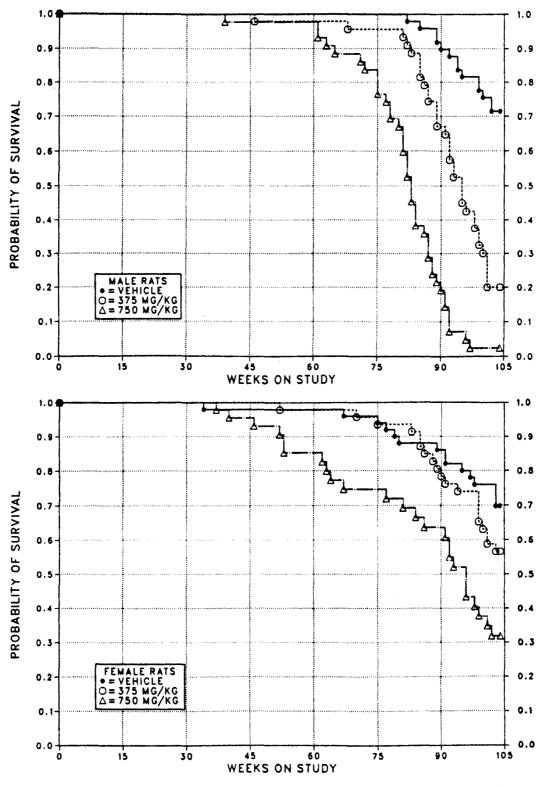


FIGURE 2. KAPLAN-MEIER SURVIVAL CURVES FOR RATS EXPOSED TO a-METHYLBENZYL ALCOHOL BY GAVAGE FOR TWO YEARS

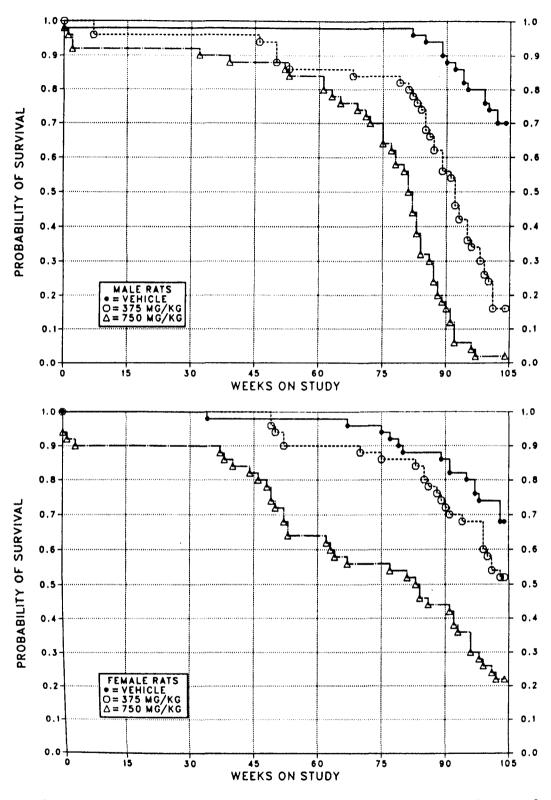


FIGURE 3. STANDARD SURVIVAL CURVES FOR RATS EXPOSED TO a-METHYLBENZYL ALCOHOL BY GAVAGE FOR TWO YEARS

a-Methylbenzyl Alcohol, NTP TR 369

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of rats with neoplastic or nonneoplastic lesions of the kidney, parathyroids, heart, glandular stomach, bone, urinary bladder, liver, forestomach, lung, nasal cavity, salivary gland, eye, and hematopoietic system.

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary tumors that occurred with an incidence of at least 5% in at least one animal group, and historical control incidences for the neoplasms mentioned in this section are presented in Appendixes A and B for male and female rats, respectively.

Kidney: Spontaneous nephropathy occurred in nearly all male and more than half of the female rats in all dosed groups and vehicle controls; however, this age-related renal disease was judged to be more severe in dosed male rats relative to vehicle controls (Table 8). Nephropathy was characterized by varied degrees of degeneration and regeneration of tubular epithelium, atrophy and dilation of some tubules, hyaline casts in the tubular lumina, glomerulosclerosis, interstitial fibrosis, and chronic inflammation. Hyperplasia of the transitional epithelium overlying the renal pelvis was increased (P < 0.01) in low dose male rats (male: vehicle control, 3/50; low dose, 20/50; high dose, 4/50; female: 1/50; 0/49; 0/50).

A single section of the left and right kidney of each rat was examined microscopically as a standard procedure during the histopathologic evaluation. With this procedure, tubular cell adenomas (Figures 4 and 5) were identified in low and high dose males but not in vehicle controls; the incidence in the high dose group was significantly greater than that in the vehicle controls (Table 9). A tubular cell adenocarcinoma occurred in one low dose male rat (Figures 6 and 7). One vehicle control female rat had an adenocarcinoma that was a metastatic neoplasm originating in the mammary gland (not a primary renal tubular cell adenocarcinoma). Renal tubular cell neoplasms are often lateappearing neoplasms seen only during microscopic examination in 2-year-old rats (i.e., they are often not seen macroscopically at necropsy). All the tubular cell adenomas observed in the standard single sections of kidney from dosed male rats were identified only during the microsopic examination. Because the number of tubular cell neoplasms identified by the standard procedures in the dosed male rats was low, stepsections of kidney were made to clarify the potential relationship of these rare neoplasms to chemical administration. The remaining half of the right and left kidney from each male rat was embedded, and three or four additional stepsections were made at approximately 1-mm intervals. These were examined microscopically, and additional tubular cell neoplasms were identified (Table 10). The combined data (tubular cell lesions identified in standard single sections and step-sections) are shown in Table 11. The incidences of tubular cell neoplasms in the low and high dose male rats are statistically significant relative to those in vehicle controls.

Tubular cell hyperplasia, adenoma, and carcinoma occurred in the cortex of the kidney and appeared to encompass a morphologic continuum. Tubular cell hyperplasia generally was characterized by one or two cross-sections of a normalto-slightly enlarged tubule with stratified epithelium that partially or completely occluded the tubular lumen. The cells were often enlarged and contained nuclei with prominent nucleoli. Adenomas were circumscribed masses of epithelial cells and were usually larger than the cross-sectional diameter of three tubules. The epithelium formed a solid sheet of cells within the mass or was arranged in packets separated by basement membrane. The cells were generally uniform in appearance with pale eosinophilic or basophilic cytoplasms and round nuclei with prominent nucleoli. The tubular cell adenocarcinoma was larger than the adenomas and exhibited a heterogenous growth pattern with some cellular pleomorphism or atypia. None of the carcinomas metastasized to other organs.

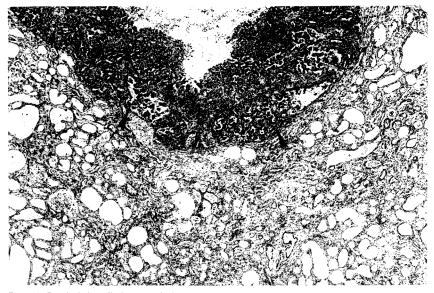


Figure 4. Renal tubular cell adenoma in high dose male rat no. C08. The boundary of the neoplasm is indicated by arrows. Note the dilated nephrons and interstitial connective tissue indicative of nephropathy (hematoxylin and eosin stain).

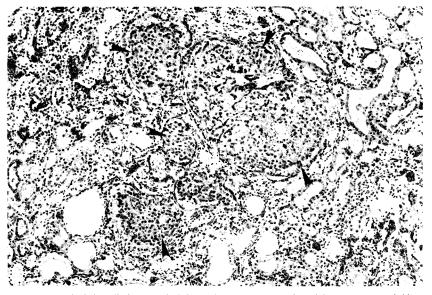


Figure 5. Renal tubular cell adenoma in high dose male rat no. C20. Note the nodular appearance, probably related to the convolutions of the affected nephron (hematoxylin and eosin stain).

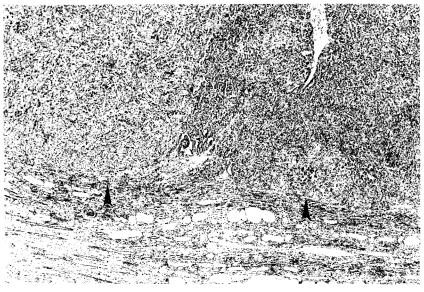


Figure 6. Renal tubular cell adenocarcinoma in low dose male rat no. C17. The neoplasm is in the upper part of the photomicrograph, and the boundary with the normal renal parenchyma is indicated by arrows (hematoxylin and eosin stain).

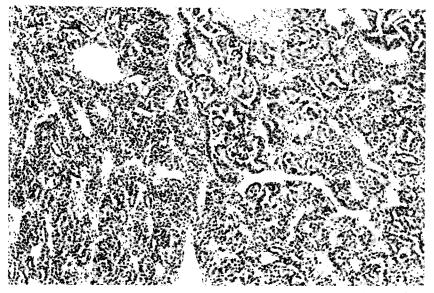


Figure 7. Higher magnification of renal tubular cell adenocarcinoma in low dose male rat no. C17. Note the variation in growth pattern and cellular pleomorphism (hematoxylin and eosin stain).

Figure 8. Transitional cell papilloma in the urinary bladder of high dose male rat no. C24. Note the multiple papillae consisting of thin connective tissue cores and the overlying transitional epithelium (hematoxylin and eosin stain).

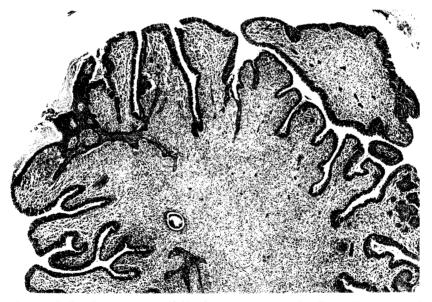


Figure 9. Transitional cell papilloma in the urinary bladder of high dose female rat no. C21. This papilloma is not typical in that it is composed predominantly of connective tissue with a relatively thin covering of transitional epithelium (hematoxylin and eosin stain).

	Vehicle Control	375 mg/kg	750 mg/kg
1ALE			
Incidence	41/50 (82%)	47/50 (94%)	46/50 (92%)
Severity (a)			
Minimal	1	3	1
Mild	30	4	2
Moderate	9	7	10
Marked	1	33	33
Mean severity (b)	2.0	3.5	3.5
EMALE			
Incidence	28/50 (56%)	39/49 (80%)	27/50 (54%)
Severity (a)			
Minimal	10	17	6
Mild	13	15	14
Moderate	4	6	6
Marked	1	1	1
Mean severity (b)	1.8	1.8	2.0

TABLE 8. INCIDENCES AND SEVERITY OF NEPHROPATHY IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF $\alpha\text{-METHYLBENZYL}$ ALCOHOL

(a) Number of rats with indicated severity
(b) Grade of severity: 1 = minimal; 2 = mild; 3 = moderate; 4 = marked.

TABLE 9. KIDNEY TUBULAR CELL LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL (a)

	Vehicle Control	375 mg/kg	750 mg/kg
Hyperplasia	· · · · · · · · · · · · · · · · · · ·		
Overall Rates	0/50 (0%)	4/50 (8%)	4/50 (8%)
Adenoma			
Overall Rates	0/50 (0%)	1/50 (2%)	5/50 (10%)
Terminal Rates	0/35 (0%)	1/8 (13%)	1/1 (100%)
Week of First Observation		104	83
Incidental Tumor Test	P<0.001	P = 0.210	P = 0.010
Adenocarcinoma			
Overall Rates	0/50 (0%)	1/50 (2%)	0/50 (0%)
Adenoma or Adenocarcinoma (b)			
Overall Rates	0/50 (0%)	2/50 (4%)	5/50 (10%)
Terminal Rates	0/35 (0%)	1/8 (13%)	1/1 (100%)
Week of First Observation		101	83
Incidental Tumor Test	P<0.001	P = 0.141	P = 0.010

(a) For a complete explanation of the entries in this table, see Table A3 (footnotes); the statistical analyses used are discussed in Section II (Statistical Methods).

(b) Historical incidence at study laboratory: 0/148; historical incidence in NTP studies (mean ± SD): 11/2,092 (0.5% ± 0.9%)

TABLE 10. KIDNEY TUBULAR CELL LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL: ADDITIONAL STEP-SECTIONS

Lesion	Vehicle Control	375 mg/kg	750 mg/kg
Hyperplasia	1	3	3
Adenoma (single)	1	7	10
Adenoma (multiple)	0	4	0
Hyperplasia, oncocytic	0	0	1
Oncocytoma	0	2	1

TABLE 11. KIDNEY TUBULAR CELL LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL: COMPOSITE RESULTS

Lesion	Vehicle Control	375 mg/kg	750 mg/kg
Hyperplasia	1	7	6
Adenoma (single)	1	8	13
Adenoma (multiple)	0	4	1
Adenocarcinoma	0	1	0
Adenoma or adenocarcinoma (combined)	1	13	14
Effective number of animals (a)	49	41	28
Fisher exact test	-	P<0.001	P<0.001

(a) Number of animals alive at week 81 (time of occurrence of first tubular cell tumor in any group)

Parathyroids, Heart, Glandular Stomach, and Bone: Parathyroid hyperplasia, calcification of the heart and glandular stomach, and fibrous osteodystrophy of the bone were observed at markedly increased incidences in low dose male rats (Table 12). These changes were believed to be a secondary response stemming from a mineral imbalance caused by renal toxicity.

Urinary Bladder: Transitional cell papillomas were seen in 1/47 high dose male rats and in 2/48 high dose female rats (Figures 8 and 9). The historical incidence of transitional cell papillomas or carcinomas (combined) in corn oil vehicle control F344/N rats is 5/2,034 (0.2%) for males and 4/2,026 (0.2%) for females. The incidences of epithelial hyperplasia of the urinary bladder were not increased in dosed rats (male: vehicle control, 3/48; low dose, 4/46; high dose, 1/47; female: 0/49; 1/47; 0/48).

Liver: Centrilobular necrosis was observed at increased incidences (P < 0.01) in dosed male rats (male: vehicle control, 0/50; low dose, 8/50; high dose, 8/50; female: 2/50; 0/48; 0/49).

Forestomach: Inflammation was observed at increased incidences (P < 0.05) in dosed male rats (male: vehicle control, 4/49; low dose, 16/49; high dose, 11/47; female: 3/49; 1/48; 1/46).

Lung: Congestion was observed at increased incidences (P < 0.01) in dosed female rats (male: vehicle control, 4/50; low dose, 8/50; high dose, 10/50; female: 5/50; 17/49; 23/48). Hemorrhage and foreign material were observed at increased incidences in high dose rats (hemorrhage-male: 0/50; 1/50; 5/50; P < 0.05; female: 0/50; 0/49; 6/48; P < 0.05; foreign material-male: 0/50; 2/50; 4/50; female: 0/50; 2/49; 8/48; P < 0.01).

Nasal Cavity: Suppurative inflammation was observed at increased incidences (P < 0.01) in dosed male rats (male: vehicle control, 7/47; low dose, 24/50; high dose, 30/50; female: 3/48; 2/48; 4/49).

Salivary Gland: Acute inflammation was observed at increased incidences (P < 0.01) in dosed male rats (male: vehicle control, 1/49; low dose, 12/43; high dose, 9/39; female: 0/46; 1/49; 1/47).

Site/Lesion	Vehicle Control	375 mg/kg	750 mg/kg
Parathyroid Hyperplasia	0/29	**23/37	4/35
Heart Calcification	1/50	**9/50	0/50
Glandular Stomach Calcification	1/49	*8/49	3/47
Bone Fibrous osteodystrophy	1/50	**21/50	*7/50

TABLE 12. INCIDENCES OF SELECTED NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL

*P < 0.05 vs. vehicle controls

**P<0.01 vs. vehicle controls

Eye: Cataracts were observed at increased incidences (P < 0.01) in low dose rats (male: vehicle control, 2/50; low dose, 11/50; high dose, 2/50; female: 0/50; 13/50; 4/50).

Hematopoietic System: Mononuclear cell leukemia in male and female rats occurred with significant negative trends (Tables A3 and B3); the incidences in the dosed groups were significantly lower than those in the vehicle controls (male: vehicle control, 15/50; low dose, 2/50; high dose, 0/50; female: 12/50; 2/50; 2/50). These incidences were believed to be mainly a function of reduced survival.

SINGLE-ADMINISTRATION STUDIES

All mice that received 2,500 or 5,000 mg/kg and 1/5 males that received 1,250 mg/kg died within 3 days after dosing (Table 13). Mice that received 1,250, 2,500, or 5,000 mg/kg exhibited ataxia or lethargy after they were dosed; mice that survived were normal after day 1. Final mean body weights of dosed and vehicle control mice were similar.

SIXTEEN-DAY STUDIES

Sixteen of 18 mice that received 1,000 or 2,000 mg/kg died within 3 days (Table 14). No compound-related histopathologic lesions were observed.

THIRTEEN-WEEK STUDIES

No compound-related deaths occurred (Table 15). Mice that received 375 or 750 mg/kg exhibited labored breathing, ataxia, and lethargy for up to 30 minutes after they were dosed. Final mean body weights were not compound related. Liver weight to body weight ratios for dosed mice were not related to the dose administered (Table 16). No compound-related histopathologic lesions were seen. At the end of the studies, pneumonia virus of mice was present in 2/10 vehicle controls and minute virus of mice was present in 1/10 vehicle controls.

TABLE 13. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE SINGLE-ADMINISTRATION GAVAGE STUDIES OF α -METHYLBENZYL ALCOHOL

		Mean I	Body Weights (grams)	Final Weight Relative
Dose (mg/kg)	Survival (a)	Initial (b)	Final	Change (c)	to Vehicle Controls (percent)
IALE	· · · · · · · · · · · · · · · · · · ·				<u> </u>
0	5/5	20.0 ± 0.9	24.6 ± 0.4	$+4.6 \pm 1.2$	
313	5/5	20.4 ± 0.7	26.2 ± 0.9	$+5.8 \pm 1.0$	106.5
625	5/5	22.4 ± 0.7	26.4 ± 0.4	$+4.0 \pm 0.4$	107.3
1,250	(d) 4/5	22.8 ± 0.8	24.3 ± 1.2	$+1.8 \pm 0.3$	98.8
2,500	(e) 0/5	22.8 ± 0.4	(f)	(f)	(f)
5,000	(g) 0/5	23.2 ± 0.8	(f)	(f)	(f)
EMALE					
0	5/5	20.4 ± 0.5	21.4 ± 0.2	$+1.0 \pm 0.7$	
313	5/5	18.6 ± 0.4	21.0 ± 0.5	$+2.4 \pm 0.5$	98.1
625	5/5	19.8 ± 0.8	21.6 ± 0.7	$+1.8 \pm 0.7$	100.9
1,250	5/5	18.2 ± 0.7	20.8 ± 0.7	$+2.6 \pm 0.2$	97.2
2,500	(h) 0/5	19.6 ± 0.9	(f)	(f)	(f)
5,000	(g) 0/5	20.4 ± 0.9	(f)	(f)	(f)

(a) Number surviving/number initially in the group

(b) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

(c) Mean weight change of the survivors \pm standard error of the mean

(d) Day of death: 1

(e) Day of death: 1,1,2,2,2

(f) No data are reported due to 100% mortality in this group.

(g) Day of death: all 1

(h) Day of death: 1,1,1,1,3

		Mean l	Body Weights (grams)	Final Weight Relative
Dose Survival (a) (mg/kg)		Initial (b)	Final	Change (c)	to Vehicle Controls (percent)
ALE					
0	5/5	22.0 ± 1.3	28.2 ± 2.2	$+6.2 \pm 1.5$	
125	4/4	23.8 ± 0.9	27.8 ± 0.6	$+4.0 \pm 0.4$	98.6
250	5/5	26.2 ± 0.7	27.6 ± 1.5	$+1.4 \pm 1.5$	97.9
500	5/5	25.6 ± 1.1	29.6 ± 1.5	$+4.0 \pm 2.0$	105.0
1,000	(d) 1/4	21.5 ± 2.1	24.0	-3.0	85.1
2,000	(e) 0/4	18.5 ± 2.2	(f)	(f)	(f)
EMALE					
0	5/5	16.8 ± 1.0	21.2 ± 0.6	$+4.4 \pm 0.6$	
125	5/5	17.4 ± 1.3	21.6 ± 0.7	$+4.2 \pm 0.9$	101.9
250	5/5	16.8 ± 0.6	22.2 ± 0.8	$+5.4 \pm 0.9$	104.7
500	5/5	20.2 ± 0.4	21.2 ± 0.6	$+1.0 \pm 0.4$	100.0
1,000	(g) 1/5	18.6 ± 0.7	20.0	+3.0	94.3
2,000	(h) 0/5	17.2 ± 0.6	(f)	(f)	(f)

TABLE 14.SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE SIXTEEN-DAY GAVAGE
STUDIES OF α-METHYLBENZYL ALCOHOL

(a) Number surviving/number initially in group

(b) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

(d) Day of death: 1,2,3

(e) Day of death: 1,1,2,3

(f) No data are reported due to 100% mortality in this group.

(g) Day of death: all 1

(h) Day of death: 1,1,1,1,2

TABLE 15. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK GAVAGESTUDIES OF α-METHYLBENZYL ALCOHOL

		Mean	Body Weights	(grams)	Final Weight Relative
Dose (mg/kg)	Survival (a)	Initial (b)	Final	Change (c)	to Vehicle Controls (percent)
MALE					
0	10/10	23.7 ± 0.4	36.1 ± 0.6	$+12.4 \pm 0.6$	
46.9	9/10	22.7 ± 0.3	36.3 ± 0.6	$+13.7 \pm 0.7$	100.6
93.8	10/10	22.2 ± 0.7	35.1 ± 0.9	$+12.9 \pm 0.9$	97.2
187.5	10/10	24.0 ± 0.5	38.5 ± 1.1	$+14.5 \pm 0.9$	106.6
375	10/10	24.7 ± 0.6	38.5 ± 0.9	$+13.8 \pm 0.6$	106.6
750	10/10	24.8 ± 0.3	36.5 ± 0.5	$+11.7 \pm 0.7$	101.1
FEMALE					
0	10/10	19.5 ± 0.3	27.5 ± 0.9	$+8.0 \pm 0.7$	
46.9	8/10	18.6 ± 0.3	26.3 ± 0.4	$+7.4 \pm 0.5$	95.6
93.8	10/10	18.8 ± 0.3	26.0 ± 0.3	$+7.2 \pm 0.4$	94.5
187.5	10/10	18.5 ± 0.3	26.3 ± 0.4	$+7.8 \pm 0.4$	95.6
375	9/10	17.6 ± 0.3	25.3 ± 0.6	$+7.8 \pm 0.5$	92.0
750	9/10	17.4 ± 0.4	25.8 ± 0.5	$+8.4 \pm 0.2$	93.8

(a) Number surviving/number initially in group; all deaths related to gavage procedure.

(b) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

Dose (mg/kg)	Number Weighed	Necropsy Body Weight (grams)	Liver Weight (mg)	Liver Weight/ Necropsy Body Weight (mg/g)
MALE				_ ,
0	10	35.8 ± 0.72	$2,020 \pm 56$	56.5 ± 1.63
46.9	9	32.8 ± 1.26	$1,751 \pm 96$	53.3 ± 1.64
9 3.8	10	32.5 ± 1.60	$1,788 \pm 166$	54.2 ± 2.93
187.5	10	38.9 ± 1.07	$**2,509 \pm 93$	$*64.5 \pm 1.74$
375	10	39.0 ± 0.82	$2,236 \pm 119$	57.4 ± 2.89
750	10	36.4 ± 0.52	$2,076 \pm 63$	57.0 ± 1.31
FEMALE				
0	10	26.9 ± 0.70	$1,372 \pm 61$	51.0 ± 1.73
46.9	8	26.2 ± 0.56	$1,516 \pm 72$	58.0 ± 3.31
93.3	10	25.2 ± 0.51	$1,353 \pm 42$	53.9 ± 1.70
187.5	10	26.9 ± 0.47	$**1,630 \pm 59$	**60.6 ± 1.67
375	9 9	25.5 ± 0.71	$1,514 \pm 55$	$*59.5 \pm 1.38$
750	9	25.5 ± 0.72	$1,349 \pm 35$	53.1 ± 1.66

TABLE 16. LIVER WEIGHT TO BODY WEIGHT RATIOS FOR MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF α -METHYLBENZYL ALCOHOL (a)

(a) Mean \pm standard error; P values vs. the vehicle controls by Dunnett's test (Dunnett, 1955).

*P<0.05 **P<0.01

Dose Selection Rationale: Because there were deaths at 1,000 mg/kg in the 16-day studies but no deaths or histopathologic lesions attributed to a-methylbenzyl alcohol at 375 or 750 mg/kg in the 13-week studies, these doses were selected for mice for the 2-year studies, administered 5 days per week.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of high dose male mice were 6%-13% lower than those of vehicle controls from week 10 to week 72 (Table 17 and Figure 10). Mean body weights of high dose female mice were 8%-16% lower than those of vehicle controls from week 72 to the end of the study. Mean body weights of low dose and vehicle control mice were similar. Variable numbers of male and female mice were lethargic or immobile for 1-1.5 hours after they were dosed.

on		Control	375 mg/kg		750 mg/kg			
	Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. of Survivors
IALE				<u></u>			<u></u>	
0	25.9	50	26.3	102	50	25.8	100	50
1	27.0	49	27.6	102	50	27.4	101	49
2	28.1	49	28.6	102	50	27.7	99	49
3	29.4	49	30.0	102	50	29.1	99	49
4	30.6	48	30.5	100	50	29.7	97	48
5 6	32.2 33.2	48 48	31.6 32.3	98 97	50 50	31.1 32.1	97 97	48 48
7	33.7	48	33.3	99	50	31.7	94	48
8	34.8	48	34.2	98	50	32.7	94	48
9	34.7	48	33.8	97	50	33.4	96	48
10	35.8	48	34.9	97	50	33.0	92	48
11	35.7	48	35.1	98	50	33.5	94	48
12	36.6	48	35.7	98	50	33.4	91	47
14	37.8	48	36.9	. 98	50	34.4	91	47
16	39.3 42.4	48	38.5	98	50 50	35.8	91 89	46 46
20 24	44.0	48 48	40.9 42.8	96 97	50 50	37.7 38.3	89 87	46
24	44.0	48 47	42.8	97	50	39.2	89	46
32	44.4	47	43.6	98	49	40.2	91	46
36	44.8	47	44.1	98	49	40.6	91	46
40	44.8	47	43.8	98	49	40.0	89	45
44	46.0	47	45.2	98	49	41.1	89	45
48	46.6	47	45.8	98	49	42.6	91	44
52	47.7	47	46.3	97	48	43.5	91	41
56 60	47.5 49.0	47	47.0	99	48	43.1	91	39
64	49.9	47 47	48.5 49.8	99 100	48 48	45.4 46.6	93 93	39 39
68	50.5	46	47.9	95	48	46.3	92	38
72	49.6	46	49.0	99	48	46.0	93	38
76	48.4	45	48.9	101	48	46.4	96	38
80	48.4	45	48.6	100	48	45.4	94	38
84	46.8	45	49.0	105	47	46.3	99	36
88	47.7	44	48.2	101	47	45.8	96	35
93	47.1	43	47.6	101	46	44.5	94	33
96	45.2	42	45.2	100	46	43.1	95	32
	44.7	40	40.0	89	43	41.8	94	31
TEMALE								
0	19.9	50	19.9	100	50	19.9	100	50
$\frac{1}{2}$	20.3	50	20.3	100	50	20.8	102	50
2 3	$21.2 \\ 22.4$	50 50	$21.3 \\ 22.2$	100 99	50 50	$21.6 \\ 22.3$	102 100	48 48
4	22.5	50 50	22.2	100	50	22.3	103	48
5	23.1	50	22.3	100	50	23.1	103	48
ĕ	23.3	50	23.4	100	50	23.9	103	48
7	24.6	50	24.2	98	50	24.1	98	47
8	26.0	50	26.1	100	50	25.2	97	47
9	26.4	50	25.9	98	50	25.9	98	47
10	26.2	50	26.0	99	50	25.6	98	47
11	26.3	50	26.1	99	50	26.4	100	47
12 14	26.3 26.0	50 50	25.9	98 102	50 50	$25.8 \\ 27.0$	98 104	47 47
14	26.0	50 50	$26.5 \\ 28.1$	102	50 50	27.0 28.3	104	47
21	29.1	50	30.3	101	50	30.0	102	46
24	30.5	50	30.8	101	50	30.0	98	46
28	30.9	50	31.9	103	49	30.9	100	46
32	32.0	50	32.2	101	49	31.5	98	46
36	31.4	50	31.9	102	49	31.6	101	46
40	32.0	50	32.4	101	49	31.8	99	46
44 48	33.3 33.7	49 49	33.4 34.0	100 101	49 49	32.6	98 99	46 46
52	33.7	49	34.0	101	49 49	33.5 33.5	99 99	46
56	36.0	49	36.1	100	49	35.4	98	40
60	38.0	49	38.3	101	49	35.4 37.3	98	46
64	40.0	49	40.2	101	49	37.8	95	46
68	40.8	49	41.1	101	49	37.9	93	45
72	42.1	48	41.8	99	48	37.4	89	45
76	43.4	48	42.6	98	48	39.3	91	44
80	43.4	48	43.8	101	48	39.9	92	40
84	43.2	48	43.6	101	48	39.4	91	40
88	44.3	46	44.1	100	47	40.3	91	38
93 96	44.5 42.8	46 46	43.5 42.5	98 99	45 44	39.9 35.8	90 84	38 38
50	42.8	46	42.5	99 97	44 43	35.8 37.6	84 86	38

TABLE 17. MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF $\alpha\text{-METHYLBENZYL}$ ALCOHOL

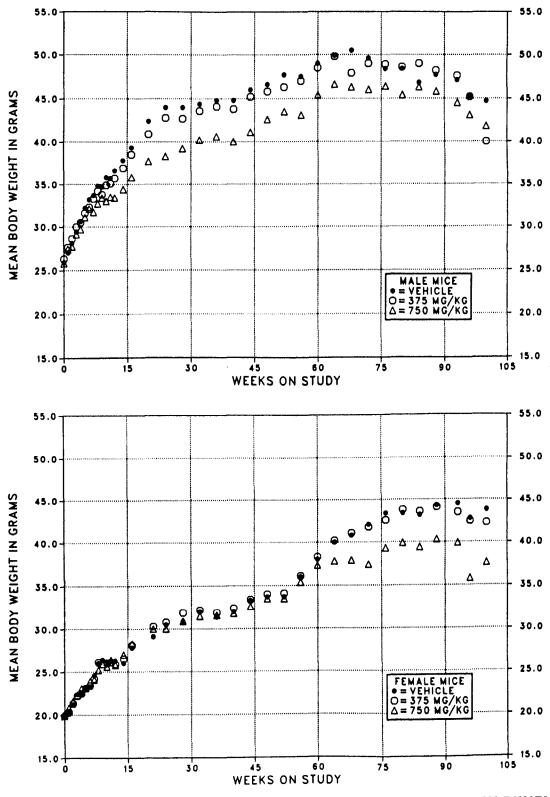


FIGURE 10. GROWTH CURVES FOR MICE EXPOSED TO α-METHYLBENZYL ALCOHOL BY GAVAGE FOR TWO YEARS

42

Survival

Estimates of the probabilities of survival for male and female mice administered α -methylbenzyl alcohol at the doses used in these studies and for vehicle controls are shownin Table 18 and in the Kaplan and Meier curves in Figure 11. No significant differences in survival were observed between any groups of either sex.

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of mice with nonneoplastic lesions of the lung and neoplastic lesions of the circulatory system.

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary tumors that occurred with an incidence of at least 5% in at least one animal group, and historical control incidences for the neoplasms mentioned in this section are presented in Appendixes C and D for male and female mice, respectively.

TABLE 18. SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF α-METHYLBENZYL ALCOHOL

	Vehicle Control	375 mg/kg	750 mg/kg
MALE (a)	·····		
Animals initially in study	50	50	50
Natural deaths	8	9	14
Moribund kills	. 0	0	0
Killed accidentally	2 1	1	8
Animals missexed	1	0	0
Animals surviving until study termination	39	40	28
Survival P values (b)	0.082	0.905	0.118
FEMALE (a)			
Animals initially in study	50	50	50
Natural deaths	(c) 9	(c) 9	7
Moribund kills	1	0	0
Killed accidentally	0	1	5
Animals surviving until study termination	41	41	38
Survival P values (b)	0.898	0.812	0.989

(a) Termination period: week 104

(b) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

(c) One animal died during the termination period and was combined, for statistical purposes, with those killed at termination.

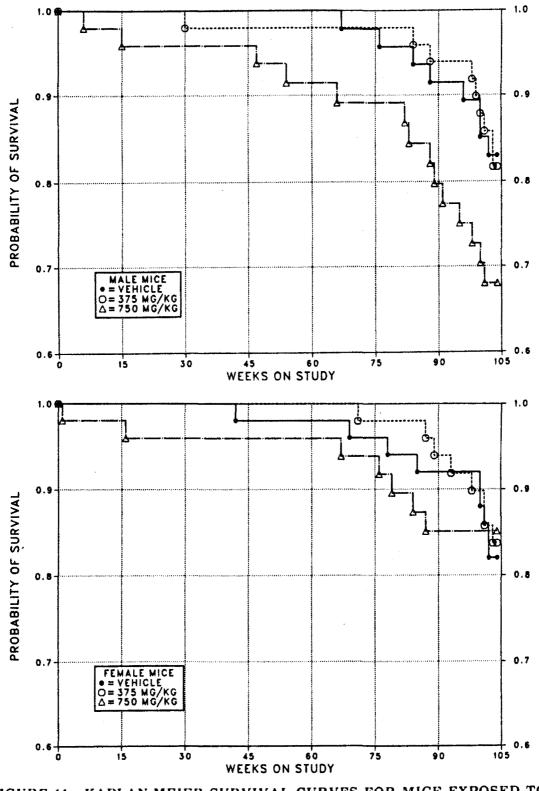


FIGURE 11. KAPLAN-MEIER SURVIVAL CURVES FOR MICE EXPOSED TO a-METHYLBENZYL ALCOHOL BY GAVAGE FOR TWO YEARS

Lung: Congestion was observed in seven high dose male and seven high dose female mice (none were observed in the other groups). Hemorrhage and foreign material were observed at increased incidences in high dose male mice (hemorrhage--male: 1/49; 1/50; 6/50; female: 3/50; 1/4; 7/50; foreign material--male: 1/49; 0/50; 7/50; P < 0.05; female: 0/50; 0/4; 1/50). Circulatory System: Hemangiosarcomas and hemangiomas or hemangiosarcomas (combined) in male mice occurred with significant negative trends; the incidences in the high dose group were significantly lower than those in the vehicle controls (Table 19). The slight decrease in vascular tumors is not believed to be related to the administration of α -methylbenzyl alcohol.

TABLE 19. CIRCULATORY SYSTEM TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL (a)

	Vehicle Control	375 mg/kg	750 mg/kg
Hemangioma			· · · · · · · · · · · · · · · · · · ·
Overall Rates	1/49 (2%)	1/49 (2%)	0/50 (0%)
Hemangiosarcoma			
Overall Rates	5/49 (10%)	4/50 (8%)	0/50 (0%)
Terminal Rates	3/39 (8%)	4/40 (10%)	0/28 (0%)
Week of First Observation	76	104	,
Incidental Tumor Tests	P = 0.044N	P = 0.603 N	P = 0.040 N *
Hemangioma or Hemangiosarcoma (b)			
Overall Rates	6/49 (12%)	5/50 (10%)	0/50 (0%)
Terminal Rates	4/39 (10%)	5/40 (13%)	0/28 (0%)
Week of First Observation	76	104	
Incidental Tumor Tests	P = 0.030N	P = 0.590 N	P = 0.025N

(a) For a complete explanation of the entries in this table, see Table C3 (footnotes); the statistical analyses used are discussed in Section II (Statistical Methods).

(b) Historical incidence at study laboratory (mean \pm SD): 11/148 (7% \pm 5%); historical incidence in NTP studies: 124/2,091 (6% \pm 5%)

a-Methylbenzyl alcohol was not mutagenic in Salmonella typhimurium strains TA98, TA100, TA1535, or TA1537 when tested in the presence or absence of exogenous metabolic activation. a-Methylbenzyl alcohol produced a positive response without activation in the mouse L5178Y/TK^{+/-} lymphoma assay for induction of trifluorothymidine resistance; it was not tested with activation. In cytogenetic tests with Chinese hamster ovary (CHO) cells, α -methylbenzyl alcohol induced chromosomal aberrations in the presence, but not the absence, of metabolic activation; no induction of sister chromatid exchanges was observed in CHO cells after exposure to α -methylbenzyl alcohol in either the presence or absence of metabolic activation. The methodology and full results are presented in Appendix H.

IV. DISCUSSION AND CONCLUSIONS

a-Methylbenzyl Alcohol, NTP TR 369

Repeated administration of a-methylbenzyl alcohol at doses of 1,000 mg/kg or higher was lethal to rats and mice in 2-week and 13-week studies; however, the toxic responses observed in the surviving animals were unremarkable, except for the clinical signs of ataxia, hyperpnea, and lethargy, which lasted for about 30 minutes after dosing. The only histopathologic lesions occurred in the spleen of male rats given 750 mg/kg a-methylbenzyl alcohol, where brown pigment observed in splenic macrophages was considered to represent hemosiderin. There was no indication that renal toxicity might lead to mortality in the 2-year studies, nor were there indications of renal toxicity in the short-term or 2-year benzyl alcohol studies (NTP, 1989). Increases in relative liver weights were observed in the 13-week studies in all dosed groups of female rats and in the male rats administered 375 mg/kg or higher, but the major responses were confined to dose groups above 375 mg/kg. Doses used for the 2-year studies were 375 and 750 mg/kg for both rats and mice, since in the short-term studies there were no deaths or effects on body weight gain at these doses and because the splenic lesions observed in the rats were not considered to be life threatening.

The excessive mortality in the 2-year study in male rats reduced the sensitivity of this study for the detection of a carcinogenic response. Nonetheless, dose-related increases of renal tubular cell adenomas were observed in male rats. The original evaluation of the kidney by standard procedures (microscopic examination of single sections of the left and right kidney) identified small numbers of tubular cell neoplasms in dosed male rats but not in vehicle controls (adenomas or adenocarcinomas, combined: vehicle control, 0/50; low dose, 2/50; high dose, 5/50). Kurokawa et al. (1983) compared results of examination of single vs. multiple sections of kidney and found that incidences were greater with multiple sections. Therefore, the National Toxicology Program (NTP) prepared step-sections of the remaining right and left halves of the kidney to clarify the potential relationship of the tubular cell neoplasms to the administration of a-methylbenzyl alcohol. The step-section review identified 1 additional adenoma in the vehicle control group, 12 in the low dose group, and 9 in the high dose group, with total numbers of adenomas and adenocarcinomas (combined) of 1, 13, and 14 in the vehicle control, low, and high dose groups, respectively. These data clearly demonstrated significantly increased incidences (P < 0.001) of renal tubular cell adenomas in male rats given a-methylbenzyl alcohol.

These renal neoplasm incidences were among the greatest ever recorded in the NTP data base, prompting the Program to consider both "some" and "clear" levels of evidence for carcinogenic activity. Some of the arguments that can be made to support a conclusion of clear level of evidence follow. Since all of these neoplasms were found in rats that died between weeks 81 and 104 of the study, an even greater number of renal neoplasms might have occurred had a larger number of animals been at risk for development of the late-appearing neoplasms. Tubular cell neoplasms have occurred rarely, suggesting that they may be chemically related. The marked increase of benign neoplasms is one of the criteria in the definition of clear evidence. However, it was concluded that the data better represented "some evidence of carcinogenic activity," rather than "clear evidence," for the following reasons: standard histologic procedures (single sections of kidney) showed only small numbers of tubular cell neoplasms in dosed male rats; the current data base for renal neoplasms identified by stepsections is still limited; the tubular cell neoplasms in dosed rats were all adenomas except for one adenocarcinoma; the adenomas were small, microscopic tumors; some were difficult to distinguish from hyperplasia; and the biologic potential of many of the small adenomas is uncertain.

a-Methylbenzyl alcohol was toxic to the kidney, causing an exacerbation of the spontaneous, agerelated nephropathy. The tubular cell adenomas occurred only in rats with advanced (moderate or marked severity) renal disease. An increased rate of cell replication occurs as a repair mechanism after toxic injury in many tissues, and this response was reported for the renal tubular epithelium (Charbonneau et al., 1987; Short et al., 1987). Whether such an increase in cell replication contributed to the development of renal neoplasms in this study is unknown.

There was no indication that the renal toxicity was connected with male F344 rat a2u-globulin induction (Short et al., 1987), since no compound-related increases in hyaline droplet formation were observed in the short-term studies of a-methylbenzyl alcohol. Under normal circumstances, the protein accumulates in reabsorption droplets (seen as hyaline droplets by light microscopy) in the cytoplasm of tubular epithelial cells, where it causes degeneration and necrosis of the epithelium, granular casts at the junction of the inner and outer stripe of the outer medulla, and tubular epithelial degeneration. This spectrum of changes was not observed in male rats in the 13-week studies of a-methylbenzyl alcohol, suggesting that a_{2u}-globulin accumulation was not the cause of the kidney toxicity. In the 13-week studies, however, necropsies were performed on rats 3 days after the last dosing. Although the abnormal retention of a_{2u} -globulin and the apparent increase in hyaline droplets might be expected to diminish over this 3-day postdosing period, other changes, including the granular casts, would not be expected to be resolved within this time frame. Furthermore, there was no indication from the 2-year studies of a-methylbenzyl alcohol that the renal lesions observed represented the consistent pattern of toxicity specific to male rats as was reported in studies of unleaded gasoline (Kitchen, 1984), d-limonene (NTP, 1990), 1,4-dichlorobenzene (NTP, 1987a), and dimethyl methvlphosphonate (NTP, 1987b).

Several chemicals containing a benzylic acid moiety, including 1'-hydroxysafrole (Drinkwater et al., 1976; Wislocki et al., 1977), chlorobenzilate (NCI, 1978), and a number of hydroxymethyl derivatives of polycyclic aromatic hydrocarbons (Anderson et al., 1985; Hayes et al., 1985), were found to produce various neoplasms in animals. The carcinogenic activity of these chemicals might be related to their potential alkylating ability based on the benzyl carbonium ion. This mechanism of action might be considered for the simpler benzyl alcohols, but none of the chemicals from this class, including benzoin (NCI, 1980), ephedrine sulfate (NTP, 1986), phenylephrine hydrochloride (NTP, 1987c), and benzyl alcohol (NTP, 1989), caused neoplasms in 2-year studies. In addition, it was unlikely that a reactive species was involved

after administration of a-methylbenzyl alcohol, since no hyperplasia or neoplasms were observed in the stomach, where the acid environment would be conducive for the formation of benzyl carbonium ions.

By comparison, mice were much more tolerant to benzyl alcohol (NTP, 1989) and a-methylbenzyl alcohol toxicity than were male rats. However, no data suggested that there was a species difference in the metabolism of these two benzyl alcohol compounds which could account for the lower mortality in the studies in mice. Hippuric acid was shown to be the predominant urinary excretory product of benzyl alcohol in both rats and mice (Clapp and Young, 1970; Abdo et al., 1985); a-methylbenzyl alcohol was also metabolized to hippuric acid in rabbits and was excreted into the urine together with methylphenylcarbinyl glucuronide (Opdyke, 1974).

Although there was a greater than 10% reduction in body weight gain in the low dose male and the high dose female groups of mice administered a-methylbenzyl alcohol, there was no effect on survival. In addition, no increases in neoplastic or nonneoplastic lesions in mice were attributable to chemical administration. There was a significant negative trend for hemangiosarcomas in male mice. The incidences recorded were 5/49, 4/50, and 0/50 in the vehicle control, low dose, and high dose groups. The spontaneous occurrence of these neoplasms in corn oil vehicle control B6C3F1 male mice is highly variable in NTP studies (6% \pm 5%), so their absence from mice in the high dose group could easily be attributed to biologic variability.

The structural analogs benzyl alcohol (NTP, 1989) and β -phenethyl alcohol demonstrated mutagenic profiles similar to that of α -methylbenzyl alcohol, being negative for gene reversion in bacteria (Ishidate et al., 1984; Zeiger and Pagano, 1984; Mortelmans et al., 1986) and positive for induction of petite colonies in yeast (Wilkie and Maroudas, 1969; Kojima et al., 1976). There was evidence of clastogenic activity for α -methylbenzyl alcohol as well as for the two structural analogs. α -Methylbenzyl alcohol was positive in the mouse lymphoma assay without activation and induced chromosomal aberrations in Chinese hamster ovary (CHO) cells only in the presence of metabolic activation; sister chromatid exchanges (SCEs) were not observed. Benzyl alcohol (Barthelmess and Elkabarity, 1962) and β -phenethyl alcohol (Bammi and Jura, 1966) were reported to induce chromosomal aberrations in *Allium cepa*, but benzyl alcohol was negative in a later test for induction of chromosomal aberrations in Chinese hamster lung fibroblasts (Ishidate et al., 1984). In NTP cytogenetic tests with CHO cells, benzyl alcohol induced chromosomal aberrations in the presence of S9 and SCEs with and without S9.

The experimental and tabulated data for the NTP Technical Report on α -methylbenzyl alcohol were examined for accuracy, consistency, completeness, and compliance with Good Laboratory Practice regulations. As summarized in Appendix I, the audit revealed no major problems with the conduct of the studies or with collection and documentation of the experimental data. No discrepancies were found that influenced the final interpretation of the results of these studies.

Under the conditions of these 2-year gavage studies, there was some evidence of carcinogenic activity* of a-methylbenzyl alcohol for male F344/N rats, as shown by increased incidences of renal tubular cell adenomas and adenomas or adenocarcinomas (combined). There was no evidence of carcinogenic activity for female F344/N rats administered 375 or 750 mg/kg. Renal toxicity characterized by severe nephropathy and related secondary lesions was observed in the dosed rats, and excessive mortality occurred during the last quarter of the studies. Poor survival reduced the sensitivity of the studies for detecting the presence of a carcinogenic response both in chemically exposed groups of male rats and in the high dose group of female rats. There was no evidence of carcinogenic activity of a-methylbenzyl alcohol for male or female B6C3F1 mice administered 375 or 750 mg/kg for 2 years.

*Explanation of Levels of Evidence of Carcinogenic Activity is on page 6.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on pages 9, 10, and 12.

V. REFERENCES

a-Methylbenzyl Alcohol, NTP TR 369

7

1. Abdo, K.M.; Huff, J.E.; Haseman, J.K.; Boorman, G.A.; Eustis, S.L.; Matthews, H.B.; Burka, L.T.; Prejean, J.D.; Thompson, R.B. (1985) Benzyl acetate carcinogenicity, metabolism, and disposition in Fischer 344 rats and $B6C3F_1$ mice. Toxicology 37:159-170.

2. Ames, B.N.; McCann, J.; Yamasaki, E. (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 31:347-364.

3. Anderson, O.; Lindegaard, P.; Unger, M.; Nordberg, G.F. (1985) Effects of liver damage induced by polychlorinated biphenyls (PCB) on cadmium metabolism in mice. Environ. Res. 38:213-224.

4. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.

5. Bammi, R.K.; Jura, P. (1966) Effects of phenethyl alcohol on chromosomes of Allium cepa. Exp. Cell Res. 41:124-130.

6. Barthelmess, A.; Elkabarity, A. (1962) Chemisch induzierte multipolare Mitosen III. Protoplasma 54:455-475.

7. Boorman, G.A.; Montgomery, C.A., Jr.; Eustis, S.L.; Wolfe, M.J.; McConnell, E.E.; Hardisty, J.F. (1985) Quality assurance in pathology for rodent carcinogenicity studies. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications, pp. 345-357.

8. Carpenter, C.P.; Smyth, H.F., Jr. (1946) Chemical burns of the rabbit cornea. Am. J. Ophthalmol. 29:1363-1372.

9. Charbonneau, M.; Short, B.G.; Lock, E.A.; Swenberg, J.A. (1987) Mechanism of petroleuminduced sex-specific protein droplet nephropathy and renal cell proliferation in Fischer-344 rats: Relevance to humans. Hemphill, D.D., Ed.: Trace Substances in Environmental Health, Vol. 21. Columbia: University of Missouri, pp. 263-273. 10. Clapp, J.; Young, L. (1970) Formation of mercapturic acids in rats after the administration of aralkyl esters. Biochem. J. 118:765-771.

11. Clive, D.; Johnson, K.O.; Spector, J.F.S.; Batson, A.G.; Brown, M.M.M. (1979) Validation and characterization of the L5178Y/TK^{+/-} mouse lymphoma mutagen assay system. Mutat. Res. 59:61-108.

12. Commoner, B. (1976) Reliability of Bacterial Mutagenesis Techniques to Distinguish Carcinogenic and Noncarcinogenic Chemicals. EPA-600/1-76-022. U.S. Environmental Protection Agency, 103 p.

13. The Condensed Chemical Dictionary (1981) 10th ed. Hawley, G.G., Ed. New York: Van Nostrand Reinhold Company Inc., p. 670.

14. Cox, D.R. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

15. Drinkwater, N.R.; Miller, E.C.; Miller, J.A.; Pitot, H.C. (1976) Hepatocarcinogenicity of estragole (1-allyl-4-methoxybenzene) and 1'-hydroxyestragole in the mouse and mutagenicity of 1'-acetoxyestragole in bacteria. J. Natl. Cancer Inst. 57:1323-1331.

16. Dunnett, C.W. (1955) A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50:1096-1122.

17. Elliger, C.A.; Henika, P.R.; MacGregor, J.T. (1984) Mutagenicity of flavones, chromones, and acetophenones in *Salmonella typhimurium*. Mutat. Res. 135:77-86.

18. Fenaroli's Handbook of Flavor Ingredients (1975) 2nd ed., Vol. 2. Furia, T.E.; Bellanca, N., Eds. Cleveland: The Chemical Rubber Company Press, p. 348.

19. Florin, I.; Rutberg, L.; Curvall, M.; Enzell, C.R. (1980) Screening of tobacco smoke constituents for mutagenicity using the Ames' test. Toxicology 15:219-232.

20. Fluck, E.R.; Poirier, L.A.; Ruelius, H.W. (1976) Evaluation of a DNA polymerase-deficient mutant of *E. coli* for the rapid detection of carcinogens. Chem. Biol. Interact. 15:219-231. 21. Galloway, S.M.; Bloom, A.D.; Resnick, M.; Margolin, B.H.; Nakamura, F.; Archer, P.; Zeiger, E. (1985) Development of a standard protocol for in vitro cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. Environ. Mutagen. 7:1-51.

22. Galloway, S.M.; Armstrong, M.J.; Reuben, C.; Colman, S.; Brown, B.; Cannon, C.; Bloom, A.D.; Nakamura, F.; Ahmed, M.; Duk, S.; Rimpo, J.; Margolin, B.H.; Resnick, M.A.; Anderson, B.; Zeiger, E. (1987) Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. Environ. Molec. Mutagen. 10(Suppl. 10):1-175.

23. Gart, J.J.; Chu, K.C.; Tarone, R.E. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62:957-974.

24. Haseman, J.K. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.

25. Haseman, J.K.; Huff, J.; Boorman, G.A. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12: 126-135.

26. Haseman, J.K.; Huff, J.; Rao, G.N.; Arnold, J.; Boorman, G.A.; McConnell, E.E. (1985) Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. J. Natl. Cancer Inst. 75:975-984.

27. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. Suppl. 1:3-142.

28. Hayes, A.; Safe, S.S.; Armstrong, D.; Cameron, R.G. (1985) Influence of cell proliferation on initiating activity of pure polychlorinated biphenyls and complex mixtures in resistant hepatocyte in vivo assays for carcinogenicity. J. Natl. Cancer Inst. 74:1037-1041.

29. Hjort, A.M.; Kaufmann, C.E. (1920) The local anesthetic properties of phenyl methyl carbinol. J. Pharmacol. Exp. Ther. 15:129-134.

30. Hopkins, R.P.; Borge, P.A.; Callaghan, P. (1972) Dehydrogenation of DL-methylphenylcarbinol in the rat. Proc. Biochem. Soc. 127:26P-27P.

31. Ishidate, M., Jr.; Sofuni, T.; Yoshikawa, K.; Hayashi, M.; Nohmi, T.; Sawada, M.; Matsuoka, A. (1984) Primary mutagenicity screening of food additives currently used in Japan. Food Chem. Toxicol. 22:623-636.

32. Kaplan, E.L.; Meier, P. (1958) Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53:457-481.

33. Kikuchi, Y.; Yamamoto, K.I.; Yamamoto, K.S.; Sakamoto, Y. (1977) Mutagenicity study on *O*,*S*-dibenzoyl thiamine hydrochloride in bacteria. Vitamins (Japan) 51:49-55.

34. Kirk-Othmer Encyclopedia of Chemical Technology (1982) Propylene. 3rd ed., Vol. 19. New York: John Wiley & Sons, Inc., pp. 240-241.

35. Kitchen, D.N. (1984) Neoplastic renal effects of unleaded gasoline in Fischer 344 rats. Mehlman, M.A.; Hemstreet, G.P., III; Thorpe, J.J.; Weaver, N.K., Eds.: Renal Effects of Petroleum Hydrocarbons. Advances in Modern Environmental Toxicology, Vol. VII. Princeton: Princeton Scientific Publishers, Inc., pp. 65-71.

36. Kojima, M.; Katohgi, Y.; Hatae, K. (1976) Induction of a respiration-deficient mutant of *Saccharomyces sake* by phenyl propanols and related compounds. Hakko Kogaku Zasshi (J. Ferment. Technol.) 54:11-15.

37. Kurokawa, Y.; Hayashi, Y.; Maekawa, A.; Takahashi, M.; Kokubo, T.; Odashima, S. (1983) Carcinogenicity of potassium bromate administered orally to F344 rats. J. Natl. Cancer Inst. 71:965-971.

38. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.

39. Maronpot, R.R.; Boorman, G.A. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80. 40. McConnell, E.E. (1983a) Pathology requirements for rodent two-year studies. I. A review of current procedures. Toxicol. Pathol. 11:60-64.

41. McConnell, E.E. (1983b) Pathology requirements for rodent two-year studies. II. Alternative approaches. Toxicol. Pathol. 11:65-76.

42. McConnell, E.E.; Solleveld, H.A.; Swenberg, J.A.; Boorman, G.A. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. 76:283-289.

43. Milvy, P.; Garro, A.J. (1976) Mutagenic activity of styrene oxide (1,2-epoxyethylbenzene), a presumed styrene metabolite. Mutat. Res. 40: 15-18.

44. Mortelmans, K.; Haworth, S.; Lawlor, T.; Speck, W.; Tainer, B.; Zeiger, E. (1986) Salmonella mutagenicity tests. II. Results from the testing of 270 chemicals. Environ. Mutagen. 8(Suppl. 7):1-119.

45. Myhr, B.; Bowers, L.; Caspary, W.J. (1985) Assays for the induction of gene mutations at the thymidine kinase locus in L5178Y mouse lymphoma cells in culture. Prog. Mutat. Res. 5:555-568.

46. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassay in Small Rodents. NCI Technical Report No. 1. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 65 p.

47. National Cancer Institute (NCI) (1978) Bioassay of Chlorobenzilate for Possible Carcinogenicity. NCI Technical Report No. 75. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 82 p.

48. National Cancer Institute (NCI) (1980) Bioassay of Benzoin for Possible Carcinogenicity. NCI Technical Report No. 204. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, MD. 114 p. 49. National Institute for Occupational Safety and Health (NIOSH) (1988) National Occupational Exposure Survey (NOES) as of May 10, 1988. National Institute for Occupational Safety and Health, Cincinnati.

50. National Institutes of Health (NIH) (1978) Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

51. National Toxicology Program (NTP) (1986) Toxicology and Carcinogenesis Studies of Ephedrine Sulfate in F344/N Rats and B6C3F₁ Mice. NTP Technical Report No. 307. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. 186 p.

52. National Toxicology Program (NTP) (1987a) Toxicology and Carcinogenesis Studies of 1,4-Dichlorobenzene in F344/N Rats and B6C3F₁ Mice. NTP Technical Report No. 319. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. 198 p.

53. National Toxicology Program (NTP) (1987b) Toxicology and Carcinogenesis Studies of Dimethyl Methylphosphonate in F344/N Rats and B6C3F₁ Mice. NTP Technical Report No. 323. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. 172 p.

54. National Toxicology Program (NTP) (1987c) Toxicology and Carcinogenesis Studies of Phenylephrine Hydrochloride in F344/N Rats and B6C3F₁ Mice. NTP Technical Report No. 322. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. 172 p.

55. National Toxicology Program (NTP) (1989) Toxicology and Carcinogenesis Studies of Benzyl Alcohol in F344/N Rats and $B6C3F_1$ Mice. NTP Technical Report No. 343. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. 158 p. 56. National Toxicology Program (NTP) (1990) Toxicology and Carcinogenesis Studies of *d*-Limonene in F344/N Rats and B6C3F₁ Mice. NTP Technical Report No. 347. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. 165 p.

57. Nohmi, T.; Miyata, R.; Yoshikawa, K.; Ishidate, M., Jr. (1985) Mutagenicity tests on organic chemical contaminants in city water and related compounds. I. Bacterial mutagenicity tests. Eisei Shikenjo Hokoku 103:60-64.

58. Oda, Y.; Hamano, Y.; Inoue, K.; Yamamoto, H.; Niihara, T.; Kunita, N. (1978) Mutagenicity of food flavours in bacteria. 1. Osaka-Furitsu Koshu Eisei Kenkyu Hokoku Shokuhin Eisei Hen 9:177-181.

59. Opdyke, D.L.J. (1974) Styrallyl alcohol. Food Cosmet. Toxicol. 12:995-996.

60. Rohrbach, P.; Robineau, M. (1958) Etude pharmacologique de choleretiques de synthese. II. Effet exerce sur la composition de la bile. III. Toxicite. Arch. Int. Pharmacodyn. 116:154-169.

61. Rosen, A.A.; Skeel, R.T.; Ettinger, M.B. (1963) Relationship of river water odor to specific organic contaminants. J. Water Pollut. Control Fed. 35:777-782.

62. Sadtler Standard Spectra. IR No. 2191; UV No. 582; NMR No. 133. Philadelphia: Sadtler Research Laboratories.

63. Shackelford, W.M.; Keith, L.H. (1976) Frequency of Organic Compounds Identified in Water. Athens, GA: U.S. Environmental Protection Agency.

64. Short, B.G.; Burnett, V.L.; Cox, M.G.; Bus, J.S.; Swenberg, J.A. (1987) Site-specific renal cytotoxicity and cell proliferation in male rats exposed to petroleum hydrocarbons. Lab. Invest. 57:564-574.

65. Smith, J.N.; Smithies, R.H.; Williams, R.T. (1954) The metabolism of alkylbenzenes. Stereochemical aspects of the biological hydroxylation of ethylbenzene to methylphenylcarbinol. Biochemistry 56:320-324. 66. Smyth, H.F., Jr.; Carpenter, C.P. (1944) The place of the range finding test in the industrial toxicology laboratory. J. Ind. Hyg. Toxicol. 26: 269-273.

67. Tarone, R.E. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

68. Testa, B.; Jenner, P. (1976) Drug Metabolism: Chemical and Biochemical Aspects. New York: Marcel Dekker Inc., p. 247.

69. U.S. Environmental Protection Agency (USEPA) (1976) Organic Compounds Identified in Drinking Water in the United States. USEPA, Cincinnati.

70. U.S. Environmental Protection Agency (USEPA) (1986) Effect of Phenylethyl Alcohol (PEA) on Pregnancy of the Rat. Huntingdon Research Centre. USEPA.

71. U.S. Environmental Protection Agency (USEPA) (1988) Computer Printout (CIS): 1977 Production Statistics for Chemicals in the Nonconfidential Initial TSCA Chemical Substances Inventory. Office of Pesticides and Toxic Substances, Washington, DC.

72. Wilkie, D.; Maroudas, N.G. (1969) Induction of cytoplasmic respiratory deficiency in yeast by phenethyl alcohol. Genet. Res. 13:107-111.

73. Wislocki, P.G.; Miller, E.C.; Miller, J.A.; McCoy, E.C.; Rosenkranz, H.S. (1977) Carcinogenic and mutagenic activities of safrole, 1'-hydroxysafrole, and some known or possible metabolites. Cancer Res. 37:1883-1891.

74. Zeiger, E.; Pagano, D.A. (1984) Suppressive effects of chemicals in mixture on the *Salmonella* plate test response in the absence of apparent toxicity. Environ. Mutagen. 6:683-694.

75. Zeiger, E.; Anderson, B.; Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W. (1987) Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals. Environ. Mutagen. 9(Suppl. 9):1-110.

a-Methylbenzyl Alcohol, NTP TR 369

APPENDIX A

SUMMARY OF LESIONS IN MALE RATS IN

THE TWO-YEAR GAVAGE STUDY OF

a-METHYLBENZYL ALCOHOL

TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF \mathfrak{a} -METHYLBENZYL ALCOHOL	59
TABLE A2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF \mathfrak{a} -METHYLBENZYL ALCOHOL	62
TABLE A3	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF \mathfrak{a} -METHYLBENZYL ALCOHOL	68
TABLE A4a	HISTORICAL INCIDENCE OF KIDNEY TUBULAR CELL TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	72
TABLE A4b	HISTORICAL INCIDENCE OF URINARY BLADDER TRANSITIONAL CELL TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	73
TABLE A5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF g-METHYLBENZYL ALCOHOL	74

PAGE

58

•

	Vehicle	Control	Low	Dose	High	Dose
Animals initially in study	50				50	
Animals necropsied	50		50		50	
Animals examined histopathologically	50		50		50	
NTEGUMENTARY SYSTEM				·		
*Skin	(50)		(50)		(50)	
Squamous cell papilloma	1	(2%)				
Squamous cell carcinoma	1	(2%)				
Basal cell tumor			1	(2%)		
Keratoacanthoma	1	(2%)				
Sarcoma, NOS					1	(2%)
Fibrosarcoma		(2%)				
*Subcutaneous tissue	(50)		(50)		(50)	
Sarcoma, NOS	1	(2%)				
Fibroma	- 8	(16%)				
Fibrosarcoma				(2%)		
Fibrous histiocytoma, malignant			1	(2%)		
Myxoma	1	(2%)				
RESPIRATORY SYSTEM						
#Lung	(50)		(50)		(50)	
Squamous cell carcinoma, metastatic	1	(2%)				
Alveolar/bronchiolar adenoma			1	(2%)	1	(2%)
Alveolar/bronchiolar carcinoma	1	(2%)	2	(4%)		
Chordoma, metastatic	1	(2%)				
HEMATOPOIETIC SYSTEM						
*Multiple organs	(50)		(50)		(50)	
Malignant lymphoma, NOS		(2%)	(,		(/	
Malignant lymphoma, undifferentiated typ		(2.0)			1	(2%)
Leukemia, mononuclear cell		(30%)	1	(2%)		
#Spleen	(50)		(50)		(48)	
Leukemia, mononuclear cell	(00)			(2%)	(10)	
#Mediastinal lymph node	(48)		(47)	(2,0)	(41)	
Alveolar/bronchiolar carcinoma, metastatio				(2%)	(/	
			·	(2,0)		
CIRCULATORY SYSTEM	(20)		(=0)			
#Heart	(50)		(50)	(00)	(50)	
Alveolar/bronchiolar carcinoma, invasive		(0~)	1	(2%)		
Neurilemoma, malignant	1	(2%)				
DIGESTIVE SYSTEM						
#Liver	(50)		(50)		(50)	
Hepatocellular adenoma		(4%)		(4%)		
#Pancreas	(48)		(50)		(47)	
Acinar cell adenoma	2	(4%)	1	(2%)		
URINARY SYSTEM						
#Kidney	(50)		(50)		(50)	
Tubular cell adenoma	(40)			(2%)		(10%)
Tubular cell adenocarcinoma				(2%)	Ŭ	. = = /•/
	(10)				(47)	
#Urinary bladder	(48)		(46)		(427)	

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL

NDOCRINE SYSTEM #Anterior pituitary Chromophobe adenoma Chromophobe carcinoma #Adrenal Cortical adenoma #Adrenal medulla		(18%)	(49)	<u> </u>		
#Anterior pituitary Chromophobe adenoma Chromophobe carcinoma #Adrenal Cortical adenoma	9 1	(18%)	(49)			
Chromophobe adenoma Chromophobe carcinoma #Adrenal Cortical adenoma	9 1	(18%)			(49)	
Chromophobe carcinoma #Adrenal Cortical adenoma	1			(18%)		(4%)
#Adrenal Cortical adenoma		(2%)	3	(10%)	2	(4/0)
Cortical adenoma		(270)	(50)		(49)	
		(2%)		(2%)	(40)	
# 11 QI CHAI INCUUNA	(50)	(270)	(50)	(2101	(49)	
Pheochromocytoma		(32%)		(38%)	(= =)	(8%)
Pheochromocytoma, malignant	10	(02.10)		(2%)	-	(0,0)
#Thyroid	(48)		(48)	(210)	(41)	
Follicular cell adenoma	(40)			(4%)		(5%)
C-cell adenoma	9	(19%)		(2%)	-	(\mathbf{O},\mathbf{O})
C-cell carcinoma	-	(2%)	4	(2.10)	1	(2%)
#Parathyroid	(29)	(270)	(37)		(35)	(270)
Adenoma, NOS	(25)		(07)		x = - ,	(3%)
#Pancreatic islets	(48)		(50)		(47)	
Islet cell adenoma		(4%)	(00)		(447)	
Isiet cen adenoma	2	(4%)				
EPRODUCTIVE SYSTEM						
*Mammary gland	(50)		(50)		(50)	
Fibroadenoma	1	(2%)			1	(2%)
*Preputial gland	(50)		(50)		(50)	
Carcinoma, NOS			3	(6%)		
Adenoma, NOS	2	(4%)	1	(2%)		
#Testis	(49)		(47)		(46)	
Interstitial cell tumor	46	(94%)		(77%)		(76%)
Mesothelioma, NOS			1	(2%)	1	(2%)
VERVOUS SYSTEM None						
PECIAL SENSE ORGANS		<u></u>	<u></u>			
*Zymbal gland	(50)		(50)		(50)	
Squamous cell carcinoma		(2%)		(2%)		
-		·			···	
IUSCULOSKELETAL SYSTEM *Bone	(ED)		(EA)		(50)	
	(50)	(90)	(50)		(50)	
Squamous cell carcinoma, invasive *Pelvic bones	(50)	(2%)	(50)		(50)	
Osteosarcoma	(00)		(50)		· /	(2%)
					۰ 	(270)
ODY CAVITIES						
*Mediastinum	(50)		(50)		(50)	
Alveolar/bronchiolar carcinoma, invasive				(2%)		
Alveolar/bronchiolar carcinoma, metastatic			1	(2%)		
LL OTHER SYSTEMS						<u> </u>
*Multiple organs	(50)		(50)		(50)	
Mesothelioma, NOS		(6%)	(00)			(2%)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL (Continued)

	Vehicle Control	Low Dose	High Dose
ANIMAL DISPOSITION SUMMARY		·····	
Animals initially in study	50	50	50
Natural death	12	30	37
Moribund sacrifice	2	3	4
Terminal sacrifice	35	8	1
Dosing accident	1	8	8
Accidentally killed, nda		1	
Total animals with primary tumors** Total primary tumors Total animals with benign tumors Total benign tumors Total animals with malignant tumors Total malignant tumors Total animals with secondary tumors##	49 128 49 101 21 24 2	42 88 41 75 10 12 2	38 58 37 52 4 4
Total secondary tumors	3	4	
Total animals with tumors	•		•
uncertain benign or malignant	3	1	2
Total uncertain tumors	3	1	2

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 # Number of animals examined microscopically at this site

Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

ANIMAL	- C	c	c	C 2	C	С	C	С	C 2	c	C	С	С	C	C	C	С	ç	Ç	Ç	ç	C	Ċ	c	C
NUMBER	1 4	4 8	0 7	2 6	$\frac{2}{7}$	4 0	2 3	0 6	$\frac{2}{2}$	4 6	0 2	5 0	1 6	$\frac{1}{3}$	4 2	0 1	0 3	0 4	0 5	0 8	0 9	1 0	1 1	$\frac{1}{2}$	1 5
WEEKS ON STUDY	0 0 0	0 8 2	0 8 5	0 8 9	0 8 9	0 9 0	0 9 2	0 9 4	0 9 4	0 9 5	0 9 9	0 9 9	1 0 0	1 0 2	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Skin		+	+	+	+	+	+	 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Squamous cell papilloma Squamous cell carcinoma Keratoacanthoma Fibrosarcoma Subcutaneous tissue Sarcoma, NOS Fibroma Myxoma	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+ X	+ X	x + x	X +	+	÷	+ X	+	+ X
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcinoma, metastatic Alveolar/bronchiolar carcinoma Chordoma, metastatic	+	+	+ x	+	+ x	+	+	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+
Trachea Nasal cavity	+ +	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph aodes Thymus		+ + + +	++++-	+++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	+++++	++++-	+++++	++++-	+ + + +	++-+	+++++	++++	+++++	++++++	+++++	++++	+++++	++++++	+ + + +	 + + + + + +	+++++	+++++	- + + +
CIRCULATORY SYSTEM Heart Neurilemoma, malignant		+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland		+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Liver Hepatocellular adenoma Bile duct	+	+ +	++	++	+	+ +	+ +	++	++	* *	++	+	++	++	++	++	++	++	++	++	++	++	++	+	++
Pancreas Acinar cell adenoma Esophagus	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	-+	+	+	* *	++	+	++	++	++	++
Stomach Small intestine Large intestine	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+ + +	++++	+ + +	+ + +	+ + +	+ + +		- + + -	+ - +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+++++	+ + +	+ + +	+ + +
URINARY SYSTEM Kidney Urinary bladder	++++	++++	++++	+++	+	+++	++++	+++	++++	++++	 + +	+++	+++	+++	+++	+++	++	+ +	++	+++	++++	++	+++	++	+ +
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma	+	+	+	+	+	+	+	+	+	* x	+	+ x	+	+	* X	+	+	+	+	+	+	* x	+	* x	+
Chromophobe carcinoma Adrenal Cortical adenoma	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	÷	+	+	+	+	+
Pheochromocytoma Thyroid C-cell adenoma C-cell carcinoma	+	+	+	+	X + X	+	+	-	X +	+	+	+	+	+	+	* X	Х +	+	X +	Х +	+	X +	+	* X	+
Parathyroid Pancreatic islets Islet cell adenoma	+	+ +	+ +	+ +	+ +	- +	+ +	- +	+ +	+ -	+ +	+	+	+ +	+	-	- +	+ +	- +	+ +	+ +	+ +	+ +	+ +	+ +
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	N	+	+	+	+	+	+	+	+	N	N	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+
Testis Interstitial cell tumor	+	\mathbf{x}^+	*	*	-	* x	*	*	*	+	* x	*	, x	* X	*	*	*	*	*	*	*	+	*	×	*
Prostate Preputial/clitoral gland Adenoma, NOS	Ñ	+ N	n+ N	+ N	Ň	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	Ň X	, N	N	+ N	N	+ N	+ N	+ N	+ N	+ N	+ N	+ N
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM Bone Squamous cell carcinoma, invasive	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	+	N
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, NOS Maligmant lymphoma, NOS		N	N	N	N	N X	N	N	N	N	N X	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N
Malignant lymphoma, NOS Leukemia, mononuclear cell		X		X			x	X	X	X	A							X			X		X		

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL: VEHICLE CONTROL

Tissue examined microscopically

 Required tissue not examined microscopically
 Tumor incidence
 Necropsy, no autolysis, no microscopic examination
 Animal missexed

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

								$(\mathbf{U}$	UIII		led	.,														
ANIMAL NUMBER	C 1 7	C 1 8	C 1 9	C 2 0	C 2 1	C 2 4	C 2 5	C 2 8	C 2 9	С 3 0	C 3 1	C 3 2	C 3 3	C 3 4	C 3 5	С 3 6	C 3 7	C 3 8	C 3 9	C 4 1	C 4 3	C 4 4	C 4 5	C 4 7	C 4 9	TOTAL:
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES TUMORS
INTEGUMENTARY SYSTEM																					<u> </u>					
Skin Squamous cell papilloma Squamous cell carcinoma Keratoacanthoma Fibrosarcoma Subcutancous tissue	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	*50 1 1 1 *50
Sarcoma, NOS Fibroma Myxoma		,		,		·	,	x	•			,	x		•	•		X X			·	x				1 8 1
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcinoma, metastatic Alveolar/bronchiolar carcinoma Chordoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1 1 50
Nasal cavity	+	÷	÷	÷	÷	÷	<u> </u>	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	+	÷	+	-	+	+	+	+	47
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	+++++	++++	++++	++++	++++	++++	+ + +	++++	++++	+++++	+++++	+++++	+++++	++++	++++	+++	+++.	+++++	++++	++++	++++++	49 50 48
Thymus CIRCULATORY SYSTEM	<u>+</u>	+		+	-	+	+	+	+	+		+	+		+	+		+	+	+	+	+	+	+	+	40
Heart Neurilemoma, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
DIGESTIVE SYSTEM Salivary gland Liver	++++	+++	+++	++++	+++	+++	++++	++++	++	+ +	+++	++++	+ +	++++	+++	+++	++++	+++	+++	+++	+ +	+++	+++	+++	+ + +	49 50
Hepatocellular adenoma Bile duct Pancreas Acinar cell adenoma	+++	+ +	X + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	2 50 48 2												
Esophagus Stomach	++++	+	+++	++++	+++	++++	+	+	+ +	+++	+ +	+	+ +	++	+ +	+++	+++	++++	+++	+	+	+	+++	+++	+++	49 49
Small intestine Large intestine	+ +	+ +	+ +	+ +	.+ +	+ +	+++	+ +	+ +	+++	+ +	+++	+ +	+ +	+++	+ +	+ +	+++	+ +	+ +	, + +	+ +	+++	+ +	+ +	48 48
URINARY SYSTEM Kidney Urinary bladder	++++	+++	+++	+++	+	+++	++++	+++	++++	+++	++	+ + +	+ + +	+++	+++	+ +	+++	++++	+++	+++	++++	++++	+++	+++	++++	50 48
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma	+	+	+	+	+	+	+	+	+	+	+	* x	* x	+	+	+	+	* x	* *	+	+	+	+	+	+	50 9
Chromophobe carcinoma Adrenal Cortical adenoma Pheochromocytoma	+	+ X	+	+ X	+ X	+	+	+	+	+ X	÷	+	+ X	+ X	+	+ X	+	+ X	+ x	+	+	+	+	+ X	*	1 50 1 16
C-cell adenoma C-cell arcinoma	x+	+	* X	+	+	+	+	+	+	+	+	+	÷ x	+	-	+	+	+ X	+	+	÷	*	* X	+ X	+	48
Parathyroid Pancreatic islets Islet cell adenoma	-+	+ +	+ +	+ +	+ +	+	+ +	+	÷	+ +	÷	+ +	;* + +	+	- + X	+	°+ +	+ +	+ +	+	+ +	+	+ + X	+	- +	29 48 2
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	*50
Testis Interstitial cell tumor	x +	*	*	*	* x	*	*	* x	*	*	* X	*	*	*	* X	*	*	*	* x	*	*	*	*	* x	*	49 46
Prostate Preputial/clitoral gland Adenoma, NOS	n N	+ N	N	+ N	ň	ň	n+ N	+ N	+ N	n+	+ N	ň	+ N X	, N	+ N	n N	+ N	, N	+ N	+ N	n N	+ N	+ N	+ N	+ N	44 *50 2
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Zymbal gland Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
MUSCULOSKELETAL SYSTEM Bone Squamous cell carcinoma, invasive	N	+	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, NOS Malignant lymphoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 3 1

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: VEHICLE CONTROL (Continued)

* Animals necropsied

ANIMAL NUMBER		C 1 5	C 1 2	C 0 9	C 3 7	C 4 8	C 4 5	C 3 8	C 2 5	C 3 2	C 4 6	C 4 0	C 2 6	C 1 4	C 1 6	C 2 1	C 0 2	C 2 0	C 2 9	C 2 2	C 4 2	C 4 7	C 3 3	C 0 3	C 2 7
WEEKS ON STUDY	007	0 0 7	0 4 6	0 5 0	0 5 0	0 5 0	0 5 3	0 6 8	0 7 9	0 8 1	0 8 2	0 8 3	0 8 4	0 8 5	0 8 5	0 8 5	0 8 6	0 8 7	0 8 7	0 8 9	0 8 9	0 8 9	0 9 1	0 9 2	0 9 2
INTEGUMENTARY SYSTEM	-	+	+	+		+	+	+		+	+	 +	+	+	+	+	+	+	+	+	+	+	+	+	+
Basal cell tumor Subcutaneous tissue Fibrosarcoma Fibroshistiocytoma, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+ X	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X	+	+	+
Trachea Nasal cavity	+++	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+++	++++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
HEMATOPOIETIC SYSTEM Bone marrow Spleen Leukemia, mononuclear cell		+++	+ +	+++	++	++++	+ +	+++	+ +	++++	+ +	+ +	+ +	+ +	+ +	+++	+ +	++	+ +	+ +	+++	+ +	++++	+ +	+ +
Lymph nodes Alveolar/bronchiolar carcinoma, metastatic Thymus	+	+ +	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+ -	+ +	+	+ +	+ -	+ +	+ 	+	+	+ +	+ +	+ +
CIRCULATORY SYSTEM Heart Alveolar/bronchiolar carcinoma, invasive	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	++++	+ +	+ .+	+++	- +	+ +	++++	- +	++++	+ +	+++	++++		+ +	+++	+++	+++		++++	++++	+ +	++++		+++	+++++
Bile duct Pancreas Acinar cell adenoma	+++++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	X + +	+ +	+ +
Esophagus Stomach Small intestine Large intestine	++++++	+++++	+ + + +	+ + + +	+ + + +	+++-	+ + + +	+ + + +	+++~	+ + + -	++++	+++++	++++	+ + + +	+++++	++++	+ + + +	+ + + +	++++	+++++	+ + + +	+++-	++++++	+ + + +	+ + + +
URINARY SYSTEM Kidney Tubular cell adenoma	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Tubular cell adenocarcinoma Urinary bladder	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+		-	+	+
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma		+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+ x	+	+	+ X	+	+	+	+	*	+
Adrenal Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+ X	+ X	+	+	+	+	+ X	+	+	+ X	+	+
Thyroid Follicular cell adenoma C-ceil adenoma Parathyroid	+	+	+	++	+	++	+	-	+	++	+	+	++	+	++	+	+	-	+	+	+	++	+	+	+
REPRODUCTIVE SYSTEM Mammary gland Testis Interstitial cell tumor	+++++++++++++++++++++++++++++++++++++++	+++	N +	N +	+ +	N +	N +	+ + X	+ + X	N	+ + x	+ + X	N + X	+ + X	N + X	+ +	+ + X	N + X	N + X	N + X	+ + X	+	N _	N +	N + X
Mesothelioma, NOS Prostate Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	Ň	+ N	+ N	+ N	+ N	+ N	+ N	Ň	+ N	Ň	+ N	+ N X X	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	- N	N	+ N	+ N
NERVOUS SYSTEM Brain	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Squamous ceil carcinoma	- <u>-</u> N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Mediastinum Alveolar/bronchiolar carcinoma, invasive Alveolar/bronchiolar carcinoma, metastatic	-	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL: LOW DOSE

ANIMAL C C C C C C C C C C C C C C C C C C C																										
			C 0 6	C 4 3	C 0 7	C 1 9		C 5 0	C 2 4		C 2 3	C 2 8	C 0 5	C 0 1	C 1 7	C 3 1	C 3 6	C 0 4	C 0 8	C 1 1	C 1 3	C 1 8	C 3 0	C 3 4	C 3 5	TOTAL
WEEKS ON STUDY	0 9 2	0 9 2	0 9 3	0 9 3	0 9 5	0 9 5	0 9 5	0 9 6	0 9 8	0 9 8	0 9 9	0 9 9	1 0 0	1 0 1	1 0 1	1 0 1	1 0 1	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM																	<u> </u>								<u>.</u>	
Skin Basal cell tumor Subcutaneous tissue Fibrosarcoma Fibrous histiocytoma, malignant	++	+ +	+ +	* +	+ +	+ +	+ +	+ +	+ +	+	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	*50 1 *50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+ X	+	+	50 1 2
Nasal cavity	++	++	+	+	+	+	+	++	+	++	++	+	++	+	+	+	+	+	+	++	+	++	+	++	++	50 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Leukemia, mononuclear cell Lymph nodes Alveolar/bronchiolar carcinoma, meta Thymus	+++++++++++++++++++++++++++++++++++++++	+ + X +	+ + - +	+ + + +	+ + + +	++++	+++++	+ + + +	+ + +	++++	+ + +	+ + + -	+ + + +	+ + + +	+++-++	+++++	+ + + +	+ + + +	+ + + +	++++	+ + X	+ + + +	+ + + +	+ + + -	+ + + -	50 50 1 47 1 33
CIRCULATORY SYSTEM Heart Alveolar/bronchiolar carcinoma, inv	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	50 1
DIGESTIVE SYSTEM Salivary gland Liver	+++++++++++++++++++++++++++++++++++++++	+++	++++++	+++	+++	+++	++	+++	+++	+++	++++	+++	+++	+++	 	++++		+++	++++	+++++	+++	++++	+++	++++	++++	43 50
Hepatocellular adenoma Bile duct Pancreas Acinar cell adenoma	++++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	x + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	2 50 50 1
Esophagus Stomach Small intestine Large intestine	+++++	+ + +	++	+ + + +	++++	++++	++	++++	+ + + +	+ + +	+ + +	++++	++++	++++	++++	++++	+ + + +	++++	+ + +	+ + + +	++++	+ + + +	+ + + +	++++	+++++	50 49 48 44
URINARY SYSTEM Kidney Tubular cell adenoma Tubular cell adenocarcinoma Urinary bladder	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+ X +	+	+	++	+	++	+	+	+ X +	+	++	50 1 1 46
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma		+	+	*	+	+	+	+	+	* x	+	+ x	+	+ x	+	+	+	+ x	+	+	+	+	+	+	+	49 9
Adrenal Cortical adenoma Pheochromocytoma _Pheochromocytoma, malignant	+ X	+	+	+ X	+	x x	+	+ X	+	+	+ X	+ X	+	+ X	+ X	+ X	+	+ X	+ X	+ X	+ X	+	+	+ X	+ X	50 1 19 1
Thyroid Follicular cell adenoma C-cell adenoma Parathyroid	+	+	* * +	++	+	++	+	+ X +	++	++	+	+	++	++	++	++	+	+	++	++	+	++	++	+	+ x +	48 2 1 37
REPRODUCTIVE SYSTEM Mammary gland Testis Interstitial cell tumor ' Mesothelioma, NOS	+ + X	+ + X	+ + X	N + X	+ + X	+ + X	++++	+ + X	+ + X	N + X	N + X	+ +	+ + X	+ + X	+ + X	+ + X	+ + X	+ + X	N + X	+ + X	N + X	+ + X	+ + X	+ + X X	+ + X	*50 47 36 1
Prostate Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	N ⁺ N	+ N X	n N	n+ N	'n	ň	Ň	+ N	n N	ň	Ñ	+ N	* N	+ N	ň	+ N	+ N	n N	N X	+ N	+ N	n+	+ N	, N	n+ N	44 *50 3 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Zymbai gland Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
BODY CAVITIES Mediastinum Alveolar/bronchiolar carcinoma, inv Alveolar/bronchiolar carcinoma, meta	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X		N X	N	N	*50 1 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

* Animals necropsied

ANIMAL NUMBER	C 4 2	C 0 2	C 3 8	C 4 5	C 4 6	C 0 7	C 0 5	C 4 4	C 2 9	C49	C 2 3	C 2 5	C 1 3	C 5 0	C 1 6	C 0 1		C 3 7	C 4 8	C 4 0	C 4 7	${}^{\mathrm{C}}_{2}_{1}$	C 1 8	C 2 4	C 2 6
WEEKS ON STUDY	000	0 0 1	0 0 2	0 0 2	0 3 2	0 3 9	0 5 2	0 5 3	0 6 1	0 6 1	0 6 3	0 6 5	0 6 9	0 7 1	0 7 2	0 7 5	0 7 5	0 7 5	0 7 7	0 7 8	0 7 8	0 8 0	0 8 1	0 8 1	0 8 1
INTEGUMENTARY SYSTEM Skin Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea Nasal cavity	++++++	+ + +	+ + +	+ + +	+ + +	++++	++++	+ + +	+ + +	++++	+ + +	+ - +	+ + +	++++	++++	+ + +	++++	+ + +	++++	+ + +	++++	+ + +	+ -+	+++++	+ + +
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++++	+++++	+ +	+++++	++++++	+++-	+ + + +	+++++	++++	+++++	++++	++++	- - + -	++++-	+ + + +	+++++	-++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + + -	+++1	+++++	++++-
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Pancreas Esophagus Stomach Small intestine Large intestine	+++++++++++++++++++++++++++++++++++++++	++++++++	+++)+)+1	++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++	++++++	+++++++	++++++++	-+++++++	-++-++-	+++++++++++++++++++++++++++++++++++++++	++ ++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++	1++++++	+++++++++++++++++++++++++++++++++++++++	1+++11+1	++++++++	+++++++
URINARY SYSTEM Kidney Tubular cell adenoma Urinary bladder Transitional cell papilloma	++++	++	+	++	+ +	++	+ +	+ +	+ +	+ +	++	+	+	++	+ +	++	.+	+ +	++	+ +	++	+ +	++	+ + X	+ +
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Adrenal Pheochromocytoma Thyroid Follicular cell adenoma C-cell carcinoma Parathyroid Adenoma, NOS	+++++	++++	+++++	+ + + +	+ + +	+ + + +	+ + + +	+ + +	+ + +	+ + + +	++++	+ +	- - -	+ + + +	+ + + +	+++++++	+ + +	+ + + +	+ + + +	+ X +	+ + X + +	+ + + X +	+ +	+++++	+ + X +
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Testis Interstitial cell tumor	N +	N +	N +	N +	+++	N +	N +	+ +	+ + X	++	+ + X	+++	N + X	+ + X	+ + X	+ + X	N -	+ + X	+ + X	+ + X	N + X	+ + X	N +	+ + X	+ + X
Mesothelioma, NOS Prostate NERVOUS SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	-	+	+	+	+	+	+	+	+
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	- N	+ N X	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+	+ N
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, NOS Malignant lymphoma, undifferentiated type	N	N	N	N	N	N	N	N	N	N X	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL: HIGH DOSE

									•			, ,														
ANIMAL NUMBER	C 3 0	C 3 5	C 3 6	C 0 6	C 3 9	C 4 3	C 1 4	C 3 3	C 4 1	C 2 0	C 0 8	C 2 8	C 3 2	C 0 4	C 1 9	C 1 7	C 1 5	C 0 3	C 3 1	C 0 9	$\begin{array}{c} C \\ 1 \\ 2 \end{array}$	C 2 2	C 3 4	C 2 7	C 1 1	TOTAL:
WEEKS ON STUDY	0 8 2	0 8 2	0 8 2	0 8 3	0 8 3	0 8 3	0 8 4	0 8 4	0 8 4	0 8 6	0 8 7	0 8 7	0 8 7	0 8 8	0 8 8	0 8 9	0 9 0	0 9 1	0 9 1	0 9 2	0 9 2	0 9 2	0 9 6	0 9 7	1 0 4	TISSUES
INTEGUMENTARY SYSTEM Skin Sarcoma, NOS	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea Nasal cavity	+++++	++++	+ + +	+ + +	++++	+ + +	++++	+ + +	+++++	+ -+	++++	+ -+ +	+++++	+ + +	+ ++	+++++	+ X + +	+++++	+ + +	++++	+ + + +	+++++	++++	+++++	+ + +	50 1 46 50
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	++++-	+++++	++++	++++++	+++++	++++-	+++-	+++++	++++	++++++	+++++	++++-+++-++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++	++++-	+++++	+ + + +	+ + + + +	+++++	+++-	+++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	48 48 41 36
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Pancreas Esophagus Stomach Small intestine Large intestine	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++ +	+++++++++++++++++++++++++++++++++++++++	+++++++	+++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + +	++++++	+++-+++++++++++++++++++++++++++++++	++++++++	-++++++++++++++++++++++++++++++++++++++	-+++++++	+ + + + + + + +	+++++++	++++++++	+ + + + + + + + + + + + + + + + + + + +	++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	39 50 50 47 45 47 50 42
URINARY SYSTEM Kidney Tubular cell adenoma Urinary bladder Transitional cell papilloma	+	+++	+ +	+ 	+ +	* * +	++	+ +	++	* * +	+ X +	+ +	+ +	+ +	+ +	+ +	+	 + +	+ +	+ +	+ +	++	* *	+ +	+ X +	50 5 47 1
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Adrenal Pheochromocytoma Thyroid Follicular cell adenoma C-cell carcinoma Parathyroid Adenoma, NOS	+ + + X +	++++	+ + +	+ + +	+ + +	+++++	++++	+++++	+ X + + +	+ + -	+ + - -	++	+ + +	+ + -	+ +	+ + +	+ + + X	+ + +	+ + +	+ + +	+ + +	+ + +	+ + + +	+ + +	+ + x + x + x +	49 2 49 4 41 2 1 35 1
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Testis Interstitial cell tumor Mesothelioma, NOS Prostate	+	+ + X +	+ + X +	+ -	+ + X +	+ + X +	N + X +	N + X +	+ + X +	+ + X +	+ + X +	+ + X +	N + X +	+ + X +	+ + X +	+ + X +	N-	+ + X +	+ + X +	+ + X +	+ + X +	+ + X +	+ X + X +	+ + X +	N + X +	*50 1 46 35 1 46
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	 +	+	+	+	+	, +	+	+	+	+	+	49
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, NOS Malignant lymphoma, undiffer type	N	N	N	N	N -	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 1

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

* Animals necropsied

	Vehicle Control	375 mg/kg	750 mg/kg
Integumentary System: Fibroma	<u></u>	·····	
Overall Rates (a)	8/50 (16%)	0/50 (0%)	0/50(0%)
Adjusted Rates (b)	22.9%	0.0%	0.0%
Terminal Rates (c)	8/35 (23%)	0/8 (0%)	0/1 (0%)
Week of First Observation	104		0,1 (0,0)
Life Table Tests (d)	P = 0.139N	P = 0.163N	P = 0.748N
Incidental Tumor Tests (d)	P = 0.139N P = 0.139N	P = 0.163N P = 0.163N	P = 0.748N
		F=0.1031	F = 0.74814
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P<0.001N	P = 0.003 N	P=0.003N
risher Exact Test (d)		r = 0.00314	1 - 0.00314
ntegumentary System: Fibroma or Fibro	sarcoma		
Overall Rates (a)	9/50 (18%)	1/50 (2%)	0/50 (0%)
Adjusted Rates (b)	25.7%	3.2%	0.0%
Terminal Rates (c)	9/35 (26%)	0/8 (0%)	0/1 (0%)
Week of First Observation	104	89	0. = (0.00)
Life Table Tests (d)	P = 0.218N	P = 0.311N	P = 0.718N
Incidental Tumor Tests (d)	P = 0.090N	P = 0.205N	P = 0.718N
Cochran-Armitage Trend Test (d)	P<0.001N	1 -0.2001	1 -0.11011
Fisher Exact Test (d)	E ZO.UUTH	P = 0.008N	P = 0.001 N
rishet Exact rest (u)		F - 0.000M	1 -0.0011
ntegumentary System: Fibroma, Sarcom	a, or Fibrosarcoma		
Overall Rates (a)	(e) 10/50 (20%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (b)	28.6%	3.2%	5.3%
Terminal Rates (c)	10/35 (29%)	0/8 (0%)	0/1 (0%)
Week of First Observation	104	89	84
Life Table Tests (d)	P = 0.482N	P = 0.263N	P = 0.538
Incidental Tumor Tests (d)	P = 0.171N	P = 0.169N	P = 0.755N
Cochran-Armitage Trend Test (d)	P<0.001N	1 -0.10011	1 = 0.10011
Fisher Exact Test (d)	1 < 0.00114	P = 0.004N	P = 0.004N
Lisher Hadev Lest(u)		1 - 0.00410	1 -0.00421
Lung: Alveolar/Bronchiolar Adenoma or	Carcinoma		
Overall Rates (f)	1/50 (2%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	2.1%	27.4%	11.1%
Terminal Rates (c)	0/35 (0%)	2/8 (25%)	0/1 (0%)
Week of First Observation	89	89	90
Life Table Tests (d)	P = 0.043	P = 0.064	P = 0.383
Incidental Tumor Tests (d)	P = 0.539	P = 0.225	P = 0.409N
Cochran-Armitage Trend Test (d)	P = 0.610	1 0.220	
Fisher Exact Test (d)	1 -0.010	P = 0.309	P = 0.753
		- 0.000	
Hematopoietic System: Mononuclear Cell			
Overall Rates (a)	15/50 (30%)	2/50 (4%)	0/50 (0%)
Adjusted Rates (b)	35.3%	6.5%	0.0%
Terminal Rates (c)	9/35 (26%)	0/8 (0%)	0/1 (0%)
Week of First Observation	82	86	
Life Table Tests (d)	P = 0.044N	P = 0.101 N	P = 0.263 N
Incidental Tumor Tests (d)	P<0.001N	P<0.001N	P = 0.003 N
Cochran-Armitage Trend Test (d)	P<0.001N		
Fisher Exact Test (d)		P<0.001N	P<0.001N
Kidney: Tubular Cell Adenoma	0/50 (021)	1/60 (000)	E/E0 (100)
Overall Rates (f)	0/50 (0%)	1/50 (2%)	5/50 (10%)
Adjusted Rates (b)	0.0%	12.5%	100.0%
Terminal Rates (c)	0/35 (0%)	1/8 (13%)	1/1 (100%)
Week of First Observation		104	83
Life Table Tests (d)	P<0.001	P = 0.210	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.210	P = 0.010
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P=0.011		
		P = 0.500	P = 0.028

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF $_{\mbox{$\alpha$}}$ -METHYLBENZYL ALCOHOL

	Vehicle Control	375 mg/kg	750 mg/kg
Kidney: Tubular Cell Adenoma or Adeno	ocarcinoma		
Overall Rates (f)	0/50 (0%)	2/50 (4%)	5/50 (10%)
Adjusted Rates (b)	0.0%	19.8%	100.0%
Terminal Rates (c)	0/35 (0%)	1/8 (13%)	1/1 (100%)
Week of First Observation		101	83
Life Table Tests (d)	P<0.001	P=0.033	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.141	P = 0.010
Cochran-Armitage Trend Test (d)	P = 0.016		
Fisher Exact Test (d)		P = 0.247	P = 0.028
Anterior Pituitary Gland: Chromophobe	Adenoma		
Overall Rates (f)	9/50 (18%)	9/49 (18%)	2/49 (4%)
Adjusted Rates (b)	23.3%	40.4%	8.3%
Terminal Rates (c)	6/35 (17%)	1/8 (13%)	0/1 (0%)
Week of First Observation	95	82	78
Life Table Tests (d)	P = 0.041	P = 0.024	P = 0.257
Incidental Tumor Tests (d)	P = 0.165N	P = 0.588	P = 0.461 N
Cochran-Armitage Trend Test (d)	P = 0.031 N		
Fisher Exact Test (d)		P = 0.584	P = 0.028N
Anterior Pituitary Gland: Chromophobe			
Overall Rates (f)	10/50 (20%)	9/49 (18%)	2/49 (4%)
Adjusted Rates (b)	24.9%	40.4%	8.3%
Terminal Rates (c)	6/35 (17%)	1/8 (13%)	0/1 (0%)
Week of First Observation	89	82	78
Life Table Tests (d)	P = 0.072	P = 0.045	P = 0.344
Incidental Tumor Tests (d)	P = 0.064N	P = 0.472N	P = 0.160N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P=0.017N	P=0.520N	P=0.015N
Adrenal Medulla: Pheochromocytoma	4.0 (8.0. 20.0. 20.0.	10/20/0000	1110 (0~)
Overall Rates (f)	16/50 (32%)	19/50 (38%)	4/49 (8%)
Adjusted Rates (b)	42.6%	88.1%	100.0%
Terminal Rates (c)	14/35 (40%)	6/8 (75%)	1/1 (100%)
Week of First Observation	89 B < 0.001	85 D < 0.001	78 R = 0.020
Life Table Tests (d)	P<0.001	P<0.001	P = 0.039
Incidental Tumor Tests (d)	P = 0.252	P = 0.013	P = 0.688N
Cochran-Armitage Trend Test (d)	P = 0.005 N	D = 0.000	D-0.000M
Fisher Exact Test (d)		P = 0.338	P = 0.003 N
Adrenal Medulla: Pheochromocytoma or Overall Rates (f)			A (AO (00))
	16/50 (32%)	20/50(40%)	4/49 (8%)
Adjusted Rates (b)	42.6%	88.4%	100.0%
Terminal Rates (c) Week of First Observation	14/35 (40%)	6/8 (75%)	1/1 (100%) 78
	89 R < 0.001	83 R < 0.001	
Life Table Tests (d)	P<0.001	P<0.001	P = 0.039
Incidental Tumor Tests (d)	P = 0.302	P = 0.010	P = 0.688N
Cochran-Armitage Trend Test (d)	P = 0.005 N	D-0.966	D-0.009M
Fisher Exact Test (d)		P = 0.266	P = 0.003 N
Thyroid Gland: C-Cell Adenoma	0/40 (10%)	1 (40 (07))	0/41 (0%)
Overall Rates (f)	9/48 (19%) 25. 20	1/48 (2%)	0/41 (0%)
Adjusted Rates (b)	25.2%	5.6%	0.0%
Terminal Rates (c)	8/34 (24%)	0/8 (0%)	0/1 (0%)
Week of First Observation	89	96	D 0 50537
Life Table Tests (d)	P = 0.190N	P = 0.274N	P = 0.567N
Incidental Tumor Tests (d)	P = 0.052N	P = 0.112N	P = 0.201 N
Cochran-Armitage Trend Test (d)	P<0.001N	D-0.000M	D = 0.000 M
Fisher Exact Test (d)		P = 0.008N	P = 0.003 N

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL (Continued)

	Vehicle Control	375 mg/kg	750 mg/kg
Thyroid Gland: C-Cell Adenoma or Carcinoma	·····		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Overall Rates (f)	10/48 (21%)	1/48 (2%)	1/41 (2%)
Adjusted Rates (b)	28.0%	5.6%	3.4%
Terminal Rates (c)	9/34 (26%)	0/8 (0%)	0/1 (0%)
Week of First Observation	89	96	80
Life Table Tests (d)	P=0.410N	P = 0.231N	P = 0.657
Incidental Tumor Tests (d)	P=0.119N	P = 0.091 N	P = 0.343N
Cochran-Armitage Trend Test (d)	P = 0.002N		
Fisher Exact Test (d)		P = 0.004N	P = 0.008N
Preputial Gland: Carcinoma			
Overall Rates (f)	0/50 (0%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	0.0%	17.9%	0.0%
Terminal Rates (c)	0/35 (0%)	1/8 (13%)	0/1 (0%)
Week of First Observation		83	
Life Table Tests (d)	P = 0.181	P = 0.031	(g)
Incidental Tumor Tests (d)	P = 0.676N	P = 0.131	(g)
Cochran-Armitage Trend Test (d)	P = 0.640		
Fisher Exact Test (d)		P = 0.121	(g)
Preputial Gland: Adenoma or Carcinoma			
Overall Rates (f)	2/50 (4%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	5.5%	17.9%	0.0%
Terminal Rates (c)	1/35 (3%)	1/8 (13%)	0/1 (0%)
Week of First Observation	102	83	
Life Table Tests (d)	P=0.331	P = 0.122	P = 0.974N
Incidental Tumor Tests (d)	P = 0.351 N	P = 0.519	P = 0.735N
Cochran-Armitage Trend Test (d)	P = 0.202N	B 0 500	D 0.947N
Fisher Exact Test (d)		P = 0.500	P = 0.247N
Testis: Interstitial Cell Tumor			
Overall Rates (f)	46/49 (94%)	36/47 (77%)	35/46 (76%)
Adjusted Rates (b)	97.9%	100.0%	100.0%
Terminal Rates (c)	34/35 (97%)	8/8 (100%)	1/1 (100%)
Week of First Observation	82	68	61
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P = 0.339	P = 0.563N	P = 0.782
Cochran-Armitage Trend Test (d)	P = 0.015N		
Fisher Exact Test (d)		P = 0.017N	P = 0.015N
All Sites: Mesothelioma			
Overall Rates (a)	3/50 (6%)	1/50 (2%)	2/50 (4%)
Adjusted Rates (b)	7.6%	12.5%	18.7%
Terminal Rates (c)	1/35 (3%)	1/8 (13%)	0/1 (0%)
Week of First Observation	90	104	61
Life Table Tests (d)	P = 0.110	P = 0.701	P = 0.172
Incidental Tumor Tests (d)	P = 0.391 N	P = 0.367 N	P = 0.306N
Cochran-Armitage Trend Test (d)	P = 0.399N	D 0 0003	D 0 50031
Fisher Exact Test (d)		P=0.309N	P = 0.500 N
All Sites: Benign Tumors			
Overall Rates (a)	49/50 (98%)	41/50 (82%)	37/50 (74%)
Adjusted Rates (b)	100.0%	100.0%	100.0%
Terminal Rates (c)	35/35 (100%)	8/8 (100%)	1/1 (100%)
Week of First Observation	82	68	61
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P = 0.448N	P = 0.445N	P = 0.591 N
Cochran-Armitage Trend Test (d)	P<0.001N	P = 0.008N	P = 0.001 N
Fisher Exact Test (d)			

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL (Continued)

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL (Continued)

	Vehicle Control	375 mg/kg	750 mg/kg
All Sites: Malignant Tumors			·····
Overall Rates (a)	21/50 (42%)	10/50 (20%)	4/50 (8%)
Adjusted Rates (b)	46.0%	51.9%	13.2%
Terminal Rates (c)	11/35 (31%)	3/8 (38%)	0/1 (0%)
Week of First Observation	82	46	63
Life Table Tests (d)	P = 0.285	P = 0.373	P = 0.342
Incidental Tumor Tests (d)	P<0.001N	P = 0.013N	P<0.001N
Cochran-Armitage Trend Test (d)	P<0.001N		
Fisher Exact Test (d)		P = 0.015N	P<0.001N
All Sites: All Tumors			
Overall Rates (a)	49/50 (98%)	42/50 (84%)	38/50 (76%)
Adjusted Rates (b)	100.0%	100.0%	100.0%
Terminal Rates (c)	35/35 (100%)	8/8 (100%)	1/1 (100%)
Week of First Observation	82	46	61
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P = 0.376N	P = 0.530N	P = 0.591 N
Cochran-Armitage Trend Test (d)	P = 0.001 N		
Fisher Exact Test (d)		P = 0.016N	P = 0.001 N

(a) Number of tumor-bearing animals/number of animals examined grossly at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence in animals killed at the end of the study

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group than in vehicle controls is indicated by (N).

(e) A myxoma was also observed in an animal with a fibroma.

(f) Number of tumor-bearing animals/number of animals examined microscopically at the site

(g) No P value is reported because no tumors were observed in the 750 mg/kg and vehicle control groups.

Study	Incidence of Adenomas or Adenocarcinomas in Vehicle Controls	
Historical Incidence at Microbiolo	ogical Associates	
<i>d</i> -Limonene	0/50	
Benzyl alcohol	0/48	
a-Methylbenzyl alcohol	0/50	
TOTAL	0/148 (0.0%)	
SD (b)	0.00%	
Range (c)		
High	0/50	
Low	0/50	
Overall Historical Incidence		
TOTAL	(d) 11/2,092 (0.5%)	
SD (b)	0.89%	
n		
Range (c)		
High	1/48	
Low	0/50	

TABLE A4a. HISTORICAL INCIDENCE OF KIDNEY TUBULAR CELL TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

(a) Data as of May 12, 1988, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.
(d) Includes four tubular cell adenomas, two adenocarcinomas, NOS, and five tubular cell adenocarcinomas

ociates	
(b) 1/48	
0/47	
0/48	
1/143 (0.7%)	
1.20%	
1/48	
0/48	
(e) 5/2.034 (0.2%)	
0.80%	
2/50	
0/50	
	0/47 0/48 1/143 (0.7%) 1.20% 1/48 0/48 (e) 5/2,034 (0.2%) 0.80% 2/50

TABLE A4b. HISTORICAL INCIDENCE OF URINARY BLADDER TRANSITIONAL CELL TUMORS IN
MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

(a) Data as of May 12, 1988, for studies of at least 104 weeks
(b) Papilloma

(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.
(e) Includes three papillomas and two carcinomas

-

	Vehicle	Control	Low	Dose	High	Dose
Animals initially in study	50	······	50		50	
Animals necropsied	50		50		50	
Animals examined histopathologically	50		50		50	
NTEGUMENTARY SYSTEM					<u></u>	
*Skin	(50)		(50)		(50)	
Edema, NOS			1	(2%)		
Ulcer, NOS	1	(2%)				
Inflammation, acute focal			1	(2%)		
Inflammation, acute/chronic	1	(2%)		(
Inflammation, chronic focal	(50)			(2%)	(50)	
*Subcutaneous tissue	(50)		(50)	(00)	(50)	
Abscess, NOS Inflammation, granulomatous				(2%) (2%)		
RESPIRATORY SYSTEM					<u></u>	
#Nasal cavity	(47)		(50)		(50)	
Foreign body, NOS		(2%)		(6%)	-	(12%)
Inflammation, suppurative	7	()	24	(48%)	30	(60%)
Inflammation, chronic		(2%)	-	(A A)		(0.21)
Infection, fungal		(2%)	2	(4%)		(2%)
Foreign material, NOS		(2%)		(90)		(8%)
Hyperplasia, NOS	3	(6%)	4	(8%)		(4%)
Metaplasia, squamous #Nose	(47)		(50)		(50)	(4%)
Fibrous osteodystrophy	. ,	(2%)	(50)		(50)	
*Larynx	(50)	(270)	(50)		(50)	
Hemorrhage	(00)		,	(8%)	(00)	
#Trachea	(50)		(50)		(46)	
Hemorrhage	(00)		(00)			(2%)
Inflammation, acute necrotizing						(2%)
#Lung/bronchus	(50)		(50)		(50)	
Infection, fungal						(2%)
#Lung	(50)		(50)		(50)	
Congestion, NOS	4	(8%)	8	(16%)	10	(20%)
Edema, NOS					3	(6%)
Hemorrhage			1	(2%)	5	(10%)
Pneumonia, aspiration			1	(2%)		(2%)
Bronchopneumonia, acute			1	(2%)		(2%)
Inflammation, chronic		(2%)				(2%)
Granuloma, NOS	4	(8%)				(2%)
Cholesterol deposit			•	(19)		(2%)
Foreign material, NOS		(000)		(4%)		(8%)
Pigmentation, NOS		(22%)		(18%)		(20%)
Hyperplasia, adenomatous Histiocytosis		(20%) (18%)		(8%) (18%)		(2%) (12%)
HEMATOPOIETIC SYSTEM						
#Bone marrow	(49)		(50)		(48)	
Hyperplasia, NOS				(2%)		
Hyperplasia, granulocytic				(4%)	(10)	
#Spleen	(50)		(50)		(48)	(901)
Inflammation, acute necrotizing Fibrosis		(9.01)	•	(10)	1	(2%)
Necrosis, NOS	4	(8%)		(4%) (2%)		
		(00)	1	(270)		
	1	(296)				
Amyloidosis		(2%) (4%)				
		(2%) (4%)	1	(2%)	А	(8%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL

	Vehicle	Control	Low	Dose	High	Dose
EMATOPOIETIC SYSTEM						
#Spleen (Continued)	(50)		(50)		(48)	
Plasmacytosis		(2%	(00)		(-0)	
Hyperplasia, lymphoid	-	(1.0			1	(2%)
Hematopoiesis	2	(4%)			-	(= /• /
#Splenic follicles	(50)	(1,0)	(50)		(48)	
Atrophy, NOS	(00)		(00)			(2%)
#Mandibular lymph node	(48)		(47)		(41)	(,
Hemorrhage	(40)		(41)			(2%)
Inflammation, acute			2	(4%)		(2%)
Plasmacytosis				(2%)	•	(2,0)
#Tracheal lymph node	(48)		(47)		(41)	
Inflammation, acute	(40)		(41)			(2%)
	(40)		(47)			(270)
#Mediastinal lymph node	(48)	(00)	(47)		(41)	
Hemorrhage		(2%)	(1-)		(
#Mesenteric lymph node	(48)	(0~)	(47)		(41)	
Hemorrhage	1	(2%)				
Inflammation, necrotizing granulomatous			1	(2%)	-	(06)
Histiocytosis						(2%)
#Lung	(50)		(50)		(50)	
Erythrophagocytosis					1	(2%)
#Liver	(50)		(50)		(50)	
Hematopoiesis			1	(2%)		
#Thymus	(40)		(33)		(36)	
Cyst, NOS	,		1	(3%)		
Hemorrhage					3	(8%)
Hyperplasia, epithelial			1	(3%)		
#Brain Thrombosis, NOS	(50)		(50)		(49) 1	(2%)
#Mandibular lymph node	(48)		(47)		(41)	
Lymphangiectasis	1	(2%)	1	(2%)	1	(2%)
#Mediastinal lymph node	(48)	•	(47)		(41)	
Lymphangiectasis	1	(2%)				
#Mesenteric lymph node	(48)	(=,	(47)		(41)	
Lymphangiectasis	3	(6%)				
#Heart	(50)	(0.17)	(50)		(50)	
Hemorrhage	(,				,	(2%)
Inflammation, acute						(2%)
Inflammation, chronic	94	(48%)	37	(74%)		(30%)
Fibrosis	2 4		57			(4%)
Calcification, NOS	1	(2%)	Q	(18%)	4	(= /0 /
#Heart/atrium	(50)		(50)		(50)	
Thrombosis, NOS		(6%)		(2%)	(00)	
*Blood vessel	(50)	(0.0)	(50)	(2.0)	(50)	
Inflammation, acute/chronic		(2%)	(00)		(00)	
*Pulmonary artery			(50)		(50)	
Thrombosis, NOS	(50)			(2%)	(50)	
Calcification, NOS	(FO)			(2%)	(60)	
*Mediastinal artery	(50)		(50)	(90)	(50)	
Inflammation, acute/chronic	/= * ·			(2%)	(50)	
*Hepatic artery	(50)		(50)	(07)	(50)	
Thrombosis, NOS				(2%)		
*Splenic artery	(50)		(50)		(50)	
Necrosis, NOS		(2%)				
*Mesenteric artery	(50)		(50)		(50)	
		1001				
Calcification, NOS		(2%)				
Calcification, NOS #Liver Thrombosis, NOS	(50)		(50)		(50)	

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

	Vehicle	Control	Low	Dose	High	Dose
RCULATORY SYSTEM (Continued)			<u> </u>			
#Testis	(49)		(47)		(46)	
Perivasculitis		(2%)	(41)		(10)	
#Adrenal medulla	(50)	(2,0)	(50)		(49)	
Thrombosis, NOS	(00)			(2%)	()	
				(
IGESTIVE SYSTEM						_
*Palate	(50)		(50)		(50)	
Inflammation, acute	(,			(2%)		
Hyperplasia, epithelial			1	(2%)		
*Lip	(50)		(50)		(50)	
Inflammation, acute/chronic		(2%)	(00)			
Hyperplasia, pseudoepitheliomatous		(2%)				
*Periodontal tissues	(50)	(2,0)	(50)		(50)	
Inflammation, acute		(2%)	(00)			(2%)
#Salivary gland	(49)	(/• /	(43)		(39)	
Inflammation, acute		(2%)		(28%)		(23%)
Inflammation, acute/chronic	1	(= 10)				(3%)
Inflammation, chronic			1	(2%)		(3%)
Cytomegaly	1	(2%)	1	<u></u>	•	• /
Metaplasia, squamous	-	(2,0)			1	(3%)
#Liver	(50)		(50)		(50)	(2.27
Hernia, NOS		(6%)		(6%)		(6%)
Cyst, NOS	-	(2%)	Ű	(0,0)	0	(0,0)
Congestion, NOS		(4%)	9	(4%)	4	(8%)
	2	(470)		(4%)		(4%)
Inflammation, acute necrotizing			_	(2%)	4	(470)
Inflammation, chronic suppurative	1	(2%)	I	(270)		
Granuloma, NOS	1		1	(2%)	9	(4%)
Necrosis, focal		(6%) (8%)		(2%) (2%)	2	(**/0)
Metamorphosis, fatty		(8%)	1	(270)	1	(2%)
Hemosiderosis		(2%) (10%)	0	(6%)		(2%)
Cytologic alteration, NOS		(10%) (8%)	3	(0%)		(2%)
Angiectasis #Henetic conculo		(8%)	(50)		(50)	(210)
#Hepatic capsule	(50)	(2%)	(00)		(00)	
Hemorrhage	1	(470)	1	(2%)		
Abscess, NOS	1	(90)	1	(210)		
Hyperplasia, NOS	L	(2%)		(2%)		
Angiectasis	(=0)		(50)		(50)	
#Liver/centrilobular	(50)			(2%)		(2%)
Congestion, NOS	4	(90)				(2%) (4%)
Degeneration, NOS	1	(2%)	2	(4%) (16%)		(4%) (14%)
Necrosis, NOS			o	(10%)		(2%)
Necrosis, diffuse	(50)		(50)		(50)	(20 /0)
#Liver/hepatocytes		(2%)	(00)		(50)	
Atrophy, NOS	(50)		(50)		(50)	
#Bile duct		(86%)		(70%)		(58%)
Hyperplasia, NOS	43 (48)		(50)		(47)	
#Pancreas	(40)			(2%)	(
Dilatation/ducts				(2%) (2%)	1	(2%)
Hyperplasia, NOS	(48)		(50)		(47)	(2 /0)
#Pancreatic duct			(00)		(***)	
Metaplasia, squamous		(2%)	(50)		(47)	
#Pancreatic acinus	(48)		(00)			(2%)
Degeneration, NOS		(000)	-	(100)		
Atrophy, NOS		(23%)		(10%) (6%)		(2%) (4%)
Hyperplasia, NOS		(15%)		(6%)		
#Esophagus	(49)		(50)	1	(45)	
Hemorrhage						(2%)
Inflammation, acute suppurative			(40)			(2%)
#Stomach	(49)	ł	(49)		(47)	
Inflammation, acute			1	(2%)		

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

	Vehicle	Control	Low	Dose	High	Dose
DIGESTIVE SYSTEM (Continued)						
#Glandular stomach	(49)		(49)		(47)	
Ulcer, NOS		(2%)	()		(,	
Inflammation, acute		(2%)				
Inflammation, acute/chronic		(4%)	1	(2%)		
Inflammation, chronic			T	(270)		
	1	(2%)		(90)		
Inflammation, granulomatous				(2%)		
Granuloma, foreign body				(2%)		
Erosion				(2%)	1	(2%)
Necrosis, NOS		(2%)		(2%)		
Calcification, NOS	1	(2%)		(16%)	3	(6%)
Multinucleated giant cell			2	(4%)		
#Gastric serosa	(49)		(49)		(47)	
Abscess, NOS			1	(2%)		
Inflammation, acute/chronic					1	(2%)
#Forestomach	(49)		(49)		(47)	
Ulcer, NOS		(10%)		(4%)		(15%)
Inflammation, acute		(6%)		(22%)		(13%)
Inflammation, acute/chronic		(2%)		(6%)		(9%)
Inflammation, chronic	*	(210)		(4%)		(2%)
	5	(100)				(19%)
Hyperplasia, epithelial	0	(10%)	1	(14%)		
Hyperkeratosis	(10)		<i>(</i> 1)			(4%)
#Colon	(48)		(44)	(0.4)	(42)	
Ulcer, NOS				(2%)		
#Colonic mucosa	(48)		(44)		(42)	
Dilatation, NOS						(2%)
#Colonic serosa	(48)		(44)		(42)	
Inflammation, acute/chronic					1	(2%)
Inflammation, chronic	1	(2%)				
*Rectum	(50)		(50)		(50)	
Inflammation, acute				(2%)		
· · · · · · · · · · · · · · · · · · ·						
URINARY SYSTEM					(2.4.)	
#Kidney	(50)		(50)		(50)	
Pyelonephritis, acute	4	(8%)		(6%)	3	(6%)
Inflammation, chronic			3	(6%)		
Nephropathy	41	(82%)	47	(94%)	46	(92%)
Calcification, NOS	1	(2%)				
Hyperplasia, tubular cell			4	(8%)	4	(8%)
#Kidney/capsule	(50)		(50)	•	(50)	
Inflammation, chronic		(2%)	(00)			
#Kidney/interstitium	(50)	- ~ /	(50)		(50)	
Inflammation, chronic		(2%)	(00)		(00)	
		2701	(50)		(50)	
#Kidney/cortex	(50)	(40)	(50)	(901)	(50)	
Cyst, NOS		(4%)	1	$\chi = \cdots$		
#Kidney/tubule	(50)		(50)		(50)	
Pigmentation, NOS		(12%)				(4%)
#Kidney/pelvis	(50)		(50)		(50)	
Hyperplasia, epithelial	3	(6%)	20	(40%)	4	(8%)
#Urinary bladder	(48)		(46)		(47)	
Hemorrhage			. ,			(2%)
Inflammation, acute	2	(4%)	1	(2%)		(4%)
Inflammation, acute/chronic		(6%)		(4%)	-	
Hyperplasia, epithelial		(6%)	_	(9%)	1	(2%)
NDOCRINE SYSTEM						
	(50)		(49)		(49)	
#Anterior pituitary		(140)				(10)
Cyst, NOS		(14%)	2	(4%)	2	(4%)
Hemorrhage		(2%)				
	1	(2%)				
Hemosiderosis			-	100		(0 ~)
Hemosiderosis Hyperplasia, chromophobe cell Angiectasis	6	(12%) (6%)	3	(6%)	4	(8%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

	Vehicle	Control	Low	Dose	High	Dose
ENDOCRINE SYSTEM (Continued)						
#Adrenal cortex	(50)		(50)		(49)	
Cyst. NOS	(00)			(2%)	()	
Degeneration, lipoid				(8%)		
Cytoplasmic vacuolization	4	(8%)	Ŧ	(0,0)		
Hyperplasia, NOS		(6%)				
#Adrenal medulla	(50)	(0%)	(50)		(49)	
		(160)		(8%)	· · · ·	(10%)
Hyperplasia, NOS		(16%)	4	(0%)	5	(10%)
Hyperplasia, focal		(2%)	(49)		(41)	
#Thyroid	(48)		(48)	(4%)		(2%)
Ultimobranchial cyst	0	(189)				
Hyperplasia, C-cell	8	(17%)		(4%)	1	(2%)
Hyperplasia, follicular cell	(40)			(2%)	(
#Thyroid follicle	(48)		(48)	(0~)	(41)	
Cyst, NOS				(2%)		
#Parathyroid	(29)		(37)		(35)	
Hyperplasia, NOS				(62%)		(11%)
#Pancreatic islets	(48)		(50)		(47)	
Hyperplasia, NOS					1	(2%)
REPRODUCTIVE SYSTEM			·····			
*Mammary gland	(50)		(50)		(50)	
Dilatation/ducts		(26%)		(8%)	1	(2%)
Hyperplasia, NOS		(6%)	*	(0,0)	ī	(2%)
*Preputial gland	(50)	(0.00)	(50)		(50)	(ΔN)
Cystic ducts	(50)			(2%)	(00)	
Inflammation, acute	9	(4%)		(6%)	1	(2%)
······					1	(2%)
Inflammation, acute/chronic		(4%)	1	(2%)		
Hyperplasia, NOS		(4%)			(10)	
#Prostate	(44)		(44)	(a a a a)	(46)	
Inflammation, suppurative		(9%)		(11%)		(4%)
Inflammation, chronic suppurative	3	(7%)		(5%)		(4%)
Hyperplasia, NOS		(23%)		(23%)	9	(20%)
Metaplasia, squamous	2	(5%)	1	(2%)		
*Seminal vesicle	(50)		(50)		(50)	
Dilatation, NOS			1	(2%)		
Inflammation, acute/chronic	1	(2%)				
Inflammation, chronic suppurative			1	(2%)		
Atrophy, NOS			2	(4%)	2	(4%)
#Testis	(49)		(47)		(46)	
Infarct, NOS	/			(2%)	(<i>,</i> ,	
Atrophy, NOS	3	(6%)		(13%)	3	(7%)
Atrophy, diffuse	Ū	(0,0)	v	(10,0)		(2%)
Hyperplasia, interstitial cell	4	(8%)	4	(9%)		(15%)
		(0,0)		(0 10)		(10%)
*Epididymis Inflammation, suppurative	(50)		(50) 1	(2%)	(50)	
NERVOUS SYSTEM #Brain	(50)		(50)		(49)	
Compression, NOS		(2%)		(2%)		
Hemorrhage		(4%)	•	. =	1	(2%)
Infarct, acute		(2%)			1	
*Spinal cord	(50)	(270)	(50)		(50)	
Hemorrhage		(90)	(00)		(50)	
		(2%)	(50)		(50)	
*Olfactory sensory epithelium	(50)		(00)			(ACL)
Inflammation, acute		(90)	•	(00)	2	(4%)
Atrophy, NOS	1	(2%)	3	(6%)		

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

	Vehicle	Control	Low	Dose	High	Dose
PECIAL SENSE ORGANS		······				<u>. </u>
*Eye	(50)		(50)		(50)	
Hemorrhage	(00)			(2%)	(00)	
Inflammation, acute	1	(2%)		(4%)		
Inflammation, acute/chronic	-	(=,		(2%)		
Inflammation, chronic			-	(=,	1	(2%)
Cataract	2	(4%)	11	(22%)		(4%)
Atrophy, NOS		(2%)		(/	_	(= ,
*Eye/sclera	(50)	(2,0)	(50)		(50)	
Calcification, NOS		(2%)			(00)	
*Eve/cornea	(50)	(2,0)	(50)		(50)	
Inflammation, acute/chronic	(00)		· ·	(2%)	(00)	
*Eye/iris	(50)		(50)	(2,0)	(50)	
Inflammation, acute	(00)		,	(2%)		
*Eye/retina	(50)		(50)	(2,0)	(50)	
Degeneration, NOS		(2%)	,	(2%)	(00)	
Atrophy, NOS	1	((4%)		
*Nasolacrimal duct	(50)		(50)	(= /0)	(50)	
Inflammation, acute	()	(6%)	(00)		(00)	
*Zymbal gland	(50)	(0,0)	(50)		(50)	
Hyperplasia, epithelial	(00)		(00)			(2%)
*Middle ear	(50)		(50)		(50)	(2,0)
Inflammation, acute	(00)		(00)			(2%)
Inflammation, chronic suppurative	1	(2%)			•	(200)
*Internal ear	(50)	(270)	(50)		(50)	
Metaplasia, squamous		(2%)	(50)		(00)	
USCULOSKELETAL SYSTEM *Bone Fibrous osteodystrophy *Laryngeal muscle Hemorrhage *Muscle hip/thigh Atrophy, NOS	(50) (50)	(2%)	(50)	(42%) (2%)	(50) 7 (50) (50)	(14%)
ODY CAVITIES *Mediastinum Inflammation, acute/chronic	(50)	(2%)	(50)	(2%)	(50)	
*Inguinal region	(50)		(50)		(50)	
Inflammation, granulomatous	,	(2%)			(
Necrosis, fat		(2%)				
*Pleura	(50)		(50)		(50)	
Edema, NOS				(2%)		
Inflammation, acute suppurative	1	(2%)			1	(2%)
Inflammation, acute/chronic	-		2	(4%)	-	
*Epicardium	(50)		(50)		(50)	
Inflammation, acute		(2%)	,		(20)	
*Mesentery	(50)		(50)		(50)	
Inflammation, necrotizing granulomatous		(12%)		(4%)	(00)	
Necrosis, fat		(2%)	-	,		
LL OTHER SYSTEMS	·					
Adipose tissue Inflammation, granulomatous						
	1					

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

•

	Vehicle Control	Low Dose	High Dose
SPECIAL MORPHOLOGY SUMMARY None			
•·····			·····

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

.

APPENDIX B

SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF

a-METHYLBENZYL ALCOHOL

TABLE B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL	83
TABLE B2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF \mathfrak{a} -METHYLBENZYL ALCOHOL	86
TABLE B3	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF $\mbox{a-METHYLBENZYL}$ ALCOHOL	92
TABLE B4a	HISTORICAL INCIDENCE OF URINARY BLADDER TRANSITIONAL CELL TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	95
TABLE B4b	HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	96
TABLE B5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF \mathfrak{a} -METHYLBENZYL ALCOHOL	97

PAGE

a-Methylbenzyl Alcohol, NTP TR 369

82

	Vehicle	Control	Low	Dose	High	Dose
Animals initially in study	50	<u> </u>	50	<u> </u>	50	
Animals necropsied	50		50		50	
Animals examined histopathologically	50		50		50	
NTEGUMENTARY SYSTEM						
*Subcutaneous tissue	(50)		(50)		(50)	
Sarcoma, NOS		(2.4)		(2%)		
Fibroma		(2%)	1	(2%)		
Myxosarcoma Neurofibroma		(2%) (2%)				
		(2,10)				
RESPIRATORY SYSTEM						
#Lung	(50)	(0~)	(49)	(19)	(48)	
Adenocarcinoma, NOS, metastatic Alveolar/bronchiolar adenoma		(2%) (2%)		(4%)		
Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	1	(2%)		(2%) (2%)		
Embryonal carcinoma, metastatic			1	(470)	1	(2%)
				<u> </u>		
HEMATOPOIETIC SYSTEM	(20)		(E0)		(E0)	
*Multiple organs Leukemia, mononuclear cell	(50)	(24%)	(50)	(4%)	(50)	(4%)
#Mandibular lymph node	(50)	(4470)	(48)	(++70)	z (47)	(9270)
Squamous cell carcinoma, invasive		(2%)	(40)		(=/)	
CIRCULATORY SYSTEM None	·	··				
DIGESTIVE SYSTEM						
#Liver	(50)		(48)		(49)	
Hepatocellular adenoma #Pancreas	(40)			(2%)		
Acinar cell adenoma	(49)		(48)		(45) 1	(2%)
URINARY SYSTEM					-	
#Kidney	(50)		(49)		(50)	
Adenocarcinoma, NOS, metastatic	()	(2%)	(10)		(00)	
#Urinary bladder	(49)		(47)		(48)	
Transitional cell papilloma					2	(4%)
ENDOCRINE SYSTEM	· · · · · · · · · · · · · · · · · · ·					
#Anterior pituitary	(49)	(10.81)	(50)		(50)	
Chromophobe adenoma		(43%)	24	(48%)	7	(14%)
Chromophobe carcinoma #Adrenal	2 (49)	(4%)	(47)		(50)	
Cortical adenoma	(49)		(47)			(2%)
Cortical carcinoma						(2%)
#Adrenal medulla	(49)		(47)		(50)	()
Pheochromocytoma		(8%)		(11%)	()	
Pheochromocytoma, malignant	2	(4%)				
#Thyroid	(47)		(49)		(48)	
Follicular cell carcinoma		(2%)	-	(1~)		
C-cell adenoma		(2%)		(4%)		(00)
C-cell carcinoma	2 (49)	(4%)	1 (48)	(2%)		(2%)
# Paparantia islats	(44)		(48)		(45)	
#Pancreatic islets Islet cell adenoma	(40)			(2%)		(7%)

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF $\alpha\text{-METHYLBENZYL}$ ALCOHOL

REPRODUCTIVE SYSTEM						
	(50)		(50)		(50)	
*Mammary gland Adenocarcinoma, NOS		(4%)		(2%)	(00)	
Fibroadenoma		. ,			5	(10%)
*Clitoral gland		(42%)		(30%)	(50)	(10%)
	(50)		(50)	(90)	(50)	
Carcinoma, NOS	0	(00)		(2%)	•	(09)
Adenoma, NOS	3	(6%)		(8%)		(6%)
*Vagina	(50)		(50)	(0~)	(50)	
Sarcoma, NOS	(=0)			(2%)	(10)	
#Uterus	(50)		(48)	(0.4)	(49)	
Leiomyoma				(2%)		
Endometrial stromal polyp		(18%)		(23%)		(8%)
#Cervix uteri	(50)		(48)		(49)	
Sarcoma, NOS, invasive				(2%)		
#Uterus/endometrium	(50)		(48)		(49)	
Adenoma, NOS	1	(2%)				
Adenocarcinoma, NOS				(4%)		(2%)
#Ovary	(49)		(46)		(48)	
Granulosa cell tumor	2	(4%)	1	(2%)		
Embryonal carcinoma					1	(2%)
NERVOUS SYSTEM		<u>.</u>		<u> </u>		-
#Brain	(50)		(50)		(50)	
Granular cell tumor, NOS	(00)					(2%)
Astrocytoma						(2%)
			·····			(= ,0)
SPECIAL SENSE ORGANS						
*Zymbal gland	(50)		(50)		(50)	
Adenoma, NOS					1	(2%)
MUSCULOSKELETAL SYSTEM		· · · · · · · · · · · · · · · · · · ·		a na ang ang ang ang ang ang ang ang ang		
None						
BODY CAVITIES						
*Mesentery	(50)		(50)		(50)	
Embryonal carcinoma, invasive					1	(2%)
ALL OTHER SYSTEMS						
*Multiple organs	(50)		(50)		(50)	
Squamous cell carcinoma, unclear						
primary/metastatic	1	(2%)				
ANIMAL DISPOSITION SUMMARY						
Animals initially in study	50		50		50	
Natural death	13		21		24	
Moribund sacrifice	2				1	
Terminal sacrifice	34		25		11	
Dosing accident	1		4		14	

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL (Continued)

	Vehicle Control	Low Dose	High Dose
rumor summary			
Total animals with primary tumors**	46	40	22
Total primary tumors	89	77	35
Total animals with benign tumors	41	36	19
Total benign tumors	63	66	27
Total animals with malignant tumors	20	9	7
Total malignant tumors	23	10	7
Total animals with secondary tumors##	2	3	1
Total secondary tumors	3	3	2
Total animals with tumors			
uncertain benign or malignant	2	1	1
Total uncertain tumors	2	1	1
Total animals with tumors			
uncertain primary or metastatic	1		
Total uncertain tumors	1		

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
** Primary tumors: all tumors except secondary tumors
Number of animals examined microscopically at this site
Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

ANIMAL NUMBER		C 3 3	C 2 1		C 3 9	C 2 0	C 3 0	C 4 3	C 4 8	C 2 2	C 1 3	C 1 5	C 4 0	C 0 1	C 1 1	C 3 8	C 0 3	C 0 4	C 0 5	C 0 6	C 0 7	C 0 8	C 0 9	C 1 0	C 1 2
	_	3	1	4	9	0	0	3	8	2	3	5	0	1	1 - 4	8	3	4	5	6	7 	8	9 		2
WEEKS ON STUDY	0 3 4	0 6 7	0 7 5	0 7 7	0 7 9	0 8 0	8 9	0 9 1	0 9 1	0 9 5	0 9 7	0 9 7	9 8		0 3	1 0 3	0 4	0 4	1 0 4	1 0 4	1 0 4	1 0 4		0 4	0 4
NTEGUMENTARY SYSTEM	·																	N							
ubcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+
Myxosarcoma Neurofibroma														x											
ESPIRATORY SYSTEM																									_
ungs and bronchi Adenocarcinoma, NOS, metastatic	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+-	+	+	+	+	+	+	+
Alveolar/bronchiolar adenoma	1.																							X	
'rachea Fasal cavity	+	+	+	+	+	+	++	+	+	++	+	+	+	+	+	+	+	++	+	++	+	+	+	+ +	+
EMATOPOIETIC SYSTEM																									
one marrow pieen	+	++++	++++	++	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	++	+++++++++++++++++++++++++++++++++++++++	+++++	++	++	++++	++	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+++	++	+++++++++++++++++++++++++++++++++++++++	+++	+++	+	++	4
ymph nodes	1 +	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	÷	+	+	+	+	÷	- ÷
Squamous cell carcinoma, invasive hymus	-	+	+	+	+	+	-	+	+	_	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	-
IRCULATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM									,																
alivary gland iver	+	+	+++++++++++++++++++++++++++++++++++++++	+	++++	++++	++	++++	+++	+	+++	+++++++++++++++++++++++++++++++++++++++	+++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+	++++	++++	++	+++	+++	+	++	
ile duct	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	÷	+	+	+	+	+	+	+	
ancreas	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	-
sophagus tomach	++	+++	+++	+++	+++	++++	+++	++	+++	+++	+++	+++	+++	+++	++	++++	++++	+	+++	+++++	++++	+++++++++++++++++++++++++++++++++++++++	+++	+++	-
mall intestine	+	÷	+	+	÷	+	+	+	+	+	+	+	+	+		÷	÷	+	+	+	+	+	+	÷	-
arge intestine	+	+	+	+	+	-	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
RINARY SYSTEM	+	4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenocarcinoma, NOS, metastatic Jrinary bladder	+	+	+	+	+	X +	+	+	+	+	+	+	, +	+	+	+	, +	+	+	+	+	+	+	+	
NDOCRINE SYSTEM									· ·	,		· · · · · ·	· ·												
ituitary	+	* x	* x	+	+	* x	+	+	+	* x	* x	-	+	* x	+	+	* x	* x	+	* x	* x	+	+	+	
Chromophobe adenoma Chromophobe carcinoma		х	X			х				х	х			X			X	X		х	X				2
drenal	+	+	+	+	+	+	+	+	+	* X	+	+	+	-	+	+	+	+	+	+	+	+	+	+	
Pheochromocytoma Pheochromocytoma, malignant					х					х		х				х								•	
hyroid	+	+	+	_	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	~	+	+	+	
Follicular cell carcinoma C-cell adenoma	1																								
C-cell carcinoma																									
Parathyroid Pancreatic islets	+++	-	+	~	+	+	+	+	-	-	+	++	+++	+	_	+	+	_	+	_	+	+	_	+	
Islet cell carcinoma	1	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	т	т	Ŧ	-	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	*	Ŧ	Ŧ	т	
EPRODUCTIVE SYSTEM	-																								
lammary gland Adenocarcinoma, NOS	+	+	+	+	÷	* x	+	+	Ν	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Fibroadenoma reputial/clitoral gland	N	N	Ν	Ν	Ń	Ν	N	X N	N	Ν	N	Ν	X N	N	X N	N	N	X N	X N	X N	Ν	N	Ν	X N	i
Adenoma, NOS		,	,	,			,	,					,				x					X			
Iterus Adenoma, NOS	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	
Endometrial stromal polyp vary	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	X +	X +	+	
Granulosa cell tumor									X									-							
IERVOUS SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
LL OTHER SYSTEMS	·						N			N				N	N	N			N	N	N7	N*	N7	N	
fultiple organs, NOS	N	N	N	N	Ņ	N	Ν	N	N	Ν	N	Ν	N	Ν	N	N	N	N	Ņ	N	N	N	N	N	
Squamous cell carcinoma, unclear primary or metastatic																						х			

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF α-METHYLBENZYL ALCOHOL: VEHICLE CONTROL

+: Tissue examined microscopically
 -: Required tissue not examined microscopically
 X: Tumor incidence
 N: Necropsy, no autolysis, no microscopic examination
 S: Animal missexed

No tissue information submitted
 C: Necropsy, no histology due to protocol
 Autolysis
 M: Animal missing
 B: No necropsy performed

								(U	0	unu	acu	.,														
ANIMAL NUMBER	C 1 4	C 1 6	C 1 7	C 1 8	C 1 9	C 2 3	C 2 5	C 2 6	C 2 7	C 2 8	C 2 9	C 3 1	C 3 2	C 3 4	C 3 5	C 3 6	C 3 7	C 4 1	C 4 2	C 4 4	C 4 5	C 4 6	C 4 7	C 4 9	C 5 0	
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma Myxosarcoma Neurofibroma	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	* x	+	*50 1 1 1
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoma, NOS, metastatic Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1
Trachea Nasal cavity	++	++	++	++	++	+ +	+	+++	++	++	+	++	+	+	+ +	++	++	+	+	++	+	+	++	++	+ +	50 48
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Squamous cell carcinoma, invasive Thymus	- + + + + +	+ + + +	+++++++	+ + + +	+++++++++++++++++++++++++++++++++++++++	+ + + +	++++++++	+ + + + +	+ + + +	 + + + +	+ + + + + +	++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++	+++++++++	+ + + +	++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	50 50 50 1 45
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Pancreas Esophagus Stomach Small intestine Large intestine	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	+++++++	+++++++	+++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	+++++++	+++++++	++++++++	++++++++	++++++++	+++++++	++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	+++++++	+++++++	++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	46 50 50 49 50 49 49 49 49 49
URINARY SYSTEM Kidney Adenocarcinoma, NOS, metastatic Urinary bladder	-	+++	+ +	++	+++	+++	+++	+++	++	+++	+	 + +	+ +	+	+++	++	+++	+++	+ +	+++	+++	++	+++	+++	+++	50 1 49
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Chromophobe carcinoma Adrenai Pheochromocytoma	- + +	+ X +	+	* * +	+	* *	+	+ X +	+ + X	* * +	++	+++	++	* *	* *	* *	++	+	* * *	* * +	+	* *	* * +	++	++	49 21 2 49 4
Pheochromocytoma, malignant Thyroid Follicular cell carcinoma C-cell adenoma C-cell carcinoma Parathyroid Pancreatic islets	++++	++++	+ -+	+ + +	+ +	+ -+	+ -+	+ + +	+ -+	+ ++	++++	+ x + +	+ -+	+++	++++	+ -+	+ -+	++++	+ X + +	+ + +	++++	+ + +	+ X + +	++++	+ X + +	2 47 1 2 34 49
Islet cell carcinoma REPRODUCTIVE SYSTEM Mammary gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50
Adenocarcinoma, NOS Fibroadenoma Preputial/clitoral gland Adenoma, NOS	N	N	N	X N	N	X N	X N	X N X	N	X N	X N	X N	X N	X N	X N	X N	X N	N	X N	N	N	N	N	N	X N	2 21 *50 3
Uterus Adenoma, NOS Endometrial stromal polyp Ovary Granulosa cell tumor	+	+ X +	+	+ X +	+	+	+ X +	+ +	+	+ +	+ X +	++	+	+ +	+ +	+ X +	+ +	+	+ X +	+	+ X +	+	+ + X	+	+	50 1 9 49 2
NERVOUS SYSTEM Brain	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ALL OTHER SYSTEMS Multiple organs, NOS Squamous cell carcinoma,	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
unclear primary or metastatic Leukemia, mononuclear cell	x						X		x						X	x										12

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

• Animals necropsied

ANIMAL NUMBER	C 3	ç	ç	$\frac{C}{2}$	ç	ç	Ç	ç	C	$\frac{C}{2}$	C 3	С	C	С	C	c	С	С	C 2	C	C	С	С	С	c
	0	4 5	0 7	2 4	4 9	2 5	3 3	3 7	1 9	2 9	3 4	32	0 6	$\frac{1}{7}$	0 4	1 1	1 3	1 6	2 6	C 5 0	4 2	2 1	22	2 7	0 1
WEEKS ON STUDY	0 4 9	0 4 9	0 5 0	0 5 2	0 5 2	0 7 0	0 7 5	0 8 3	0 8 5	0 8 5	0 8 6	0 8 8	0 8 9	0 9 0	0 9 1	0 9 4	0 9 9	0 9 9	-0 9 9	0 9 9	1 0 0	1 0 1	1 0 1	1 0 3	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Adenocarrinoma, NOS, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	+
Nasal cavity	++	+	+	+ +	+ +	+	+ +	+	+	+	+	+ +	++	+	+	+	+ +	+	+	+	+	+	+	+ +	+ +
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++	++++++	++++++	++++++	+++++	+++++	++++++	+++++	+++++	++++-	+++++	++++++	++	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + + + -	++++++	+ +	++++++	+++-	++++	++++++	+++++	++++++	+ + + +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Bile duct	++++++	++++++	+++++++++++++++++++++++++++++++++++++++	 + +	+++++	+++++	++++++	++++++	+++++	+++++	++++	++++++	++++	++++	++++	++++++	+++++	+	++++	++++	++++	++++++	+++++	++++++	 + + +
Pancreas Esophagus Stomach Small intestine Large intestine	+++++	+++++	++++	+++++	++++	++++	+ + + +	++++	++++	+++++	+ + + + +	+++++	++++	+ + + +	+++++	++++	++++		· + + + +	++++-	++++	++++	++++	+++	++++
URINARY SYSTEM Kidney Urinary bladder	+++	+++	+++	+	+++	+++	+++	+++	++++	+++	+ + +	+ + +	+++	++	+++	+ +	 + +		+++	++++	+++	+++	+ + +	+++	+ + +
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Adrenai	+++	++	++	+	+ +	* X +	* *	+ +	* *	* * +	* X +	+	+++	+++	+ X +	+	* *	* *	++	+++	* X +	* X +	* * +	++	++
Pheochromocytoma Thyroid C-cell adenoma	+	+	+	+	+	+	+	+	-	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+
C-cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma	+++++	+ +	- +	+ +	- +	+ +	- +	+ +	- +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ -	 +	 +	- +	+ +	+ +	+ +	+ +
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Fibroadenoma	+	+	N	+	+	+	+	+	+ *	+	+	+	+	+	+ x	+ x	+	N	+	+	+	+ X	* x x	+	+
Preputal/clitoral gland Carcinoma, NOS Adenoma, NOS	N	Ν	N	N	N	N	N	N	Ñ	N	N	N	N	N	X N	X N	N X	N	N	N	N	Ñ	Ñ	N	N
Vagina Sarcoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Ñ	Ν	N	N	N	N	N	N	N
Utarus Adenocarcinoma, NOS Sarcoma, NOS, invasive Leiomyoma	+	+	+	+	+	+	+	+	+	+ X	+	+ v	+	+	+	+	+	-	* x	+	+ v	+ X	+	+	Ŧ
Endometrial stromal polyp Ovary Granulosa cell tumor	+	+	+	+	+	+	+	+	+	X +	+	Х +	+	+	+	х +	+	-	X +	+	х -	4 +	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL: LOW DOSE

									0110		ieu	<i>'</i>														
ANIMAL NUMBER	C 0 2	C 0 3	C 0 5	C 0 8	C 0 9	C 1 0	$\begin{array}{c} C \\ 1 \\ 2 \end{array}$	C 1 4	C 1 5	C 1 8	C 2 0	C 2 3	C 2 8	C 3 1	C 3 5	C 3 6	C 3 8	C 3 9	C 4 0	C 4 1	C 4 3	C 4 4	C 4 6	C 4 7	C 4 8	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibroma	+	+	+	+	+	+	+	÷	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	N	+	+	*50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoma, NOS, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+	+	+	+	+	+ X	* x	+	+	+	+	+	+	+	+	+	+ x	+	+	-	+	+	49 2 1 1
Trachea Nasal cavity	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+++	+ +	+ +	+ +	+ +	+++	+ +	+ +	+ -	+ +	+ +	50 48
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++	+++++	++++++	+++++	+++++	+++++	+++++	+ + + +	+++++	++++++	++++++	+++++	++++++	+++++	+ + + +	+++++	++++	+++++	+++++	+++++	++++++	+++++		++++	+++++	49 49 48 43
CIRCULATORY SYSTEM Heart	·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	 +	+	49
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Bile duct	++	+ +	+ + X +	+ +	++	+++++++++++++++++++++++++++++++++++++++	++	++	+++	+ +	++++	+++++	+++	+++	++++	++++	+++	+++	++++	++++	++++	++++	+ -	++++	++++	49 48 1
Pacreas Esophagus Stomach Small intestine Large intestine	+++++++	+ + + + + +	+++++	+ + + + + +	+++++	+++	+ + + + +	+++++	+ + + + + +	+++++	+++++	+++++	+++++	++++++	+++++	+++++	+++++	+ + + + + +	+ + + + + +	+++++	+++++	++++++	+	+ + + + +	+ + + + + +	48 48 50 48 45 44
URINARY SYSTEM Kidney Urinary bladder	++++	++++	++++	+++++	+ +	++++	+++++	+++	++++	+++++	+++	+ +	+ +	+++++	+++++	+++	+++	++++	+ +	++++	++++	++++	+	++++	++++	49 47
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Adrenal Pheochromocytoma Thyroid C-cell adenoma C-cell accinoma	+ X + +	+ X + X + X + X	+ X + +	+ X + +	+++++	+ X + +	+ + X +	+ X + +	+ X + +	+ + +	+++++	+ X + X +	+ + +	+ + +	+ + +	+ + +	+ X + +	+ + +	+ + X +	+ X + +	+ X + +	* + + +	+ - + X	+ X + X +	+ + +	50 24 47 5 49 2 1
Parathyroid Pancreatic islets Islet cell adenoma	+++++	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +	+ +	+ +	+ + X	+	+	+ +	+ +	+ +	+ +	-	+ +	+ +	38 48 1
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	*50
Fibroadenoma Preputial/clitoral gland Carcinoma, NOS	X N	X N	N	X N	N	X N	N	X N	N	N	N X	X N	X N	N	N	N	N	X N	X N	N	X N	N	N	N	N	15 *50 1
Adenoma, NOS Vagina Sarcoma, NOS Uterus	X N	N	N	N	N	N +	N	N	N	N	N	N +	N X +	N	N	N	N	N	N	N	N	X N	X N	N	N	4 *50 1 48
Adenocarcinoma, NOS Sarcoma, NOS, invasive Leiomyoma		ч.	7	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	* x	Ŧ	Ŧ	x	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	-	Ŧ	Ŧ	2 1 1
Endometrial stromal polyp Ovary Granulosa cell tumor	+	X +	+	+	X +	+	+	+	+	* x	+	+	+	X +	+	+	+	<u>x</u>	+	+	+	+	-	X +	+	11 46 1
NERVOUS SYSTEM Brain	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	50
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

* Animals necropsied

								_																	
ANIMAL NUMBER	C 0 2	C 1 0	C 3 8	C 1 8	C 2 3	C 0 8	C 2 5	C 0 7	C 1 7	C 2 0	C 4 9	C 0 4	C 3 0	C 4 5	C 3 1	C 4 4	C 3 3	C 4 3	C 0 5	C 3 2	C 3 7	C 2 6	C 0 6	C 0 1	C 1 3
WEEKS ON STUDY	0	0 0 0	0 0 0	0 0 1	0 0 3	0 3 7	0 3 8	0 4 0	0 4 4	0 4 6	0 4 8	0 4 9	0 4 9	0 5 0	0 5 2	0 5 2	0 5 3	0 5 3	0 6 2	0 6 3	0 6 4	0 6 7	0 7 7	0 8 1	0 8 3
ESPIRATORY SYSTEM ungs and bronchi Embryonal carcinoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	_	+	+	+	+	+	+
rachea Iasal cavity	++++	+ +	+++++	+ +	+ +	+ +	+	++++	+	+ +	+ +	+ +	+ +		+ +	+ +	+ +	+++							
IEMATOPOIETIC SYSTEM ione marrow pleen	+	+ +	++	++	+++	++	+++	++	+++	+++++++++++++++++++++++++++++++++++++++	+++	+++++++++++++++++++++++++++++++++++++++	+ +	+++	+++++	+++++	+++	+++++	+	++++	 + +	+++++	+++++++++++++++++++++++++++++++++++++++	<u>+</u>	+++
ymph nodes hymus	+++	+ +	+ +	+ +	++	+ +	+ +	+ +	++	+ +	+ +	+ +	+ -	+ +	+ +	+	+ +	+ +	+ -	+ +	+ +	+ +	+ +	-	+
IRCULATORY SYSTEM Jeart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+
IGESTIVE SYSTEM alivary gland iver	+++++	++	+++	++	+++	+++++	++++	+++	++++	+++	+++	++++	++++	+++	++	+++	++++	++++	+	++++	-+	 + +	++++	- +	+++
ile duct ancreas Acinar cell adenoma	+	+ +	+ +	+ +	++	+ +	+ +	+ +	++	+	-	+ +	+ +	+ +	+ +	+ +	++								
sophagus Jomach mall intestine arge intestine	+	+ + + +	++++	+ + + +	+ + + +	++++	++++	+++++	-+++	+++++	+++++	+++-	- + + -	++++	++++	-+++	+++++	++++	+	++++-	- + +	+++++	++++	++++	+ + + + +
RINARY SYSTEM	+	 + +	+	 + +	 + +	 + +	+++	++++	 + +	++++	 + +	+	+	+++	+	+	+	+	+	+	+	+++	+	+	+
Transitional cell papilloma	[,			1			,	,	,	Ŧ	T	,	Ŧ	т	r	Ŧ	F	1	т	'	,	Ŧ	
NDOCRINE SYSTEM ituitary Chromophobe adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+
drenal Cortical adenoma Cortical carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
hyroid C-cell carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	-	+	+	+	+
arathyroid ancreatic islets Islet cell adenoma	-	+	+	+	+	+ +	+	+	+	+ +	+	+ +	+	+	+ +	+	+	+ +	-	+	+	+	+ +	+ +	+ +
EPRODUCTIVE SYSTEM Aammary gland Fibroadenoma	N	+	+	N	N	N	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	* x
reputial/clitoral gland Adenoma, NOS Jterus	N _	N +	N +	N +	N	N +	N	N +	N +	Ñ +															
Adenocarcinoma, NOS Endometrial stromal polyp Ovary		+	+	+	_	+	+	, +	+	+	+	х +	+	+	+	+	+	, +	+	X	+	+	+	+	+
Embryonal carcinoma														,											
IERVOUS SYSTEM Frain Granular cell tumor, NOS Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+
PECIAL SENSE ORGANS ymbal gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ODY CAVITIES lesentery Embryonal carcinoma, invasive	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
LL OTHER SYSTEMS Iultiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL: HIGH DOSE

ANIMAL NUMBER	C 1 4	C 4 1	C 3 5	$\begin{array}{c} C\\ 2\\ 1\end{array}$	C 1 5	C 4 2	C 2 7	C 1 9	C 3 4	C 4 0	C 2 4	C 0 3	C 1 1	C 1 2	C 0 9	C 1 6	C 2 2	C 2 8	C 2 9	C 3 6	C 3 9	C 4 6	C 4 7	C 4 8	C 5 0	
WEEKS ON STUDY	0 8 4	0 8 4	0 8 6	0 9 1	0 9 2	0 9 2	0 9 3	0 9 6	0 9 6	0 9 6	0 9 8	0 9 9	1 0 1	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
RESPIRATORY SYSTEM Lungs and bronchi Embryonal carcinoma, metastatic Trachea Nasal cavity	++++	+++++	+ +	+++++	+ + + +	+++++	+ + + +	+ X + +	+++++	+++++	+ + + +	++++	++++	++++	+++++	+++++	+++++	+ + +	+++++	+++++	+++++	+++++	+++++	+++++	+++++	48 1 47 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++++	++++-	- ++++	++++-	+ -+ +	+++++	+++++++++++++++++++++++++++++++++++++++	++++-	+++-	+++++	+++++	++++++	+ + + + + + + + + + + + + + + + + + + +	+++++	++++++	+++++	++++	++++	++++++	+++++	++++	+ + + +	+++++	++++	++++-	48 46 47 39
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Pancreas Acinar cell adenoma Esophagus Stomach Stomach Small intestine Large intestine	+++++++++++++++++++++++++++++++++++++++	++++ +++++	+++++++++	+++++++++++++++++++++++++++++++++++++++	+++- +-+-	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++-+++++++++++++++++++++++++++++++++++	++++ ++++	+++++++++	++++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	++++ +111	++++ ++++++++++++++++++++++++++++++++++	-+++X++++	++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++ +++++	++++ ++++	++++ +++++	+++++++++++++++++++++++++++++++++++++++	++++ ++++	++++ +++-	++++ ++++	47 49 49 45 1 46 46 46 45 39
URINARY SYSTEM Kidney Urinary bladder Transitional cell papilloma	++++	+ +	+ +	+ + X	++,	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	50 48 2
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Adrenal Cortical adenoma Cortical carcinoma Thyroid C-cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	++++++	+ + + + + + + + + + + + + + + + + + + +	+ x + + +	+ + + + +	+ X + + + + + + + + + + + + + + + + + +	+ + -	+ + + +	+ X + + + + + + + + + + + + + + + + + +	+ + + X	+ + + +	+ +	+ + + X	+ + + +	+ + + +	+ + + +	+ + + +	+ + + + + +	+ X + + + + + +	+ + + + +	+ + + +	+x + +x + +x	+x+ + + ++	+ + X + + X + + +	50 7 50 1 48 1 32 45 3
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Preputial/clitoral gland Adenoma, NOS Uterus Adenocarcinoma, NOS Endometrial stromal polyp Ovary Embryonal carcinoma	N N + +	+ N + +	+ N +	+ N +	N N + +	+ NX+ +	+ N + +	+ N + X	+ N + +	+ N + +	+ N + +	+ N + +	N N + +	+ N + +	+ N + +	+ N + +	+ X N X + +	+XN +X +X +	+ N + +	+ N + +	+ NX+ +	+ N + +	+ X N + +	+ X N + X +	+ N + X +	*50 5 *50 3 49 1 4 48 1
NERVOUS SYSTEM Brain Granular cell tumor, NOS Astrocytoma	+	+	+	+	+ X	+	+	+	+	+	+	+	+	* x	+	+	+	+	.+	+	+	+	+	+	+	50 1 1
SPECIAL SENSE ORGANS Zymbal gland Adenoma, NOS	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	'N	N	*50
BODY CAVITIES Mesentery Embryonal carcinoma, invasive	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N X	N	N	N	*50 2

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

* Animals necropsied

	Vehicle Control	375 mg/kg	750 mg/kg
Subcutaneous Tissue: Fibroma, Neurofibr	oma. Sarcoma, or Myxosa	arcoma	<u></u>
Overall Rates (a)	3/50 (6%)	2/50 (4%)	0/50 (0%)
Adjusted Rates (b)	8.4%	6.7%	0.0%
Terminal Rates (c)	2/34 (6%)	1/26 (4%)	0/11 (0%)
Week of First Observation	103	99	
Life Table Tests (d)	P = 0.286N	P = 0.607 N	P = 0.383N
Incidental Tumor Tests (d)	P = 0.165N	P = 0.528N	P = 0.252N
Cochran-Armitage Trend Test (d)	P = 0.082N		1 - 0,20211
Fisher Exact Test (d)	1 -0.0021	P = 0.500N	P = 0.121N
Constantia Contant Manageralian Call	r!!-		
ematopoietic System: Mononuclear Cell Overall Rates (a)	12/50 (24%)	9/50 (10)	9/50 (40)
		2/50 (4%)	2/50 (4%)
Adjusted Rates (b)	29.1%	5.9%	18.2%
Terminal Rates (c)	6/34 (18%)	0/26 (0%)	2/11 (18%)
Week of First Observation	34	83	104
Life Table Tests (d)	P = 0.042N	P = 0.019N	P = 0.201 N
Incidental Tumor Tests (d)	P = 0.002N	P = 0.002N	P = 0.016N
Cochran-Armitage Trend Test (d)	P = 0.001 N		
Fisher Exact Test (d)		P = 0.004N	P = 0.004N
nterior Pituitary Gland: Chromophobe	Adenoma		
Overall Rates (e)	21/49 (43%)	24/50 (48%)	7/50 (14%)
Adjusted Rates (b)	51.5%	63.5%	39.8%
Terminal Rates (c)	15/34 (44%)	13/26 (50%)	3/11 (27%)
Week of First Observation	67	70	53
Life Table Tests (d)	P = 0.478	P = 0.112	P = 0.461N
Incidental Tumor Tests (d)	P = 0.053N	P = 0.215	P = 0.057 N
Cochran-Armitage Trend Test (d)	P = 0.002N		
Fisher Exact Test (d)		P=0.378	P = 0.002N
Interior Pituitary Gland: Chromophobe	Adenoma or Carcinoma		
Overall Rates (e)	23/49 (47%)	24/50 (48%)	7/50 (14%)
Adjusted Rates (b)	56.6%	63.5%	39.8%
Terminal Rates (c)	17/34 (50%)	13/26 (50%)	3/11 (27%)
Week of First Observation	67	70	53
Life Table Tests (d)	P = 0.492N	P = 0.182	P = 0.369N
Incidental Tumor Tests (d)	P = 0.027N	P = 0.335	P = 0.035N
		r = 0.000	F = 0.03514
Cochran-Armitage Trend Test (d)	P<0.001N	D-0 500	D < 0.001 M
Fisher Exact Test (d)		P = 0.538	P<0.001N
drenal Medulla: Pheochromocytoma			
Overall Rates (e)	4/49 (8%)	5/47 (11%)	0/50 (0%)
Adjusted Rates (b)	10.5%	20.0%	0.0%
Terminal Rates (c)	2/34 (6%)	5/25 (20%)	0/11 (0%)
Week of First Observation	95	104	
Life Table Tests (d)	P = 0.376N	P = 0.331	P = 0.259N
Incidental Tumor Tests (d)	P = 0.260 N	P = 0.391	P = 0.105 N
Cochran-Armitage Trend Test (d)	P = 0.068N		·
Fisher Exact Test (d)		P = 0.473	P = 0.056N
drenal Medulla: Pheochromocytoma or	Malignant Pheochromocy	toma	
Overall Rates (e)	6/49 (12%)	5/47 (11%)	0/50 (0%)
Adjusted Rates (b)	14.9%	20.0%	0.0%
Terminal Rates (c)	2/34 (6%)	5/25 (20%)	0/11 (0%)
Week of First Observation	79	104	D 044437
Life Table Tests (d)	P = 0.181N	P = 0.573	P = 0.141N
		D-0 559N	P = 0.018N
Incidental Tumor Tests (d)	P = 0.065 N	P = 0.553N	1 -0.01014
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.065 N P = 0.017 N	P = 0.533N P = 0.530N	P = 0.013N

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF $\alpha\text{-}METHYLBENZYL ALCOHOL$

	Vehicle Control	375 mg/kg	750 mg/kg
Thyroid Gland: C-Cell Adenoma or Carcine			
Overall Rates (e)	3/47 (6%)	3/49 (6%)	1/48 (2%)
Adjusted Rates (b)	9.1%	10.1%	9.1%
Terminal Rates (c)	3/33 (9%)	2/26 (8%)	1/11 (9%)
Week of First Observation	104	89	104
Life Table Tests (d)	P = 0.585	P = 0.556	P = 0.725
Incidental Tumor Tests (d)	P = 0.550N	P = 0.596	P = 0.725
Cochran-Armitage Trend Test (d)	P = 0.230N	1 -0.000	1 -0.120
Fisher Exact Test (d)	F = 0.2001	P = 0.641N	P = 0.301 N
ancreatic Islets: Islet Cell Adenoma			
Overall Rates (e)	0/49 (0%)	1/48 (2%)	3/45 (7%)
Adjusted Rates (b)	0.0%	4.0%	22.2%
Terminal Rates (c)	0/34 (0%)	$\frac{1.0}{125}(4\%)$	1/11 (9%)
Week of First Observation	0.04(0.0)	104	98
Life Table Tests (d)	P = 0.005	P = 0.439	P = 0.011
Incidental Tumor Tests (d)	P = 0.005 P = 0.016	P = 0.439 P = 0.439	P = 0.011 P = 0.058
Cochran-Armitage Trend Test (d)		r — V.407	1 - 0.000
Fisher Exact Test (d)	P = 0.052	P=0.495	P=0.106
amonostio Toloto, Tolot (C-1), Adamonto			
ancreatic Islets: Islet Cell Adenoma or Ca		1 (40 (00)	DIAE (POL)
Overall Rates (e)	1/49 (2%)	1/48 (2%)	3/45 (7%)
Adjusted Rates (b)	2.9%	4.0%	22.2%
Terminal Rates (c)	1/34 (3%)	1/25 (4%)	1/11 (9%)
Week of First Observation	104	104	98
Life Table Tests (d)	P=0.029	P = 0.692	P = 0.043
Incidental Tumor Tests (d)	P = 0.065	P = 0.692	P = 0.131
Cochran-Armitage Trend Test (d)	P = 0.179		
Fisher Exact Test (d)		P = 0.747	P = 0.277
ammary Gland: Fibroadenoma			
Overall Rates (a)	21/50 (42%)	15/50 (30%)	5/50 (10%)
Adjusted Rates (b)	56.5%	47.2%	38.8%
Terminal Rates (c)	18/34 (53%)	10/26 (38%)	4/11 (36%)
Week of First Observation	91	85	83
Life Table Tests (d)	P = 0.223N	P = 0.456N	P = 0.261 N
Incidental Tumor Tests (d)	P = 0.223 N P = 0.057 N	P = 0.286N	P = 0.201 N P = 0.105 N
		r - 0.20011	r = 0.10014
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P<0.001N	D-0140N	
		P = 0.149N	P<0.001N
lammary Gland: Fibroadenoma or Adeno		1	
Overall Rates (a)	23/50 (46%)	15/50 (30%)	5/50 (10%)
Adjusted Rates (b)	60.1%	47.2%	38.8%
Terminal Rates (c)	19/34 (56%)	10/26 (38%)	4/11 (36%)
Week of First Observation	80	85	83
Life Table Tests (d)	P = 0.128N	P = 0.313N	P = 0.168N
Incidental Tumor Tests (d)	P = 0.021 N	P = 0.156N	P = 0.044N
Cochran-Armitage Trend Test (d)	P<0.001N		_
Fisher Exact Test (d)		P = 0.074N	P<0.001N
itoral Gland: Adenoma			
Overall Rates (e)	3/50 (6%)	4/50 (8%)	3/50 (6%)
Adjusted Rates (b)	8.8%	14.1%	22.1%
Terminal Rates (c)	3/34 (9%)	3/26 (12%)	2/11 (18%)
Week of First Observation	104	99	92
Life Table Tests (d)	P = 0.124	P = 0.370	P = 0.181
Incidental Tumor Tests (d)	P = 0.198	P=0.395	P = 0.262
			-
Cochran-Armitage Trend Test (d)	P = 0.579		

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL (Continued)

Adjusted Rates (b) 8.8% 17.99 $7 \text{ reminal Rates (c)}$ $3/34 (9\%)$ $4/26$ ($4/26$ (Week of First Observation 104 99 90 Life Table Tests (d) $P = 0.105$ $P = 0.$ $P = 0.169$ $P = 0.105$ $P = 0.$ $P = 0.$ Cochran-Armitage Trend Test (d) $P = 0.169$ $P = 0.576$ $P = 0.576$ $P = 0.576$ Fisher Exact Test (d) $P = 0.576$ $P = 0.576$ $P = 0.576$ Uterus: Endometrial Stromal Polyp 0 Overall Rates (a) $9/50 (18\%)$ $11/48$ Adjusted Rates (b) 25.2% 32.49 Terminal Rates (c) $8/34 (24\%)$ $5/266$ Week of First Observation 77 85 Life Table Tests (d) $P = 0.356$ $P = 0.$ Cochran-Armitage Trend Test (d) $P = 0.334N$ $P = 0.$ Cochran-Armitage Trend Test (d) $P = 0.10\%$ $P = 0.10\%$ Fisher Exact Test (d) $P = 0.10\%$ 87.5% Adjusted Rates (b) 91.0% 87.5% Adjusted Rates (c) $30/34$ (88%) $21/26$ Week of First Observation 67 70 Incidental Tumor Tests (d) $P = 0.180$ $P = 0.$ All Sites: Malignant Tumors O O $P = 0.023N$ Overall Rates (a) 45.9% 28.88 Terminal Rates (c) $11/34$ (32%) $5/26$ (9.2%)Alide Tasts (d) $P = 0.002N$ $P = 0.$ Fisher Exact Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ Fisher Exact Tes	mg/kg	750 mg/kg
Overall Rates (e) $3/50 (6\%)$ $5/50 ($ Adjusted Rates (b) 8.3% 17.99 Terminal Rates (c) $3/34 (9\%)$ $4/26 ($ Week of First Observation 104 99 Life Table Tests (d) $P=0.105$ $P=0.$ Incidental Tumor Tests (d) $P=0.169$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.576$ $P=0.576$ Fisher Exact Test (d) $P=0.576$ $P=0.576$ Verail Rates (a) $9/50 (18\%)$ $11/48$ Adjusted Rates (b) 25.2% 32.49 Terminal Rates (c) $8/34 (24\%)$ $5/26 ($ Week of First Observation 77 85 Life Table Tests (d) $P=0.334N$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.110N$ Fisher Exact Test (d) $P=0.015N$ P=0.0001N $P=0.015N$ P=0.1000 $P=0.110N$ Fisher Exact Test (d) $P=0.015N$ P=0.0001N $P=0.0001N$ Fisher Exact Test (d) $P=0.0001N$ Fisher Exact Test (d) $P=0.023N$ P=0.0001N $P=0.023N$ Life Table Tests (d) $P=0.023N$ P=0.002N $P=0.023N$ P=0.002N $P=0.023N$ </td <td><u></u></td> <td></td>	<u></u>	
Adjusted Rates (b) 8.8% 17.99 $7erminal Rates (c)$ $3/34 (9\%)$ $4/26 ($ Week of First Observation10499Life Table Tests (d)P=0.105P=0.Cochran-Armitage Trend Test (d)P=0.169P=0.Cochran-Armitage Trend Test (d)P=0.576Fisher Exact Test (d)P=0.Uterus: Endometrial Stromal PolypOverall Rates (a) $9/50 (18\%)$ $11/48$ Adjusted Rates (b) 25.2% 32.49 Terminal Rates (c) $8/34 (24\%)$ $5/26 (18\%)$ Week of First Observation 77 85 Life Table Tests (d)P=0.356P=0.Incidental Tumor Tests (d)P=0.334 MP=0.Cochran-Armitage Trend Test (d)P=0.110 MFisher Exact Test (d)Fisher Exact Test (d)P=0.10\% 87.59 All Sites: Benign Tumors $0/34 (88\%)$ $21/26$ Week of First Observation 67 70 Life Table Tests (d)P=0.180P=0.Cochran-Armitage Trend Test (d)P=0.180P=0.Cochran-Armitage Trend Test (d)P=0.001NFisher Exact Test (d)Fisher Exact Test (d)P=0.015 MP=0.Cochran-Armitage Trend Test (d)P=0.023NP=0.Cochran-Armitage Trend Test (d)P=0.023NP=0.Cochran-A	(10%)	3/50 (6%)
Terminal Rates (c) $3/34 (9\%)$ $4/26 ($ Week of First Observation 104 99 Life Table Tests (d) $P=0.105$ $P=0.$ Incidental Tumor Tests (d) $P=0.169$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.576$ $P=0.$ Week of First Observation 25.2% 32.49 Adjusted Rates (b) 25.2% 32.49 Terminal Rates (c) $8/34 (24\%)$ $5/26 (18\%)$ Week of First Observation 77 85 Life Table Tests (d) $P=0.356$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.334N$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.110N$ $P=0.$ Fisher Exact Test (d) $P=0.180$ $P=0.$ All Sites: Benign Tumors $30/34 (88\%)$ $21/26$ Week of First Observation 67 70 Life Table Tests (d) $P=0.180$ $P=0.$ Incidental Tumor Tests (d) $P=0.180$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.0015N$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.0001N$ $P=0.$ Fisher Exact Test (d) $P=0.001N$ $P=0.$ All Sites: Malignant Tumors $20/50 (40\%)$ $9/50$ Overall Rates (a) $20/50 (40\%)$ $9/50$ Adjusted Rates (b) 45.9% 28.89 Terminal Rates (c) $11/34 (32\%)$ $5/26$ Week of First Observation 34 83 Life Table Tests (d) $P=0.002N$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.002N$ $P=0.$		22.1%
Week of First Observation10499Life Table Tests (d)P=0.105P=0.Incidental Tumor Tests (d)P=0.169P=0.Cochran-Armitage Trend Test (d)P=0.576P=0.Fisher Exact Test (d)P=0.576P=0.Uterus: Endometrial Stromal PolypOverall Rates (a)9/50 (18%)11/48Adjusted Rates (b)25.2%32.44Terminal Rates (c)8/34 (24%)5/26 (18%)Week of First Observation7785Life Table Tests (d)P=0.356P=0.Incidental Tumor Tests (d)P=0.334NP=0.Cochran-Armitage Trend Test (d)P=0.110NP=0.Fisher Exact Test (d)P=0.110NP=0.All Sites: Benign Tumors0/54 (88%)21/26Overall Rates (a)41/50 (82%)36/50Adjusted Rates (b)91.0%87.59Terminal Rates (c)30/34 (88%)21/26Week of First Observation6770Life Table Tests (d)P=0.180P=0.Cochran-Armitage Trend Test (d)P=0.0015NP=0.Cochran-Armitage Trend Test (d)P=0.0015NP=0.All Sites: Malignant Tumors20/50 (40%)9/50 (13(2%))Overall Rates (a)45.9%28.89Terminal Rates (c)11/34 (32%)5/26 (13(2%))All Sites: Malignant TumorsP=0.0023NP=0.Overall Rates (a)46/50 (92%)40/55 (40/56 (92%)Week of First Observation3483Life Table Tests (d)P=0.0023NP=0. <td>(15%)</td> <td>2/11 (18%)</td>	(15%)	2/11 (18%)
Life Table Tests (d) $P = 0.105$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.169$ $P = 0.$ Cochran-Armitage Trend Test (d) $P = 0.576$ $P = 0.$ Fisher Exact Test (d) $P = 0.576$ $P = 0.$ Overall Rates (a) $9/50 (18\%)$ $11/48$ Adjusted Rates (b) 25.2% 32.49 Terminal Rates (c) $8/34 (24\%)$ $5/26 (16\%)$ Week of First Observation 77 85 Life Table Tests (d) $P = 0.356$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.334N$ $P = 0.$ Cochran-Armitage Trend Test (d) $P = 0.110N$ $P = 0.10\%$ Fisher Exact Test (d) $P = 0.180$ $P = 0.$ Overall Rates (a) $41/50 (82\%)$ $36/50$ Adjusted Rates (b) 91.0% 87.59 Terminal Rates (c) $30/34 (88\%)$ $21/26$ Week of First Observation 67 70 Incidental Tumor Tests (d) $P = 0.180$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.0015N$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.001N$ $P = 0.001N$ Fisher Exact Test (d) $P = 0.304N$ $P = 0.001N$ All Sites: Malignant Tumors 00 $0.002N$ Overall Rates (c) $11/34 (32\%)$ $5/26$ Week of First Observation 34 83 Life Table Tests (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) <t< td=""><td>(</td><td>92</td></t<>	(92
Cochran-Armitage Trend Test (d) $P=0.576$ Fisher Exact Test (d) $P=0.576$ Fisher Exact Test (d) $P=0.576$ Overall Rates (a) $9/50$ (18%)Adjusted Rates (b) 25.2% 32.49 Terminal Rates (c) $8/34$ (24%) $5/266$ 92.52% Week of First Observation 77 85 Life Table Tests (d) $P=0.334N$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.110N$ Fisher Exact Test (d) $P=0.110N$ Fisher Exact Test (d) $P=0.110N$ Fisher Exact Test (d) $P=0.110N$ All Sites: Benign Tumors $0/34$ (88%)Overall Rates (a) $41/50$ (82%) $36/50$ $36/50$ $Adjusted Rates (b)$ 91.0% 87.59 77 Terminal Rates (c) $30/34$ (88%) $21/26$ Week of First Observation 67 70 Life Table Tests (d) $P=0.180$ $P=0.015N$ $P=0.015N$ $P=0.0001N$ Fisher Exact Test (d) $P<0.001N$ Fisher Exact Test (d) $P=0.023N$ $P=0.0001N$ Fisher Exact Test (d) $P=0.023N$ $P=0.0023N$ $P=0.0002N$ Fisher Exact Test (d) $P=0.0023N$ $P=0.0002N$ $P=0.0023N$ <t< td=""><td>.230</td><td>P = 0.181</td></t<>	.230	P = 0.181
Fisher Exact Test (d) $P=0.$ Jterus: Endometrial Stromal Polyp $Overall Rates (a)$ $9/50 (18\%)$ $11/48$ Adjusted Rates (b) 25.2% 32.49 Terminal Rates (c) $8/34 (24\%)$ $5/26 (18\%)$ Week of First Observation 77 85 Life Table Tests (d) $P=0.356$ $P=0.$ Incidental Tumor Tests (d) $P=0.334N$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.110N$ $P=0.$ Fisher Exact Test (d) $P=0.180$ $P=0.$ Adjusted Rates (b) 91.0% 87.59 Overall Rates (a) $41/50 (82\%)$ $36/500$ Adjusted Rates (b) 91.0% 87.59 Terminal Rates (c) $30/34 (88\%)$ $21/26$ Week of First Observation 67 70 Incidental Tumor Tests (d) $P=0.180$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.0015N$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.326$ $P=0.288$ Terminal Rates (a) $40/50 (40\%)$ $9/50$ Adjusted Rates (b) 45.9% 28.89		P = 0.262
Uterus: Endometrial Stromal PolypOverall Rates (a) $9/50 (18\%)$ $11/48$ Adjusted Rates (b) 25.2% 32.49 Terminal Rates (c) $8/34 (24\%)$ $5/26 (25\%)$ Week of First Observation 77 85 Life Table Tests (d) $P = 0.356$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.334N$ $P = 0.$ Cochran-Armitage Trend Test (d) $P = 0.110N$ $P = 0.345N$ Fisher Exact Test (d) $P = 0.110N$ $P = 0.110N$ Fisher Exact Test (d) 91.0% 87.59 Overall Rates (a) $41/50 (82\%)$ $36/50$ Adjusted Rates (b) 91.0% 87.59 Terminal Rates (c) $30/34 (88\%)$ $21/26$ Week of First Observation 67 70 Life Table Tests (d) $P = 0.180$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.015N$ $P = 0.$ Cochran-Armitage Trend Test (d) $P < 0.001N$ $P = 0.$ Fisher Exact Test (d) $P = 0.34M$ $P = 0.$ Ill Sites: Malignant Tumors $20/50 (40\%)$ $9/50$ Overall Rates (a) $20/50 (40\%)$ $9/50$ Adjusted Rates (b) 45.9% 28.89 Terminal Rates (c) $11/34 (32\%)$ $5/26$ Week of First Observation 34 83 Life Table Tests (d) $P = 0.023N$ $P = 0.$ Ill Sites: Malignant Tumors $P = 0.023N$ $P = 0.$ Overall Rates (a) $46/50 (92\%)$ $40/50$ Adjusted Rates (b) 93.9% 92.9% Terminal Ra		
Overall Rates (a) 9/50 (18%) 11/48 Adjusted Rates (b) 25.2% 32.49 Terminal Rates (c) 8/34 (24%) 5/26 (18%) Week of First Observation 77 85 Life Table Tests (d) P=0.356 P=0. Incidental Tumor Tests (d) P=0.334N P=0. Cochran-Armitage Trend Test (d) P=0.110N Fisher Exact Test (d) Fisher Exact Test (d) 91.0% 87.59 Overall Rates (a) 41/50 (82%) 36/50 Adjusted Rates (b) 91.0% 87.59 Terminal Rates (c) 30/34 (88%) 21/26 Week of First Observation 67 70 Life Table Tests (d) P=0.180 P=0. Incidental Tumor Tests (d) P=0.015N P=0. Cochran-Armitage Trend Test (d) P<0.001N	1.357	P = 0.661
Adjusted Rates (b) 25.2% 32.4% Terminal Rates (c) $8/34$ (24%) $5/26$ ($3/24\%$)Week of First Observation 77 85 Life Table Tests (d) $P = 0.356$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.334$ N $P = 0.$ Cochran-Armitage Trend Test (d) $P = 0.110$ N $P = 0.334$ NFisher Exact Test (d) $P = 0.110$ N $P = 0.334$ NIll Sites: Benign Tumors 0 91.0% 87.5% Overall Rates (a) $41/50$ (82%) $36/50$ Adjusted Rates (b) 91.0% 87.5% Terminal Rates (c) $30/34$ (88%) $21/26$ Week of First Observation 67 70 Life Table Tests (d) $P = 0.180$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.015$ N $P = 0.0015$ NCochran-Armitage Trend Test (d) $P < 0.001$ N $P = 0.001$ Fisher Exact Test (d) $P = 0.001$ N $P = 0.001$ NSites: Malignant Tumors $0/50$ (40%) $9/50$ (40%)Overall Rates (a) $20/50$ (40%) $9/50$ (40%)Adjusted Rates (b) 45.9% 28.8% Terminal Rates (c) $11/34$ (32%) $5/26$ (92%)Week of First Observation 34 83 Life Table Tests (d) $P = 0.023$ N $P = 0.023$ NDecohran-Armitage Trend Test (d) $P = 0.023$ N $P = 0.023$ NP = 0.002 N $P = 0.023$ N $P = 0.023$ NCochran-Armitage Trend Test (d) $P = 0.023$ N $P = 0.023$ NP = 0.002 N $P = 0.02$		
Terminal Rates (c) $8/34 (24\%)$ $5/26 ($ Week of First Observation 77 85 Life Table Tests (d) $P = 0.356$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.334N$ $P = 0.$ Cochran-Armitage Trend Test (d) $P = 0.110N$ $P = 0.110N$ Fisher Exact Test (d) $P = 0.110N$ $P = 0.$ All Sites: Benign Tumors $Overall Rates (a)$ $41/50 (82\%)$ $36/50$ Adjusted Rates (b) 91.0% 87.59 Terminal Rates (c) $30/34 (88\%)$ $21/26$ Week of First Observation 67 70 Life Table Tests (d) $P = 0.180$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.015N$ $P = 0.$ Cochran-Armitage Trend Test (d) $P < 0.001N$ $P = 0.$ Fisher Exact Test (d) $P = 0.304N$ $P = 0.$ All Sites: Malignant Tumors $20/50 (40\%)$ $9/50 (23\%)$ Overall Rates (a) $20/50 (40\%)$ $9/50 (23\%)$ Adjusted Rates (b) 45.9% 28.89 Terminal Rates (c) $11/34 (32\%)$ $5/26 (23\%)$ Iife Table Tests (d) $P = 0.304N$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.002N$ $P = 0.023N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.03.9$	8 (22%)	4/50 (8%)
Week of First Observation7785Life Table Tests (d) $P=0.356$ $P=0.$ Incidental Tumor Tests (d) $P=0.334N$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.110N$ $P=0.110N$ Fisher Exact Test (d) $P=0.110N$ $P=0.$ All Sites: Benign Tumors 0 91.0% 87.59 Overall Rates (a) $41/50$ (82%) $36/50$ Adjusted Rates (b) 91.0% 87.59 Terminal Rates (c) $30/34$ (88%) $21/26$ Week of First Observation 67 70 Life Table Tests (d) $P=0.180$ $P=0.$ Incidental Tumor Tests (d) $P=0.015N$ $P=0.$ Cochran-Armitage Trend Test (d) $P<0.001N$ $P=0.$ Fisher Exact Test (d) $P=0.304N$ $P=0.$ All Sites: Malignant Tumors 0 $0/50$ (40%) $9/50$ (40%)Overall Rates (a) $20/50$ (40%) $9/50$ (40%) $9/50$ (40%)Adjusted Rates (b) 45.9% 28.89 Terminal Rates (c) $11/34$ (32%) $5/264$ Week of First Observation 34 83 Life Table Tests (d) $P=0.023N$ $P=0.$ Incidental Tumor Tests (d) $P=0.023N$ $P=0.$ Cochran-Armitage Trend Test (d) $P=0.002N$ $P=0.$ Fisher Exact Test (d) $P=0.023N$ $P=0.$ Il Sites: All Tumors 93.9% 92.99 Overall Rates (a) $46/50$ (92%) $40/50$ Adjusted Rates (b) 93.9% 92.99 Terminal Rates (c) $31/34$ (91%	%	22.9%
Life Table Tests (d) $P = 0.356$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.334N$ $P = 0.$ Cochran-Armitage Trend Test (d) $P = 0.110N$ Fisher Exact Test (d) $P = 0.110N$ Fisher Exact Test (d) $P = 0.110N$ All Sites: Benign Tumors 91.0% Overall Rates (a) $41/50$ (82%)Adjusted Rates (b) 91.0% Mile Sites: Comparison of the second s	(19%)	2/11 (18%)
Incidental Tumor Tests (d) $P = 0.334N$ $P = 0.534N$ Cochran-Armitage Trend Test (d) $P = 0.110N$ Fisher Exact Test (d) $P = 0.110N$ Fisher Exact Test (d) $P = 0.110N$ All Sites: Benign Tumors 91.0% Overall Rates (a) $41/50$ (82%)Adjusted Rates (b) 91.0% Adjusted Rates (c) $30/34$ (88%) $21/260$ Week of First Observation 67 Incidental Tumor Tests (d) $P = 0.180$ P = 0.180 $P = 0.180$ Incidental Tumor Tests (d) $P < 0.001N$ Fisher Exact Test (d) $P < 0.001N$ Fisher Exact Test (d) $P < 0.001N$ Fisher Exact Test (d) $P = 0.304N$ P = 0. $20/50$ (40%)Adjusted Rates (b) 45.9% Corran-Armitage Trend Test (d) $P = 0.023N$ P = 0. $11/34$ (32%)Sizes: Malignant Tumors 91.00% Overall Rates (c) $11/34$ (32%)Cochran-Armitage Trend Test (d) $P = 0.023N$ P = 0. $P = 0.023N$ P = 0. $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.023N$ P = 0. 93.9% Overall Rates (a) $46/50$ (92%)Adjusted Rates (b) 93.9% Sites: All Tumors 93.9% Overall Rates (a) $46/50$ (92%)Adjusted Rates (b) 93.9% Sites: All Tumors 93.9% Overall Rates (c) $31/34$ (91%)<		49
Cochran-Armitage Trend Test (d) $P=0.110N$ Fisher Exact Test (d) $P=0.110N$ Fisher Exact Test (d) $P=0.110N$ Overall Rates (a) $41/50$ (82%)Adjusted Rates (b) 91.0% Adjusted Rates (b) 91.0% Terminal Rates (c) $30/34$ (88%)Week of First Observation 67 Incidental Tumor Tests (d) $P=0.180$ Cochran-Armitage Trend Test (d) $P=0.015N$ Fisher Exact Test (d) $P<0.001N$ Fisher Exact Test (d) $P<0.001N$ Ill Sites: Malignant Tumors $20/50$ (40%)Overall Rates (a) $20/50$ (40%)Adjusted Rates (b) 45.9% Zest (d) $P=0.304N$ P=0. $P=0.023N$ Incidental Tumor Tests (d) $P=0.023N$ Veek of First Observation 34 Sties: All Tumor Tests (d) $P=0.002N$ Fisher Exact Test (d) $P=0.002N$ Fisher).219	P = 0.540
Fisher Exact Test (d) $P=0.$ All Sites: Benign Tumors $41/50 (82\%)$ $36/50$ Overall Rates (a) $41/50 (82\%)$ $36/50$ Adjusted Rates (b) 91.0% 87.59 Terminal Rates (c) $30/34 (88\%)$ $21/26$ Week of First Observation 67 70 Life Table Tests (d) $P=0.180$ $P=0.$ Incidental Tumor Tests (d) $P=0.015N$ $P=0.$ Cochran-Armitage Trend Test (d) $P<0.001N$ $P=0.$ Fisher Exact Test (d) $P<0.001N$ $P=0.$ All Sites: Malignant Tumors $20/50 (40\%)$ $9/50 (40\%)$ Overall Rates (a) $20/50 (40\%)$ $9/50 (40\%)$ Adjusted Rates (b) 45.9% 28.89 Terminal Rates (c) $11/34 (32\%)$ $5/26 (40\%)$ Week of First Observation 34 83 Life Table Tests (d) $P=0.0304N$ $P=0.002N$ Incidental Tumor Tests (d) $P=0.002N$ $P=0.002N$ Fisher Exact Test (d) $P=0.002N$ $P=0.002N$ Cochran-Armitage Trend Test (d) $P=0.002N$ Fish).311	P = 0.418N
All Sites: Benign Tumors $41/50 (82\%)$ $36/50$ Adjusted Rates (b) 91.0% 87.59 Terminal Rates (c) $30/34 (88\%)$ $21/26$ Week of First Observation 67 70 Life Table Tests (d) $P=0.180$ $P=0.180$ Incidental Tumor Tests (d) $P=0.015N$ $P=0.0015N$ Cochran-Armitage Trend Test (d) $P<0.001N$ $P=0.001N$ Fisher Exact Test (d) $P<0.001N$ $P=0.001N$ Sites: Malignant Tumors $Overall Rates (a)$ $20/50 (40\%)$ $9/50 (40\%)$ Adjusted Rates (b) 45.9% 28.89 $7erminal Rates (c)$ $11/34 (32\%)$ $5/26 G$ Week of First Observation 34 83 83 $11/6 Table Tests (d)$ $P=0.023N$ $P=0.023N$ Incidental Tumor Tests (d) $P=0.023N$ $P=0.002N$ $P=0.002N$ Fisher Exact Test (d) $P=0.002N$ $P=0.002N$ Fisher Exact Test (d) $P=0.002N$ $P=0.002N$ Adjusted Rates (b) 93.9% 92.9% Overall Rates (a) $46/50 (92\%)$ $40/50$ Adjusted Rates (b) 93.9%		
Overall Rates (a) $41/50 (82\%)$ $36/50$ Adjusted Rates (b) 91.0% 87.59 Terminal Rates (c) $30/34 (88\%)$ $21/26$ Week of First Observation 67 70 Life Table Tests (d) $P=0.180$ $P=0.180$ Incidental Tumor Tests (d) $P=0.015N$ $P=0.0015N$ Cochran-Armitage Trend Test (d) $P<0.001N$ $P=0.001N$ Fisher Exact Test (d) $P<0.001N$ $P=0.001N$ Adjusted Rates (a) $20/50 (40\%)$ $9/50 (40\%)$ Adjusted Rates (b) 45.9% 28.89 Terminal Rates (c) $11/34 (32\%)$ $5/26 (40\%)$ Week of First Observation 34 83 Life Table Tests (d) $P=0.023N$ $P=0.0023N$ Incidental Tumor Tests (d) $P=0.0023N$ $P=0.002N$ Fisher Exact Test (d) $P=0.002N$ $P=0.002N$ Week of First Observation $34 (6/50 (92\%)$ $40/50$).402	P = 0.117N
Adjusted Rates (b) 91.0% 87.5% Terminal Rates (c) $30/34$ (88%) $21/26$ Week of First Observation 67 70 Life Table Tests (d) $P=0.180$ $P=0.180$ Incidental Tumor Tests (d) $P=0.015N$ $P=0.015N$ Cochran-Armitage Trend Test (d) $P<0.001N$ $P=0.015N$ Fisher Exact Test (d) $P<0.001N$ $P=0.015N$ Sites: Malignant Tumors $00001N$ $P=0.0000N$ Overall Rates (a) $20/50$ (40%) $9/50$ (40%)Adjusted Rates (b) 45.9% 28.89 Terminal Rates (c) $11/34$ (32%) $5/260$ Week of First Observation 34 83 Life Table Tests (d) $P=0.023N$ $P=0.002N$ Incidental Tumor Tests (d) $P=0.002N$ $P=0.002N$ Fisher Exact Test (d) $P=0.002N$ $P=0.002N$ Fisher Exact Test (d) 93.9% 92.9% Overall Rates (a) $46/50$ (92%) $40/50$ Adjusted Rates (b) 93.9% 92.9% Terminal Rates (c) $31/34$ (91%) $23/26$ Week of First Observation 34 70 Life Table Tests (d) $P=0.138$ $P=0$		
Terminal Rates (c) $30/34$ (88%) $21/26$ Week of First Observation 67 70 Life Table Tests (d) $P=0.180$ $P=0.180$ Incidental Tumor Tests (d) $P=0.015N$ $P=0.0015N$ Cochran-Armitage Trend Test (d) $P<0.001N$ $P=0.001N$ Fisher Exact Test (d) $P<0.001N$ $P=0.001N$ All Sites: Malignant Tumors $00001N$ $P=0.0000000$ Overall Rates (a) $20/50$ (40%) $9/50$ (40%)Adjusted Rates (b) 45.9% 28.89 Terminal Rates (c) $11/34$ (32%) $5/26$ (32%)Week of First Observation 34 83 Life Table Tests (d) $P=0.023N$ $P=0.023N$ Cochran-Armitage Trend Test (d) $P=0.023N$ $P=0.002N$ Fisher Exact Test (d) $P=0.002N$ $P=0.002N$ Fisher Exact Test (d) $P=0.002N$ $P=0.002N$ Fisher Exact Test (d) 93.9% 92.9% Cochran-Armitage Trend Test (d) $P=0.002N$ Fisher Exact Test (d) 93.9% 92.9% Mil Sites: All Tumors 93.9% 92.9% Overall Rates (a) $46/50$ (92%) $40/50$ Adjusted Rates (b) 93.9% 92.9% Terminal Rates (c) $31/34$ (91%) $23/26$ Week of First Observation 34 70 Life Table Tests (d) $P=0.138$ $P=0.00000000000000000000000000000000000$	0 (72%)	19/50 (38%)
Week of First Observation 67 70 Life Table Tests (d) $P=0.180$ $P=0.180$ Incidental Tumor Tests (d) $P=0.015N$ $P=0.180$ Cochran-Armitage Trend Test (d) $P<0.001N$ Fisher Exact Test (d) $P<0.001N$ Fisher Exact Test (d) $P<0.001N$ Mil Sites: Malignant Tumors $20/50 (40\%)$ Overall Rates (a) $20/50 (40\%)$ Adjusted Rates (b) 45.9% Terminal Rates (c) $11/34 (32\%)$ Sile Tests (d) $P=0.304N$ P=0.023N $P=0.023N$ Incidental Tumor Tests (d) $P=0.023N$ Cochran-Armitage Trend Test (d) $P=0.002N$ Fisher Exact Test (d) $P=0.002N$ Fisher Exact Test (d) $P=0.023N$ Overall Rates (a) $46/50 (92\%)$ Adjusted Rates (b) 93.9% Overall Rates (c) $31/34 (91\%)$ 23/26Week of First Observation 34 Terminal Rates (c) $31/34 (91\%)$ Using Rates (d) $P=0.138$ P=0.138 $P=0.0000$	%	79.8%
Life Table Tests (d) $P = 0.180$ $P = 0.180$ Incidental Tumor Tests (d) $P = 0.015N$ $P = 0.015N$ Cochran-Armitage Trend Test (d) $P < 0.001N$ Fisher Exact Test (d) $P < 0.001N$ Fisher Exact Test (d) $P < 0.001N$ MIl Sites: Malignant Tumors $20/50 (40\%)$ Overall Rates (a) $20/50 (40\%)$ Adjusted Rates (b) 45.9% Terminal Rates (c) $11/34 (32\%)$ Week of First Observation 34 Life Table Tests (d) $P = 0.304N$ P = 0.023N $P = 0.023N$ Incidental Tumor Tests (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ Overall Rates (a) $46/50 (92\%)$ Adjusted Rates (b) 93.9% Overall Rates (c) $31/34 (91\%)$ Quesk of First Observation 34 Terminal Rates (c) $31/34 (91\%)$ Quesk of First Observation 34 Tife Table Tests (d) $P = 0.138$	6 (81%)	7/11 (64%)
Incidental Tumor Tests (d) $P = 0.015N$ $P = 0.0$ Cochran-Armitage Trend Test (d) $P < 0.001N$ Fisher Exact Test (d) $P < 0.001N$ Fisher Exact Test (d) $P = 0.0015N$ Overall Rates (a) $20/50 (40\%)$ Adjusted Rates (b) 45.9% Terminal Rates (c) $11/34 (32\%)$ Week of First Observation 34 Life Table Tests (d) $P = 0.002N$ Incidental Tumor Tests (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ Cochran-Armitage Trend Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ Coverall Rates (a) $46/50 (92\%)$ Adjusted Rates (b) 93.9% 92.9% 92.9% Terminal Rates (c) $31/34 (91\%)$ Week of First Observation 34 Life Table Tests (d) $P = 0.138$		49
Cochran-Armitage Trend Test (d) $P < 0.001N$ Fisher Exact Test (d) $P = 0.001N$ Fisher Exact Test (d) $P = 0.001N$ Overall Rates (a) $20/50 (40\%)$ Adjusted Rates (b) 45.9% Terminal Rates (c) $11/34 (32\%)$ Week of First Observation 34 Life Table Tests (d) $P = 0.304N$ Incidental Tumor Tests (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ Coerall Rates (a) $46/50 (92\%)$ Adjusted Rates (b) 93.9% Overall Rates (c) $31/34 (91\%)$ Week of First Observation 34 Terminal Rates (c) $31/34 (91\%)$ Week of First Observation 34 Life Table Tests (d) $P = 0.138$		P = 0.221
Fisher Exact Test (d) $P = 0.$ All Sites: Malignant Tumors $20/50 (40\%)$ $9/50 (40\%)$ Overall Rates (a) 45.9% 28.8% Terminal Rates (b) 45.9% 28.8% Terminal Rates (c) $11/34 (32\%)$ $5/26 (40\%)$ Week of First Observation 34 83 Life Table Tests (d) $P = 0.304N$ $P = 0.$ Incidental Tumor Tests (d) $P = 0.023N$ $P = 0.$ Cochran-Armitage Trend Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Overall Rates (a) $46/50 (92\%)$ $40/50$ Adjusted Rates (b) 93.9% 92.9% Terminal Rates (c) $31/34 (91\%)$ $23/26$ Week of First Observation 34 70 Life Table Tests (d) $P = 0.138$ $P = 0.138$).536N	P = 0.028N
All Sites: Malignant Tumors $20/50 (40\%)$ $9/50 (40\%)$ Overall Rates (a) 45.9% 28.89 Terminal Rates (b) 45.9% 28.89 Terminal Rates (b) $11/34 (32\%)$ $5/260$ Week of First Observation 34 83 Life Table Tests (d) $P = 0.304N$ $P = 0.023N$ Incidental Tumor Tests (d) $P = 0.023N$ $P = 0.023N$ Cochran-Armitage Trend Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.023N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.023N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.023N$ $P = 0.002N$ Fisher Exact Test (d) 93.9% 92.9% Overall Rates (a) $46/50 (92\%)$ $40/50$ Adjusted Rates (b) 93.9% 92.9% Terminal Rates (c) $31/34 (91\%)$ $23/26$ Week of First Observation 34 70 Life Table Tests (d) $P = 0.138$ $P = 0.138$		
Overall Rates (a) $20/50 (40\%)$ $9/50 (40\%)$ Adjusted Rates (b) 45.9% 28.89 Terminal Rates (c) $11/34 (32\%)$ $5/26 (40\%)$ Week of First Observation 34 83 Life Table Tests (d) P = 0.304N P = 0.023N Incidental Tumor Tests (d) P = 0.023N P = 0.023N Cochran-Armitage Trend Test (d) P = 0.002N F = 0.002N Fisher Exact Test (d) P = 0.002N P = 0.002N Ill Sites: All Tumors Overall Rates (a) $46/50 (92\%)$ $40/50$ Adjusted Rates (b) 93.9% 92.9% Terminal Rates (c) $31/34 (91\%)$ $23/26$ Week of First Observation 34 70 Life Table Tests (d) P = 0.138 P = 0.).172N	P<0.001N
Adjusted Rates (b) 45.9% 28.89 Terminal Rates (c) 11/34 (32%) 5/26 (300) Week of First Observation 34 83 Life Table Tests (d) $P = 0.304N$ $P = 0.023N$ Incidental Tumor Tests (d) $P = 0.023N$ $P = 0.023N$ Cochran-Armitage Trend Test (d) $P = 0.002N$ $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ $P = 0.002N$ All Sites: All Tumors 0verall Rates (a) 46/50 (92%) 40/50 Adjusted Rates (b) 93.9% 92.99 $23/26$ Week of First Observation 34 70 Life Table Tests (d) $P = 0.138$ $P = 0.138$		
Terminal Rates (c) $11/34 (32\%)$ $5/26 (32\%)$ Week of First Observation 34 83 Life Table Tests (d) $P = 0.304N$ $P = 0.023N$ Incidental Tumor Tests (d) $P = 0.023N$ $P = 0.023N$ Cochran-Armitage Trend Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ All Sites: All Tumors 0 Overall Rates (a) $46/50 (92\%)$ $40/50$ Adjusted Rates (b) 93.9% 92.99 Terminal Rates (c) $31/34 (91\%)$ $23/26$ Week of First Observation 34 70 Life Table Tests (d) $P = 0.138$ $P = 0.0028$	(18%)	7/50 (14%)
Week of First Observation 34 83 Life Table Tests (d) $P = 0.304N$ $P = 0.023N$ Incidental Tumor Tests (d) $P = 0.023N$ $P = 0.022N$ Cochran-Armitage Trend Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ All Sites: All Tumors 0 Overall Rates (a) $46/50$ (92%)Adjusted Rates (b) 93.9% Terminal Rates (c) $31/34$ (91%)Week of First Observation 34 Life Table Tests (d) $P = 0.138$		50.9%
Life Table Tests (d) $P = 0.304N$ $P = 0.023N$ Incidental Tumor Tests (d) $P = 0.023N$ $P = 0.023N$ Cochran-Armitage Trend Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ All Sites: All Tumors 0 verall Rates (a)Overall Rates (a) $46/50$ (92%)Adjusted Rates (b) 93.9% Terminal Rates (c) $31/34$ (91%)Week of First Observation 34 Life Table Tests (d) $P = 0.138$	(19%)	5/11 (45%)
Incidental Tumor Tests (d) $P = 0.023N$ $P = 0.023N$ Cochran-Armitage Trend Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ All Sites: All TumorsOverall Rates (a)46/50 (92%)Adjusted Rates (b)93.9%92.9%Terminal Rates (c)31/34 (91%)Week of First Observation34Life Table Tests (d) $P = 0.138$		92 D 0 500N
Cochran-Armitage Trend Test (d) $P = 0.002N$ Fisher Exact Test (d) $P = 0.002N$ All Sites: All Tumors $P = 0.002N$ Overall Rates (a) $46/50$ (92%)Adjusted Rates (b) 93.9% 92.9% 92.9% Terminal Rates (c) $31/34$ (91%)Week of First Observation 34 Life Table Tests (d) $P = 0.138$		P = 0.520N
Fisher Exact Test (d) P=0. All Sites: All Tumors 0 Overall Rates (a) 46/50 (92%) 40/50 Adjusted Rates (b) 93.9% 92.9% Terminal Rates (c) 31/34 (91%) 23/26 Week of First Observation 34 70 Life Table Tests (d) P=0.138 P=0).012N	P = 0.055N
All Sites: All Tumors 46/50 (92%) 40/50 Overall Rates (a) 46/50 (92%) 40/50 Adjusted Rates (b) 93.9% 92.99 Terminal Rates (c) 31/34 (91%) 23/26 Week of First Observation 34 70 Life Table Tests (d) P=0.138 P=0		D 0.000N
Overall Rates (a) 46/50 (92%) 40/50 Adjusted Rates (b) 93.9% 92.99 Terminal Rates (c) 31/34 (91%) 23/26 Week of First Observation 34 70 Life Table Tests (d) P=0.138 P=0.	J.014N	P = 0.003 N
Adjusted Rates (b) 93.9% 92.99 Terminal Rates (c) 31/34 (91%) 23/26 Week of First Observation 34 70 Life Table Tests (d) P=0.138 P=0.	0 (000)	99/E0 (AA0)
Terminal Rates (c) 31/34 (91%) 23/26 Week of First Observation 34 70 Life Table Tests (d) P=0.138 P=0	0 (80%)	22/50 (44%)
Week of First Observation 34 70 Life Table Tests (d) $P = 0.138$ $P = 0$		90.5%
Life Table Tests (d) $P=0.138$ $P=0.138$	6 (88%)	9/11 (82%)
	1 9 4 9	49 B-0.174
In a damta L'Expanse Teata (d) $D = 0.000 M$		P = 0.174
	0.262N	P = 0.003N
	0.07 4 N	P<0.001N

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

(a) Number of tumor-bearing animals/number of animals examined grossly at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence in animals killed at the end of the study

⁽d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group than in vehicle controls is indicated by (N).
(e) Number of tumor-bearing animals/number of animals examined microscopically at the site

Study	Incidence of Papillomas in Vehicle Controls	
Historical Incidence at Microbiologica	Associates	
d-Limonene	0/50	
Benzyl alcohol	0/46	
a-Methylbenzyl alcohol	0/49	
TOTAL	0/145 (0.0%)	
SD (b)	0.00%	
Range (c)		
High	0/50	
Low	0/50	
Overall Historical Incidence		
TOTAL	(d) 4/2,026 (0.2%)	
SD (b)	0.63%	
Range (c)		
High	1/45	
Low	0/50	
LUW	0/80	

TABLE B4a. HISTORICAL INCIDENCE OF URINARY BLADDER TRANSITIONAL CELL TUMORS IN
FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

(a) Data as of May 12, 1988, for studies of at least 104 weeks

(b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.
(d) Includes one papilloma, NOS; no malignant tumors have been observed.

Study	Incidence of Leukemia in Vehicle Controls	
Historical Incidence at Microbiological	Associates	
d-Limonene	10/50	
Benzyl alcohol	8/50	
a-Methylbenzyl alcohol	12/50	
TOTAL	30/150 (20.0%)	
SD (b)	4.00%	
Range (c)		
High	12/50	
Low	8/50	
Overall Historical Incidence		
TOTAL	403/2,100 (19.2%)	
SD (b)	7.95%	
Range (c)		
High	21/50	
Low	2/50	

TABLE B4b. HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN FEMALE F344/N
RATS ADMINISTERED CORN OIL BY GAVAGE (a)

(a) Data as of May 12, 1988, for studies of at least 104 weeks

(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

4

	Vehicle	Control	Low	Dose	High	Dose
Animals initially in study	50		50		50	
Animals necropsied	50		50		50	
Animals examined histopathologically	50		50		50	
NTEGUMENTARY SYSTEM				*******		
*Skin	(50)		(50)		(50)	
Epidermal inclusion cyst		(2%)			(70)	
*Subcutaneous tissue	(50)	(90)	(50)		(50)	
Inflammation, necrotizing granulomatous	1	(2%)				
RESPIRATORY SYSTEM						
#Nasal cavity	(48)		(48)		(49)	
Inflammation, suppurative	3	(6%)		(4%)	4	(8%)
Inflammation, acute			1	(2%)	•	(90)
Foreign material, NOS Metaplasia, squamous						(2%) (2%)
*Larynx	(50)		(50)		(50)	(270)
Hemorrhage	(00)		(• -)	(4%)	(+-)	(2%)
Inflammation, acute/chronic				(2%)		(2%)
Inflammation, chronic focal			-			(2%)
#Trachea	(50)		(50)		(47)	,
Inflammation, acute/chronic					1	(2%)
Inflammation, necrotizing granulomatous	1	(2%)				
#Lung/bronchus	(50)		(49)		(48)	
Inflammation, acute		(1	(2%)
Inflammation, necrotizing granulomatous		(2%)	(10)		(10)	
#Lung/bronchiole	(50)		(49)		(48)	(00)
Inflammation, acute #Lung	(50)		(49)		(48)	(2%)
Congestion, NOS		(10%)	(··	(35%)		(48%)
Edema, NOS		(10%)	11	(00%)		(48%)
Hemorrhage	-	(2,0)				(13%)
Pneumonia, aspiration	1	(2%)			-	(
Bronchopneumonia, acute	1	(2%)			1	(2%)
Inflammation, chronic					1	(2%)
Pneumonia, interstitial chronic			1	(2%)	1	(2%)
Granuloma, NOS	11	(22%)		(2%)		
Cholesterol deposit				(2%)	-	
Foreign material, NOS	~-	(50%)		(4%)	-	(17%)
Pigmentation, NOS Hyperplasia, adenomatous	-	(58%) (18%)		(80%) (6%)		(56%) (2%)
Histiocytosis		(60%)		(6%) (69%)		(2%) (5 4 %)
HEMATOPOIETIC SYSTEM	(20)		(10)		(40)	
#Bone marrow Granuloma, NOS	(50)	(10%)	(49)		(48)	(4%)
Atrophy, NOS	Э	(10%)				(4%) (2%)
Hyperplasia, granulocytic			3	(6%)	1	(270)
#Spleen	(50)		(49)	(0.00)	(46)	
Fibrosis		(2%)	(- -)		(
Infarct, NOS		(2%)				
Pigmentation, NOS		(100%)		(100%)		(96%)
Hematopoiesis		(8%)		(6%)		(2%)
#Mandibular lymph node	(50)		(48)		(47)	
Inflammation, acute						(2%)
#Pancreatic lymph node	(50)		(48)	(00)	(47)	
Hemosiderosis			1	(2%)		

97

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL

	Vehicle	Control	Low	Dose	High	Dose
HEMATOPOIETIC SYSTEM (Continued)		<u> </u>			<u></u>	
#Mesenteric lymph node Inflammation, acute necrotizing	(50)		(48) 1	(2%)	(47)	
Inflammation, granulomatous	(20)					(2%)
#Liver	(50)		(48)	(2%)	(49)	
Hematopoiesis #Thymus	(45)		(43)	(270)	(39)	
Ectopia	(40)			(2%)	(00)	
Cyst, NOS				(5%)		
Congestion, NOS Hemorrhage						(5%) (5%)
URCULATORY SYSTEM						
*Multiple organs	(50)		(50)		(50)	
Thrombosis, NOS		(2%)				
#Mandibular lymph node	(50)		(48)		(47)	
Lymphangiectasis				(6%)		(2%)
#Heart	(50)		(49)		(49)	(90%)
Hemorrhage Inflammation, chronic	16	(32%)	1.4	(29%)		(2%) (27%)
#Heart/atrium	(50)	(0470)	(49)	(2010)	(49)	(4170)
Thrombosis, NOS		(2%)		(2%)		
*Coronary artery	(50)		(50)		(50)	
Inflammation, chronic			1	(2%)		
#Liver	(50)		(48)		(49)	
Thrombus, organized	(10)		(10)			(2%)
#Ovary	(49)	(2%)	(46)		(48)	
Lymphangiectasis #Adrenal	(49)	(2%)	(47)		(50)	
Thrombus, organized	(40)		(31)			(2%)
DIGESTIVE SYSTEM					·	
*Palate	(50)		(50)		(50)	
Cyst, NOS						(2%)
*Tooth	(50)		(50)		(50)	
Inflammation, acute		(2%)	(40)		(477)	
#Salivary gland Inflammation, acute	(46)		(49)	(2%)	(47)	(2%)
#Submaxillary gland	(46)		(49)	(270)	(47)	(470)
Metaplasia, squamous	(40)			(2%)	(*)	
#Liver	(50)		(48)		(49)	
Hernia, NOS		(6%)		(6%)		(4%)
Congestion, NOS	4	(8%)	12	(25%)		(8%)
Congestion, chronic passive	•	(90)		(2%)		(2%)
Inflammation, acute necrotizing Inflammation, active chronic	1	(2%)	1	(470)		(2%) $(2%)$
Inflammation, active chronic						(2%)
Inflammation, chronic necrotizing			1	(2%)	•	,.,
Granuloma, NOS	13	(26%)		(6%)	2	(4%)
Necrosis, NOS			1	(2%)		
Necrosis, focal		(2%)		(2%)	1	(2%)
Manager In a star for the second		(12%)		(2%)		(00)
Metamorphosis, fatty			11	17796	4	(8%)
Cytologic alteration, NOS		(26%)	11	(23%)		
		(26%) (2%)	(48)			(2%)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

	Vehicle	Control	Low	Dose	High	Dose
DIGESTIVE SYSTEM (Continued)	····					
#Liver/centrilobular	(50)		(48)		(49)	
Degeneration, NOS		(2%)	(=0)		(10)	
Necrosis, NOS		(4%)				
Metamorphosis, fatty		(2%)				
Pigmentation, NOS		(2%)				
Hypertrophy, NOS		v = · · · <i>s</i>			1	(2%)
#Bile duct	(50)		(48)		(49)	
Hyperplasia, NOS	23	(46%)	23	(48%)	17	(35%)
#Pancreas	(49)		(48)		(45)	
Atrophy, NOS			1	(2%)		
#Pancreatic acinus	(49)		(48)		(45)	
Atrophy, NOS		(14%)	-	(19%)		(11%)
Hyperplasia, NOS		(2%)		(2%)		(2%)
#Pancreas/interstitium	(49)		(48)		(45)	
Inflammation, necrotizing granulomatous		(2%)				
#Esophagus	(50)		(50)		(46)	(00)
Inflammation, acute						(2%)
Inflammation, chronic	(10)		/40			(2%)
#Glandular stomach	(49)		(48)	(90)	(46)	
Cyst, NOS			1	(2%)	4	(2%)
Ulcer, NOS Inflammation, acute			1	(2%)	1	(270)
Inflammation, acute/chronic				(2%)		
Inflammation, active/chronic				(2%)		
Inflammation, necrotizing granulomatous	1	(2%)	1	(270)		
Erosion		(2%)				
Necrosis, NOS		(2%)	1	(2%)		
Calcification, NOS		(2%)	-	(2,0)		
#Forestomach	(49)	(=)	(48)		(46)	
Ulcer, NOS		(2%)	((2%)
Inflammation, acute		• •			1	(2%)
Inflammation, acute/chronic	3	(6%)	1	(2%)		
Hyperplasia, epithelial	2	(4%)			1	(2%)
#Duodenum	(49)		(45)		(45)	
Inflammation, necrotizing granulomatous	1	(2%)				
#Colonic submucosa	(49)		(44)		(39)	
Edema, NOS	2	(4%)			1	(3%)
#Cecum	(49)		(44)		(39)	
Inflammation, necrotizing granulomatous	1	(2%)				
JRINARY SYSTEM						
#Kidney	(50)		(49)		(50)	
Mineralization					1	(2%)
Hydronephrosis	_					(2%)
Nephropathy	28	(56%)	39	(80%)		(54%)
Pigmentation, NOS						(2%)
#Kidney/tubule	(50)		(49)		(50)	
Dilatation, NOS		(2%)				(90)
Pigmentation, NOS		(6%)	(10)			(2%)
#Kidney/pelvis	(50)		(49)		(50)	
Hyperplasia, epithelial		(2%)				
#Urinary bladder	(49)	· · ·	(47)	(90)	(48)	
Hyperplasia, epithelial		-	1	(2%)		(901)
Metaplasia, squamous					1	(2%)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

	Vehicle	Control	Low	Dose	High	Dose
NDOCRINE SYSTEM						
#Anterior pituitary	(49)		(50)		(50)	
Cyst, NOS		(33%)		(6%)		(8%)
Degeneration, NOS	10			(2%)	-	$(0,\mathbf{v})$
Hemosiderosis			•	(210)	1	(2%)
Hyperplasia, chromophobe cell	1	(2%)	9	(16%)		(6%)
Angiectasis		(2%)		(22%)	-	(6%)
#Adrenal	(49)	(270)		(2270)		(0%)
Degeneration, lipoid	(49)		(47)	(00)	(50)	
#Adrenal cortex	(40)			(2%)	(50)	
	(49)		(47)	(110)	(50)	
Degeneration, lipoid	0	(10)		(11%)	0	(07)
Cytoplasmic vacuolization	2	(4%)	1	(2%)	3	(6%)
Hyperplasia, NOS		(4%)	(17)		(50)	
#Adrenal medulla	(49)		(47)		(50)	
Hyperplasia, NOS		(6%)		(4%)		
#Thyroid	(47)	(07)	(49)	(177)	(48)	(0~)
Ultimobranchial cyst	1	(2%)	2	(4%)		(6%)
Inflammation, chronic focal					1	(2%)
Inflammation, necrotizing granulomatous		(2%)				
Hyperplasia, C-cell		(11%)		(14%)		(8%)
#Thyroid follicle	(47)		(49)		(48)	
Cyst, NOS	1	(2%)				
Hyperplasia, cystic	1	(2%)		(4%)	2	(4%)
#Parathyroid	(34)		(38)		(32)	
Hyperplasia, NOS	1	(3%)			1	(3%)
*Mammary gland Dilatation/ducts	(50) 22	(44%)	(50) 14	(28%)	(50) 12	(24%)
Galactocele		(2%)		(/		()
Abscess, NOS	-	()	1	(2%)		
Hyperplasia, NOS	13	(26%)		(14%)	3	(6%)
*Clitoral gland	(50)	(2010)	(50)	(11/0)	(50)	(0,0)
Dilatation/ducts		(4%)		(4%)	(00)	
Inflammation, acute	4	(470)		(4%)	1	(2%)
Hyperplasia, NOS	1	(2%)	2		1	(270)
#Uterus	(50)	(270)	(48)		(49)	
Hydrometra		(2%)		(4%)		(4%)
•	1	(470)	2	(** 70)		(4%) (2%)
Cyst, NOS Angiectasis			1	(2%)	1	(470)
#Cervix uteri	(20)		(48)	(270)	(49)	
	(50)	(6%)		(10%)		(6%)
Cyst, NOS		(6%) (4%)				(8%)
Inflammation, acute		(4%)	Z	(4%)	4	(070)
Inflammation, necrotizing granulomatous	(50)	(2%)	(40)		(49)	
#Uterus/endometrium	(50)	(69)	(48)	(404)		(90)
Cyst, NOS		(6%)		(4%)		(2%)
Hyperplasia, cystic	(50)	(2%)		(2%)		(4%)
#Endometrial stroma	(50)	(97)	(48)		(49)	
Hyperplasia, NOS		(2%)	(10)			
#Ovary/parovarian	(49)		(46)		(48)	(0~)
Inflammation, necrotizing granulomatous						(2%)
#Ovary	(49)	((46)		(48)	(0~)
		(4%)	2	(4%)	1	(2%)
Cyst, NOS	2	(= 10)	-	v = · · · v	-	100
Cyst, NOS Parovarian cyst Atrophy, NOS	2	(4,0)		(2%)	1	(2%)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL (Continued)

	Vehicle	Control	Low	Dose	High	Dose
NERVOUS SYSTEM		<u></u>		······		
#Brain	(50)		(50)		(50)	
Compression, NOS	7	(14%)	2	(4%)	1	(2%)
Hemorrhage			1	(2%)		
Granuloma, NOS	1	(2%)				
*Olfactory sensory epithelium Inflammation, acute	(50)		(50)		(50) 1	(2%)
·						
SPECIAL SENSE ORGANS						
*Eye	(50)		(50)	((50)	
Hemorrhage				(4%)		
Inflammation, acute/chronic			-	(2%)		(0.07.)
Cataract	((26%)		(8%)
*Eye/retina	(50)		(50)		(50)	(0 m)
Degeneration, NOS			-	(40)		(2%)
Atrophy, NOS	(=		_	(4%)		(2%)
*Nasolacrimal duct	(50)	(97)	(50)		(50)	
Inflammation, chronic suppurative *Harderian gland	(50)	(2%)	(50)		(50)	
Inflammation, acute	(30)			(2%)	(30)	
MUSCULOSKELETAL SYSTEM *Laryngeal muscle Inflammation, acute	(50)		(50)	· · ·	(50) 1	(2%)
BODY CAVITIES						
*Mediastinum	(50)		(50)		(50)	
Inflammation, necrotizing granulomatous	1	(2%)				
*Peritoneum	(50)		(50)		(50)	
Inflammation, chronic					-	(2%)
*Pleura	(50)		(50)		(50)	
Granuloma, foreign body				(2%)		
*Mesentery	(50)		(50)		(50)	
Inflammation, necrotizing granulomatous	5	(10%)	8	(16%)	-	(6%)
Necrosis, fat					1	(2%)
ALL OTHER SYSTEMS None						

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

101

APPENDIX C

SUMMARY OF LESIONS IN MALE MICE IN

THE TWO-YEAR GAVAGE STUDY OF

a-METHYLBENZYL ALCOHOL

PAGE	
------	--

TABLE C1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO- YEAR GAVAGE STUDY OF a -METHYLBENZYL ALCOHOL	105
TABLE C2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF \mathfrak{a} -METHYLBENZYL ALCOHOL	108
TABLE C3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF $\mbox{$\alpha$}\mbox{-}METHYLBENZYL ALCOHOL$	114
TABLE C4	HISTORICAL INCIDENCE OF CIRCULATORY SYSTEM TUMORS IN MALE $B6C3F_1$ MICE ADMINISTERED CORN OIL BY GAVAGE	118
TABLE C5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL	119

.

	Vehicle	Control	Low	Dose	High	Dose
Animals initially in study			50		50	
Animals necropsied	49		50		50	
Animals examined histopathologically	49		50		50	
NTEGUMENTARY SYSTEM					<u> </u>	
*Subcutaneous tissue	(49)		(50)		(50)	
Sarcoma, NOS		(2%)	_		_	
Fibroma		(2%)		(10%)	_	(4%)
Fibrosarcoma	3	(6%)	4	(8%)	2	(4%)
RESPIRATORY SYSTEM						
#Lung	(49)		(50)		(50)	
Squamous cell carcinoma, metastatic		(100)		(2%)		
Hepatocellular carcinoma, metastatic		(12%)		(8%)		(100)
Alveolar/bronchiolar adenoma		(29%)		(18%)		(16%)
Alveolar/bronchiolar carcinoma		(8%) (4%)	6	(12%)	1	(2%)
Fibrosarcoma, metastatic	2	(4.%)				
HEMATOPOIETIC SYSTEM						
*Multiple organs	(49)		(50)		(50)	(0~)
Malignant lymphoma, NOS			~	(40)		(2%)
Malignant lymphoma, lymphocytic type				(4%)		(2%)
Malignant lymphoma, mixed type	(49)			(8%)		(4%)
#Spleen	(48)	(2%)	(49)		(48)	
Malignant lymphoma, mixed type #Mediastinal lymph node	(48)	(270)	(50)		(45)	
Fibrosarcoma, metastatic		(2%)	(00)		(40)	
#Mesenteric lymph node	(48)	(2,0)	(50)		(45)	
Malignant lymphoma, mixed type		(2%)	(00)		(10)	
#Renal lymph node	(48)	((50)		(45)	
Squamous cell carcinoma, metastatic				(2%)		
#Ileum	(43)		(48)		(40)	
Malignant lymphoma, mixed type					1	(3%)
CIRCULATORY SYSTEM	<u></u>					
#Spleen	(48)		(49)		(48)	
Hemangioma				(2%)		
Hemangiosarcoma	(40)			(2%)	14 7 5	
#Mesenteric lymph node Hemangioma	(48)	(2%)	(50)		(45)	
Hemangloma #Liver	(49)		(49)		(50)	
Hemangiosarcoma		(10%)		(4%)	(00)	
#Testis	(49)		(50)	(4,07	(49)	
Hemangiosarcoma				(2%)		
DIGESTIVE SYSTEM					<u> </u>	
#Liver	(49)		(49)		(50)	
Hepatocellular adenoma		(27%)		(29%)		(18%)
Hepatocellular carcinoma		(22%)		(22%)		(10%)
#Forestomach	(46)		(50)		(44)	
Squamous cell papilloma		(9%)		(8%)		(5%)
#Duodenum	(43)		(48)		(40)	
Adenoma, NOS			1	(2%)		
Adenomatous polyp, NOS		(2%)				(3%)
#Jejunum	(43)		(48)	(0	(40)	
Adenocarcinoma, NOS			1	(2%)		

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF $\alpha\text{-}METHYLBENZYL ALCOHOL$

	Vehicle Control	Low Dose	High Dose
JRINARY SYSTEM None			
ENDOCRINE SYSTEM			
#Adrenal	(47)	(46)	(49)
Cortical adenoma			1 (2%)
Pheochromocytoma	1 (2%)	1 (2%) 1 (2%)	1 (2%)
Pheochromocytoma, malignant #Adrenal/capsule	(47)	(46)	(49)
Adenoma, NOS	3 (6%)	(40)	2 (4%)
#Thyroid	(46)	(49)	(50)
Follicular cell adenoma		1 (2%)	1 (2%)
Follicular cell carcinoma	2 (4%)		
#Pancreatic islets	(46)	(49)	(44)
Islet cell adenoma			1 (2%)
REPRODUCTIVE SYSTEM			
*Preputial gland	(49)	(50)	(50)
Squamous cell carcinoma	(10)	1 (2%)	(10)
#Testis Interstitial cell tumor	(49) (2%)	(50)	(49) 1 (2%)
	1 (2%)		1 (2%)
NERVOUS SYSTEM None			
SPECIAL SENSE ORGANS		······································	
*Harderian gland	(49)	(50)	(50)
Carcinoma, NOS	1 (2%)	1 (97)	1 (07)
Adenoma, NOS	2 (4%)	1 (2%)	1 (2%)
MUSCULOSKELETAL SYSTEM None			
BODY CAVITIES None			
ALL OTHER SYSTEMS None			ар (<u>на 19</u> 17). Траниција и страниција и страниција и страниција и страниција и страниција и страниција и страниц
ANIMAL DISPOSITION SUMMARY			
Animals initially in study	50	50	50
Natural death	8	9	14
Terminal sacrifice	39	40	28
Dosing accident	2	1	7
Accidentally killed, NOS Animal missexed	1		1
Ammai missexed	I		

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL (Continued)

TABLE C1.	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR
	GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL (Continued)

	Vehicle Control	Low Dose	High Dose
rumor summary			
Total animals with primary tumors**	39	40	32
Total primary tumors	70	71	43
Total animals with benign tumors	28	27	22
Total benign tumors	41	37	29
Total animals with malignant tumors	23	29	13
Total malignant tumors	29	34	14
Total animals with secondary tumors##	8	5	
Total secondary tumors	9	6	

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 # Number of animals examined microscopically at this site
 ## Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL: VEHICLE CONTROL

ANIMAL NUMBER	C 1 4	C 2 4	C 4 0	C 5 0	C 4 2	C 0 6	C 3 3	C 4 5	C 1 2	C 3 9	C 1 1	C 0 1	C 0 2	C 0 3	C 0 4	C 0 5	C 0 7	C 0 8	C 0 9	C 1 0	C 1 3	C 1 5	C 1 6	C 1 7	C 1 8
WEEKS ON STUDY	0 0 0	0 0 1	0 2 5	0 6 7	0 7 6	0 8 4	0 8 8	0 9 6	1 0 0	1 0 0	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibroma Fibroma	s	. +	+	+ X	N	N	*	+ X	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	s	+	+	+ X	+	* X	+	+	* x	* X	+	+	+ X	+ X	+	* x	+	+ X	+ X	+	+	+	+ X	+ X	+
Fibrosarcoma, metastatic Trachea Nasal cavity	s s	+ +	+ +	X + +	+ +	+ +	+ +	+ +	+ +	+ +	X + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
HEMATOPOIETIC SYSTEM Bone marrow Spieen Malignant lymphoma, mixed type Lymph nodes Fibrosarcoma, metastatic Hemangioma Malignant lymphoma, mixed type	s s	+++++++++++++++++++++++++++++++++++++++	+++++++	+ + +	+	++++++	+++++	+++++	++++++	+++++	+ + X	+ + + X	++++++	++++	+++++	+ + +	+++++	+++++	++++++	++++	++++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + + X	+ + X +
Thymus CIRCULATORY SYSTEM Heart	S S		- 	 	+	+ 	+ 	+	+	+	+	+	+	+	+	+	+	+	+	- 	+			+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangiosarcoma	S S	+++	+ +	++		+ + X	++++	+ + X X	+ + x	+ + X	+ + X	+++	+ + X	+++	++++	+ + X	++	+++	+++	++++	+ + x	+ + X	+ +	+++	+ + X X
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Small intestine Adenomatous polyp, NOS Large intestine	55555 5555 5555 5555 5555 5555 5555 5555	+++-+ - +	+ 2 + +	+++++ + +	+ N - +	+ X + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ Z - + +	+++++]	+ + + Z +	++++ ++ + + + X + +	+++++++++++++++++++++++++++++++++++++++	+++++X+ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++ + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++ + +	+++++ + +
URINARY SYSTEM Kidney Urinary bladder	SS	+++++	++++	++++	 + +	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	+++	++++	++++	++++	 + +	++++	++++	++++	++++	+++
ENDOCRINE SYSTEM Pituitary Adrenal Adenoma, NOS Pheochromocytoma Thyroid Follicular cell carcinoma	s s s	- + +	+ -	- + +	++	++++	+++++	++++	++++	++++	++++	++++	+++++	+++++	+++++	+ + X +	+++++	+ + X +	++++	++++	+++++	+++++	+ + +	+ + +	+++++
Parathyroid REPRODUCTIVE SYSTEM	s	-	-	+		+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	_	+	+	+
Mammary gland Testis Interstitial cell tumor Prostate	s s	N + +	N + +	N + +	N + +	N + +	N + +	N + -	N. + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	ч + +	N + +	N + +
NERVOUS SYSTEM Brain	s	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Carcinoma, NOS Adenoma, NOS	s	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N

+: Tissue examined microscopically
 -: Required tissue not examined microscopically
 X: Tumor incidence
 Necropsy, no autolysis, no microscopic examination
 S: Animal missexed

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animai missing B: No necropsy performed

												· ·														
ANIMAL NUMBER	C 1 9	C 2 0	C 2 1	C 2 2	C 2 3	C 2 5	C 2 6	C 2 7	C 2 8	C 2 9	C 3 0	C 3 1	C 3 2	C 3 4	C 3 5	C 3 6	C 3 7	C 3 8	C 4 1	C 4 3	C 4 4	C 4 6	C 4 7	C 4 8	C 4 9	TOTAL:
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
NTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibroma Fibrosarcoma	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	N	*49 1 1 3
RESPIRATORY SYSTEM ungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic	+	+ x	+	*	+ X	+	+	+	+ X	+	+ x	+	* X	+ x	+ X X	+	+	+ x	+	+	+	+	+	+ X	+ X	49 6 14 4 2
Frachea Nasal cavity	+++	+++	++	++	+ +	+++	++	+++	+++++++++++++++++++++++++++++++++++++++	+++	++	+ +	+++	+++	+ +	++	++	+ +	+ +	++	+++	+++	+ +	+ +	++	49 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malignant lymphoma, mixed type Lymph nodes	+++++	+++++	++++++	++++++	+ + +	++++++	++++++	+++++++	+++++++	+++++	+ + +	++++++	+ + + +	+++++	++++++	+++++	+ + +	++++++	++++++	+++++++	++++++	++++++	+++++	+ + +	+ + +	49 48 1 48
Fibrosarcoma, metastatic Hemangioma Malignant lymphoma, mixed type Thymus	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	-	+	÷	+	+	1 1 42
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangiosarcoma	+ + X	+ + X X	++	+ + X X	+++	+ + X	+ + X	+ + X	+ + X	+ + X	+ + X	+++	+ + x	+++++	+ + X	+++	+ +	+ + X	+++	+ +	+ +	+ +	+++	+ + X X	+++	48 49 13 11 5
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach	++++++	+ + + + +	+++++	+++++	++++	+ + + + +	+ + + + +	+ + + + +	+ + + + +	+ + + + +	++++	+++++	+ + + + +	+++++	+++++	++++	+ + + + +	+++++	++++	+++++	+++++	+++++	+ + + + +	+++++	+ 2 + + +	49 *49 46 48 46
Squamous cell papilloma Small intestine Adenomatous polyp, NOS Large intestine	++++	+ +	+ X +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	X + +	+ +	+ +	+ +	4 43 1 45
URINARY SYSTEM Kidney Urinary bladder	++++	+++	++++	+++	+ +	++	+ +	+ +	+ +	++	++++	+ +	+ +	+++	++	+ +	+ +	+ +	+++	++++	++	+ +	+ +	+ +	+ +	49 49
ENDOCRINE SYSTEM Pituitary Adrenal Adenoma, NOS Pheochromocytoma	+ + X	+ +	+ +	+ +	+++	+ +	+ +	+ +	+ +	+ +	+ -	+ +	+ +	+ +	+ +	+	+ + X	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	47 47 3
Thyroid Follicular cell carcinoma Parathyroid	+++++++++++++++++++++++++++++++++++++++	+ -	+ +	-	* *	+ +	+ +	+ +	+ -	+ +	+	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+	++	+ +	+ +	+	+ X +	46 2 37
REPRODUCTIVE SYSTEM Mammary gland Pestis Interstitial cell tumor Prostate	N + +	N + +	N + +	N + +	N + +	N + -	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + X +	N + +	N + +	N + +	N + +	N + +	N + +	+++++	N + +	N + +	N + +	*49 49 1 47
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
SPECIAL SENSE ORGANS Harderian gland Carcinoma, NOS Adenoma, NOS	N	N	N	N	N	N	N	N	N X	N	N	N		N	N	N	N	N	N	N	N	N X	N	N	N	*49 1 2

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: VEHICLE CONTROL (Continued)

* Animals necropsied

.

ANIMAL	C	С	Č	С	С	С	С	C	Ċ	С	С	с	С	С	С	c	Č	С	С	Ċ	С	С	С	-C	C 1
NUMBER	47	0 9	5 0	1 9	0 6	4 6	4 9	2 4	0 4	C 2 1	0 1	0 2	C 0 3	0 5	0 7	0 8	1 0	1 1	$\frac{1}{2}$	1 3	1 4	1 5	1 6	$\frac{1}{7}$	1 8
WEEKS ON STUDY	0 3 0	0 4 9	0 8 4	0 8 8	0 9 8	0 9 9	1 0 0	1 0 1	1 0 3	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma Fibrosarcoma	+	+	+	+ X	+	x x	x x	+	+	+	+ X	+	+	* x	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcinoma, metastatic Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma	+	+	+ X	+	+	+	+	+	* X	+ X	+	+	+	+	+ X	+	+ X	+	+ x	+ X	+ x	+	+	+ X	+
Alveolar/bronchiolar carcinoma Trachea Nasal cavity	++++	+ +	+	+	+ +	+ +	+ +	+	+ +	+ +	+ +	+ +	+++++	+ +	X + +	+ +	X + +	+++	+ +	+ +	+ +	+ +	X + +	++++	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangnoma	+++	+ +	-	+ +	++++	+ +	+ + X	+++	+ +	++++	+ +	+ +	++++	++++	+ +	+ +	+ +	++++	++++						
Hemangiosarcoma Lymph nodes Squamous cell carcinoma, metastatic Thymus	+	+ +	+ 	+	+	+ -	+ +	+ -	* X	+ -	+ -	+ +	+++	+ +	+ -	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ _	+ +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	 +	+
DIGESTIVE SYSTEM Salıvary gland Lıver Hepatocellular adenoma Hepatocellular carcınoma	++	+ +	+ + X	+ +	+ +	+ +	+ + X	+ + X	+ -	+ + X	+ + X	++++	+ + X	+ + X X	+ + X	+ + X	+ + +	+ + X	+ + X	+ +	+ +	+ + X	+ +	+ +	+ +
Hemangiosarcoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+ N + + +	+ N + + +	+++++++	+ N + + +	++++++	+++++++	- N - + +	+ N + + +	+++++++	+ + + +	+ + + + +	++++++	+ + + + +	++++++	+ Z + + +	+ N + + +	+ N + + +	+ + + + +	+ + + + +	+++++	+ + + + +	+++++++	+ + + + + +
Squamous cell papilloma Small intestine Adenoma, NOS Adenocarcinoma, NOS Large intestine	+	+	+	-+	+	+	+	+	-	+	+	+ + +	+	+	+	+	+	+	+	X + +	+	+	+	+	+
URINARY SYSTEM Kidney Urinary bladder	+++	++++	++++	++++	++++	++++	+ +	++++	+ +	+ +	+ +	+ +	+ +	++	+++	+++	++++	+ +	+ +	+ +	+++	+++	++++	++++	++
ENDOCRINE SYSTEM Pituitary Adrenal Pheochromocytoma	+++	+ +	+ +	+ +	+++	+ + X	+ +	+ +	+ +	+	- +	+ +	+ +	+ -	+ +	+	+	+ +	+	- +	+	+ +	+ +	+ +	++
Pheochromocytoma, malignant Thyroid Folincular cell adenoma Pa rathyroid	+	+ +	+ +	+ +	х + +	+ +	+ +	+ +	_	+ +	+ +	+ +	+ -	+ +	+ +	+ X +	+ +	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +
REPRODUCTIVE SYSTEM Mammary gland Testus Hemangiosarcoma	N +	N +	N +	N +	N +	++	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +
Prostate Preputial/clitoral gland Squamous cell carcinoma	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N X	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N
NERVOUS SYSTEM Brain	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Hardeman gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N X	N	N	N	N	N	N

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL: LOW DOSE

ANIMAL NUMBER	C 2 0	$_2^{\rm C}$	$_2^{\rm C}$	C 2 5	C 2 6	C 2 7	C 2	C_2	C 3	C 3	C 3 2	C 3	C 3	C 3 5	C 3	C 3	C 3	C 3	C 4	C 4	С 4	C 4	C 4	C 4	C 4	
	ō	2	3	5	6	7	8	9	ŏ	ĭ	ž	3	4	5	6	7	8	ğ	ō	i	2	3	4	5	8	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUE TUMOR
NTEGUMENTARY SYSTEM ubcutaneous tissue Fibroma Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X	* X	+	+	+	+	+	+	+	+	+	*50 5 4
ESPIRATORY SYSTEM ungs and bronchi Squamous cell carcinoma, metastatic Hepatorellular carcinoma, metastatic Alveolar/bronchiolar adenoma	+	+ X	+	+	+	+ X X	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+ X	+	+	+	50 1 4 9 6
Alveolar/bronchiolar carcinoma rachea fasal cavity	+++	+ +	+ +	+ +	+ +	+ +	X + +	X + +	+ +	+ -	+ -	+ +	+ +	+ +	X + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	50 44
EMATOPOIETIC SYSTEM	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
pleen Hemangioma Hemangiosarcoma ymph nodes	+	++	++	++	++	+	++	+ X +	++	++	++	++	++	++	++	++	+	++	+	+	+	+	+	+	+	49 1 1 50
Squamous cell carcinoma, metastatic hymus	+	-	+	+	+	-	٠	+	+	+	+	+	+	-		+	+	+	+	+	+	+			+	1 34
IRCULATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
IGESTIVE SYSTEM alivary gland iver Hepatocellular adenoma	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ + X	+ +	+++	+ + X X	+ +	+++	+ +	+ + X X	+ +	+ +	+ + X	+ +	+ + X	+ +	+ +	50 49 14
Hepatocellular carcinoma Hemangiosarcoma sile duct allbladder & common bile duct ancreas	+ N + N +	++++	++++	+ + +	+ + +	X + + +	X + N +	++++	X + + +	++++	X + + +	+ + +	+ N +	X + N +	+ + +	+ + +	+ + +	++++	+ N +	++++	+ N +	X + + +	++++	+++++	+ + +	11 2 49 *50 49
sophagus tomach Squamous cell papilloma mall intestine	++++++	+ + +	+ + +	+ + +	+++++	+++++	+ + +	+ + +	+++++	+ + +	++++++	+ + +	++++++	+ + +	+ + X +	+ + +	+++++	+++++	+ + +	++++++	+ + X +	+ + +	+ + +	+++++	+ + + +	50 50 4 48
Adenoma, NOS Adenocarcinoma, NOS arge intestine	+	+	+	+	+	+	+	+	х +	+	<u>x</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 1 48
JRINARY SYSTEM Lidney Jrinary bladder	+++	++++	+ +	+++	+ +	+++	+ +	++++	+ +	+++	++++	+ +	+++	+ +	+ +	+ +	+ +	+ +	++++	+ +	+++	+ -	+ +	+ +	++++	50 49
NDOCRINE SYSTEM ituitary direnai Pheochromocytoma		+ +	+ +	- +	+ +	++	+ +	+++	+++	+++	+ +	+ +	+	+ +	+++	++++	++++	++++	+ +	+ +	++	+ -	+ +	+++	+ +	42 46 1
Pheochromocytoma, malignant Pheochromocytoma, malignant Sollicular cell adenoma arathyroid	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 49 1 37
EPRODUCTIVE SYSTEM fammary gland estis	N +	N +	N +	N +	N +		N +	• •		, + +	N +	N +	N +	N +	N +	+++	N +	N +	N +	N +	N +	N +	• •	+ N +	N +	*50
Hemangiosarcoma Irostate Ireputial/clitoral gland Squamous cell carcinoma	+ N	+ N	+ N	+ N	+ N	י א	+ N	+ N	+ И	+ И	+ N	+ N	+ N	+ X	z+	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	X + N	+ N	1 50 *50 1
ERVOUS SYSTEM rain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
PECIAL SENSE ORGANS arderian gland Adenoma, NOS	N	N	N	N	Ň	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
LL OTHER SYSTEMS luitiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N	N	N X	N	N	N X	N	N	N	N	N	N	N X	N	N	N X	N	N	*50 2 4

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: LOW DOSE (Continued)

* Animals necropsied

ANIMAL NUMBER	C 2 5	C 4 4	C 4 1	C 4 2	C 2 0	C 3 7	C 0 5	C 1 3	C 3 8	C 1 5	C 1 9	C 36	C 1 0	C 0 4	C 4 3	C 2 8	C 3 0	C 2 6	C 5 0	C 3 2	C 0 1	C 0 9	C 0 2	C 0 3	C 0 6
WEEKS ON STUDY	0 0 0	0 0 6	0 1 2	0 1 5	0 3 8	0 4 7	0 5 0	0 5 0	0 5 1	0 5 4	0 5 4	0 6 6	0 8 2	0 8 3	0 8 8	0 8 9	0 9 1	0 9 5	0 9 8	1 0 0	1 0 1	1 0 2	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma Fibrosarcoma	-	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	N	+	+	+	+	+ X	+	*	* X	+
RESPIRATORY SYSTEM Lungs and broachi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+ x	+	+ X +	+	+	+	+	+
Trachea Nasal cavity	++	++	++	+ +	+	+ +	++	++	++	++	++	++	++	++	+	++	++	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	- + + + +	+++++++++++++++++++++++++++++++++++++++	+ -+ -+		+++	++++	+++++	+ + + +	+++++	++++++	++	+ - +	++++-	+ + + 1	++++++	++++-	+ + + +	+++++	+++++	+++++	+ + + +	+ + + +	+++++	+ + + +	+ + + +
CIRCULATORY SYSTEM Heart	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver	+++	++	++++	++++	++++	+ +	+++	+ +	++++	++	++++	+ +	+ +	++++	++++	++++	++++	++++	++++	++	+ +	+ +	+ + X	+ +	+ + +
Hepatocellular adenoma Hepatocellular carcinoma Bile duct Galibladder & common bile duct	+++	+++	+ N	+ +	++	+ N	+ +	+ N	+++	+ N	+ N	+ N	X + N	X + +	++	+++	+ N	+ +	++	X + N	+++-	+++	л + + +	+++	++
Pancreas Esophagus Stomach Squamous cell papilloma	++++++	+ + +	+	+ + +	+ + -	+ -	 + +	+ + +	+ + +	+ +	+ + -		+	++++	++++	++++	++++	 + +	+++++	++++	+ + +	++++	++++	+ + X	++++
Small intestine Adenomatous polyp, NOS Malignant lymphoma, mixed type Large intestine	+	+	-	+	_	-	-	++	+	++		_	-	_	++	+	++	_	++	+	+	+	+	+	* * +
URINARY SYSTEM Kidney Urinary bladder	- +++	+++	+++	+	+++	+	+++	+++	+++	+++	+++	++++	++++	+++	+++	+++	+++	+++	+	+++	+++	+++	+++	+ +	++++
ENDÓCRINE SYSTEM Pituitary Adrenal Adenoma, NOS	+++	++	- +	++++	+ +	 +	++++	 + +	++	+++	++	++	+++	++++	++++	+++	+++	+++	++++	+++	++++	++	++++	+ +	++++
Cortical adenoma Pheochromocytoma, malignant Thyroid Follicular cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+
Parathyroid Pancreatic islets Islet cell adenoma	+	+ +	+ -	+ +	+ +	+ -	+ -	+	+ +	+	+	+ -	_	+ +	+	+ +	- +	+ -	+	+ +	+	+	+ +	+	+ +
REPRODUCTIVE SYSTEM Mammary gland Testis	- +++	N +	N +	++++	+++	N +	N +	N +	N +	N +	N +	N +	N +	N +	N	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +
Interstitial cell tumor Prostate	+	+	-	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	- N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	- N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N X	N X	N	N	N	N	N	N	N

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL: HIGH DOSE

								(U	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	led	.,														
ANIMAL NUMBER	C 0 7	C 0 8	C 1 1	C 1 2	C 1 4	C 1 6	C 1 7	C 1 8	$\begin{array}{c} C\\ 2\\ 1\end{array}$	C 2 2	C 2 3	C 2 4	C 2 7	C 2 9	C 3 1	C 3 3	C 3 4	C 3 5	C 3 9	C 4 0	C 4 5	C 4 6	C 4 7	C 4 8	C 4 9	TOTAL:
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 2 2
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+ X +	* *	+	+	+	+	+	+	+	+ x +	+	+	* x +	+	+	+	+	* x +	+	* *	+	+	50 8 1 50
Nasal cavity	÷	÷	÷	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	÷	+	+	÷	÷	÷	50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++++	+++++++	+++++++	+++++	+++++	+ + + +	++++	+++++	+ + + +	+++++	+++++	+++++	+++-	+++++	+ + + -	+++++	+++-+++++++++++++++++++++++++++++++++++	+++++	+ + +	+++++	++++++	+ + +	+++++	+++++++	+ + + +	49 48 45 41
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	+++	+ +	++++	+ + x	+++	++++	+++	+ + X	+ + X	+ +	+++	+ +	+++	+++	+ + X	+ +	+ +	+ +	+ + X	+ + X	+ +	+ +	+ +	+ + X	+ +	50 50 9
Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach	+++++	++++	+ + + + +	+ + + + +	+ + + + +	X + N + + +	+ + + + +	+ + + + +	+ + + + +	+ + + +	X + + + + +	+++++	+ + + + +	+ + + + +	+ + + + +	+ + + + +	+ + + +	+ + + +	+ + + +	+ + + + + +	+ + + +	+ + + +	+ + + + +	+ + + + +	+ + + + +	5 50 *50 44 48 48
Squamous cell papilloma Small intestine Adenomatous polyp, NOS Malignant lymphoma, mixed type Large intestine	+	, + +	+	+	+	++	+	+	, + +	+	+	+	x + +	+	+	+++	+ X +	+	+	+	, + +	+	, + +	+	+	2 40 1 1 41
URINARY SYSTEM Kidney Urinary bladder	++++++	+++	+ +	+ +	+ +	+ +	+ +	++++	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	+++	+ +	50 47
ENDOCRINE SYSTEM Pituitary Adrenal Adenoma, NOS Cortical adenoma	+++++	+ +	+ +	+ + X	+++	++++	+ +	+++	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ -	+ +	+ + X	+ + X	+ +	+++	48 49 2 1
Pheochromocytoma, malignant Thyroid Follicular cell adenoma Parathyroid Pancreatic islets Islet cell adenoma	+ + +	+ + +	+ + +	+ + +	+ +	+ - +	+ + +	+ + +	+ + +	+ X + +	+ + + X	+ _ +	+ - +	+ ++	+ + +	+ + +	+ + +	+ +	+ + +	+ +	+++++	+ + +	+ +	+ - +	+ - +	1 50 1 30 44 1
REPRODUCTIVE SYSTEM Mammary gland Testis	+++++	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	++++	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	*50 49
Interstitial cell tumor Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	X +	+	+	48
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 1 2

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

• Animals necropsied

	Vehicle Control	375 mg/kg	750 mg/kg
Integumentary System: Fibroma			
Overall Rates (a)	1/49 (2%)	5/50 (10%)	2/50 (4%)
Adjusted Rates (b)	2.6%	11.6%	7.1%
Terminal Rates (c)	1/39 (3%)	3/40 (7%)	2/28 (7%)
Week of First Observation	104	99	104
Life Table Tests (d)	P = 0.275	P = 0.116	P=0.385
Incidental Tumor Tests (d)	P = 0.324	P = 0.140	P=0.385
Cochran-Armitage Trend Test (d)	P = 0.421		
Fisher Exact Test (d)		P = 0.107	P = 0.508
ntegumentary System: Fibrosarcoma			
Overall Rates (a)	3/49 (6%)	4/50 (8%)	2/50 (4%)
Adjusted Rates (b)	6.8%	8.8%	5.7%
Terminal Rates (c)	0/39 (0%)	1/40 (3%)	0/28 (0%)
Week of First Observation	67	88	54
Life Table Tests (d)	P = 0.541 N	P = 0.526	P = 0.611N
Incidental Tumor Tests (d)	P = 0.253 N	P = 0.465	P = 0.351 N
Cochran-Armitage Trend Test (d)	P = 0.407 N		
Fisher Exact Test (d)		P = 0.511	P = 0.490N
Integumentary System: Fibroma or Fibro			
Overall Rates (a)	4/49 (8%)	7/50 (14%)	4/50 (8%)
Adjusted Rates (b)	9.2%	15.8%	12.4%
Terminal Rates (c)	1/39 (3%)	4/40 (10%)	2/28 (7%)
Week of First Observation	67	88	54
Life Table Tests (d)	P=0.387	P = 0.294	P = 0.483
Incidental Tumor Tests (d)	P = 0.521 N	P = 0.229	P = 0.617N
Cochran-Armitage Trend Test (d)	P = 0.553N		
Fisher Exact Test (d)		P = 0.274	P = 0.631N
Integumentary System: Sarcoma or Fibro			
Overall Rates (a)	4/49 (8%)	4/50 (8%)	2/50 (4%)
Adjusted Rates (b)	8.9%	8.8%	5.7%
Terminal Rates (c)	0/39 (0%)	1/40 (3%)	0/28 (0%)
Week of First Observation	67	88	54
Life Table Tests (d)	P = 0.390N	P = 0.611N	P = 0.455N
Incidental Tumor Tests (d)	P = 0.113N	P = 0.643	P = 0.153N
Cochran-Armitage Trend Test (d)	P = 0.265 N		
Fisher Exact Test (d)		P = 0.631N	P = 0.329 N
Integumentary System: Fibroma, Sarcom			
Overall Rates (a)	5/49 (10%)	7/50 (14%)	4/50 (8%)
Adjusted Rates (b)	11.2%	15.8%	12.4%
Terminal Rates (c)	1/39 (3%)	4/40 (10%)	2/28 (7%)
Week of First Observation	67	88	54
Life Table Tests (d)	P = 0.510	P = 0.414	P = 0.605
Incidental Tumor Tests (d)	P = 0.345N	P = 0.349	P = 0.402N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.422N	P=0.394	P=0.487N
Lung: Alveolar/Bronchiolar Adenoma Overall Rates (e)	14/40 (90/2)	0/50 (1991)	0/EA (10M)
Adjusted Rates (b)	14/49 (29%) 24 8%	9/50 (18%)	8/50 (16%)
Terminal Rates (c)	34.8%	22.5%	25.5%
Week of First Observation	13/39 (33%)	9/40 (23%)	6/28 (21%)
Life Table Tests (d)	67 B-0 200N	104	50 D = 0.24CN
	P = 0.262N	P = 0.150N	P = 0.346N
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.188N	P = 0.207 N	P = 0.240N
Fisher Exact Test (d)	P = 0.079 N	D-0 157N	D-0 109M
risher Exact rest (d)		P = 0.157N	P = 0.103N

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF $_{\mbox{$\alpha$}}$ -METHYLBENZYL ALCOHOL

	Vehicle Control	375 mg/kg	750 mg/kg
Lung: Alveolar/Bronchiolar Carcinoma			
Overall Rates (e)	4/49 (8%)	6/50 (12%)	1/50 (2%)
Adjusted Rates (b)	10.3%	15.0%	3.2%
Terminal Rates (c)	4/39 (10%)	6/40 (15%)	0/28 (0%)
Week of First Observation	104	104	100
Life Table Tests (d)	P = 0.291N	P = 0.384	P = 0.291 N
Incidental Tumor Tests (d)	P = 0.269N	P = 0.384	P = 0.251N
Cochran-Armitage Trend Test (d)	P = 0.161N	D 0 000	
Fisher Exact Test (d)		P = 0.383	P = 0.175N
ung: Alveolar/Bronchiolar Adenoma or Ca	arcinoma		
Overall Rates (e)	17/49 (35%)	14/50 (28%)	9/50 (18%)
Adjusted Rates (b)	42.3%	35.0%	27.9%
Terminal Rates (c)	16/39 (41%)	14/40 (35%)	6/28 (21%)
Week of First Observation	67	104	50
Life Table Tests (d)	P = 0.198N	P = 0.296N	P = 0.245N
Incidental Tumor Tests (d)	P = 0.132N	P = 0.236 N P = 0.375 N	P = 0.245 N P = 0.146 N
		F -0.01014	1 -0.14011
Cochran-Armitage Trend Test (d)	P = 0.039N	D-0 209M	D-0 049N
Fisher Exact Test (d)		P = 0.308N	P = 0.048N
Hematopoietic System: Malignant Lymphor			
Overall Rates (a)	2/49 (4%)	4/50 (8%)	3/50 (6%)
Adjusted Rates (b)	5.1%	10.0%	9.8%
Terminal Rates (c)	2/39 (5%)	4/40 (10%)	2/28 (7%)
Week of First Observation	104	104	89
Life Table Tests (d)	P = 0.272	P=0.348	P = 0.363
Incidental Tumor Tests (d)	P = 0.333	P = 0.348	P = 0.457
Cochran-Armitage Trend Test (d)	P = 0.426	1 - 0.040	1 -0.401
Fisher Exact Test (d)	1 -0.420	P = 0.348	P=0.509
Hematopoietic System: Lymphoma, All Mal		0/50 (100)	E (EQ (100))
Overall Rates (a)	2/49 (4%)	6/50 (12%)	5/50 (10%)
Adjusted Rates (b)	5.1%	15.0%	15.1%
Terminal Rates (c)	2/39 (5%)	6/40 (15%)	2/28 (7%)
Week of First Observation	104	104	89
Life Table Tests (d)	P = 0.086	P = 0.141	P = 0.122
Incidental Tumor Tests (d)	P = 0.152	P = 0.141	P = 0.246
Cochran-Armitage Trend Test (d)	P = 0.195		
Fisher Exact Test (d)		P=0.141	P = 0.226
Cinculatory Sustan, U			
Circulatory System: Hemangiosarcoma Overall Rates (a)	5/49 (10%)	4/50 (8%)	0/50 (0%)
Adjusted Rates (b)	12.0%	10.0%	0.0%
Terminal Rates (c)	3/39 (8%)	4/40 (10%)	0/28 (0%)
Week of First Observation	76	104	0/20 (0/0)
Life Table Tests (d)		P = 0.482N	P = 0.069 N
	P = 0.058N		
Incidental Tumor Tests (d)	P = 0.044N	P = 0.603 N	P = 0.040N
Cochran-Armitage Trend Test (d)	P = 0.027 N	D 0 (07)	D 0 00511
Fisher Exact Test (d)		P = 0.487N	P = 0.027N
Circulatory System: Hemangioma or Hema	ngiosarcoma		
Overall Rates (a)	6/49 (12%)	5/50 (10%)	0/50 (0%)
Adjusted Rates (b)	14.4%	12.5%	0.0%
Terminal Rates (c)	4/39 (10%)	5/40 (13%)	0/28 (0%)
	4/33 (10%) 76	104	0.20 (0.0)
		104	
Week of First Observation		D = 0.490 N	P = 0.042 N
Week of First Observation Life Table Tests (d)	P = 0.040 N	P = 0.480N P = 0.590N	P = 0.043N P = 0.025N
Week of First Observation Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.040N P = 0.030N	P = 0.480N P = 0.590N	P = 0.043N P = 0.025N
Week of First Observation Life Table Tests (d)	P = 0.040 N		

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OFα-METHYLBENZYL ALCOHOL (Continued)

	Vehicle Control	375 mg/kg	750 mg/kg
Liver: Hepatocellular Adenoma			
Overall Rates (e)	13/49 (27%)	14/49 (29%)	9/50 (18%)
Adjusted Rates (b)	32.4%	35.0%	30.9%
Terminal Rates (c)	12/39 (31%)	14/40 (35%)	8/28 (29%)
Week of First Observation	96	104	100
Life Table Tests (d)	P = 0.518N	P = 0.533	P = 0.558N
Incidental Tumor Tests (d)	P = 0.318 N P = 0.485 N	P = 0.533 P = 0.541	P = 0.506N
		P=0.041	F=0.5001
Cochran-Armitage Trend Test(d) Fisher Exact Test(d)	P = 0.190N	P = 0.500	P = 0.218N
risher Exact Test (d)		P=0.000	F=0.210N
Liver: Hepatocellular Carcinoma			
Overall Rates (e)	11/49 (22%)	11/49 (22%)	5/50 (10%)
Adjusted Rates (b)	25.4%	24.8%	14.9%
Terminal Rates (c)	7/39 (18%)	7/40(18%)	2/28 (7%)
Week of First Observation	84	84	82
Life Table Tests (d)	P = 0.225N	P = 0.553N	P = 0.245N
Incidental Tumor Tests (d)	P = 0.054N	P = 0.516N	P = 0.063N
Cochran-Armitage Trend Test (d)	P = 0.070N		
Fisher Exact Test (d)	x - 0.01011	P=0.595	P = 0.079N
· · · · · · · ·			
Liver: Hepatocellular Adenoma or Carcinoma Overall Rates (e)		99/AQ (AEM)	19/50 (960)
Adjusted Rates (b)	20/49 (41%) 46.4%	22/49 (45%) 49.8%	13/50 (26%)
•			41.1%
Terminal Rates (c)	16/39 (41%)	18/40 (45%)	10/28 (36%)
Week of First Observation	84	84	82
Life Table Tests (d)	P = 0.412N	P = 0.474	P = 0.430N
Incidental Tumor Tests (d)	P = 0.198N	P = 0.508	P = 0.218N
Cochran-Armitage Trend Test (d)	P = 0.076 N	D 0 410	5 0 00037
Fisher Exact Test (d)		P=0.419	P = 0.088N
Forestomach: Squamous Cell Papilloma			
Overall Rates (a)	4/45 (9%)	4/50 (8%)	2/44 (5%)
Adjusted Rates (b)	10.3%	10.0%	7.1%
Terminal Rates (c)	4/39 (10%)	4/40 (10%)	2/28 (7%)
Week of First Observation	104	104	104
Life Table Tests (d)	P = 0.421 N	P = 0.630N	P = 0.497N
Incidental Tumor Tests (d)	P = 0.421N	P = 0.630N	P = 0.497 N
Cochran-Armitage Trend Test (d)	P=0.279N		
Fisher Exact Test (d)		P = 0.582N	P = 0.349N
Adrenal Capsule: Adenoma Overall Rates (e)	21A7 (COL)	0/46 (0%)	2/49 (4%)
	3/47 (6%) 7 9%	0/46(0%)	
Adjusted Rates (b)	7.9%	0.0%	7.4%
Terminal Rates (c) Weak of First Observation	3/38 (8%)	0/37 (0%)	2/27 (7%)
Week of First Observation	104 D = 0 500N	D-01001	104 D = 0 CE AN
Life Table Tests (d)	P = 0.509N	P = 0.126N	P = 0.654N
Incidental Tumor Tests (d)	P = 0.509N	P = 0.126N	P = 0.654N
Cochran-Armitage Trend Test (d)	P = 0.376N	D 0 10535	D A CANT
Fisher Exact Test (d)		P = 0.125N	P = 0.480N
Harderian Gland: Adenoma or Carcinoma			
Overall Rates (a)	3/49 (6%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (b)	7.7%	2.5%	3.6%
Terminal Rates (c)	3/39 (8%)	1/40 (3%)	1/28 (4%)
Week of First Observation	104	104	104
Life Table Tests (d)	P = 0.283N	P = 0.296N	P = 0.429N
		1 - 0.43013	1 - 0.44311
			P = 0.490 N
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.283N P = 0.196N	P = 0.296 N	P = 0.429N

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OFa-METHYLBENZYL ALCOHOL (Continued)

	Vehicle Control	375 mg/kg	750 mg/kg
All Sites: Benign Tumors			
Overall Rates (a)	28/49 (57%)	27/50 (54%)	22/50 (44%)
Adjusted Rates (b)	68.1%	64.2%	70.5%
Terminal Rates (c)	26/39 (67%)	25/40 (63%)	19/28 (68%)
Week of First Observation	67	99	50
Life Table Tests (d)	P = 0.389	P = 0.437N	P = 0.414
Incidental Tumor Tests (d)	P = 0.535	P = 0.478N	P = 0.572
Cochran-Armitage Trend Test (d)	P = 0.113N		
Fisher Exact Test (d)		P = 0.456N	P = 0.134N
All Sites: Malignant Tumors			
Overall Rates (a)	23/49 (47%)	29/50 (58%)	13/50 (26%)
Adjusted Rates (b)	48.9%	60.4%	34.4%
Terminal Rates (c)	15/39 (38%)	21/40 (53%)	4/28 (14%)
Week of First Observation	67	84	54
Life Table Tests (d)	P = 0.270 N	P = 0.248	P = 0.243N
Incidental Tumor Tests (d)	P = 0.012N	P = 0.154	P = 0.007 N
Cochran-Armitage Trend Test (d)	P = 0.022N		
Fisher Exact Test (d)		P = 0.184	P = 0.025 N
All Sites: All Tumors			
Overall Rates (a)	39/49 (80%)	40/50 (80%)	32/50 (64%)
Adjusted Rates (b)	83.0%	83.3%	84.0%
Terminal Rates (c)	31/39 (79%)	32/40 (80%)	22/28 (79%)
Week of First Observation	67	84	50
Life Table Tests (d)	P = 0.266	P = 0.554N	P = 0.301
Incidental Tumor Tests (d)	P = 0.253N	P = 0.588	P = 0.302N
Cochran-Armitage Trend Test (d)	P = 0.047 N		
Fisher Exact Test (d)		P = 0.579	P = 0.067 N

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL (Continued)

(a) Number of tumor-bearing animals/number of animals examined grossly at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence in animals killed at the end of the study

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group than in vehicle controls is indicated by (N). (e) Number of tumor-bearing animals/number of animals examined microscopically at the site

		Incidence in Ve	hicle Controls
Study	Hemangioma	Hemangiosarcoma	Hemangioma or Hemangiosarcoma
Historical Incidence at Mi	crobiological Associate	s	الم الم العلي الم الم الم الم الم الم الم الم الم الم
d-Limonene	0/49	4/49	4/49
Benzyl alcohol	0/50	1/50	1/50
a-Methylbenzyl alcohol	1/49	5/49	6/49
TOTAL	1/148 (0.7%)	10/148 (6.8%)	11/148 (7.4%)
SD (b)	1.18%	4.27%	5.16%
Range (c)			
High	1/49	5/49	6/49
Low	0/50	1/50	1/50
Overall Historical Incidend	e		
TOTAL	22/2,091 (1.1%)	104/2.091 (5.0%)	124/2.091 (5.9%)
SD(b)	2.08%	4.20%	4.92%
Range (c)			
High	6/50	7/50	10/50
Low	0/50	0/50	0/50

.

TABLE C4. HISTORICAL INCIDENCE OF CIRCULATORY SYSTEM TUMORS IN MALE $B6C3F_1$ MICE ADMINISTERED CORN OIL BY GAVAGE (a)

(a) Data as of May 12, 1988, for studies of at least 104 weeks

(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

	Vehicle	Control	Low	Dose	High	Dose
Animals initially in study	50		50			
Animals necropsied	49		50		50	
Animals examined histopathologically	49		50		50	
INTEGUMENTARY SYSTEM						
*Skin	(49)		(50)		(50)	
Ulcer, NOS	-	(2%)		(2%)		(2%)
Inflammation, chronic		(2%)		(4%)		(2%)
*Subcutaneous tissue	(49)	(001)	(50)	(4%)	(50)	
Abscess, NOS Inflammation, chronic		(2%) (2%)		(4%) (4%)	1	(2%)
Inflammation, granulomatous		(4%)	4	(4,0)	1	(270)
Infection, fungal		(2%)				
Necrosis, fat	-				2	(4%)
Foreign material, NOS	1	(2%)				
RESPIRATORY SYSTEM						
#Nasal cavity	(49)		(44)		(50)	
Hemorrhage		(2%)			1	(2%)
Inflammation, serous		(2%)				_
Inflammation, suppurative		(4%)	3	(7%)	1	(2%)
Inflammation, chronic		(2%)		(0.27)		(00)
Foreign material, NOS	-	(2%)		(2%)		(6%)
#Lung Congestion, NOS	(49)		(50)		(50)	(14%)
Edema, NOS						(2%)
Hemorrhage	1	(2%)	1	(2%)		(12%)
Sequestration	-	()		(2%)	-	
Inflammation, interstitial	1	(2%)			2	(4%)
Inflammation, acute					1	(2%)
Bronchopneumonia, chronic		(2%)				
Foreign material, NOS		(2%)			7	(14%)
Hemosiderosis		(2%)				
Hyperplasia, alveolar epithelium		(2%)	,	(90)		(60)
Epithelialization	3 (49)	(6%)	(50)	(2%)	3 (50)	(6%)
#Lung/alveoli Histiocytosis		(4%)		(4%)		(4%)
HEMATOPOIETIC SYSTEM			<u>_,_,_</u>			
#Spleen	(48)		(49)		(48)	
Hyperplasia, lymphoid		(4%)		(4%)	(10)	
Hematopoiesis		(8%)	5	(10%)		(2%)
#Mandibular lymph node	(48)		(50)		(45)	
Hemorrhage				(2%)		
Hyperplasia, plasma cell		(2~)	1	(2%)		
Hyperplasia, lymphoid		(2%)	(20)		1400	
#Mediastinal lymph node	(48)		(50)	(90)	(45)	
Hemorrhage #Mesenteric lymph node	(48)		(50)	(2%)	(45)	
Hemorrhage		(44%)		(24%)		(18%)
Degeneration, cystic		(2%)	14	(==,0)	0	(-3,0)
Angiectasis		(2%)				
#Renal lymph node	(48)		(50)		(45)	
Hemorrhage						(2%)
#Lung	(49)		(50)		(50)	
Hyperplasia, lymphoid				(2%)		
#Liver Hematopoiesis	(49)		(49)	(6%)	(50)	
				I IN MAL		

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL

	Vehicle	Control	Low	Dose	High	Dose
HEMATOPOIETIC SYSTEM (Continued)						
#Peyer's patch	(43)		(48)		(40)	
Hyperplasia, lymphoid		(2%)		(6%)		
#Cecum	(45)		(48)		(41)	
Hyperplasia, lymphoid	1	(2%)				
#Thymus	(42)		(34)		(41)	
Cyst, NOS	3	(7%)		(15%)		
Depletion, lymphoid			1	(3%)		
CIRCULATORY SYSTEM						
#Brain	(49)		(50)		(50)	
Embolus, septic		(2%)				
*Abdominal cavity	(49)		(50)		(50)	
Polyangiitis	1	(2%)				
#Heart	(49)		(50)		(50)	
Polyangiitis						(2%)
#Heart/atrium	(49)		(50)		(50)	
Thrombosis, NOS				(2%)		
#Cardiac valve	(49)		(50)		(50)	
Infection, bacterial	1	(2%)				
DIGESTIVE SYSTEM				,,		
*Tooth	(49)		(50)		(50)	
Dysplasia, NOS		(20%)		(20%)		
#Salivary gland	(48)		(50)		(50)	
Lymphocytic inflammatory infiltrate	2	(4%)		(6%)	1	(2%)
Necrosis, NOS				(2%)		
#Liver	(49)		(49)		(50)	
Cyst, NOS		(2%)				
Inflammation, multifocal	2	(4%)	-	(0.01)		
Fibrosis, multifocal	-	(07)	1	(2%)		
Necrosis, coagulative		(2%)	~	(40)		
Metamorphosis, fatty		(2%)		(4%)		(0.01)
Cytoplasmic change, NOS Basenhilie exte change		(2%) (2%)	3	(6%)	1	(2%)
Basophilic cyto change Ground glass cyto change	1	(2%)				(2%)
Eosinophilic cyto change						(2%) (2%)
#Liver/centrilobular	(49)		(49)		(50)	(470)
Necrosis, NOS	,	(4%)		(2%)		(4%)
Metamorphosis, fatty	2	(= /0 /	1		1	
*Gallbladder	(49)		(50)		(50)	
Dilatation, NOS	(20)		(00)			(2%)
Degeneration, hyaline	1	(2%)			•	
Hyperplasia, epithelial		(2%)				
#Pancreas	(46)		(49)		(44)	
Dilatation/ducts	/					(2%)
#Pancreatic acinus	(46)		(49)		(44)	
Atypia, NOS			1	(2%)		
Atrophy, NOS						(2%)
#Glandular stomach	(46)		(50)		(44)	
Ectopia				(2%)		
Inflammation, acute			1	(2%)		
Hyperplasia, epithelial						(2%)
#Forestomach	(46)		(50)		(44)	
Ulcer, NOS	-	(4 8 22)		(4%)		(5%)
Inflammation, acute/chronic		(17%)	4	(8%)		(5%)
Inflammation, chronic		(2%)		(0~)		(2%)
Hyperplasia, epithelial	11	(24%)		(8%)	4	(9%)
Hyperplasia, focal			1	(2%)		

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

	Vehicle	Control	Low	Dose	High	Dose
DIGESTIVE SYSTEM (Continued)			·····			
#Small intestine	(43)		(48)		(40)	
Hyperplasia, epithelial	(40)			(2%)	(40)	
#Duodenum	(43)		(48)	(2,0)	(40)	
Inflammation, acute necrotizing	(40)			(2%)	(40)	
#Cecum	(45)		(48)	(2,0)	(41)	
Hyperplasia, epithelial	(40)			(4%)	(***)	
JRINARY SYSTEM		<u> </u>	<u> </u>			
#Kidney	(49)		(50)		(50)	
Mineralization	(40)			(2%)	(007	
Glomerulonephritis, NOS	9	(4%)		(10%)	1	(2%)
Pyelonephritis, NOS		(2%)		(1 0 <i>%</i>) (4 %)	1	(270)
Lymphocytic inflammatory infiltrate					6	(1907)
	7	(14%)		(2%)	0	(12%)
Inflammation, interstitial				(2%)		
Fibrosis, focal			2	(4%)	-	
Fibrosis, diffuse						(2%)
#Renal papilla	(49)		(50)		(50)	
Mineralization				(2%)		
#Urinary bladder	(49)		(49)		(47)	
Calculus, gross observation only			1	(2%)		
Lymphocytic inflammatory infiltrate					1	(2%)
Inflammation, chronic	1	(2%)	1	(2%)		
Hyperplasia, papillary		()		(2%)		
*Urethral gland	(49)		(50)	(=)	(50)	
Hemorrhage	(10)			(2%)	(00)	
Cyst, NOS #Adrenal/capsule Hyperplasia, focal #Adrenal cortex Hyperplasia, focal #Thyroid Ultimobranchial cyst	(47) 6 (47)	(2%) (13%) (2%)	1 (46) (46) (49)	(2%)	(49) (50)	(4%) (2%)
Cystic follicles Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS	3 (46) (46)	(2%) (7%) (4 %)	(49)	(4%) (4%)	(50) (44)	
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS	3 (46) (46)	(7%)	(49) 2			
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS 	3 (46) (46) 2	(7%)	(49) 2 (49)		(44)	
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS CEPRODUCTIVE SYSTEM *Preputial gland	3 (46) (46)	(7%)	(49) 2 (49) (50)	(4%)	(44)	(A OL)
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS EPRODUCTIVE SYSTEM *Preputial gland Dilatation/ducts	3 (46) (46) 2	(7%)	(49) 2 (49) (50) 4	(4%)	(44) (50) 2	(4%)
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS CEPRODUCTIVE SYSTEM *Preputial gland Dilatation/ducts Abscess, NOS	3 (46) (46) 2	(7%)	(49) 2 (49) (50) 4 1	(4%) (8%) (2%)	(44) (50) 2 1	(2%)
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS EPRODUCTIVE SYSTEM *Preputial gland Dilatation/ducts Abscess, NOS Inflammation, chronic	3 (46) (46) 2	(7%)	(49) 2 (49) (50) 4 1	(4%)	(44) (50) 2 1 1	(2%) (2%)
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS EPRODUCTIVE SYSTEM *Preputial gland Dilatation/ducts Abscess, NOS Inflammation, chronic Hyperplasia, NOS	3 (46) (46) 2 (49)	(7%)	(49) 2 (49) (50) 4 1 3	(4%) (8%) (2%)	(44) (50) 2 1 1 1	(2%)
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS EPRODUCTIVE SYSTEM *Preputial gland Dilatation/ducts Abscess, NOS Inflammation, chronic Hyperplasia, NOS #Prostate	3 (46) (46) 2	(7%)	(49) 2 (49) (50) 4 1	(4%) (8%) (2%)	(44) (50) 2 1 1 1 (48)	(2%) (2%) (2%)
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS EPRODUCTIVE SYSTEM *Preputial gland Dilatation/ducts Abscess, NOS Inflammation, chronic Hyperplasia, NOS #Prostate Inflammation, suppurative	3 (46) (46) 2 (49) (47)	(7%) (4%)	(49) 2 (49) (50) 4 1 3 (50)	(4%) (8%) (2%) (6%)	(44) (50) 2 1 1 1 (48)	(2%) (2%)
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS EPRODUCTIVE SYSTEM *Preputial gland Dilatation/ducts Abscess, NOS Inflammation, chronic Hyperplasia, NOS #Prostate Inflammation, suppurative Inflammation, chronic	3 (46) (46) 2 (49) (47) 1	(7%)	(49) 2 (49) (50) 4 1 3 (50) 2	(4%) (8%) (2%)	(44) (50) 2 1 1 1 (48) 1	(2%) (2%) (2%)
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS EEPRODUCTIVE SYSTEM *Preputial gland Dilatation/ducts Abscess, NOS Inflammation, chronic Hyperplasia, NOS #Prostate Inflammation, suppurative Inflammation, chronic *Seminal vesicle	3 (46) (46) 2 (49) (47)	(7%) (4%)	(49) 2 (49) (50) 4 1 3 (50)	(4%) (8%) (2%) (6%)	(44) (50) 2 1 1 (48) 1 (50)	(2%) (2%) (2%) (2%)
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS EEPRODUCTIVE SYSTEM *Preputial gland Dilatation/ducts Abscess, NOS Inflammation, chronic Hyperplasia, NOS #Prostate Inflammation, suppurative Inflammation, chronic *Seminal vesicle Dilatation, NOS	3 (46) (46) 2 (49) (47) 1	(7%) (4%)	(49) 2 (49) (50) 4 1 3 (50) 2 (50)	(4%) (8%) (2%) (6%) (4%)	(44) (50) 2 1 1 (48) 1 (50)	(2%) (2%) (2%)
Hyperplasia, follicular cell #Thyroid follicle Atrophy, NOS #Pancreatic islets Hyperplasia, NOS EPRODUCTIVE SYSTEM *Preputial gland Dilatation/ducts Abscess, NOS Inflammation, chronic Hyperplasia, NOS #Prostate Inflammation, suppurative Inflammation, chronic *Seminal vesicle	3 (46) (46) 2 (49) (47) 1	(7%) (4%)	(49) 2 (49) (50) 4 1 3 (50) 2 (50) 1	(4%) (8%) (2%) (6%)	(44) (50) 2 1 1 (48) 1 (50) 1	(2%) (2%) (2%) (2%)

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

	Vehicle	Control	Low	Dose	High	Dose
REPRODUCTIVE SYSTEM (Continued)						
#Testis	(49)		(50)		(49)	
Mineralization		(4%)		(6%)		(2%)
Inflammation, chronic	-	(470)		(2%)	•	(270)
Hypospermatogenesis	4	(8%)		(10%)	1	(2%)
*Epididymis	(49)	(0,0)	(50)	(10,0)	(50)	(2,0)
Granuloma, spermatic		(2%)		(4%)		(2%)
Granuonia, spermatic	1	(270)	2	(4.70)		(2 %)
NERVOUS SYSTEM						
#Brain/meninges	(49)		(50)		(50)	
Inflammation, chronic			1	(2%)		
#Brain	(49)		(50)		(50)	
Cyst. NOS	/			(2%)		
#Brain/thalamus	(49)		(50)		(50)	
Calculus, microscopic examination		(39%)		(34%)		(46%)
SPECIAL SENSE ORGANS						
*Eye/cornea	(49)		(50)		(50)	
Inflammation, suppurative		(2%)				
*Middle ear	(49)		(50)		(50)	
Abscess, NOS			1	(2%)		
MUSCULOSKELETAL SYSTEM						
*Maxilla	(49)		(50)		(50)	
Inflammation, active chronic	(43)			(2%)		
*Skeletal muscle	(49)		(50)	(270)	(50)	
Mineralization	(49)		(50)			(2%)
Mineralization					1	(2%)
BODY CAVITIES						
*Thoracic cavity	(49)		(50)		(50)	
Inflammation, acute	1	(2%)				
*Abdominal cavity	(49)		(50)		(50)	
Hemorrhage		(2%)				
Necrosis, fat		(10%)			1	(2%)
*Pleura	(49)		(50)		(50)	
Inflammation, acute		(2%)	(00)			
Inflammation, chronic		(2%)	1	(2%)		
*Epicardium	(49)	(210)	(50)	(210)	(50)	
Inflammation, chronic		(2%)	(30)		(30)	
*Mesentery	(49)	(470)	(50)		(50)	
Necrosis, fat	(49)			(4%)	(00)	
				(++ 70)		
ALL OTHER SYSTEMS						
*Multiple organs	(49)		(50)		(50)	
Lymphocytic inflammatory infiltrate	35	(71%)	38	(76%)	21	(42%)
Amyloidosis		(2%)		(2%)		
SPECIAL MORPHOLOGY SUMMARY	<u> </u>					
No lesion reported					2	
Animal missexed/no necropsy	1				4	

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

APPENDIX D

SUMMARY OF LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF

a-METHYLBENZYL ALCOHOL

PAGE	
------	--

TABLE D1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF a -METHYLBENZYL ALCOHOL	125
TABLE D2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF \mathfrak{a} -METHYLBENZYL ALCOHOL	128
TABLE D3	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF \mathfrak{a} -METHYLBENZYL ALCOHOL	136
TABLE D4	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL	139

a-Methylbenzyl Alcohol, NTP TR 369

	Vehicle	Control	Low	Dose	High	Dose
Animals initially in study		<u></u>	50		50	
Animals necropsied	50		50		50	
Animals examined histopathologically	50		50		50	
NTEGUMENTARY SYSTEM						
*Subcutaneous tissue	(50)		(50)		(50)	
Fibroma	1	(2%)				
Fibrosarcoma			1	(2%)		
Lipoma	1	(2%)				
RESPIRATORY SYSTEM						
#Lung	(50)		(4)		(50)	
Alveolar/bronchiolar adenoma		(10%)	1	(25%)	4	(8%)
Alveolar/bronchiolar carcinoma		(4%)				
Osteosarcoma, metastatic	1	(2%)				
HEMATOPOIETIC SYSTEM						
*Multiple organs	(50)	((50)		(50)	
Malignant lymphoma, NOS		(6%)	6	(12%)		(0/7)
Malignant lymphoma, undifferentiated type		(4%) (6%)	1	(2%)		(2%) (4%)
Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type		(14%)		(2%) (4%)		(4%) (12%)
Leukemia, NOS	•	(14/0)		(2%)	Ŭ	
#Spleen	(49)		(15)		(49)	
Malignant lymphoma, mixed type	1	(2%)				
CIRCULATORY SYSTEM		<u></u>	<u></u>			
#Heart	(50)		(4)		(50)	
Hemangiosarcoma						(2%)
*Mesentery	(50)		(50)		(50)	
Hemangioma		(2%)	((50)	
#Uterus Hemangiosarcoma	(50)	(2%)	(44) 1	(2%)	(50)	
		·				
DIGESTIVE SYSTEM #Liver	(50)		(6)		(50)	
Hepatocellular adenoma		(2%)		(17%)	(30)	
Hepatocellular carcinoma		(2%)	•	(11/0)		
#Forestomach	(50)		(48)		(48)	
Squamous cell papilloma	3	(6%)	5	(10%)	4	(8%)
#Duodenum	(47)		(6)		(48)	
Adenomatous polyp, NOS					2	(4%)
URINARY SYSTEM None		<u> </u>				
ENDOCRINE SYSTEM						
#Anterior pituitary	(50)		(4)		(48)	
Carcinoma, NOS	1	(2%)				
Adenoma, NOS		(8%)				(13%)
#Adrenal	(49)		(4)		(50)	
Cortical adenoma Bhasabaamaastama		(2%)				
Pheochromocytoma Pheochromocytoma, malignant		(2%) (2%)				
· ····································	1	(<u> </u>				

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF α -METHYLBENZYL ALCOHOL

	Vehicle	Control	Low	Dose	High	Dose
ENDOCRINE SYSTEM (Continued)						
#Thyroid	(50)		(4)		(49)	
Follicular cell adenoma	1	(2%)			3	(6%)
REPRODUCTIVE SYSTEM		· · · · ·	<u></u>	····		
*Mammary gland	(50)		(50)		(50)	
Adenocarcinoma, NOS	(50)			(2%)	(50)	
*Clitoral gland Carcinoma, NOS	(50)	(2%)	(50)		(50)	
*Vagina	(50)	(2%)	(50)		(50)	
Leiomyoma	(00)			(2%)	(00)	
#Uterus	(50)		(44)	()	(50)	
Leiomyosarcoma				(2%)		(2%)
#Uterus/endometrium	(50)		(44)		(50)	
Adenocarcinoma, NOS	(10)			(2%)	(40)	
#Ovary Granulosa cell tumor	(49)	(2%)	(20)		(48)	
	L	(270)				
NERVOUS SYSTEM					(50)	
#Brain stem	(50)	(971)	(4)		(50)	
Carcinoma, NOS, invasive	1	(2%)				
SPECIAL SENSE ORGANS						
*Harderian gland	(50)	(4.57)	(50)	(1~)	(50)	(00)
Adenoma, NOS	2	(4%)	2	(4%)	1	(2%)
MUSCULOSKELETAL SYSTEM						
*Skull	(50)		(50)		(50)	
Osteosarcoma		(2%)	(50)		(50)	
*Muscle of back Sarcoma, NOS	(50)	(2%)	(50)		(50)	
		(2 //)				
BODY CAVITIES	(50)		(50)		(50)	
*Abdominal cavity	(50)		(50)		(50)	(2%)
Leiomyoma						(270)
ALL OTHER SYSTEMS					(50)	
*Multiple organs	(50)		(50)		(50)	(2%)
Histiocytic sarcoma Sarcoma, NOS, uncertain primary or	matastatio 1	(2%)			1	(2%)
Leiomyosarcoma, metastatic	metastatic I	(210)	1	(2%)		
Lower leg			-	· - · · ·		
Sarcoma, NOS, uncertain primary or	metastatic 1					
ANIMAL DISPOSITION SUMMARY						
Animals initially in study	50		50		50	
Natural death	9		9		7	
Moribund sacrifice Terminal sacrifice	1 40		40		38	
Dosing accident	40		40		30 5	
Doorne accuracity			-		v	

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL (Continued)

TABLE D1.	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR
	GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL (Continued)

	Vehicle Control	Low Dose	High Dose
CUMOR SUMMARY			<u></u>
Total animals with primary tumors**	33	23	24
Total primary tumors	49	25	33
Total animals with benign tumors	16	10	16
Total benign tumors	21	10	21
Total animals with malignant tumors	22	15	12
Total malignant tumors	25	15	12
Total animals with secondary tumors##	2	1	
Total secondary tumors	2	1	
Total animals with tumors			
uncertain benign or malignant	1		
Total uncertain tumors	1		
Total animals with tumors			
uncertain primary or metastatic	2		
Total uncertain tumors	2		

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
** Primary tumors: all tumors except secondary tumors
Number of animals examined microscopically at this site
Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

ANIMAL NUMBER	C 3 1	C 2 3	C 1 7	C 2 4	$\begin{array}{c} C\\ 1\\ 1\end{array}$	C 4 5	C 0 3	C 0 6	C 2 6	C 0 1	C 0 2	C 0 4	C 0 5	C 0 7	C 0 8	C 0 9	C 1 0	$\begin{array}{c} C \\ 1 \\ 2 \end{array}$	C 1 3	C 1 4	C 1 5	C 1 6	C 1 8	C 1 9	CN0
WEEKS ON STUDY	0 4 2	0 6 9	0 7 8	0 8 5	1 0 0	1 0 0	1 0 1	1 0 2	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma Lipoma		+	+	+	+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Osteosarcoma, metastatic	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	* x	+ x	+	+	+	+	+	+	+ X	+	* x
Trachea Nasal cavity	+++	4 + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malignant lymphoma, mixed type	++	++	++++	+++	+++	+++	+ +	+++	+++	++	+++	+++	+++	+ +	+++	++++	+++	+++	++++	+++	+ +	+ + X	++++	+++++++++++++++++++++++++++++++++++++++	+++
Lymph nodes Thymus	++	+ +	_	+ +	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ -	+++	+ +	+ +	+ +
CIRCULATORY SYSTEM Heart		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	++++	+++	++++	+++++	+ +	+++++	+ +	++++	+++	++++	+++	+++	++++	+++++	+ +	+++	+++	++++	++	+++	++++	++++	++++	+++	++
Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + \-	+++++	+ + +	+ + +	+ N +	+ + +	+ + + +	+++++	+++	+++++	++++++	+ + +	++++	+++++	++++	++++	+ + +	++++	+ + +	+ + +	++++++	++++	++++
Esophagus Stomach Squamous cell papilloma Small intestine	+++++++++++++++++++++++++++++++++++++++	++++++	\- + +	+ + +	+++++	+ +	+++++	+ +	++	++++++	+++++++++++++++++++++++++++++++++++++++	+ + +	++++++	++++++	++++++	+ + +	+++++	+++++	+ + +	+ + X +	+ + X +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + +	++++++
Large intestine URINARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Kidney Urinary bladder	++++	+ +	+ +	+ -	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma	+	+	-	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	x +	+	+	х +	+
Pheochromocytoma, malignant Thyroid Follicular cell adenoma Parathyroid	+	+	+ +	+ +	+ +	+	+ +	x + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ x +	+ +	+ +	+ +	+ +	+ +	+ +
REPRODUCTIVE SYSTEM Mammary gland Preputial/clitoral gland	+ N	+ N	+ N	+ N	+ N	N N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N
Carcinoma, NOS Uterus Hemangiosa.coma Ovary Granulosa cell tumor	+ X +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	x + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ -	+ +	+ +	+ +	+ +
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR
GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL: VEHICLE CONTROL

+:-:: -::: N:::

Tissue examined microscopically Required tissue not examined microscopicaliy Tumor incidence Necropsy, no autolysis, no microscopic examination Animal missexed

No tissue information submitted
 Necropsy, no histology due to protocol
 Autolysis
 Animal missing
 B: No necropsy performed

												<i>,</i>														
ANIMAL NUMBER	C 2 1	C 2 2	C 2 5	C 2 7	C 2 8	C 2 9	C 3 0	C 3 2	C 3 3	C 3 4	C 3 5	C 3 6	C 3 7	C 3 8	C 3 9	C 4 0	C 4 1	C 4 2	C 4 3	C 4 4	C 4 6	C 4 7	C 4 8	C 4 9	C 5 0	TOTAL:
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma Lipoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X	+	÷	+	*50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Osteosarcoma, metastatic	+	+	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	*	* X	+	+	÷	+	+	+	+	50 5 2 1
Trachea Nasal cavity	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	50 50											
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malignant lymphoma, mixed type Lymph nodes	+++++	+++++	++++++	+ + +	++++++	++++++	+++++++	+++++	+++++	++++++	+ + +	++++++	+ + +	++++++	++++++	+ + +	+++++	+ -	++++++	+ + +	+ + +	++++++	+++++	+ + +	++++++	50 49 1 48
Thymus CIRCULATORY SYSTEM	(+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Heart DIGESTIVE SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	+ + X	+ +	+ +	+ +	+ +	+ +	+	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	49 50 1											
Bile duct Gallbladder & common bile duct Pancreas	++++	+++++	+++++	+++++	+++++	+ + +	++++	++++	++++++	+ + +	++++	+ + +	++++	+ + +	+ N +	+++++	++++	+ N	++++	+ N +	++++	++++	+ + +	++++	++++	50 *50 47
Esophagus Stomach Squamous cell papilloma Small intestine Large intestine	+++++	++++	+++++	+++++	+++++	++++	+++++	+++++	+++++	+++++	++++	+ + +	+ + + +	+++++	+++++	+++++	+ + X + +	+ + + -	+++++	+++++	+++++	+++++	+++++	+ + + +	++ ++	50 50 3 47 49
URINARY SYSTEM Kidney Urinary bladder	+++	+++	++++	+ + +	+++	+++	+++	+++	++++	+ +	+++	++++	++++	+++	++++	++++	++++	+++	+++	+ +	+ +	+++	++	++	++++	50 49
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS	+	+	+	+	+	+	+	+	+	+ x	+	+ x	+	+	+	* x	+	+	+	+	+	+	+	+	+	50 1 4
Adrenal Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant	+	+	+	+	+	+	+	+ X	+	÷	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1 1 1
Thyroid Follicular cell adenoma Parathyroid	+++++++++++++++++++++++++++++++++++++++	+	+	+ +	+ -	+ +	+ -	+	+ +	+ -	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ 	+ +	+ +	50 1 43
REPRODUCTIVE SYSTEM Mammary gland Preputa/clitoral gland Carcinoma, NOS	+ N	+ N	+ N	N N	+ N	+ N	+ N	N N	+ N	N N	+ N	+ N	+ N	+ N	,+ N	+ N	+ N	*50 *50 1								
Uterus Hemangiosarcoma Ovary Granulosa cell tumor	+++	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	50 1 49 1								
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	- 50 1
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 2

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

* Animals necropsied

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

ANIMAL NUMBER	C 3 1	C 2 3	C 1 7	C 2 4	C 1 1	C 4 5	C 0 3	C 0 6	C 2 6	C 0 1	C 0 2	C 0 4	C 0 5	C 0 7	C 0 8	C 0 9	C 1 0	C 1 2	C 1 3	C 1 4	C 1 5	C 1 6	C 1 8	C 1 9	C 2 0
WEEKS ON STUDY	0 4 2	0 6 9	0 7 8	0 8 5	1 0 0	1 0 0	1 0 1	$1 \\ 0 \\ 2$	1 0 2	1 0 4															
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma Muscle Sarcoma, NOS	N N	N X N	N N	N N	N N	N N X	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N
BODY CAVITIES Mesentery Hemangioma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Sarcoma, NOS, unclear primary or metastatic Malignant lymphoma, NOS	N	N	N X	N	N	N X	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Malignant lymphoma, undifferentiated type Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type Lower leg, NOS Sarcoma, NOS, unclear primary or metastatic					х	x									x	x			x					x	

TABLE D2.	INDIVIDUAL ANIMAL	TUMOR F	PATHOLOGY	OF	FEMALE	MICE:	VEHICLE CONTROL	
			(Continued)				

1 0 4		1	1							Э	6	7	3 8	9	ō	i	2	3	4	6	7	8	4 9	5 0	TOTAL:
	4	4	0 4	04	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES TUMORS
N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	*50 1 *50 1
N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	*50 1
N X	N	N	N X	N	N	N	N	N X	N	N	N	N X	N	N	N	N	N X	N X	N X	N	N	N	N	N X	*50 1 3 2 3 7
	N N N	N N N N N N	N N N N N N N N N	N N N N N N N N N N N N X	N N N N N N N N N N N N N N N N N N X	N N N N N N N N N N N N N N N N N N N N	N X	N X	N N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N

* Animals necropsied

.

ANIMAL NUMBER	C 0 9	C 4 3	C 0 1	C 0 8	C 1 4	C 4 6	C 1 7	$\begin{array}{c} C\\ 2\\ 1\end{array}$	C 2 3	C 0 2	C 0 3	C 0 4	C 0 5	C 0 6	C 0 7	C 1 0	C 1 1	C 1 2	C 1 3	C 1 5	C 1 6	C 1 8	C 1 9	C 2 0	$\overset{\mathrm{C}}{\overset{2}{_{2}}}$
WEEKS ON STUDY	0 2 1	0 7 1	0 8 7	0 8 9	0 9 3	0 9 8	$\begin{array}{c}1\\0\\1\end{array}$	1 0 1	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	+	+.	+	+	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
RESPIRATORY SYSTEM Lungs and bronchi Alveolarfibronchiolar adenoma Trachea Masal cavity	+ + +	+++++	+ X +	+ +	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes	+++++	+ + +	++++	++++		- + +	 + +	- + +	 + +			- + +	- + -	-					- + -			 + ++++	-		
Thymus CIRCULATORY SYSTEM Heart	+ +	- +	+	- +	_	-	+	+		-	_	_				-						+		_	-
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Bile duct	++++++	+++++	+ + +	+ + +			+ -	+	- + +	-	-	-						-	- + X +		-	+ - -			
Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma	+++++++++++++++++++++++++++++++++++++++	N + + +	++++	N - + +	N +	N +	N - +	N +	N +	N - +	N +	N +	N +	N - +	N ++	N - - -	N +	N + X	N +	N - +	N +	N +	N + X	N - +	N - +
Small intestine Large intestine URINARY SYSTEM Kidney	+	++	+	-	-	-	-	-	_	+	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-
Urinary bladder ENDOCRINE SYSTEM	++	+ -	+	+	-	~	-	-	-	-	-	-	-	-	-	_	-	-	-		-	-	-	-	+ -
Pituitary Adrenal Thyroid Parathyroid	+++++++++++++++++++++++++++++++++++++++	+++-	+ + + + +	+ + + +	+	1111																	1111		
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Vagina Leiomyoma	+ N	+ N	+ N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	+ X N	N N	N N
Uterus Adenocarcinoma, NOS Leiomyosarcoma Hemangiosarcoma Ovary	+	+ X	+	+	+	1 1	-	-	-	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	-		-	-	_	-	_	_			_	_	_	_			_	_	-	_	
SPECIAL SENSE ÖRGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leiomyosarcoma, metastatic Malignant lymphoma, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type Leukema, NOS	N	N X	N X	N X	N	N X	N X	N X	N X	N	N	N X	N	N	N	N	N	N	N	N	N	N X	N	N	N

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF a-METHYLBENZYL ALCOHOL: LOW DOSE

ANIMAL NUMBER	C 2 4	C 2 5	C 2 6	C 2 7	C 2 8	C 2 9	C 3 0	C 3 1	C 3 2	C 3 3	C 3 4	C 3 5	C 3 6	C 3 7	C 3 8	C 3 9	C 4 0	C 4 1	C 4 2	C 4 4	C 4 5	C 4 7	C 4 8	C 4 9	C 5 0	moment
WEEKS ON STUDY	1 0 4	TOTAL: TISSUES TUMORS																								
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	N	N X	N	N	N	N	N	N	N	+	N	N	N	N	+	N	N	N	N	N	N	N	N	N	N	*50 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	-	-	-		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	4 1 4
Nasal cavity	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes	- + +			+			-	+	-		-	-	-			+	-	-		-	-				-	4 15 15
Thymus	-	-		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-5
CIRCULATORY SYSTEM Heart		-		_	-	-		_	_		-	-	-	_	_	-	-	-	-	-	-	-	-		-	4
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	-	-	_	-	-	-	-	-	-	+	-	-	-	-	+	-	-	_	_	-	-	-	-	-	-	9 6 1
Bile duct Gallbladder & common bile duct Pancreas	- N +	N N	N	N -	N -	N N	N N	N -	N N	N -	Ň	N	N N	Ň	Ň	Ň	N -	N -	N	N N	N N		N N	N -	Ñ	6 *50 4
Esophagus Stomach Squamous cell papilloma Small intestine	+	+	+	- - +	+	+	+	+	+	+	- + +	-+	+	* *	+	+	- + X	- + x	+	+	+	- + -	+	+	+	4 48 5 6
Large intestine	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3
URINARY SYSTEM Kidney Urinary bladder	-	+	-	-	-	-	-	-	-	+	-	-	-	-	+	-	-	_	-	_	_	-	-	-	-	9 3
ENDOCRINE SYSTEM Pituitary Adrenal				_	-		-	-	-			-	-			-	_	-			_	=			-	4 4
Thyroid Parathyroid	-	Ξ	Ξ	-	-	-	-	-	_	_	-	-	_	-	_	Ξ	_	_	_	_	-	_	_	-	_	4 3
REPRODUCTIVE SYSTEM																										· _
Mammary gland Adenocarcinoma, NOS	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	N	N	N	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	*50
Vagina Leiomyoma	N	Ν	N	Ν	N X	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	N	Ν	N	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	*50 1
Uterus Adenocarcinoma, NOS Leiomyosarcoma	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	-	+	+	÷	+	+	+	+	+	+	+	44 1 1
Hemangiosarcoma Ovary	+	-	-	-	+	-	_	+	+	-	+	+	+			x	+		+	-	+	+	-	_	_	20
NERVOUS SYSTEM Brain			_	_	_		-	_	-	-	-	_	_	-	-	-	_	-	_	_	-	-	-	-	-	4
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N X	*50 2
ALL OTHER SYSTEMS Multiple organs, NOS Leiomyosarcoma, metastatic Malignant lymphoma, NOS Malignant lymphoma, lymphocytic type	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 6 1
Malignant lymphoma, mixed type Leukemia, NOS				X																			_			2 1

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

* Animals necropsied

ANIMAL NUMBER	C 1 9	C 3 3	C 4 8	C 1 7	C 2 2	C 1 3	C 5 0	C 1 6	C 0 1	C 1 1	C 2 5	C 4 2	C 0 2	C 0 3	C 0 4	C 0 5	C 0 6	C 0 7	C 0 8	C 0 9	C 1 0	C 1 2	C 1 4	C 1 5	C 1 8
WEEKS ON STUDY	0 0 1	0 0 1	0 0 7	0 1 6	0 6 7	0 7 6	0 7 6	0 7 7	0 7 9	0 8 3	0 8 4	0 8 7	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea Nasal cavity	++++	+ + +	+++++	+ + +	+ + +	+ + +	+++++	+ + +	+ + +	+ + +	+++++	+ + +	+ + +	+ + +	+ + +	+++++	+ + +	+++++	++++	+ + +	+ X + +	+ + + +	+++++	+ + + +	+ + +
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	+++++++	+ + + +	++	++++	+++	+++-	+ + + +	+++++	+++++	+ - + -	++++	+ + + -	+++++	+++++	+ + + +	+ + + +	+ + + +	+++++	++++++	+++++	++++++	+++++	+++++	+++++	+ + + +
CIRCULATORY SYSTEM Heart Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Small intestine Adenomatous polyp, NOS Large intestine	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++2+++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++Z+++ 1	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++X+++ + =	+++++++++++++++++++++++++++++++++++++++	+++Z+++	+++Z+++ + +	+++X+++ + -	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++ + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++-+X+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++ + +	+ + + + + + + X + X + X +
URINARY SYSTEM Kidney Urinary bladder	+++++	+ +	++++	++++	+	++++	+++	++++	+++	+++	++++	++++	++++	++++	++++	+++++	++++	+++	++++	+ +	+++++	+++	++++	++++	+
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Thyroid Follicular cell adenoma Parathyroid	+++++++	+++++	- + +	++++++	+ + + +	+ + +	++++++	++++++	++++++	++++++	+++++	++++	+ + +	+ X + +	+ + + +	+ + + +	++++++	+ + + +	++++	++++++	+ X + + +	+ + + +	+ + + +	+ + + + +	+ + + + + + + + + + + +
REPRODUCTIVE SYSTEM Mammary gland Uterus Leiomyosarcoma Ovary	++++++	N + +	N + +	+ + +	+ + +	+ + +	N + +	N + -	+++++	+ + +	++++++	+ + +	+ + +	++++++	++++++	+++++	+++++	+ + +	+ + +	+ + +	+ + +	+ + +	++++++	+++++	+ + +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Peritoneum Leiomyoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Histiocytic sarcoma Malignant lymphoma, undifferentiated type Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N	N X	N	N X	N	N	N	N	N	N X	N	N	N	N X	N X	N	N	N	N X	N X

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR
GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL: HIGH DOSE

ANIMAL NUMBER	C 2 0	${}^{\mathrm{C}}_{2}_{1}$	C 2 3	C 2 4	C 2 6	C 2 7	C 2 8	C 2 9	C 3 0	C 3 1	C 3 2	C 3 4	C 3 5	C 3 6	C 3 7	C 3 8	C 3 9	C 4 0	C 4 1	C 4 3	C 4 4	C 4 5	C 4 6	C 4 7	C 4 9	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
RESPIRATORY SYSTEM Lungs and bronchi Aiveolar/bronchiolar adenoma Trachea Nasal cavity	. + + +	+ + +	+ + +	+++++	+ + +	+ X + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	* * + +	+ + +	+ + +	+ + +	+ X + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	50 4 50 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++++	++++	++++	+++++	+++++	+++++	+++++	+++++	+ + + +	+++++	++++++	++++-	++++	+++++	++++	++++	++++	+++++	++++	+++++	++++++	++++	+++++	+++++	+++-	50 49 49 43
CIRCULATORY SYSTEM Heart Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	50 1
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Small intestine Adenomatous polyp, NOS Large intestine	+++++++++++++++++++++++++++++++++++++++	+++++++ + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++Z+++ + +	+++++++++++++++++++++++++++++++++++++++	+++++++ + +	++++++ + +	+++++++++++++++++++++++++++++++++++++++	++++++ + +	+++++++++++++++++++++++++++++++++++++++	+++++++ + +	+++++++X+ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	50 50 50 *50 48 50 48 4 48 2 46
U RINARY SYSTEM Kidney Urinary bladder	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	+ +	+++	++++	+ +	+ +	+ +	++++	+ +	+ +	+ +	+ +	+ +	++++	++	+ +	50 48
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Thyroid Follicular cell adenoma Parathyroid	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + X +	+ + + +	++++	+ + + +	++++++	+ X + + +	++++++	++++	+ + X -	+++++	++++++	+ +	++++++	++++++	+ + + +	+ + + -	+ + + +	+ X + + +	+ + + +	+++++	+ X + + +	 ++ +	+++++	48 6 50 49 3 37
REPRODUCTIVE SYSTEM Mammary gland Uterus Leiomyosarcoma Ovary	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+ + +	+ + +	+++++	+++++	+ + +	+++++	+++++	+ + +	+ + +	++++++	+ + +	+ + X +	+ + +	+ + +	+++++	++++++	++	+ + +	+ + +	+ + +	+ + +	*50 50 1 48
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	*50
BODY CAVITIES Peritoneum Leiomyoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Histiocytic sarcoma Malignant lymphoma, undifferent type Malignant lymphoma, jymphocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N X	N	N	N	N X	N	N	N	*50 1 1 2 6

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

* Animals necropsied

	Vehicle Control	375 mg/kg	750 mg/kg
Lung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	5/50 (10%)	(b) 1/4 (25%)	4/50 (8%)
Adjusted Rates (c)	12.2%		10.5%
Terminal Rates (d)	5/41 (12%)		4/38 (11%)
Week of First Observation	104	-	104
Life Table Test (e)			P = 0.548N
Incidental Tumor Test (e)			P = 0.548N
Fisher Exact Test (e)			P = 0.500 N
Lung: Alveolar/Bronchiolar Adenoma or C	arcinoma		
Overall Rates (a)	7/50 (14%)	(b) 1/4 (25%)	4/50 (8%)
Adjusted Rates (c)	17.1%	(-, -, -, -, -, -, -, -, -, -, -, -, -, -	10.5%
Terminal Rates (d)	7/41 (17%)		4/38 (11%)
Week of First Observation	104		104
Life Table Test (e)			P = 0.305 N
Incidental Tumor Test (e)			P = 0.305N
Fisher Exact Test (e)			P = 0.263N
Hematopoietic System: Malignant Lymphoi	ma. Lymphocytic Type		
Overall Rates (f)	3/50 (6%)	1/50 (2%)	2/50 (4%)
Adjusted Rates (c)	7.3%	2.3%	4.9%
Terminal Rates (d)	3/41(7%)	0/41 (0%)	1/38 (3%)
Week of First Observation	104	101	79
Life Table Tests (e)	P = 0.436N	P = 0.307 N	P = 0.538N
Incidental Tumor Tests (e)	P = 0.430 N P = 0.429 N	P = 0.307 N P = 0.307 N	P = 0.336 N P = 0.416 N
	P = 0.429 N P = 0.399 N	F = 0.3071	F = 0.4101
Cochran-Armitage Trend Test (e) Fisher Exact Test (e)	P=0.3991	P = 0.309 N	P = 0.500 N
Hematopoietic System: Malignant Lymphon		0(50(10)	0/50 (100)
Overall Rates (f)	8/50 (16%)	2/50 (4%)	6/50 (12%)
Adjusted Rates (c)	19.5%	4.8%	15.8%
Terminal Rates (d)	8/41 (20%)	1/41 (2%)	6/38 (16%)
Week of First Observation	104	103	104
Life Table Tests (e)	P = 0.360N	P = 0.048N	P = 0.445N
Incidental Tumor Tests (e)	P = 0.417 N	P = 0.049 N	P = 0.445 N
Cochran-Armitage Trend Test (e)	P = 0.314N		
Fisher Exact Test (e)		P = 0.046N	P = 0.387 N
Hematopoietic System: Lymphoma, All Ma			
Overall Rates (f)	16/50 (32%)	9/50 (18%)	9/50 (18%)
Adjusted Rates (c)	36.2%	19.1%	22.9%
Terminal Rates (d)	13/41 (32%)	3/41 (7%)	8/38 (21%)
Week of First Observation	100	87	79
Life Table Tests (e)	P = 0.109 N	P = 0.101 N	P = 0.135N
Incidental Tumor Tests (e)	P = 0.166N	P = 0.049 N	P = 0.243N
Cochran-Armitage Trend Test (e)	P = 0.060 N		
Fisher Exact Test (e)		P = 0.083 N	P = 0.083 N
Hematopoietic System: Lymphoma or Leul			
Overall Rates (f)	16/50 (32%)	10/50 (20%)	9/50 (18%)
Adjusted Rates (c)	36.2%	21.2%	22.9%
Terminal Rates (d)	13/41 (32%)	4/41 (10%)	8/38 (21%)
Week of First Observation	100	87	79
	P = 0.112N	P = 0.147 N	P = 0.135N
Life Table Tests (e)	P = 0.112N P = 0.170N	P = 0.147N P = 0.084N	P = 0.135N P = 0.243N
	P = 0.112N P = 0.170N P = 0.062N	P = 0.147 N P = 0.084 N	P = 0.135N P = 0.243N

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF $\alpha\text{-}METHYLBENZYL ALCOHOL$

	Vehicle Control	375 mg/kg	750 mg/kg
Forestomach: Squamous Cell Papilloma	<u></u>	· · ·	
Overall Rates (f)	3/50 (6%)	5/50 (10%)	4/50 (8%)
Adjusted Rates (c)	7.3%	12.2%	10.5%
Terminal Rates (d)	3/41 (7%)	5/41 (12%)	4/38 (11%)
Week of First Observation	104	104	104
Life Table Tests (e)	P = 0.383	P = 0.356	P = 0.458
Incidental Tumor Tests (e)	P = 0.383 P = 0.383	P = 0.356 P = 0.356	P = 0.458 P = 0.458
	P = 0.383 P = 0.427	P = 0.356	F=0.438
Cochran-Armitage Trend Test (e)	P = 0.421	D-0.257	B-0 500
Fisher Exact Test (e)		P = 0.357	P = 0.500
Anterior Pituitary Gland: Adenoma			
Overall Rates (a)	4/50 (8%)	(b) 0/4 (0%)	6/48 (13%)
Adjusted Rates (c)	9.8%		16.2%
Terminal Rates (d)	4/41 (10%)		6/37 (16%)
Week of First Observation	104		104
Life Table Test (e)			P = 0.305
Incidental Tumor Test (e)			P = 0.305
Fisher Exact Test (e)			P = 0.344
Antonion Dituitano Classi Alternation C			
Anterior Pituitary Gland: Adenoma or Carci Overall Rates (a)	noma 5/50 (10%)	(b) 0/4 (0%)	6/48 (13%)
		(0) 0/4 (0%)	
Adjusted Rates (c)	12.2%		16.2%
Terminal Rates (d)	5/41 (12%)		6/37 (16%)
Week of First Observation	104		104
Life Table Test (e)			P = 0.428
Incidental Tumor Test (e)			P = 0.428
Fisher Exact Test (e)			P = 0.471
Thyroid Gland: Follicular Cell Adenoma			
Overall Rates (a)	1/50 (2%)	(b) 0/4 (0%)	3/49 (6%)
Adjusted Rates (c)	2.4%		8.1%
Terminal Rates (d)	1/41(2%)		3/37 (8%)
Week of First Observation	104		104
Life Table Test (e)	104		P = 0.269
Incidental Tumor Test (e)			P = 0.269
			P = 0.205 P = 0.301
Fisher Exact Test (e)			P=0.301
All Sites: Benign Tumors			
Overall Rates (f)	16/50 (32%)	10/50 (20%)	16/50 (32%)
Adjusted Rates (c)	39.0%	23.6%	42.1%
Terminal Rates (d)	16/41 (39%)	9/41 (22%)	16/38 (42%)
Week of First Observation	104	87	104
Life Table Tests (e)	P = 0.447	P = 0.122N	P = 0.480
Incidental Tumor Tests (e)	P = 0.491	P = 0.107N	P = 0.480
Cochran-Armitage Trend Test (e)	P = 0.544		
Fisher Exact Test (e)	* ***	P = 0.127 N	P = 0.585
All Sites: Malignant Tumors			10/00/01/25
Overall Rates (f)	22/50 (44%)	15/50 (30%)	12/50 (24%)
Adjusted Rates (c)	45.7%	31.2%	29.7%
Terminal Rates (d)	15/41 (37%)	8/41 (20%)	10/38 (26%)
	42	71	76
Week of First Observation			
Week of First Observation Life Table Tests (e)	P = 0.059 N	P = 0.141N	P = 0.072N
	P = 0.059N P = 0.060N	P = 0.141N P = 0.093N	P = 0.072N P = 0.136N
Life Table Tests (e)			

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY
OF α-METHYLBENZYL ALCOHOL (Continued)

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

	Vehicle Control	375 mg/kg	750 mg/kg
All Sites: All Tumors			
Overall Rates (f)	33/50 (66%)	23/50 (46%)	24/50 (48%)
Adjusted Rates (c)	67.3%	47.8%	59.8%
Terminal Rates (d)	25/41 (61%)	16/41 (39%)	22/38 (58%)
Week of First Observation	42	71	76
Life Table Tests (e)	P = 0.132N	P = 0.067 N	-P = 0.150N
Incidental Tumor Tests (e)	P = 0.134N	P = 0.037 N	P = 0.234N
Cochran-Armitage Trend Test (e)	P = 0.044N		
Fisher Exact Test (e)		P = 0.035 N	P = 0.053 N

(a) Number of tumor-bearing animals/number of animals examined microscopically at the site

(b) Incomplete sampling of tissues

(c) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(d) Observed tumor incidence in animals killed at the end of the study

(e) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group than in vehicle controls is indicated by (N). (f) Number of tumor-bearing animals/number of animals examined grossly at the site

a-Methylbenzyl Alcohol, NTP TR 369

	Vehicle	Control	Low	Dose	High	Dose
Animals initially in study	50		50		50	
Animals necropsied	50		50		50	
Animals examined histopathologically	50		50		50	
NTEGUMENTARY SYSTEM	<u> </u>	· · · · · · · · · · · · · · · · · · ·				
*Skin	(50)		(50)		(50)	
Ulcer, NOS		(2%)	_			
Inflammation, chronic Acanthosis	2	(4%)		(4%) (2%)		
Acanthosis			1	(2%)		
RESPIRATORY SYSTEM						
#Nasal cavity	(50)		(2)		(50)	
Hemorrhage					2	(4%)
Inflammation, serous		(2%)			~	(0~~)
Inflammation, suppurative	8	(= + · · · /				(6%)
Foreign material, NOS		(18%)	((14%)
#Lung	(50)		(4)		(50)	(14%)
Congestion, NOS Edema, NOS						(14%) (2%)
Hemorrhage	3	(6%)	1	(25%)		(2%) (14%)
Inflammation, interstitial		(6%)	1	(2070)	1	(1 - 70)
Perivascular cuffing		(6%)			1	(2%)
Foreign material, NOS		(0,0)				(2%)
Hemosiderosis	1	(2%)			_	(=,
Epithelialization		(2%)				
#Lung/alveoli	(50)		(4)		(50)	
Histiocytosis	2	(4%)			1	(2%)
HEMATOPOIETIC SYSTEM #Spleen	(49)		(15)		(49)	
Fibrosis	(43)		(10)			(2%)
Necrosis, NOS						(2%)
Hyperplasia, lymphoid			2	(13%)		(2%)
Hematopoiesis	4	(8%)		(13%)		
#Mandibular lymph node	(48)		(15)		(49)	
Hemosiderosis	1	(2%)				
Plasmacytosis				(13%)		
#Cervical lymph node	(48)		(15)		(49)	
Plasmacytosis		(2%)				
#Abdominal lymph node	(48)		(15)		(49)	
Plasmacytosis #Mosantaria lymph poda	(48)	(2%)	(15)		(49)	
#Mesenteric lymph node		(2%)	(15)	(13%)		(2%)
Hemorrhage Degeneration, cystic	1	(470)		(13%) (7%)	1	(210)
#Renal lymph node	(48)		(15)		(49)	
Plasmacytosis	(-=0)			(7%)	(10)	
*Bone	(50)		(50)		(50)	
Myelofibrosis		(2%)	(23)			
*Skull	(50)		(50)		(50)	
Myelofibrosis	18	(36%)				(48%)
*Femur	(50)		(50)		(50)	
Myelofibrosis		(32%)				(40%)
*Tibia	(50)		(50)		(50)	
Myelofibrosis						(2%)
#Liver	(50)		(6)		(50)	
Hematopoiesis		(4%)				
#Thymus Cyst, NOS	(46)		(5)		(43)	
LVSL NUS	1	(2%)			1	(2%)

TABLE D4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF $\alpha\text{-METHYLBENZYL}$ ALCOHOL

	Vehicle	Control	Low	Dose	High	Dose
CIRCULATORY SYSTEM						
*Abdominal cavity	(50)		(50)		(50)	
Polyangiitis	1	(2%)			1	(2%)
#Urinary bladder	(49)		(3)		(48)	
Polyangiitis					1	(2%)
DIGESTIVE SYSTEM						
*Tooth	(50)		(50)		(50)	
Dysplasia, NOS	1	(2%)				
#Salivary gland	(49)		(9)		(50)	
Lymphocytic inflammatory infiltrate		(2%)		(11%)		(4%)
#Liver	(50)		(6)		(50)	(10)
Inflammation, multifocal						(4%)
Bacterial septicemia						(2%)
Necrosis, coagulative Metamorphosis, fatty	1	(2%)			Z	(4%)
Basophilic cyto change	1	(270)			1	(2%)
Hyperplasia, focal						(2%) (2%)
#Esophagus	(50)		(4)		(50)	(470)
Wecrosis, NOS	(00)		()			(2%)
#Forestomach	(50)		(48)		(48)	(= /0)
Ulcer, NOS		(6%)		(2%)		(2%)
Inflammation, acute/chronic	8	(16%)	5	(10%)	7	(15%)
Inflammation, chronic	2	(4%)				
Erosion						(2%)
Hyperplasia, epithelial	6	(12%)		(15%)	9	(19%)
Hyperplasia, focal				(2%)		
#Duodenum	(47)		(6)	(150)	(48)	
Hyperplasia, epithelial			1	(17%)		
URINARY SYSTEM						
#Kidney	(50)		(9)		(50)	
Cyst, NOS		(2%)				
Glomerulonephritis, NOS		(2%)	1	(11%)		(0~~)
Lymphocytic inflammatory infiltrate	2	(4%)				(8%)
Inflammation, interstitial						(4%)
Nephropathy Nephrosis, NOS	1	(2%)			1	(2%)
Amyloidosis		(2%)			1	(2%)
#Urinary bladder	(49)	(470)	(3)		(48)	(270)
Lymphocytic inflammatory infiltrate		(2%)	(0)			(2%)
ENDOCRINE SYSTEM			· · · · · · · · · · · · · · · · · · ·		· - 	
#Anterior pituitary	(50)		(4)		(48)	
Focal cellular change					2	(4%)
Hyperplasia, focal		(2%)				
Angiectasis		(4%)				(2%)
#Adrenal	(49)		(4)		(50)	
Bacterial septicemia	•	(90)				(2%)
Degeneration, lipoid Necrosis, coagulative	1	(2%)				(2%)
#Adrenal/capsule	(49)		(4)		(50)	
Hyperplasia, focal		(8%)	(4)			(6%)
#Adrenal cortex	(49)		(4)		(50)	
Hypertrophy, focal	(40)		(4)			(2%)
#Thyroid	(50)		(4)		(49)	
Cystic follicles	(20)		(*)			(2%)
Inflammation, chronic						(2%)
Hyperplasia, follicular cell		(8%)				(14%)

TABLE D4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

	Vehicle	Control	Low 1	Dose	High	Dose
CNDOCRINE SYSTEM (Continued)						
#Pancreatic islets	(47)		(4)		(48)	
Hyperplasia, focal		(2%)	(-)		(,	
REPRODUCTIVE SYSTEM						
*Vagina	(50)		(50)		(50)	
Inflammation, suppurative	(00)		(•••)			(4%)
Inflammation, chronic			1	(2%)		,
Cholesterol deposit	1	(2%)				
#Uterus	(50)		(44)		(50)	
Hydrometra					1	(2%)
Hemorrhage						(2%)
Inflammation, suppurative			2	(5%)		(2%)
#Uterus/endometrium	(50)		(44)		(50)	
Hyperplasia, cystic		(78%)		(93%)		(82%)
#Ovary	(49)	(1~)	(20)	(100)	(48)	
Follicular cyst, NOS		(4%)		(10%)		(4%)
Parovarian cyst	9	(18%)	10	(50%)	-	(10%)
Hemorrhagic cyst Abscess, NOS	0	(6%)	0	(150%)	1	(2%)
Abscess, NOS	ა	(0%)	ა	(15%)		
NERVOUS SYSTEM						
#Intracranial arachnoid	(50)		(4)		(50)	
Hyperplasia, NOS						(2%)
#Brain	(50)		(4)		(50)	(00)
Hemorrhage	(50)		(4)		(50)	(2%)
#Brain/thalamus	(50)	(30%)	(4)	(50%)		(38%)
Calculus, microscopic examination	15	(30%)	Z	(50%)	19	(36%)
SPECIAL SENSE ORGANS						
*Eye	(50)		(50)		(50)	
Phthisis bulbi	1	(2%)				
MUSCULOSKELETAL SYSTEM None		ut sin an				
BODY CAVITIES						
*Abdominal cavity	(50)		(50)		(50)	
Necrosis, fat		(2%)		(2%)	((6%)
Hemosiderosis	1	~= ~~ /	1	<u>, - , - , - , - , - , - , - , - , - , -</u>		(2%)
ALL OTHER SYSTEMS						
*Multiple organs	(50)		(50)		(50)	
Lymphocytic inflammatory infiltrate		(68%)		(4%)		(66%)
SPECIAL MORPHOLOGY SUMMARY				<u> </u>		
No lesion reported					1	

TABLE D4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF α-METHYLBENZYL ALCOHOL (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

APPENDIX E

SENTINEL ANIMAL PROGRAM

PAGE

145

TABLE E1MURINE ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR
GAVAGE STUDIES OF a-METHYLBENZYL ALCOHOL

a-Methylbenzyl Alcohol, NTP TR 369

Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via serology on sera from extra (sentinel) animals in the study rooms. These animals are untreated, and these animals and the study animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen $B6C3F_1$ mice and 15 F344/N rats of each sex were selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group were killed at 6, 12, and 18 months on study. The blood from each animal was collected and clotted, and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the antibody titers. The following tests were performed:

	Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	ELISA
Mice	PVM (pneumonia virus of mice) Reo 3 (reovirus type 3) GDVII (Theiler's encephalo- myelitis virus) Poly (polyoma virus) MVM (minute virus of mice) Ectro (infectious ectromelia) Sendai	M. Ad. (mouse adenovirus) LCM (lymphocytic chorio- meningitis virus)	MHV (mouse hepatitis virus) (12,18 mo) M. pul. (Mycoplasma pulmonis) (18 mo)
Rats	PVM KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Sendai	RCV (rat coronavirus)	<i>M. pul.</i> (18 mo)
Results	5		

Results are presented in Table E1.

	Interval (months)	Number of Animals	Positive Serologic Reaction for
RATS			
	6	8/9	RCV
	6 12		None positive
	18	5/8	<i>M. pul</i> . (b)
MICE			
	6		None positive
	12		None positive
	18	1/3	M. pul.

TABLE E1. MURINE ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF α -METHYLBENZYL ALCOHOL (a)

(a) Blood samples were taken from sentinel animals at 6, 12, and 18 months after the start of dosing; samples were sent to Microbiological Associates (Bethesda, MD) for determination of antibody titers.
(b) Further evaluation of this assay indicated that it was not specific for *M. pulmonis*, and these results were considered to be

false positive.

.

146

.

APPENDIX F

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Pelleted Diet: April 1981 to April 1983

(Manufactured by Zeigler Bros., Inc., Gardners, PA)

		PAGE
TABLE F1	INGREDIENTS OF NIH 07 RAT AND MOUSE RATION	148
TABLE F2	VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION	148
TABLE F3	NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION	149
TABLE F4	CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION	150

TABLE F1. INGREDIENTS OF NIH 07 RAT AND MOUSE RATION (a)

Ingredients (b)	Percent by Weight	
Ground #2 yellow shelled corn	24.50	
Ground hard winter wheat	23.00	
Soybean meal (49% protein)	12.00	
Fish meal (60% protein)	10.00	
Wheat middlings	10.00	
Dried skim milk	5.00	
Alfalfa meal (dehydrated, 17% protein)	4.00	
Corn gluten meal (60% protein)	3.00	
Soy oil	2.50	
Dried brewer's yeast	2.00	
Dry molasses	1.50	
Dicalcium phosphate	1.25	
Ground limestone	0.50	
Salt	0.50	
Premixes (vitamin and mineral)	0.25	

(a) NCI, 1976; NIH, 1978

(b) Ingredients ground to pass through a U.S. Standard Screen No. 16 before being mixed

	Amount	Source
Vitamins	······································	
А	5,500,000 IU	Stabilized vitamin A palmitate or acetate
D_3	4,600,000 IU	D-activated animal sterol
К ₃	2.8 g	Menadione
d-a-Tocopheryl acetate	20,000 IU	
Choline	560.0 g	Choline chloride
Folic acid	2.2 g	
Niacin	30.0 g	
d-Pantothenic acid	18.0 g	d-Calcium pantothenate
Riboflavin	3.4 g	•
Thiamine	10.0 g	Thiamine mononitrate
B ₁₂	4,000 µg	
Pyridoxine	1.7 g	Pyridoxine hydrochloride
Biotin	140.0 mg	d-Biotin
Minerals		
Iron	120.0 g	Iron sulfate
Manganese	60.0 g	Manganous oxide
Zinc	16.0 g	Zinc oxide
Copper	4.0 g	Copper sulfate
Iodine	1.4 g	Calcium iodate
Cobalt	0.4 g	Cobalt carbonate

TABLE F2. VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION (a)

(a) Per ton (2,000 lb) of finished product

TABLE F3. NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION (a)

Nutrients	Mean ± Standard Deviation	Range	Number of Samples
Protein (percent by weight)	23.8 ± 0.87	22.2-25.3	24
Crude fat (percent by weight)	5.0 ± 0.45	4.2-5.7	24
Crude fiber (percent by weight)	3.3 ± 0.23	2.9-3.8	24
Ash (percent by weight)	6.4 ± 0.37	5.7-7.1	24
Amino Acids (percent of total d	iet)		
Arginine	1.323 ± 0.830	1.21-1.39	4
Cystine	0.310 ± 0.099	0.218-0.400	4
Glycine	1.155 ± 0.069	1.06-1.21	4
Histidine	0.572 ± 0.030	0.530-0.603	4
soleucine	0.910 ± 0.033	0.881-0.944	4
Leucine	1.949 ± 0.065	1.85-1.99	4
Lysine	1.279 ± 0.075	1.20-1.37	4
Methionine Rhanvlaloning	0.422 ± 0.187 0.909 ± 0.167	0.306-0.699	4 4
Phenylalanine Fhreonine	0.909 ± 0.167 0.844 ± 0.029	0.665-1.04	4
	0.844 ± 0.029 0.187	0.824-0.886	4.
Fryptophan Fyrosine	0.187 0.631 ± 0.094	0.171-0.211 0.566-0.769	3 4
Valine	1.11 ± 0.050	1.05-1.17	4
Essential Fatty Acids (percent o	of total diet)		
Linoleic	2,44	2.37-2.52	3
Linolenic	0.274	0.256-0.308	3
Arachidonic	0.008		1
Vitamins			
Vitamin A (IU/kg)	$10,929 \pm 2,683$	3,600-18,000	24
Vitamin D (IU/kg)	4,650	3,000-6,300	2
a-Tocopherol (ppm)	41.53 ± 7.52	31.1-48.9	4
Thiamine (ppm)	16.4 ± 2.17	13.0-21.0	(b) 23
Riboflavin (ppm)	7.5 ± 0.96	6.1-8.2	4
Niacin (ppm)	85.0 ± 14.20	65.0-97.0	4
Pantothenic acid (ppm)	29.3 ± 4.6	23.0-34.0	4
Pyridoxine (ppm)	7.6 ± 1.5	5.6-8.8	4
Folic acid (ppm)	2.8 ± 0.88	1.8-3.7	4
Biotin (ppm)	0.27 ± 0.05	0.21-0.32	4
Vitamin B ₁₂ (ppb) Choline (ppm)	21.0 ± 11.9 $3,302 \pm 120$	11.0-38.0 3,200-3,430	4 4
Minerals	3,302 ± 120	3,200-3,430	*
Calcium (percent)	1.21 ± 0.15	0.72-1.53	24
Phosphorus (percent)	0.97 ± 0.04	0.88-1.1	24
Potassium (percent)	0.862 ± 0.10	0.772-0.970	3
Chloride (percent)	0.382 ± 0.10 0.546 ± 0.10	0.442-0.635	4
Sodium (percent)	0.346 ± 0.10 0.311 ± 0.038	0.258-0.350	4
Magnesium (percent)	0.169 ± 0.133	0.151-0.181	4
Sulfur (percent)	0.316 ± 0.070	0.270-0.420	4
Iron (ppm)	447.0 ± 57.3	409-523	4
Manganese (ppm)	90.6 ± 8.20	81.7-99.4	4
Zinc (ppm)	53.6 ± 5.27	46.1-58.6	4
Copper (ppm)	10.77 ± 3.19	8.09-15.39	4
Iodine (ppm)	2.95 ± 1.05	1.52-3.82	4
Chromium (ppm)	1.81 ± 0.28	1.44-2.09	4
Cobalt (ppm)	0.68 ± 0.14	0.49-0.80	4

(a) One to four lots of feed analyzed for nutrients reported in this table were manufactured during 1983-1985.
(b) One lot (July 22, 1981) was not analyzed for thiamine.

TABLE F4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RA	RATION
---	--------

Contaminants	Mean ± Standard Deviation	Range	Number of Samples
Arsenic (ppm)	0.46 ± 0.10	<0.29-0.70	24
Cadmium (ppm)	<0.1		24
Lead (ppm)	0.95 ± 0.76	0.33-3.37	24
Mercury (ppm) (a)	< 0.05		24
Selenium (ppm)	0.29 ± 0.07	0.13-0.40	24
Aflatoxins(ppb)(b)	<10	<5-<10	24
Nitrate nitrogen (ppm) (c)	10.24 ± 4.1	3.8-22.0	24
Nitrite nitrogen (ppm) (c)	2.0 ± 1.6	< 0.4-6.9	24
BHA (ppm) (d)	6.1 ± 4.9	<0.4-17.0	24
BHT (ppm) (d)	3.3 ± 2.6	0.9-12.0	24
Aerobic plate count (CFU/g) (e)	39,879 ± 27,920	4,900-88,000	24
Coliform (MPN/g) (f)	15.5 ± 22.7	<3.0-93	23
Coliform (MPN/g) (g)	34.0 ± 93.4	<3.0-460	24
E. coli(MPN/g)(h)	<3		24
Total nitrosamines (ppb) (i, j)	3.7 ± 2.7	0.8-9.3	23
Fotal nitrosamines (ppb) (j,k)	15.2 ± 56.4	0.8-279.5	24
N-Nitrosodimethylamine (ppb) (j,l)	2.7 ± 2.5	0.8-8.3	23
N-Nitrosodimethylamine (ppb) (j,m)	14.1 ± 56.3	0.8-278.0	24
V-Nitrosopyrrolidine (ppb)	1.2 ± 0.5	<0.9-2.9	24
Pesticides (ppm)			
a-BHC(a,n)	< 0.01		24
β -BHC(a)	< 0.02		24
y-BHC - lindane (a)	< 0.01		24
δ -BHC (a)	< 0.01		24
Heptachlor (a)	< 0.01		24
Aldrin (a)	< 0.01		24
Heptachlor epoxide (a)	< 0.01		24
DDE (a)	< 0.01		24
DDD(a)	< 0.01		24
DDT(a)	< 0.01		24
HCB(a)	< 0.01		24
Mirex (a)	< 0.01		24
Methoxychlor (o)	< 0.05	0.09	24
Dieldrin (a)	< 0.01		24
Endrin (a)	< 0.01		24
Telodrin (a)	< 0.01		24
Chlordane (a)	< 0.05		24
Toxaphene (a)	<0.1		24
Estimated PCBs (a)	< 0.2		24
Ronnel (a)	< 0.01		24
Ethion (a)	< 0.02		24
Trithion (a)	< 0.05		24
Diazinon (a)	<0.1		24
Methyl parathion (a)	< 0.02		24
Ethyl parathion (a)	< 0.02		24
Malathion (p)	0.09 ± 0.06	<0.05-0.27	24
Endosulfan I (a,q)	< 0.01		18
Endosulfan II (a,q)	< 0.01		18
Endosulfan sulfate (a,q)	< 0.03		18

TABLE F4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION (Continued)

(a) All values were less than the detection limit, given in the table as the mean.

(b) Detection limit was reduced from 10 ppb to 5 ppb after July 1981.

(c) Source of contamination: alfalfa, grains, and fish meal

(d) Source of contamination: soy oil and fish meal

(e) CFU = colony-forming unit

(f) Mean, standard deviation, and range exclude one very high value of 460 MPN/g obtained for the lot produced on September

23, 1982; MPN = most probable number.

(g) Mean, standard deviation, and range include the value given in footnote (f).

(h) All values were less than 3 MPN/g.

(i) Mean, standard deviation, and range exclude one very high value of 279.5 ppb obtained for the lot produced on April 27, 1981.

 $(j) \ All \ values \ were \ corrected \ for \ percent \ recovery.$

(k) Mean, standard deviation, and range include the value given in footnote (i).

(1) Mean, standard deviation, and range exclude one very high value of 278 ppb obtained for the lot produced on April 27, 1981. (m) Mean, standard deviation, and range include the value given in footnote (1).

(n) BHC is hexachlorocyclohexane or benzene hexachloride.

(o) One observation, on August 26, 1981, was above the detection limit.

(p) Ten lots contained more than 0.05 ppm.

(q) Six lots were not analyzed for this pesticide.

a-Methylbenzyl Alcohol, NTP TR 369

APPENDIX G

CHEMICAL CHARACTERIZATION, ANALYSIS, AND DOSE PREPARATION OF α-METHYLBENZYL ALCOHOL FOR THE TOXICOLOGY STUDIES

TABLE G1	IDENTITY AND SOURCE OF LOTS USED IN THE GAVAGE STUDIES OF a-METHYLBENZYL ALCOHOL	154
TABLE G2	PREPARATION AND STORAGE OF DOSE MIXTURES IN THE GAVAGE STUDIES OF \mathfrak{a} -METHYLBENZYL ALCOHOL	157
TABLE G3	RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE THIRTEEN-WEEK GAVAGE STUDIES OF a-METHYLBENZYL ALCOHOL	158
TABLE G4	RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF a-METHYLBENZYL ALCOHOL	159
TABLE G5	RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF a -METHYLBENZYL ALCOHOL	159

PAGE

Procurement and Characterization of a-Methylbenzyl Alcohol

Food-grade a-methylbenzyl alcohol was obtained as a colorless liquid in two lots from Givaudan Corporation (Clifton, NJ) (Table G1). Purity and identity analyses were conducted at Midwest Research Institute (MRI) (Kansas City, MO). MRI reports on the analyses performed in support of the a-methylbenzyl alcohol studies are on file at the National Institute of Environmental Health Sciences.

The study chemical was identified as a-methylbenzyl alcohol by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. For both lots, all spectra were consistent with those expected from the structure and with literature spectra (Sadtler Standard Spectra). Representative infrared and nuclear magnetic resonance spectra are presented in Figures G1 and G2.

The purity of each lot was determined by elemental analysis, Karl Fischer water analysis, determination of ketone concentration by reaction of the study material with an alkaline solution of hydroxylamine hydrochloride followed by back-titration with 0.1 N or 0.5 N hydrochloric acid, thin-layer chromatography, and gas chromatography. Thin-layer chromatography was performed with silica gel plates and two solvent systems, chloroform (solvent system 1) and hexanes:acetone (85:15) (solvent system 2), and with a chromic acid-sulfuric acid spray reagent and 254 nm visualization. Gas chromatographic analysis was performed with flame ionization detection, a nitrogen carrier at 50 ml/ minute, and either a 1% SP1240 column (system 1) or a 10% Carbowax 20M TPA column (system 2).

The results of elemental analysis of lot no. 50839 for carbon and hydrogen were in agreement with the theoretical values. Lot no. 50839 contained 0.04% water and 0.05% ketone impurities (as acetophenone). Thin-layer chromatography detected two slight trace impurities by solvent system 1 and one slight trace impurity by solvent system 2. Gas chromatographic system 1 detected 11 impurities with a total relative area of 0.42%. Gas chromatography with system 2 detected 17 impurities with a total relative area of 0.58%; 3 of the impurities had relative areas of 0.11%, 0.11%, and 0.09%. Cumulative data indicated that lot no. 50839 was greater than 99% pure and met Food Chemical Codex specifications for assay, total ketone impurities, specific gravity, and refractive index.

TABLE G1. IDENTITY AND SOURCE OF LOTS USED IN THE GAVAGE STUDIES OF $\alpha\text{-}METHYLBENZYL$ ALCOHOL

Single-Administration Studies	Sixteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Lot Numbers 50839	50839	50839	50839; 68637
Date of Initial Use 11/7/79	2/5/80	5/19/80	508394/6/81; 686379/16/82
Supplier Givaudan Corporation (Clifton, NJ)	Same as single- administration studies	Same as single- administration studies	Same as single- administration studies

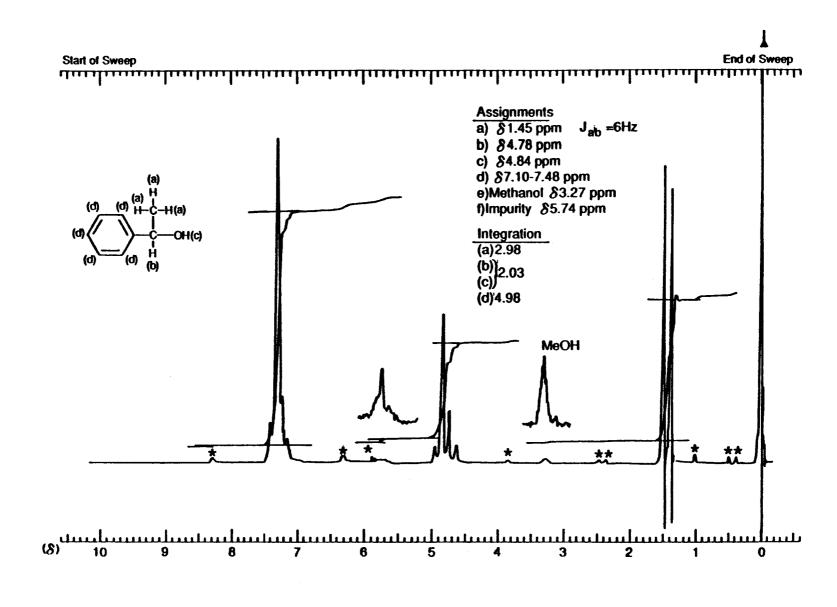


FIGURE G2. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF a-METHYLBENZYL ALCOHOL (LOT NO. 50839)

The results of elemental analysis of lot no. 68637 for carbon and hydrogen were in agreement with the theoretical values. Lot no. 68637 contained 0.14% water and 0.32% ketone impurities (as acetophenone). One slight trace impurity was detected by each of the two thin-layer chromatographic systems. Both gas chromatographic systems detected one impurity, tentatively identified by system 2 as acetophenone, with a relative area of 0.16% by system 1 and 0.10% by system 2. Cumulative data indicated that lot no. 68637 was greater than 99% pure.

Stability studies performed by gas chromatography with the same system as that described before for system 1, and with the injected sample containing 1.2% by volume of undecyl alcohol as an internal standard, indicated that a-methylbenzyl alcohol was stable as a bulk chemical when stored protected from light for 2 weeks at temperatures up to 60° C. Confirmation of the stability of the bulk chemical during the 2-year studies (lot no. 68637, 1 year after the original analysis) was obtained by gas chromatography. The identity of the chemical at the study laboratory was confirmed by infrared spectroscopy.

Preparation and Characterization of Dose Mixtures

a-Methylbenzyl alcohol and corn oil were mixed to give the desired concentrations (Table G2). The stability of a-methylbenzyl alcohol in corn oil (1% concentration w/v) was determined by performing gas chromatography with a 20% SP2100 + 0.1% Carbowax 1500 column and flame ionization detection on methanol extracts of corn oil solutions; heptyl alcohol was used as the internal standard. a-Methylbenzyl alcohol, dissolved in corn oil at 10 mg/ml, was found by the analytical chemistry laboratory to be stable at room temperature in the dark for 7 days. The study laboratory found that the compound, dissolved at 4.96 mg/ml or 150 mg/ml, was stable when stored at room temperature for 14 days. Dose mixtures were stored no longer than 15 days at 4° C for the 13-week studies and for no longer than 3 weeks at 5° C for the 2-year studies.

TABLE G2. PREPARATION AND STORAGE OF DOSE MIXTURES IN THE GAVAGE STUDIES OFα-METHYLBENZYL ALCOHOL

Sixteen-Day Studies	Thirteen-Week Studies	Two-Year Studies	
Same as single- administration studies	Same as single- administration studies	Same as single- administration studies	
8 d	15 d	3 wk	
Room temperature	4° C	5° C	
	Same as single- administration studies 8 d	Same as single- administration studies Administration studies 8 d 15 d	

APPENDIX G. CHEMICAL CHARACTERIZATION

Periodic analyses of formulated a-methylbenzyl alcohol mixtures were conducted at the study laboratory and the analytical chemistry laboratory by gas chromatography with the same procedure as described for the stability studies. Dose mixtures were analyzed one time during the 13-week studies (Table G3). The results of the analysis indicated that all the doses were within $\pm 1\%$ of the target concentrations.

During the 2-year studies, the dose mixtures were analyzed at approximately 8-week intervals. For the a-methylbenzyl alcohol studies, all 42 mixtures analyzed were formulated within $\pm 10\%$ of the target concentrations (Table G4). Results of periodic referee analysis performed by the analytical chemistry laboratory indicated good agreement with the results from the study laboratory (Table G5).

TABLE G3. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE THIRTEEN-WEEK GAVAGE STUDIES OF α -METHYLBENZYL ALCOHOL

<u>Conce</u> Date Mixed	<u>Concentration of a-Methy</u> Target	centration of a-Methylbenzyl Alcohol in Corn Oil (mg/ml)TargetDetermined (a)				
07/09/80	4.69	4.70	100.21			
01/08/00	9.38	9.38	100.21			
	18.75	18.76	100.05			
	37.5	37.33	99.47			
	75	74.98	99.97			
	150	149.99	99.99			
	300	300.02	99.99			

(a) Results of duplicate analysis

	for Target Concentration (mg/ml) (a)					
Date Mixed	37.5	75	150			
04/02/81	39.3	72.5				
04/16/81		81.8	162			
05/28/81	35.4	74.3	162			
07/23/81	38.6	79.0	156			
09/17/81	37.1	73.7	150			
11/12/81	39.2	78.5	158			
01/07/82	38.3	75.5	152			
03/04/82	38.3	73.1	140			
04/29/82	39.0	74.9	154			
06/24/82	38.3	71.4	144			
08/19/82	36.9	73.8	147			
10/14/82	. 36.0	73.8	146			
12/09/82	36.3	73.0	146			
02/03/83	37.9	73.8	144			
03/30/83		74.7	143			
n (mg /ml)	37.7	74.9	150			
dard deviation	1.28	2.78	7.2			
icient of variation (percent)	3.4	3.7	4.8			
ge (mg/ml)	35.4-39.3	71.4-81.8	140-162			
ber of samples	35.4-39.3 13	15	140-162			

TABLE G4. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF $\alpha\text{-METHYLBENZYL}$ ALCOHOL

(a) Results of duplicate analysis

TABLE G5. RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF $\alpha\text{-}METHYLBENZYL ALCOHOL$

		Determined Concentration (mg/ml)				
Date Mixed	Target Concentration (mg/ml)	Study Laboratory (a)	Referee Laboratory (b)			
04/02/81	37.5	39.29	37.02			
11/12/81	150.0	157.8	146.7			
06/24/82	75.0	71.4	73.7			
12/09/82	37.5	36.3	36.1			
03/30/83	75.0	74.7	74.6			

(a) Results of duplicate analysis(b) Results of triplicate analysis

a-Methylbenzyl Alcohol, NTP TR 369

APPENDIX H

GENETIC TOXICOLOGY

OF a-METHYLBENZYL ALCOHOL

		PAGE
TABLE H1	MUTAGENICITY OF a-METHYLBENZYL ALCOHOL IN SALMONELLA TYPHIMURIUM	165
TABLE H2	INDUCTION OF TRIFLUOROTHYMIDINE RESISTANCE IN MOUSE L5178Y LYMPHOMA CELLS BY α -METHYLBENZYL ALCOHOL	166
TABLE H3	INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY \mathfrak{a} -methylbenzyl Alcohol	167
TABLE H4	INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY \mathfrak{a} -METHYLBENZYL ALCOHOL	168

METHODS

Salmonella Protocol: Testing was performed as reported by Ames et al. (1975) with modifications listed below and described in greater detail by Zeiger et al. (1987) and Mortelmans et al. (1986). Chemicals were sent to the laboratories as coded aliquots from Radian Corporation (Austin, TX). The study chemical was incubated with the Salmonella typhimurium tester strains (TA98, TA100, TA1535, and TA1537) either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague Dawley rat or Syrian hamster liver) for 20 minutes at 37° C before the addition of soft agar supplemented with L-histidine and D-biotin and subsequent plating on minimal glucose agar plates. Incubation was continued for an additional 48 hours.

Chemicals were tested in four strains. Each test consisted of triplicate plates of concurrent positive and negative controls and of at least five doses of the study chemical. The high dose was limited by toxicity or solubility but did not exceed 6.7 mg/plate. All negative assays were repeated, and all positive assays were repeated under the conditions that elicited the positive response.

A positive response was defined as a reproducible, dose-related increase in histidine-independent (revertant) colonies in any one strain/activation combination. An equivocal response was defined as an increase in revertants which was not dose related, not reproducible, or of insufficient magnitude to support a determination of mutagenicity. A response was considered negative when no increase in revertant colonies was observed after chemical treatment.

Mouse Lymphoma Protocol: The experimental protocol is presented in detail by Myhr et al. (1985) and follows the basic format of Clive et al. (1979). All study chemicals were supplied as coded aliquots from Radian Corporation (Austin, TX). The highest dose of the study compound was determined by solubility or toxicity and did not exceed 1.5 μ g/ml. Mouse L5178Y/TK lymphoma cells were maintained at 37° C as suspension cultures in Fischer's medium supplemented with 2 mM L-glutamine, 110 μ g/ml sodium pyruvate, 0.05% pluronic F68, antibiotics, and heat-inactivated horse serum; normal cycling time was about 10 hours. To reduce the number of spontaneously occurring trifluorothymidine (Tft)-resistant cells, subcultures were exposed once to medium containing thymidine, hypoxanthine, methotrexate, and glycine for 1 day, to thymidine, hypoxanthine, and glycine for 1 day, and to normal medium for 3-5 days. For cloning, horse serum content was increased and Noble agar was added. Freshly prepared S9 metabolic activation factors were obtained from the liver of either Aroclor 1254-induced or noninduced male F344 rats.

All doses within an experiment, including concurrent positive and solvent controls, were replicated. Treated cultures contained 6×10^6 cells in 10 ml of medium. This volume included the S9 fraction in those experiments performed with metabolic activation. Incubation with the study chemical continued for 4 hours, after which time the medium plus chemical was removed and the cells were resuspended in 20 ml of fresh medium and incubated for an additional 2 days to express the mutant phenotype. Cell density was monitored so that log phase growth was maintained. After the 48-hour expression period, 3×10^6 cells were plated in medium and soft agar supplemented with Tft for selection of Tft-resistant cells (TK ^{+/+}), and 600 cells were plated in nonselective medium and soft agar to determine cloning efficiency. Plates were incubated at 37° C under 5% carbon dioxide for 10-12 days. All data were evaluated statistically for both trend and peak response. Both responses had to be significant response led to an "equivocal" conclusion, and the absence of both a trend and a peak response resulted in a "negative" call.

Minimum criteria for accepting an experiment as valid and a detailed description of the statistical analysis and data evaluation are presented in Myhr et al. (1985). This assay was initially performed without S9; if a clearly positive response was not obtained, the experiment was repeated with induced S9.

Chinese Hamster Ovary Cytogenetics Assays: Testing was performed as reported by Galloway et al. (1985, 1987) and is described briefly below. Chemicals were sent to the laboratories as coded aliquots from Radian Corporation (Austin, TX). Chemicals were tested in cultured Chinese hamster ovary (CHO) cells for induction of sister chromatid exchanges (SCEs) and chromosomal aberrations both in the presence and absence of Aroclor 1254-induced male Sprague Dawley rat liver S9 and cofactor mix. Cultures were handled under gold lights to prevent photolysis of bromodeoxyuridine (BrdU)-substituted DNA. Each test consisted of concurrent solvent and positive controls and of at least three doses of the study chemical; the high dose was limited by toxicity or solubility but did not exceed 5 mg/ml.

In the SCE test without S9, CHO cells were incubated for 26 hours with the study chemical in McCoy's 5A medium supplemented with 10% fetal bovine serum, L-glutamine (2 mM), and antibiotics. BrdU was added 2 hours after culture initiation. After 26 hours, the medium containing the study chemical was removed and replaced with fresh medium plus BrdU and colcemid, and incubation was continued for 2 more hours. Cells were then harvested by mitotic shake-off, fixed, and stained with Hoechst 33258 and Giemsa. In the SCE test with S9, cells were incubated with the chemical, serum-free medium, and S9 for 2 hours. The medium was then removed and replaced with medium containing BrdU and no study chemical; incubation proceeded for an additional 26 hours, with colcemid present for the final 2 hours. Harvesting and staining were the same as for cells treated without S9.

In the chromosomal aberration test without S9, cells were incubated in McCoy's 5A medium with the study chemical for 8 hours; colcemid was added, and incubation was continued for 2 hours. The cells were then harvested by mitotic shake-off, fixed, and stained with Giemsa. For the chromosomal aberration test with S9, cells were treated with the study chemical and S9 for 2 hours, after which the treatment medium was removed and the cells were incubated for 10 hours in fresh medium, with colcemid present for the final 2 hours. Cells were harvested in the same manner as for the treatment without S9.

For the SCE test, if significant chemical-induced cell cycle delay was seen, incubation time was lengthened to ensure a sufficient number of scorable cells. The harvest time for the chromosomal aberration test was based on the cell cycle information obtained in the SCE test; if cell cycle delay was anticipated, the incubation period was extended approximately 5 hours.

Cells were selected for scoring on the basis of good morphology and completeness of karyotype $(21 \pm 2 \text{ chromosomes})$. All slides were scored blind, and those from a single test were read by the same person. For the SCE test, 50 second-division metaphase cells were usually scored for frequency of SCEs per cell from each dose; 100 first-division metaphase cells were scored at each dose for the chromosomal aberration test. Classes of aberrations included simple (breaks and terminal deletions), complex (rearrangements and translocations), and other (pulverized cells, despiralized chromosomes, and cells containing 10 or more aberrations).

Statistical analyses were conducted on both the slopes of the dose-response curves and the individual dose points. An SCE frequency 20% above the concurrent solvent control value was chosen as a statistically conservative positive response. The probability of this level of difference occurring by chance at one dose point is less than 0.01; the probability for such a chance occurrence at two dose points is less than 0.001. Chromosomal aberration data are presented as percentage of cells with aberrations. As with SCEs, both the dose-response curve and individual dose points were statistically analyzed. A statistically significant (P < 0.003) trend test or a significantly increased dose point (P < 0.05) was sufficient to indicate a chemical effect.

RESULTS

a-Methylbenzyl alcohol was not mutagenic in S. typhimurium strains TA98, TA100, TA1535, or TA1537 when tested at concentrations up to 6,666 μ g/plate with a preincubation protocol in the presence or absence of 10% Aroclor 1254-induced male Sprague Dawley rat or Syrian hamster liver S9 mix (Zeiger et al., 1987; Table H1). a-Methylbenzyl alcohol, within a concentration range of 250-1,200 nl/ml, induced Tft resistance in mouse lymphoma L5178Y/TK cells in the absence of exogenous metabolic activation; this test was not performed with S9 (Table H2). The relative total growth of the cell cultures demonstrating a positive response was above 10%, indicating that excessive toxicity was not a complicating factor in this assay. In cytogenetic tests with CHO cells, a-methylbenzyl alcohol did not induce SCE or cell cycle delay when tested over a concentration range of 33-1,000 μ g/ml with or without Aroclor 1254-induced male Sprague Dawley rat liver S9 (Table H3). The chemical did, however, induce a significant increase in chromosomal aberrations in CHO cells, in the presence of S9, within a concentration range of 1,000-3,000 μ g/ml (Table H4). Although the positive control cultures in Trial 1, +S9, failed to respond appropriately to cyclophosphamide treatment, the response observed with a-methylbenzyl alcohol at 3,000 μ g/ml was still valid and was confirmed in Trial 2, +S9.

84m - ! m	Dees		Revertants/Plate (b) - S9 + S9 (hamster) + S9 (rat)								
Strain	Dose		<u>- S9</u>		hamster)						
	(µg/plate)	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2				
TA100	0	128 ± 4.9	107 ± 8.1	154 ± 10.9	110 ± 9.6	116 ± 4.9	102 ± 9.7				
	33	114 ± 9.2	100 ± 3.8	138 ± 14.2		121 ± 7.7	••				
	100	101 ± 2.3	95 ± 1.2	142 ± 4.2	102 ± 3.2	125 ± 1.5	98 ± 12.9				
	333	131 ± 2.4	101 ± 9.5	134 ± 0.7	112 ± 7.8	126 ± 5.4	109 ± 8.3				
	1,000	127 ± 11.1	120 ± 7.2	142 ± 2.3	114 ± 5.7	122 ± 10.1	106 ± 7.8				
	2,166	129 ± 5.7					••				
	2,500		(c) 113 ± 8.0								
	3,333			(c) 140 ± 6.8	(c) 101 ± 3.6	(c) 97 ± 6.8	(c) 102 ± 7.5				
	6,666				Toxic		(c) 66 ± 0.5				
Trial su		Negative	Negative	Negative	Negative	Negative	Negative				
Positive	control (d)	$1,023 \pm 60.4$	$1,238 \pm 38.6$	519 ± 14.0	902 ± 13.3	377 ± 7.7	648 ± 38.7				
TA1535	-	16 ± 2.3	18 ± 1.8	12 ± 2.3	12 ± 0.7	9 ± 0.9	14 ± 2.0				
	33	24 ± 4.4	25 ± 2.3	9 ± 3.5		10 ± 3.5					
	100	24 ± 2.0	20 ± 1.5	12 ± 2.3	12 ± 3.3	11 ± 1.5	12 ± 1.0				
	333	17 ± 1.3	30 ± 2.0	8 ± 0.3	13 ± 0.9	11 ± 2.7	10 ± 1.2				
	1,000	23 ± 2.6	20 ± 2.6	10 ± 1.9	11 ± 1.7	11 ± 2.7	14 ± 0.7				
	2,166	(c) 15 ± 0.9									
	2,500		(c) 22 ± 4.4								
	3,333	••		12 ± 1.2	(c) 10 ± 0.6	10 ± 1.2	(c) 12 ± 1.2				
	6,666	•-			Toxic		Toxic				
Trial su	-	Negative	Negative	Negative	Negative	Negative	Negative				
Positive	control (d)	826 ± 33.4	843 ± 9.3	75 ± 8.1	58 ± 6.1	38 ± 2.7	72 ± 6.3				
TA1537	-	4 ± 0.9	4 ± 0.6	5 ± 1.2	3 ± 1.0	6 ± 1.5	5 ± 1.2				
	33	5 ± 1.2	5 ± 1.2	8 ± 2.3		10 ± 1.7					
	100	5 ± 0.3	4 ± 1.5	8 ± 1.2	5 ± 2.4	9 ± 2.3	5 ± 1.0				
	333	4 ± 0.9	4 ± 1.7	5 ± 0.3	5 ± 0.6	9 ± 0.7	5 ± 0.3				
	1,000	$7 \pm 1.2 \\ 5 \pm 1.3$	6 ± 1.2	9 ± 1.8	5 ± 1.3	9 ± 1.2	5 ± 2.1				
	2,166 2,500	5 I I.3 	$\frac{1}{4 \pm 0.3}$								
	2,500		4 I 0.3	9 ± 1.5	5 ± 1.7	7 ± 0.0	3 ± 0.0				
	3,333 6,666			9 1.5	$(c) 4 \pm 0.7$	7 ± 0.0	$(c) 3 \pm 0.0$				
	0,000				(0)4 ± 0.7		(0.3 ± 0.5)				
Trial su		Negative	Negative	Negative	Negative	Negative	Negative				
Positive	control (d)	345 ± 49.4	156 ± 16.2	72 ± 4.7	82 ± 2.4	29 ± 4.3	46 ± 2.6				
TA98	0	19 ± 1.9	12 ± 1.3	24 ± 2.9	20 ± 4.0	21 ± 2.6	18 ± 3.2				
	33	14 ± 3.8	13 ± 1.2	19 ± 2.8		27 ± 0.7					
	100	13 ± 1.9	10 ± 1.3	24 ± 3.2	25 ± 2.5	27 ± 2.1	19 ± 0.3				
	333	17 ± 2.0	14 ± 2.6	33 ± 4.9	23 ± 1.5	22 ± 0.3	17 ± 1.5				
	1,000	17 ± 1.5	12 ± 2.0	20 ± 2.8	18 ± 2.3	24 ± 5.8	15 ± 3.1				
	2,166	12 ± 2.7	14 ± 10								
	2,500		14 ± 1.9								
	3,333			24 ± 1.7	23 ± 0.9	26 ± 1.0	14 ± 0.9				
	6,666				Toxic		Toxic				
Trial su	•	Negative	Negative	Negative	Negative	Negative	Negative				
Positive	control (d)	928 ± 15	$1,163 \pm 14.0$	$1,039 \pm 66.6$	426 ± 13.3	319 ± 10.4	268 ± 6.6				

TABLE H1. MUTAGENICITY OF a-METHYLBENZYL ALCOHOL IN SALMONELLA TYPHIMURIUM (a)

(a) Study performed at EG&G Mason Research Institute. The detailed protocol is presented in Haworth et al. (1983); the data are included in Zeiger et al. (1987). Cells and study compound or solvent (dimethyl sulfoxide) were incubated in the absence of exogenous metabolic activation (-S9) or with Aroclor 1254-induced S9 from male Syrian hamster liver or male Sprague Dawley rat liver. High dose was limited by toxicity or solubility but did not exceed 10 mg/plate; 0 µg/plate dose is the solvent control.

(b) Revertants are presented as mean \pm standard error from three plates.

(c) Slight toxicity

(d) Positive control; 2-aminoanthracene was used on all strains in the presence of S9. In the absence of metabolic activation, 4-nitro-o-phenylenediamine was used with TA98, sodium azide was used with TA100 and TA1535, and 9-aminoacridine was used with TA1537.

Compound	Concentration (nl/ml)	Cloning Efficiency (percent)	Relative Total Growth (percent)	Tft-Resistant Cells	Mutant Fraction (c)
S9					
Trial 1					
Ethanol(d)		60.5 ± 2.0	100.0 ± 7.0	181.0 ± 24.6	100.3 ± 14.3
a-Methylbenzyl alcohol	62.5 125 250 (f) 375 (f) 500 750	$57.7 \pm 5.2 \\ 58.3 \pm 6.6 \\ 61.3 \pm 3.8 \\ 57.0 \pm 2.0 \\ 45.0 \pm 0.0 \\ Lethal$	$\begin{array}{c} 64.3 \pm 12.3 \\ 74.0 \pm 11.2 \\ 46.3 \pm 4.6 \\ 17.5 \pm 6.5 \\ 14.5 \pm 3.5 \\ \end{array}$	$\begin{array}{c} 221.0 \pm 15.1 \\ 200.7 \pm 31.9 \\ 296.0 \pm 17.1 \\ 307.0 \pm 70.0 \\ 317.5 \pm 22.5 \\ \end{array}$	$\begin{array}{c} 131.0 \pm 19.5 \\ 117.7 \pm 22.6 \\ \text{(e) } 161.3 \pm 2.9 \\ \text{(e) } 181.5 \pm 47.5 \\ \text{(e) } 237.0 \pm 18.0 \\ \end{array}$
Methyl methanesulfonate	5 μg/ml	33.7 ± 4.3	33.7 ± 5.8	614.7 ± 120.3	(e) 604.0 ± 42.3
Trial 2					
Ethanol (d)		108.3 ± 3.6	100.0 ± 8.9	71.5 ± 14.8	21.8 ± 4.2
a-Methylbenzyl alcohol	300 (g) 400 500 600 800 1,000	$96.3 \pm 6.0 \\ 89 \\ 100.3 \pm 1.5 \\ 83.3 \pm 11.4 \\ 94.3 \pm 3.5 \\ 96.0 \pm 6.1$	$54.7 \pm 8.3 \\ 58 \\ 74.3 \pm 2.2 \\ 44.3 \pm 9.6 \\ 41.0 \pm 0.0 \\ 31.0 \pm 8.3 \\ \end{cases}$	$\begin{array}{c} 60.0 \pm 15.9 \\ 76 \\ 65.7 \pm 4.9 \\ 48.0 \pm 2.5 \\ 40.3 \pm 4.7 \\ 102.3 \pm 12.0 \end{array}$	$\begin{array}{c} 21.3 \pm 6.2 \\ 29 \\ 22.0 \pm 1.7 \\ 19.7 \pm 1.5 \\ 14.3 \pm 2.2 \\ (e) 36.3 \pm 6.1 \end{array}$
Methyl methanesulfonate	5 µg/ml	87.7 ± 5.2	61.3 ± 8.4	331.0 ± 15.7	(e) 127.7 ± 13.9
Trial 3					
Ethanol (d)		82.8 ± 11.2	100.0 ± 19.2	94.3 ± 9.4	38.8 ± 2.6
a-Methylbenzyl alcohol	400 500 600 800 1,000 (f) 1,200 1,500	$\begin{array}{c} 92.0 \pm 6.6 \\ 77.7 \pm 2.0 \\ 88.7 \pm 4.1 \\ 74.0 \pm 5.0 \\ 92.7 \pm 7.1 \\ 90.5 \pm 6.5 \\ \text{Lethal} \end{array}$	$129.0 \pm 8.6 \\84.0 \pm 13.9 \\78.3 \pm 12.8 \\58.7 \pm 9.8 \\37.3 \pm 11.5 \\34.0 \pm 9.0$	$\begin{array}{c} 86.7 \pm 2.0 \\ 89.3 \pm 8.4 \\ 118.0 \pm 12.2 \\ 109.7 \pm 5.5 \\ 202.3 \pm 33.2 \\ 227.5 \pm 26.5 \end{array}$	$\begin{array}{c} 31.7 \pm 1.5 \\ 38.3 \pm 2.9 \\ 44.0 \pm 2.5 \\ 50.0 \pm 3.6 \\ \text{(e)} \ 72.3 \pm 7.9 \\ \text{(e)} \ 85.0 \pm 16.0 \end{array}$
Methyl methanesulfonate	5 µg/ml	63.3 ± 3.3	63.7 ± 4.9	566.3 ± 33.3	(e) 299.3 ± 1.3

TABLE H2. INDUCTION OF TRIFLUOROTHYMIDINE RESISTANCE IN MOUSE L5178Y LYMPHOMA CELLS BY α-METHYLBENZYL ALCOHOL (a,b)

(a) Study performed at Litton Bionetics, Inc. The experimental protocol is presented in detail by Myhr et al. (1985) and follows the basic format of Clive et al. (1979). The highest dose of study compound is determined by solubility or toxicity and may not exceed 5 mg/ml. All doses are tested in triplicate, unless otherwise specified; the average of the tests is presented in the table. Cells (6×10^{5} /ml) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^{6} cells were plated in medium and soft agar supplemented with trifluorothymidine (Tft) for selection of Tft-resistant cells, and 600 cells were plated in nonselective medium and soft agar to determine the cloning efficiency.

(b) Mean \pm standard error from replicate trials of approximately 1×10^6 cells each. All data are evaluated statistically for both trend and peak response (P<0.05 for at least one of the three highest dose sets). Both responses must be significantly (P<0.05) positive for a chemical to be considered capable of inducing Tft resistance. If only one of these responses is significant, the call is "equivocal"; the absence of both trend and peak response results in a "negative" call.

(c) Mutant fraction (frequency) is a ratio of the Tft-resistant cells to the cloning efficiency, divided by 3 (to arrive at MF per 1×10^6 cells treated); MF = mutant fraction.

(d) Data presented are for four tests.

(e) Significant positive response; occurs when the relative mutant fraction (average MF of treated culture/average MF of solvent control) is greater than or equal to 1.6.

(f) Data presented are for two tests; the dose in one test was lethal.

(g) Data presented are for one test.

Compound	Dose (µg/ml)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hours in BrdU	Relative SCEs/Cell (percent) (b)
- S9 (c)Summary: Negative				, <u> </u>				
Dimethyl sulfoxide		50	1,043	396	0.38	7.9	26.0	
a- Methylbenzyl a lcohol	33.3 100 333.3	50 50 50	1,046 1,042 1,037	430 390 403	0.41 0.37 0.39	8.6 7.8 8.1	26.0 26.0 26.0	108.9 98.7 102.5
Mitomycin C	0.001 0.01	50 5	1,042 104	527 176	0.51 1.69	10.5 35.2	26.0 26.0	132.9 445.6
+ S9 (d)Summary: Negative								
Dimethyl sulfoxide		50	1,045	410	0.39	8.2	26.0	
a- Methylbenzyl alcohol	100 333.3 1,000	50 50 50	1,042 1,045 1,042	402 423 373	0.39 0.40 0.36	8.0 8.5 7.5	26.0 26.0 26.0	97.6 103.7 91.5
Cyclophosphamide	$\begin{array}{c} 0.4\\2\end{array}$	50 5	1,047 103	719 251	0.69 2.44	14.4 50.2	26.0 26.0	175.6 612.2

TABLE H3. INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY α-METHYLBENZYL ALCOHOL (a)

(a) Study performed at Litton Bionetics, Inc. SCE = sister chromatid exchange; BrdU = bromodeoxyuridine. A detailed description of the SCE protocol is presented by Galloway et al. (1985). Briefly, Chinese hamster ovary cells were incubated with study compound or solvent as described in (c) and (d) below and cultured for sufficient time to reach second metaphase division. Cells were then collected by mitotic shake-off, fixed, air dried, and stained.

(b) SCEs/cell of culture exposed to study chemical relative to those of culture exposed to solvent

(c) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent for 2 hours at 37° C. Then BrdU was added, and incubation was continued for 24 hours. Cells were washed, fresh medium containing BrdU and colcemid was added, and incubation was continued for 2-3 hours.

(d) In the presence of S9, cells were incubated with study compound or solvent for 2 hours at 37° C. Cells were then washed, and medium containing BrdU was added. Cells were incubated for a further 26 hours, with colcemid present for the final 2-3 hours. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

	1	rial 1			Trial 2				
Dose (µg/ml)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs	Dose (µg/ml)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs
- S9 (b)Harves	t time: 10	.5 h			– S9 (b)Harv	est time:	10.5 h		
Dimethyl sulfoxid	le				Dimethyl sufox	ide			
	100	6	0.06	4.0		100	5	0.05	3.0
a-Methylbenzyl a	lcohol				a-Methylbenzy	l alcohol			
1,000	100	10	0.10	7.0	1,000	100	7	0.07	6.0
1,500	100	9	0.09	7.0	1,500	100	8	0.08	6.0
2,000	100	8	0.08	6.0	2,000	100	6	0.06	6.0
Summary: Negative					Summary: Negative				
Mitomycin C					Mitomycin C				
0.04	100	28	0.28	24.0	0.05	100	38	0.38	25.0
0.0625	25	34	1.36	80.0	0.08	25	32	1.28	64.0
+ S9 (c)Harves	t time: 12.	5 h			+ S9 (c)Harv	est time:	12.5 h		
Dimethyl sulfoxid	de				Dimethyl sulfo	xide			
	100	3	0.03	3.0		100	8	0.08	5.0
a-Methylbenzyl a	lcohol				a-Methylbenzy	l alcohol			
1,000	100	7	0.07	6.0	1,000	100	20	0.20	10.0
2,000	100	10	0.10	9.0	2,000	50	19	0.38	30.0
3,000	25	20	0.80	60.0	3,000	25	31	1.24	80.0
S	ummary:	Weakly pos	sitive		Sun	nmary: Po	sitive		
Cyclophosphamic	le				Cyclophosphan	nide			
7.5	100	6	0.06	(d) 6.0	7.5	50	22	0.44	30.0
37.5	100	5	0.05	(d) 5.0	37.5	25	24	0.96	52.0

TABLE H4. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY α-METHYLBENZYL ALCOHOL (a)

(a) Study performed at Litton Bionetics, Inc.; Abs = aberrations. A detailed presentation of the technique for detecting chromosomal aberrations is found in Galloway et al. (1985). Briefly, Chinese hamster ovary cells were incubated with study compound or solvent as indicated in (b) and (c). Cells were arrested in first metaphase by addition of colcemid and harvested by mitotic shake-off, fixed, and stained in 6% Giemsa.

(b) In the absence of S9, cells were incubated with study compound or solvent for 8-10 hours at 37° C. Cells were then washed, and fresh medium containing colcemid was added for an additional 2-3 hours followed by harvest.

(c) In the presence of S9, cells were incubated with study compound or solvent for 2 hours at 37°C. Cells were then washed, medium was added, and incubation was continued for 8-10 hours. Colcemid was added for the last 2-3 hours of incubation before harvest. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

(d) Positive control failed. This does not invalidate the response observed at 3,000 µg/ml.

APPENDIX I

AUDIT SUMMARY

a-Methylbenzyl Alcohol, NTP TR 369

The pathology specimens, experimental data, study documents, and draft (August 1988) of NTP Technical Report No. 369 for the 2-year studies of a-methylbenzyl alcohol in rats and mice were audited for the National Institute of Environmental Health Sciences (NIEHS) at the National Toxicology Program (NTP) Archives by quality assurance support contractors. The audit included review of:

- (1) All records concerning animal receipt, quarantine, randomization, and disposition prior to study start.
- (2) All inlife records including protocol, correspondence, animal husbandry, environmental conditions, dosing, external masses, mortality, animal identification, and serology.
- (3) Body weight and clinical observation data; all data were scanned before individual data for a random 10% sample of animals in each study group were reviewed in detail.
- (4) All chemistry records.
- (5) All postmortem records for individual animals concerning date of death, disposition code, condition code, tissue accountability, correlation of masses or clinical signs recorded at or near the last inlife observation with gross observations and microscopic diagnoses, and correlation between gross observations and microscopic diagnoses.
- (6) All wet tissue bags for inventory and wet tissues from a random 20% sample of animals in each study group, plus other relevant cases, to evaluate the integrity of identity for individual animals and to examine for untrimmed potential lesions.
- (7) Blocks and slides of tissues from a random 20% sample of animals from each study group, plus animals with less than complete or correct identification, to examine for proper match and inventory.
- (8) Necropsy record forms for data entry discrepancies and all original and updated microscopic diagnoses for a random 10% sample of animals to verify their incorporation into the final pathology tables.
- (9) The extent of correlation between the data, factual information, and procedures for the 2-year studies as presented in the draft Technical Report and the study records available at the NTP Archives.

Procedures and events for the exposure phase of the studies were documented adequately by the archival records, except that some or all records for cage filter type and source, light-cycle duration, room air-change rate, and storage conditions for dose mixtures were not available at the Archives. Records documented that dose mixtures were prepared, analyzed, and administered according to protocols. Observation of clinical signs, including masses, were made and recorded consistently. Recalculation of approximately 10% of the group mean body weight values in the Technical Report showed 21/25 for rats and 22/24 for mice to be correct; differences ranged from 1.9% to 8.8%. External masses observed inlife correlated well with masses noted at necropsy for both rats and mice. The disposition code and date of death recorded at necropsy for each unscheduled-death animal (185 rats and 73 mice) had matching entries in the inlife records, except for the dates of death for 2 mice, which had no effect on survival values given in the Technical Report.

Individual animal identifiers (ear tags) were present and correct in the residual tissue bags for 62/69 rats and 59/70 mice examined. Review of the entire data trail for the 7 rats and 11 mice with less than complete and correct identifiers indicated that the integrity of their individual animal identity had been maintained, but the absence of ear tags had not been documented. A total of 5 untrimmed potential lesions were found in the wet tissues of 69 rats examined, whereas 9 were found in 70 mice examined; none involved target organs. Intestinal segments were not completely opened for 24/69 rats and 38/70 mice, and the stomach was partially opened in 13 rats; however, no potential lesions were evident by external examination. Gross observations made at necropsy were well correlated with microscopic diagnoses. Tissue blocks and slides matched each other properly. All post-Pathology Working Group changes in diagnoses had been incorporated into the final pathology tables.

P values for the analysis of tumor incidence given in the Technical Report were the same as those in the final pathology tables in the study records.

Full details about these and other audit findings are presented in the audit reports that are on file at NIEHS. This summary describes the extent to which the data and factual information presented in the draft Technical Report for the 2-year gavage studies of α -methylbenzyl alcohol are supported by the records at the NTP Archives.