NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 416

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF @-NITROANISOLE

(CAS NO. 91-23-6)

IN F344 RATS AND B6C3F1 MICE

(FEED STUDIES)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

FOREWORD

The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation.

The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease.

The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. The prechronic and chronic studies were conducted in compliance with Food and Drug Administration (FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjected to retrospective quality assurance audits before being presented for public review.

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection *per se* is not an indicator of a chemical's carcinogenic potential.

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge while supplies last from Central Data Management, NIEHS, P.O. Box 12233, MD A0-01, Research Triangle Park, NC 27709 (919-541-1371).

NTP TECHNICAL REPORT

$\mathbb{ON} \ \mathbb{THE}$

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF O-NITROANISOLE

(CAS NO. 91-23-6)

IN F344 RATS AND B6C3F1 MICE

(FEED STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

May 1993

NTP TR 416

NIH Publication No. 93-3147

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

o-Nitroanisole, NTP TR 416

CONTRIBUTORS

National Toxicology Program

C.J. Alden, Ph.D.
G.A. Boorman, D.V.M., Ph.D.
D.A. Bridge, B.S.
S.L. Eustis, D.V.M., Ph.D.
T.J. Goehl, Ph.D.
R.A. Griesemer, D.V.M., Ph.D.
J.R. Hailey, D.V.M.
J.K. Haseman, Ph.D.
R.D. Irwin, Ph.D.
G.N. Rao, D.V.M., Ph.D.
D.B. Walters, Ph.D.
K.L. Witt, M.S., Oak Ridge Associated Universities

Hazleton Raltech, Inc.

Conducted 14-day and 13-week studies, evaluated pathology findings

K.M. MacKenzie, Ph.D., Principal Investigator B.G. Boysen, D.V.M., M.Sc. T.A. Jackson, D.V.M., Ph.D. P.S. MacWilliams, D.V.M., Ph.D.

Southern Research Institute

Conducted 2-year studies, evaluated pathology findings

J.D. Prejean, Ph.D., Principal Investigator D.R. Farnell, D.V.M., Ph.D. C.H. Farr, Ph.D. H.D. Giles, D.V.M., Ph.D. J.E. Heath, D.V.M. R.B. Thompson, D.V.M., Ph.D.

Experimental Pathology Laboratories, Inc.

Provided pathology quality assurance

J.F. Hardisty, D.V.M., Principal Investigator B.F. Hamilton, D.V.M., Ph.D. K. Yoshitomi, D.V.M., Ph.D.

Integrated Laboratory Systems Prepared quality assurance audits

J.C. Bhandari, D.V.M., Ph.D., Principal Investigator

NTP Pathology Working Group

Evaluated slides, prepared pathology report on rats (28 August 1990)

A. Pinter, M.D., Ph.D., Chair National Institute of Hygiene, Hungary
S.L. Eustis, D.V.M., Ph.D. National Toxicology Program
J.R. Hailey, D.V.M. National Toxicology Program
B.F. Hamilton, D.V.M., Ph.D. Experimental Pathology Laboratories, Inc.
S. Imoto, D.V.M., Ph.D. Shin Nippon Biomedical Laboratories, Japan
M.P. Jokinen, D.V.M. National Toxicology Program
M.M. McDonald, D.V.M., Ph.D.

Evaluated slides, prepared pathology report on mice (25 July 1990)

National Toxicology Program

R.M. Kovatch, D.V.M., Chair Pathology Associates, Inc.
M.P. Jokinen, D.V.M. National Toxicology Program
M.M. McDonald, D.V.M., Ph.D. National Toxicology Program
A. Pinter, M.D., Ph.D. National Institute of Hygiene, Hungary
B.P. Stuart, D.V.M., Ph.D. Mobay Chemical Corporation
K. Yoshitomi, D.V.M., Ph.D.

Experimental Pathology Laboratories, Inc.

Biotechnical Services, Inc. Prepared Technical Report

D.D. Lambright, Ph.D., Principal Investigator P. Chaffin, M.S. G.F. Corley, D.V.M. C.J. Fitz, M.A.

CONTENTS

.

ABSTRACT	• • • • • • • • • • • • • • • • • • • •	5
EXPLANATION	OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	12
TECHNICAL R	EPORTS REVIEW SUBCOMMITTEE	13
SUMMARY OF	TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS	14
INTRODUCTIO	DN	15
MATERIALS A	ND METHODS	19
RESULTS		31
DISCUSSION A	AND CONCLUSIONS	83
REFERENCES	•••••••••••••••••••••••••••••••••••••••	89
Appendix A	Summary of Lesions in Male Rats in the 2-Year Feed Study of <i>o</i> -Nitroanisole	93
Appendix B	Summary of Lesions in Female Rats in the 2-Year Feed Study of <i>o</i> -Nitroanisole	141
Appendix C	Summary of Lesions in Male Mice in the 2-Year Feed Study of <i>o</i> -Nitroanisole	189
Appendix D	Summary of Lesions in Female Mice in the 2-Year Feed Study of <i>o</i> -Nitroanisole	235
Appendix E	Summary of Lesions in Male Rats in the Stop-Exposure Feed Study of <i>o</i> -Nitroanisole	285
Appendix F	Summary of Lesions in Female Rats in the Stop-Exposure Feed Study of <i>o</i> -Nitroanisole	343
Appendix G	Genetic Toxicology	399
Appendix H	Organ Weights and Organ-Weight-to-Body-Weight Ratios	413
Appendix I	Hematology, Clinical Chemistry, and Urinalysis Results	429
Appendix J	Chemical Characterization and Dose Formulation Studies	439
Appendix K	Feed and Compound Consumption in the 2-Year Feed Studies	455
Appendix L	Ingredients, Nutrient Composition, and Contaminant Levels in NIH-07 Rat and Mouse Ration	463
Appendix M	Sentinel Animal Program	469

Ĩ,

3

o-Nitroanisole, NTP TR 416

ABSTRACT OCH₃ NO_2

0-NITROANISOLE

CAS No. 91-23-6

Chemical Formula: C7H7NO3

Molecular Weight: 153.13

Synonyms: Methoxynitrobenzene, nitrophenyl methyl ether

o-Nitroanisole is used as an intermediate for the preparation of o-anisidine and in the manufacture of azo dyes. Toxicology and carcinogenesis studies were conducted by administering o-nitroanisole (>99% pure) in the diet to groups of male and female F344 rats and B6C3F₁ mice for 14 days, 13 weeks, and 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, Chinese hamster ovary cells, and mouse lymphoma cells.

14-DAY STUDIES

Groups of five male and five female F344 rats received diets containing 0, 583, 1,166, 2,332, 4,665, or 9,330 ppm o-nitroanisole. Mean body weight gains and final mean body weights of males in the 4,665 and 9,330 ppm groups were lower than those of the controls. Absolute liver weights were significantly increased in males receiving 1,166 ppm or more and in females receiving 583 ppm or more.

Groups of five male and five female $B6C3F_1$ mice received diets containing 0, 250, 500, 1,000, 2,000, or 4,000 ppm *o*-nitroanisole. Mean body weight gains and final mean body weights of males that received 250 ppm and females that received 4,000 ppm were significantly lower than those of the controls. No other chemical-associated effects were observed.

13-WEEK STUDIES

Groups of 10 male and 10 female F344 rats received diets containing 0, 200, 600, 2,000, 6,000, or 18,000 ppm o-nitroanisole. Final mean body weights and feed consumption by male and female rats receiving 6,000 and 18,000 ppm were lower than those of the controls. Hemoglobin and hematocrit values were significantly lower and methemoglobin levels significantly higher in males in the 6,000 and 18,000 ppm groups than in controls. Absolute liver weights were significantly increased in females that received 200, 600, 2,000, and 6,000 ppm, absolute kidney weights were significantly increased in males that received 600, 2,000, and 6,000 ppm, and absolute spleen weights were significantly increased in males and females that received 6,000 and 18,000 ppm.

Groups of 10 male and 10 female $B6C3F_1$ mice received diets containing 0, 60, 200, 600, 2,000, or 6,000 ppm *o*-nitroanisole. Final mean body weight gains, final mean body weights, and feed consumption by male and female mice receiving 6,000 ppm were lower than those of the controls. Hemoglobin and hematocrit values in males and females that received 2,000 or 6,000 ppm were significantly lower than those in the controls. The absolute and relative liver weights of females in the 600 ppm group and relative liver weights of males and females in the 2,000 and 6,000 ppm groups were significantly greater than those of controls.

Lesions associated with exposure to o-nitroanisole were present in the urinary bladder, spleen, kidney, liver, testis, and uterus of rats. Diffuse hyperplasia of the transitional epithelium of the urinary bladder occurred in all male and female rats that received 6,000 and 18,000 ppm. A transitional cell papilloma occurred in one male and transitional cell carcinomas occurred in two males and three females receiving 18,000 ppm. Congestion of the red pulp and capsular hyperplasia of the spleen and hepatocellular hypertrophy of the liver were present in males and females from the 18,000 ppm groups. Multifocal degeneration and necrosis of the renal tubule epithelium with infiltration of mononuclear inflammatory cells were present in male rats that received 600, 2,000, and 6,000 ppm. At the 18,000 ppm level, degeneration of the seminiferous epithelium accompanied by loss of spermatogenic cells and decreased numbers of spermatozoa were observed in the testes of male rats, while uterine atrophy was observed in female rats.

Hepatocyte hypertrophy of the centrilobular and midzonal regions of liver lobules was present in mice that received 200 ppm and increased in severity at higher exposure levels.

2-YEAR STUDIES

The doses selected for the 2-year study of o-nitroanisole in rats were based on lower mean body weights, reduced feed consumption, and increased severity of regenerative anemia in male and female rats receiving 6,000 and 18,000 ppm during the 13-week study. Groups of 60 male and 60 female F344 rats received diets containing 0, 222, 666, or 2,000 ppm o-nitroanisole. Groups of 60 male and 60 female B6C3F₁ mice received diets containing 0, 666, 2,000, or 6,000 ppm o-nitroanisole. After 15 months, up to 10 animals from each group were evaluated for chemical-related lesions.

Survival, Body Weights, Feed Consumption, and Clinical Findings

Survival of male rats receiving 2,000 ppm was significantly lower than that of the controls due to increased severity of nephropathy. Survival of 222 and 666 ppm male rats and all exposed female rats was similar to that of the controls. Survival of groups of exposed male and female mice was similar to that of the controls. The final mean body weight of male rats receiving 2,000 ppm was lower than that of the controls. Final mean body weights of male and female mice that received 2,000 and 6,000 ppm were lower than those of the controls. Feed consumption by male and female rats was similar to that by the controls. The only clinical finding in male or female mice attributable to chemical administration was discolored urine.

Neoplasms and Nonneoplastic Lesions

The incidence of mononuclear cell leukemia was significantly increased in male rats that received 666 and 2,000 ppm and in female rats that received 2,000 ppm (males: 0 ppm, 26/50; 222 ppm, 25/50; 666 ppm, 42/50; 2,000 ppm, 34/50; females: 14/50, 11/50, 14/50, 26/50). Nephropathy occurred in all male rats; the severity increased with exposure level. Focal hyperplasia of the renal tubule epithelium was present in three males receiving 222 ppm and two males receiving 2,000 ppm. Renal tubule adenomas occurred in one male from each of the 222, 666, and 2,000 ppm groups, and renal tubule carcinomas occurred in two males from the 2,000 ppm group. Focal hyperplasia of the transitional epithelium of the urinary bladder was present in one female rat that received 222 ppm and two male rats and six female rats that received 2,000 ppm. A transitional cell papilloma occurred in the urinary bladder of one female rat from the 2,000 ppm group, and a transitional cell carcinoma occurred in another female from the 2,000 ppm group. The incidence of forestomach ulcers increased in male rats that received 2,000 ppm, and the incidence of focal hyperplasia of the forestomach increased with exposure level in male and female rats. In addition, squamous cell papillomas of the forestomach were present in one female receiving 222 ppm, one male receiving 666 ppm, and one male and one female receiving 2,000 ppm, while squamous cell carcinomas were present in one male receiving 666 ppm and one male and one female receiving 2,000 ppm. The incidences of pituitary gland adenomas in male rats and mammary gland fibroadenomas in female rats decreased with exposure level.

The incidence of cellular alteration in the liver was significantly increased in exposed groups of male and female mice. The incidences of hepatocellular adenoma, hepatocellular adenoma or carcinoma (combined), and hepatocellular carcinoma or hepatoblastoma (combined) were significantly increased in male mice receiving 2,000 and 6,000 ppm. The incidences of hepatocellular adenoma or carcinoma were significantly increased in female mice that received 2,000 ppm.

STOP-EXPOSURE STUDY

Groups of 60 male and 60 female F344 rats received diets containing 0, 6,000, or 18,000 ppm o-nitroanisole for 27 weeks and were then maintained on control feed without further chemical exposure for up to an additional 77 weeks. Up to 10 rats from each group were evaluated for the presence of chemical-related lesions at 3, 6, 9, and 15 months.

Survival and Body Weights

Survival of exposed male and female rats was significantly lower than that of the controls as a result of moribund deaths associated with significantly increased incidences of urinary bladder neoplasms, primarily transitional cell carcinomas. All male rats that received 18,000 ppm were dead by week 48 and all females that received 18,000 ppm were dead by week 61. Mean body weights of exposed male and female rats were lower than those of the controls throughout the study.

Neoplasms and Nonneoplastic Lesions

Hyperplasia of the transitional epithelium of the urinary bladder was present in nearly all exposed male and female rats examined at the interim evaluations. A transitional cell carcinoma was first observed at the 3-month interim evaluation in a male rat that received 18,000 ppm. At the 6- and 9-month interim evaluations, transitional cell papillomas or carcinomas were observed in both exposed groups of male rats. Transitional cell carcinomas were observed at the 6-month interim evaluation in females receiving 18,000 ppm and at the 9-month interim evaluation in females receiving 6,000 and 18,000 ppm.

Adenomatous polyps of the large intestine were observed in a small number of exposed rats at the 6-, 9-, and 15-month interim evaluations. At the end of the study, the incidence of adenomatous polyps of the large intestine was significantly increased in all exposed groups and carcinomas of the large intestine were present in four males and two females from the 18,000 ppm groups. The incidence of hyperplasia of the transitional epithelium of the kidney pelvis was significantly increased in exposed male and female rats and transitional cell papillomas were present in three males and one female that received 18,000 ppm. Transitional cell carcinomas of the kidney were present in one male receiving 6,000 ppm and six males and one female receiving 18,000 ppm. Transitional cell carcinomas of the urinary bladder were seen in nearly all exposed male and female rats. Of the males and females receiving 6,000 ppm which were without carcinomas, three males and one female had transitional cell papillomas.

hypertrophy, Generalized centrilobular focal hepatocellular necrosis, multifocal hepatocellular cytoplasmic vacuolation, and Kupffer cell pigmentation were observed in the livers of male and female rats at the 3- and 6-month interim evaluations: however, only Kupffer cell pigmentation was observed at the end of the study. Congestion of the red pulp of the spleen was observed in nearly all exposed male and female rats at the 3-, 6-, and 9-month interim evaluations but the incidence was only slightly increased in the 18,000 ppm groups at the end of the study. Degeneration and atrophy of the seminiferous tubule epithelium of the testes were observed at the 3- and 6-month interim evaluations in all male rats receiving 18,000 ppm.

GENETIC TOXICOLOGY

o-Nitroanisole was tested in two laboratories for mutagenicity in Salmonella typhimurium strains TA97, TA98, TA100, TA1535, and TA1537 with and without exogenous metabolic activation (S9). Positive responses were observed at both laboratories in TA100 with and without S9 activation. One laboratory found no increase in mutations, while the second laboratory detected a weakly positive response in TA1535 without S9. No mutagenic activity was observed in the other tester strains. o-Nitroanisole was positive in the mouse lymphoma assay for induction of trifluorothymidine resistance in L5178Y cells without S9 activation. In cytogenetic tests with Chinese hamster ovary cells, o-nitroanisole induced a significant increase in chromosomal aberrations at the highest dose tested in the presence of S9 activation; sister chromatid exchanges were induced both with and without S9.

8

CONCLUSIONS

Under the conditions of these feed studies there was clear evidence of carcinogenic activity* of o-nitroanisole in male and female F344 rats that received diets containing 6,000 or 18,000 ppm for 6 months based on overall increased incidences of benign and malignant neoplasms of the urinary bladder, transitional cell neoplasms of the kidney, and benign and malignant neoplasms of the large intestine. There was a chemical-related increased incidence of mononuclear cell leukemia in male and female rats receiving diets containing 222, 666, or 2,000 ppm o-nitroanisole for 2 years. Marginally increased incidences of uncommon renal tubule neoplasms in male rats and forestomach neoplasms in male and female rats were considered uncertain findings. There was clear evidence of carcinogenic activity of o-nitroanisole in male $B6C3F_1$ mice based on increased incidences of benign and malignant hepatocellular neoplasms. There was some evidence of carcinogenic activity of o-nitroanisole in female $B6C3F_1$ mice based on increased incidences of hepatocellular adenomas.

Increased severity of nephropathy in male rats, and increased incidences of focal hyperplasia of the renal tubule epithelium and forestomach ulcers in male rats, and of transitional cell hyperplasia of the urinary bladder, focal hyperplasia of the forestomach, and hyperplasia of transitional epithelium of the kidney pelvis in male and female rats were associated with exposure to *o*-nitroanisole.

• Explanation of Levels of Evidence of Carcinogenic Activity is on page 12. A summary of the Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appear on page 14.

	Male	F344 Rats	Female F344 Rats		
	2-Year Study	Stop-Exposure Study ^a	2-Year Study	Stop-Exposure Study ^a	
Doses	0, 222, 666, or 2,000 ppm in feed	0, 6,000, or 18,000 ppm in feed	0, 222, 666, or 2,000 ppm in feed	0, 6,000, or 18,000 ppm in feed	
Body weights	High-dose group lower than controls	Exposed groups lower than controls	Exposed groups similar to controls	Exposed groups lower than controls	
2-Year survival rates	32/50, 34/50, 24/50, 9/50	13/20, 1/20, 0/20	33/50, 41/50, 26/50, 33/50	14/20, 4/20, 0/20	
Nonneoplastic effects	Forestomach: focal hyperplasia (3/50, 16/50, 25/50, 32/50); ulcers (3/50, 3/50, 8/50, 16/50) Kidney: renal tubule focal hyperplasia (0/49, 3/50, 0/50, 2/49); nephropathy severity (2.2, 2.4, 2.6, 3.2)	Urinary bladder: transitional cell hyperplasia (0/59, 38/59, 11/60) Kidney: transitional epithelium hyperplasia (5/60, 34/60, 27/60)	Forestomach: focal hyperplasia (8/50, 8/50, 13/50, 28/50)	Urinary bladder: transitional cell hyperplasia (0/58, 34/59, 11/60) Kidney: transitional epithelium hyperplasia (0/60, 6/60, 19/60)	
Neoplastic effects	All organs: mononuclear cell leukemia (26/50, 25/50, 42/50, 34/50)	Urinary bladder: transitional epithelium papilloma (0/59, 9/59, 1/60); transitional epithelium carcinoma (0/59, 27/59, 50/60); squamous cell papilloma (0/59, 0/59, 4/60); squamous cell carcinoma (0/59, 0/59, 6/60); sarcoma (0/59, 2/59, 9/60) Large intestine: adenomatous polyp (0/60, 26/60, 30/60); carcinoma (0/60, 0/60, 5/60) Kidney: transitional epithelium papilloma (0/60, 0/60, 4/60); transitional epithelium carcinoma (0/60, 1/60, 8/60)	All organs: mononuclear cell leukemia (14/50, 11/50, 14/50, 26/50)	Urinary bladder: transitional epithelium papilloma (0/58, 2/59, 1/60); transitional epithelium carcinoma (0/58, 28/59, 48/60); sarcoma (0/58, 2/59, 14/60); squamous cell papilloma (0/58, 0/59, 4/60); squamous cell carcinoma (0/58, 0/59, 1/60) Large intestine: adenomatous polyp (0/60, 8/60, 18/60); carcinoma (0/60, 0/60, 2/60) Kidney: transitional epithelium papilloma (0/60, 0/60, 1/60); transitional epithelium carcinoma (0/60, 0/60, 1/60)	

Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of o-Nitroanisole

ł

/

	Male	F344 Rats	Female F344 Rats		
	2-Year	Stop-Exposure	2-Year	Stop-Exposure	
	Study	Study	Study	Study	
Uncertain findings	Kidney: renal tubule adenoma (0/49, 1/50, 1/50, 1/49); renal tubule carcinoma (0/49, 0/50, 0/50, 2/49) Forestomach: squamous cell papilloma (0/50, 0/50, 1/50, 1/50); squamous cell carcinoma (0/50, 0/50, 1/50, 1/50)	None	Forestomach: squamous cell papilloma (0/50, 1/50, 0/50, 1/50); squamous cell carcinoma (0/50, 0/50, 0/50, 1/50)	None	
Level of evidence of carcinogenic activity	Clea	r evidence	Clear	evidence	
	Male B6C3F ₁ Mice	Female B6C3F ₁ Mice			
Doses	0, 666, 2,000, or 6,000 ppm in feed	0, 666, 2,000, or 6,000 ppm in feed			
Body weights	Exposed groups lower than controls	Exposed groups lower than controls			
2-Year survival rates	35/50, 43/50, 39/50, 40/50	38/50, 26/50, 33/50, 45/50			
Nonneoplastic effects	None	None			
Neoplastic effects	Liver: hepatocellular adenoma (14/50, 26/50, 41/50, 29/50); carcinoma (7/50, 12/50, 11/50, 7/50); hepatoblastoma (0/50, 3/50, 17/50, 9/50)	Liver: hepatocellular adenoma (14/50, 20/50, 36/50, 18/50)			
Uncertain findings	None	None			
Level of evidence of carcinogenic activity	Clear evidence	Some evidence			

Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of o-Nitroanisole (continued)

Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of o-Nitroanisole (continued)

Genetic toxicology

Salmonella typhimurium gene mutation

Mouse lymphoma gene mutations Sister chromatid exchanges Chinese hamster ovary cells *in vivo*: Chromosomal aberrations Chinese hamster ovary cells *in vitro*: Positive with or without S9 in strain TA100; positive without S9 in strain TA1535; negative with or without S9 in strains TA97, TA98, and TA1537 Positive without S9

Positive with or without S9

Weakly positive with S9; negative without S9

^a Denominators of lesions reflect overall rates

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence, including animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results (clear evidence and some evidence); one category for uncertain findings (equivocal evidence); one category for no observable effects (no evidence); and one category for experiments that cannot be evaluated because of major flaws (inadequate study). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Report series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following five categories is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to potency or mechanism.

- Clear evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemically related.
- No evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate study of carcinogenic activity is demonstrated by studies that, because of major qualitative or quantitative limitations, cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. Such consideration should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- · adequacy of the experimental design and conduct;
- occurrence of common versus uncommon neoplasia;
- progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- combining benign and malignant tumor incidence known or thought to represent stages of progression in the same organ or tissue;
- latency in tumor induction;
- · multiplicity in site-specific neoplasia;
- metastases;
- supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- presence or absence of dose relationships;
- · statistical significance of the observed tumor increase;
- concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- survival-adjusted analyses and false positive or false negative concerns;
- structure-activity correlations; and
- in some cases, genetic toxicology.

NATIONAL TOXICOLOGY PROGRAM BOARD OF SCIENTIFIC COUNSELORS TECHNICAL REPORTS REVIEW SUBCOMMITTEE

The members of the Technical Reports Review Subcommittee who evaluated the draft NTP Technical Report on o-nitroanisole on November 21, 1991, are listed below. Subcommittee members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, subcommittee members have five major responsibilities in reviewing NTP studies:

- · to ascertain that all relevant literature data have been adequately cited and interpreted,
- · to determine if the design and conditions of the NTP studies were appropriate,
- · to ensure that the Technical Report presents the experimental results and conclusions fully and clearly,
- to judge the significance of the experimental results by scientific criteria, and
- to assess the evaluation of the evidence of carcinogenic activity and other observed toxic responses.

Curtis D. Klaassen, Ph.D., Chair Department of Pharmacology and Toxicology University of Kansas Medical Center Kansas City, KS

Paul T. Bailey, Ph.D. Toxicology Division Mobil Oil Corporation Princeton, NJ

Louis S. Beliczky, M.S., M.P.H. Department of Industrial Hygiene United Rubber Workers International Union Akron, OH

Gary P. Carlson, Ph.D. Department of Pharmacology and Toxicology Purdue University West Lafayette, IN

Harold Davis, D.V.M., Ph.D. School of Aerospace Medicine Brooks Air Force Base, TX

Robert H. Garman, D.V.M., Principal Reviewer Consultants in Veterinary Pathology Murrysville, PA

* Did not attend

Jay I. Goodman, Ph.D. Department of Pharmacology and Toxicology Michigan State University East Lansing, MI

David W. Hayden, D.V.M., Ph.D., Principal Reviewer Department of Veterinary Pathobiology College of Veterinary Medicine University of Minnesota St. Paul, MN

Daniel S. Longnecker, M.D. Department of Pathology Dartmouth Medical School Lebanon, NH

Barbara McKnight, Ph.D., Principal Reviewer Department of Biostatistics University of Washington Seattle, WA

Ellen K. Silbergeld, Ph.D.* University of Maryland Medical School Baltimore, MD

Lauren Zeise, Ph.D. California Department of Health Services/RCHAS Berkeley, CA

SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS

On November 21, 1991, the draft Technical Report on the toxicology and carcinogenesis studies of *o*-nitroanisole received public review by the National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, NC.

Dr. R.D. Irwin, NIEHS, introduced the toxicology and carcinogenesis studies of *o*-nitroanisole by discussing the rationale for study, describing the experimental design including additional 2-year stopexposure studies in rats, reporting on survival and body weight effects, and commenting on compoundrelated neoplasms in rats and mice and nonneoplastic lesions in rats. The proposed conclusions were *clear evidence of carcinogenic activity* in male and female F344 rats that received diets containing 6,000 or 18,000 ppm for 6 months, *clear evidence of carcinogenic activity* in male B6C3F₁ mice, and *some evidence of carcinogenic activity* in female B6C3F₁ mice.

Dr. Hayden, a principal reviewer, agreed with the conclusions. He thought the rationale for study could be strengthened by adding a statement on consumer exposure as well as occupational exposure, and by noting that several aromatic amines have been identified as human bladder carcinogens. Dr. Irwin said there were no data on human exposure including the NIOSH National Occupational Exposure Survey.

Dr. McKnight, the second principal reviewer, agreed with the conclusions. She said the rationale section should also include mention of why the stop-exposure studies were performed. Dr. Irwin said this would be added. Further, since the conclusions in rats rest heavily on the results of the stop-exposure studies, Dr. McKnight suggested that the appendixes should contain the same level of detail of reporting on individual animal results as that given the usual 2-year studies (Tables E2 and F2).

Dr. Garman, the third principal reviewer, agreed with the conclusions. He said that a statement that absence of renal tubule epithelial cell degeneration in male rats in the high-dose group of the stop-exposure study may have been due to marked reduction in feed consumption should be better elaborated. Dr. Irwin responded that the reduction in feed consumption and body weight was such that the physiology of the animal was altered, leading to an interpretation of an association with diminished renal pathology.

Noting that this was one of the first reports to be considered by the Subcommittee that had both conventional 2-year and stop-exposure study designs, Dr. Klaassen asked for discussion about presentation of design information and results. Dr. Goodman and Mr. Beliczky stated that the results should be considered and reported separately, while Dr. Garman thought they should not be separated, as the stopexposure study serves to more or less support or confirm the chronic study. Dr. Irwin observed that the stop-exposure study is usually chosen based on the incidence of a lesion with questionable biological behavior at a higher dose level in prechronic studies. In this case, the data from the stop and chronic studies were treated as part of a dose-response and, thus, it was considered appropriate to combine the findings. Dr. S. Eustis, NIEHS, agreed and said that the NTP would prefer not to draw separate conclusions. Dr. Davidson pointed out that the level of evidence in rats would have been less clearcut without the results from the stop-exposure studies. Dr. Goodman said that separation of the statement about mononuclear cell leukemias in rats was appropriate, as the incidences of leukemia in male rats were supportive of some evidence and in female rats were supportive of equivocal evidence. Dr. Hayden commented that the evidence was supportive of a positive finding for leukemia in both male and female rats but perhaps not as part of clear evidence. Dr. Klaassen concluded that there was not a consensus on this issue.

Dr. Hayden moved that the Technical Report on o-nitroanisole be accepted with the revisions discussed and with the conclusions as written for male and female rats and male mice, *clear evidence of carcinogenic activity*, and for female mice, *some evidence of carcinogenic activity*. Dr. Garman seconded the motion. Dr. McKnight offered an amendment that mononuclear cell leukemia be listed in the first sentence as part of *clear evidence* in male and female rats. The amendment was tabled for lack of a second. Dr. Hayden's motion was then accepted unanimously with 10 votes.

OCH3 NO2

o-NITROANISOLE

CAS No. 91-23-6

Chemical Formula: C₇H₇NO₃

Molecular Weight: 153.13

Synonyms: Methoxynitrobenzene, nitrophenyl methyl ether

Physical and Chemical

PROPERTIES, PRODUCTION, AND USE

o-Nitroanisole is a colorless to slightly vellow liquid with a boiling point of 277° C, a melting point of 9° to 10° C, and a specific gravity of 1.254. o-Nitroanisole is insoluble in water but is soluble in most organic solvents (Merck Index, 1983). Two general methods exist for the preparation of o-nitroanisole: methylation of o-nitrophenol or displacement of chloride from o-nitrochlorobenzene methoxide ion (NaOH/methanol). by the o-Nitroanisole is used primarily as a precursor to o-anisidine which is prepared by direct nitroreduction. o-Anisidine is used extensively in the synthesis of azo dyes either directly after being converted to a diazonium salt or as a precursor for the preparation of dianisidine which is diazotized and coupled. Directly or indirectly, o-anisidine is used in the manufacture of over 100 azo dves.

Pharmacokinetics and Metabolism

The pharmacokinetics and metabolism of o-nitroanisole have been examined in male F344 rats (Miller *et al.*, 1985). Following an intravenous dose of 25 mg/kg, ¹⁴C derived from o-nitroanisole was rapidly distributed to tissues with the maximum tissue concentrations being reached within 15 minutes after administration. Elimination of ¹⁴C from tissues was also rapid and followed a two-component decay. The initial elimination phase was rapid in all tissues and was characterized by a half-life of 1 to 2 hours; however, the terminal elimination phase was slower and varied considerably from tissue to tissue. In plasma, liver, brain, lung, small intestine, and kidney, the terminal elimination half-life was 2.5 days, while that from muscle, blood, spleen, and testes was 4.0, 4.5, 5.2, and 6.2 days, respectively. Elimination of the parent compound (nonradioactive) from the blood was also biphasic with half-lives of 30 minutes and 2.2 hours, while elimination of the parent compound from liver, kidney, and small intestine was monophasic.

Within 24 hours after oral administration of a 5 or 50 mg/kg dose of ¹⁴C o-nitroanisole, 73% of the 5 mg/kg dose and 69% of the 50 mg/kg dose had been excreted in the urine. Within 7 days after administration, 71% to 78% of the label had been excreted in the urine and 7% in feces. Moreover, the quantity of radioactivity excreted in the bile was similar to the amount found in the feces, indicating that little if any enterohepatic recirculation was occurring. Examination of the urinary metabolites indicated that 63% of the administered dose was present as o-nitrophenyl sulfate, 11% as o-nitrophenyl glucuronide, 1.5% as o-nitrophenol, and 0.6% as o-anisidine. This suggests the metabolic scheme shown in Figure 1, in which o-demethylation is the major pathway to form o-nitrophenol followed by sulfate or glucuronide conjugation.

Nitroreduction to *o*-anisidine was quantitatively a minor pathway; *o*-anisidine was found only in the liver, and the concentration decayed rapidly and was below the limit of detection within 2 hours after dosing.

CARCINOGENICITY

There are no published studies that have examined the toxicity or carcinogenicity of *o*-nitroanisole. However, *o*-anisidine has been evaluated for carcinogenic potential by the NTP (NCI, 1978b). Groups of 55 F344/N rats received diets containing 5,000 or 10,000 ppm and groups of 55 B6C3F₁ mice received diets containing 2,500 or 5,000 ppm *o*-anisidine for 103 weeks. The incidences of transitional cell papillomas or carcinomas of the urinary bladder were significantly increased in all groups of dosed rats (males: 0/51, 52/54, 52/52; females: 0/49, 46/49, 50/51) and in high-dose mice (males: 0/48, 2/55, 22/53; females: 0/50, 1/51, 22/50).

GENETIC TOXICITY

o-Nitroanisole was positive for induction of DNA damage in *Bacillus subtilis* in the absence of S9 (Shimizu and Yano, 1986) and induction of gene mutations in *Salmonella typhimurium* strain TA100, with and without S9 (Table G1; Chiu *et al.*, 1978; Tokiwa *et al.*, 1981; Haworth *et al.*, 1983). It was also reported to be mutagenic in *S. typhimurium* strains TA98 and TA1538 without S9 (Chiu *et al.*, 1978; Shimizu and Yano, 1986). In Chinese hamster ovary cell cultures, o-nitroanisole induced sister chromatid exchanges with and without S9 and chromosomal aberrations in the presence of S9 (Tables G3 and G4; Galloway *et al.*, 1987).

Mutagenicity data are available for two metabolites of o-nitroanisole, o-nitrophenol and o-anisidine. o-Nitrophenol did not induce gene mutations in S. typhimurium, with or without S9 (Chiu et al., 1978; Haworth et al., 1983; Suzuki et al., 1983; Shimizu and Yano, 1986), did not induce DNA damage in B. subtilis (Natake et al., 1979; Shimizu and Yano, 1986), and did not induce sex-linked recessive lethal mutations in germ cells of male Drosophila melanogaster (NTP, unpublished data).

o-Anisidine, the second metabolite, was genotoxic. It induced gene mutations in S. typhimurium in the presence, but not the absence, of S9 (Zeiger et al., 1992), and was mutagenic with and without S9 in mouse lymphoma L5178Y cells (Wangenheim and Bolcsfoldi, 1988). It did not induce sex-linked recessive lethal mutations in D. melanogaster (Yoon et al., 1985). Induction of DNA strand breaks was reported in mouse lymphoma L5178Y cells treated with o-anisidine in the presence of S9 (Garberg et al., 1988), but tests for induction of DNA repair conducted in male rat hepatocytes without S9 were negative (Yoshimi et al., 1988). o-Anisidine induced both sister chromatid exchanges and chromosomal aberrations in Chinese hamster ovary cells with and without S9 (Galloway et al., 1987).

STUDY RATIONALE

o-Nitroanisole was evaluated for carcinogenic potential because of its structural similarity to *o*-anisidine and because human exposure might be associated with its widespread use in the manufacture of azo dyes.

-

FIGURE 1 The Metabolic Pathway of o-Nitroanisole (Miller et al., 1985)

MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF *O*-NITROANISOLE

o-Nitroanisole was obtained from the Aldrich Chemical Company (Milwaukee, WI) in three lots (lots TE061197, 2712DL, and 1517AM). Lot TE061197 was used throughout the 14-day and 13-week studies in rats and mice and in portions of the 2-year and stop-exposure studies in rats. Lot 2712DL was used in a portion of the stop-exposure study in rats and portions of the 2-year studies in rats and mice; lot 1517AM was used in a portion of the 2-year studies in rats and mice. Identity, purity, and stability analyses were performed by the analytical chemistry laboratory, Midwest Research Institute (MRI; Kansas City, MO), and confirmed by the study laboratory (Appendix J).

All three lots of the study chemical, a clear yellow liquid, were identified as o-nitroanisole by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. The purity of the lots was found to be greater than 99% by Karl Fischer water analysis, elemental analyses, titration of the nitro group, thin-layer chromatography, and gas chromatography. Stability studies performed at the analytical chemistry laboratory indicated that o-nitroanisole was stable as a bulk chemical for 2 weeks at temperatures up to 60° C when stored protected from light. The stability of the bulk chemical was monitored periodically at the study laboratory using infrared and ultraviolet spectroscopy and gas chromatography methods. No change in purity was observed.

Preparation and Analysis of Dose Formulations

The dose formulations were prepared by mixing o-nitroanisole and feed in a blender (Table J1). Studies to determine homogeneity and stability of the dosed feed preparations were conducted by the analytical chemistry laboratory. Homogeneity was confirmed using ultraviolet spectroscopy methods for sample analysis. The stability studies of the dose formulations were performed using high performance liquid chromatography (HPLC) methods. These studies indicated that the dose formulations were stable for at least 3 weeks at room temperature and 1 week when stored under simulated animal cage conditions.

Periodic analyses of the dose formulations of o-nitroanisole were conducted at the study laboratory and the analytical chemistry laboratory using either ultraviolet spectroscopy or HPLC methods. During the 14-day studies, the dose formulations were analyzed at the beginning of the studies (Table J2). During the 13-week studies, the dose formulations were analyzed at the initiation, midpoint, and end of the studies (Table J3). During the 2-year studies, the dose formulations were analyzed at least once every 8 weeks (Table J4). In the 2-year and stop-exposure studies, 85% (141/166) of the dose formulations were within 10% of the target concentrations. Results of the periodic referee analyses performed by the analytical chemistry laboratory were in good agreement with the results obtained by the study laboratory (Table J5).

14-DAY STUDIES

Male and female F344 rats and $B6C3F_1$ mice were obtained from the Charles River Breeding Facility (Kingston, NY). At receipt, the rats were 4 to 5 weeks old and the mice were 5 to 6 weeks old. The animals were quarantined for 21 days before exposure began. Before the beginning of the studies, five animals of each species and sex were randomly selected for parasite evaluation and gross observation for evidence of disease.

Groups of five male and five female rats were fed diets containing 0, 583, 1,166, 2,332, 4,665, or 9,330 ppm o-nitroanisole; groups of five male and five female mice were fed diets containing 0, 250, 500, 1,000, 2,000, or 4,000 ppm o-nitroanisole. The appropriate feed was supplied weekly and was available *ad libitum*. Animals were housed five per cage and water was available *ad libitum*. Clinical findings were recorded twice daily. Feed consumption was recorded weekly by cage. The animals were weighed at study initiation, at day 7, and at the end of the studies. Details of study design and animal maintenance are summarized in Table 1.

At the end of the 14-day studies, blood and urine were collected from all male rats for clinical pathology analyses. The clinical pathology parameters measured are listed in Table 1. A gross necropsy was performed on all rats and mice. The brain, heart, right kidney, liver, lungs, right testis, thymus, and trachea were weighed from rats and mice. Histopathologic examinations were not conducted.

13-WEEK STUDIES

The 13-week studies were conducted to evaluate the cumulative toxic effects of repeated exposure to o-nitroanisole and to determine the appropriate doses to be used in the 2-year studies.

Male and female F344 rats and $B6C3F_1$ mice were obtained from the Charles River Breeding Facility (Portage, MI). Upon receipt, the rats were 4 to 5 weeks old and the mice were 5 to 6 weeks old. The animals were quarantined for 9 days before exposure began. Before the beginning of the studies, five animals of each species and sex were randomly selected for parasite evaluation and gross observation for evidence of disease. At the end of the studies, serologic analyses were performed on five control animals of each species and sex using the protocols of the NTP Sentinel Animal Program (Appendix M).

Groups of 10 male and 10 female rats were fed diets containing 0, 200, 600, 2,000, 6,000, or 18,000 ppm *o*-nitroanisole; groups of 10 male and 10 female mice were fed diets containing 0, 60, 200, 600, 2,000, or 6,000 ppm *o*-nitroanisole. The appropriate feed was supplied weekly and was available *ad libitum*. Animals were housed five per cage; water was available *ad libitum*. Clinical findings were recorded twice daily. Feed consumption was recorded weekly by cage. The animals were weighed at the beginning of the studies and weekly thereafter. Further details of study design and animal maintenance are summarized in Table 1.

At the end of the 13-week studies, blood and urine were collected from all animals for clinical pathology analyses. The clinical pathology parameters measured are listed in Table 1. A necropsy was performed on all animals. The brain, heart, right kidney, liver, lungs, spleen, right testis, and thymus were weighed. Tissues for microscopic examination were embedded in paraffin, sectioned to a thickness of 4 to 6 μ m, and stained with hematoxylin and eosin. A complete histopathologic examination was performed on all control animals, all animals that received 6,000 ppm, and all animals dying early. The epididymis, kidney, liver, spleen, testis, and urinary bladder of all exposed rats were examined microscopically. Table 1 lists the tissues and organs routinely examined microscopically.

2-YEAR STUDIES

Study Design

In the core study, groups of 60 male and 60 female rats were fed diets containing 0, 222, 666, or 2,000 ppm o-nitroanisole; groups of 60 male and 60 female mice were fed diets containing 0, 666, 2,000, or 6,000 ppm o-nitroanisole for 103 weeks. Up to 10 rats and mice per group were designated for interim evaluations after 15 months of chemical administration.

The stop-exposure study consisted of groups of 60 male and 60 female rats fed diets of 0, 6,000, or 18,000 ppm *o*-nitroanisole for 27 weeks and then held up to an additional 77 weeks without further treatment. Ten rats per group were scheduled for interim evaluations after 3, 6, 9, and 15 months.

Source and Specification of Animals

Male and female F344 rats and $B6C3F_1$ mice were obtained from Simonsen Laboratories (Gilroy, CA) for use in the 2-year studies. Rats were quarantined for 11 days, and mice were quarantined for 10 days before the beginning of the studies. Five rats and five mice of each sex were selected for parasite evaluation and gross observation of disease. Serology samples were collected for viral screening. Rats and mice in the 2-year studies were approximately 40 days old at the beginning of the studies; rats in the stop-exposure study were approximately 41 days old at the beginning of the study. The health of the animals was monitored during the studies according to the NTP Sentinel Animal Program (Appendix M).

Animal Maintenance

Rats were housed five per cage; mice were housed individually. Feed and water were available *ad libitum*. Cages were rotated every 2 weeks during the studies. Further details of animal maintenance are given in Table 1. Information on feed composition is provided in Appendix L.

Clinical Examinations and Pathology

All animals were observed twice daily. Clinical findings were recorded weekly for the first 13 weeks, and monthly thereafter. Animals were weighed at study initiation, weekly for the first 13 weeks, and monthly thereafter. Up to 10 rats and mice were selected from each group in the 2-year studies for interim evaluations at 15 months. During the stop-exposure study, up to 10 rats from each group were selected for interim evaluations after 3, 6, 9, and 15 months. All animals received a complete gross examination. The brain, right kidney, liver, spleen, and right testis were weighed at the 15-month interim evaluations in the 2-year studies.

Animals found in a moribund state or surviving to the end of the 2-year studies received a complete necropsy. At necropsy, all organs and tissues were examined for gross lesions, and all major tissues were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned, and stained with hematoxylin and eosin for microscopic examination. Histopathologic examinations were performed on all tissues with grossly visible lesions. Tissues examined are listed in Table 1.

Microscopic evaluations were completed by the study laboratory pathologist and the pathology data were entered into the Toxicology Data Management System. The microscopic slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were evaluated by an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy, slide and tissue counts were verified, and histotechnique was evaluated. For the 2-year studies in rats, a quality assessment pathologist reviewed the forestomach, kidney, large intestine (stop-exposure study), liver, pancreas (male), spleen, uterus (stop-exposure study), and urinary bladder for accuracy and consistency of diagnosis. In the 2-year study in mice, a quality assessment pathologist reviewed the liver, nose, lung, and lymphoid tissues.

The quality assessment report and slides were submitted to the NTP Pathology Working Group (PWG) chair, who reviewed the selected tissues for which there was a disagreement in diagnosis between the laboratory and quality assessment pathologists. Representative histopathology slides containing examples of lesions related to chemical administration, examples of disagreements in diagnosis between the laboratory and quality assessment pathologists, or lesions of general interest were presented by the chair to the PWG for review. The PWG consisted of the quality assessment pathologist and other pathologists experienced in rodent toxicologic pathology. This group examined tissues without knowledge of exposure group or previously rendered diagnoses. When the consensus opinion of the PWG differed from that of the laboratory pathologist, the final diagnosis was changed. Details of these review procedures have been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). For subsequent analysis of pathology data, the diagnosed lesions for each tissue type were evaluated separately or combined according to the guidelines of McConnell et al. (1986).

Statistical Methods

Survival Analyses

The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found dead of other than natural causes or were found to be missing; animals dying from natural causes were not censored. Statistical analyses for possible dose-related effects on survival used Cox's (1972) method for testing two groups for equality and Tarone's (1975) life table test to identify dose-related trends. All reported P values for the survival analysis are two sided.

Calculation of Incidence

The incidences of neoplasms or nonneoplastic lesions as presented in Tables A1, A5, B1, B5, C1, C5, D1, D5, E1, E4, F1, and F4 are given as the number of animals bearing such lesions at a specific anatomic site and the number of animals with that site examined microscopically. For calculation of statistical significance, the incidences of most neoplasms (Tables A3, B3, C3, D3, E3, and F3) and all nonneoplastic lesions are given as the ratio of the number of affected animals to the number of animals with the site examined microscopically. However, when macroscopic examination was required to detect neoplasms in certain tissues (e.g., skin or mammary was performed.

gland) before microscopic evaluation, or when neoplasms had multiple potential sites of occurrence (e.g., mononuclear cell leukemia), the denominators consist of the number of animals on which a necropsy

Analysis of Neoplasm Incidence

The majority of neoplasms in these studies were considered to be incidental to the cause of death or not rapidly lethal. Thus, the primary statistical method used was logistic regression analysis, which assumed that the diagnosed neoplasms were discovered as the result of death from an unrelated cause and thus did not affect the risk of death. In this approach, neoplasm prevalence was modeled as a logistic function of chemical exposure and time. Both linear and quadratic terms in time were incorporated initially, and the quadratic term was eliminated if it did not significantly enhance the fit of the model. The neoplasm incidences of exposed and control groups were compared on the basis of the likelihood score test for the regression coefficient of dose. This method of adjusting for intercurrent mortality is the prevalence analysis of Dinse and Lagakos (1983), further described and illustrated by Dinse and Haseman (1986). When neoplasms are incidental, this comparison of the time-specific neoplasm prevalences also provides a comparison of the time-specific neoplasm incidences (McKnight and Crowley, 1984).

In addition to logistic regression, alternative methods of statistical analysis were used, and the results of these tests are summarized in the appendixes. These include the life table test (Cox, 1972; Tarone, 1975), appropriate for rapidly lethal neoplasms, and the Fisher exact test and the Cochran-Armitage trend test (Armitage, 1971; Gart *et al.*, 1979), procedures based on the overall proportion of neoplasm-bearing animals.

Tests of significance include pairwise comparisons of each exposed group with controls and a test for an overall dose-response trend. Continuity-corrected tests were used in the analysis of neoplasm incidence, and reported P values are one sided. The procedures described above also were used to evaluate selected nonneoplastic lesions. For further discussion of these statistical methods, see Haseman (1984).

Historical Control Data

Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of neoplasm incidence. Consequently, control neoplasm incidences from the NTP historical control database (Haseman *et al.*, 1984, 1985) are included in the NTP reports for neoplasms appearing to show compound-related effects.

Analysis of Continuous Variables

Two approaches were employed to assess the significance of pairwise comparisons between exposed and control groups in the analysis of continuous variables. Organ and body weight data, which have approximately normal distributions, were analyzed using the parametric multiple comparison procedures of Williams (1971, 1972) and Dunnett (1955). Hematology, clinical chemistry, and urinalysis data, which have typically skewed distributions, were analyzed using the nonparametric multiple comparison methods of Shirley (1977) and Dunn (1964). Jonckheere's test (Jonckheere, 1954) was used to assess the significance of the dose-response trends and to determine whether a trend-sensitive test (Williams' or Shirley's test) was more appropriate for pairwise comparisons than a test that does not assume a monotonic dose-response trend (Dunnett's or Dunn's test). Average severity values were analyzed for significance using the Mann-Whitney U test (Hollander and Wolfe, 1973).

Quality Assurance Methods

The 13-week and 2-year studies were conducted in compliance with Food and Drug Administration Good Laboratory Practice Regulations (21 CFR, Part 58). In addition, as records from the 2-year studies were submitted to the NTP Archives, they were audited retrospectively by an independent quality assurance contractor. Separate audits covering completeness and accuracy of the pathology data, pathology specimens, final pathology tables, and preliminary review draft of this NTP Technical Report were conducted. Audit procedures and findings are presented in the reports and are on file at NIEHS. The audit findings were reviewed and assessed by NTP staff so all had been resolved or were otherwise addressed during the preparation of this Technical Report.

GENETIC TOXICOLOGY

The genetic toxicity of o-nitroanisole was assessed by testing its ability to induce mutations in Salmonella typhimurium, sister chromatid exchanges and chromosomal aberrations in Chinese hamster ovary cells, and trifluorothymidine resistance in mouse L5178Y lymphoma cells. The protocols and results of these studies are given in Appendix G. TABLE 1

Experimental Design and Materials and Methods in the Feed Studies of o-Nitroanisole

-

14-Day Studi es	13-Week Studies	Stop-Exposure Study	2-Year Studies
Study Laboratory Hazleton Raltech, Inc. (Madison, WI)	Hazleton Raltech, Inc. (Madison, WI)	Southern Research Institute (Birmingham, AL)	Southern Research Institute (Birmingham, AL)
Strain and Species Rats: F344 Mice: B6C3F ₁	Rats: F344 Mice: B6C3F ₁	Rats: F344	Rats: F344 Mice: B6C3F ₁
Animal Source Charles River Breeding Facility (Kingston, NY)	Charles River Breeding Facility (Portage, MI)	Simonsen Laboratories (Gilroy, CA)	Simonsen Laboratories (Gilroy, CA)
Time Held Before Studies 21 days	9 days	11 days	Rats: 11 days Mice: 10 days
Average Age When Studies Rats: 7-8 weeks Mice: 8-9 weeks	Began Rats: 5-6 weeks Mice: 6-7 weeks	41 days	40 days
Date of First Dose 31 March 1982	14 May 1982	18 September 1984	Rats: 11 September 1984 Mice: 23 October 1984
Duration of Dosing Rats: 14 days Mice: 15 days	Rats: 90 days (males) 91 days (females) Mice: 94 days (males) 95 days (females)	27 weeks	103 weeks
Date of Last Dose Rats: 14 April 1982 Mice: 15 April 1982	Rats: 13 August 1982 Mice: 17 August 1982	25 March 1985	Rats: 1 September 1986 Mice: 13 October 1986
Necropsy Dates Rats: 14 April 1982 Mice: 15 April 1982	Rats: 13 August 1982 Mice: 17 August 1982	 3-Month interim: 13-14 December 1984 6-Month interim: 26-27 March 1985 9-Month interim: 18-19 June 1985 15-Month interim: 16-17 December 1985 Terminal: 15-16 September 1986 	Rats – 15-Month interim: 10-12 December 1985 Terminal: 8-15 September 1986 Mice – 15-Month interim: 20-22 January 1986 Terminal: 20-27 October 1986

Table 1

Experimental Design and Materials and Methods in the Feed Studies of o-Nitroanisole (continued)

14-Day Studies	13-Week Studies	Stop-Exposure Study	2-Year Studies
Average Age at Necropsy Rats: 9-10 weeks Mice: 10-11 weeks	Rats: 19-20 weeks Mice: 21-22 weeks	3-Month interim: 128 days 6-Month interim: 231 days 9-Month interim: 315 days 15-Month interim: 496 days Terminal: 769 days	15-Month interim: 496 days (rats) 495 days (mice) Terminal: 771 days
Size of Study Groups 5 males and 5 females	10 males and 10 females	60 males and 60 females	60 males and 60 females
Method of Distribution Animals were grouped by weight intervals. Animals were assigned to cages, then the cages were assigned to dose gal ups using an appropriate table of random numbers.	Same as 14-day studies	Same as 14-day studies	Same as 14-day studies
Animals per Cage 5	5	5	Rats: 5 Mice: 1
Method of Animal Identificat Metal tags	tion Same as 14-day studies	Toe clip	Same as stop-exposure study
Diet NIH-07 open formula rat and mouse diet (Teklad Test Diets, Winfield, IA), available <i>ad libitum</i>	Same as 14-day studies	NIH-07 open formula mash diet, (Zeigler Brothers, Gardners, PA), available ad libitum	Same as stop-exposure study
Maximum Storage Time for Not available	Feed Not available	120 days from milling	120 days from milling
Water Automatic watering system (Systems Engineering, Palo Alto, CA), available ad libitum	Same as 14-day studies	Automatic watering system (Edstrom Industries, Inc., Waterford, WI), available ad libitum	Same as stop-exposure study
Cages Polycarbonate, changed twice weekly	Same as 14-day studies	Polycarbonate (Lab Products, Inc., Garfield, NJ), changed twice weekly	Same as stop-exposure study, but changed twice weekly for rats and once weekly for mice

TABLE 1

Experimental Design and Materials and Methods in the Feed Studies of o-Nitroanisole (continued)

14-Day Studies	13-Week Studies	Stop-Exposure Study	2-Year Studies
Bedding BetaChips hardwood laboratory bedding (Northeastern Products, Warrensburg, NY), changed twice weekly	Same as 14-day studies	Same as 14-day studies	Same as 14-day studies, but changed twice weekly (rats) and once weekly (mice)
Cage Filters Nonwoven polyester	Same as 14-day studies	Reemay spun-bonded polyester (Snow Filtration, Cincinnati, OH, or Andico, Birmingham, AL), changed once every 2 weeks	Same as stop-exposure study
Racks Stainless steel	Same as 14-day studies	Stainless steel (Lab Products, Inc., Maywood, NJ), changed once every 2 weeks	Stainless steel (Lab Products, Inc., Garfield, NJ), changed once every 2 weeks
Animal Room Environment Temperature: 22° ± 1° C Relative humidity: 50% ± 10% Fluorescent light: 12 hours/day Room air: 10-15 changes/hour	Temperature: 22° ± 2° C Relative humidity: 50% ± 20% Fluorescent light: 12 hours/day Room air: 10-15 changes/hour	Temperature: 19°-27° C (9/17/84-3/30/86); 20°-24° C (4/1/86-9/16/86) Relative humidity: 25%-65% (9/17/84-3/30/86); 18%-58% (4/1/86-9/16/86) Fluorescent light: 12 hours/day Room air: minimum of 15 changes/hour	Rats - Temperature: 19°-27° C (8/30/84-3/30/86); 15°-26° C (4/1/86-9/15/86) Relative humidity: 27%-61% (8/30/84-3/30/86); 23%-69% (4/1/86-9/15/86) Fluorescent light: 12 hours/day Room air: minimum of 15 changes/hour Mice - Temperature: 18°-26° C (10/12/84-3/30/86); 19°-25° C (4/1/86-10/27/86) Relative humidity: 24%-70% (10/12/84-3/30/86); 21%-73% (4/1/86-10/27/86) Fluorescent light: 12 hours/day Room air changes: minimum of 15 changes/hour

Table 1

Experimental Design and Materials and Methods in the Feed Studies of o-Nitroanisole (continued)

- -----

14-Day Studies 13-Week Studies		Stop-Exposure Study	2-Year Studies
Doses Rats: 0, 583, 1,116, 2,332, 4,665, or 9,330 ppm in feed, available <i>ad libitum</i> Mice: 0, 250, 500, 1,000, 2,000, or 4,000 ppm in feed, available <i>ad libitum</i>	Rats: 0, 200, 600, 2,000, 6,000, or 18,000 ppm in feed, available <i>ad libitum</i> Mice: 0, 60, 200, 600, 2,000, or 6,000 ppm in feed, available <i>ad libitum</i>	0, 6,000, or 18,000 ppm in feed, available <i>ad libitum</i>	Rats: 0, 222, 666, or 2,000 ppm in feed, available ad libitum Mice: 0, 666, 2,000, or 6,000 ppm in feed, available ad libitum
Type and Frequency of Obse Observed twice daily; animals weighed initially, at day 7, and at end of studies; clinical observations recorded twice daily; feed consumption recorded by cage weekly.	rvation Observed twice daily; animals weighed initially, weekly, and at end of studies; clinical observations recorded twice daily; feed consumption recorded by cage weekly.	Observed twice daily; animal weights and clinical findings recorded weekly through week 13, monthly thereafter, and at interim evaluations or death; feed consumption measured daily per cage for 1 week each month.	Observed twice daily; animal weights and clinical findings recorded weekly through week 13, monthly thereafter, and at interim evaluations or death; feed consumption measured daily per cage for 1 week each month.
Method of Sacrifice Not available	Not available	Thoracotomy under ether anesthesia at the 3-, 6-, and 9-month interim evaluations. Carbon dioxide asphyxiation at the 15-month interim evaluation and the end of the study.	Thoracotomy under ether anesthesia at the interim evaluations. Carbon dioxide asphyxiation at the end of the studies.
Necropsy Necropsy performed on all animals. Organs weighed were brain, heart, right kidney, liver, lungs, right testis, thymus, and trachea.	Necropsy performed on all animals. Organs weighed were brain, heart, right kidney, liver, lungs, spleen, right testis, and thymus.	All animals necropsied; organs weighed at 3-, 6-, and 9-month interim evaluations were right kidney, liver, spleen, right testis, urinary bladder, and uterus. Organs weighed at the 15-month interim evaluation were right kidney, liver, spleen, right testis, urinary bladder, and uterus.	All animals necropsied. Organs weighed at the interim evaluations were brain, right kidney, liver, spleen, and right testis.
Clinical Pathology Blood and urine samples were collected from all male rats. <i>Hematology:</i> hematocrit, hemoglobin, erythrocytes, reticulocytes, total leukocyte count and differential, nucleated erythrocytes, and total bone marrow cellularity	Blood and urine samples were collected from all animals. <i>Hematology:</i> hematocrit, hemoglobin, erythrocytes, reticulocytes, mean erythrocyte volume, mean erythrocyte hemoglobin, mean erythrocyte	Blood was collected twice at the 3- and 6-month interim evaluations for hematology and clinical chemistry determinations. Blood was collected once at the 9-month interim evaluation for hematology and clinical chemistry determinations.	None

2

.

TABLE 1

Experimental Design and Materials and Methods in the Feed Studies of o-Nitroanisole (continued)

14-Day Studies	13-Week Studies	Stop-Exposure Study	2-Year Studies
Clinical Pathology (continued) Clinical chemistry: methemoglobin Urinalysis: specific gravity	Hematology (continued): hemoglobin concentration, leucocyte count and differential, and nucleated erythrocytes Clinical chemistry: methemoglobin Urinalysis: specific gravity	Hematology: hematocrit, hemoglobin, mean erythrocyte volume, mean erythrocyte hemoglobin, mean erythrocyte hemoglobin concentration, platelets, reticulocytes, total leukocyte count and differential, and nucleated erythrocytes Clinical chemistry: methemoglobin	
Histopathology None	Complete histopathologic examinations were performed on all control rats and mice, all rats and mice that received 6,000 ppm, and all rats and mice that died early. In addition to tissue masses, gross lesions, and associated lymph nodes, the tissues examined included: adrenal gland, colon (rats), clitoral gland (rats), epididymis, eye, heart (rats), kidney, liver, lung and mainstem bronchi, mammary gland (mice), mandibular lymph node (rats), nose (rats), ovary, parathyroid gland, pituitary gland (rats), preputial gland (rats), rectum (rats), salivary gland, seminal vesicle, skin (mice), spleen (rats), testis, thymus, thyroid gland, trachea (rats), urinary bladder, uterus (rats), and vagina (mice). In addition, the epididymis, kidney, liver, spleen, testis, and urinary bladder of all exposed rats were examined microscopically.	At the interim evaluations and the terminal sacrifice, kidney, liver, spleen, testis (including epididymis), urinary bladder, ureter, uterus, and gross lesions were examined microscopically in all exposed groups.	Complete histopathologic examinations were performed on all control, high-dose, and early death rats, all mice, and all rats and mice at the 15-month interim evaluations. In addition to tissue masses, gross lesions, and associated lymph nodes, the tissues examined included: adrenal gland, bone (including marrow), brain, clitoral gland, bone (including marrow), brain, clitoral gland, coagulating gland, ear (male rats), epididymis, esophagus, eye, gallbladder (mice), harderian gland, heart, kidney, lacrimal gland (female rats), large intestine (cecum, colon, rectum), liver, lung, lymph node (mandibular and mesenteric), mammary gland, mesentery, nose, ovary, pancreas, parathyroid gland, penis (mice), pharynx (rats), pituitary gland, seminal vesicle, skeletal muscle, skin, small intestine (duodenum, jejunum, ileum), spleen,

Table 1

Experimental Design and Materials and Methods in the Feed Studies of o-Nitroanisole (continued)

14-Day Studies	13-Week Studies	Stop-Exposure Study	2-Year Studies
Histopathology (continued)			stomach (forestomach and glandular), testis, thymus, thyroid gland, tongue (females), tooth (mice and male rats), trachea, urinary bladder, uterus, vagina, and Zymbal's gland (female rats). The clitoral gland, epididymis, kidney, liver, preputial gland, spleen, testis, urinary bladder, and uterus of all rats receiving 222 and 666 ppm were examined microscopically.

RESULTS

Rats

14-DAY STUDY

All rats survived until the end of the study (Table 2). The mean body weight gains of males receiving 4,665 and 9,330 ppm and the final mean body weight of males receiving 9,330 ppm were significantly lower than those of the controls. Mean body weight gains and final mean body weights of all exposed females were similar to those of the controls. Feed consumption by male and female rats administered *o*-nitroanisole was similar to that by the controls. Dietary levels of 583, 1,166, 2,332, 4,665, and 9,330 ppm resulted in average daily consumption levels of 48, 106, 209, 435, and 881 mg/kg for males and 48, 93, 197, 387, and 787 mg/kg for females.

Erythrocyte counts, hematocrit values, and hemoglobin concentrations in all exposed male

groups were significantly lower than those in controls (Table I1). Reticulocyte counts and methemoglobin concentrations were significantly increased in males receiving 1,166 ppm or more, and Heinz bodies were present in erythrocytes from 9,330 ppm males.

At the end of the study, the relative brain, kidney, liver, and testis weights of males and the relative kidney and liver weights of females in the 9,330 ppm groups were significantly greater than those of the controls (Table H1). Because the absolute brain, kidney, and testis weights were not significantly increased in exposed groups, the increased relative organ weights were attributed primarily to the lower final mean body weights of the 9,330 ppm groups. However, the significantly increased absolute liver weights of males that received 1,166 ppm and of females that received 583 ppm or more *o*-nitroanisole were considered related to chemical administration.

TABLE 2 Survival, Mean Body Weights, and Feed Consumption of Rats in the 14-Day Feed Study of o-Nitroanisole

Final Weight Mean Body Weight ^b (g) Relative Feed						ed	
Dose (ppm)	Survival ^a	Initial	Final	Change	to Controls (%)	Consu Week 1	mption ^c Week 2
Male							
0	5/5	165 ± 2	237 ± 3	72 ± 2		15.7	18.7
583	5/5	169 ± 1	243 ± 3	73 ± 3	102	16.6	17.1
1,166	5/5	164 ± 2	243 ± 5	79 ± 3	102	16.5	19.7
2,332	5/5	166 ± 2	240 ± 4	74 ± 3	101	16.6	19.2
4,665	5/5	166 ± 3	229 ± 5	63 ± 2*	97	17.5	18.9
9,330	5/5	162 ± 2	$212 \pm 2^{**}$	$51 \pm 1^{**}$	90	15.0	19.3
Female							
0	5/5	121 ± 2	151 ± 1	30 ± 2		11.3	10.7
583	5/5	120 ± 3	154 ± 2	34 ± 1	102	11.2	11.1
1,166	5/5	117 ± 2	152 ± 2	35 ± 3	101	11.0	10.7
2,332	5/5	118 ± 2	150 ± 2	32 ± 2	99	12.0	10.7
4,665	5/5	118 ± 1	145 ± 1	26 ± 1	96	11.5	10.7
9,330	5/5	119 ± 2	148 ± 2	29 ± 1	98	10.5	11.5

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Number of animals surviving at 14 days/number initially in group

^b Weights given as mean ± standard error. ^c Feed consumption is expressed as grams/animal per day.

13-WEEK STUDY

All rats survived until the end of the study, except one female receiving 2,000 ppm that died during week 5 (Table 3). Mean body weight gains and final mean body weights of males and females receiving 6,000 and 18,000 ppm were significantly lower than those of controls. The final mean body weight of 18,000 ppm males was 52% lower than that of the controls, while the final mean body weight of 18,000 ppm females was 36% lower than that of the controls. Final mean body weights of males and females receiving 6,000 ppm were 14% lower than those of the controls. Feed consumption by rats receiving 18,000 ppm was substantially less than that by controls throughout the study, whereas feed consumption by the 6,000 ppm groups was only slightly less than that by controls (Table 4). The reduced feed consumption may have been due to decreased palatability. Dietary levels of 200, 600, 2,000, 6,000, and 18,000 ppm resulted in average daily consumption levels of 10, 30, 100, 300, and 720 mg/kg for males and females.

Hemoglobin and hematocrit values in male and female rats receiving 2,000, 6,000, and 18,000 ppm were significantly lower than those in controls (Table I2). Erythrocyte counts were significantly lower primarily in males and females receiving 6,000 and 18,000 ppm. These differences were accompanied by increases in the mean values for nucleated erythrocytes, reticulocytes, methemoglobin, and total Heinz bodies were observed leukocyte counts. frequently in the erythrocytes of all rats receiving 18,000 ppm and in some rats receiving 6,000 ppm. These findings are consistent with a mild, regenerative anemia resulting from an increased formation of methemoglobin. Methemoglobin is formed by the oxidation of bound iron in hemoglobin from the Fe²⁺ to the Fe³⁺ oxidation state followed by irreversible denaturation of the globin portion of hemoglobin eventually leading to the formation of Heinz bodies, which are aggregates of denatured hemoglobin. Heinz body formation is often associated with premature erythrocyte destruction due to extravascular or intravascular hemolysis.

TABLE 3						
Survival and	Mean Body	Weights of	Rats in the	13-Week Feed	Study of o-Ni	troanisole

			Final Weight		
Dose (ppm)	Survival ^a	Initial	Final	Change	Relative to Controls (%)
Male					
0	10/10	143 ± 6	360 ± 13	217 ± 14	
200	10/10	150 ± 5	373 ± 7	223 ± 5	104
600	10/10	153 ± 5	380 ± 7	226 ± 7	105
2.000	10/10	147 ± 6	363 ± 4	217 ± 8	101
6.000	10/10	142 ± 6	$311 \pm 5^{**}$	$169 \pm 5^*$	86
18,000	10/10	158 ± 4	173 ± 7**	15 ± 7**	48
Female					
0	10/10	116 ± 3	213 ± 3	97 ± 3	
200	10/10	113 ± 4	217 ± 3	104 ± 4	102
600	10/10	117 ± 3	211 ± 2	94 ± 3	99
2.000	9/10 ^c	114 ± 2	208 ± 3	95 ± 3	98
6.000	10/10	115 ± 1	$183 \pm 2^{**}$	$68 \pm 2^{**}$	86
18,000	10/10	113 ± 2	137 ± 2**	24 ± 2**	64

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Number of animals surviving at 13 weeks/number initially in group

^b Weights given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the study.

^c Week of death: 5

Results

TABLE &

Week of Study

Male

Female

1 2

3

4

5

6

7

8

9

10

11

12

13

0 ppm	200 ppm	600 ppm	2,000 ppm	6,000 ppm	18,000 ppm	
14.7	16.1	15.9	15.5	12.2	5.8	
18.7	15.9	15.8	16.1	15.0	8.1	
16.2	19.1	18.3	18.0	15.5	9.4	
14.8	15.5	15.2	15.2	14.9	10.1	
15.0	15.2	15.7	15.0	15.0	10.0	
15.6	14.9	15.4	15.4	15.2	9.2	
15.7	15.5	16.6	16.5	15.1	6.0	
16.9	16.6	20.2	17.6	16.6	8.2	
17.1	16.1	16.9	17.1	15.6	8.7	
15.9	16.5	16.4	16.5	15.1	9.2	
15.3	13.8	16.8	15.9	14.2	9.6	
14.4	16.2	16.2	15.7	14.7	9.4	
13.5	13.7	15.4	14.2	13.3	7.7	

10.2

9.6

10.7

9.7

9.9

8.9

10.2

11.4

10.5

10.7

10.0

9.9

10.4

Feed	Consumption	by	Rats	im	the	13-Week	Feed	Study	oſ	o-Nitroanisole ^a			

11.0

10.5

12.3

10.6

10.4

10.4

10.7

11.2

10.8

10.5

11.0

9.9

10.7

10.1

10.1

9.8

10.0

10.2

9.6

10.5

10.5

10.7

10.7

10.7

9.8

9.8

Feed consumption is expressed as grams/animal per day.

10.3

10.3

10.6

10.2

10.5

10.5

9.6

12.4

11.7

10.6

10.4

9.6

10.5

Urine samples collected from rats receiving 2,000 ppm or more were dark yellow or amber-colored, whereas those of control rats were light yellow or straw-colored. The slightly darker color of the urine from exposed rats is probably due to increased excretion of hemoglobin or bilirubin metabolites rather than increased urine concentration since the specific gravity of urine from exposed animals was similar to that of the controls (Table I2).

The absolute and relative liver weights of all exposed male and female rat groups were significantly greater than those of the controls, with the exception of the absolute liver weight of 18,000 ppm males (Table H2). The absolute and relative kidney weights of males receiving 600, 2,000, and 6,000 ppm and the relative kidney weight of males receiving 18,000 ppm were significantly greater than those of the controls. In females, the relative kidney weights were significantly increased in the 6,000 and 18,000 ppm groups, but the absolute kidney weights of exposed female groups and controls were similar. The increases in absolute and relative liver and kidney weights were attributed to o-nitroanisole.

8.2

9.3

9.6

9.3

9.0

9.2

9.3

9.2

9.0

9.3

9.1

9.1

9.3

3.7

5.7

6.7

6.6

6.8

6.8

6.8

6.7

6.8

7.0

7.1

7.3

7.3

The absolute and relative spleen weights of male and female rats receiving 6,000 and 18,000 ppm were also significantly increased, which is consistent with the histologic lesions observed in the spleen. The absolute and relative thymus weights of female rats and the absolute thymus weight of male rats that received 18,000 ppm were significantly decreased. It is uncertain if this finding is due to a direct effect of o-nitroanisole on the thymus, or if the thymus is more sensitive than other organs to the nutritional effects associated with decreased feed consumption. The thymus is particularly sensitive to the effects of stress and debilitation associated with a variety of causes and becomes atrophic. Differences in the absolute or relative testis, heart, and lung weights of rats receiving 6,000 and 18,000 ppm were associated with the lower final mean body weights and are not believed to be the result of specific organ toxicity.

The principal lesions associated with the administration of *o*-nitroanisole to rats for 13 weeks were observed in the urinary bladder, spleen, kidney, liver, testis, and uterus as described below.

Urinary bladder: Diffuse hyperplasia of the transitional epithelium of the urinary bladder was seen in all rats receiving 6,000 and 18,000 ppm (Table 5). The hyperplasia generally was more severe in females than in males and more severe in the 18,000 ppm groups than in the 6,000 ppm groups. Focal squamous metaplasia frequently accompanied the hyperplasia, particularly in females. The transitional epithelium of exposed rats was thickened and formed rugose or papillary folds. In rats that received 18,000 ppm, the transitional epithelium was often greater than 30 cell layers thick, whereas that of controls was usually less than five cell layers thick. The foci of squamous metaplasia consisted of moderate to well-differentiated squamous epithelium with cytoplasm, prominent eosinophilic abundant intercellular bridges, and an overlying layer of keratin.

A transitional cell papilloma of the urinary bladder was seen in one male, transitional cell carcinomas were seen in two males and three females, and a squamous cell carcinoma was seen in one female, all in the 18,000 ppm groups. The neoplasms were seen in areas of diffuse hyperplasia. The papilloma consisted of thick branching folds of transitional epithelium, and differed from the more severe hyperplastic lesions primarily by the extent and complexity of branching. The transitional cell carcinomas were also exophytic nodular or rugose masses, but the markedly thickened epithelium consisted of anaplastic, pleomorphic cells. The squamous cell carcinoma consisted of an area of squamous differentiation with interconnecting cords and small clusters of pleomorphic squamous cells infiltrating the submucosa.

Spleen: The splenic red pulp of many males in the 18,000 ppm group and females in the 6,000 and 18,000 ppm groups contained increased numbers of erythrocytes (congestion), which probably accounts for the significantly increased absolute and relative spleen weights of these groups (Table 5). The congestion was associated with increased numbers of macrophages containing hemosiderin pigment. All rats receiving 18,000 ppm and several receiving 6,000 ppm had foci of capsular fibrosis with infiltrations of erythrocytes, hematopoietic cells, and mononuclear inflammatory cells which were diagnosed as capsular hyperplasia (Plate 1). In addition, all rats that received 18,000 ppm had mild to moderate depletion of lymphocytes from the periarteriolar lymphocytic sheaths and lymphoid follicles.

Since the spleen is a major site for the removal of senescent or damaged erythrocytes from the circulation, the congestion and accumulation of hemosiderin-laden macrophages in the spleen are frequently associated with hemolytic anemia and methemoglobinemia. The capsular hyperplasia is frequently seen in enlarged spleens due to a variety of causes, and may be the result of small ruptures in the delicate capsular connective tissue. The precise cause of the lymphoid depletion in the spleen is uncertain, but lymphoid depletion at various sites such as the thymus, lymph nodes, and spleen often accompanies reductions in body weight, and thus may not be a direct effect of *o*-nitroanisole.

Liver: Generalized centrilobular and midzonal hepatocyte hypertrophy was seen in all rats receiving 18,000 ppm. The affected hepatocytes were enlarged and had more homogeneous, eosinophilic cytoplasm than did unaffected cells in the centrilobular region. The livers of all rats that received 18,000 ppm also had scattered Kupffer cells filled with a granular, golden brown pigment, believed to be hemosiderin.
Incidences of Selected Lesions in Rats in the 13-Week Feed Study of o-Nitroanisole

Dose (ppm)	0	200	600	2,000	6,000	18,000
Male		<u></u>				· · · · · · · · · · · · · · · · · · ·
n ^a	10	10	10	10	10	10
Urinary bladder						
Hyperplasia ^b	0	0	0	0	10°°(2.3) ^c	10°°(3.6)
Squamous metaplasia	0	0	0	0	0	2 (4.5)
Transitional cell papilloma	0	0	0	0	0	1
Transitional cell carcinoma	0	0	0	0	0	2
Squamous cell carcinoma	0	0	0	0	0	0
Spleen						
Congestion	0	0	0	0	0	7°°(2.9)
Pigment (hemosiderin)	0	0	0	0	10°°(3.2)	10°°(2.6)
Lymphoid depletion	0	0	0	0	0	10°°(3.1)
Capsule, hyperplasia	0	0	0	0	2 (3.0)	10**(2.7)
Kidney						
Degeneration/necrosis	0	0	10°°(2.0)	10**(2.0)	10**(3.0)	0
Protein casts	0	0	0	3 (2.0)	10**(2.5)	0
Mononuclear cell infiltrate	0	0	2 (3.5)	4°(2.0)	7**(2.7)	0
Pigment (hemosiderin)	0	0	0	0	0	9°°(3.1)
Liver						
Hepatocyte hypertrophy	0	0	0	0	0	10°°(2.5)
Pigment (hemosiderin)	0	0	0	0	0	10°°(2.1)
Testes						
Degeneration	0	0	0	0	0	10°°(3.9)
Female						
n	10	10	10	10	10	10
••	10			10	10	10
Urinary bladder						
Hyperplasia	0	0	0	0	10°°(3.0)	10°°(4.2)
Squamous metaplasia	0	0	0	0	0	10°°(3.5)
Transitional cell papilloma	0	0	0	0	0	0
Transitional cell carcinoma	0	0	0	0	0	3
Squamous cell carcinoma	0	0	0	0	0	1
Spleen						
Congestion	0	0	0	0	5°(2.2)	10°°(3.3)
Pigment (hemosiderin)	0	0	0	0	10**(3.0)	1 (2.0)
Lymphoid depletion	0	0	0	0	0	10°°(3.0)
Capsule, hyperplasia	0.	0	0	0	3 (2.0)	10°°(2.5)
(continued)						

35

TABLE	5
-------	---

Incidences of Selected Lesions in Rats in the 13-Week Feed Study of o-Nitroanisole (c	continued)	
---	------------	--

Dose (ppm)	0	200	600	2,000	6,000	18,000
Female (continued)						
Kidnev						
Pigment (hemosiderin)	0	0	0	0	10**(2.3)	10**(3.5)
Liver						
Hepatocyte hypertrophy	0	0	0	0	0	10**(2.4)
Pigment (hemosiderin)	0	0	0	0	0	10**(2.3)
Uterus						
Atrophy	0	0	0	2 (3.0)	1 (3.0)	10**(4.0)

* Significantly different (P≤0.05) from the control group by the Fisher exact test

** P≤0.01

a Number of animals necropsied

^b Number of animals with lesions

^c Average severity grade of lesions in affected animals: 1 = slight, 2 = minimal, 3 = mild, 4 = moderate, 5 = severe.

Kidney: Multifocal degeneration, necrosis, or both, of the renal tubule epithelium with infiltration of mononuclear inflammatory cells and formation of tubular casts occurred in male rats receiving 600, 2,000, and 6,000 ppm (Plates 2 and 3), but not in those receiving 18,000 ppm or in exposed female rats (Table 5). The reduced nutrient and chemical intake associated with the lower feed consumption may account for the absence of these lesions in the 18,000 ppm group. Granular, golden brown pigment, believed to be hemosiderin, was observed in scattered epithelial cells in the proximal convoluted tubules of males receiving 18,000 ppm.

Testis: All male rats that received 18,000 ppm exhibited degeneration of the seminiferous epithelium characterized by necrosis and loss of spermatogenic cells, decreased numbers of spermatozoa, and accumulations of necrotic debris and multinucleated cells in the seminiferous tubules (Table 5).

Uterus: Uterine atrophy was observed in all female rats receiving 18,000 ppm and in a few females

receiving 2,000 and 6,000 ppm (Table 5). The affected uteri were smaller than those of the controls and the endometrial and myometrial cells had less abundant cytoplasm.

Dose selection rationale: The lower final mean body weights and reduced feed consumption observed in males and females that received diets containing 6,000 and 18,000 ppm o-nitroanisole suggest poor In addition, the severity of feed palatability. regenerative anemia associated with methemoglobin formation was significantly increased in males and females receiving 6,000 and 18,000 ppm. Consequently, these concentrations were considered too high for continuous dietary administration in a 2-year study. At 2,000 ppm, final mean body weights and feed consumption were similar to controls and the anemia was minimal. Therefore, 2,000 ppm was considered an acceptable high concentration for the 2-year study. The remaining concentrations selected were 222 and 666 ppm, since 222 ppm was a no-effect level and at 666 ppm only minimal signs of anemia were present.

Spleen: The splenic capsule (C) is thickened by accumulated mononuclear cells and delicate fibrous tissue. Male rat given 18,000 ppm o-nitroanisole in the 13-week feed study. H&E $\times 100$

Kidney: Note the renal tubule distended with cellular debris, the attenuated epithelium, and the occasional necrotic epithelial cells with pyknotic nuclei (arrows). Male rat given 6,000 ppm *o*-nitroanisole in the 13-week feed study. H&E $\times 100$

PLATE 3

Kidney: Mild nephropathy. Note the interstitial mononuclear cell infiltrate, tubules with thickened basement membrane (arrows), and slightly dilated tubules lined by attenuated epithelium. Male rat given 6,000 ppm o-nitroanisole in the 13-week feed study. H&E ×80

2-YEAR STUDY

Survival

Estimates of survival probabilities for male and female rats are shown in Table 6 and in the Kaplan-Meier curves in Figure 2. Survival of 2,000 ppm male rats was significantly lower than that of the controls. Survival of 666 ppm males was slightly lower than that of the controls, but the

.

difference was not significant by the life table analysis. The reduced survival of 666 and 2,000 ppm males was primarily attributed to the increased numbers of animals with severe renal disease (nephropathy) and associated secondary hyperparathyroidism. Survival of males receiving 222 ppm and of all exposed females was similar to the controls.

TABLE 6

Survival of Rats in the 2-Year Feed Study of o-Nitroanisole

	0 ppm	222 ppm	666 ррт	2,000 ppm	
Male		·			
Animals initially in study	60	60	60	60	
15-Month interim evaluation ^a	10	10	10	9	
Natural deaths	2	3	2	6	
Moribund kills	16	13	24	36	
Animals surviving to study termination	32	34	24	9 ^b	
Percent probability of survival at end of study	64	69	48	18	
Mean survival (days) ^d	655	644	647	603	
Survival analysis ^e	P<0.001	P=0.892N	P=0.172	P<0.001	
Female					
Animals initially in study	60	60	60	60	
15-Month interim evaluation ^a	1Ò	10	10	. 9	
Natural deaths	0	2	6	3	
Moribund kills	17	7	18	15	
Animals surviving to study termination	33	41	26	33	
Percent probability of survival at end of study	66	83	52	65	
Mean survival (days)	655	664	631	648	
Survival analysis	P=0.385	P=0.108N	P=0.149	P=0.904	

^a Censored from survival analyses

^b Includes one animal that died during the last week of the study

^c Kaplan-Meier determinations

^d Mean of all deaths (uncensored, censored, and terminal sacrifice).

^e The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the dosed columns. A lower mortality in a dose group is indicated by N.

Body Weights, Feed Consumption, and Clinical Findings

Mean body weights of male and female rats that received 2,000 ppm were lower than those of controls The mean body weights of (Tables 7 and 8). 2,000 ppm male rats were within 5% of the controls until week 72 (Table 7 and Figure 3). Thereafter, the difference in mean body weight between males receiving 2,000 ppm and the controls gradually increased; the final mean body weight of males receiving 2,000 ppm was 16% lower than that of the controls. The mean body weights of 2,000 ppm female rats were within 5% of the controls until week 48, but the difference gradually increased; the final mean body weight of 2,000 ppm females was 9% lower than that of the controls (Table 8 and Figure 3). The mean body weights of male and female rats that received 222 and 666 ppm were within 5% of the controls throughout the 2-year study. Feed consumption by exposed male and female rats was similar to that by the controls throughout the study (Tables K1 and K2). Dietary levels of 222, 666, and 2,000 ppm resulted in average daily consumption levels of 10, 30, and 80 mg/kg for males and 10, 30, and 90 mg/kg for females. There were no clinical findings associated with o-nitroanisole administration.

Pathology and Statistical Analyses of Results

Summaries of the incidences of nonneoplastic lesions and neoplasms, the individual animal tumor diagnoses, the statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one group, and historical control incidences for the biologically significant neoplasms mentioned in this section are presented in Appendix A for male rats and Appendix B for female rats.

Hematopoietic system: The incidences of mononuclear cell leukemia in males receiving 666 or 2,000 ppm and females receiving 2,000 ppm were significantly increased (Tables 9, A3, and B3). However, the incidence of mononuclear cell leukemia in 2,000 ppm males was slightly lower than in 666 ppm males, possibly due to the reduced survival in the 2,000 ppm group. The incidences of mononuclear cell leukemia in males receiving 666 or 2,000 ppm and females receiving 2,000 ppm also exceed the range for NTP historical controls (males: 32%-62%; females: 14%-36%; Tables A4a and B4a). Although incidences of mononuclear cell leukemia were increased, the mean time to observation (neoplasm latency) was not substantially reduced in the exposed

groups (males: 0 ppm, 694 days; 222 ppm, 695 days; 666 ppm, 688 days; and 2,000 ppm, 638 days; females: 685, 701, 650, and 686 days).

Mononuclear cell leukemia was characterized by the proliferation of polymorphic mononuclear cells with hyperchromatic nuclei in the splenic sinusoids. In more advanced stages, this leukemia involved the interfollicular red pulp completely. As the disease progressed, infiltrates of mononuclear leukemia cells occurred in the liver, lung, kidney, lymph nodes, and other organs. In male rats with mononuclear cell leukemia, organs other than the spleen and liver were more frequently affected in the 666 and 2,000 ppm groups than in the control group. In female rats, the disease was generally limited to the spleen and liver.

Kidney: The relative kidney weight of males that received 2,000 ppm was significantly greater than that of the controls at the 15-month interim evaluation There was a corresponding slight (Table H3). increase in the absolute kidney weight of this group, even though the mean body weight of the 2,000 ppm group was substantially lower than that of the controls. Chronic nephropathy occurred in all male rats, and the severity of the disease increased in a dose-related manner at the 15-month interim evaluation and at the end of the 2-year study (Tables 10 and A5). In female rats, there was little evidence of a chemical-related effect on the kidney. Absolute and relative kidney weights of exposed female groups were similar to those of controls at the 15-month interim evaluation (Table H3). Although the incidences of nephropathy were marginally increased in the exposed female groups, the increased incidences were not significant and were not dose related (Tables 10 and B5). However, the proportion of female rats with moderate nephropathy was greater in the 2,000 ppm group than in the controls.

Nephropathy in rats was characterized by a spectrum of degenerative and inflammatory changes including degeneration and atrophy of the tubule epithelium with the formation of granular and hyaline casts in the tubule lumens, regeneration of the tubule epithelium, thickening of the glomerulus and tubule basement membranes, interstitial fibrosis, and infiltrates of mononuclear inflammatory cells. The severity of nephropathy was graded based on the extent of involvement as follows: minimal, less than 25%; mild, 25% to 50%; moderate, 50% to 75%; and marked, greater than 75%. 40

TABLE 7

Mean Body Weights and Survival of Male Rats in the 2-Year Feed Study of o-Nitroanisole

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Av. Wt. Wt. (% of No. of rs (g) controls) Survivors 125 99 60 187 102 60 211 99 60 241 102 60
Study(g)Survivors(g)controls)Survivors(g)controls)Survivo1127601269960123976021836018210060180996032136021610260210996042366024010160236100605245602581066025510460627160273100602709960728260287102602821006082896029510260289100609302603021006030110060113246031399593109860113246032299593579860213806037599593739860213806037599593739860244036038996593929760234086040198594139860324216041398594139860364286042098594219860 <th>rs (g) controls) Survivors 125 99 60 187 102 60 211 99 60 241 102 60</th>	rs (g) controls) Survivors 125 99 60 187 102 60 211 99 60 241 102 60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	125 99 60 187 102 60 211 99 60 241 102 60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	187 102 60 211 99 60 241 102 60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211 99 60 241 102 60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	241 102 60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	259 106 60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	273 101 60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	283 100 60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	293 101 60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	301 100 60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	312 99 60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	318 98 60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	324 98 60
213806037599593739860244036038996593929760284086040198594009860324216041398594139860364286042098594219860	353 97 59
24 403 60 389 96 59 392 97 60 28 408 60 401 98 59 400 98 60 32 421 60 413 98 59 413 98 60 36 428 60 420 98 59 421 98 60	371 <u>98</u> 59
28 408 60 401 98 59 400 98 60 32 421 60 413 98 59 413 98 60 36 428 60 420 98 59 421 98 60	391 97 59
32 421 60 413 98 59 413 98 60 36 428 60 420 98 59 421 98 60	399 <u>98</u> 59
36 428 60 420 98 59 421 98 60	412 98 59
	421 98 59
40 438 60 424 97 59 432 99 60	429 98 59
44 444 60 437 98 59 438 99 60	435 98 59
48 450 60 439 98 59 440 98 60	438 97 59
52 441 60 437 99 59 440 100 60	437 99 59
56 447 60 441 99 59 441 99 60	435 97 59
60 445 60 437 98 59 441 99 60	436 98 59
64 447 60 438 98 58 442 99 59	430 96 59
68 ^a 446 50 435 97 48 441 99 49	427 96 50
72 443 48 436 98 48 443 100 49	420 95 47
76 441 48 433 98 47 438 99 49	415 94 43
80 440 48 434 99 45 439 100 46	411 94 42
84 435 47 427 98 45 430 99 46	389 89 40
88 430 44 426 99 44 430 100 44	395 92 34
92 428 42 419 98 41 415 97 41	378 88 26
96 418 38 411 98 38 412 99 33	368 88 18
100 417 33 407 98 35 402 96 28	351 84 10
Terminal sacrifice323424	9
Mean for weeks	
1-13 260 262 101 258 99	261 100
14-52 418 410 98 411 98	/00 02
53-101 436 429 98 431 99	407 70

^a Interim evaluation occurred during week 66.

37

Mean Body Weights and Survival of Female Rats in the 2-Year Feed Study of o-Nitroanisole

Weeks	0	opm		222 ppm			666 ppm			2,000 ppm	L
on	Av. Wt.	No. of	Av. Wt.	₩t. (% of	No. of	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	102	60	100	98	60	100		60	103	101	60
2	128	60	130	102	60	129	101	60	130	102	60
3	142	60	140	99	60	140	99	60	143	101	60
4	151	60	151	100	60	153	102	60	154	102	60
5	143	60	160	112	60	160	112	60	152	107	60
6	165	60	164	100	60	167	101	60	165	100	60
7	169	60	170	101	60	170	101	60	168	100	60
8	169	60	172	102	60	170	101	60	170	101	60
9	175	60	174	99	60	172	98	60	174	99	60
10	179	60	177	99	60	176	98	60	177	99	60
11	182	60	178	98	60	177	97	60	179	98	60 ີ
12	184	60	179	98	60	179	98	60	179	98	60
16	196	60	190	97	60	191	97	60	190	97	60
21	201	60	196	98	60	197	98	60	194	97	60
24	203	60	200	99	60	201	99	60	200	99	60
28	211	60	207	98	60	207	98	60	204	96	60
32	217	60	213	98	60	214	99	60	209	96	60
36	221	60	217	98	60	218	99	60	216	98	60
40	232	60	226	97	60	228	98	60	221	95	60
44	238	60	233	98	60	234	98	59	227	96	60
48	246	60	240	98	59	242	98	59	234	95	60
52	255	60	245	96	59	249	98	59	240	94	60
56	261	60	253	97	59	259	99	59	248	95	59
60	268	60	262	98	59	266	99	58	256	95	58
64	275	59	266	97	58	273	99	58	262	96	58
68ª	282	49	272	97	48	279	99	47	266	94	48
72	289	47	279	97	48	284	98	47	273	95	47
76	298	46	284	96	48	289	97	46	279	94	46
80	304	46	293	96	47	294	97	44	285	94	45
84	306	46	294	96	47	294	96	41	286	93	45
88	313	44	309	99	46	302	96	38	295	94	42
92	316	43	305	97	46	305	97	34	293	93	40
96	315	41	308	98	44	304	96	32	291	92	37
100	317	34	304	96	44	304	96	29	289	91	36
Termina	l sacrifice	33			41			26			33
Mean fo	r weeks										
1-13	157		158	101		158	101		158	101	
14-52	222		217	98		218	98		214	96	
52 101	205		204	07			~~				

^a Interim evaluation occurred during week 66.

-42

Table 9

Incidences of Mononuclear Cell Leukemia in Rats in the 2-Year Feed Study of o-Nitroanisole

Dose (ppm)	0	222	666	2,000	
Male					
15-Month Interim Evaluation					
Overall rate ^a	0/10	1/10	0/10	2/9	
2-Year Study ^b					
Overall rate	26/50 (52%)	25/50 (50%)	42/50 (84%)	34/50 (68%)	
Adjusted rate ^c	60.9%	60.2%	91.2%	89.0%	
Terminal rate ^d	16/32 (50%)	18/34 (53%)	20/24 (83%)	6/9 (67%)	
First incidence (days)	496	423	437	491	
Life table test ^e	P<0.001	P=0.445N	P<0.001	P<0.001	
Logistic regression test ^e	P=0.033	P=0.515N	P<0.001	P=0.114	
Female					
15-Month Interim Evaluation					
Overall rate	0/10	0/10	1/10	0/9	
2-Year Study ^f					
Overall rate	14/50 (28%)	11/50 (22%)	14/50 (28%)	26/50 (52%)	
Adjusted rate	32.7%	24.6%	37.3%	58.5%	
Terminal rate	6/33 (18%)	8/41 (20%)	5/26 (19%)	15/33 (45%)	
First incidence (days)	494	533	302	500	
Life table test	P=0.001	P=0.204N	P=0.351	P=0.024	
Logistic regression test	P<0.001	P=0.339N	P=0.523N	P=0.013	

^a Number of neoplasm-bearing animals/number of animals examined microscopically

^b 2-Year historical incidence for control groups in NTP feed study (mean ± standard deviation): 385/800 (48.1% ± 7.7%); range 32%-62%

c Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^d Observed incidence at terminal kill

^e Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. For both tests, a lower incidence in a dose group is indicated by N.

f Historical incidence: 213/800 (26.6% ± 8.8%); range 14%-36%

TABLE 10

Incidence and Severity of Chronic Nephropathy in Rats in the 2-Year Feed Study of o-Nitroanisole^a

Dose (ppm)	0	222	666	2,000
Male			···· ·	······
15-Month Interim Evaluation				
Nephropathy	10/10	10/10	10/10	9/9
Minimal	9	8	4	0
Mild	i	. 2	4	5
Moderate	0	0	2	4
Mean severity grade ^b	1.1 ± 0.1	1.2 ± 0.1	$1.8 \pm 0.2^{\circ}$	$2.4 \pm 0.2^{**}$
2-Year Study				
Nephropathy	49/49	50/50	50/50	49/49
Minimal	7	6	3	2
Mild	25	19	20	10
Moderate	17	23	22	15
Marked	0	2	5	22
Mean severity grade	2.2 ± 0.1	2.4 ± 0.1	$2.6 \pm 0.1^*$	$3.2 \pm 0.1^{**}$
Female				
15-Month Interim Evaluation				
Nephropathy	3/10	9/10	5/10	4/9
None	7	1	5	5
Minimal	2	6	3	1
Mild	1	3	. 2	3
Mean severity grade	0.4 ± 0.2	1.2 ± 0.2	0.7 ± 0.3	0.8 ± 0.3
2-Year Study				
Nephropathy	39/50	46/50	46/50	44/50
None	11	4	4	6
Minimal	0	6	1	0
Mild	34	37	37	26
Moderate	5	2	8	17
Marked	0	1	0	1
Mean severity grade	1.7 ± 0.1	1.8 ± 0.1	2.0 ± 0.1	$2.1 \pm 0.1^{**}$

* Significantly different (P≤0.05) from the control group by Mann-Whitney U test

** P≤0.01

^a Number of lesion-bearing animals/number of animals examined microscopically
 ^b Group mean severity ± standard error. None = 0; minimal = 1; mild = 2; moderate = 3; marked = 4.

Focal hyperplasia of the renal tubule was seen in three males receiving 222 ppm and two males receiving 2,000 ppm, but not in male rats receiving 666 ppm or in the controls (Table A5). Renal tubule adenomas were also seen in one male each from the 222, 666, and 2,000 ppm groups, and renal tubule carcinomas occurred in two additional males that received 2,000 ppm (Table A1). The incidence of adenoma or carcinoma (combined) occurred with a significant positive trend in male rats, and the incidence in the 2,000 ppm group was significantly greater than that in the controls (Table A3). The incidence of renal tubule neoplasms in NTP historical control male rats is 11 of 798 (1%) with a range of 0% to 6% (Table A4d). Thus, it is uncertain if the small number of renal tubule neoplasms in the exposed groups is related to o-nitroanisole exposure.

Focal hyperplasia, adenoma, and carcinoma of the renal tubule epithelium constitute a morphological continuum. Focal hyperplasia was considered a preneoplastic lesion and was differentiated from the epithelial regeneration which commonly accompanies nephropathy. It was characterized by one or several cross sections of a single tubule with two or more layers of epithelial cells partially or completely filling the tubule lumen. The adenomas were circumscribed solid masses, generally larger than five tubule diameters, consisting of polygonal epithelial cells with mild atypia. The carcinomas were substantially larger than the adenomas and exhibited heterogenous growth patterns, cellular pleomorphism, and cytologic atypia.

Liver: The absolute liver weights of males receiving 2,000 ppm and females receiving 666 and 2,000 ppm were significantly greater than those of the controls at the 15-month evaluation (Table H3). The chemical-related increase in absolute liver weights was accompanied by significant increases in relative liver weights of male and female rats that received 666 and 2,000 ppm. Despite the increased liver weights, there were no lesions of the liver that occurred more frequently in exposed rats than in controls at the 15-month interim evaluation (Tables 11, A5, and B5). However, the incidences of basophilic foci in males and females receiving 2,000 ppm and of clear cell foci in males receiving 2,000 ppm were lower than those in controls.

In the 2-year study, several nonneoplastic lesions occurred more frequently in exposed rats than in controls (Tables 11, A5, and B5). The incidence of focal cystic degeneration, also called spongiosis hepatis, was significantly increased in males that received 2,000 ppm. The lesion was characterized by small multilocular spaces distorting the hepatic cords and containing finely granular or flocculent material and occasional erythrocytes. The lesion is believed to constitute a degenerative process involving the fat storing cell (Ito cell). The incidence of eosinophilic foci occurred with a significant positive trend in exposed male rats and the incidences in all exposed groups were significantly greater than that in the controls. An eosinophilic focus is one of several different forms of cellular alteration occurring in the liver and is characterized by changes in staining quality of the hepatocyte cytoplasm. Eosinophilic foci were well circumscribed and slightly compressed the surrounding parenchyma. There was some irregularity of the hepatic cords, but they blended in with normal hepatic cords at the periphery. The cells were often slightly enlarged and the cytoplasm was homogeneous and eosinophilic. The incidence of focal hyperplasia of the bile ducts in the portal areas of the liver lobules was significantly increased in female rats receiving 2,000 ppm. The incidence of nodular hyperplasia was significantly increased in males that received 666 and 2,000 ppm and in females that received 2,000 ppm. Nodular hyperplasia generally occurred in the liver of rats with mononuclear cell leukemia and consisted of poorly circumscribed foci of hypertrophic hepato-Nodular hyperplasia was considered to cytes. represent a regenerative response to the degenerative changes in the liver that commonly accompany mononuclear cell leukemia.

The incidences of basophilic foci in the 666 and 2,000 ppm groups of males and the 2,000 ppm group of females were significantly lower than those in controls. Similarly the incidences of clear cell foci in males receiving 666 and 2,000 ppm were significantly lower than that in controls. Basophilic focus is the most common spontaneously occurring form of cellular alteration in the liver of F344 rats, whereas clear cell focus occurs much less frequently. It is uncertain to what extent the decreased incidences of basophilic

Dose (ppm)	0	222	666	2,000
Males			<u></u>	
15-Month Interim Evalua	tion			
n ^a	10	10	10	9
	;			
Degeneration, cystic ^b	1.	0	0	· 0
Eosinophilic focus	0	2	3	0
Hyperplasia, nodular	0	0	0	0
Basophilic focus	5	· 1	0	1
Clear cell focus	5	1	. 1	1
	•	e - +		
2-Year Study		•		,
-	50		50	50
u		50	50	50
Degeneration artic	10	10	14	74**
Eccipophilia focus	10	10*	21 **	27
Lunomiacia nodular	8	10	21 10**	27
Recordilio focular	22	2	10	7**
Clear cell focus	32 13	2 7 10	K •	5+
Clear cell locus	13	10	5	5
				· .
remales				
15-Month Interim Evalua	tion			
n	10	10	10	9
•				
Degeneration, cystic	0	0	0	0
Eosinophilic focus	· 0	0	1	0
Bile duct hyperplasia	3	1	4	4
Hyperplasia, nodular	0	0	0 -	0
Basophilic focus	9	9	9	3
Clear cell focus	0	1	0	0
2-Year Study	•			
n	50	50	50	50
Degeneration cystic	0	0	0	0
Fosinonhilic focus	R R	10	8	14
Rile duct hyperplasia	29	30	34	43**
Huperplasia podular	27 A	1	3	14**
Republic focus		∡ ⊿1	38	20*
Clear cell focus	37	41	2	<i>47</i> 5
Cical Cell ICCus	<u>v</u>	1		5

TABLE 11

Incidences of Selected Liver Lesions in Rats in the 2-Year Feed Study of o-Nitroanisole

* Significantly different (P≤0.05) from the control group by logistic regression test
 ** P≤0.01
 ^a Number of animals with liver examined microscopically
 ^b Number of animals with lesion

and clear cell foci are directly related to the ingestion of *o*-nitroanisole or to the increased incidences of mononuclear cell leukemia in the exposed groups. The leukemic infiltrates produce substantial degenerative changes in the liver which might obscure or affect the occurrence of spontaneous foci of cellular alteration.

Hepatocellular adenomas occurred in three males receiving 222 ppm, one male receiving 666 ppm, and two males and three females receiving 2,000 ppm (Tables A1 and B1). A hepatocellular carcinoma was seen in one additional male that received 222 ppm. Although no hepatocellular neoplasms were seen in control males, the incidences in the exposed males did not increase with dose and were not significantly increased (Table A3). The incidence of hepatocellular adenoma in female rats occurred with a significant positive trend, but the incidence in the 2,000 ppm group was not significantly greater than that in the controls (Table B3). In NTP historical controls, hepatocellular neoplasms have occurred in 24 of 799 (3%) male and 4 of 800 (0.5%) female rats (Tables A4b and B4b). The few hepatocellular neoplasms in exposed rats are not believed to be chemical related.

Urinary bladder: Focal hyperplasia of the transitional epithelium of the urinary bladder occurred in one female that received 222 ppm and two males and six females that received 2,000 ppm (Tables A5 and B5). Moreover, a transitional cell papilloma was seen in one female from the 2,000 ppm group and a transitional cell carcinoma was seen in another female from the same group (Table B1). Transitional cell neoplasms of the urinary bladder are rare spontaneous neoplasms and have occurred in 2 of 790 historical control female F344/N rats. These neoplasms are described further in the results of the stop-exposure study.

Stomach: The incidence of ulcers of the forestomach mucosa was significantly increased in male rats receiving 2,000 ppm (Tables 12 and A5). There were corresponding increased incidences of edema and chronic inflammation that were associated with the ulcers. There was a slightly but not significantly increased incidence of ulcers in females that received 2,000 ppm (Tables 12 and B5). The incidence of focal hyperplasia of the forestomach epithelium increased with exposure level in male and female rats, and the incidences in all exposed male groups and in females from the 2,000 ppm group were significantly increased. Squamous cell papillomas or carcinomas occurred in several groups of exposed males and females, but none were observed in controls (Tables A1 and B1). Squamous cell papillomas were seen in one female receiving 222 ppm, one male receiving 666 ppm, and one male and one female receiving 2,000 ppm. Squamous cell carcinomas were seen in one male receiving 666 ppm and one male and one female receiving 2,000 ppm. Although these neoplasms occurred at very low incidences, they are rare spontaneous neoplasms in F344 rats. In NTP historical controls, squamous cell papillomas have occurred in 2 of 800 males and 1 of 800 females; squamous cell carcinomas have occurred in 1 of 800 males and none have occurred in females (Tables A4c and B4c).

Focal hyperplasia and papillomas of the forestomach squamous epithelium constitute a morphological continuum. Focal hyperplasia was characterized by increased cellularity and thickening of the epithelium with the formation of rugose folds and simple blunt papillae. The papillomas were distinguished from hyperplasia on the basis of complexity of structure. The squamous cell papillomas were short stalks with branching papillae consisting of well-differentiated stratified epithelium overlying a delicate fibrovascular stroma. The squamous cell carcinomas invaded the forestomach mucosa with cords and clusters of anaplastic cells.

Lung: Hyperplasia of the alveolar epithelium occurred at a low incidence in all exposed female groups, but did not occur in controls (Table B5). In addition, alveolar/bronchiolar adenomas were seen in two females that received 666 ppm and three females that received 2,000 ppm, and a squamous cell carcinoma of the lung was seen in another female that received 2,000 ppm (Table B1). Alveolar/bronchiolar neoplasms have occurred in 17 of 800 (2%, range 0%-10%) historical control females. Because of the small number of pulmonary neoplasms, they are not believed to be chemical related. In male rats the incidences of alveolar/bronchiolar neoplasms were similar in control and exposed groups (Table A1).

Pituitary gland: At the 15-month interim evaluation, adenomas of the pars distalis were seen in three

TABLE 12

Selected Forestomach Lesions of Rats in the 2-Year Feed Study of o-Nitroanisole

Dose (ppm)	0	222	666	2,000
Male				·····
15-Month Interim Evaluation		-0		
n	10	0°	1	.9
Ulcer ^b	0		0	0
Edema	0		0	0
Chronic inflammation	0	. >	0	0 -
Focal hyperplasia	0		1	1
2-Year Study				
n	50	50	50	50
Ulcer	3	3	8	16**
Edema	3	3	5	11*
Chronic inflammation	2	2	1	12**
Focal hyperplasia	3	16**	25**	32**
Squamous cell papilloma	0	0	1	1
Squamous cell carcinoma	. 0	0	1	1
Female				
15-Month Interim Evaluation				,
n	10	1	0 ^b	9
Ulcer	0	0		0
Edema	0	0		· 0
Chronic inflammation	0	0		0
Focal hyperplasia	0	1		1
2-Year Study				
n	50	50	50	50
Ulcer	3	1	4	7
Edema	4	1	5	5
Chronic inflammation	4	2	2	6
Focal hyperplasia	8	8	13	28**
Squamous cell papilloma	0	1	0	1
Squamous cell carcinoma	0	0	0	1

* Significantly different (P≤0.05) from the control group by logistic regression ** P≤0.01

a Number of animals with forestomach examined microscopically
 b Number of animals with lesions
 c Forestomach not examined in this dose group

control males and one male receiving 222 ppm; none were observed in males receiving 2,000 ppm (Table A1). At the end of the 2-year study, the incidence of adenomas of the pars distalis occurred with a significant negative trend in exposed male rats, and the incidence in the 2,000 ppm group was significantly decreased (14/50, 11/50, 9/49, 4/49; Table A3). Carcinomas occurred in one control male and one male that received 666 ppm (Table A1). The incidence of focal hyperplasia of the pars distalis in males did not decrease with dose and was highest in the 666 ppm group (3/50, 9/50, 11/49, 5/49; Table A5).

Mammary gland: The incidence of fibroadenoma of the mammary gland was marginally decreased in females receiving 2,000 ppm (17/50, 18/50, 15/50, 9/50; Table B3). Although the trend test was signifi cant, the incidence of fibroadenoma in the 2,000 ppm group was not significantly lower than that in the control. Thus, the marginal decrease was not considered chemical related.

STOP-EXPOSURE STUDY

Survival

Estimates of survival probabilities for male and female rats are shown in Table 13 and in the Kaplan-Meier curves in Figure 4. Four males and four females in the 18,000 ppm groups scheduled for evaluation at 9 months, all males and females in the 18,000 ppm groups scheduled for evaluation at 15 months, and seven males in the 6,000 ppm group scheduled for evaluation at 15 months died before the evaluation periods. One male and two females in the control groups scheduled for evaluation at 15 months also died early. All early death animals were included with the core study animals for evaluation. In the stop-exposure core study, all males and females receiving 18,000 ppm had died or were killed moribund by week 48 (males) or week 61 (females). In the 6,000 ppm groups, all but one male and four females died or were killed moribund before the end of the study. Nearly all exposed rats that died early had urinary bladder neoplasms, which presumably was the major contributing cause of death.

Body Weights, Feed Consumption, and Clinical Findings

The final mean body weights of exposed male and female rats were significantly lower than those of the controls (Tables 14 and 15, and Figure 5). Feed consumption by exposed males and females was lower than that by the controls for the first year of the study (Tables K3 and K4). However, by the end of the study feed consumption by male and female exposed groups was similar to that by the controls. Dietary levels of 6,000 and 18,000 ppm resulted in average daily consumption levels of 340 and 1,100 mg/kg for males and females. The only clinical finding related to chemical administration in male and female rats was the presence of discolored urine.

Pathology and Statistical Analyses of Results

Summaries of the incidences of nonneoplastic lesions and neoplasms, the individual animal tumor diagnoses, and the statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one group are presented in Appendix E for male rats and Appendix F for female rats. Because of the extensive mortality in the exposed groups, logistic regression analyses had greatly reduced power and are not included here. Urinary bladder: The urinary bladder was the primary organ in which neoplasms developed in rats following the ingestion of o-nitroanisole at dietary concentrations of 6,000 or 18,000 ppm for up to 6 months followed by a normal diet. At the 3-, 6-, and 9month interim evaluations the absolute and relative urinary bladder weights of male and female rats receiving 18,000 ppm were significantly greater than those of the controls (Tables H4, H5, and H6).

At the 3-month interim evaluation, the principal lesions observed in the urinary bladder were similar to those observed at the same dietary concentrations in the 13-week study (Tables 16, E4, and F4). Diffuse hyperplasia of the transitional epithelium was seen in nearly all male and female rats that received 18,000 ppm and in 8 of 10 female rats that received 6,000 ppm. The transitional epithelium was irregularly thickened with many folds and blunt papillae separated by extensions of the basement membrane. Although the epithelium of controls was approximately 3 to 10 cell layers thick depending on the degree of bladder contraction (Plates 4 and 5), the epithelium of rats receiving 18,000 ppm was generally more than 30 cell layers thick (Plates 6 and 7). The size and staining properties of the epithelial cells in each bladder varied from populations of small basophilic cells to populations of larger, more typical transitional cells with eosinophilic cytoplasm. Focal or multifocal squamous metaplasia was also seen in all males and females in the 18,000 ppm groups. The squamous cells were well differentiated with prominent keratin layers on the surface (Plate 8). In one male receiving 18,000 ppm, the markedly thickened transitional epithelium exhibited sufficient focal cellular pleomorphism and atypia to be diagnosed as a carcinoma (Table 16). Subacute inflammation and proliferation of connective tissue in the lamina propria accompanied the epithelial changes described above in most males and females that received 18,000 ppm (Plate 9). They were characterized by scattered inflammatory cells, principally neutrophils and macrophages, and increased numbers of fibroblasts with immature collagen.

By 6 months, transitional cell carcinomas were present in all rats receiving 18,000 ppm (Tables 16, E1, and F1). The proliferation of the transitional epithelium in these rats was extensive enough to form exophytic nodular masses with heterogeneous growth

TABLE 13

Survival of Rats in the Stop-Exposure Feed Study of o-Nitroanisole

	0 ppm	6,000 ppm	18,000 ppm	
Male	<u></u>	<u></u>		
Animals initially in study	60	60	60	
3-Month interim evaluation ^a	10	10	10	
6-Month interim evaluation ^a	10	10	10	
9-Month interim evaluation ^a	10	10	6	
15-Month interim evaluation ^a	9	3	0	
Natural deaths	1	0	11	
Moribund kills	7	26	23	
Animals surviving to study termination	13	1	0	
Percent probability of survival at end of study ^b	63	. 4	0	
Mean survival (days) ^c	399	332	218	
Survival analysis ^d	P<0.001	P<0.001	P<0.001	
Female				
Animals initially in study	60	60	60	
3-Month interim evaluation ^a	10	10	10	
6-Month interim evaluation ^a	10	10	10	
9-Month interim evaluation ^a	10	10	6	
15-Month interim evaluation ^a	8	10	0	
Natural deaths	2	4	9	
Moribund kills	6	12	25	
Animals surviving to study termination	14	4	0	
Percent probability of survival at end of study	68	23	0	
Mean survival (days)	388	354	235	
Survival analysis	P<0.001	P=0.012	P<0.001	

a Censored from survival analyses

b

c

Kaplan-Meier determinations Mean of all deaths (uncensored, censored, and terminal sacrifice). The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons d (Cox, 1972) with the controls are in the dosed columns.

FIGURE 4 Kaplan-Meier Survival Curves for Male and Female Rats Administered o-Nitroanisole in Feed in the Stop-Exposure Study

TABLE 14

Mean Body Weights and Survival of Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole

<u>...</u>

<u>- 17 - 1</u>

Week	Ø	លាកា		6.000 nnm 18.000 nnm				
OT	Av. We	No. of	Av. WE	Wt. (% of	No. of	Av. Wt.	WL (% of	No. of
Study	(g)	Survivors	(9)	controls)	Survivors	(9)	controls)	Survivors
	(6/		(6)			(G/		
1	116	20	111	96	20	100	87	20
2	157	20	149	95	20	103	65	20
3	189	20	178	94	20	112	59	20
4	219	20	200	92	20	123	56	20
5	245	20	215	88	20	131	54	20
6	264	20	232	88	20	136	52	20
7	274	20	241	88	20	141	51	20
8	285	20	244	86	20	148	52	20
9	299	20	245	82	20	148	50	20
10	314	20	235	75	20	153	49	20
11	320	20	255	80	20	154	48	20
12	330	20	266	81	20	156	47	20
13	335	20	273	81	20	162	48	20
17	368	20	297	81	20	166	45	20
21	380	20	308	81	20	175	46	20
25	396	20	319	81	20	180	45	19
29	409	20	344	84	20	221	54	19
33	418	20	366	88	19	259	62	15
37	436	20	388	89	19	268	61	10
41	441	20	397	90	18	280	64	5
45	448	20	406	91	18	269	60	1
49	451	20	411	91	18			
53	447	20	407	91	17			
57	447	20	415	93	17			
61	447	20	413	93	15			
65	440	20	398	90	13			
69	452	20	403	89	12			
73	444	20	398	90	11			
77	444	20	402	91	10			
81	435	20	390	90	10			
85	439	17	369	84	9			
89	436	17	369	85	6			
93	427	16	381	89	3			
97	420	15	296	71	2			
101	404	14	354	88	1			
Terminal sa	crifice	13			1			0
Mean for we	eks							
1-13	257		219	85		136	53	
14-52	416		360	87		227	55	
53-101	437		384	88				

TABLE	15
IADLE	10

Week	0	DDM		6.000 ppm			18,000 ppm	
on	Av. Wt.	No. of	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
	18/		18/	,			,	
1	97	20	94	97	20	87	90	20
2	119	20	113	94	20	85	71	20
3	137	20	125	92	20	89	65	20
4	143	20	134	94	20	96	67	20
5	153	20	142	93	20	98	64	20
6	162	20	150	93	20	99	61	20
7	166	20	153	93	20	100	61	20
8	170	20	155	91	20	105	62	19
9	173	20	157	91	20	106	61	19
10	178	20	154	87	20	109	61	19
11	181	20	162	89	20	109	60	19
12	183	20	165	90	20	111	61	19
13	182	20	167	91	20	113	62	19
17	198	19	180	91	20	119	60	19
21	203	19	176	87	20	122	60	19
25	208	19	180	87	20	124	60	19
29	212	19	193	91	20	148	70	19
33	217	19	196	90	20	162	75	17
37	230	19	205	89	20	171	- 74	14
41	235	19	207	88	20	172	73	12
45	245	19	215	88	19	181	74	7
49	253	19	219	87	19	185	73	3
53	259	19	224	86	18	187	72	2
57	270	19	231	85	18	192	71	2
61	278	18	233	84	16	167	60	1
65	288	18	235	82	15			
69	294	18	246	84	12			
73	299	18	249	83	11			
77	305	18	252	83	11			
81	307	18	253	83	10			
85	317	17	254	80	10			
89	320	17	258	81	9			
93	321	17	271	84	6			
97	321	15	268	83	4			
101	324	14	269	83	4			
Terminal sa	ferminal sacrifice 14				4			0
Mean for we	eks							
1-13	157		144	92		101	64	
14-52	222		197	89		154	69	
53-101	300		249	83		182	61	

55

TABLE 16 Incidences of Selected Lesions of the Urinary Bladder of Rats in the Stop-Exposure Feed Study of o-Nitroanisole

	Male			Female			
	0 ррт	6,000 ppm	18,000 ppm	0 ppm	6,000 ppm	18,000 ppm	
3-Month Interim Evaluation			<u></u>				
n ^a	9	9	10	10	10	10	
Proliferation, connective tissue ^b	Ó	0	10**(2.1) ^c	0	0	6**(2.2)	
Squamous metaplasia	0	0	10**(3.4)	0	0	10**(2.9)	
Transitional cell hyperplasia	0	0	9**(3.8)	0	8**(1.0)	10**(3.7)	
Transitional cell carcinoma	0	0	1	0	0	0	
6-Month Interim Evaluation							
n	10	10	10	10	10	10	
Proliferation, connective tissue	0	1 (1.0)	9**(3.4)	0	2 (1.5)	10**(2.6)	
Squamous metaplasia	0	0`´	10**(3.6)	0	1 (2.0)	10**(3.7)	
Transitional cell hyperplasia	0	10**(2.6)	0 ` ´	0	10**(2.7)	0 .	
Transitional cell papilloma	0	2	0	0	0	0	
Transitional cell carcinoma	0	0	10**	0	0	10**	
Sarcoma	0	0	2	0	0	0	
9-Month Interim Evaluation							
n	10	10	6	10	9	6	
Proliferation, connective tissue	0	0	4**(3.3)	0	1 (1.0)	4**(2.5)	
Squamous metaplasia	0	0	4**(2.5)	0	0	4**(2.5)	
Transitional cell hyperplasia	0	9**(2.4)	0	0	9**(2.2)	0	
Transitional cell papilloma	0	2	0	0	0	0	
Transitional cell carcinoma	0	3	6**	0	1	6**	
Squamous cell carcinoma	0	0	1	0	0	0	
Sarcoma	0	0	0	0	0	2	
15-Month Interim Evaluation							
n	9	3	_d	8	10	-	
Proliferation, connective tissue	0	1 (3.0)	-	0	6**(2.5)	_	
Squamous metaplasia	0	0`´	-	0	2 (2.0)	-	
Transitional cell hyperplasia	0	1 (2.0)	-	0	3 (3.0)	-	
Transitional cell papilloma	0	2	-	0	1	-	
Transitional cell carcinoma	0	1	-	0	9**	-	
Sarcoma	0	1	-	0	0	-	
(continued)							

TABLE 16

Incidences of Selected Lesions of the Urinary Bladder of Rats in the Stop-Exposure Feed Study of *o*-Nitroanisole (continued)

	Male			Female		
	Ф ррт	6,000 ppm	18,000 ppm	0 ppm	6,000 ppm	18,000 ppm
2-Year Study	<u></u>			<u> </u>		
n	21	27	34	20	20	34
Proliferation, connective tissue	0	1 (4.0)	24°°(3.0)	0	11°°(3.2)	20**(3.2)
Squamous metaplasia	0	3 (3.0)	30°°(3.3)	0	6°(3.2)	25°°(3.2)
Transitional cell hyperplasia	0	9°°(2.4)	2 (3.0)	0	4 (3.0)	1 (2.0)
Transitional cell papilloma	0	3	1	0	1	1 ໌
Transitional cell carcinoma	0	23°°	33°°	0	18°°	32°°
Squamous cell papilloma	0	0	4	0	0	4
Squamous cell carcinoma	0	0	5	0	0	1
Sarcoma ^e	0	1	7°	0	2	12°°
Overall Rates						
n	59	59	60	58	59	60
Transitional cell papilloma	0	9°°	1	0	2	1
Transitional cell carcinoma	0	27°°	50°°	0	28°°	48°°
Squamous cell papilloma	0	0	4	0	0	4
Squamous cell carcinoma	0	0	6°	0	0	1
Sarcoma	0	2	900	0	2	14°°

° Significantly different (P≤0.05) from the control group by Fisher exact test

°° P≤0.01

^a Number of animals with urinary bladder examined microscopically

^b Number of animals with lesion

^c Average severity grade of lesions in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked.

d All males and females receiving 18,000 ppm died before the 15-month interim evaluation.

e Includes a leiomyosarcoma in one 6,000 ppm and two 18,000 ppm females and a fibrosarcoma in one 18,000 ppm female.

patterns and pleomorphic cell populations (Plates 10, 11, and 12). Foci of squamous differentiation were observed in all neoplasms. Diffuse hyperplasia of the transitional epithelium was present in all males and females that received 6,000 ppm, and papillomas were observed in two males that received 6,000 ppm.

Malignant mesenchymal neoplasms (sarcomas) were present in two males receiving 18,000 ppm. The sarcomas appeared to originate in the lamina propria and were characterized by the proliferation of anaplastic fusiform cells with elongated oval nuclei and scant cytoplasm. In contrast to the connective tissue proliferation seen in most males and females in the 18,000 ppm groups and some rats in the 6,000 ppm groups, the sarcomas were more localized and extensive and consisted of undifferentiated cells with little collagen production. Subacute inflammation was also observed in exposed rats.

At 9 months, only six males and six females in the 18,000 ppm groups were still alive; all had transitional cell carcinomas, one male had a squamous cell carcinoma (Plate 13), and two females had sarcomas (Table 16 and Plate 14). Hyperplasia was seen in nearly all males and females receiving 6,000 ppm. Transitional cell carcinomas were seen in three males and two females, and transitional cell papillomas were present in two males from the 6,000 ppm groups.

By 15 months, all males and females that received 18,000 ppm and 7 of 10 males that received 6,000 ppm had died. Transitional cell carcinomas were seen in 9 of 10 females receiving 6,000 ppm and a papilloma was seen in the other female from this group (Table 16).

Of the core group rats in the stop-exposure study, transitional cell carcinomas were seen in nearly all exposed male and female rats (Table 16). Of the males and females receiving 6,000 ppm that were without carcinomas, three males and one female had transitional cell papillomas. Moreover, squamous cell carcinomas were seen in five males and one female that received 18,000 ppm and squamous cell papillomas were seen in four males and four females that received 18,000 ppm. Sarcomas were seen in 7 males and 12 females receiving 18,000 ppm. Neoplasms arising from the urinary bladder epithelium were not observed in control rats. Inflammation and connec-

tive tissue proliferation in the lamina propria, similar to those seen at the interim evaluations, were also observed in many exposed rats. Two females from the 18,000 ppm group and three females from the 6,000 ppm group also exhibited focal proliferation of well-differentiated lipocytes (adipocytes or fat cells) in the lamina propria (Table F4). Since fat cells are not normally found in the lamina propria, the formation of these cells was considered a metaplastic process.

Large intestine: In the stop-exposure study, the intestines were examined at necropsy. Histologic sections were prepared and examined microscopically only when a lesion or mass was observed. Neoplasms of the large intestine, principally adenomatous polyps, were observed in small numbers of exposed rats at the 6-, 9-, and 15-month interim evaluations At the end of the (Tables 17, E1, and F1). stop-exposure study, however, the incidences of adenomatous polyps in exposed groups of males and females were significantly increased. In addition, four males and two females receiving 18,000 ppm had carcinomas of the large intestine. The neoplasms polypoid masses in the colon, cecum, or were rectum, and multiple neoplasms were observed in some animals. The adenomatous polyps consisted of a moderately well-differentiated columnar epithelium forming coiled tubular glands which were separated by a delicate fibrovascular stroma (Plate 15). The few carcinomas exhibited invasion of the stalk by anaplastic epithelial cells (Plate 16) with an accompanying proliferation of fibrous connective tissue (scirrhous reaction).

Kidney: Any potential chemical-related effect on absolute kidney weights was obscured by the more overt changes associated with the body weight differences between control and exposed groups. Relative kidney weights of most males and females receiving 6,000 and 18,000 ppm were significantly greater than those of the controls at the 3-, 6-, 9-, and 15-month interim evaluations (Tables H4, H5, H6, and H7). Absolute kidney weights of males and females that received 18,000 ppm were significantly lower than those of the controls at 3 and 6 months.

Hydronephrosis (dilatation of the renal pelvis) was observed in two exposed male rats at the 9-month interim evaluation and in many exposed male and female rats at the end of the stop-exposure study (Tables 18, E4, and F4). This was observed in rats

TABLE 17

Incidences of Neoplasms of the Large Intestine in Rats in the Stop-Exposure Feed Study of o-Nitroanisole

	Male			Female			
	0 ppm	6,000 ppm	18,000 ppm	0 ppm	6,000 ppm	18,000 ppm	
3-Month Interim Evaluation							
n ^a	10	10	10	10	10	10	
Adenomatous polyp ^b	0	0	0	0	0	0	
6-Month Interim Evaluation							
n	10	10	10	10	10	10	
Adenomatous polyp	0	0	2	0	1	0	
9-Month Interim Evaluation							
n	10 ,	10	6	10	10	6	
Adenomatous polyp Carcinoma	0 0	2 0	4°° 1	0 0	0 0	1 0	
15-Month Interim Evaluation							
n	9	3	0	8	10	0	
Adenomatous polyp	0	3**	_c	0	2	-	
2-Year Study							
n	21	27	34	22	20	34	
Adenomatous polyp Carcinoma	0 0	21°° 0	24°° 4	0 0	5° 0	17°° 2	
Overall Rates							
n	60	60	60	60	60	60	
Adenomatous polyp Carcinoma Adenomatous polyp or carcinoma	0 0 0	26** 0 26**	30** 5* 31**	0 0 0	8** 0 8**	18°° 2 18°°	

* Significantly different (P \leq 0.05) from the control group by Fisher exact test

°° P≤0.01

^a Number of animals necropsied
 ^b Number of animals with lesions
 ^c All males and females receiving 18,000 ppm died before the 15-month interim evaluation.

TABLE 18

Incidences of Selected Kidney Lesions in Rats in the Stop-Exposure Feed Study of o-Nitroanisole

	Male			Female			
	0 ppm	6,000 ppm	18,000 ppm	0 ppm	6,000 ppm	18,000 ppm	
3-Month Interim Evaluation							
n ^a	10	10	10	10	10	10	
Nephropathy ^b Pigmentation	4 (1.0) ^c	10**(1.9) 9**(1.7)	7 (1.7)	0	0 10**(1.9)	0 10**(3.2)	
	·	· ()	10 (5.5)	v	10 (1.7)	10 (5.2)	
6-Month Interim Evaluation	10	10	10	10	10	10	
	10	10	10	10	10	10	
Nephropathy	4 (1.0)	10**(2.3)	10**(1.8)	0	0	0	
Transitional cell hyperplasia	0	0	5*(2.0)	0	0	2 (3.0)	
Pigmentation	2 (1.5)	10**(2.6)	9**(3.0)	0	10**(2.0)	10**(3.3)	
9-Month Interim Evaluation							
n	10	10	6	10	10	6	
Nephropathy	10 (1.5)	10 (2.4)	6 (1.8)	5 (1.0)	3 (1.7)	3 (1.0)	
Transitional cell hyperplasia	0`´	7**(1.9)	3*(2.3)	0`´	1 (2.0)	1 (2.0)	
Pigmentation	10 (1.1)	10 (1.0)	6 (1.8)	6 (1.0)	10*(1.3)	6 (2.0)	
Hydronephrosis	0	0	2 (4.0)	0	0	0	
Transitional cell papilloma	0	0	1	0	0	0	
Transitional cell carcinoma	0	0	2	0	0	0	
15-Month Interim Evaluation							
n	9	3	_d	8	10	-	
Nephropathy	9 (1.6)	3 (3.0)	-	5 (1.0)	5 (1.2)	_	
Transitional cell hyperplasia	0`´	3 (2.3)	-	0`´	0`´	-	
Pigmentation	9 (1.0)	3 (1.3)	-	7 (1.0)	10 (1.0)	-	
2-Year Study							
n	21	27	34	22	20	34	
Nephropathy	21 (3.0)	27 (2.9)	24 (1.7)	19 (1.6)	12 (1.7)	3 (1.7)	
Transitional cell hyperplasia	5 (1.6)	24**(2.0)	19*(2.2)	0`´	5*(1.6)	16**(2.3)	
Pigmentation	20 (1.1)	26 (1.4)	34 (2.3)	20 (1.1)	20 (1.1)	34 (2.1)	
Hydronephrosis	0`´	2 (3.0)	11**(3.6)	0`´	3 (4.0)	15**(3.0)	
Transitional cell papilloma	0	0``	3	0	0	1	
Transitional cell carcinoma	0	1	6*	0	0	1	
Overall Rates							
n	60	60	60	60	60	60	
Nephropathy	48	60	47	29	20	6	
Transitional cell hyperplasia	5	34**	27**	0	6*	19**	
Pigmentation	41	58**	59**	33	60**	60**	
Hydronephrosis	0	2	13**	0	3	18**	
Transitional cell papilloma	0	0	4	0	0	1	
Transitional cell carcinoma	0	1	8**	0	0	1	

* Significantly different (P≤0.05) from the control group by Fisher exact test

** P≤0.01

^a Number of animals with kidney examined microscopically

^b Number of animals with lesions

Average severity grade of lesions in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked.

^d All males and females receiving 18,000 ppm died before the 15-month interim evaluation.

with transitional cell neoplasms of the urinary bladder and was considered a secondary partial obstruction of urine outflow. There was an increase in the incidence or severity of pigmentation in exposed rats at the various interim evaluations and at the end of the stop-exposure study. The pigment, located in scattered epithelial cells of the proximal tubules, was believed to be primarily hemosiderin derived from the breakdown of erythrocytes.

Nephropathy occurred in most of the males in the exposed and control groups. However, the average severity of nephropathy in exposed males was greater than that in controls at 3 and 6 months (Table 18).

At the 9- and 15-month interim evaluations, the effect was still evident in the 6,000 ppm group, even though the dietary administration of o-nitroanisole had ceased at week 27. The apparent lack of an effect in males receiving 18,000 ppm at 9 months may have been the result of reduced feed consumption, lower body weight, or both. o-Nitroanisole had no effect on the incidence or severity of nephropathy in female rats at any of the interim evaluations. At the end of the stop-exposure study, the incidences or severity of nephropathy in males and females that received 18,000 ppm were decreased and may have been related to the decreased survival, lower body weights, and reduced feed consumption of these groups.

Hyperplasia of the transitional epithelium (urothelium) lining the renal pelvis was observed in some males and females that received 18,000 ppm at 6 months, some males and females that received 6,000 and 18,000 ppm at 9 months, and some males that received 6,000 ppm at 15 months. At the end of the stop-exposure study, the incidence of hyperplasia was significantly increased in all exposed groups of males and females. In addition, papillomas of the transitional epithelium were seen in three males and one female receiving 18,000 ppm, while carcinomas were seen in one male receiving 6,000 ppm and six males and one female receiving 18,000 ppm (Plate 17); none were observed in the controls (Tables 18, E1, and F1). Neoplasms arising from the transitional epithelium of the renal pelvis are extremely rare in NTP historical controls; none have been seen in the current historical control database (male, 0/798; female, 0/797).

Liver: At the 3- and 6-month interim evaluations. the absolute liver weights of males and females that received 6,000 ppm and females that received 18,000 ppm were significantly greater than those of the controls (Tables H4 and H5). In addition, the relative liver weights of males and females in all exposed groups were significantly greater than those of the controls. The absolute liver weight of males in the 18,000 ppm group was similar to that of controls, despite the substantially lower mean body weight. At 9 and 15 months, any potential chemical-related effect on liver weights was partially obscured by the effects on body weight. However, the relative liver weights of males and females receiving 6,000 ppm and females receiving 18,000 ppm were significantly increased at 9 months, and that of females receiving 6,000 ppm was significantly increased at 15 months (Tables H6 and H7).

The lesions observed in the livers of exposed rats are consistent with the differences in absolute and relative liver weights noted above (Tables 19, E4, and F4). Generalized centrilobular hypertrophy was observed at 3 and 6 months in all males and females that received 18,000 ppm. Focal hepatocellular necrosis, consisting of scattered individual or small clusters of cells in the centrilobular regions, was also seen in all males and females receiving 18,000 ppm at 3 months and at 6 months (Plate 18). Multifocal hepatocellular cytoplasmic vacuolation was seen in several males and females in the 18,000 ppm groups at 3 months, and a dose-related increased incidence of this lesion was seen in male rats at 6 months. There were no chemical-related increased incidences of hypertrophy, necrosis, or cytoplasmic vacuolation at 9 or 15 months.

Accumulation of golden or greenish brown pigment in scattered Kupffer cells was seen in all males and females receiving 18,000 ppm at 3 and 6 months, and in all but one male and all females receiving 18,000 ppm at 9 months (Table 19). Similar pigment-filled Kupffer cells were not seen in the controls. In the core groups of the stop-exposure study, pigment-filled Kupffer cells were also seen in most males and all females that received 18,000 ppm. In addition, a number of control females had similar pigment while none was observed in the control males. The pigment had staining properties consistent with hemosiderin.

TABLE 19

Incidences of Selected Liver Lesions in Rats in the Stop-Exposure Feed Study of o-Nitroanisole

0 ppm	6.000 nnm				
	o,ooo ppm	18,000 ppm	0 ppm	6,000 ppm	18,000 ppm
10	10	10	10	10	10
0	0	$10^{**}(2.2)^{c}$	0	0	10**(2.0)
0	0	3 (1.3)	1 (2.0)	0	3 (1.7)
2 (2.0)	0	10 (1.0)	1 (2.0)	3 (1.0)	10**(1.3)
0	0	10**(1.9)	0	1 (1.0)	10**(2.2)
10	10	10	10	10	10
0	0	10**(2.6)	0	0	10**(2.4)
0	3 (1.0)	6**(1.3)	0	0	1 (2.0)
0	1 (1.0)	10**(1.8)	0	0	10**(1.9)
0	3 (1.0)	10**(2.0)	0	9**(1.0)	10**(2.0)
10	10	6	10	10	6
0	0	5**(1.4)	1 (1.0)	7**(1.0)	6**(2.0)
9	3	_d	8	10	-
0	1 (1.0)	-	0	2 (1.0)	-
,					
21	27	34	22	20	34
0	1 (1.0)	30**(1.7)	9 (1.6)	2 (1.0)	34**(1.8)
	10 0 2 (2.0) 0 10 0 0 0 10 0 9 0 21 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 10 10 0 0 $10^{\bullet \bullet \circ}(2.2)^{c}$ 0 0 $3(1.3)$ 2 (2.0) 0 10 (1.0) 0 0 $10^{\bullet \bullet \circ}(2.2)^{c}$ 10 10 10 (1.0) 0 0 $10^{\bullet \bullet \circ}(1.9)$ 10 10 10 0 0 $10^{\bullet \bullet \circ}(2.6)$ 0 3 (1.0) $6^{\bullet \bullet \circ}(1.3)$ 0 1 (1.0) $10^{\bullet \bullet \circ}(2.0)$ 10 10 6 0 3 (1.0) $10^{\bullet \bullet \circ}(1.8)$ 0 10 6 0 0 $5^{\circ \bullet \circ}(1.4)$ 9 3 $-d$ 0 1 (1.0) $-$ 21 27 34 0 1 (1.0) $30^{\bullet \bullet \circ}(1.7)$	10 10 10 10 10 0 0 $10^{\bullet \bullet \circ}(2.2)^{\circ}$ 0 0 $3(1.3)$ $1(2.0)$ 2 (2.0) 0 10 (1.0) $1(2.0)$ 10 (2.0) 0 0 $10^{\bullet \bullet \circ}(1.9)$ 0 10 10 10 10 10 10 0 0 $10^{\bullet \bullet \circ}(1.3)$ 0 0 0 3 (1.0) $6^{\bullet \bullet \circ}(1.3)$ 0 0 0 3 (1.0) $10^{\bullet \bullet \circ}(2.0)$ 0 0 10 10 6 10 0 0 10 10 6 10 0 0 9 3 $-d$ 8 0 1 (1.0) - 0 21 27 34 22 0 1 (1.0) 30^{\bullet \bullet (1.7)} 9 (1.6)	10 10 10 10 10 10 0 0 10**(2.2) ^c 0 0 0 0 0 3 (1.3) 1 (2.0) 0 3 (1.0) 2 (2.0) 0 10 (1.0) 1 (2.0) 3 (1.0) 3 (1.0) 0 0 10**(1.9) 0 10 10 10 10 10 10 10 10 0 0 10**(2.6) 0 0 0 0 3 (1.0) 6**(1.3) 0 0 0 0 1 (1.0) 10**(2.0) 0 9***(1.0) 9 10 10 6 10 10 10 0 1 (1.0) 10**(2.0) 0 9***(1.0) 9 3 -d 8 10 0 1 (1.0) - 0 2 (1.0) 21 27 34 22 20 0 1 (1.0) 30**(1.7) 9 (1.6) 2 (1.0)

** Significantly different (P≤0.01) from the control group by Fisher exact test

^a Number of animals with liver examined microscopically

^b Number of animals with lesions

Average severity grade of lesions in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked.d All males and female receiving 18,000 ppm died before the 15-month interim evaluation.

Spleen: Relative spleen weights of exposed male and female rats were significantly greater than those of controls at 3 and 6 months (Tables H4 and H5). At 3 months, the absolute spleen weights of all exposed males and females were significantly increased; there were significant increases in the absolute spleen weights of all exposed female groups and of males receiving 18,000 ppm at 6 months. At the 9-month interim evaluation, the absolute spleen weights of male and female rats receiving 18,000 ppm and the relative spleen weights of all exposed male groups and of females receiving 18,000 ppm remained significantly increased (Table H6). The chemical-related increases in relative spleen weights were associated with the splenic congestion observed histologically. The red pulp of nearly all exposed rats at the 3-, 6-, and 9-month interim evaluations contained increased numbers of erythrocytes (Tables 20, E4, and F4). The congestion was generally more severe in the 18,000 ppm groups than in the 6,000 ppm groups. In the core groups of the stop-exposure study, the incidence of congestion in males that received 18,000 ppm was significantly increased, reflecting the large number of males in the 18,000 ppm group which died early.

Testis: At 3 and 6 months the absolute and relative testis weights of males receiving 18,000 ppm were significantly lower than those of the controls, while the relative testis weight of males receiving 6,000 ppm was significantly greater than that of controls (Tables H4 and H5). At 9 months the findings were similar, except that the relative testis weight of the 18,000 ppm group was significantly greater than that of controls (Table H6). These differences may be due to the chemical-related lower mean body weights of the exposed males which would largely obscure any direct effect of o-nitroanisole on testis weight.

Degeneration and atrophy of the seminiferous epithelium of the testes were observed at the 3- and

6-month interim evaluations in most males that received 18,000 ppm, while at 9 months only three of the six males that received 18,000 ppm exhibited atrophy (Table E4). The lesions were generally mild to moderate at 3 and 6 months and minimal at 9 months. The lesions were characterized by the degeneration and loss of spermatogenic cells, decreased numbers of mature spermatozoa, and the presence of cellular debris and multinucleated cells in the tubule lumens (Plates 19 and 20). At the end of the stop-exposure study, atrophy associated with aging or with interstitial cell neoplasms was seen in most control males, and the incidences of atrophy in the exposed groups were lower than in the controls. This decreased incidence was largely due to the early deaths of exposed rats, which precluded the development of interstitial cell neoplasms and aging changes.

Uterus: The absolute uterine weights of exposed females were significantly lower than those of the controls at 3 and 6 months, while at 9 months only that of the 18,000 ppm group was significantly lower (Tables H4, H5 and H6). Although relative uterine weights were not affected at 3 and 9 months, those of the exposed groups at 6 months were significantly lower than that of the controls. Again, it is difficult to determine if the differences in uterine weight were caused, in part, by o-nitroanisole because of the marked chemical-related reduction in mean body weights in the exposed groups.

Uterine atrophy was observed microscopically in all exposed females at 3 and 6 months, and in 3 of 6 females receiving 18,000 ppm at 9 months (Table F4). In general, the uteri of females in the 6,000 ppm group were less severely affected than those in the 18,000 ppm group. Histologically, the atrophy was characterized by reduced thickness of the endometrium and myometrium, and reduced amounts of cytoplasm in the affected cells, as compared with controls.

TABLE 2	20
---------	----

Incidences of Selected Splenic Lesions in Rats in the Stop-Exposure Feed Study of o-Nitroanisole

	Male			Female			
	0 ppm	6,000 ppm	18,000 ppm	0 ppm	6,000 ppm	18,000 ppm	
3-Month Interim Evaluation							
n ^a	10	10	10	10	10	10	
Congestion ^b	0	9**(2.8)°	10**(4.0)	0	10**(2.5)	10**(3.9)	
Pigmentation	10 (1.4)	10 (2.9)	10 (3.0)	10 (1.9)	10 (2.9)	10 (2.6)	
Capsule, hypertrophy	0	10**(1.0)	10**(2.5)	0	10**(1.5)	10**(2.2)	
Capsule, inflammation	Õ	1 (2.0)	10**(2.8)	0	6**(1.8)	9**(2.6)	
Lymphoid depletion	0	0	10**(2.9)	0	0	10**(2.8)	
6-Month Interim Evaluation							
n	10	10	10	10	10	10	
Congestion	0	10**(2.5)	10**(3.9)	0	10**(2.2)	10**(2.8)	
Pigmentation	0	10**(2.6)	8**(1.9)	5 (2.8)	10*(2.7)	9 (2.0)	
Capsule, hypertrophy	0	7**(2.0)	10**(3.2)	0	10**(2.0)	10**(2.8)	
Capsule, inflammation	0	0	10**(2.6)	0	2 (2.0)	10**(2.6)	
Lymphoid depletion	0	0	10**(3.2)	0	0	10**(2.7)	
9-Month Interim Evaluation							
n	10	10	6	10	10	6	
Congestion	0	10**(2.2)	5**(2.8)	3 (2.0)	10**(2.0)	5 (2.4)	
Pigmentation	10 (2.5)	10 (2.3)	1** (1.0)	5 (2.6)	10*(2.4)	4 (2.0)	
Capsule, hypertrophy	0	8**(1.4)	6**(2.2)	0`´	8**(1.5)	6**(2.2)	
Capsule, inflammation	0	2 (1.5)	6**(1.7)	0	0	6**(2.0)	
15-Month Interim Evaluation							
n	9	3	_d	8	10	-	
Congestion	7 (2.0)	1 (2.0)	-	4 (2.0)	3 (2.0)	-	
Pigmentation	6 (2.2)	2 (2.5)	-	5 (2.4)	7 (2.4)	-	
Capsule, hypertrophy	0`´	2*(1.0)	-	0	9**(1.6)	-	
Capsule, inflammation	0	1 (1.0)	-	0	1 (2.0)	-	
2-Year Study							
n	21	27	34	22	20	34	
Congestion	5 (2.2)	15*(2.1)	23**(2.0)	12 (2.2)	7 (2.0)	24 (2.1)	
Pigmentation	6 (2.2)	14 (2.1)	19*(2.3)	16 (2.6)	12 (2.3)	15 (2.1)	
Capsule, hypertrophy	0	15**(1.5)	34**(2.6)	0	9**(1.4)	33**(2.3)	
Capsule, inflammation	0	5*(1.2)	33**(2.2)	0	0	30**(2.1)	
Lymphoid depletion	1 (1.0)	0	20**(2.4)	4 (1.8)	5 (2.2)	16*(2.3)	

* Significantly different (P≤0.05) from the control group by Fisher exact test

** P≤0.01

^a Number of animals with spleen examined microscopically

Number of animals with lesion
Number of animals with lesion
Average severity grade of lesions in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked.
All males and females receiving 18,000 ppm died before the 15-month interim evaluation.

Plate 4

Urinary Bladder: For comparison with Plate 6. A control female rat in the stop-exposure feed study of o-nitroanisole. H&E ×20

Plate 5

Urinary Bladder: Higher magnification. Note the thickness of the transitional epithelium lining the bladder lumen and compare with Plate 7. Female control rat from the stop-exposure feed study of o-nitroanisole. H&E ×50

Plate 6

Urinary Bladder: Note the diffuse hyperplasia of the transitional epithelium and compare with Plate 4. Female rat given 18,000 ppm o-nitroanisole at the 3-month interim evaluation of the stop-exposure feed study. H&E $\times 10$

Plate 7

Urinary Bladder: Higher magnification. The increased cellularity of the transitional epithelium (hyperplasia) causes the epithelium to form thick irregular folds. Compare with control in Plate 5. Female rat given 18,000 ppm o-nitroanisole at the 3-month interim of the stop-exposure feed study. H&E $\times 50$

Urinary Bladder: The focus of squamous metaplasia consists of welldifferentiated, keratinizing, stratified squamous epithelium. Compare with normal and hyperplastic transitional epithelium in Plates 5 and 7. Female rat given 18,000 ppm *o*-nitroanisole at the 3-month interim evaluation of the stopexposure feed study. H&E \times 80

PLATE 9

Urinary Bladder: Note the proliferation of delicate fibrous connective tissue beneath the hyperplastic transitional epithelium. Male rat given 18,000 ppm o-nitroanisole at the 3-month interim evaluation of the stop-exposure feed study. H&E \times 50

PLATE 10

Urinary Bladder: This carcinoma of the transitional epithelium is primarily exophytic but there is early invasion of the submucosa (arrow; see Plate 11). Female rat given 18,000 ppm o-nitroanisole at the 6-month interim evaluation of the stop-exposure feed study. H&E ×10

PLATE 11

Urinary Bladder: Higher magnification of Plate 10. This is the base of the carcinoma and shows anaplastic epithelial cells with clusters of cells extending into the submucosa (arrow). Female rat given 18,000 ppm *o*-nitroanisole at the 6-month interim evaluation of the stop-exposure feed study. H&E \times 50

Urinary Bladder: Higher magnification of Plate 10. The main body of the carcinoma consists of cords and clusters of transitional epithelial cells separated by a delicate fibrovascular stroma. There is mild pleomorphism of the neoplastic cells. Female rat given 18,000 ppm *o*-nitroanisole at the 6-month interim evaluation of the stop-exposure feed study. H&E ×80

Urinary Bladder: Squamous cell carcinoma with irregular cords and clusters of anaplastic squamous cells invading the bladder wall. Male rat given 18,000 ppm o-nitroanisole at the 9-month interim evaluation of the stop-exposure feed study. H&E ×80

PLATE 14

Urinary Bladder: Sarcoma consisting of pleomorphic spindle cells with variable amounts of fibrillar cytoplasm and intercellular collagen. Male rat given 18,000 ppm o-nitroanisole at the 9-month interim evaluation of the stop-exposure feed study. H&E ×80

Colon: Adenomatous polyp in a female rat given 18,000 ppm o-nitroanisole at the 9-month interim evaluation of the stop-exposure feed study. H&E ×10

PLATE 16

Large Intestine: Carcinoma with gland-like tubules consisting of anaplastic epithelium (arrows). Male rat given 18,000 ppm *o*-nitroanisole at the 9-month interim evaluation of the stop-exposure feed study. H&E \times 50

PLATE 17

Kidney: Carcinoma (C) of the pelvic urothelium (transitional epithelium) consisting of interconnecting cords of epithelial cells invading the kidney. Male rat given 18,000 ppm o-nitroanisole at the 9-month interim evaluation of the stop-exposure feed study. H&E ×40

PLATE 18

Liver: Scattered necrotic hepatocytes with shrunken pyknotic nuclei and darkly stained cytoplasm (arrows). Male rat given 18,000 ppm o-nitroanisole at the 6-month interim evaluation of the stop-exposure feed study. H&E ×100

PLATE 19 Testis: For comparison with Plate 20. Control male rat in the stop-exposure feed study of o-nitroanisole. H&E \times 50

PLATE 20

Testis: Degeneration and atrophy of the seminiferous epithelium. Note the tubules containing only a few scattered sertoli cells and the degenerate multinucleate spermatids (arrows) in other tubules. Male rat given 18,000 ppm o-nitroanisole at the 3-month interim evaluation of the stop-exposure feed study. H&E $\times 50$
Mice

14-Day Study

All mice survived until the end of the study (Table 21). Mean body weight gains and final mean body weights of all groups of exposed male mice were significantly lower than those of the controls. The mean body weight gain and final mean body weight of females receiving 4,000 ppm were significantly lower than those of the controls; mean body weight gains and final mean body weights of females receiving 2,000 ppm or less were similar to those of the controls. Feed consumption by males and females in the 4,000 ppm groups and females in the 2,000 ppm group was lower than that by the controls. Dietary levels of 250, 500, 1,000, 2,000, and 4,000 ppm resulted in average daily consumption levels of 25, 51, 96, 198, and 194 mg/kg for males and 36, 48, 142, 142, and 215 mg/kg for females.

At necropsy there were significant decreases in absolute brain, kidney, and liver weights of males and in absolute kidney and thymus weights of females in the 2,000 and 4,000 ppm groups (Table H8). There were significant decreases in relative kidney weights of males and the relative thymus weights of females receiving 2,000 and 4,000 ppm. In addition, there were significant increases in the relative liver weight of females and the relative heart weights of males and females receiving 4,000 ppm. These differences were primarily attributed to chemical related reductions in final mean body weights; any potential direct effect of o-nitroanisole on these organs was masked by the more general effects associated with the lower final mean body weights. The apparent inconsistencies in absolute and relative organ weights were likely due to the disproportionate effect on adipose deposits and skeletal muscle versus the effects on glandular organs.

Table 21

Survival, Mean Body Weights, and Feed Consumption of Mice in the 14-Day Feed Study of o-Nitroanisole

		Me	an Body Weight ^b (g)	• •	Final Weight Relative	Fe	ed
Dose (ppm)	Survival ^a	Initial	Final	Change	to Controls (%)	<u>Consur</u> Week 1	mption ^c Week 2
Male			···				
0	5/5	22.4 ± 0.5	27.4 ± 0.9	5.0 ± 0.6		2.5	2.9
250	5/5	22.2 ± 0.6	$24.8 \pm 0.6^{\circ}$	$2.6 \pm 0.2^{\circ \circ}$	91	2.2	2.7
500	5/5	23.0 ± 0.3	$25.8 \pm 0.4^{\circ}$	$2.8 \pm 0.2^{\circ \circ}$	94	2.4	2.7
1,000	5/5	22.8 ± 0.2	$25.6 \pm 0.2^{\circ}$	$2.8 \pm 0.2^{\circ \circ}$	93	2.1	2.6
2,000	5/5	22.4 ± 0.4	$23.6 \pm 0.5^{\circ \circ}$	$1.2 \pm 0.4^{\circ \circ}$	86	2.4	2.3
4,000	5/5	23.4 ± 0.7	$19.0 \pm 0.6^{\circ \circ}$	-4.4 ± 0.2**	69	1.7	0.5
Female							
0	5/5	18.6 ± 0.2	19.2 ± 0.2	0.6 ± 0.2		1.9	2.1
250	5/5	17.6 ± 0.2	20.4 ± 0.5	2.8 ± 0.7	106	2.5	3.0
500	5/5	17.8 ± 0.4	19.0 ± 0.3	1.2 ± 0.4	99	2.1	1.5
1,000	5/5	17.6 ± 0.2	20.0 ± 0.3	2.4 ± 0.2	104	2.7	2.7
2,000	5/5	17.2 ± 0.4	18.0 ± 0.8	0.8 ± 0.7	94	2.0	0.6
4,000	5/5	18.0 ± 0.6	$15.6 \pm 0.9^{\circ \circ}$	$-2.4 \pm 0.4^{**}$	81	1.2	0.7

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

°° P≤0.01

^a Number of animals surviving at 14 days/number initially in group

^b Weights given as mean ± standard error.

^c Feed consumption is expressed as grams/animal per day.

13-WEEK STUDY

Two males in the 200 ppm group and one male in the 600 ppm group died from wounds caused by fighting (Table 22). All other mice survived until the end of the study. The mean body weight gains and final mean body weights of male mice receiving 6,000 ppm and all exposed groups of female mice were significantly lower than those of the controls. Feed consumption by male and female mice that received 6,000 ppm was lower than that by controls,

. .

which may have been related to decreased palatability of the diet containing *o*-nitroanisole (Table 23). Dietary levels of 60, 200, 600, 2,000, and 6,000 ppm resulted in average daily consumption levels of 6, 20, 66, 180, and 540 mg/kg for males and 8, 22, 66, 200, and 540 mg/kg for females. Although male and female mice in the 6,000 ppm groups developed yellow stained fur in the perineum, there were no other clinical findings associated with chemical administration.

TABLE 22

Survival and Mean Body Weights of Mice in the 13-Week Feed Study of o-Nitroanisole

			Mean Body Weight ^b (g	2) :	Final Weight
Dose (ppm)	Survival ^a	Initial	Final	Change	Relative to Controls (%)
Male	<u></u>			· · ·	· · · · · · · · ·
	. •	;	•		
0,	10/10	20.3 ± 0.2	31.8 ± 0.5	11.5 ± 0.6	-
60	10/10	20.1 ± 0.3	30.4 ± 0.5	10.3 ± 0.4	96
200	8/10 ^c	20.5 ± 0.2	29.9 ± 1.3	9.5 ± 1.2	94
600	9/10 ^d	20.0 ± 0.2	29.2 ± 1.3	9.3 ± 1.3	92
2,000	10/10	20.2 ± 0.2	29.6 ± 1.3	9.4 ± 1.2	93
6,000	10/10	20.4 ± 0.3	$25.5 \pm 0.5^{**}$	$5.1 \pm 0.5^{**}$	80
• •				1	
Female		· · · · · · · · · · · · · · · · · · ·		• •	
0	10/10	16.9 ± 0.3	25.0 ± 0.6	8.1 ± 0.4	
. 60	10/10	16.5 ± 0.2	$22.5 \pm 0.2^{**}$	$6.1 \pm 0.2^{**}$	90 .
200	10/10	16.4 ± 0.3	$23.5 \pm 0.5^{**}$	$7.1 \pm 0.4^{**}$	94
600	10/10	16.4 ± 0.2	$23.1 \pm 0.4^{**}$	$6.6 \pm 0.4^{**}$	92
2.000	10/10	16.6 ± 0.2	$23.4 \pm 0.2^{**}$	$6.8 \pm 0.2^{**}$	94
6,000	10/10	16.3 ± 0.3	$20.1 \pm 0.6^{**}$	$3.7 \pm 0.5^{**}$	80

** Significantly different (P≤0.01) from the control group by Williams' or Dunnett's test

^a Number of animals surviving at 13 weeks/number initially in group

^b Weights given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the study.

Week of death: 4, 13

^d Week of death: 2

TABLE 23

Fæed	Consumption	рà	Mice	im	the	13-Week	Feed	Study	oľ	o-Nitroanisole
------	-------------	----	------	----	-----	---------	------	-------	----	----------------

Week of					•		
Study	maa 0	60 ppm	200 ppm	600 ррт	2,000 ppm	6,000 ppm	
Male							
. 1	20	22	25	10	22	1.2	
2	2.0	2.4	2.3	25	2.5	1.2	
2	2.5	2.4	3.6	2.5	2.5	1.1	
3 A	2.0	25	25	22	23	1.0	
~	2.7	2.5	2.5	3.0	2.5	2.2	
5	2.5	26	2.4	2.0	2.6	2.2	
7	2.7	2.0	3.0	2.7	2.0	2.1	
8	3.0	37	24	3.0	. 29	2.5	
0	3.2	3.0	2.7	3.7	2.5	2.0	
10	3.0	37	27	3.6	3.6	2.0	
10	3.0	37	2.7	3.0	3.0	2.5	
12	33	. 36	26	3.4	31	2.0	
13	3.6	3.3	3.8	3.4	3.2	2.5	
Female							•
1	1.4	2.2	2.1	2.1	1.8	0.8	•
2	2.1	2.4	2.4	1.8	2.0	1.3	
3	2.7	2.6	3.1	3.1	2.1	1.0	
4	2.3	2.7	2.2	2.5	2.4	1.7	
5	2.0	2.4	2.4	2.6	2.2	1.9	
6	2.9	2.3	2.8	2.4	2.2	1.4	
7	2.5	3.3	2.0	2.6	2.5	2.4	
8	2.8	2.5	2.4	2.9	1.9	2.0	
9	3.3	3.2	2.8	2.5	2.5	2.0	
10	3.2	3.1	2.8	2.6	2.7	1.5	
11	3.3	3.6	2.9	3.1	2.3	2.1	
12	3.2	3.5	2.8	2.7	2.5	2.2	
13	3.6	3.0	2.8	2.9	2.5	2.0	

^a Feed consumption is expressed as grams/animal per day.

Small but significant decreases in hemoglobin concentrations and hematocrit values were seen primarily in male and female mice receiving 2,000 and 6,000 ppm; a significant decrease in erythrocyte count was observed only in females that received 6,000 ppm (Table I6). Lower values were observed for hematocrit and hemoglobin in males from the 600 ppm group as well. The methemoglobin concentration was significantly increased only in males receiving 6,000 ppm.

The relative liver weights of females receiving 600 ppm and males and females receiving 2,000 and 6,000 ppm were significantly greater than those of the controls (Table H9). In addition, the absolute liver weights of females that received 600 ppm or more were also significantly increased, although those of males were not. These increases were attributed to the ingestion of o-nitroanisole. Differences in the absolute or relative weights of brain, heart, kidney, lung, spleen, testis, or thymus occurred in various exposed groups of males and females and were attributed to the 6,000 ppm groups and were not considered biologically significant.

Liver: Hepatocyte hypertrophy associated with the ingestion of *o*-nitroanisole was seen only in male mice. The lesion was observed in mice receiving 200 ppm or more and increased in severity with

increasing exposure levels (0 ppm, 0/10; 60 ppm, 0/10; 200 ppm, 3/9 (2.0); 600 ppm, 9/10 (2.8); 2,000 ppm, 10/10 (3.7); 6,000 ppm, 10/10 (3.8)). The lesion occurred primarily in the centrilobular and midzonal regions of the liver lobules. There were occasional scattered cells exhibiting cytoplasmic vacuolation or necrosis, particularly at higher exposure levels.

Dose selection rationale: Lower final mean body weights, slightly reduced feed consumption, increased liver weights, and slight differences in several hematologic parameters attributable to o-nitroanisole were observed in male and female mice that received 6,000 ppm. In addition, a microscopic liver lesion was observed in all male mice receiving 2,000 and 6,000 ppm and was attributed to o-nitroanisole administration. However, these toxic responses were rather mild and at lower exposure levels the effects became marginal to nonexistent. It was considered unlikely that the toxicity which occurred at 6,000 ppm would become life threatening, and by the end of the 13-week study, feed consumption by males receiving 6,000 ppm was increasing and approaching that by the controls. This suggested that the animals might eventually recover from their initial reaction to the 6,000 ppm concentration. Therefore, 6,000 ppm was selected as the high exposure level for the 2-year study in mice. To provide a broad range for dose response, 666 and 2,000 ppm were selected for the remaining exposure levels.

2-Year Study

Survival

Estimates of survival probabilities for male and female mice are shown in Table 24 and in the Kaplan-Meier curves in Figure 6. Survival of groups of male mice receiving 666, 2,000, and 6,000 ppm was similar to that of the controls. Although survival of females receiving 666 ppm was significantly lower than that of the controls, that of the 6,000 ppm group was slightly greater than that of controls. Thus, the ingestion of o-nitroanisole at dietary concentrations up to 6,000 ppm had no effect on the survival of male or female mice in the 2-year study.

Body Weights, Feed Consumption, and Clinical Findings

The ingestion of o-nitroanisole was associated with a dose-related reduction in mean body weight. The mean body weights of male and female mice receiving 2,000 and 6,000 ppm were lower than those of the controls throughout the study (Tables 25 and 26, and Figure 7). The mean body weights of the 6,000 ppm groups were within 20% of controls until week 17 for males and week 12 for females. Thereafter, the difference in mean body weight between the 6,000 ppm groups and the controls continued to increase. At the end of the study the final mean body weight of males receiving 6,000 ppm was 33% lower than that of the controls and the final mean body weight of females receiving 6,000 ppm was 43% lower than that of the controls. In the 2,000 ppm groups, the final mean body weight of males was 11% lower than that of controls and the final mean body weight of females was 18% lower than that of controls. The final mean body weights of male and female mice receiving 666 ppm were within 10% of the controls. Feed consumption by high-dose male and female mice was lower than that by the controls throughout the study (Tables K5 and K6). Dietary levels of 666, 2,000 and 6,000 ppm resulted in average daily consumption levels of 80, 240, and 830 mg/kg for males and 100, 320, and 1,200 mg/kg for females. Discolored urine in male and female mice was the only clinical finding attributable to o-nitroanisole administration.

Pathology and Statistical Analyses of Results

Summaries of the incidences of nonneoplastic lesions and neoplasms, the individual animal tumor

diagnoses, the statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one group, and historical control incidences for the biologically significant neoplasms mentioned in this section are presented in Appendix C for male mice and Appendix D for female mice.

The absolute liver weight of males that Liver: received 2,000 ppm and the relative liver weights of all groups of exposed male mice were significantly greater than those of the controls at the 15-month interim evaluation (Table H10). The absence of a significant increase in absolute liver weight in males receiving 6,000 ppm may have been related to the significantly lower mean body weight of this group. Relative liver weights of females in the 2,000 and 6,000 ppm groups were also significantly greater than those of the controls, although the absolute liver weight of females that received 6,000 ppm was significantly lower than that of the controls. This inconsistency is also primarily due to the lower mean body weight of females receiving 6,000 ppm.

The increased liver weights at the 15-month interim evaluation were associated with generalized centrilobular cytologic alteration, which was also seen in exposed rats in the 2-year study (Tables 27, C5, and D5). The lesion was more frequent and severe in exposed males than in exposed females. The cytologic alteration consisted of enlargement of the centrilobular hepatocytes (hypertrophy), enlargement of the nuclei, and increased eosinophilic staining of the cytoplasm. Focal necrosis was seen in a number of males receiving 2,000 and 6,000 ppm at the 15-month interim evaluation, but not in females, controls, or 666 ppm males. In the 2-year study, the incidence of focal necrosis was significantly increased in all exposed male groups. The necrosis occurred primarily in the centrilobular or midzonal regions of the liver lobules and was characterized by infrequent, scattered individual cells or small foci of cells exhibiting nuclear pyknosis or karyorrhexis. These changes were often accompanied by small erythrocyte-filled spaces, diagnosed as hemorrhage, and individual Kupffer cells filled with golden brown or greenish brown pigment.

.

TABLE 24

Survival of Mice in the 2-Year Feed Study of o-Nitroanisole

· · ·	0 ppm	666 ppm	2,000 ppm	6,000 ррт	
Male				······	·····
Animals initially in study	60	60	60	60 `	
15-Month interim evaluation ^a	10	10	9	10	
Natural deaths	1	2	3	3	
Moribund kills	14	5	8	7	
Missexed ^a	. 0	0	1	0	
Animals surviving to study termination	35	43	39	40	
Percent probability of survival at end of study	^b 70	86	78	80	
Mean survival (days) ^c	673	676	680	661	· .
Survival analysis ^d I	°=0.836N	P=0.095N	P=0.543N	P=0.435N	`
Female				- ·	
Animals initially in study	60	60	60	60	•
15-Month interim evaluation ^a	10	10	10	10	
Natural deaths	5	8	7	. 0	
Moribund kills	7	16	10	5	
Animals surviving to study termination	38	26	33	45	
Percent probability of survival at end of study	. 77	53	66	91	
Mean survival (days)	654	647	655	670	
Survival analysis	=0.005N	P=0.028	P=0.368	P=0.110N	

^a Censored from survival analyses

^b Kaplan-Meier determinations

^c Mean of all deaths (uncensored, censored, and terminal sacrifice).

^d The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the dosed columns. A negative trend or lower mortality in a dose group is indicated by N.

70

71

TABLE 25

Mean Body Weights and Survival of Male Mice in the 2-Year Feed Study of o-Nitroanisole

Weeks0 pp		ppm		666 ppm			2,000 ppm	Ľ.		6,000 ppm	1
on	Av. Wt.	No. of	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
	23.2		23.0	99	60	22.9			22.0	95	60
2	25.1	60	24.7	98	60	24.7	98	60	21.0	85	60
3	25.9	60	25.7	99	60	25.6	99	60	21.7	84	60
4	27.0	60	26.8	99	60	26.7	99	60	23.0	85	60
5	27.6	60	27.4	99	60	27.3	99	60	23.4	85	60
6	29.1	60	28.7	99	60	28.3	97	60	24.8	85	60
7	29.8	60	29.4	99	60	29.1	98	60	25.4	85	60
8	30.6	60	30.0	98	60	29.7	97	60	25.8	84	60
9	30.9	60	30.7	99	60	30.2	98	60	26.1	85	60
10	31.1	60	30.7	99	60	30.6	98	60	25.9	83	60
11	31.5	60	31.3	99	60	31.0	98	60	26.5	84	60
12	32.6	60	32.3	99	60	31.8	98	60	27.1	83	60
13	32.7	60	32.5	99	60	31.9	98	60	27.3	84	60
17	35.1	60	34.5	98	60	34.0	97	60	27.6	79	59
21) 37.8	60	37.3	99	60	36.5	97	60	28.0	74	59
25	39.6	60	38.4	97	60	37.7	95	60	28.9	73	59
29	41.6	60	40.3	97	60	39.5	95	60	29.1	70	59
33	43.7	60	42.3	97	60	41.7	95	60	30.1	69	59
37	44.5	60	43.2	97	60	42.4	95	60	30.1	68	59
41	45.0	60	44.2	98	60	42.7	95	60	30.4	68	59
45	45.0	60	43.8	97	60	43.1	96	60	30.0	67	59
49	45.7	60	44.1	97	60	43.7	96	60	29.9	65	59
53	46.7	60	45.2	97	60	44.7	96	60	30.5	65	59
57	46.9	60	45.9	98	60	45.3	97	60	31.0	66	59
61	47.8	60	46.5	97 ·	.60	45.6	95	60	30.9	65	59
65	48.0	60	47.6	99	60	46.6	97 .	60	31.5	66	59
69 ^a	49.2	50	48.0	98	50	47.2	96	50	31.7	64	48
73	49.0	49	48.2	98	50	47.2	96	50	31.8	65	48
77	48.7	49	48.3	99 .	50	47.4	97	50	31.9	66	48
81	48.9	49	47.9	98	49	46.9	96	50	31.8	65	48 .
85	48.4	49	47.4	98	48	46.3	96	50	31.8	66	47
89	47.9	49	47.6	99	48	45.8	96	49	31.8	66	47
93	47.7	49	46.5	98	48	44.8	94	48	31.7	67	46
97	48.0	47	46.6	97	48	43.8	91	47	31.6	66	45
101	47.6	46	46.1	97	48	42.2	89	47	32.0	67	45
Termina	l sacrifice	35			43			39			40
Mean for	weeks										
1-13	29.0		28.7	99		28.4	98		24.6	85	
14-52	42.0		40.9	97		40.1	95		29.3	70	
53-101	48.1		47.1	98		45.7	95		31.5	65	

^a Interim evaluation occurred during week 65.

72

Table 26

Mean Body Weights and Survival of Female Mice in the 2-Year Feed Study of o-Nitroanisole

Wéeks pp		ppm		666 ppm			2,000 ppm	1	6,000 ppm		
om	Av. Wt.	No. of	Av. Wt.	Wt. (% of	No. of	Av. Wt.	WL (% of	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
	18.0	 60	18.6	103	60	17.9		60	17.2	Q 6	60
2	20.3	60	20.8	103	60	100	98	60	18.1	89	60
3	20.5	60	21.9	101	60	21.1	97	60	183	84	60
4	23.0	60	23.2	101	60	22.3	97	60	19.2	84	60
5	23.6	60	23.9	101	60	23.0	98	60	19.7	84	60
6	24.4	60	25.1	103	60	24.1	99	60	21.0	86	60
7	25.2	60	25.2	100	60	24.6	98	60	21.2	84	60
8	25.6	60	25.8	101	60	24.6	96	60	21.2	83	60
9	25.7	60	26.3	102	60	25.1	98	60	21.6	84	60
10	26.3	60	27.0	103	60	25.8	98	60	22.2	84	60
11	26.7	60	27.1	102	60	26.0	97	60	21.8	82	60
12	27.1	60	27.5	102	60	26.2	97	60	21.4	79	60
13	27.7	60	28.3	102	60	26.3	95	60	22.7	82	60
17	29.7	60	30.2	102	60	27.9	94	60	22.2	75	60
21	32.7	59	33.3	102	60	30.2	92	60	23.4	72	60
25	34.1	59	34.7	102	60	30.9	91	60	23.4	69	60
29	36.7	59	37.3	102	60	32.9	90	60	24.4	67	60
33	38.8	59	39.0	101	60	34.8	90	60	24.7	64	60
37	39.0	59	39.9	102	60	35.6	91	60	24.5	63	60
41	40.4	59 ^a	41.2	102	60	35.9	89	60	25.0	62	60
45	40.9	59	41.1	101	60	36.3	89	60	25.0	61	60
49	42.5	58	42.2	99	59	37.4	88	60	24.7	58	60
53	43.7	58	43.5	100	58	37.9	87	60	25.1	57	60
57	44.9	58	44.6	99	57	39.0	87	60	25.4	57	60
61	47.4	58	46.3	98	57	40.3	85	60	25.4	54	59
65	48.1	58	47.7	99	56	41.2	86	59	25.6	53	59
69 ⁰	49.6	48	47.4	96	46	42.1	85	49	26.1	53	48
73	49.6	48	47.1	95	46	42.1	85	49	26.1	53	48
77	51.0	47	48.0	94	46	42.2	83	49	26.7	52	48
81	51.1	47	47.9	94	46	42.3	83	45	26.6	52	48
85	51.7	46	48.2	93	46	42.1	81	44	26.7	52	48
89	51.1	46	48.0	. 94	46	42.7	84	42	27.1	53	47
93	49.8	44	46.3	93	44	41.7	84	42	26.7	54	47
97	49.6	43	45.6	92	42	41.7	84	41	27.0	54	47
101	48.0	42	44.6	93	35	39.2	82	37	27.2	57	47
Termina	l sacrifice	38			26			33			45
Mean fo	r weeks										
1-13	24.3		24.7	102		23.6	97		20.4	84	
14-52	37.2		37.7	101		33.5	90		24.1	65	
53-101	48.9		46.6	95		41.1	84		26.3	54	

The number of animals weighed for this week is fewer than the number of animals surviving.
 Interim evaluation occurred during week 65.

o-Nitroanisole, NTP TR 416

TABLE 27

Incidences of Selected Liver Lesions in Mice in the 2-Year Feed Study of o-Nitroanisole

Dose (ppm)	Ø	666	2,000	6,000
Male	· · · · · · · · · · · · · · · · · · ·	аран н. н. _{түр} <u>- _жүр так байлай к. н. н. н</u>		,
15-Month Interim Evaluation				
n ^a	10	10	9	10
Cytologic alteration ^b	0	7°°	9°°	10**
Necrosis	0	0	2	4
Eosinophilic focus	0	0	0	1
2-Year Study				
n	50	50	50	50
Cytologic alteration	0	4400	49°°	49**
Necrosis	3	13°	27°°	34°°
Hemorrhage	1	4	20°°	28°°
Kupffer cell pigmentation	0	0	3	16**
Eosinophilic focus	. 1	1500	16°°	13°°
Female	:			х /
15 Month Intonim Wuglugtion		· .	1	
V2-MUNUT UNGLIGH WASHINGI	10	10	10	. 10
n	10	10	10	10
Cytologic alteration	0	1	9 °°	9°°
Eosinophilic focus	0	1	0	1
2-Year Study				
n .	50	50	50	50
Cytologic alteration	0	000	1400	4100
Eosinophilic focus	11	6	21°	16
8		-		

Significantly different (P \leq 0.05) from the control group by the logistic regression test (2-year study) or the Fisher exact test (15-month interim evaluations) ٥

°° P≤0.01

^a Number of animals with liver examined microscopically
 ^b Number of animals with lesion

At the 15-month interim evaluation, eosinophilic foci occurred in one male and one female that received 6,000 ppm and one female that received 666 ppm (Table 27). In the 2-year study, however, the incidences of eosinophilic foci were significantly increased in all exposed male groups. In females, eosinophilic foci occurred more frequently in the 2,000 and 6,000 ppm groups, but only the incidence in the 2,000 ppm group was significantly increased.

Hepatocellular adenomas or carcinomas also occurred in a few mice at the 15-month interim evaluation (Tables 28, C1, and D1). In the 2-year study, hepatocellular adenomas were significantly increased in all exposed male groups, although the incidence of adenoma in males receiving 6,000 ppm was lower than that in males receiving 2,000 ppm (Tables 28 Hepatoblastomas, rare morphological and C3). variants of hepatocellular carcinoma, occurred in all groups of exposed male mice, but not in the controls. Thus, the incidences of hepatocellular neoplasms (hepatocellular adenoma, hepatocellular carcinoma, or hepatoblastoma) were significantly increased in the 2,000 and 6,000 ppm groups (Table C3). The incidences of hepatocellular adenoma or hepatocellular adenoma or carcinoma (combined) were significantly increased in females that received 2,000 ppm (Table D3).

Basophilic, eosinophilic, mixed cell, and clear cell foci are considered preneoplastic lesions. Foci, hepatocellular adenoma, and hepatocellular carcinoma constitute a morphological continuum. The foci were circumscribed lesions generally consisting of enlarged hepatocytes with either basophilic, eosinophilic, clear cytoplasm, or a mixture of cells with different staining properties. There was generally little or no compression of surrounding parenchyma and the hepatic cords of the lesion blended with those at the periphery. Hepatocellular adenomas were larger and usually exhibited greater distortion or alteration of hepatic architecture with loss of normal lobular Hepatocellular carcinomas exhibited structure. heterogeneous growth patterns with hepatic trabeculae four or more cell layers thick.

Hepatoblastomas were a morphological variant of hepatocellular carcinomas with typical small undifferentiated cells containing hyperchromatic nuclei and scant basophilic cytoplasm. These primitive appearing cells were usually within a larger neoplasm consisting primarily of neoplastic hepatocytes similar to those found in adenomas or carcinomas.

Nose: Several inflammatory and degenerative lesions of the nasal mucosa occurred more frequently in exposed male and female mice than in controls at the 15-month interim evaluation and in the 2-year study (Tables C5 and D5). In the 2-year study, the incidences of exudate, dilatation, and hyperplasia of the septal and Bowman's glands, hyaline degeneration of the mucosal epithelium, and respiratory metaplasia of the olfactory epithelium were significantly increased in females that received 2,000 and 6,000 ppm and, with the exception of hyaline degeneration, in males that received 6,000 ppm (Table 29). The inflammatory exudate consisted of mucus, degenerating neutrophils, and cellular debris on the mucosal surface or within the lumens of the septal glands and Bowman's glands. The lumens of the glands were often dilated and the glandular epithelial cells were enlarged and prominent. The hyaline degeneration was characterized by the accumulation of large hyaline droplets in secretory cells of the respiratory epithelium and olfactory epithelium, particularly near the junction of these two epithelial types. The respiratory metaplasia of the olfactory epithelium was multifocal in distribution and often located on the dorsal wall of the dorsal meatus and posterior medial aspects of the nasoturbinates. In the affected areas the specialized olfactory epithelium was replaced by ciliated columnar epithelium.

Lung: Focal proliferation of the bronchiolar epithelium was observed in exposed mice, particularly males, but not in controls (males: 0 ppm, 0/50; 666 ppm, 2/50; 2,000 ppm, 13/50; 6,000 ppm, 14/50; females: 0/50; 3/50; 5/50; 4/50; Tables C5 and D5). The lesion was characterized by subtle extension of the cuboidal bronchiolar epithelium into the adjacent alveoli. Usually only one or a few bronchioles in the lung sections were affected.

Kidney: The relative kidney weights of all exposed males and of females receiving 6,000 ppm were significantly greater than those of the controls at the 15-month interim evaluation (Table H10). Although absolute kidney weights of males receiving 666 and 2,000 ppm were slightly greater than the controls, that of males receiving 6,000 ppm was significantly lower than that of controls. The increases in relative kidney weights of the 666 and 2,000 ppm males suggest a direct chemical-related effect, but the

TABLE 28

Incidences of Liver Neoplasms in Mice in the 2-Year Feed Study of o-Nitroanisole

Dose (ppm)	0	666	2,000	6,000
Male			<u> </u>	
15-Month Interim Evaluation				
Hepatocellular Adenoma Overall rate ^a	2/10	0/10	0/9	1/10
Hepatocellular Carcinoma Overall rate	0/10	1/10	0/9	0/10
Hepatoblastoma Overall rate	0/10	0/10	0/9	0/10
2-Year Study				
Hepatocellular Adenoma				
Overall rate	14/50 (28%)	26/50 (52%)	41/50 (82%)	29/50 (58%)
Adjusted rate ^b	36.3%	56.3%	89.0%	64.4%
Terminal rate ^c	11/35 (31%)	23/43 (53%)	34/39 (87%)	24/40 (60%)
First incidence (days)	709	549	617	673
Logistic regression test ^d	P=0.012	P=0.014	P<0.001	P=0.001
Hepatocellular Carcinoma				
Overall rate	7/50 (14%)	12/50 (24%)	11/50 (22%)	7/50 (14%)
Hepatoblastoma				
Overall rate	0/50 (0%)	3/50 (6%)	17/50 (34%)	9/50 (18%)
Adjusted rate	0.0%	6.4%	37.1%	21.3%
Terminal rate	0/35 (0%)	1/43 (2%)	11/39 (28%)	7/40 (18%)
First incidence (days)	_e ` ´	582	617	709
Logistic regression test	P=0.016	P=0.093	P<0.001	P=0.002
Hepatocellular Adenoma, Carcinor	na, or Hepatoblastoma ^f			
Overall rate	21/50 (42%)	33/50 (66%)	46/50 (92%)	34/50 (68%)
Adjusted rate	49.0%	66.0%	93.8%	75.5%
Terminal rate	14/35 (40%)	26/43 (60%)	36/39 (92%)	29/40 (73%)
First incidence (days)	647	549	617	673
Logistic regression test	P=0.030	P=0.013	P<0.001	P=0.005
(continued)				

TABLE 28

Incidences of Liver Neoplasms in Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

Dose (ppm)	0	666	2,000	6,000
– Female			·	
15-Month Interim Evaluation				· ·
				· .
Hepatocellular Adenoma Overall rate	0/10	1/10	2/10	0/10
Hepatocellular Carcinoma Overall rate	0/10	0/10	0/10	0/10
Hepatoblastoma Overall rate	0/10	0/10	0/10	0/10
2-Year Study				
Henatocellular Adenoma				
Overall rate	14/50 (28%)	20/50 (40%)	36/50 (72%)	18/50 (36%)
Adjusted rate	36.8%	60.9%	83.6%	39.1%
Terminal rate	14/38 (37%)	14/26 (54%)	26/33 (79%)	17/45 (38%)
First incidence (days)	728 (T)	619	546	710
Logistic regression test	P=0.450N	P=0.080	P<0.001	P=0.412
Hanataallular Carsinama				
Overall rate	5/50 (10%)	2/50 (4%)	8/50 (16%)	3/50 (6%)
Henatoblastoma				
Overall rates	1/50 (2%)	1/50 (2%)	2/50 (4%)	0/50 (0%)
Henatocellular Adenoma, Carcinor	na, or Hepatoblastoma ^g		;	
Overall rate	17/50 (34%)	22/50 (44%)	37/50 (74%)	20/50 (40%)
Adjusted rate	43.5%	63.4%	85.9%	43.5%
Terminal rate	16/38 (42%)	14/26 (54%)	27/33 (82%)	19/45 (42%)
First incidence (days)	693	619	546	710
Logistic regression test	P=0.388N	P = 0.124	P<0.001	P=0.487

(T)Terminal sacrifice

^a Number of neoplasm-bearing animals/number of animals examined microscopically

^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The logistic regression tests regard lesions in animals dying prior to terminal kill as nonfatal. A negative trend or a lower incidence in a dose group is indicated by N.

^e Not applicable; no neoplasms in animal group

f 2-Year historical incidence for control groups in NTP feed study (mean ± standard deviation): 249/865 (28.8% ± 16.3%); range 0%-58%

^g Historical incidence: 98/863 (11.4% ± 7.7%); range 0%-34%

Table 29

Selected Nasal Lesions of Mice in the 2-Year Feed Study of o-Nitroanisole

Dose (ppm)	0	in the second	666	2,000	6,000
Male		ntranstantin nationalistantin nationalistantin	n an Albana - In an Albana - Indonesia In anti- Internetia - Indonesia		
15-Month Interim Evaluation					
n ^a	10		0 ^b	2	10
Exudate ^c	0			0	1
Glandular dilatation	2			2	10°
Glandular hyperplasia	ō			0 ,	10°°
Hyaline degeneration	0			0	0
Olfactory epithelium metaplasia	0			0	10**
2-Year Study		· · . ·			
n	50		50	50	50
Exudate	4	•	4	6	49°°
Glandular dilatation	3		6	12°	49°°
Glandular hyperplasia	1	1	2	12**	49°°
Hyaline degeneration	0		0	0	0
Olfactory epithelium metaplasia	0	. ,	0	7°°	46**
	•.	1			
		· · ·			
Female	•	- •	٤ *		
15 Month Interim Evolution					· /
-	10		e .	10	10
а	10		3	10	10
Evudate	0		٥	0	2
Glandular dilatation	1		0	000	1000
Glandular himemiasia	1		0	2 à	1000
Unalize description	0		5		10**
Algenter or an it haling materia	. /		3	0	10
Onactory epithenum metaplasia	, U		U .	<i>/••</i>	10**
2 Voor Study			1111 C. 1. 1.		
z-rear Study	50	, ·		5 0	
п	50	· · ·	50	20	50
Frudate				2700	40**
Glandular dilatation	0		12	2600	4000
Glandular hyperplasia	2		12	2/00	5000
Unaline degeneration	2	1999 - 1997 - 19	, ™ , start and start an	10	JU
Olfostory onitholium motorlasis	8		1	12	42**
Onactory epitnelium metaplasia	1		1	20	49**

• Significantly different (P≤0.05) from the control group by logistic regression (2-year study) or Fisher exact text (15-month interim evaluations)

,

iy k iy

°° P≤0.01

^a Number of animals with nose examined microscopically

^b Nose not examined in this dose group

^c Number of animals with lesion

o-Nitroanisole, NTP TR 416

kidney weight differences in the 6,000 ppm groups are largely attributable to the significantly lower mean body weights.

There were no differences in the incidences of kidney lesions between control and female mice receiving 6,000 ppm at the 15-month interim evaluation (Tables C5 and D5). In male mice, however, renal tubule regeneration occurred less frequently in the 6,000 ppm group than in the controls. In the 2-year study, the incidences of renal tubule regeneration in females that received 2,000 ppm and males and females that received 6,000 ppm were significantly decreased (Table 30). Moreover, the average severity of the lesion was also lower in males receiving 6,000 ppm than in controls, but not substantially lower in exposed females. Focal renal tubule regeneration is the most overt histologic manifestation of chronic renal disease in aging mice and consists of focal collections of tubules with epithelium having basophilic cytoplasm and enlarged

vesicular nuclei. The incidence of lymphoid hyperplasia in males and females that received 6,000 ppm was also significantly decreased. There was also a significantly decreased incidence of focal mineralization in females receiving 6,000 ppm.

Pituitary gland: An adenoma of the pars distalis was seen in one control female and a carcinoma was seen in one female that received 2,000 ppm at the 15-month interim evaluation (Table D1). In the 2-year study, however, there was a significantly decreased incidence of pars distalis adenomas in females receiving 6,000 ppm and a corresponding decreased incidence of focal hyperplasia (adenoma: 7/49, 6/47, 8/48, 0/48; hyperplasia: 9/49, 10/47, 5/48, 0/48; Tables D1 and D5). These lesions may be related to nutritional or physiological changes associated with the lower mean body weights of female mice in the 6,000 ppm group, rather than to a direct chemical-related effect on the pituitary gland.

TABLE 30

Incidences of Selected Kidney Lesions in Mice in the 2-Year Feed Study of o-Nitroanisole

Dose (ppm)	0	666	2,000	6,000
Males		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
n ^a	50	50	50	50
Regeneration, renal tubule ^b	48 (2.3) ^c	46 (2.1)	48 (2.2)	32*(1.0)
Hyperplasia, lymphoid	20 (1.7)	16 (1.5)	25 (1.4)	8*(1.3)
Mineralization	41 (1.9)	48 (2.4)	50 (2.4)	36 (1.0)
Females				
n	50	50	50	50
Regeneration, renal tubule	33 (1.4)	28 (1.2)	17*(1.1)	12*(1.0)
Hyperplasia, lymphoid	22 (1.5)	21 (1.5)	23 (1.5)	14*(1.6)
Mineralization	22 (1.1)	18 (1.2)	12 (1.1)	9*(1.0)

* Significantly different (P≤0.05) from the control group by logistic regression

^a Number of animals with kidney examined microscopically

^b Number of animals with lesion

^c Average severity grade of lesions in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked

Harderian gland: The harderian glands, specialized lacrimal glands located posterior to the eyes, were examined microscopically only when they were observed to be enlarged at necropsy. The incidences of harderian gland adenoma or carcinoma (combined) in males that received 2,000 and 6,000 ppm were significantly decreased (10/50, 4/50, 2/50, 3/50; Table C3). However, the incidence in the concurrent controls is substantially higher than that in the NTP historical controls and is the highest observed in an individual control group (48/872 (6%), range 0%-20%; Table C4b). Thus, the decreased incidences in the exposed groups may not be chemical related.

Adrenal gland: Adrenal cortical adenomas in males occurred in the control, 666, and 2,000 ppm groups, but not in the 6,000 ppm group. Although the incidence of adenomas in the 6,000 ppm group was significantly decreased (Table C3), the incidence in control males is substantially higher than that in NTP historical controls and is the highest observed in an individual control group (14/851 (2%), range 0%-14%; Table C4c). As with the harderian gland neoplasms, the decreased incidence in males receiving 6,000 ppm is not considered chemical related.

GENETIC TOXICOLOGY

o-Nitroanisole was tested in two laboratories using a preincubation protocol for induction of gene mutations in five strains of Salmonella typhimurium in the presence and the absence of Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9 (Table G1). In the first study (Haworth *et al.*, 1983), concentrations of 33 to 2,150 μ g/plate were tested in strains TA98, TA100, TA1535, and TA1537; positive responses were observed only in strain TA100, with and without S9. In the second study, strains TA97, TA98, TA100, and TA1535 were tested with concentrations up to 3,333 μ g/plate; positive responses were again noted for TA100, with and without S9, and also for TA1535, without S9. Both of these strains have the same DNA target site, and are reverted via base substitution. In cytogenetic tests with Chinese hamster ovary cells, o-nitroanisole induced sister chromatid exchanges with and without Aroclor 1254-induced male Sprague-Dawley rat liver S9 (Table G2; Galloway et al., 1987); at higher doses (above 123 μ g/mL without S9, and above 811 μ g/mL with S9), delayed harvest times were used to offset o-nitroanisole-induced cell cycle delay and allow for accumulation of sufficient metaphase cells for analysis. In the Chinese hamster ovary cell chromosomal aberrations test (Table G3; Galloway et al., 1987), o-nitroanisole induced a significant increase in aberrations at the highest dose (1,060 μ g/mL) tested in the presence of S9 activation; this response was due mainly to an increase in breaks which occurred in the long arm of the X chromosome. No increase in aberrations was observed in either of the two trials conducted without S9. o-Nitroanisole was positive in the mouse lymphoma L5178Y cell assay for induction of trifluorothymidine resistance in the absence of S9 activation; it was not tested with S9 (Table G4). The first of three trials was considered inconclusive because although a negative response was obtained at the highest nonlethal dose tested, the relative total growth of the treated cultures was not markedly decreased. In the remaining two trials, a dose-related increase in trifluorothymidine-resistant colonies was observed and significantly increased responses occurred at doses where the relative total growth was depressed below 50%.

DISCUSSION AND CONCLUSIONS

o-Nitroanisole is used primarily as a precursor in the synthesis of o-anisidine, an intermediate in the manufacture of many azo dyes. o-Nitroanisole is one of a series of single ring aromatic amines which have been evaluated for carcinogenic potential by the NTP. This class of chemicals was selected for evaluation because of occupational and consumer exposure and because several aromatic amines have been identified as human bladder carcinogens. Most of these single ring compounds have been used or are still used in the manufacture of dyes.

During 14-day and 13-week studies administration of o-nitroanisole caused an anemia in both rats and mice which was characterized by increased levels of methemoglobin and accelerated destruction of erythrocytes. In the 13-week rat study, reduced mean body weights and decreased feed consumption were observed in groups receiving the two highest dietary concentrations. In addition, absolute and relative liver, kidney, and spleen weights were increased in exposed male and female rats, and absolute and relative thymus weights were decreased in exposed females and increased in exposed males. In rats, lesions associated with o-nitroanisole exposure were present in the spleen, liver, and kidney, but the most severely affected organ was the urinary bladder. Diffuse hyperplasia of the transitional epithelium of the urinary bladder occurred in all rats that received 6,000 and 18,000 ppm in the 13-week study. Focal squamous metaplasia of the urinary bladder occurred in all females and two males receiving 18,000 ppm. Transitional cell neoplasms were present in three males and four females that received 18,000 ppm. The Pathology Working Group that reviewed the 13-week study questioned whether or not the lesions would persist or regress if chemical exposure was discontinued. Therefore, to investigate the biological potential of these lesions, a stop-exposure study with interim evaluations at 3, 6, 9, and 15 months was added to the design of the 2-year rat study. The only chemical-related lesion present in mice during the 13-week study was hepatocellular hypertrophy which occurred only in male mice and increased in severity with exposure levels above 200 ppm.

During the 2-year studies survival of male rats that received 2,000 ppm was lower than that of the controls, primarily as a result of an increased severity of nephropathy. However, the survival of female rats receiving 2,000 ppm or less, male rats receiving 222 and 666 ppm, all exposed male mice, and female mice receiving 2,000 and 6,000 ppm was similar to that of the controls. Survival of male and female rats that received 6,000 and 18,000 ppm in the stop-exposure study was markedly reduced as a result of moribund deaths associated with the presence of urinary bladder neoplasms. The mean body weights of the stop-exposure groups were also much lower than those of the controls.

The dose-response trend for increased incidences of urinary bladder neoplasms in rats is illustrated in Table 31. Continuous administration of 222 or 666 ppm o-nitroanisole had no effect on the bladder over the 2-year duration of the study. Exposure to 2,000 ppm for 2 years caused marginal increased incidences of transitional cell neoplasms in female rats and slightly increased incidences of nonneoplastic proliferative lesions of the bladder in both males and females. Exposure to 6,000 ppm for 3 months increased the incidence of transitional cell hyperplasia in female rats, and after 3 months of exposure to 18,000 ppm, the incidence of hyperplasia of the transitional epithelium was increased in both sexes and a transitional cell carcinoma was observed in a male rat. These results were similar to the observations in the 13-week study. After 6 months of exposure to 6,000 ppm, transitional cell hyperplasia was observed in all male and female rats examined; transitional cell papillomas were present in two male rats, while 6 months of exposure to 18,000 ppm resulted in transitional cell carcinomas in all male and female rats examined. Therefore, increasing the dietary exposure level from 2,000 to 6,000 ppm was associated with an increase in the incidence of neoplasms and markedly reduced latency for development of both carcinomas and preneoplastic lesions.

A similar type of dose response for the induction of urinary bladder neoplasms has been observed in

Dose (ppm)	Exposure Time (weeks)	Study Length (weeks)	Transitional Hyperplasia	Transitional Papilloma	Transitional Carcinoma
222	103	103	0	0	0
666	103	103	. 0	0	0
2,000	103	103	. 0	2/50	0
6,000	13	13	0	0	0
6,000	26	28	10/10	2/10	0
6,000	26	40	10/10	2/10	3/10
18,000	13	13	9/10	0	1/10
18,000	26	28	0	0	10/10

 TABLE 31

 Response of the Male Rat Urinary Bladder to o-Nitroanisole

F344/N rats exposed to N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) (Ito *et al.*, 1984), or to the well-studied bladder carcinogen N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamide (FANFT) (Arai *et al.*, 1983; Hasegawa *et al.*, 1986). For both compounds, the incidence of bladder neoplasms increases and the latency decreases as exposure concentration increases, so at higher dose levels neoplasms may be induced after a shorter period of chemical exposure.

From an analysis of the FANFT data in the context of a biologically based two-event model of carcinogenesis, Greenfield et al. (1984) have proposed that this type of response can be expected for a chemical which affects neoplasm formation both by its ability to produce lesions in the DNA of a target cell population and its ability to stimulate increased proliferation of the target cell population. For the present discussion the target cell population is the transitional epithelium of the urinary bladder and its precursor or stem cells. For the FANFT data the model assumes that at low doses the neoplasm incidence will increase primarily as a result of the genotoxic effects of the chemical; at these dose levels cell proliferative effects are minimal. As the dose increases, potentially preneoplastic genetic damage also increases; however, because of cytotoxicity, regenerative proliferation of the transitional

epithelium of the urinary bladder also occurs. The superposition of increased genetic damage and increased cell proliferation results in an increase in neoplasm incidence substantially greater than would occur from either one alone. Over the range of dose concentrations at which cell proliferation increases, the slope of the dose response curve increases sharply and the latency for neoplasm development decreases.

Qualitatively there appears to be reasonable agreement between the predictions of the model and the current results for o-nitroanisole. After 3 months of exposure to 18,000 ppm, hyperplasia had increased the thickness of the transitional epithelium to at least 30 cell layers, compared to a 3- to 10-cell layer thickness for the transitional epithelium of controls. In addition, absolute and relative urinary bladder weights of the 18,000 ppm groups were significantly increased at the 3-, 6-, and 9-month interim evaluations. Exposure to 2,000 ppm for 13 weeks had no effect on the bladder; exposure to 2,000 ppm for 2 years caused focal hyperplasia in six females and two males, a transitional cell papilloma in one female, and a carcinoma in another. Therefore, between 2,000 and 6,000 ppm there was a marked increase in both cell proliferation and neoplasm incidence and a marked reduction in neoplasm latency.

Numerous factors may be involved with increasing the rate of cell proliferation in the urinary bladder, and these have been discussed in recent publications (Cohen *et al.*, 1991; Okamura *et al.*, 1991). For most chemicals the underlying cause of increased proliferation has not been specifically identified, although it is often attributed to regenerative hyperplasia associated with some type of chemical-related cytotoxicity or irritant response. The character of the toxicity responsible for inducing hyperplasia in the bladder of rats that received 6,000 or 18,000 ppm is uncertain.

The major route of metabolism of o-nitroanisole is oxidative demethylation to o-nitrophenol, which appears in the urine predominantly as the sulfate conjugate. A second pathway involves nitroreduction to o-anisidine; at blood concentrations at which the metabolism and elimination of o-nitroanisole is linear, o-anisidine is a minor metabolite formed in the liver. However, at higher doses the o-nitrophenyl sulfate pathway may saturate, leading to the formation of proportionately more o-anisidine. The metabolism of o-anisidine has not been determined. However, it is also likely to be oxidatively demethylated to o-aminophenol, which in turn would normally be sulfated or glucuronidated. However, in the presence of saturating levels of o-nitroanisole, the additional o-aminophenol formed would probably appear unconjugated in the urine. In theory o-aminophenol could be reabsorbed by the urinary bladder epithelium and oxidized to the reactive and cytotoxic o-quinoneimine. However, the necrosis and cell death that often accompany intracellular formation or reaction of reactive intermediates was not observed in the bladders of rats exposed to o-nitroanisole.

Figure 8 lists the compounds which have caused urinary bladder neoplasms in rats in previous NTP 2-year feed studies, and it is apparent that several of these compounds bear a close structural resemblance to o-nitroanisole. Moreover, most are genotoxic and induce bladder neoplasms over the same range of exposures as o-nitroanisole, suggesting that a common mechanism may be involved. The most potent rat bladder carcinogen to be evaluated by the NTP is o-anisidine, and therefore it is tempting to try to relate some common structural feature or metabolite of the other compounds to o-anisidine

(NCI, 1978b). The major route of metabolism of o-toluidine is 4-hydroxylation to 3-methyl-4-aminophenol (4-hydroxy-o-toluidine) followed by conjugation (NCI, 1979a). It is also likely that *p*-cresidine is oxidatively demethylated to o-amino-4-methylphenol and conjugated (NCI, 1979b). The major route of metabolism of 4-amino-2-nitrophenol is probably direct conjugation, with nitro-reduction to 2,4-diaminophenol in the liver being a minor route (NCI, 1978a).

Exposure to o-nitroanisole caused a marginal increased incidence of renal tubule neoplasms in rats in the 2-year feed study. Renal tubule adenomas were present in one male in each of the 222, 666, and 2,000 ppm groups, and renal tubule carcinomas were present in two additional males that received 2,000 ppm. The increased incidence in the 2,000 ppm group was statistically significant and the incidence and the severity of nephropathy were increased in exposed animals. However, very few preneoplastic proliferative lesions were present; focal hyperplasia of the renal tubule epithelium was present in three 222 ppm males and two 2,000 ppm males. Among rats in the stop-exposure study, hyperplasia of the transitional epithelium lining the renal pelvis was first observed at the 6-month interim evaluation but was present in rats from both the 6,000 and 18,000 ppm groups throughout the duration of the study. At the end of the stop-exposure study, transitional cell papillomas were present in three males and one female and transitional cell carcinomas were present in six males and one female that received 18,000 ppm. Because of early mortality in the 6,000 and 18,000 ppm groups due to the presence of urinary bladder neoplasms, it is likely that these incidences are an underestimate of the carcinogenic potential of o-nitroanisole in the kidney.

Consumption of diets containing *o*-nitroanisole for 2 years caused a dose-related increased incidence of focal hyperplasia of the forestomach mucosa as well as a slight dose-related increased incidence of forestomach ulcers in male and female rats. In addition, squamous cell papillomas or carcinomas were present in one female receiving 222 ppm, two males receiving 666 ppm, and two males and two females receiving 2,000 ppm. Among groups of rats from the

o-Nitroanisole, NTP TR 416

o-Anisidine Hydrochloride

OCH3

 NH_2

HCI

m-Cresidine

4-Amino-2-nitrophenol

OH

1

Ν

Ν

1

Cl 4-Chloro-o-phenylenediamine

n-Nitrosodiphenylamine

o-Toluidine Hydrochloride

 H_2N

11-Aminoundecanoic Acid

11-14-03

HCI

NH₂

ŝ.

ne i ja i

2.

NH₂

 NH_2

OCH3

 CH_3

p-Cresidine

MICO Was Chiesko Joint

samala to ch

Melamine

CH₃

 $CH_2 = CH - CH_2 - N = C = S$

Allyl Isothiocyanate

C.I. Disperse Blue 1

OH *p*-Benzoquinone Dioxime

. : :

stop-exposure study, adenomatous polyps of the large intestine were observed at all interim evaluations. At the end of the stop-exposure study, the incidence of adenomatous polyps was increased in the exposed groups, and the incidence of carcinomas of the large intestine was significantly increased in both the 6,000 and 18,000 ppm groups. Spontaneous neoplasms of the forestomach and large intestine are uncommon in F344/N rats and the increased incidences observed in the present study are considered to be related to chemical exposure.

The incidence of mononuclear cell leukemia was increased and exceeded the historical control rate in male rats that received 666 and 2,000 ppm and female rats that received 2,000 ppm of *o*-nitroanisole for 2 years. The incidence of mononuclear cell leukemia in control rats from the stop-exposure study was approximately the same as that for controls in the 2-year study; however, the incidence of mononuclear cell leukemia in exposed rats of the stop-exposure study was very low, most likely as a result of the markedly reduced survival in these groups.

Exposure to o-nitroanisole was associated with increased absolute and relative liver weights and increased incidences of liver lesions in both rats and mice. The increased absolute and relative liver weights were consistent with the liver being the primary organ involved with metabolism of o-nitroanisole. In rats the lesions were primarily nonneoplastic and although a few hepatocellular neoplasms were present in exposed rats, the incidences were low and not dose related. The incidences of focal necrosis and preneoplastic foci of cellular alteration were increased in exposed male mice. In addition, the incidences of hepatocellular hepatocellular carcinoma adenoma and or hepatoblastoma (combined) were significantly increased in male mice receiving 2,000 and 6,000 ppm; the incidence of hepatocellular adenoma or carcinoma (combined) was significantly increased in all exposed groups of male mice. The strong doserelated increased incidence of neoplasms in male mice was considered clear evidence of carcinogenic activity. In female mice the incidence of hepatocellular adenoma was significantly increased in the 2,000 ppm group but was not significantly increased in the 666 or 6,000 ppm groups. However, the significant depression in mean body weight (54% of control from week 53 to week 101) in 6,000 ppm

female mice undoubtedly influenced the incidence of hepatocellular neoplasms in this group.

As a group, the other structurally similar chemicals which caused urinary bladder neoplasms in rats did not produce uniform results in mice. o-Anisidine and p-cresidine produced bladder neoplasms in male and female mice, and p-cresidine produced liver neoplasms in female mice (NCI, 1978b; 1979b). o-Toluidine caused hemangiosarcomas in male mice and liver neoplasms in female mice (NCI, 1979a), while C.I. Disperse Blue 1 produced an equivocal response in the liver of male mice and no evidence in female mice (NTP, 1986), and 4-amino-2-nitrophenol was negative in male and female mice (NCI, 1978a). Therefore, the response in mice was different for each chemical and each sex, and in general, mice were less responsive than rats.

The effectiveness of four of the most commonly used in vitro short-term genetic toxicity tests for prediction of chemical carcinogenicity was evaluated using 114 chemicals tested by the NTP. The tests used were induction of gene mutations in Salmonella typhimurium (SAL) and mouse lymphoma L5178Y cells (MLA), and induction of sister chromatid exchanges (SCE) and chromosome aberrations (Abs) in Chinese hamster ovary (CHO) cells (Tennant et al., 1987; Zeiger et al., 1990). The (SAL) assay was shown to have the lowest sensitivity, the highest specificity, and the highest positive predictivity for carcinogenicity of the four in vitro tests. The other tests had lower predictivities for carcinogenicity, and no combination of the four tests was more predictive for carcinogenicity than S. typhimurium alone.

The aromatic nitro group of *o*-nitroanisole is a molecular feature which provides an alert to potential DNA reactivity (Ashby and Tennant, 1991). *o*-Nitroanisole gave positive results in all four (SAL, MLA, SCE, Abs) of the NTP *in vitro* genetic toxicity tests, and one of the metabolites of *o*-nitroanisole (*o*-anisidine) was also mutagenic in these same four assays. Chemicals that are mutagenic in *S. typhimurium* and contain a structural alert are more likely to induce neoplasms in both rats and mice than chemicals that do not have these characteristics. These positive results in genotoxicity assays, and the structurally alerting nitro group, were predictive of the results of the bioassay, where

- C 11 - 7 - 7 - 0

evidence of carcinogenicity was observed in both rats and mice (Tennant et al., 1990).

CONCLUSIONS

Under the conditions of these feed studies there was clear evidence of carcinogenic activity* of o-nitroanisole in male and female F344 rats that received diets containing 6,000 or 18,000 ppm for 6 months based on overall increased incidences of benign and malignant neoplasms of the urinary bladder, transitional cell neoplasms of the kidney, and benign and malignant neoplasms of the kidney, and benign and malignant neoplasms of the large intestine. There was a chemical-related increased incidence of mononuclear cell leukemia in male and female rats receiving diets containing 222, 666, or 2,000 ppm o-nitroanisole for 2 years. Marginally increased incidences of uncommon renal tubule neoplasms in male rats and forestomach neoplasms in male and female rats were considered uncertain findings. There was *clear evidence of carcinogenic activity* of *o*-nitroanisole in male $B6C3F_1$ mice based on increased incidences of benign and malignant hepatocellular neoplasms. There was *some evidence of carcinogenic activity* of *o*-nitroanisole in female $B6C3F_1$ mice based on increased incidences of hepatocellular adenomas.

Increased severity of nephropathy in male rats, and increased incidences of focal hyperplasia of the renal tubule epithelium and forestomach ulcers in male rats, and of transitional cell hyperplasia of the urinary bladder, focal hyperplasia of the forestomach, and hyperplasia of transitional epithelium of the kidney pelvis in male and female rats were associated with exposure to *o*-nitroanisole.

* Explanation of Levels of Evidence of Carcinogenic Activity is on page 12. A summary of the Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appear on page 14.

REFERENCES

Arai, M., St. John, M., Fukushima, S., Friedell, G.H., and Cohen, S.M. (1983). Long term dose response study of N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamideinduced urinary bladder carcinogenesis. *Cancer Lett.* 18, 261-269.

Armitage, P. (1971). Statistical Methods in Medical Research, pp. 362-365. John Wiley and Sons, New York.

Ashby, J., and Tennant, R.W. (1991). Definitive relationships among chemical structure, carcinogenicity, and mutagenicity for 301 chemicals tested by the U.S. NTP. *Mutat. Res.* 257, 299-306.

Boorman, G., Montgomery, C., Jr., Eustis, S., Wolfe, M., McConnell, E., and Hardisty, J. (1985). Quality assurance in pathology for rodent carcinogenicity studies. In *Handbook of Carcinogen Testing* (H.A. Milman and E.K. Weisburger, Eds.), ed. 1, pp. 345-357. Noyes Publications, Park Ridge, NJ.

Chiu, C.W., Less, L.H., Wang, C.Y., and Bryan, G.T. (1978). Mutagenicity of some commercially available nitro compounds for *Salmonella typhimurium*. *Mutat. Res.* 58, 11-22.

Code of Federal Regulations (CFR), 21, part 58.

Cohen, S.M., Ellwein, L.B., Okamura, T., Masui, T., Johansson, S.L., Smith, R.A., Wehner, J.M., Khachab, M., Chappel, C.I., Schoenig, G.P., Emerson, J.L., and Garland, E.M. (1991). Comparative bladder tumor promoting activity of sodium saccharin, sodium ascorbate, related acids, and calcium salts in rats. *Cancer Res.* 51, 1766-1777.

Cox, D.R. (1972). Regression models and life tables. J. R. Stat. Soc. B34, 187-220.

Dinse, G.E., and Lagakos, S.W. (1983). Regression analysis of tumour prevalence data. *Appl. Statist.* 32, 236-248.

Dinse, G.E., and Haseman, J.K. (1986). Logistic regression analysis of incidental-tumor data from animal carcinogenicity experiments. *Fundam. Appl. Toxicol.* 6, 44-52.

Dunn, O.J. (1964). Multiple comparisons using rank sums. Technometrics 6, 241-252.

Dunnett, C.W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50, 1095-1121.

Galloway, S.M., Bloom, A.D., Resnick, M., Margolin, B.H., Nakamura, F., Archer, P., and Zeiger, E. (1985). Development of a standard protocol for *in vitro* cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. *Environ. Mutagen.* 7, 1-51.

Galloway, S.M., Armstrong, M.J., Reuben, C., Colman, S., Brown, B., Cannon, C., Bloom, A.D., Nakamura, F., Ahmed, M., Duk, S., Rimpo, J., Margolin, B.H., Resnick, M.A., Anderson, B., and Zeiger, E. (1987). Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. *Environ. Mol. Mutagen.* 10 (Suppl. 10), 1-175.

Garberg, P., Akerblom, E.L., and Bolcsfoldi, G. (1988). Evaluation of a genotoxicity test measuring DNA-strand breaks in mouse lymphoma cells by alkaline unwinding and hydroxyapatite elution. *Mutat. Res.* 203, 155-176.

Gart, J.J., Chu, K.C., and Tarone, R.E. (1979). Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. *J. Natl. Cancer Inst.* 62, 957-974.

Greenfield, R.E., Ellwein, L.B., and Cohen, S.M. (1984). A general probabilistic model of carcinogenesis: Analysis of experimental urinary bladder cancer. *Carcinogenesis* 5, 437-445.

Haseman, J.K. (1984). Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. *Environ. Health Perspect.* 58, 385-392.

Haseman, J.K., Huff, J., and Boorman, G.A. (1984). Use of historical control data in carcinogenicity studies in rodents. *Toxicol. Pathol.* 12, 126-135.

Haseman, J.K., Huff, J.E., Rao, G.N., Arnold, J.E., Boorman, G.A., and McConnell, E.E. (1985). Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. JNCI 75, 975-984.

Haworth, S., Lawlor, T., Mortelmans, K., Speck, W., and Zeiger, E. (1983). *Salmonella* mutagenicity test results for 250 chemicals. *Environ. Mutagen.* **5** (Suppl. 1), 3-142.

Hollander, M., and Wolfe, D.A. (1973). Nonparametric Statistical Methods. John Wiley and Sons, New York.

Ito, N., Shirai, T., Fukushima, S., and Hirose, M. (1984). Dose-response study of urinary bladder carcinogenesis in rats by N-butyl-N-(4-hydroxybutyl)nitrosamine. J. Cancer Res. Clin. Oncol. 108, 169-173.

Jonckheere, A. (1954). A distribution-free k-sample test against ordered alternatives. *Biometrika* 41, 133-145.

Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation of incomplete observations. J. Am. Stat. Assoc. 53, 457-481.

Maronpot, R.R., and Boorman, G.A. (1982). Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. *Toxicol. Pathol.* 10, 71-80. McConnell, E.E., Solleveld, H.A., Swenberg, J.A., and Boorman, G.A. (1986). Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. JNCI 76, 283-289.

McKnight, B., and Crowley, J. (1984). Tests for differences in tumor incidence based on animal carcinogenesis experiments. J. Am. Stat. Assoc. 79, 639-648.

The Merck Index (1983). 10th ed. (M. Windholz, Ed.), p. 945. Merck and Company, Rahway, NJ.

Miller, M.J., Sipes, I.G., Perry, D.E., and Carter, D.E. (1985). Pharmacokinetics of *o*-nitroanisole in Fischer 344 rats. *Drug Metab. Disp.* 13, 527-531.

Myhr, B., Bowers, L., and Caspary, W.J. (1985). Assays for the induction of gene mutations at the thymidine kinase locus in L5178Y mouse lymphoma cells in culture. *Prog. Mutat. Res.* 5, 555-568.

Natake, M., Danno, G., Maeda, T., Kawamura, K., and Kanazawa, K. (1979). Formation of DNA-damaging and mutagenic activity in the reaction systems containing nitrite and butylated hydroxyanisole, tryptophan, or cysteine. J. Nutr. Sci. Vitaminol. 25, 317-332.

National Cancer Institute (NCI) (1976). Guidelines for Carcinogen Bioassay in Small Rodents. Technical Report Series No. 1. NIH Publication No. 76-801. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

National Cancer Institute (NCI) (1978a). Bioassay of 4-Amino-2-nitrophenol for Possible Carcinogenicity (CAS No. 119-34-6). Technical Report Series No. 94. NIH Publication No. 78-1344. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

National Cancer Institute (NCI) (1978b). Bioassay of o-Anisidine Hydrochloride for Possible Carcinogenicity (CAS, No. 134-29-0). Technical Report Series No. 89. NIH Publication No. 78-1339. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

References

National Cancer Institute (NCI) (1979a). Bioassy of o-Toluidine Hydrochloride for Possible Carcinogenicity (CAS No. 636-21-5). Technical Report Series No. 153. NIH Publication No. 79-1709. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

National Cancer Institute (NCI) (1979b). Bioassy of p-Cresidine for Possible Carcinogenicity (CAS No. 120-71-8). Technical Report Series No. 142. NIH Publication No. 79-1397. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

National Institutes of Health (NIH) (1978). Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. National Institutes of Health, Bethesda, MD.

National Toxicology Program (NTP) (1986). Toxicology and Carcinogenesis Studies of C.I. Disperse Blue 1 (CAS No. 2475-45-8) in F344/N Rats and $B6C3F_1$ Mice (Feed Studies). Technical Report Series No. 299. NIH Publication No. 86-2555. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.

Okamura, T., Garland, E.M., Masui, T., Sakata, T., St. John, M., and Cohen, S. (1991). Lack of bladder tumor promoting activity in rats fed sodium saccharin in AIN-7GA diet. *Cancer Res.* 51, 1778-1782.

Sadtler Standard Spectra. IR No. 5864. Sadtler Research Laboratories, Philadelphia.

Shimizu, M., and Yano, E. (1986). Mutagenicity of mono-nitrobenzene derivatives in the Ames test and rec assay. *Mutat. Res.* 170, 11-22.

Shirley, E. (1977). A non-parametric equivalent of William's test for contrasting increasing dose levels of astreatment. *Biometrics* 33, 386-389.

Suzuki, J., Koyama, T., and Suzuki, S. (1983). Mutagenicities of mono-nitrobenzene derivatives in the presence of norharman. *Mutat. Res.* 120, 105-110. Tarone, R.E. (1975). Tests for trend in life table analysis. *Biometrika* 62, 679-682.

Tennant, R.W., Margolin, B.H., Shelby, M.D., Zeiger, E., Haseman, J.K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R. (1987). Prediction of chemical carcinogenicity in rodents from *in vitro* genetic toxicity assays. *Science* 236, 933-941.

Tennant, R.W., Spalding, J., Stasiewicz, S., and Ashby, J. (1990). Prediction of the outcome of rodent carcinogenicity bioassays currently being conducted on 44 chemicals by the National Toxicology Program. *Mutagenesis* 5, 3-14.

Tokiwa, H., Nakagawa, R., and Ohnishi, Y. (1981). Mutagenic assay of aromatic nitro compounds with Salmonella typhimurium. Mutat. Res. 91, 321-325.

Wangenheim, J., and Bolcsfoldi, G. (1988). Mouse lymphoma L5178Y thymidine kinase locus assay of 50 compounds. *Mutagenesis* 3, 193-205.

Williams, D.A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose control. *Biometrics* 27, 103-117.

Williams, D.A. (1972). The comparison of several dose levels with a zero dose control. *Biometrics* 28, 519-531.

Yoon, J.S., Mason, J.M., Valencia, R., Woodruff, R.C., and Zimmering, S. (1985). Chemical mutagenesis testing in *Drosophila*. IV. Results of 45 coded compounds tested for the National Toxicology Program. *Environ. Mutagen.* 7, 349-367.

Yoshimi, N., Sugie, S., Iwata, H., Niwa, K., Mori, H., Hashida, C., and Shimizu, H. (1988). The genotoxicity of a variety of aniline derivatives in a DNA repair test with primary cultured rat hepatocytes. *Mutat. Res.* 206, 183-191.

Yuan, J., Jameson, C.W., Goehl, T.J., Collins, B., Corniffe, G., Kuhn, G., and Castro, C. (1991). Effects of physical binding of *o*-nitroanisole with feed upon its systemic availability in male F344 rats. *Bull. Environ. Contam. Toxicol.* 46, 152-159. Zeiger, E., Haseman, J.K., Shelby, M.D., Margolin, B.H., and Tennant, R.W. (1990). Evaluation of four *in vitro* genetic toxicity tests for predicting rodent carcinogenicity: Confirmation of earlier results with 41 additional chemicals. *Environ. Mol. Mutagen.* 16 (Suppl. 18), 1-14.

۲.

Zeiger, E. Anderson, B., Haworth, S., Lawlor, T., and Mortelmans, K. (1992). *Salmonella* mutagenicity tests. V. Results from the testing of 311 chemicals. *Environ. Mol. Mutagen.* **19** (Suppl. 21), 2-141.

۰.

DOMENT OF COMMENT OF STREET

APPENDIX A SUMMARY OF LESIONS IN MALE RATS IN THE 2-YEAR FEED STUDY OF @-NITROANISOLE

Table A1	Summary of the Incidence of Neoplasms in Male Rats	
	in the 2-Year Feed Study of o-Nitroanisole	୭ଏ
Table A2	Individual Animal Tumor Pathology of Male Rats	
	in the 2-Year Feed Study of o-Nitroanisole	100
Table A3	Statistical Analysis of Primary Neoplasms in Male Rats	
	in the 2-Year Feed Study of o-Nitroanisole	124
Table A4a	Historical Incidence of Leukemia in Untreated Male F344/N Rats	130
Table A4b	Historical Incidence of Liver Neoplasms in Untreated Male F344/N Rats	130
Table A4c	Historical Incidence of Squamous Cell Papillomas and Carcinomas	
	of the Forestomach in Untreated Male F344/N Rats	131
Table A4d	Historical Incidence of Renal Tubule Neoplasms	
	in Untreated Male F344/N Rats	131
Table A5	Summary of the Incidence of Nonneoplastic Lesions in Male Rats	
	in the 2-Year Feed Study of o-Nitroanisole	132

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Feed Study of o-Nitroanisole^a

Disposition Summary IsMonth initially in study 60 10 ⁰ </th <th></th> <th>0 ppm</th> <th>222 ppm</th> <th>666 ppm</th> <th>2,000 ррт</th>		0 ppm	222 ppm	666 ppm	2,000 ррт
Aninabi initially in study 60 60 60 60 Early deaths 10 10 10 10 10 Moribund 16 13 24 35 Natural deaths 2 3 2 6 Survices 1 1 1 1 Diel last week of study 1 1 1 1 Terminal sacrifice 32 34 24 8 Aninab ceamined microscopically 60 60 60 59 I	Disposition Summary		· · · · · · · · · · · · · · · · · · ·		
15.Month interim evaluation 10 10 10 10 10 ⁹ Monibund 16 13 24 35 Natural deaths 2 3 2 6 Survivors 1 1 1 1 Died last week of study 1 1 1 1 Terminal sacrifice 32 34 24 8 Animals examined microscopically 60 60 60 59 IS-Month Interim Evaluation Alimentary System 1 1 10	Animals initially in study	60	60	60	60
Early deaths 16 13 24 35 Natural deaths 2 3 2 6 Survivors 1 Died last week of study 1 Terminal sacrifice 32 34 24 8 Animals examined microscopically 60 60 60 59 	15-Month interim evaluation	10	10	10	10 ^b
Matural deaths 10 13 24 35 Natural deaths 2 3 2 6 Survivors 1 1 1 Terminal sacrifice 32 34 24 8 Animals examined microscopically 60 60 60 59 IS-Month Interim Evaluation Alimentary System 10 (10) (10) (9) Liver (10) (10) (10) (9) Cardiovascular System 1 (10%) (9) Cardiovascular System (10) (10) (10) Ganglioneuroma 1 (10%) (9) Ganglioneuroma 1 (10%) (9) Preputal gland (10) (10) (9) Carcinoma 1 (10%) (10%) Carcinoma (10) (10) (9) Cardiovascular System (10) (10) (9) Carcinoma (10) (10) (10)	Early deaths	14			
Anithal dealitis 2 3 2 6 Died last week of study 1 1 1 Terminal scriffee 32 34 24 8 Animals commed microscopically 60 60 60 59 IS-Month Interim Evaluation Alimentary System Liver (10) (10) (10) (9) Liver (2) (2) (2) (2) (2) (2) Cardiovascular System None 1 (10%) (10) (9) General Body System None 3 (30%) 1 (10%) General Body System None 1 (10%) (9) (9) General Body System None 1 (10%) 1 (11%) 1 (11%) General Body System None 1 (10%) 1 (10%) (9) (9) General Body System None 1 1 1 (10%) (9) </td <td>Mondund Natural deaths</td> <td>16</td> <td>13</td> <td>24</td> <td>35</td>	Mondund Natural deaths	16	13	24	35
Died last week of study Terminal sacrifice 32 34 24 8 Animals examined microscopically 60 60 60 59 IS-Month Interim Evaluation Alimentary System Liver (10) (10) (10) (9) Cardiovascular System None (10) (10) (10) (9) Cardiovascular System None (10) (10) (9) Ganglioneuroma 1 (10%) (9) Garaglioneuroma 1 (10%) (9) Garaglioneuroma 1 (10%) (9) General Body System None (10) (10) (10) (9) Genital System Epididymis (10) (10) (10) (9) Garial System Statis, adenoma (10) (10) (9) (9) Garial System Statis (10) (10) (10) (9) (11%) Testas (10) (10) (10) (9) (10%) (10%) (10%) (10%) Hematopoietic System Bone marrow (10) (10)	Survivors	2	3	2	0
Terminal sacrifice 32 34 24 8 Animals examined microscopically 60 60 60 59 IS-Month Interim Evaluation Alimentary System Liver (10) (10) (10) (9) Mesentery (2) (2) (2) (2) (2) (2) Cardiovascular System None 100 (10) (9) Endocrine System (10) (10) (9) Ganglioneuroma 1 (10%) (10%) Pituitary gland (10) (10) (9) General Body System System (10) (10) (9) None 1 (10%) (10%) (9) Genital System 1 (10) (10) (9) Carcinoma (10) (10) (11%) (11%) Testes (10) (10) (10) (9) Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (44%) Interstitial cell, adenoma 1 (10%) 5 (50%) 3 (33%)	Died last week of study				1
Animals examined microscopically 60 60 60 59 Is-Month Interim Evaluation Alimentary System Liver (10) (10) (10) (10) (9) Cardiovascular System None (10) (10) (10) (9) (9) Endocrine System None (10) (10) (1) (9) (9) Ganglioneuroma 1 (10%) (1) (9) (9) General Body System None (10) (10) (10) (9) (9) General Body System None (10) (10) (10) (9) (9) Genital System Epididymis (10) (10) (10) (9) (9) Bilateral, interstitial cell, adenoma 4<(40%) 1 (10%) 4 (40%) 4 (44%) Hematopoletic System Bone marrow (10) (10) (9) (9)	Terminal sacrifice	32	34	24	8
Animals examined microscopically 60 60 60 59 IS-Month Interim Evaluation Alimentary System Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspa="2" Image: Colspan="2" Image: Colspan="2" Imag		~	51		0
15-Month Interim Evaluation Alimentary System Liver (10) (10) (10) (9) Liver (2) (2) (2) (2) (2) Cardiovascular System None (10) (10) (9) Endocrine System (10) (10) (9) Ganglioneurona 1 (10%) (9) Pars distalis, adenoma 3 (30%) 1 (100%) (9) General Body System None (10) (10) (9) General Body System (10) (10) (10) (9) Frieddymis (10) (10) (10) (9) Carcinoma 1 (10%) 1 (11%) 1 (11%) Testes (10) (10) (10) (9) Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (40%) 4 (44%) Interstitial cell, adenoma 1 (10%) 5 (50%) 5 (50%) 3 (33%)	Animals examined microscopically	60	60	60	59
Alimentary System Liver (10) (10) (10) (10) (9) Mesentery (2) (2) (2) (9) Cardiovascular System None (10) (10) (9) Endocrine System Adrenal gland, medulla (10) (1) (9) Ganglioneuroma 1 (10%) (1) (9) Pituitary gland (10) (1) (10%) (100%) General Body System None (10) (10) (9) Genital System (10) (10) (10) (9) Preputial gland (10) (10) (10) (9) Carcinoma 1 (10%) (10) (10) (9) Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (44%) Interstitial cell, adenoma 1 (10%) 5 (50%) 3 (33%) Hematopoietic System Bone marrow (10) (10) (10) (9) (9)	15-Month Interim Evaluation				
Liver (10) (10) (10) (9) Mesentery (2) (2) (2) Cardiovascular System None Endocrine System Adrenal gland, medulla (10) Ganglioneuroma 1 (10%) Pituitary gland (10) (1) Pars distalis, adenoma 3 (30%) 1 (100%) General Body System None General Body System None General System Epididymis (10) (10) (9) (9) Gardinal System None General I System Epididymis (10) (10) (9) (9) Carcinoma 1 (10%) 1 (11%) 1 (11%) Testes (10) (10) (10) (9) Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (44%) Interstitial cell, adenoma 4 (40%) 5 (50%) 5 (50%) 3 (33%) Hematopoletic System Bone marrow (10) (10) (10) (9) Soleen (10) (10) (10) (9) (9) (9) (9) (10) (10) (10) (9) (9) (10) (10) (10) (9) (9) (9) (10) (10) (10) (9) (10) (10) (9) (10) (10) (9)	Alimentary System				
Mesentery (2) (2) (2) Cardiovascular System None Image: Construct of the system Image: Construct of the system Adrenal gland, medulla (10) (10) (9) Ganglioneuroma 1 (10%) (9) Pituitary gland (10) (1) Pars distalis, adenoma 3 (30%) 1 (100%) General Body System Image: Construct of the system None Image: Construct of the system Genital System Image: Construct of the system Carcinoma (10) (10) (9) Carcinoma (10) (10) (10) (9) Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (40%) 4 (44%) Interstitial cell, adenoma 1 (10%) 5 (50%) 5 (50%) 3 (33%) Hematopoietic System Image: Construct of the system (10) (10) (10) (9) Bone marrow (10) (10) (10) (10) (9) (9)	Liver	(10)	(10)	(10)	(9)
Cardiovascular System None Cardiovascular System Adrenal gland, medulla (10) (9) Ganglioneuroma 1 (10%) (9) Pituitary gland (10) (1) Pars distalis, adenoma 3 (30%) 1 (100%) General Body System None General Body System None Carcinoma Genital System Epididymis (10) (10) (9) Carcinoma 1 (10%) 1 (11%) 1 (11%) Testes (10) (10) (10) (9) Bilateral, interstitial cell, adenoma 1 (10%) 5 (50%) 3 (33%) Hematopoietic System Bone marrow (10) (10) (9)	Mesentery	(2)	(2)	(2)	
Endocrine System (10) (9) Ganglioneuroma 1 (10%) (1) Pituitary gland (10) (1) Pars distalis, adenoma 3 (30%) 1 (100%) General Body System None	Cardiovascular System None				
Adrenal gland, medulla (10) (9) Ganglioneuroma 1 (10%) Pituitary gland (10) (1) Pars distalis, adenoma 3 (30%) 1 (100%) General Body System None	Endocrine System	·····			
Ganglioneuroma 1 (10%) Pituitary gland (10) (1) Pars distalis, adenoma 3 (30%) 1 (100%) General Body System None (10) (10) (10) Genital System Epididymis (10) (10) (10) (9) Preputial gland (10) (10) (9) (9) Carcinoma 1 (10%) 1 (11%) 1 (11%) Testes (10) (10) (10) (9) Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (40%) 4 (44%) Interstitial cell, adenoma 1 (10%) 5 (50%) 5 (50%) 3 (33%) Hematopoietic System (10) (10) (10) (9) Soleen (10) (10) (10) (9)	Adrenal gland, medulla	(10)			(9)
Pituitary gland (10) (1) Pars distalis, adenoma 3 (30%) 1 (100%) General Body System None	Ganglioneuroma	í (10%)			
Pars distalis, adenoma 3 (30%) 1 (100%) General Body System None Genital System (10) (10) (10) (9) Genital System (10) (10) (10) (9) (9) Genital System (10) (10) (10) (9) (9) Carcinoma 1 (10%) 1 (11%) 1 (11%) (11%) 1 (11%) Testes (10) (10) (10) (9) (9) (10) (10) (9) (33%) Hematopoietic System Bone marrow (10) (10) (10) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (10) (9) (10) (9) (9) (10) (9) (9) (10) (9) (9) (9) (10) (9) (10) (9) (10) (9) (10) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	Pituitary gland	(10)	(1)		
General Body System None Genital System Epididymis (10) (10) (10) (9) Preputial gland (10) (10) (9) (9) Carcinoma 1 (10%) 1 (11%) 1 (11%) 1 (11%) Testes (10) (10) (10) (9) Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (44%) Interstitial cell, adenoma 1 (10%) 5 (50%) 5 (50%) 3 (33%)	Pars distalis, adenoma	3 (30%)	1 (100%)		
Genital System Epididymis (10) (10) (10) (9) Preputial gland (10) (10) (9) (9) Carcinoma 1 (10%) 1 (11%) 1 (11%) Testes (10) (10) (10) (9) (9) (9) Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (44%) Interstitial cell, adenoma 1 (10%) 5 (50%) 3 (33%) Hematopoietic System Bone marrow (10) (10) (10) (9) Spleen (10) (10) (10) (9)	General Body System None				
Epididymis (10) (10) (10) (9) Preputial gland (10) (10) (9) (9) Carcinoma 1 (10%) 1 (11%) 1 (11%) Testes (10) (10) (10) (9) Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (40%) 4 (44%) Interstitial cell, adenoma 1 (10%) 5 (50%) 5 (50%) 3 (33%) Hematopoietic System Bone marrow (10) (10) (9) Spleen (10) (10) (10) (9)	Genital System				
Preputial gland (10) (10) (9) (9) Carcinoma 1 (10%) 1 (11%) 1 (11%) Testes (10) (10) (10) (9) Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (40%) 4 (44%) Interstitial cell, adenoma 1 (10%) 5 (50%) 5 (50%) 3 (33%) Hematopoietic System Bone marrow (10) (10) (9) Spleen (10) (10) (9)	Epididymis	(10)	(10)	(10)	(9)
Carcinoma 1 (10%) 1 (11%) 1 (11%) Testes (10) (10) (10) (9) Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (40%) 4 (44%) Interstitial cell, adenoma 1 (10%) 5 (50%) 5 (50%) 3 (33%) Hematopoietic System Bone marrow (10) (9) Spleen (10) (10) (9)	Preputial gland	(10)	(10)	(9)	(9)
Testes (10) (10) (10) (9) Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (40%) 4 (44%) Interstitial cell, adenoma 1 (10%) 5 (50%) 5 (50%) 3 (33%) Hematopoietic System Bone marrow (10) (9) Spleen (10) (10) (9)	Carcinoma		1 (10%)	1 (11%)	1 (11%)
Bilateral, interstitial cell, adenoma 4 (40%) 1 (10%) 4 (40%) 4 (44%) Interstitial cell, adenoma 1 (10%) 5 (50%) 5 (50%) 3 (33%) Hematopoietic System Bone marrow (10) (9) Spleen (10) (10) (9)	Testes	(10)	(10)	(10)	(9)
Interstitial cell, adenoma 1 (10%) 5 (50%) 5 (50%) 3 (33%) Hematopoietic System Bone marrow (10) (9) Spleen (10) (10) (9)	Bilateral, interstitial cell, adenoma	4 (40%)	1 (10%)	4 (40%)	4 (44%)
Hematopoietic System Bone marrow (10) (9) Spleen (10) (10) (9)	Interstitial cell, adenoma	1 (10%)	5 (50%)	5 (50%)	3 (33%)
Bone marrow (10) (9) Spleen (10) (10) (10) (9)	Hematopoietic System	· · · · · · · · · · · · · · · · · · ·	<u>A - 1, </u>		
Spleen (10) (10) (9)	Bone marrow	(10)			(9)
	Spleen	(10)	(10)	(10)	(9)

r

Table A1

١

	0 ррт	222 ppm	666 ppm	2,000 ppm
15-Month Interim Evaluation (continued) Integumentary System Skin Subcutaneous tissue, scrotum, fibrosarcoma	(10)	(1) 1 (100%)		(9)
Musculoskeletal System Skeletal muscle	(1)			
Nervous System Brain Glioma malignant	(10) 1 (10%)			(9)
Respiratory System Lung Alveolar/bronchiolar adenoma, multiple	(10) 1 (10%)	(1) 1 (100%)		(9)
Special Senses System None				
Urinary System None				
Systemic Lesions Multiple organs ^c Leukemia mononuclear Mesothelioma malignant	(10) 1 (10%)	(10) 1 (10%)	(10)	(9) 2 (22%)
Neoplasm Summary Total animals with primary neoplasms ^d Total primary neoplasms Total animals with benign neoplasms Total benign neoplasms Total animals with malignant neoplasms Total malignant neoplasms	8 12 8 10 2 2	7 11 6 8 2 3	9 10 9 9 1 1	8 10 7 7 3 3 3

	0 ррт	222 ppm	666 ppm	2,000 ppm
2-Year Study				
Alimentory System				
Intestine large comm	(49)	(49)	(40)	(47)
Intestine large, colon	(48)	(48)	(47)	(47)
Intestine large, rectum	(46)	(40)	(50)	(40)
Intestine small duodenum	(40)	(47)	(50)	(47)
Intestine small, ileum	(48)	(47)	(30)	(47)
Intestine small, jejunum	(48)	(47)	(48)	(40)
Adenocarcinoma	(40)	(47)	(40)	(40)
Liver	(50)	(50)	(50)	(50)
Henatocellular carcinoma	(50)	1 (2%)	(50)	(50)
Henatocellular adenoma		3 (6%)	1 (2%)	1 (2%)
Hepatocellular adenoma multiple		5 (070)	1 (270)	1(2%)
Mesentery	(10)	(11)	(5)	(9)
Histiocytic sarcoma	1 (10%)	(11)	(3)	
Pancreas	(49)	(49)	(50)	(48)
Carcinoma, metastatic		(1)	(30)	1 (2%)
Histiocytic sarcoma	1 (2%)			1 (270)
Acinar cell, adenoma	5 (10%)	3 (6%)		5 (10%)
Pharynx	5 (10,0)	(1)		5 (10/0)
Palate, squamous cell papilloma		1 (100%)		•
Stomach, forestomach	(50)	(50)	(50)	(50)
Squamous cell carcinoma	(50)	(50)	1 (2%)	1 (2%)
Squamous cell papilloma			1(2%)	1(2%)
Stomach, glandular	(50)	(49)	(50)	(50)
Cardiovascular System				
Heart	(50)	(50)	(50)	(50)
Schwannoma benign	(30)	(55)	1 (2%)	(30)
Fadacrine System				
Adrenal gland cortex	(48)	(50)	(50)	(49)
Adenoma	2 (4%)	(30)	1 (2%)	
Adrenal gland, medulla	(49)	(50)	(50)	(49)
Pheochromocytoma malignant	4 (8%)	3 (6%)	2 (4%)	
Pheochromocytoma benign	7 (14%)	5 (10%)	8 (16%)	9 (18%)
Bilateral, pheochromocytoma malignant	2 (4%)	- ()	- ()	- ()
Bilateral, pheochromocytoma benign	- ()	2 (4%)		1 (2%)
Islets, pancreatic	(49)	(49)	(50)	(48)
Adenoma	1 (2%)	3 (6%)	4 (8%)	2 (4%)
Adenoma, multiple	- (=/0)	1 (2%)	. (0/0)	- ()
Mixed tumor benign		- (***)	2 (4%)	1 (2%)
Parathyroid gland	(47)	(46)	(47)	(48)
Adenoma	()	()	1 (2%)	1 (2%)
Pituitary gland	(50)	(50)	(49)	(49)
Pars distalis, adenoma	14 (28%)	11 (22%)	9 (18%)	4 (8%)
Pars distalis, carcinoma	1 (2%)	\ /	1 (2%)	

Table A1

L

	0 ppm	222 ppm	666 ppm	2,000 ppm					
2-Venr Study (continued)									
Endocrine System (continued)									
Thyroid gland	(49)	(50)	(50)	(50)					
C.cell adenoma	1 (7%)	2 (4%)	2 (4%)	(50)					
C cell carcinoma	1 (2%)	2 (4%)	2 (470)	1 (2%)					
Follicular cell adenoma	1 (2%)	2 (470)		1(2%)					
Follicular cell, carcinoma	1 (2%)	1 (2%)	2 (4%)	1 (270)					
General Body System None									
Genital System									
Enididymis	(50)	(50)	(50)	(50)					
Prenutial gland	(50)	(50)	(50)	(49)					
Adenoma	3 (6%)	(00)	1 (2%)	1 (2%)					
Carcinoma	6 (12%)	4 (8%)	3 (6%)	$\frac{1}{8}(16\%)$					
Squamous cell carcinoma	2 (4%)	((()))		0 (20,0)					
Bilateral adenoma	1(2%)	,	×						
Bilateral, auchoma	1(2%)								
Prostate	(50)	(50)	(50)	(50)					
Sarcoma	(50)	1 (2%)	(30)	(00)					
Seminal vesicle	(50)	(50)	(50)	(50)					
Testes	(50)	(50)	(50)	(50)					
Rilateral interstitial cell adenoma	40 (80%)	38 (76%)	36 (72%)	35 (70%)					
Interstitial cell, adenoma	8 (16%)	7 (14%)	9 (18%)	10 (20%)					
Hematopoietic System									
Bone marrow	(49)	(50)	(50)	(49)					
Lymph node	(50)	(50)	(50)	(50)					
Mediastinal histiocytic sarcoma	1 (2%)	(50)	(30)	(30)					
Pancreatic histiocytic sarcoma	1(2%)								
I ymph node mandibular	(50)	(48)	(50)	(50)					
Lymph node, mesenteric	(49)	(48)	(49)	(48)					
Histiocytic sarcoma	1 (2%)	(10)	(77)	()					
Snleen	(50)	(49)	(50)	(50)					
Carcinoma metastatic harderian gland	(30)	(**)	(30)	1 (2%)					
Hemangiosarcoma	1 (2%)			2(4%)					
Sarcoma	1 (270)			1 (2%)					
Thomas	(45)	(48)	(42)	(47)					
Thymoma benign	()	1 (2%)	(-2)						

	0 ррт	222 ppm	666 ppm	2,000 ppm
2-Year Study (continued)				
Integumentary System				
Mammary gland	(48)	(49)	(47)	(50)
Adenoma	(10)	1 (2%)	(1)	(50)
Fibroadenoma	3 (6%)	1 (2%)	2 (4%)	1 (2%)
Skin	(50)	(50)	(50)	(50)
Basal cell adenoma	1 (2%)			
Basal cell carcinoma				1 (2%)
Basosquamous tumor benign		1 (2%)		
Hemangioma	1 (2%)			κ.
Keratoacanthoma	3 (6%)	1 (2%)		2 (4%)
Sebaceous gland, carcinoma		1 (2%)		. ,
Squamous cell papilloma	1 (2%)	1 (2%)	1 (2%)	
Subcutaneous tissue, basal cell carcinoma	1 (2%)			
Subcutaneous tissue, fibroma	1 (2%)	3 (6%)	2 (4%)	1 (2%)
Subcutaneous tissue, fibrosarcoma		1 (2%)		. ,
Subcutaneous tissue, lipoma	1 (2%)	• •		
Subcutaneous tissue, myxosarcoma				1 (2%)
Subcutaneous tissue, schwannoma malignant		1 (2%)		
Musculoskeletal System		. •		
Bone	(50)	(50)	(50)	(50)
Cranium osteoma	(50)	(50)	1 (2%)	(50)
Femur, chondroma		1 (2%)	1 (270)	
Tibia chondroma		1(2%)		
Skeletal muscle		- (-//)		(2)
Naryous System		<u></u>		
Brain	(50)	(50)	(50)	(50)
Astrocytoma malignant	1 (2%)			
Glioma malignant				1 (2%)
Respiratory System				
Lung	(50)	(50)	(50)	(50)
Alveolar/bronchiolar adenoma	2 (4%)	2 (4%)	2 (4%)	
Alveolar/bronchiolar carcinoma	1 (2%)	1 (2%)	1 (2%)	
Carcinoma, metastatic, thyroid gland			1 (2%)	
Pheochromocytoma malignant, metastatic,				
multiple, adrenal gland	1 (2%)			
Nose	(50)	(50)	(50)	(50)
Lumen, endothelium, squamous cell carcinoma	í (2%)			
Respiratory epithelium, squamous cell				
carcinoma		1 (2%)	1 (2%)	
carcinoma		· (270)	• (270)	

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	222 ppm	666 ррт	2,000 ppm
2-Year Study (continued)				
Special Senses System				
Ear			(1)	
Pinna, schwannoma malignant	<i>4</i> 1	<i>4</i>	1 (100%)	
Eye	(1)	(1)	(2)	(2)
Harderian gland				(2)
Carcinoma Zembalia aland		(1)		1 (50%)
Zymbal's giand		(1)		(1)
Carcinoma		1 (100%)		1 (100%)
Urinary System				
Kidney	(49)	(50)	(50)	(49)
Renal tubule, adenoma		1 (2%)	1 (2%)	1 (2%)
Renal tubule, carcinoma				2 (4%)
Urinary bladder	(50)	(50)	(50)	(50)
Transitional epithelium, carcinoma				1 (2%)
Systemic Lesions				
Multiple organs	(50)	(50)	(50)	(50)
Histiocytic sarcoma	1 (2%)		Xy	
Leukemia mononuclear	26 (52%)	25 (50%)	42 (84%)	34 (68%)
Mesothelioma malignant	1 (2%)		1 (2%)	3 (6%)
Neoplasm Summary				
Total animals with primary neoplasms	50	49	50	50
Total primary neoplasms	147	133	140	137
Total animals with benign neoplasms	50	48	47	48
Total benign neoplasms	96	90	85	78
Total animals with malignant neoplasms	35	33	45	44
Total malignant neoplasms	51	43	55	59
Total animals with metastatic neoplasms	1		1	2
Total metastatic neoplasms	1		1	2

a Number of animals examined microscopically at site and number of animals with lesion.

b Includes one animal killed moribund before the interim evaluation.

c

Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms d

			_													_		_								
Number of Days on Study	4 8 4	4 9 6	5 7 5	5 9 9	6 0 3	6 1 3	6 1 7	6 3 3	6 6 8	6 6 9	6 6 9	6 6 9	6 7 3	6 7 6	6 8 3	6 9 5	6 9 6	7 1 6	7 2 8							
Carcass ID Number	0 0 5 1	0 0 7 1	0 0 3 1	0 0 4 1	0 0 7 2	0 0 3 2	0 0 9 1	0 0 8 1	0 0 8 2	0 0 4 2	0 0 6 1	0 0 8 3	0 0 3 3	0 0 9 2	0 0 2 1	0 1 0 1	0 0 3 4	0 0 1 1	0 0 1 2	0 0 1 3	0 0 1 4	0 0 1 5	0 0 2 2	0 0 2 3	0 0 2 4	
Alimentary System								-		_																
Feonhague	-	<u>ب</u>	<u>+</u>	+	+	+	+	ъ	Ŧ	ъ		т	т	т	ъ	-	-	т	Ŧ	т	L.	· _	т	-	Т	
Intestine large	- T	т А	- -	+	+		+	+	+		- +		+	+	+	+	+	т А	+	т +	- T	+ +		- -		
Intestine large cecum		<u>л</u>									т —		- -	+ +	+	+	+	A	т -	т -		т -				
Intestine large, colon		A	+	+	+	+	+	+	+	+		÷	+	+	+	+	+	A	+	+	+	+	+	+	+	
Intestine large, colon		4	+	+	+	+	+	+	+	+	+	+	+	м	+	+	+	A A	+	+	+	+	+	+	+	
Intestine small		а А	+	+	+	+	+	+	+	-		+	+	+	+	+	+	- -	+	+	+	+	+	+	+	
Intestine small duodenum	- T	<u>^</u>					+	+	+	1		+	т -	+	+	+	+	+	т +		+	т +			- -	
Intestine small, ileum		A		+	+	+	+	+	+	+	. .		+	+	+	+	+	4	+	+	+	+	+	+	+	
Intestine small, jejunum		Ā	÷	÷	+				+				+	+	÷	+	+	Δ	1	, _	, ,		+		т Т	
I iver		4	_	÷	+	÷	+	+	+	÷	. <u>+</u>	+	+	+	÷	+	+	4	+	÷	÷	÷	÷	, +	+	
Mesentery		÷	'	'	+		'	'	•	•	'	'	'	'	•	•	•	•		'	•	'	÷	'	'	
Histioartic sarcoma	Т	×			1																					
Pancreas	-	<u>,</u>	-	-	+	+	Ŧ	+	+	+	ىلەر .	+	+	+	+	+	+	Δ	-	+	+	+	+	+	+	
Histiocutic sarcoma	т	x				т	т		T									A		'	'		Ŧ	-		
A cinar cell adenoma		Λ																		x				x		
Salivary glande	ъ	–	-	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	1	+	+	+	· 7	+	
Stomach	, _		-	÷	÷	÷	÷	+	÷		. .	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	÷	÷	+	÷	
Stomach forestomach		+	4		+		÷	+	+	+	. <u>+</u>	+	+	÷	÷	÷	+	+	+	÷	÷	÷	÷		÷	
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Cardiovascular System												_														
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System																										
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	
Adenoma																										
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	
Pheochromocytoma malignant											Х										Х					
Pheochromocytoma benign										х			х	х		х					х					
Bilateral, pheochromocytoma malignant																										
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	
Adenoma																					х					
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	[+	Μ	

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of o-Nitroanisole: 0 ppm

+: Tissue examined microscopically A: Autolysis precludes examination M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined
Number of Days on Study	7 2	7 3	7 3	7 3																						
	8	8	8	9	9	9	9	9	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	Total
	2	3	4	4	4	5	5	5	5	6	6	6	6	7	7	7	8	8	9	9	9	0	0	0	0	Tissues/
	5	5	3	4	5	2	3	4	5	2	3	4	5	3	4	5	4	5	3	4	5	2	3	4	5	Tumors
Alimentary System																							<u></u>			
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Mesentery						+								+			+				+		+			10
Histiocytic sarcoma																										1
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Histiocytic sarcoma																										1
Acinar cell, adenoma							Х	Х							Х											5
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cardiovascular System								-																		
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																					-					<u> </u>
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	48
Adenoma																X						x				2
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pheochromocytoma malignant									х						x											4
Pheochromocytoma benign															_			х	х							7
Bilateral, pheochromocytoma malignant			х														х									2
Islets nancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	49
isicis, panercatic							•		•	•	•	•	-								•	•				
Adenoma	-					·	•	•	•	•	•	•									·	•	'	•		1

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of o-Nitroanisole: 0 ppm (continued)

Individual Animal Tumor Pathology	of Mal	e R	lat	s i	n tì	he	2-3	Yea	r]	Fee	ed (Stı	ıdy	o	0-	Ni	tro	an	iso	le:	0	pp	m	(00	ntir	ued)	
Number of Days on Study	4 8 4	4 9 6	5 7 5	5 9 9	6 0 3	6 1 3	6 1 7	6 3 3	6 6 8	6 6 9	6 6 9	6 6 9	6 7 3	6 7 6	6 8 3	6 9 5	6 9 6	7 1 6	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8		
Carcass ID Number	0 0 5 1	0 0 7 1	0 0 3 1	0 0 4 1	0 0 7 2	0 0 3 2	0 0 9 1	0 0 8 1	0 0 8 2	0 0 4 2	0 0 6 1	0 0 8 3	0 0 3 3	0 0 9 2	0 0 2 1	0 1 0 1	0 0 3 4	0 0 1 1	0 0 1 2	0 0 1 3	0 0 1 4	0 0 1 5	0 0 2 2	0 0 2 3	0 0 2 4		
Endocrine System (continued) Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma Thyroid gland C-cell, adenoma C-cell, carcinoma Follicular cell, adenoma Follicular cell, carcinoma	+	+ M	+	+	+	+ x +	+	+	++	+	+	+ x +	+	+	+	+	+ X +	+ X +	+	+	+ x +	+ + x	+	+	+ +		
General Body System None																											-
Genital System Epididymis Preputial gland Adenoma Carcinoma Squamous cell carcinoma Bilateral, adenoma Bilateral, carcinoma Prostate Seminal vesicle Testes Leukemia mononuclear, multiple Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+ + + + *	+ + + + X	++ + + + X	+ + + x + + + + x	+ + + + + + + + + + x	+ + + + + + x	+ + + + + + X	+ + + + + + X	+ + + + + X X	++ x +++ x	+++ +++ x	+++ +++ X	+ + + + X	++ x +++ x	+ + + + + X	++ x ++ x	+ + + + + + X	+++ +++ X	+ + + + + + X	+++ +++	+ + + + + + + + + + X	+ + + + + X	+ + + + + + X	+ + + + + + + + + + + + + + + + + + +	+ + + + X		
Hematopoietic System Bone marrow Lymph node Mediastinal, histiocytic sarcoma Pancreatic, histiocytic sarcoma Lymph node, mandibular Lymph node, mesenteric Histiocytic sarcoma Spleen Hemangiosarcoma Thymus	+ + + + +	A + X X + + X + +	+++++++	++ ++ M	+++++++++++++++++++++++++++++++++++++++	++ ++ +	++++++++	+++++++	+++++++	+++++++	+++++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + M	+ + + + + + + +	+++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	++++++++	+ + + M + M	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++		

Number of Days on Study	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	731	7 3 L	
Carcass ID Number	0 0 2 5	0 0 3 5	0 0 4 3	0 0 4 4	0 0 4 5	0 0 5 2	0 0 5 3	0 0 5 4	0 0 5 5	0 0 6 2	0 0 6 3	0 0 6 4	0 0 6 5	0 0 7 3	0 0 7 4	0 0 7 5	0 0 8 4	0 0 8 5	0 0 9 3	0 0 9 4	0 0 9 5	0 1 0 2	0 1 0 3	0 1 0 4	0 1 0 5	0 L D S	Total Tissues/ Tumors
Endocrine System (continued) Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma Thyroid gland C-cell, adenoma C-cell, carcinoma Follicular cell, adenoma Follicular cell, carcinoma	+ + x	+ X +	+ x + x	+ X +	+	+ x +	+	+	+ x +	+ X +	+	+ x + x	+ x +	+ X +	+	+	+	+ x +	+	+	+	+	+	· +	· -	+	50 14 1 49 1 1 1 1
General Body System None																			-								
Genital System Epididymis Preputial gland Adenoma Carcinoma Squamous cell carcinoma Bilateral, adenoma Bilateral, carcinoma Prostate Seminal vesicle Testes Leukemia mononuclear, multiple Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+ + x + + x	++++++	+ + + + X	+ + + + X	+ + + + X	+ + + + X	+ + X + + + + X	+ + + + + + X	+ + + + + + + X	+++ +++	+ + + + + + X	+ + + + + + X	+ + + + + + X	+ + + X + + + X	+ + + + + + X	+ + X + + + + X	+ + + + X + + + X	+ + X + + + +	+ + + + + + X	+ + + + X	++ + + X	++ X +++ X	++ + ++ X	++++++++++++++++++++++++++++++++++++++		++ + X ++ +	50 50 3 6 2 1 1 50 50 50 50 1 40 8
Hematopoietic System Bone marrow Lymph node Mediastinal, histiocytic sarcoma Pancreatic, histiocytic sarcoma Lymph node, mandibular Lymph node, mesenteric Histiocytic sarcoma Spleen Hemangiosarcoma Thymus	+ + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + + + + +	+ + + +	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + + + + +	++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + + + + M	+ + + + + + X +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++ ++ +	++ ++ ++	+ + + + +	· · ·	+ + + +	49 50 1 1 50 49 1 50 1 45

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of o-Nitroanisole: 0 ppm (continued)

103

																			_	_					_				
Number of Days on Study	4 8 4	4 9 6	- 5 7 5	5 9 9	6 0 3	6 1 3	6 1 7	6 3 3	6 6 8	6 6 9	6 6 9	6 6 9	6 7 3	6 7 6	6 8 3	6 9 5	6 9 6	7 1 6	7 2 8										
Carcass ID Number	0 0 5 1	0 0 7 1	0 0 3 1	0 0 4 1	0 0 7 2	0 0 3 2	0 0 9 1	0 0 8 1	0 0 8 2	0 0 4 2	0 0 6 1	0 0 8 3	0 0 3 3	0 0 9 2	0 0 2 1	0 1 0 1	0 0 3 4	0 0 1 1	0 0 1 2	0 0 1 3	0 0 1 4	0 0 1 5	0 0 2 2	0 0 2 3	0 0 2 4				
Integumentary System Mammary gland Fibroadenoma Skin Basal cell adenoma Hemangioma Keratoacanthoma Squamous cell papilloma Suboutaneous tissue basal cell	+	• +	· +	· +	+ + X	+	++	+ +	+ +	+	+ +	+	+	+ +	+ +	+ + x	+ +	+ X +	м +	+] +	+	+	+	· +					
carcinoma Subcutaneous tissue, fibroma Subcutaneous tissue, lipoma																							х						
Musculoskeletal System Bone	+	· +	. +	+	+	 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	· +				
Nervous System Brain Astrocytoma malignant	+	· +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	• +	• +	-			
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Pheochromocytoma malignant.	+	+ X	· +	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	-			
metastatic, multiple, adrenal gland Nose Lumen, endothelium, squamous cell carcinoma Trachea	+	• + • +	• +	· +	+	+	+	+	+	+	+	+ +	+ +	++	++	+	+	+ X +	+	+	+	+	+ +	· + · +	· + · +	- -			
Special Senses System Eye				+																									
Urinary System Kidney Urinary bladder	+	- A	 - +	· +	++	+++++	++	++	++	++	+++++	++	++	++	+ +	+++	+ +	+ +	++	++	+		· +	- + · +	- + - +	-	<u></u>		
Systemic Lesions Multiple organs Histiocytic sarcoma Leukemia mononuclear Mesothelioma malignant	+ x	+ + X X	- + { { X	· +	+	+	+ x	+ x	+ x	+ x	+ : x	+	+ x	+	+ x	+ x	+	+	+	, +	+ X	+	+ + • X	- +	- +	-		_	

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of o-Nitroanisole: 0 ppm (continued)

÷

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of o-Nitroanisole: 0 ppm (continued)

		_		_		-	_						_			_						_			_		_		
Number of Days on Study	7 2 8		7 ° 2 : 8 8	7 2 3	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1		7 3 1	7 3 1	7 3 1										
Carcass ID Number	0 0 2 5		0 (0 (3 / 5 :)) 4 3	0 0 4 4	0 0 4 5	0 0 5 2	0 0 5 3	0 0 5 4	0 0 5 5	0 0 6 2	0 0 6 3	0 0 6 4	0 0 6 5	0 0 7 3	0 0 7 4	0 0 7 5	0 0 8 4	0 0 8 5	0 0 9 3	0 0 9 4	0 0 9 5	0 1 0 2		0 1 0 3	0 1 0 4	0 1 0 5	T T T	fotal fissues/ fumors
Integumentary System Mammary gland Fibroadenoma Skin Basal cell adenoma Hemangioma Keratoacanthoma Squamous cell papilloma Subcutaneous tissue, basal cell carcinoma Subcutaneous tissue, fibroma Subcutaneous tissue, fibroma	+	+ : +	M + + + + + + + + + + + + + + + + + + +	+	+ +	+	++	++	+ + x x	+ + X	++	++	+	+	+	+	++	++	++	+	+	· +	 34 - +	 	+	+ + X	+ x +		48 3 50 1 1 3 1 1 1 1 1
Musculoskeletal System Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-+			+	+	+		50
Nervous System Brain Astrocytoma malignant	+	F	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		- 4		+	+	+		50 1
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+ X	+	+	+	+	+	+	+	+	+	÷	+ X	+	+	+	+	+	+	-+	- 4		+	+	+		50 2 1
Pheochromocytoma malignant, metastatic, multiple, adrenal gland Nose Lumen, endothelium, squamous cell carcinoma	+	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x +	+	+	+	+	- 4		+	+	+	:	1 50 1
Trachea Special Senses System Eye	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		- 4		+ 	+	+	. <u> </u>	50
Urinary System Kidney Urinary bladder	+	► ►	+	+++	++	++	++	+ +	+ +	+ +	+++	+++	++	++	++	+ +	+ +	+++	++	+ +	+ +	+			 + +	++	+ +		49 50
Systemic Lesions Multiple organs Histiocytic sarcoma Leukemia mononuclear Mesothelioma malignant	+ X	⊦ ≰	+ · X	+	+ x	+ x	+	+	+	+ x	+	+ x	÷	+	+ x	+	+	+	+	+ X	+ x	+	- +	 c :	+ X	+ x	+ x		50 1 26 1

Individual Animal Tumor Pathology o	f Mal	e F	lat	s iı	n tl	he	2-1	/ea	ır]	Fee	d i	Stı	ıdy	of	0-	Ni	tro	an	iso	le:	2	22	pp	m				
Number of Days on Study	0 6 3	4 2 3	5 1 1	5 5 1	5 5 9	5 8 9	6 3 8	6 4 1	6 4 2	6 4 7	6 4 7	6 5 5	6 8 1	6 8 2	6 8 7	7 1 9	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9			
Carcass ID Number	0 4 6 1	0 3 7 1	0 4 5 1	0 3 7 2	0 3 7 3	0 3 8 1	0 4 1 1	0 4 6 2	0 4 3 1	0 3 8 2	0 4 1 2	0 3 9 1	0 4 5 2	0 4 6 3	0 4 3 2	0 4 0 1	0 3 7 4	0 3 7 5	0 3 8 3	0 3 8 4	0 3 8 5	0 3 9 2	0 3 9 3	0 3 9 4	0 3 9 5			
Alimentary System																								_				
Esophagus	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+			
Intestine large	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	+			
Intestine large, cecum	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+			
Intestine large, colon	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	• +	+			
Intestine large, rectum	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+			
Intestine small	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+			
Intestine small, duodenum	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+			
Intestine small, ileum	+	+	+	+	Α	+	÷	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	•		
Intestine small, jejunum	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+			
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+			
Hepatocellular carcinoma Hepatocellular adenoma																												
Mesentery		+				+				+	+																	
Pancreas Acinar cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+			
Pharynx							+																					
Palate, squamous cell papilloma							Х																					
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+			
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach, forestomach Stomach, glandular Teoth	+	++	+ +	++	+ +	+++++++++++++++++++++++++++++++++++++++	+ +																					
		-										_															<u></u>	
Cardiovascular System Heart	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Endocrine System																												
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	· +	+			
Pheochromocytoma malignant														Х														
Pheochromocytoma benign																		Х				Х		Х				
Bilateral, pheochromocytoma benign																				Х					Х			
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	· +	+			
Adenoma																												
Adenoma, multiple																						Х						
Parathyroid gland	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	· +	+			
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Pars distalis, adenoma							х	х											Х			Х			Х			
Thyroid gland C-cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
C-cell, carcinoma Follicular cell, carcinoma					x							х					х											

106

7 7 7 7 7 7 777 7 7 7 7 7 Number of Days on Study 2 2 3 Q 911111 0 **Carcass ID Number** 4 Total 4 0 4 2 3 3 3 4 0 0 0 1 1 1 2 2 2 2 4 4 4 5 5 5 66 Tissues/ 5 1 3 4 5 3 4 5 2 3 4 5 3 4 5 3 4 2 2 1 3 4 5 4 5 Tumors **Alimentary System** Esophagus 49 Intestine large 49 Intestine large, cecum 48 + Intestine large, colon 48 Intestine large, rectum 49 Intestine small 48 Intestine small, duodenum + + 47 Intestine small, ileum 47 + Intestine small, jejunum 47 + + + + + + Liver 50 Hepatocellular carcinoma х 1 Hepatocellular adenoma х Х Х 3 Mesentery ++ 11 Pancreas 49 Acinar cell, adenoma 3 Pharynx 1 Palate, squamous cell papilloma 1 Salivary glands + + 50 Stomach 50 Stomach, forestomach 50 Stomach, glandular 49 Tooth 1 **Cardiovascular** System Heart 50 + + + ++ + + + + **Endocrine** System Adrenal gland 50 + + Adrenal gland, cortex + + + + 50 + Adrenal gland, medulla + + + 50 + + + + + Pheochromocytoma malignant x х 3 Pheochromocytoma benign х х 5 Bilateral, pheochromocytoma benign 2 Islets, pancreatic 49 Adenoma 3 Adenoma, multiple 1 Parathyroid gland + + + М + М + + + 46 Pituitary gland + + + + 50 Pars distalis, adenoma хх х х х х 11 Thyroid gland + 50 C-cell, adenoma x 2 C-cell, carcinoma 2 Follicular cell, carcinoma 1

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of o-Nitroanisole: 222 ppm (continued)

Individual Animal Tumor Pathology o	f Male	e R	at	s ir	n tl	ne	2-3	(ea	r I	Fee	d S	Stu	ıdy	of	0-	Ni	tro	an	iso	le:	2	22	pp	m ((con	tinued)
Number of Days on Study	0 6 3	4 2 3	5 1 1	5 5 1	5 5 9	5 8 9	6 3 8	6 4 1	6 4 2	6 4 7	6 4 7	6 5 5	6 8 1	6 8 2	6 8 7	7 1 9	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	
Carcass ID Number	0 4 6 1	0 3 7 1	0 4 5 1	0 3 7 2	0 3 7 3	0 3 8 1	0 4 1 1	0 4 6 2	0 4 3 1	0 3 8 2	0 4 1 2	0 3 9 1	0 4 5 2	0 4 6 3	0 4 3 2	0 4 0 1	0 3 7 4	0 3 7 5	0 3 8 3	0 3 8 4	0 3 8 5	0 3 9 2	0 3 9 3	0 3 9 4	0 3 9 5	
eneral Body System None																										
enital System				_	_				-					_												······
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Carcinoma	•	•	•							-								X								
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	
Sarcoma																										
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	·+	+	+	+	+	+	+	+	+	+	+	
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Bilateral, interstitial cell, adenoma	•		-			x			x	x	x	x	х	х	х	x	х	х	х	х			х	х	X	
Interstitial cell, adenoma			х	х	x																х					
Iematopoietic System	- <u></u>								+																	
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node, mesenteric	- -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	
Spleen	+	+	+	+	Å	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	
Thymoma benign		•	•	•	•	•	•	•		•		•	•			2		-			-	-	-		-	
ntegumentary System				·													·									
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	
Adenoma																							Х			
Fibroadenoma																										
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Basosquamous tumor benign Keratoacanthoma																										
Squamous cell papilloma																										
Sebaceous gland, carcinoma																		х								
Subcutaneous tissue, fibroma							х																	Х		
Subcutaneous tissue, fibrosarcoma													х													
Success																										
Subcutaneous tissue, schwannoma																										

Lesions in Male Rats

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of o-Nitroanisole: 222 ppm (continued) 77 7 7 7 Number of Days on Study 3 3 3 3 3 3 3 3 3 3 Q 9 1 1 0 A 0 0 0 0 4 4 4 **Carcass ID** Number 4 4 4 4 4 4 Total 4 4 4 4 4 44444 4 4 4 4 4 4 0 4 2 3 3 3 4 0 0 0 1 1 1 2 2 2 2 4 4 4 5 5 Tissues/ 566 2 2 1 3 4 5 1 3 4 5 3 4 5 2 3 4 5 3 4 5 3 4 5 4 5 Tumors **General Body System** None **Genital System** Epididymis 50 + + + + + + + Preputial gland 50 + + + Carcinoma х Х х 4 Prostate 50 Sarcoma 1 х Seminal vesicle 50 + + + 50 Testes + Bilateral, interstitial cell, adenoma x x x x x x x x x x x x x XXXXX х XXXXX 38 Interstitial cell, adenoma х х Х 7 **Hematopoietic System** Blood 1 Bone marrow 50 Lymph node 50 + + + Lymph node, mandibular 48 + Μ + Lymph node, mesenteric 48 + + + + + + + + Spleen 49 + + + + + + + + + + 4 + + + + + 4 + + + + + + + + Thymus + + Μ 48 + + + + Thymoma benign х 1 Integumentary System Mammary gland 49 Adenoma 1 Fibroadenoma 1 Skin 50 Basosquamous tumor benign Х 1 Keratoacanthoma х 1 Squamous cell papilloma х 1 Sebaceous gland, carcinoma 1 Subcutaneous tissue, fibroma х 3 Subcutaneous tissue, fibrosarcoma 1 Subcutaneous tissue, schwannoma malignant 1

- ----

TABLE A2

Individual Animal Tumor Pathology o	Male Rats in the 2-Year Feed Study of o-Nitroanisole: 222 ppm (cont	inued)
Number of Days on Study	0 4 5 5 5 6 6 6 6 6 7 3 1 1 9 8 8	
Carcass ID Number	0 0	
Musculoskeletal System Bone Femur, chondroma Tibia, chondroma	+ + + + + + + + + + + + + + + + + + +	N
Nervous System Brain	+ + + + + + + + + + + + + + + + + + + +	
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Nose Respiratory epithelium, squamous cell carcinoma Trachea	+ + + + + + + + + + + + + + + + + + +	
Special Senses System Eye Zymbal's gland Carcinoma	+	
Urinary System Kidney Renal tubule, adenoma Urinary bladder	+ + + + + + + + + + + + + + + + + + +	
Systemic Lesions Multiple organs Leukemia mononuclear	+ + + + + + + + + + + + + + + + + + +	

TABLE A2

Individual Animal Tumor Pathology of	f Male	e R	lat	s ii	n ti	he	2- }	Yea	er I	Fee	d :	Stu	ıdy	o	0-	Ni	tro	ani	iso	le:	2	22	pp	m	(00	ontinue	i)
Number of Days on Study	7 2 9	7 2 9	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 5													
Carcass ID Number	0 4 0 2	0 4 4 2	0 4 2 1	0 4 3 3	0 4 3 4	0 4 3 5	0 4 4 1	0 4 0 3	0 4 0 4	0 4 0 5	0 4 1 3	0 4 1 4	0 4 1 5	0 4 2 2	0 4 2 3	0 4 2 4	0 4 2 5	0 4 4 3	0 4 4 4	0 4 4 5	0 4 5 3	0 4 5 4	0 4 5 5	0 4 6 4	0 4 6 5		Total Tissues/ Tumors
Musculoskeletal System Bone Femur, chondroma Tibia, chondroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	4	+	+		-	50 1 1
Nervous System Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	50
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Nose Respiratory epithelium, squamous cell carcinoma	+	+	+	+	+	+	+	`+ +	+	+	+	+	+	+	+	+	+	++	++	+	+	+ x +	 + +	 +	 + -	-	50 2 1 50 1
Trachea Special Senses System Eye Zymbal's gland Carcinoma	+	+	+	+	+	+	+ 	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+		50 1 1 1
Urinary System Kidney Renal tubule, adenoma Urinary bladder	+	+	+	++	+	+	+	++	+ +	+ +	++	++	+ +	++	++	+++	+ +	++	++	+ X +	 + +	+++	 + +	· +	 + +	- -	50 1 50
Systemic Lesions Multiple organs Leukemia mononuclear	+ X	+ X	+ X	+ X	+ X	+	+ X	+	+	+	+ X	+	+ X	+	 · +	- + >		50 25									

	 																						rr				
Number of Days on Study	4 3 7	5 3 3	5 5 7	5 5 8	5 9 6	6 0 4	6 3 2	6 3 7	6 4 1	6 4 6	6 4 6	6 4 7	6 5 7	6 6 7	6 6 7	6 6 7	6 6 9	6 7 9	6 8 3	6 8 6	6 8 7	6 9 5	7 1 6	7 1 8	7 2 2		
Carcass ID Number	0 2 8 1	0 3 1 1	0 2 8 2	0 2 7 1	0 3 0 1	0 3 1 2	0 2 7 2	0 3 3 1	0 2 5 1	0 3 0 2	0 3 4 1	0 2 9 1	0 2 6 1	0 2 6 2	0 2 6 3	0 2 6 4	0 2 5 2	0 2 8 3	0 3 1 3	0 3 4 2	0 2 7 3	0 2 7 4	0 3 3 2	0 2 9 2	0 3 2 1		-
Alimentary System				•											*******					-							
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, cecum	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small duodenum	+	+	+	~÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small ileum	Å	+	+	Å	+	+	÷	+	+	+	+	+	÷	+	÷	+	÷	+	+	+	+	+	+	+	+		
Intestine small jejunum	4	÷	+	Δ	÷	÷	+	+	÷	+	÷	÷	+	÷	÷	÷	÷	÷	+	÷	+	+	+	+	÷		
l iver		÷.		+	+	+	÷	÷	÷	+	+	+	+	÷	+	÷	+	+	+	+	+	+	+	+	÷		
Hepatocellular adenoma	•	•	•	•	•			•	•			•	•		•	•	•	•	•	•	+	•	+	+	•		
Banaroan	Т	-	-	<u>т</u>	ъ	ъ	ъ	<u>т</u>	ъ	ــــ		-	<u>ب</u>	-	<u>н</u>	-	л.	+	-	-	_	-	÷	_	+		
Fancicas Solivoru elondo	т 		т 		- -	Ť		Ť	- T	т 	т 	т 	т 		т 		+ -	т 		т 		т 	т 	т 	т -		
Salivary glands		Ţ	Ţ		T	Ť	T		Ţ	T		т 1			Ť	- T	т -	- -	т 	Ť	т 		т 		т 1		
Stomacn Stomach formatters als	+	+	+	- T	Ť	Ţ.	-	Ţ	-	- T	- <u>-</u>	Ţ	- T	Ţ	Ţ	Ţ	Ť	T	Ŧ		Ť	Ţ	Ŧ	Ţ	Ŧ		
Stomach, forestomach	Ŧ	т	Ŧ	T	Ŧ	т	т	т	T	т	T	т	т	т	т	т	T	Ŧ	т	т	т	T	т	т	Ŧ		
Squamous cell carcinoma																											
Squamous cell papilloma																											
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+	+	•	
Cardiovascular System																											
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Schwannoma benign																											
Endocrine System														_													=
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pheochromocytoma malignant Pheochromocytoma benign						x							х									x		х	x		
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adenoma					х													Х	Х								
Mixed tumor benign														х	х												
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	[+	+	+	+		
Adenoma			-																								
Pituitary gland	+	+	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pars distalis, adenoma	•	•	x	·	•							x					х					х					
Pars distalis, carcinoma																							х				
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
C-cell adenoma	•	•	•	•	•	•	•	x		•	•	•	-	•	•				-						х		
Follicular cell carcinoma												x															
i omenai cen, caremonia																											

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of o-Nitroanisole: 666 ppm

Individual Animal Tumor Patholog	y of Malo	• R	at	s in	n tŀ	he	2-}	lea	nr I	Fee	ed S	Str	ıdy	oſ	0 -]	Nit	ro	ani	iso	le:	6	66	pp	m	(con	tinued)
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
· · · · · · · · · · · · · · · · · · ·	2	9	9	9	9	9	9	9	9	9	9	1	1	1	1	1	2	2	2	2	2	5	5	5	5	
<u>e 1998 1998 199</u> 7 1997 1997 1997 1997 1997 1997 199	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	3	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Total
	3	5	5	5	6	7	8	8	9	9	9	0	0	0	1	1	2	2	2	2	3	3	4	4	4	Tissues
	3	3	4	5	5	5	4	5	3	4	5	3	4	5	4	5	2	3	4	5	4	5	3	4	5	Tumors
Alimentary System																			_							
Esophagus	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, duodenum	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatocellular adenoma																					Х					1
Mesentery																					+		+			5
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Squamous cell carcinoma																									х	1
Squamous cell papilloma																							Х			1
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Schwannoma benign																							х			1
Endocrine System																				-						
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	50 1
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma malignant		Х																								2
Pheochromocytoma benign	X			Х								Х									х					8
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma												Х												_		4
Mixed tumor benign																								_		2
Parathyroid gland	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	[+	+	47
Adenoma					X																					1
Pituitary gland	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pars distalis, adenoma			Х											х	Х							X	Х			9
rars distalis, carcinoma											,															1
Inyrold giand	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
C-cell, adenoma							v																			2
romemar cen, carcinoma							Ä																			2

TABLE A2

Individual Animal Tumor Pathology	of Mal	e F	lat	s iı	n tl	he	2-1	Yea	ar I	Fee	ed	Stı	ıdy	o of	0-	Ni	tro	an	iso	le:	6	66	PP	m	(cor	ntinued)
Number of Days on Study	4 3 7	5 3 3	5 5 7	5 5 8	5 9 6	6 0 4	6 3 2	6 3 7	6 4 1	6 4 6	6 4 6	6 4 7	6 5 7	6 6 7	6 6 7	6 6 7	6 6 9	6 7 9	6 8 3	6 8 6	6 8 7	6 9 5	7 1 6	7 1 8	7 2 2	
Carcass ID Number	0 2 8 1	0 3 1 1	0 2 8 2	0 2 7 1	0 3 0 1	0 3 1 2	0 2 7 2	0 3 3 1	0 2 5 1	0 3 0 2	0 3 4 1	0 2 9 1	0 2 6 1	0 2 6 2	0 2 6 3	0 2 6 4	0 2 5 2	0 2 8 3	0 3 1 3	0 3 4 2	0 2 7 3	0 2 7 4	0 3 3 2	0 2 9 2	0 3 2 1	 -
General Body System None																-										
Genital System																									_	
Coagulating gland																										
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Preputial gland	+	+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma																										
Carcinoma					х									X												
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Bilateral, interstitial cell, adenoma Interstitial cell, adenoma			х	X	х	х	х	х	х	х	X	x	X	x	х	x	х		х	х	x	х		x		
Hematopoietic System			_		_																s		Mileson and			
Blood																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	+	+	
Lymph node	+	+	+	+	+	+	+	+	` +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Thymus	М	[+	Μ	[+	Μ	+	+	+	+	+	+	+	М	M	+	М	+	+	+	+	+	+	+	+	+	
Integumentary System																										
Mammary gland	+	+	+	+	+	+	+	+	+	+	Μ	[+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	
Fibroadenoma							х																			
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Squamous cell papilloma																									х	
Subcutaneous tissue, fibroma							х																			
Musculoskeletal System																							_			
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+	
Cranium, osteoma																		x								
Nervous System								_		_				_		_										
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
						_		_				_		_		_									_	

Individual Animal Tumor Pathology of	' Mal	e R	lat	s in	n tl	he	2-1	lea	ar I	Fee	ed i	Stu	ıdy	ol	0-	Ni	tro	an	iso	le:	6	66	pp) MM	(00)	itinued)
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Transer of Days on Statey	2	9	9	9	9	9	9	9	9	9	9	1	1	1	1	1	2	2	2	2	2	5	5	5	5	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	3	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Total
	3	5	5	5	6	7	8	8	9	9	9	0	0	0	1	1	2	2	2	2	3	3	4	4	4	Tissues/
	3	3	4	5	5	5	4	5	3	4	5	3	4	5	4	5	2	3	4	5	4	5	3	4	5	Tumors
General Body System None																										
Genital System																							-			
Coagulating gland														+												1
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma											Х															1
Carcinoma							Х																			3
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Bilateral, interstitial cell, adenoma		х	х		х	Х		х	Х		Х	X	Х		х	х		х	Х	х		х	Х	X	X	36
Interstitial cell, adenoma	Х			х			х			х				х			х				х					9
Hematopoietic System											`		_						_							
Blood																+										1
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	49
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Thymus	+	+	+	+	М	+	+	+	+	+	+	+	М	: +	+	+	+	+	+	+	+	+	+	+	+	42
Integumentary System																					-					
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	47
Fibroadenoma								-					-				-	-			x	-	-		-	2
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	50
Squamous cell papilloma																										1
Subcutaneous tissue, fibroma												Х	•													2
Musculoskeletal System																			_							
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cranium, osteoma																										1
Nervous System	· · · ·																									
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	50

Individual Animal Tumor Pathology o	of Mal	e]	Rat	ts i	n t	he	2-`	Yea	ar I	Fee	ed	Stı	ıdy	of	0-	Ni	tro	an	iso	le:	6	66	PF	m	(00	ntinue	d)
Number of Days on Study	4 3 7	5 3 3	5 5 7	5 5 8	5 9 6	6 0 4	6 3 2	6 3 7	6 4 1	6 4 6	6 4 6	6 4 7	6 5 7	6 6 7	6 6 7	6 6 7	6 6 9	6 7 9	6 8 3	6 8 6	6 8 7	6 9 5	7 1 6	7. 1 8	7 2 2		
Carcass ID Number	0 2 8 1	0 3 1 1	0 2 8 2	0 2 7 1	0 3 0 1	0 3 1 2	0 2 7 2	0 3 3 1	0 2 5 1	0 3 0 2	0 3 4 1	0 2 9 1	0 2 6 1	0 2 6 2	0 2 6 3	0 2 6 4	0 2 5 2	0 2 8 3	0 3 1 3	0 3 4 2	0 2 7 3	0 2 7 4	0 3 3 2	0 2 9 2	0 3 2 1		
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	· +		- +	- +	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	+		
Carcinoma, metastatic, thyroid gland Nose Respiratory epithelium, squamous cell carcinoma Trachea	+	· +	- 4 - 4	+ + X	- + (· +	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	· +		
Special Senses System Ear Pinna, schwannoma malignant Eye				+ X +	-																						
Urinary System Kidney Renal tubule, adenoma Urinary bladder	+	• +	⊦ 4 ⊦ 4	- + - +	- +	• +	+	+	+	+	+	+	+ +	++	+	+	+	+	++	+	+	+	+	+	· +		
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant	+ x	. +	+ + { }	- + (+ X	+ x	+	+ X	+ x	+ x	+ X	+	+ x	+	+ x	+ : X	· +	+ x									

116

Lesions in Male Rats

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (continued)

Number of Days on Study	7 2 2	7 2 9	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 2	7 3 2	732	7 3 2	7 3 2	7 3 5	7 3 5	7 3 5	7 3 5											
Carcass ID Number	0 3 3 3	0 2 5 3	0 2 5 4	0 2 5 5	0 2 6 5	0 2 7 5	0 2 8 4	0 2 8 5	0 2 9 3	0 2 9 4	0 2 9 5	0 3 0 3	0 3 0 4	0 3 0 5	0 3 1 4	0 3 1 5	0 3 2 2	0 3 2 3	0 3 2 4	0 3 2 5	0 3 3 4	0 3 3 5	0 3 4 3	0 3 4 4	0 3 4 5		Total Tissues/ Tumors
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Carcinoma, metastatic, thyroid gland Nose	+	+	+	+	+	+ X +	+ X X +	+	+	+	+	++	++	+ X +	++	+	+	+	+	+	+	+	+	+	+		50 2 1 1 50
Respiratory epithelium, squamous cell carcinoma Trachea	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	a.	1 50
Special Senses System Ear Pinna, schwannoma malignant Eye								+																			1 1 2
Urinary System Kidney Renal tubule, adenoma Urinary bladder	+	• +	+	+ X +	+	+ +	+ +	+	+ +	+ +	++	++	+ +	++	+	+ +	+ +	+	+ +	+	++	+ +	+ +	++	++		50 1 50
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant	+ X	+ : X	+	+ X	+	+ x	+ x	+ X	+ X	+ x	+ x	+	+	+ X	+ x x	+ x	+ x	+ x	+ x		50 42 1						

,

5 0 2 0 2 2 1 + A A A A A A	5 1 1 0 1 6 1 +++++	5 1 8 0 1 3 1 + +	5 1 8 0 1 3 5 +	5 : 2 : 9 : 0 (0 1 : 5 (0 2 : 1	5 : 5 : 4 : 0 : 2 : 1 :	5 £ 6 € 11 3 0 () 11 2 8 1 1 1	5 5 6 8 3 9 0 0 2 1 1 4 1 1	5 5 8 8 9 9 0 0 1 1 7 1	5 8 9 0 1 8 2	6 0 4 0 2 1 2	6 0 4 0 2 2	6 1 3 0 2 2	6 2 1 0 1 6	6 3 2 0 1 4	6 3 2 0 1 9	6 3 2 0 1 9	6 3 2 0 2 1	6 3 3 0 2 1	6 4 1 0 1 4	6 4 2 0 1 7	6 4 6 0 1 6	
0 2 2 1 + A A A A A A A	0 1 6 1 ++++++	0 1 3 1 +	0 1 3 5	0 (1 2 1	0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 () 1 2 8 1 1 1	0 0 2 1 1 4 1 1	0 1 7 1	0 1 8 2	0 2 1 2	0 2 2	0 2 2	0 1 6	0 1 4	0 1 9	0 1 9	0 2 1	0 2 1	0 1 4	0 1 7	0 1 6	
+ A A A A A	++++++	+++	+							-	2	3	2	2	2	3	3	4	3	2	3	
+ A A A A A	+ + + +	+ +	+	н.																		
A A A A A	+ + +	+		T	+ -	+ •	+ -	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	
A A A A A	+ +		+	+ •	+	+ •	+ -	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	
A A A A	+	+	+	+ •	+	+ •	+ -	+ +	• +	+	+	+	Α	+	+	+	+	+	+	+	+	
A A A		+	+	+ •	+ •	+ •	+ -	+ +	• +	+	+	+	A	+	+	+	+	+	+	+	+	
A A	+	+	+	+ •	+	+ •	+ -	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	
A	+	+	+	+ •	+ •	+ •	+ -	+ +	· +	+	+	+	Α	+	+	+	+	+	+	+	+	
	+	+	+	+ •	+	+ •	+ -	+ +	- +	+	+	+	Α	+	+	+	+	+	+	+	+	
Α	+	+	+	+ •	+	+ •	+ -	+ +	• +	+	+	+	Α	+	+	+	+	+	+	+	+	
A	+	+	+	+ •	+	+ •	+ •	+ +	- +	+	+	+	Α	+	+	+	+	+	+	+	+	
		•			x																	
+	+	+	+	+ -	+ .	+ •	+ -	+ +	. +	+	+	+	+	+	+	+	+	+	+	+	+	
	•	•		•				• •	•	•	x	•	•	·	•		•		•	•	•	
Ŧ						Ŧ					+		+									
Å	Ŧ	Ŧ	+	т.	+	÷.	.	ч		+	÷	+	Å	+	+	+	+	+	+	+	+	
A	т	т	т	Ŧ	т	т			'	'		•	~	•	•	•	•	•	•	•	'	
												v										
						. .				т	+	1	Ŧ	т	-	-	т	т	Ŧ	+	+	
+	Ţ	+	Ŧ	T	Ŧ	т :	т.			т _	т т	- -	т -	- -	т _	Ť	т -	т Т	т _		т Т	
+	+	+	Ţ	+ '	T	T	+ ·			- -	Ŧ	Ť	- -	Ŧ	- -	Ť	- -	т _	- -	Ť	Ť	
+	Ŧ	+	Ŧ	T . '	+	+ .	Τ.	F 7	· •	Ŧ	т	т	т	т	Ŧ	т	Ŧ	т	Ŧ	т	Ŧ	
																				-		
+	+	+	+	+	+	+ ·	+ •	+ 1	- +	+	+	+	+	+	+	+	+	+	+	+	+	
+	+	+	+	+	+	+ ·	+ •	+ +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	
	_											_						-	_			
Α	+	+	+	+	+	+	+ ·	+ +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	
Α	+	+	+	+	+	+ -	+ •	+ +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	
Α	+	+	+	+	+	+	+ •	+ +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	
		-										х		х								
А	+	+	+	+	+	+	+ •	+ +	+ +	+	+	+	Α	+	+	+	+	+	+	+	+	
	-	x		-																		
+	+	+	+	+	+	+	+ ·	+ +	+ +	+	+	+	+	+	+	+	М	+	+	+	+	
-	Ĩ	ĩ	-	-	-	-			,													
+	+	+	+	+	+	+	+ -	+ +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	
•		x	•				•		•	-		-		-				-	-	v	-	
	+ +A +++ + - + - AAA A + +	$\begin{array}{c} + & + \\$	$\begin{array}{c} + & + & + \\ + & + & + \\ + & + & + \\ + & + &$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	+ +	+ +	+ +	+ +	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	+ +	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$ \begin{array}{c} + + + + + + + + + + + + + + + + + + + $

Lesions in Male Rats

TABLE A2 .

Individual Animal Tumor Pathology o	of Mal	e R	lat	s ii	n ti	he	2-3	Yes	ar l	Fe	edl	Sta	udy	0	i o-	Ni	tro	an	iso	le:	2	,00	0 I	ppı	m (continued)
	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	4	5	5	5	6	6	6	8	8	Ř	8	9	9	9	9	1	2	2	2	2	2	3	3	3	3	
	6	5	5	8	3	7	9	6	6	7	7	5	7	7	9	5	8	9	9	9	9	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	1	1	1	2	1	1	1	1	2	1	2	1	1	1	1	1	2	1	1	1	2	1	1	2	2	Total
	7	3	8	0	3	6	7	6	0	8	2	9	4	4	5	3	2	5	5	7	0	8	9	0	1	Tissues/
	3	2	3	2	3	4	4	5	3	4	4	4	4	5	3	4	5	4	5	5	4	5	5	5	5	Tumors
Alimentary System													• •													J
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	47
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small	+	· +	+	. <u>+</u>	+	+	+	+	+	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	48
Intestine small duodenum		. <u>.</u>	+	. <u>.</u>	+	. <u>.</u>	. <u>.</u>	+	. <u>+</u>	+		. +	. .	+	+	+	Å	+	÷	+	+	÷	÷	. .		. 47
Intestine small, ileum	+				+		. .	+		+		+		+	+	+	A	÷	+	+	+	+	_		+	- 46
Intestine small, jejunum							. <u>.</u>	+	. .					_	÷		+	÷		+	+	÷		4		. 48
Adenocarcinoma		'	'	'	•		'	•	'	'	'	'	•	'	'	'		'	'	1	'	•		'		1
Liver		. т	-		Ŧ	<u> </u>		Ŧ		 _	-	ىد	ъ	ъ	<u>ــ</u>		ـ ـ	-	Ъ	L			50
Uenstocellular adenoma	т	· •	Т	· •	т	т	т	т	T	т	т Т	· •	т	т	T	т	Ŧ	Ŧ	т	т	т	T	-	т	· •	1
Hepatocellular adenoma multiple																v										1
Menanteri																Â										1
Denerge								Ţ			Ţ			- -		T										40
Pancreas	Ŧ	+	+	* *	+	+	+	+	+	+	+	• •	• + •	+	+	+	+	+	+	+	+	+	+	- +	• •	48
Carcinoma, metastatic													X													1
Acinar cell, adenoma												Ā	. A			X										4
Salivary glands	+	+	+	• +	+	+	+	+	+	+	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	• +	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	· +	+	+	+	+	+	+	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	• +	50
Squamous cell carcinoma					X																					1
Squamous cell papilloma																			Х							1
Stomach, glandular	+	+	÷	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	50
Cardiovascular System																										
Blood vessel																+										1
неап	· +	• •	+	• +	+	+	+	+	+	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	• +	50
Endocrine System																										
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· 49
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	• +	· 49
Pheochromocytoma benign									Х						Х		Х	Х				Х	Х	X		9
Bilateral, pheochromocytoma benign																									Х	1
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+	+	+	+	+	+	• +	· 48
Adenoma	Х	:																								2
Mixed tumor benign																	x									1
Parathyroid gland	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	[+	+	+	+	+	+	• +	- 48
Adenoma																			х							1
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	• +	. 49
Pars distalis, adenoma															Х								,			4
•																										
·																										

																							* I	-	- (~n.	mue	
Number of Days on Study	4 8 1	4 9 1	5 0 2	5 1 1	5 1 8	5 1 8	5 2 9	5 5 4	5 6 1	5 6 3	5 8 9	5 8 9	5 8 9	6 0 4	6 0 4	6 1 3	6 2 1	6 3 2	6 3 2	6 3 2	6 3 2	6 3 3	6 4 1	6 4 2	6 4 6			,
Carcass ID Number	0 1 5 1	0 1 9 1	0 2 2 1	0 1 6 1	0 1 3 1	0 1 3 5	0 1 5 2	0 2 0 1	0 1 8 1	0 2 1 1	0 1 4 1	0 1 7 1	0 1 8 2	0 2 1 2	0 2 2 2	0 2 2 3	0 1 6 2	0 1 4 2	0 1 9 2	0 1 9 3	0 2 1 3	0 2 1 4	0 1 4 3	0 1 7 2	0 1 6 3			
Endocrine System (continued) Thyroid gland C-cell, carcinoma Follicular cell, adenoma	+	+ x	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	·+			
General Body System None															-													
Genital System Epididymis Preputial gland Adenoma Carcinoma Prostate Seminal vesicle Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+ + + + X	++++++	+++ +++X	+ + + + + X	+ + + + + +	+ + + + + + X	+ + + + + + X	+++++	+ + + + + + X	++++++	+ + + + + + X	+ + + + + + X	+ + + + + + X	+ + + + X	+ + + + +	+ + + + + + X	+ + + + X	+ + + + + + + + x	+ + + + + + X	+ + + + + + X	+ + + X + + + X	+ + + + X	+ + + + X	+ + + + + X	+ + + + X			
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Carcinoma, metastatic, harderian gland Hemangiosarcoma Sarcoma Thymus	+ + + + M	+++++++++++++++++++++++++++++++++++++++	A + + + + +	++++++++++	+ + + + + + + + + + + + + + + + + + +	++++++++	+++++++++	+++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++++	+++++++++	++++++++++	+ + + + + +	+ + + + +	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + M	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	-		
Integumentary System Mammary gland Fibroadenoma Skin Basal cell carcinoma Keratoacanthoma Subcutaneous tissue, fibroma Subcutaneous tissue, myxosarcoma	+	+	++	++	+ +	+ +	+ +	+ +	+ +	+++	+++	++	++	++	+ +	+++	++	+ + x	++	+++	+ +	++	++	+ +	++		····· .	

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of o-Nitroanisole: 2,000 ppm (continued)

Lesions in Male Rats

Individual Animal Tumor Pathology of	' Mal	e₽	lat	s ii	n tl	he	2-8	Yea	or I	Fee	ed :	Stu	ıdy	OÎ	0-	Ni	tro	an	iso	le:	2	,00	0 [opr	m ((continued)	
Number of Days on Study	6 4 6	6 5 5	6 5 5	6 5 8	6 6 3	6 6 7	6 6 9	6 8 6	6 8 6	6 8 7	6 8 7	6 9 5	6 9 7	6 9 7	6 9 9	7 1 5	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0		
Carcass ID Number	0 1 7 3	0 1 3 2	0 1 8 3	0 2 0 2	0 1 3 3	0 1 6 4	0 1 7 4	0 1 6 5	0 2 0 3	0 1 8 4	0 2 2 4	0 1 9 4	0 1 4 4	0 1 4 5	0 1 5 3	0 1 3 4	0 2 2 5	0 1 5 4	0 1 5 5	0 1 7 5	0 2 0 4	0 1 8 5	0 1 9 5	0 2 0 5	0 2 1 5	Total Tissu Tumo	l 1es/ ors
Endocrine System (continued) Thyroid gland C-cell, carcinoma Follicular cell, adenoma	+	• +	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	- 50 1 1	
General Body System None																											
Genital System Epididymis Preputial gland Adenoma Carcinoma Prostate Seminal vesicle Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+ + + X	+ + X + + + X +	+ + + + X	++++++++++++++++++++++++++++++++++++++	+ + + + + + X	+ + + + + + X	+ + + + + + X	+ + + + X	+ + X + + + + X	+ + + + + + X	+ + + + + + X	+ + + + + + + + + + X	+ + + + X	+ + + + X	+ M + + + X	+ + + + + X	+ + X + + X + + X	+ + + X + + + X	+ + + + + + X	+ + + + + + X	+ + + + + + X	+ + + + X	+ + + + + + X	+ + + + + + + X	- + - + - + - + - + - +	- 50 - 49 1 2 8 - 50 - 50 - 50 35 2 10	
Hematopoletic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Carcinoma, metastatic, harderian gland Hemangiosarcoma Sarcoma Thymus	+++++++++++++++++++++++++++++++++++++++	· + · + · +	+++++++++++++++++++++++++++++++++++++++	· + · + · +	+ + + + + + +	+ + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + + X +	+ + + + + + + + + + + + + + + + + + +	+ + + + + +	+ + + + + + +	+ + + + M + X +	+++++++++++++++++++++++++++++++++++++++	++++++++++	++++++++++	+ + + + + + M	+++++++++++++++++++++++++++++++++++++++	+++++++++++	+ + + + + +	+++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + + + +		- 49 - 50 - 50 - 48 - 50 1 2 1 - 1 - 47	
Integumentary System Mammary gland Fibroadenoma Skin Basal cell carcinoma Keratoacanthoma Subcutaneous tissue, fibroma Subcutaneous tissue, myxosarcoma	+ + X	· +	+ +	• +	++	+	+	+	+	++	+	+ + x x	+ X +	+	+	+	+	+	+	+	++	++	+	+	 + - X	- 50 1 - 50 1 2 1 1	

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of o-Nitroanisole

.

.

- - -

	0 ррт	222 ppm	666 ppm	2,000 ppm
Adrenal Medulla: Benion Pheor				_ .
Overall rates ^a	7/49 (14%)	7/50 (14%)	8/50 (16%)	10/49 (20%)
Adjusted rates ^b	18.9%	20.6%	25.8%	72.0%
Ferminal rates ^c	3/31 (10%)	7/34 (21%)	3/74 (13%)	13.070 610 (670%)
First incidence (days)	669	728 (T)	5/24 (1370) 604	612
ife table tests ^d	P<0.001	P=0.563N	P-0352	D=0.002
ogistic regression tests ^d	P = 0.024	P=0.602N	P=0.496	P-0.003
Cochran-Armitage test ^d	P = 0.212	1-0.00210	1 -0.490	r0.050
isher exact test ^d	1 -0.212	P=0.597N	P=0.517	P=0.297
	1			
drenal Medulla: Malignant Pho	eochromocytoma			
Jverall rates	6/49 (12%)	3/50 (6%)	2/50 (4%)	0/49 (0%)
Adjusted rates	18.2%	8.4%	7.7%	0.0%
rerminal rates	5/31 (16%)	2/34 (6%)	1/24 (4%)	0/9 (0%)
irst incidence (days)	669	682	718	_c
Life table tests	P=0.119N	P=0.213N	P=0.224N	P=0.173N
ogistic regression tests	P=0.057N	P=0.229N	P=0.164N	P=0.094N
Jochran-Armitage test	P=0.018N			_
fisher exact test		P = 0.233N	P=0.128N	P=0.013N
Adrenal Medulla: Pheochromocy	toma (Benign or Malignant))		
Overall rates	12/49 (24%)	10/50 (20%)	10/50 (20%)	10/49 (20%)
Adjusted rates	32.2%	28.5%	31.9%	73.0%
Cerminal rates	7/31 (23%)	9/34 (26%)	4/24 (17%)	6/9 (67%)
First incidence (days)	669	682	604	613
ife table tests	P=0.007	P=0.346N	P=0.568	P=0.030
ogistic regression tests	P=0.187	P=0.385N	P=0.429N	P=0.276
Cochran-Armitage test	P=0.441N			
fisher exact test		P=0.384N	P=0.384N	P=0.405N
Kidnev (Renal Tubule): Adenom	a or Carcinoma			
Overall rates	0/49 (0%)	1/50 (2%)	1/50 (2%)	3/49 (6%)
Adjusted rates	0.0%	2.9%	4.2%	21.9%
Ferminal rates	0/32 (0%)	1/34 (3%)	1/24 (4%)	1/9 (11%)
First incidence (days)	_	728 (T)	728 (T)	663
ife table tests	P=0.001	P=0.512	P=0.443	P = 0.016
ogistic regression tests	P = 0.011	P=0.512	P = 0.443	P = 0.048
Cochran-Armitage test	P = 0.062		1 000.05	1 01040
Fisher exact test		P=0.505	P=0.505	P=0.121
iver Henotocellular Adonomo				
werall rates	0/50 (0%)	3/50 (6%)	1/50 (2%)	2/50 (4%)
Adjusted rates		2,50 (0 <i>1</i> 0) 2,90%	A 70%	10 (470)
nujusicu taice Forminal rates	0.0% 0/27 /0%	0.070 2/21 (00%)	4.270 1/24 (AOL)	14.470 (\(0.02\)
First incidence (dam)	0,32 (0%)	ניד) אינ ונ דיז פרד	1/24 (470) 729 (TN	604
ife table tests	- P-0.004	740 (1) P=0 121	P = 0.442	ው። ወ0 ነበረ
agistic regression tests	r	r -0.131 D-0.121	I -0.943	F 0.100
Cookran Armitage test	r = 0.230	r=0.151	r =0.443	r=0.43/
Contain-Animitage test	r = 0.429	B_0 121	D-0 500	D-0.047
usner exact test		P=0.121	r=0.300	r=0.24/

	0 ppm	222 ppm	666 ppm	2,000 ppm
I iver: Henstocellular Adenoma	ດຕ (Carcinoma	····		·····
Overall rates	0/50 (0%)	4/50 (8%)	1/50 (2%)	2/50 (4%)
Adjusted rates	0.0%	11.8%	4.2%	12.4%
Terminal rates	0/32 (0%)	4/34 (12%)	1/24 (4%)	0/9 (0%)
First incidence (days)	-	728 (T)	728 (T)	604
Life table tests	P = 0.137	P = 0.070	P=0.443	P=0 105
Logistic regression tests	P = 0.321	P = 0.070	P = 0.443	P = 0.237
Cochran-Armitage test	P = 0.533	1 - 0.070		1 - 0.257
Fisher exact test		P=0.059	P=0.500	P=0.247
Tung Alveolog/bronchiolog Aden	oma on Carainama			
Lung: Alveolar/Dronemolar Aden	2/50.1 <i>40</i> /1	2/50 /60/1	2/50 /60/1	0/50 (00/-)
Adjusted motor	3/30 (0%) 9.20	5/50 (0%) 9.404	3/30 (0%) 12.5%	0,50 (0%)
Aujusted fates	0.4% 2022 (40%)	0.470 204 (401)	14.3%	U.U%0
First insidence (de)	432 (0%) 402	4/34 (0%) 491	3/24 (13%) 728 (TD	עש (שאט)
First incidence (days)	490 D 0 21 251	081 D 0 (40)1	728 (1)	- D 0.005NI
Life table tests	P=0.313N	P=0.640N	P = 0.548	P=0.285N
Logistic regression tests	P=0.112N	P=0.658N	P=0.003N	P=0.076N
Cocnran-Armitage test	P=0.082N	D. O. CONT	D. O. CONT	D 0 10111
Fisher exact test		P=0.661N	P=0.661N	P = 0.121N
Mammary Gland: Fibroadenoma	D			
Overall rates	3/50 (6%)	1/50 (2%)	2/50 (4%)	1/50 (2%)
Adjusted rates	9.1%	2.9%	6.3%	7.7%
Terminal rates	2/32 (6%)	1/34 (3%)	1/24 (4%)	0/9 (0%)
First incidence (days)	716	728 (T)	632	697
Life table tests	P = 0.586	P=0.285N	P = 0.590N	P=0.698
Logistic regression tests	P=0.527N	P=0.292N	P=0.525N	P = 0.626N
Cochran-Armitage test	P=0.340N			
Fisher exact test		P=0.309N	P = 0.500N	P=0.309N
Mammary Gland: Fibroadenoma	a or Adenoma			
Overall rates	3/50 (6%)	2/50 (4%)	2/50 (4%)	1/50 (2%)
Adjusted rates	9.1%	5.9%	6.3%	7.7%
Terminal rates	2/32 (6%)	2/34 (6%)	1/24 (4%)	0/9 (0%)
First incidence (days)	716	728 (T)	632	697
Life table tests	P=0.627	P=0.473N	P=0.590N	P=0.698
Logistic regression tests	P=0.471N	P=0.484N	P=0.525N	P=0.626N
Cochran-Armitage test	P = 0.268N			
Fisher exact test		P=0.500N	P=0.500N	P=0.309N
Pancreas: Adenoma				
Overall rates	5/49 (10%)	3/49 (6%)	0/50 (0%)	5/48 (10%)
Adjusted rates	15.6%	88%	0.0%	33.4%
Terminal rates	5/32 (16%)	3/34 (9%)	0/24 (0%)	1/0 (11%)
First incidence (days)	728 (T)	728 (Th	(0/0)	613
Life table tests	P = 0.021	P = 0.321 N	- P=0.062N	P-0.070
Logistic regression tests	P = 0.021	P-0.221N	P-0.002N	r -0.070 P-0.220
Cochran-Armitage test	P=0.397	1 -0.52114	F	r =0.239
Fisher exact test		P=0.357N	P = 0.027N	P=0.617

Pancreatic Islets: Adenoma Overall rates 1/49 (2%) Adjusted rates 3.1% Terminal rates 1/32 (3%) First incidence (days) 728 (T) Life table tests P=0.257 Logistic regression tests P=0.556N Fisher exact test P=0.556N Pituitary Gland (Pars Distalis): Adenoma Decrall rates Derail rates 10/32 (31%) First incidence (days) 613 Life table tests P=0.029N Cochran-Armitage test P=0.029N Cochran-Armitage test P=0.009N First incidence (days) 613 Life table tests P=0.009N Cochran-Armitage test P=0.009N Pituitary Gland (Pars Distalis): Adenoma or Carcinoma Dverall rates 11/32 (34%) First incidence (days) 613 Life table tests P=0.025N Cochran-Armitage test P=0.007N	4/49 (8%) 11.8% 4/34 (12%) 728 (T) P=0.197 P=0.197 P=0.181 11/50 (22%) 29.8% 9/34 (26%) 638 P=0.279N P=0.331N P=0.222N	4/50 (8%) 11.9% 1/24 (4%) 596 P=0.140 P=0.190 P=0.187 9/49 (18%) 30.0% 5/23 (22%) 557 P=0.405N	2/48 (4%) 5.9% 0/9 (0%) 518 P=0.307 P=0.620 P=0.492 4/49 (8%) 17 $$
Overall rates1/49 (2%)Adjusted rates3.1%Terminal rates1/32 (3%)First incidence (days)728 (T)Life table testsP=0.257Logistic regression testsP=0.556NFisher exact testP=0.556NPituitary Gland (Pars Distalis): AdenomaOverall rates14/50 (28%)Adjusted rates38.3%Cochran-Armitage testP=0.052 (31%)First incidence (days)613Life table testsP=0.029NLogistic regression testsP=0.029NCochran-Armitage testP=0.009NFirst incidence (days)613Life table testsP=0.009NFisher exact testP=0.009NPituitary Gland (Pars Distalis): Adenoma or CarcinomaOverall rates11/32 (34%)First incidence (days)613Life table testsP=0.387NLogistic regression testsP=0.3287NLogistic regression testsP=0.387NLogistic regression testsP=0.3087NLogistic regression testsP=0.025NCochran-Armitage testP=0.007NFirst incidence (days)603Life table testsP=0.603Life table testsP=0.620NLogistic regression testsP=0.620NLogistic regression testsP=0.620NLogistic regression testsP=0.303NFirst incidence (days)603Life table testsP=0.303NFisher exact testP=0.303NPreputial Gland: Carcinoma7/50 (14%)Over	4/49 (8%) 11.8% 4/34 (12%) 728 (T) P=0.197 P=0.197 P=0.181 11/50 (22%) 29.8% 9/34 (26%) 638 P=0.279N P=0.331N P=0.222N	4/50 (8%) 11.9% 1/24 (4%) 596 P=0.140 P=0.190 P=0.187 9/49 (18%) 30.0% 5/23 (22%) 557 P=0.405N	2/48 (4%) 5.9% 0/9 (0%) 518 P=0.307 P=0.620 P=0.492 4/49 (8%) 17.0000 17.0000 17.00000 17.0000 17.0000 17.0000 17.0000 17.0000 17.0000 17.00000 17.00000 17.0000 17.0000 17.00000 17.00000 17.00000 17.00000 17.00000 17.000000 17.00000 17.00000 17.00000000 17.000000000000000000000000000000000000
Octim International Table $1/7$ (207)Adjusted rates 3.1% Ferminal rates $1/32$ (3%)First incidence (days) 728 (T)Life table tests $P=0.257$ Logistic regression tests $P=0.582N$ Cochran-Armitage test $P=0.556N$ Fisher exact testPituitary Gland (Pars Distalis): AdenomaOverall rates $14/50$ (28%)Adjusted rates 3.3% Perminal rates $10/32$ (31%)First incidence (days) 613 Life table tests $P=0.029N$ Cochran-Armitage test $P=0.009N$ Fisher exact testP=0.009NPituitary Gland (Pars Distalis): Adenoma or CarcinomaOverall rates $15/50$ (30%)Adjusted rates 41.1% Perminal rates $11/3\%$ First incidence (days) 613 Life table tests $P=0.387N$ Doverall rates 11.3% Perminal rates 11.3% Cochran-Armitage test $P=0.007N$ First incidence (days) 613 Life table tests $P=0.025N$ Cochran-Armitage test $P=0.007N$ Fisher exact test $P=0.620N$ Preputial Gland: Adenoma $O3$ Duerall rates $3/32$ (9%)First incidence (days) 603 Life table tests $P=0.620N$ Logistic regression tests $P=0.303N$ Fisher exact test $P=0.303N$ Fisher exact test $P=0.303N$ Fisher exact test $P=0.303N$ Fisher exact test $P=0.303N$ <td>$\begin{array}{l} 11.8\% \\ 4/34 (12\%) \\ 728 (T) \\ P=0.197 \\ P=0.197 \\ P=0.181 \\ 11/50 (22\%) \\ 29.8\% \\ 9/34 (26\%) \\ 638 \\ P=0.279N \\ P=0.331N \\ P=0.222M \\ \end{array}$</td> <td>$\begin{array}{c} 11.9\% \\ 1/24 (4\%) \\ 596 \\ P=0.140 \\ P=0.190 \\ P=0.187 \\ 9/49 (18\%) \\ 30.0\% \\ 5/23 (22\%) \\ 557 \\ P=0.405N \\ \end{array}$</td> <td>$\begin{array}{c} 24.0 (4.0) \\ 5.9\% \\ 0/9 (0\%) \\ 518 \\ P=0.307 \\ P=0.620 \\ P=0.492 \\ 4/49 (8\%) \\ 17.07 \end{array}$</td>	$ \begin{array}{l} 11.8\% \\ 4/34 (12\%) \\ 728 (T) \\ P=0.197 \\ P=0.197 \\ P=0.181 \\ 11/50 (22\%) \\ 29.8\% \\ 9/34 (26\%) \\ 638 \\ P=0.279N \\ P=0.331N \\ P=0.222M \\ \end{array} $	$\begin{array}{c} 11.9\% \\ 1/24 (4\%) \\ 596 \\ P=0.140 \\ P=0.190 \\ P=0.187 \\ 9/49 (18\%) \\ 30.0\% \\ 5/23 (22\%) \\ 557 \\ P=0.405N \\ \end{array}$	$ \begin{array}{c} 24.0 (4.0) \\ 5.9\% \\ 0/9 (0\%) \\ 518 \\ P=0.307 \\ P=0.620 \\ P=0.492 \\ 4/49 (8\%) \\ 17.07 \end{array} $
DeprivationDeprivationFirst incidence (days)728 (T)Life table testsP=0.257Logistic regression testsP=0.582NCochran-Armitage testP=0.556NFisher exact testP=0.556NPituitary Gland (Pars Distalis): AdenomaDverall rates14/50 (28%)Adjusted rates38.3%Ferminal rates10/32 (31%)First incidence (days)613Life table testsP=0.404NLogistic regression testsP=0.029NCochran-Armitage testP=0.009NFirst incidence (days)613Life table testsP=0.009NCochran-Armitage testP=0.009NPituitary Gland (Pars Distalis): Adenoma or CarcinomaDverall rates11/32 (34%)Pituitary Gland (Pars Distalis): Adenoma or CarcinomaDverall rates11/32 (34%)Cochran-Armitage testP=0.025NLife table testsP=0.025NLogistic regression testsP=0.025NCochran-Armitage testP=0.007NFirst incidence (days)613Life table testsP=0.007NCochran-Armitage testP=0.007NFisher exact testP=0.620NCochran-Armitage testP=0.603Life table testsP=0.603Life table testsP=0.603Life table testsP=0.303NFisher exact testP=0.303NFisher exact testP=0.303NFisher exact testP=0.303NFisher exact testP=0.303NFisher exact testP=0.	$\begin{array}{l} 4/34 & (12\%) \\ 728 & (T) \\ P = 0.197 \\ P = 0.197 \\ P = 0.197 \\ P = 0.181 \\ 11/50 & (22\%) \\ 29.8\% \\ 9/34 & (26\%) \\ 638 \\ P = 0.279N \\ P = 0.331N \\ P = 0.222N \end{array}$	1/24 (4%) 596 $P=0.140$ $P=0.190$ $P=0.187$ $9/49 (18%)$ $30.0%$ $5/23 (22%)$ 557 $P=0.405N$	$\begin{array}{c} 0.9 & (0\%) \\ 518 \\ P = 0.307 \\ P = 0.620 \\ P = 0.492 \\ 4/49 & (8\%) \\ 17.57 \end{array}$
Communication102 (107)Cirist incidence (days)728 (T)Life table tests $P=0.257$ Logistic regression tests $P=0.582N$ Dochran-Armitage test $P=0.556N$ Fisher exact test $P=0.556N$ Pituitary Gland (Pars Distalis): AdenomaDverall rates $10/32$ (31%)Adjusted rates 38.3% Cerminal rates $10/32$ (31%)First incidence (days) 613 Life table tests $P=0.404N$ Logistic regression tests $P=0.029N$ Cochran-Armitage test $P=0.009N$ Fisher exact test $P=0.009N$ Pituitary Gland (Pars Distalis): Adenoma or CarcinomaDverall rates $11/32$ (34%)Tirst incidence (days) 613 Life table tests $P=0.387N$ Logistic regression tests $P=0.387N$ Dogistic regression tests $P=0.007N$ First incidence (days) 613 Life table tests $P=0.007N$ Tirst incidence (days) 603 Life table tests $P=0.007N$ Preputial Gland: AdenomaDverall ratesDverall rates $3/32$ (9%)Adjusted rates 11.3% Cerminal rates $9/32$ (9%)Tirst incidence (days) 603 Life table tests $P=0.620N$ Life table tests $P=0.303N$ Tirst incidence (days) 603 Life table tests $P=0.303N$ Tirst incidence (days) 603 Life table tests $P=0.303N$ Tirst incidence (days) 603	P = 0.197 $P = 0.197$ $P = 0.197$ $P = 0.181$ $P = 0.181$ $P = 0.181$ $P = 0.22%$ $P = 0.279N$ $P = 0.331N$ $P = 0.222N$	P=0.140 $P=0.190$ $P=0.187$ $9/49 (18%)$ $30.0%$ $5/23 (22%)$ 557 $P=0.405N$	$\begin{array}{c} 6.5 \ (0,0) \\ 518 \\ P=0.307 \\ P=0.620 \\ P=0.492 \\ 4/49 \ (8\%) \\ 17.5\% \end{array}$
Instruction (cays) 720 (1)Life table tests $P = 0.257$ Logistic regression tests $P = 0.582N$ Cochran-Armitage test $P = 0.556N$ Fisher exact testPituitary Gland (Pars Distalis): AdenomaDverall rates $14/50$ (28%)Adjusted rates 38.3% Ferminal rates $10/32$ (31%)First incidence (days) 613 Life table tests $P = 0.404N$ Logistic regression tests $P = 0.029N$ Lochran-Armitage test $P = 0.009N$ Fisher exact test $P = 0.009N$ Pituitary Gland (Pars Distalis): Adenoma or CarcinomaDverall rates $15/50$ (30%)Adjusted rates 41.1% Pituitary Gland (Pars Distalis): Adenoma or CarcinomaDverall rates $11/32$ (34%)First incidence (days) 613 Life table tests $P = 0.387N$ Logistic regression tests $P = 0.025N$ Dochran-Armitage test $P = 0.007N$ Fisher exact test $P = 0.007N$ Preputial Gland: AdenomaDerail ratesDerail rates $3/32$ (9%)Adjusted rates 11.3% Cerminal rates $9 = 0.620N$ Logistic regression tests $P = 0.303N$ Cochran-Armitage test $P = 0.303N$ First incidence (days) 603 Life table tests $P = 0.303N$ Cochran-Armitage test $P = 0.303N$ First incidence (days) 603 Life table tests $P = 0.303N$ Life table tests $P = 0.303N$ Cochran-Armit	P = 0.197 $P = 0.197$ $P = 0.181$ $11/50 (22%)$ $29.8%$ $9/34 (26%)$ 638 $P = 0.279N$ $P = 0.331N$ $P = 0.222N$	P=0.140 P=0.190 P=0.187 9/49 (18%) 30.0% 5/23 (22%) 557 P=0.405N	P=0.307 $P=0.620$ $P=0.492$ $4/49 (8%)$ $17.5%$
Are not tends $1 - 0.582$ hAre not tends $P = 0.582$ hCochran-Armitage test $P = 0.556$ hPituitary Gland (Pars Distalis): AdenomaOverall rates $14/50$ (28%)Adjusted rates 38.3% Perminal rates $10/32$ (31%)First incidence (days) 613 .ife table tests $P = 0.404$ N.ogistic regression tests $P = 0.029$ N.ochran-Armitage test $P = 0.009$ N"Fisher exact test $P = 0.009$ NPituitary Gland (Pars Distalis): Adenoma or CarcinomaOverall rates $11/32$ (34%)"Fisher exact testPituitary Gland (Pars Distalis): Adenoma or CarcinomaOverall rates $11/32$ (34%)"Fist incidence (days) 613 .ife table tests $P = 0.387$ N.ogistic regression tests $P = 0.025$ N.ochran-Armitage test $P = 0.007$ N"Fisher exact test $P = 0.600$ NOchran-Armitage test $P = 0.600$ N.ogistic regression tests $P = 0.602$ N.ogistic regression tests $P = 0.303$ N.ogistic regression tests	P = 0.197 $P = 0.181$ $11/50 (22%)$ $29.8%$ $9/34 (26%)$ 638 $P = 0.279N$ $P = 0.331N$ $P = 0.222N$	P=0.190 $P=0.187$ $9/49 (18%)$ $30.0%$ $5/23 (22%)$ 557 $P=0.405N$	P=0.620 P=0.492 4/49 (8%)
Description regression reside $P = 0.50$ KPituitary Gland (Pars Distalis): AdenomaVerall rates14/50 (28%)Adjusted rates38.3%Perminal rates10/32 (31%)Pirst incidence (days)613die table tests $P = 0.404$ NLogistic regression tests $P = 0.029$ NDochran-Armitage test $P = 0.009$ NPituitary Gland (Pars Distalis): Adenoma or CarcinomaDiverall rates15/50 (30%)Vocrall rates41.1%Pituitary Gland (Pars Distalis): Adenoma or CarcinomaDiverall rates11/32 (34%)Pirst incidence (days)613dife table tests $P = 0.387$ NLogistic regression tests $P = 0.025$ NDorran Armitage test $P = 0.025$ NPorputial Gland: AdenomaDiverall ratesDister exact test11.3%Preputial Gland: Adenoma $M = 0.620$ NDiverall rates9.332 (9%)Virst incidence (days)603dife table tests $P = 0.620$ Ndiguisted rates11.3%Perminal rates3/32 (9%)Virst incidence (days)603dife table tests $P = 0.620$ Ndiguisted rates $P = 0.303$ NVirst incidence (days)603dife table tests $P = 0.303$ NDisher exact test $P = 0.303$ NPirst incidence (table tests $P = 0.303$ NDochran-Armitage test $P = 0.303$ NDisher exact test $P = 0.303$ NDisher exact test $P = 0.303$ N<	P = 0.181 $11/50 (22%)$ $29.8%$ $9/34 (26%)$ 638 $P = 0.279N$ $P = 0.331N$ $P = 0.222N$	P=0.187 9/49 (18%) 30.0% 5/23 (22%) 557 P=0.405N	P=0.492
Pituitary Gland (Pars Distalis): Adenoma Overall rates 14/50 (28%) Adjusted rates 38.3% Perminal rates 10/32 (31%) First incidence (days) 613 Life table tests P=0.404N Logistic regression tests P=0.029N Dochran-Armitage test P=0.009N Cisher exact test P=0.009N Pituitary Gland (Pars Distalis): Adenoma or Carcinoma Doverall rates Dochran-Armitage test 11/32 (34%) Pituitary Gland (Pars Distalis): Adenoma or Carcinoma Doverall rates Powerall rates 11/32 (34%) Pitrist incidence (days) 613 Life table tests P=0.025N Dochran-Armitage test P=0.025N Cochran-Armitage test P=0.025N Cochran-Armitage test P=0.025N Dochran-Armitage test P=0.025N	P=0.181 11/50 (22%) 29.8% 9/34 (26%) 638 $P=0.279N$ $P=0.331N$	P=0.187 9/49 (18%) 30.0% 5/23 (22%) 557 P=0.405N	P=0.492 4/49 (8%)
Pituitary Gland (Pars Distalis): Adenoma Overall rates 14/50 (28%) Adjusted rates 38.3% Cerminal rates 10/32 (31%) First incidence (days) 613 .ife table tests P=0.404N .ogistic regression tests P=0.029N Cochran-Armitage test P=0.009N Fisher exact test P=0.009N Pituitary Gland (Pars Distalis): Adenoma or Carcinoma Overall rates Overall rates 15/50 (30%) Adjusted rates 41.1% Perminal rates 11/32 (34%) Overall rates 11/32 (34%) Overall rates 9=0.387N .ogistic regression tests P=0.025N .occhran-Armitage test P=0.007N Fisher exact test P=0.025N Operall rates 4/50 (8%) Adjusted rates 11.3% Operall rates 3/32 (9%) First incidence (days) 603 .ife table tests P=0.620N .ogistic regression tests P=0.404N Overall rates 9/50 (14%) .ife table tests P=0.303N .o	11/50 (22%) $29.8%$ $9/34 (26%)$ 638 $P=0.279N$ $P=0.331N$ $P=0.222N$	9/49 (18%) 30.0% 5/23 (22%) 557 P=0.405N	4/49 (8%)
Huitary Gland (Pars Distalis): AdenomaOverall rates14/50 (28%)Adjusted rates38.3%'erminal rates10/32 (31%)'inst incidence (days)613.ife table testsP=0.404N.ogistic regression testsP=0.029N.ocichran-Armitage testP=0.009N'isher exact testP=0.009N'ituitary Gland (Pars Distalis): Adenoma or CarcinomaOverall rates15/50 (30%)Adjusted rates11/32 (34%)'irist incidence (days)613.ife table testsP=0.025NOchran-Armitage testP=0.025N'orist incidence (days)613.ife table testsP=0.025N.ogistic regression testsP=0.025N.ogistic regression testsP=0.007N'irist incidence (days)613.ife table testsP=0.025N.ogistic regression testsP=0.007N'isher exact testP=0.007N'isher exact testP=0.007N'isher exact testP=0.007N'isher exact testP=0.007N'isher exact testP=0.007N'ist incidence (days)603.ife table testsP=0.620N.ogistic regression testsP=0.620N.ogistic regression testsP=0.303N'isher exact testP=0.303N'isher exact testP=0.303N'isher exact testP=0.303N'isher exact testP=0.007M'isher exact testP=0.007M'isher exact testP=0.007M'isher exact testP=0.007M <td>11/50 (22%) 29.8% 9/34 (26%) 638 P=0.279N P=0.331N</td> <td>9/49 (18%) 30.0% 5/23 (22%) 557 P=0.405N</td> <td>4/49 (8%)</td>	11/50 (22%) 29.8% 9/34 (26%) 638 P=0.279N P=0.331N	9/49 (18%) 30.0% 5/23 (22%) 557 P=0.405N	4/49 (8%)
Detrail rates14/50 (28%)Adjusted rates38.3%Perminal rates10/32 (31%)Sirst incidence (days)613ife table testsP=0.404NLogistic regression testsP=0.029NDochran-Armitage testP=0.009NSisher exact testP=0.009NPituitary Gland (Pars Distalis): Adenoma or CarcinomaOverall rates15/50 (30%)Adjusted rates41.1%Perminal rates11/32 (34%)Sirst incidence (days)613Life table testsP=0.025NLogistic regression testsP=0.025NCochran-Armitage testP=0.007NSirst exact testP=0.007NPreputial Gland: AdenomaOverall ratesDerminal rates3/32 (9%)Life table testsP=0.620NLogistic regression testsP=0.620NDoterall rates3/32 (9%)Sirst incidence (days)603Life table testsP=0.620NLogistic regression testsP=0.303NSirst incidence (days)603Life table testsP=0.303NSirst incidence (days)603Life table testsP=0.303NSisher exact testP=0.303NPreputial Gland: CarcinomaPDverall rates7/50 (14%)Disher exact test10.4%	11/50 (22%) 29.8% 9/34 (26%) 638 P=0.279N P=0.331N P=0.222N	9/49 (18%) 30.0% 5/23 (22%) 557 P=0.405N	4/49 (8%)
Adjusted rates38.3%Ferminal rates10/32 (31%)First incidence (days)613ife table testsP=0.404Nogistic regression testsP=0.029NCochran-Armitage testP=0.009NFisher exact testP=0.009NPituitary Gland (Pars Distalis): Adenoma or CarcinomaOverall rates15/50 (30%)Adjusted rates41.1%Ferminal rates15/50 (30%)Adjusted rates41.1%Ferminal rates11/32 (34%)First incidence (days)613ife table testsP=0.025Nogistic regression testsP=0.025Nogistic regression testsP=0.007NFisher exact testPreputial Gland: AdenomaDverall rates3/32 (9%)First incidence (days)603ife table testsP=0.620Nogistic regression testsP=0.620Nogistic regression testsP=0.303NFirst incidence (days)603ife table testsP=0.303Nogistic regression testsP=0.303NFirst incidence (days)603ife table testsP=0.303Nogistic regression testsP=0.303Nogistic regre	29.8% 9/34 (26%) 638 P=0.279N P=0.331N	30.0% 5/23 (22%) 557 P=0.405N	17 ~~~
Terminal rates $10/32 (31\%)$ First incidence (days) 613 ife table tests $P=0.404N$ ogistic regression tests $P=0.029N$ Cochran-Armitage test $P=0.009N$ Fisher exact test $P=0.009N$ Pituitary Gland (Pars Distalis): Adenoma or CarcinomaDverall rates $15/50 (30\%)$ Adjusted rates $11/32 (34\%)$ First incidence (days) 613 ife table tests $P=0.025N$ ogistic regression tests $P=0.025N$ optic regression tests $P=0.007N$ Tisher exact test $P=0.007N$ Preputial Gland: Adenoma $N=0.007N$ Dverall rates $3/32 (9\%)$ first incidence (days) 603 first incidence (days) 603 first incidence (days) 603 first incidence (days) 603 first areas $9=0.620N$ first incidence (days) 603 first areas $P=0.303N$ first regression tests $P=0.303N$ <td>9/34 (26%) 638 P=0.279N P=0.331N</td> <td>5/23 (22%) 557 P=0.405N</td> <td>17.0%</td>	9/34 (26%) 638 P=0.279N P=0.331N	5/23 (22%) 557 P=0.405N	17.0%
First incidence (days) 613 Life table tests P=0.404N Logistic regression tests P=0.029N Cochran-Armitage test P=0.009N Fisher exact test P=0.009N Pituitary Gland (Pars Distalis): Adenoma or Carcinoma Dverall rates 15/50 (30%) Adjusted rates 41.1% Ferminal rates 11/32 (34%) First incidence (days) 613 Life table tests P=0.387N Logistic regression tests P=0.025N Dochran-Armitage test P=0.007N Tisher exact test P=0.007N Preputial Gland: Adenoma Overall rates Dverall rates 4/50 (8%) Adjusted rates 11.3% Ferminal rates 3/32 (9%) First incidence (days) 603 Life table tests P=0.620N Logistic regression tests P=0.404N Dochran-Armitage test P=0.303N First exact test P=0.303N Preputial Gland: Carcinoma Overall rates Dverall rates 7/50 (14%)	638 P=0.279N P=0.331N	557 P=0.405N	0/9 (0%)
Life table tests $P=0.404N$ Logistic regression tests $P=0.029N$ Lochran-Armitage test $P=0.009N$ Tisher exact test $P=0.009N$ Pituitary Gland (Pars Distalis): Adenoma or CarcinomaDverall rates $15/50$ (30%)Adjusted rates $11/32$ (34%)First incidence (days) 613 Life table tests $P=0.025N$ Logistic regression tests $P=0.025N$ Lochran-Armitage test $P=0.007N$ Tisher exact test $P=0.007N$ Preputial Gland: Adenoma $P=0.007N$ Dverall rates $3/32$ (9%)Tirst incidence (days) 603 Life table tests $P=0.620N$ Dogistic regression tests $P=0.620N$ Dogistic regression tests $P=0.620N$ Dogistic regression tests $P=0.303N$ Tist incidence (days) 603 Life table tests $P=0.303N$ Dister exact test $P=0.303N$ Preputial Gland: Carcinoma $P=0.303N$ Dverall rates $7/50$ (14%)Adjusted rates 10.4%	P = 0.279N P = 0.331N	P=0.405N	518
Logistic regression tests $P=0.029N$ Cochran-Armitage test $P=0.009N$ Fisher exact testP=0.009NPituitary Gland (Pars Distalis): Adenoma or CarcinomaDverall rates $15/50$ (30%)Adjusted rates 41.1% Cerminal rates $11/32$ (34%)First incidence (days) 613 ife table tests $P=0.387N$ ogistic regression tests $P=0.025N$ Cochran-Armitage test $P=0.007N$ Fisher exact test $P=0.007N$ Preputial Gland: Adenoma $4/50$ (8%)Adjusted rates $3/32$ (9%)Sirst incidence (days) 603 ife table tests $P=0.620N$ Cochran-Armitage test $P=0.620N$ Preputial Gland: Adenoma $P=0.620N$ Cogistic regression tests $P=0.620N$ ogistic regression tests $P=0.020N$ Preputial rates $3/32$ (9%)Sirst incidence (days) 603 ife table tests $P=0.020N$ ogistic regression tests $P=0.303N$ Sirst exact test $P=0.303N$ Preputial Gland: Carcinoma $Dverall rates$ Dverall rates $7/50$ (14%)Adjusted rates $7/50$ (14%)	P=0.331N		P=0.387N
Cochran-Armitage test $P=0.009N$ Fisher exact testFisher exact testPituitary Gland (Pars Distalis): Adenoma or Carcinoma Dverall rates15/50 (30%) Adjusted ratesDverall rates11/32 (34%)First incidence (days)613Life table tests $P=0.387N$ $-0.025N$ Logistic regression tests $P=0.007N$ Fisher exact test $P=0.007N$ Preputial Gland: Adenoma $4/50 (8\%)$ $Adjusted ratesDverall rates3/32 (9\%)Fisher exact testP=0.620N-0.07NPreputial Gland: AdenomaP=0.620N-0.07NDoterall rates3/32 (9\%)First incidence (days)603-0.03NLife table testsP=0.620N-0.03NPreputial Gland: carcinomaP=0.303NDoverall ratesP=0.303NPreputial Gland: CarcinomaP=0.303NDverall rates7/50 (14\%)$	B-0 22251	P=0.218N	P=0.037N
Fisher exact testPituitary Gland (Pars Distalis): Adenoma or CarcinomaDverall rates $15/50 (30\%)$ Adjusted rates 41.1% Cerminal rates $11/32 (34\%)$ First incidence (days) 613 ife table tests $P=0.387N$.ogistic regression tests $P=0.025N$ Dochran-Armitage test $P=0.007N$ Fisher exact test $P=0.007N$ Preputial Gland: Adenoma $4/50 (8\%)$ Dverall rates $3/32 (9\%)$ Adjusted rates 11.3% Cerminal rates $3/32 (9\%)$ Sirst incidence (days) 603 ife table tests $P=0.620N$ Dogistic regression tests $P=0.404N$ Cochran-Armitage test $P=0.303N$ First incidence (tays) 603 ife table tests $P=0.620N$ ogistic regression tests $P=0.303N$ First exact test $P=0.303N$ Preputial Gland: Carcinoma $Dverall ratesDverall rates7/50 (14\%)$	$n = \alpha \alpha \alpha \alpha \gamma \gamma$		
Pituitary Gland (Pars Distalis): Adenoma or CarcinomaOverall rates $15/50 (30\%)$ Adjusted rates 41.1% 'erminal rates $11/32 (34\%)$ 'irst incidence (days) 613 .ife table tests $P=0.387N$.ogistic regression tests $P=0.025N$ 'ochran-Armitage test $P=0.007N$ 'isher exact test Y 'reputial Gland: Adenoma'verall rates $4/50 (8\%)$.udjusted rates 11.3% 'erminal rates $3/32 (9\%)$ 'irst incidence (days) 603 .ife table tests $P=0.620N$.ogistic regression tests $P=0.404N$ 'ochran-Armitage test $P=0.303N$ 'isher exact test Y	r = 0.322N	P = 0.185N	P=0.010N
Deverall rates $15/50 (30\%)$ Adjusted rates 41.1% Adjusted rates $11/32 (34\%)$ First incidence (days) 613 Life table tests $P=0.387N$ Logistic regression tests $P=0.025N$ Cochran-Armitage test $P=0.007N$ Fisher exact test $P=0.007N$ Derential Gland: Adenoma 0 Deverall rates $4/50 (8\%)$ Adjusted rates 11.3% Ferminal rates $3/32 (9\%)$ First incidence (days) 603 Life table tests $P=0.620N$ Logistic regression tests $P=0.404N$ Cochran-Armitage test $P=0.303N$ Fisher exact test $P=0.303N$ Deverall rates $7/50 (14\%)$			
Adjusted rates 41.1% Verminal rates $11/32$ (34%)First incidence (days) 613 Life table tests $P=0.387N$ Logistic regression tests $P=0.025N$ Cochran-Armitage test $P=0.007N$ Fisher exact test $P=0.007N$ Preputial Gland: Adenoma $0007N$ Dverall rates $4/50$ (8%)Adjusted rates 11.3% Ferminal rates $3/32$ (9%)First incidence (days) 603 Life table tests $P=0.620N$ Logistic regression tests $P=0.404N$ Dochran-Armitage test $P=0.303N$ Fisher exact test $P=0.303N$ Preputial Gland: Carcinoma $0/50$ (14%)Dverall rates $7/50$ (14%)	11/50 (22%)	10/49 (20%)	4/49 (8%)
Image: Perminal rates $11/32 (34\%)$ First incidence (days) 613 Life table tests $P=0.387N$ Logistic regression tests $P=0.025N$ Cochran-Armitage test $P=0.007N$ Fisher exact test $P=0.007N$ Preputial Gland: Adenoma 0 Dverall rates $4/50 (8\%)$ Adjusted rates 11.3% Ferminal rates $3/32 (9\%)$ First incidence (days) 603 Life table tests $P=0.620N$ Logistic regression tests $P=0.404N$ Cochran-Armitage test $P=0.303N$ Fisher exact test $P=0.303N$ Preputial Gland: Carcinoma $7/50 (14\%)$ Dverall rates $7/50 (14\%)$	29.8%	32.5%	17.0%
First incidence (days) 613 Life table tests P=0.387N Logistic regression tests P=0.025N Cochran-Armitage test P=0.007N Fisher exact test P=0.007N Preputial Gland: Adenoma 0 Dverall rates 4/50 (8%) Adjusted rates 11.3% Ferminal rates 3/32 (9%) First incidence (days) 603 Life table tests P=0.620N Logistic regression tests P=0.404N Cochran-Armitage test P=0.303N Fisher exact test P=0.303N Preputial Gland: Carcinoma 7/50 (14%) Dverall rates 7/50 (14%)	9/34 (26%)	5/23 (22%)	0/9 (0%)
Life table tests $P=0.387N$ Logistic regression tests $P=0.025N$ Lochran-Armitage test $P=0.007N$ Nisher exact test $P=0.007N$ Preputial Gland: Adenoma V Dverall rates $4/50$ (8%)Adjusted rates 11.3% Cerminal rates $3/32$ (9%)Sirst incidence (days) 603 Life table tests $P=0.620N$ Logistic regression tests $P=0.404N$ Cochran-Armitage test $P=0.303N$ Sisher exact test $P=0.303N$ Preputial Gland: Carcinoma $7/50$ (14%)Dverall rates $7/50$ (14%)	638	557 `	518 ໌
Logistic regression tests $P=0.025N$ Cochran-Armitage test $P=0.007N$ Fisher exact testP=0.007NPreputial Gland: Adenoma $P=0.007N$ Dyerall rates $4/50$ (8%)Adjusted rates 11.3% Ferminal rates $3/32$ (9%)First incidence (days) 603 Life table tests $P=0.620N$ Logistic regression tests $P=0.404N$ Dochran-Armitage test $P=0.303N$ Fisher exact test $P=0.303N$ Preputial Gland: Carcinoma $D_{Verall rates}$ Dyerall rates $7/50$ (14%)	P=0.209N	P=0.430N	P=0.342N
Cochran-Armitage test $P=0.007N$ Fisher exact testP=0.007NPreputial Gland: AdenomaDverall ratesOverall rates $4/50$ (8%)Adjusted rates 11.3% Ferminal rates $3/32$ (9%)First incidence (days) 603 ife table tests $P=0.620N$ ogistic regression tests $P=0.404N$ Cochran-Armitage test $P=0.303N$ Fisher exact testPreputial Gland: CarcinomaDverall rates $7/50$ (14%)	P=0.253N	P=0.234N	P=0.027N
Fisher exact test Preputial Gland: Adenoma Overall rates 4/50 (8%) Adjusted rates 11.3% Cerminal rates 3/32 (9%) First incidence (days) 603 ife table tests P=0.620N ogistic regression tests P=0.404N Cochran-Armitage test P=0.303N Fisher exact test Preputial Gland: Carcinoma Overall rates 7/50 (14%)			
Preputial Gland: Adenoma Dverall rates 4/50 (8%) Adjusted rates 11.3% Perminal rates 3/32 (9%) First incidence (days) 603 ife table tests P=0.620N ogistic regression tests P=0.404N Cochran-Armitage test P=0.303N Fisher exact test P Preputial Gland: Carcinoma 7/50 (14%) Verall rates 7/50 (14%)	P=0.247N	P=0.193N	P=0.005N
Deverall rates 4/50 (8%) Adjusted rates 11.3% Ferminal rates 3/32 (9%) First incidence (days) 603 Life table tests P=0.620N Logistic regression tests P=0.404N Cochran-Armitage test P=0.303N Fisher exact test Preputial Gland: Carcinoma Dverall rates 7/50 (14%)			
Adjusted rates 11.3% Ferminal rates 3/32 (9%) First incidence (days) 603 Logistic regression tests P=0.620N Logistic regression tests P=0.404N Cochran-Armitage test P=0.303N Fisher exact test Preputial Gland: Carcinoma Dverall rates 7/50 (14%)	0/50 (0%)	1/50 (2%)	1/49 (2%)
Initial rates 3/32 (9%) First incidence (days) 603 Life table tests P=0.620N Logistic regression tests P=0.404N Cochran-Armitage test P=0.303N Fisher exact test Preputial Gland: Carcinoma Dverall rates 7/50 (14%)	0.0%	4.2%	5.6%
First incidence (days) 603 Life table tests P=0.620N Logistic regression tests P=0.404N Cochran-Armitage test P=0.303N Fisher exact test P=0.303N Preputial Gland: Carcinoma 7/50 (14%) Overall rates 7/50 (14%)	0/34 (0%)	1/24 (4%)	0/9 (0%)
Life table tests P=0.620N Logistic regression tests P=0.404N Cochran-Armitage test P=0.303N Fisher exact test P=0.303N Preputial Gland: Carcinoma Dverall rates Dverall rates 7/50 (14%)	-	728 (T)	686
Logistic regression tests P=0.404N Logistic regression tests P=0.303N Cochran-Armitage test P=0.303N Fisher exact test Preputial Gland: Carcinoma Dverall rates 7/50 (14%) Linet for the set 10.4%	P=0.060N	P = 0.257N	P = 0.523N
Cochran-Armitage test P=0.303N Fisher exact test Preputial Gland: Carcinoma Dverall rates 7/50 (14%)	P = 0.064N	P = 0.191N	P = 0.297N
Preputial Gland: Carcinoma Dverall rates 7/50 (14%)			
Preputial Gland: Carcinoma Overall rates 7/50 (14%)	P=0.059N	P=0.181N	P=0.187N
Preputal Gland: Carcinoma Overall rates 7/50 (14%) Output dimension 10.4%			
		3/50 (6%)	8/49 (16%)
	4/50 (8%)	8.8%	45 1%
Laguero 12:470	4/50 (8%) 11 8%	1/24 (4%)	3/0 (33%)
$\frac{J_{J_2}(10/0)}{500}$	4/50 (8%) 11.8% 4/34 (12%)		518
$\frac{1}{16} table tests \qquad \qquad D_{m0} \Omega S$	4/50 (8%) 11.8% 4/34 (12%) 728 (T)	1961	P=0.038
Direction tests = D = 0.000	4/50 (8%) 11.8% 4/34 (12%) 728 (T) P=0 242N	P = 0.261 N	P = 0.372
$\frac{1}{2} - 0.100$	4/50 (8%) 11.8% 4/34 (12%) 728 (T) P=0.242N P=0.267N	596 P=0.261N P=0.158N	1 - 0.314
Sicher event test	4/50 (8%) 11.8% 4/34 (12%) 728 (T) P=0.242N P=0.267N	P=0.261N P=0.158N	_

	Ф ррт	222 ppm	666 ppm	2,000 ppm
Prenutial Cland: Adenoma or Co	איז ארא איז איז איז איז איז איז איז איז איז אי		- <u>-</u>	
Overall rates	11/50 (22%)	4/50 (8%)	4/50 (8%)	9/49 (18%)
Adjusted rates	29.9%	11.8%	127%	48.1%
Terminal rates	8/32 (25%)	4/34 (12%)	2/24 (8%)	3/9 (33%)
First incidence (days)	509	728 (T)	506	518
Life table tests	P = 0.012	P = 0.041 N	P=0 114N	P-0 091
Logistic regression tests	P-0.280	P-0.041N	P=0.048N	P-0.605N
Cochran-Armitage test	P = 0.411	1-0.04910	1 -0.04011	1 =0.00511
Fisher evact test	1 -0.411	P=0.045N	P-0.045N	P-0.421N
		1 -0.04511	1-0.04511	1-0.4211
Skin: Keratoacanthoma				
Overall rates	3/50 (6%)	1/50 (2%)	0/50 (0%)	2/50 (4%)
Adjusted rates	8.9%	2.9%	0.0%	10.0%
Terminal rates	2/32 (6%)	1/34 (3%)	0/24 (0%)	0/9 (0%)
First incidence (days)	695	728 (T)	-	632
Life table tests	P=0.324	P=0.290N	P=0.171N	P=0.478
Logistic regression tests	P=0.547	P=0.302N	P = 0.139N	P = 0.681N
Cochran-Armitage test	P=0.617N			
Fisher exact test		P=0.309N	P=0.121N	P=0.500N
Skin: Squamous Cell Papilloma,	Keratoacanthoma, or Basal	Cell Adenoma or Carci	inoma	
Overall rates	6/50 (12%)	2/50 (4%)	1/50 (2%)	3/50 (6%)
Adjusted rates	16.8%	5.9%	3.8%	20.0%
Terminal rates	4/32 (13%)	2/34 (6%)	0/24 (0%)	1/9 (11%)
First incidence (days)	603	728 (T)	722	632
Life table tests	P=0.347	P=0.125N	P=0.106N	P=0.515
Logistic regression tests	P=0.576N	P=0.138N	P=0.065N	P=0.452N
Cochran-Armitage test	P=0.367N			
Fisher exact test		P=0.134N	P=0.056N	P=0.243N
Skin (Subcutaneous Tissue): Fib	roma			
Overall rates	1/50 (2%)	3/50 (6%)	2/50 (4%)	1/50 (2%)
Adjusted rates	3.1%	8.0%	6.3%	7.1%
Terminal rates	1/32 (3%)	2/34 (6%)	1/24 (4%)	0/9 (0%)
First incidence (days)	728 (T)	638	632	695
Life table tests	P=0.519	P=0.327	P=0.436	P=0.503
Logistic regression tests	P=0.532N	P=0.299	P=0.494	P=0.613
Cochran-Armitage test	P=0.424N			
Fisher exact test		P=0.309	P=0.500	P=0.753N
Skin (Subcutaneous Tissue). Fib	roma or Fibrosarcoma			
Overall rates	1/50 /2021	4/50 (8%)	2/50 (10%)	1/50 (20%)
Adjusted rates	3.1%	10.4%	63%	7 10%
Terminal rates	1/32 (20%)	2/34 (60%)	1/24 (4%)	1.170 0/0 (00%)
First incidence (days)	728 (T)	638	1/44 (470) 632	605
Life table tests	P = 0.587	P=0 201	0 <i>36</i> P=0 426	D-0 502
Logistic regression tests	P = 0.367	P=0175	P-0.400	I -0.303 D-0.412
Cochran-Armitage test	P = 0.320N	1 -0.175	r -0.474	r – v.015
Fisher exact test		P=0 181	P=0.500	P=0753N
		1 -0.101	1 -0.500	1-0.75514

0 ppm	222 ppm	666 ppm	2,000 ppm
48/50 (96%)	45/50 (90%)	45/50 (90%)	45/50 (90%)
96.0%	97.8%	100.0%	100.0%
20/22 (04%)	22/24 (07%)	24/24 (100%)	0/0 (100%)
30/32 (9470) 494	511	557	AQ1
+0+ ₽<0.001	D-0.261N	P-0 193	P<0.001
P=0.402	P = 0.2011	P = 0.247N	P=0.510N
P=0.475	1-0.33014	1 = 0.24714	1 -0.51914
1-0.5121	P-0.219N	P-0.218N	P=0.218N
	1-0.21614	1 -0.21814	1-0.21014
r Carcinoma			
2/49 (4%)	4/50 (8%)	2/50 (4%)	1/50 (2%)
6.3%	11.2%	6.1%	2.5%
2/32 (6%)	3/34 (9%)	0/24 (0%)	0/9 (0%)
728 (T)	655	637	589
P=0.611N	P=0.355	P=0.624	P=0.699
P=0.300N	P=0.335	P=0.684	P=0.559N
P=0.235N			
	P=0.349	P=0.684N	P=0.492N
kemia			
26/50 (52%)	25/50 (50%)	42/50 (84%)	34/50 (68%)
60.9%	60.2%	91.2%	89.0%
16/32 (50%)	18/34 (53%)	20/24 (83%)	6/9 (67%)
10/52 (5070)	423	437	491
P<0.001	P = 0.445N	P<0.001	P<0.001
P=0.033	P = 0.515N	P<0.001	P = 0.114
P=0.041	1 -0.51514	1 40.001	
1 -0.041	P = 0.500N	P<0.001	P=0.076
	1 - 0.50010	1 400001	
na			
1/50 (2%)	0/50 (0%)	1/50 (2%)	3/50 (6%)
2.0%	0.0%	4.2%	8.0%
0/32 (0%)	0/34 (0%)	1/24 (4%)	0/9 (0%)
484	_	728 (T)	502
P=0.038	P=0.508N	P=0.726	P=0.257
P=0.115	P=0.363N	P=0.733N	P=0.672
P=0.082			
	P=0.500N	P=0.753N	P=0.309
50/50 /100%)	48/50 (06%)	47/50 (94%)	48/50 (96%)
100.0%	100.0%	100.0%	100.0%
100.070 27/27 /100 <i>0</i> %)	24/24 (100%)	200.070 24/24 (100%)	9/9 (100%)
54/54 (100%) AQA	511	557	481
404 P < 0.001	P=0.310N	P=0.175	P<0.001
I ~0.001 D-0 604NI	P=0.500N	P = 0.131N	P=0.434N
r -0.00414 D-0.260N	1 -0.5001	1 -0.13114	1 -0.45414
1 0.2001v	P-0 247N	P=0121N	P=0.247N
	r = 0.24 / N	r -0.1211N	1 -0.247IN
	0 ppm 48/50 (96%) 96.0% 30/32 (94%) 484 P<0.001 P=0.493 P=0.312N r Carcinoma 2/49 (4%) 6.3% 2/32 (6%) 728 (T) P=0.611N P=0.300N P=0.235N semia 26/50 (52%) 60.9% 16/32 (50%) 496 P<0.001 P=0.033 P=0.041 na 1/50 (2%) 2.0% 0/32 (0%) 484 P=0.038 P=0.115 P=0.082 50/50 (100%) 100.0% 32/32 (100%) 484 P<0.001 P=0.604N P=0.360N	0 ppm 222 ppm 48/50 (96%) 45/50 (90%) 96.0% 97.8% 30/32 (94%) 33/34 (97%) 484 511 P<0.001	0 ppm 222 ppm 666 ppm 48/50 (96%) 45/50 (90%) 45/50 (90%) 96.0% 97.8% 100.0% 30/32 (94%) 33/34 (97%) 24/24 (100%) 484 511 557 P<0.001

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	Ф ррш	222 ppm	666 ppm	2,000 ppm
All Organs: Malignant Neoplasn	ns		·····	
Overall rates	35/50 (70%)	33/50 (66%)	45/50 (90%)	44/50 (88%)
Adjusted rates	74.2%	73.1%	91.8%	97.3%
Terminal rates	20/32 (63%)	22/34 (65%)	20/24 (83%)	8/9 (89%)
First incidence (days)	484	423	437	481
Life table tests	P<0.001	P=0.372N	P=0.010	P<0.001
Logistic regression tests	P=0.009	P=0.427N	P=0.016	P=0.167
Cochran-Armitage test	P=0.006			
Fisher exact test		P=0.415N	P=0.011	P=0.024
All Organs: Benign or Malignan	it Neoplasms			
Overall rates	50/50 (100%)	49/50 (98%)	50/50 (100%)	50/50 (100%)
Adjusted rates	100.0%	100.0%	100.0%	100.0%
Terminal rates	32/32 (100%)	34/34 (100%)	24/24 (100%)	9/9 (100%)
First incidence (days)	484	423	437	481
Life table tests	P<0.001	P=0.378N	P=0.086	P<0.001
Logistic regression tests	_f	_	_	-
Cochran-Armitage test	P=0.585			
Fisher exact test		P=0.500N	P=1.000N	P=1.000N

(T)Terminal sacrifice

^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, epididymis, gallbladder (mouse), heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

e Not applicable; no neoplasms in animal group

f Value of statistic cannot be computed

Study	Incidence in Controls	
Historical Incidence at Southern Research Insti	tute	·····
C.I. Pigment Red 3 Nitrofuratoin <i>o</i> -Nitroanisole Polysorbate 80 Rhodamine 6G Roxarsone	22/50 23/50 26/50 23/50 27/50 27/50	
Overall Historical Incidence		
Total Standard deviation Range	385/800 (48.1%) 7.7% 32%-62%	

TABLE A4a Historical Incidence of Leukemia in Untreated Male F344/N Rats^a

^a Data as of 3 April 1991

TABLE A4b Historical Incidence of Liver Neoplasms in Untreated Male F344/N Rats^a

		Incidence in Controls	ì	
Study	Adenoma	Carcinoma	Adenoma or Carcinoma	
Historical Incidence at Southern Research Institute			an ta an annan barra tan anna ta annaic	
C.I. Pigment Red 3	0/50	0/50	0/50	
Nitrofurantoin	1/50	0/50	1/50	
o-Nitroanisole	0/50	0/50	0/50	
Polysorbate 80	2/50	0/50	2/50	
Rhodamine 6G	4/50	1/50	5/50	
Roxarsone	0/50	2/50	2/50	
Overall Historical Incidence	· ·			
Total	19/799 (2.4%)	7/799 (0.9%)	24/799 (3.0%)	
Standard deviation	2.9%	1.8%	3.4%	
Range	0%-8%	0%-6%	0%-10%	

^a Data as of 3 April 1991

TABLE A4c Historical Incidence of Squamous Cell Papillomas and Carcinomas of the Forestomach in Untreated Male F344/N Rats^a

	Incidence i	in Controls	
Study	Squamous Cell Papilloma	Squamous Cell Carcinoma	
Historical Incidence at Southern Research Institute			
C.I. Pigment Red 3	0/50	0/50	
Nitrofurantoin	0/50	0/50	
o-Nitroanisole	0/50	0/50	
Polysorbate 80	0/50	0/50	
Rhodamine 6G	0/50	0/50	
Roxarsone	0/50	0/50	
Overall Historical Incidence			
Total	2/800 (0.3%)	1/800 (0.1%)	
Standard deviation	0.7%	0.5%	
Range	0%-2%	0%-2%	

^a Data as of 3 April 1991

TABLE A4d

Historical Incidence of Renal Tubule Neoplasms in Untreated Male F344/N Rats^a

		Incidence in Controls		
Study	Adenoma	Carcinoma	Adenoma or Carcinoma	
Historical Incidence at Southern Research Institute				
C.I. Pigment Red 3	0/50	1/50	1/50	
Nitrofurantoin	0/50	0/50	0/50	
o-Nitroanisole	0/49	0/49	0/49	
Polysorbate 80	0/50	1/50	1/50	
Rhodamine 6G	0/50	0/50	0/50	
Roxarsone	1/50	1/50	2/50	
Overall Historical Incidence				
Total	5/798 (0.6%)	6/798 (0.8%)	11/798 (1.4%)	
Standard deviation	1.6%	1.2%	1.9%	
Range	0%-6%	0%-4%	0%-6%	

^a Data as of 3 April 1991

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of o-Nitroanisole^a

	0 ppm	222 ppm	666 ррт	2,000 ppm	
Disposition Summary					
Animals initially in study	60	60	60	60	
15-month interim evaluation	10	10	10	10 ^b	
Early deaths					
Moribund	16	13	24	35	
Natural deaths	2	3	2	6	
Survivors					
Died last week of study				1	
Terminal sacrifice	32	34	24	8	
Animals examined microscopically	60	60	60	59	
15-Month Interim Evaluation					
Alimentary System					
Intestine large, colon	(10)			(9)	
Parasite metazoan	4 (40%)			4 (44%)	
Intestine small, jejunum	(10)			(9)	
Parasite metazoan	(10)			1 (11%)	
Liver	(10)	(10)	(10)	(9)	
Basophilic focus	5 (50%)	1 (10%)	()	1 (11%)	
Clear cell focus	3 (30%)	- ()	1 (10%)	1 (11%)	
Clear cell focus, multiple	2 (20%)	1 (10%)			
Degeneration, cystic	1 (10%)				
Eosinophilic focus		1 (10%)	3 (30%)		
Eosinophilic focus, multiple		1 (10%)			
Hepatodiaphragmatic nodule			1 (10%)	2 (22%)	
Hepatodiaphragmatic nodule, multiple	1 (10%)				
Inflammation, granulomatous, multiple	5 (50%)	4 (40%)	6 (60%)	7 (78%)	
Mixed cell focus	2 (20%)				
Vacuolization cytoplasmic	8 (80%)	10 (100%)	8 (80%)	8 (89%)	
Bile duct, hyperplasia	10 (100%)	10 (100%)	7 (70%)	9 (100%)	
Mesentery	(2)	(2)	(2)		
Accessory spleen			1 (50%)		
Fat, hemorrhage, focal		,	1 (50%)		
Fat, inflammation, granulomatous, focal	1 (50%)	1 (50%)			
Fat, necrosis, focal		1 (50%)			
Pancreas	(10)		(1)	(9)	
Acinus, atrophy	(10)			1 (11%)	
Stomach, torestomach	(10)		(1)	(9)	
Epithelium, hyperplasia	(10)		1 (100%)	1 (11%)	
Stomacn, giandular Serosa, fibrosis, focal	(10)		(1)	(9) 1 (11%)	
· ·				· · ·	
Cardiovascular System Heart	(10)	(1)		(9)	
Inflammation, chronic	6 (60%)	(*)		5 (56%)	

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	222 ppm	666 ppm	2,000 ppm
15-Month Interim Evaluation (continued)				
Endocrine System				
Adrenal gland, cortex	(10)			(9)
Accessory adrenal cortical nodule	1 (10%)			1 (11%)
Hyperplasia, focal	1 (10%)			
Vacuolization cytoplasmic, focal	1 (10%)	<i>(</i> 1)		
Pituitary gland	(10)	(1)		(9)
Pars distalis, hyperplasia, focal	3 (30%)			2 (22%)
Thyroid gland	(10)			(9)
C-cell, hyperplasia Folliolo, gent				1(11%)
romcie, cyst				1 (11%)
General Body System				
Genital System				
Epididymis	(10)	(10)	(10)	(9)
Depletion cellular				1 (11%)
Preputial gland	(10)	(10)	(9)	(9)
Atrophy			2 (22%)	
Cyst	3 (30%)	2 (20%)	2 (22%)	
Hyperplasia	1 (10%)			
Prostate	(10)			(9)
	2 (20%)			1(11%)
Seminal vesicle	(10)		(1)	(9)
Atrophy	(10)		1 (100%)	(-)
Testes	(10)	(10)	(10)	(9)
Atrophy	()	()	1 (10%)	3 (33%)
Degeneration			- ()	1 (11%)
Bilateral, interstitial cell, hyperplasia	6 (60%)	3 (30%)	5 (50%)	1 (11%)
Interstitial cell, hyperplasia	1 (10%)	4 (40%)	4 (40%)	5 (56%)
I vmph pode	(10)		(1)	(9)
Mediastinal hyperplasia lymphoid	1 (10%)		(1)	(*)
Pancreatic, hyperplasia, lymphoid	1 (1070)		1 (100%)	
Spleen	(10)	(10)	(10)	(9)
Congestion	1 (10%)	()	1 (10%)	3 (33%)
Capsule, fibrosis, focal	·/	1 (10%)	\/	
Capsule, hypertrophy		5 (50%)	6 (60%)	8 (89%)
Integumentary System			··· · · · · · · ·	
Skin	(10)	(1)		(9)
Subcutaneous tissue ovst enithelial inclusion	(10)	(1)		(ア) 1 (11%)
Subcutaneous ussue, cyst epithenai metusion				1 (11/0)

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	222 ppm	666 ppm	2,000 ррт
15-Month Interim Evaluation (continued) Musculoskeletal System None				
Nervous System None				
Respiratory System Lung Alveolar epithelium, hyperplasia Inflammation, granulomatous, focal Nose Lumen, fungus Lumen, inflammation, suppurative Submucosa, pigmentation	(10) 1 (10%) (10)	(1)		(9) 2 (22%) (9) 1 (11%) 1 (11%) 7 (78%)
Special Senses System Eye Cataract Retina, degeneration			(1) 1 (100%) 1 (100%)	
Urinary System Kidney Fibrosis, focal Nephropathy, chronic Pelvis, dilatation	(10) 1 (10%) 10 (100%) 1 (10%)	(10) 10 (100%)	(10) 10 (100%)	(9) 9 (100%)
2-Year Study Alimentary System Intestine large, cecum Dilatation Parasite metazoan Intestine large, colon Dilatation Mineralization Parasite metazoan Intestine large, rectum Dilatation Edema Provisite metazoan	(48) 1 (2%) (48) 5 (10%) (46) 9 (20%)	(48) (48) 4 (8%) (49) 4 (8%)	(49) 1 (2%) 3 (6%) (50) 1 (2%) 2 (4%) (50) 1 (2%) 13 (26%)	(47) 1 (2%) (48) 1 (2%) 9 (19%) (49) 1 (2%) 1 (2%) 8 (16%)
Intestine small, duodenum Ectopic tissue Intestine small, ileum Hyperplasia, lymphoid	(49) (48) 1 (2%)	(47) 1 (2%) (47) 2 (4%)	(50) (48) 4 (8%)	(47) (46)

134

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	222 ppm	666 ррт	2,000 ppm	
2-Year Study (continued)					
Alimentery System (continued)					
Intestine small, iciunum	(48)	(47)	(48)	(48)	
Artery, thrombus	()			1 (2%)	
Wall, inflammation, chronic				1 (2%)	
Liver	(50)	(50)	(50)	(50)	
Angiectasis			1 (2%)	1 (2%)	
Basophilic focus	3 (6%)	2 (4%)	2 (4%)	4 (8%)	
Basophilic focus, multiple	29 (58%)	27 (54%)	11 (22%)	3 (6%)	
Clear cell focus	6 (12%)	4 (8%)	1 (2%)	2 (4%)	
Clear cell focus, multiple	7 (14%)	6 (12%)	4 (8%)	3 (6%)	
Degeneration, cystic	10 (20%)	10 (20%)	14 (28%)	24 (48%)	
Eosinophilic focus	6 (12%)	10 (20%)	15 (30%)	13 (26%)	
Eosinophilic focus, multiple	2 (4%)	8 (16%)	6 (12%)	14 (28%)	
Hematopoietic cell proliferation	1 (2%)			1 (2%)	
Hemorrhage		1 (2%)			
Hepatodiaphragmatic nodule	4 (8%)	3 (6%)	2 (4%)	4 (8%)	
Hyperplasia, nodular	7 (14%)	2 (4%)	18 (36%)	14 (28%)	
Inflammation, granulomatous, multiple	2 (4%)	2 (4%)	2 (4%)		
Mixed cell focus	4 (8%)		2 (4%)	2 (4%)	
Mixed cell focus, multiple	2 (4%)	2 (4%)	1 (2%)		
Necrosis		1 (2%)		2 (4%)	
Thrombus, multiple		1 (2%)			
Vacuolization cytoplasmic	5 (10%)	4 (8%)	4 (8%)	1 (2%)	
Bile duct, hyperplasia	46 (92%)	44 (88%)	46 (92%)	40 (80%)	
Centrilobular, degeneration	2 (4%)	2 (4%)	2 (4%)	2 (4%)	
Centrilobular, necrosis				1 (2%)	
Vein, thrombus	(1.0)	(4.4)	<i>(</i> -)	1 (2%)	
Mesentery	(10)	(11)	(5)	(9)	
Polyarteritis				2(22%)	
Est homous, multiple	2 (2007)			1(11%)	
Fat, nemorrhage, local	2(20%)	A (2606)		2 (22%)	
Fat, inflammation, granulomatous, local	1(10%)	4 (30%)	2 (600%)	2 (2201)	
Pat, necrosis, local	7 (70%)	9 (82%)	5 (00%) (50)	3 (33%)	
Parcelas Deserbilio focus	(49)	(49)	(50)	(48)	
Ectopic tissue	2 (4%) 1 (2%)			2 (19%)	
Edema	1 (270)	1 (2%)	1 (2%)	2 (470)	
Eucina Fibrosis focal		1 (270)	1 (270)	1 (2%)	
Inflammation chronic				1(2%)	
Polyarteritis	1 (2%)	1 (2%)		2(4%)	
Acinar cell atrophy	18(37%)	21 (43%)	18 (36%)	13(27%)	
Acinar cell, basophilic focus	10 (3770)	21(43)	10 (5070)	15 (2770)	
Acinar cell hyperplasia	6 (12%)	10(20%)	4 (8%)	6 (13%)	
Acinar cell, hyperplasia, focal	0 (12/0)	10(20,0) 1(2%)	1 (0,0)	0 (15/0)	
Acinar cell, vacuolization cytoplasmic		1 (270)	1 (2%)		
Salivary glands	(50)	(50)	(50)	(50)	
Cytomegaly	1 (2%)	8 (16%)	4 (8%)		
Fibrosis, focal	- (-//)	1 (2%)	(())		
Infiltration cellular, lipocyte		39 (78%)	6 (12%)		
Inflammation, suppurative	1 (2%)	()	(/-)		
Acinar cell, atrophy	- ()	1 (2%)	1 (2%)		
		- \>			

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	222 ррт	666 ррт	2,000 ppm
2-Year Study (continued)			<u></u>	
Alimentery System (continued)				
Stomach, forestomach	(50)	(50)	(50)	(50)
Edema	3 (6%)	3 (6%)	5 (10%)	11 (22%)
Inflammation, chronic	2 (4%)	2 (4%)	1 (2%)	12 (24%)
Mineralization	-(///)	- ()	1(2%)	1 (2%)
Perforation		1 (2%)	- (=//)	- (=/0)
I llcer	3 (6%)	3 (6%)	6 (12%)	15 (30%)
Ulcer multiple	5 (070)	5 (070)	2(4%)	1 (2%)
Enithelium hyperplasia	3 (6%)	16 (32%)	25 (50%)	32.(64%)
Stomach glandular	(50)	(49)	(50)	(50)
Edema	(50)	(12)	4 (8%)	1 (2%)
Erosion			((()))	1(2%)
Erosion multiple			1 (2%)	1 (2/0)
Inflammation chronic			1 (270)	1 (2%)
Mineralization		1 (7%)	1 (2%)	6 (12%)
Polyosteritie		1 (270)	1 (270)	1 (2%)
Folyariennis Llicon			1 (2%)	1(2%)
Ulcer multiple			1(2%)	1 (270)
Arters throwbus			1 (270)	1 (2%)
Artery, inromous				1(2%)
Mucosa, pigmentation, tocar				1 (270)
Cardiovascular System				
Blood vessel				(1)
Aorta, mineralization				1 (100%)
Mesenteric artery, mineralization				1 (100%)
Heart	(50)	(50)	(50)	(50)
Inflammation, chronic	43 (86%)	46 (92%)	42 (84%)	40 (80%)
Mineralization				1 (2%)
Atrium, congestion	2 (4%)	1 (2%)		
Atrium, thrombus		2 (4%)	1 (2%)	1 (2%)
Endocrine System	,			
Adrepal gland cortex	(48)	(50)	(50)	(49)
Accessory adrenal cortical nodule	8 (17%)	5 (10%)	5 (10%)	2 (4%)
Degeneration cystic	0 (1770)	5 (1070)	1 (2%)	1(2%)
Hunemlasia focal	3 (6%)	7 (14%)	4 (8%)	2 (4%)
Hyperplasia, local	5 (10%)	7 (14%) 7 (4%)	1(2%)	$\frac{1}{2}(3,6)$
Hypertrophy, local	5 (1070)	2 (470)	1 (270)	1 (2%)
Venetization attentesmin			2 (4%)	11(22%)
Vacuolization cytoplasmic	0 (10%)	10 (20%)	$\frac{2}{11}(22\%)$	8(16%)
Vacuolization cytoplasmic, tocal	9 (1970)	10(20%)	11 (2270)	8 (10%)
Vacuolization cytoplasmic, local, multiple		1(2%)		1 (20%)
Vacuolization cytoplasmic, multiple, local		1 (2%)		1(2%)
Spindle cell, hyperplasia, tocal	(10)	(50)	(50)	1 (2%)
Adrenal gland, medulla	(49)	(30)	(50)	(49)
Hemorrhage				1 (2%)
Hyperplasia	1 (2%)	A 44A	11 (000)	10 (20%)
Hyperplasia, focal		u /186%)	11 (22%)	10 (20%)
	4 (8%)	9 (1870)	()	
Bilateral, hyperplasia, focal	4 (8%)	1 (2%)	()	(10)
Bilateral, hyperplasia, focal Islets, pancreatic	4 (8%) (49)	1 (2%) (49)	(50)	(48)

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	222 ppm	666 ppm	2,000 ppm	
2-Year Study (continued)		······································			<u></u>
Endocrine System (continued)					
Parathyroid gland	(47)	(46)	(47)	(48)	
Hypernlasia	2 (4%)	1 (2%)	3 (6%)	14 (29%)	
Pituitary gland	(50)	(50)	(49)	(49)	
Pars distalis, cyst	2 (4%)	1 (2%)	6 (12%)	2 (4%)	
Pars distalis, cyst, multiple	- (,	1 (2%)		- ()	
Pars distalis, hemorrhage	4 (8%)	- (-/-)			
Pars distalis, hyperplasia, focal	3 (6%)	9 (18%)	11 (22%)	5 (10%)	
Pars intermedia, cyst			2 (4%)	1 (2%)	
Thyroid gland	(49)	(50)	(50)	(50)	
Ultimobranchial cyst		1 (2%)	()	1 (2%)	
Artery, polyarteritis		- ()		1 (2%)	
Bilateral, C-cell, hyperplasia		1 (2%)		- ()	
C-cell, hyperplasia		- ()	3 (6%)	1 (2%)	
C-cell, hyperplasia, focal	7 (14%)	3 (6%)	3 (6%)	3 (6%)	
Follicle, cyst	4 (8%)	5 (10%)	6 (12%)	5 (10%)	
Follicular cell. degeneration		- ()		1 (2%)	
Follicular cell, hyperplasia		1 (2%)	1 (2%)		
Genital System Coagulating gland			(1)		
Inflammation, suppurative	(= -)		1 (100%)		
Epididymis	(50)	(50)	(50)	(50)	
Granuloma sperm	1 (2%)	(50)	(50)	(40)	
Preputal gland	(50)	(50)	(50)	(49)	
Abscess	6 (1207)	12 (2601)	1(270)	1(2%)	
Atrophy multiple	0 (12%)	13 (20%)	10(32%)	13 (21%)	
Autobris		3 (070)	1(2%)		
Ovet	7 (14%)	18 (36%)	24(48%)	16 (33%)	
Cyst multiple	2(4%)	4 (8%)	7 (14%)	1(2%)	
Hyperplasia	2(4%)	((0,0))	5 (10%)	2(4%)	
Hyperplasia, focal	1(2%)	3 (6%)	0 (10,0)	2(170)	
Inflammation. chronic	2(4%)	1(2%)	1 (2%)		
Inflammation, suppurative	3 (6%)	5 (10%)	3 (6%)	2 (4%)	
Bilateral, atrophy		• (••••)		4 (8%)	
Prostate	(50)	(50)	(50)	(50)	
Cyst	1 (2%)		()	3 (6%)	
Inflammation, chronic	4 (8%)	6 (12%)	2 (4%)	3 (6%)	
Inflammation, suppurative	24 (48%)	15 (30%)	17 (34%)	17 (34%)	
Epithelium, hyperplasia		1 (2%)			
Seminal vesicle	(50)	(50)	(50)	(50)	
Atrophy	12 (24%)	12 (24%)	7 (14%)	2 (4%)	
Hyperplasia, glandular			1 (2%)	·	

r

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ррт	222 ррт	666 ppm	2,000 ppm
2-Year Study (continued)			······	·
Genital System (continued)				
Testes	(50)	(50)	(50)	(50)
Atrophy	16 (32%)	13 (26%)	15 (30%)	17 (34%)
Necrosis	()	()	()	1 (2%)
Arteriole, inflammation, chronic				1 (2%)
Bilateral, atrophy		1 (2%)	2 (4%)	1 (2%)
Bilateral, interstitial cell, hyperplasia	3 (6%)	5 (10%)	3 (6%)	5 (10%)
Interstitial cell, atrophy			2 (4%)	
Interstitial cell, hyperplasia	16 (32%)	6 (12%)	15 (30%)	10 (20%)
Hematopoietic System			······································	· · · · · · · · · · · · · · · · · · ·
Bone marrow	(49)	(50)	(50)	(49)
Myelofibrosis		1 (2%)	2 (4%)	2 (4%)
Myeloid cell, hyperplasia	1 (2%)			
Lymph node	(50)	(50)	(50)	(50)
Iliac, cyst				1 (2%)
Inguinal, hyperplasia, lymphoid	3 (6%)		1 (2%)	3 (6%)
Mediastinal, angiectasis	9 (18%)	5 (10%)	2 (4%)	2 (4%)
Mediastinal, cyst, multiple			1 (2%)	
Mediastinal, hyperplasia, lymphoid	2 (4%)	2 (4%)	1 (2%)	
Mediastinal, pigmentation	2 (4%)		1 (2%)	4 (8%)
Pancreatic, angiectasis	2 (4%)	2 (4%)	2 (4%)	1 (2%)
Pancreatic, cyst, multiple			1 (2%)	
Pancreatic, hyperplasia, lymphoid	1 (2%)	1 (2%)		3 (6%)
Pancreatic, pigmentation	2 (4%)			4.4992
Renal, angiectasis			1 (00)	4 (8%)
Renal, hyperplasia, lymphoid			1 (2%)	1 (2%)
Renal, pigmentation	(50)	(49)	1 (2%)	(50)
Lymph node, mandroular	(30)	(40)	(30)	(30)
Aligiectasis	1 (270)	1 (2%)	1 (270)	1(2%)
Cysi Out multiple	3 (6%)	6 (13%)	3 (6%)	1 (270)
Cyst, munipic Fibrosis	3 (070)	0 (1570)	1(2%)	
Hypernlasia lymphoid	4 (8%)	3 (6%)	3 (6%)	2 (4%)
I ymph node mesenteric	(49)	(48)	(49)	(48)
Angiectasis	1 (2%)	2 (4%)	1 (2%)	1 (2%)
Edema	1(2%)	- ((///)	- (2/3)	1(2%)
Hemorrhage	- (=/•)	1 (2%)		
Hyperplasia, lymphoid	1 (2%)	6 (13%)	1 (2%)	1 (2%)
Spleen	(50)	(49)	(50)	(50)
Congestion		7 (14%)		
Fibrosis, focal	7 (14%)	5 (10%)	8 (16%)	9 (18%)
Hematopoietic cell proliferation	3 (6%)	1 (2%)	1 (2%)	1 (2%)
Hyperplasia, histiocytic, lymphoid			1 (2%)	
Inflammation, granulomatous, multiple			1 (2%)	
Necrosis			2 (4%)	1 (2%)
Capsule, hypertrophy		1 (2%)		
Pigmentation				1 (2%)
Thymus	(45)	(48)	(42)	(47)
Fibrosis			1 (2%)	
Hyperplasia, lymphoid	1 (2%)	1 (2%)		
TABLE A5

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ррт	222 ppm	666 ppm	2,000 ppm
2-Year Study (continued)		<u></u>	<u></u>	
Integumentary System				
Mammary gland	(48)	(49)	(47)	(50)
Hyperplasia, lobular	10 (21%)	21 (43%)	13 (28%)	23 (46%)
Duct, cyst	7 (15%)	17 (35%)	16 (34%)	7 (14%)
Duct, hemorrhage	1 (2%)	3 (6%)		
Skin	(50)	(50)	(50)	(50)
Cyst epithelial inclusion	1 (2%)			
Hyperkeratosis		1 (2%)		
Inflammation, suppurative				1 (2%)
Ulcer		4 (097)		1 (2%)
Dermis, fibrosis	1 (00)	1 (2%)		1 (00)
Epidermis, hyperplasia	1 (2%)			1 (2%)
Musculoskeletal System				
Bone	(50)	(50)	(50)	(50)
Calvarium, hyperostosis				1 (2%)
Fibrous osteodystrophy		1 (2%)	1 (2%)	
Osteoporosis	1 (2%)			
Femur, fibrous osteodystrophy				4 (8%)
Maxilla, fibrous osteodystrophy				3 (6%)
Nervous System				
Brain	(50)	(50)	(50)	(50)
Compression	6 (12%)	3 (6%)	4 (8%)	2 (4%)
Hemorrhage	2 (4%)		3 (6%)	1 (2%)
Respiratory System				<u> </u>
Lung	(50)	(50)	(50)	(50)
Atelectasis, focal	1 (2%)			
Erythrophagocytosis		1 (2%)		
Hemorrhage, focal		1 (2%)		
Hemorrhage, multiple				1 (2%)
Infiltration cellular, lymphocyte		1 (2%)		
Infiltration cellular, histiocyte, focal			4 (8%)	
Infiltration cellular, histiocyte, multiple		2 (4%)	. ,	
Inflammation, granulomatous, focal		2 (4%)	1 (2%)	
Inflammation, granulomatous, multiple	3 (6%)			1 (2%)
Inflammation, suppurative	1 (2%)	1 (2%)		
Mineralization				1 (2%)
Alveolar epithelium, hyperplasia	2 (4%)		1 (2%)	
Alveolar epithelium, hyperplasia, focal		1 (2%)	1 (2%)	
Alveolus, pigmentation				1 (2%)
Mediastinum, polyarteritis, multiple				1 (2%)
Mediastinum, thrombus, multiple				1 (2%)

TABLE A5

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	222 ppm	666 ppm	2,000 ppm	
2-Year Study (continued)			** <u>**</u> ********************************	······································	,
Respiratory System (continued)					
Nose	(50)	(50)	(50)	(50)	
Metaplasia, squamous				2 (4%)	
Lumen, foreign body	1 (2%)	3 (6%)	5 (10%)	2 (4%)	
Lumen, fungus	10 (20%)	9 (18%)	9 (18%)	14 (28%)	
Lumen, inflammation, suppurative	9 (18%)	12 (24%)	13 (26%)	14 (28%)	
Respiratory epithelium, hyperkeratosis			1 (2%)		
Respiratory epithelium, hyperplasia			1 (2%)		
Septum, inflammation, chronic			1 (2%)		
Submucosa, inflammation, suppurative			1 (2%)		
Submucosa, pigmentation		45 (90%)	37 (74%)	45 (90%)	
Special Senses System	·····		<u></u>		
Eve	(1)	(1)	(2)	(2)	
Cataract	1 (100%)	1 (100%)		1 (50%)	
Retina, degeneration	1 (100%)	1 (100%)	1 (50%)	1 (50%)	
Harderian gland			· · /	(2)	
Hemorrhage				1 (50%)	
Urinary System	···· · · · · · · · · · · · · · · · · ·	<u></u>		<u> </u>	H
Kidney	(49)	(50)	(50)	(49)	
Cyst	1 (2%)	2 (4%)	2 (4%)	6 (12%)	
Cyst, multiple		1 (2%)		7 (14%)	
Hydronephrosis				1 (2%)	
Nephropathy, chronic	49 (100%)	50 (100%)	50 (100%)	49 (100%)	
Renal tubule, hyperplasia		3 (6%)		2 (4%)	
Renal tubule, mineralization		2 (4%)			
Renal tubule, pigmentation	45 (92%)	41 (82%)	48 (96%)	46 (94%)	
Transitional epithelium, hyperplasia	7 (14%)	9 (18%)	9 (18%)	30 (61%)	
Ureter				(1)	
Transitional epithelium, hyperplasia				1 (100%)	
Urinary bladder	(50)	(50)	(50)	(50)	
Inflammation, chronic				1 (2%)	
Transitional epithelium, hyperplasia				2 (4%)	

Number of animals examined microscopically at site and number of animals with lesion. Includes one animal killed moribund before the interim evaluation. a

b

APPENDIX B SUMMARY OF LESIONS IN FEMALE RATS IN THE 2-YEAR FEED STUDY OF Ø-NITROANISOLE

Table B1	Summary of the Incidence of Neoplasms in Female Rats	
	in the 2-Year Feed Study of o-Nitroanisole	143
Table B2	Individual Animal Tumor Pathology of Female Rats	
	in the 2-Year Feed Study of o-Nitroanisole	148
Table B3	Statistical Analysis of Primary Neoplasms in Female Rats	
	in the 2-Year Feed Study of o-Nitroanisole	172
TABLE B4a	Historical Incidence of Leukemia in Untreated Female F344/N Rats	177
TABLE B4b	Historical Incidence of Liver Neoplasms in Untreated Female F344/N Rats	177
Table B4c	Historical Incidence of Squamous Cell Papillomas and Carcinomas	
	of the Forestomach in Untreated Female F344/N Rats	178
Table B5	Summary of the Incidence of Nonneoplastic Lesions in Female Rats	
	in the 2-Year Feed Study of o-Nitroanisole	179

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Feed Study of o-Nitroanisole^a

	0 ppm	222 ppm	666 ррт	2,000 ppm	
Disposition Summary		· <u>····································</u>	····	·····	
Animals initially in study	60	60	60	60	
15-Month interim evaluation	10	10	10	10 ⁰	
Early deaths					
Moribund	17	7	18	14	
Natural deaths		2	6	3	
Survivors	20	44	24	22	
Terminal sacrifice	33	41	20	55	
Animals examined microscopically	60	60	60	59	
15-Month Interim Evaluation			<u> </u>		
Alimentary System					
Liver	(10)	(10)	(10)	(9)	
Cardiovascular System None					
Endocrine System		·······	····		
Pituitary gland	(10)	(3)	(1)	(9)	
Pars distalis, adenoma		2 (67%)	1 (100%)		
Pars distalis, adenoma, multiple				1 (11%)	
Thyroid gland	(10)		(1)	(9)	
C-cell, adenoma				1 (11%)	
C-cell, carcinoma			1 (100%)	1 (11%)	
General Body System		,			
None	· .				
Genital System					
Clitoral gland	(10)	(10)	(10)	(9)	
Adenoma	(10)	(10)	1 (10%)	(0)	
Polyp stromal	(10) 3 (30%)	(10)	(10)	(9) 2 (22%)	
Hematopoietic System			- M <u>-</u> - M		
Spleen	(10)	(10)	(10)	(9)	
Integumentary System None					
Musculoskeletal System None	<u>, , , , , , , , , , , , , , , , , , , </u>				

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ррт	222 ppm	666 ppm	2,000 ppm
15-Month Interim Evaluation (continued) Nervous System None				
Respiratory System Lung Alveolar/bronchiolar adenoma	(10)	<u></u>	(1) 1 (100%)	(9)
Special Senses System Ear Pinna, schwannoma malignant			(1) 1 (100%)	
Urinary System None				
Systemic Lesions Multiple organs ^c Leukemia mononuclear	(10)	(10)	(10) 1 (10%)	(9)
Neoplasm Summary Total animals with primary neoplasms ^d Total primary neoplasms Total animals with benign neoplasms Total benign neoplasms Total animals with malignant neoplasms Total malignant neoplasms	3 3 3 3	2 2 2 2 2	5 6 3 3 3 3 3	3 5 2 4 1 1
2-Year Study Alimentary System Esophagus Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma Sarcoma stromal, metastatic, uterus Mesentery Hemangiosarcoma Fat, fibrosarcoma Fat, lipoma	(50) (50) (50) (50) (50) (50) (50) (9) 1 (11%)	(50)(49)(49)(49)(49)(50)(6)1 (17%)1 (17%)	(50) (46) (46) (46) (47) (50) 1 (2%) (11)	(50) (49) (49) (49) (48) (48) (50) 3 (6%) (12)
rat, lipoma Fat, sarcoma stromal, metastatic, uterus		1 (17%)	1 (9%)	

Table B1

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	222 ррт	666 ppm	2,000 ppm
2-Year Study (continued)				· · · · · · · · · · · · · · · · · · ·
Alimentary System (continued)				
Pancreas	(50)	(50)	(49)	(50)
Acinar cell, adenoma	(50)	(30)	(*)	1 (2%)
Acinar cell, adenoma, multiple				1 (2%)
Pharynx			(2)	- (-//)
Palate, squamous cell carcinoma			1 (50%)	
Salivary glands	(50)	(49)	(50)	(50)
Stomach, forestomach	(50)	(50)	(50)	(50)
Squamous cell carcinoma		()		1 (2%)
Squamous cell papilloma		1 (2%)		1 (2%)
Stomach, glandular	(50)	(50)	(50)	(50)
Tongue	(1)			
Squamous cell papilloma	1 (100%)			
Cardiovascular System		<u> </u>		······
Heart	(50)	(50)	(50)	(50)
Endocrine System				
Adrenal gland, cortex	(50)	(50)	(50)	(50)
Adenoma	1 (2%)	5 (10%)	(00)	2 (4%)
Adrenal gland, medulla	(50)	(50)	(50)	(49)
Pheochromocytoma malignant		()	1 (2%)	1 (2%)
Pheochromocytoma benign	1 (2%)		- (-//)	1 (2%)
Islets, pancreatic	(50)	(50)	(49)	(50)
Adenoma	2 (4%)	1 (2%)	2 (4%)	()
Carcinoma		- ()	1 (2%)	
Pituitary gland	(50)	(50)	(50)	(50)
Pars distalis, adenoma	28 (56%)	28 (56%)	27 (54%)	19 (38%)
Pars distalis, carcinoma	1 (2%)			
Pars intermedia, adenoma	1 (2%)			
Thyroid gland	(50)	(50)	(50)	(50)
Bilateral, c-cell, adenoma	1 (2%)			
C-cell, adenoma	4 (8%)	3 (6%)	2 (4%)	3 (6%)
C-cell, adenoma, multiple		1 (2%)		
C-cell, carcinoma	2 (4%)	2 (4%)	1 (2%)	1 (2%)
Follicular cell, adenoma			1 (2%)	- ()
Follicular cell, carcinoma		2 (4%)	1 (2%)	
General Body System None				
Genital System			<u> </u>	
Clitoral gland	(45)	(47)	(50)	(48)
Adenoma	3 (7%)	5 (11%)	3 (6%)	3 (6%)
Carcinoma	4 (9%)	1 (2%)	2 (4%)	2 (4%)
Bilateral, carcinoma		- \)	1 (2%)	- ()
			- (-//)	

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ррт	222 ppm	666 ppm	2,000 ppm
2-Year Study (continued)			*** <u>-</u> ***	
Genital System (continued)				
Ovary	(50)	(50)	(50)	(50)
Thecoma benign		í (2%)		
Uterus	(50)	(50)	(50)	(50)
Hemangioma	1 (2%)	,		
Hemangiosarcoma				1 (2%)
Leiomyoma	•			1 (2%)
Leiomyosarcoma		1 (2%)		
Polyp stromal	9 (18%)	13 (26%)	8 (16%)	8 (16%)
Polyp stromal, multiple				1 (2%)
Sarcoma stromal			3 (6%)	1 (2%)
Cervix, adenocarcinoma				1 (2%)
Cervix, leiomyoma	1 (2%)			
Cervix, leiomyosarcoma			1 (2%)	
Vagina		(3)	(1)	(3)
Polyp			1 (100%)	
Hematopoietic System		······································	······································	······································
Bone marrow	(49)	(50)	(50)	(49)
Lymph node	(50)	(50)	(50)	(50)
Lymph node, mandibular	(48)	(49)	(50)	(50)
Lymph node, mesenteric	(48)	(50)	(50)	(47)
Spleen	(50)	(50)	(50)	(50)
Sarcoma		1 (2%)		
Thymus	(47)	(49)	(47)	(48)
Thymoma benign	1 (2%)			
Integumentary System				<u> </u>
Mammary gland	(50)	(50)	(50)	(50)
Adenocarcinoma	2 (4%)		2 (4%)	
Adenoma	1 (2%)			
Carcinoma				1 (2%)
Fibroadenoma	17 (34%)	17 (34%)	12 (24%)	8 (16%)
Fibroadenoma, multiple		1 (2%)	3 (6%)	1 (2%)
Skin	(50)	(50)	(50)	(50)
Squamous cell papilloma	1 (2%)		•	
Subcutaneous tissue, fibroma		2 (4%)		
Subcutaneous tissue, fibrosarcoma		1 (2%)		
Subcutaneous tissue, lipoma		1 (2%)		
Subcutaneous tissue, sarcoma			1 (2%)	
Musculoskeletal System		<u> </u>		
Rone	(50)	(50)	(50)	(50)
Maxilla squamous cell carcinoma	(30)	. (20)	(30)	
metastatic nose	1 (2%)			
Skeletal muscle	(1)		(1)	
Abdominal linoma	(+)		1 (100%)	(-)
			- (10070)	

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ррт	222 ppm	666 ррт	2,000 ppm
2-Year Study (continued) Nervous System Brain Carcinoma, metastatic, pituitary gland	(50) 1 (2%)	(50)	(50)	(50)
Sarcoma			1 (270)	
Respiratory System	(50)	(50)	(50)	(50)
Alveolar/bronchiolar adenoma Squamous cell carcinoma	(30)	(50)	2 (4%)	3 (6%) 1 (2%)
Nose Respiratory epithelium, squamous cell carcinoma	(50) 1 (2%)	(50)	(50)	(50)
Special Senses System				
Eye	(1)	(4)	(1)	(5)
Harderian gland	(1)	(2)		(2)
Carcinoma	(1) 1 (100%)	(1) 1 (100%)		1 (100%)
Urinary System				······································
Kidney	(50)	(50)	(50)	(50)
Myxosarcoma	(50)	(50)	1 (2%)	(50)
Transitional epithelium, carcinoma Transitional epithelium, papilloma	(30)	(30)	(30)	(33) 1 (2%) 1 (2%)
Systemic Lesions				
Multiple organs	(50)	(50)	(50)	(50)
Leukemia mononuclear	14 (28%)	11 (22%)	14 (28%)	26 (52%)
Neoplasm Summary		,		······································
Total animals with primary neoplasms	46	46	46	46
Total primary neoplasms	99	101	93	95
Total animals with benign neoplasms	40	44	38	35
Total benign neoplasms	73	80	62	57
Total animals with malignant neoplasms	21	18	27	32 29
Total malignant neoplasms	20	21	31	38
Total metastatic peoplesms	2		2	
rotai metastatie neopiasitis	2		2	· · ·

a ^a Number of animals examined microscopically at site and number of animals with lesion.
 ^b Includes one animal killed moribund before the interim evaluation.

^c Number of animals with any tissue examined microscopically

d Primary neoplasms: all neoplasms except metastatic neoplasms

Individual Animal Tumor Patholo	ogy of Fen	nal	e I	Rat	s iı	n tl	he	2-¥	/ea	r F	Tee	d S	Stu	dy	of	<i>o-</i> 1	Nit	roa	ini	sol	le:	0	pp	m			
Number of Days on Study	4 3 8	4 8 0	4 3 9 4	5 1 8	6 1 3	6 1 3	6 3 4	6 6 3	6 6 9	6 7 3	6 8 7	6 8 7	6 9 4	7 0 0	7 0 0	7 0 0	7 2 3	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9	7 2 9		
Carcass ID Number	0 5 6 1	0 5 3 1	0 0 5 5 7 1	0 5 5 1	0 5 3 2	0 5 4 1	0 5 0 1	0 5 6 2	0 5 0 2	0 5 0 3	0 5 0 4	0 5 7 2	0 5 2 1	0 5 2 2	0 5 2 3	0 5 7 3	0 5 5 2	0 4 9 1	0 4 9 2	0 4 9 3	0 4 9 4	0 4 9 5	0 5 0 5	0 5 1 1	0 5 1 2		
Alimentary System																											
Esophagus	-			- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large	-			- +	• +	· +	• ÷	÷	+	+	4	+	+	+	+	÷	+	+	+	+	+	+	+	+	÷		
Intestine large, cecum	-			+	- +	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, colon			+ -	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, rectum	4			- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small	4			- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, duodenum	4		+ +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, ileum	4		+ -	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, jejunum	4		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Liver	-		+ +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Mesentery			-	-		+			+				+							+				+			
Fat, fibrosarcoma						Х																					
Pancreas	-		+ -	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Salivary glands	+		+ +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach	+		+ +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach, forestomach	-		+ +	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach, glandular	-		+ +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Tongue Squamous cell papilloma																				+ X							
Cardiovascular System													_	_	_	_	-			_	-						
nean	T					· •			+	-	+	т	Ŧ	т 		- -	т 			т	т	т 	-	Ť	-		
Endocrine System																											
Adrenal gland	-		+ +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex Adenoma	. 4	-	+ +	- +	- +	• +	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, medulla Pheochromocytoma benign	4		+ -1	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Islets, pancreatic Adenoma	4		+ -1	- +	- +	• +	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Parathyroid gland	-		+ +	- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pituitary gland	+		+ +	- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pars distalis, adenoma					Х	X			х	х	х		Х		х	х	х					х	х	х	х		
Pars distalis, carcinoma																											
Pars intermedia, adenoma									х														•				
Thyroid gland	-		+ +	- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Bilateral, C-cell, adenoma																											
C-cell, adenoma																								х			
C-cell, carcinoma									x																		

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

Individual Animal Tumor Pathol	ogy of Fem	alo	e R	lat	s ii	n tl	he	2-1	lea	r I	Fee	ed S	Stu	idy	oľ	0-]	Nit	ro	ani	isol	le:	0	PP		(coi	ntinued)
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	9	9	9	9	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	Total
	1	1	4	6	1	2	2	3	3	3	4	4	4	5	5	5	6	6	7	7	8	8	8	8	8	Tissues/
·	3	4	2	3	5	4	5	3	4	5	3	4	5	3	4	5	4	5	4	5	1	2	3	4	5	Tumors
Alimentary System									_													*****	,			
Esophagus	+	• +	• +	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	- +	- +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	+	• +	- +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, colon	+	+	· +	- +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, rectum	+	+	• +	- +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small	+	• +	• +	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, duodenum	+	• +	• +	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, ileum	+	· +		- +	+	• +	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, jejunum	+	+	. 4	- +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	50
Liver	+	+			• +	• +	+	+	+	+	. ÷	- +	- ÷	. <u>.</u>	+	+	+	+	+		+	+	+	+	. <u>.</u>	50
Mesenterv			•	•	•	•		•	·	•			+	. .		+		•	•	•	•	•	•	·	·	9
Fat, fibrosarcoma														•		•										1
Pancreas	+					. +	+	+	+	+			–	.	+	+	+	-	+	+		. _	–	-		50
Salivary glands					+			+	_				. .			+	÷						1			50
Stomach			اس					÷					. L	. <u>.</u>		÷	Ļ		, ,				т -		. <u>.</u>	50
Stomach forestomach	، ب								т -	- -	. <u>+</u>	. т	. I	т 	т 	Ť	т 	т 	т 	т 	т 	т 	т 		. <u> </u>	50
Stomach, dandular	т 1	т 	г. 		. T	· т	- T			- T	- T	- T	- T	· +			т 		- T	т 	- T - L		Ţ	Ţ	Ţ	50
Tongue	. T	• т	· •	- т	· •	· •	T	т	т	т	· т	· •	Ŧ	-	T	т	т	т	т	Ŧ	т	т	T	т	Ŧ	30
Squamous cell papilloma																										1
Cardiovascular System																										
Heart	+	+	• +	- +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																										<u></u>
Adrenal gland	+	+	• +	- +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	+	· +	- +	· +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma																										1
Adrenal gland, medulla	+	+	• +	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign															Х											1
Islets, pancreatic	+	+	• +	- +	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma																					Х					2
Parathyroid gland	+	+	· +	- M	[+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pituitary gland	+	+	· +	- +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pars distalis, adenoma				Х	X	X		Х	Х	Х		Х	X			х			Х	х	Х	X		Х	. X	28
Pars distalis, carcinoma			Х	C I																						1
Pars intermedia, adenoma																										1
Thyroid gland	+	+	• +	- +	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Bilateral, C-cell, adenoma			Х	K																						1
C-cell, adenoma	х							Х								Х										4
C-cell, carcinoma																								Х		2

.

150

TABLE B2

Individual Animal Tumor Pathology of	f Fem	ale	\mathbb{R}	ats	in	ı th	le 2	2 - ¥	ea	r F	'ee	d S	Stu	dy	oľ	0-]	Ni	ro	an	iso	le	: (D	pr	m (con	tinued)
	4	4	4	5	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7		7	7	7	7	
Number of Days on Study	8	8 0	9 4	1 8	1 3	1 3	4	0 3	0 9	3	8 7	8 7	9 4	0	0	0	23	2 8	2 8	8	8	3 8	8	2 9	29	2 9	
·	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	() (0	0	0	0	
Carcass ID Number	5	5	5	5	5	5	5	5	5	5	5	2	2	2	2	2	2	4	4	4		• •	а С	2	3	3	
	0	3	1	3	3	4	1	2	2	3	4	2	2	2	2	2	2	9 1	2	3			5	5	1	2	
N	1	1	-	1	2	-	1				-		-												-	2	
General Body System None																											
Genital System																											
Clitoral gland	+	+	+	+	+	+	+	+	+	М	(+	+	+	+	+	+	N	1 +	- N	1 -	+ •	+	+	+	М	+	
Adenoma																											
Carcinoma				Х																							
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	- +		+ •	+	+	+	+	+	
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	- +		۲	+	+	+	+	+	
Hemangioma																									х		
Polyp stromal Cervix, leiomyoma	х	х							x													X					
Hematopoietic System																											
Bone marrow	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	- +		+ ·	+	+	+	+	М	
Lymph node	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	• +	• . +	+		+ ·	+	+	+	+	+	
Lymph node, mandibular	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	1		+ 1	М	+	+	+	+	
Lymph node, mesenteric	+	+	+	• +	+	+	+	+	+	+	+	. +	+	+	+	+	• +	- +			+ ·	+	+	+	+	+	
Spleen	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	• +	- +			+ ·	+	+	+	+	+	
Thymus	+	+	+	• +	M	[+	M	[+	+	+	+	+	+	; +	+	+	• +				+	÷	+	+	+	+	
Thymoma benign																											
Integumentary System																											
Mammary gland	+	+	+	• +	· +	+	+	+	+	+	+	+	+	+	+	+	+			+ -	+	+	+	+	+	+	
Adenocarcinoma																											
Adenoma																											
Fibroadenoma	x	X			Х							Х											Х			Х	
Skin	+	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	• +	• -+		+ -	+ -	+	+	+	+	+	+	
Squamous cell papilloma																											
Musculoskeletal System																											
Bone	+	+	• +	- +	+	+	+	+	+	+	+	+	+	+	• +	• +	• •		+ +	+ -	+	+	+	+	+	+	
Maxilla, squamous cell carcinoma.					,	-		-		5	,	5				-										-	
metastatic, nose						х																					
Skeletal muscle																				•	+						
Nervous System																						_					<u> </u>
Brain	+	+		- +	. +	• +	+	+		+	. +	+	+		. +				+ +	ب	+	+	+	+	+	+	
Carcinoma, metastatic, pituitary gland						•		•	•	,	•											-		í	•	•	
,,, F, Build																											

- -

- - - -

Individual Animal Tumor Pathology of	f Fem	aic	: R	ats	s in	a th	ne :	2-¥	(ea	r l	fee	d S	Stu	dy	of	0-)	Nit	ros	ami	SO	le:	Û	pp		(00)	ntinued)
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
·	9	9	9	9	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	Total
	1	1	4	6	1	2	2	3	3	3	4	4	4	5	5	5	6	6	7	7	8	8	8	8	8	Tissue
	3	4	2	3	5	4	5	3	4	5	3	4	5	3	4	5	4	5	4	5	1	2	3	4	5	Tumor
General Body System None																										
Genital System				_											_			_								·····
Clitoral gland	+	+	+	+	+	+	+	+	+	+	+	Μ	[+]	+	+	+	+	+	+	+	+	+	+	+	• +	45
Adenoma											х										Х			Х	:	3
Carcinoma							х									Х		х								4
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	50
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	50
Hemangioma																										1
Polyp stromal		Х										Х	X						Х		Х	X				9
Cervix, leiomyoma																										1
Hematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	49
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	• +	50
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	· +	48
Lymph node, mesenteric	+	+	+	+	+	M	+	+	+	+	+	M	[+	+	+	+	+	+	+	+	+	. +	+	. +	• +	48
Spleen	+	+	+	· +	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	• +	50
Thymus	+	+	+	+	+	+	+	+	Ň	÷ +	÷	+	+	+	+	+	+	+	+	+	+	÷ .	+			47
Thymoma benign	·	•	•	•	•	•	•	•		x		•	•	•	•	•	•	•	•	•		•	•		•	1
Integumentary System																										
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	50
Adenocarcinoma				·		•	·	x	•	•		•	·		•	x	·			•	·	•	•	•	•	2
Adenoma																						х				1
Fibroadenoma				x		x		x		x	x	x	x	x				x	x			x				17
Skin	+	+	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	50
Squamous cell papilloma				х																					-	1
Musculoskeletal System																		_			_					
Bone	+	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	+	. +		50
Maxilla, squamous cell carcinoma.	•	·		•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	
metastatic, nose																										1
Skeletal muscle																										1
Nervous System				·····			_							·											<u></u>	
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		- +	50
Carcinoma, metastatic, pituitary gland	•	•	x	·	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•		•	•	•		1
,, F, Bunno																										-

--- --

.

TABLE B2 Individual Animal Tumor Pathology of	Fem	ale	R	ats	in	th	ie 2	2-Y	'ea	r F	ee	d 8	Stu	dy	of	0-]	Nit	roa	ani	SO	le:	0	PF	m	(00	ontinued)
	4	4	4	5	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	.7	7	7	
Number of Days on Study	3 8	8 0	9 4	1 8	1 3	1 3	3 4	6 3	6 9	7 3	8 7	8 7	9 4	0 0	0 0	0 0	2 3	2 8	2 8	2 8	2 8	2 8	2 9	2 9	2 9	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	5 6 1	5 3 1	5 7 1	5 5 1	5 3 2	5 4 1	5 0 1	5 6 2	5 0 2	5 0 3	5 0 4	5 7 2	5 2 1	5 2 2	5 2 3	5 7 3	5 5 2	4 9 1	4 9 2	4 9 3	4 9 4	4 9 5	5 0 5	5 1 1	5 1 2	
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	• +	• •	F
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	F
Respiratory epithelium, squamous cell																										
carcinoma						Х																				
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+
Special Senses System																										
Harderian gland							+																			
Lacrimal gland						+																				
Zymbal's gland											+															
Carcinoma											x															
Urinary System		_							-																	
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		F
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	-+			F .
Systemic Lesions																										
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		F i
Leukemia mononuclear			х				x	x	x	x	x	х		x						х		х				

.

-

Lesions in Female Rats

Table B2

Individual Animal Tumor	Pathology of Fe	ma	ıle	R	ats	in i	n tl	ie :	2-}	lea	ur I	Fee	ed S	Stu	ıdy	oľ	0-]	Nit	ro	ani	sol	le:	0	pp	m	(α	ontinued	i)
Number of Days on Study		7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1		
Carcass ID Number		0 5 1 3	0 5 1 4	0 5 4 2	0 5 6 3	0 5 1 5	0 5 2 4	0 5 2 5	0 5 3 3	0 5 3 4	0 5 3 5	0 5 4 3	0 5 4 4	0 5 4 5	0 5 5 3	0 5 5 4	0 5 5 5	0 5 6 4	0 5 6 5	0 5 7 4	0 5 7 5	0 5 8 1	0 5 8 2	0 5 8 3	0 5 8 4	0 5 8 5	,	Total Tissues/ Tumors
Respiratory System Lung Nose Respiratory epithelium, squ carcinoma Trachea	lamous cell	+ +	+ + +	++++	++++++	+++	++++	+ + +	+ + +	+++++	++++	· +	· + · +	· + · +	· + · +	++++	++++	+ + +	+ + +	+++++	++++	+++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	· •	-	50 50 1 50
Special Senses System Harderian gland Lacrimal gland Zymbal's gland Carcinoma																												1 1 1 1
Urinary System Kidney Urinary bladder		+ +	+ +	+ +	+++	+++	+ +	+ +	+ +	+ +	+	+++	++	+++++++++++++++++++++++++++++++++++++++	++	+ +	+++	+ +	+ +	+ +	++	++	+++	++	++	• •		50 50
Systemic Lesions Multiple organs Leukemia mononuclear	:	+ X	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+ x	+	+ x	+	+	+	+		-	50 14

 TABLE B2

 Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of o-Nitroanisole: 222 ppm

			_						_																		_		_
Number of Days on Study		33	4 3 6	5 3 3	5 9 8	6 4 6	6 7 2	7 2 3	7 2 7	7 2 7	7 2 8	7 2 8	7 2 8	7 2 9	7 3 1	7 3 1	7 3 1	732	3	7 3 2									
		_	_																				-			_		 	
Carcass ID Number		0 9	0 9	0 8	0 8	0 9	0 8	0 8	0 8	0 9	0 8	0		0 8															
		1	1	7	9	4	8	5	5	1	5	5	5	6	6	6	6	6	7	7	9	7	7	8	8		8		
		1	2	1	1	1	2	1	2	3	3	4	5	1	2	3	4	5	2	3	2	4	5	1	3	3	4		
Alimentary System				-	_																								
Esophagus		+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	• +	+ +	ł	+		
Intestine large		A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+ +	ł	+		
Intestine large, cecum		A	+	+	+	+	+	+	+	+	+	+	+	.+	+	` +	+	+	+	+	+	+	+	• +	+ +	+	+		
Intestine large, colon	1	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	+ +	ł	+		ł
Intestine large, rectum		A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+ +	ł	+		
Intestine small		A	÷	+	+	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	- +	+ +	ł	+		
Intestine small, duodenum		Α	+	+	+	+	+	. +	+	+	+	+	.+	· .+	+	+	+	+	+	+	+	+	+	 +	۲, H	t	+	·	
Intestine small, ileum		A	`+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· -	+ +	ł	+		
Intestine small, jejunum		A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	+ +	ł	+		
Liver		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+ -	ł	+		
Mesentery																		+									+		
Hemangiosarcoma																													
Fat, lipoma																		X			· .								
Pancreas		+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	• +	• •		+	+		
Salivary glands		+	+	+	+	+	+	M	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	• •	• •		+	+		
Stomach		+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	* *	. 1		+	+		
Stomach, forestomach		+	+	+	+	+	+	+	+	+	+	+	+	• +	Ŧ	+	+	Ŧ	Ŧ	+	+	+	+	• 1		+	+		
Squamous cell papilloma		+	+	+	-	+	+	+	Ŧ	^ +	· +	. .	+	. +	+	+	+	+	+	+	+	+	+			+	+		
		T	т		-			-	_	'	<u>'</u>		.,	<u> </u>	_														
Cardiovascular System																													
Heart		+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	• •	+ +	+	+		
Endocrine System																													
Adrenal gland		+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	• +		+ +	+	+		,
Adrenal gland, cortex		+	+	+	+	+	+	+	+	+	+	+	+	• +	.+	+	+	+	+	+	+	+	• +		+ +	+	+		
Adenoma											х	X		Х															
Adrenal gland, medulla		+	+	+	+	+	+	+	+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	• +	• •	+ +	+	+		
Islets, pancreatic		+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	• +	• •	+ -	+	+		
Adenoma							X			_						_													
Parathyroid gland		+	+	+	+	+	+	+	Μ	[+	+	• +	+	• +	M	[+	+	+	+	+	+	+	• +		+ +	+	М		
Pituitary gland		+	+	+	+	+	+	+	+	+	+	; +	+	: +	+	+	+	+	+	+	+	+	• +		+ -	+	+		
Pars distalis, adenoma		_		X		X		X	X	X	X		X	X		X	X	۰.	X	۰.			X	• .	. ?	Χ.	X		
Thyroid gland C-cell, adenoma		+	+	+	+	+	+	+	+	+	• +	+	+	• +	+	+	+	+	+	+	+	+	• +		r -	t	+		
C-cell, adenoma, multiple																								-	-				
C-cell, carcinoma											X	2												>	ĸ				
Follicular cell, carcinoma										x																			
							_								••			_						_				 ••	
General Body System			-																										
Issue NOS			+																										

Individual Animal Tumor Patholo	gy of Fema	ale	R	ats	in	i th	ie 2	2-¥	ea:	r I	ree	dS	Stu	dy	oľ	0- f	Vit	roa	l Fri	sol	e:	22	32	pp	m (4	ontinued)
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
·······	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	5	5	5	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	8	8	8	8	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	Total
	8	9	9	9	0	0	0	0	0	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	Tissues
	5	3	4	5	1	2	3	4	5	4	5	1	2	3	4	5	1	2	3	4	5	2	3	4	5	Tumors
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	49
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	49
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	49
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	49
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	49
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	49
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	49
Intestine small, iciunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	49
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· '+	+	50
Mesentery				+		+									+			+								6
Hemangiosarcoma				-														x								1
Fat linoma																		•••								1
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Salivary glands	+	+	+	+	+	+	+		+	+	. .	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	49
Stomach		÷	_			÷	+	+	÷			÷	+		+	÷	÷	+	÷	÷	÷	+			. <u>.</u>	50
Stomach forestomach	, +	+	÷	÷	+	+	+	+	+	+	. .	÷	+	+	+	+	+	+	+	+	+	+	+		. <u>+</u>	50
Squamous cell papilloma	•	'	•	'	'	•		'	'				•	•		•	'		•	•	•		'		•	1
Stomach glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 -	50
					,							<u>'</u>			•			•							•	
Cardiovascular System																			_				_		_	50
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	50
Endocrine System																										
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	+	50
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	+	50
Adenoma																Х							Х	5		5
Adrenal gland, medulla	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	+	50
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	+	50
Adenoma																										1
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	. +	+	+	+	+	- +	+	46
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	+	50
Pars distalis, adenoma	x	х		Х	х	X	х	х	X	Х		X		X	х				х			х				28
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	· +	50
C-cell, adenoma					х		х	Х																		3
C-cell, adenoma, multiple																х										1
C-cell, carcinoma																										2
Follicular cell, carcinoma																									Х	2

÷

Tissue NOS

 TABLE B2

 Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of o-Nitroanisole: 222 ppm (continued)

													_												-	 	
Number of Days on Study	3 3 3	4 3 6	5 3 3	5 9 8	6 4 6	6 7 2	7 2 3	7 2 7	7 2 7	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 3 1	7 3 1	7 3 1	7 3 2	7 3 2		
Carcass ID Number	0 9 1 1	0 9 1 2	0 8 7 1	0 8 9 1	0 9 4 1	0 8 8 2	0 8 5 1	0 8 5 2	0 9 1 3	0 8 5 3	0 8 5 4	0 8 5 5	0 8 6 1	0 8 6 2	0 8 6 3	0 8 6 4	0 8 6 5	0 8 7 2	0 8 7 3	0 8 9 2	0 8 7 4	0 8 7 5	0 8 8 1	0 8 8 3	0 8 8 4		
Genital System Clitoral gland Adenoma Carcinoma	+	• +	• +	• +	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	м	+	+	+	 	
Ovary Thecoma benign Uterus Leiomyosarcoma	+	• +	• +	· +	+ + X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	++	+	+		
Vagina	+				х				+											х			х				
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Sarcoma Thymus Integumentary System Mammary gland Fibroadenoma Fibroadenoma Fibroadenoma, multiple Skin Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, lipoma	+++++++++++++++++++++++++++++++++++++++	· + + + + + + + × + + × + + × + + × + + × + + × + + × + + × + + × + + × + + ×	· + · + · + · +	· + · + · + · · +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + M + + + + X + +	+++++X+ +X +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++ + + +	+ + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++ + + + + + + + + + + + + + + + + +	++++++ + + X +	+++++ + + + x + x	+++++ + + +	+++++++++++++++++++++++++++++++++++++++	+++++ M + X+	+++++ +++++ +	+++++ + + + + + X +	+++++ + + X +	+++++ + + X +	+++++ + + X +	 	
Musculoskeletal System Bone	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Nervous System Brain	+	• +	• 4	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Respiratory System Lung Nose Trachea	+ + +	· +	· +	· + · +	+ + +	+++++	+ + +	+ + +	++++	++++	+ + +	++++	+ + +	+ + +	+ + +	+ + +	+++++	++++	++++	++++	++++	+ + +	++++	+ + +	+ + +		

/

Lesions in Female Rats

TABLE B2

Individual Animal Tumor Pathology	of Fema	ıle	R	ats	in	th	ie 2	2-¥	'ea	r F	ree	d 9	Stu	dy	of	0-]	Nit	roa	ani	so	le:	22	2	pp	m	1 (0	ontinued)
Number of Days on Study	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 5	7 3 5		7 3 5	
Carcass ID Number	0 8 8 5	0 8 9 3	0 8 9 4	0 8 9 5	0 9 0 1	0 9 0 2	0 9 0 3	0 9 0 4	0 9 0 5	0 9 1 4	0 9 1 5	0 9 2 1	0 9 2 2	0 9 2 3	0 9 2 4	0 9 2 5	0 9 3 1	0 9 3 2	0 9 3 3	0 9 3 4	0 9 3 5	0 9 4 2	0 9 4 3	0 9 4 4		0 9 4 5	Total Tissues/ Tumors
Genital System Clitoral gland Adenoma Carcinoma Ovary Thecoma benign Uterus Leiomyosarcoma Polyp stromal Vagina	+ + +	+++	+ + + X	+++	+ + X	+++	+ + x	+ x + +	м + +	+++	+ + X	+ X + +	+ + x	+ + +	+ x + +	+ x + +	+ + +	+ + X	+ + X	++++	+ + x	+ + x	M + X + X	+] +		+ X + +	47 5 1 50 1 50 1 13 3
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Sarcoma Thymus	+ + + + +	+++++++++++++++++++++++++++++++++++++++	++++++++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + +	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + +	+ + + + + +	+++++++++++	+ + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+++++++++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	-	+++++++++++++++++++++++++++++++++++++++	50 50 49 50 50 1 49
Integumentary System Mammary gland Fibroadenoma Fibroadenoma, multiple Skin Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, lipoma	+ +	+ X +	+ + X	+	+	+ x +	+	+	+ x +	+	+	+	+ + x	+	+	+	+ x +	+ X +	+	+ x + x	+	+	+	+	-	+	50 17 1 50 2 1 1
Musculoskeletal System Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Nervous System Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Respiratory System Lung Nose Trachea	+ + +	+ + +	+ + +	++++	+++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	++++	+ + +	++++	++++	++++	++++	+ + +	++++	++++	++++	++++	++++	+++++	-	+ + +	50 50 50

TABLE B2

Individual Animal Tumor	Pathology of Fe	em	ale	R	lats	s iı	n ti	he	2-]	Yea	r l	Fee	ed S	Stu	ıdy	of	0-	Nit	ro	ani	iso	le:	2	22	pp	m ((con	tinue	i)
Number of Days on Study		3 3 3	4 3 6	5 3 3	5 9 8	6 4 6	6 7 2	7 2 3	7 2 7	7 2 7	7 2 8	7 2 8	7 2 8	7 2 9	7 3 1	7 3 1	7 3 1	7 3 2	7 3 2										
Carcass ID Number		0 9 1 1	0 9 1 2	0 8 7 1	0 8 9 1	0 9 4 1	0 8 8 2	0 8 5 1	0 8 5 2	0 9 1 3	0 -8 5 3	0 8 5 4	0 8 5 5	0 8 6 1	0 8 6 2	0 8 6 3	0 8 6 4	0 8 6 5	0 8 7 2	0 8 7 3	0 8 9 2	0 8 7 4	0 8 7 5	0 8 8 1	0 8 8 3	0 8 8 4			
Special Senses System Eye Harderian gland Zymbal's gland Carcinoma										+			+												+	-			
Urinary System Kidney Ureter Urinary bladder		+ +	+ +	+	+	+	+ +	+ M	+ (+	+ +	+	+	+	+	+	+	+ +	+++	+	+ +	+	+	+	+	+	+			
Systemic Lesions Multiple organs Leukemia mononuclear		+	+	+ X	+	+ X	+ X	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+ x	+	+	+ x	+	- -		

TABLE B2 Individual Animal Tumor Pathol	ogy of Fem	ale	e R	ats	s ir	ı tl	ne :	2-}	/ea	r I	Tee	d S	Stu	dy	oſ	0 -]	Nit	ro	ani	iso	le:	2	22	PP	<u>10n</u>	(continued)	
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	,	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
		2	2	2	2		-		2	2	2	2	_		2	2	2	2		2	-	2	5	5			
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Carcass ID Number	8	8	8	8	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	Total	
	8	9	9	9	0	0	0	0	0	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	Tissue	s/
	5	3	4	3	1	2	3	4	3	4	5	1	2	3	4	3	1	2	3	4	5	2	3	4	5	l'umor	S
Special Senses System																											_
Eye								+													+	•				4	
Harderian gland														+												2	
Zymbal's gland								+																		1	
Carcinoma								х																		1	
Urinary System																									_		
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	- 50	
Ureter																											
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	• +	+	- 50	
Systemic Lesions																			-								
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	- 50	
Leukemia mononuclear		х										x					x	Х	,				X			11	

159

TABLE B2 Individual Anim

Individual Animal Tumor Pathology of	Fem	ale	R	ats	in	th	e 2	2-Y	ea	r F	ee	d S	stu	dy	of	<i>o-</i> l	Nit	ro:	ani	sol	le:	66	6	ppi	n	
Number of Days on Study	3 0 2	4 1 6	4 5 9	5 2 5	5 3 3	5 3 6	5 6 3	5 7 1	5 7 1	5 8 9	6 1 0	6 1 3	6 3 0	6 3 2	6 3 3	6 4 1	6 4 6	6 5 8	6 8 3	6 8 3	6 9 5	7 1 0	7 1 6	7 1 9	7 2 9	
Carcass ID Number	0 7 5 1	0 7 5 2	0 7 6 1	0 8 0 1	0 8 1 1	0 7 3 5	0 7 9 1	0 8 2 1	0 8 2 2	0 7 4 1	0 7 3 1	0 8 0 2	0 7 5 3	0 8 1 2	0 8 2 3	0 7 7 1	0 7 5 4	0 7 3 2	0 7 8 1	0 8 2 4	0 7 6 2	0 8 0 3	0 7 6 3	0 7 4 2	0 7 3 3	
Alimentary System			_			_									_											
Esonhagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large	+	+	+	+	+	÷	+	÷	+	Å	÷	+	Å	÷	+	÷	+	+	+	+	+	Å	Å	+	+	
Intestine large cecum		+	+	+	÷	+	+	+	+	A	÷	+	A	÷	+	÷	+	÷	+	+	+	A	A	+	+	
Intestine large, colon		÷	+	+	+	+	÷	+	+	A	÷	+	A	+	+	+	+	+	+	+	+	A	A	+	+	
Intestine large, rectum	+	+	+	÷	÷	÷	+	+	+	A	÷	+	A	+	+	+	+	+	+	+	+	A	A	+	÷	
Intestine small	+	+	+	+	+	+	+	+	+	A	+	+	+	÷	+	+	+	+	+	+	+	A	+	+	+	
Intestine small duodenum			+	+	1	+	+	+	+	Δ	+	+	÷	÷	÷	÷	÷	+	+	+	+	A	+	+	+	
Intestine small, duodenum		+	+	+	+	+	+	+	+	A	+	+	Å	+	+	÷	÷	+	+	+	, +	A	Å	÷	+	
Intestine small jejunum	, t	, +	+	÷	÷	÷	÷	÷	÷	A	÷	÷	A	+	+	÷	+	÷	+	4	+	A	+	+	+	
Liver	÷	+	+	÷	÷	+	+	+	+	+	÷	+	+	+	+	÷	÷	+	+	+	+	+	+	+	+	
Sarcoma stromal metastatic uterus		'	×	•		•	'	•	•	•		•	•	•		•	•	•	·		•	•	·	•	•	
Mecentery			+	+			+	+	+									+		+	+					
Fat sarcoma stromal metastatic uterus			x				•	•	•									·		•	•					
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	
Pharvny	•	•	•	•	•	•	•	•	•	•	•	•	••	·	·	•	•	+	•	•	•		•	•	•	
Palate squamous cell carcinoma																		x								
Salivary glande	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	
Stomach forestomach		÷	+	+	÷	+	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Cardiovascular System			 · _							+				_												
Неап	+	+	+	+	+	+	-	-	Ŧ	+	+	т 	-	т		т 		_	т 		т —		-	т 	т —	
Endocrine System																										
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pheochromocytoma malignant												х														
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma															х	۰,				Х						
Carcinoma											х															
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	[+	+	
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pars distalis, adenoma				Х	х			х	х		х		х	х	х	х		х		Х	X	X	х			
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
C-cell, adenoma																										
C-cell, carcinoma																										
Follicular cell, adenoma													x													

Lesions in Female Rats

TABLE B2

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (continued) Number of Days on Study 9 9 0 0 0 0 0 1 1 1 1 1 2 2 2 2 5 5 5 5 5 5 5 9 9 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 Total **Carcass ID Number** 4 5 6 6 7 7 7 7 8 8 8 8 9 9 9 9 0 0 1 1 1 2 Tissues/ 3 4 4 3 4 5 5 4 5 2 3 4 5 2 3 4 5 2 3 4 5 4 5 3 4 5 5 Tumors Δ Alimentary System 50 Esophagus Intestine large + + + + + + + 46 + + + 4 + 4 + + Intestine large, cecum + + + + + + + + + + + + + + + 46 46 Intestine large, colon + + + + + + ++ + + + + + + + + + + + ++ + + + + 46 + + + + + + + + + ++ + + 4 + Intestine large, rectum + + + + + + + + + + 48 + Intestine small + Intestine small, duodenum 48 + + + + + + + + + + + + + + 46 Intestine small, ileum + Intestine small, jejunum 47 + + + + + + + + + + + + + + + + + Liver + + + + + + + + 50 Sarcoma stromal, metastatic, uterus 1 11 Mesentery + Fat, sarcoma stromal, metastatic, uterus 1 + + + + + + + + + + + + + + + + + + + 49 Pancreas + + + + + + Pharynx 2 Palate, squamous cell carcinoma 1 50 Salivary glands ++ + + + + Stomach + + + + + + + + + + + + + + + + ++ + + + + + 50 + + Stomach, forestomach + + + + + + + + + + + + + + + + + + 50 + + + + + + + Stomach, glandular 50 + **Cardiovascular System** Heart 50 + + +**Endocrine System** Adrenal gland 50 + + + + + + + + + Adrenal gland, cortex + + + + + + + + + 50 Adrenal gland, medulla 50 Pheochromocytoma malignant 1 Islets, pancreatic 49 Adenoma 2 Carcinoma 1 Parathyroid gland 49 + + + + + ++ + + + + + Pituitary gland + + + + + + + + + + 50 + + + + + + + + + + + + Pars distalis, adenoma х Х x x x x x x x x x хх Х 27 Thyroid gland + + + + + + + + + 50 + + + + + + ++ + + + +C-cell, adenoma х 2 C-cell, carcinoma х 1 Follicular cell, adenoma 1 Follicular cell, carcinoma х 1

- - -

TABLE B2 Individual Ani

. . .

D (1) **P**

Number of Days on Study 3 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6		gy of ren	18	le	kat	s n	n u	ne .	2-3	rea	ГІ	ee		Stu	ay	OI	0	NI	ro	anı	SO	le:	60	10	pp	m (continue	ed)	-
Carcass ID Number 0	Number of Days on Study	3 0 2	1	4 4 1 5 5 9	4 5 5 2 9 5	5 3 3	5 3 6	5 6 3	5 7 1	5 7 1	5 8 9	6 1 0	6 1 3	6 3 0	6 3 2	6 3 3	6 4 1	6 4 6	6 5 8	6 8 3	6 8 3	6 9 5	7 1 0	7 1 6	7 1 9	7 2 9			
General Body System Tissue NOS + Genital System Clitoral gland + + + + + + + + + + + + + + + + + + +	Carcass ID Number	0 7 5 1		0 0 7 7 5 6 2 1) 0 7 8 5 0 1	0 8 1 1	0 7 3 5	0 7 9 1	0 8 2 1	0 8 2 2	0 7 4 1	0 7 3 1	0 8 0 2	0 7 5 3	0 8 1 2	0 8 2 3	0 7 7 1	0 7 5 4	0 7 3 2	0 7 8 1	0 8 2 4	0 7 6 2	0 8 0 3	0 7 6 3	0 7 4 2	0 7 3 3			
Genital SystemClitoral gland+ + + + + + + + + + + + + + + + + + +	General Body System Tissue NOS			ł																									
Data consisting consisting consisting consisting consisting consistent of the system of the systemPolyp strong x	Genital System Clitoral gland Adenoma Carcinoma Bilateral carcinoma	.+		+ -	+ +	- +	+	+	+	+	+	+	+	+	+	+	+ x	+	+ x x	+	+	+	+	+ x	+	+		•	
Hematopoietic System Bone marrow Lymph node the spleenLymph node, mandibular Lymph node, mesenteric Spleen+ + + + + + + + + + + + + + + + + + +	Ovary Uterus Polyp stromal Sarcoma stromal Cervix, leiomyosarcoma Vagina Polyp	. +		+ + + + >	+ + + + K	+ + X	++	+ +	+ +	+ +	++	+ + x	++	++	++	+ +	++	+ + x	++	++	+++	++	+ + + x	+ +	+ + x + x	++			
Integumentary SystemMammary gland+ + + + + + + + + + + + + + + + + + +	Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+++++++++++++++++++++++++++++++++++++++		+ + + + Y	+ + + + + +	- + - + - + - +	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + + + + + +	+ + + + + +	+ + + + +	* + + + + + +	+ + + + + M	++++++	+++++	+ + + + + +	+ + + + + +	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + + + +	++++++	++++++	+ + + + + +	++++++		×.	
Musculoskeletal System Bone + + + + + + + + + + + + + + + + + + +	Integumentary System Mammary gland Adenocarcinoma Fibroadenoma Fibroadenoma, multiple Skin Subcutaneous tissue, sarcoma	+		+ +	+ + < X + +	- + - - + X	+ X +	+	+	+	+	+	+	+	+	+	++	+	+ x +	++	+	+	+	++	+	+		· ,	
	Musculoskeletal System Bone Skeletal muscle Abdominal, lipoma	+		+ +	+ +	· +	+	+	+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+			

. - ----

Lesions in Female Rats

TABLE B2

Individual Animal Tumor Patholog	y of Fem	ale	R	ats	in	th	le 2	2- Y	ea	r F	lee	d S	Stu	dy	oľ	0 -]	Nit	ros	ani	sol	le:	6	66	P	pm	∞) ו	ntinued)
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	9	9	9	9	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2)	2	
• <u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. ()	0	
Carcass ID Number	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	8	8	8	8	5	3	8	Total
	3	4	4	4	5	6	6	7	7	7	7	8	8	8	8	9	9	9	9	0	0	1	1	1	l	2	Tissues/
	4	3	4	5	5	4	5	2	3	4	5	2	3	4	5	2	3	4	5	4	5	3	4		5	5	Tumors
General Body System Tissue NOS																				_				-	_		1
Genital System																		_									
Clitoral gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• -	ŀ	+	+	50
Adenoma															х												3
Carcinoma																											2
Bilateral, carcinoma		х																									1
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• •	F, F	+	+	50
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		⊦ ·	+	+	50
Polyp stromal	Х							Х					Х							Х				2	Х		8
Sarcoma stromal																											3
Cervix, leiomyosarcoma						Х																					1
Vagina Polyp																											1 1
Hematopoietic System			_												-												
Bone marrow	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +		+ -	+	+	50
Lymph node	+	+	+	· +	+	+	+	+	+	+	+	+	· +	+	+	+	+	+	+	+	- +	• +		+ ·	+	+	50
Lymph node, mandibular	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+ -	+	+	50
Lymph node, mesenteric	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		۰ ۲	+	+	50
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• •	ŀ	+	+	50
Thymus	+	+	+	• +	+	+	+	+	+	+	+	+	+	M	[+	+	+	+	+	+	+	• +		+ -	+	+	47
Integumentary System															-									-			
Mammary gland	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+	+	+	50
Adenocarcinoma																											2
Fibroadenoma				X	Х		х	Х		Х				Х			Х	Х	X								12
Fibroadenoma, multiple	Х					Х																				Х	3
Skin	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+	+	+	50
Subcutaneous tissue, sarcoma																		.,									1
Musculoskeletal System																											
-																											
Bone	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+	+	+	50
Bone Skeletal muscle	+	+	+	• +	+	+	+	+	+	+	+++	+	+	+	+	+	+	+	+	+	+	• +		+	+	+	50 1

																						_		_		
Number of Days on Study	. 3	4	4 5 9	5 2 5 5	5 3 3	5 3 6	5 6 3	5 7 1	5 7 1	5 8 9	6 1 0	6 1 3	6 3 0	6 3 2	6 3 3	6 4 1	6 4 6	6 5 8	6 8 3	6 8 3	6 9 5	7 1 0	7 1 6	7 1 9	7 2 9	7 2 9
Carcass ID Number	0 7 5 1	0 7 5 2	0 7 6 1	0 8 0 1	0 8 1 1	0 7 3 5	0 7 9 1	0 8 2 1	0 8 2 2	0 7 4 1	0 7 3 1	0 8 0 2	0 7 5 3	0 8 1 2	0 8 2 3	0 7 7 1	0 7 5 4	0 7 3 2	0 7 8 1	0 8 2 4	0 7 6 2	0 8 0 3	0 7 6 3	0 7 4 2	0 7 3) 7 3 3
Nervous System Brain Sarcoma		+ 4			- +	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+
Respiratory System Lung Alveolar/bronchiolar adenoma Nose Trachea		 	 1 1	⊦ 4 ⊦ 4	- + - +	· +	++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	+++	+ + +	++++	+++	+ + +	+ + +	+++	++++	++++	+++	++++++	++++	 · + · +		+
Special Senses System Eye						·																				
Urinary System Kidney Myxosarcoma Urinary bladder	-	⊢ -	 ⊢ ⊣		- +	• +	+ X +	+	+ +	+++++++++++++++++++++++++++++++++++++++	++	+ +	+	+ +	++	++	++	+ +	++	+	+	+	++	 · +		+
Systemic Lesions Multiple organs Leukemia mononuclear		+ - {		+ +	- +	- +	+	+ X	+	+ X	+	+	+	+ x	+ x	+	+ x	+	+ X	+ X	Ŧ	+ X	+			+
		_																								

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (continued)

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (continued) Number of Days on Study 9 9 9 9 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 5 5 5 5 5 5 **Carcass ID Number** 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7777 7 8 8 8 8 8 8 Total 3 4 4 4 5 6 6 7 7 7 7 8 8 8 8 9 9 9 9 0 0 1 1 1 2 Tissues/ 4 3 4 5 5 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 4 5 3 4 5 5 Tumors **Nervous System** Brain 50 Sarcoma 1 **Respiratory System** Lung 50 + Alveolar/bronchiolar adenoma 2 X х Nose 50 + + + + + + + + Trachea 50 Special Senses System Eye + 1 **Urinary System** Kidney 50 Myxosarcoma 1 Urinary bladder 50 + + + + + + + + + + Systemic Lesions Multiple organs 50 + + + + + + + + + + + + + + + + + Leukemia mononuclear х хх хх 14

. . .

TABLE B2

Individual Animal Tumor Patho	ology of	Fem		R	ats	; in	th	ie 2	2-Y	(ea	r ł	fee	d 8	stu	dy	of	<i>o-</i> !	Nit	roa	mi	sol	e:	2,	000) p	рm			
Number of Days on Study		3 8 6	4 7 6	5 0 0	5 2 1	5 5 7	6 0 4	6 0 4	6 1 3	6 3 1	6 3 4	6 4 7	6 5 5	6 6 3	6 8 7	7 1 6	7 2 0	7 2 2	7 2 9										
Carcass ID Number		0 6 7	0 6 2	0 6 7	0 6 3	0 6 5	0 6 2	0 6 8	0 6 7	0 7 0	0 6 1	068	0 6 9	0 6 7	0 6 9	0 6 7	063	070	0 6 1	0 6 1	0 6 1	0 6 1	0 6 2	0 6 5	066	0 6 8			
			1	1	1	1	2	1		1		2	1	<u> </u>		4	<i>Z</i>		2	3	4		• 		1	3			
Alimentary System																													
Esophagus		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		· .	
Intestine large		+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, cecum		+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, colon		+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, rectum		+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine small		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine small, duodenum		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine small, ileum		+	Α	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine small, jejunum		+	Α	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	. +	+			
Liver		+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Hepatocellular adenoma																								х					
Mesentery				+						+			+		+		+			+		+							
Pancreas		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Acinar cell, adenoma																						Х							
Acinar cell, adenoma, multiple																							•						
Salivary glands		+	+	+	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach, forestomach		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Squamous cell carcinoma																													
Squamous cell papilloma																													
Stomach, glandular		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Cardiovascular System						_																					_		
Heart		+	+	+	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Endocrine System													-																
Adrenal gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +			
Adrenal gland, cortex Adenoma		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Adrenal gland, medulla		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Pheochromocytoma malignant																													
Pheochromocytoma benign																			Х										
Islets, pancreatic		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Parathyroid gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	(+			
Pituitary gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Pars distalis, adenoma		X						х			х				х	Х		х	х	х	х	х	х						
Thyroid gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
C-cell, adenoma											X																		

																						,	_	- 1			
Number of Days on Study	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 2	7 3 2	7 3 2	7 3 5		7 3 5																
Carcass ID Number	0 6 2 4	0 6 2 5	0 6 3 3	0 6 3 4	0 6 3 5	0 6 4 1	0 6 4 2	0 6 4 3	0 6 4 4	0 6 4 5	0 6 5 3	0 6 5 4	0 6 5 5	0 6 6 2	0 6 6 3	0 6 4	0 6 5	0 6 8 4	0 6 8 5	0 6 9 3	0 6 9 4	0 6 9 5	0 7 0 3	0 7 0 4) -	0 7 0 5	Total Tissues/ Tumors
Alimentary System																											
Econhogue	-	-	. . .	<u>т</u>		т	Т	–	т.	ъ	Т	ъ	<u>т</u>	_	L	Т	1	ъ	л.	Ŧ	ـ		-	. ц	L	т.	50
Intesting large	т 	-	т 		- T	т - т		т -			т —	т Т	Ť	÷	Ť	1	÷	÷	÷	÷	÷	. <u>.</u>				÷	10
Intestine large		т -	· -	· -		т -	т 	т 				Ť	т -	т 	т -	- -	- T		т 			- T - L				т 1	49
Intestine large, celum	т 1			Ť	T.		- T		T		т 		т -	Ţ		т -	T	Ţ	т -		- -		-	т : -		T L	49
Intestine large, colon	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	Ť	- T	-	-	-	• •	•	+	49
Intestine large, rectum	+	+	• +	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• •	+	+	49
Intestine small	+	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• •	۲	+	50
Intestine small, duodenum	+	+	· .+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	ŀ	+	50
Intestine small, ileum	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	F	+	48
Intestine small, jejunum	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	F	+	48
Liver	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	F	+	50
Hepatocellular adenoma													Х														2
Mesentery		+	•									+				+	+									+	12
Pancreas	. +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	F	+	50
Acinar cell, adenoma																											1
Acinar cell, adenoma, multiple																Х											1
Salivary glands	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	۲	+	50
Stomach	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	F	+	50
Stomach, forestomach	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	۲	+	50
Squamous cell carcinoma																										Х	1
Squamous cell papilloma																							Х				1
Stomach, glandular	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• -+	F	+	50
Cardiovascular System		_																									
Heart	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	F	+	50
Endocrine System																											
Adrenal gland	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	F	+	50
Adrenal gland, cortex	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• -	F	+	50
Adenoma							Х							Х													2
Adrenal gland, medulla	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· A	A	+	49
Pheochromocytoma malignant								Х																			1
Pheochromocytoma benign																											1
Islets, pancreatic	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• 4	⊦	+	50
Parathyroid gland	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	: +	+	+	N	1 +	⊦	+	47
Pituitary gland	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		F	+	50
Pars distalis, adenoma				Х	X						Х				Х	х					Х	,	Х	2		х	19
Thyroid gland	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	۲	+	50
C-cell, adenoma	Х			Х																							3
C-cell, carcinoma																											1

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of *o*-Nitroanisole: 2,000 ppm (continued)

TABLE B2

Individual Animal Tumor Pathol	logy of Female Rats in the 2-Year Feed Study of o-Nitroanisole: 2,000 ppm (continued)
Number of Days on Study	3 4 5 5 6 6 6 6 6 7
Carcass ID Number	0 0
General Body System None	
Genital System Clitoral gland Adenoma Carcinoma	+ + + + + + + + + + + + + + + + + + +
Ovary Uterus Hemangiosarcoma Leiomyoma Polyp stromal	+ + + + + + + + + + + + + + + + + + +
Polyp stromal, multiple Sarcoma stromal Cervix, adenocarcinoma Vagina	X + + + +
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+ + + + + + + + + + + A + + + + + + + +
Integumentary System Mammary gland Carcinoma Fibroadenoma Fibroadenoma, multiple Skín	+ + + + + + + + + + + + + + + + + + +
Musculoskeletal System Bone Skeletal muscle	+ + + + + + + + + + + + + + + + + + +
Nervous System Brain	+ + + + + + + + + + + + + + + + + + + +

Lesions in Female Rats

TABLE B2

Individual Animal Tumor Pathol	logy of Fema	ale	R	ats	in	th	ne 2	2-¥	'ea	r F	ree	d S	Stu	dy	oſ	0 -)	Nit	roa	ani	so	le:	2,	,00	00	P	pm	(continued)
Number of Days on Study	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7	7 3 5	7 3 5	
Carcass ID Number	0 6 2 4	0 6 2 5	0 6 3 3	0 6 3 4	0 6 3 5	0 6 4 1	0 6 4 2	0 6 4 3	0 6 4 4	0 6 4 5	0 6 5 3	0 6 5 4	0 6 5 5	0 6 6 2	0 6 6 3	0 6 6 4	0 6 5	0 6 8 4	0 6 8 5	0 6 9 3	0 6 9 4	0 6 9 5	0703) 7 0 3	0 7 0 4	0 7 0 5	Total Tissues Tumors
General Body System None																							_				
Genital System Clitoral gland Adenoma Carcinoma Ovary Uterus Hemangiosarcoma Leiomyoma Polyp stromal Polyp stromal Polyp stromal, multiple Sarcoma stromal Cervix, adenocarcinoma Vagina	+ + +	+++	++++	++++	+ + + x	+++	++++	+++	+ X + +	+ + + X	+ + +	+ X	· +	· + · + · X	+ + + x	++++	+ +	+++	+++++++++++++++++++++++++++++++++++++++	+	· +	· + · +		+ +	M + +	+ +	48 3 2 50 50 1 1 8 1 1 3
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+ + + + +	+ + + + + +	+ + + + + +	+ + + + + +	+ + + M + +	+ + + + + + +	+ + + + + +	+ + + + + +	+++++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	· + · + · +	· + · + · +	· + · + · +	· + + + • • • +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + +	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	· + + + + + + + + + + + + + + + + + + +	· + + + + + + + + + + + + + + + + + + +	· + · + · +		+ + + + +	+ + + + + +	+ + + + + +	49 50 50 47 50 48
Integumentary System Mammary gland Carcinoma Fibroadenoma Fibroadenoma, multiple Skin	+ x +	+	+	+	+	+	+	+	+	+	• +	• +	· +	• +	+ + X	+	+	+ x +	+ : • +	• •	• •	· +		+	+ X +	+ X +	50 1 8 1 50
Musculoskeletal System Bone Skeletal muscle	+	+	+	+	+	+	+	+	+	+	+	• +	• +	• +	• +	+	+	+	+	• +	• •	- +		+	+	+	50 1
Nervous System Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	• +	- +		+	+	+	50

....

•

Individual Animal Tumor Pathology	of Fem	ale	e R	lats	s in	h th	ie 2	2-Y	'ea	r ł	ree	d S	Stu	dy	of	0-]	Nit	ro	ani	so	le:	2,	00	0 p	pn	1 (co	ntinu	ed)
Number of Days on Study	3 8 6	4 7 6	5 0 0	5 2 1	5 5 7	6 0 4	6 0 4	6 1 3	6 3 1	6 3 4	6 4 7	6 5 5	6 6 3	6 8 7	7 1 6	7 2 0	7 2 2	7 2 9										
Carcass ID Number	0 6 7 5	0 6 2 1	0 6 7 1	0 6 3 1	0 6 5 1	0 6 2 2	0 6 8 1	0 6 7 2	0 7 0 1	0 6 1 1	0 6 8 2	0 6 9 1	0 6 7 3	0 6 9 2	0 6 7 4	0 6 3 2	0 7 0 2	0 6 1 2	0 6 1 3	0 6 1 4	0 6 1 5	0 6 2 3	0 6 5 2	0 6 6 1	0 6 8 3			
Respiratory System Lung Alveolar/bronchiolar adenoma Squamous cell carcinoma Nose Trachea	+ + +	+++++	++++	++++++	+ + +	++++	+ X +	+++++	+++++	++++	++++	+ + +	+ + +	++++	+ X + +	++++	+ + +	++++	++++	+ + +	+ + +	+ + +	+++	+ X + +	+ + +			
Special Senses System Eye Harderian gland Zymbal's gland Carcinoma			+ +																+		+							• .
Urinary System Kidney Urinary bladder Transitional epithelium, carcinoma Transitional epithelium, papilloma	+ +	++	++	++	+++	++	+++	++	+ +	++	+ +	+ +	++	+ +	+ +	+++	+++	++	+ +	++	+ +	+	+++	++	++			
Systemic Lesions Multiple organs Leukemia mononuclear	+	+	+ X	+ X	+ x	+ x	+	+ X	+ X	+	+ X	+	+ x	+ X	÷	+ x	+ x	+	+	+ x	+	+ x	+ X	+ X	+ X			

Lesions in Female Rats

		SUIC.	: 112	.810.5	» AU			9* I	. 681	ц. Т.		u c	900A	uy	01	0-1				30		4,		ար	. Forma	
· · · · · · · · · · · · · · · · · · ·	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	0	0	0	0	0	2	2	2	2	2	2	2	2	. 2	2	2	2	5	5	5	5	5	5	5	5	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	7	7	7	Total
	2	2	3	3	3	4	4	4	4	4	5	5	5	6	6	6	6	8	8	9	9	9	0	0	0	Tissues/
	4	5	3	4	5	1	2	3	4	5	3	4	5	2	3	4	5	4	5	3	4	5	3	4	5	Tumors
Respiratory System																	_		_		_			_		
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma																	х									3
Squamous cell carcinoma																										1
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Special Senses System												•														
Eye	+			+											+											5
Harderian gland																										2
Zymbal's gland																				+						1
Carcinoma																				х						1
Urinary System				- <u></u>		·				<u> </u>							· • • •	_								
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Transitional epithelium, carcinoma												x														1
Transitional epithelium, papilloma																				х						1
Systemic Lesions		-											<u> </u>				_									
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear			-	x	-		X	•	·	•	X		x	•	x	x	x		x	x	•	x	•	•	•	26

 TABLE B2
 Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of o-Nitroanisole: 2,000 ppm (c)

 . . : .

÷

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of o-Nitroanisole

	0 ppm	222 ppm	666 ррт	2,000 ppm
Adrenal Cortex: Adenoma	- <u></u>	<u></u>		
Overall rates ⁸	1/50 (2%)	5/50 (10%)	0/50 (0%)	2/50 (4%)
Adjusted rates ^b	2.5%	12.2%	0.0%	61%
Terminal rates ^C	0/33 (0%)	5/41 (12%)	0/26 (0%)	2/33 (6%)
First incidence (days)	687	728 (T)	_e	728 (T)
I ife table tested	P-0 541N	P=0.156	P-0 557N	P=0 401
Locietic meroscion texts ^d	P=0.539N	P-0122	P-0.506N	P=0.491
Contrary American tests	F = 0.5361N	F=0.125	F=0.5001	r =0.490
Eisher grant test	F =0.50014	B-0 107	P-0 500N	P-0 500
risher exact test		F →0.102	I -0.50014	1-0.500
Clitoral Gland: Adenoma				
Overall rates	3/45 (7%)	5/47 (11%)	3/50 (6%)	3/48 (6%)
Adjusted rates	10.0%	13.2%	10.1%	9.7%
Terminal rates	3/30 (10%)	5/38 (13%)	1/26 (4%)	3/31 (10%)
First incidence (days)	728 (T)	728 (T)	658	728 (T)
Life table tests	P=0.495N	P=0.491	P=0.580	P=0.650N
Logistic regression tests	P=0.478N	P=0.491	P=0.642	P=0.650N
Cochran-Armitage test	P=0.426N			
Fisher exact test	*	P=0.382	P=0.610N	P=0.630N
Clitoral Gland: Carcinoma				
Overall rates	4/45 (9%)	1/47 (2%)	3/50 (6%)	2/48 (4%)
Adjusted rates	11.9%	2.6%	9.4%	6.1%
Terminal rates	3/30 (10%)	1/38 (3%)	1/26 (4%)	1/31 (3%)
First incidence (davs)	518	728 (T)	641	722
I ife table tests	P = 0.483N	P = 0.128N	P = 0.579N	P=0.329N
Logistic regression tests	P = 0.426N	P = 0.171N	P = 0.437N	P = 0.309N
Cochran-Armitage test	P = 0.422N			
Fisher exact test		P=0.167N	P=0.441N	P=0.308N
			·.	
Clitoral Gland: Adenoma or Carcin	oma	(117 (1201)	5/50 (1001)	5/49 (100%)
Overall rates	7/45 (16%)	6/4/(13%)	5/50 (10%)	3/48 (10%)
Adjusted rates	21.7%	15.8%	16.2%	15.5%
Terminal rates	6/30 (20%)	6/38 (16%)	2/20 (8%)	4/31 (13%)
First incidence (days)	518	728 (1)	641 D. 0.40001	722 D. 0.260NI
Life table tests	P = 0.411N	P=0.333N	P=0.488N	P=0.300N
Logistic regression tests	P = 0.361N	P=0.434N	P=0.353N	P=0.349N
Cochran-Armitage test	P = 0.324N			
Fisher exact test		P=0.466N	P=0.307N	P=0.334N
Liver: Hepatocellular Adenoma				
Overall rates	0/50 (0%)	0/50 (0%)	0/50 (0%)	3/50 (6%)
Adjusted rates	0.0%	0.0%	0.0%	9.1%
Terminal rates	0/33 (0%)	0/41 (0%)	0/26 (0%)	3/33 (9%)
First incidence (days)	-	-	_	728 (Ť) ́
Life table tests	P = 0.008	_	· _	P=0.120
Logistic regression tests	P = 0.008	-	_	P=0.120
Coshran, Armitage test	P=0.009			
contrain-rationage rest	1 - 0.007			

Table B3

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	222 ppm	666 ppm	2,000 ppm
Lung: Alveolar/bronchiolar Adem	·	<u></u>	<u></u>	
Overall rates	0/50 (0%)	0/50 (0%)	2/50 (4%)	3/50 (6%)
Adjusted rates	0.0%	0.0%	7.7%	7.8%
Terminal rates	0/33 (0%)	0/41 (0%)	2/26 (8%)	1/33 (3%)
First incideñce (davs)	-	-	728 (T)	604
Life table tests	P=0.035	_	P=0.187	P = 0.126
Logistic regression tests	P = 0.036	_	P = 0.187	P = 0.120
Cochran-Armitage test	P = 0.037			
Fisher exact test		-	P=0.247	P=0.121
Mammary Gland: Adenoma or C	arcinoma			
Overall rates	3/50 (6%)	0/50 (0%)	2/50 (4%)	1/50 (2%)
Adjusted rates	9.1%	0.0%	5.2%	2.0%
Terminal rates	3/33 (9%)	0/41 (0%)	0/26 (0%)	0/33 (0%)
First incidence (days)	728 (T)	-	536	476
Life table tests	P=0.456N	P=0.086N	P=0.590N	P=0.306N
Logistic regression tests	P=0.409N	P=0.086N	P=0.492N	P=0.292N
Cochran-Armitage test	P=0.429N			
Fisher exact test		P=0.121N	P=0.500N	P=0.309N
Mammary Gland: Fibroadenoma				
Overall rates	17/50 (34%)	18/50 (36%)	15/50 (30%)	9/50 (18%)
Adjusted rates	44.5%	40.7%	49.5%	25.1%
Terminal rates	13/33 (39%)	15/41 (37%)	12/26 (46%)	7/33 (21%)
First incidence (days)	438	436	416	634 `
Life table tests	P=0.048N	P=0.397N	P==0.479	P=0.064N
Logistic regression tests	P=0.026N	P=0.500	P=0.426N	P=0.057N
Cochran-Armitage test	P=0.023N			
Fisher exact test		P=0.500	P=0.415N	P=0.055N
Mammary Gland: Fibroadenoma	or Adenoma			
Overall rates	17/50 (34%)	18/50 (36%)	15/50 (30%)	9/50 (18%)
Adjusted rates	44.5%	40.7%	49.5%	25.1%
Terminal rates	13/33 (39%)	15/41 (37%)	12/26 (46%)	7/33 (21%)
First incidence (days)	438	436	416	634
Life table tests	P=0.048N	P=0.397N	P=0.479	P=0.064N
Logistic regression tests	P=0.026N	P=0.500	P=0.426N	P=0.057N
Cochran-Armitage test	P=0.023N			
Fisher exact test		P=0.500	P=0.415N	P=0.055N
Mammary Gland: Fibroadenoma	, Adenoma, or Carcinoma			
Overall rates	18/50 (36%)	18/50 (36%)	17/50 (34%)	10/50 (20%)
Adjusted rates	47.3%	40.7%	52.1%	26.6%
Terminal rates	14/33 (42%)	15/41 (37%)	12/26 (46%)	7/33 (21%)
First incidence (days)	438	436	416	476 ` ´
Life table tests	P=0.066N	P=0.314N	P=0.378	P=0.070N
Logistic regression tests	P=0.031N	P=0.580N	P=0.491N	P=0.058N
Cochran-Armitage test	P = 0.031N			
Fisher exact test		P=0.582N	P=0.500N	P=0.059N

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

,	0 ррт	222 ppm	666 ppm	2,000 ppm
Pancreatic Islets: Adenoma or Ca	rcinoma	<u> </u>		
Overall rates	2/50 (4%)	1/50 (2%)	3/49 (6%)	0/50 (0%)
Adjusted rates	5.4%	2.2%	8.2%	0.0%
Terminal rates	1/33 (3%)	0/41 (0%)	0/26 (0%)	0/33 (0%)
First incidence (days)	673	672	610	-
life table tests	P = 0.255N	P=0.456N	P=0 407	P-0.251N
ogistic regression tests	P = 0.25511	P = 0.505N	P = 0.517	P = 0.231N
Cochran-Armitage test	P = 0.220N	1 -0.50511	1-0.517	1 -0.24014
Fisher exact test		P=0.500N	P=0.490	P=0.247N
Pituitary Gland (Pars Distalis): A	denoma			
Overall rates	28/50 (56%)	28/50 (56%)	27/50 (54%)	19/50 (38%)
Adjusted rates	66.3%	60.8%	66 3%	48.0%
Cerminal rates	19/33 (58%)	23/41 (56%)	13/26 (50%)	13/22 (20%)
First incidence (days)	613	533	525	386
life table tests	P = 0.103N	P = 0.214N	P=0.263	P=0.087N
ogistic regression tests	P = 0.031N	P = 0.492N	P=0.531	P = 0.061N
Cochran-Armitage test	P = 0.025N	* - VITZ#11	1 - 0.001	1 -0.00114
Fisher exact test		P=0.580N	P=0.500N	P=0.054N
Pituitary Gland (Pars Distalis): A	denoma or Carcinoma			
Overall rates	29/50 (58%)	28/50 (56%)	27/50 (54%)	19/50 (38%)
Adjusted rates	68.7%	60.8%	66.3%	48.0%
Cerminal rates	20/33 (61%)	23/41 (56%)	13/26 (50%)	13/33 (39%)
First incidence (days)	613	533	525	386
ife table tests	P = 0.085N	P = 0.161N	P = 0.312	P = 0.062N
ogistic regression tests	P = 0.023N	P=0.406N	P=0.560N	P = 0.040N
Cochran-Armitage test	P = 0.018N			
Fisher exact test		P=0.500N	P=0.420N	P=0.036N
Skin (Subcutaneous Tissue): Fibr	oma, Fibrosarcoma, or Saro	mma		
verall rates	0/50 (0%)	3/50 (6%)	1/50 (2%)	0/50 (0%)
Adjusted rates	0.0%	7.3%	2.2%	0.0%
Cerminal rates	0/33 (0%)	3/41 (7%)	0/26 (0%)	0/33 (0%)
First incidence (days)	-	· 728 (T)	533	-
ife table tests	P=0.302N	P=0.162	P=0.500	-
ogistic regression tests	P = 0.277N	P = 0.162	P = 0.623	_
Cochran-Armitage test	P = 0.281 N	1 0.101		
isher exact test		P=0.121	P=0.500	-
[hvroid Gland (C-cell): Adenoma				
Overall rates	5/50 (10%)	4/50 (8%)	2/50 (4%)	3/50 (6%)
Adjusted rates	15.2%	9.8%	7.7%	8.4%
Cerminal rates	5/33 (15%)	4/41 (10%)	2/26 (8%)	2/33 (6%)
First incidence (days)	728 (T)	728 (T)	728 (T)	634
ife table tests	P = 0.382N	P=0.365N	P=0.319N	P = 0.361 N
ogistic regression tests	P=0.376N	P=0.365N	P=0.319N	P = 0.372N
A CR. INTERNAL A SALE I SALESAN CONTRACTOR				- 0.01441
Cochran-Armitage test	P = 0.331 N	•		
Table B3

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	222 ppm	666 ppm	2,000 ppm
Thyroid Gland (C-cell): Adenoma	or Carcinoma			<u></u>
Overall rates	7/50 (14%)	6/50 (12%)	3/50 (6%)	4/50 (8%)
Adjusted rates	20.1%	14.6%	11.5%	10.2%
Cerminal rates	6/33 (18%)	6/41 (15%)	3/26 (12%)	2/33 (6%)
First incidence (days)	669	728 (T)	728 (T)	476
ife table tests	P=0 282N	P = 0.344 N	P = 0.270N	P=0 275N
ogistic regression tests	P = 0.251 N	P = 0.0000	P = 0.252N	P = 0.2751
ochran. Armitage test	P = 0.225 N	1-0.40510	1 -0.2521	1-0.2011
Fisher exact test		P=0.500N	P=0.159N	P=0.262N
Iterus: Stromal Polyp				
Overall rates	9/50 (18%)	13/50 (26%)	8/50 (16%)	9/50 (18%)
Adjusted rates	24.4%	30.8%	25.6%	25.1%
Cerminal rates	7/33 (21%)	12/41 (29%)	5/26 (19%)	7/33 (21%)
first incidence (days)	438	646	533	613
ife table tests	P = 0.473N	P=0 410	P=0 540	P=0 500
oristic regression tests	P=0.405N	P = 0.734	P = 0.480N	P=0.050
Cochran-Armitage test	P=0 384N	1 -0.4.71	1 -0.40714	1 -0.00014
Fisher exact test	1 0.20414	P=0.235	P=0.500N	P=0.602N
Uterus: Stromal Sarcoma				
Overall rates	0/50 (0%)	0/50 (0%)	3/50 (6%)	1/50 (2%)
Adjusted rates	0.0%	0.0%	85%	25%
Cerminal rates	0/33 (0%)	0/41 (0%)	0.26 (0%)	0/33 (0%)
First incidence (days)	-	-	459	647
ife table tests	 ₽≈0 370	_	P=0.097	P-0.486
ogistic regression tests	P = 0.070	_	P-0.163	P=0.400
ochran-Armitage test	P = 0.387	_	1 =0.105	r -0.512
Fisher exact test	1 -0.567	-	P=0.121	P=0.500
Jterus: Stromal Polyp or Stromal	Sarcoma			
Overall rates	9/50 (18%)	13/50 (26%)	11/50 (22%)	10/50 (20%)
Adjusted rates	24.4%	30.8%	31.9%	26.9%
Cerminal rates	7/33 (21%)	12/41 (29%)	5/26 (19%)	7/33 (21%)
first incidence (days)	438	646	459	613
ife table tests	P=0 538	P = 0.410	P=0 248	₽ <u></u> ₽ 1 /25
ogistic regression tests	P = 0.492N	P=0.34	P = 0.452	P=0 \$04
Ochran-Armitage test	P = 0.485N	4 - View-T	1-0.752	1 -0.500
Fisher exact test	1 -0.40314	P=0.235	P=0.402	P=0.500
MI Organs: Mononuclear Cell Les	ıkemia			
Overall rates	14/50 (28%)	11/50 (22%)	14/50 (28%)	26/50 (52%)
Adjusted rates	32.7%	24.6%	37 3%	58 50 (3270)
erminal rates	6/33 (18%)	8/41 (20%)	5/26 (19%)	15/22 (1502)
first incidence (days)	494	533	302	10,00 (40%) 500
ife table tests	P = 0.001	P = 0.204 N	P=0 351	P=0.074
ogistic regression tests	P<0 (201	P=0 330N	P = 0.531	P = 0.024
Cochran-Armitage test	P<0.001	1	1-0.34314	1 -0.015
Takan ana A Asa	1 50.001	D 0 00001	B. 0 50001	

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	222 ррш	666 ррт	2,000 ppm
All Organs: Benign Neoplasms			······································	
Overall rates	40/50 (80%)	44/50 (88%)	38/50 (76%)	35/50 (70%)
Adjusted rates	88.7%	91.7%	88.0%	83.1%
Terminal rates	28/33 (85%)	37/41 (90%)	21/26 (81%)	26/33 (79%)
First incidence (days)	438	436	416	386
life table tests	P=0.284N	P=0.280N	P=0.196	P=0.266N
ogistic regression tests	P=0.057N	P=0.237	P=0.544N	P=0.204N
Cochran-Armitage test	P=0.046N			
Fisher exact test		P=0.207	P=0.405N	P=0.178N
All Organs: Malignant Neoplasn	ns			
Overall rates	21/50 (42%)	18/50 (36%)	27/50 (54%)	32/50 (64%)
Adjusted rates	47.5%	39.0%	60.0%	70.6%
Cerminal rates	11/33 (33%)	13/41 (32%)	9/26 (35%)	20/33 (61%)
First incidence (days)	494	533	302	476
Life table tests	P=0.007	P=0.173N	P=0.066	P=0.045
Logistic regression tests	P=0.005	P=0.353N	P=0.265	P=0.025
Cochran-Armitage test	P=0.004			
Fisher exact test		P=0.341N	P=0.158	P=0.022
All Organs: Benign or Malignan	t Neoplasms			
Overall rates	46/50 (92%)	46/50 (92%)	46/50 (92%)	46/50 (92%)
Adjusted rates	92.0%	95.8%	92.0%	93.8%
Terminal rates	29/33 (88%)	39/41 (95%)	22/26 (85%)	30/33 (91%)
First incidence (days)	438	436	302	386
Life table tests	P=0.284	P=0.083N	P=0.116	P=0.523
Logistic regression tests	P=0.586N	P=0.626N	P=0.508N	P=0.627N
Cochran-Armitage test	P=0.589			
Fisher exact test		P=0.643N	P=0.643N	P==0.643N

(T)Terminal sacrifice

¹ Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, epididymis, gallbladder (mouse), heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

^e Not applicable; no neoplasms in animal group

TABLE B4a

Historical Incidence of Leukemia in Untreated Female F344/N Rats^a

Study	Incidence in Controls	
Historical Incidence at Southern Research Institu	ite	······································
C.I. Pigment Red 3 Nitrofuratoin o-Nitroanisole Polysorbate 80 Rhodamine 6G Roxarsone	10/50 13/50 14/50 26/50 11/50 14/50	
Overall Historical Incidence		
Total Standard deviation Range	213/800 (26.6%) 8.8% 14%-52%	

^a Data as of 3 April 1991

TABLE B4b Historical Incidence of Liver Neoplasms in Untreated Female F344/N Rats^a

Adenoma	Carcinoma	Adenoma or Carcinoma	
<u></u>	, 		
0/50	0/50	0/50	
0/50	0/50	0/50	
0/50	0/50	0/50	
0/50	0/50	0/50	
0/50	0/50	0/50	
0/50	0/50	0/50	
3/800 (0.4%)	1/800 (0.1%)	4/800 (0.5%)	
1.5%	0.5%	1.6%	
0%-6%	0%-2%	0%-6%	
	Adenoma 0/50 0/50 0/50 0/50 0/50 0/50 0/50 3/800 (0.4%) 1.5% 0%-6%	Incidence in Controls Adenoma Carcinoma 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50	Incidence in Controls Adenoma Carcinoma Adenoma or Carcinoma 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 0/50 1/800 (0.1%) 1/800 (0.5%) 1.6% 0%-6% 0%-2% 0%-6%

^a Data as of 3 April 1991

	Incidence	in Controls	_
Study	Squamous Cell Papilloma	Squamous Cell Carcinoma	- - -
Historical Incidence at Southern Research Institute			
C.I. Pigment Red 3	0/50	0/50	
Nitrofurantoin	0/50	0/50	
o-Nitroanisole	0/50	0/50	·
Polysorbate 80	0/50	0/50	
Rhodamine 6G	0/50	0/50	
Roxarsone	1/50	0/50	
Overall Historical Incidence			
Total	1/800 (0.1%)	0/800 (0.0%)	· .
Standard deviation	0.5%		
Range	0%-2%		

:

TABLE B4cHistorical Incidence of Squamous Cell Papillomas and Carcinomas of the Forestomachin Untreated Female F344/N Rats^a

^a Data as of 3 April 1991

Disposition Summary Aninals initially in study 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 50 60 50 60 50 60 60 60 60 60 60 60 60 60 60 60 70 70 18 14 70 70 18 14 70 70 18 14 70 <t< th=""><th></th><th>0 ррш</th><th>222 ppm</th><th>666 ррт</th><th>2,000 ppm</th></t<>		0 ррш	222 ppm	666 ррт	2,000 ppm
Arimals initially in study 60 60 60 60 60 60 60 60 10 ^b Liskdowk interim evaluation 10 10 10 10 10 ^b 10 ^b Morbund 17 7 18 14 14 14 Matural deaths 2 6 3 3 41 26 33 Animals examined microscopically 60 60 60 60 59	Disposition Summary				
15.46cmth interim evaluation 10 10 10 10 10 Early deaths 2 6 3 Moribund 17 7 18 14 Natural deaths 2 6 3 Terminal sacrifice 33 41 26 33 Animals examined microscopically 60 60 60 59 IS-Month Interim Evaluation Alimentary System 10 10 10 9 Parasite metazoan 2 (20%) 4 (40%) 2 (22%) Basophilic focus 2 (20%) 1 (10%) 1 (11%) Liver (10) (10) 10 (9) Basophilic focus 1 (10%) 1 (11%) 1 (11%) Ecosinophilic focus 1 (10%) 1 (10%) 1 (11%) Inflammation, granulomatous, multiple 5 (50%) 5 (50%) 2 (20%) 5 (55%) Necrosis 1 (10%) 1 (10%) 1 (11%) 1 (11%) 1 (11%) Necrosis 1 (10%) 1 (10%) 3 (30%) 1 (10%) 3 (75%) 3 (75%)	Animals initially in study	60	60	60	60
Early deaths Moribund 17 7 18 14 Matural deaths 2 6 3 Survivors 33 41 26 33 Animals scanifice 33 41 26 33 Animals scanific focus 0 60 60 59 Intestine large, colon (10) (10) (10) (11%) Parasite metazoan 2 (20%) 4 (40%) 2 (22%) Basophilic focus 1 (11%) Else cell focus 2 (20%) 1 (10%) 1 (11%) 1 (11%) Hepatodiphragmatic nodule 1 (10%) 1 (10%) 1 (11%) 1 (11%) Bicle duct, hyperplasia 3 (30%)	15-Month interim evaluation	10	10	10	10 ^b
Moribund 17 7 18 14 Natural deaths 2 6 3 Survivors Terminal sacrifice 33 41 26 33 Animals examined microscopically 60 60 60 59 IS-Month Interim Evaluation Alimentary System 10 117% 11% Liver (10) (10) (10) (9) Parasite metazoan 2 (20%) 4 (40%) 2 (22%) Basophilic focus 2 (20%) 4 (40%) 2 (22%) Basophilic focus 1 (10%) 1 (11%) Eosinophilic focus 1 (10%) 1 (11%) Bile duc, hyperplasia 3 (30%) 1 (10%) 4 (40%) 4 (44%) Hepatociphargmatic nodule 1 (10%) 1 (11%) 1 (11%) Bile duc, hyperplasia 3 (30%) 1 (10%) 4 (40%) 4 (44%) Hepatociphargmatic nodule 1 (10%) 1 (11%) 1 (11%) Bile duc, hyperplasia 3 (30%) 1 (10%) 4 (40%)	Early deaths				
Natural deaths 2 6 3 Survivors Terminal sacrifice 33 41 26 33 Animals examined microscopically 60 60 60 59 IS-Month Interim Evaluation Alimentary System (10) (10) (9) Parasite metazoan 2 (20%) 1 (11%) 1 (11%) Liver (10) (10) (9) Basophilic focus 2 (20%) 4 (40%) 2 (22%) Basophilic focus 1 (10%) 1 (11%) 1 (11%) Clear cell focus 1 (10%) 1 (11%) 1 (11%) Inflammation, granulomatous, multiple 5 (50%) 5 (50%) 2 (20%) 1 (11%) Inflammation, granulomatous, multiple 5 (50%) 5 (50%) 2 (20%) 1 (11%) Necrosis 1 1 (10%) 1 (11%) 1 (11%) 1 (11%) Necrosis 1 1 (10%) 1 (11%) 1 (11%) 1 (11%) Necrosis 1 1 (10%) 1 (10%) 2 (50%)	Moribund	17	7	18	14
Survivors Terminal sacrifice 33 41 26 33 Animals examined microscopically 60 60 60 59 IS-Month Interim Evaluation Alimentary System Intestine large, colon (10) (9) Parasite metazoan 2 (20%) 1 (11%) 1 (11%) Liver (10) (10) (10) (9) Basophilic focus 2 (20%) 4 (40%) 2 (22%) Basophilic focus, multiple 7 (70%) 9 (90%) 5 (50%) 1 (11%) Clear cell focus 1 (10%) 1 (10%) 1 (11%) Eosinophilic focus, multiple 5 (50%) 5 (50%) 2 (20%) 1 (11%) Inflammation, granulomatous, multiple 5 (50%) 2 (20%) 1 (11%) 1 (11%) Necrosis 1 1 (10%) 1 (10%) 1 (11%) 1 (11%) Necrosis 1 1 (10%) 1 (10%) 3 (75%) 2 (20%) 1 (11%) Meatoryte, Kupffer cell, pigmentation 1 (10%) 1 (10%) 1 (10%) 1 (10%)	Natural deaths		2	6	3
Terminal sacrifice 33 41 26 33 Animals examined microscopically 60 60 60 59 IS-Month Interim Evaluation Alimentary System Intestine large, colon (10) (9) Parasite metazoan 2 (20%) 4 (40%) 2 (22%) Basophilic focus 2 (20%) 4 (40%) 2 (22%) Basophilic focus 2 (20%) 4 (40%) 2 (22%) Basophilic focus 1 (10%) 1 (11%) Clear cell focus 1 (10%) 1 (11%) Eosinophilic focus 1 (10%) 1 (11%) Hepatodiaphragmatic nodule 1 (10%) 1 (11%) Inflammation, granulomatous, multiple 5 (50%) 5 (50%) 2 (20%) 1 (11%) Necrosis 1 (10%) 1 (10%) 1 (11%) 1 (11%) Hepatocyte, Kupffer cell, pigmentation 3 (30%) 1 (10%) 4 (40%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (100%) 1 (10%) 2 (50%) 2 (50%) Stomach, forestomach 10	Survivors				
Animals examined microscopically 60 60 60 59 IS-Month Interim Evaluation Alimentary System (10) (10) (10) (9) Parasite metazoan 2 (20%) 4 (40%) 2 (22%) Basophilic focus 2 (20%) 4 (40%) 2 (22%) Basophilic focus 2 (20%) 4 (40%) 2 (22%) Basophilic focus 1 (10%) 1 (11%) 1 (11%) Clear cell focus 1 (10%) 1 (11%) 1 (11%) Eosinophilic focus 1 (10%) 2 (20%) 5 (50%) 2 (20%) 5 (50%) Mixed cell focus 1 (10%) 1 (11%) 1 (11%) 1 (11%) 1 (11%) Necrosis 1 (10%) 1 (10%) 4 (40%) 4 (44%) 4 (44%) Hepatocityc, Kupffer cell, pigmentation 1 (10%) 1 (10%) 3 (75%) 5 (50%) 2 (50%) 3 (55%) Stomach, forestomach (10) (1) (2) (4) 4 (44%) 4 (44%) 4 (44%) 4 (44%) 4 (44%) 4	Terminal sacrifice	33	41	26	33
IS-Month Interim Evaluation Alimentary System Intestine large, colon (10) Parasite metazoan 2 (20%) Basophilic focus 2 (20%) Basophilic focus, multiple 7 (70%) 9 (90%) Clear cell focus 1 (10%) Hepatodiaphragmatic nodule 1 (10%) Inflammation, granulomatous, multiple 5 (50%) 5 (50%) 2 (20%) Mixed cell focus 1 (10%) 1 (11%) Necrosis 1 (10%) 1 (11%) Bile duct, hyperplasia 3 (30%) 1 (10%) 4 (40%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (10%) 1 (11%) 1 (11%) Mesentery (1) (2) (4) (4) Fat, inflammation, granulomatous, focal 1 (10%) 1 (10%) 3 (75%) Fat, necrosis, focal 1 (10%) 1 (10%) 1 (11%) Epithelium, hyperplasia 1 (10%) 1 (10%) 1 (11%) Epithelium, hyperplasia 1 (10%) 1 (10%) 1 (11%) Fat, necrosis, focal 1 (10%) 1 (10%) 1 (11%) Epi	Animals examined microscopically	60	60	60	59
Alimentary System (10) (9) Parasite netazoan 2 (20%) 1 (11%) Liver (10) (10) (10) (9) Basophilic focus 2 (20%) 4 (40%) 2 (22%) Basophilic focus, multiple 7 (70%) 9 (90%) 5 (50%) 1 (11%) Clear cell focus 1 (10%) 1 1 (11%) Eosinophilic focus, multiple 5 (50%) 5 (50%) 5 (50%) 5 (55%) Mixed cell focus 1 (10%) 1 (11%) 1 (11%) Inflammation, granulomatous, multiple 5 (50%) 5 (50%) 2 (20%) 1 (11%) Necrosis 1 (10%) 1 (10%) 1 (11%) 1 (11%) Mesentery (1) (2) (4) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (10%) 1 (11%) 1 (11%) Mesentery (1) (2) (4) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (10%) 1 (10%) 2 (50%) Stomach, forestomach (10) (1) (9) 1 (11%) Endocrine System 1 (10%) 1 (10%)	15-Month Interim Evaluation		· · · · · · · · · · · · · · · · · · ·		
Intestine large, colon (10) (10) (9) Parasite metazoan 2 (20%) 1 (11%) Liver (10) (10) (10) (9) Basophilic focus 2 (20%) 4 (40%) 2 (22%) Basophilic focus, multiple 7 (70%) 9 (90%) 5 (50%) 1 (11%) Cear cell focus 1 (10%) 1 (11%) Eosinophilic focus 1 (10%) Hepatodiaphragmatic nodule 1 (10%) 1 (11%) 5 (50%) 5 (50%) 2 (20%) 5 (55%) Mixed cell focus 1 (10%) 1 (10%) 1 (11%) 1 (11%) 1 (11%) Necrosis 1 (10%) 2 (20%) 1 (11%) 1 (11%) 1 (11%) 1 (11%) Bile duct, hyperplasia 3 (30%) 1 (10%) 4 (44%) 4 (44%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (10%) 1 (10%) 2 (50%) 3 (75%) Stomach, forestomach (10) 1 (100%) 1 (10%) 2 (50%) 3 (50%) Stomach, forestomach (10) (10) (9) 1 (11%) 1 (11%) Endocrine System Endocrine Sy	Alimentary System				
Institution in Eq. (30) (10)	Intestine large colon	(10)			(9)
Liver (10) (10) (10) (10) (10) (11) Basophilic focus 2 (20%) 4 (40%) 2 (22%) Basophilic focus 1 (10%) 1 (11%) Clear cell focus 1 (10%) 1 (11%) Eosinophilic focus 1 (10%) 1 (11%) Hepatodiaphragmatic nodule 1 (10%) 1 (11%) Inflammation, granulomatous, multiple 5 (50%) 5 (50%) 2 (20%) 5 (56%) Mixed cell focus 1 (10%) 2 (20%) 1 (11%) 1 (11%) Necrosis 1 (10%) 2 (20%) 1 (11%) 1 (11%) Bile duct, hyperplasia 3 (30%) 1 (10%) 4 (40%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (10%) 1 (11%) 1 (11%) Mesentery (1) (2) (4) (4) Fat, inflammation, granulomatous, focal 1 (100%) 3 (75%) 2 (50%) Stomach, forestomach (10) (1) (9) (9) Epithelium, hyperplasia 1 (10%) (9) (11%) Meart (10) (3) (1) (9) </td <td>Parasite metazoan</td> <td>2 (20%)</td> <td></td> <td></td> <td>1 (11%)</td>	Parasite metazoan	2 (20%)			1 (11%)
Link (10) (10) (10) (10) (10) (10) (11) Basophilic focus 2 (20%) 4 (40%) 2 (22%) Basophilic focus, multiple 7 (70%) 9 (90%) 5 (50%) 1 (11%) Clear cell focus 1 (10%) 1 (11%) 1 1 Basophilic focus 1 (10%) 1 (11%) 1 (11%) 1 Hepatodiaphragmatic nodule 1 (10%) 2 (20%) 5 (56%) Mixed cell focus 1 (11%) Mixed cell focus 1 (10%) 2 (20%) 1 (11%) 1 (11%) 1 (11%) Bile duct, hyperplasia 3 (30%) 1 (10%) 4 (40%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (10%) 1 (11%) 1 (11%) Mesentery (1) (2) (4) Fat, inflammation, granulomatous, focal 1 (100%) 3 (75%) 3 (75%) Stomach, forestomach (10) (1) (9) 1 (11%) Heart (10) (10) (1) (9) Endocrine System 1 (10%) (10%) (1) (9) Spind	i atashe metazoan Liver	(10)	(10)	(10)	(9)
Dissipative focus $2 (20.7)$ $4 (47.7)$ $2 (22.7)$ Basophilic focus, multiple 7 (70%) 9 (90%) 5 (50%) 1 (11%) Clear cell focus 1 (10%) 1 (10%) 1 (11%) Hepatodiaphragmatic nodule 1 (10%) 1 (11%) 1 (11%) Inflammation, granulomatous, multiple 5 (50%) 5 (50%) 2 (20%) 5 (56%) Mixed cell focus 1 (10%) 2 (20%) 5 (56%) 1 (11%) Necrosis 1 (10%) 2 (20%) 1 (11%) 1 (11%) Bile duct, hyperplasia 3 (30%) 1 (10%) 4 (40%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (11%) 1 (11%) 1 (11%) Mesentery (1) (2) (4) 4 (44%) Fat, inflammation, granulomatous, focal 1 (10%) 3 (75%) 2 (50%) Stomach, forestomach (10) (1) (9) (9) Endocrine System 1 (10%) 2 (22%) 1 (11%) Heart (10) (3) (1) (9) Spindle cell, hyperplasia, focal 1 (10%) 1 (10%) 1 (11%) <	Basonhilic focus	(10) 2 (200%)	(10)	(10) 4 (10%)	2 (22%)
Description: rocks, multiple 1 (10%) 5 (50%) 5 (50%) 1 (11%) Clear cell focus 1 (10%) 1 (10%) 1 (11%) Hepatodiaphragmatic nodule 1 (10%) 1 (11%) Inflammation, granulomatous, multiple 5 (50%) 5 (50%) 2 (20%) 5 (56%) Mixed cell focus 1 (10%) 2 (20%) 5 (56%) 1 (11%) Necrosis 1 (10%) 2 (20%) 1 (11%) Bile duct, hyperplasia 3 (30%) 1 (10%) 4 (40%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (11%) 1 (11%) 1 (11%) Mesentery (1) (2) (4) 3 (75%) Fat, inflammation, granulomatous, focal 1 (10%) 1 (50%) 2 (50%) Stomach, forestomach (10) (1) (9) 1 (11%) Heart (10) 1 (10%) 1 (11%) 2 (22%) Endocrine System 1 (10%) (2) (9) Spindle cell, hyperplasia, focal 1 (10%) (3) (1) (9) Pituitary glad (10) (3) (1) (9) 1 (11%) <td>Basophilic focus multiple</td> <td>2 (20%) 7 (70%)</td> <td>Q (00%)</td> <td>4 (4070) 5 (50%)</td> <td>$\frac{2}{1}$</td>	Basophilic focus multiple	2 (20%) 7 (70%)	Q (00%)	4 (4070) 5 (50%)	$\frac{2}{1}$
Clear Cerl rocus 1 (10%) Eosinophilic focus 1 (10%) Hepatodiaphragmatic nodule 1 (10%) Inflammation, granulomatous, multiple 5 (50%) 5 (50%) Mixed cell focus 1 (10%) Necrosis 1 (10%) Bile duct, hyperplasia 3 (30%) 1 (10%) Hepatocyte, Kupffer cell, pigmentation 1 (10%) 4 (40%) Mesentery (1) (2) (4) Fat, inflammation, granulomatous, focal 1 (100%) 1 (10%) 3 (75%) Fat, inflammation, granulomatous, focal 1 (100%) 1 (100%) 2 (50%) Stomach, forestomach (10) (1) (9) Epithelium, hyperplasia 1 (10%) 1 (11%) Heart (10) (1) (9) Inflammation, chronic 1 (10%) 2 (22%) Endocrine System 4 (10) (9) Spindle cell, hyperplasia, focal 1 (10%) (9) Spindle cell, hyperplasia, focal 1 (10%) (1) (9) Pituitary gland (10) (3) (1) (9) Pituitary gland	Clear call focus	1 (10%)	5 (50%) 1 (10%)	5 (50%)	1 (1170)
Losinopinic rocus 1 (10%) Hepatodiaphragmatic nodule 1 (10%) Inflammation, granulomatous, multiple 5 (50%) 5 (50%) Mixed cell focus 1 (10%) 2 (20%) 5 (56%) Mixed cell focus 1 (10%) 2 (20%) 1 (11%) Necrosis 1 (10%) 4 (40%) 4 (44%) Hepatocyte, kupfer cell, pigmentation 1 (11%) 1 (11%) Mesentery (1) (2) (4) Fat, inflammation, granulomatous, focal 1 (100%) 1 (50%) 3 (75%) Fat, necrosis, focal 1 (100%) 1 (50%) 2 (50%) Stomach, forestomach (10) (1) (9) Epithelium, hyperplasia 1 (10%) 2 (22%) Endocrine System Heart (10) (3) (1) (9) Spindle cell, hyperplasia, focal 1 (10%) (1) (9) Pituitary gland (10) (3) (1) (9) Pituitary gland (10) (3) (1) (9) Park distalis, cyst, multiple 1 (33%) 1 (10%) 1 (11%) <td>Ensinembilia forma</td> <td></td> <td>1 (10%)</td> <td>1 (10%)</td> <td></td>	Ensinembilia forma		1 (10%)	1 (10%)	
Inflammation, granulomatous, multiple 5 (50%) 5 (50%) 2 (20%) 5 (56%) Mixed cell focus 1 (10%) 2 (20%) 1 (11%) Necrosis 1 (10%) 2 (20%) 1 (11%) Bile duct, hyperplasia 3 (30%) 1 (10%) 4 (40%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (11%) 4 (40%) 4 (44%) Mesentery (1) (2) (4) 1 (11%) Fat, inflammation, granulomatous, focal 1 (100%) 1 (50%) 2 (50%) Stomach, forestomach (10) (1) (9) 2 (50%) Epithelium, hyperplasia 1 (10%) 1 (10%) 1 (11%) Endocrine System Heart (10) (1) (9) Spindle cell, hyperplasia, focal 1 (10%) (9) 9) Spindle cell, hyperplasia, focal 1 (10%) (1) (9) Pituitary gland (10) (3) (1) (9) Pituitary gland (10) (3) (1) (9) Para distalis, cyst, multiple 1 (33%) 1 (10%) 1 (11%) <	Losmophilic locus			1(10%)	1 (110%)
Mixed cell focus 1 (10%) 2 (20%) 1 (11%) Mixed cell focus 1 (10%) 2 (20%) 1 (11%) Necrosis 1 (11%) 1 (11%) 4 (44%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (10%) 4 (40%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (10%) 1 (10%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (10%) 3 (75%) 3 (75%) Fat, necrosis, focal 1 (100%) 1 (50%) 2 (50%) Stomach, forestomach (10) (1) (9) Epithelium, hyperplasia 1 (10%) 1 (10%) 1 (11%) Cardiovascular System Heart (10) (1) (9) Inflammation, chronic 1 (10%) 2 (22%) Endocrine System Heart (10) (9) Spindle cell, hyperplasia, focal 1 (10%) (9) Spindle cell, hyperplasia, focal 1 (10%) (1) (9) Pituitary gland (10) (3) (1) (9) Pituitary gland 1 (33%) 1 (100%) <	Information granulomatous multiple	5 (50%)	5 (50%)	1(10%)	5 (56%)
Mixed cert focus 1 (10%) 2 (20%) 1 (11%) Necrosis 1 (11%) 1 (11%) Bile duct, hyperplasia 3 (30%) 1 (10%) 4 (40%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (11%) 1 (11%) 1 (11%) Mesentery (1) (2) (4) 1 (11%) Fat, inflammation, granulomatous, focal 1 (100%) 1 (50%) 2 (50%) Stomach, forestomach (10) (1) (9) Epithelium, hyperplasia 1 (10%) 1 (100%) 1 (11%) Meart (10) (1) (9) Inflammation, chronic 1 (10%) 2 (22%) Endocrine System (10) (3) (1) (9) Spindle cell, hyperplasia, focal 1 (10%) (1) (9) Pituitary gland (10) (3) (1) (9) Pituitary gland (10) (3) (1) (9) Pars distalis, cyst, multiple 1 (33%) 1 (10%) 1 (11%)	Mixed cell focus	5 (50%) 1 (10%)	5 (50%)	2(20%)	3(30%)
Netrosis 1 (11%) Bile duct, hyperplasia 3 (30%) 1 (10%) 4 (40%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (11%) 1 (11%) 1 (11%) Mesentery (1) (2) (4) 1 (11%) Fat, inflammation, granulomatous, focal 1 (10%) 1 (50%) 3 (75%) Fat, necrosis, focal 1 (10%) 1 (50%) 2 (50%) Stomach, forestomach (10) (1) (9) Epithelium, hyperplasia 1 (10%) 1 (10%) 1 (11%) Cardiovascular System 1 (10) (9) 2 (22%) Endocrine System 4 (10) (9) 2 (22%) Pituitary gland (10) (3) (1) (9) Spindle cell, hyperplasia, focal 1 (10%) 1 (10%) 1 (11%)	Mixed Cell Tocus	1 (10%)		2 (20%)	1(11%)
He duct, hyperplasia 3 (30%) 1 (10%) 4 (40%) 4 (44%) Hepatocyte, Kupffer cell, pigmentation 1 (11%) 1 (11%) 1 (11%) Mesentery (1) (2) (4) Fat, inflammation, granulomatous, focal 1 (50%) 3 (75%) Fat, necrosis, focal 1 (100%) 1 (50%) 2 (50%) Stomach, forestomach (10) (1) (9) Epithelium, hyperplasia 1 (10%) 1 (10%) 1 (11%) Cardiovascular System Heart (10) (1) (9) Inflammation, chronic 1 (10%) (9) 2 (22%) Endocrine System Adrenal gland, cortex (10) (3) (1) (9) Spindie cell, hyperplasia, focal 1 (10%) 1 (10%) 1 (11%) Pituitary gland (10) (3) (1) (9) Para distalis, cyst, multiple 1 (33%) 1 (100%) 1 (11%)	Necrosis Dile duet humanicaia	2 (200%)	1 (10%)	A (A00%)	1(1170)
Image: Properties of the senter of the se	Blie duct, hyperplasia	5 (50%)	1 (10%)	4 (40%)	4 (4470)
(1) (2) (4) Fat, inflammation, granulomatous, focal 1 (50%) 3 (75%) Fat, necrosis, focal 1 (100%) 1 (50%) 2 (50%) Stomach, forestomach (10) (1) (9) Epithelium, hyperplasia 1 (100%) 1 (100%) 1 (11%) Cardiovascular System Heart (10) (9) Inflammation, chronic 1 (10%) 2 (22%) Endocrine System (10) (9) Adrenal gland, cortex (10) (9) Spindle cell, hyperplasia, focal 1 (10%) (9) Pituitary gland (10) (3) (1) (9) Pars distalis, cyst, multiple 1 (33%) 1 (10%) 1 (11%)	Hepatocyte, Kupiter cell, piginentation	(1)			1 (11%)
Fat, initiammation, granulomatous, tocal 1 (100%) 1 (50%) 2 (50%) Fat, necrosis, focal 1 (100%) 1 (50%) 2 (50%) Stomach, forestomach (10) (1) (9) Epithelium, hyperplasia 1 (100%) 1 (100%) 1 (11%) Cardiovascular System Heart (10) Inflammation, chronic (10) (9) Inflammation, chronic (10) (9) Spindle cell, hyperplasia, focal (10) (10) (3) (1) (9) Pituitary gland (10) (3) (1) (9) (10) (3) (1) (9) (10) (10) (10) (10) (10) (10) (10) (10	mesentery	(1)	(2)		(4) 0 (750)
Fat, necrosis, tocal 1 (100%) 1 (30%) 2 (30%) Stomach, forestomach (10) (1) (9) Epithelium, hyperplasia 1 (100%) 1 (11%) Cardiovascular System Heart (10) (9) Inflammation, chronic 1 (10%) 2 (22%) Endocrine System (10) (9) Spindle cell, hyperplasia, focal 1 (10%) (9) Pituitary gland (10) (3) (1) (9) Pars distalis, cyst, multiple 1 (33%) 1 (100%) 1 (11%)	Fat, inflammation, granulomatous, local	1 (1000)	1 (50%)		3 (75%)
Stomach, forestomach (10) (1) (9) Epithelium, hyperplasia 1 (100%) 1 (11%) Cardiovascular System Heart (10) (9) Inflammation, chronic 1 (10%) 2 (22%) Endocrine System 2 (22%) Endocrine System (10) (9) Spindle cell, hyperplasia, focal 1 (10%) Pituitary gland (10) (3) (1) (9) Pars distalis, cyst, multiple 1 (33%) 1 (100%) 1 (11%)	Fai, necrosis, local	1 (100%)	1 (50%)		2 (30%)
Epithelium, nyperplasia 1 (100%) 1 (11%) Cardiovascular System (10) (9) Heart (10) 2 (22%) Endocrine System 2 (22%) Endocrine System (10) (9) Spindle cell, hyperplasia, focal 1 (10%) (9) Pituitary gland (10) (3) (1) (9) Pars distalis, cyst, multiple 1 (33%) 1 (10%) 1 (11%)	Stomach, Iorestomach	(10)	(1)		(9)
Cardiovascular System (10) (9) Inflammation, chronic 1 (10%) 2 (22%) Endocrine System (10) (9) Adrenal gland, cortex (10) (9) Spindle cell, hyperplasia, focal 1 (10%) (9) Pituitary gland (10) (3) (1) (9) Adrenal statilis, cyst, multiple 1 (33%) 1 (10%) 1 (11%)	Epithelium, hyperplasia		1 (100%)		1 (11%)
Heart (10) (9) Inflammation, chronic 1 (10%) 2 (22%) Endocrine System (10) (9) Adrenal gland, cortex (10) (9) Spindle cell, hyperplasia, focal 1 (10%) (9) Pituitary gland (10) (3) (1) (9) Pars distalis, cyst, multiple 1 (33%) 1 (10%) 1 (11%)	Cardiovascular System				
Inflammation, chronic 1 (10%) 2 (22%) Endocrine System	Heart	(10)			(9)
Endocrine System(10)(9)Adrenal gland, cortex1 (10%)Spindle cell, hyperplasia, focal1 (10%)Pituitary gland(10)Pars distalis, cyst, multiple1 (33%)1 (10%)1 (11%)	Inflammation, chronic	1 (10%)			2 (22%)
Adrenal gland, cortex (10) (9) Spindle cell, hyperplasia, focal 1 (10%) 1 Pituitary gland (10) (3) (1) (9) Pars distalis, cyst, multiple 1 (33%) 1 (10%) 1 (11%)	Endocrine System	<u> </u>	/ / / / #### <u></u>	····••••••••••••••••••••••••••••••••••	
Spindle cell, hyperplasia, focal 1 (10%) Pituitary gland (10) (3) (1) (9) Pars distalis, cyst, multiple 1 (33%) 1 (100%) 1 (11%)	Adrenal gland, cortex	(10)			(9)
Pituitary gland (10) (3) (1) (9) Pars distalis, cyst, multiple 1 (33%) 1 (100%) 1 (11%)	Spindle cell, hyperplasia, focal	1 (10%)			
Pars distalis, cyst, multiple 1 (33%) 1 (100%) 1 (11%)	Pituitary gland	(10)	(3)	(1)	(9)
	Pars distalis, cyst, multiple	()	1 (33%)	(100%)	1 (11%)
Pars distalis, hyperplasia, focal 1 (10%)	Pars distalis, hyperplasia, focal	1 (10%)	- ()	- ()	- ()
Pars intermedia, cyst 1 (11%)	Pars intermedia, cyst	- (/-)			1 (11%)

	0 ррт	222 ppm	666 ppm	2,000 ррт
15-Month Interim Evaluation (continued)			<u></u>	
Genital System				
Clitoral gland	(10)	(10)	(10)	(9)
Cyst	3 (30%)	2 (20%)	3 (30%)	1 (11%)
Cyst, multiple			1 (10%)	
Hyperplasia				2 (22%)
Ovary	(10)			
Cyst	1 (10%)			
Bilateral, cyst	1 (10%)			
Uterus	(10)	(10)	(10)	(9)
Dilatation	2 (20%)	1 (10%)	1 (10%)	1 (11%)
Cervix, abscess		1 (10%)		
Cervix, cyst		1 (10%)		
Endometrium, hyperplasia, cystic	2 (20%)	1 (10%)		
Hematopoietic System			······································	
Bone marrow	(10)			(9)
Hyperplasia, reticulum cell	1 (10%)			(2)
Lymph node	(10)			(9)
Mediastinal, hyperplasia, lymphoid	1 (10%)			
Pancreatic, pigmentation	1 (10%)			
Spleen	(10)	(10)	(10)	(9)
Hematopoietic cell proliferation		10 (100%)	8 (80%)	
Pigmentation		10 (100%)	10 (100%)	1 (11%)
Capsule, hypertrophy		3 (30%)	3 (30%)	
Thymus	(10)			(9)
Hyperplasia, lymphoid	1 (10%)			
Integumentary System		· · · · · · · · · · · · · · · · · · ·		· _ · · · · · · · · · · · · · · · · · ·
Mammary gland	(10)			(9)
Duct, cyst	1 (10%)			
Musculoskalatal System				
Bone	(10)			(9)
Calvarium, hyperostosis	1 (10%)			
Nervous System				
None				
Respiratory System				
Nose	(10)	(3)	(6)	(9)
Submucosa, pigmentation	8 (80%)	3 (100%)	6 (100%)	9 (100%)
Special Senses System				
None				

	0 ppm	222 ppm	666 ppm	2,000 ppm
15-Month Interim Evaluation (continued)			·	
Urinary System				
Kidney	(10)	(10)	(10)	(9)
Cyst			1 (10%)	
Inflammation, chronic, focal	1 (10%)			
Nephropathy, chronic	3 (30%)	9 (90%)	5 (50%)	4 (44%)
Renal tubule, dilatation	1 (10%)		6 (60%)	7 (78%)
Renal tubule, mineralization	1 (10%)	6 (60%)	7 (70%)	5 (56%)
2-Year Study				
Alimentary System				
Intestine large, cecum	(50)	(49)	(46)	(49)
Parasite metazoan	1 (2%)	3 (6%)	2 (4%)	1 (2%)
Intestine large, colon	(50)	(49)	(46)	(49)
Parasite metazoan	3 (6%)	5 (10%)	1 (2%)	2 (4%)
Intestine large, rectum	(50)	(49)	(46) ໌	(49)
Parasite metazoan	3 (6%)	4 (8%)	2 (4%)	6 (12%)
Intestine small	(50)	(49)	(48)	(50)
Wall, foreign body				1 (2%)
Intestine small, ileum	(50)	(49)	(46)	(48)
Hyperplasia, lymphoid		1 (2%)	1 (2%)	
Intestine small, jejunum	(50)	(49)	(47)	(48)
Inflammation, granulomatous				1 (2%)
Ulcer				1 (2%)
Liver	(50)	(50)	(50)	(50)
Angiectasis				1 (2%)
Basophilic focus	2 (4%)		4 (8%)	3 (6%)
Basophilic focus, multiple	37 (74%)	41 (82%)	34 (68%)	26 (52%)
Clear cell focus	5 (10%) 1 (20%)	1 (00)	3 (6%)	3 (0%)
Citar cell locus, multiple	1(2%)	1 (2%)		2 (4%)
Degeneration multiple	1 (2%)		1 (20%)	
Eosinophilic focus	3 (6%)	8 (16%)	1(270) 5(10%)	0 (18%)
Eosinophilic focus multiple	5 (10%)	3(1070)	3 (6%)	5 (10%)
Hematopoietic cell proliferation	5 (1070)	2 (470)	5 (070)	1(2%)
Hepatodiaphragmatic nodule	4 (8%)	3 (6%)	10 (20%)	8 (16%)
Hyperplasia, nodular	4 (8%)	1 (2%)	3 (6%)	14 (28%)
Inflammation, granulomatous, multiple	36 (72%)	30 (60%)	20 (40%)	21(42%)
Karvomegaly	1 (2%)			== (== , = ,)
Mixed cell focus	2 (4%)	4 (8%)	2 (4%)	5 (10%)
Mixed cell focus, multiple	- ()	1 (2%)	- ()	
Necrosis			2 (4%)	
Pigmentation			1 (2%)	
Vacuolization cytoplasmic	10 (20%)	3 (6%)	5 (10%)	5 (10%)
Bile duct, hyperplasia	29 (58%)	30 (60%)	34 (68%)	43 (86%)
Centrilobular, degeneration	1 (2%)		• •	. ,
Centrilobular, necrosis				1 (2%)
Centrilobular, vacuolization cytoplasmic				1 (2%)
Serosa, fibrosis		1 (2%)		
Serosa, inflammation, granulomatous		1 (2%)		
Vein, thrombus				1 (2%)

	0 ррт	222 ppm	666 ppm	2,000 ppm
2-Year Study (continued)		<u> </u>		
Alimentary System (continued)				
Macentery	(0)	(6)	(11)	(12)
Inflammation chronic	(\mathcal{I})	(0)	(11)	1 (8%)
Fat inflammation grapulomatous		1 (17%)		1 (0,0)
Fat, inflammation, granulomatous focal	2 (22%)	1 (1770)	1 (9%)	1 (8%)
Fat necrosis focal	7 (78%)	5 (83%)	9 (82%)	10 (83%)
Fat necrosis focal multiple	1 (1070)	5 (0570)	1 (9%)	10 (0570)
Pancreas	(50)	(50)	(49)	(50)
Basonhilic focus	3 (6%)	(30)	(*)	
Basophilic focus multiple	5 (0,0)	1 (2%)	1 (2%)	2 (4%)
Ectonic tissue		1 (L/V)	- (-//)	1(2%)
Acinar cell, atrophy	14 (28%)	11 (22%)	15 (31%)	12 (24%)
Acinar cell, hyperplasia	6 (12%)	4 (8%)	4 (8%)	5 (10%)
Pharynx	• (-=/•)	(0,0)	(2)	- ()
Palate, epithelium, hyperplasia			1 (50%)	
Salivary glands	(50)	(49)	(50)	(50)
Cytomegaly			1 (2%)	
Infiltration cellular, lipocyte			1 (2%)	
Inflammation, chronic	1 (2%)			
Inflammation, suppurative	1 (2%)			· · · · · · · · · · · · · · · · · · ·
Acinar cell, atrophy	1 (2%)		1 (2%)	1 (2%)
Acinar cell, hyperplasia	1 (2%)			1 (2%)
Stomach, forestomach	(50)	(50)	(50)	(50)
Edema	4 (8%)	1 (2%)	5 (10%)	5 (10%)
Inflammation, chronic	4 (8%)	2 (4%)	2 (4%)	6 (12%)
Inflammation, suppurative			2 (4%)	
Ulcer	1 (2%)		2 (4%)	6 (12%)
Ulcer, multiple	2 (4%)	1 (2%)	2 (4%)	1 (2%)
Epithelium, hyperplasia	8 (16%)	8 (16%)	13 (26%)	28 (56%)
Stomach, glandular	(50)	(50)	(50)	(50)
Edema	1 (2%)			
Erosion		1 (2%)	1 (2%)	2 (4%)
Erosion, multiple	1 (2%)			
Hyperplasia, lymphoid			1 (2%)	
Mineralization		1 (2%)	1 (2%)	
Necrosis, focal, multiple		1 (2%)	1 (2%)	
Ulcer		1 (2%)	. ,	2 (4%)
Ulcer, multiple			1 (2%)	
Epithelium, hyperplasia	1 (2%)			
Epithelium, hyperplasia, focal		1 (2%)	a (
Cardiovaccular System			······································	
Varuiorasculai System Heart	(50)	(50)	(50)	(50)
Inflammation chronic	34 (68%)	45 (90%)	41 (82%)	39 (78%)
Atrium congestion	JH (00%)	1 (70%)	71 (0270)	57 (1070)
Atrium thrombus	1 (20%)	1 (270)		
Autum, unomous	1 (270)			

Lesions in Female Rats

TABLE B5

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

(50) 6 (12%)	(50)			
(50) 6 (12%)	(50)			
(50) 6 (12%)	(50)			
6 (12%)	A (90%)	(50)	(50)	
	4 (070)	2 (4%)	7 (14%)	
			1 (2%)	
		1 (2%)	2 (4%)	
4 (8%)	10 (20%)	5 (10%)	6 (12%)	
		1 (2%)		
7 (14%)	11 (22%)	6 (12%)	5 (10%)	
	2 (4%)			
	1 (2%)			
1 (2%)	3 (6%)	2 (4%)		
14 (28%)	15 (30%)	8 (16%)	11 (22%)	
	2 (4%)		()	
			1 (2%)	
1 (2%)				
1 (2%)	1 (2%)		3 (6%)	
	1 (2%)		1 (2%)	
1 (2%)	· · ·			
(50)	(50)	(50)	(49)	
	1 (2%)			
3 (6%)	4 (8%)	3 (6%)		
1 (2%)	· · /			
(49)	(46)	(49)	(47)	
		1 (2%)		
(50)	(50)	(50)	(50)	
			1 (2%)	
4 (8%)	4 (8%)	3 (6%)	5 (10%)	
4 (8%)	4 (8%)	1 (2%)	6 (12%)	
			4 (8%)	
5 (10%)	6 (12%)	6 (12%)	7 (14%)	
		1 (2%)		
			1 (2%)	
(50)	(50)	(50)	(50)	
		1 (2%)		
1 (2%)		2 (4%)		
5 (10%)	3 (6%)	1 (2%)	2 (4%)	
9 (18%)	7 (14%)	5 (10%)	5 (10%)	
1 (2%)			. ,	
	4 (8%) 7 (14%) 1 (2%) 14 (28%) 1 (2%) 1 (2%) (50) 3 (6%) 1 (2%) (49) (50) 4 (8%) 4 (8%) 5 (10%) 5 (10%) 9 (18%) 1 (2%)	$\begin{array}{cccccc} 4 & (8\%) & 10 & (20\%) \\ \hline 7 & (14\%) & 11 & (22\%) \\ & 2 & (4\%) \\ & 1 & (2\%) \\ 1 & (2\%) & 3 & (6\%) \\ 14 & (28\%) & 15 & (30\%) \\ & 2 & (4\%) \\ \hline 1 & (2\%) & 1 & (2\%) \\ 1 & (2\%) & 1 & (2\%) \\ 1 & (2\%) & (50) & 1 & (2\%) \\ (50) & (50) & 1 & (2\%) \\ (50) & (50) & 1 & (2\%) \\ (49) & (46) \\ (50) & (50) & (50) \\ \hline 4 & (8\%) & 4 & (8\%) \\ 4 & (8\%) & 4 & (8\%) \\ 5 & (10\%) & 6 & (12\%) \\ \hline (50) & (50) & (50) \\ \hline 1 & (2\%) & 3 & (6\%) \\ 9 & (18\%) & 7 & (14\%) \\ 1 & (2\%) & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

General Body System None

	0 ppm	222 ppm	.666 ppm	2,000 ppm
2-Year Study (continued)		······································	· <u>···</u> ································	······································
Genital System				
Clitoral gland	(45)	(47)	(50)	(48)
Abscess	1 (2%)	()	((-)	()
Atrophy	1 (2%)			,
Cvst	14 (31%)	23 (49%)	18 (36%)	15 (31%)
Cyst. multiple	1 (2%)		10 (00/0)	10 (01/0)
Hypernlasia	8 (18%)		1 (2%)	6 (13%)
Hyperplasia Hyperplasia focal	1 (2%)	4 (9%)	1(2%)	0 (15%)
Inflammation supportive	2(4%)	1 (2%)	2(4%)	2 (4%)
Bilateral ast	2 (470)	3 (6%)	11(22%)	$\frac{2}{11}$ (23%)
Ovara	(50)	(50)	(50)	(50)
Over	(JU) 5 (10%)	3 (6%)	(30) 5 (10%)	5 (10%)
Cyst multiple	5 (1070)	5 (070)	5 (1070)	1(2%)
Laflammation granulomatous multiple		1 (2%)		1 (2%)
Bilatoral ant	1 (20%)	1 (270)	1 (20%)	
Bilateral, cyst	1 (270)	(50)	(50)	(50)
Abaaaa	(30)	(50)	(30)	(30)
Dilatation	2 (10%)	1(270)	2 (1%)	A (8%)
Elbrosia focal	2 (470)	3 (070)	2 (470)	1 (2%)
Fibrosis, local				1(2%)
Humaniage	2 (10%)	2 (40%)	2 (10%)	5 (10%)
Hyperplasia, glandular	2 (4%)	2 (4%)	2 (4%) 1 (2%)	5 (10%)
Infinitiation centrar, npocyte	1 (20%)	1 (20%)	1(270) 1(276)	
Continuantion, suppurative	1(2%)	1 (270)	1 (270)	
Cervix, cyst	2 (4%)			1 (20%)
Cervix, hemorrhage	1 (001)	1 (201)		1 (2%)
Cervix, inflammation, suppurative	1 (2%)	1 (2%)		2 ((0))
Cervix, myometrium, hyperplasia	E (1 407 \	((100))	0 (1007)	3 (0%)
Endometrium, hyperplasia, cystic	7 (14%)	0 (12%)	9 (18%)	12(24%)
Vein, thrombus		(2)	(1)	1 (2%)
Vagina		(3)	(1)	(3)
Inflammation, suppurative		1 (33%)		
Hematopoietic System		· · ·	· · · ·	
Bone marrow	(49)	(50)	(50)	(49)
Myelofibrosis	2 (4%)	1 (2%)		
Frythroid cell, hyperplasia	- ()	- ()	1 (2%)	
I ymph node	(50)	(50)	(50)	(50)
Inguinal hyperplasia lymphoid	1 (2%)			(-)
Mediastinal angiectasis	6 (12%)	2 (4%)	5 (10%)	6 (12%)
Mediastinal, ungrectasis	• (12/0)	-(175)	• ()	1 (2%)
Mediastinal, congestion			1 (2%)	1(2%)
Mediastinal hyperplasia hypohoid		3 (6%)	- (270)	2 (4%)
Mediastinal, hyperplasia, lymphold		5 (070)		2 (470)
histogra			1 (2%)	
Madiastinal pigmontation		1 (7%)	1 (270)	2(4%)
Personatio, angiestosis		1 (270) 2 (10%)		6 (12%)
Fancreatic, angrectasis		2 (470)	1 (20%)	(1270)
Fancreatic, hyperplasia, lympholo		1 (2%)	I (470)	4
ivenai, cysi, munipie		1 (470)		

	0 ppm	222 ppm	666 ppm	2,000 ppm	
2-Year Study (continued)		. <u></u>			
Hematopoietic System (continued)					
Lymph node. mandibular	(48)	(49)	(50)	(50)	
Angiectasis	1 (2%)	2 (4%)			
Congestion		1 (2%)			
Cyst		1 (2%)			
Cyst, multiple	3 (6%)	2 (4%)	3 (6%)		
Hyperplasia, lymphoid	7 (15%)	2 (4%)	2 (4%)	1 (2%)	
Pigmentation				2 (4%)	
Lymph node, mesenteric	(48)	(50)	(50)	(47)	
Angiectasis	1 (2%)	3 (6%)	2 (4%)	1 (2%)	
Edema		1 (2%)			
Hemorrhage				1 (2%)	
Hyperplasia, lymphoid	1 (2%)		1 (2%)	1 (2%)	
Inflammation, chronic				1 (2%)	
Spleen	(50)	(50)	(50)	(50)	
Atrophy		1 (2%)	1 (2%)		
Congestion		2 (4%)			
Fibrosis	A (1971)			1 (2%)	
Fibrosis, focal	2 (4%)	1 (2%)	1 (2%)	0 ((0))	
Hematopoietic cell proliferation	2 (4%)	2 (4%)	5 (10%)	3 (6%)	
Inflammation, granulomatous		2 (4%)	1 (20)	1 (2%)	
Necrosis Discussed and the second se	2 ((0))	E (1001)	1(2%)	1 (201)	
rigmentation	3 (0%)	3 (10%) 1 (20%)	2 (4%)	1 (2%)	
Capsule, hupertrephy		1(2%)			
Capsule, hypertrophy Capsule, inflammation, granulomatous		1(2%)			
Thymus	(17)	(49)	(47)	(48)	
Congestion	(47)	(4)	(47)	(1)	
Cyst		3 (6%)		1(2%)	
Cyst. multiple		1 (2%)		1 (270)	
Hyperplasia, lymphoid		1(2%)		1 (2%)	
Mediastinum, edema				1 (2%)	
Integumentary System			······		
Mammary gland	(50)	(50)	(50)	(50)	
Hyperplasia, lobular	19 (38%)	26 (52%)	22 (44%)	21 (42%)	
Duct, cyst	38 (76%)	36 (72%)	33 (66%)	34 (68%)	
Skin	(50)	(50)	(50)	(50)	
Hyperkeratosis		2 (4%)		1 (2%)	
Epidermis, hyperplasia				1 (2%)	
Parakeratosis		2 (4%)			
Ulcer		2 (4%)			
Nipple, hyperkeratosis			1 (2%)		
Nipple, hyperplasia		1 (2%)			
Subcutaneous tissue, edema				1 (2%)	
Musculoskeletal System					
Bone	(50)	(50)	(50)	(50)	
		· ·	· ·	· ·	
Osteopetrosis	2 (4%)	1 (2%)	1 (2%)	1 (2%)	

	0 ppm	222 ppm	666 ppm	2,000 ppm
2-Year Study (continued)		·····		
Nervous System				
Brain	(50)	(50)	(50)	(50)
Compression	10 (20%)	6 (12%)	13 (26%)	6 (12%)
Embolus bacterial, multiple	()	1 (2%)		
Hemorrhage		2 (4%)	2 (4%)	
Hemorrhage, multiple		- ()	1 (2%)	2 (4%)
Inflammation, suppurative, multiple		1 (2%)		
Respiratory System				
	(50)	(50)	(50)	(50)
Atelectasis	1 (2%)	(55)		
Convestion	- (200)		1 (2%)	
Edema	1 (2%)		• (#/0)	, ,
Embolus bacterial multiple	1 (270)	1 (2%)		, · · · ·
Hemorrhage multiple	·	1 (2%)		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Infiltration cellular, humphogate	2 (1%)	1 (270)		
Infiltration cellular, lymphocyte focal	2 (470)			1 (2%)
Infiltration cellular, histocate, focal	1 (2%)	1 (2%)	4 (8%)	2(4%)
Infiltration cellular, histocyte, tocal	1(2%)	1(2%)	4 (070)	2(4%)
Inflammation granulomatous focal	$\frac{1}{2}(6\%)$	2(2%)		4 (8%)
Inflammation, granulomatous, rocar	5 (070)	2 (470)		1 (2%)
Inflammation, granulouiatous, multiple		1 (2%)		2 (270)
Mineralization focal		1(2%)		· · · · · · · · · · · · · · · · · · ·
Alveolar epithelium hyperplasia		1(2%)	1 (2%)	2 (4%)
Alveolar epithelium, hyperplasia Alveolar epithelium, hyperplasia, focal		3 (6%)	1(2%)	2 (4%)
Alveolus nigmentation		5 (070)	. ()	2 (4%)
Nose	(50)	(50)	(50)	(50)
Metaplasia squamous	(50)	1 (2%)	(50)	(50)
Lumen foreign body		1(2%)		
Lumen, fungue	4 (8%)	2(4%)	2 (4%)	1 (2%)
Lumen, hunerkeratosis	4 (670)	1 (2%)	2 (470)	(2)()
Lumen inflormation suppurative	1 (8%)	3 (6%)	2 (1%)	1 (2%)
Nasolacrimal duct hemorrhage	4 (070)	1 (2%)	2 (470)	1 (270)
Nasolacrimal duct, inflammation		1 (270)		
Nasolaciimai duct, initaliimation,	1 (2%)			
Submusses hemorphise	1 (270)	2 (19%)		
Submucosa, nemornage Submucosa, pigmentation	46 (92%)	48 (96%)	46 (92%)	50 (100%)
Sensial Canada Suntam				
Special Senses System			(1)	(5)
Cotomat		(*) 4 (100%)	1 (100%)	(3) 4 (80%)
Calaraci		4 (100%)	1 (100%)	+ (00 <i>%)</i> 1 (20%)
Inflammation, suppurative		4 (100%)	1 (100%)	4 (80%)
Neulita, degeneration	(1)	(2)	1 (100%)	(2)
Hanorrhano	(1) 1 (100%)	(4) 2 (100%)		1 (50%)
Hemorrhage	1 (100%)	2 (100%) (1)		(1)
Lymoal's gland	(1)	(1)		1 (100%)
		1 1 1 1 1 1 7 0 1		1 1 1 0 0 70 1

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ррш	222 ppm	666 ррш	2,000 ppm	
2-Year Study (continued)					
Urinary System					
Kidney	(50)	(50)	(50)	(50)	
Cvst		2 (4%)			
Fibrosis, focal	1 (2%)	- ()			
Hydronephrosis	- ()	1 (2%)			
Infarct		1 (2%)			
Infarct, multiple			1 (2%)		
Inflammation, chronic	1 (2%)				
Inflammation, suppurative		1 (2%)			
Mineralization		2 (4%)			
Nephropathy, chronic	39 (78%)	46 (92%)	46 (92%)	44 (88%)	
Papilla, necrosis		1 (2%)			
Pelvis, dilatation			1 (2%)		
Renal tubule, dilatation			- ()	1 (2%)	
Renal tubule, mineralization	1 (2%)	1 (2%)	3 (6%)	2 (4%)	
Renal tubule, necrosis	- ()			1 (2%)	
Renal tubule, pigmentation	41 (82%)	47 (94%)	45 (90%)	46 (92%)	
Transitional epithelium, hyperplasia		1 (2%)	1 (2%)		
Urinary bladder	(50)	(50)	(50)	(50)	
Calculus gross observation		1 (2%)			
Hemorrhage		1 (2%)			
Hemorrhage, focal				1 (2%)	
Inflammation, chronic				2 (4%)	
Inflammation, suppurative		1 (2%)			
Transitional epithelium, hyperplasia		1 (2%)		6 (12%)	

^a Number of animals examined microscopically at site and number of animals with lesion.
 ^b Includes one animal killed moribund before the interim evaluation.

APPENDIX C SUMMARY OF LESIONS IN MALE MICE IN THE 2-YEAR FEED STUDY OF Ø-NITROANISOLE

C1	Summary of the Incidence of Neoplasms in Male Mice	
	in the 2-Year Feed Study of o-Nitroanisole	191
22	Individual Animal Tumor Pathology of Male Mice	
	in the 2-Year Feed Study of o-Nitroanisole	196
C3	Statistical Analysis of Primary Neoplasms in Male Mice	
	in the 2-Year Feed Study of o-Nitroanisole	220
-4a	Historical Incidence of Liver Neoplasms	
	in Untreated Male B6C3F ₁ Mice	225
C4b	Historical Incidence of Harderian Gland Neoplasms	
	in Untreated Male B6C3F ₁ Mice	225
CAc	Historical Incidence of Adrenal Cortex Adenomas	
	in Untreated Male B6C3F ₁ Mice	226
C5	Summary of the Incidence of Nonneoplastic Lesions in Male Mice	
	in the 2-Year Feed Study of o-Nitroanisole	227
	1 2 3 48 40 40	 Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Feed Study of o-Nitroanisole Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Feed Study of o-Nitroanisole Statistorical Incidence of Liver Neoplasms in Untreated Male B6C3F₁ Mice Historical Incidence of Harderian Gland Neoplasms in Untreated Male B6C3F₁ Mice Historical Incidence of Adrenal Cortex Adenomas in Untreated Male B6C3F₁ Mice Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Feed Study of o-Nitroanisole

190

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Feed Study of o-Nitroanisole^a

	0 ppm	666 ppm	2,000 ррш	6,000 ppm	
Disposition Summary	·······				
Animals initially in study	60	60	60	60 .	
15-Month interim evaluation	10	10	9	10	
Missexed			1		
Early deaths					
Moribund	14	5	8	7	
Natural deaths	1	2	3	3	
Survivors					
Terminal sacrifice	35	43	39	40	
Animals examined microscopically	60	60	59	60	
15-Month Interim Evaluation					
Alimentary System					
Intestine small, jejunum	(10)		(1)	(10)	
Liver	(10)	(10)	(9)	(10)	
Hepatocellular carcinoma		1 (10%)		()	
Hepatocellular adenoma	2 (20%)	- ()			
Hepatocellular adenoma, multiple				1 (10%)	
Cardiovascular System None					
Endocrine System None					
General Body System None					
Genital System			·		
Testes	(10)			(10)	
Hemangiosarcoma	(10)			1 (10%)	
Hematopoietic System					
Lymph node, mesenteric	(10)	(1)	(1)	(10)	
	()		(-)	()	
Integumentary System None					
Musculoskeletal System None					

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	666 ppm	2,000 ppm	6,000 ppm	
15-Month Interim Evaluation (continued) Nervous System None			<u></u>		
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	(10)	(4) 3 (75%) 1 (25%)		(10)	
Special Senses System None			ž.		
Urinary System None	,				
Systemic Lesions Multiple organs ^b Lymphoma malignant mixed	(10)	(10)	(9) 1 (11%)	(10)	
Neoplasm Summary Total animals with primary neoplasms ^c Total primary neoplasms Total animals with benign neoplasms Total benign neoplasms Total animals with malignant neoplasms Total malignant neoplasms	2 2 2 2	4 5 3 3 2 2	1 1 1 1	2 2 1 1 1 1	×
2-Year Study Alimentary System Intestine large, cecum Intestine small, duodenum Carcinoma Intestine small, ileum Carcinoma Intestine small, jejunum Carcinoma Liver Hemangiosarcoma	(49) (50) (49) (50) (50) 1 (2%)	(49) (48) 1 (2%) (48) 1 (2%) (48) 1 (2%) (50) 2 (4%)	(49) (49) (47) (47) (50) 1 (2%)	(49) (50) (49) (50) 1 (2%) (50)	
Hemangiosarcoma, multiple Hepatoblastoma Hepatoblastoma, multiple Hepatocellular carcinoma Hepatocellular carcinoma, multiple Hepatocellular adenoma Hepatocellular adenoma, multiple Histiocytic sarcoma	1 (2%) 5 (10%) 2 (4%) 10 (20%) 4 (8%)	2 (4%) 1 (2%) 11 (22%) 1 (2%) 16 (32%) 10 (20%)	14 (28%) 3 (6%) 10 (20%) 1 (2%) 15 (30%) 26 (52%) 1 (2%)	8 (16%) 1 (2%) 6 (12%) 1 (2%) 16 (32%) 13 (26%)	

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	666 ррт	2,000 ppm	6,000 ррт
2-Year Study (continued)				
Alimentary System (continued)				
Mesentery	(4)	(2)	(4)	
Hemangioma	1 (25%)	(-)		
Hepatoblastoma, metastatic, liver			2 (50%)	
Pancreas	(50)	(49)	(49)	(50)
Stomach, forestomach	(50)	(50)	(50)	(50)
Squamous cell papilloma	3 (6%)		2 (4%)	1 (2%)
Stomach, glandular	(50)	(50)	(49)	(50)
Cardiovascular System				<u> </u>
Heart	(50)	(50)	(50)	(50)
Histiocytic sarcoma	()	()	1 (2%)	()
Endocrine System				
Adrenal gland, cortex	(50)	(50)	(50)	(48)
Adenoma	5 (10%)	3 (6%)	(30) 2 (4%)	(40)
Capsule, adenoma	2(4%)	3 (6%)	2 (470)	
Adrenal gland medulla	(50)	(49)	(50)	(48)
Pheochromocytoma malignant	(50)	(4)	(50)	(+8)
Pheochromocytoma benign	1 (2%)			1 (270)
Islets, pancreatic	(50)	(49)	(49)	(50)
Adenoma	2 (4%)	(42)	(4)	(50)
Pituitary gland	(47)	(46)	(49)	(48)
Pars distalis, adenoma		1 (2%)	(12)	(+0)
Pars intermedia, adenoma		1 (2%)		
Thyroid gland	(49)	(49)	(50)	(50)
Follicular cell, adenoma	2 (4%)	2 (4%)		
General Body System				
Tissue NOS	(1)	-	(1)	
Histiocytic sarcoma			1 (100%)	
Genital System		······		· · · · · · · · · · · · · · · · · · ·
Enididymis	(50)	(50)	(50)	(50)
Penis	(30)	(30)	(30)	(30)
Fibrous histiocytoma			1 (100%)	
Prostate	(50)	(50)	(50)	(49)
Seminal vesicle	(50)	(50)	(50)	(50)
Testes	(50)	(50)	(50)	(50)
Hemangiosarcoma		(50)	(50)	1 (2%)
Interstitial cell, adenoma			1 (2%)	1 (2%)
			- (-//)	- (-//)

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ррт	666 ppm	2,000 ppm	6,000 ррт
2-Year Study (continued)			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Hematopoietic System				
Bone marrow Hemangiosarcoma	(50) 2 (4%)	(50)	(50)	(50)
Lymph node	(50)	(50)	(50)	(50)
Lymph node, mandibular	(48)	(49)	(49)	(49)
Lymph node, mesenteric	(47)	(49)	(46)	(50)
Histiocytic sarcoma				1 (2%)
Spleen	(50)	(50)	(49)	(48)
Hemangiosarcoma	1 (2%)			
Thymus	(47)	(47)	(45)	(48)
Histiocytic sarcoma			1 (2%)	
Integumentary System				
Skin	(50)	(50)	(50)	(50)
Squamous cell papilloma	1 (2%)			
Subcutaneous tissue, hemangioma		1 (2%)		
Subcutaneous tissue, hemangiosarcoma	1 (2%)		•	1 (2%)
Musculoskeleta) System				
Skeletal muscle	(1)		(1)	
Hepatoblastoma, metastatic, liver	X - 7		1 (100%)	
Nervous System None				
Respiratory System				
Lung	(50)	(50)	(50)	(50)
Alveolar/bronchiolar adenoma	5 (10%)	9 (18%)	2 (4%)	3 (6%)
Alveolar/bronchiolar adenoma, two, multiple		1 (2%)	1 (2%)	
Alveolar/bronchiolar adenoma, three, multiple		a (1975)	1 (2%)	
Alveolar/bronchiolar carcinoma	1 (2%)	2 (4%)		1 (2%)
Pheochromocytoma malignant, metastatic,				1 (27)
adrenal gland			1 (00)	1 (2%)
Hepatoblastoma, metastatic, liver	0 ((01)		1 (2%)	
Hepatocenular carcinoma, metastatic, liver	3 (0%)		1 (20%)	
			1 (2%)	·····
Special Senses System				
Harderian gland	(10)	(4)	(2)	(3)
Adenoma	8 (80%)	4 (100%)	2 (100%)	3 (100%)
Adenoma				
Adenoma, two, multiple	1 (10%)			

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	666 ppm	2,000 ppm	6,000 ppm	
2-Year Study (continued)					
Urinary System					
Kidney	(50)	(50)	(50)	(50)	
Renal tubule, adenoma	í (2%)		í (2%)		
Urinary bladder	(50)	(50)	(49)	(50)	
Transitional epithelium, papilloma	1 (2%)	. ,			
Systemic Lesions					
Multiple organs	(50)	(50)	(50)	(50)	
Histiocytic sarcoma		. ,	1 (2%)	1 (2%)	
Lymphoma malignant lymphocytic	1 (2%)			1 (2%)	
Lymphoma malignant mixed	2 (4%)	6 (12%)	3 (6%)	2 (4%)	
Lymphoma malignant undifferentiated cell	1 (2%)	1 (2%)	1 (2%)	5 (10%)	
Neoplasm Summary					
Total animals with primary neoplasms	38	41	49	41	
Total primary neoplasms	66	81	88	67	
Total animals with benign neoplasms	29	37	45	31	
Total benign neoplasms	47	52	53	37	
Total animals with malignant neoplasms	16	23	27	26	
Total malignant neoplasms	19	29	35	30	
Total animals with metastatic neoplasms	3		2	1	
Total metastatic neoplasms	3		4	1	

Number of animals examined microscopically at site and number of animals with lesion. Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms a

b

С

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of <i>o</i> -Nitroanisole: 0 ppm																											
Number of Days on Study	4 7 9	6 4 7	6 5 2	7 0 3	7 0 8	7 0 9	7 0 9	7 0 9	7 0 9	7 1 0	7 1 1	7 1 1	7 1 5	7 2 2	7 2 2	7 2 9											
Carcass ID Number	0 1 4 1	0 2 4 1	0 3 4 1	0 4 4 1	0 0 1 1	0 1 6 1	0 2 2 1	0 4 1 1	0 4 7 1	0 1 5 1	0 0 3 1	0 0 9 1	0 2 5 1	0 2 8 1	0 4 0 1	0 0 2 1	0 0 4 1	0 0 5 1	0 0 6 1	0 0 7 1	0 0 8 1	0 1 0 1	0 1 1 1	0 1 2 1	0 1 3 1		
Alimentary System																-											
Esophagus	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Gallbladder	+	+	÷	+	+	÷	÷	+	+	÷	+	+	+	+	+	+	+	+	Ň	+	+	+	+	+	+		
Intestine large	. +	+	+	+	+	+	+	+	+	÷	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large cecum	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	÷	+	+	+	+	+	+		
Intestine large, colon	+	+	+	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, rectum	+	÷	÷	+	м	÷	+	+	+	÷	+	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small	+	+	÷	+	+		+	+	+	+	+	÷	÷	, +	+	+	+	÷	÷	÷	, +	+	+	+	÷		
Intestine small duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+		
Intestine small, ileum	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	÷	+	+	й		
Intestine small, jejunum	+	+	÷	+	+	+	+	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+		
I iver	+	+	÷	+	+	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Hemangiosarcoma	•	•	•	•	·	•	•	•	•	•	•	•	•	x		•	·	•	•			•	•	·	·		
Hemangiosarcoma multiple																			x								
Henatocellular carcinoma		x				x			x																		
Hepatocellular carcinoma multiple					x																						
Hepatocellular adenoma								x					x						x					x	x		
Henatocellular adenoma multiple										x																	
Mesentery				+		+		+					+														
Hemangioma				•		x		•					•														
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Squamous cell papilloma	•	·				-	-			x																	
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Tooth										+												+	+		+		
Cardiovascular System																											
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		
Endocrine System																											
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adenoma													х												х		
Capsule, adenoma																											
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pheochromocytoma benign									х																		
Islets, pancreatic Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+		

+: Tissue examined microscopically

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

A: Autolysis precludes examination

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 0 ppm (continued)																									
7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	-9 -9	9	9	9	9	9	9	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	1	1	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	5	Total
7	8	9	0	1	3	6	7	9	0	1	2	3	5	6	7	8	9	2	3	5	6	8	9	0	Tissues/
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumors
																								_	
+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	48
+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	50
																									1
																									1
								Х												Х					5
																		x						_	2
v			х		х	х															х			x	10
X							х												х						4
																									4
																									1
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
	Ţ	- -	Ţ	.	T	Ţ.	Ţ	Ţ	Ţ	Ţ	Ť	Ţ	-	+	Ţ	+	+	Ť	+	+	+	+	+	+	50
	+	T	+	Ť	+	+	T	+	+	- 	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
т V	Ŧ	т	т	т	т	т	т	т	т	т	Ŧ	v	т	т	т	т	т	Ŧ	т	Ŧ	т	т	т	Ŧ	30
	ـ لـ	ᆂ	т	_		Т	т	-	-	Ŧ	-	л 	-	-		-	-	-		-	-				50
Ŧ	1	•	+	+	+	+	+	т	т	+	т	т	+	Ŧ	т	т	т	т	т	т	т	т	т	т	11
	<u> </u>	<u> </u>																		<u> </u>					
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
										_						_									
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
													х	х			х								5
						х																Х			2
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
																									1
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
														Х											2
	2 9 0 1 7 1 +++++++++++++++++++++++++++++++	$ \begin{array}{c} 2 & 2 \\ 9 & 9 \\ \hline 0 & 0 \\ 1 & 1 \\ 7 & 8 \\ 1 & 1 \\ + & + \\ + & $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 $	$\begin{array}{c} 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 $	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 3	2 3 3							

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 0 ppm (continued) 4 6 6 7 7 7 7 7 7 7 7777 7 7 7 7 7 7 7 7 7 77 Number of Days on Study 7 4 5 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 9 7 2 2 2 9 9 9 9 9 9 3 8 9 9 Q Q n 1 1 5 9 Q Q 0 **Carcass ID Number** 1 2 3 0 1 2 4 4 1 0 0 2 2 4 0 0 0 0 001111 4 4 1 6 2 1 7 5 39 580 2 4 56 7 8 0 1 2 3 4 4 4 1 1 1 1 1 1 Endocrine System (continued) Parathyroid gland + Pituitary gland + M Thyroid gland Μ + + + + + + + Follicular cell, adenoma **General Body System** Tissue NOS + **Genital System** Coagulating gland Epididymis Preputial gland Prostate + Seminal vesicle Testes Hematopoietic System Bone marrow + + Hemangiosarcoma х Lymph node 1 Lymph node, mandibular + + + + Lymph node, mesenteric + + + + + + Μ M Spleen + Hemangiosarcoma Thymus + + + **Integumentary System** Mammary gland Skin + + + + +Squamous cell papilloma х Subcutaneous tissue, hemangiosarcoma Musculoskeletal System Bone Skeletal muscle **Nervous System** Brain

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 0 ppm (continued) 777 7 7 7 7 7 7 7 7 7 7 7 7 22 2 2 Number of Days on Study 2 2 2 2 2 2 2 2 2 2 99 9 9 0 0 0 Carcass ID Number 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 Total 1 1 1 1 3 6 7 9 0 1 2 3 5 6 7 8 9 2 3 5 6 8 90 Tissues/ 7 890 1 1 1 1 1 1 Tumors Endocrine System (continued) Parathyroid gland 50 47 Pituitary gland М М + 49 Thyroid gland + + + + 4 + + + Follicular cell, adenoma х х 2 **General Body System Tissue NOS** 1 **Genital System** Coagulating gland 4 Epididymis 50 Preputial gland 24 50 Prostate Seminal vesicle 50 Testes 50 **Hematopoietic System** Bone marrow 50 + + Hemangiosarcoma х 2 Lymph node 50 + Lymph node, mandibular 48 + + + Μ + + + + + + + + + + + + + + + Lymph node, mesenteric 47 + + + + Spleen + 50 + + Hemangiosarcoma X 1 Thymus + + + M47 + + + M ++ + + + + I + + + **Integumentary System** Mammary gland 1 Skin + + + + + + + + + + 50 х Squamous cell papilloma 1 Subcutaneous tissue, hemangiosarcoma 1 **Musculoskeletal System** Bone 50 + + + + + + + + + + + + + Skeletal muscle 1 **Nervous System** Brain 50 +

Number of Days on Study	4 7 9	6 4 7	6 5 2	7 0 3	7 0 8	7 0 9	7 0 9	7 0 9	7 0 9	7 1 0	7 1 1	7 1 1	7 1 5	7 2 2	7 2 2	7 2 9											
Carcass ID Number	0 1 4 1	0 2 4 1	0 3 4 1	0 4 4 1	0 0 1 1	0 1 6 1	0 2 2 1	0 4 1 1	0 4 7 1	0 1 5 1	0 0 3 1	0 0 9 1	0 2 5 1	0 2 8 1	0 4 0 1	0 0 2 1	0 0 4 1	0 0 5 1	0 0 6 1	0 0 7 1	0 0 8 1	0 1 0 1	0 1 1 1	0 1 2 1	0 1 3 1		
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic, liver Nose Trachea	+ + +	· + X · +	+ + X	· +	++++	+ X + +	++++	++++	+++	++++	+ + +	++++	++++	++++	++++	+++	++++	+++	+ X + +	++++	+++	++++	+++++	+++++	+++++		
Special Senses System Eye Harderian gland Adenoma Adenoma, two, multiple Carcinoma							+ + X		+ X	+ + X						+ x		+ x								 	
Urinary System Kidney Renal tubule, adenoma Urinary bladder Transitional epithelium, papilloma	+	• +	 - +	• +	+	+	++	+ +	++	++	+ X +	+	+++	+	+ +	++	+	++	+	++	+	+	+ +	+	+	 <u> </u>	
Systemic Lesions Multiple organs Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	+	- +	· -	- + x	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	 	 _

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 0 ppm (continued)

7 7 7 7 Number of Days on Study 999 0 0 0 0 **Carcass ID Number** Total 7 8 9 0 1 3 6 7 9 0 1 2 3 5 6 7 8 9 2 3 5 6 8 9 0 Tissues/ Tumors **Respiratory System** Lung + + + + + + + + X + + + + + + + ++ + 50 х Alveolar/bronchiolar adenoma хх Х 5 Alveolar/bronchiolar carcinoma 1 Hepatocellular carcinoma, metastatic, liver 3 Nose 50 Trachea 50 + + + + + + + + + + + + + **Special Senses System** Eye 3 + Harderian gland 10 + + + + х х х Adenoma 8 Adenoma, two, multiple х 1 Carcinoma х 1 **Urinary System** Kidney 50 Renal tubule, adenoma 1 Urinary bladder 50 + + Transitional epithelium, papilloma х 1 Systemic Lesions Multiple organs 50 + Lymphoma malignant lymphocytic Х 1 Lymphoma malignant mixed х 2 Lymphoma malignant undifferentiated cell type 1

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 0 ppm (continued)

5 4 9	5 8 2	7 0 9	7 0	7 1	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7			
•			9	0	0	0	2 8	2 8	2 8	2 8	2 8	2 8	2 8	2 8	2 8												
2 0 8 1	2 0 5 1	2 0 3 1	2 2 0 1	1 8 8 1	1 9 5 1	2 2 5 1	1 8 1 1	1 8 2 1	1 8 3 1	1 8 4 1	1 8 5 1	1 8 6 1	1 8 7 1	1 8 9 1	1 9 0 1	1 9 1 1	1 9 2 1	1 9 3 1	1 9 4 1	1 9 6 1	1 9 7 1	1 9 8 1	1 9 9 1	2 0 0 1			
											_	-		•			_										
+	+	+	+	Ŧ	+	÷	+	+	+	+	+	+	+	+	+	+	Ъ	+	+	+	+	+	+	+			
Δ	т А	г —	т. Т	т Т	÷	т -	÷	Ť		т Т	÷.	т Т	-	÷	-	÷	т -	÷	т -	÷	Ť			Ť.			
<u>л</u>		т 	т 	т 	т 	т +	т	т 	т 	Ť	Ť	Ť	T L	т 	т _	т _	т 	т _	Ť	т 	т 	т 	Ť	т 		· `	
т 1	- T	T	- -	Ţ	т -	Ţ	Ť	Ŧ	T	Ŧ	т -	Ţ	т т	т -	T	T	т -	Ť		Ť	Ť	Ť	т +	т Т			
- -	~		Ţ	Ţ.	Ţ	T	Ţ	Ţ	.	Ţ	Ţ	7	Ţ	Ţ	.	Ţ	.	Ţ	Ť	Ţ	Ţ	Ţ	Ţ	Ŧ			
+	A	+	+	+	+	+	+	+	+	+	T	+	+	+	Ţ	+	+	+	Ţ	+	- ** -	+	+	+			
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
+	A	+	+	+	Ŧ	+	Ŧ	+	Ŧ	÷	Ŧ	IM	Ŧ	Ŧ	+	Ŧ	+	Ŧ	+	Ŧ	+	Ŧ	+	Ŧ			
+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	+	+	+			
																<u>^</u>								· ·			
Ŧ	A	Ŧ	т	Ŧ	Т	Ŧ	т	т	т	т	т	т	Ŧ	т	Ŧ	т	т	т	Ŧ	т	т	т	т	т		••	
Ŧ	v	Ŧ	Ŧ	Ŧ	Ŧ	+	т	Ŧ	Ŧ	-	т	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	v	+	Ŧ			
	· ·																										
	л				v																			•			
		v		v	Λ	v				v									v								
		Λ		Λ		Λ				Λ		v							Λ								
v			v				v	v	v		v	v	v							v	v	v					
~			л		v		Λ	Λ	Λ		Λ	Λ	Λ				v		v	л	Λ	Λ	•	v			
					Λ												Λ		Λ	-				Λ			
			,																	Ţ			,				
+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
·+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ			
						+		+					+				+		+			+	+				
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
- r		-T	'			'				.'		'	1	•				,		,						_	
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
		Х																									
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
			• •															,				_					
+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
	$ \begin{array}{c} 8 \\ 1 \\ + A + + + + + + + + + + + + + + + + +$	8 5 1 1 + A A + + A A + A A + + A A + + A A + + A A + + + A A + + + A A + + + + A + + + + + + + + + + + + + + + + + + +	$ \begin{array}{c} 8 & 5 & 3 \\ 1 & 1 & 1 \\ \\ + & A & + \\ + & A & $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 8 & 5 & 3 & 0 & 8 & 5 & 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	$ \begin{array}{c} 8 & 5 & 3 & 0 & 8 & 5 & 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 5 3 0 8 5 1 2 3 4 5 6 7 9 0 1 2 3 1	$ \begin{array}{c} 8 & 5 & 3 & 0 & 8 & 5 & 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 0 & 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	8 5 3 0 8 5 1 2 3 4 5 6 7 9 0 1 2 3 4 6 7 9 0 1 2 3 4 6 7 9 0 1 2 3 4 6 7 9 0 1 2 3 4 6 7 9 0 1 2 3 4 6 7 9 0 1 2 3 4 6 7 9 0 1 2 3 4 6 7 9 0 1 2 3 4 6 7 9 0 1 2 3 4 6 7 9 0 1 2 3 4 6 7 9 0 1 2 3 4 6 7 9 0 1 2 3 4 5 6 7 9 0 1 2 3 4 5 6 7	$ \begin{array}{c} 8 & 5 & 3 & 0 & 8 & 5 & 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 0 & 1 & 2 & 3 & 4 & 6 & 7 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	8 5 3 0 8 5 5 1 2 3 4 5 7 9 0 1 2 3 4 6 7 8 1	8 5 3 0 8 5 5 1 2 3 4 5 7 9 0 1 2 3 4 6 7 8 9 1	$ \begin{array}{c} 8 & 5 & 3 & 0 & 8 & 5 & 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 0 & 1 & 2 & 3 & 4 & 6 & 7 & 8 & 9 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	$ \begin{array}{c} 8 & 5 & 3 & 0 & 8 & 5 & 5 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 0 & 1 & 2 & 3 & 4 & 6 & 7 & 8 & 9 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	$ \begin{array}{c} 8 \ 5 \ 3 \ 0 \ 8 \ 5 \ 5 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 9 \ 0 \ 1 \ 2 \ 3 \ 4 \ 6 \ 7 \ 8 \ 9 \ 0 \\ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$											

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of *o*-Nitroanisole: 666 ppm

Lesions in Male Mice

TABLE C2

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (continued) 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 .7 7 7 7 777 2 2 2 2 2 2 2 2 22 2 2 2 Number of Days on Study 2 2 2 2 2 2 2 2 2 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8888888 8 8 8 **Carcass ID** Number Total 1 2 4 6 7 9 0 1 2 3 4 5 6 7 8 9 1 2 3 4 6 7 8 9 0 Tissues/ Tumors **Alimentary System** Esophagus 50 Gallbladder I 45 M M 50 Intestine large + + Intestine large, cecum 49 ÷ + + + + + 4 4 + 4 4 + + + + + + + + + 4 + 48 Intestine large, colon + + + + + + + + + + + + Intestine large, rectum + М + 49 + + + + + + + + + + + + + ++ + + + + ++ + 49 Intestine small + + + + + + + + + + + + + + + + + + + Intestine small, duodenum 48 + + + + + + + + + + + Carcinoma 1 Intestine small, ileum 48 Carcinoma 1 Intestine small, jejunum + 48 Carcinoma 1 х Liver + 50 + + + Hemangiosarcoma 2 Hepatoblastoma х 2 Hepatoblastoma, multiple 1 ххх х х Hepatocellular carcinoma х 11 Hepatocellular carcinoma, multiple 1 Hepatocellular adenoma хх 16 х х х хх х х Hepatocellular adenoma, multiple х Х 10 Mesentery 2 Pancreas 49 + + + Salivary glands 50 Stomach 4 + + 50 Stomach, forestomach 50 + + + + + + + + + + + + + + 4 + + + + + + Stomach, glandular 50 + + + + + + + + + + + + + + + + + + + Tooth 20 + + **Cardiovascular** System Heart 50 **Endocrine** System Adrenal gland 50 Adrenal gland, cortex 50 + + + + + + Adenoma х х 3 Capsule, adenoma Х 3 Х Adrenal gland, medulla + + М 49 + + + + + + + + Islets, pancreatic + + 49 Adenoma х 1 Parathyroid gland 49

203

,

204

TABLE C2

Individual Animal Tumor Pathology	of Mal	e I	Mie	çe i	n t	he	2-`	Yea	ar	Fe	ed	St	udy	v O	f 0-	Ni	tro	an	isc	le:	6	66	pr	m	(00)	atinued)
Number of Days on Study	5 4 9	5 8 2	7 0 9	7 0 9	7 1 0	7 1 0	7 1 0	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8												
Carcass ID Number	2 0 8 1	2 0 5 1	2 0 3 1	2 2 0 1	1 8 8 1	1 9 5 1	2 2 5 1	1 8 1 1	1 8 2 1	1 8 3 1	1 8 4 1	1 8 5 1	1 8 6 1	1 8 7 1	1 8 9 1	1 9 0 1	1 9 1 1	1 9 2 1	1 9 3 1	1 9 4 1	1 9 6 1	1 9 7 1	1 9 8 1	1 9 9 1	2 0 0 1	
Endocrine System (continued) Pituitary gland Pars distalis, adenoma Pars intermedia, adenoma Thyroid gland Follicular cell, adenoma	M +	(+	· +	- + - м	+	+	+ x +	++	+	++	+	+	+	++	+	+	++	+ +	++	+	+	+	+	+	м +	
General Body System None																										<u>.</u>
Genital System Coagulating gland Epididymis Preputial gland Prostate Seminal vesicle Testes	+ + + +	+++++++++++++++++++++++++++++++++++++++	· + · + · +	· + · + · +	+++++	+ + + +	+ + + + + +	+++++	++++++	+ + + + + +	+ + +	++++++	++++++	+++++++	++++++	+++++	+++++++	+++++	+++++++	++++++	++++++	+++++	+ + + + +	+++++++	+++++	
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+ + + + +	+ + + A +	· + · +	· + + + + + + + + + + + + + + + + + + +	+++++++	+ + + + + I	+ + + + + M	+ + + + + +	+ + + + + +	+ + + + + + +	+ + + + + +	+++++++++	+ + + + + +	++++++	++++++	+++++++	++++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	++++++	+ + + + + +	+ + + + +	+ + + + + +	++++++	+++++++	
Integumentary System Mammary gland Skin Subcutaneous tissue, hemangioma	M +	(M +	(N +	1 M	ім +	M +	м +	м + Х	м +	м +	м +	M +	м +	м +	м +	м +	M +	м +	M +	м +	м +	(M +	ім +	(M +	M +	
Musculoskeletal System Bone	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<u>.</u>
Nervous System Brain	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 665 ppm (continued) 7 7 7 7 7 7 7 7 7777 2 2 2 2 2 2 2 2 2 2 2 2 2 Number of Days on Study **Carcass ID Number** Total 1 2 4 6 7 9 0 1 2 3 4 5 6 7 8 9 1 2 3 4 6 7 8 9 0 Tissues/ Tumors Endocrine System (continued) + + + + + + + + Pituitary gland + M M + + + + + + 46 Pars distalis, adenoma 1 Pars intermedia, adenoma 1 х Thyroid gland 49 Follicular cell, adenoma хх 2 **General Body System** None **Genital System** Coagulating gland 1 Epididymis 50 Preputial gland 24 Prostate 50 + + + + + + 4 + + Seminal vesicle 50 ++ + + + ++ + + ++ + + + + + + + + + Testes + 50 + + + + + + + + Hematopoietic System Bone marrow 50 Lymph node 50 + Lymph node, mandibular 49 + + I + + + + + + + + + + ++ + + + + + Lymph node, mesenteric 49 + Spleen 50 + Thymus + M 47 + + + + + + + + + + + + + + + ++ + + + + **Integumentary System** Mammary gland Skin 50 Subcutaneous tissue, hemangioma 1 **Musculoskeletal System** Bone 50 + + + + ++ + + + ++ Nervous System Brain 50

-14 A

								_		_		_													_			
Number of Days on Study	5 4 9	5 8 2	7 0 9	7 0 9	7 1 0	7 1 0	7 1 0	7 2 8		** <u>=</u>	-																	
Carcass ID Number	2 0 8 1	2 0 5 1	2 0 3 1	2 2 0 1	1 8 8 1	1 9 5 1	2 2 5 1	1 8 1 1	1 8 2 1	1 8 3 1	1 8 4 1	1 8 5 1	1 8 6 1	1 8 7 1	1 8 9 1	1 9 0 1	1 9 1 1	1 9 2 1	1 9 3 1	1 9 4 1	1 9 6 1	1 9 7 1	1 9 8 1	1 9 9 1	2 0 0 1		<u></u>	
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, two, multiple Alveolar/bronchiolar carcinoma Nose	.+	+ X +	+ x +	+ x +	+ x +	+	+ X +	+	,+ +	+	+	+ x +	+	+	+	+	+	+	+	+	+	+	+ x	+	+ x +			
Trachea Special Senses System Harderian gland	+	+	+	+	+	. + =	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +;	+			
Adenoma Urinary System Kidney Urinary bladder	++	++	+++	+++	+++	+ +	+++	× + +	+ +	× + +	++	+++	++	++++	++	+ +	+++	++	+++	+ +	+++	+++	+++	x + +	+++	- \		-
Systemic Lesions Multiple organs Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	+	+	+	+ X	* x	+	+	+	+	+ x	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+ X	 <u></u>		-

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (continued)

| [alc | • 1 | lic | e i | n t

 | he | 2-1 | Yea
 | ar I
 | Fee | ed | Stu | ıdy | 0 | 0- | Ni | tro
 | an | iso
 | ole: | 6 | 66 | PI | | (con
 | tinued) |
|------------------|---|---|---
--
--
---|---|--

---	---	---	--
--
--|---|---|--|---|---
--|--|---
--|
| 7
2
8 | 7
2
8 | 7
2
8 | 7
2
8 | 7
2
8

 | 7
2
8 | 7
2
8 | 7
2
8
 | 7
2
8
 | 7
2
8 | 7
2
8 | 7
2
8 | 7
2
8 | 7
2
8 | 7
2
8 | 7
2
8 | 7
2
8
 | 7
2
8 | 7
2
8
 | 7
2
8 | 7
2
8 | 7
2
8 | 7
2
8 | 7
2
8 | 7
2
8
 | |
| 2
0
1
1 | 2
0
2
1 | 2
0
4
1 | 2
0
6
1 | 2
0
7
1

 | 2
0
9
1 | 2
1
0
1 | 2
1
1
1
 | 2
1
2
1
 | 2
1
3
1 | 2
1
4
1 | 2
1
5
1 | 2
1
6
1 | 2
1
7
1 | 2
1
8
1 | 2
1
9
1 | 2
2
1
1
 | 2
2
2
1 | 2
2
3
1
 | 2
2
4
1 | 2
2
6
1 | 2
2
7
1 | 2
2
8
1 | 2
2
9
1 | 2
3
0
1
 | Total
Tissues/
Tumors |
| + | +
X | + | + | +

 | + | + | +
 | +
 | +
X | + | + | + | + | + | + | +
 | + | +
 | + | + | + | + | + | +
 | 50
9 |
| +
+ | +
+ | +
+ | +
+ | +
+

 | +
+ | +++ | +
+
 | +
+
 | +
+ | +
+ | +
+ | +
+ | +
+ | X
+
+ | +
+ | +
+
 | +
+ | +
+
 | +
+ | +
+ | +
+ | +
+ | +
+ | x
+
+
 | 1
2
50
50 |
| | | | |

 | | |
 |
 | | | | | | | |
 | |
 | | | | | |
 | 4 |
| +
+ | ++ | +
+ | ++ | ++

 | +
+ | +
+ | +++
 | ++
 | +
+ | ++ | +
+ | +
+ | ++ | +
+ | +
+ | ++
 | +++ | +
+
 | ++ | ++ | +
+ | +
+ | ++ | +++
 | 50
50 |
| + | + | + | + | +

 | + | + | +
 | +
x
 | + | + | + | + | + | + | + | +
 | + | +
 | + | + | + | + | + | +
x
 | 50
6
1 |
| | all 7 2 0 1 + + + + + + + + + + + + | Talle N 7 7 2 2 8 2 0 0 1 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + | Talle Mic 7 7 7 2 2 2 8 8 2 2 2 0 0 0 1 2 4 1 1 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + | Table Mice in 7 7 7 2 2 2 8 8 8 2 2 2 2 0 0 0 0 1 2 4 6 1 1 1 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + <td< td=""><td>talle Mice in t 7 7 7 7 2 2 2 2 8 8 8 8 2 2 2 2 2 0 0 0 0 1 1 1 1 1 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +</td><td>tale Mice in the 7 7 7 7 7 2 2 2 2 2 2 8 8 8 8 8 8 2 2 2 2 2 2 2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +</td><td>Table Mice in the 2-Y 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<!--</td--><td>tale Mice in the 2-Yes 7 0 1<td>ale Mice in the 2-Year 7<</td><td>tale Mice in the 2-Year Fee 7 <</td><td>tale Mice in the 2-Year Feed 7</td><td>tale Mice in the 2-Year Feed Str 7</td><td>fale Mice in the 2-Year Feed Study 7
 7 7</td><td>fale Mice in the 2-Year Feed Study of 7</td></td></td></td<> <td>Alle Mice in the 2-Year Feed Study of or the second study of or the second study of the second</td> <td>1 ale Mice in the 2-Year Feed Study of o-Ni 7 <td< td=""><td>Xale Mice in the 2-Year Feed Study of o-Nitro 7 1 <</td><td>Alle Mice in the 2-Year Feed Study of o-Nitroan 7</td><td>Alle Mice in the 2-Year Feed Study of o-Nitroanisc 7 2</td><td>Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 7</td><td>Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 6 7 2</td><td>Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 666 7<td>Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 666 pr 7 8 8 8 8</td><td>1 ale Mice in the 2-Year Feed Study of o-Nitroanisole: 666 ppm 7
 7 <td< td=""><td>Image: All end of the in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (conditional stress of the image: Conditional stress of the image: Conditional</td></td<></td></td></td<></td> | talle Mice in t 7 7 7 7 2 2 2 2 8 8 8 8 2 2 2 2 2 0 0 0 0 1 1 1 1 1 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + | tale Mice in the 7 7 7 7 7 2 2 2 2 2 2 8 8 8 8 8 8 2 2 2 2 2 2 2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + | Table Mice in the 2-Y 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>tale Mice in the 2-Yes 7 0 1<td>ale Mice in the 2-Year 7<</td><td>tale Mice in the 2-Year Fee 7 <</td><td>tale Mice in the 2-Year Feed 7</td><td>tale Mice in the 2-Year Feed Str 7</td><td>fale Mice in the 2-Year Feed Study 7</td><td>fale Mice in the 2-Year Feed Study of 7</td></td> | tale Mice in the 2-Yes 7
 7 0 1 <td>ale Mice in the 2-Year 7<</td> <td>tale Mice in the 2-Year Fee 7 <</td> <td>tale Mice in the 2-Year Feed 7</td> <td>tale Mice in the 2-Year Feed Str 7</td> <td>fale Mice in the 2-Year Feed Study 7</td> <td>fale Mice in the 2-Year Feed Study of 7</td> | ale Mice in the 2-Year 7< | tale Mice in the 2-Year Fee 7 < | tale Mice in the 2-Year Feed 7 | tale Mice in the 2-Year Feed Str 7
7 7 | fale Mice in the 2-Year Feed Study 7 | fale Mice in the 2-Year Feed Study of 7 | Alle Mice in the 2-Year Feed Study of or the second study of or the second study of the second | 1 ale Mice in the 2-Year Feed Study of o-Ni 7 <td< td=""><td>Xale Mice in the 2-Year Feed Study of o-Nitro 7 1 <</td><td>Alle Mice in the 2-Year Feed Study of o-Nitroan 7</td><td>Alle Mice in the 2-Year Feed Study of o-Nitroanisc 7 2</td><td>Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 7</td><td>Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 6 7 2</td><td>Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 666 7<td>Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 666 pr 7
 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8</td><td>1 ale Mice in the 2-Year Feed Study of o-Nitroanisole: 666 ppm 7 <td< td=""><td>Image: All end of the in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (conditional stress of the image: Conditional stress of the image: Conditional</td></td<></td></td></td<> | Xale Mice in the 2-Year Feed Study of o-Nitro 7 1 < | Alle Mice in the 2-Year Feed Study of o-Nitroan 7 | Alle Mice in the 2-Year Feed Study of o-Nitroanisc 7 2 | Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 7 | Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 6 7 2 | Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 666 7 <td>Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 666 pr 7 8 8 8 8</td> <td>1 ale Mice in the 2-Year Feed Study of o-Nitroanisole: 666 ppm 7 <td< td=""><td>Image: All end of the in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (conditional stress of the image: Conditional stress of the image: Conditional</td></td<></td> | Iale Mice in the 2-Year Feed Study of o-Nitroanisole: 666 pr 7
 7 8 8 8 8 | 1 ale Mice in the 2-Year Feed Study of o-Nitroanisole: 666 ppm 7 <td< td=""><td>Image: All end of the in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (conditional stress of the image: Conditional stress of the image: Conditional</td></td<> | Image: All end of the in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (conditional stress of the image: Conditional |

B/																			1000					PP			
Number of Days on Study	6 1 7	6 2 6	6 7 2	7 0 7	7 0 8	7 0 8	7 0 8	7 0 9	7 0 9	7 1 1	7 2 2	7 3 0															
Carcass ID Number	1 2 7 1	1 5 2 1	1 6 4 1	1 4 1 1	1 2 5 1	1 3 5 1	1 6 3 1	1 2 8 1	1 3 0 1	1 6 9 1	1 6 7 1	1 2 9 1	1 3 1 1	1 3 2 1	1 3 3 1	1 3 4 1	1 3 6 1	1 3 7 1	1 3 8 1	1 3 9 1	1 4 0 1	1 4 2 1	1 4 3 1	1 4 4 1	1 4 5 1		
Alimentary System																											 ·
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Gallbladder	+	+	A	M	I	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, cecum	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, colon	+	+	+	Α	+	+	+	+	I	+	+	+	+	+	М	+	+	+	+	+	+	Μ	[+	+	+		
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, duodenum	+	+	Α	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	1	
Intestine small, ileum	+	+	Α	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+		
Intestine small, jejunum	+	+	Α	M	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Hemangiosarcoma	v	v			v			v				λ	v	v							v			v	v		
Henatoblastoma multiple	л	^			Λ	x	x	^					Λ	Λ							^			^	Λ	•	
Henatocellular carcinoma		x	x			Δ	~		x				x									x					
Hepatocellular carcinoma, multiple		-	~																			-					
Hepatocellular adenoma	х									х		х	х		х	х		х		х							
Hepatocellular adenoma, multiple				Х	х	х	х	х						х			х		х		Х	Х		Х	х		
Histiocytic sarcoma											х																
Mesentery	+	+																							+		
Hepatoblastoma, metastatic, liver	X	х																									
Pancreas	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomacn, torestomacn	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Squamous cen papinoma		-		-	т		^	+	Т	-	Т	Ŧ	Т	-	Т	-	.		-	-		ъ	-	-	-		
Tooth	т	т	л	т	Ŧ	+	т	Ŧ	Ŧ	т	т	т	+	Ŧ	т	т	+	+	т	т	т	т	т	т	т		
Cardiovascular System																											
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Histiocytic sarcoma											х																
Endocrine System																											
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	\mathbf{x}^{+}	+	+	+	+	+	+	+		
Adenoma						л.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, medulla	+	+	+	+	+	т		•	•		•		•									•	•				
Adrenal gland, medulla Islets, pancreatic	+ +	+ +	+ A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, medulla Islets, pancreatic Parathyroid gland	+ + +	+ + +	+ A +	+ + +	+ + +	+ +	++	+ +	+ +	+ +	+ +	+++	++	+ +	++	++	++	++	+ +	+++	++	+ +	++	+ +	+ +		
Adrenal gland, medulla Islets, pancreatic Parathyroid gland Pituitary gland	+ + +	++++	+ A + + ·	+ + + +	+ + + +	++++	+ + +	+ + +	+ + +	· + + + ·	+ + +	- + + ·	++++	++++	+ + +	+ + +	+ + +	+ + M	+ + +	+++	+ + +	+++	+++	+++	++++		

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 2,000 ppm

208

Individual Animal Tumor Pathology	of Mal	eℕ	lic	e ii	n tl	he	2-7	Yea	ar i	Fee	ed	Stı	ıdy	01	0-	Ni	tro	8 8	iso	le:	2	,00	0 I	ppi	m (c	ontinued)
Number of Days on Study	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	2	2	2	2	2	2	2	2	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Carcass ID Number	4	4	4	5	5	5	5	6	6	6	6	6	6	7	2	2	2	2	2	4	5	5	5	5	5	Total
	6	7	8	6	7	8	9	0	1	2	5	6	8	0	1	2	3	4	6	9	0	1	3	4	5	Tissues/
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumors
Alimentary System			<u></u>								<u> </u>											-				
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Gallbladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, colon	+	M	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Intestine large, rectum	, 	+		÷	+	+	.+	+	+	÷.	+	÷.	+	+	+	+	+	+	+	+	+	÷	÷	+	Ļ	50
Intestine small	, 	÷	ــــــــــــــــــــــــــــــــــــ				1	÷	, 				- -	÷	÷			÷	, 		÷		Ĺ		т Т	40
Intestine small duodenum	т 	۰ ۲	т Т	т –	т —	т —	т Д	т Т	т 	т -	- ۳ ــــــــــــــــــــــــــــــــــــ	т 1	т "L	т Т	т Т	т. Т	т –	т 1	т "	т -	т -	т –	т -	т 1	т "L	77 /0
Intestine small, uucucitum		т _	т 	т ⊥	τ _	т 	т т	т -	т 	т 	т 	т _	т	T L	T L	т L	T L	т 	т 	T L	т ⊥	T	т 	т 	T	47
Intestine small, incum				т ,	т -			т ,	т	т 1	Ţ		т -	T	T	T	- -	т ,	Ţ.		Ť		Ţ			47
Liver			+	Ţ	+	+	+	-	+	Ţ	+	+	Ť	+	+	Ţ	+	.	+	+	+	+	+	+	+	4/
Liver	+	Ŧ	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma																										1
Hepatoblastoma					х							х		х	х								Х			14
Hepatoblastoma, multiple						Х																				3
Hepatocellular carcinoma				Х							Х	Х			Х								Х			10
Hepatocellular carcinoma, multiple																				х						1
Hepatocellular adenoma	X		Х				Х				Х		Х					Х					Х			15
Hepatocellular adenoma, multiple		Х		Х	Х	Х		Х	Х			Х				Х	Х			х	Х	Х		Х	х	26
Histiocytic sarcoma																										1
Mesentery																			+							4
Hepatoblastoma, metastatic, liver																										2
Pancreas	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Squamous cell papilloma											-			x				-			-	•		•	•	2
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Tooth	+	•	•	+	•	+	•	·	•	•	•	•	•	+	•	•	+	•		+	+	•	+	•	•	12
Condition of the Condition											_															
Cardiovascular System																										
Heart Histiocytic sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
				-							_								_							
Endocrine System		4	4	-				_																		50
Adrenal dand cortex	+	- T	-	-	- T	+	+	-	+	- T	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma	+	Ŧ	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Additional aland madulia										<u>х</u>																2
Aurenar giano, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
isieis, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	49
rarainyroid giand	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
rituitary gland	+	+	+	+	+	+	+	+	+	+	-		+	+	+	-+-	+	-+	+	+	+	+	-+	-+	+	49
						-		•		•	•		•	•		•	•	•		•	•		•		•	

Individual Animal Tumor Patholog	gy of N	Mal	e N	Aic	e i	n t	he	2-	Yea	ar	Fee	ed	Stı	ıdy	o of	i o-	Ni	tro	an	isc	le	: 2	2,0()0	pp	m	(00)	ntinu	ied)	
Number of Days on Study		6 1 7	6 2 6	6 7 2	7 0 7	7 0 8	7 0 8	7 0 8	7 0 9	7 0 9	7 1 1	7 2 2	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0													
Carcass ID Number		1 2 7 1	1 5 2 1	1 6 4 1	1 4 1 1	1 2 5 1	1 3 5 1	1 6 3 1	1 2 8 1	1 3 0 1	. 1 6 9 1	1 6 7 1	1 2 9 1	1 3 1 1	1 3 2 1	1 3 3 1	1 3 4 1	1 3 6 1	1 3 7 1	1 3 8 1	1 3 9 1	1 4 0 1	1 4 2 1	1 4 3 1	1 4 4 1	1 4 5 1			,	
General Body System Tissue NOS Histiocytic sarcoma												+ X																		
Genital System Epididymis Penis Fibrous histiocytoma Preputial gland Prostate Seminal vesicle Testes Interstitial cell, adenoma	- - -	++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+++++++	+++++	+++++	+ + + +	+ +++	++++++	+ + + +	++++	+ + + +	++++	++++	+++++	++++	+ + + + + +	+++++++	+ + + +	+++++++++++++++++++++++++++++++++++++++	+++++	· +	+++++++++++++++++++++++++++++++++++++++	· · · ·			
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus Histiocytic sarcoma		+ + + + + +	+ + + + + +	+ + + + + +	+ + + M + +	+ + + + + M + M	+ + + + + + + + + + + + + + + + + + +	+++++++	+ + + M + M	+++++++++++++++++++++++++++++++++++++++	+++++	+ + + + + + X	+++++	+ + + + +	+++++	+ + + + +	+ + + + +	+ + + + +	+ + + M + +	++++++	+ + + + +	+++++++++++++++++++++++++++++++++++++++	++++++	++++++	+ + + + + M	+ + + + +	-			
Integumentary System Mammary gland Skin		M +	і М +	ім +	ім +	ім +	ім +	М +	м +	M +	м +	м +	М +	М +	М +	М +	м +	М +	M +	М +	М +	[M. +	(M +		(M	(N +				
Musculoskeletal System Bone Skeletal muscle Hepatoblastoma, metastatic, liver	<u> </u>	+ + X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	• •	-	-		
Nervous System Brain		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•			
								_															,		r ir -					
---	---------------------------------	------------------	---	---	------------------	------------------	------------------	---	------------------	------------------	---	------------------	---------------------------------------	---	------------------	------------------	---	------------------	---------------------	------------------------	---	------------------	------------------	---	---	-------------	-------------------------	---		
Number of Days on Study	7 3 0	7 3 (7 ⁶ 3 : 0 (7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2			
Carcass ID Number	1 4 6 1	1 4 7 1		1 4 : 8 : 1	1 5 6 1	1 5 7 1	1 5 8 1	1 5 9 1	1 6 0 1	1 6 1 1	1 6 2 1	1 6 5 1	1 6 6 1	1 6 8 1	1 7 0 1	1 2 1 1	1 2 2 1	1 2 3 1	1 2 4 1	1 2 6 1	1 4 9 1	1 5 0 1	1 5 1 1	1 5 3 1	1 5 4 1	1 5 1	L 5 5 1	Total Tissues/ Tumors		
General Body System Tissue NOS Histiocytic sarcoma	<u></u>						_																					1 1		
Genital System Epididymis Penis Fibrous histiocytoma Preputial gland Prostate Seminal vesicle Testes Interstitial cell, adenoma	+ + + +		+ + +	+ + + + +	++++	+ + + +	++++	+++++	+ ++++	++++++	+ +++	+ + + + +	++++++	+ + + +	++++	+ ++++	+++++	+++++	+ ++++	+ + X + + + +	+ ++++ X	+ + + + +	+ + + + +	++++++	+ + + + + + + + + + + + + + + + + + + +	· ·	+ + + +	50 1 1 25 50 50 50 1		
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus Histiocytic sarcoma	+ + + + + + +	+ · · · · · · ·	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+ + + + +	++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + M +	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+ + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + M + + + +	+ + + + + + M	+ + + + + + + + + + + + + + + + + + + +	+++++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	· + · + · +		 + + + + + + +	50 50 49 46 49 45 1		
Integumentary System Mammary gland Skin	N +	// I	M.∶ +	M +	M +	м +	м +	м +	і м +	ГМ +	: M +	: м +	ім +	ім +	ім +	(M +	м +	M +	M +	i M +	M +	ім +	(M +	(M +	. • •	41	 м +	50		
Musculoskeletal System Bone Skeletal muscle Hepatoblastoma, metastatic, liver	4	+ ·	÷	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	· +		+	50 1 1		
Nervous System Brain		⊦ ·	ŧ	÷	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	· +		+	50		

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 2,000 ppm (continued)

		_	_	_	_	_				_	_		_		-	_	-			_	_	_	-		_			_	
Number of Days on Study	6 1 7	6 2 6	6 7 2	7 0 7	7 0 8	7 0 8	7 0 8	7 0 9	7 0 9	7 1 1	7 2 2	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	, , ,										
Carcass ID Number	1 2 7 1	1 5 2 1	1 6 4 1	1 4 1 1	1 2 5 1	1 3 5 1	1 6 3 1	1 2 8 1	1 3 0 1	1 6 9 1	1 6 7 1	1 2 9 1	1 3 1 1	1 3 2 1	1 3 3 1	1 3 4 1	1 3 6 1	1 3 7 1	1 3 8 1	1 3 9 1	1 4 0 1	1 4 2 1	1 4 3 1	1 4 4 1	1 4 5 1		.		
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, two, multiple Alveolar/bronchiolar adenoma, three,	* x	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	÷	+	- +		 F			
multiple Hepatoblastoma, metastatic, liver Histiocytic sarcoma Nose Trachea	x + +	++	+ +	· + · +	+ +	+ +	++	+ +	+ +	+ +	X + +	+ +	+ +	+ +	++	+ +	+ +	+ +	+++++++++++++++++++++++++++++++++++++++	+	+ +	+	++	- + - +	• +	+		×	
Special Senses System Harderian gland Adenoma																			+ x								2		
Urinary System Kidney Renal tubule, adenoma Ureter Urinary bladder	+ +	+	+	+	++	++	++	+	+	+	+ x +	++	+	++	++	+	·+	+	++	++	++	+	+	• +	- +	 - F	5		
Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	+	÷	+	+	+	+	+	+	+ x	+	+ x x	+	+	+	+	· +	+	÷	+	+	+	+	+	• +	- +				

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 2,000 ppm (continued)

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 2,000 ppm (continued) Number of Days on Study 1 1 1 **Carcass ID Number** 4 4 4 55 5 5 6 6 6 6 6 6 7 2 2 2 2 2 4 5 5 5 5 5 Total 6786789012568012346901345 Tissues/ Tumors **Respiratory System** Lung 50 + + +Alveolar/bronchiolar adenoma х 2 Alveolar/bronchiolar adenoma, two, multiple 1 Alveolar/bronchiolar adenoma, three, multiple х 1 Hepatoblastoma, metastatic, liver 1 Histiocytic sarcoma 1 Nose 50 + + + + + + + + + + + + + + + + Trachea + + + + 4 + + + + + + + + 50 **Special Senses System** Harderian gland 2 + х Adenoma 2 **Urinary System** Kidney 50 + ++ Renal tubule, adenoma 1 Ureter 1 Urinary bladder 49 Μ + + Systemic Lesions Multiple organs 50 + Histiocytic sarcoma 1 Lymphoma malignant mixed х х 3 Lymphoma malignant undifferentiated cell type 1

Individual Animal Tumor Pathology	of Mal	e N	/lic	e i	n t	he	2-	Yea	ar	Fe	ed	St	udy	y o	f o-	Ni	tro	an	isc	le:	6	,00	Ю	pp	m		•	
Number of Days on Study	0 9 8	4 6 6	5 7 6	6 2 7	6 7 3	7 0 8	7 0 8	7 0 9	7 1 0	7 1 1	7 3 1	7 3																
Carcass ID Number	0 8 7 1	1 0 8 1	0 9 5 1	0 8 1 1	0 9 1 1	0 6 2 1	0 6 3 1	0 6 5 1	0 7 1 1	0 9 8 1	0 6 1 1	0 6 4 1	0 6 6 1	0 6 7 1	0 6 8 1	0 6 9 1	0 7 0 1	0 7 2 1	0 7 3 1	0 7 4 1	0 7 5 1	0 7 6 1	0 7 7 1	0 7 8 1	0 7 9 1) 7)		
Alimentary System																										÷		
Esophagus	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. 4		+		
Gallbladder	+	+	+	• +	+	+	+	+	+	Μ	[+	+	+	+	+	+	+	+	+	+	+	+	+	· +		+		
Intestine large	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. 4		۲		
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		ł		
Intestine large, colon	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		t		
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		۲		
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			ł		
Intestine small, duodenum	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+		
Intestine small, ileum	. +	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	• +		ŧ.		
Intestine small, jejunum	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- 4		ł		
Carcinoma																							х					
Liver	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		÷		
Hepatoblastoma								х	х			х	x			х					х							
Hepatoblastoma, multiple																												
Hepatocellular carcinoma									х	х																		
Hepatocellular carcinoma, multiple																												
Hepatocellular adenoma					X			х	Х		х			Х				х				Х	Х					
Hepatocellular adenoma, multiple							Х			х			Х			х	х				Х			X	C			
Pancreas	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+ +	ł		
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+		
Stomach	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		ŧ.		
Stomach, forestomach	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+ +	ŧ.		
Squamous cell papilloma																												
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +		+ .		
Tooth									+							+												
Cardiovascular System						_																						
Heart	+	+	+	• +	+	+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+		
Endocrine System								,																			· ·	
Adrenal gland	+	+	+	• +	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	• +	+ +	+		
Adrenal gland, cortex	+	+	+	• +	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	• • •		ł		
Adrenal gland, medulla	+	+	+	• +	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	• +		ł		
Pheochromocytoma malignant		Х																										
Islets, pancreatic	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+		
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		ł		
Pituitary gland	M	(+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+ +	ł		
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		ł		
General Body System None																·												

Table C2

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 6,000 ppm (continued) 7 7 7 Number of Days on Study 3 2 2 2 2 2 2 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 Carcass ID Number 8 8 8 8 8 0 0 0 0 0 0 1 8 8 8 9 9 9 9 9 9 9 0 0 0 Total Tissues/ 0 2 34 5 3 4 5 6 7 9 0 6 8 9 0 2 3 4 6 79 0 1 2 Tumors Alimentary System Esophagus 50 + Gallbladder I + 46 Intestine large 50 4 4 Intestine large, cecum 49 + + M + + + + + + + + + + + + + 4 Intestine large, colon 49 M Intestine large, rectum 50 + + Intestine small 50 + Intestine small, duodenum 50 + 4 1 Intestine small, ileum + 49 + + + Intestine small, jejunum 50 Carcinoma 1 Liver 50 + + + + + + + + + + + Hepatoblastoma х х 8 Hepatoblastoma, multiple х 1 х Hepatocellular carcinoma х х х 6 Hepatocellular carcinoma, multiple 1 X Hepatocellular adenoma х хх х х х х х 16 Hepatocellular adenoma, multiple Х X XX X х 13 Pancreas + + 50 + + + 4 + Salivary glands 4 + + 50 Stomach + 50 + + + + Stomach, forestomach 50 + + 4 Squamous cell papilloma х 1 Stomach, glandular + 50 + Tooth 3 + **Cardiovascular System** Heart 50 + + + + + + + **Endocrine System** Adrenal gland 48 4 Adrenal gland, cortex 48 Adrenal gland, medulla 48 Pheochromocytoma malignant 1 Islets, pancreatic + + + 50 + + + + + + + + + + + + + Parathyroid gland + + + + + + + + + + М + + + + + + М + + 48 + Pituitary gland + + M + + + + + + + + + + + + + + + + 48 Thyroid gland + + 50 + + +

General Body System

None

216

TABLE C2

Individual Animal Tumor Pathology of	Mal	e N	/lic	e i	n t	he	2-`	Yea	ar	Fe	ed	Sti	udy	y o	f <i>o</i> -	Ni	tro	an	iso	le:	6	,00	0	ppr	n (6	contin	ued)
Number of Days on Study	0 9 8	4 6 6	5 7 6	6 2 7	6 7 3	7 0 8	7 0 8	7 0 9	7 1 0	7 1 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1		
Carcass ID Number	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	7	8	5	1	1	2	3	5	1	8	1	4	6	7	8	9	ó	2	3	4	5	6	7	8	ģ	,	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
Genital System																						·					
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Preputial gland								+		+	+												+				
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+		
Hemangiosarcoma Interstitial cell, adenoma																											
Hematopoietic System					_																						
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷		
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node, mandibular	+	+	+	+	+	+	+	+.	+	+	+	+	+	· +	+	+	+	+	+	+	+	+	+	+	+		
Lymph node, mesenteric	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Histiocytic sarcoma																											
Mediastinal, pancreatic, lymphoma																											
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	Μ	+	+	+	+	+		
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	М	+		
Integumentary System													•														
Mammary gland	М	M	Μ	Μ	М	М	Μ	Μ	Μ	+	Μ	Μ	Μ	Μ	М	Μ	Μ	Μ	Μ	Μ	Μ	М	Μ	Μ	Μ		
Skin	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Subcutaneous tissue, hemangiosarcoma				х																						· •	
								•											_								
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Nervous System		<u> </u>												_													
Brain	+	+	+	+	+	+	+	+	+,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Respiratory System									• .				•					_				_					
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	
Alveolar/bronchiolar adenoma		·	•	•	•		•	-	•	•			•	x	-	•	•								·		
Alveolar/bronchiolar carcinoma														2													
Pheochromocytoma malignant,																											
metastatic, adrenal gland		х																							•		
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Trachea	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		-
										,																	

TABLE C2 Individual Animal Tumor Pathology of	' Malo	e R	/lic	e i	n tl	he	2-3	Yea	or l	Fee	ed 1	Stu	ıdy	ol	0-	Ni	tro	an	iso	le:	6	,00	00	ppi	m (c	ontinued)
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3 1	3 2																								
	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	
Carcass ID Number	8 0 1	8 2 1	8 3 1	8 4 1	8 5 1	0 3 1	0 4 1	0 5 1	0 6 1	0 7 1	0 9 1	1 0 1	8 6 1	8 8 1	8 9 1	9 0 1	9 2 1	9 3 1	9 4 1	9 6 1	9 7 1	9 9 1	0 0 1	0 1 1	0 2 1	Total Tissues/ Tumors
Genital System																										
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Preputial gland					+				+			+			+								+	+		10
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	49
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma Interstitial cell, adenoma						-			÷	x		-	·				÷			x		÷				1 1
Hematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node, mandibular	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Histiocytic sarcoma Mediastinal, pancreatic, lymphoma														х												1
Spleen Thymus	+ +	+ +	+	++	+ +	48 48																				
Integumentary System	<u> </u>									_																
Mammary gland	м	I M	I M	I M	M	М	М	М	М	М	М	м	М	М	М	м	М	М	М	М	М	M	M	M	M	1
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Subcutaneous tissue, hemangiosarcoma	•			·	•	•	·	•	·	•	•	•	•	•	•	•	•	•		•	•	•			•	1
Musculoskeletal System Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Narvous System																								_		
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Respiratory System			_							_																<u></u>
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma	•	,	,	X	-				-			X					•				•			-	•	3
Alveolar/bronchiolar carcinoma											х															1
Pheochromocytoma malignant.																										•
metastatic, adrenal gland																										1
Nose	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	50
Trachea		4	4	+	1	_	Ļ		÷									:			т —	r 1	, r 1	ľ	T	50
						_	_	_	_	-	-	-	-	-	-	-	-	-	+	_	_	_	_	-	-	311

Individual Animal Tumor Pathology of	f Mal	e I	Mie	ce i	n t	he	2-`	Yea	ar	Fe	eđ	St	udy	7 O İ	f <i>o</i> -	Ni	tro	an	isc)le:	6	,00	10]	ppi	n (co	ntin	ued)
Number of Days on Study	0 9 8	4 6 6	5 7 6	6 2 7	6 7 3	7 0 8	7 0 8	7 0 9	7 1 0	7 1 1	7 3 1		1														
Carcass ID Number	0 8 7 1	1 0 8 1	0 9 5 1	0 8 1 1	0 9 1 1	0 6 2 1	0 6 3 1	0 6 5 1	0 7 1 1	0 9 8 1	0 6 1 1	0 6 4 1	0 6 6 1	0 6 7 1	0 6 8 1	0 6 9 1	0 7 0 1	0 7 2 1	0 7 3 1	0 7 4 1	0 7 5 1	0 7 6 1	0 7 7 1	0 7 8 1	0 7 9 1	<u>, , , , , , , , , , , , , , , , , , , </u>	·
Special Senses System Harderian gland Adenoma								+ x	+ x																		
Urinary System Kidney Urinary bladder	+	· +	+ +	- +	+	+ +	+	+	+ +	+ +	.+ +	+ +	+ ,+	+ +	++	+ +	+ +	+ +	+ ,+ ,,		х€х <u>р</u> х						
Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	+	• +	+ x	- + :	+ x	+ x	+ x	+	+ x	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+		

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of o-Nitroanisole: 6,000 ppm (continued) Number of Days on Study **Carcass ID Number** 8 8 8 8 8 0 0 0 0 0 1 8 8 8 9 9 9 9 9 9 9 0 0 0 Total 0 2 3 4 5 3 4 5 6 7 9 0 6 8 9 0 2 3 4 6 7 9 0 1 2 Tissues/ Tumors Special Senses System Harderian gland + X 3 Adenoma 3 **Urinary System** Kidney 50 + Urinary bladder 50 + + + + + + Systemic Lesions Multiple organs + ++ + 50 Histiocytic sarcoma Х 1 Lymphoma malignant lymphocytic х 1 Lymphoma malignant mixed Х 2 Lymphoma malignant undifferentiated х cell type 5

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Feed Study of o-Nitroanisole

	0 ррт	666 ppm	2,000 ppm	6,000 ppm
Adrenal Cortex: Adenoma	· · · · · · · · · · · · · · · · · · ·			
Overall rates ^a	7/50 (14%)	6/50 (12%)	2/50 (4%)	0/48 (0%)
Adjusted rates ^b	19.3%	13.5%	5.1%	0.0%
Terminal rates ^C	6/35 (17%)	5/43 (12%)	2/39 (5%)	0/39 (0%)
First incidence (davs)	715	709	728 (T)	_e
(ife table tests ^d	P = 0.004 N	P=0 359N	P=0.060N	P = 0.007 N
ogistic regression tests	P-0.0041	P-0.453N	P = 0.067N	P=0.009N
Cochran Armitage testd	P=0.005N	1 -0.45514	1 -0.00714	1 -0.00010
Eishor groat test	1 = 0.00511	P-0 500N	P-0.080N	P-0.007N
visiter elact test		1 -0.30014	1-0.0001	1 -0.00714
Harderian Gland: Adenoma				
Overall rates	9/50 (18%)	4/50 (8%)	2/50 (4%)	3/50 (6%)
Adjusted rates	22.8%	9.3%	5.1%	7.0%
Ferminal rates	6/35 (17%)	4/43 (9%)	2/39 (5%)	1/40 (3%)
First incidence (days)	709 ` ´	728 (T)	728 (Ť)	709
Life table tests	P=0.093N	P=0.066N	P=0.023N	P=0.053N
Logistic regression tests	P=0.103N	P=0.106N	P=0.026N	P=0.067N
Cochran-Armitage test	P=0.095N			
Fisher exact test		P=0.117N	P=0.026N	P=0.061N
Harderian Gland: Adenoma or Ca	arcinoma		1 · · · ·	
Querall rates	10/50 (20%)	4/50 (8%)	2/50 (4%)	3/50 (6%)
Adjusted rates	25 4%	93%	51%	7.0%
Cerminal rates	7/35 (20%)	4/43 (9%)	2/39 (5%)	1/40 (3%)
First incidence (daws)	709	728 (T)	728 (T)	709
ife table tests	P-0.065N	P = 0.038N	P=0.012N	P = 0.031 N
agistic regression tests	P=0.072N	P=0.065N	P=0.014N	P = 0.040N
Cookran Armitage test	P-0.067N	1-0.00511	1 -0.01 111	1 0.0.011
Fisher great test	1 = 0.00714	P-0.074N	P = 0.014N	P=0.036N
Tistier exact test		1 -0.07414	1-0.01414	1 -0.05011
Liver: Hepatoblastoma				
Overall rates	0/50 (0%)	3/50 (6%)	17/50 (34%)	9/50 (18%)
Adjusted rates	0.0%	6.4%	37.1%	21.3%
Terminal rates	0/35 (0%)	1/43 (2%)	11/39 (28%)	7/40 (18%)
First incidence (days)	-	582	617	709
Life table tests	P=0.019	P=0.143	P<0.001	P=0.005
Logistic regression tests	P=0.016	P=0.093	P<0.001	P=0.002
Cochran-Armitage test	P=0.015			
Fisher exact test		P=0.121	P<0.001	P=0.001
Liver: Henatocellular Adenoma				
Overall rates	14/50 (28%)	26/50 (52%)	41/50 (82%)	29/50 (58%)
Adjusted roten	26 20%	56.3%	89.0%	64 4%
Torminal rates	50.570 11/25 (31%)	23/43 (53%)	34/39 (87%)	24/40 (60%)
Fint insidence (down)	700	549	617	673
Life table tests	D-00/2	P = 0.074	P<0.001	P=0.012
Late latte regression tests	P=0.043	P = 0.014	P<0.001	P=0.001
Logistic regression tests	F 0.012 B 0.022	1	1 -0.001	1 -0.001
Cochran-Armitage lest	r ⇒0.022	P-0.012	P < 0.001	P=0.002
risner exact test		r=0.012	r < 0.001	1 -0.002

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	666 ppm	2,000 ppm	6,000 ppm
Liver: Hepatocellular Carcinoma				
Overall rates	7/50 (14%)	12/50 (24%)	11/50 (22%)	7/50 (14%)
Adjusted rates	16.3%	25.9%	25.5%	16.7%
Terminal rates	3/35 (9%)	9/43 (21%)	8/39 (21%)	5/40 (13%)
First incidence (days)	647	709	676	710
Life table tests	P=0 307N	P = 0.269	P=0.271	P=0 558N
Logistic regression tests	P = 0.326N	P=0.154	P = 0.194	P=0.602
Cochran-Armitage test	P=0.315N	1-0.154	1 =0.194	1-0.002
Fisher evact test	1 -0.51510	P-0.154	P-0.218	P-0.613N
		1-0.134	1 -0.210	1 =0.01514
Liver: Hepatoblastoma or Hepata	ocellular Carcinoma			
Overall rates	7/50 (14%)	14/50 (28%)	23/50 (46%)	15/50 (30%)
Adjusted rates	16.3%	29.1%	48.4%	34.9%
Terminal rates	3/35 (9%)	9/43 (21%)	15/39 (38%)	12/40 (30%)
First incidence (days)	647	582	617	709
Life table tests	P=0.183	P=0.152	P=0.003	P=0.082
Logistic regression tests	P=0.148	P=0.063	P<0.001	P=0.040
Cochran-Armitage test	P=0.151			
Fisher exact test		P=0.070	P<0.001	P=0.045
Tiven Wenstorellular Adenome	Concinomo			
Civel: mepatocential Adenoma U		00/00 ///00		
Adjusted rates	21/30 (42%)	32/30 (64%)	45/50 (90%)	32/30 (64%)
Terminal rates	49.070	03.3%	91.8% 25/20 (00%)	/1.1%
First incidence (down)	14/33 (40%)	20/43 (60%)	33/39 (90%) 617	27/40 (08%)
Life table teste	047 B=0.196	349 B-0160	01 / B <0.001	0/3 D 0.000
Locietia regression tests	F = 0.180	F = 0.169	P < 0.001	P = 0.092
Coshme Armiteee test	F = 0.008	r=0.024	P<0.001	P=0.014
Eisher great test	P=0.105	B-0.022	B =0.001	D 0.000
risher exact test		P≡0.022	P<0.001	P=0.022
Liver: Hepatocellular Adenoma,	Carcinoma, or Hepatoblasto	ma		
Overall rates	21/50 (42%)	33/50 (66%)	46/50 (92%)	34/50 (68%)
Adjusted rates	49.0%	66.0%	93.8%	75.5%
Terminal rates	14/35 (40%)	26/43 (60%)	36/39 (92%)	29/40 (73%)
First incidence (days)	647	549	617	673
Life table tests	P=0.112	P=0.132	P<0.001	P=0.047
Logistic regression tests	P=0.030	P=0.013	P<0.001	P = 0.005
Cochran-Armitage test	P=0.049			
Fisher exact test		P=0.013	P<0.001	P=0.008
Tung Alugalar/Anarchiclen Adar				
Lung: Alveolar/Dronchiolar Aden		10/60 (000)	100 1000	A 19 A 17
Overall rates	5/50 (10%)	10/50 (20%)	4/50 (8%)	3/50 (6%)
Aujusted rates	14.3%	21.0%	9.0%	7.5%
rerminal rates	5/35 (14%)	6/43 (14%)	2/39 (5%)	3/40 (8%)
First incidence (days)	728 (1)	582	617	728 (T)
Lite table tests	P = 0.101N	P=0.227	P=0.447N	P=0.284N
Logistic regression tests	P=0.099N	P=0.127	P=0.512N	P = 0.284N
Cocnran-Armitage test	P=0.103N	a		
risner exact test		P=0.131	P = 0.500N	P=0.357N

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ррт	666 ррт	2,000 ppm	6,000 ppm
ung Alveolor/hronchiolor Adore	ma or Carsinoma	······································		
Lung: Alveolar/bronchiolar Adeno	ma or Carcinoma	12/50 (24%)	A/50 (90%)	A/50 (90%)
A diversed verses	0/30 (1270)	1430 (2470)	4/30 (8%)	4/30 (8%)
Adjusted rates	10.1% 505 (1401)	24.070	9.0 <i>70</i>	10.0%
lerminal rates	5/35 (14%)	7/43 (10%)	439 (5%) 617	4/40 (10%) 729 (TD
ifs table tests	032 B=0.007N	JOZ B_0 196	017 B_0 225N	740 (1) B=0.200N
Life table tests	P=0.09/N	P = 0.180	$\mathbf{P} = 0.323\mathbf{N}$ $\mathbf{P} = 0.400\mathbf{N}$	P = 0.299N
Cogistic regression tests	P = 0.091N	r=0.089	F=0.4001	r=0.30314
Conran-Armitage test	P=0.0981	B- 0.00/	B-0 270N	B_0.270N
isher exact test		P=0.090	P=0.3/0N	r=0.3/0N
Small Intestine: Adenoma or Caro	cinoma		· ,	
Overall rates	0/50 (0%)	3/50 (6%)	0/50 (0%)	1/50 (2%)
Adjusted rates	0.0%	6.6%	0.0%	2.5%
Cerminal rates	0/35 (0%)	2/43 (5%)	0/39 (0%)	1/40 (3%)
First incidence (days)	_	549	·	728 (T)
life table tests	P=0.605N	P=0.150	_	P=0.527
ogistic regression tests	P=0.557N	P=0.090	-	P=0.527
Cochran-Armitage test	P=0.614N			
risher exact test		P=0.121	-	P=0.500
Stomach (Forestomach): Sauamor	is Cell Papilloma			
Overall rates	3/50 (6%)	0/50 (0%)	2/50 (4%)	1/50 (2%)
Adjusted rates	8.0%	0.0%	4.7%	2.5%
Cerminal rates	2/35 (6%)	0/43 (0%)	1/39 (3%)	1/40 (3%)
First incidence (days)	710	-	708	728 (T)
ife table tests	P = 0.422N	P = 0.094 N	P = 0.471N	P = 0.270N
ogistic regression tests	P = 0.420N	P = 0.117N	P=0.496N	P = 0.310N
Cochran_Armitage test	P = 0.429N			
Fisher exact test	1 -0.42914	P=0.121N	P=0.500N	P=0.309N
			1 0.5001	
All Organs: Hemangiosarcoma				
Overall rates	3/50 (6%)	2/50 (4%)	1/50 (2%)	2/50 (4%)
Adjusted rates	8.3%	4.3%	2.6%	4.6%
Ferminal rates	2/35 (6%)	1/43 (2%)	1/39 (3%)	1/40 (3%)
First incidence (days)	722	582	728 (T)	627
Life table tests	P=0.491N	P=0.431N	P=0.272N	P=0.461N
Logistic regression tests	P=0.452N	P = 0.525N	P=0.285N	P=0.497N
Cochran-Armitage test	P=0.500N			
Fisher exact test		P=0.500N	P=0.309N	P=0.500N
All Organs: Hemangioma or Hem	angiosarcoma			
Overall rates	4/50 (8%)	3/50 (6%)	1/50 (2%)	2/50 (4%)
Adjusted rates	10.3%	6.6%	2.6%	4.6%
Terminal rates	2/35 (6%)	2/43 (5%)	1/39 (3%)	1/40 (3%)
First incidence (dam)	709	582	728 (T)	627
ife table tests	707 P=0 201 N	P=0 A 21 N	P = 0.163N	P=0311N
Lic table tests	F - 0.30114 D - 0.240N	P=0 \$21N	P=0.174N	P=0.324N
Logistic regression tests	F 0.2091N D 0.205N	1 -0.3411	1 -0.1/414	1-0.3341
Cooman-Armitage test	r0.30311	D-0 SOON	P=0.181N	P=0 330N
risner exact test		r=0.300N	r=0.1811N	r=0.339N

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	666 ppm	2,000 ppm	6,000 ppm
All Organs: Malignant Lymphoma and	Histiocytic Sarcoma			
Overall rates	4/50 (8%)	7/50 (14%)	4/50 (8%)	9/50 (18%)
Adjusted rates	10.2%	15.4%	9.7%	19.6%
Terminal rates	2/35 (6%)	5/43 (12%)	2/39 (5%)	4/40 (10%)
First incidence (days)	703	709	709	576
Life table tests	P=0.131	P=0.366	P=0.603N	P=0.154
Logistic regression tests	P=0.119	P = 0.269	P=0.638N	P=0.119
Cochran-Armitage test	P=0.118			
Fisher exact test	• •••••	P=0.262	P=0.643N	P=0.117
All Organs: Malignant Lymphoma (Lyr	nphocytic, Mixed, or I	Jndifferentiated Cell Ty	pæ)	
Overall rates	4/50 (8%)	7/50 (14%)	4/50 (8%)	8/50 (16%)
Adjusted rates	10.2%	15.4%	9.7%	17.3%
Terminal rates	2/35 (6%)	5/43 (12%)	2/39 (5%)	3/40 (8%)
First incidence (days)	703	709	709	576
Life table tests	P=0.214	P=0.366	P=0.603N	P=0.216
Logistic regression tests	P=0.204	P = 0.269	P=0.638N	P=0.184
Cochran-Armitage test	P = 0.200			
Fisher exact test		P=0.262	P=0.643N	P=0.178
All Organs: Benign Neoplasms				
Overall rates	29/50 (58%)	37/50 (74%)	45/50 (90%)	31/50 (62%)
Adjusted rates	68.7%	74.0%	95.7%	68.9%
Terminal rates	22/35 (63%)	30/43 (70%)	37/39 (95%)	26/40 (65%)
First incidence (days)	709	549	617	673
Life table tests	P=0.308N	P=0.419	P=0.011	P=0.490N
Logistic regression tests	P=0.476N	P=0.074	P<0.001	P=0.360
Cochran-Armitage test	P=0.369N			
Fisher exact test		P=0.069	P<0.001	P=0.419
All Organs: Malignant Neoplasms				
Overall rates	16/50 (32%)	23/50 (46%)	27/50 (54%)	26/50 (52%)
Adjusted rates	36.0%	46.0%	56.0%	53.1%
Terminal rates	8/35 (23%)	16/43 (37%)	18/39 (46%)	17/40 (43%)
First incidence (days)	647	549	617	466
Life table tests	P=0.120	P=0.293	P=0.070	P=0.099
Logistic regression tests	P=0.088	P=0.092	P=0.018	P=0.036
Cochran-Armitage test	P=0.072			
Fisher exact test		P=0.109	P=0.021	P=0.034
All Organs: Benign or Malignant Neop	lasms			
Overall rates	38/50 (76%)	41/50 (82%)	49/50 (98%)	41/50 (82%)
Adjusted rates	79.1%	82.0%	98.0%	83.7%
Terminal rates	25/35 (71%)	34/43 (79%)	38/39 (97%)	32/40 (80%)
First incidence (days)	647	549	617	466
Life table tests	P=0.518	P=0.318N	P=0.127	P=0.521N
Logistic regression tests	P=0.319	P=0.318	P=0.002	P=0.253
Cochran-Armitage test	P=0.395			

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

(T)Terminal sacrifice

- ^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, epididymis, gallbladder (mouse), heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.
- Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

^e Not applicable; no neoplasms in animal group

Table C4a

Historical Incidence of Liver Neoplasms in Untreated Male B6C3F, Mice^a

		Incidenc e i	n Controls	
Study	Hepatocellular Adenoma	Hepatocellular Carcinoma	Hepatoblastoma	Hepatocellular Adenoma, Carcinoma, or Hepatoblastoma
Historical Incidence at Southern Re	search Institute			
C.I. Pigment Red 3	8/50	5/50	0/50	12/50
Ethylene Glycol	9/54	10/54	0/54	19/54
Nitrofurantoin	2/50	9/50	0/50	10/50
o-Nitroanisole	14/50	7/50	0/50	21/50
Polysorbate 80	5/49	11/49	0/49	15/49
Rhodamine 6G	5/49	10/49	0/49	13/49
Roxarsone	9/50	4/50	0/50	12/50
Overall Historical Incidence				
Total	145/865 (16.8%)	122/865 (14.1%)	0/865 (0.0%)	249/865 (28.8%)
Standard deviation	8.2%	7.2%		10.9%
Range	4%-38%	3%-27%		10%-58%
-				

^a Data as of 3 April 1991

TABLE C4b

Historical Incidence of Harderian Gland Neoplasms in Untreated Male B6C3F₁ Mice^a

		Incidence in Controls		
Study	Adenoma	Carcinoma	Adenoma or Carcinoma	
Historical Incidence at Southern Research Instit	ute			
C.I. Pigment Red 3	2/50	0/50	2/50	
Ethylene Glycol	0/54	0/54	0/54	
Nitrofurantoin	2/50	0/50	2/50	
o-Nitroanisole	9/50	1/50	10/50	
Polysorbate 80	0/49	0/49	0/49	
Rhodamine 6G	7/50	0/50	7/50	
Roxarsone	1/50	0/50	1/50	
Overall Historical Incidence				
Total	45/872 (5.2%)	3/872 (0.3%)	48/872 (5.5%)	
Standard deviation	4.8%	0.8%	5.3%	
Range	0%-18%	0%-2%	0%-20%	

^a Data as of 3 April 1991

TABLE C4c Historical Incidence of Adrenal Cortex Adenomas in Untreated Male B6C3F1 Mice*

Study	Incidence in Controls	
Historical Incidence at Southern Research Insti	tute	
C.I. Pigment Red 3 Ethylene Glycol Nitrofuratoin o-Nitroanisole Polysorbate 80 Rhodamine 6G Roxarsone	0/50 4/54 0/50 7/50 0/49 0/49 0/50	·
Overall Historical Incidence		
Total Standard deviation Range	14/851 (1.6%) 3.7% 0%-14%	·

^a Data as of 3 April 1991

	0 ррт	666 ррш	2,000 ppm	6,000 ррш	
Disposition Summary					
Animals initially in study	60	60	60	60	
15-Month interim evaluation	10	10	9	10	
Missexed			1		
Early deaths		_	•	-	
Moribund	14	5	8	7	
Natural deaths	1	2	3	3	
Survivors	25	12	20	40	
Terminal sacrifice	35	43	39	40	
Animals examined microscopically	60	60	59	60	
15-Month Interim Evaluation					
Alimentary System					
Liver	(10)	(10)	(9)	(10)	
Basophilic focus	1 (10%)				
Clear cell focus		1 (10%)			
Eosinophilic focus				1 (10%)	
Inflammation, chronic active		2 (20%)	5 (56%)	3 (30%)	
Hepatocyte, cytologic alterations		7 (70%)	9 (100%)	10 (100%)	
Hepatocyte, vacuolization cytoplasmic	4 (40%)	2 (20%)	3 (33%)		
Lobules, necrosis			2 (22%)	4 (40%)	
Mesentery	(2)				
Fat, inflammation, chronic	1 (50%)				
Fat, necrosis	1 (50%)			(10)	
Pancreas	(10)			(10)	
Atrophy	1 (1007)			1 (10%)	
Inflammation, chronic	1 (10%)			(10)	
Salivary glands	(10)			(10)	
Inflammation, chronic	1 (10%)			(10)	
Cyst	1 (10%)			(10)	
Cardiana andra Sudara			-		
Cardiovascular System	(10)			(10)	
Myocardium, inflammation, chronic	(10) 1 (10%)			(10)	
Endocrine System	· · · · · · · · · · · · · · · · · · ·				
Adrenal gland, cortex	(10)			(10)	
Accessory adrenal cortical nodule				1 (10%)	
Hypertrophy, focal	1 (10%)			1 (10%)	
Subcapsular, hyperplasia	4 (40%)			1 (10%)	
Islets, pancreatic	(10)			(10)	
Hyperplasia	3 (30%)				
Parathyroid gland	(10)			(10)	
Cyst	2 (20%)			1 (10%)	
Thyroid gland	(10)			(10)	
Degeneration, cystic	1 (10%)			1 (10%)	
Follicle, dilatation	1 (10%)				

	0 ppm	666 ррт	2,000 ppm	6,000 ррт
15-Month Interim Evaluation (continued) General Body System None	. <u></u>			
Genital System Preputial gland Atrophy Ectasia Inflammation, chronic	(3) 2 (67%) 3 (100%) 2 (67%)	(1) 1 (100%) 1 (100%)	(2) 1 (50%) 2 (100%) 1 (50%)	
Hematopoietic System Lymph node, mandibular Hemorrhage Lymph node, mesenteric Hemorrhage Thymus Cyst	(10) 1 (10%) (10) 1 (10%) (10) 3 (30%)	(1)	(1) 1 (100%)	(10) (10) (10) 1 (10%)
Integumentary System None			,,,,,,	
Musculoskeletal System None				
Nervous System Brain Thalamus, mineralization	(10) 8 (80%)			(10) 6 (60%)
Respiratory System Lung Hemorrhage Infiltration cellular, histiocyte Nose Exudate Glands, dilatation Glands, hyperplasia Olfactory epithelium, metaplasia	(10) 1 (10%) (10) 2 (20%)	(4) 1 (25%)	(2) 2 (100%)	(10) (10) 1 (10%) 10 (100%) 10 (100%) 10 (100%)
Special Senses System None				

	0 ppm	666 ppm	2,000 ppm	6,000 ррт	
15-Month Interim Evaluation (continued)	<u> </u>		<u></u>		
Irinary System					
Kidney	(10)			(10)	
Out	1 (10%)			1 (10%)	
Inflammation chronic	2(20%)			1(10%)	
Mineralization	$\frac{2}{40\%}$			2(20%)	
Benal tubule regeneration	10 (100%)			5 (50%)	
Lirinary bladder	(10)			(10)	
Inflammation, chronic	1 (10%)			1 (10%)	
2-Vear Study					
Alimentary Such and					
Allmentary System	(40)	(45)	(47)	40	
Galibladder	(49)	(45)	(47)	(46)	
Dilatation	1 (2%)	1 (2%)	(40)	(40)	
Intestine large, cecum	(49)	(49)	(49)	(49)	
Edema		1 (00)		1 (2%)	
Hyperplasia, lymphold	(50)	1 (2%)	(40)	(50)	
Intestine small, duodenum	(50)	(48)	(49)	(30)	
Inflammation, chronic		1 (00)	1 (2%)		
Metapiasia, squamous		1 (2%)		0 ((1))	
Mucosa, nyperplasia	(10)	(40)	(17)	3 (6%)	
Intestine small, lieum	(49)	(48)	(47)	(49)	
Fiyperplasia, lymphold	(60)	(50)	1 (2%)	2 (4%)	
Angiostosis	(30)	(30)	(30)	(30)	
Augreciasis Recording focus	1 (270)	1 (20%)	1 (20%)	1 (270)	
Clear cell focus	9 (18%)	$\frac{1}{2}(270)$	1(270) 0(18%)	2 (19%)	
Eosinonhilic focus	1 (2%)	15 (30%)	16 (32%)	13(26%)	
Hematopoietic cell proliferation	1(270) 1(2%)	15 (5070)	10(32%) 1(2%)	13 (2070)	
Hemorrhage	1 (2%)	4 (8%)	20 (40%)	28 (56%)	
Infiltration cellular mixed cell	1 (270)	+ (070)	1 (2%)	20 (50%)	
Inflammation chronic	1 (2%)	3 (6%)	1(2%)	1 (2%)	
Mixed cell focus	1 (2%)	3 (6%)	1 (270)	1 (270)	
Regeneration focal	1 (270)	1 (2%)			
Centrilobular, necrosis	1 (2%)	1(2%)			
Henatocyte cytologic alterations	1 (270)	44 (88%)	49 (98%)	49 (98%)	
Henatocyte, cytomegaly	1 (2%)	(()()())	47 (50%)	
Henatocyte, vacualization cytoplasmic	6 (12%)	7 (14%)			
Kupffer cell, hyperplasia	2(4%)	(((+)))			
Kupffer cell, pigmentation	-(///)		3 (6%)	16 (32%)	
Lobules, necrosis	3 (6%)	13 (26%)	27 (54%)	34 (68%)	
Oval cell, hyperplasia	- (***)	1 (2%)	(• · · •)	1 (2%)	
Mesentery	(4)	(2)	(4)	- (-/*)	
Hemorrhage			1 (25%)		
Inflammation, pyogranulomatous		1 (50%)			
	0 (500)	1	1 (0501)		

	0 ppm	666 ppm	2,000 ppm	6,000 ррт
2-Year Study (continued)	<u> </u>			
Alimentary System (continued)				
Pancreas	(50)	(49)	(49)	(50)
Atrophy	1 (2%)	~ /		
Focal cellular change	1 (2%)			
Hyperplasia, focal	1 (2%)			
Hyperplasia, lymphoid	2 (4%)		3 (6%)	5 (10%)
Infiltration cellular, histiocyte	- ())		- ()	1 (2%)
Duct, hyperplasia		1 (2%)		- ()
Acinar cell, vacuolization cytoplasmic		- ()		1 (2%)
Salivary glands	(50)	(50)	(50)	(50)
Unerplasia lymphoid	16 (32%)	21 (42%)	20 (40%)	10 (20%)
A ciner cell vegualization autoplasmia	10 (5270)	21 (4270)	20 (4070)	1(26,6)
Inflammation chronic	1 (20%)			1 (270)
Stomach forestomach	(50)	(50)	(50)	(50)
Stomach, forestomach	(30)	(50)	(50)	(30)
Divertionlum	2 (470) A (90%)	1 (20%)	1 (20%)	1(2%)
Erection	+ (070) 1 (20%)	1 (270)	1 (270)	1(276)
Erosion Information changin	1(2%)			1 (2%)
Inflammation, chronic	2 (4%)	0 (40)		
Inflammation, suppurative	((100))	2 (4%)		A (901)
Mucosa, hyperplasia	6 (12%)	2 (4%)	(40)	4 (8%)
Stomach, glandular	(50)	(50)	(49)	(50)
Cyst	7 (14%)	15 (30%)	11 (22%)	8 (10%)
Dysplasia		1 (2%)	1 (2%)	
Erosion	1 (2%)			1 (2%)
Hemorrhage			1 (2%)	
Inflammation, chronic			1 (2%)	1 (2%)
Inflammation, subacute			1 (2%)	
Mucosa, hyperplasia			1 (2%)	
Tooth	(11)	(20)	(12)	(3)
Dysplasia	10 (91%)	18 (90%)	12 (100%)	3 (100%)
Inflammation, suppurative	1 (9%)	2 (10%)		
Cardiovascular System				<u>,, ,, , , .</u>
Heart	(50)	(50)	(50)	(50)
Thrombus	1 (2%)	2 (4%)		()
Artery inflammation chronic active	* (<i>270)</i>	$\frac{-}{1}$ (2%)		
Muccordium degeneration	2 (4%)	· (#/0)		
Mussordium inflommation chronic	~ (***) 2 (10%)	2 (1%)	1 (2%)	1 (2%)
Myocardium, minamiliation, chronic	2 (470) 2 (A02)	2 (470)	1 (2%)	1 (270)
Myocardium, inineralization	2 (470)		1 (270)	

	0 ppm	666 ppm	2,000 ppm	6,000 ррт
2-Year Study (continued)				<u></u>
Endocrine System				
Adrenal gland, cortex	(50)	(50)	(50)	(48)
Accessory adrenal cortical nodule	8 (16%)	1 (2%)	5 (10%)	9 (19%)
Angiectasis			1 (2%)	
Basophilic focus		1 (2%)		
Clear cell focus	1 (2%)	3 (6%)	6 (12%)	
Developmental malformation			2 (4%)	
Hyperplasia, diffuse				1 (2%)
Hyperplasia, focal	24 (48%)	21 (42%)	23 (46%)	21 (44%)
Infiltration cellular, mononuclear cell				1 (2%)
Capsule, hyperplasia	6 (12%)	6 (12%)	5 (10%)	4 (8%)
Adrenal gland, medulla	(50)	(49)	(50)	(48)
Hyperplasia		1 (2%)		2 (4%)
Islets, pancreatic	(50)	(49)	(49)	(50)
Hyperplasia	21 (42%)	20 (41%)	9 (18%)	2 (4%)
Parathyroid gland	(50)	(49)	(50)	(48)
Cyst	2 (4%)	3 (6%)	2 (4%)	3 (6%)
Hyperplasia			1 (2%)	1 (20)
Infiltration cellular, histiocyte			1 (20)	1 (2%)
Pigmentation	(17)		1 (2%)	(49)
Pituitary gland	(47)	(40)	(49)	(48)
Pars distalls, cyst	1 (2%)	4 (9%)	7 (14%)	1 (2%)
Pars distalis, hyperplasia Pars intermidia, gutoplasmia alteration		1 (2%)	1 (2%)	1 (29%)
Thuroid cloud	(40)	(40)	(50)	1 (270)
Decemeration distin	(49) 12 (240%)	(43)	(JU) 0 (18%)	(30)
Hemorrhage	12(2470) 1(2%)	11 (2270)	9 (1070)	0 (12%)
Inflammation chronic	1 (270)		1 (2%)	
Inflammation, suppurative	1 (2%)		1 (270)	
Follicular cell, hyperplasia	3 (6%)	6 (12%)	6 (12%)	1 (2%)
General Body System None			· · · · · · · · · · · · · · · · · · ·	
Genital System	(4)	(1)		
Dilatation	(マ) 2. (50%)	(4)		
Epididymis	(50)	(50)	(50)	(50)
Atvnical cells	1 (2%)	(50)	(50)	(30)
Fibrosis	- (=//)		3 (6%)	- (=,0)
Granuloma sperm		1 (2%)	1 (2%)	
Hyperplasia, lymphoid		1(2%)	- (-,-)	
Inflammation, chronic	1 (2%)	- ()	5 (10%)	
Thrombus	- ()			1 (2%)
Preputial gland	(24)	(24)	(25)	(10)
Ectasia	ì 18 (75%)	20 (83%)	24 (96%)	`10 (100%)
Fibrosis			1 (4%)	
Inflammation, chronic	13 (54%)	7 (29%)	13 (52%)	4 (40%)
Inflammation, suppurative	6 (25%)	4 (17%)	4 (16%)	1 (10%)

	0 ррт	666 ррт	2,000 ppm	6,000 ppm	
2-Year Study (continued)					
Genital System (continued)					
Prostate	(50)	(50)	(50)	(49)	
Inflammation, suppurative	1 (2%)				
Seminal vesicle	(50)	(50)	(50)	(50)	
Dilatation	6 (12%)	3 (6%)	1 (2%)		
Testes	(50)	(50)	(50)	(50)	
Granuloma sperm			1 (2%)		
Hypospermia	2 (4%)	1 (2%)		1 (2%)	
Mineralization		1 (2%)	2 (4%)	2 (4%)	
Interstitial cell, hyperplasia		2 (4%)		1 (2%)	
Seminiferous tubule, atrophy	3 (6%)	1 (2%)	4 (8%)	2 (4%)	
Hematopoietic System					
Bone marrow	(50)	(50)	(50)	(50)	
Angiectasis	(00)	2 (4%)		1 (2%)	
Hypercellularity	1 (2%)	10 (20%)	6 (12%)	7 (14%)	
Lymph node	(50)	(50)	(50)	(50)	
Inguinal, hyperplasia, lymphoid	2 (4%)	1 (2%)		1 (2%)	
Inguinal, pigmentation	1 (2%)	- (/	1 (2%)		
Mediastinal, hemorrhage			1 (2%)		
Mediastinal, inflammation, suppurative		1 (2%)			
Mediastinal, inflammation, pyogranulomatous		1 (2%)			
Pancreatic, hemorrhage	1 (2%)	1 (2%)			
Lymph node, mandibular	(48) ໌	(49) ໌	(49)	(49)	
Hematopoietic cell proliferation		1 (2%)			
Hyperplasia, lymphoid		1 (2%)			
Infiltration cellular, mast cell	·		1 (2%)		
Lymph node, mesenteric	(47)	(49)	(46)	(50)	
Hematopoietic cell proliferation	4 (9%)	16 (33%)	6 (13%)	3 (6%)	
Hemorrhage	19 (40%)	23 (47%)	21 (46%)	14 (28%)	
Hyperplasia, histiocytic	1 (2%)	2 (4%)			
Hyperplasia, lymphoid	4 (9%)	4 (8%)	4 (9%)	7 (14%)	
Hyperplasia, reticulum cell		1 (2%)			
Infiltration cellular, mast cell		2 (4%)	1 (2%)		
Spleen	(50)	(50)	(49)	(48)	
Angiectasis				3 (6%)	
Congestion	1 (2%)	3 (6%)		1 (2%)	
Hematopoietic cell proliferation	10 (20%)	12 (24%)	10 (20%)	7 (15%)	
Pigmentation, hemosiderin		1 (2%)			
Lymphoid follicle, atrophy			1 (2%)	1 (2%)	
Lymphoid follicle, hyperplasia	3 (6%)	7 (14%)	4 (8%)	2 (4%)	
Red pulp, atrophy	1 (2%)	1 (2%)		1 (2%)	
Red pulp, hyperplasia	2 (4%)				
Thymus	(47)	(47)	(45)	(48)	
Cyst	8 (17%)	7 (15%)	6 (13%)	6 (13%)	
Depletion		1 (2%)	1 (2%)	2 (4%)	
Epithelial cell, hyperplasia			1 (2%)		

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	666 ppm	2,000 ppm	6,000 ррт	
2-Year Study (continued)					
Integumentary System					
Skin	(50)	(50)	(50)	(50)	
Acanthosis	4 (8%)	1 (2%)	4 (8%)	1 (2%)	
Hair follicle, atrophy				1 (2%)	
Inflammation, acute			1 (2%)		
Inflammation, chronic	1 (2%)	2 (4%)	1 (2%)		
Inflammation, suppurative	2 (4%)		• •		
Subcutaneous tissue, edema	1 (2%)		1 (2%)		
Musculoskeletal System					
Bone	(50)	(50)	(50)	(50)	
Hyperostosis		1 (2%)	1 (2%)		
Nervous System		· · · · · · · · · · · · · · · · · · ·			
Brain	(50)	(50)	(50)	(50)	
Cvst		1 (2%)			
Inflammation, chronic	1 (2%)	- ()			
Pigmentation				2 (4%)	
Thalamus, mineralization	41 (82%)	43 (86%)	44 (88%)	40 (80%)	
Respiratory System	· · · · · · · · · · · · · · · · · · ·		<u> </u>		
Lung	(50)	(50)	(50)	(50)	
Congestion	1 (2%)			1 (2%)	
Hemorrhage	2 (4%)	1 (2%)	2 (4%)	6 (12%)	
Hyperplasia, lymphoid		5 (10%)	6 (12%)	1 (2%)	
Infiltration cellular, megakaryocyte			·	1 (2%)	
Infiltration cellular, histiocyte	5 (10%)	5 (10%)	1 (2%)	1 (2%)	
Inflammation, chronic	2 (4%)	1 (2%)	1 (2%)	2 (4%)	
Inflammation, suppurative		3 (6%)			
Thrombus			1 (2%)	-	
Alveolar epithelium, hyperplasia	5 (10%)	4 (8%)	2 (4%)	2 (4%)	
Bronchiole, epithelium, proliferation	(50)	2 (4%)	13 (26%)	14 (28%)	
Nose	(50)	(50)	(50)	(50)	
Exudate Glanda dilatation	4 (8%)	4 (8%) 6 (10%)	0 (12%)	49 (98%) 40 (98%)	
Glands, unatation Glands, hyperplasia	3 (0%) 1 (2%)	0 (12%)	12 (24%) 12 (24%)	47 (78%) 10 (09%)	
Olfactory epithelium gret	1 (2%)	2 (4%)	12 (24%)	47 (78%) 18 (26%)	
Olfactory epithelium, cyst			7 (14%)	16 (30%)	
Olfactory epithelium, necrosis			(1470)	1 (2%)	
Special Senses System	<u></u>				
Eve	(3)				
Cataract	1 (33%)				
Cornea, hyperplasia	2 (67%)				
Cornea, inflammation. chronic active	2 (67%)				
Comesineralization	1 (33%)				

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ррт	666 ppm	2,000 ppm	6,000 ppm	
2-Year Study (continued)		······			
Urinary System					
Kidney	(50)	(50)	(50)	(50)	
Casts protein	12 (24%)	14 (28%)	18 (36%)	5 (10%)	
Cyst	27 (54%)	30 (60%)	16 (32%)	4 (8%)	
Fibrosis	· · ·		1 (2%)	1 (2%)	
Glomerulosclerosis	2 (4%)	1 (2%)	1 (2%)		
Hydronephrosis	6 (12%)		· · ·		
Hyperplasia, lymphoid	20 (40%)	16 (32%)	25 (50%)	8 (16%)	
Inflammation, chronic	1 (2%)		1 (2%)		
Inflammation, suppurative	1 (2%)			`	
Metaplasia, osseous	2 (4%)		3 (6%)		
Mineralization	41 (82%)	48 (96%)	50 (100%)	36 (72%)	
Pelvis, transitional epithelium, hyperplasia	1 (2%)				
Renal tubule, atrophy		1 (2%)			
Renal tubule, cytoplasmic alteration			1 (2%)		
Renal tubule, dilatation	3 (6%)				
Renal tubule, hyperplasia		1 (2%)	2 (4%)		
Renal tubule, pigmentation			5 (10%)	1 (2%)	
Renal tubule, regeneration	48 (96%)	46 (92%)	48 (96%)	32 (64%)	
Renal tubule, vacuolization cytoplasmic			1 (2%)	· · /	
Urinary bladder	(50)	(50)	(49)	(50)	
Dilatation	3 (6%)	í (2%)			
Edema			1 (2%)		
Hyperplasia, lymphoid	1 (2%)	4 (8%)	5 (10%)	5 (10%)	
Mucosa, hyperplasia	- \/		1 (2%)		

^a Number of animals examined microscopically at site and number of animals with lesion.

234

APPENDIX D SUMMARY OF LESIONS IN FEMALE MICE IN THE 2-YEAR FEED STUDY OF @-NITROANISOLE

236
242
270
275
276
··· 27 ··· 27 ··· 27

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Feed Study of o-Nitroanisole^a

	0 ppm	666 ppm	2,000 ppm	6,000 ppm	
Disposition Summary	<u></u>				
Animals initially in study	60	60	60	60	
15-Month interim evaluation	10	10	10	10	
Early deaths					
Moribund	7	16	10	5	
Natural deaths	5	8	7		
Survivors					
Terminal sacrifice	38	26	33	45	
Animals examined microscopically	60	60	60	60	
15-Month Interim Evaluation	<u> </u>		-,		
Alimentary System					
Intestine small, duodenum	(10)			(10)	
Fibrous histiocytoma	1 (10%)				
Liver	(10)	(10)	(10)	(10)	
Hepatocellular adenoma		1 (10%)	1 (10%)		
Hepatocellular adenoma, multiple			1 (10%)		
Mesentery	(1)				
Fibrous histiocytoma	1 (100%)				
Pancreas	(10)			(10)	
Fibrous histiocytoma	1 (10%)				
Stomach, glandular	(10)			(10)	
Fibrous histiocytoma	1 (10%)				
Cardiovascular System None	<u></u>				
Endocrine System					
Pituitary gland	(10)		(1)	(10)	
Pars distalis, adenoma	1 (10%)				
Pars distalis, carcinoma			1 (100%)		
General Body System None					
Cenital System	· <u>······</u> ·····························				
Ovary	(10)			(10)	
Adenoma	1 (10%)			(**)	
Fibrous histiocytoma	1 (10%)				
Uterus	(10)	(6)	(8)	(10)	
Fibrous histiocytoma	1 (10%)	N ² 7			
Sarcoma stromal		1 (17%)			

	0 ppm	666 ppm	2,000 ppm	6,000 ррт
15-Month Interim Evaluation (continued)				
Lymph node Iliac, fibrous histiocytoma	(10) 1 (10%)	(1)		(10)
Lymph node, mesenteric	(10) (10)			(10)
Fibrous histiocytoma Spleen	1 (10%) (10)	(2)	(1)	(10)
Fibrous histiocytoma Thymus Fibrous histiocytoma	1 (10%) (10) 1 (10%)			(10)
			······································	· · · · · · · · · · · · · · · · · · ·
Integumentary System None				
Musculoskeletal System None				
Nervous System None				
Respiratory System Lung	(10)		(1)	(10)
Fibrous histiocytoma	1 (10%)		1 (100%)	
Special Senses System None				
Urinary System	(10)	·····		(10)
Fibrous histiocytoma	(10) 1 (10%)			(10)
Urinary bladder Fibrous histiocytoma	(10) 1 (10%)			(10)
			<u></u>	······································
Total animals with primary neoplasms ^b	4 17	2	4	
Total animals with benign neoplasms	3	1	3	
Total benign neoplasms Total animals with malignant neoplasms	3	.1 1	3	
Total malignant neoplasms	14	1	1	

	0 ррт	666 ррт	2,000 ppm	6,000 ppm
2-Voar Study				
Alimontom System				
Essehanne	(50)	(50)	(50)	(50)
Esophagus Gallbladdar	(30)	(30)	(30)	(30)
	(40)	(48)	(50)	(40)
Histiogatic sarcoma	(30)	(40)	(30)	(49)
	1 (2%)	1 (2%)		
	(40)	(49)	(50)	(50)
Intestine large, colon	(49)	(40)	(50)	(30)
Eibrosseren metestetie skin	(30)	(30)	(50)	(49)
Fibrosarcoma, metastatic, skin	(50)	1 (270)	(50)	(40)
Intestine small, duodenum	(30)	(49)	(30)	(49)
	1 (2%)	(40)	(50)	(40)
Intestine small, lieum	(49)	(48)	(50)	(49)
Histocytic sarcoma	1 (2%)	(40)	(40)	(60)
Intestine small, jejunum	(30)	(49)	(49)	(30)
Carcinoma	2 (4%)	(50)	(50)	(50)
Liver	(30)	(30)	(30)	(30)
Hemangiosarcoma	1(2%)	1(2%)	1 (20%)	
Hepatoblastoma	1 (2%)	1 (2%)	1(2%)	
Hepatoblastoma, multiple	4 (90)	1 (201)	1(270)	2 (60%)
Hepatocellular carcinoma	4 (8%)	1(2%)	1 (14%)	3 (6%)
Hepatocellular carcinoma, multiple	1(2%)	1(2%)	1(2%)	11 (220%)
Hepatocellular adenoma	12(24%)	11(22%)	11(2270)	$\frac{11}{7}$ (149%)
Hepatocellular adenoma, multiple	2 (4%)	9 (18%)	23 (30%) 1 (30%)	7 (14%)
Histiocytic sarcoma	2 (4%)	1 (001)	1 (2%)	
Osteosarcoma, metastatic, bone		1 (2%)	1 (2%)	
Mesentery	(9)	(7)	(5)	(2)
Hemangioma		1 (14%)		
Histiocytic sarcoma	1 (11%)	(50)	(60)	(50)
Pancreas	(50)	(50)	(30)	(50)
Histiocytic sarcoma	1 (2%)	(50)	(50)	(50)
Salivary glands	(49)	(50)	(30)	(50)
Histiocytic sarcoma	1 (2%)	(50)	(60)	(50)
Stomach, forestomach	(50)	(50)	(50)	(50)
Squamous cell papilloma	3 (6%)	1 (2%)	6 (12%)	2 (4%)
Stomach, glandular	(50)	(50)	(50)	(50)
Carcinoma	1 (2%)	<i>(</i> 1)		
Tongue		(1)		
Tooth		(2)		
Fibrosarcoma		1 (50%)		
Squamous cell carcinoma		1 (50%)		
Cardiovascular System				
Heart	(50)	(50)	(50)	(50)
Histiocytic sarcoma	1 (2%)			

	0 ppm	666 ppm	2,000 ppm	6,000 ppm
2-Year Study (continued)	· · · · · · · · · · · · · · · · · · ·			
Endocrine System				
Adrenal gland, cortex	(50)	(50)	(50)	(50)
Capsule, carcinoma	1 (2%)	()		()
Adrenal gland, medulla	(50)	(50)	(50)	(50)
Pheochromocytoma malignant			1 (2%)	
Pheochromocytoma benign	1 (2%)			
Islets, pancreatic	(50)	(50)	(50)	(50)
Adenoma	2 (4%)		1 (2%)	
Pituitary gland	(49)	(47)	(48)	(48)
Pars distalis, adenoma	7 (14%)	6 (13%)	8 (17%)	
Pars intermedia, adenoma	1 (2%)	1 (2%)	3 (6%)	
Thyroid gland	(50)	(50)	(50)	(50)
Follicular cell, adenoma	1 (2%)	1 (2%)		
General Body System			<u></u>	
Tissue NOS			(2)	(1)
Genital System				
Ovary	(49)	(50)	(48)	(50)
Adenoma	1 (2%)	1 (2%)		1 (2%)
Cystadenoma	1 (2%)			
Cystadenocarcinoma				1 (2%)
Granulosa cell tumor malignant		1 (2%)		
Granulosa-theca tumor benign			1 (2%)	
Histiocytic sarcoma	1 (2%)			
Luteoma		1 (2%)		
Osteosarcoma, metastatic, bone	1 (2%)			
Uterus	(50)	(50)	(50)	(50)
Carcinoma	1 (2%)	1 (2%)	1 (2%)	1 (2%)
Histiocytic sarcoma	1 (2%)			
Hemangioma	1 (00)	1 (00)	1 (07)	1 (2%)
Leiomyoma	1 (2%)	1 (2%)	1 (2%)	
Osteosarcoma, metastatic, bone	1(2%)	E (100)	4 (00)	A (199)
Polyp stromal	3 (6%)	5 (10%)	4 (8%)	2 (4%)
		1 (2%)		1 (2%)
Hematopoietic System				
Bone marrow	(50)	(50)	(50)	(50)
Hemangiosarcoma		1 (2%)		
Lymph node	(50)	(50)	(50)	(50)
Axillary, histiocytic sarcoma	1 (2%)			
Bronchial, histiocytic sarcoma	1 (2%)			
Bronchial, osteosarcoma, metastatic,				
bone		1 (2%)		
lilac, histiocylic sarcoma	1 (2%)			
inguinai, librosarcoma, metastatic,				
SKIN Inquinal histiagetia	1 (00)	1 (2%)		
Inguinal, nishocync sarcoma	1 (2%)			
Lundar, histocytic sarcoma	1 (2%)			

	0 ррт	666 ppm	2,000 ppm	6,000 ppm	·
2-Year Study (continued)		····	······		
Hematopoietic System (continued)					,
Lymph node (continued)					
Mediastinal, alveolar/bronchiolar					
carcinoma, metastatic, lung	1 (2%)				
Mediastinal, hepatoblastoma,					
metastatic, liver		1 (2%)			
Mediastinal, histiocytic sarcoma	2 (4%)		1 (2%)		
Mediastinal, osteosarcoma, metastatic,					
bone		1 (2%)			
Renal, histiocytic sarcoma	1 (2%)		1 (2%)		
Lymph node, mandibular	(49)	(49)	(49)	(49)	
Histiocytic sarcoma	2 (4%)		1 (2%)		
Squamous cell carcinoma, metastatic,					
tooth		1 (2%)			
Lymph node, mesenteric	(47)	(47)	(48)	(48)	
Histiocytic sarcoma	2 (4%)		1 (2%)		
Spleen	(50)	(50)	(50)	(50)	
Hemangioma	1 (2%)				
Hemangiosarcoma	• •	2 (4%)			•
Histiocytic sarcoma	1 (2%)		1 (2%)		
Thymus	(47)	(44)	(47)	(49)	
Hepatoblastoma, metastatic, liver		1 (2%)			
Histiocytic sarcoma			1 (2%)		
Integumentary System				······	
Mammary gland	(50)	(50)	(50)	(50)	
Carcinoma		1 (2%)			
Skin	(50)	(50)	(50)	(50)	
Subcutaneous tissue, fibrosarcoma		1 (2%)	• •		
Subcutaneous tissue, sarcoma				1 (2%)	
Subcutaneous tissue, hemangioma	1 (2%)				
Subcutaneous tissue, hemangiosarcoma		1 (2%)			
Subcutaneous tissue, schwannoma malignant		1 (2%)			
Musculoskeletal System					
Bone	(50)	(50)	(50)	(50)	
Osteosarcoma	2 (4%)	1 (2%)	1 (2%)		
Skeletal muscle		(1)			
Nervous System				·	
Brain	(49)	(50)	(50)	(50)	
Cranial nerve schwannoma malignant	(45)	1 (2%)	(50)	(50)	
Respiratory System	(50)				
Lung	(50)	(30)	())	(00)	
Alveolar/bronchiolar adenoma	4 (8%)	2 (4%)	2 (4%)		
Alveolar/bronchiolar adenoma,					
two, multiple			1 (2%)		
A Weeler/brenchieler coreineme	2 (4%)	1 (7%)			

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ррш	666 ppm	2,000 ppm	6,000 ррт
2-Year Study (continued)				
Respiratory System (continued)				
Lung (continued)				
Fibrosarcoma, metastatic, skin		1 (2%)		
Hepatoblastoma, metastatic, liver		1 (2%)		
Hepatocellular carcinoma, metastatic,				
liver	1 (2%)	2 (4%)		
Histiocytic sarcoma	2 (4%)		1 (2%)	
Osteosarcoma, metastatic, bone	1 (2%)	1 (2%)	1 (2%)	
Squamous cell carcinoma, metastatic,				
tooth		1 (2%)		
Nose	(50)	(50)	(50)	(50)
Mucosa, adenoma	1 (2%)			
Trachea	(50)	(50)	(50)	(50)
Special Senses System		······································		· · · · · · · · · · · · · · · · · · ·
Harderian gland	(1)	(3)	(3)	(1)
Adenoma	.,	3 (100%)	3 (100%)	1 (100%)
Carcinoma	1 (100%)			
Urinary System				
Kidney	(50)	(50)	(50)	(50)
Fibrosarcoma, metastatic, skin	X - • 7	1 (2%)		
Osteosarcoma, metastatic, bone	1 (2%)	1 (2%)		
Renal tubule, carcinoma	· · ·	1 (2%)		
Urinary bladder	(50)	(50)	(50)	(50)
Systemic Lesions		·····		······
Multiple organs ^c	(50)	(50)	(50)	(50)
Histiocytic sarcoma	2 (4%)	(00)	1 (2%)	(00)
I ymphoma malignant histiocytic	2 (170)	1 (2%)	1 (270)	
Lymphoma malignant lymphocytic	2 (4%)	6 (12%)	3 (6%)	1 (2%)
Lymphoma malignant mixed	3 (6%)	6 (12%)	10 (20%)	4 (8%)
Lymphoma malignant undifferentiated			()	
cell		1 (2%)	1 (2%)	
Neonlosm Summory		<u> </u>		
Total animals with primary neoplasms	30	44	47	28
Total primary peoplasms	57 67	78	47 0 <i>4</i>	20
Total animals with benjan neonlasms	31	31	43	22
Total benign neoplasms	42	43		25
Total animals with malignant neonlasms	20	27	24	10
Total malignant neonlasme	25	35	28	12
Total animals with metastatic neoplasms	3	7	1	12
Total metastatic neoplasms	6	16	2	
r	-		-	

а Number of animals examined microscopically at site and number of animals with lesion.

Primary neoplasms: all neoplasms except metastatic neoplasms
 Number of animals with any tissue examined microscopically

TABLE D2

Individual Animal Tumor Pathology	of Fem	ale	• M	lice	e ir	ı tl	he	2-3	Yea	r l	Fee	ed (Stu	ıdy	of	0-	Ni	ro	ani	iso	le:	0	pp	m		
Number of Days on Study	1 3 7	3 1 2	5 2 5	5 6 4	6 2 7	6 3 0	6 4 8	6 9 3	7 0 5	7 0 8	7 2 2	7 2 2	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 3 1								
Carcass ID Number	2 7 7 1	2 5 4 1	2 6 3 1	2 6 8 1	2 6 6 1	2 8 1 1	2 6 4 1	2 7 1 1	2 5 2 1	2 4 7 1	2 6 0 1	2 8 8 1	2 7 6 1	2 7 8 1	2 7 9 1	2 8 0 1	2 8 2 1	2 4 1 1	2 4 2 1	2 4 3 1	2 4 4 1	2 4 5 1	2 4 6 1	2 4 8 1	2 4 9 1	
Alimentary System																					·				-	
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Gallbladder	+	+	+	+	+	+	+	+	м	À	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	
Intestine large, cecum	+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Histiocytic sarcoma	•	•	•	•		•	•	•	•	•	x		·	•	•	•	•	•	•	•	·	•	•	·	•	
Intestine large, colon	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, rectum	, +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Carcinoma	•	•	•	•	•	•	•	•	•	x	•	•	•	•	•	•	•	•	•	·	•	•		·	•	
Intestine small, ileum	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Histiocytic sarcoma		•		•	•	•	•	•	•	•	x		•			•	·	•		·	•	•	•	•		
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Carcinoma	•	•	•	x	•	•			•	•	•	•	•	•	•		•	•	•	•	•	x	•		•	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Hemangiosarcoma	•	•	•	•	•	•	•	•	•	•	x	·	•	•	•	•	•	·	•	•	•	·	•	•	•	
Hepatoblastoma																										
Hepatocellular carcinoma								x								x										
Hepatocellular carcinoma, multiple																							x			
Hepatocellular adenoma													x			x								x		
Hepatocellular adenoma, multiple																•••										
Histiocytic sarcoma											x	x														
Mesentery											+		+							+						
Histiocytic sarcoma											x															
Pancreas	+	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Histiocytic sarcoma	-		-		-			-			х															
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Histiocytic sarcoma											х															
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Squamous cell papilloma	•					-		-	X	-			-			-									х	
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Carcinoma																										
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Histiocytic sarcoma											X															
+: Tissue examined microscopically				-			м	: M	lissi	ng	tiss	ue								x	: Le	sio	n p	res	ent	

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue

X: Lesion present Blank: Not examined

Individual Animal Tumor Pathology	of Fem	ale	• ₽	lic	e ir	n tl	he	2-3	Yea	r l	Fee	ed i	Stu	ıdy	oſ	0-	Ni	tro	ani	iso	le:	0	p	pm	A (con	tinued)
Number of Days on Study	7 3 1	7 3 3 1	7 3	7 3 1																							
Carcass ID Number	2 5 0 1	2 5 1 1	2 5 3 1	2 5 5 1	2 5 6 1	2 5 7 1	2 5 8 1	2 5 9 1	2 6 1 1	2 6 2 1	2 6 5 1	2 6 7 1	2 6 9 1	2 7 0 1	2 7 2 1	2 7 3 1	2 7 4 1	2 7 5 1	2 8 3 1	2 8 4 1	2 8 5 1	2 8 6 1	2 8 7 1	2 2 8 8 7 9 1	2 3)	2 9 0 1	Total Tissues/ Tumors
Alimentary System											<u> </u>																
Esophagus	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4	- -	+	+	50
Gallbladder	+	+	. .			+	+	+	+	+	+	+	. .	+	+	+	+		+	+	+	- -	4	, 	+	+	48
Intestine large	+	÷			. +		+	, +	+	+	. .	4	. .	÷	+	+	+	+	+			. .	4			÷	50
Intestine large cecum	+						. .		- -	_				+	÷	÷			_	÷			4		Ļ	÷	50
Histiocytic sarcoma	•	•	•	'	•			•	'	•	•	'	'	•		'	•		•	'	'	•					1
Intestine large colon	ــ			. .	<u>ـ</u> ـــ	<u>т</u>	ъ	<u>ـ</u>	.	-	-	-	<u> </u>	<u>ь</u>	ъ	ᆂ	Ŧ	±	<u>т</u>	<u>ــ</u>	1			L	L	т	40
Intestine large, colon		т -			· -	т - т	т —	- -				- T	т 		т - т	т -	т -		+ +	т 			3	[.	T L	т _	49 50
Intestine small		т -				т —	т 	т -	т -	- -	т 	-	т .	т -	т -	т -	т —	т —	т -	т 	т - т		2		т ⊥	т 	50
Intestine small duodenum		т 	т 	т 	. <u> </u>	т 	т 		т 	- T	- T	т Т	- T	т -	т 	2		т L	Ť	50							
Carcinoma	т	т	Т		т	т	т	т	т	т	т	Ŧ	т	т	т	т	т	т	т	т	т	T		- -	г	т	1
Intestine small ileum	ـ	-		-	Ŧ	Ŧ	ъ			<u>ــ</u>	<u> </u>	Ъ	<u>т</u>	ъ	Ŧ	Ŧ	.	ᆂ	<u>ــ</u>			L .	L	-	1
Histioatic sarcoma		T	1	-	-		т		т	4.	-		-		т	T	т	-	т	т	-		7	г -	г		-199
Intestine small jejunum	ــ	л.			. .	<u>т</u>		-	-	-	. т		. .	<u>т</u>	ъ	ъ	Т	<u>т</u>	+	ъ	<u>ь</u>	. .		L .	L	<u>т</u>	50
Carcinoma	T	т	-		-	T	т	1	Т		т	4	1		т	т	т		т	т	т		7		т	т	20
Liver	-						.1.	1	-	-			-									-					50
Hemangiosarcoma	т	т	т	• т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	Ŧ	т	т	T			г	Ŧ	JU 1
Venatoblastoma						v																					1
Hepatopollular aproinome						Λ			v					v													1
Hepatocellular carcinoma multiple									Λ					Λ													4
Hepatocentilar carcinoma, multiple				v		v	v	v			v	v		v					v								1
Hepatocential adenoma multiple				^	•	Λ		Λ			^	•	•	Λ				v	Λ		v			4	*		12
Listignitic concerns																		Λ			Λ						2
Materia																											2
Victory		+												Ŧ		+	+		Ŧ		+						9
Panaroos																											1
Listiantia saraama	+	Ŧ	-+	• +	* *	+	+	-	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	٦		+	+	50
Flistocytic sarcolla Solivoru glonda																						n (1
Justio gatia concerne	-	Ŧ	-	· •	· •	+	+	Ŧ	т	Ŧ	+	+	-	т	Ŧ	+	+	+	+	+	+	IV.			t	Ŧ	49
Stomach																											1
Stomach farastamach		+	+	• +	• •	+	+	+	+	+	+	+	· +	Ť	+	+	+	+	+	+	+	· +	1		+	+	50
Source coll papillone	+	+	-	• +	* *	Ŧ	+	+	+	+	+	+	• +	Ŧ	+	+	+	+	+	+	+	+	1	 ,	÷	+	50
Squamous cen papinoma																	,						2	`			3
Carcinoma	Ŧ	+	• +	• +	• +	+	+	+	•	+	X	+	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	+	+	•	1		t	+	50 1
Cardiovascular System Heart	+	+	• +	• +	• +	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+		+ -	+	+	50
Histiocytic sarcoma																											1

TABLE D2 Individual Ani

Individual Animal Tumor Pathology	of Fem	al	e N	/ic	e ir	n tł	he :	2-}	/ea	r F	'ee	d S	Stu	dy	of	<i>o-</i>]	Nit	roa	ani	so	le:	0	pp	m	(con	tinued)
	1	3	5	5	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	1	2	6	2	3	4	9	0	0	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	
	7	2	5	4	7	0	8	3	5	8	2	2	9	9	9	9	9	1	1	1	1	1	1	1	1	
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Carcass ID Number	7	5	6	6	6	8	6	7	5	4	6	8	7	7	7	8	8	4	4	4	4	4	4	4	4	
	7 1	4 1	3 1	8 1	6 1	1 1	4 1	1 1	2 1	7 1	0 1	8 1	6 1	8 1	9 1	0 1	2 1	1 1	2 1	3 1	4 1	5 1	6 1	8 1	9 1	
ndocrine System																										
Adrenal gland	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex	· +	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Capsule, carcinoma																										
Adrenal gland, medulla	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pheochromocytoma benign																										
Islets, pancreatic	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma						х																	Х			
Parathyroid gland	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pituitary gland	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+	
Pars distalis, adenoma																х	х	Х			х				х	
Pars intermedia, adenoma	_	_				_				_																
Thyroid gland	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
None																										
Genital System																										<u> </u>
Ovary	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	+	+	+	
Adenoma																										
Cystadenoma																										
Histiocytic sarcoma											х															
Osteosarcoma, metastatic, bone		Х																								
Uterus	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	
Carcinoma																	х									
Histiocytic sarcoma												х														
Leiomyoma																										
Osteosarcoma, metastatic, bone Polyp stromal		Х																	x							
lematopoietic System																										
Bone marrow	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Axillary, histiocytic sarcoma											х															
Bronchial, histiocytic sarcoma											х	_														
Iliac, histiocytic sarcoma												х														
Inguinal, histiocytic sarcoma											X															
Lumbar, histiocytic sarcoma											х															
Mediastinal, alveolar/bronchiolar																										
																					X					
carcinoma, metastatic, lung											37	11														
carcinoma, metastatic, lung Mediastinal, histiocytic sarcoma											X	х														

244

TABLE D2 Individual Anir

Individual Animal Tumor Pathology	of Fem	ale	• ₩	lico	e ir	ı tł	1e	2-}	Yea	or l	Fee	d S	Stu	ıdy	oí	0-	Ni	tro	ani	iso	le:	0	pr		(∞)	ntinued)
Number of Days on Study	7 3 1																									
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Carcass ID Number	0 1	5 1 1	5 3 1	5 5 1	5 6 1	5 7 1	5 8 1	5 9 1	6 1 1	6 2 1	6 5 1	6 7 1	6 9 1	7 0 1	7 2 1	7 3 1	7 4 1	7 5 1	8 3 1	8 4 1	8 5 1	8 6 1	8 7 1	8 9 1	9 0 1	Total Tissues/ Tumors
Endocrine System						-															-					
Adrenal gland Adrenal gland, cortex	+	+++	+++	+ +	+ +	+ +	++	+ +	+	++	50 50															
Adrenal gland, medulla Pheochromocytoma benign	+	+	+	+	+	+	х + Х	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50 1
Islets, pancreatic Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 2
Parathyroid gland Pituitary gland Pars distalis, adenoma	+	• +	++	+	+ +	+ +	+ + X	+ +	+	+ + X	+ +	+ +	+ +	+ +	+ M	+ +	+	+	++	50 49 7						
Pars intermedia, adenoma Thyroid gland Follicular cell, adenoma	. +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	X + X	1 50 1
General Body System None										-				_												
Genital System	<u> </u>																									
Ovary Adenoma Cystadenoma Histiocytic sarcoma	+	• +	+	+	+	+ X	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	49 1 1 1
Osteosarcoma, metastatic, bone Uterus Carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50 1
Histiocytic sarcoma Leiomyoma Osteosarcoma, metastatic, bone												x														1 1 1
Polyp stromal					х											x										3
Hematopoietic System																										
Lymph node Axillary, histiocytic sarcoma Bronchial, histiocytic sarcoma Iliac, histiocytic sarcoma Inguinal, histiocytic sarcoma Lumbar, histiocytic sarcoma Mediastinal, alveolar/bronchiolar	+	• +	• +	+	+	+	++	+	+	+	+	++	+	+	++	+	++	++	++	++	++	+	+	+ +	+	50 50 1 1 1 1 1
carcinoma, metastatic, lung Mediastinal, histiocytic sarcoma Renal, histiocytic sarcoma								<u></u>																		1 2 1

Individual Animal Tumor Pathology o	f Fen	ale	e N	lico	e ir	ı tl	1e (2-Y	(ea	r I	Fee	d	Stu	ıdy	of	0-	Ni	tro	an	iso	le:	0	p	m	(0	ont	inue	d)	
Number of Days on Study	1 3 7	3 1 2	5 2 5	5 6 4	6 2 7	6 3 0	6 4 8	6 9 3	7 0 5	7 0 8	7 2 2	7 2 2	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1				
Carcass ID Number	2 7 7 1	2 5 4 1	2 6 3 1	2 6 8 1	2 6 6 1	2 8 1 1	2 6 4 1	2 7 1 1	2 5 2 1	2 4 7 1	2 6 0 1	2 8 8 1	2 7 6 1	2 7 8 1	2 7 9 1	2 8 0 1	2 8 2 1	2 4 1 1	2 4 2 1	2 4 3 1	2 4 4 1	2 4 5 1	2 4 6 1	2 4 8 1	2 4 9 1	•			
Hematopoietic System (continued) Lymph node, mandibular Histiocytic sarcoma Lymph node, mesenteric Histiocytic sarcoma Spleen Hemangioma Histiocytic sarcoma Thymus	+ + +	- + - + - 1	· + · + · +	· + · + · +	+ + +	+ + +	+ + +	+ M +	+ + + +	+ + +	+ x + x + x + x +	+ X + X + X + +	+++++	+ + +	+++++++++++++++++++++++++++++++++++++++	• + + +	· + · + · +	- 4 - 4	+ +										
Integumentary System Mammary gland Skin Subcutaneous tissue, hemangioma	+ +	- +	· +	• +	+++	+ +	+ +	+ +	+++	++	+	++	+	+ +	++	+ + X	+ +	+	+ +	+ +	+	+	-+	• +	⊢ - ⊢ -	⊦ ⊦		·*.	
Musculoskeletal System Bone Osteosarcoma	+	- + X			+	+	+	+	+	+ X	+	+	+	+	. +	+	+	+	+	+	+	+	+	• +	⊦ ⊣	+			
Nervous System Brain	+	- +	. 4	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-+	. 4		F			
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic, liver Histiocytic sarcoma Osteosarcoma, metastatic, bone	+	- + ×		- +	+	+	+	+ x	+	+	+ x	+ x	+	+	+	÷	+	+	+	+	+ x	+ X	+ X	+	⊦ -	F			
Nose Mucosa, adenoma Trachea	+	- + X - +	- + : - +	- + - +	+	+++	+ +	+	+	+ +	+ +	+	++	+	+	+	+	+	+	+	+	• +	• +	 	⊢ ⊣ ⊢ ⊣	+			
Special Senses System Eye Harderian gland Carcinoma																													
Individual Animal Tumor Pathology of	Fem	ale	: №	lico	e ir	n él	1e :	2-}	Yea	n I	Fee	d :	Str	ıdy	o f	' <i>o</i> -	Ni	tro	ani	iso	le:	0	pp	m	(co	ntinued)			
---	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	----------------------------------			
Number of Days on Study	7 3 1																												
Carcass ID Number	2 5 0 1	2 5 1 1	2 5 3 1	2 5 5 1	2 5 6 1	2 5 7 1	2 5 8 1	2 5 9 1	2 6 1 1	2 6 2 1	2 6 5 1	2 6 7 1	2 6 9 1	2 7 0 1	2 7 2 1	2 7 3 1	2 7 4 1	2 7 5 1	2 8 3 1	2 8 4 1	2 8 5 1	2 8 6 1	2 8 7 1	2 8 9 1	2 9 0 1	Total Tissues/ Tumors			
Hematopoietic System (continued) Lymph node, mandibular Histiocytic sarcoma Lymph node, mesenteric Histiocytic sarcoma	+	+ +	+ +	· +	+	++	+ +	++	+ +	+ +	+ +	+	• +	· +	+ M	+ : M	+	+ +	++	++	+	M +	+] +	+	+ +	49 2 47 2			
Spleen Hemangioma Histiocytic sarcoma Thymus	+	· +	+	· + · +	+	++	+ +	+	+	+ X +	+ +	+	• +	• + • +	+	+	+	+	+	+	+ +	+	+	+ M	+	50 1 1 47			
Integumentary System Mammary gland Skin Subcutaneous tissue, hemangioma	+ +	· +	++	- +	++	+ +	+ +	+	+	+ +	+ +	+	· + · +	· + · +	+	+ +	• +	+	+ +	`+ +	+ +	+ +	+ +	• +	+	50 50 1			
Musculoskeletal System Bone Osteosarcoma	+	• +	+	• +	• +	+	+	+	+	+	+	+	• +	• +	• +	+	• +	+	+	+	+	+	+	+	+	- 50 2			
Nervous System Brain	+	• +	· +	- +	• +	+	+	+	• +	+	+	• +	· N	1 +	• +	+	• +	+	+	÷	+	+	+	• +	• +	· 49			
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+ X	- + :	• +	- 4	• +	+	+	+	• +	+	• +	• +	· +	• +	• +	+	• +	· +	· +	+	+	+	• +	+ X	+	50 4 2			
Hepatocellular carcinoma, metastatic, liver Histiocytic sarcoma Osteosarcoma, metastatic, bone Nose Mucosa, adenoma Trachea	+	• +	· +	- +	· +	• +	+	· +	• +	· +	• +	• +	- +	X - + - +	; - + - +	• +	• +	• +	• +	+	• +	• +	· +	• +	• +	1 2 1 - 50 1 - 50			
Special Senses System Eye Harderian gland Carcinoma															-					+ + X						1 1 1			

248

TABLE D2

Individual Animal Tumor Pathology	of Fen	ale	e N	lic	e iı	n tl	he	2-3	Yea	ır l	Fee	ed f	Stu	ıdy	of	0-	Ni	tro	an	iso	le:	0	PI	m	(∞	ntinu	ed)	
Number of Days on Study	1 3 7	3 1 2	5 2 5	5 6 4	6 2 7	6 3 0	6 4 8	6 9 3	7 0 5	7 0 8	7 2 2	7 2 2	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 3 1		_								
Carcass ID Number	2 7 7 1	2 5 4 1	2 6 3 1	2 6 8 1	2 6 6 1	2 8 1 1	2 6 4 1	2 7 1 1	2 5 2 1	2 4 7 1	2 6 0 1	2 8 8 1	2 7 6 1	2 7 8 1	2 7 9 1	2 8 0 1	2 8 2 1	2 4 1 1	2 4 2 1	2 4 3 1	2 4 4 1	2 4 5 1	2 4 6 1	2 4 8 1	2 4 9 1			
Urinary System Kidney Osteosarcoma, métastatic, bone Urinary bladder	+	· + X · +	+	• +	+	+	+ +	++	++	+	+ +	+	+	++	++	++	+	+	+	++	++	+	+ +	· +	+	·		
Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant lymphocytic Lymphoma malignant mixed	+	• +	+	• +	+	+	+	+	+	+ x	+ X	+ X	+	+	+	+	+	+	+	+ x	+	+	+	• +	+			

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of o-Nitroanisole: 0 ppm (continued) Number of Days on Study 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 22 2 2 2 2 777888 **Carcass ID Number** 67 7 5 5 5 5 5 5 5 5 5 6 6 6 6 8 8 8 9 Total 0 1 3 5 6 7 8 9 1 2 5 7 9 0 2 3 4 5 3 4 5 6 7 9 0 Tissues/ Tumors **Urinary System** Kidney 50 Osteosarcoma, metastatic, bone 1 Urinary bladder 50 Systemic Lesions Multiple organs 50 + + + + + + + + + + + Histiocytic sarcoma 2 Lymphoma malignant lymphocytic х 2 Lymphoma malignant mixed х х 3

TABLE D2

Individual Animal Tumor Pathology of	of Fem	ale	Μ	lice	e in	th	ie 2	2-Y	'ea	r I	Tee	d \$	Stu	dy	of	0-]	Nif	ro	ani	so	le:	6	66	pp	m		
Number of Days on Study	3 3 1	3 5 3	3 9 2	4 2 5	6 1 9	6 4 6	6 4 8	6 7 4	6 7 6	6 7 9	6 8 2	6 9 1	6 9 5	7 0 0	7 0 0	7 0 4	7 0 8	7 1 0	7 1 0	7 1 0	7 1 1	7 1 1	7 1 1	7 1 4	7 2 8		
Carcass ID Number	4 5 8 1	4 2 9 1	4 6 1 1	4 5 5 1	4 4 4 1	4 5 2 1	4 6 4 1	4 5 3 1	4 6 5 1	4 5 4 1	4 2 8 1	4 2 4 1	4 4 7 1	4 3 8 1	4 4 0 1	4 2 6 1	4 3 4 1	4 3 3 1	4 3 9 1	4 7 0 1	4 4 3 1	4 4 5 1	4 5 1 1	4 3 0 1	4 2 1 1		
Alimentary System		_																									
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Gallbladder	+	+	+	+	+	+.	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, cecum Leiomyosarcoma	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+		
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Fibrosarcoma, metastatic, skin			х																								
Intestine small	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, ileum	+	+	+	+	+	+	+	+	+	Α	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Hemangiosarcoma																				х							•
Hepatoblastoma																				v			х				
Hepatocellular carcinoma																				х							
Hepatocellular carcinoma, multiple					х		37									v					v						
Hepatocellular adenoma					v		х							v		л		v			л				v		
Hepatocellular adenoma, multiple					А						v			л				Λ							Λ		
Osteosarcoma, metastatic, bone											Λ					1.					-						
Hemongiama				т											x	т					т						
Penerosa	н.		-	+	Т	Т	1	Ŧ	Т	-	<u>т</u>	Т	<u>т</u>	ᆂ	<u>,</u>	ъ	ъ	л.	<u>ـ</u> د	ъ	ъ	ъ	Ŧ	Ŧ	Т		
Falicicas Solizione clondo		- T		т 	Ŧ	Ŧ	Ŧ	- -	Ť		т 	т 	т -		т —	т -	- -		т —	т -	- -		+		+		
Stomach		+ +		т _		т 		т —	+	- -	т —	т —	+		÷	т Т	т Т	+	÷	+	÷		+	+	+		
Stomach forestomach	+	т -	- -	+		т —	т 4	+	+	+	+	+	+	÷	+	÷	+	+	+	+	÷	+	+	+	+		
Squamous cell papilloma		т		т	.1.	.4.	т	•	•	ſ	•	'	'		•	•	•	•	•	•		•	•	•			
Stomach glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Tongue	•	•	·	·		•	·	-		+	•	-		-													
Tooth	+														+												
Fibrosarcoma	x																										
Squamous cell carcinoma															х												
Cardiovascular System																											
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Endocrine System		_																_					_				
A duamat alam d	+	+	+	` +	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenai giand		+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex	+																										
Adrenal gland Adrenal gland, cortex Adrenal gland, medulla	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Islets, pancreatic	+ + +	+ +	++	++	+ +	++	+ +	++	+ +	+ +	+ +																

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (continued) 7 7 7 7 7 7 7 7 7 7 7 7 777 7 7 7 7 7 7 7 7 7 7 Number of Days on Study 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 A A 4 Carcass ID Number 5 5 Total 2 2 2 2 6 3 3 3 3 5 5 6 66 6 6 6 3 4 4 4 4 4 7 9 0 6 7 9 0 2 9 Tissues/ 2 5 7 3 78 1 2 5 6 1 2 6 8 3 6 1 Tumors **Alimentary System** 50 Esophagus Gallbladder 48 М + + Intestine large 50 + + + + + + + + + + Intestine large, cecum 48 Leiomyosarcoma 1 Intestine large, colon 48 м 50 Intestine large, rectum + + + + Fibrosarcoma, metastatic, skin 1 Intestine small 49 Intestine small, duodenum 49 + Intestine small, ileum + + + + + + + + + + 48 + + + + + + + Intestine small, jejunum 49 + Liver + + + 50 Hemangiosarcoma 1 Hepatoblastoma 1 Hepatocellular carcinoma 1 Hepatocellular carcinoma, multiple 1 Х хх х Hepatocellular adenoma Х х Х 11 х хх х хх Hepatocellular adenoma, multiple 9 Osteosarcoma, metastatic, bone 1 Mesenterv 7 Hemangioma 1 Pancreas 50 Salivary glands 50 Stomach 50 + + + + + + Stomach, forestomach 50 + ++ Squamous cell papilloma Х 1 Stomach, glandular + + + + 50 + + Tongue 1 Tooth 2 Fibrosarcoma 1 Squamous cell carcinoma 1 **Cardiovascular System** Heart 50 **Endocrine System** Adrenal gland 50 + + + Adrenal gland, cortex 50 + Adrenal gland, medulla 50 + + + + + + + + + + + Islets, pancreatic + + + 50 + + + + + + + + + + + + + + + + + Parathyroid gland м 48 + + + + + + + + + + + + + + +

•

TABLE D2

Individual Animal Tumor Pathology of	f Fen	ale	• M	lice	e ir	ı tl	1e :	2-3	lea	r I	ree	d 8	Stu	idy	of	0-]	Nit	ro	ani	iso	le:	60	66	pp	m (a	ontinue	J)
Number of Days on Study	3 3 1	3 5 3	3 9 2	4 2 5	6 1 9	6 4 6	6 4 8	6 7 4	6 7 6	6 7 9	6 8 2	6 9 1	6 9 5	7 0 0	7 0 0	7 0 4	7 0 8	7 1 0	7 1 0	7 1 0	7 1 1	7 1 1	7 1 1	7 1 4	7 2 8		
Carcass ID Number	4 5 8 1	4 2 9 1	4 6 1 1	4 5 5 1	4 4 4 1	4 5 2 1	4 6 4 1	4 5 3 1	4 6 5 1	4 5 4 1	4 2 8 1	4 2 4 1	4 4 7 1	4 3 8 1	4 4 0 1	4 2 6 1	4 3 4 1	4 3 3 1	4 3 9 1	4 7 0 1	4 4 3 1	4 4 5 1	4 5 1 1	4 3 0 1	4 2 1 1		
Endocrine System (continued) Pituitary gland Pars distalis, adenoma Pars intermedia, adenoma Thyroid gland Follicular cell, adenoma	+	• + • +	+	+ +	+	+ +	+	+	+ +	+	+	+ +	+	++	+	+ x +	+	+	+	м +	+	+ x +	+	+ +	+ X +		
General Body System None															·												
Genital System Clitoral gland Ovary Adenoma Granulosa cell tumor malignant Luteoma Uterus Carcinoma Leiomyoma Polyp stromal Sarcoma stromal	+	· + X · +	+	+	+	+	+	+	+	+	+	+	+ + x	+	+	+	+	+	+	+	+ + +	+	+	+ + x x	+		
Hematopoietic System Bone marrow Hemangiosarcoma Lymph node Bronchial, osteosarcoma, metastatic, bone Inguinal, fibrosarcoma, metastatic, skin Mediastinal, hepatoblastoma, metastatic, liver Mediastinal, osteosarcoma, metastatic,	+	· +	+ + x	+	++	++	++	++	+ +	+ +	+ + x	++	+	++	+ +	++	+ +	+ +	+	+ X +	++	++	+ + X	++	++		
bone Lymph node, mandibular Squamous cell carcinoma, metastatic, tooth Lymph node, mesenteric Spleen Hemangiosarcoma Thymus Hepatoblastoma, metastatic, liver	+ + +	+ + + M	+ + +	++++++	+++++	+ + + +	+ + +	+ ++ +	I + + + X +	+ + + +	Х+ ++ М	+ + +	+ + +	+ + + +	+ X + + +	+ + + M	++++++	+ + +	+ + + +	+ + + X +	+ + + +	+ + + +	+ ++ + X	+ + +	+ + +	·	

,

Individual Animal Tumor Pathology of	Fem	ale	• ₽	lico	e in	n tl	he	2-}	Yea	er I	Fee	ed S	Stu	dy	oſ	0-	Ni	ro	ani	iso	le:	6	56	PP		1 (α	ontinued)
Number of Days on Study	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 3 0	7 <u>3</u> 0	7 3 0	7 3 0	7 3 (7 3 D													
Carcass ID Number	4 2 2 1	4 2 3 1	4 2 5 1	4 2 7 1	4 6 3 1	4 6 1	4 6 7 1	4 6 8 1	4 3 1 1	4 3 2 1	4 3 5 1	4 3 6 1	4 3 7 1	4 4 1 1	4 4 2 1	4 4 6 1	4 4 8 1	4 4 9 1	4 5 0 1	4 5 6 1	4 5 7 1	4 5 9 1	4 6 0 1	4 6 2 1		4 6 9 1	Total Tissues/ Tumors
Endocrine System (continued) Pituitary gland Pars distalis, adenoma Pars intermedia, adenoma Thyroid gland Follicular cell, adenoma	+ X +	+	+	· +	+	+	+ +	+	+	+	+	+	+ X +	+	+	+	+ + X	++	+ X +	I +	+	+ X +	+	· I		+	47 6 1 50 1
General Body System None														_													
Genital System Clitoral gland Ovary Adenoma Granulosa cell tumor malignant Luteoma Uterus Carcinoma Leiomyoma Polyp stromal Sarcoma stromal	+	• +	+	+ · +	+ + +	+ + X +	+	++	+	+ + x	+	+	+ + x	+ + X	+ + X	+ x +	+	+	++	+	+	+	++++	· +		+	2 50 1 1 50 2 1 5 1
Hematopoietic System Bone marrow Hemangiosarcoma Lymph node Bronchial, osteosarcoma, metastatic, bone Inguinal, fibrosarcoma, metastatic, skin Mediastinal, hepatoblastoma, metastatic, liver	+	· +	+++	- +	+ +	• +	+	++	+	+	+	+	+	++	+ +	+	+	++	++	+	+	++	++	- +		 +	50 1 50 1 1
Mediastinal, osteosarcoma, metastatic, bone Lymph node, mandibular Squamous cell carcinoma, metastatic, tooth Lymph node, mesenteric Spleen Hemangiosarcoma	+ + +	· +	+ + +	· + · +	+ +	· +	+ + + +	++++	++++	++++	+ M +	+ [M +	+ [+ +	++++	+ + +	++++	+ M +	++++	++++	++++	+ ++	+ + + +	+ + +	- +		+ + + +	1 49 1 47 50 2
Hepatoblastoma, metastatic, liver	+	* +	+	- 4	*	+	+	+	+	+	M	. +	+	+	+	+	+	+	+	+	IM	. +	+	- 14	4	Ŧ	44 1

•

TABLE D2 Individual Animal Tumor Pathology of	Fem	ale	e N	lice	e ir	ı tl	ie 2	2-3	/ea	r I	Fee	d S	Stu	dy	of	0-]	Nit	ro	ani	iso	le:	6	66	pp	m	(continued)
Number of Days on Study	3 3 1	3 5 3	3 9 2	4 2 5	6 1 9	6 4 6	6 4 8	6 7 4	6 7 .6	6 7 9	6 8 2	6 9 1	6 9 5	7 0 0	7 0 0	7 0 4	7 0 8	7 1 0	7 1 0	7 1 0	7 1 1	7 1 1	7 1 1	7 1 4	7 2 8	
Carcass ID Number	4 5 8 1	4 2 9 1	4 6 1 1	4 5 5 1	4 4 4 1	4 5 2 1	4 6 4 1	4 5 3 1	4 6 5 1	4 5 4 1	4 2 8 1	4 2 4 1	4 4 7 1	4 3 8 1	4 4 0 1	4 2 6 1	4 3 4 1	4 3 3 1	4 3 9 1	4 7 0 1	4 4 3 1	4 4 5 1	4 5 1 1	4 3 0 1	4 2 1 1	
Integumentary System Mammary gland Carcinoma Skin Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, hemangiosarcoma Subcutaneous tissue, schwannoma malignant	+	++	+ + X	+ +	++	+ +	+ +	+ + x	+ + x	+ +	.+ +	+ +	+ +	+ x +	+ +	+	+ +	+ +	++	++	+	+	+	- +	• +	
Musculoskeletal System Bone Osteosarcoma Skeletal muscle	+	+	+	• +	+	+	+	+	+	+ +	+ x	+	+	+	+	+	+	+	+	+	+	+	+	- +	• +	
Nervous System Brain Cranial nerve, schwannoma malignant	+	+	+	+	+	+	+	+ x	+	, +	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	• +	
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, skin Hepatoblastoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver Osteosarcoma, metastatic, bone Squamous cell carcinoma, metastatic, tooth	+	+	+	. +	+ x	+	+ x	+ x	+	+	+ x	+ x	+	+	+ x	+	+	+	+	+ x	• +	+	+ + X	- + (. +	
Nose Trachea	+ +	+	+ +	- + - +	+ +	т + +	+ +	+ +	+ +	+ +	+	+	+	· +		• +										
Special Senses System Eye Harderian gland Adenoma										+ X											+ + X					

 $\sigma = T$

TABLE D2 Individual Animal Tu

Individual Animal Tumor Pathology of	Fem	ale	• M	lico	e ir	ı tl	1e	2-}	Yea	ır I	Fee	ed	Stu	ıdy	o í	0-	Ni	tro	an	iso	le:	6	66	PP		(continued)
Number of Days on Study	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	
Carcass ID Number	4 2 2 1	4 2 3 1	4 2 5 1	4 2 7 1	4 6 3 1	4 6 1	4 6 7 1	4 6 8 1	4 3 1 1	4 3 2 1	4 3 5 1	4 3 6 1	4 3 7 1	4 4 1 1	4 4 2 1	4 4 6 1	4 4 8 1	4 4 9 1	4 5 0 1	4 5 6 1	4 5 7 1	4 5 9 1	4 6 0 1	4 6 2 1	4 6 9 1	Total Tissu Tumo
Integumentary System Mammary gland Carcinoma Skin Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, hemangiosarcoma Subcutaneous tissue, schwannoma malignant	+ +	+	+	+	+ +	+ +	+	++	+	+	+	+	· +	+	+	+	++	++	+ +	+	+	+	+	· +	• 4	- 50 1 - 50 1 1
Musculoskeletal System Bone Osteosarcoma Skeletal muscle	÷	+	+	+	+	+	+	+	+	+	+	+	· +	+	+	+	+	+	+	+	+	+	+	• +	• •	+ 50 1 1
Nervous System Brain Cranial nerve, schwannoma malignant	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	• +	• •	+ 50 1
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic, skin Hepatoblastoma, metastatic, liver	÷	+	+	+	+	+ x	+	+	+	+	+	+	 • +	+	+	+	+	+	+	+	+	+	· -4	• +		+ 50 2 1 1 1
Hepatocellular carcinoma, metastatic, liver Osteosarcoma, metastatic, bone Squamous cell carcinoma, metastatic, tooth Nose Trachea	+ +	+ +	+ +	+++	+ +	+ +	++++	+ +	+ +	++	+++	+++++++++++++++++++++++++++++++++++++++	• +	· +	+	++	+ +	+ +	+	• + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	· -	• 4		2 1 + 50 + 50
Special Senses System Eye Harderian gland Adenoma																										1 + 3 K 3

..

Individual Animal Tumor Pathology of	Fem	ale	: N	lice	e ir	ı tl	he	2-1	Yea	r I	Fee	ed 1	Stu	ıdy	of	° 0-	Ni	tro	an	iso	le:	6	66	pp	m ((continued)
Number of Days on Study	3 3 1	3 5 3	3 9 2	4 2 5	6 1 9	6 4 6	6 4 8	6 7 4	6 7 6	6 7 9	6 8 2	6 9 1	6 9 5	7 0 0	7 0 0	7 0 4	7 0 8	7 1 0	7 1 0	7 1 0	7 1 1	7 1 1	7 1 1	7 1 4	7 2 8	
Carcass ID Number	4 5 8 1	4 2 9 1	4 6 1 1	4 5 5 1	4 4 4 1	4 5 2 1	4 6 4 1	4 5 3 1	4 6 5 1	4 5 4 1	4 2 8 1	4 2 4 1	4 4 7 1	4 3 8 1	4 4 0 1	4 2 6 1	4 3 4 1	4 3 3 1	4 3 9 1	4 7 0 1	4 4 3 1	4 4 5 1	4 5 1 1	4 3 0 1	4 2 1 1	
Urinary System Kidney Fibrosarcoma, metastatic, skin Osteosarcoma, metastatic, bone	+	+	+	+	+	+	+	+ x	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	
Renal tubule, carcinoma Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	x +	+	+	+	+	+	+	+	+	+	+	+	+	
Systemic Lesions Multiple organs Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	+	+	+	+	+	+ x	+	+	+	+ x	+	+	+ x	+	+	+ x	+	+ x	+ X	+	+	+	+	· +	+	

Table D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of o-Nitroanisole: 666 ppm (continued)

Number of Days on Study	7 2 8	7 3 0																								
Carcass ID Number	4 2 2 1	4 2 3 1	4 2 5 1	4 2 7 1	4 6 3 1	4 6 6 1	4 6 7 1	4 6 8 1	4 3 1 1	4 3 2 1	4 3 5 1	4 3 6 1	4 3 7 1	4 4 1 1	4 4 2 1	4 4 6 1	4 4 8 1	4 4 9 1	4 5 0 1	4 5 6 1	4 5 7 1	4 5 9 1	4 6 0 1	4 6 2 1	4 6 9 1	Total Tissues/ Tumors
Urinary System Kidney Fibrosarcoma, metastatic, skin Osteosarcoma, metastatic, bone Renal tubule, carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1 1
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Multiple organs Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	+	+	+	+ x	+ x	+	+	+ x	+	+ x	+	+	+	+ x	+	+	+ X	+ v	+	+	+ x	+	+	+	+	50 1 6 6

TABLE D2

Individual Animal Tumor Pathology of	f Fem	ale	Μ	lice	e in	ı tł	ne 2	2-Y	/ea	r I	ree	d	Stu	dy	of	o-]	Nit	roa	ani	sol	e:	2,	00	0 p	pm	
Number of Days on Study	4 4 5	5 3 9	5 3 9	5 3 9	5 4 6	5 6 4	5 9 2	6 0 3	6 6 4	6 8 6	7 0 0	7 0 2	7 0 4	7 0 8	7 1 1	7 2 1	7 2 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 5	7 3 5	7 3 5	
Carcass ID Number	3 7 4 1	3 6 8 1	3 7 0 1	3 7 5 1	4 0 4 1	3 8 9 1	4 0 1 1	3 9 2 1	3 6 7 1	3 9 0 1	3 9 6 1	3 8 3 1	3 7 7 1	4 0 0 1	3 9 8 1	3 9 5 1	3 6 9 1	3 7 1 1	3 7 2 1	3 7 3 1	4 0 9 1	4 1 0 1	3 6 1 1	3 6 2 1	3 6 3 1	
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Gallbladder	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	Α	+	+	+	+	+	+	+	+	+	
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	.+	+	
Intestine large, colon	+	+	÷.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, rectum		÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	÷	+	÷	+	+	÷	+	÷	+	÷	
Intestine small		+	÷.	÷	÷.	÷	÷	+	÷.	÷	÷	+	+	+	+	÷.	÷	÷	÷	÷	÷	+	+	+	+	
Intestine small duodenum	۳- بد	т Т	-	г Т	1	Ť	- -	÷	÷	÷	÷	+		÷	+	÷	+	÷	÷.	÷.	÷	+	+	+	÷	
Intestine small, ileum	, -	÷	÷	÷		÷.	+	+	+		+	÷	÷		÷		+	÷	÷	÷	÷	÷	÷		÷	
Intestine small, ieiunum	- -	+	+	+	+	÷	+	+	+	÷	÷	÷	+	+	+	Å	+	÷	+	+	+	+	+	+	÷	
Liver	, 	÷	÷				, 			÷	_		, +		÷	1		÷	+	÷	÷	÷		÷		
Henstohlastoma	'	1	'	•	'		•	'		•	•	•	•	•	×	•			•	•			•		•	
Henstohlastoma multiple									Y						~											
Henetocollular enrinome									Λ	v					v	v										
Hepatocentual carcinoma										Λ					л	Λ		v					•			
Hepatocenular carcinoma, multiple						v						v				v		Λ	v	v						
Hepatocenular adenoma					v	л			v	v	v	л	v	v	v	Λ		v	Λ	^		v		v	v	
Hepatocellular adenoma, multiple					л				л	л	Λ		Λ	л	Λ			Λ				Λ		Λ	Λ	
Histocytic sarcoma						v																				
Osteosarcoma, metastatic, bone						х																				
Mesentery										+	+		+	+								+				
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Squamous cell papilloma					х						Х								х							
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	.+	
Cardiovascular System Heart	+	+	+	+	+	+	+	+.	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System											•								-							
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pheochromocytoma malignant												х														
Islets, pancreatic	·+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma																									Х	
Parathyroid gland	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	
Pituitary gland	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	М	+	+	+	+	+	
Pars distalis, adenoma					x												х				х	х				
Pars intermedia, adenoma																										
Thyroid gland	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	

7777 Number of Days on Study 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 55 3 4 4 4 4 4 4 **Carcass ID Number** 6 6 6 7 7 7 8 8 8 8 8 8 8 8 9 9 9 990 0 0 0 0 0 Total 0 1 2 4 5 6 7 8 1 3 4 7 9 2 3 5 6 7 8 Tissues/ 4 56 689 Tumors **Alimentary System** Esophagus 50 Gallbladder 48 Intestine large 50 + + Intestine large, cecum + + 50 + + + Intestine large, colon + 1 + + + + + + + 50 Intestine large, rectum + 50 Intestine small + + 50 + + 4 + Intestine small, duodenum + 50 + Intestine small, ileum + + + 50 Intestine small, jejunum 49 Liver 50 + Hepatoblastoma 1 Hepatoblastoma, multiple 1 Hepatocellular carcinoma X хх х 7 Hepatocellular carcinoma, multiple 1 x x ^X Hepatocellular adenoma ХХ Х 11 хх Hepatocellular adenoma, multiple х х х х 25 Histiocytic sarcoma 1 Osteosarcoma, metastatic, bone 1 Mesentery 5 Pancreas + + + 50 Salivary glands + + + + + + + 50 Stomach + + + + 50 + + + + + + + + + + + Stomach, forestomach + + + + + 50 + + + + Squamous cell papilloma х Х х 6 Stomach, glandular + + + + 50 **Cardiovascular System** Heart 50 **Endocrine System** Adrenal gland 50 Adrenal gland, cortex 50 + Adrenal gland, medulla 50 Pheochromocytoma malignant 1 Islets, pancreatic 50 Adenoma 1 Parathyroid gland 49 + + Pituitary gland + 48 + + + + + + Pars distalis, adenoma х Х Х Х 8 Pars intermedia, adenoma 3 Х х X Thyroid gland 50 +

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of o-Nitroanisole: 2,000 ppm (continued)

TABLE D2

. .

	of ren	181	le l	VI I	ce	ın	τn	e 2	2- X	ea	r I	ree		Stu	ay	01	0-	Nil	ro	ani	ISO	le:	2,	00	V J	ppn	a (continued)
Number of Days on Study	4 4 5		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 ± 3 ±	5 : 3 4 9 (5 : 4 (6 4	5 6 4	5 9 2	6 0 3	6 6 4	6 8 6	7 0 0	7 0 2	7 0 4	7 0 8	7 1 1	7 2 1	7 2 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 5	7 3 5	7 3 5	
Carcass ID Number	3 7 4 1	3 6 8 1	3 3 5 7 8 0	3 3 7 7 0 4 1 1	3 4 7 (5 4 1 1	4 3 0 8 4 9 1 7	3 8 9 1	4 0 1 1	3 9 2 1	3 6 7 1	3 9 0 1	3 9 6 1	3 8 3 1	3 7 7 1	4 0 0 1	3 9 8 1	3 9 5 1	3 6 9 1	3 7 1 1	3 7 2 1	3 7 3 1	4 0 9 1	4 1 0 1	3 6 1 1	3 6 2 1	3 6 3 1	
General Body System Tissue NOS		-	⊦									+						-					<u></u>				
Genital System Clitoral gland Ovary Granulosa-theca tumor benign Uterus Carcinoma Leiomyoma Polyp stromal Vagina	+ +		⊦ -	+ -	+ ·	+ ·	+	++++	+	++	++	M +	+	++	+	++	++	+++++	++	++	+	+	++++	++	+ + X	+ X +	
Hematopoietic System Bone marrow Lymph node Mediastinal, histiocytic sarcoma Renal, histiocytic sarcoma Lymph node, mandibular Histiocytic sarcoma Lymph node, mesenteric Histiocytic sarcoma Spleen Histiocytic sarcoma Thymus Histiocytic sarcoma	+ + + + + +	 	 	+ - + - + - + N	+ · + · + ·	+ · + · + ·	+++++++++++++++++++++++++++++++++++++++	++ ++ ++	+++++++++++++++++++++++++++++++++++++++	+++++++	+++++++	++++++++	+ + + + + 1	+ + + + + +	++++++++	+++++++++++++++++++++++++++++++++++++++	++ ++ ++	++ + + +	+++++++	++ + + +	++ + M +	+++++++++++++++++++++++++++++++++++++++	+++++++	+++ ++ M	+ + + +	· + + · +	
Integumentary System Mammary gland Skin Musculoskeletal System Bone Osteosarcoma	+ + +		⊢ - ⊢ -	+ - + -	+ -	+ + +	+ + +	++	+	+++++	+++	++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	+++	++++	+++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++++	+ + + +	++	++	+ +	
Nervous System Brain	+	• •	+ -	⊦ -	+ -	+ -	• 	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	

TABLE D2 Individual Animal Tumor Pathology	y of Fem	ale	e Iv	lico	e ir	ı tl	ne :	2-}	lea	ar l	Fee	ed l	Stu	ıdy	oſ	0-	Ni	tro	ani	iso	le:	2	,0()0 [pp) ma	continued)
Number of Days on Study	7 3 5	735		7 3 5																							
Carcass ID Number	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4		4	Total
	4 1	5 1	6 1	6 1	, 8 1	, 9 1	0 1	1 1	2 1	4	5 1	6 1	7 1	8 1	1 1	3 1	4 1	7 1	9 1	2 1	3 1	5 1	6 1	7 1		8 1	Tissues/ Tumors
General Body System Tissue NOS			-																								2
Genital System																											
Clitoral gland																											2
Ovary	+	• +	• +	• +	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	· 4	r 1	F	+	48
Granulosa-theca tumor benign																											1
Uterus	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	· - 1	+ -1	F	+	50
Carcinoma																							X	ζ			1
Leiomyoma																											1
Polyp stromal					х								х	x					х								4
Vagina																											1
																											-
Hematopoietic System Bone marrow	+	• +	• +	• +	+	+	+	+	+	+	+	++	+	• +	+	+	+	+	+	+	+	· +		⊢ ⊣	+	+	50 50
Mediastinal histiocutic sarcoma	1			1		Ŷ	т					т			T			т	Ŧ	1	1	1			Γ	т	1
Benal, histiogetia sarsoma						v																					1
Lumph node mondibular						<u>^</u>														Ŧ							1
Lymph node, mandioular	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	• +	· 1	- H	F	+	49
Histiocytic sarcoma						Х															-	_					1
Lymph node, mesenteric	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	1 +	• •	r -	F	+	48
Histiocytic sarcoma						X																					1
Spleen	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	•_+	7 4	F	+	50
Histiocytic sarcoma						Х																					1
Thymus	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	• +	· 4	+ +	F	+	47
Histiocytic sarcoma						Х																					1
Integumentary System				<u> </u>		<u> </u>																					
Mammary gland	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• •	- 1	r 1	F	+	50
SKIN	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	• +	• •	- 4	┝	+	50
Musculoskeletal System																											<u> </u>
Bone	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	1	8 4	ł	+	50
Osteosarcoma																											1
Nervous System											·																<u> </u>
Brain	+	• +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +		┝╶┥	۲	+	50
						_																	_				

Individual Animal Tumor Pathology of	f Fem	ale	M	lice	e ir	ı tl	he	2-3	Yea	r l	Fee	d S	Stu	ıdy	of	0-	Ni	tro	an	iso	le:	2,	,0()0]	ppr	n (c	ontir	ued)	
Number of Days on Study	4 4 5	5 3 9	5 3 9	5 3 9	5 4 6	5 6 4	5 9 2	6 0 3	6 6 4	6 8 6	7 0 0	7 0 2	7 0 4	7 0 8	7 1 1	7 2 1	7 2 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 5	7 3 5	7 3 5			<u>-u</u>	
Carcass ID Number	3 7 4 1	3 6 8 1	3 7 0 1	3 7 5 1	4 0 4 1	3 8 9 1	4 0 1 1	3 9 2 1	3 6 7 1	3 9 0 1	3 9 6 1	3 8 3 1	3 7 7 1	4 0 0 1	3 9 8 1	3 9 5 1	3 6 9 1	3 7 1 1	3 7 2 1	3 7 3 1	4 0 9 1	4 1 0 1	3 6 1 1	3 6 2 1	3 6 3 1				
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, two, multiple Histiocytic sarcoma Osteosarcoma, metastatic, bone Nose	+ X +	+	+ +	+	+	+ X +	+ +	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	- - -	- +	· + ×				-
Trachea 	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ + X	+	+	+	+	+	+	+	+	- +	• +				
Urinary System Kidney Urinary bladder	+ +	+ +	++	++	+++	+++	++	++	++	++	+++	+++	+++	++	++	++	+++	++	++	+++	++	++		- +	- + - +				
Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	+	+	+ x	+	+	+	+ x	+	+	+ x	+ x	+	+ x	+	+	+	+	+ x	+	+	+	+ x	+	- +	+ +				

Number of Days on Study	7 3 5																									
Carcass ID Number	3 6 4 1	3 6 5 1	3 6 6 1	3 7 6 1	3 7 8 1	3 7 9 1	3 8 0 1	3 8 1 1	3 8 2 1	3 8 4 1	3 8 5 1	3 8 6 1	3 8 7 1	3 8 8 1	3 9 1 1	3 9 3 1	3 9 4 1	3 9 7 1	3 9 9 1	4 0 2 1	4 0 3 1	4 0 5 1	4 0 6 1	4 0 7 1	4 0 8 1	Total Tissues/ Tumors
Respiratory System Lung Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	50 2
multiple Histiocytic sarcoma Osteosarcoma, metastatic, bone Nose Trachea	+ +	· + · +	+	++++	x + +	X + +	+ +	++	+ +	+ +	+	+	++	+ +	1 1 50 50											
Special Senses System Harderian gland Adenoma					+ X					·										+ X						3 3
Urinary System Kidney Urinary bladder	+ + +	• +	· +	· +	+	++	++	++	+ +	++	+ +	+ +	+ +	++	+ +	+ +	+ +	++	++	+ +	+ +	+ +	+	+ +	+ +	50 50
Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	+	+ + x	+	• +	+	+ X	+	+	+	÷	÷	Ŧ	+ x	+	+	+ x	+	+	+	+ x	+	÷	+	+ x	+	50 1 3 10 1

, **`**

\

Individual Animal Tumor Pathology of	Fem	ale	M	lice	e in	n tł	ne :	2-}	Yea	r I	Fee	ed S	Stu	dy	of	0-	Nit	ro	ani	iso	le:	6,	00	0 p	pm	1
Number of Days on Study	4 0 1	4 5 2	5 9 7	7 1 0	7 1 0	7 3 2	•																			
Carcass ID Number	3 1 2 1	3 0 7 1	3 4 4 1	3 3 3 1	3 3 4 1	3 0 1 1	3 0 2 1	3 0 3 1	3 0 4 1	3 0 5 1	3 0 6 1	3 0 8 1	3 0 9 1	3 1 0 1	3 1 1 1	3 1 3 1	3 1 4 1	3 1 5 1	3 1 6 1	3 1 7 1	3 1 8 1	3 1 9 1	3 2 0 1	3 2 1 1	3 3 6 1	
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Gallbladder	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	[+]	
Intestine large	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	
Intestine small, duodenum	+	+	+	+	+	+	+	+	Ι	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Hepatocellular carcinoma							x												x					X		
Hepatocellular adenoma								x	x				x			X		X								
Hepatocellular adenoma, multiple				Х															х				х			
Mesentery															+											
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, Iorestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	Ŧ	+	+	+	+	+	+	+	+	
Stomach, glandular	+	+	+	, +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Cardiovascular System																		-								
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System																										
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pituitary gland Thyroid gland	+	+	+	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	м +	+	+	+	+	+									
General Body System																										
Tissue INOS				+																						

Individual Animal Tumor Pathology	of Fem	ale	• M	lice	e ir	n tl	1e 2	2-}	Yea	ır I	Fee	ed :	Stu	ıdy	of	0-	Ni	tro	an	iso	le:	6,	,00	<u>ا</u> 00) br	m (continued)
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3 2	3 5	3 5	3 5	3 5	3 5	3 5	3 5	3 5	3 5	3 5	3 5	3 5	3 5	3 5											
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Carcass ID Number	3	3	3	4	4	4	4	4	4	4	4	2	2	2	2	2	2	2	2	3	3	3	3	4	2	lotal
	7	8	9	0	1	2	3	5	6	7	8	2	3	4	5	6	7	8	9	0	1	2	5	9	0	Tissues
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	- 50
Gallbladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	. 48
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	- 50
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	(+	+	+	• +	+	- 49
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	- 50
Intestine large, rectum	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	. 49
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	+	· 50
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	. 49
Intestine small, ileum	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	· +	- 49
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•+	+	+	+	+	+	+	+	+	• +	• +	- 50
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	• +	- 50
Hepatocellular carcinoma																										3
Hepatocellular adenoma	x	х		х					х														Х	2	Х	. 11
Hepatocellular adenoma, multiple								х		х										Х	X					7
Mesentery														+												2
Pancreas	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	- 50
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	- 50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-+	• +	+	- 50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	• +	• +	- 50
Squamous cell papilloma						Х																				2
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	· 50
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	. 50
Endocrine System					-								_										_			
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	4	- +		- 50
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	• +	- 4			- 50
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+		. .	+	+	+	+	+	+	+	 +		. +	4			- 50
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	+	- +		- 50
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	R	1 +	- +	- 49
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	[+	- +	· +	- 48
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	+	- +	• +	- 50
																										
General Body System																										-
TISSUE INUS																										1

•															•											•			
Number of Days on Study		4 0 1	4 5 2	5 9 7	7 1 0	7 1 0	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2			_													
Carcass ID Number		3 1 2 1	3 0 7 1	3 4 4 1	3 3 3 1	3 3 4 1	3 0 1 1	3 0 2 1	3 0 3 1	3 0 4 1	3 0 5 1	3 0 6 1	3 0 8 1	3 0 9 1	3 1 0 1	3 1 1 1	3 1 3 1	3 1 4 1	3 1 5 1	3 1 6 1	3 1 7 1	3 1 8 1	3 1 9 1	3 2 0 1	3 2 1 1	3 3 6 1			
Genital System Clitoral gland Ovary Adenoma Cystadenocarcinoma Uterus Carcinoma Hemangioma Polyp stromal Sarcoma stromal		++	+	+	++	+	+++	+	+	+ x +	M + +	+	++	+	+ + x	+ + X	+	+	++	+ .	++	+	+	+	+	+		· · · · · · · · ·	
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus		+ + + + + + +	+ + + + + + +	 + + + + + + +	+ + + + + M	+ + + + + + + +	+ + + + + + +	+ + + + + + +	+ + + + +	++++++	+ + + + + + +	+ + + + + +	++++++	+++++++	+ + + + + +	+++++++	+++++++	+ + + M + +	++++++	+++++++++++++++++++++++++++++++++++++++	· + + + + + +	+ + + + + + +	+ + + + + +	+ + + + + + +	· + + + + + +	+ + + + + +			
Integumentary System Mammary gland Skin Subcutaneous tissue, sarcoma		+ +	+ +	+ +	+	+ +	++	++++	+ +	+ +	++	+++	++	+ +	+++	++	+ + X	+++											
Musculoskeletal System Bone		+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		•	
Nervous System Brain	. <u></u>	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		- -	
Respiratory System Lung Nose Trachea		+++++	++++	++++	++++	++++	+ + +	+ + +	+ + +	+++++	+ + +	+ + +	+ + +	+ + +	+ + +	+++++	+++++	+ + +	+++++	+++++	+ + +	+ + +	++++	+ + +	+ + +	+ + +	-		_

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of o-Nitroanisole: 6,000 ppm (continued)

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of o-Nitroanisole: 6,000 ppm (continued) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 777 7777 3 3 3 3 3 3 3 3 3 3 3 3 3 Number of Days on Study 3 3 3 3 3 3 3 3 3 3 3 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 **Carcass ID** Number Total 7 8 9 0 1 2 3 5 6 7 8 2 3 4 5 6 7 8 9 0 1 2 5 9 0 Tissues/ Tumors **Genital System** Clitoral gland 50 Ovary + Adenoma 1 Cystadenocarcinoma Х 1 Uterus 50 Carcinoma 1 Х Hemangioma 1 х Polyp stromal 2 Sarcoma stromal х 1 Hematopoietic System Bone marrow 50 Lymph node 50 Lymph node, mandibular 49 1 4 4 1 + -+ 48 Lymph node, mesenteric + I + Spleen + + + 50 + + + + + + + + + + + + + + + + + + Thymus 49 + **Integumentary System** Mammary gland + + ++ + + + + + +50 + + + + + + + + + + + + + + Skin 50 + + + + + + + + + ++ ++ + + + + + + + Subcutaneous tissue, sarcoma 1 Musculoskeletal System Bone 50 + + + + + + **Nervous System** Brain 50 + + + + **Respiratory System** Lung 50 + Nose 50 ++ + + + + + + + + + + + + + + + 4 + + + + + Trachea 50 + + + + + + + + + + + +

TABLE D2

Individual Animal Tumor Pathology	of Fem	ale	• M	lice	e ir	n tl	he	2-3	Yea	r I	Fee	ed S	Stu	dy	of	0-	Nit	ro	ani	iso	le:	6,	,00	0 p	pn	i (co i	ntinu	ied)
Number of Days on Study	4 0 1	4 5 2	5 9 7	7 1 0	7 1 0	7 3 2																						
Carcass ID Number	3 1 2 1	3 0 7 1	3 4 4 1	3 3 3 1	3 3 4 1	3 0 1 1	3 0 2 1	3 0 3 1	3 0 4 1	3 0 5 1	3 0 6 1	3 0 8 1	3 0 9 1	3 1 0 1	3 1 1 1	3 1 3 1	3 1 4 1	3 1 5 1	3 1 6 1	3 1 7 1	3 1 8 1	3 1 9 1	3 2 0 1	3 2 1 1	3 3 6 1			
Special Senses System Harderian gland Adenoma																				+ x			• •				•	
Urinary System Kidney Urinary bladder	+ +	+	+ +	· + · +	+ +	+	+ +	++	+ +	+ +	++	+ +	+ +	++	++	+	+ +	+ +	+ +									
Systemic Lesions Multiple organs Lymphoma malignant lymphocytic Lymphoma malignant mixed	+	+	+	+ X	+	+	+ x	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+		÷.,	

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of o-Nitroanisole: 6,000 ppm (continued) Number of Days on Study **Carcass ID** Number Total 7 8 9 0 1 2 3 5 6 7 8 2 3 4 5 6 7 8 9 0 1 2 5 9 0 Tissues/ Tumors Special Senses System Harderian gland 1 Adenoma 1 Urinary System Kidney 50 + + + + + + + + + + + + + + + + + + Urinary bladder 50 + + + + + Systemic Lesions Multiple organs + + + 50 + Lymphoma malignant lymphocytic Х 1 Lymphoma malignant mixed Х 4

7

TABLE D3

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Feed Study of o-Nitroanisole

	0 ppm	666 ppm	2,000 ppm	6,000 ррш
Harderian Gland: Adenoma			- <u> </u>	
Overall rates ^a	0/50 (0%)	3/50 (6%)	3/50 (6%)	1/50 (2%)
Adjusted rates ^b	0.0%	9.3%	8.7%	2.2%
Terminal rates ^C	0/38 (0%)	1/26 (4%)	2/33 (6%)	1/45 (2%)
First incidence (days)	_e	679	711	728 (T)
Life table tests ^d	P = 0.437N	P=0.085	P=0.101	P=0.534
Logistic regression tests ^d	P = 0.521N	P = 0.116	P = 0.109	P=0 534
Cochran-Armitage test ^d	P = 0.555N	1 0.110	1 - 0.102	1 0.551
Fisher exact test ^d	1 0.50511	P=0.121	P=0.121	P=0.500
Harderian Gland. Adenoma or Carcin	me			
Overall rates	1/50 (2%)	3/50 (6%)	3/50 (6%)	1/50 (2%)
Adjusted rates	2.6%	9.3%	8.7%	2.2%
Terminal rates	1/38 (3%)	1/26 (4%)	2/33 (6%)	1/45 (2%)
First incidence (days)	728 (T)	679	711	728 (T)
I life table tests	P=0.306N	P = 0.217	P==0 261	P = 0.724N
Logistic regression tests	P=0 381N	P = 0.290	P = 0.279	P = 0.724N
Cochran_Armitage test	P = 0.418N	1 -0.270		1 0.72414
Fisher exact test	1 -0.41011	P=0.309	P=0.309	P=0.753N
Liver: Henatocellular Adenoma				
Overall rates	14/50 (28%)	20/50 (40%)	36/50 (72%)	18/50 (36%)
Adjusted rates	36.8%	60.9%	83.6%	39.1%
Terminal rates	14/38 (37%)	14/26 (54%)	26/33 (79%)	17/45 (38%)
First incidence (days)	728 (T)	619	546	710
I life table tests	P = 0.122N	P=0.011	P<0.001	P = 0.473
Logistic regression tests	P = 0.450N	P = 0.080	P<0.001	P=0.412
Cochran-Armitage test	P = 0.484	1 0.000		
Fisher exact test	1-0.401	P=0.146	P<0.001	P=0.260
Liver: Hepatocellular Carcinoma	E (60 /100/)	2/50 (40)	8/50 (1601)	2/50 (601)
Overall rates	5/50 (10%)	2/30 (4%)	8/30 (10%)	3/30 (0%) (70
Adjusted rates	12.6%	5.1%	21.8% 5 D2 (1501)	0.1%
Terminal rates	4/38 (11%)	0/26 (0%)	5/33 (15%)	3/45 (1%)
First incidence (days)	693 D 0 24031	619 D 0 22 (N	080 D 0 209	728 (1) D=0.074N
Life table tests	P=0.200N	P=0.330N	P = 0.208	P = 0.274 N
Logistic regression tests	P=0.381N	P=0.225N	F=0.241	P=0.319N
Cochran-Armitage test	P=0.430N	B-0 319N	D-0.277	D-0 257N
Fisher exact test		P=0.218N	P=0.277	P=0.35/N
Liver: Hepatocellular Adenoma or Car	cinoma	01/60 / 10/20	07/60 /7 10/2	ODED (100)
Overall rates	17/50 (34%)	21/50 (42%)	37/50 (74%)	20/50 (40%)
Adjusted rates	43.5%	62.1%	85.9%	43.5%
Terminal rates	16/38 (42%)	14/26 (54%)	27/33 (82%)	19/45 (42%)
First incidence (days)	693	619	546	710
Life table tests	P = 0.100N	P=0.029	P<0.001	P = 0.577N
Logistic regression tests	P = 0.425N	P=0.172	P<0.001	P=0.487
Cochran-Armitage test	P=0.496		n	D
Fisher exact test		P=0.268	P<0.001	P=0.339

•

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	666 ррш	2,000 ppm	6,000 ppm
Liver: Hepatoblastoma or Hepatoce	llular Carcinoma	/ / / / / / / / / / / / / / /		
Overall rates	6/50 (12%)	3/50 (6%)	9/50 (18%)	3/50 (6%)
Adjusted rates	15.2%	8.3%	23.7%	6.7%
Terminal rates	5/38 (13%)	0/26 (0%)	5/33 (15%)	3/45 (7%)
First incidence (days)	693	619	664	728 (T)
Life table tests	P = 0.158N	P=0.397N	P = 0.217	P=0.172N
Logistic regression tests	P = 0.254N	P = 0.256N	P = 0.259	P = 0.207 N
Cochran-Armitage test	P = 0.293N			
Fisher exact test		P=0.243N	P=0.288	P=0.243N
Liver: Hepatocellular Adenoma, Car	rcinoma, or Hepatoblasto	ma		
Overall rates	17/50 (34%)	22/50 (44%)	37/50 (74%)	20/50 (40%)
Adjusted rates	43.5%	63.4%	85.9%	43.5%
Terminal rates	16/38 (42%)	14/26 (54%)	27/33 (82%)	19/45 (42%)
First incidence (days)	693	619	546	710
Life table tests	P=0.086N	P=0.019	P<0.001	P=0.577N
Logistic regression tests	P=0.388N	P=0.124	P<0.001	P=0.487
Cochran-Armitage test	P=0.532			
Fisher exact test		P=0.206	P<0.001	P=0.339
Lung: Alveolar/bronchiolar Adenom	8			
Overall rates	4/50 (8%)	2/50 (4%)	3/50 (6%)	0/50 (0%)
Adjusted rates	10.0%	6.3%	7.9%	0.0%
Terminal rates	3/38 (8%)	1/26 (4%)	2/33 (6%)	0/45 (0%)
First incidence (days)	693	691	445	-
Life table tests	P=0.044N	P=0.477N	P=0.557N	P=0.048N
Logistic regression tests	P=0.070N	P=0.363N	P=0.503N	P=0.057N
Cochran-Armitage test	P=0.068N			
Fisher exact test		P=0.339N	P=0.500N	P=0.059N
Lung: Alveolar/bronchiolar Adenom	a or Carcinoma			
Overall rates	6/50 (12%)	3/50 (6%)	3/50 (6%)	0/50 (0%)
Adjusted rates	15.2%	8.4%	7.9%	0.0%
Terminal rates	5/38 (13%)	1/26 (4%)	2/33 (6%)	0/45 (0%)
First incidence (days)	693	648	445	-
Life table tests	P=0.012N	P=0.396N	P=0.303N	P=0.011N
Logistic regression tests	P=0.020N	P=0.260N	P=0.242N	P=0.014N
Cochran-Armitage test	P=0.020N			
Fisher exact test		P=0.243N	P=0.243N	P=0.013N
Pituitary Gland (Pars Distalis): Add	enoma			
Overall rates	7/49 (14%)	6/47 (13%)	8/48 (17%)	0/48 (0%)
Adjusted rates	18.9%	21.7%	22.9%	0.0%
Terminal rates	7/37 (19%)	4/24 (17%)	6/32 (19%)	0/43 (0%)
First incidence (days)	728 (Ť)	704 ` ´	546	_
Life table tests	P=0.003N	P=0.430	P=0.386	P=0.005N
Logistic regression tests	P=0.007N	P=0.535	P=0.455	P=0.005N
Cochran-Armitage test	P=0.010N			
Fisher exact test		P=0.533N	P=0.482	P=0.007N

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	666 ppm	2,000 ppm	6,000 ppm
Pituitam Cland (Pars Intermedi	a): Adenoma	<u> </u>		
Overall mite	1/40 (2%)	1/17 (2%)	3/48 (6%)	0/48 (0%)
Adjusted rates	27%	A 2%	9.4%	0.0%
Terminal motor	1/27 (20%)	1/24 (A9%)	3/32 (9%)	0/43 (00%)
First insidence (detr.)	1/37 (3%) 729 (T)	1/24 (4 <i>%</i>) 728 (T)	728 (T)	0/43 (070)
Life table tests	$P_{-0.247N}$	748 (1) B=0.662	720 (1) B=0.254	P-0 470N
Life table tests	P = 0.247N	P=0.662	P=0.254	P-0.470N
Coshup Armitees test	P = 0.247 N	F=0.002	1 -0.234	r -0.47014
Cochran-Arinitage test	r=0.336N	B-0.742	B-0 201	B-0 505N
risher exact test		r=0.742	1 -0.301	r -0.50514
Small Intestine: Adenoma or Ca	rcinoma			, ` , , , ,
Overall rates	3/50 (6%)	0/50 (0%)	0/50 (0%)	0/50 (0%)
Adjusted rates	7.0%	0.0%	0.0%	0.0%
Terminal rates	1/38 (3%)	0/26 (0%)	0/33 (0%)	0/45 (0%)
First incidence (days)	564	-	-	- ,
Life table tests	P=0.115N	P=0.160N	P=0.142N	P=0.105N
Logistic regression tests	P=0.138N	P=0.119N	P=0.124N	P=0.133N
Cochran-Armitage test	P=0.130N		ŧ	
Fisher exact test		P=0.121N	P=0.121N	P=0.121N
Stomach (Forestomach): Squame	ous Cell Papilloma			·
Overall rates	3/50 (6%)	1/50 (2%)	6/50 (12%)	2/50 (4%)
Adjusted rates	7.5%	3.8%	16.2%	4.4%
Terminal rates	2/38 (5%)	1/26 (4%)	4/33 (12%)	2/45 (4%)
First incidence (days)	705	728 (T)	546	728 (T)
Life table tests	P=0.377N	P=0.432N	P=0.194	P=0.429N
Logistic regression tests	P = 0.509N	P=0.350N	P=0.241	P=0.470N
Cochran-Armitage test	P=0.534N			
Fisher exact test		P=0.309N	P=0.243	P=0.500N
Literus: Stromal Polyn				
Overall rates	3/50 (6%)	5/50 (10%)	4/50 (8%)	2/50 (4%)
Adjusted rates	7.9%	16.3%	12 1%	4 4%
Terminal rates	3/38 (8%)	206(8%)	4/33 (12%)	2/45 (4%)
First insidence (daw)	3/38 (870) 728 (T)	605	728 (T)	728 (T)
Life table tests	P==0154N	P-0 197	P = 0.423	P=0.423N
Life table tests	P-0 200N	P=0.304	P = 0.423	P=0.423N
Coahman Armaitaga tast	P=0.209N	1 -0.504	1 -0.425	1 -0.42511
Fisher exact test	· F 0.27014	P=0.357	P=0.500	P=0.500N
Uterus: Stromal Polyp or Strom	al Sarcoma	5/50 (100/)	A/50 (8%)	3/50 (6%)
Uverall rates	3/3U (0%) 7.0%	JJU (1070)	10 10%	5,50 (070) 670%
Adjusted rates	1.5%	10.3%	14.170	0.170 2/AS (70%)
Terminal rates	3/38 (8%)	2/20 (8%)	4/33 (1470) 729 (T	3/43 (170) 7/28 (T)
First incidence (days)	728 (1)	CYO	740 (1) R=0.422	740 (1) D=0.59251
Life table tests	$\mathbf{P} = \mathbf{0.271N}$	P=0.19/	r=0.423	r=0.583N
Logistic regression tests	P=0.353N	P=0.304	r=0.423	r=0.383N
Cochran-Armitage test	P=0.446N	D 0.000	D 0 600	D 0//111
Fisher exact test		P=0.357	r=0.500	r=0.001N

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	666 ppm	2,000 ppm	6,000 ppm
All Organs: Hemangioma or Hem	angiosarcoma			
Overall rates	3/50 (6%)	3/50 (6%)	0/50 (0%)	1/50 (2%)
Adjusted rates	7.6%	7.9%	0.0%	2.2%
Terminal rates	2/38 (5%)	0/26 (0%)	0/33 (0%)	1/45 (2%)
First incidence (days)	722	676	-	728 (T)
Life table tests	P=0 143N	P=0 540	P = 0.150N	P = 0.253N
Logistic regression tests	P = 0.14513	P = 0.647	P = 0.136N	P = 0.255 N
Cochran-Armitage test	P=0.196N	1 -0.017	1-0.15014	1-0.2001
Fisher exact test	1 -0.1901	P=0.661N	P=0.121N	P=0.309N
All Organs: Malignant Lymphom	a and Histiocytic Sarcoma			
Overall rates	7/50 (14%)	14/50 (28%)	15/50 (30%)	5/50 (10%)
Adjusted rates	17.1%	41.3%	38.2%	10.8%
Terminal rates	4/38 (11%)	8/26 (31%)	10/33 (30%)	4/45 (9%)
First incidence (days)	708	646	539	710
I ife table tests	P=0.028N	P=0.017	P-0.029	P-0.281N
Logistic regression tests	P=0.0201	P-0.050	P=0.023	P = 0.201N
Cochran-Armitage test	P = 0.004 N	1 =0.050	1 = 0.045	r -0.55114
Fisher exact test	1 -0.09410	P=0.070	P=0.045	P=0.380N
All Organs: Malignant Lymphom	a Alymphoevic, Mixed, or I	Indifferentiated Cell Tv	me)	
Overall rates	5/50 (10%)	14/50 (28%)	14/50 (28%)	5/50 (10%)
Adjusted rates	12 7%	A1 3%	35 5%	10.8%
Terminal rates	12.7%	41.570 8776 (31%)	0/22 (27%)	10.070
First incidence (daw)	709	646	5/33 (2170)	4/43 (9%)
I ife table tests	P-0.054N	P-0.004	D=0.012	/10 D_0 \$22N
Lacistic regression tests	I -0.03414 B-0.129N	P=0.004	P=0.013	$\mathbf{F} = 0.5251\mathbf{N}$
Cochran Armitage test	P=0.157N	r =0.014	F=0.020	F=0.3651N
Fisher exact test	r=0.15/14	P=0.020	P=0.020	P=0.630N
All Arcono Borion Maarlaare				
	01 IFA (2007)	A1 (FA (/ A A)		
Overall rates	31/50 (62%)	31/50 (62%)	43/50 (86%)	22/50 (44%)
Adjusted rates	73.6%	80.9%	95.5%	47.8%
Terminal rates	27/38 (71%)	19/26 (73%)	31/33 (94%)	21/45 (47%)
First incidence (days)	312	619	445	710
Life table tests	P<0.001N	P=0.052	P=0.001	P=0.007N
Logistic regression tests	P=0.004N	P=0.507	P=0.004	P=0.034N
Cochran-Armitage test	P=0.015N			
Fisher exact test		P=0.582N	P=0.006	P=0.054N
All Organs: Malignant Neoplasm	S			
Overall rates	20/50 (40%)	27/50 (54%)	24/50 (48%)	10/50 (20%)
Adjusted rates	45.2%	58.2%	55.2%	21.7%
Terminal rates	14/38 (37%)	8/26 (31%)	14/33 (42%)	9/45 (20%)
First incidence (days)	312	331	539	710 ` ´
Life table tests	P<0.001N	P=0.031	P=0.168	P=0.010N
Logistic regression tests	P=0.002N	P=0.124	P=0.273	P=0.023N
Cochran-Armitage test	P = 0.002N			

-

t hite.

1=

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ррт	666 ppm	2,000 ppm	6,000 ppm
All Organs: Benign or Maligna	nt Neoplasms	·····		
Overall rates	- 39/50 (78%)	44/50 (88%)	47/50 (94%)	28/50 (56%)
Adjusted rates	84.7%	91.6%	100.0%	60.9%
Terminal rates	31/38 (82%)	22/26 (85%)	33/33 (100%)	27/45 (60%)
First incidence (days)	312	331	445	710
Life table tests	P<0.001N	P=0.005	P=0.010	P=0.001N
Logistic regression tests	P<0.001N	P=0.130	P=0.021	P=0.008N
Cochran-Armitage test	P<0.001N			
Fisher exact test		P=0.143	P=0.020	P=0.016N

(T)Terminal sacrifice

^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, epididymis, gallbladder (mouse), heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

^e Not applicable; no neoplasms in animal group

Historical Incidence of Liver Neoplasms in Untreated Female B6C3F, Mice^a

		Incidence i	n Controls	
Study	Hepatocellular Adenoma	Hepatocellular Carcinoma	Hepatoblastoma	Hepatocellular Adenoma, Carcinoma, or Hepatoblastoma
Historical Incidence at Southern Re	search Institute	ų		
C.I. Pigment Red 3	7/50	4/50	0/50	10/50
Ethylene Glycol	8/50	3/50	0/50	10/50
Nitrofurantoin	1/50	1/50	0/50	2/50
o-Nitroanisole	14/50	5/50	1/50	17/50
Polysorbate 80	2/50	1/50	0/50	3/50
Rhodamine 6G	5/50	3/50	0/50	8/50
Roxarsone	1/50	2/50	0/50	3/50
Overall Historical Incidence				
Total	74/863 (8.6%)	28/863 (3.2%)	1/863 (0.1%)	98/863 (11.4%)
Standard deviation	6.5%	2.9%	0.5%	7.6%
Dance	0% 28%	0%-10%	0%.7%	30%-310%

^a Data as of 3 April 1991

	0 ppm	666 ррт	2,000 ppm	6,000 ppm	
Disposition Summary			······	, . <u></u>	
Animals initially in study	60	60	60	60	
15-Month interim evaluation	10	10	10	10	
Early deaths					
Moribund	7	16	10	5	
Natural deaths	5	8	7	-	
Survivors	-	-			
Terminal sacrifice	38	26	33	45	
Animals examined microscopically	60	60	60	60	
15-Month Interim Evaluation					
Alimentary System					
Intestine small, duodenum	(10)			(10)	:
Cvst	1 (10%)			()	
Intestine small, ileum	(10)			(10)	
I ymphoid tissue, hyperplasia	1 (10%)				
Intestine small, jejunum	(10)			(10)	
Lymphoid tissue, hyperplasia	1 (10%)				
Liver	(10)	(10)	(10)	(10)	
Clear cell focus			1 (10%)		
Eosinophilic focus		1 (10%)		1 (10%)	
Inflammation, chronic active	7 (70%)	4 (40%)	4 (40%)	6 (60%)	
Hepatocyte, cytologic alterations		1 (10%)	9 (90%)	9 (90%)	
Hepatocyte, vacuolization cytoplasmic		2 (20%)			
Pancreas	(10)				
Atrophy	1 (10%)				
Salivary glands	(10)			(10)	
Inflammation, chronic				1 (10%)	
Stomach, forestomach	(10)		(1)	(10)	
Mucosa, hyperplasia			1 (100%)		
Stomach, glandular	(10)			(10)	
Cyst	2 (20%)			1 (10%)	
Inflammation, acute	1 (10%)				
Cardiovascular System None	······································				
Endocrine System			τ		
Adrenal gland cortex	(10)			(10)	
Accessory adrenal cortical nodule	(10)			2 (20%)	
Hyperplasia, focal	2 (20%)			- (
Subcapsular, hyperplasia	6 (60%)			2 (20%)	
Islets, nancreatic	(10)			(10)	
Cvst	1 (10%)			(/	
Hyperplasia	2 (20%)				

	0 ppm	666 ppm	2,000 ppm	б,000 ррт
15-Month Interim Evaluation (continued)			·····	
Endocrine System (continued) Parathyroid gland Infiltration cellular, histiocytic	(9)			(10) 1 (10%) 1 (10%)
Thyroid gland Degeneration, cystic Follicular cell, hyperplasia	(9) 3 (33%)			(10) 1 (10%) 1 (10%)
General Body System None				
Genital System	<u></u>	· · · · <u>· · · · · · · · · · · · · · · </u>		
Ovary	(10)			(10)
Anglectasis	(10)	(6)	(9)	I (10%)
Frudate	(10)	(0)	(o) 4 (50%)	3 (30%)
Hyperplasia	1(10%)	2 (3570)	4 (50,0)	5 (50%)
Hyperplasia, cystic	9 (90%)	6 (100%)	8 (100%)	5 (50%)
Epithelium, hyperplasia, focal	、 <i>,</i>	1 (17%)		. ,
Hematopoietic System	<u></u>			
Lymph node	(10)	(1)		(10)
Bronchial, hyperplasia, lymphoid	(1 A)	1 (100%)		
Spleen	(10)	(2)	(1)	(10)
Pigmentation bemosiderin	1 (10%)	1 (50%)	1 (100%)	
Lymphoid follicle, hyperplasia		1(50%)	1 (10070)	
Thymus	(10)	- ()		(10)
Cyst	2 (20%)			2 (20%)
Integumentary System				· · · · · · · · · · · · · · · · · · ·
Skin	(10)	(2)		(10)
Hemorrhage		1 (50%)	ν.	
Inflammation, acute		1 (50%)		
Musculoskeletal System				
Bone	(10)			(10)
	1 (10%)			
Nervous System				
Brain Thelemus minemiliaction	(10)			(10)
i naiamus, mineralization	9 (90%)			/ (70%)

	0 ppm	666 ppm	2,000 ppm	6,000 ppm	
15-Month Interim Evaluation (continued)	····				
Respiratory System					
Lung	(10)		(1)	(10)	
Edema	1 (10%)		(-)		
Mediastinum, ectopic tissue				1 (10%)	
Nose	(10)	(5)	(10)	(10)	
Exudate				3 (30%)	
Glands, dilatation	1 (10%)		9 (90%)	10 (100%)	
Glands, hyperplasia		E (1000)	6 (60%)	10 (100%)	
Mucosa, degeneration, hyaline	7 (70%)	5 (100%)	6 (60%)	10 (100%)	
Olfactory epithelium, metaplasia			7 (70%)	10 (100%)	
Special Senses System None	·				
Urinary System				·.	
Kidney	(10)			(10)	
Casts protein	2 (20%)			4 (40%)	
Inflammation, chronic	6 (60%)			4 (40%)	
Mineralization	1 (10%)			3 (30%)	
Renal tubule, regeneration	2 (20%)			1 (10%)	
Urinary bladder	(10)			(10)	
Inflammation, chronic	4 (40%)			1 (10%)	
2-Year Study					
Alimentary System					
Gallbladder	(48)	(48)	(48)	(48)	
Cyst			1 (2%)		
Dilatation	2 (4%)		1 (2%)		
Hyperplasia, lymphoid	1 (2%)			3 (6%)	
Intestine large, cecum	(50)	(48)	(50)	(49)	
Edema	(10)	1 (2%)	(50)	(50)	
Intestine large, colon	(49)	(48)	(50)	(50)	
Edema	(50)	1 (2%)	(50)	(40)	
Information chronic	(30)	(30) 1 (2%)	(50)	(+)	
Intestine small duodenum	(50)	(49)	(50)	(49)	
Mucosa hyperplasia	1 (2%)	(12)	(30)	3 (6%)	
Intestine small ileum	(49)	(48)	(50)	(49)	
Hyperplasia, lymphoid	1 (2%)	()		1 (2%)	
Inflammation, pyogranulomatous	- (-//)		1 (2%)		
Liver	(50)	(50)	(50)	(50)	
Basophilic focus	3 (6%)				
Clear cell focus		1 (2%)	4 (8%)		
Cytologic alterations		1 (2%)	1 (2%)	1 (2%)	
Eosinophilic focus	11 (22%)	6 (12%)	21 (42%)	16 (32%)	
Fibrosis, focal	1 (2%)				
Hematopoietic cell proliferation	5 (10%)	2 (4%)	4 (8%)		
Homorrhogo	7 (10%)	1 (20%)		7 (102)	

	0 ppm	666 ppm	2,000 ppm	6,000 ppm	
2-Year Study (continued)					
Alimentary System (continued)					
Liver (continued)					
Hyperplasia, lymphoid	4 (8%)	3 (6%)	13 (26%)	6 (12%)	
Infarct	1 (2%)				
Inflammation, chronic	4 (8%)	10 (20%)	5 (10%)	13 (26%)	
Mineralization			1 (2%)		
Mixed cell focus		1 (2%)			
Centrilobular, necrosis	1 (2%)	1 (2%)	1 (2%)		
Hepatocyte, cytologic alterations		8 (16%)	13 (26%)	40 (80%)	
Hepatocyte, vacuolization cytoplasmic	2 (4%)	1 (2%)			
Kupffer cell, hyperplasia	3 (6%)	5 (10%)	1 (2%)		
Kupffer cell, pigmentation		3 (6%)		3 (6%)	
Lobules, necrosis	3 (6%)	8 (16%)	3 (6%)	2 (4%)	
Periportal, inflammation	1 (2%)				
Mesentery	(9) ໌	(7)	(5)	(2)	
Accessory spleen	1 (11%)				
Inflammation, suppurative		1 (14%)	1 (20%)		
Hyperplasia, lymphoid				2 (100%)	
Fat, hemorrhage			1 (20%)		
Fat, necrosis	6 (67%)	2 (29%)	1 (20%)	1 (50%)	
Pancreas	(50)	(50)	(50)	(50)	
Atrophy	1 (2%)	3 (6%)	2 (4%)	2 (4%)	
Cyst	2 (4%)	1 (2%)	1 (2%)	2 (4%)	
Cytoplasmic alteration	2 (4%)	3 (6%)	3 (6%)		
Focal cellular change	1 (2%)				
Hyperplasia, lymphoid	14 (28%)	8 (16%)	13 (26%)	7 (14%)	
Salivary glands	(49)	(50)	(50)	(50)	
Atrophy				1 (2%)	
Hyperplasia, lymphoid	18 (37%)	24 (48%)	19 (38%)	20 (40%)	
Stomach, forestomach	(50)	(50)	(50)	(50)	
Cyst		1 (2%)	1 (2%)		
Diverticulum	1 (2%)	3 (6%)	1 (2%)	2 (4%)	
Inflammation, chronic	1 (2%)	2 (4%)	2 (4%)	1 (2%)	
Inflammation, suppurative	3 (6%)	4 (8%)	3 (6%)	1 (2%)	
Mineralization	1 (2%)				
Ulcer	1 (2%)				
Mucosa, hyperplasia	7 (14%)	6 (12%)	7 (14%)	2 (4%)	
Stomach, glandular	(50)	(50)	(50)	(50)	
Cyst	17 (34%)	20 (40%)	13 (26%)	11 (22%)	
Dysplasia		1 (2%)	1 (2%)		
Edema	1 (2%)		1 (2%)	1 (2%)	
Epithelium, dilatation				1 (2%)	
Erosion	2 (4%)	4 (8%)	2 (4%)		
Infiltration cellular, plasma cell		1 (2%)			
Inflammation, chronic	1 (2%)	2 (4%)			
Inflammation, subacute	1 (2%)				
Mineralization		1 (2%)			
Mucosa, hyperplasia	1 (2%)				

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Feed Study of o-Nitroanisole (continued)

	0 ppm	666 ppm	2,000 ppm	6,000 ppm
2-Vear Study (continued)	· · · · · · · · · · · · · · · · · · ·			
Condiovocaulor System				
Usert	(50)	(60)	(50)	(50)
Enjoardium inflammation chronic	(30)	(50)	(50)	(50)
Epicardium, inflammation, curonic	1 (2%)	1 (20%)	1 (20%)	
Myocardium, fibrosis		1 (2%)	1 (2%)	
Myocardium, inflammation, chronic		1(270)	2 (60%)	1 (20%)
Myocardium, mineralization		1 (2%)	5 (0%)	1 (270)
Fudarine System			7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
Adrenal gland, cortex	(50)	(50)	(50)	(50)
Accessory adrenal cortical nodule	9 (18%)	7 (14%)	8 (16%)	14 (28%)
Basophilic focus	1 (2%)	2(4%)	2 (4%)	14 (2010)
Clear cell focus	1(2%)	2 ((//))	- (170)	
Cyst	3 (6%)	1 (2%)	2 (4%)	1 (2%)
Developmental malformation	0 (070)	1(2%)	2 (170)	3 (6%)
Hematopoietic cell proliferation	2 (4%)	1 (2/0)	3 (6%)	5 (0,0)
Hyperplasia, diffuse	- ()	1 (2%)	5 (0,0)	
Hyperplasia, focal	5 (10%)	6 (12%)	6 (12%)	4 (8%)
Capsule, hyperplasia	5 (10%)	2(4%)	• (1=/0)	2 (4%)
X-zone, degeneration, fatty	1 (2%)	-()		- ()
Adrenal gland, medulla	(50)	(50)	(50)	(50)
Hyperplasia	3 (6%)	4 (8%)		1 (2%)
Islets, pancreatic	(50)	(50)	(50)	(50)
Hyperplasia	10 (20%)	12 (24%)	7 (14%)	2 (4%)
Hyperplasia, lymphoid	()	1 (2%)		- (,
Parathyroid gland	(50)	(48)	(49)	(49)
Cyst		2 (4%)		2 (4%)
Ectopic thymus		~ /		2 (4%)
Hyperplasia	1 (2%)	1 (2%)		1 (2%)
Pituitary gland	(49)	(47)	(48)	(48)
Pars distalis, angiectasis	3 (6%)	2 (4%)	. ,	
Pars distalis, cyst		1 (2%)		1 (2%)
Pars distalis, hyperplasia	9 (18%)	10 (21%)	5 (10%)	
Pars intermedia, cyst	,			1 (2%)
Thyroid gland	(50)	(50)	(50)	(50)
Degeneration, cystic	23 (46%)	19 (38%).	25 (50%)	28 (56%)
Inflammation, chronic	2 (4%)	4 (8%)	2 (4%)	5 (10%)
Inflammation, suppurative	3 (6%)	2 (4%)		
Follicle, cyst		3 (6%)	2 (4%)	
Follicular cell, hyperplasia	9 (18%)	7 (14%)	4 (8%)	1 (2%)
General Body System				
Tissue NOS		, ³	(2)	(1)
Bacterium			1 (50%)	
Inflammation, suppurative		· · .	1 (50%)	

a sa sa sa sa sa sa sa

2-Year Study (continued) Genital System Chord gland (2) Extain 2 (100%) Pigmentation (200%) Caray (49) Caray (48) Caray (48) Caray (48) Hemoritage 12(2%) Information, spapurative 1(2%) Information, scancus 1(2%) Information 1(2%) Thrombus 1(2%) Carpus tatewain, spaparative 3(6%) 1 (2%) 1(2%) Carpus tatewain, spaparative 1(2%)		0 ppm	666 ррт	2,000 ppm	6,000 ppm	
	2-Year Study (continued)					
Clicoral ginal (2) (2) (2) (3) (4) (4) (50%) (4) (50%	Genital System					
Exase 2 (100%) 2 (100%) Inflammation, chronic 1 (50%) 1 (50%) Pignentation 2 (100%) 1 (50%) Oray (49) (50) (61) Oray (49) (10) (11) (21) Oray (49) (11) (23%) 11 (23%) 11 Oray (11) (12) (11) (12) (11) (12) Oray (12) (12) (12) (12) (12) (12) Oray (12) (12) (12) (12) (12) (12) Hemorrhage (12) (12) (12) (12) (12) (12) Inflammation, spupurative 3 (6%) 2 (4%) 4 (8) (12)	Clitoral gland		(2)	(2)		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ectasia		2 (100%)	2 (100%)		
	Inflammation, chronic		1 (50%)	1 (50%)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pigmentation		2 (100%)	1 (50%)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ovary	(49)	(50)	(48)	(50)	
$\begin{array}{cccc} Cyi & 20 & (41\%) & 17 & (24\%) & 11 & (23\%) & 10 & (20\%) \\ Fibrosis & 1 & (2\%) & 2 & (4\%) & 1 & (2\%) & 2 & (4\%) \\ Hyperplasis, symphoid & 1 & (2\%) & 2 & (4\%) & 1 & (2\%) & 1 & (2\%) \\ Inflammation, granulomatous & 1 & (2\%) &$	Angiectasis	12 (24%)	11 (22%)	6 (13%)	ì 12 (24%)	
Fibrois 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hemorrhage 1 (2%) 2 (4%) 1 (2%) 2 (4%) Inflammatics, granulomatous 1 (2%) 1 (2%) 1 (2%) Inflammatics, supportance 3 (5%) 2 (4%) 4 (8%) Mineralization 1 (2%) 1 (2%) Mineralization 1 (2%) 1 (2%) Thrombus 1 (2%) 1 (2%) Corpus luteum, hyperplasia 1 (2%) 1 (2%) Interstitial cell, hyperplasia 1 (2%) 1 (2%) Interstitial cell, hyperplasia 1 (2%) 1 (2%) Uterus (50) (50) (50) (50) Angiectasis 3 (6%) 3 (6%) 2 (4%) 1 (2%) Hyperplasia, synthoid 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hyperplasia, synthoid 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hyperplasia, synthoid 1 (2%) 1 (2%) 1 (2%) 1 (2%) Muceas, metaplasia, synthoid 1 (2%) 1 (2%) 1 (2%) Muceas, metaplasia, synthoid 1 (2%) 1 (2%) <	Cyst	20 (41%)	17 (34%)	11 (23%)	10 (20%)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fibrosis		1 (2%)			
Hyperplasia, tymphoid 1 (2%) 1 (2%) Inflammation, granulomatous 1 (2%) 1 (2%) Metaplasia, osseous 1 (2%) 1 (2%) Mineralization 1 (2%) 1 (2%) Pigmentation 1 (2%) 1 (2%) Thrombus 1 (2%) 1 (2%) Corpus luteum, hyperplasia 1 (2%) 1 (2%) Thrombus 1 (2%) 1 (2%) Cranulosa cell, hyperplasia 1 (2%) 1 (2%) Interstitial cell, hyperplasia 1 (2%) 1 (2%) Uterus 3 (6%) 3 (6%) 2 (4%) 1 (2%) Angiectasis 3 (6%) 3 (6%) 4 (9%) 1 (2%) Hydrometra 9 (18%) 11 (2%) 6 (12%) 2 (4%) Hydrometra 9 (18%) 1 (2%) 1 (2%) 1 (3%) Mucosa, netaplasia, squamous 1 (2%) 1 (2%) 1 (2%) Mucosa, netaplasia, squamous 1 (2%) 1 (2%) 2 (4%) Mycosine netaplasias 1 (2%) 1 (2%) 2 (4%) Mucosa, netaplasia squamous 1 (2%) 1 (2%) 1 (2%)	Hemorrhage	1 (2%)	2 (4%)	1 (2%)	2 (4%)	
	Hyperplasia, lymphoid		• •	1 (2%)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Inflammation, granulomatous	1 (2%)		. ,		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Inflammation, suppurative	3 (6%)	2 (4%)	4 (8%)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Metaplasia, osseous				1 (2%)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mineralization		1 (2%)			
$\begin{array}{c ccccc} Three Mathematical Science of the set of t$	Pigmentation		1 (2%)			
$\begin{array}{c} \mbox{Corpus luteum, hyperplasia} & 1 (2\%) \\ \mbox{Granulos cell, hyperplasia} & 1 (2\%) \\ \mbox{Thecal cell, hyperplasia} & 1 (2\%) \\ \mbox{Iterus} & (50) & (50) & (50) & (50) \\ \mbox{Angiectasis} & 3 (6\%) & 3 (6\%) & 2 (4\%) & 1 (2\%) \\ \mbox{Eudate} & 8 (16\%) & 4 (8\%) & 6 (12\%) & 2 (4\%) \\ \mbox{Hydrometra} & 9 (18\%) & 11 (22\%) & 6 (12\%) & 15 (30\%) \\ \mbox{Hyperplasia, systic} & 48 (96\%) & 46 (92\%) & 48 (96\%) & 47 (94\%) \\ \mbox{Hyperplasia, systic} & 48 (96\%) & 46 (92\%) & 48 (96\%) & 47 (94\%) \\ \mbox{Hyperplasia, systic} & 48 (96\%) & 46 (92\%) & 48 (96\%) & 47 (94\%) \\ \mbox{Hyperplasia, systic} & 1 (2\%) & 1 (2\%) \\ \mbox{Mineralization} & 1 (2\%) \\ \mbox{Necrosis} & 1 (2\%) & 1 (2\%) & 1 (2\%) \\ \mbox{Mucosa, dysplasia} & 2 (4\%) \\ \mbox{Myometrium, hyperplasia} & 1 (2\%) & 1 (2\%) & 2 (4\%) \\ \mbox{Myometrium, hyperplasia} & 1 (2\%) & 1 (2\%) & 1 (2\%) \\ \mbox{Hyperplasia, squamous} & 1 (2\%) & 1 (2\%) & 1 (2\%) \\ \mbox{Hyperplasia, squamous} & 1 (2\%) & 1 (2\%) & 1 (2\%) \\ \mbox{Hyperplasia, squamous} & 1 (2\%) & 1 (2\%) & 1 (2\%) \\ \mbox{Hyperplasia} & 1 (2\%) & 1 (2\%) & 1 (2\%) & 1 (2\%) \\ \mbox{Hyperplasia} & 1 (2\%) & 1 (2\%) & 1 (2\%) & 1 (2\%) \\ \mbox{Hyperplasia, hymphoid} & 1 (2\%) & 1 (2\%) & 1 (2\%) & 1 (2\%) \\ \mbox{Hyperplasia, hymphoid} & 1 (2\%) & 1 (2\%) & 1 (2\%) & 1 (2\%) \\ \mbox{Hile, hyperplasia, hymphoid} & 1 (2\%) & 1$	Thrombus				1 (2%)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Corpus luteum, hyperplasia				1 (2%)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Granulosa cell, hyperplasia				1 (2%)	
Interstitial cell, hyperplasia 1 (2%) Uterus (50) (50) (50) Angiectasis 3 (6%) 3 (6%) 2 (4%) 1 (2%) Exudate 8 (16%) 4 (8%) 6 (12%) 2 (4%) Hydrometra 9 (18%) 11 (2%) 6 (12%) 15 (30%) Hyperplasia, cynic 48 (96%) 46 (92%) 48 (96%) 47 (94%) Hyperplasia, hymphoid 1 (2%) 1 (2%) 1 (2%) Mineralization 1 (2%) 1 (2%) 1 (2%) Mucosa, dysplasia 1 (2%) 2 (4%) 4 (8%) Mucosa, etaplasia, squamous 1 (2%) 2 (4%) 4 (8%) Mucosa, metaplasia, squamous 1 (2%) 2 (4%) 2 (4%) Mucosa, metaplasia, squamous 1 (2%) 2 (4%) 2 (4%) Myperplasia 2 (4%) 2 (4%) 2 (4%) Hyperplasia 2 (4%) 1 (2%) 1 (2%) Hematopoletic System 1 (2%) 1 (2%) 1 (2%) Bone marrow (50) (50) (50) (50) Angiectasis 1 (2%) 1 (2%)	Thecal cell, hyperplasia				1 (2%)	
Uterus (50) (50) (50) (50) Angiectasis 3 (6%) 3 (6%) 2 (4%) 1 (2%) Exudate 8 (16%) 4 (8%) 6 (12%) 15 (30%) Hyperplasia, cystic 48 (96%) 46 (92%) 48 (96%) 47 (94%) Hyperplasia, lymphoid 1 (2%) 1 (2%) 1 (2%) 1 (2%) Mineralization 1 (2%) 1 (2%) 1 (2%) 1 (2%) Muccosa, dysplasia 1 (2%) 2 (4%) 4 (8%) Mucosa, dysplasia 1 (2%) 2 (4%) 4 (8%) Mucosa, dysplasia 1 (2%) 2 (4%) 2 (4%) Hematopoietic System 2 (4%) 2 (4%) 2 (4%) Hypercellularity 3 (6%) 10 (20%) 9 (18%) 2 (4%) Myelofibrosis 1 (2%) 1 (2%) 1 (2%) 1 (2%) Upmph node (50) (50) (50) (50) (50) Bronchial, hemorrhage 1 (2%) 1 (2%) 1 (2%) 1 (2%) Upmph node (50) (50) (50) (50) (50) (50) <	Interstitial cell, hyperplasia			1 (2%)		
Anglectasis 3 (6%) 3 (6%) 2 (4%) 1 (2%) Exudate 8 (16%) 4 (8%) 6 (12%) 2 (4%) Hydrometra 9 (18%) 11 (22%) 6 (12%) 15 (30%) Hyperplasia, cystic 48 (96%) 46 (92%) 48 (96%) 47 (94%) Hyperplasia, hymphoid 1 (2%) 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) 1 (2%) Muccsa, dysplasia 1 (2%) 2 (4%) 4 (8%) Muccsa, metaplasia, squamous 1 (2%) 2 (4%) 4 (8%) Myometrium, hyperplasia 2 (4%) 4 (8%) 2 (4%) Hematopoletic System 500 500 500 500 Bone marrow (50) (50) (50) (50) 4(%) Hypercellularity 3 (6%) 10 (2%) 1 (2%) 1 (2%) Hypercellularity 3 (6%) 10 (2%) 1 (2%) 1 (2%) Lymph node (50) (50) (50) (50) (50) 1 (2%) Iliae, hematopoietic cell proliferation 2 (4%) 1 (2%) 1 (2%) <td< td=""><td>Uterus</td><td>(50)</td><td>(50)</td><td>(50)</td><td>(50)</td><td></td></td<>	Uterus	(50)	(50)	(50)	(50)	
Endate 8 (16%) 4 (8%) 6 (12%) 2 (4%) Hydrometra 9 (18%) 11 (22%) 6 (12%) 15 (30%) Hyperplasia, cystic 48 (96%) 46 (92%) 48 (96%) 47 (94%) Hyperplasia, cystic 48 (96%) 47 (94%) 1 (2%) Inflammation, chronic 1 (2%) 1 (2%) Mineralization 1 (2%) 1 (2%) Necrosis 1 (2%) 2 (4%) Mucosa, dysplasia 2 (4%) 4 (8%) Mucosa, metaplasia, squamous 1 (2%) 2 (4%) Mucosa, metaplasia, squamous 1 (2%) 2 (4%) Mucosa, dysplasia 2 (4%) 4 (8%) Myometrium, hyperplasia 2 (4%) 4 (8%) Hematopoletic System 2 (4%) 2 (4%) Bone marrow (50) (50) (50) (50) Appendix 1 (2%) 1 (2%) 1 (2%) 1 (2%) Lymph node (50) (50) (50) (50) (50) Bronchial, henorrhage 1 (2%) 1 (2%) 1 (2%) 1 (2%) Iliac, hyperplasia, hymphoid	Angiectasis	3 (6%)	3 (6%)	2 (4%)	1 (2%)	
Hydrometra 9 (18%) 11 (22%) 6 (12%) 15 (30%) Hyperplasia, cystic 48 (96%) 46 (92%) 48 (96%) 47 (94%) Hyperplasia, tymphoid 1 (2%) 1 (2%) 1 (2%) Mineralization 1 (2%) 1 (2%) Mucosa, dysplasia 2 (4%) 4 (8%) Myometrium, hyperplasia 2 (4%) 4 (8%) Myometrium, hyperplasia 2 (4%) 2 (4%) Hematopoletic System 2 (4%) 2 (4%) Bone marrow (50) (50) (50) Angiectasis 1 (2%) 1 (2%) 2 (4%) Hypercellularity 3 (6%) 10 (20%) 9 (18%) 2 (4%) Myelofibrosis 1 (2%) 1 (2%) 1 (2%) 1 (2%) Lymph node (50) (50) (50) (50) 50) Bronchial, hemorrhage 1 (2%) 1 (2%) 1 (2%) 1 (2%) Iliac, hyperplasia, hymphoid 1 (2%) 4 (8%) 1 (2%) 1 (2%) Iliac, hyperplasia, hymphoid 2 (4%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)	Exudate	8 (16%)	4 (8%)	6 (12%)	2 (4%)	
Hyperplasia, cystic 48 (96%) 46 (92%) 48 (96%) 47 (94%) Hyperplasia, lymphoid 1 (2%) 1 (2%) Inflammation, chronic 1 (2%) Mineralization 1 (2%) Necrosis 1 (2%) Mucosa, dysplasia 2 (4%) Mucosa, dysplasia 2 (4%) Mucosa, dysplasia 2 (4%) Myometrium, hyperplasia 2 (4%) Hematopoletic System 2 (4%) Bone marrow (50) (50) (50) Agiectasis 1 (2%) 1 (2%) Hypercellularity 3 (6%) 10 (20%) 9 (18%) 2 (4%) Myelofibrosis 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hypercellularity 3 (6%) 10 (20%) 9 (18%) 2 (4%) Myelofibrosis 1 (2%) 1 (2%) 1 (2%) 1 (2%) Iliac, hematopoietic cell proliferation 2 (4%) 1 (2%) 1 (2%) 1 (2%) Iliac, hyperplasia, hymphoid 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) Iliac, hyperplasia, lymphoid 2 (4%) <	Hydrometra	9 (18%)	11 (22%)	6 (12%)	15 (30%)	
Hyperplasia, lymphoid 1 (2%) Inflammation, chronic 1 (2%) Mineralization 1 (2%) Necrosis 1 (2%) Mucosa, dysplasia 2 (4%) Mucosa, metaplasia, squamous 1 (2%) Myometrium, hyperplasia 2 (4%) Hematopoietic System 2 (4%) Bone marrow (50) (50) (50) Angiectasis 1 (2%) 1 (2%) Hypercellularity 3 (6%) 10 (20%) 9 (18%) 2 (4%) Myelofibrosis 1 (2%) 1 (2%) 1 (2%) Lymph node (50) (50) (50) (50) Bronchial, hemorrhage 1 (2%) 1 (2%) 1 (2%) Iliac, hyperplasia, plasma cell 1 (2%) 1 (2%) 1 (2%) Iliac, hyperplasia, hymphoid 1 (2%) 4 (8%) 1 (2%) Mediastinal, hyperplasia, plasma cell 3 (6%) 1 (2%) 4 (8%) Mediastinal, hyperplasia, plasma cell 3 (6%) 1 (2%) 4 (8%) Mediastinal, inflammation, supurative 2 (4%) 2 (4%) Mediastinal, inflammation, supurative 2	Hyperplasia, cystic	48 (96%)	46 (92%)	48 (96%)	47 (94%)	
Inflammation, chronic1 (2%)Mineralization1 (2%)Necrosis1 (2%)Mucosa, dysplasia2 (4%)Mucosa, metaplasia, squamous1 (2%)Myometrium, hyperplasia2 (4%)Hematopoietic SystemBone marrow(50)Angicetasis1 (2%)Hypercellularity3 (6%)Myelofibrosis1 (2%)Lymph node(50)(50)(50)Bronchial, hemorrhage1 (2%)Iliac, hyperplasia, hymphoid1 (2%)Iliac, hyperplasia, hymphoid1 (2%)Iliac, hyperplasia, hymphoid1 (2%)Mediastinal, hyperplasia, hymphoid2 (4%)Mediastinal, hyperplasia, hymphoid2 (4%)Mediastinal, hyperplasia, hymphoid2 (4%)Mediastinal, hyperplasia, plasma cell3 (6%)1 (2%)4 (8%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferation2 (4%)Mediastinal, necrosis1 (2%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferation2 (4%)Mediastinal, necrosis1 (2%)	Hyperplasia, lymphoid	÷		1 (2%)		
Mineralization1 (2%)Necrosis1 (2%)Mucosa, dysplasia2 (4%)Mucosa, dysplasia2 (4%)Mucosa, metaplasia, squamous1 (2%)Myometrium, hyperplasia2 (4%)Hematopoietic SystemBone marrow(50)Angiectasis1 (2%)Hypercellularity3 (6%)MyeloBrosis1 (2%)Lymph node(50)(50)(50)Bronchial, hemorrhage1 (2%)Iliac, hematopoietic cell proliferation2 (4%)Iliac, hyperplasia, plasma cell1 (2%)Iliac, hyperplasia, plasma cell1 (2%)Mediastinal, hyperplasia, plasma cell3 (6%)Mediastinal, hyperplasia, plasma cell3 (6%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferation2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferation2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferation2 (4%)	Inflammation, chronic			1 (2%)		
Necrosis1 (2%)Mucosa, dysplasia2 (4%)Mucosa, metaplasia, squamous1 (2%)Myometrium, hyperplasia2 (4%)Hematopoietic System2 (4%)Bone marrow(50)Angiectasis1 (2%)Hypercellularity3 (6%)Hypercellularity3 (6%)Myolofibrosis1 (2%)Lymph node(50)(50)(50)Bronchial, hemorrhage1 (2%)Iliac, hematopoietic cell proliferation2 (4%)Iliac, hyperplasia, plasma cell1 (2%)Iliac, hyperplasia, lymphoid1 (2%)Mediastinal, hyperplasia, lymphoid2 (4%)Mediastinal, hyperplasia, plasma cell3 (6%)I (2%)4 (8%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferstion2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferstion2 (4%)	Mineralization			1 (2%)		
Mucosa, otspiasia $2 (4\%)$ Mucosa, metaplasia, squamous $1 (2\%)$ $2 (4\%)$ Myometrium, hyperplasia $2 (4\%)$ $4 (8\%)$ Hematopoletic System $2 (4\%)$ $2 (4\%)$ Bone marrow (50) (50) (50) Angiectasis $1 (2\%)$ $1 (2\%)$ $1 (2\%)$ Hypercellularity $3 (6\%)$ $10 (20\%)$ $9 (18\%)$ $2 (4\%)$ Myelofibrosis $1 (2\%)$ $1 (2\%)$ $1 (2\%)$ Lymph node (50) (50) (50) (50) Bronchial, hemorrhage $1 (2\%)$ $1 (2\%)$ Iliac, hyperplasia, lymphoid $1 (2\%)$ $1 (2\%)$ Iliac, hyperplasia, lymphoid $1 (2\%)$ $1 (2\%)$ Mediastinal, hyperplasia, lymphoid $2 (4\%)$ Mediastinal, hyperplasia, lymphoid $2 (4\%)$ Mediastinal, necrosis $1 (2\%)$ $4 (8\%)$ Mediastinal, necrosis $1 (2\%)$ $2 (4\%)$	Necrosis			1 (2%)		
Mucosa, metaplasia, squamous 1 (2%) 2 (4%) 4 (8%) Myometrium, hyperplasia 2 (4%) 4 (8%) Hematopoietic System 2 (4%) 2 (4%) Bone marrow (50) (50) (50) Angicctasis 1 (2%) 1 (2%) 1 (2%) Hypercellularity 3 (6%) 10 (20%) 9 (18%) 2 (4%) Myelofibrosis 1 (2%) 1 (2%) 1 (2%) 1 (2%) Lymph node (50) (50) (50) (50) (50) Bronchial, hemorrhage 1 (2%) 1 (2%) 1 (2%) 1 (2%) Iliac, hyperplasia, lymphoid 1 (2%) 1 (2%) 1 (2%) 1 (2%) Iliac, hyperplasia, plasma cell 1 (2%) 4 (8%) 1 (2%) 1 (2%) Mediastinal, hyperplasia, lymphoid 1 (2%) 4 (8%) 1 (2%) Mediastinal, hyperplasia, plasma cell 3 (6%) 1 (2%) 4 (8%) 1 (2%) Mediastinal, hyperplasia, plasma cell 3 (6%) 1 (2%) 4 (8%) 1 (2%) 1 (2%) Mediastinal, necrosis 1 (2%) 2 (4%) 1 (2%) 1 (2%) 1 (2%)	Mucosa, dysplasia				2 (4%)	
Myometrium, hyperplasia 2 (4%) Hematopoietic System Bone marrow (50) (50) (50) (50) Angiectasis 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hypercellularity 3 (6%) 10 (20%) 9 (18%) 2 (4%) Myelofibrosis 1 (2%) 1 (2%) 1 (2%) Lymph node (50) (50) (50) (50) Bronchial, hemorrhage 1 (2%) 1 (2%) 1 (2%) Iliac, hematopoietic cell proliferation 2 (4%) 1 (2%) Iliac, hyperplasia, hymphoid 1 (2%) 4 (8%) Inguinal, hyperplasia, plasma cell 1 (2%) 4 (8%) Mediastinal, hyperplasia, plasma cell 3 (6%) 1 (2%) Mediastinal, inflammation, suppurative 2 (4%) 4 (8%) Mediastinal, necrosis 1 (2%) 4 (8%) Mediastinal, necrosis 1 (2%) 4 (8%) Pancreatic, hematopoietic cell proliferation 1 (2%) 4 (8%)	Mucosa, metaplasia, squamous		1 (2%)	2 (4%)	4 (8%)	
Hematopoietic SystemBone marrow (50) (50) (50) (50) Bone marrow $1 (2\%)$ $1 (2\%)$ $1 (2\%)$ Angiectasis $1 (2\%)$ $1 (2\%)$ $1 (2\%)$ Hypercellularity $3 (6\%)$ $10 (20\%)$ $9 (18\%)$ $2 (4\%)$ Myelofibrosis $1 (2\%)$ $1 (2\%)$ $1 (2\%)$ Lymph node (50) (50) (50) (50) Bronchial, hemorrhage $1 (2\%)$ $1 (2\%)$ Iliac, hematopoietic cell proliferation $2 (4\%)$ Iliac, hyperplasia, hymphoid $1 (2\%)$ Iliac, hyperplasia, plasma cell $1 (2\%)$ Mediastinal, hyperplasia, lymphoid $2 (4\%)$ Mediastinal, hyperplasia, plasma cell $3 (6\%)$ $1 (2\%)$ Mediastinal, inflammation, suppurative $2 (4\%)$ Mediastinal, necrosis $1 (2\%)$ Pancreatic, hematopoietic cell proliferation $1 (2\%)$	Myometrium, hyperplasia				2 (4%)	
Bone marrow (50) (50) (50) (50) (50) Angiectasis1 (2%)1 (2%)1 (2%)Hypercellularity3 (6%)10 (20%)9 (18%)2 (4%)Myelofibrosis1 (2%)1 (2%)1 (2%)Lymph node (50) (50) (50) (50) Bronchial, hemorrhage (50) (50) (50) (50) Bronchial, hemorrhage1 (2%) (4%) (12%) Iliac, hematopoietic cell proliferation2 (4%) (12%) Iliac, hyperplasia, lymphoid1 (2%) 4 (8%)Inguinal, hyperplasia, plasma cell1 (2%) (2%) Mediastinal, hyperplasia, plasma cell3 (6%)1 (2%)Mediastinal, hyperplasia, plasma cell3 (6%)1 (2%)Mediastinal, necrosis1 (2%) (2%) Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferzion1 (2%)	Hematopoietic System					
Angiectasis1 (2%)1 (2%)1 (2%)Hypercellularity3 (6%)10 (20%)9 (18%)2 (4%)Myelofibrosis1 (2%)1 (2%)1 (2%)Lymph node(50)(50)(50)(50)Bronchial, hemorrhage1 (2%)1 (2%)Iliac, hematopoietic cell proliferation2 (4%)Iliac, hyperplasia, lymphoid1 (2%)Iliac, hyperplasia, plasma cell1 (2%)Mediastinal, hyperplasia, lymphoid2 (4%)Mediastinal, hyperplasia, plasma cell3 (6%)Mediastinal, hyperplasia, plasma cell3 (6%)Mediastinal, niflammation, suppurative2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferztion1 (2%)	Bone marrow	(50)	(50)	(50)	(50)	
Hypercellularity Myelofibrosis $3 (6\%)$ $10 (20\%)$ $9 (18\%)$ $2 (4\%)$ $1 (2\%)$ Lymph node $1 (2\%)$ $1 (2\%)$ $1 (2\%)$ $1 (2\%)$ Lymph node (50) (50) (50) (50) Bronchial, hemorrhage $1 (2\%)$ $1 (2\%)$ $1 (2\%)$ Iliac, hematopoietic cell proliferation $2 (4\%)$ $1 (2\%)$ Iliac, hyperplasia, lymphoid $1 (2\%)$ $4 (8\%)$ Iliac, hyperplasia, plasma cell $1 (2\%)$ $4 (8\%)$ Inguinal, hyperplasia, lymphoid $2 (4\%)$ $1 (2\%)$ Mediastinal, hyperplasia, plasma cell $3 (6\%)$ $1 (2\%)$ Mediastinal, inflammation, suppurative $2 (4\%)$ Mediastinal, necrosis $1 (2\%)$ Pancreatic, hematopoietic cell proliferation $1 (2\%)$	Angiectasis	1 (2%)	1 (2%)	1 (2%)		
Myelofibrosis1 (2%)1 (2%)1 (2%)Lymph node(50)(50)(50)(50)Bronchial, hemorrhage1 (2%)1 (2%)Iliac, hematopoietic cell proliferation2 (4%)1 (2%)Iliac, hyperplasia, lymphoid1 (2%)4 (8%)Iliac, hyperplasia, plasma cell1 (2%)4 (8%)Inguinal, hyperplasia, lymphoid2 (4%)1 (2%)Mediastinal, hyperplasia, lymphoid2 (4%)2 (4%)Mediastinal, hyperplasia, plasma cell3 (6%)1 (2%)Mediastinal, inflammation, suppurative2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferztion1 (2%)	Hypercellularity	3 (6%)	10 (20%)	9 (18%)	2 (4%)	
Lymph node(50)(50)(50)(50)Bronchial, hemorrhage1 (2%)Iliac, hematopoietic cell proliferation2 (4%)Iliac, hyperplasia, lymphoid1 (2%)Iliac, hyperplasia, plasma cell1 (2%)Inguinal, hyperplasia, lymphoid1 (2%)Mediastinal, hyperplasia, lymphoid2 (4%)Mediastinal, hyperplasia, plasma cell3 (6%)1 (2%)Mediastinal, inflammation, suppurative2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferztion1 (2%)	Myelofibrosis	1 (2%)		1 (2%)	1 (2%)	
Bronchial, hemorrhage1 (2%)Iliac, hematopoietic cell proliferation2 (4%)Iliac, hyperplasia, lymphoid1 (2%)Iliac, hyperplasia, plasma cell1 (2%)Inguinal, hyperplasia, lymphoid1 (2%)Mediastinal, hyperplasia, lymphoid2 (4%)Mediastinal, hyperplasia, plasma cell3 (6%)Mediastinal, inflammation, suppurative2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferztion1 (2%)	Lymph node	(50)	(50)	(50)	(50)	
Iliac, hematopoietic cell proliferation2 (4%)Iliac, hyperplasia, lymphoid1 (2%)Iliac, hyperplasia, plasma cell1 (2%)Inguinal, hyperplasia, lymphoid1 (2%)Mediastinal, hyperplasia, lymphoid2 (4%)Mediastinal, hyperplasia, plasma cell3 (6%)Mediastinal, inflammation, suppurative2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferation1 (2%)	Bronchial, hemorrhage		1 (2%)			
Iliac, hyperplasia, lymphoid1 (2%)Iliac, hyperplasia, plasma cell1 (2%)Inguinal, hyperplasia, lymphoid1 (2%)Mediastinal, hyperplasia, lymphoid2 (4%)Mediastinal, hyperplasia, plasma cell3 (6%)1 (2%)Mediastinal, inflammation, suppurative2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferztion1 (2%)	Iliac, hematopoietic cell proliferation	• •	2 (4%)			
Iliac, hyperplasia, plasma cell1 (2%)4 (8%)Inguinal, hyperplasia, lymphoid1 (2%)Mediastinal, hyperplasia, lymphoid2 (4%)Mediastinal, hyperplasia, plasma cell3 (6%)1 (2%)Mediastinal, inflammation, suppurative2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferztion1 (2%)	Iliac, hyperplasia, lymphoid		1 (2%)			
Inguinal, hyperplasia, lymphoid1 (2%)Mediastinal, hyperplasia, lymphoid2 (4%)Mediastinal, hyperplasia, plasma cell3 (6%)1 (2%)4 (8%)Mediastinal, inflammation, suppurative2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferztion1 (2%)	lliac, hyperplasia, plasma cell	1 (2%)		4 (8%)		
Mediastinal, hyperplasia, lymphoid2 (4%)Mediastinal, hyperplasia, plasma cell3 (6%)1 (2%)4 (8%)Mediastinal, inflammation, suppurative2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferation1 (2%)	Inguinal, hyperplasia, lymphoid	a		1 (2%)		
Mediastinal, hyperplasia, plasma cell3 (6%)1 (2%)4 (8%)Mediastinal, inflammation, suppurative2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferztion1 (2%)	Mediastinal, hyperplasia, lymphoid	2 (4%)				
Mediastinal, inflammation, suppurative2 (4%)Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferation1 (2%)	Mediastinal, hyperplasia, plasma cell	3 (6%)	1 (2%)	4 (8%)		
Mediastinal, necrosis1 (2%)Pancreatic, hematopoietic cell proliferation1 (2%)	Mediastinal, inflammation, suppurative			2 (4%)		
Pancreatic, hematopoietic cell proliferation 1 (2%)	Mediastinal, necrosis		1 (2%)			
	rancreatic, nematopoletic cell proliferation		1 (2%)			

	0 ррт	666 ррт	2,000 ppm	6,000 ppm
2-Year Study (continued)		<u> </u>		
Hematopoietic System (continued)				
Lymph node (continued)				
Pancreatic, hemorrhage		1 (2%)		
Pancreatic, hyperplasia, plasma cell		1(2%)		
Renal, hyperplasia, lymphoid	1 (2%)	- (-//)		
Renal, hyperplasia, plasma cell	1 (2%)		4 (8%)	
Renal, inflammation, suppurative	1 (2%)			
Lymph node, mandibular	(49)	(49)	(49)	(49)
Hematopoietic cell proliferation	1 (2%)		í (2%)	
Hemorrhage	1 (2%)			
Hyperplasia, lymphoid	2 (4%)	2 (4%)	1 (2%)	
Hyperplasia, mast cell	1 (2%)			
Hyperplasia, plasma cell	1 (2%)	1 (2%)		
Lymph node, mesenteric	(47)	(47)	(48)	(48)
Depletion	1 (2%)	1 (2%)		
Hematopoietic cell proliferation	3 (6%)	4 (9%)	5 (10%)	
Hemorrhage	4 (9%)	6 (13%)	9 (19%)	5 (10%)
Hyperplasia, lymphoid	2 (4%)		2 (4%)	1 (2%)
Hyperplasia, plasma cell	1 (2%)		2 (4%)	· · ·
Inflammation, suppurative			1 (2%)	
Spleen	(50)	(50)	(50)	(50)
Congestion	2 (4%)	1 (2%)	1 (2%)	1 (2%)
Hematopoietic cell proliferation	14 (28%)	25 (50%)	17 (34%)	4 (8%)
Pigmentation, hemosiderin	9 (18%)	4 (8%)	12 (24%)	1 (2%)
Lymphoid follicle, atrophy	1 (2%)	1 (2%)	1 (2%)	5 (1000)
Lymphoid Iollicle, hyperplasia	21 (42%)	8 (16%)	11(22%)	5 (10%)
Red pulp, alrophy	1 (2%)	1 (201)	2 (4%)	
Thumus	4 (8%)	1 (2%)	3 (0%) (47)	(40)
Angiostosia	(47)	(44)	(47)	(49)
Angiectasis	1 (270)	2 (370) 9 (20%)	1(2%)	2 (6%)
Depletion	2 (10%)	5 (11%)	2 (4%) 5 (11%)	3 (0%)
Hyperplasia lymphoid	2(4%)	1(2%)	$\frac{1}{2}$	
Inflammation supportive	2 (470)	1(2%)	1 (270)	
Epithelial cell, hyperplasia		1 (270)	1 (2%)	- ·
Integumentary System	· · · · · ·	· · · · ·		· · ·
Mammary oland	(50)	(50)	(50)	(50)
Hyperplasia cystic	7 (14%)	7 (14%)	7 (14%)	2 (4%)
Hyperplasia, lobular	2(4%)	1(2%)	2(4%)	6 (12%)
Inflammation, chronic	2 (170)	1 (270)	$\frac{1}{2}(1.0)$	0 (12/0)
Skin	(50)	(50)	(50)	(50)
Acanthosis	1 (2%)	()	4 (8%)	1 (2%)
Inflammation, chronic	- (-//)		2 (4%)	1 (2%)
Ulcer			1(2%)	- ()
Subcutaneous tissue, edema		1 (2%)	1 (2%)	
Musculoskeletal System				
Bone	(50)	(50)	(50)	(50)
Hyperostosis	18 (36%)	12 (24%)	13 (26%)	11 (22%)
Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Feed Study of *o*-Nitroanisole (continued)

	0 ppm	666 ppm	2,000 ppm	6,000 ррт	
2-Year Study (continued)					
Nervous System					
Brain	(49)	(50)	(50)	(50)	
Compression	(0)	(50)	1 (2%)	(50)	
Cvst		1 (2%)	- (-//)	2 (4%)	
Hemorrhage		1 (2%)		= (())	
Hydrocenhalus	1 (2%)	1 (2%)	1 (2%)		
Pigmentation	1(2%)	- (-//)	- (-//)		
Cerebrum, necrosis	- (-//)	1 (2%)			
Hippocampus, necrosis	1 (2%)	- (-,,,)			
Thalamus, mineralization	39 (80%)	45 (90%)	44 (88%)	43 (86%)	
Respiratory System			=		
	(50)	(50)	(50)	(50)	
Congestion	3 (6%)	1 (2%)	(30)	(50)	
Hemorrhage	2 (4%)	- (-//)	3 (6%)	3 (6%)	
Hyperplasia, lymphoid	17 (34%)	19 (38%)	19 (38%)	20 (40%)	
Infiltration cellular, histiocyte	4 (8%)	6 (12%)	4 (8%)	20 (1070)	
Inflammation, chronic		• (-2/0)	. (0,0)	2 (4%)	
Inflammation, suppurative	3 (6%)	1 (2%)	1 (2%)	- (())	
Leukocytosis		- (-/-)	1 (2%)		
Thrombus	2 (4%)		- (-//)		
Alveolar epithelium, hyperplasia	2 (4%)	3 (6%)		1 (2%)	
Bronchiole, epithelium, proliferation	-()	3 (6%)	5 (10%)	4 (8%)	
Nose	(50)	(50)	(50)	(50)	
Exudate	6 (12%)	5 (10%)	27 (54%)	49 (98%)	
Glands, dilatation	9 (18%)	12 (24%)	36 (72%)	49 (98%)	
Glands, hyperplasia	2 (4%)	4 (8%)	34 (68%)	50 (100%)	
Mucosa, degeneration, hyaline	8 (16%)	7 (14%)	12 (24%)	45 (90%)	
Mucosa, hyperplasia	1 (2%)				
Olfactory epithelium, cyst			2 (4%)	6 (12%)	
Olfactory epithelium, metaplasia	1 (2%)	1 (2%)	20 (40%)	49 (98%)	
Trachea	(50)	(50)	(50)	(50)	
Inflammation, suppurative		1 (2%)			
Special Senses System					
Eye	(1)	(1)			
Cataract	1 (100%)	N = 7			
Phthisis bulbi	- ()	1 (100%)			
Cornea, hyperplasia	1 (100%)	- (•••••)			
Cornea, inflammation, chronic active	1 (100%)				

TABLE D5

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Feed Study of *o*-Nitroanisole (continued)

	0 ppm	666 ppm	2,000 ppm	6,000 ppm	
2-Year Study (continued)					•.
Urinary System					
Kidney	(50)	(50)	(50)	(50)	
Casts protein	20 (40%)	18 (36%)	19 (38%)	30 (60%)	
Cyst	4 (8%)	2 (4%)	4 (8%)		
Glomerulosclerosis	2 (4%)		1 (2%)		
Fibrosis				1 (2%)	
Hyperplasia, lymphoid	22 (44%)	21 (42%)	23 (46%)	14 (28%)	
Inflammation, chronic	1 (2%)		· · ·		
Inflammation, suppurative	2 (4%)				
Metaplasia, osseous	1 (2%)	1 (2%)	1 (2%)	6 (12%)	
Mineralization	22 (44%)	18 (36%)	12 (24%)	9 (18%)	
Glomerulus, hyperplasia			1 (2%)		
Glomerulus, necrosis		1 (2%)			
Interstitial tissue, pigmentation		1 (2%)			
Renal tubule, atrophy	2 (4%)	1 (2%)	3 (6%)		
Renal tubule, cytoplasmic alteration	1 (2%)		2 (4%)		
Renal tubule, dilatation	5 (10%)	5 (10%)	3 (6%)		
Renal tubule, necrosis	1 (2%)	3 (6%)			
Renal tubule, pigmentation	2 (4%)	1 (2%)	1 (2%)		
Renal tubule, regeneration	33 (66%)	28 (56%)	17 (34%)	12 (24%)	
Urinary bladder	(50)	(50)	(50)	(50)	
Edema	2 (4%)	3 (6%)		1 (2%)	
Hyperplasia.lymphoid	27 (54%)	24 (48%)	25 (50%)	23 (46%)	
Inflammation, granulomatous				1 (2%)	
Transitional epithelium, degeneration.					
ballooning	1 (2%)				

^a Number of animals examined microscopically at site and number of animals with lesion.

APPENDIX E

SUMMARY OF LESIONS IN MALE RATS IN THE STOP-EXPOSURE FEED STUDY OF @-NITROANISOLE

TABLE	E1	Summary of the Incidence of Neoplasms in Male Rats	
		in the Stop-Exposure Feed Study of o-Nitroanisole	286
TABLE	E2a	Individual Animal Tumor Pathology of Male Rats	
		at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study	
		of o-Nitroanisole	292
TABLE	E2b	Individual Animal Tumor Pathology of Male Rats	
		at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study	
		of o-Nitroanisole	298
TABLE	E2c	Individual Animal Tumor Pathology of Male Rats	
		at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study	
		of o-Nitroanisole	304
TABLE	E2d	Individual Animal Tumor Pathology of Male Rats	
		at the 15-Month Interim Evaluation in the Stop-Exposure Feed Study	
		of o-Nitroanisole	310
TABLE	E2e	Individual Animal Tumor Pathology of Male Rats	
		in the Stop-Exposure Feed Study of o-Nitroanisole	314
TABLE	E3	Statistical Analysis of Primary Neoplasms in Male Rats	
		in the Stop-Exposure Study of o-Nitroanisole	326
TABLE	E4	Summary of the Incidence of Nonneoplastic Lesions in Male Rats	
		in the Stop-Exposure Feed Study of o-Nitroanisole	330

Summary of the Incidence of Neoplasms in Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole^a

· · · ·	0 ppm	6,000 ppm	18,000 ppm	
Disposition Summary				
Animals initially in study	60	60	60	
3-Month interim evaluation	10	10	10	
6-Month interim evaluation	10	10	10	
9-Month interim evaluation	10	10	6	
15-Month interim evaluation	9	3	0	
Early deaths				
Moribund	7	26	23	
Natural deaths	1		11	
Survivors	10			_ *
Terminal sacrifice	13	1	U	
Animals examined microscopically	60	60	60	
3-Month Interim Evaluation ^b				
Urinary System				
Urinary bladder	(9)	(9)	(10)	
Transitional epithelium, carcinoma	~ ~ ~	~~~	1 (10%)	
Neoplasm Summary				
Total animals with primary neoplasms ^b			1	• 1
Total primary neoplasms			.1.	i
Total animals with malignant neoplasms			1	
Total malignant neoplasms		• ·	1	
6-Month Interim Evaluation ^b				· · · · · ·
Alimentary System				
Intestine large, colon			(3)	
Polyp adenomatous			2 (67%)	
Stomach, forestomach		(2)	_ (,	
Papilloma squamous		1 (50%)		
Urinary bladder	(10)	(10)	(10)	
Sarcoma	(10)	(10)	2 (20%)	
Transitional epithelium, carcinoma			10 (100%)	
Transitional epithelium, papilloma		2 (20%)		
Neonlasm Summary				·
Total animals with primary peoplasms		3	10	
Total primary neoplasms		3	14	
Total animals with benign neoplasms		3	2	
Total benign neoplasms		3	2	
Total animals with malignant neoplasms			10	
Total malignant neoplasms			12	

Summary of the Incidence of Neoplasms in Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ppm	б,000 ррт	18,000 ppm	
9-Month Interim Evaluation ^b				
Alimentary System				
Intestine large, colon		(2)	(4) 1 (25%)	
Polyn adenomatous		1 (50%)	1(25%)	
Polyp adenomatous, multiple		1 (50%)	3 (75%)	
Urinary System	· · · · · · · · · · · · · · · · · · ·			
Kidney	(10)	(10)	(6)	
Transitional epithelium, carcinoma			2 (33%)	
Iransitional epitnenum, papilloma	(10)	(10)	1 (17%)	
Squamous cell carcinoma	(10)	(10)	(0)	
Transitional epithelium, carcinoma		3 (30%)	6 (100%)	
Transitional epithelium, papilloma		2 (20%)	、 <i>、</i>	
Neoplasm Summary	·····			
Total animals with primary neoplasms		6	6	
Total primary neoplasms		7	15	
Total benign neoplasms		4	4	
Total animals with malignant neoplasms		3	6	
Total malignant neoplasms		3	10	
15-Month Interim Evaluation	· ·	<u></u>	<u></u>	
Alimentary System				
Intestine large, colon		(3)		
Polyp adenomatous		1(33%)		
Polyp adenomatous, multiple		2 (67%)		
Cardiovascular System None				
Endocrine System				
Pituitary gland	(1)			
Pars distalis, adenoma	1 (100%)			
General Body System None				
Genital System	·			
Epididymis	(9)	(3)		
Testes	(9)	(3)		
Bilateral, interstitial cell, adenoma	3 (33%) 3 (22%)	3 (100%)		
	3 (33%)			

Summary of the Incidence of Neoplasms in Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ppm	6,000 ppm	18,000 ppm
15-Month Interim Evaluation (continued) Hematopoietic System None		, , , , , , , , , , , , , , , , ,	
Integumentary System Skin Squamous cell papilloma	(2) 1 (50%)		
Musculoskeletal System None			· · · · · ·
Nervous System None	· · · · · · · · · · · · · · · · · · ·		
Respiratory System Lung Alveolar/bronchiolar adenoma	(1) 1 (100%)		
Special Senses System None	<u> </u>		· · ·
Urinary System Urinary bladder Sarcoma Transitional epithelium, carcinoma Transitional epithelium, papilloma	(9)	(3) 1 (33%) 1 (33%) 2 (67%)	
Systemic Lesions Multiple organs ^d Mesothelioma malignant	(9)	(3) 2 (67%)	
Neoplasm Summary Total animals with primary neoplasms Total primary neoplasms Total animals with benign neoplasms Total benign neoplasms Total animals with malignant neoplasms Total malignant neoplasms	6 9 6 9	3 12 3 8 3 4	

Table E1

Summary of the Incidence of Neoplasms in Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 p		6.000 ppm	18,000 ppm	
	F	F			
Stop-Exposure Study					
Alimentary System					
Intestine large, cecum	(1)		(21)	(28)	
Polyp adenomatous, multiple	(1)		1 (5%)	(28)	
Intestine large, colon	(1)		(21)	(28)	
Carcinoma				3(11%)	
Carcinoma, multiple			0 (2001)	1 (4%)	
Polyp adenomatous			8 (38%)	8 (29%)	
Polyp adenomatous, multiple			10 (48%)	16 (57%)	
Intestine large, rectum	(1)		(21)	(28)	
Polyp adenomatous			4 (19%)	1 (4%)	
Polyp adenomatous, multiple			2 (10%)		
Liver	(21)		(27)	(34)	
Hepatocellular carcinoma	1	(5%)		<i>(</i> 1)	
Mesentery	(3)		(3)	(1)	
Squamous cell carcinoma, metastatic,					
urinary bladder				1 (100%)	
Pancreas	(1)		(4)		
Acinar cell, adenoma			1 (25%)		
Stomach, forestomach	(3)		(10)	(6)	
Squamous cell papilloma			2 (20%)	1 (17%)	
Squamous cell papilloma, multiple			1 (10%)		
Tooth	(1)				
Adamantinoma malignant	1	(100%)			
Cardiovascular System None					
Endocrine System					
Adrenal gland, cortex	(2)		(2)		
Adrenal gland, medulla	(2)		(2)		
Pheochromocytoma benign	()		2 (100%)		
Bilateral, pheochromocytoma benign	1	(50%)	= (100,0)		
Pituitary gland	$\overline{\sigma}$	(00,0)			
Pars distalis, adenoma	6	(86%)			
Pars intermedia, adenoma	1	(14%)			
General Body System					
Genital System					•
Epididymis	(21)		(27)	(34)	
Preputial gland	(6)		(6)		
Adenoma	. ,		1 (17%)		
Carcinoma	2	(33%)	1 (17%)		
Bilateral, adenoma	1	(17%)	• •		
Prostate			(4)	(5)	
Sarcoma, metastatic, urinary bladder				1 (20%)	
Squamous cell carcinoma, metastatic, urinary					
bladder				2 (40%)	

Summary of the Incidence of Neoplasms in Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ppm	6,000 ppm	18,000 ppm
Stop-Exposure Study (continued)		· · · · · · · · · · · · · · · · · · ·	
Testes	(21)	(27)	(34)
Bilateral, interstitial cell, adenoma	17 (81%)	9 (33%)	(34)
Interstitial cell, adenoma	3 (14%)	11 (41%)	
Hematopoietic System	<u> </u>	······································	
Lymph node	(14)	(16)	(6)
Inguinal, fibrosarcoma	1 (7%)		
Lymph node, mandibular	(6)	(7)	
Lymph node, mesenteric	(5)	(9)	(2)
Spleen	(21)	(27)	(34)
Thumua	(1)	1 (4%)	
Thymoma benign	1 (100%)		(4)
Integumentary System	· · · · · · · · · · · · · · · · · · ·		
Mammary gland	(1)	(1)	
Fibroadenoma	1 (100%)		
Skin	(2)	(1)	
Keratoacanthoma	2 (100%)		
Squamous cell papilloma	I (50%)		
Subcutaneous tissue, horoma	1 (50%)		
multiple		1 (100%)	
Musculoskeletal System			
Bone	(1)	(1)	
Turbinate, osteoma	1 (100%)		
Skeletal muscle		(1)	
Nervous System			
Brain	(5)		
Respiratory System			
Lung	(7)	(3)	(2)
Alveolar/bronchiolar adenoma			1 (50%)
Alveolar/bronchiolar adenoma, multiple	1 (14%)		
Special Senses System None			

.

,

Summary of the Incidence of Neoplasms in Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

· · · ·	0 ррт	б,000 ррт	18,000 ppm
Urinary System			
Kidney	(21)	(27)	(34)
Nephroblastoma		1 (4%)	
Renal tubule, oncocytoma benign		1 (4%)	
Transitional epithelium, carcinoma		1 (4%)	6 (18%)
Transitional epithelium, papilloma		· · /	3 (9%)
Urinary bladder	(21)	(27)	(34)
Sarcoma		1 (4%)	7 (21%)
Squamous cell carcinoma			5 (15%)
Squamous cell papilloma			4 (12%)
Transitional epithelium, carcinoma		23 (85%)	33 (97%)
Transitional epithelium, papilloma		1 (4%)	
Transitional epithelium, papilloma, multiple		2 (7%)	1 (3%)
Systemic Lesions			
Multiple organs	(21)	(27)	(34)
Leukemia mononuclear	12 (57%)	2 (7%)	
Mesothelioma malignant		4 (15%)	
Neoplasm Summary		· · · · · · · · · · · · · · · · · · ·	
Total animals with primary neoplasms	20	27	34
Total primary neoplasms	54	<u>-</u> / 91	90
Total animals with benign neoplasms	20	25	26
Total benign neoplasms	37	56	35
Total animals with malignant neoplasms	15	26	34
Total malignant neoplasms	17	35	55
Total animals with metastatic neoplasms			4
Total metastatic neoplasm			4

a b

Number of animals examined microscopically at site and number of animals with lesion. All organ systems listed in Table 1 (Materials and Methods) were evaluated, but neoplasms were found only in systems specified. Primary neoplasms: all neoplasms except metastatic neoplasms

c d

Number of animals with any tissue examined microscopically

in the Stop-Exposure Feed Stu	dy of o-Ni	itro	ani	sol	le:	0	pp	m						-			•
Number of Days on Study		0 8 7	0 8 7	0 8 8						· .							
Carcass ID Numb er		0 0 5 1	0 0 6 1	0 0 5 2	0 0 5 3	0 0 5 4	0 0 5 5	0 0 6 2	0 0 6 3	0 0 6 4	0 0 6 5			• .			Total Tissues/ Tumors
Alimentary System Liver		+	+	+	+	+	+	+	+	+	+				,		10
Cardiovascular System None																2	
Endocrine System None																	
General Body System None																	
Genital System Epididymis Testes		+ +	+++	+++	+++	++	++	++	+ +	++	+ +						10 10
Hematopoietic System Spleen		+	+	+	+	+	+	+	+	+	+						10
Integumentary System None																	
Musculoskeletal System None													jálisi	·			
Nervous System None								_									•
Respiratory System None												,					

TABLE E2a Individual Animal Tumor Pathology of Male Rats at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 0 ppm

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

TABLE E2a

Individual Animal Tumor Pathology of Male Rats at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study of *o*-Nitroanisole: 0 ppm (continued)

Number of Doug on Study	0 0 0 0 0 0 0 0 0 0	
Number of Days on Study	77888888888	
· · · · · · · · · · · · · · · · · · ·	0 0 0 0 0 0 0 0 0	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0	Total
	5 6 5 5 5 5 6 6 6 6	Tissues/
	1 1 2 3 4 5 2 3 4 5	lumors
Special Senses System None		
Urinary System		
Kidney	+ + + + + + + + +	10
Ureter	+ M + + + + + + +	9
Urinary bladder	+ M + + + + + + + + +	9
Systemic Lesions		
Multiple organs	+ + + + + + + + +	10

o-Nitroani	isole, l	NTP	TR -	416

Individual Animal Tumor Patholog in the Stop-Exposure Feed Study of	y of Male Rats at [o-Nitroanisole:	the 3-Month Interir 6,000 ppm	n Evaluation	ik s An an an An an an
Number of Days on Study	0 0 0 0 8 8 8 8 7 7 7 7	0 0 0 0 0 0 0 8 8 8 8 8 8 7 8 8 8 8 8		· · · · · · · · · · · · · · · · · · ·
Carcass ID Number	0 0 0 0 2 3 3 3 9 0 0 0 1 1 2 3	0 0 0 0 0 0 0 3 2 2 2 2 3 0 9 9 9 9 0 4 2 3 4 5 5		Total Tissues/ Tumors
Alimentary System Liver	+ + + +	+ + + + + +		10
Cardiovascular System None				····· · · · · · · · · · · · · · · · ·
Endocrine System None				44
General Body System None			· · · ·	
Genital System Epididymis Testes	+ + + + + + + +	+ + + + + + + + + + + +		10 10
Hematopoietic System Spleen	+ + + +	+ + + + + +		10
Integumentary System None	. <u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>		
Musculoskeletal System None			· · ·	
Nervous System None				
Respiratory System None				

TABLE E2a

294

TABLE E2a

Individual Animal Tumor Pathology of Male Rats at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm (continued)

	0 0 0 0 0 0 0 0 0	
Number of Days on Study	8 8 8 8 8 8 8 8 8 8	
	777788888	
<u> </u>	0 0 0 0 0 0 0 0 0 0	<u></u>
Carcass ID Number	2 3 3 3 3 2 2 2 2 3	Total
	900099990	Tissues/
	1 1 2 3 4 2 3 4 5 5	Tumors
None		
Ilvinom Sustam		
Ormary System		
Kidney	+ + + + + + + + +	10
Kidney Ureter	+ + + + + + + + + + + + + + + + + + +	10 10
Kidney Ureter Urinary bladder	+ M + + + +	10 10 9
Kidney Ureter Urinary bladder Systemic Lesions	+ M + + + +	10 10 9

Number of Days on Study	0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1	Total Tissues/ Tumors
Alimentary System Liver	+ + + + + + + + +	10
Cardiovascular System None		, <u></u> , <u>_</u>
Endocrine System None		,,,,,,,,
General Body System None		
Genital System Epididymis Testes	+ + + + + + + + + + + + + + + + + + +	10 10
Hematopoietic System Spleen	+ + + + + + + + +	10
Integumentary System None		·
Musculoskeletal System None	······································	· ·
Nervous System None		
Respiratory System Lung	+	1

TABLE E2aIndividual Animal Tumor Pathology of Male Rats at the 3-Month Interim Evaluationin the Stop-Exposure Feed Study of o-Nitroanisole:18,000 ppm

TABLE E2a Individual Animal Tumor Pathology of Male Rats at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 18,000 ppm (continued)

Number of Days on Study	0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 7 7 7 8 8 8 7 7 8 8 1 2 3 1 2 3 4 5 4 5	Total Tissues/ Tumors
Special Senses System Eye	+	1
Urinary System Kidney Ureter Urinary bladder Transitional epithelium, carcinoma	+ + + + + + + + + + + + + + + + + + +	10 10 10 1
Systemic Lesions Multiple organs	+ + + + + + + + +	10

TABLE E2b Individual Animal Tumor Path in the Stop-Exposure Feed Stu	nology of Male Rats at the 6-Month Interim Evaluation ady of <i>o</i> -Nitroanisole: 0 ppm			
Number of Days on Study	1 1 1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9			
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		••••••	Total Tissues/ Tumors
Alimentary System Liver	+ + + + + + + + +		· · · · · · · ·	10
Cardiovascular System None			,	• :
Endocrine System None			- <u>.</u>	
General Body System None		• .		
Genital System Epididymis Testes	+ + + + + + + + + + + + + + + + + + +			10 10
Hematopoietic System Spleen	+ + + + + + + + +			10
Integumentary System None				
Musculoskeletal System None				
Nervous System None				
Respiratory System None				

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

TABLE E2b Individual Animal Tumor Pathology of Male Rats at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 0 ppm (continued)

Number of Days on Study	1 1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9 9	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Tissues/ Tumors
Special Senses System None		
Urinary System Kidney Ureter Urinary bladder	+ +	10 10 10
Systemic Lesions Multiple organs	+ + + + + + + + +	10

	1	1	1	1	1	1	1	1	1	1			
Number of Days on Study	9	9	9	9	9	9	9	9	9	9			
	Ô	0	0	Ó	0	0	1	1	1	1			
<u> </u>									• .		<u>.</u>		
	0	0	Ó	0	0	Ò	0	0	ò	0			
Carcass ID Number	3	3	3	3	3	3	3	3	3	3			Total
	1	1	1	2	2	2	1	1	2	2			Tissues/
	1	2	3	1	2	Ż	4	5	4	5			Tumors
												······································	
Alimentary System													
Liver	+	.+	+	+	+	+	+	+	÷	+			10
Stomach	•	+	•	·	•	•	•	+	·	•			2
Stomach, forestomach		+						+					2
Squamous cell papilloma		х											1
Stomach, glandular		+						+					2
Cardiovascular System None													
Endocrine System None													<u></u>
General Body System None													
Genital System								_					
Epididymis	+	+	+	+	÷	+	+	+	+	÷			10
Testes	+	+	+	+	+	+	+	+	+	+			10
Here the state Sundary			<u> </u>		-	_					<u></u>		
Spleen	+	+	+	+	+	+	+	+	+	+			10
Integumentary System	<u> </u>			<u>.</u>					_		<u></u>	······	<u></u>
None													
Musculoskeletal System None													

TABLE E2b Individual Animal Tumor Pathology of Male Rats at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm

300

Table E2b

Individual Animal Tumor Pathology of Male Rats at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study of *o*-Nitroanisole: 6,000 ppm (continued)

Number of Days on Study	1 1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9 9	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3	Total Tissues/ Tumors
Respiratory System Lung	+ +	2
Special Senses System None		
Urinary System		-
Kidney	+ + + + + + + + +	10
Ureter	+ + + + + + + + +	10
Urinary bladder Transitional epithelium, papilloma	+ + + + + + + + + + + + + + + + + + +	10 2
Systemic Lesions		
multiple organs	+ + + + + + + + +	10

in the Stop-Exposure Feed Study of o-Nitroanisole:		18,000 ррт							
Number of Days on Study	1 1 1 1 9 9 9 9 0 0 0 1	1 1 1 1 1 1 1 9 9 9 9 9 9 9 1 1 1 1 1 1							
Carcass ID Number	0 0 0 0 1 1 2 1 9 9 0 9 1 2 1 3	0 0 0 0 0 0 0 1 1 1 2 2 2 2 9 9 9 0 0 0 0 3 4 5 2 3 4 5	Total Tissues/ Tumors						
Alimentary System Intestine large Intestine large, cecum Intestine large, colon Polyp adenomatous Intestine large, rectum Liver	+ + + + + + X + + + + +	+ + + + + + X X + + + + +	3 3 2 3 10						
Cardiovascular System None	<u> </u>								
Endocrine System None									
General Body System None									
Genital System Epididymis Testes	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	10 10						
Hematopoietic System Spleen	+ + + +	+ + + + + + +	10						
Integumentary System None									
Musculoskeletal System None									
Nervous System None									

TABLE E2b Individual Animal Tumor Pathology of Male Rats at the 6-Month Interim Evaluation in the Star European Fred Study of a Nitroppicale, 18,000 mm

TABLE E2b

Individual Animal Tumor Pathology of Male Rats at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 18,000 ppm (continued)

Number of Days on Study	1 1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9 9	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 1 1 2 2 2 2	Total
	9 9 0 9 9 9 9 0 0 0 0 1 2 1 3 4 5 2 3 4 5	Tissues/ Tumors
Respiratory System None		
Special Senses System None	······································	<i>*</i>
Urinary System		
Kidney	+ + + + + + + + + +	10
Ureter	M + + + + + + + +	9
Urinary bladder	+ + + + + + + + +	10
Sarcoma	X X	2
Transitional epithelium, carcinoma	x x x x x x x x x x x x	10

Systemic Lesions Multiple organs

+ + + + + + + + + +

10

in the Stop-Exposure Feed Stat	dy of 0-11th cambole. V ppm	· · · ·
Number of Days on Study	2 2 2 2 2 2 2 2 2 2 2 2 7 7 7 7 7 7 7 7	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 9 9 9 0 0 0 9 9 0 0 1 2 3 1 2 3 4 5 4 5	Total Tissues/ Tumors
Alimentary System Liver Mesentery	+ + + + + + + + + + + + + + + + + + + +	10 1
Cardiovascular System None		
Endocrine System None		
General Body System None	· .	· · · · · · · · · · · · · · · · · · ·
Genital System Epididymis Preputial gland Testes	+ + + + + + + + + + + + + + + + + + +	10 1 10
Hematopoietic System Spleen	+ + + + + + + + +	10
Integumentary System None		
Musculoskeletal System None		
Nervous System None	· · · ·	
Respiratory System None	·	

TABLE E2c Individual Animal Tumor Pathology of Male Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 0 ppm

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

.

TABLE E2c

Individual Animal Tumor Pathology of Male Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of *o*-Nitroanisole: 0 ppm (continued)

Number of Days on Study	2 2 2 2 2 2 2 2 2 2 2 2 2 7 7 7 7 7 7 7	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 9 9 9 0 0 0 9 9 0 0 1 2 3 1 2 3 4 5 4 5	Total Tissues/ Tumors
Special Senses System Eye	+	1
Urinary System Kidney Ureter Urinary bladder	+ + + + + + + + + + + + + + + + + + +	10 10 10
Systemic Lesions Multiple organs	+ + + + + + + +	10

305

TABLE E2c Individual Animal Tumor Pathology of Male Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm

Number of Days on Study	2 2 2 2 2 2 2 2 2 2 2 2 7 7 7 7 7 7 7 7	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3	Total Tissues/ Tumors
Alimentary System Intestine large Intestine large, cecum Intestine large, colon Polyp adenomatous Polyp adenomatous, multiple Intestine large, rectum Liver	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 1 1 2 10
Cardiovascular System None		••••••••••••••••••••••••••••••••••••••
Endocrine System None		
General Body System None		
Genital System Epididymis Preputial gland Testes	+ + + + + + + + + + + + + + + + + + + +	10 1 10
Hematopoietic System Lymph node Spleen	+ + + + + + + + + +	1 10
Integumentary System None		
Musculoskeletal System None		

TABLE E2c

Individual Animal Tumor Pathology of Male Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm (continued)

Number of Days on Study	2 2 2 2 2 2 2 2 2 2 2 2 2 7 7 7 7 7 7 7	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3	Total Tissues/ Tumors
Nervous System None		· · · · · · · · · · · · · · · · · · ·
Respiratory System Lung	+ +	2
Special Senses System Eye	+	1
Urinary System Kidney Ureter Urinary bladder Transitional epithelium, carcinoma Transitional epithelium, papilloma	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 10 10 3 2
Systemic Lesions Multiple organs	+ + + + + + + + +	10

	,	10,000 PP1			· · · · · ·	
Number of Days on Study	2 2 2 2 7 7 7 7 4 4 4 4	2 2 7 7 5 5	·			
Carcass ID Number	0 0 0 0 2 2 2 2 1 2 2 2 3 3 4 5	0 0 2 2 1 1 4 5				Total Tissues/ Tumors
Alimentary System		-9				·····
Intestine large	+ +	+ +				4
Intestine large, cecum	+ +	+ +				4
Intestine large, colon	+ +	+.+.				4
Carcinoma		х				1
Polyp adenomatous	х					1
Polyp adenomatous, multiple	х	хх				3
Intestine large, rectum	+ +	+ +				4
Liver	+ + + +	+ +				6
Stomach	+					1
Stomach, forestomach	+					1
Stomach, glandular	+					. 1
Cardiovascular System None						
Endocrine System None						
General Body System None			•	-		· .
Genital System Epididymis Testes	+ + + + +	+ + + +		÷	· .	6 6
Hematopoietic System Spleen	+ + + +	+ +	, · ,,_			. 6
Integumentary System None						
Musculoskeletal System None						

TABLE E2c Individual Animal Tumor Pathology of Male Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 18,000 ppm

TABLE E2c Individual Animal Tumor Pathology of Male Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 18,000 ppm (continued)

Number of Days on Study	2 2 2 2 2 2 2 7 7 7 7 7 7 4 4 4 5 5	
Carcass ID Number	0 0 0 0 0 0 2 2 2 2 2 2 1 2 2 2 1 1 3 3 4 5 4 5	Total Tissues/ Tumors
Nervous System None		
Respiratory System None		
Special Senses System None		· · · · · · · · · ·
Urinary System	<u>,</u>	· · · · · · · · · · · · · · · · · · ·
Kidney	+ + + + + +	6
Transitional epithelium, carcinoma	X X	2
Transitional epithelium, papilloma	X	1
Ureter	+ + + + + +	6
Unnary bladder	+ + + + + v	6
Transitional epithelium, carcinoma	x x x x x x	6
Systemic Lesions		
Multiple organs	+ + + + + +	6

in the Stop-Exposure Feed Study of	o-Nitroanisole: 0 ppm		
Number of Days on Study	4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	:	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 1 2 3 2 3 4 5 4 5		Total Tissues/ Tumors
Alimentary System Liver Mesentery Stomach Stomach, forestomach Stomach, glandular Tongue	+ + + + + + + + + + + + + + + +		9 1 1 1 1 1 1
Cardiovascular System Heart	+		1
Endocrine System Pituitary gland Pars distalis, adenoma	+ x		1 . 1
General Body System None			
Genital System Epididymis Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+ + + + + + + + + + + + + + + + + + +	· · ·	9 9 3 3
Hematopoietic System Lymph node Lymph node, mesenteric Spleen	+ + + + + + + + + +		1 1 9
Integumentary System Skin Squamous cell papilloma	+ + X		. 2 1

TABLE E2d Individual Animal Tumor Pathology of Male Rats at the 15-Month Interim Evaluation in the Ston-Exposure Feed Study of a Nitrognisole: 0 ppm

+: Tissue examined microscopically

.

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

TABLE E2d Individual Animal Tumor Pathology of Male Rats at the 15-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 0 ppm (continued)

Number of Days on Study	4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 1 2 3 2 3 4 5 4 5	Total Tissues/ Tumors
Musculoskeletal System None		
Nervous System None		
Respiratory System Lung Alveolar/bronchiolar adenoma	+ X	1 1
Special Senses System None	· · · · · · · · · · · · · · · · · · ·	
Urinary System Kidney Ureter Urinary bladder	+ + + + + + + + + + + + + + + + + + +	9 9 9
Systemic Lesions Multiple organs	+ + + + + + + +	9

in the Stop-Exposure Feed Study of	o-Nitroanisole:	6,000 ppm	 				
Number of Days on Study	4 4 4 5 5 5 5 6 6						. · · ·
Carcass ID Number	0 0 0 3 3 3 6 5 6 4 5 5						Total Tissues/ Tumors
Alimentary System Intestine large Intestine large, cecum Intestine large, colon Polyp adenomatous Polyp adenomatous, multiple Intestine large, rectum Liver	+ + + + + + + + + X X X X + + + + +	-	 · ·		· · ·	•	3 3 1 2 3 3
Cardiovascular System None			 	- x	· .		
Endocrine System None							
General Body System None				· .			
Genital System Epididymis Testes Bilateral, interstitial cell, adenoma	+ + + + + + X X X						3 3 3
Hematopoietic System Lymph node Lymph node, mesenteric Spleen	+ + + + +						1 1 3
Integumentary System None			 				
Musculoskeletal System None							

TABLE E2d

Individual Animal Tumor Pathology of Male Rats at the 15-Month Interim Evaluation

TABLE E2d

Individual Animal Tumor Pathology of Male Rats at the 15-Month Interim Evaluation in the Stop-Exposure Feed Study of *o*-Nitroanisole: 6,000 ppm (continued)

Number of Days on Study	4 4 4 5 5 5 5 6 6	
Carcass ID Number	0 0 0 3 3 3 6 5 6 4 5 5	Total Tissues/ Tumors
Nervous System None		
Respiratory System None		
Special Senses System None	· ·	
Urinary System		
Kidney	+ + +	3
Ureter	+ + +	3
Urinary bladder	+ + +	3
Sarcoma	, X	1
Transitional epithelium, carchioma Transitional epithelium, papilloma	xx	2
Systemic Lesions		······
Multiple organs	+ + +	3
Mesothelioma malignant	x x	2

• ppm																						 		
Number of Days on Study	4 1 0	5 6 4	5 8 2	5 9 0	6 3 9	6 4 8	7 0 1	7 0 7	7 2 8	7 2 8	7 2 8	7 2 9												
Carcass ID Number	0 1 2 1	0 0 1 1	0 0 3 1	0 0 2 1	0 0 1 2	0 0 2 2	0 0 4 1	0 0 4 2	0 0 1 3	0 0 3 2	0 0 4 4	0 0 1 4	0 0 1 5	0 0 2 3	0 0 2 4	0 0 2 5	0 0 3 3	0 0 3 4	0 0 3 5	0 0 4 3	0 0 4 5			Total Tissues, Tumors
Alimentary System Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular carcinoma Mesentery Pancreas Stomach Stomach, forestomach Stomach, glandular Tooth Adamantinoma malignant	+ + + + + + + + + + + + *	- - - - - - - -	+ + + + +	+ + X		+	++	+ +++	+	+	+ +++	+	+ +	, +	+	+	+ +	+	+	+ x	+			1 1 1 1 1 1 1 1 1 3 1 3 3 1 1 1
Cardiovascular System Heart	+	-					+		+			+	+											5
Endocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Bilateral, pheochromocytoma benign Pituitary gland Pars distalis, adenoma Pars intermedia, adenoma			+ x				-	+ + + + X		+ x	+ X	+ x	+ + + X					+ x	+ x				·, ·	2 2 2 1 7 6 1
Consel Body System	<u> </u>																	,		,				

TABLE E2e

Individual Animal Tumor Pathology of Male Rats in the Stop-Exposure Feed Study of *o*-Nitroanisole: 0 ppm

General Body System

None

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

Number of Days on Study	4 1 0	5 6 4	5 8 2	5 9 0	6 3 9	6 4 8	7 0 1	7 0 7	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9		
Carcass ID Number	0 1 2 1	0 0 1 1	0 0 3 1	0 0 2 1	0 0 1 2	0 0 2 2	0 0 4 1	0 0 4 2	0 0 1 3	0 0 3 2	0 0 4 4	0 0 1 4	0 0 1 5	0 0 2 3	0 0 2 4	0 0 2 5	0 0 3 3	0 0 3 4	0 0 3 5	0 0 4 3	0 0 4 5		Total Tissues/ Tumors
Genital System Epididymis Preputial gland Carcinoma Bilateral, adenoma Seminal vesicle Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+	+ + + X	++ + X	+ + ×	+ + x	+ + x	+ + x	+ + + X	+ + + x + x	+ + + x	+ + + x	+ *	+ + X	+ *	+ + x + x + x	+ + x	+ + x	+ + x	+ + x	+ + x	+ + X + X	-	21 6 2 1 2 21 17 3
Hematopoietic System Lymph node Inguinal, fibrosarcoma Lymph node, mandibular Lymph node, mesenteric Spleen Thymus Thymoma benign	+ + +	++++	· +	· +	+++++	+ X + + +	+++++	+++++	+	+	+	+ + X	++++	+	+	+	+	+	++++	+	+		14 1 5 21 1 1
Integumentary System Mammary gland Fibroadenoma Skin Keratoacanthoma Squamous cell papilloma Subcutaneous tissue, fibroma							+ x				+ x x x		+ x										1 1 2 2 1 1
Musculoskeletal System Bone Turbinate, osteoma																+ x							1 1
Nervous System Brain				_				+		+	+						+	+					5

TABLE E2e Individual Animal Tumor Pathology of Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole: 0 ppm (continued)

TABLE E2e

Individual Animal Tumor Pathology of Male Rats in the Stop-Exposure Feed Study of *o*-Nitroanisole: 0 ppm (continued)

Number of Days on Study	4 5 5 6 6 7	
Carcass ID Number	0 0	Total Tissues/ Tumors
Respiratory System Lung Alveolar/bronchiolar adenoma, multiple Nose	+ + + + + + + + + + + + + + + + + + +	7 1 1
Special Senses System None		
Urinary System Kidney Ureter Urinary bladder	+ + + + + + + + + + + + + + + + + + +	21 19 21
Systemic Lesions Multiple organs Leukemia mononuclear	+ + + + + + + + + + + + + + + + + + +	21 12

6,000 ppm																												
Number of Days on Study	2 0 7	2 7 5	3 0 5	3 2 9	3 2 9	3 5 1	3 6 4	4 1 3	4 2 3	4 2 4	4 2 8	4 2 9	4 3 0	4 3 4	4 5 7	4 8 0	5 1 2	5 8 2	6 1 2	6 1 7	6 1 8	6 3 6	6 3 9	6 4 6	6 4 8	6 8 0	7 2 9	
Carcass ID Number	0 2 7 1	0 2 5 1	0 3 5 1	0 3 6 1	0 3 6 2	0 2 7 2	0 3 5 2	0 2 7 3	0 2 7 4	0 3 5 3	0 3 5 4	0 2 5 2	0 3 6 3	0 2 7 5	0 2 6 1	0 2 8 1	0 2 6 2	0 2 6 3	0 2 8 2	0 2 8 3	0 2 5 3	0 2 5 4	0 2 8 4	0 2 6 4	0 2 6 5	0 2 8 5	0 2 5 5	Total Tissues/ Tumors
Alimentary System Intestine large Intestine large, cecum Polyp adenomatous, multiple Intestine large, colon Polyp adenomatous Polyp adenomatous, multiple Intestine large, rectum Polyp adenomatous Polyp adenomatous Polyp adenomatous, multiple Intestine small Intestine small, duodenum Intestine small, lieum Intestine small, jejunum Liver Mesentery Pancreas Acinar cell, adenoma Stomach Stomach, forestomach Squamous cell papilloma Squamous cell papilloma, multiple Stomach, glandular	+	+	+ + + + +	+++ + X+ +	++ +X +X ++	++ + X+X +	+++ + X+ +	++ + X+ + ++ +	++ +X + +	++ + X+ + ++X +	+	++ + X+ + ++ +	++ +X + +	++ +X + + ++X +	++ + X+ +++++ ++ ++	++ +x + x +	++ + + X +	+++	++ + X+ + ++ +	++ + X+ +	++ + X+X +++++ ++ ++	+ +++ +	+ + X + X +	++ +X + ++	++ + +X + +	++ +X + + + + + +	++X+ + +	21 21 1 21 8 10 21 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Cardiovascular System Blood vessel Heart																						+				+ +		1 2
Endocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Parathyroid gland									-														+		+ + X	+ + + X +		2 2 2 2 2
General Body System None																												

 TABLE E2e

 Individual Animal Tumor Pathology of Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole:

 6,000 ppm

Number of Days on Study	2 0 7	2 7 5	3 0 5	3 2 9	3 2 9	3 5 1	3 6 4	4 1 3	4 2 3	4 2 4	4 2 8	4 2 9	4 3 0	4 3 4	4 5 7	4 8 0	5 1 2	5 8 2	6 1 2	6 1 7	6 1 8	6 3 6	6 3 9	6 4 6	6 4 8	6 8 0	7 2 9	
Carcass ID Number	0 2 7 1	0 2 5 1	0 3 5 1	0 3 6 1	0 3 6 2	0 2 7 2	0 3 5 2	0 2 7 3	0 2 7 4	0 3 5 3	0 3 5 4	0 2 5 2	0 3 6 3	0 2 7 5	0 2 6 1	0 2 8 1	0 2 6 2	0 2 6 3	0 2 8 2	0 2 8 3	0 2 5 3	0 2 5 4	0 2 8 4	0 2 6 4	0 2 6 5	0 2 8 5	0 2 5 5	Total Tissues/ Tumors
Genital System Epididymis Preputial gland Adenoma Carcinoma Prostate Seminal vesicle Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+	+	+ + +	+	+ + x	+	+	+ + X	+ + x	+ + x	+ + + X	+ + x	+ + X	+ + x	+	+ + + X + X	+ + X	+ + x	+ + x	+ + + X	+ + + X	+++ x +	+ + X	+ + + X	+ + + x	+ + X	+ + X	27 6 1 1 4 1 27 9 11
Hematopoietic System Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Hemangiosarcoma	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+ +	+	++++	+	+	+	+	+	+	+ + +	+ + + +	+++++	+ + +	+ + + + +	++++++	+ + X	+	+++++	+	+++++	+	+ + +	16 7 9 27 1
Integumentary System Mammary gland Skin Subcutaneous tissue, hemangiosarcoma, multiple		+ x	-																								+	1 1 1
Musculoskeletal System Bone Skeletal muscle									+													+						1 1
Nervous System None																												
Respiratory System Lung			+							+						-					-	<u>,</u>			+			3
Special Senses System None																												

TABLE E2e Individual Animal Tumor Pathology of Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm (continued)
2 0 7	2 7 5	3 0 5	3 2 9	3 2 9	3 5 1	3 6 4	4 1 3	4 2 3	4 2 4	4 2 8	4 2 9	4 3 0	4 3 4	4 5 7	4 8 0	5 1 2	5 8 2	6 1 2	6 1 7	6 1 8	6 3 6	6 3 9	6 4 6	6 4 8	6 8 0	7 2 9	
0 2 7 1	0 2 5 1	0 3 5 1	0 3 6 1	0 3 6 2	0 2 7 2	0 3 5 2	0 2 7 3	0 2 7 4	0 3 5 3	0 3 5 4	0 2 5 2	0 3 6 3	0 2 7 5	0 2 6 1	0 2 8 1	0 2 6 2	0 2 6 3	0 2 8 2	0 2 8 3	0 2 5 3	0 2 5 4	0 2 8 4	0 2 6 4	0 2 6 5	0 2 8 5	0 2 5 5	Total Tissues/ Tumors
+	+	+	• +	• +	• +	- +	- 4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	27
х																											1
																					х						1
																								Х			1
+	+	+	• +	- +	- +	- +	• +	+	+	Μ	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	25
							+	•								+											2
+	+	+	• +	- +	- +	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	27
		X	5																								1
	Х	X	X	X	C X	K X	X	X	X	х	Х	x	x		х	х	х	х	х	х	х	Х	х		х	Х	23 1
														x										х			2
+	+	• +	- +	- +	- +	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	27
																			Х					Х			2
																	37										
	2 0 7 1 + X + + +	2 2 0 7 7 5 0 0 2 2 7 5 1 1 + + X + + + + + + X	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 6 6 6 0 7 0 2 2 5 6 1 2 2 2 2 3 3 5 8 1 8 1 1 1 7 5 5 9 9 1 4 3 3 4 8 9 0 4 7 0 2 2 2 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 6 6 6 6 6 6 0 7 0 2 2 5 6 1 2 2 2 2 3 3 5 8 1 8 1 1 1 3 3 7 5 5 9 9 1 4 3 3 4 8 9 0 4 7 0 2 2 2 7 8 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 6 6 6 6 6 6 6 6	2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 6 6 6 6 6 6	2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 6 6 6 6 6 6	2 2 3 3 3 4 4 4 4 4 4 5 5 6 7												

TABLE E2e Individual Animal Tumor Pathology of Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm (continued)

. . .

Individual Animal Tumor Pathology of 18,000 ppm	Mal	e F	Rat	s iı	n tl	he	Sto	op-	Ex	ро	sui	re 1	Fee	ed S	Stu	dy	of	0-	Nit	ro	ani	iso	le:				. ,
Number of Days on Study	1 5 8	2 1 0	2 1 1	2 1 6	2 1 7	2 1 8	2 1 8	2 1 9	2 2 8	2 3 3	2 3 6	2 3 8	2 4 2	2 4 7	2 4 8	2 4 9	2 4 9	2 5 4	2 5 6	2 6 2	2 6 3	2 6 6	2 6 8	2 7 2	2 7 7		
Carcass ID Number	0 1 6 1	0 2 3 1	0 1 6 2	0 2 3 2	0 1 6 3	0 2 1 1	0 2 3 3	0 1 3 1	0 1 4 1	0 2 3 4	0 2 4 1	0 1 5 1	0 1 5 2	0 2 2 1	0 1 5 3	0 1 4 2	0 2 4 2	0 1 6 4	0 1 4 3	0 2 4 3	0 2 1 2	0 1 4 4	0 1 5 4	0 2 2 2	0 1 3 2		
Alimentary System Intestine large Intestine large, cecum Intestine large, colon Carcinoma Carcinoma, multiple Polyp adenomatous Polyp adenomatous, multiple Intestine large, rectum Polyp adenomatous Intestine small Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Mesentery Squamous cell carcinoma, metastatic, urinary bladder Stomach Stomach, forestomach Squamous cell papilloma Stomach, glandular	+	+	++++ X + +++++ ++ ++ ++ ++ ++ ++ ++ ++ +	++++++++	++++ + +	++++	+ + + + + + +	+++++++++	+++ + +	++++ + + +	++++ + +	++++ + + +	+++ + + + + + X	+	+ + + + + + + +	+++ + +	+ + + + X X + +	+++++++	+ + + + + +	+++ X+	+ + + + + +	+++ + +	+++ + +	•	+ + + + X + + + + + + + + + + + + + + +		
Cardiovascular System None									-				•													 	
General Body System None None								,																		 <u> </u>	
Genital System Epididymis Penis Prostate Sarcoma, metastatic, urinary bladder Squamous cell carcinoma, metastatic, urinary bladder	+ M	+ + X	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+ +	+ + x	+	+	+	+	+	+	+	•••		

TABLE E2e

`~

18,000 ppm (continued)										
Number of Days on Study	2 7	2 8	2 9	2 9	2 9	2 9	3 0	3 1	3 3	· · · ·
	7	7	2	8	8	8	0	9	5	
	0	0	0	0	0	0	0	0	0	
Carcass ID Number	1	2	1	1	1	2	1	2	1	Total
	6 5	4 4	3 3	3 4	4 5	4 5	3 5	3 5	5 5	Tissues/ Tumors
Alimentary System										
Intestine large	+	+	+	+	+	+	+	+		28
Intestine large, cecum	+	+	+	+	+	+	+	+		28
Intestine large, colon	+	+	+	+	+	+	+	+		28
Carcinoma		Х	Х							3
Carcinoma, multiple										. 1
Polyp adenomatous	X			1 7			х	Х		8
Polyp adenomatous, multiple		X		X	X	X				16
Intestine large, rectum	+	+	+	+	+	+	+	+		28
Polyp adenomatous					А					1
Intestine small duodenum										, 1 1
Intestine small, illeum										1
Intestine small, ieiunum										1
Liver	+	+	+	+	+	+	+	+	+	34
Mesenterv	·	•	·	•	•	•	•	•	•	1
Squamous cell carcinoma, metastatic,										- .
urinary bladder										1
Stomach			+		+		+			6
Stomach, forestomach			+		+		+			6
Squamous cell papilloma					х					1
Stomach, glandular			+		+		+			6
Cardiovascular System None										
Endocrine System None								-		
General Body System None										· · · · ·
Genital System										
Epididymis	+	+	+	+	+	+	+	+	+	34
Penis										
Prostate								+		5
Sarcoma, metastatic, urinary bladder										1
Squamous cell carcinoma, metastatic,								••		
urinary bladder								X		2

TABLE E2e Individual Animal Tumor Pathology of Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole: 18,000 ppm (continued)

321

	-	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	· _	~	~	~	~	^	
Number of Days on Study	1	2	2	2	2	2	2	2	2	23	23	23	2	2	2	2	2	25	2	2	2	2	2	2	27	
Number of Days on Study	8	Ô	1	6	7	8	8	9	8	3	6	8	2	7	8	9	, 9	4	6	2	3	6	8	2	, 7	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	1	2	1	2	1	2	2	1	1	2	2	1	1	2	1	1	2	1	1	2	2	1	1	2	1	
	1	1	2	2	3	1	3	1	1	4	1	1	2	1	3	2	2	4	3	3	2	4	4	2	2	
Genital System (continued)																										
Seminal vesicle Testes	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	÷	+	+	+	+	+	
Hematopoietic System	<u></u>																									
Lymph node							+						+		+		+			+					+	
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	++	
Thymus	•		•	•	•	•	•	•	•		+	•	•	•	•	•	•	•	•	•	•	•	•		•	
Integumentary System None	<u>.</u>																									
Musculoskeletal System None																										
Nervous System None																										
Respiratory System				-													•									
Lung Alveolar/bronchiolar adenoma															+						+ X					
Special Senses System None																									-	
Urinary System Kidney		+			 +	+	 +	+	+	+	· ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Transitional epithelium, carcinoma Transitional epithelium, papilloma	· •	т	-r	۰r	x			r.	x	x		x	r	x	x	•	'	•	x	x		•	ľ	•	•	

 TABLE E2e
 Individual Animal Tumor Pathology of Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole:

 18.000 ppm (continued)

TABLE E2e

Individual Animal Tumor Pathology of Male Rats in the Stop-Exposure Feed Study of *o*-Nitroanisole: 18,000 ppm (continued)

Number of Days on Study	2 2 2 2 2 3 3 7 8 9 9 9 0 1 3 7 7 2 8 8 0 9 5	
Carcass ID Number	0 0 0 0 0 0 0 0 1 2 1 1 1 2 1 2 1 6 4 3 3 4 4 3 3 5 5 4 3 4 5 5 5 5	Total Tissues/ Tumors
Genital System (continued) Seminal vesicle Testes	+ + + + + + + + +	2 34
Hematopoietic System Lymph node Lymph node, mesenteric Spleen Thymus	+ + + + + + + + +	6 2 34 2
Integumentary System None		
Musculoskeletal System None	· · ·	
Nervous System None		
Respiratory System Lung Alveolar/bronchiolar adenoma		2 1
Special Senses System None		
Urinary System Kidney Transitional epithelium, carcinoma Transitional epithelium, papilloma	+ + + + + + + + + + + X	34 6 3

323

1 5 8	2 1 0	2 1 1	2 1 6	2 1 7	2 1 8	2 1	2 1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
					•	8	9	8	3	3 6	3 8	4 2	4 7	4 8	4 9	4 9	5 4	5 6	6 2	6 3	6 6	6 8	7 2	7 7	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1 6 1	2 3 1	1 6 2	2 3 2	1 6 3	2 1 1	2 3 3	1 3 1	1 4 1	2 3 4	2 4 1	1 5 1	1 5 2	2 2 1	1 5 3	1 4 2	2 4 2	1 6 4	1 4 3	2 4 3	2 1 2	1 4 4	1 5 4	2 2 2	1 3 2	
+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	
+ x	+ x	+	+	+	+	+	+ x	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	
												x				x	x							х	
	х	X	X		x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	X	x	x	
										x															
⊥ ب	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	1 6 1 + + X	1 2 6 3 1 1 + + + + X X X + +	$ \begin{array}{c} 1 & 2 & 1 \\ 6 & 3 & 6 \\ 1 & 1 & 2 \\ + & + & + \\ + & + & + \\ x & x \\ x & x \\ + & + & + \\ + & + & + \\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 1 2 1 2 1 1 2 2 1 1 2 2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 1 2 2 1 6 3 6 3 6 1 3 3 4 3 4 5 5 2 5 4 4 6 4 4 1 4 5 2 3 1 1 2 2 3 1 3 1 1 4 1 1 2 1 3 2 2 4 3 3 2 4 4 2 2 + + + + + + + + + + + + + + + + + + +																			

TABLE E2e Individual Animal Tumor Pathology of Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole: 18,000 ppm (continued)

TABLE E2e

Individual Animal Tumor Pathology of Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole: 18,000 ppm (continued)

	2 2 2 2 2 2 3 3 3	
Number of Days on Study	789999013	
	7 7 2 8 8 8 0 9 5	
	0 0 0 0 0 0 0 0 0	
Carcass ID Number	1 2 1 1 1 2 1 2 1	Total
,	6 4 3 3 4 4 3 3 5	Tissues/
	5 4 3 4 5 5 5 5 5	Tumors
Urinary System (continued)		
Ureter	+ + + + + + + +	34
Urethra		1
Urinary bladder	+ + + + + + + +	34
Sarcoma	X X X	7
Squamous cell carcinoma	x x	5
Squamous cell papilloma	X X X	4
Transitional epithelium, carcinoma	X X X X X X X X X	33
Transitional epithelium, papilloma,		
	······································	
Systemic Lesions		
Multiple organs	+ + + + + + + +	34

325

Statistical Analysis of Primary Neoplasms in Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole

Intestine Large (Colon): Carcinoma Old (9%) Old (9%) Old (12%) Advantation 0.0% 0.0% 35.1% Advantation 0.0% 0.0% 35.1% First indications 0.0% 0.0% 35.1% Cohema-Amiliage test P=0.009 - P=0.009 Fibher coact test - P=0.136 - Intestine Large (Colon): Adenomatous Polyp - P=0.136 - Overall rate 0.09% 88.3% 95.0% - Trainslar rate 0.01% 0.01 0.01 - Adjusted rate 0.021 0% 0.01 0.01 - Intestine Large (Rectum): Adenomatous Polyp - 0.001 P<0.001 P<0.001 D - 0.001 - - 0.001 - - - 0.001 - - - - - - - - - - - - - - - - - - -		0 ррт	6,000 ppm	18,000 ppm	
Overall rate 0/21 (0%) 0/27 (0%) 4/4 (12%) Adjusted rule 0.0% 36.1% 36.1% Terminal rule 0.0% 0.0% 36.1% Terminal rule 0.0% 0.0% 0.0% Terminal rule 0.0% 0.0% 0.0% Fisher casct test P<0.009 - P<0.009 Cochman Arminage test 0.00% 83.3% 9.50.% Trainial rule 0.01% 1.827 (67.%) 2.4/4 (17.%) Adjusted rule 0.0% 83.3% 9.50.% Terminal rule 0.01 (0%) 0.0 (0%) 1.277 (67.%) 2.4/4 (17.%) Adjusted rule 0.03% 83.3% 9.50.% 1.11 Terminal rule 0.03% 83.3% 9.50.% 1.11 Ite table tast P<0.001 P<0.001 P<0.001 P<0.001 Determinat rule 0.13 (0%) 0.1 (0%) 0.0 (0%) 1.27 1.44 (13%) Adjusted rule 0.01 P<0.001 P<0.001 P<0.001 P<0.001	Intestine Large (Colon): Carcinoma				
Adjustat rate 0.0% 0.0% 0.0% 0.0% 0.0% Terminal rate 0.13 (0%) 0.0 (0%) 0.0 (0%) 0.0 Tirst indicatore (days) - P=0.009 249 Cohran-Armitage test P=0.023 - P=0.136 Threst indicatore (days) 0.0% 9.0 (0%) 24/44 (71%) Adjusted rate 0.076 83.3% 9.0 (0%) Terminal rate 0.076 83.7% 9.0 (0%) Terminal rate 0.076 83.7% 9.0 (0%) Terminal rate 0.076 83.7% 9.0 (0%) Terminal rate 0.01 P<0.001	Overall rate	0/21 (0%)	0/27 (0%)	4/34 (12%)	• • •
Terminal rate U13 (0%) U1 (0%) D8 (0%) Terminal rate U14 (0%) U14 (0%) D8 (0%) First indicence (day) - - P=0.009 Fisher exact test P=0.028 - P=0.136 Intestine Large (Colon): Adenomatous Polyp - P=0.136 Overall rate 0.07 (0%) 18.27 (07%) 24/3 (71%) Adjusted rate 0.07 (0%) 0.1 (0%) 0.0 (0%) Terminal rate 0.07 (0%) 0.0 (0%) 211 First incidence (days) - 305 211 Cohran Arminage test P<0.001	Adjusted rate	0.0%	0.0%	361%	
First incidence (days) (10) - (10) - 240 (00) Cohma-Armitage test P < 0.001 - P=0.009 Flaher caset test P=0.028 Flaher caset test P=0.028 Flaher caset test P=0.028 Flaher caset test P=0.028 Flaher caset test P=0.028 Terminal rate 075 883.5% 95.0% Adjusted rate 075 883.5% 95.0% Terminal rate 075 56.7% Adjusted rate 0.001 P<0.001 P<0.001 Flaher caset test P<0.001 P<0.001 Flaher caset test P<0.001 P<0.001 Terminal rate 073 (0%) 07 (0%) 00 (0%) Fline tindefence (days) - 10.0% Adjusted rate 0.075 56.4% Terminal rate 013 (0%) 07 (0%) 00 (0%) Fline tindefence (days) - 0.00 Cochran-Armitage test P=0.375N P=0.024 P=0.618 Kidney (Pelvis and Transitional Epithelium): Carcinome Overall rate 0.076 33.3% 664 (18%) Adjusted rate 0.076 07 (0%) 07 (0%) 00 (0%) Adjusted rate 0.076 07 (0%) 07 (0%) 00 (0%) Terminal rate 0.077 0% 07 (0%) 07 (0%) Terminal rate 0.077 0% 07 (0%) 07 (0%) Terminal rate 0.076 07 (0%) 07 (0%) Terminal rate 0.076 07 (0%) 07 (0%) Terminal rate 0.076 07 (0%) 00 (0%) Terminal rate 0.076 07 (0%) 00 (0%) Terminal rate 0.077 0% 07 (0%) 00 (0%) Terminal rate 0.077 0% 07 (0%) Terminal rate 0.076 07 (0%) 07 (0%) Terminal r	Terminal rate	0/13 (0%)	0/1 (0%)	0/0 (0%)	
Life table test P = 0.028 - P = 0.029 Fisher cauct test - P = 0.136 Intestine Large (Colon): Adenomatous Polyp - P = 0.136 Overall rate 0.01% 88.3% 95.0% Adjuited rate 0.01% 88.3% 95.0% Intestine Large (Colon): Adenomatous Polyp 00% 88.3% 95.0% Overall rate 0.01% 90.01 P<0.001	First incidence (days)	-	-	249	
Cockman Armitage test P=0.028 Fisher exact test - P=0.136 Drenil rate 0/21 (0%) 18.27 (67%) 24/34 (71%) Adjusted rate 0.0% 88.3% 95.0% Terminal rate 0.01 0/10(0%) 0/10(0%) 0/00(0%) Terminal rate 0.03 (0%) 0/1 (0%) 0/00(0%) 0/11 Lite table test P<0.001	Life table test	P<0.001	-	P=0.009	
Fisher exact test - P=0.136 Intestine Large (Colon): Adenomatous Polyp 0/21 (0%) 18/27 (67%) 2/24 (71%) Overall rate 0.0% 88.3% 5.0% Terminal rate 0.13 (0%) 0/1 (0%) 00 (0%) Terminal rate 0.01 (0%) 0/1 (0%) 00 (0%) Terminal rate 0.01 (0%) 0/1 (0%) 0/1 (0%) Cochran Armitage test P<0.001	Cochran-Armitage test	P=0.028			
Intestine Large (Colon): Adenomatous PolypOverall rate0/1 (0%)18/27 (67%)24/24 (71%)Overall rate0/13 (0%)0/1 (0%)00 (0%)Terminal rate0/13 (0%)0/1 (0%)00 (0%)Terminal rate0/13 (0%)0/1 (0%)0/1 (0%)Cachara-Armitage testP<0.001	Fisher exact test		-	P=0.136	
Intestine Large (Color): Adenomatous Polyp Overall rate 0/21 (0%) 18/27 (67%) 24/34 (71%) Adjusted rate 0.0% 88.3% 95.0% Adjusted rate 0.0% 88.3% 95.0% Terminal rate 0.13 (0%) 01 (0%) 00 (0%) Tirst incidence (days) – 305 211 Life table test P<0.001					
Overall rate 0/21 (0%) 18/27 (07%) 2/4/ (1%) Adjusted rate 0/06 88.3% 95.0% Terminal rate 0/13 (0%) 0/1 (0%) 0/0 (0%) Terminal rate 0/13 (0%) 0/1 (0%) 0/0 (0%) Terminal rate 0/13 (0%) 0/1 (0%) 0/0 (0%) Cohran Armitage test P<0.001	Intestine Large (Colon): Adenomatous Poly	P	•		• • • •
Adjusted rate 0.0% 88.3% 95.0% Terminal rate 0.10 (0%) 0.10 (0%) 0.00 (0%) First incidence (days) - 305 211 Life table test P<0.001	Overall rate	0/21 (0%)	18/27 (67%)	24/34 (71%)	
Terminal rate 0/13 (0%) 0/1 (0%) 00 (0%) First incidence (day) - 305 211 First incidence (day) P<0.001	Adjusted rate	0.0%	88.3%	95.0%	
First incidence (days) - 305 211 Life table test P<0.001	Terminal rate	0/13 (0%)	0/1 (0%)	0/0 (0%)	
Life table test P<0.001	First incidence (days)	_	305	211	
Cochran-Armitage test P<0.001 P<0.001 Fisher exact test P<0.001	Life table test	P<0.001	P<0.001	P<0.001	
Fisher exact test $P < 0.001$ $P < 0.001$ Intestine Large (Rectum): Adenomatous Polyp V $P < 0.001$ $P < 0.001$ $P < 0.001$ Intestine Large (Rectum): Adenomatous Polyp $V < 0.001$ $P < 0.22$ $P < 0.07$ $P < 0.07$ $P < 0.07$ $P < 0.07$ Terminal rate 0.00	Cochran-Armitage test	P<0.001			
Intestine Large (Rectum): Adenomatous Polys Overall rate 0.071 (0%) 6/27 (22%) 1/34 (3%) Adjusted rate 0.09% 5.6.4% 1.6.7% Terminal rate 0.13 (0%) 0/1 (0%) 0.0 (0%) Terminal rate 0.13 (0%) 0/1 (0%) 0.0 (0%) Terminal rate 0.01 P=0.002 P=0.252 Cochran-Arminage test P=0.024 P=0.618 Kidney (Pelvis and Transitional Epithelium): Carcime Verall rate 0.01 (0%) 6/34 (18%) Adjusted rate 0.09% 3.33% 6/34 (18%) Adjusted rate 0.09% 3.13% 0.00 (0%) Terminal rate 0.01 P=0.174 P=0.018 Cochran-Arminage test P=0.018 Cochran-Arminage test P=0.014 P=0.046 P=0.018	Fisher exact test		P<0.001	P<0.001	,
Overall rate 0/21 (0%) 0/27 (22%) 1/44 (3%) Adjusted rate 0.0% 56.4% 16.7% Terminal rate 0.13 (0%) 0/1 (0%) 00 (0%) First incidence (days) - 329 298 Life table test P=0.002 P=0.232 Cochran-Armitage test P=0.0375N Fisher exact test P=0.017 P=0.024 P=0.618 Kidney (Pelvis and Transitional Epithelium): Carcimum Variation (0%) 0/1 (0%) 0/0 (0%) Cordinal rate 0.0% 33.3% 26.8% 26.8% Cordinal rate 0.013 (0%) 0/1 (0%) 0/0 (0%) 1/27 Cordinal rate 0.013 (0%) 0/1 (0%) 0/0 (0%) 1/27 Cordinal rate 0.013 (0%) 0/1 (0%) 0/0 (0%) 1/27 First incidence (days) - 648 217 Life table test P<0.001	Intestine Large (Rectum): Adenomatous Po	јур			v I
Adjusted rate 0.0% 56.4% 16.7% Terminal rate 0/13 (0%) 0/1 (0%) 00 (0%) Tirst incidence (days) - 329 298 Life table test P<0.001	Overall rate	0/21 (0%)	6/27 (22%)	1/34 (3%)	. *
Terminal rate 0/13 (0%) 0/1 (0%) 00 (0%) First incidence (days) - 329 298 First incidence (days) - 329 298 Cochran-Armitage test P=0.001 P=0.022 P=0.252 Cochran-Armitage test P=0.375N P=0.024 P=0.618 Kidney (Pelvis and Transitional Epithelium): Carcirorm Verall rate 0/0% 33.3% 26.8% Cortanal rate 0/13 (0%) 0/1 (0%) 0/0 (0%) First incidence (days) - 648 217 First incidence (days) - 648 217 1 Edite test P=0.014 P=0.018 Cochran-Armitage test P=0.014 P=0.018 26 26 26 Cochran-Armitage test P=0.014 P=0.018 27 27 28 28 Cochran-Armitage test P=0.017 P=0.046 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28 28	Adjusted rate	0.0%	56.4%	16.7%	۰.
First incidence (days) - 329 298 Life table test P=0.002 P=0.252 Cochran-Armitage test P=0.375N P=0.024 P=0.618 Fisher exact test P=0.024 P=0.618 P=0.021 P=0.618 Kidney (Pelvis and Transitional Epithelium): Carci- Verall rate 0/21 (0%) 1/27 (4%) 6/34 (18%) Adjusted rate 0.0% 33.3% 26.8% Terminal rate 0/13 (0%) 0/1 (0%) 00 (0%) Tife table test P<0.001	Terminal rate	0/13 (0%)	0/1 (0%)	0/0 (0%)	, .
Life table test P<0.001 P=0.002 P=0.252 Cochran-Armitage test P=0.375N P=0.024 P=0.618 Kidney (Pelvis and Transitional Epithelium): Carcimer P=0.024 P=0.618 Overall rate 0/21 (0%) 1/27 (4%) 6/34 (18%) Adjusted rate 0.0% 33.3% 26.8% Terminal rate 0/13 (0%) 0/1 (0%) 0/0 (0%) First incidence (days) - 648 217 Life table test P<0.014	First incidence (days)	-	329	298	· •
Cochran-Armitage test P=0.375N Fisher exact test P=0.024 P=0.618 Kidney (Pelvis and Transitional Epithelium): Carcimuma Verall rate 0/21 (0%) 1/27 (4%) 6/34 (18%) Adjusted rate 0.0% 33.3% 26.8% Terminal rate 0/13 (0%) 0/1 (0%) 0/0 (0%) Terminal rate 0/13 (0%) 0/1 (0%) 0/0 (0%) Tifst incidence (days) - 648 217 Life table test P<0.014	Life table test	P<0.001	P=0.002	P=0.252	
Fisher exact test $P=0.024$ $P=0.618$ Kidney (Pelvis and Transitional Epithelium): Carcinum V Overall rate $0/21$ (0%) $1/27$ (4%) $6/24$ (18%) Adjusted rate 0.0% 33.3% 6.54 (18%) Adjusted rate 0.0% 33.3% 26.8% Terminal rate $0/13$ (0%) $0/1$ (0%) 00 (0%) First incidence (days) $ 648$ 217 Life table test $P < 0.001$ $P = 0.174$ $P = 0.018$ Cochran-Armitage test $P = 0.014$ $P = 0.046$ $P = 0.014$ Fisher exact test $P = 0.014$ $P = 0.046$ $P = 0.046$ Kidney (Pelvis and Transitional Epithelium): Papillorm $P = 0.563$ $P = 0.046$ Terminal rate $0/21$ (0%) $0/27$ (0%) $3/24$ (9%) Adjusted rate 0.0% 0.0% 0.0% Terminal rate $0/13$ (0%) $0/1$ (0%) $0/0$ (0%) Cochran-Armitage test $P = 0.017$ $ -$ Life table test $P = 0.017$ $ -$ Cohran Armitage test $P = 0.00$	Cochran-Armitage test	P=0.375N			
Kidney (Pelvis and Transitional Epithelium): Carciums Overall rate 0/21 (0%) 1/27 (4%) 6/34 (18%) Adjusted rate 0.0% 33.3% 26.8% Terminal rate 0/13 (0%) 0/1 (0%) 0/0 (0%) First incidence (days) – 648 217 Life table test P<0.001	Fisher exact test		P=0.024	P=0.618	,
Overall rate $0/21$ (0%) $1/27$ (4%) $6/34$ (18%) Adjusted rate 0.0% 33.3% 26.8% Terminal rate $0/13$ (0%) $0/1$ (0%) 00 (0%) First incidence (days) - 648 217 Life table test $P < 0.001$ $P = 0.018$ $P = 0.018$ Cochran-Armitage test $P = 0.014$ $P = 0.018$ $P = 0.046$ Kidney (Pelvis and Transitional Epithelium): Papillom $P = 0.563$ $P = 0.046$ Coverall rate $0/21$ (0%) $0/27$ (0%) $3/34$ (9%) Adjusted rate 0.0% 0.0% 19.2% Coverall rate $0/13$ (0%) $0/1$ (0%) 00 (0%) Adjusted rate 0.0% 0.0% $9 = 0.046$ Terminal rate $0/13$ (0%) $0/0$ (0%) $9 = 0.046$ Terminal rate $0/21$ (0%) 0.0% $9 = 0.046$ Cochran-Armitage test $P = 0.017$ $ 228$ Life table test $P = 0.017$ $ P = 0.028$ Cochran-Armitage test $P = 0.063$ $ -$ Marmary G	Kidney (Pelvis and Transitional Epithelium): Carcinoma			
Adjusted rate $0.\%$ 33.3% 26.8% Terminal rate $0/13 (0\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) – 648 217 Life table test $P < 0.001$ $P = 0.174$ $P = 0.018$ Cochran-Armitage test $P = 0.014$ $P = 0.046$ Kidney (Pelvis and Transitional Epithelium): Papillow $P = 0.563$ $P = 0.046$ Kidney (Pelvis and Transitional Epithelium): Papillow $P = 0.563$ $P = 0.046$ Kidney (Pelvis and Transitional Epithelium): Papillow $V = 0.0563$ $P = 0.046$ Kidney (Pelvis and Transitional Epithelium): Papillow $V = 0.0563$ $9 = 0.046$ Kidney (Pelvis and Transitional Epithelium): Papillow $V = 0.07$ $9 = 0.046$ Kidney (Pelvis and Transitional Epithelium): Papillow $V = 0.0\%$ 0.0% Terminal rate $0/13 (0\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) – – 228 Life table test $P = 0.063$ – – First incidence fays) $1/21 (5\%)$ $0/27 (0\%)$ $0/34 (0\%)$ Adjusted rate 7.7% 0.0% 0.0% </td <td>Overall rate</td> <td>0/21 (0%)</td> <td>1/27 (4%)</td> <td>6/34 (18%)</td> <td></td>	Overall rate	0/21 (0%)	1/27 (4%)	6/34 (18%)	
Terminal rate $0/13 (0\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) - 648 217 Life table test P<0.001	Adjusted rate	0.0%	33.3%	26.8%	
First incidence (days) - 648 217 Life table test P<0.001	Terminal rate	0/13 (0%)	0/1 (0%)	0/0 (0%)	
Life table test $P < 0.001$ $P = 0.174$ $P = 0.018$ Cochran-Armitage test $P = 0.014$ $P = 0.563$ $P = 0.046$ Kidney (Pelvis and Transitional Epithelium): Papilloma $P = 0.700$ $3/34$ (9%) Overall rate $0/21$ (0%) $0/27$ (0%) $3/34$ (9%) Adjusted rate $0/0\%$ 0.0% $9/2\%$ Terminal rate $0/13$ (0%) $0/1$ (0%) $0/0$ (0%) First incidence (days) - - 228 Life table test $P = 0.063$ - P = 0.228 Cochran-Armitage test $P = 0.063$ - P = 0.228 Mammary Gland: Fibroadenoma - P = 0.228 - Overall rate $1/21$ (5%) $0/27$ (0%) $0/34$ (0%) Adjusted rate 7.7% 0.0% 0.0% Terminal rate $1/13$ (8%) $0/1$ (0%) $0/0$ (0%) First incidence (days) 728 (T) - - Life table test P = 0.324N - - Cochran-Armitage test P = 0.3	First incidence (days)	-	648	217	
Cochran-Armitage test $P=0.014$ Fisher exact test $P=0.046$ Fisher exact test $P=0.046$ Kidney (Pelvis and Transitional Epithelium): Papilloma $P=0.020$ $3/34$ (9%) Overall rate $0/21$ (0%) $0/27$ (0%) $3/34$ (9%) Adjusted rate 0.0% 0.0% 19.2% Terminal rate $0/13$ (0%) $0/1$ (0%) $0/0$ (0%) First incidence (days) $ 228$ Life table test $P=0.063$ $ P=0.088$ Cochran-Armitage test $P=0.063$ $ P=0.228$ Mammary Gland: Fibroadenoma $ P=0.228$ Overall rate $1/21$ (5%) $0/27$ (0%) $0/34$ (0%) Adjusted rate 7.7% 0.0% 0.0% Terminal rate $1/13$ (8%) $0/1$ (0%) $0/0$ (0%) First incidence (days) 728 (T) $ -$ Life table test $P=1.000N$ $P=0.952N$ $-$ Cochran-Armitage test $P=0.324N$ $P=0.438N$ $P=0.382N$	Life table test	P<0.001	P=0.174	P=0.018	· · · · · ·
Fisher exact test $P=0.563$ $P=0.046$ Kidney (Pelvis and Transitional Epithelium): Papillom V Overall rate $0/21 (0\%)$ $0/27 (0\%)$ $3/34 (9\%)$ Adjusted rate 0.0% 0.0% 19.2% Terminal rate $0/13 (0\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) $ 228$ Life table test $P=0.017$ $ P=0.088$ Cochran-Armitage test $P=0.063$ $ P=0.228$ Mammary Gland: Fibroadenoma V V V V Overall rate $1/21 (5\%)$ $0/27 (0\%)$ $0/34 (0\%)$ O Adjusted rate 7.7% 0.0% 0.0% O Overall rate $1/21 (5\%)$ $0/27 (0\%)$ $0/34 (0\%)$ O Adjusted rate 7.7% 0.0% 0.0% O Terminal rate $1/13 (8\%)$ $0/1 (0\%)$ $0/0 (0\%)$ O If is to iddness $P=1.000N$ $P=0.952N$ $ -$ Life table test $P=0.324N$ $P=0.382N$ $P=0.38$	Cochran-Armitage test	P=0.014			
Kidney (Pelvis and Transitional Epithelium): Papillorua Overall rate $0/21 (0\%)$ $0/27 (0\%)$ $3/34 (9\%)$ Adjusted rate 0.0% 0.0% 19.2% Adjusted rate $0/13 (0\%)$ $0/1 (0\%)$ $00 (0\%)$ Terminal rate $0/13 (0\%)$ $0/1 (0\%)$ $00 (0\%)$ First incidence (days) $ 228$ Life table test P= 0.017 $ P=0.088$ Cochran-Armitage test P= 0.063 $ P=0.228$ Mammary Gland: Fibroadenoma $ P=0.228$ Overall rate $1/21 (5\%)$ $0/27 (0\%)$ $0/34 (0\%)$ Adjusted rate 7.7% 0.0% 0.0% Terminal rate $1/13 (8\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) $728 (T)$ $ -$ Life table test $P=1.000N$ $P=0.952N$ $-$ Cochran-Armitage test $P=0.324N$ $P=0.438N$ $P=0.382N$	Fisher exact test		P=0.563	P=0.046	
Overall rate $0/21 (0\%)$ $0/27 (0\%)$ $3/34 (9\%)$ Adjusted rate 0.0% 0.0% 19.2% Terminal rate $0/13 (0\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) - - 228 Life table test P=0.017 - P=0.088 Cochran-Armitage test P=0.063 - P=0.228 Mammary Gland: Fibroadenoma - P=0.228 Overall rate $1/21 (5\%)$ $0/27 (0\%)$ $0/34 (0\%)$ Adjusted rate 7.7% 0.0% 0.0% Terminal rate $1/13 (8\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) $728 (T)$ - - Life table test P=1.000N P=0.952N - Cochran-Armitage test P=0.324N P=0.438N P=0.382N	Kidney (Pelvis and Transitional Epithelium): Papilloma			
Adjusted rate 0.0% 0.0% 19.2% Terminal rate $0.13 (0\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) $ 228$ Life table test $P=0.017$ $ P=0.088$ Cochran-Armitage test $P=0.063$ $ P=0.228$ Mammary Gland: Fibroadenoma $ P=0.228$ Overall rate $1/21 (5\%)$ $0/27 (0\%)$ $0/34 (0\%)$ Adjusted rate 7.7% 0.0% 0.0% Terminal rate $1/13 (8\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) $728 (T)$ $ -$ Life table test $P=1.000N$ $P=0.952N$ $-$ Cochran-Armitage test $P=0.324N$ $P=0.382N$	Overall rate	0/21 (0%)	0/27 (0%)	3/34 (9%)	
Terminal rate $0/13 (0\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) - - 228 Life table test P=0.017 - P=0.088 Cochran-Armitage test P=0.063 - P=0.228 Mammary Gland: Fibroadenoma - P=0.228 Overall rate 1/21 (5%) $0/27 (0\%)$ $0/34 (0\%)$ Adjusted rate 7.7% 0.0% 0.0% Terminal rate 1/13 (8%) $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) 728 (T) - - Life table test P=1.000N P=0.952N - Life table test P=0.324N P=0.438N P=0.382N	Adjusted rate	0.0%	0.0%	19.2%	
First incidence (days) $ 228$ Life table test $P=0.017$ $ P=0.088$ Cochran-Armitage test $P=0.063$ $ P=0.228$ Mammary Gland: Fibroadenoma $ P=0.228$ Overall rate $1/21 (5\%)$ $0/27 (0\%)$ $0/34 (0\%)$ Adjusted rate 7.7% 0.0% 0.0% Terminal rate $1/13 (8\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) $728 (T)$ $ -$ Life table test $P=1.000N$ $P=0.952N$ $-$ Cochran-Armitage test $P=0.324N$ $P=0.382N$	Terminal rate	0/13 (0%)	0/1 (0%)	0/0 (0%)	
Life table test $P=0.017$ $ P=0.088$ Cochran-Armitage test $P=0.063$ $ P=0.228$ Manmary Gland: Fibroadenoma $ P=0.228$ Overall rate $1/21$ (5%) $0/27$ (0%) $0/34$ (0%) Adjusted rate 7.7% 0.0% 0.0% Terminal rate $1/13$ (8%) $0/1$ (0%) $0/0$ (0%) First incidence (days) 728 (T) $ -$ Life table test $P=1.000N$ $P=0.952N$ $-$ Cochran-Armitage test $P=0.324N$ $P=0.438N$ $P=0.382N$	First incidence (days)	_	-	228	
Cochran-Armitage test $P=0.063$ Fisher exact test $P=0.228$ Mammary Gland: Fibroadenoma $P=0.228$ Overall rate $1/21 (5\%)$ $0/27 (0\%)$ $0/34 (0\%)$ Adjusted rate 7.7% 0.0% 0.0% Terminal rate $1/13 (8\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) $728 (T)$ $ -$ Life table test $P=1.000N$ $P=0.952N$ $-$ Cochran-Armitage test $P=0.324N$ $P=0.438N$ $P=0.382N$	Life table test	P=0.017	_	P=0.088	
Fisher exact test - $P=0.228$ Mammary Gland: Fibroadenoma - $P=0.228$ Overall rate 1/21 (5%) $0/27 (0\%)$ $0/34 (0\%)$ Adjusted rate 7.7% 0.0% 0.0% Terminal rate 1/13 (8%) $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) 728 (T) - - Life table test $P=1.000N$ $P=0.952N$ - Cochran-Armitage test $P=0.324N$ $P=0.438N$ $P=0.382N$	Cochran-Armitage test	P=0.063			
Mammary Gland: Fibroadenoma 1/21 (5%) 0/27 (0%) 0/34 (0%) Overall rate 1/21 (5%) 0.0% 0.0% Adjusted rate 7.7% 0.0% 0.0% Terminal rate 1/13 (8%) 0/1 (0%) 0/0 (0%) First incidence (days) 728 (T) - - Life table test P=1.000N P=0.952N - Cochran-Armitage test P=0.324N P=0.438N P=0.382N	Fisher exact test		· _	P=0.228	
Overall rate $1/21 (5\%)$ $0/27 (0\%)$ $0/34 (0\%)$ Adjusted rate 7.7% 0.0% 0.0% Terminal rate $1/13 (8\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) $728 (T)$ $ -$ Life table testP=1.000NP=0.952N $-$ Cochran-Armitage testP=0.324NP=0.438NP=0.382N	Mammary Gland: Fibroadenoma				
Adjusted rate 7.7% 0.0% 0.0% Terminal rate 1/13 (8%) $0/1$ (0%) $0/0$ (0%) First incidence (days) 728 (T) - - Life table test P=1.000N P=0.952N - Cochran-Armitage test P=0.324N P=0.438N P=0.382N	Overall rate	1/21 (5%)	0/27 (0%)	0/34 (0%)	
Terminal rate $1/13 (8\%)$ $0/1 (0\%)$ $0/0 (0\%)$ First incidence (days) 728 (T) - - Life table test P=1.000N P=0.952N - Cochran-Armitage test P=0.324N P=0.438N P=0.382N	Adjusted rate	7.7%	0.0%	0.0%	
First incidence (days)728 (T)Life table test $P=1.000N$ $P=0.952N$ -Cochran-Armitage test $P=0.324N$ $P=0.438N$ $P=0.382N$	Terminal rate	1/13 (8%)	0/1 (0%)	0/0 (0%)	
Life table test $P = 1.000N$ $P = 0.952N$ $-$ Cochran-Armitage test $P = 0.324N$ $P = 0.438N$ $P = 0.382N$ Fisher exact test $P = 0.438N$ $P = 0.382N$	First incidence (days)	728 (T)	_	-	
Cochran-Armitage testP=0.324NFisher exact testP=0.438NP=0.438NP=0.382N	Life table test	P = 1.000 N	P=0.952N		•
Fisher exact test $P=0.438N$ $P=0.382N$	Cochran-Armitage test	P=0.324N			
	Fisher exact test		P=0.438N	P=0.382N	

.

Statistical Analysis of Primary Neoplasms in Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ppm	6,000 ppm	18,000 ppm	
Skin: Keratoacanthoma or Squamous	Cell Papilloma	· · · · · · · · · · · · · · · · · · ·	····	
Overall rate	2/21 (10%)	0/27 (0%)	0/34 (0%)	
Adjusted rate	13.8%	0.0%	0.0%	
Terminal rate	1/13 (8%)	0/1 (0%)	0/0 (0%)	
First incidence (days)	701	_	_	
Life table test	P=0.993N	P=0.850N	_	
Cochran-Armitage test	P=0.111N			
Fisher exact test		P=0.186N	P=0.141N	
Stomach (Forestomach): Squamous C	ell Papilloma			
Overall rate	0/21 (0%)	3/27 (11%)	1/34 (3%)	
Adjusted rate	0.0%	29.8%	16.7%	
Terminal rate	0/13 (0%)	0/1 (0%)	0/0 (0%)	
First incidence (days)	-	424	298	
Life table test	P=0.006	P = 0.045	P = 0.252	
Cochran-Armitage test	P = 0.613N	1 0000	1 0.202	
Fisher exact test		P=0.169	P=0.618	
Testes: Adenoma				
Overall rate	20/21 (95%)	20/27 (74%)	0/34 (0%)	
Adjusted rate	100.0%	100.0%	0.0%	
Terminal rate	13/13 (100%)	1/1 (100%)	0.076	
First incidence (daw)	564	320	-	
I ife table test	B<0.001	B~0.001		
Cochran_Armitage test	P < 0.001	F < 0.001	-	
Fisher exact test	1 < 0.00114	P=0.055N	P<0.001N	
Urinary Bladder (Transitional Epithel	ium): Carcinoma			
Overall rate	0/21 (0%)	23/27 (85%)	33/34 (07%)	
Adjusted rate	0.0%	100.0%	100.0%	
Terminal rate	0/13 (0%)	1/1 (100%)	0/0 (0%)	
First incidence (days)	0,15 (0,0)	275	210	
I ife table test	- B<0.001	2/5 P < 0.001	210 B < 0.001	
Cochran_Armitage test	P<0.001	1 < 0.001	1 < 0.001	
Fisher evact test	1 < 0.001	P~0.001	B~0.001	
Fisher chact test		F <0.001	r < 0.001	
Urinary Bladder (Transitional Epithel	ium): Papilloma			
Overall rate	0/21 (0%)	3/27 (11%)	1/34 (3%)	
Adjusted rate	0.0%	42.9%	4.2%	
Terminal rate	0/13 (0%)	0/1 (0%)	0/0 (0%)	
First incidence (days)	_ ```	434	236	
Life table test	P=0.034	P=0.025	P=0.527	
Cochran-Armitage test	P=0.613N		_	
Fisher exact test		P=0.169	P=0.618	
Urinary Bladder: Sarcoma				
Overall rate	0/21 (0%)	1/27 (4%)	7/34 (21%)	
Adjusted rate	0.0%	4.0%	67.7%	
Terminal rate	0/13 (0%)	0/1 (0%)	0/0 (0%)	
First incidence (days)		305	158	
Life table test	P<0.001	P=0.535	P = 0.001	
Cochran-Armitage test	P = 0.006	1. 0.000		
Fisher exact test	0000	P=0.563	P=0.027	

Statistical Analysis of Primary Neoplasms in Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ррт	6,000 ppm	18,000 ppm
Linnery Blodder: Squamous Cell Carsinoma			
Overall rate	0/21 (0%)	0/27 (0%)	5/21 (15%)
Adjusted rate	0/21 (0%)	0/27 (0%)	5/54 (15%) 66 1%
Tomoinal rate	0/12 (0%)	0/1 (0%)	0/0 (0%)
First insidence (dawn)	0/13 (0%)	0/1 (0/2)	242
Life table test	- P<0.001	-	242 R-0.002
Cashma Armitaga tast	P=0.012	-	1 -0.002
Cochran-Armitage test	F = 0.012		P-0.090
Pisner exact test		-	r=0.080
Urinary Bladder: Squamous Cell Papilloma			
Overall rate	0/21 (0%)	0/27 (0%)	4/34 (12%)
Adjusted rate	0.0%	0.0%	63.7%
Terminal rate	0/13 (0%)	0/1 (0%)	0/0 (0%)
First incidence (days)	_ ``	_ ` `	254
Life table test	P<0.001	_	P=0.003
Cochran-Armitage test	P=0.028		
Fisher exact test		-	P=0.136
All O			· · ·
All Organs: Hemanglosarcoma	0.01 (001)		0.24 (0.21)
Overall rate	0/21 (0%)	2/27 (1%)	0/34 (0%)
Adjusted rate	0.0%	17.6%	
Terminal rate	0/13 (0%)	0/1 (0%)	,0/0 (0%)
First incidence (days)	- -	275	
Life table test	P=0.596	P=0.165	-
Cochran-Armitage test	P=0.467N	D 0.011	
Fisher exact test		P=0.311	
All Organs: Mononuclear Cell Leukemia			
Overall rate	12/21 (57%)	2/27 (7%)	0/34 (0%)
Adjusted rate	62.9%	41.7%	0.0%
Terminal rate	6/13 (46%)	0/1 (0%)	0/0 (0%)
First incidence (days)	564	617	-
Life table test	P=0.772N	P=0.630N	-
Cochran-Armitage test	P<0.001N		
Fisher exact test		P<0.001N	P<0.001N
All Owner Malianant Maasthaliama			
All Organs: Mangnant Mesothenoma	0/01 (0%)	407 (15%)	0/34 (0%)
Overall rate	0/21 (0%)	4/27 (1570)	0.0%
Adjusted rate		40.070	0.070
Terminal rate	0/13 (0%)	0/1 (0 <i>%</i>) 422	0/0 (0%)
First incidence (days)	- B 0.049	423	-
Life table test	P = 0.048	P=0.014	-
Cochran-Armitage test	P=0.299N	D 0.000	
Fisher exact test		P=0.090	
All Organs: Benign Neoplasms			
Overall rate	21/21 (100%)	25/27 (93%)	30/34 (88%)
Adjusted rate	100.0%	100.0%	96.6%
Terminal rate	13/13 (100%)	1/1 (100%)	0/0 (0%)
First incidence (days)	410	305	210
Life table test	P<0.001	P<0.001	P<0.001
Cochran-Armitage test	P=0.115N		
Fisher exact test		P=0.311N	P=0.136N
A AMARKA WARANA BANNA			

Statistical Analysis of Primary Neoplasms in Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ppm	6,000 ррт	18,000 ppm	
All Organs: Malignant Neoplasms	······	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Overall rate	15/21 (71%)	26/27 (96%)	34/34 (100%)	
Adjusted rate	75.0%	100.0%	100.0%	
Terminal rate	8/13 (62%)	1/1 (100%)	0/0 (0%)	
First incidence (days)	564	207`	158	
Life table test	P<0.001	P<0.001	P<0.001	
Cochran-Armitage test	P=0.002			
Fisher exact test		P=0.021	P=0.002	
All Organs: Benign or Malignant Neoplasms				
Overall rate	21/21 (100%)	27/27 (100%)	34/34 (100%)	
Adjusted rate	100.0%	100.0%	100.0%	
Terminal rate	13/13 (100%)	1/1 (100%)	0/0 (0%)	
First incidence (days)	410	207	158	
Life table test	P<0.001	P<0.001	P<0.001	
Cochran-Armitage test	-			
Fisher exact test		P=1.000N	P=1.000N	

(T)Terminal sacrifice

^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, epididymis, gallbladder (mouse), heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

^e Not applicable; no neoplasms in animal group

^f Value of statistic cannot be computed

	0 ppm	6,000 ppm	18,000 ppm	
Disposition Summary	······································	<u> </u>	·····	······································
Animals initially in study	60	60	60	
3-Month interim evaluation	10	10	10	
6-Month interim evaluation	10	10	10	
9-Month interim evaluation	10	10	6	
15-Month interim evaluation	9	3	0	
Early deaths				
Moribund	7	26	23	•
Natural deaths	1 .		11	
Survivors			•	•
Terminal sacrifice	13	1	0	· · ·
Animals examined microscopically	60	60	60	
3-Month Interim Evaluation	<u> </u>	·····	· · ·	·····
Alimentary System				
Liver	(10)	(10)	(10)	
Hematopoietic cell proliferation	1 (10%)	()	(20)	
Hepatodiaphragmatic nodule	2 (20%)			
Inflammation, granulomatous, multiple		1 (10%)		
Necrosis, focal	1 (10%)			
Hepatocyte, hypertrophy			10 (100%)	
Hepatocyte, necrosis, multifocal			10 (100%)	
Hepatocyte, necrosis, multiple	1 (10%)			
Hepatocyte, vacuolization cytoplasmic,				
multifocal			3 (30%)	•
Hepatocyte, Kupffer cell, pigmentation			10 (100%)	
Cardiovascular System	· · · · ·			
None				
Endocrine System			•	
None				• .
General Body System None				
Genital System	·			· · · · · · · · ·
Epididymis	(10)	(10)	(10)	
Depletion			10 (100%)	
Testes	(10) -	(10)	(10)	
Atrophy			9 (90%)	
Degeneration			10 (100%)	
EACIDA			· (1070)	

Table E4

· · · · · · · · · · · · · · · · · · ·	0 ррт	6,000 ррт	18,000 ppm	
3-Month Interim Evaluation (continued)		· ·		
Hematopoietic System				
Spleen	(10)	(10)	(10)	
Congestion		9 (90%)	10 (100%)	
Depletion lymphoid			10 (100%)	
Pigmentation	10 (100%)	10 (100%)	10 (100%)	
Capsule, hypertrophy		10 (100%)	10 (100%)	
Capsule, inflammation, chronic		1 (10%)	10 (100%)	
Integumentary System None				
Musculoskeletal System None				
Nervous System None				
Respiratory System None		<u></u>		
Special Senses System None		·····		
	·	· · · · · · · · · · · · · · · · · · ·	·	
Urinary System				
Kidney	(10)	(10)	(10)	
Nephropathy	2 (20%)			
Nephropathy, chronic	2 (20%)	10 (100%)	7 (70%)	
Pelvis, mineralization		9 (90%)	• •	
Renal tubule, degeneration		10 (100%)		
Renal tubule, necrosis		10 (100%)		
Renal tubule, pigmentation		9 (90%)	10 (100%)	
Urinary bladder	(9)	(9)	(10)	
Inflammation, subacute			10 (100%)	
Metaplasia, squamous			10 (100%)	
Transitional epithelium, hyperplasia			9 (90%)	
waii, proilieration connective tissue			10 (100%)	

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the Stop-Exposure Feed Study of *o*-Nitroanisole (continued)

		•••		
6-Month Interim Evaluation	······································	· · · · · · · · · · · · · · · · · · ·		·····
Alimentary System				
Intestine large, colon			(3)	
Epithelium, hyperplasia			1 (33%)	
Liver	(10)	(10)	(10)	
Inflammation, granulomatous, multiple			1 (10%)	
Artery, inflammation, chronic, focal		1 (10%)		
Hepatocyte, hypertrophy			10 (100%)	
Hepatocyte, necrosis, multifocal		1 (10%)	10 (100%)	
Hepatocyte, vacuolization cytoplasmic		3 (30%)	6 (60%)	
Hepatocyte, Kupffer cell, pigmentation		3 (30%)	10 (100%)	
Cardiovascular System None	<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>		
Endocrine System None		<u> </u>		
General Body System		·		
None				
Genital System				ž
Epididymis	(10)	(10)	(10)	
Depletion			10 (100%)	
Testes	(10)	(10)	(10)	
Atrophy			10 (100%)	
Degeneration			10 (100%)	
Degeneration, focal	1 (10%)		•	4.
Hematopoietic System				
Spleen	(10)	(10)	(10)	
Congestion		10 (100%)	10 (100%)	
Depletion lymphoid			10 (100%)	
Fibrosis			2 (20%)	
Pigmentation		10 (100%)	8 (80%)	
Capsule, hypertrophy		7 (70%)	10 (100%)	
Capsule, inflammation, chronic			10 (100%)	
Integumentary System	<u></u>			

Musculoskeletal System

None

	0 p	pm	6,00	0 ppm	18,0	10 ppm	
6-Month Interim Evaluation (continued) Nervous System None							
Respiratory System Lung Infiltration cellular, lymphocyte, multifocal Inflammation Inflammation, chronic			(2) 2 1 1	(100%) (50%) (50%)			
Special Senses System None						<u>, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,</u>	
Urinary System							
Nidney Nephropathy, chronic Pigmentation	(10) 4	(40%)	(10) 10 1	(100%) (10%)	(10) 10 1	(100%) (10%)	
Pelvis, mineralization			-	()	1	(10%)	
Renal tubule, mineralization			10	(100%)	1	(10%)	
Renal tubule, pigmentation	2	(20%)	9	(90%)	9	(90%)	
Renal tubule, regeneration			10	(100%)	10	(100%)	
I ranshional epithenuin, hyperpiasia	(10)		(10)		5 (9)	(30%)	
Transitional epithelium, hyperplasia	(10)		(10)		(9)	(11%)	
Urinary bladder	(10)		(10)		(10)	(,)	
Cyst, multiple	~ /				1	(10%)	
Inflammation, subacute					7	(70%)	
Metaplasia, squamous					10	(100%)	
Transitional epithelium, hyperplasia			10	(100%)		(0.0.57)	
wall, proliteration connective tissue	-	· · .	1	(10%)	9	(90%)	
9-Month Interim Evaluation							
Alimentary System							
Intestine large, colon			(2)		(4)		
Parasite metazoan					1	(25%)	
Epithelium, hyperplasia	(10)		(10)		1	(25%)	
Basophilic focus	(10)	(10%)	(10)	(10%)	(0)		
Cvst	•	(10%)	•	(1070)	1	(17%)	
Hepatodiaphragmatic nodule	1	(10%)					
Inflammation, granulomatous, multifocal			1	(10%)			
Inflammation, granulomatous, multiple	3	(30%)	9	(90%)	6	(100%)	
Vacuolization cytoplasmic		((0.00))	3	(30%)			
Blie duct, hyperplasia	0	(60%)			E	(0201)	
Mesenterv	(1)				2	(0570)	
Fat, necrosis, focal	1	(100%)					
Stomach, forestomach		. /			(1)		
Epithelium, hyperplasia					ĺ	(100%)	

	0 ppm	6,000 ppm	18,000 ррт	
9-Month Interim Evaluation (continued) Cardiovascular System None				
Endocrine System None	· · ·			
General Body System None				
Genital System Epididymis Depletion Preputial gland Hyperplasia Testes Interstitial cell, hyperplasia Seminiferous tubule, atrophy	(10) (1) (10)	(10) (1) 1 (100%) (10) 2 (20%)	(6) 1 (17%) (6) 3 (50%)	
Hematopoietic System Lymph node Pancreatic, hyperplasia Spleen Congestion Hematopoietic cell proliferation Pigmentation Capsule, hypertrophy Capsule, inflammation, chronic	(10) 10 (100%)	(1) 1 (100%) (10) 10 (100%) 2 (20%) 10 (100%) 8 (80%) 2 (20%)	(6) 5 (83%) 5 (83%) 1 (17%) 6 (100%) 6 (100%)	
Integumentary System None				
Musculoskeletal System None				
Nervous System None	4400 t			
Respiratory System Lung Infiltration cellular, lymphocyte, multifocal	t.	(2) 1 (50%)		

	0 ppm	6,000 ppm	18,000 ppm	
9-Month Interim Evaluation (continued)			<u></u>	
Special Senses System				
Eye	(1)	(1)		
Cataract	1 (100%)			
Cornea, edema		1 (100%)		
Urinary System	<u> </u>	,,, ······		
Kidney	(10)	(10)	(6)	
Fibrosis			1 (17%)	
Hydronephrosis			2 (33%)	
Nephropathy, chronic	10 (100%)	10 (100%)	6 (100%)	
Pelvis, dilatation			1 (17%)	
Pelvis, mineralization	4 (40%)	10 (100%)	2 (33%)	
Renal tubule, pigmentation	10 (100%)	10 (100%)	6 (100%)	
Renal tubule, regeneration			2 (33%)	
Transitional epithelium, hyperplasia	(10)	7 (70%)	3 (50%)	
Ureter	(10)	(10)	(0)	
Dilatation	1 (10%)		1(1%)	
I ransitional epitnelium, nyperplasia	(10)	(10)	1 (17%)	
Inflormation subsoute	(10)	(10)	(0)	
Inflammation, supportive		1 (10%)	2 (33%)	
Metanlasia squamous		1 (10%)	4 (67%)	
Transitional enithelium, hyperplasia		9 (90%)	4 (07.0)	
Wall, proliferation connective tissue			4 (67%)	
15-Month Interim Evaluation				
Alimentary System				
Liver	(9)	(3)		
Basophilic focus	3 (33%)			
Basophilic focus, multiple	1(11%)			
Clear cell focus	1 (11%)			
Eosinophilic focus	1 (11%)			
Hepatodiaphragmatic nodule		1 (33%)		
Inflammation, granulomatous, multiple	6 (67%)	3 (100%)		
Vacuolization cytoplasmic	4 (44%)			
Bile duct, hyperplasia	9 (100%)			
Hepatocyte, Kupffer cell, pigmentation		1 (33%)		
Mesentery	(1)			
Fat, necrosis, focal	1 (100%)			
Cardiovascular System				
Heart	(1)			
Atrium, congestion	` 1 (100%)			
Endocrine System None				

	0 ppm	6,000 ррт	18,000 ppm	
15-Month Interim Evaluation (continued) General Body System None				<u></u>
Genital System Testes Bilateral, interstitial cell, hyperplasia Interstitial cell, hyperplasia	(9) 1 (11%) 4 (44%)	(3)		
Hematopoietic System Lymph node Renal, angiectasis Lymph node, mesenteric Hyperplasia, lymphoid Spleen Congestion Hematopoietic cell proliferation Pigmentation Capsule, hypertrophy Capsule, inflammation, chronic	(1) (1) 1 (100%) (9) 7 (78%) 4 (44%) 6 (67%)	$(1) \\ 1 (100\%) \\ (1) \\ 1 (100\%) \\ (3) \\ 1 (33\%) \\ 2 (67\%) \\ 2 (67\%) \\ 2 (67\%) \\ 1 (33\%) \\ $		
Integumentary System Skin Epidermis, fibrosis, focal	(2) 1 (50%)			
Musculoskeletal System			· · · · ·	
Nervous System None	· · ·			
Respiratory System None				
Special Senses System None			<u></u>	
Urinary System Kidney Nephropathy, chronic Pelvis, dilatation Pelvis, mineralization Renal tubule, pigmentation Renal tubule, regeneration Transitional epithelium, hyperplasia	(9) 9 (100%) 3 (33%) 9 (100%)	(3) 3 (100%) 1 (33%) 3 (100%) 3 (100%) 1 (33%) 3 (100%)		

· · ·	0 p	pm	6,00	00 ppm	18,0	00 ppm	
15-Month Interim Evaluation (continued)							<u></u>
Lingary System (continued)							
Urster	(0)		(2)				
Dilatation	(9)		(3)	(2206)			
Uringra bladder	(0)		(3)	(33%)			
Transitional enithelium hyperplasia			(3)	(23%)			
Wall, proliferation connective tissue			1	(33%)			
Stop-Exposure Study				<u>.</u>			
Alimentary System							
Intestine large, cecum	(1)		(21)		(28)		
Dilatation	(-)		()		2	(7%)	
Edema			2	(10%)	_	()	
Parasite metazoan			1	(5%)			
Submucosa, proliferation							
connective tissue			1	(5%)			
Intestine large, colon	(1)		(21)		(28)		
Edema			ì	(5%)			
Fibrosis			1	(5%)			
Hemorrhage			2	(10%)	4	(14%)	
Intussusception					6	(21%)	
Necrosis					1	(4%)	
Parasite metazoan					1	(4%)	
Epithelium, hyperplasia					9	(32%)	
Serosa, inflammation, chronic			1	(5%)	1	(4%)	
Wall, proliferation							
connective tissue					1	(4%)	
Intestine large, rectum	(1)		(21)		(28)		
Hemorrhage			1	(5%)			
Epithelium, hyperplasia					1	(4%)	
Liver	(21)		(27)		(34)		
Basophilic focus	1	(5%)	2	(7%)			
Basophilic focus, multiple	8	(38%)	3	(11%)			
Clear cell focus	1	(5%)	1	(4%)			
Clear cell focus, multiple	4	(19%)					
Degeneration, cystic	1	(5%)	_				
Eosinophilic focus	5	(24%)	2	(7%)	1	(3%)	
Eosinophilic focus, multiple	2	(10%)	1	(4%)	1	(3%)	
Hematopoietic cell proliferation	-	(40.00)	2	(7%)	1	(3%)	
Hepatodiaphragmatic nodule	2	(10%)	1	(4%)	1	(3%)	
riyperplasia, nodular	5	(24%)		(110)			
Inflammation, granulomatous, multiple	5	(24%)	12	(44%)	15	(44%)	
Mixed cell focus multiple	1	(3%) (5%)	1	(4%)			
Thrombosis	1	(3%)		(407)			
Viewolization attoplasmia	-	(50%)	1	(4%)		(00)	
vacuonzation cytopiasmic Dile duet humerologie	1	(3%) (05%)	2	(1%)	1	(3%)	
Centrilobular degeneration	20	(33%)	1	(20%)			
Contrational, degeneration			1	(470)			

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ppm	6,000 ррт	18,000 ppm	
Ston-Exposure Study (continued)	···· <u>·</u> ·······························			
Alimentary System (continued)				
Liver (continued)				
Henatocyte, hypertrophy			6 (18%)	
Hepatocyte, necrosis, multifocal			1 (3%)	
Hepatocyte, necrosis, multiple		1 (4%)		
Hepatocyte, Kupffer cell, pigmentation		1 (4%)	30 (88%)	
Serosa, fibrosis		1 (4%)	. ,	
Mesentery	(3)	(3)	(1)	
Thrombosis		1 (33%)		
Fat, necrosis, focal	3 (100%)			
Pancreas	(1)	(4)		
Edema	•	1 (25%)		
Polyarteritis	1 (100%)			
Acinar cell, atrophy		1 (25%)		
Acinar cell, hyperplasia	<i>i</i> - .	1 (25%)		
Stomach, forestomach	(3)	(10)	(6)	
Abscess		2 (20%)		
Edema	1 (2207)	1 (10%)	1 (170/)	
Inflammation, suppurative	1 (33%)	1 (10%)	1 (17%)	
Mineralization	2 (6794)	1 (10%)	1 (17%)	
Ulcer multiple	$\frac{2}{1}(33\%)$		I (17 <i>%</i>)	
Enithelium hyperplasia	1 (33%)	4 (40%)	2 (33%)	
Stomach, glandular	(3)	(10)	(6)	
Erosion, multiple	1 (33%)			
Mineralization		2 (20%)		
Cardiovascular System				
Blood vessel		(1)		
Aorta, mineralization		1 (100%)		
Heart	(5)	(2)		
Inflammation, chronic	4 (80%)	2 (100%)		
Mineralization		1 (50%)		
Atrium, congestion	2 (40%)			
Atrium, dilatation	1 (20%)			
Atrium, thrombosis	2 (40%)	1 (50%)		
Endocrine System	······································			
Adrenal gland, cortex	(2)	(2)		
Vacuolization cytoplasmic	1 (50%)			
Vacuolization cytoplasmic, focal		1 (50%)		
Parathyroid gland		(2)		
Hyperplasia		2 (100%)		
General Body System			·····	
None				

.

.

	0 p	рт	6,00	0 ррт	18,00	0 ppm	
Stop-Exposure Study (continued)							
Genital System							
Epididymis	(21)		(27)		(34)		
Depletion cellular	17	(81%)	12	(44%)	9	(26%)	
Preputial gland	(6)		(6)				
Atrophy	2	(33%)	3	(50%)			
Hyperplasia		~ /	1	(17%)			
Inflammation, suppurative	2	(33%)					
Necrosis	1	(17%)					
Duct, cyst	2	(33%)	4	(67%)			
Duct, cyst, multiple			1	(17%)			
Prostate			(4)		(5)		
Inflammation, chronic			1	(25%)			
Inflammation, suppurative			1	(25%)	3	(60%)	
Proliferation connective tissue					• 1	(20%)	
Epithelium, hyperplasia					1	(20%)	
Seminal vesicle	(2)		(1)		(2)		
Atrophy	2	(100%)					
Adventitia, edema			1	(100%)			
Epithelium, hyperplasia					1	(50%)	
Testes	(21)		(27)		(34)		
Bilateral, interstitial cell,							
hyperplasia	1	(5%)	- 1	(4%)			
Interstitial cell, hyperplasia	2	(10%)	12	(44%)		(())	
Seminiferous tubule, alrophy	20	(95%)	13	(48%)	21	(62%)	
Hematopoietic System							
Lymph node	(14)		(16)		(6)		
Bronchial, hyperplasia, lymphoid					1	(17%)	
Deep cervical, angiectasis	1	(7%)					
Iliac, angiectasis			1	(6%)			
Iliac, hyperplasia, lymphoid			1	(6%)	1	(17%)	
Mediastinal, angiectasis	2	(14%)	3	(19%)			
Mediastinal, congestion			1	(6%)			
Mediastinal, hemorrhage	2	(14%)					
Mediastinal, hyperplasia, lymphoid					2	(33%)	
Mediastinal, pigmentation			3	(19%)			
Pancreatic, angiectasis	1	(7%)	1	(6%)			
Pancreatic, edema			1	(6%)			
Pancreatic, hemorrhage	1	(7%)					
rancreatic, hyperplasia, lymphoid	1	(1%)	1	(6%)	2	(33%)	
Renal, anglectasis	1	(1%)	1	(6%)			
Kenal, inflammation, granulomatous			1	(0%)			
Lympn node, mandibular	(6)	(190)	(7)				
Humomlasia humohaid	1	(17%)	2	(400)			
ryperplasia, lymphold	1	(1/%)	3	(43%)			

	0 ppm	6,000 ppm	18,000 ppm	
Stop-Exposure Study (continued)	18			
Hematopoietic System (continued)				
Lymph node, mesenteric	(5)	(9)	(2)	
Angiectasis		2 (22%)		
Congestion		1 (11%)		
Cyst		3 (33%)		
Edema		3 (33%)		
Fibrosis			1 (50%)	
Hemorrhage	1 (20%)			
Hyperplasia, lymphoid	1 (20%)			
Spleen	(21)	(27)	(34)	
Congestion	5 (24%)	15 (56%)	23 (68%)	
Depletion lymphoid	1 (5%)		20 (59%)	
Fibrosis	1 (5%)	1 (4%)	4 (12%)	
Fibrosis, focal	1 (5%)			
Hematopoietic cell proliferation	9 (43%)	19 (70%)	12 (35%)	
Hyperplasia, lymphoid		2 (7%)		
Inflammation, chronic			1 (3%)	
Inflammation, granulomatous	1 (5%)			
Pigmentation	6 (29%)	14 (52%)	19 (56%)	
Thrombosis			1(3%)	,
Capsule, hypertrophy		15 (56%)	34 (100%)	
Capsule, inflammation, chronic		5 (19%)	33 (9/%)	
I nymus Atrophy	(1)		(2)	
		•	2 (100%)	
Integumentary System				
Mammary gland	(1)	(1)		
Duct, cyst		1 (100%)		
Musculoskeletal System			· · ·	
Bone	(1)	(1)		
Calvarium, hyperostosis		1 (100%)		
Nervous System				
Brain	(5)			
Compression	2 (40%)		. •	
Hemorrhage, multiple	1 (20%)			
Respiratory System		· · · · · · · · · · · · · · · · · · ·	,	
Lung	(7)	(3)	(2)	
Congestion		2 (67%)		
Infiltration cellular, lymphocyte.		2 (0000)		
multifocal			1 (50%)	
Inflammation, granulomatous	1 (14%)			
Alveolar epithelium, hyperplasia	1 (14%)			
Alveolus, pigmentation	1 (14%)			
Nose	(1)			
Lumen, hyperkeratosis	1 (100%)			
Lumen, inflammation, suppurative	1 (100%)			
			•	

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the Stop-Exposure Feed Study of *o*-Nitroanisole (continued)

	0 PI	m	6,00	0 ppm	18,0	00 ppm	
Stop-Exposure Study (continued) Special Senses System None							
Urinary System	H						i
Kidney	(21)		(27)		(34)		
Hydronephrosis					10	(29%)	
Infarct					3	(9%)	
Nephropathy, chronic	21	(100%)	27	(100%)	24	(71%)	
Bilateral, hydronephrosis		. ,	2	(7%)	1	(3%)	
Cortex, cyst			1	(4%)			
Papilla, necrosis					1	(3%)	
Pelvis, dilatation					1	(3%)	
Pelvis, inflammation, suppurative	1	(5%)					
Pelvis, mineralization	16	(76%)	27	(100%)	2	(59%)	
Pelvis, necrosis					1	(3%)	
Renal tubule, dilatation					1	(3%)	
Renal tubule, hyperplasia			1	(4%)			
Renal tubule, mineralization			1	(4%)	3	(9%)	
Renal tubule, necrosis					1	(3%)	
Renal tubule, pigmentation	20	(95%)	26	(96%)	34	(100%)	
Renal tubule, regeneration			2	(7%)	6	(18%)	
Transitional epithelium, hemorrhage					1	(3%)	
Transitional epithelium, hyperplasia	5	(24%)	24	(89%)	19	(56%)	
Ureter	(19)		(25)		(34)		
Dilatation			4	(16%)	14	(41%)	
Hemorrhage					1	(3%)	
Inflammation, chronic					1	(3%)	
Transitional epithelium, hyperplasia			1	(4%)			
Urethra			(2)		(1)		
Bulbourethral gland, cyst, multiple			1	(50%)			
Transitional epithelium, hyperplasia					1	(100%)	
Urinary bladder	(21)		(27)		(34)		
Hemorrhage			1	(4%)	6	(18%)	
Inflammation, suppurative			-	(4.4.54)	4	(12%)	
Metapiasia, squamous			3	(11%)	30	(88%)	
Necrosis			1	(4%)	-	1100	
Transmonal epitnelium, nyperplasia			9	(33%)	2	(0%)	
wail, proliferation connective tissue			1	(4%)	24	(/1%)	

^a Number of animals examined microscopically at site and number of animals with lesion.

APPENDIX F

SUMMARY OF LESIONS IN FEMALE RATS IN THE STOP-EXPOSURE FEED STUDY OF @-NITROANISOLE

Table F1	Summary of the Incidence of Neoplasms in Female Rats	
	in the Stop-Exposure Feed Study of o-Nitroanisole	344
Table F2a	Individual Animal Tumor Pathology of Female Rats	
	at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study	
	of o-Nitroanisole	350
Table F2b	Individual Animal Tumor Pathology of Female Rats	
	at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study	
	of o-Nitroanisole	356
TABLE F2c	Individual Animal Tumor Pathology of Female Rats	
	at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study	
	of o-Nitroanisole	362
Table F2d	Individual Animal Tumor Pathology of Female Rats	
	at the 15-Month Interim Evaluation in the Stop-Exposure Feed Study	
	of o-Nitroamisole	368
Table F2e	Individual Animal Tumor Pathology of Female Rats	
	in the Stop-Exposure Feed Study of o-Nitroanisole	372
Table F3	Statistical Analysis of Primary Neoplasms in Female Rats	
	in the Stop-Exposure Feed Study of o-Nitroanisole	384
Table F4	Summary of the Incidence of Nonneoplastic Lesions in Female Rats	
	in the Stop-Exposure Feed Study of o-Nitroanisole	388

Summary of the Incidence of Neoplasms in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole^a

	0 ррт	6,000 ppm	18,000 ppm	
Disposition Summary	M - 4			
Animals initially in study	60	60	60	
3-Month interim evaluation	10	10	10	
6-Month interim evaluation	10	10	10	
9-Month interim evaluation	10	10	6	
15-Month interim evaluation	8	10	0	
Early deaths				
Moribund	6	12	25	
Natural deaths	2	4	9	
Survivors				
Terminal sacrifice	14	4	0	• •
Animals examined microscopically	60	60	60	
3-Month Interim Evaluation ^b		99.904 BL		
6 Month Interim Engluation				
o-monin Interim Evaluation				
Alimentary System				
Intestine large, colon		(1)		
Polyp adenomatous	•	1 (100%)		•
Urinary System				
Urinary bladder	(10)	(10)	(10)	
Transitional epithelium, carcinoma	()		10 (100%)	
Neonlasm Summany				
Total animals with nrimany neoplasms ^C			10	
Total primary peoplasms		. 1	10	
Total animals with benian neoplasms		1	10	
Total benign neoplasms		1		
Total animals with malignant neonlasms		•	10	
Total malignant neoplasms			10	
9-Month Interim Evaluation ^b				
Alimentary system				
Intestine large, colon			(1)	
Polyp adenomatous, multiple		· · ·	í (100%)	
Urinary System	(10)			
Samona	(10)	(9)	(0)	
Sarcoma Transitional enithelium consistence		1 (1107)	2 (33%) 6 (100%)	
rransmonal epitnenum, carcinoma		1 (11%)	0 (100%)	
· · · · · · · · · · · · · · · · · · ·				

...

.-

	0 ррт	б,000 ррт	18,000 ppm	
9-Month Interim Evaluation (continued)	<u> </u>			
Neoplasm Summary				
Total animals with primary neoplasms		1	6	
Total primary neoplasms		1	9	
Total animals with benign neoplasms			1	
Total benign neoplasms			1	
Total animals with malignant neoplasms		1	6	
Total malignant neoplasms		1	8	
15-Month Interim Evaluation				
Alimentary System				
Intestine large, colon		(2)		
Polyp adenomatous, multiple		2 (100%)		
Intestine large, rectum		(2)		
Polyp adenomatous		1 (50%)		
Cardiovascular System None				
Endocrine System				
Pituitary gland		(1)		
Pars distalis, adenoma		1 (100%)		
General Body System None				
Genital System				· · · · · · · · · · · · · · · · · · ·
Clitoral gland	(2)	(1)		
Adenoma	1 (50%)			
Uterus	(8)	(10)		
Polyp stromal	1 (13%)	1 (10%)		
Hematopoietic System None				
Integumentary System None				
Musculoskeletal System None			·	
Nervous System None				
			· · · · · · · ·	

	0 ррш	6,000 ppm	18,000 ррт
15-Month Interim Evaluation (continued) Respiratory System None			
Special Senses System None			
Urinary System Urinary bladder Transitional epithelium, carcinoma Transitional epithelium, papilloma	(8)	(10) 9 (90%) 1 (10%)	
Neoplasm Summary Total animals with primary neoplasms Total primary neoplasms Total animals with benign neoplasms Total benign neoplasms Total animals with malignant neoplasms Total malignant neoplasms	2 2 2 2	10 15 3 6 9 9	5.4 . e i 5. 4
Stop-Exposure Study Alimentary System Intestine large, colon Carcinoma Polyp adenomatous Polyp adenomatous, multiple Intestine large, rectum Polyp adenomatous, multiple Intestine small, ileum Intestine small, jejunum	(2) (1) (1) (1)	(5) 3 (60%) 1 (20%) (5) 1 (20%) (2) (2) (2)	(21) 2 (10%) 5 (24%) 12 (57%) (21) (34)
Liver Squamous cell carcinoma, metastatic, urinary bladder Mesentery Sarcoma, metastatic, multiple, urinary bladder Squamous cell carcinoma, metastatic, urinary bladder	(1)	(2)	(34) 1 (3%) (2) 1 (50%) 1 (50%)
Pancreas Sarcoma, metastatic, urinary bladder Squamous cell carcinoma, metastatic, urinary bladder Stomach, forestomach Squamous cell carcinoma, metastatic, urinary bladder	(1)	(9)	(4) 1 (25%) 1 (25%) (8) 1 (13%)
Squamous cell papilloma Stomach, glandular Serosa, sarcoma, metastatic, urinary bladder	1 (20%) (5)	4 (44%) (9)	4 (50%) (8) 1 (13%)

Summary of the Incidence of Neoplasms in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ррт	6,000 ррт	18,000 ppm	
Stop-Exposure Study (continued) Cardiovascular System None				
Endocrine System Adrenal gland, cortex Squamous cell carcinoma, metastatic, urinary bladder Adrenal gland, medulla Islets, pancreatic Carcinoma Pituitary gland Pars distalis, adenoma Thyroid gland Follicular cell, carcinoma	(2) (1) 1 (100%) (13) 12 (92%) (1) 1 (100%)	(8) 4 (50%) (1) 1 (100%)	(1) 1 (100%) (1)	
General Body System None				
Genital System Clitoral gland Adenoma Carcinoma Ovary Squamous cell carcinoma, metastatic, urinary bladder Uterus Polyp stromal Squamous cell carcinoma, metastatic, urinary bladder Cervix, carcinoma, metastatic, urinary bladder Cervix, leiomyosarcoma	(3) 1 (33%) 2 (67%) (1) (21) 2 (10%)	(5) 1 (20%) (20) 2 (10%)	(1) (1) 1 (100%) (34) 1 (3%) 1 (3%) 1 (3%)	
Hematopoietic System Lymph node Iliac, squamous cell carcinoma, metastatic, urinary bladder Lymph node, mandibular Lymph node, mesenteric Squamous cell carcinoma, metastatic,	(14) (7) (2)	(16) (2) (1)	(12) 1 (8%) (2)	
urinary bladder Spleen Capsule, squamous cell carcinoma, metastatic, urinary bladder Thymus Squamous cell carcinoma, metastatic, urinary bladder	(22) (1)	(20)	1 (50%) (34) 1 (3%) (3) 1 (33%)	

.

• .

	0 ppm	6,000 ррт	18,000 ppm	
Stop-Exposure Study (continued)				
Integumentary System	``````````````````````````````````````			
Mammary gland	(14)	(5)		
Adenoma		1 (20%)		
Fibroadenoma	7 (50%)	1 (20%)		
Fibroadenoma, multiple	1 (7%)	2 (40%)		
Skin	(1)		(1)	
Head, squamous cell carcinoma,				
deep invasion	1 (100%)			
Musculoskeletal System		· · · · · · · · · · · · · · · · · · ·	····	Here was an and
Skeletal muscle	(1)			
Hindlimb, rhabdomyosarcoma	1 (100%)			
Nervous System				
Brain	(5)	(2)		
Ependymoma malignant	(-)	1 (50%)		
Glioma malignant	1 (20%)			
Respiratory System				
Lung	(3)	(1)	(2)	
Squamous cell carcinoma, metastatic,				
urinary bladder			1 (50%)	
Special Senses System None				
Ilrinary System				
Kidney	(22)	(20)	(34)	
Squamous cell carcinoma metastatic	(22)	(20)	(54)	
urinary bladder			1 (3%)	
Transitional epithelium, carcinoma			1 (3%)	
Transitional epithelium, papilloma			1 (3%)	
Urinary bladder	(20)	(20)	(34)	
Fibrosarcoma			1 (3%)	
Leiomyosarcoma		1 (5%)	2 (6%)	
Sarcoma		1 (5%)	9 (26%)	
Squamous cell carcinoma			1 (3%)	
Squamous cell papilloma			2 (6%)	
Squamous cell papilloma, multiple		19 (007)	2 (6%)	
Transitional epithelium, carcinoma		18 (90%)	32 (94%)	
Transitional epithelium, papilloma, multiple		1 (376)	1 (3%)	
Systemic Lesions				
Multiple organs ^d	(22)	(20)	(34)	
Leukemia mononuclear	3 (14%)	(20)	(57)	
Louis mononuoleu	5 (11/0)			

Summary of the Incidence of Neoplasms in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ррш	6,000 ppm	18,000 ppm	
Stop-Exposure Study (continued)				
Neoplasm Summary				
Total animals with primary neoplasms	20	20	32	
Total primary neoplasms	34	43	76	
Total animals with benign neoplasms	16	14	21	
Total benign neoplasms	24	20	27	
Total animals with malignant neoplasms	10	20	32	
Total malignant neoplasms	10	23	49	
Total animals with metastatic neoplasms			3	
Total metastatic neoplasm			17	

a b

Number of animals examined microscopically at site and number of animals with lesion. All organ systems listed in Table 1 (Materials and Methods) were evaluated, but neoplasms were found only in systems specified. Primary neoplasms: all neoplasms except metastatic neoplasms

с d

Number of animals with any tissue examined microscopically

¥		
Number of Days on Study	0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 7 7 7 7 7 8 8 8 8 8	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4	Total Tissues/ Tumors
Alimentary System Liver	+ + + + + + + + +	10
Cardiovascular System None		
Endocrine System None	· · ·	·
General Body System None		Fe- 84
Genital System Uterus	+ + + + + + + +	10
Hematopoietic System Spleen	+ + + + + + + + +	10
Integumentary System None		
Musculoskeletal System None		
Nervous System None		
Respiratory System None		
L. Tissue gramined microscopically	M: Missing tissue X: Lesion nre	cent

TABLE F2a Individual Animal Tumor Pathology of Female Rats at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 0 ppm

+: Tissue examined microscopically A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue

X: Lesion present Blank: Not examined

.

Individual Animal Tumor Pathole in the Stop-Exposure Feed Study	ogy of Fem of o-Nitros	ale ani	R SO	ats le:	a1 0	t tř PP	ne : m	3-N (co:	A o ntin	th Interim Evaluation ed)	
Number of Days on Study	0 8 7	0 8 7	0 8 7	0 8 7	0 8 7	0 8 8	0 8 8	0 8 8	0 8 8	0 8 8	
Carcass ID Number	0 4 1 1	0 4 1 2	0 4 2 1	0 4 2 2	0 4 2 3	0 4 1 3	0 4 1 4	0 4 1 5	0 4 2 4	0 4 2 5	

TABLE F2a

Special Senses System None

Urinary System Kidney Ureter Urinary bladder	+ + + + + + + + + + + + + + + + + + +	10 10 10
---	---------------------------------------	----------------

Systemic Lesions

Multiple organs	+ + + + + + + + + +	10

Total Tissues/ Tumors

Number of Days on Study	0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6	Total Tissues/ Tumors
Alimentary System Liver	+ + + + + + + + +	10
Cardiovascular System None		•
Endocrine System None		·
General Body System None		
Genital System Uterus	+ + + + + + + + +	10
Hematopoietic System Spleen	+ + + + + + + + +	10
Integumentary System None		
Musculoskeletal System None		
Nervous System None		
Respiratory System None	· · ·	
Special Senses System None		

TABLE F2a Individual Animal Tumor Pathology of Female Rats at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm

TABLE F2a

Individual Animal Tumor Pathology of Female Rats at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study of *o*-Nitroanisole: 6,000 ppm (continued)

Number of Days on Study	0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6	Total Tissues/ Tumors
Urinary System Kidney Ureter Urinary bladder	+ + + + + + + + + + + + + + + + + + +	10 10 10
Systemic Lesions Multiple organs	+ + + + + + + + +	. 10

in the Stop-Exposure Feed St	udy of o-Nitroanisole:	» 18,000 ppm	
Number of Days on Study	0 0 0 0 8 8 8 8 7 7 7 7	0 0 0 0 0 0 0 8 8 8 8 8 8 7 7 7 7 8 8 8	-
Carcass ID Number	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 5 5 5 5 5 5 5 5 3 3 4 4 4 4 4 4 4 5 1 2 3 4 5 T	lotal lissues/ lumors
Alimentary System Liver	+ + + +	+ + + + + + + 1	10
Cardiovascular System None		· · ·	
Endocrine System None		• • •	
General Body System None			
Genital System Uterus	+ + + +	+ + + + + + + 1	10
Hematopoietic System Spleen	+ + + +	+ + + + + + + 1	10
Integumentary System None			
Musculoskeletal System None	· · · · · · · · · · · · · · · · · · ·		
Nervous System None			
Respiratory System None			
Special Senses System None		••••••••••••••••••••••••••••••••••••••	

TABLE F2a Individual Animal Tumor Pathology of Female Rats at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 18,000 ppm

TABLE F2a

Individual Animal Tumor Pathology of Female Rats at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study of *o*-Nitroanisole: 18,000 ppm (continued)

Number of Days on Study	0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 5 5 5 5	Total Tissues/ Tumors
Urinary System Kidney Ureter Urinary bladder	+ + + + + + + + + + + + + + + + + + +	10 10 10
Systemic Lesions Multiple organs	+ + + + + + + + +	10
	-initialitation of ppin	
---	--	-----------------------------
Number of Days on Study	1 1 1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4	Total Tissues/ Tumors
Alimentary System Liver Mesentery	+ + + + + + + + + +	10 1
Cardiovascular System None		
Endocrine System None		· · · · · ·
General Body System None		
Genital System Uterus	+ + + + + + + + +	10
Hematopoietic System Spleen	+ + + + + + + + +	10
Integumentary System None		
Musculoskeletal System None		
Nervous System None		
Respiratory System None		
+. Tissue evamined microsconically	M: Missing tissue	X: Lesion present

TABLE F2b Individual Animal Tumor Pathology of Female Rats at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 0 ppm

356

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

TABLE F2b Individual Animal Tumor Pathology of Female Rats at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 0 ppm (continued)

Number of Days on Study	1 1 1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4	Total Tissues/ Tumors
Special Senses System None	· · · · · · · · · · · · · · · · · · ·	
Urinary System Kidney Ureter Urinary bladder	+ + + + + + + + + + + + + + + + + + +	10 9 10
Systemic Lesions Multiple organs	+ + + + + + + + +	

10

10

TABLE F2b Individual Animal Tumor Pathology of Female Rats at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm Number of Days on Study 99999999999 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 **Carcass ID Number** 6 6 6 6 6 6 6 6 6 6. Total . 77778 Tissues/ 7 8 8 8 8 1 2 3 4 5 1 2 3 4 5 Tumors **Alimentary System** Intestine large + 1 + Intestine large, cecum 1 + Intestine large, colon 1 Polyp adenomatous Х 1 : Intestine large, rectum + 1 Liver 10 **Cardiovascular System** None **Endocrine System** None **General Body System** None **Genital System** Ovary 1

 Uterus
 + + + + + + + + +

 Hematopoietic System

 Spleen
 + + + + + + + + +

Integumentary System

None

Musculoskeletal System

None

Nervous System

None

TABLE F2b

Individual Animal Tumor Pathology of Female Rats at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm (continued)

Number of Days on Study	1 1 1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6	Total Tissues/ Tumors
Respiratory System Lung	+ +	2
Special Senses System None		
Urinary System	·	
Kidney	+ + + + + + + + +	10
Ureter	+ + + + + + + + +	10
Urinary bladder	+ + + + + + + + +	10
Systemic Lesions		
Multiple organs	+ + + + + + + + +	10

Number of Days on Study	1 1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9 9	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 5 5 5 5 5	Total Tissues/ Tumors
Alimentary System Liver	+ + + + + + + + +	10
Cardiovascular System None		
Endocrine System None	· · · ·	
General Body System None		
Genital System Uterus	+ + + + + + + +	10
Hematopoietic System Spleen	+ + + + + + + +	10
Integumentary System None		
Musculoskeletal System None		
Nervous System None		
Respiratory System None		
Special Senses System None		

TABLE F2bIndividual Animal Tumor Pathology of Female Rats at the 6-Month Interim Evaluationin the Stop-Exposure Feed Study of o-Nitroanisole:18,000 ppm

TABLE F2b

Individual Animal Tumor Pathology of Female Rats at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 18,000 ppm (continued)

Number of Days on Study	1 1 1 1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 5 5 5 5	Total Tissues/ Tumors
Urinary System		
Kidney	+ + + + + + + + + +	10
Ureter	+ + + + + + + + +	10
Urinary bladder	+ + + + + + + + +	10
Transitional epithelium, carcinoma	* * * * * * * * * * *	10
Systemic Lesions Multiple organs	+ + + + + + + + +	10

in the Stop-Exposure reed Stud	iy of o-marioanisole: o ppm	
Number of Days on Study	2 2 2 2 2 2 2 2 2 2 2 2 7 7 7 7 7 7 7 7	<u>.</u>
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 5 5 5 6 6 5 5 6 6 6 1 2 3 1 2 4 5 3 4 5	Total Tissues/ Tumors
Alimentary System Liver	+ + + + + + + + +	10
Cardiovascular System None		· · · · · ·
Endocrine System None		
General Body System None		•
Genital System Ovary Uterus	+ + + + + + + + + +	1 10
Hematopoietic System Spleen	+ + + + + + + + +	10
Integumentary System None		
Musculoskeletal System None		, <u>, , , , , , , , , , , , , , , , , , </u>
Nervous System None		,
Respiratory System None		

TABLE F2c

Individual Animal Tumor Pathology of Female Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of *o*-Nitroanisole: 0 ppm

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue

X: Lesion present Blank: Not examined

TABLE F2c Individual Animal Tumor Pathology of Female Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 0 ppm (continued)

2 2 2 2 2 2 2 2 2 2 2 2 Number of Days on Study 7 7 7 7 7 7 7 7 7 7 4 4 4 4 4 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 **Carcass ID Number** 4 4 4 4 4 4 4 4 4 4 Total 5 5 5 6 6 5 5 6 6 6 Tissues/ 1 2 3 1 2 4 5 3 4 5 Tumors Special Senses System None **Urinary System** Kidney 10 + Ureter 10 + Urinary bladder 10 + + Systemic Lesions Multiple organs + + + + + + + + + + 10

in the Stop-Exposure Feed Study of o-Nitroanisole:		: <u>6,000 ppm</u>			
Number of Days on Study	2 2 2 2 7 7 7 7 4 4 4 4	2 2 2 2 2 2 2 2 7 7 7 7 7 7 7 7 4 5 5 5 5 5 5			
Carcass ID Number	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 7 6 6 6 6 7 7 0 9 9 9 9 0 0 3 2 3 4 5 4 5	Total Tissues/ Tumors		
Alimentary System Liver Mesentery Stomach Stomach, forestomach Stomach, glandular	+ + + + +	+ + + + + + + + +	10 1 1 1 1		
Cardiovascular System None		· · · · · · · · · · · · · · · · · · ·	• •		
Endocrine System None					
General Body System None					
Genital System Uterus	+ + + +	+ + + + + +	10		
Hematopoietic System Spleen	+ + + +	+ + + + + +	10		
Integumentary System None	<u></u>		<u> </u>		
Musculoskeletal System None					
Nervous System None					
Respiratory System None	· · · · · · · · · · · · · · · · · · ·		<u></u>		

TABLE F2c Individual Animal Tumor Pathology of Female Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm

TABLE F2c

Individual Animal Tumor Pathology of Female Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm (continued)

	2 2 2 2 2 2 2 2 2 2 2 2	
Number of Days on Study	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	4 4 4 4 5 5 5 5 5 5	
	0 0 0 0 0 0 0 0 0 0	
Carcass ID Number	6777666677	Total
	9 0 0 0 9 9 9 9 0 0	Tissnes/
	1 1 2 2 2 2 4 5 4 5	Tumoro
	1 1 2 5 2 5 4 5 4 5	1 011018
None		
Vidney		10
Lireter	· · · · · · · · · · ·	10
Uringry bloddor		10
Transitional enithelium esteiname	• • • • • • • • • • • • • • • • • • •	9 1
Transitional epithenum, carcinoma	*	1
Systemic Lesions		
Multiple organs	* * + + + + + + +	10
maniple organic		10

Number of Days on Study	2 2 2 2 2 2 2 7 7 7 7 7 7 4 4 5 5 5 5		
Carcass ID Number	0 0 0 0 0 0 0 5 5 5 5 5 5 7 7 7 7 7 8 1 2 3 4 5 5		Total Tissues/ Tumors
Alimentary System Intestine large Intestine large, cecum Intestine large, colon Polyp adenomatous, multiple Intestine large, rectum Liver	+ + X + + + + + + +		1 1 1 1 6
Cardiovascular System None			
Endocrine System None			
General Body System None	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Genital System Uterus	· + + + + + +	· ·	6
Hematopoietic System Lymph node Spleen	+ + + + + + +		1 6
Integumentary System None		· ·	·
Musculoskeletal System None	· · · · · · · · · · · · · · · · · · ·		
Nervous System None			·

TABLE F2cIndividual Animal Tumor Pathology of Female Rats at the 9-Month Interim Evaluationin the Stop-Exposure Feed Study of o-Nitroanisole:18,000 ppm

.

TABLE F2c

Individual Animal Tumor Pathology of Female Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 18,000 ppm (continued)

Number of Days on Study	2 2 2 2 2 2 2 7 7 7 7 7 7 4 4 5 5 5 5	
Carcass ID Number	0 0 0 0 0 0 5 5 5 5 5 5 7 7 7 7 7 8 1 2 3 4 5 5	Total Tissues/ Tumors
Respiratory System None	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Special Senses System None	· · · · · · · · · · · · · · · · · · ·	·····
Urinary System		· · · · · · · · · · · · · · · · · · ·
Kidney	+ + + + + +	.6
Ureter	+ + + + + +	6
Urinary bladder	· + + + + + +	6
Sarcoma	X X	2
Transitional epithelium, carcinoma	x x x x x x	6
Systemic Lesions	······································	
Multiple organs	+ + + + + +	6

		· · · · · · · · · · · · · · · · · · ·
Number of Days on Study	4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 7 7 7 8 8 7 7 8 1 2 3 3 4 4 5 5	Total Tissues/ Tumors
Alimentary System Liver Mesentery	+ + + + + + + + + + + + + + + + + + + +	8 2
Cardiovascular System None		· · · · ·
Endocrine System None		
General Body System None		
Genital System Clitoral gland Adenoma Ovary Uterus Polyp stromal		2 1 1 8 1
Hematopoietic System Spleen	+ + + + + + +	8
Integumentary System		
Musculoskeletal System None		
Nervous System None		· · · · · · · · · · · · · · · · · · ·

TABLE F2d Individual Animal Tumor Pathology of Female Rats at the 15-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 0 ppm

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

TABLE F2d Individual Animal Tumor Pathology of Female Rats at the 15-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole: 0 ppm (continued)

Number of Days on Study	4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	
Carcass ID Number	0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 7 7 7 8 8 7 7 8 1 2 3 3 4 4 5 5	Total Tissues/ Tumors
Respiratory System None		
Special Senses System None		
Urinary System Kidney Ureter Urinary bladder	+ + + + + + + M + + + + + + + + + + + +	8 7 8
Systemic Lesions Multiple organs	+ + + + + + +	8

in the Stop-Exposure Feed Study of	of o-Nitroanisole:	6,000 ppm	·	
Number of Days on Study	4 4 4 4 5 5 5 5 5 5 5 5	4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6		
Carcass ID Number	0 0 0 0 7 7 7 7 1 1 1 2 1 2 3 1	0 0 0 0 0 7 7 7 7 7 2 1 1 2 2 2 4 5 3 4 5		Total Tissues/ Tumors
Alimentary System Intestine large Intestine large, cecum Intestine large, colon Polyp adenomatous, multiple Intestine large, rectum Polyp adenomatous Liver Mesentery	+ + X + X + + M + + +	+ + X + + + + + + + + + +		2 2 2 2 2 2 1 9 5
Cardiovascular System None				
Endocrine System Pituitary gland Pars distalis, adenoma	+ X		· · ·	1 1
General Body System None	and and a		······································	
Genital System Clitoral gland Oviduct Uterus Polyp stromal	+ + + + + +	+ + + + + + X		1 1 10 1
Hematopoietic System Lymph node Spleen	+++++	+ + + + + +		2 10
Integumentary System None				<u> </u>
Musculoskeletal System			· · · · · · · · · · · · · · · · · · ·	

TABLE F2d Individual Animal Tumor Pathology of Female Rats at the 15-Month Interim Evaluation in the Stop-Exposure Feed Study of a-Nitroanisole: 6.000 ppm

370

None

TABLE F2d

Individual Animal Tumor Pathology of Female Rats at the 15-Month Interim Evaluation in the Stop-Exposure Feed Study of *o*-Nitroanisole: 6,000 ppm (continued)

	4 4 4 4 4 4 4 4 4 4	
Number of Days on Study	5 5 5 5 5 5 5 5 5 5 5	
	5 5 5 5 5 6 6 6 6 6	
••••••	0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·
Carcass ID Number	7 7 7 7 7 7 7 7 7	Total
	1 1 1 2 2 1 1 2 2 2	Tissues/
	1 2 3 1 2 4 5 3 4 5	Tumors
Nervous System	•	
None		
Respiratory System None		
Special Senses System		
None	· · · · · · · · · · · · · · · · · · ·	
Urinary System		
Kidney	+ + + + + + + + +	10
Ureter	+ + + + + + + + +	10
Urinary bladder	+ + + + + + + + +	10
Transitional epithelium, carcinoma	X X X X X X X X X X X X X X X X X X X	9
Transitional epithelium, papilloma	X	· 1
Systemic Lesions		
Multiple organs	+ + + + + + + + + +	10

0 ppm																	_							
Number of Days on Study	1 0 3	4 0 8	4 1 3	4 2 1	5 9 0	6 4 8	6 6 2	6 7 9	7 2 8	7 2 9	7 2 [.] 9	7 2 9	7 2 9	7 2 9	7 2 9									
Carcass ID Number	0 3 8 1	0 4 8 1	0 4 8 2	0 3 7 1	0 4 0 1	0 3 9 1	0 3 9 2	0 3 7 2	0 3 7 3	0 3 7 4	0 3 7 5	0 3 8 2	0 3 8 3	0 3 8 4	0 3 8 5	0 3 9 3	0 3 9 4	0 3 9 5	0 4 0 2	0 4 0 3	0 4 0 4	0 4 0 5		Total Tissues/ Tumo rs
Alimentary System																								
Intestine large	+								+															2
Intestine large, cecum	A								+															2 1
Intestine large, colon	+								+															2
Intestine large, rectum	A								+															1
Intestine small	+								+															2
Intestine small, duodenum	+								+															2
Intestine small, ileum	Α								+															1
Intestine small, jejunum	А								+															1
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		22
Mesentery																						+		1
Pancreas					+																			1
Stomach					+			+	+				+							+				5
Stomach, forestomach					+			+	+				+							+				5
Squamous cell papilloma													х											1
Stomach, glandular					+			+	+				+							+				5
Tongue			+																					1
Cardiovascular System None											-													
Endocrine System																								
Adrenal gland								+	+															2
Adrenal gland, cortex								+	+															2
Adrenal gland, medulla								+	+														,	2
Islets, pancreatic													+											1
Carcinoma													х											1
Pituitary gland		+				+	+	+	+	+	+	+		+	+	+			+	+				13
Pars distalis, adenoma						х	х	х	х	х	х	х		х	х	х			х	х				12
Thyroid gland																		+						1
Ealliquian call consineme																		х						1

Individual Animal Tumor Pathology of Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole:

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

None

o ppm (continued)																							
Number of Days on Study	1 0 3	4 0 8	4 1 3	4 2 1	5 9 0	6 4 8	6 6 2	6 7 9	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	
Carcass ID Number	0 3 8 1	0 4 8 1	0 4 8 2	0 3 7 1	0 4 0 1	0 3 9 1	0 3 9 2	0 3 7 2	0 3 7 3	0 3 7 4	0 3 7 5	0 3 8 2	0 3 8 3	0 3 8 4	0 3 8 5	0 3 9 3	0 3 9 4	0 3 9 5	0 4 0 2	0 4 0 3	0 4 0 4	0 4 0 5	Total Tissues/ Tumors
Genital System Clitoral gland Adenoma Carcinoma Ovary Uterus Polyp stromal	+	+	+	+++	+	+	+	+	+	+	+ x +	+	+	+	+	+	+ x	+	+	+ х м	+	+ x + x	3 1 2 1 21 2
Hematopoietic System Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+	+	+	+	+	+ + +	+	+ + +	+++++++	+	+	+	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	+	+++++	+++++	+	+	+	+	14 7 2 22 1
Integumentary System Mammary gland Fibroadenoma Fibroadenoma, multiple Skin Head, squamous cell carcinoma, deep invasion			+ x		+ x	+	+ x	+	+ x	+ x	* x		+ x	+	.+	+ x	+ x		+		+		14 7 1 1
Musculoskeletal System Bone Skeletal muscle Hindlimb, rhabdomyosarcoma		+ x			+				+														 2 1 1
Nervous System Brain Glioma malignant				+ x		+		+	+							+							5 1
Respiratory System Lung	+	• +																			+		3
Special Senses System Eye							+																1

TABLE F2e Individual Animal Tumor Pathology of Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole: 0 ppm (continued)

					_	_								_					_					 	
Number of Days on Study	1 0	4	4 1	4 2	5 9	6 4	6 6	6 7	7 2	;															
	3	8	3	1	0	8	2	9	8	9	9	9	9	9	9	9	9	9	9	9	9	9	, 	 	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)		_
Carcass ID Number	3	4	4	3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4		Te	otal
	8	8	8	7	0	9	9	7	7	7	7	8	8	8	8	9	9	9	0	0	0	0		Ti	issues/
	1	1	2	1	1	1	2	2	3	4	5	2	3	4	5	3	4	5	2	3	4	5		 T1	umors
Urinary System																									
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	⊦	2	2
Ureter	· M	[+]	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· - 1	۲	2	0
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	[+	+	+	+	N	1 -	►	2	0
Systemic Lesions																									
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• -1	F	2	2
Leukemia mononuclear								х	х					Х										3	3

a presidente de la contrata de la co

a,ooo ppm																							
Number of Days on Study	3	3	4	4	4	4	4	4	5	5	6	6	6	6	6	6	7	7	7	7			
	1	9	1	1	4	2	6	, 7	4	2	1	2	9	9	2	8	9	9	9	9			
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Carcass ID Number	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6		Total	
	. 1	1 2	1 3	4 1	3 1	3 2	2 1	2 2	4 2	4 3	4 4	3 3	1 4	3 4	1 5	2 3	2 4	2 5	3 5	4 5		Tissue Tumo	es/ Irs
Alimentary System	· · · · · · · · · · · · · · · · · · ·																				·····		
Intestine large	+							+		+					+	+						5	
Intestine large, cecum	+							+		+		,			+	+						5	
Intestine large, colon	+							+		+					+	+						5	
Polyp adenomatous	Х							х							х							3	
Polyp adenomatous, multiple																х						1	
Intestine large, rectum	+							+		+					+	+						5	
Polyp adenomatous, multiple										Х												1	
Intestine small								+								+						, 2	
Intestine small, duodenum								+								+						2	
Intestine small, ileum								+								+						2	
Intestine small, jejunum								+								+						2	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		20	
Mesentery									+						+							2	
Stomach	+		+		+			+			+	+	+			+	+					9	
Stomach, forestomach	+		+		+			+			+	+	+			+	+					9	
Squamous cell papilloma					х						Х					х	Х					4	
Stomach, glandular	+		+		+			+			+	+	+			+	+					9	
Cardiovascular System																							
Heart			+				+															2	
Endocrine System																		_					
Pituitary gland					+	+							+		+	+	+	+		+		8	
Pars distalis, adenoma													Х		Х			Х		Х		4	
Thyroid gland																				+		1	
Follicular cell, carcinoma																				х		1	
General Body System None																							
Genital System																						_	
Clitoral gland				+		+			+								+			+		5	
Carcinoma	-																			x		1	
Uterus Balan stramal	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		20	
rolyp stromai							л							л								2	

TABLE F2e Individual Animal Tumor Pathology of Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm

			_									_								_		
Number of Days on Study	3 1 1	3 5 9	4 2 1	4 2 1	4 2 4	4 5 2	4 7 6	4 7 7	5 0 4	5 5 2	6 0 1	6 3 2	6 3 9	6 3 9	6 6 2	6 6 8	7 2 9	7 2 9	7 2 9	7 2 9		
Carcass ID Number	0 6 1 1	0 6 1 2	0 6 1 3	0 6 4 1	0 6 3 1	0 6 3 2	0 6 2 1	0 6 2 2	0 6 4 2	0 6 4 3	0 6 4 4	0 6 3 3	0 6 1 4	0 6 3 4	0 6 1 5	0 6 2 3	0 6 2 4	0 6 2 5	0 6 3 5	0 6 4 5		Total Tissues/ Tumors
Hematopoietic System Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen	-	+	+	+	+	+	++	+ + + +	+	+	+	+	+	+	+	+	+	+	++	++++		16 2 1 20
Integumentary System Mammary gland Adenoma Fibroadenoma Fibroadenoma, multiple									+			+			+ x			+ x		+ x x		5 1 1 2
Musculoskeletal System Bone									+								+	+				3
Nervous System Brain Ependymoma malignant	•	-	+																	-	· · · ·	 2 1
Respiratory System Lung																	+					 1
Special Senses System None																						
Urinary System Kidney Ureter Urinary bladder Leiomyosarcoma Sarcoma Transitional epithelium, carcinoma Transitional epithelium, papilloma		+ + + + + +	+ + +	- + - + - +	+ + +	+ + + X	+ + + X X	+ M + X	+ + + + x x	+ + + x	+ + +	+ + + X	+ M + X	+ + + X	+ M +	+ + + + X	+ + + +	+ + + X	+ + + X	+ + + X		20 17 20 1 1 18 18

7

TABLE F2e Individual Animal Tumor Pathology of Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole: 6,000 ppm (continued)

Number of Days on Study	3 1 1	3 5 9	4 2 1	4 2 1	4 2 4	4 5 2	4 7 6	4 7 7	5 0 4	5 5 2	6 0 1	6 3 2	6 3 9	6 3 9	6 6 2	6 6 8	7 2 9	7 2 9	7 2 9	7 2 9	
Careers ID Number	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Total
Carcass ID Number	0 1 1	 o 1 2	0 1 3	0 4 1	0 3 1	0 3 2	0 2 1	0 2 2	0 4 2	0 4 3	0 4 4	3	0 1 4	0 3 4	0 1 5	23	2	2	3	6 4 5	Tissues/ Tumors
Systemic Lesions Multiple organs		 <u>+</u>	+	+	+	+	+	+		+	+	+	+	+		+	+	 +	, , +	+	20

Number of Days on Study	0 4 8	0 8 4	2 1 9	2 2 1	2 3 3	2 3 9	2 4 5	2 4 7	2 4 7	2 4 8	2 6 2	2 6 5	2 6 8	2 6 8	2 8 1	2 8 4	2 9 8	3 0 3	3 0 7	3 0 7	3 0 9	3 0 9	3 1 7	3 2 4	3 2 7	
Carcass ID Number	0 5 1 1	0 6 0 1	0 5 1 2	0 5 1 3	0 5 8 1	0 5 1 4	0 5 8 2	0 4 9 1	0 5 8 3	0 5 2 1	0 5 8 4	0 5 9 1	0 5 2 2	0 5 2 3	0 6 0 2	0 5 2 4	0 6 0 3	0 5 2 5	0 5 0 1	0 5 1 5	0 4 9 2	0 6 0 4	0 5 9 2	0 4 9 3	0 5 0 2	
Alimentary System																_										N
Intestine large					+				+	+		+		+	+		+	+	+	+		+	+	+		
Intestine large, cecum					+				÷	+		+		+	+		÷	÷	÷	+		÷	÷	÷		
Intestine large, colon					+				÷	+		+		÷	+		+	÷	÷	÷		÷	+	÷		
Carcinoma					•				•	•		•		·	•		•	•	•	•		•	×	•		
Polyp adenomatous										х							х		х			x	x			
Polyp adenomatous, multiple					х									х				х						х		
Intestine large, rectum					+				+	+		+		+	+		+	+	+	+		+	+	+		
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Squamous cell carcinoma, metastatic, urinary bladder																								x		
Mesentery																					+			+		
Sarcoma, metastatic, multiple, urinary bladder																					x			•		
Squamous cell carcinoma, metastatic, urinary bladder																								x		
Pancreas																+					+			+		
Sarcoma, metastatic, urinary bladder Squamous cell carcinoma, metastatic,																					х					
urinary bladder																								X		
Stomach							+													+	+			+	+	
Squamous cell carcinoma, metastatic,							+													+	+			+	+	
Squamous cell papilloma							v																	л	v	
Stomach glandular							1													+	-			+	ĩ	
Serosa, sarcoma, metastatic, urinary																				Ŧ	Τ,			т	Ŧ	
bladder																					x					
Cardiovascular System None																										
Endocrine System					-			-				-														
Adrenal gland																								+		
Adrenal gland, cortex																								+		
Squamous cell carcinoma, metastatic,																										
urinary bladder																								х		
Adrenal gland, medulla																								+		

TABLE F2e Individual Animal Tumor Pathology of Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole: 18,000 ppm

Table F2e

Individual Animal Tumor Pathology of Female Rats in the Stop-Exposure Feed Study of *o*-Nitroanisole: 18,000 ppm (continued)

	3	3	3	3	3	3	3	4	4			
Number of Days on Study	3 3	3 6	3 6	4 0	4 5	4 5	4 6	0 8	2 5			
Carcass ID Number	4	U 5	U 6	U 4	0 5	0 5	0 5	0 5	5		Tota	al
	9	0	0	9	9	9	9	0	0		Tiss	ues/
	4	3	5	5	3	4	5	4	5		Tun	nors
Alimentary System												
Intestine large	+	+	+	+	+	+	+		+		21	
Intestine large, cecum	+	+	+	+	+	+	+		+		21	
Intestine large, colon	+	+	+	+	+	+	+		+		21	
Carcinoma			х								2	
Polyp adenomatous											5	
Polyp adenomatous, multiple	х	Х	Х	X	Х	х	х		х		12	
Intestine large, rectum	+	+	+	+	+	+	+		+		21	
Liver	+	+	+	+	+	+	+	+	+		34	
Squamous cell carcinoma, metastatic, urinary bladder											1	
Mesentery											2	
Sarcoma, metastatic, multiple, urinary bladder											γ 1	
Squamous cell carcinoma, metastatic, urinary bladder											1	
Pancreas			+								4	
Sarcoma, metastatic, urinary bladder			•								1	
Squamous cell carcinoma, metastatic, urinary bladder											1	
Stomach		+		+					+		8	
Stomach, forestomach		+		+					+		8	
Squamous cell carcinoma, metastatic, urinary bladder											. 1	
Squamous cell papilloma		х							х		4	
Stomach, glandular		+		+					+		8	
Serosa, sarcoma, metastatic, urinary bladder											1	
Cardiovascular System None											 	
Endocrine System	• • •									· · · · · · · · · · · · · · · · · · ·	 	
Adrenal gland											1	
Adrenal gland, cortex											- 1	
Squamous cell carcinoma, metastatic,											-	
urinary bladder											1	
Adrenal gland, medulla											1	
											-	

Number of Days on Study	0 4 8	0 8 4	2 1 9	2 2 1	2 3 3	2 3 9	2 4 5	2 4 7	2 4 7	2 4 8	2 6 2	2 6 5	2 6 8	2 6 8	2 8 1	2 8 4	2 9 8	3 0 3	3 0 7	3 0 7	3 0 9	3 0 9	3 1 7	3 2 4	3 2 7			
Carcass ID Number	0 5 1 1	0 6 0 1	0 5 1 2	0 5 1 3	0 5 8 1	0 5 1 4	0 5 8 2	0 4 9 1	0 5 8 3	0 5 2 1	0 5 8 4	0 5 9 1	0 5 2 2	0 5 2 3	0 6 0 2	0 5 2 4	0 6 0 3	0 5 2 5	0 5 0 1	0 5 1 5	0 4 9 2	0 6 0 4	0 5 9 2	0 4 9 3	0 5 0 2			-
General Body System None																							<u> </u>					-
Genital System Clitoral gland Ovary Squamous cell carcinoma, metastatic, urinary bladder Uterus Squamous cell carcinoma, metastatic, urinary bladder Cervix, carcinoma, metastatic, urinary bladder Cervix, leiomyosarcoma	+	+	+	+	+	+ x	÷	+	+	+	+	+ x	+	+	÷	+	+	+	+	+	+	+	+	+ x + x	+			-
Hematopoietic System Lymph node Iliac, squamous cell carcinoma, metastatic, urinary bladder Lymph node, mesenteric Squamous cell carcinoma, metastatic, urinary bladder Spleen Capsule, squamous cell carcinoma, metastatic, urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x+ + x+ + x	+			-
Thymus Squamous cell carcinoma, metastatic, urinary bladder					+		+																	+ x				
Integumentary System Skin																											ł	_
Musculoskeletal System None																<u></u>										 		-
Nervous System None																										 		-

-

Number of Days on Study	3 3 3 3 3 4 4 3 3 3 4 4 4 0 2 3 6 6 0 5 5 6 8 5	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 4 5 6 4 5 5 5 5 9 0 0 9 9 9 9 0 0 4 3 5 5 3 4 5 4 5	Total Tissues/ Tumors
General Body System None	•	
Genital System Clitoral gland Ovary Squamous cell carcinoma, metastatic, urinary bladder Uterus Squamous cell carcinoma, metastatic, urinary bladder Cervix, carcinoma, metastatic, urinary bladder Cervix, leiomyosarcoma	+ + + + + + + + +	1 1 34 1 1 1
Hematopoietic System Lymph node Iliac, squamous cell carcinoma, metastatic, urinary bladder Lymph node, mesenteric Squamous cell carcinoma, metastatic, urinary bladder Spleen Capsule, squamous cell carcinoma, metastatic, urinary bladder Thymus Squamous cell carcinoma, metastatic, urinary bladder	+ +++	12 1 2 1 34 1 3 1
Integumentary System Skin	+ .	1
Musculoskeletal System None		
Nervous System None		

																													-
	¥ 14	0	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3			
Number of Days on Study		4	8	1	2	3	3	4	4	4	4	6	6	6	6	8	8	9	0	0	0	0	0	1	2	2			
		8	4	9	1	3	9	5	7	7	8	2	5	8	8	1	4	8	3	7	7	9	9	7	4	7			
								~											·.				,	÷					
		0	0	0	0	0	ò	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Carcass ID Number		5	6	5	5	5	5	5	4	5	5	5	5	5	5	6	5	6	5	5	5	4	6	5	4	5			
•		1	0	1	1	8	Í	8	9	8	2	8	9	2.	2	0	2	0	2	0	1	9	0	9	9	0			
		1	1	2	3	1	4	2	1	3	1	4	1	2	3	2	4	3	5	1	5	2	4	2	3	2			
Respiratory System							-																-					-	
Lung					•																				+				· ·.
Squamous cell carcinoma, metastatic																									-				
urinary bladder																									x				
																									Λ		•		
Special Senses System	• •																												
Eye													+																
Urinary System																													
Kidney		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Squamous cell carcinoma, metastatic,								•			•	•			·										v				
Transitional enithelium carcinoma																					v				Λ				
Transitional epithelium papilloma																					~								
I Ireter		м	-	+	ъ	+	ъ	+	+	т	т	ъ	Т	т	т	Т	т	т	т	т.	-	т.	+	-	.	, 			
Urinary bladder		141	. <u> </u>		- -	- -	Ţ	- -	т _	т _	Ţ	- -		т -	т Т	Ŧ	Ŧ	Ť	- -	- -	Ŧ					· -			
Fibrosoroomo		Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	T	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	÷	Ŧ	Ŧ	Ŧ			
Leiomuosarcoma																							Λ						
Saraama											v	v				v	v		v			v							
Saucoma Saucoma cell correinoma											Λ	Λ				Λ	Λ		^			Λ			•				
Squamous cell carcilloma					v																				Λ				
Squamous cell papilloma					^								v												•				
Transitional anithelium consinance				v	v	v	v	v	v	v	v	v	÷	v	v	v	v	v	v	v	v	v	v	v	v	v			
Transitional epithelium, carcinoma				^	Λ	^	Λ	^	^	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	л	Λ	л	Λ	~	Λ	^		•	
multiple													x																
	<u>-</u>																												
Systemic Lesions																													
Multiple organs		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
a set in the																													

Number of Days on Study	3 3 3 3 3 4 4 3 3 3 4 4 0 2 3 6 6 0 5 5 6 8 5	
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 4 5 6 4 5 5 5 5 9 0 0 9 9 9 9 0 0 4 3 5 5 3 4 5 4 5	Total Tissues/ Tumors
Respiratory System Lung Squamous cell carcinoma, metastatic, urinary bladder	+	2 1
Special Senses System Eye	· · · ·	1
Urinary System Kidney Squamous cell carcinoma, metastatic,	+ + + + + + + +	34
Transitional epithelium, carcinoma Transitional epithelium, papilloma Ureter	X + + + + + + + + +	1 1 1 33
Fibrosarcoma Leiomyosarcoma Sarcoma	+ + + + + + + + + + + + + + + + + + +	34 1 2 9
Squamous cell carcinoma Squamous cell papilloma Squamous cell papilloma, multiple Transitional epithelium, carcinoma	x x x x x x x x x x x x	1 2 2 32
Transitional epithelium, papilloma, multiple		1
Systemic Lesions Multiple organs	+ + + + + + + + +	34

Statistical Analysis of Primary Neoplasms in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole

	0 ppm	6,000 ppm	18,000 ppm	
	· · · · · · · · · · · · · · · · · · ·		e de la g	• •
Citoral Giand: Carcinoma	20 ((70))	115 (2007)	0 4 (0 %)	
Adjusted mark	43 (01%)	1/5 (20%)	0/1 (0%)	
Adjusted rate	66.7%	50.0%	0.0%	
Ierminal rate	2/3 (67%)	1/2 (50%)	0/0 (0%)	
First incidence (days)	728 (1)	728 (1)		
Life table test	P=0.909N	P=0.691N	-	
Logistic regression test	P=0.909N	P=0.691N	-	•
Cochran-Armitage test	P=0.295N			
Fisher exact test		P=0.286N	P=0.500N	
Clitoral Gland: Adenoma or Carcinoma		× · · ·	n na statu n	• •
Overall rate	3/3 (100%)	1/5 (20%)	0/1 (0%)	
Adjusted rate	100.00%	50.00	0,1 (0%)	and the second
Terminal rate	2/2 (100%)	10 (50%)	0.0%	
First incidence (days)	3/3 (100%)	1/2 (50%) 729 (TD	0/0 (0%)	• • *
Life table text	720(1) P=0.702N	720(1)	-	
Life table test	r = 0.793 N P = 0.703 N	P = 0.419N		• • •
Contrary American test	P = 0.793N	P=0.419N	-	•
Cochran-Armitage test	P=0.110N	D 0071N	D. O. OCON	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
risher exact test		P=0.071N	P=0.250M	
Intestine Large (Colon): Carcinoma				
Overall rate	0/22 (0%)	0/20 (0%)	2/34 (6%)	
Adjusted rate	0.0%	0.0%	19.8%	
Terminal rate	0/14 (0%)	0/4 (0%)	0/0 (0%)	
First incidence (days)	-	_	317	•
Life table test	P=0.025	_	P=0.095	
Logistic regression test	P=0.354	-	P=0.565	
Cochran-Armitage test	P=0.164			
Fisher exact test		-	P=0.364	
Intesting Lange (Colon): Adapamatous Polym				
Querril rate	0/22 (0%)	ADD (20%)	17/24 (50%)	
A diversed rate	0/22 (070)	4/20 (2070)	100.0%	
Towning 1 meter	0.070	41.370	100.070	
First insidence (down)	0/14 (0%)	0/4 (0%)	222	
Life table test	- ₽ <0.001	B-0.014	200 B < 0.001	
Life table test	r<0.001	P = 0.014	P=0.001	
Logistic regression test	r = 0.002	r=0.004	P=0.002	
Cochran-Armitage test	P<0.001	B 0.043	D =0.001	
Fisher exact test		P=0.043	P<0.001	
Intestine Large (Rectum): Adenomatous Polyp				•••
Overall rate	0/22 (0%)	1/20 (5%)	0/34 (0%)	
Adjusted rate	0.0%	9.1%	0.0%	
Terminal rate	0/14 (0%)	0/4 (0%)	0/0 (0%)	
First incidence (days)	- ` ´	552	_	
Life table test	P=0.783	P=0.402	_	
Logistic regression test	P=0.907N	P=0.508	-	
Cochran-Armitage test	P=0.619N			
Fisher exact test		P=0.476	-	
			4.	

Statistical Analysis of Primary Neoplasms in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ppm	6,000 ppm	18,000 ppm
Mammani Clandi Fibroadenama az Adenama			• · · ·
Overall rate	8/22 (36%)	3/20 (15%)	0/34 (0%)
Adjusted rote	AQ 1%	58.3%	0.0%
Terminal rate	6/11 (13%)	2/4 (50%)	0/0 (0%)
First insidence (days)	0/14 (4 <i>370)</i>	662	0/0 (0 <i>70</i>)
Life table test	P-0753	P = 0.598	P = 0.983N
Life table test	P=0.755	P = 0.361 N	P = 0.364 N
Coshran Armitage test	P < 0.001 N	1 -0.5011	1 - 0.0011
Fisher exact test	1 40.00114	P=0.110N	P<0.001N
Pituitary Cland (Pars Distalis): Adenoma			
Overall rate	12/13 (92%)	4/8 (50%)	0/0 (0%)
Adjusted rate	100.0%	76.2%	0.0%
Terminal rate	9/9 (100%)	2/3 (67%)	0/0 (0%)
First insidence (down)	648	639	-
Life table test	P-0.812N	P = 0.661 N	_
Life table test	P=0.206N	P-0.001N	
Cochron Armitage test	P = 0.23010 P = 0.124N	1 = 0.09710	_ ,
Fisher exact test	1-0.12414	P=0.047N	P=1.000N
Skin Squamaus Call Carsinama			
Ouerell rate	107 (50%)	0/20 (0%)	0/34 (0%)
Adjusted rate	5 606	0.0%	0.0%
Terminal rate	0/14 (0%)	0/4 (0%)	0/0 (0%)
First incidence (dow)	500	-	-
I ife table test	P=0.910N	P = 0.617N	_
Logistic regression test	P = 0.555N	P = 0.512N	P = 0.897N
Cochran Armitage test	P = 0.321 N	1 -0.5121	1-0.09714
Ficher evact test	1-0.5211	P = 0.524 N	P = 0.393N
Pisher exact test		1 -0.52414	1-0.5751
Stomach (Forestomach): Squamous Cell Papilloma	1		
Overall rate	1/22 (5%)	4/20 (20%)	4/34 (12%)
Adjusted rate	7.1%	49.4%	100.0%
Terminal rate	1/14 (7%)	1/4 (25%)	0/0 (0%)
First incidence (days)	728 (1)	424	245
Life table test	P<0.001	P=0.024	P = 0.003
Logistic regression test	P = 0.129	P=0.099	P=0.279
Cochran-Armitage test	P = 0.440		
Fisher exact test		P=0.144	P=0.340
Urinary Bladder (Transitional Epithelium): Papille	oma		
Overall rate	0/20 (0%)	1/20 (5%)	1/34 (3%)
Adjusted rate	0.0%	8.3%	4.3%
Terminal rate	0/12 (0%)	0/4 (0%)	0/0 (0%)
First incidence (days)		504	265
Life table test	P=0.187	P=0.419	P=0.518
Logistic regression test	P=0.791	P=0.530	P=0.871
Cochran-Armitage test	P=0.565		
Fisher exact test		P = 0.500	P=0.630

Statistical Analysis of Primary Neoplasms in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

n an	0 ppm	6,000 ррт	18,000 ppm	
		n	· · · ·	
Urinary Bladder (Transitional Epiti	nelium): Carcinoma	1000 (000)	0004 (040)	
Overall rate	0/20 (0%)	18/20 (90%)	32/34 (94%)	,
Adjusted rate	0.0%	100.0%	100.0%	
Terminal rate	0/12 (0%)	4/4 (100%)	0/0 (0%)	
First incidence (days)		359	219	•
Life table test	P<0.001	P<0.001	P<0.001	
Logistic regression test	P<0.001	P<0.001	P<0.001	
Cochran-Armitage test	P<0.001	St		
Fisher exact test		P<0.001	P<0.001	•
Urinary Bladder: Leiomyosarcoma				
Overall rate	0/20 (0%)	1/20 (5%)	2/34 (6%)	• ,
Adjusted rate	0.0%	7.1%	22.2%	
Terminal rate	0/12 (0%)	0/4 (0%)	0/0 (0%)	
First incidence (days)	_	476	333	
Life table test	P=0.009	P = 0.450	P=0.074	
Logistic regression test	P=0.506	P = 0.529	P = 0.546	
Cochran-Armitage test	P=0.316	• • • • • • • • • • • • • • • • • • •		•
Fisher exact test		P=0.500	P=0.392	
VI · · · · · · · · · · · · · · · · · · ·				· · · · ·
Urinary Bladder: Sarcoma				
Overall rate	0/20 (0%)	1/20 (5%)	9/34 (26%)	
Adjusted rate	0.0%	8.3%	100.0%	
Terminal rate	0/12 (0%)	0/4 (0%)	0/0 (0%)	•
First incidence (days)	- · · · ·	504	248	
Life table test	P<0.001	P=0.419	P<0.001	
Logistic regression test	P=0.044	P=0.530	P=0.079	
Cochran-Armitage test	P=0.003	-	· .	
Fisher exact test		P=0.500	P=0.010	
Urinary Bladder: Squamous Cell Pa	pilloma			
Overall rate	0/20 (0%)	0/20 (0%)	4/34 (12%)	
Adjusted rate	0.0%	0.0%	35.2%	
Terminal rate	0/12 (0%)	0/4 (0%)	0/0 (0%)	
First incidence (days)	_	_	221	
I ife table test	P=0.003	_	P=0.019	
Logistic regression test	P=0.223	·· _	P = 0.407	
Cochran-Armitage test	P = 0.041			
Fisher exact test	1 -0.041	· · .	P=0.147	
	. *			
Uterus: Stromal Polyp	222 (0%)	2/20 (10%)	0/24 (0%)	٠
	444 (9%)	440 (1070) 10 001	0.004	
Adjusted rate	14.3%	18.8%		
Terminal rate	2/14 (14%)	0/4 (0%)	V/U (U%)	
First incidence (days)	728 (T)	476	-	
Life table test	P=0.590	P=0.369	_	
Logistic regression test	P=0.667N	P=0.599	-	•
Cochran-Armitage test	P=0.090N	• , • • • ·	_	
Fisher exact test		P=0.659	P = 0.150N	

Statistical Analysis of Primary Neoplasms in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

· · · ·	0 ppm	6,000 ppm	18,000 ppm	
All Organs: Mononuclear Cell Leukemia	· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u></u>
Overall rate	3/22 (14%)	0/20 (0%)	0/34 (0%)	
Adjusted rate	20.0%	0.0%	0.0%	
Terminal rate	2/14 (14%)	0/4 (0%)	0/0 (0%)	
First incidence (days)	.679	-	_	
Life table test	P=0.689N	P=0.413N	_	
Logistic regression test	P=0.565N	P=0.300N	P=1.000N	
Cochran-Armitage test	P=0.043N			
Fisher exact test		P=0.134N	P=0.056N	
All Organs: Benjen Neoplasms				۰ ۲
Overall rate	18/22 (82%)	14/20 (70%)	22/34 (65%)	
Adjusted rate	89.9%	92.8%	100.0%	
Terminal rate	12/14 (86%)	3/4 (75%)	0/0 (0%)	• •
First incidence (days)	408	311	221	· · · ·
Life table test	P<0.001	P = 0.030	P<0.001	
Logistic regression test	P=0.198	P=0.473N	P=0.329	•
Cochran-Armitage test	P=0.136N			
Fisher exact test		P=0.296N	P=0.139N	
All Organs: Malignant Neoplasms				· · ·
Overall rate	10/22 (45%)	20/20 (100%)	32/34 (94%)	. •
Adjusted rate	54.6%	100.0%	100.0%	
Terminal rate	6/14 (43%)	4/4 (100%)	0/0 (0%)	• .
First incidence (days)	408	311	219	
Life table test	P<0.001	P<0.001	P<0.001	•
Logistic regression test	P<0.001	P<0.001	P<0.001	· ·
Cochran-Armitage test	P<0.001			
Fisher exact test		P<0.001	P<0.001	
All Organs: Benign or Malignant Neopla	sms		· ·	.· ·.
Overall rate	20/22 (91%)	20/20 (100%)	32/34 (94%)	
Adjusted rate	95.2%	100.0%	100.0%	
Terminal rate	13/14 (93%)	4/4 (100%)	0/0 (0%)	· ·
First incidence (days)	408	311	219	
Life table test	P<0.001	P=0.002	P<0.001	
Logistic regression test	P=0.041	P=0.205	P=0.037	•
Cochran-Armitage test	P=0.590			
Fisher exact test		P=0.268	P=0.515	•

(T)Terminal sacrifice

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, epididymis, gallbladder (mouse), heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

Observed incidence at terminal kill

d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N. e

Not applicable; no neoplasms in animal group

1.1

TABLE F4

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole^a

$e^{-i\omega_{1}\omega_{2}}$	0 ррт	6,000 ppm	18,000 ppm	
· · · · · · · · · · · · · · · · · · ·	1 - 151 - 17 - 18			
Disposition Summary			•	2
Animals initially in study	60	60	60	
3-Month interim evaluation	10	10	10	
6-Month interim evaluation	10	10	10	1
9-Month interim evaluation	10	10	6	· ·
Early deaths	8	10	0	
Moribund	6	12	25	
Natural deaths	2	12	<u>ل</u>	
Survivors		4 .	,	
Terminal sacrifice	14	4	0	
Animals examined microscopically	60	60	60	** **
3-Month Interim Evaluation				
Alimentary System				
Liver	(10)	(10)	(10)	· · · ·
Hepatodiaphragmatic nodule	1 (10%)	(10)	1 (10%)	· · · · ·
Vacuolization cytoplasmic	1 (10%)		1 (10%)	14 - A
Hepatocyte, hypertrophy			10 (100%)	
Hepatocyte, necrosis, multifocal	1 (10%)	3 (30%)	10 (100%)	
Hepatocyte, vacuolization cytoplasmic Hepatocyte, vacuolization cytoplasmic,			1 (10%)	· · · · ·
multifocal			1 (10%)	
Hepatocyte, Kupffer cell, pigmentation			10 (100%)	•.
Kupffer cell, pigmentation, multifocal		1 (10%)		
Cardiovascular System				
None	1 Sec. 1			
		······································		
Endocrine System	•			
None				
	· · · · · · · · · · · · · · · · · · ·	···· .		
General Body System			·	
None	• • • •	• • • • •		
		·····		
Genital System				· . · ·
Uterus	(10)	(10)	(10)	•
Atrophy		10 (100%)	10 (100%)	
. `				
•				
· · · · ·			.*	

and a solution

child Bar aler

- 18 - 27 -

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ppm	6,000 ppm	18,000 ppm	
3-Month Interim Evaluation (continued)	<u></u>			
Hematopoietic System		e*		
Spleen	(10)	(10)	(10)	
Congestion		10 (100%)	10 (100%)	
Depletion lymphoid	10 (1000)	10 (100%)	10 (100%)	
Pigmentation	10 (100%)	10 (100%)	10 (100%)	
Capsule, inflammation, chronic		6 (60%)	9 (90%)	
Integumentary System None				
Musculoskeletal System None			······	
Nervous System None	. <u> </u>			
Respiratory System None			· · · ·	
Special Senses System None				
Urinary System				
Kidney	(10)	(10)	(10)	
Corticomedullary junction, mineralization	9 (90%)	9 (90%)	9 (90%)	
Renal tubule, pigmentation	•	10 (100%)	10 (100%)	
Urinary bladder	(10)	(10)	(10)	
Inflammation, subacute			8 (80%) 10 (100%)	
metaplasia, squamous Transitional enithelium hyperplasia		8 (80%)	10 (100%)	
Wall, proliferation connective tissue		5 (50%)	6 (60%)	
6-Month Interim Evaluation		······································	·····	
Alimentary System			• .	
Liver	(10)	(10)	(10)	
Hepatodiaphragmatic nodule		1 (10%)		
Inflammation, granulomatous, multifocal	1 (10%)			
Inflammation, granulomatous, multiple	4 (40%)		5 (50%)	
Hepatocyte, hypertrophy			10 (100%)	
Hepatocyte, necrosis, multifocal			10 (100%)	
Hepatocyte, vacuolization cytoplasmic		0.40000	1 (10%)	
Hepatocyte, Kuptler cell, pigmentation	(1)	9 (90%)	10 (100%)	
Fat necrosis focal	(1) 1 (100%)			
e my 110020010, 20022	1 (10070)			

n

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Stop-Exposure Feed Study of *o*-Nitroanisole (continued)

	0 ррт	6,000 ррт	18,000 ppm
6-Month Interim Evaluation (continued) Cardiovascular System	· · · ·		
None	. •	· .	
Endocrine System None		· · · · · · · · · · · · · · · · · · ·	
General Body System None			
Genital System Ovary Cyst Uterus Atrophy Cervix, cyst	(10)	(1) 1 (100%) (10) 10 (100%) 1 (10%)	(10) 10 (100%)
Hematopoietic System Spleen Congestion Depletion lymphoid Pigmentation Capsule, hypertrophy Capsule, inflammation, chronic	(10) 5 (50%)	(10) 10 (100%) 10 (100%) 10 (100%) 2 (20%)	(10) 10 (100%) 10 (100%) 9 (90%) 10 (100%) 10 (100%)
Integumentary System None			
Musculoskeletal System None			
Nervous System None			
Respiratory System Lung Infiltration cellular, lymphocyte, multifocal Inflammation, chronic, multifocal	<u> </u>	(2) 2 (100%) 2 (100%)	· · · · · · · · · · · · · · · · · · ·
Special Senses System None			

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ppm	6,000 ppm	18,000 ppm
6-Month Interim Evaluation (continued)			
Urinary System			
Kidney	(10)	(10)	(10)
Corticomedullary junction, mineralization	2 (20%)		2 (20%)
Renal tubule, mineralization	3 (30%)	4 (40%)	
Renal tubule, pigmentation		10 (100%)	10 (100%)
Transitional epithelium, hyperplasia			2 (20%)
Urinary bladder	(10)	(10)	(10)
Inflammation, subacute		5 (50%)	10 (100%)
Metaplasia, squamous		10 (100%)	10 (100%)
Transitional epithelium, hyperplasia		10 (100%)	
Transitional epithelium, metaplasia, squamous		1(10%)	10 (100%)
wan, promeration connective tissue		2 (20%)	10 (100%)
9-Month Interim Evaluation			· · · · ·
Alimentary System			
Intestine large, colon	· ·		(1)
Parasite metazoan			1 (100%)
Liver	(10)	(10)	(6)
Basophilic focus	5 (50%)	2 (20%)	
Hepatodiaphragmatic nodule			1 (17%)
Inflammation, granulomatous, multiple	5 (50%)	5 (50%)	6 (100%)
Hepatocyte, Kupffer cell, pigmentation	1 (10%)	7 (70%)	6 (100%)
Mesentery		(1)	
Fat, necrosis, focal		1 (100%)	
Stomach, forestomach		(1)	
Epithelium, hyperplasia		1 (100%)	
Cardiovascular System			
None			
Endocrine System None	<u>, , , , , , , , , , , , , , , , , , , </u>		
			· · · · · · · · · · · · · · · · · · ·
General Body System None			
	· · · · · · · · · · · · · · · · · · ·		· · · ·
Genital System			· · ·
Ovary	(1)		
Cyst	1 (100%)	40	
Uterus	(10)	(10)	(0)
Atrophy Dilatation	1 (10%)	3 (30%)	3 (30%) 1 (17%)
TABLE F4

and the second Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued) -----· · · · · · · · · · · · .

-	0	6 000 mm	18 000	
· · · · · · · · · · · · · · · · · · ·	o ppm	о,ооо ррм		
9-Month Interim Evaluation (continued)				
Hematopoietic System	· •			
Lymph node	1 C C C C C C C C C C C C C C C C C C C		(1)	· .
Pancreatic, hyperplasia, lymphoid	the second s		1 (100%)	
Spleen	(10)	(10)	(6)	
Congestion	3 (30%)	10 (100%)	5 (83%)	
Hematopoietic cell proliferation	1 (10%)	1 (10%)	5 (83%)	
Hypertrophy	E (EDØI)	1 (10%)	A (6701)	-
Pigmentation	5 (50%)		4 (07%)	
Capsule, inflammation, chronic		8 (80%)	6 (100%)	
Integumentary System None				····
Musculoskeletal System None				
Nervous System None			····	
Respiratory System None				
None				
Urinary System		·		
Kidney	(10)	(10)	(6)	
Nephropathy, chronic	5 (50%)	3 (30%)	3 (50%)	· · ·
Pelvis, inflammation, suppurative	a transformation and the second	1 (10%)		
Pelvis, mineralization	1 (10%)	1 (10%)	2 (33%)	
Renal tubule, mineralization	9 (90%)	8 (80%)	4 (67%)	
Renal tubule, pigmentation	6 (60%)	10 (100%)	6 (100%)	•
Renal tubule, regeneration		1 (10%)	1 (170)	
Transitional epithelium, hyperplasia	(10)	1 (10%)	1 (17%)	
Dilatation	(10)	(10)	2 (33%)	
Unitation Uringry bladder	(10)	(9)	(6)	3
Inflammation subscute	(iv)		1 (17%)	
Inflammation, subjustive			2 (33%)	
Metaplasia, squamous	1		4 (67%)	
Transitional epithelium, hyperplasia	,	9 (100%)		
Wall, proliferation connective tissue	1e., , <u> </u>	1 (11%)	4 (67%)	

Table F4

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ppm	6,000 ppm	18,000 ррт	
15-Month Interim Evaluation Alimentary System		<u></u>		
Liver	(8)	(9)		
Basophilic focus Basophilic focus multiple	6 (750%)	1 (11%) 2 (22%)		
Inflammation, granulomatous, multiple	1 (13%)	2 (22%) 4 (44%)		
Bile duct, hyperplasia	2 (25%)	. ()		
Hepatocyte, hypertrophy	1 (13%)			
Hepatocyte, Kupffer cell, pigmentation		2 (22%)		
Eat inflammation chronic	(2)	() () (80%)		
Fat, necrosis, focal	2 (100%)	1 (20%)		
Cardiovascular System None	· ·			
Endocrine System None			······································	<u> </u>
General Body System None				
Genital System	······································			
Clitoral gland	(2)	(1)		
Duct, cyst		1 (100%)		
Ovary	(1)			
Oviduct	1 (100%)	(1)		
Cvst		(1)		
Uterus	(8)	(10)		
Dilatation	1 (13%)	1 (10%)		
Endometrium, hyperplasia, cystic		1 (10%)		
Epithelium, hyperplasia, focal		1 (10%)		
Hematopoietic System				
Lymph node		(2)		
Mediastinal, angiectasis		1 (50%)		
Mediastinal, hyperplasia, lymphoid Mediastinal, higmentation		1 (50%)		
Spleen	(8)	(10)		
Congestion	4 (50%)	3 (30%)		
Hematopoietic cell proliferation	2 (25%)	8 (80%)		
Pigmentation	5 (63%)	7 (70%)		
Capsule, hypertrophy		9 (90%) 1 (10%)		
Capsuic, initialitation, chronic	,	1 (10%)		

TABLE F4

• 0

×

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Stop-Exposure Feed Study of *o*-Nitroanisole (continued)

an a	0 ррт	6,000 ppm	18,000 ppm
15-Month Interim Evaluation (continued Integumentary System None)	;	
Musculoskeletal System None		····	
Nervous System None			
Respiratory System None			
Special Senses System None		· · ·	
Urinary System Kidney Nephropathy, chronic Pelvis, mineralization Proximal convoluted renal tubule, degeneration, hyaline Renal tubule, mineralization Renal tubule, pigmentation Ureter Dilatation Urinary bladder Inflammation, suppurative Metaplasia, squamous Necrosis Transitional epithelium, hyperplasia Wall, proliferation connective tissue	(8) 5 (63%) 1 (13%) 8 (100%) 7 (88%) (7) (8)		
Stop-Exposure Study Alimentary System Intestine large, cecum Ulcer Intestine large, colon Autolysis Intussusception Necrosis Parasite metazoan Proliferation connective tissue Epithelium, hyperplasia	(1) (2)	(5) (5)	(21) 1 (5%) (21) 1 (5%) 1 (5%) 1 (5%) 1 (5%) 1 (5%) 5 (24%)

. . .

. . .

394

Lesions in Stop Study Female Rats

TABLE F4

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ppm		6,000) ppm	18,000 ppm	
Ston-Ernosure Study (continued)						· · · · · · · · · · · · · · · · · · ·
Alimentary System (continued)						
Intestine large, rectum	(1)		(5)		(21)	• 1
Autolysis	(-)		(-)		1 (5%)	
Parasite metazoan			1 ((20%)	- ()	
Liver	(22)		(20)		(34)	· · · · ·
Basophilic focus	1 (5%	<i>)</i>) ź	(10%)		
Basophilic focus, multiple	15 (689	%)	9 ((45%)		
Eosinophilic focus	4 (189	<i>7</i> 6)	1 ((5%)		
Eosinophilic focus, multiple	1 (5%	») [`]	1 ((5%)		,
Hematopoietic cell proliferation	1 (5%)				
Hepatodiaphragmatic nodule	2 (9%	ý	3 ((15%)	2 (6%)	
Inflammation, granulomatous, multiple	15 (689	%)	10	(50%)	28 (82%)	
Mixed cell focus	4 (189	76)	1 ((5%)		۰.
Vacuolization cytoplasmic	3 (149	76)				
Bile duct, hyperplasia	5 (239	76)	1 ((5%)	1 (3%)	
Hepatocyte, hypertrophy	2 (9%)	2 ((10%)	2 (6%)	•
Hepatocyte, mitotic alteration	1 (5%	<i>)</i>				
Hepatocyte, necrosis, multifocal					1 (3%)	
Hepatocyte, Kupffer cell, pigmentation	9 (419	%)	2 ((10%)	34 (100%)	
Mesentery	(1)		(2)	•	(2)	
Fat, necrosis, focal	1 (100)%)	2 ((100%)		
Pancreas	(1)				(4)	*
Ectopic tissue					1 (25%)	
Acinus, atrophy					1 (25%)	
Stomach, forestomach	(5)		(9)		(8)	
Diverticulum	1 (204	<i>%</i>)				
Edema	1 (209	<i>7</i> 6)	1	(11%)		·
Ulcer	1 (209	%) ~``				
Epithelium, hyperplasia	2 (40)	%)	4 ((44%)	1 (13%)	
Stomach, glandular	(5)		(9)		(8)	
					1 (13%)	
Cardiovascular System					•	
Heart			(2)			
Inflammation, chronic			1	(50%)		
Mineralization, multifocal			1	(50%)		•
Endocrine System		<u></u>	<u></u>		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Adrenal gland, cortex	(2)				(1)	÷ • .
Bilateral, vacuolization cytoplasmic	ì (50 ⁴	%)				·
Pituitary gland	(13)		(8)			
Pars distalis, cyst			1	(13%)		· · · ·
Pars distalis, hemorrhage	3 (23)	%)				
Pars distalis, hyperplasia, focal			2	(25%)		÷
Thyroid gland	(1)		(1)			· · ·
C-cell, hyperplasia			1	(100%)		•
General Body System None			····*		<u> </u>	

TABLE F4

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole (continued)

	0 ppm	6,000 ррт	18,000 ppm	
Ston-Francure Study (continued)				
Cenital System				
Clitoral gland	(3)	(5)	(1)	
Inflammation, suppurative	1 (33%)		(•)	
Duct. cvst	- (2010)	5 (100%)	1 (100%)	
Ovary	(1)	- ()	(1)	
Cyst	1 (100%)			
Uterus	(21)	(20)	(34)	
Atrophy		1 (5%)	28 (82%)	
Dilatation	3 (14%)	2 (10%)	2 (6%)	
Fibrosis, focal	1 (5%)		· · · ·	
Inflammation, suppurative	2 (10%)			
Cervix, cyst	1 (5%)			
Cervix, myometrium, hypertrophy	1 (5%)	2 (10%)		
Endometrium, hyperplasia, cystic	3 (14%)	2 (10%)		
Hematopoietic System		· · ·		
Lymph node	(14)	(16)	(12)	
Deep cervical, angiectasis	1 (7%)			
Iliac, hyperplasia, lymphoid		1 (6%)	7 (58%)	
Mediastinal, angiectasis	2 (14%)	9 (56%)		
Mediastinal, hyperplasia, lymphoid	1 (7%)	1 (6%)	1 (8%)	
Mediastinal, pigmentation	3 (21%)	2 (13%)	· · · ·	
Pancreatic, angiectasis	2 (14%)			
Pancreatic, pigmentation		1 (6%)		
Lymph node, mandibular	(7)	(2)		
Cyst	1 (14%)	1 (50%)		
Cyst, multiple	1 (14%)			
Hyperplasia, lymphoid	2 (29%)			
Lymph node, mesenteric	(2)	(1)	(2)	
Angiectasis	(22)	(20)	1 (50%)	
Spieen	(22)	(20)	(34)	
Arrophy	12 (550%)	2(10%)	1(370)	
Depletion lumphoid	12(35%)	5 (25%)	16 (47%)	•
Hematopoietic cell proliferation	(1370) 17 (77%)	12(60%)	20 (59%)	
Hyperplasia histiocytic lymphoid	1 (5%)	12(00%)	20 (3570)	
Hyperplasia, histocytic, tymphoid	1 (570)	1(5%)	1 (3%)	·•
Pigmentation	16 (73%)	12(60%)	15 (44%)	
Capsule hypertrophy	10 (1570)	9 (45%)	33 (97%)	
Capsule, inflammation chronic			30 (88%)	
Thymus	(1)		(3)	
Atrophy	(-)		1 (33%)	
Congestion			1 (33%)	
Integumentary System				<u></u>
Mammary eland	(14)	(5)		
Hyperplasia, lobular	8 (57%)	1 (20%)		
Duct. cvst	9 (64%)	3 (60%)		· •
				· · · · · · · · · · · · · · · · · · ·

TABLE F4

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Stop-Exposure Feed Study of *o*-Nitroanisole (continued)

interinterinter	0 ppm	б,000 ррт	18,000 ppm	<u></u>
Stop-Exposure Study (continued)	<u>.</u>			
Rope	(2)	(3)		
Calvarium, hyperostosis	2 (100%)	3 (100%)		
Nervous system				
Brain	(5)	(2)		
Compression Hydrocephalus	4 (80%)	1 (50%)		
Respiratory System				
Lung	(3)	(1)	(2)	
Congestion	1 (33%)			
Infiltration cellular, histiocyte	1 (33%)	4 (1007)		
Alveolar epithelium, hyperplasia		1 (100%)		
Special Senses System	<i>(</i> 1)			
Eye	(1)		(1)	
Cataraci Cornea edema	1 (100%)		1 (109%)	
Retina, degeneration	1 (100%)		1 (10070)	
Urinary System				
Kidney	(22)	(20)	(34)	
Hydronephrosis		2 (10%)	15 (44%)	
Inflammation, suppurative	10 (967%)	1 (5%)	2 (00)	
Bilateral hydronenbrosis	19 (00%)	12 (60%)	3 (9%)	
Panilla necrosis		$\frac{1}{2}(10\%)$	2 (6%)	
Pelvis, dilatation		2 (1070)	2 (6%)	
Pelvis, hemorrhage		1 (5%)	- (0,0)	
Pelvis, inflammation, suppurative		1 (5%)		
Pelvis, mineralization	6 (27%)	4 (20%)	13 (38%)	
Pelvis, necrosis			2 (6%)	
Renal tubule, mineralization	17 (77%)	9 (45%)	17 (50%)	
Renal tubule, pigmentation	20 (91%)	20 (100%)	34 (100%)	
Renal tubule, regeneration		2 (10%)	3 (9%)	
I ransitional epithelium, hyperplasia	(20)	3 (23%)	16 (47%)	
Dilatation	(20)	(17)	(33)	
Transitional enithelium hypernlasia		5 (29%)	2(6%)	
Urinary bladder	(20)	(20)	(34)	
Hemorrhage	()	2 (10%)	5 (15%)	
Inflammation, subacute			1 (3%)	
Inflammation, suppurative		1 (5%)	8 (24%)	
Metaplasia, squamous		6 (30%)	25 (74%)	
Necrosis		3 (15%)	1 (3%)	
Transitional epithelium, hyperplasia		4 (20%)	1 (3%)	
Wall, infiltration cellular, lipocyte		3 (15%)	2 (6%)	
wall, promeration connective tissue		11 (55%)	20 (39%)	

^a Number of animals examined microscopically and number of animals with lesion.

APPENDIX G GENETIC TOXICOLOGY

SALMONELLA	I PROTOCOL	400
CHINESE HAD	MSTER OVARY CYTOGENETICS ASSAYS	400
MOUSE LYM	PHOMA PROTOCOL	401
RESULTS	****	402
TABLE G1	Mutagenicity of o-Nitroanisole in Salmonella typhimurium	403
Table G2	Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells	
	by o-Nitroanisole	40%
Table G3	Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells	
	by o-Nitroanisole	408
Table G4	Induction of Trifluorothymidine Resistance in Mouse L5178Y	
	Lymphoma Cells by o-Nitroanisole	409

GENETIC TOXICOLOGY

SALMONELLA PROTOCOL

Testing was performed as reported by Haworth *et al.* (1983). *o*-Nitroanisole was sent to the laboratory as a coded aliquot from Radian Corporation (Austin, TX). It was incubated with the Salmonella typhimurium tester strains (TA100, TA1535, TA1537, TA98, and TA97) either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver) for 20 minutes at 37° C prior to the addition of soft agar supplemented with *l*-histidine and *d*-biotin, and subsequent plating on minimal glucose agar plates. Incubation continued for an additional 48 hours.

Each trial consisted of triplicate plates of concurrent positive and negative controls and of at least five doses of *o*-nitroanisole. High dose was limited by toxicity. All positive assays were repeated under the conditions which elicited the positive response.

In this assay, a positive response is defined as a reproducible, dose-related increase in histidineindependent (revertant) colonies in any one strain/activation combination. An equivocal response is defined as an increase in revertants which was not dose related, not reproducible, or of insufficient magnitude to support a determination of mutagenicity. A negative response was obtained when no increase in revertant colonies was observed following chemical treatment.

CHINESE HAMSTER OVARY CYTOGENETICS ASSAYS

Testing was performed as reported by Galloway *et al.* (1985, 1987) and presented briefly below. *o*-Nitroanisole was sent to the laboratory as a coded aliquot from Radian Corporation (Austin, TX). It was tested in cultured Chinese hamster ovary (CHO) cells for induction of sister chromatid exchanges (SCE) and chromosomal aberrations (Abs) both in the presence and absence of Aroclor 1254-induced male Sprague-Dawley rat liver S9 and cofactor mix. Cultures were handled under gold lights to prevent photolysis of bromodeoxyuridine (BrdU)-substituted DNA. Each test consisted of concurrent solvent and positive controls and of at least three doses of *o*-nitroanisole; the high dose was limited by solubility.

In the SCE test without S9, CHO cells were incubated for 26 hours with o-nitroanisole in McCoy's 5A medium supplemented with 10% fetal bovine serum, *l*-glutamine (2mM), and antibiotics. BrdU was added 2 hours after culture initiation. After 26 hours, the medium containing o-nitroanisole was removed and replaced with fresh medium plus BrdU and Colcemid, and incubation was continued for 1.5 hours. Cells were then harvested by mitotic shake-off, fixed, and stained with Hoechst 33258 and Giemsa. In the SCE test with S9, cells were incubated with o-nitroanisole, serum-free medium, and S9 for 2 hours. The medium was then removed and replaced with medium containing BrdU and no o-nitroanisole and incubation proceeded for an additional 25.5 hours, with Colcemid present for the final 2 to 3 hours. Harvesting and staining was the same as for cells treated without S9.

In the chromosomal Abs test without S9, cells were incubated in McCoy's 5A medium with o-nitroanisole for 8 hours; Colcemid was added and incubation continued for 2 to 3 hours. The cells were then harvested by mitotic shake-off, fixed, and stained with Giemsa. For the Abs test with S9, cells were treated with onitroanisole and S9 for 2 hours, after which the treatment medium was removed and the cells incubated for 9 hours in fresh medium, with Colcemid present for the final 2 to 3 hours. Cells were harvested in the same manner as for the treatment without S9.

For the SCE test, because significant chemical-induced cell cycle delay was seen at some dose levels, incubation time was lengthened at these dose levels to ensure a sufficient number of scorable cells.

Genetic Toxicology

Cells were selected for scoring on the basis of good morphology and completeness of karyotype $(21 \pm 2 \text{ chromosomes})$. All slides were scored blind and those from a single test were read by the same person. For the SCE test, usually 50 second-division metaphase cells were scored for frequency of SCE per cell from each dose level; 100 first-division metaphase cells were scored at each dose level for the Abs test. Classes of aberrations included simple (breaks and terminal deletions), complex (rearrangements and translocations), and other (pulverized cells, despiralized chromosomes, and cells containing ten or more aberrations).

Statistical analyses were conducted on both the slopes of the dose-response curves and the individual dose points. An SCE frequency 20% above the concurrent solvent control value was chosen as a statistically conservative positive response. The probability of this level of difference occurring by chance at one dose point is less than 0.01; the probability for such a chance occurrence at two dose points is less than 0.001. A single increased dose was considered weak evidence of a positive response (+w); two increased doses were sufficient to evaluate the trial as positive (+). Chromosomal Abs data are presented as percentage of cells with aberrations. Both the dose-response curve and individual dose points were statistically analyzed. A statistically significant (P<0.05) difference for one dose point was considered weak evidence for a positive response (+w); significant differences for two or more doses indicated the trial was positive (+) (Galloway *et al.*, 1987).

Mouse Lymphoma Protocol

The experimental protocol is presented in detail by Myhr *et al.* (1985) *o*-Nitroanisole was supplied as a coded aliquot by Radian Corporation (Austin, TX). The highest dose of *o*-nitroanisole was determined by solubility or toxicity. Mouse L5178Y lymphoma cells were maintained at 37° C as suspension cultures in Fischer's medium supplemented with *l*-glutamine, sodium pyruvate, pluronic F68, antibiotics, and heat-inactivated horse serum; normal cycling time was about 10 hours. To reduce the number of spontaneously occurring trifluorothymidine (TFT)-resistant cells, subcultures were exposed once to medium containing THMG (thymidine, hypoxanthine, methotrexate, glycine) for 1 day, to THG for 1 day, and to normal medium for 3 to 5 days. For cloning, horse serum content was increased and Noble agar was added.

All treatment levels within an experiment, including concurrent positive and solvent controls, were replicated. Treated cultures contained 6×10^6 cells. Incubation with *o*-nitroanisole continued for 4 hours, at which time the medium plus *o*-nitroanisole was removed and the cells were resuspended in fresh medium and incubated for an additional 2 days to express the mutant phenotype. Cell density was monitored so that log phase growth was maintained. After the 48-hour expression period, 3×10^6 cells were plated in medium and soft agar supplemented with trifluorothimydine for selection of TFT-resistant cells (TK^{-/-}), and 600 cells were plated in nonselective medium and soft agar to determine cloning efficiency. Plates were incubated at 37° C in 5% CO₂ for 10 to 12 days. All data were evaluated statistically for both trend and peak response. Both responses had to be significant (P<0.05) for *o*-nitroanisole to be considered capable of inducing TFT resistance; a single significant response led to a "questionable" conclusion, and the absence of both a trend and a peak response resulted in a "negative" call. An inconclusive test was one in which no significant response was observed at any of the doses tested, but, based on the relative total growth (RTG) values, it was apparent that higher doses could have been used.

Minimum criteria for accepting an experiment as valid and a detailed description of the statistical analysis and data evaluation are presented in Myhr *et al.* (1985). This assay is initially performed without S9; because a clearly positive response was obtained, *o*-nitroanisole was not tested with S9.

RESULTS

. . .

o-Nitroanisole was tested in a preincubation protocol in two laboratories for induction of gene mutations in four strains of Salmonella typhimurium in the presence and the absence of Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9 (Table G1). In the first study (Haworth et al., 1983), concentrations of 33 to 2,150 µg/plate were tested in strains TA100, TA1535, TA1537, and TA98; positive responses were observed only in strain TA100, with and without S9. In the second study, strains TA100, TA1535, TA97, and TA98 were tested (top dose, $3,333 \mu g/plate$); positive responses were again noted for TA100, with and without S9, and also for TA1535, without S9. Both these strains mutate via base-substitution. In cytogenetic tests with CHO cells, o-nitroanisole induced SCEs with and without Aroclor 1254-induced male Sprague-Dawley rat liver S9 (Table G2; Galloway et al., 1987); at higher doses (above 123 μ g/mL without S9, and above 811 μ g/mL with S9), delayed harvest was used to offset o-nitroanisole-induced cell cycle delay and allow for accumulation of sufficient metaphases for analysis. In the CHO cell chromosomal Abs test (Table G3; Galloway et al., 1987), o-nitroanisole induced a significant increase in Abs at the highest dose (1,060 µg/mL) tested in the presence of S9 activation; this response was due mainly to an increase in breaks which occurred in the long arm of the X chromosome. No increase in Abs was observed in either of the two trials conducted without S9. o-Nitroanisole was positive in the mouse lymphoma L5178Y cell assay for induction of TFT resistance in the absence of S9 activation; it was not tested with S9 (Table G4). The first of three trials was considered inconclusive because a negative response was obtained at the highest nonlethal dose tested, but the relative total growth was not markedly decreased. In the remaining two trials, a dose-related increase in TFT-resistant colonies was observed and significant responses occurred at doses where the relative total growth was depressed below 50%.

Table G1

Ġ.

			A 1 1.1	Reverta	nts/plate ^b		
Stincia	Doce		S0		mster SO	÷10%	rat S9
SPERIE	(µg/plate)	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2
Study per	formed at EG&C	G Mason Researc	h Institute		. *		
ፐልነበብ	0	163 + 85	132 + 6.3	135 ± 6.1	139 ± 9.8	146 ± 16.1	138 ± 2.1
171100	33	162 ± 9.3	129 + 3.8	168 ± 10.7	151 ± 8.4	153 ± 11.1	144 ± 14.3
	100	102 ± 7.5 176 ± 7.2	152 + 33	194 + 5.0	221 + 3.5	143 ± 6.3	144 ± 6.1
	222	170 ± 7.2 233 ± 150	205 ± 61	296 + 4.7	318 ± 22.5	219 ± 15.0	196 ± 13.7
	666	200 1 10.0	310 + 55		401 + 9.5		299 ± 5.5
	1 000	271 + 67	319 ± 3.5 340 ± 177	276 + 47 4	314 + 21.7	310 + 72	310 ± 9.3
	1,000	5/1 ± 0.7.	540 ± 17.7	2/0 1 4/.4	$98 + 273^{\circ}$	510 1 1.2	$295 \pm 19.5^{\circ}$
	1,200		Toxic	· . · ·	50 ± 27.5		$262 \pm 14.5^{\circ}$
	2.150	Toxic	TOXIC	Toxic	JU 1 3.5	Toxic	202 1 14.5
	, _			Westhe		Weekh	
	- • · · · · · · · · · · · · · · · · · ·	Weakly	-	weakly	Destation	weakly	Desiders
Trial sum	nary	Positive	Positive	Positive	Positive	Positive	Positive
Positive co	ontrol ^a	1,196 ± 18.3	1,159 ± 33.4	1,245 ± 33.5	1,428 ± 64.4	$1,114 \pm 28.3$	$1,372 \pm 70.4$
				Reverta	nts/plate		
Strain	These		-\$9		+10% hometor SQ		rat SQ
Strain	Dose				anister 37		
	(µg/plate)						
TA1535	0	39	± 3.0	15	± 3.2	11	± 2.4
1111000	33	34	+ 61	13	± 0.9	12	± 1.8
	100	33	± 50	11	+ 12		+ 1.8
	222	33	± 5.0	17	+ 0.9	13	+ 12
	1 000	43	± 0.4	17	± 0.9	20	+ 4 5
	2,150		± 4.4 xic	To	1. 0.0 ric	To	xic
	2,130	10	AC	10		10	
Trial sum	mary	Ne	gative	Ne	gative	Ne	gative
Positive co	ontrol	919	± 13.0	75	± 5.5	69	± 2.6
TA1537	0	7	± 0.9	12	± 2.8	10	± 2.2
	33	7	± 0.0	7	± 2.6	13	± 2.3
	100	8	± 0.3	6	± 1.7	7	± 1.5
	333	7	± 1.5	9	± 2.5	7	± 0.9
	1,000	5	± 1.0	4	± 0.7	8	± 1.8
	2,150	Т	oxic	To	xic	Τα	xic
Trial sum	mary	Ne	gative	Ne	gative	Ne	gative
Positive of	ontrol	376	± 48.1	80	± 7.0	80	± 4.1
TA 9 8	0	19	± 2.2	32	± 1.2	33	± 4.3
	33	22	± 2.3	35	± 2.3	32	± 6.7
	100	20	± 4.3	34	± 3.6	31	± 1.9
	333	22	± 2.0	44	± 1.8	31	± 0.3
	1,000	31	± 4.5	44	± 2.6	35	± 1.2
	2,150	То	xic	Τα	xic	24	± 0.3 ^c
Trial sum	marv	Nec	ative	Ne	gative	Ne	gative
Positive of	ontrol	1.484	± 36.7	944	± 39.0	929	± 26.5
	····· ··	2,404		211			

Mutagenicity of o-Nitroanisole in Salmonella typhimurium^a

· · · ·

.

	_			Reverta			
Strain	Dose		-89		amster S9	+10% rat S9	
	(µg/plate)	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2
Study per	formed at SRI, I	nternational			· · · · · · · · · · · · · · · · · · ·		
TA100	0	128 ± 12.0	127 ± 5.1	128 ± 11.8	126 ± 5.2	134 ± 3.5	112 ± 14.4
	10			128 ± 11.0	121 ± 8.8		
	33	133 ± 21.5	127 ± 8.9	159 ± 4.6	158 ± 13.3	122 ± 28.9	148 ± 5.5
	100	125 ± 25.4	129 ± 15.4	227 ± 17.6	197 ± 17.8	147 ± 1.8	153 ± 11.1
	166			,	268 ± 15.4		
	333	189 ± 15.7	182 ± 15.8	122 ± 12.0	113 ± 18.8	233 ± 3.5	247 ± 18.5
	1,000	331 ± 9.1	336 ± 4.5	53 ± 51.5		386 ± 35.7	263 ± 2.9
	1,666		519 ± 27.6				117 ± 16.2
	3,333	297 ± 32.2^{c}				$35 \pm 16.8^{\circ}$	
Trial sumn	nary	Positive	Positive	Equivocal	Positive	Positive	Positive
Positive co	ntrol	584 ± 3.0	625 ± 16.8	$2,032 \pm 10.1$	1,711 ± 7.8	810 ± 20.5	$1,951 \pm 28.9$
TA1535	0	34 ± 2.5	22 ± 4.1	9 ± 2.0	10 ± 1.2	10 ± 3.6	10 ± 2.3
	10	*		7 ± 2.3	7 ± 0.9		
	33	36 ± 8.7		8 ± 2.3	7 ± 1.2	7 ± 0.7	، و في
	100	32 ± 1.5	24 ± 2.6	11 ± 2.3	8 ± 0.0	8 ± 1.2	8 ± 1.2
	333	42 ± 0.9	24 ± 2.2	8 ± 1.0	6 ± 1.2	11 ± 1.5	10 ± 1.5
	1,000	58 ± 2.9	36 ± 3.5	6 ± 4.2	1 ± 0.7	13 ± 1.3	8 ± 3.6
	1,666		51 ± 4.1		· ·		7 ± 0.7
	3,333	66 ± 7.8	33 ± 4.6			3 ± 2.2	2 ± 1.2
		Weakly	Weakly				
Trial summ	nary	Positive	Positive	Negative	Negative	Negative	Negative
Positive co	ntrol	459 ± 20.4	694 ± 8.6	486 ± 54.7	704 ± 35.4	193 ± 8.9	540 ± 12.0

TABLE G1

Mutagenicity of o-Nitroanisole in Salmonella typhimurium (continued)

	_	Revertants/plate						
Strain	Dose (µg/plate)	-59	+10% hamster S9	+10% rat S9				
TA97	0	185 ± 5.8	185 ± 11.7	186 ± 12.0				
	10		191 ± 4.7					
	33	167 ± 11.8	199 ± 10.0	183 ± 9.1				
	100	178 ± 12.0	193 ± 10.9	190 ± 4.0				
	333	188 ± 9.3	217 ± 13.3	206 ± 1.0				
	1,000	218 ± 5.3	227 ± 12.3	203 ± 4.9				
	3,333	116 ± 40.2		179 ± 4.9				
Trial sum	nary	Negative	Negative	Negative				
Positive co	ontrol	$2,023 \pm 223.0$	1,241 ± 77.4	$1,751 \pm 209.0$				

404

Mutagenicity of o-Nitroanisole in Salmonella typhimurium (continued)

		Revertants/plate					
Strain	Dose (µg/plate)	-\$9	+10% hamster <u>S9</u>	+10% rat S9			
Study per	formed at SRI, Inter	national					
TA98	0	22 ± 5.0	32 ± 2.5	35 ± 4.6			
	10		25 ± 6.1				
	. 33	16 ± 3.5	25 ± 3.9	21 ± 2.4			
	100	17 ± 0.7	33 ± 6.0	25 ± 3.0			
	333	24 ± 4.5	31 ± 2.7	32 ± 3.5			
	1,000	24 ± 1.2	6 ± 2.3	31 ± 4.4			
×	3,333	0 ± 0.0^{c}		7 ± 1.5^{c}			
Trial sum	nary	Negative	Negative	Negative			
	-	A / A . A	1 000 . 140	0/8 . 114			

^a The detailed protocol as well as the data from the EG&G Mason Research Institute study are presented in Haworth *et al.* (1983). Cells and *o*-nitroanisole or solvent (dimethylsulfoxide) were incubated in the absence of exogenous metabolic activation (-S9) or with Aroclor 1254-induced S9 from male Syrian hamster liver or male Sprague-Dawley rat liver. The high dose was limited by toxicity; 0 μg/plate dose is the solvent control.

^b Revertants are presented as mean \pm standard error from three plates.

^c Slight toxicity d 2 aminoanthr

2-aminoanthracene was used on all strains in the presence of S9. In the absence of metabolic activation, 4-nitro-o-phenylenediamine was tested on TA98, sodium azide was tested on TA100 and TA1535, and 9-aminoacridine was tested on TA1537.

 TABLE G2

 Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells by o-Nitroanisole^a

Compound	Dose (µg/mL)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hrs in BrdU	Relative SCEs/ Chromosome (%) ^b
-S9°	•		· · ·	· · · · · · · · · · · · · · · · · · ·				
Trial 1 Summary: Weak positive		. ·			1		3	ر بر میں ا
Dimethylsulfoxide		50	1,034	487	0.47	9.7	25.5	
Mitomycin-C	0.005	50	1,046	1,819	1.73	36.4	25.5	269.23
o-Nitroanisole	12.300 41.200	50 50	1,044 1,033	544 544	0.52 0.52	10.9 10.9	25.5 25.5	10.64 11.81
	123.000	50	1,027	667	0.64	13.3	25.5	37.90* P<0.001 ^d
Trial 2 Summary: Positive								
Dimethylsulfoxide		50	1,046	461	0.44	9.2	26.0	-
Mitomycin-C	0.005	50	1,040	1,922	1.84	38.4	26.0	319.33
o-Nitroanisole	202.000 251.000 301.000 350.000	50 50 50 0	1,043 1,028 1,042	541 565 567	0.51 0.54 0.54	10.8 11.3 11.3	32.5 ^e 32.5 ^e 32.5 ^e	17.69 24.71* 23.47*
+S9 ^f								P<0.001
Trial 1 Summary: Positive								
Dimethylsulfoxide		50	1,033	388	0.37	7.8	25.5	
Cyclophosphamide	1.500	50	1,040	1,860	1.78	37.2	25.5	376.16
o-Nitroanisole ^g	608.000 811.000 1,010.000	50 50 50	1,033 1,023 1,026	516 540 543	0.49 0.52 0.52	10.3 10.8 10.9	25.5 25.5 32.0 ^e	32.99* 40.54* 40.90*
					•			P<0.001

Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells by o-Nitroanisole (continued)

^a Study performed at Litton Bionetics, Inc. SCE = sister chromatid exchange; BrdU = bromodeoxyuridine. A detailed description of the SCE protocol and these data are presented in Galloway *et al.* (1987). Briefly, Chinese hamster ovary cells were incubated with *o*-nitroanisole or solvent (dimethylsulfoxide) as described in ^c and ^f below, and cultured for sufficient time to reach second metaphase division. Cells were then collected by mitotic shake-off, fixed, air-dried, and stained.

^b SCEs/chromosome of culture exposed to *o*-nitroanisole relative to those of culture exposed to solvent.

In the absence of S9, cells were incubated with o-nitroanisole or solvent for 2 hours at 37° C. Then BrdU was added and incubation was continued for 24 hours. Cells were washed, fresh medium containing BrdU and Colcemid was added, and incubation was continued for 1.5 hours.
 Cells were washed, the bine provide the term of the data and term of
^d Significance of relative SCEs/chromosome tested by the linear regression trend test vs. log of the dose

e Because o-nitroanisole-induced cell cycle delay was observed, harvest time was extended to maximize the proportion of second division cells available for analysis.

f In the presence of S9, cells were incubated with o-nitroanisole or solvent for 2 hours at 37° C. The cells were then washed, and medium containing BrdU was added. Cells were incubated for a further 25.5 hours, with Colcemid present for the final 2 to 3 hours. S9 was from the livers of Aroclor 1254-induced male Sprague-Dawley rats.

^g Precipitate formed at all dose levels in this trial.

_			-S9 ^b						+\$9°	• • •	
_	Dose (µg/mL)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs	۰. بر بر	Dose (µg/mL)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs
Trial Summ	1 – Harvest ary: Negative	time: 11.0	hours			Trial Summ	1 – Harvest ary: Weak po	time: 11.0 xsitive	hours		
Dime	thylsulfoxide					Dime	thylsulfoxide				
	•	100	3	0.03	3.0			100 100	5 6	0.05 0.06	5.0 5.0
Mitor	mycin-C					Cyclo	phosphamid	e	- i		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0.5	100	30	0.30	23.0		25.0	100	33	0.33	26.0
o-Nit	roanisole					o-Nit	roanisole				
	216.3	100	1	0.01	1.0	0 100	519.0	100	5	0.05	5.0
	432.6	100	1	0.01	1.0		742.0	100	12	0.12	11.0
	618.0	100	1	0.01	1.0		1,060.0	100	55	0.55	49.0*
					$P = 0.868^{d}$						P<0.001
Trial Summ	2 – Harvest ary: Negative	time: 10.5]	hours						•		
Dime	thylsulfoxide										
		100	3	0.03	3.0						
Mitor	nycin-C										
	0.5	100	21	0.21	17.0						
o-Nit	roanisole ^e										
	655.1	100	0	0.00	0.0						
	722.7	50	1	0.02	2.0						
	803.4	100	1	0.01	1.0						
					P=0.366						

TABLE G3 Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells by o-Nitroanisole^a

Positive (P<0.05)

^a Study performed at Litton Bionetics, Inc. Abs = aberrations. A detailed presentation of the technique for detecting chromosomal aberrations and these data are found in Galloway *et al.* (1987). Briefly, Chinese hamster ovary cells were incubated with *o*-nitroanisole or solvent (dimethylsulfoxide) as indicated in ^b and ^c. Cells were arrested in first metaphase by addition of Colcemid and harvested by mitotic shake-off, fixed, and stained in 6% Giemsa.

^b In the absence of S9, cells were incubated with *o*-nitroanisole or solvent for 8 hours at 37° C. Cells were then washed and fresh medium containing Colcemid was added for an additional 2 to 3 hours followed by harvest.

^c In the presence of S9, cells were incubated with *o*-nitroanisole or solvent for 2 hours at 37° C. Cells were then washed, medium was added, and incubation was continued for 9 hours. Colcemid was added for the last 2 to 3 hours of incubation before harvest. S9 was from the livers of Aroclor 1254-induced male Sprague-Dawley rats.

^d Significance of percent cells with aberrations tested by the linear regression trend test vs. log of the dose

^e Precipitate formed at all dose levels in this trial.

Table G4

-

Induction of Trifluorothymidime Resistance in Mouse L5178Y Lymphoma Cells by o-Nitroanisole^a

Compound	Concentration	Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Count	Mutant Fraction ^b	Average Mutant Fraction
				· · · ·		
Trial 1						
Ethanol						
		100	94	225	75	
		115	103	198	58	
		99	103	219	74	69
Ethylmethane sul	fonate (ug/mL)					
,	250	88	70	819	311	
	•	73	50	920	420	
		103	70	1,101	356	362 ^c
o-Nitroanisole (u	I/mI.)					
• • • • • • • • • • • • • • • • • • •	0.0125	94	114	158	56	
		111	101	171	52	
		116	127	136	39	49
	0.025	114	124	135	39	
		79	83	106	45	
		101	99	173	57	47
	0.05	99	117	158	53	
		92	96	171	62	
		105	102	145	46	54
				4.50		
	0.1	114	116	179	52	
	0.2	88	73	195	74	
	03	92	47	219	79	
	0.5	94	50	229	21 21	
		108	62	261	81	81
	0.5	T . 1 1				
	0.5	Lethal				
		Lethal				
		Lethal				

,

 IABLE G4

 Induction of Trifluorothymidine Resistance in Mouse L5178Y Lymphoma Cells by o-Nitroanisole (continued)

Compound	Concentration	Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Count	Mutant Fraction	Average Mutant Fraction
· ··	· · · · ·				·····	اد می در ۱۹۹۵ ا
rial 2	,					
Ethanol			50		40	
		61	/8	90	49	
		12	, 109		30	
		08 82	108	04 00	34	28
		62	105	90	.30	- OC
Ethyl methanesul	fonate (µg/mL)					
	250	84	68	847	336	
		70	58	783	373	
		73	76	669	305	338 ^c
				s *•	• . •	
o-Nitroanisole (µ	L/mL)				•	
	0.025	58	80	62	36	
		. 74	99	52	23	
		72	85	45	21	27
	0.05	74	. 00	67	24	
	0.05	66	78	45	20	
		78	76	86	37	28
	·	10	10			
	0.1	56	57	91	54	
		66	56	80	41	
		65	70	80	41	45
		<u>.</u>		·	-	
	0.15	89	45	191	71	
		54	50	92	57	ca ^C
		72	43	133	62	03
	0.2	60	43	126	61	
	0.2	77	40	183	80	
		71	40	141	67	69 ^c
				, - · -		
	0.3	63	10	346	184	
		49	10	181	123	
		67	13	297	149	152 ^c
	0.4	Lethal				
,	~	Lethal	•	1. A. A. A. A.	· · · · · · ·	· ·
		Lethal	• • •	•		
· · · ·			· · · · ·		·	
		2		• •		· · ·

410

Induction of Trifluorothymidine Resistance in Mouse L5178Y Lymphoma Cells by o-Nitroanisole (continued)

Compound	Concentration	Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Count	Mutant Fraction	Average Mutant Fraction
Frial 3			· · · · ·			
Ethanol		79	92	94	40	
		88	80	95	36	
		114	121	104	30	
		106	107	123	39	36
Ethvlmethanesul	fonate (ug/mL)					
	250	57	37	857	506	
		73	62	865	395	
		56	43	616	370	424 ^c
o-Nitroanisole (µ	L/mL)					
··· V	0.025	49	59	56	38	
		65	72	58	30	34
	0.05	62	62	46	25	
		59	65	77	43	
		79	75	105	44	37
	0.1	68	42	124	61	
		60	47	75	42	
		69	68	70	34	45
	0.15	84	52	103	41	
		70	62	86	41	
		94	50	140	50	44
	0.2	56	29	105	63	
		67	24	188	94	
		77	41	139	60	72 ^c
	0.3	68	24	193	95	
		61	34	146	79	
		82	29	196	80	85 ^c
	0.4 ^d	Lethal				
	••••	Lethal				
		Lethal				

^a Study performed at Litton Bionetics, Inc. The experimental protocol is presented in detail by Myhr et al. (1985). The highest dose of o-nitroanisole is determined by solubility or toxicity. All doses are tested in triplicate; the average of the three tests is presented in the table. Cells (6 × 10⁵/mL) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3 × 10⁶ cells were plated in medium and soft agar supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in nonselective medium and soft agar to determine the cloning efficiency.

^b Mutant fraction (frequency) is a ratio of the mutant count to the cloning efficiency, divided by 3 (to arrive at MF/10⁶ cells treated).

^c Significant positive response (P<0.05)

^d Precipitation

.

412

APPENDIX H ORGAN WEIGHTS

AND ORGAN-WEIGHT-TO-BODY-WEIGHT RATIOS

Table H1	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats	
	in the 14-Day Feed Study of o-Nitroanisole 414	
Table H2	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats	
	in the 13-Week Feed Study of o-Nitroanisole 416	
Table H3	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats	
	at the 15-Month Interim Evaluation in the 2-Year Feed Study of o-Nitroanisole 418	
Table H4	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats	
	at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study	
	of o-Nitroanisole	
Table H5	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats	
	at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study	
	of <i>o</i> -Nitroanisole	
Table H6	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats	
	at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study	
	of <i>o</i> -Nitroanisole	
Table H7	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats	
	at the 15-Month Interim Evaluation in the Stop-Exposure Feed Study	
	of <i>o</i> -Nitroanisole	
Table H8	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice	
	in the 14-Day Feed Study of o-Nitroanisole 423	
Table H9	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice	
	in the 13-Week Feed Study of o-Nitroanisole 425	
Table H10	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice	
	at the 15-Month Interim Evaluation in the 2-Year Feed Study of o-Nitroanisole 427	

··· ·	0 ppm	583 ppm	1,166 ppm	2,332 ppm	4,665 ppm	9,330 ppm
Male		·			<u> </u>	· · · · · · · · · · · · · · · · · · ·
n	5	5	5	5	5	5
Necropsy body wt	237 ± 3	243 ± 3	243 ± 5	240 ± 4	229 ± 5	212 ± 2**
Brain						
Absolute	1.810 ± 0.028	1.868 ± 0.029	1.840 ± 0.022	1.874 ± 0.020	1.856 ± 0.014	1.828 ± 0.015
Relative	7.64 ± 0.04	7.70 ± 0.10	7.59 ± 0.17	7.83 ± 0.11	8.11 ± 0.13**	$8.62 \pm 0.07^{**}$
Heart						. •
Absolute	0.833 ± 0.033	0.855 ± 0.016	0.864 ± 0.016	0.866 ± 0.044	0.835 ± 0.018	0.789 ± 0.015
Relative	3.51 ± 0.12	3.53 ± 0.05	3.56 ± 0.04	3.61 ± 0.13	3.65 ± 0.09	3.72 ± 0.06
R. Kidney						
Absolute	0.941 ± 0.039	1.024 ± 0.060	0.987 ± 0.029	1.021 ± 0.039	0.982 ± 0.033	0.985 ± 0.033
Relative	3.97 ± 0.13	4.21 ± 0.21	4.08 ± 0.18	4.26 ± 0.12	4.28 ± 0.09	$4.64 \pm 0.15^{**}$
Liver .						
Absolute	13.060 ± 0.533	12.540 ± 0.468	$14.600 \pm 0.207^*$	14.380 ± 0.334	14.060 ± 0.412	13.100 ± 0.170
Relative	55.05 ± 1.71	51.64 ± 1.37	60.17 ± 0.61**	$60.00 \pm 0.63^{**}$	61.34 ± 1.25**	$61.74 \pm 0.71^{**}$
Lungs						н. 1
Absolute	1.220 ± 0.098	1.314 ± 0.074	1.220 ± 0.096^{b}	1.100 ± 0.055	1.172 ± 0.065	0.998 ± 0.149
Relative	5.13 ± 0.35	5.43 ± 0.34	5.04 ± 0.29^{b}	4.59 ± 0.23	5.12 ± 0.27	4.70 ± 0.70
R. Testis						
Absolute	1.220 ± 0.030	$1.310 \pm 0.018^*$	1.276 ± 0.007	1.292 ± 0.011	1.264 ± 0.027	1.250 ± 0.023
Relative	5.14 ± 0.07	5.40 ± 0.11	5.26 ± 0.08	5.40 ± 0.07	$5.51 \pm 0.04^{**}$	$5.89 \pm 0.13^{**}$
Thymus						
Absolute	0.567 ± 0.037	0.595 ± 0.022	0.587 ± 0.019	0.616 ± 0.033	0.570 ± 0.029	0.541 ± 0.016
Relative	2.39 ± 0.13	2.45 ± 0.07	2.42 ± 0.10	2.57 ± 0.13	2.48 ± 0.11	2.55 ± 0.09
Trachea						
Absolute	0.703 ± 0.266	0.927 ± 0.207	0.813 ± 0.329^{b}	0.802 ± 0.244	1.052 ± 0.300	1.032 ± 0.321
Relative	2.92 ± 1.08	3.86 ± 0.89	3.32 ± 1.34^{b}	3.37 ± 1.04	4.60 ± 1.32	4.88 ± 1.53

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 14-Day Feed Study of o-Nitroanisole^a

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 14-Day Feed Study of o-Nitroanisole (continued)

	Ф ррт	583 ppm	1,166 ppm	2,332 ppm	4,665 ppm	9,330 ppm
Female						
n	5	5	5	5	5	5
Necropsy body wt	151 ± 1	154 ± 2	152 ± 2	150 ± 2	145 ± 1	148 ± 2
Brain						
Absolute	1.704 ± 0.066	1.750 ± 0.025	1.738 ± 0.034	1.740 ± 0.022	1.672 ± 0.007	1.684 ± 0.048
Relative	11.29 ± 0.46	11.38 ± 0.07	11.45 ± 0.21	11.60 ± 0.12	11.55 ± 0.11	11.43 ± 0.45
Heart						
Absolute	0.620 ± 0.016	0.620 ± 0.029	0.594 ± 0.021	0.595 ± 0.012	0.565 ± 0.017	0.603 ± 0.011
Relative	4.11 ± 0.12	4.03 ± 0.15	3.91 ± 0.08	3.96 ± 0.07	3.91 ± 0.13	4.09 ± 0.08
R. Kidney						
Absolute	0.592 ± 0.018	0.636 ± 0.021	0.641 ± 0.034	0.648 ± 0.026	0.641 ± 0.032	0.650 ± 0.024
Relative	3.92 ± 0.13	4.14 ± 0.10	4.23 ± 0.23	4.31 ± 0.13	$4.42 \pm 0.20^{\circ}$	$4.40 \pm 0.11^{\circ}$
Liver						
Absolute	6.196 ± 0.162	6.896 ± 0.213°	6.792 ± 0.223°	7.422 ± 0.205°°	7.040 ± 0.207°°	7.916 ± 0.128°°
Relative	41.06 ± 1.23	$44.81 \pm 0.89^{\circ}$	44.73 ± 1.18°	49.48 ± 1.29°°	48.65 ± 1.62°°	53.63 ± 0.54°°
Lungs						
Absolute	0.924 ± 0.044	0.962 ± 0.062	1.108 ± 0.066	0.966 ± 0.066	1.004 ± 0.149	0.952 ± 0.048
Relative	6.12 ± 0.27	6.28 ± 0.48	7.30 ± 0.44	6.45 ± 0.48	6.94 ± 1.05	6.45 ± 0.31
Thymus						
Absolute	0.484 ± 0.024	0.427 ± 0.020	0.427 ± 0.006	0.442 ± 0.019	0.476 ± 0.039	0.484 ± 0.042
Relative	3.20 ± 0.16	2.78 ± 0.14	2.82 ± 0.08	2.95 ± 0.13	3.28 ± 0.26	3.27 ± 0.25
Trachea						
Absolute	0.817 ± 0.242	0.650 ± 0.252	0.831 ± 0.214	0.579 ± 0.189	0.850 ± 0.242	0.829 ± 0.270
Relative	5.38 ± 1.59	4.29 ± 1.69	5.49 ± 1.41	3.91 ± 1.31	5.89 ± 1.69	5.66 ± 1.87

Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test
 ° P≤0.01

Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight а (mean ± standard error)

	0 ppm	200 ppm	600 ррт	2,000 ppm	6,000 ppm	18,000 ррт
Male					···	
n .	10	10	10	10	10	10
Necropsy body wt	360 ± 13	373 ± 7	380 ± 7	363 ± 4	311 ± 5**	173 ± 7**
Brain						
Absolute	1.999 ± 0.027	2.050 ± 0.027	2.034 ± 0.025	1.878 ± 0.090	1.968 ± 0.020	1.808 + 0.026**
Relative	5.61 ± 0.19	5.50 ± 0.09	5.37 ± 0.12	5.18 ± 0.26	$6.34 \pm 0.10^{\circ}$	$10.59 \pm 0.37^{**}$
Heart						
Absolute	1.123 ± 0.031	1.110 ± 0.030	1.141 ± 0.022	1.087 ± 0.025	$0.988 \pm 0.018^{**}$	$0.645 \pm 0.022^{**}$
Relative	3.14 ± 0.08	2.97 ± 0.06	3.01 ± 0.05	3.00 ± 0.07	3.18 ± 0.05	$3.76 \pm 0.13^{**}$
R. Kidney						
Absolute	1.151 ± 0.036	1.240 ± 0.035	$1.365 \pm 0.026^{**}$	$1.312 \pm 0.024^{**}$	$1.466 \pm 0.047^{**}$	$0.904 \pm 0.020^{**}$
Relative	3.21 ± 0.08	3.32 ± 0.07	$3.60 \pm 0.06^*$	$3.62 \pm 0.07^{**}$	4.71 ± 0.12**	5.28 ± 0.17**
Liver						
Absolute	12.120 ± 0.611	13.920 ± 0.367**	15.520 ± 0.461**	17.280 ± 0.306**	17.050 ± 0.449**	10.970 ± 0.274**
Relative	33.51 ± 0.95	37.27 ± 0.56*	$40.83 \pm 0.77^{**}$	47.67 ± 1.23**	54.78 ± 0.95**	63.94 ± 1.59**
Lungs						
Absolute	1.996 ± 0.041	2.038 ± 0.066	2.249 ± 0.067	1.965 ± 0.050	1.840 ± 0.076	1.271 ± 0.040**
Relative	5.59 ± 0.20	5.47 ± 0.20	5.93 ± 0.19	5.42 ± 0.17	5.91 ± 0.21	7.39 ± 0.18**
Spleen						
Absolute	0.750 ± 0.036^{b}	0.802 ± 0.016^{b}	0.834 ± 0.016	0.834 ± 0.013	$1.132 \pm 0.029^{**}$	1.297 ± 0.057**
Relative	2.06 ± 0.04^{b}	2.15 ± 0.05^{b}	2.20 ± 0.02	2.30 ± 0.03	$3.64 \pm 0.08^{**}$	7.57 ± 0.33**
R. Testis						
Absolute	1.544 ± 0.024	1.570 ± 0.034	1.555 ± 0.018	1.502 ± 0.059	1.578 ± 0.022	$0.663 \pm 0.085^{**}$
Relative	4.32 ± 0.12	4.22 ± 0.11	4.10 ± 0.08	4.14 ± 0.16	$5.08 \pm 0.06^*$	3.77 ± 0.38
Thymus						
Absolute	0.311 ± 0.027	0.378 ± 0.020	0.335 ± 0.023	0.346 ± 0.025	0.312 ± 0.018	$0.162 \pm 0.015^{**b}$
Relative	0.86 ± 0.07	1.01 ± 0.05	0.88 ± 0.05	0.95 ± 0.07	1.01 ± 0.06	0.95 ± 0.07^{b}

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 13-Week Feed Study of o-Nitroanisole^a

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 13-Week Feed Study of o-Nitroanisole (continued)

	0 ррш	200 ppm	600 ррт	2,000 ppm	6,000 ppm	18,000 ppm
Female						
n	10	10	10	9	10	10
Necropsy body wt	213 ± 3	217 ± 3	211 ± 2	208 ± 3	183 ± 2°°	137 ± 2°°
Brain						
Absolute	1.862 ± 0.036	1.827 ± 0.008	1.873 ± 0.024	1.836 ± 0.023	1.772 ± 0.027°	$1.628 \pm 0.019^{\circ \circ}$
Relative	8.77 ± 0.20	8.43 ± 0.12	8.90 ± 0.14	8.84 ± 0.12	$9.70 \pm 0.15^{\circ\circ}$	$11.89 \pm 0.15^{\circ\circ}$
Heart						
Absolute	0.765 ± 0.012	0.735 ± 0.015	0.779 ± 0.018	0.732 ± 0.022	$0.653 \pm 0.005^{\circ\circ}$	$0.507 \pm 0.012^{\circ\circ}$
Relative	3.60 ± 0.08	3.39 ± 0.08	3.70 ± 0.10	3.52 ± 0.08	3.58 ± 0.04	3.70 ± 0.08
R. Kidney						
Absolute	0.721 ± 0.011	0.730 ± 0.011	0.746 ± 0.008	0.742 ± 0.019	0.715 ± 0.020	0.698 ± 0.022
Relative	3.40 ± 0.07	3.37 ± 0.07	3.54 ± 0.06	3.58 ± 0.09	3.91 ± 0.11**	5.09 ± 0.13°°
Liver						
Absolute	6.720 ± 0.080	7.370 ± 0.092**	7.810 ± 0.123**	8.900 ± 0.153**	9.400 ± 0.193°°	$9.100 \pm 0.143^{\circ \circ}$
Relative	31.62 ± 0.33	33.99 ± 0.47**	37.06 ± 0.46**	42.85 ± 0.55**	51.43 ± 0.95**	66.41 ± 0.75°°
Lungs						
Absolute	1.400 ± 0.046	1.465 ± 0.046	1.503 ± 0.024^{b}	1.444 ± 0.032	1.346 ± 0.043	$1.026 \pm 0.030^{\circ \circ}$
Relative	6.58 ± 0.20	6.77 ± 0.26	7.16 ± 0.10^{b}	6.96 ± 0.13	$7.35 \pm 0.17^{\circ \circ}$	$7.48 \pm 0.16^{\circ \circ}$
Spleen						
Absolute	0.532 ± 0.011	0.537 ± 0.009	0.544 ± 0.010	0.542 ± 0.013	$0.778 \pm 0.024^{\circ \circ b}$	$1.327 \pm 0.032^{\circ,\circ}{}^{b}$
Relative	2.50 ± 0.06	2.48 ± 0.05	2.58 ± 0.04	2.61 ± 0.05	$4.25 \pm 0.13^{\circ \circ b}$	9.66 ± 0.22°° ^b
Thymus						
Absolute	0.306 ± 0.013	0.304 ± 0.008	0.269 ± 0.009	0.279 ± 0.007	0.276 ± 0.020	$0.155 \pm 0.013^{\circ \circ}$
Relative	1.44 ± 0.06	1.40 ± 0.04	1.28 ± 0.04	1.35 ± 0.04	1.52 ± 0.12	$1.13 \pm 0.09^{\circ \circ}$

° Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

•• P≤0.01

а Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean \pm standard error) n=9

b

· .	0 ppm	222 ppm	666 ppm	2,000 ppm
Male			······································	
n	10	10	10	9
Necropsy body wt	455 ± 9	445 ± 7	441 ± 7	437 ± 6
Brain				
Absolute	2.118 ± 0.017	$2.057 \pm 0.017^{\circ}$	2.085 ± 0.012	2.088 ± 0.021
Relative	4.67 ± 0.07	4.63 ± 0.07	4.74 ± 0.06	4.79 ± 0.06
R. Kidney				
Absolute	1.419 ± 0.049	1.387 ± 0.043	1.408 ± 0.037	1.513 ± 0.027
Relative	3.12 ± 0.05	3.11 ± 0.08	3.19 ± 0.06	$3.47 \pm 0.05^{**}$
Liver				
Absolute	14.909 ± 0.250	14.911 ± 0.353	15.535 ± 0.491	$17.932 \pm 0.273^{**}$
Relative	32.82 ± 0.17	33.47 ± 0.59	$35.22 \pm 0.82^{**}$	$41.09 \pm 0.57^{**}$
Spleen		· · · ·		
Absolute	1.002 ± 0.066	0.880 ± 0.031^{b}	1.029 ± 0.079	$1.171 \pm 0.096^{\circ}$
Relative	2.21 ± 0.16	1.98 ± 0.07^{b}	2.34 ± 0.19	$2.69 \pm 0.20^{\circ}$
R Testis	2.21 2 0.10	1.00 2 0.07		
Absolute	1.644 ± 0.024	1576 ± 0.018	1.497 ± 0.087^{b}	1.749 ± 0.054^{d}
Relative	3.63 ± 0.07	3.55 ± 0.07	3.37 ± 0.17^{b}	3.98 ± 0.11^{d}
Female				
n .	10	10	10	9
Necropsy body wt	267 ± 8	273 ± 10	272 ± 11	260 ± 9
Brain				
Absolute	1.856 ± 0.030	1.837 ± 0.026	1.857 ± 0.030	1.847 ± 0.029
Relative	6.98 ± 0.15	6.79 ± 0.21	6.91 ± 0.24	7.15 ± 0.19
R. Kidney				
Absolute	0.833 ± 0.023	0.832 ± 0.031	0.849 ± 0.035	0.809 ± 0.028
Relative	3.12 ± 0.06	3.05 ± 0.05	3.12 ± 0.03	3.12 ± 0.07
Liver				
Absolute	7.642 + 0.276	8.193 ± 0.309	$8.866 \pm 0.418^*$	$9.723 \pm 0.431^{**}$
Relative	28.58 ± 0.54	30.01 ± 0.44	$32.53 \pm 0.51^{**}$	37.32 ± 1.05**
Snleen				
Absolute	0.497 + 0.019	0.493 ± 0.028	0.538 ± 0.035	0.561 ± 0.034
Relative	1.86 ± 0.06	1.80 ± 0.06	1.96 ± 0.09	$2.14 \pm 0.08^{*}$

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 15-Month Interim Evaluation in the 2-Year Feed Study of *o*-Nitroanisole^a

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error)

b n=9

° n=8

d n=7

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole^a

	0 ррт	6,000 ррш	18,000 ppm	
Male				
n	10	10	10	
Necropsy body wt	308 ± 4	$249 \pm 4^{\circ \circ}$	$145 \pm 3^{\circ \circ}$	
R. Kidney				
Absolute	0.963 ± 0.012	1.063 ± 0.017	$0.706 \pm 0.024^{\circ \circ}$	
Relative	3.13 ± 0.02	$4.27 \pm 0.02^{\circ \circ}$	$4.88 \pm 0.12^{\circ \circ}$	
Liver				
Absolute	8.097 ± 0.093	$10.553 \pm 0.307^{**}$	8.131 ± 0.284	
Relative	26.31 ± 0.33	$42.30 \pm 0.56^{**}$	$56.06 \pm 1.08^{\circ \circ}$	
Spleen				
Absolute	0.588 ± 0.008	$0.776 \pm 0.018^{**b}$	$1.151 \pm 0.064^{\circ\circ}$	
Relative	1.91 ± 0.02	$3.11 \pm 0.06^{\circ \circ b}$	$7.93 \pm 0.35^{\circ\circ}$	
R Testis				
Absolute	1.408 ± 0.017	1.447 ± 0.023	$0.524 \pm 0.031^{\circ\circ}$	
Relative	457 ± 0.04	5.81 + 0.07°°	$3.67 \pm 0.29^{\circ \circ}$	
Urinary Bladder	4.57 ± 0.04	5.51 2 0.07		
Absolute	0.094 ± 0.007	0.101 ± 0.007	$0.185 \pm 0.023^{\circ\circ}$	
Relative	0.074 ± 0.007	0.101 ± 0.007	$1.28 \pm 0.16^{\circ\circ}$	
Female				
n	10	10	10	
Necropsy body wt	167 ± 2	155 ± 2**	$100 \pm 3^{\circ \circ}$	
R Kidney				
Absolute	0.587 ± 0.013	0.569 ± 0.012	$0.530 \pm 0.020^{\circ}$	
Relative	352 ± 0.09	368 ± 0.06	$5.30 \pm 0.11^{\circ\circ}$	
T iver	0.07	5.00 2 0.00	5.50 ± 0.11	
Absolute	4 069 + 0 061	5 676 + 0 091**	5 173 + 0 26900	
Relative	74.30 ± 0.001	3671 ± 0.091	5.175 ± 0.209 51 58 + 1 6000	
Soleen	67.37 ± 0.33	50.71 ± 0.47	51.50 ± 1.07	
Absolute	0.412 ± 0.009	0 522 + 0.016**	0.770 ± 0.04100	
Ausoluic Deletine	0.412 ± 0.008	0.323 ± 0.010^{10}	770 ± 0.770	
Relative	2.4/ ± 0.04	3.39 ± 0.12**	1.10 ± 0.3/**	
Ormary Bladder	0.0(2 + 0.002	0.066 + 0.002	0.162 ± 0.00000	
Adsolute	0.002 ± 0.003		$0.105 \pm 0.009^{\circ\circ}$	
Kelalive	0.37 ± 0.02	0.43 ± 0.02	$1.64 \pm 0.09^{\circ\circ}$	
Uterus				
Absolute	0.368 ± 0.016	$0.240 \pm 0.022^{**}$	0.132 ± 0.043 °°	
Relative	2.21 ± 0.11	1.56 ± 0.15	1.39 ± 0.51	

* Significantly different (P \leq 0.05) from the control group by Williams' or Dunnett's test

°° P≤0.01

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error)

	0 ррт	6,000 ррт	18,000 ppm
Male			
1	10	10	10
Necropsy body wt	383 ± 9	289 ± 6**	$166 \pm 2^{**}$
R. Kidney			
Absolute	1.216 ± 0.037	1.189 ± 0.015	$0.837 \pm 0.014^{**}$
Relative	3.17 ± 0.07	$4.12 \pm 0.05^{**}$	$5.05 \pm 0.07^{**}$
Liver			
Absolute	9.552 ± 0.345	$11.767 \pm 0.299^{**}$	9.154 ± 0.232
Relative	24.89 ± 0.58	$40.69 \pm 0.51^{**}$	55.22 ± 1.29**
pleen			
Absolute	0.748 ± 0.037	0.899 ± 0.017	$1.758 \pm 0.109^{**}$
Relative	1.94 ± 0.06	$3.12 \pm 0.07^*$	$10.58 \pm 0.61^{**}$
R. Testis			
Absolute	1.512 ± 0.029	1.530 ± 0.038	$0.473 \pm 0.030^{**}$
Relative	3.97 ± 0.15	$5.29 \pm 0.10^{**}$	$2.85 \pm 0.18^{\bullet\bullet}$
Jrinary Bladder			
Absolute	0.167 ± 0.019	0.119 ± 0.013	$1.333 \pm 0.482^{**}$
Relative	0.44 ± 0.05	0.41 ± 0.04	$8.02 \pm 2.87^{**}$
Female			
i	10	10	10
lecropsy body wt	197 ± 2	169 ± 3**	114 ± 4**
R. Kidney			
Absolute	0.655 ± 0.013	$0.614 \pm 0.010^*$	$0.594 \pm 0.016^{\bullet \bullet b}$
Relative	3.34 ± 0.07	$3.65 \pm 0.03^{**}$	$5.25 \pm 0.10^{**b}$
iver			
Absolute	4.753 ± 0.082	$5.871 \pm 0.154^{**}$	$6.205 \pm 0.284^{**}$
Relative	24.20 ± 0.45	$34.81 \pm 0.36^{**}$	$54.05 \pm 1.11^{**}$
pleen			
Absolute	0.456 ± 0.012	$0.696 \pm 0.015^{**}$	$1.304 \pm 0.083^{**}$
Relative	2.32 ± 0.05	$4.13 \pm 0.06^{**}$	$11.33 \pm 0.53^{**}$
Irinary Bladder			
Absolute	0.073 ± 0.006	0.079 ± 0.004	$0.490 \pm 0.070^{**}$
Relative	0.37 ± 0.03	0.47 ± 0.03	$4.25 \pm 0.60^{**}$
Jterus			
Absolute	0.620 ± 0.030	$0.262 \pm 0.019^{**}$	$0.104 \pm 0.013^{\bullet \bullet b}$
D 1 1	215 . 014	1.5(. 0.11**	a ca i a camb

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole^a

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error)

^b n=9

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of *o*-Nitroanisole^a

	Ф ррт	6,000 ppm	18,000 ppm
Male			
n	10	10	6
Necropsy body wt	458 ± 8	$403 \pm 5^{\circ\circ}$	290 ± 7°°
R. Kidney		,	
Absolute	1.416 ± 0.030	1.306 ± 0.021	1.237 ± 0.148
Relative	3.10 ± 0.09	3.24 ± 0.04	$4.26 \pm 0.49^{\circ \circ}$
Liver			
Absolute	15.565 ± 0.392	14.888 ± 0.386	$10.352 \pm 0.552^{\circ\circ}$
Relative	34.05 ± 0.80	$36.88 \pm 0.53^*$	35.63 ± 1.31
Spleen			
Absolute	0.827 ± 0.026	0.868 ± 0.028	$1.213 \pm 0.102^{**}$
Relative	1.81 ± 0.05	$2.15 \pm 0.06^{\circ}$	$4.17 \pm 0.29^{**}$
R. Testis			
Absolute	1.563 ± 0.020	1.528 ± 0.022	$1.177 \pm 0.060^{**}$
Relative	3.42 ± 0.05	$3.79 \pm 0.05^*$	$4.07 \pm 0.24^{**}$
Urinary Bladder			
Absolute	0.141 ± 0.018	0.232 ± 0.052	$3.455 \pm 0.660^{\circ \circ}$
Relative	0.31 ± 0.05	0.57 ± 0.12	11.97 ± 2.31°°
Female			
n	10	10	6
Necropsy body wt	232 ± 6	211 ± 2**	177 ± 5**
R. Kidney			
Absolute	0.714 ± 0.016^{b}	0.720 ± 0.014	0.728 ± 0.022
Relative	3.09 ± 0.07^{b}	$3.42 \pm 0.06^{\circ}$	$4.12 \pm 0.17^{\circ \circ}$
Liver			
Absolute	7.019 ± 0.260	6.940 ± 0.130	6.347 ± 0.247
Relative	30.28 ± 0.60	$32.92 \pm 0.52^{*}$	35.83 + 1.19**
Spleen			
Absolute	0.446 ± 0.019	0.514 ± 0.014	0.912 + 0.071**
Relative	193 + 0.06	2.44 ± 0.014	5 20 + 0 53**
Urinary Bladder	1.75 ± 0.00	2.77 - 0.07	
Absolute	0.066 + 0.003	0.084 ± 0.007	3 363 + 0 72800
Relative	0.000 ± 0.005	0.004 ± 0.007	3.505 ± 0.740 10 51 + 4.62**
I I tome	0.27 ± 0.02	0.40 ± 0.05	17.JI ± 4.02
Abroluto	0.845 + 0.063	0.962 ± 0.121	0.502 ± 0.1028
Pelative	0.043 ± 0.003	0.002 ± 0.131	$0.302 \pm 0.102^{\circ}$
	5.00 ± 0.24	4.07 ± 0.37	2.70 ± 0.52

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error)

^b n=9

and the second second

· · ·	0 ppm	6,000 ррт	
Male			
n	9	3	
Necropsy body wt	455 ± 10	441 ± 16	
R. Kidney			
Absolute	1.806 ± 0.071	1.975 ± 0.052	
Relative	3.96 ± 0.11	$4.50 \pm 0.24^*$	
Liver			
Absolute	17.815 ± 0.635	17.322 ± 0.482	
Relative	39.08 ± 0.72	39.39 ± 1.31	•
Spleen			:
Absolute	0.906 ± 0.021	$1.028 \pm 0.060^{\circ}$	
Relative	2.00 ± 0.05	$2.35 \pm 0.21^{\circ}$	
R. Testis			
Absolute	1.687 ± 0.115	1.734 ± 0.028	
Relative	3.73 ± 0.30	3.95 ± 0.17	
Urinary Bladder			. * ·
Absolute	0.107 ± 0.004	$0.813 \pm 0.322^{**}$	•
Relative	0.23 ± 0.01	$1.82 \pm 0.70^{**}$	
			:
Female		· •	
n .	8	10	
Necropsy body wt	291 ± 5	$237 \pm 6^{**}$	· .
R. Kidney			
Absolute	1.062 ± 0.020	0.996 ± 0.023	
Relative	3.66 ± 0.06	$4.22 \pm 0.08^{**}$	
Liver			
Absolute	9.453 ± 0.161	8.891 ± 0.349	
Relative	32.60 ± 0.87	37.56 ± 0.92**	
Spleen			
Absolute	0.549 ± 0.016	0.532 ± 0.015	
Relative	1.89 ± 0.07	$2.27 \pm 0.11^{\circ}$	
Urinary Bladder			
Absolute	0.089 ± 0.005	1.595 ± 0.755	
Relative	0.31 ± 0.01	6.99 ± 3.29	
Uterus			
Absolute	0.767 ± 0.031	0.818 ± 0.061	
Relative	2.64 ± 0.10	352 ± 034	

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 15-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole^a

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error)

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 14-Day Feed Study of o-Nitroanisole^a

	0 ppm	250 ppm	500 ppm	1,000 ppm	2,000 ppm	4,000 ppm
Male						- <u>Mari</u> <u></u>
n	5	5	5	5	5	5
Necropsy body wt	27.4 ± 0.9	$24.8 \pm 0.6^{\circ}$	$25.8 \pm 0.4^{\circ}$	$25.6 \pm 0.2^{\circ}$	$23.6 \pm 0.5^{\circ\circ}$	19.0 ± 0.6°°
Brain						
Absolute	0.158 ± 0.006	0.146 ± 0.014	0.149 ± 0.004	$0.131 \pm 0.005^{\circ}$	$0.126 \pm 0.006^{\circ\circ}$	$0.113 \pm 0.005^{\circ\circ}$
Relative	5.78 ± 0.22	5.87 ± 0.46	5.79 ± 0.17	5.11 ± 0.23	5.36 ± 0.24	5.96 ± 0.10
Heart						
Absolute	0.461 ± 0.013	0.462 ± 0.012	0.475 ± 0.016	0.482 ± 0.012	0.445 ± 0.011	0.444 ± 0.010
Relative	16.88 ± 0.68	18.67 ± 0.64	18.41 ± 0.63	18.83 ± 0.61	18.94 ± 0.83	$23.44 \pm 0.74^{\circ\circ}$
R. Kidney						-
Absolute	0.274 ± 0.015	0.242 ± 0.005	0.251 ± 0.010	0.246 ± 0.013	$0.205 \pm 0.010^{\circ\circ}$	$0.165 \pm 0.004^{\circ \circ}$
Relative	9.98 ± 0.23	9.76 ± 0.19	9.70 ± 0.32	9.62 ± 0.55	8.70 ± 0.37°	8.72 ± 0.27°
Liver						
Absolute	1.760 ± 0.106	$1.494 \pm 0.024^{\circ}$	$1.542 \pm 0.078^{\circ}$	$1.630 \pm 0.055^{\circ}$	$1.424 \pm 0.057^{\circ\circ}$	$1.128 \pm 0.046^{\circ \circ}$
Relative	64.17 ± 2.92	60.30 ± 0.77	59.67 ± 2.26	63.65 ± 1.93	60.36 ± 2.15	59.46 ± 2.31
Lungs						
Absolute	0.150 ± 0.030	0.183 ± 0.018	0.222 ± 0.014	0.203 ± 0.014	0.154 ± 0.023	0.156 ± 0.017
Relative	5.47 ± 1.00	7.45 ± 0.83	8.58 ± 0.49	7.91 ± 0.51	6.45 ± 0.89	8.33 ± 1.09
R. Testis				-		
Absolute	0.129 ± 0.021^{b}	0.106 ± 0.004	0.120 ± 0.011	0.128 ± 0.010	0.102 ± 0.004	0.111 ± 0.009
Relative	4.61 ± 0.61^{b}	4.26 ± 0.13	4.66 ± 0.46	5.00 ± 0.41	4.31 ± 0.12	5.90 ± 0.64
Thymus						
Absolute	0.052 ± 0.005	0.053 ± 0.006	0.054 ± 0.007	0.059 ± 0.012	0.049 ± 0.005	0.022 + 0.006**
Relative	1.89 ± 0.17	2.10 ± 0.21	2.12 ± 0.28	2.30 ± 0.50	2.08 ± 0.24	1.12 ± 0.28
Trachea						
Absolute	0.268 ± 0.024^{b}	0.240 ± 0.026	0.219 ± 0.023	0.245 ± 0.021	0.229 ± 0.017	0.212 + 0.004
Relative	9.69 ± 0.88^{b}	9.62 ± 0.86	8.52 ± 1.00	9.56 ± 0.81	9.73 ± 0.83	11.17 ± 0.27

	0 ppm	250 ppm	500 ppm	1,000 ppm	2,000 ppm	4,000 ppm
Female					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
n	5	5	5	5	5	5
Necropsy body wt	19.2 ± 0.2	20.4 ± 0.5	19.0 ± 0.3	20.0 ± 0.3	18.0 ± 0.8	15.6 ± 0.9**
Brain						
Absolute	0.108 ± 0.004	0.118 ± 0.005	0.114 ± 0.004	0.116 ± 0.007	0.103 ± 0.005	0.093 ± 0.003
Relative	5.63 ± 0.24	5.83 ± 0.35	6.00 ± 0.22	5.79 ± 0.35	5.75 ± 0.36	6.05 ± 0.35
Heart						
Absolute	0.455 ± 0.010	0.478 ± 0.010	0.440 ± 0.023	0.463 ± 0.009	0.435 ± 0.018	0.432 ± 0.013
Relative	23.67 ± 0.41	23.44 ± 0.54	23.11 ± 0.93	23.16 ± 0.26	24.23 ± 0.49	27.93 ± 1.43**
R. Kidney						
Absolute	0.164 ± 0.012	0.181 ± 0.005	0.155 ± 0.008	0.176 ± 0.009	$0.138 \pm 0.006^*$	$0.117 \pm 0.007^{**}$
Relative	8.55 ± 0.68	8.87 ± 0.17	8.19 ± 0.46	8.80 ± 0.46	7.71 ± 0.27	7.57 ± 0.56
Liver						
Absolute	1.004 ± 0.011	1.246 ± 0.052	1.028 ± 0.034	1.298 ± 0.023*	1.152 ± 0.095	1.002 ± 0.119
Relative	52.30 ± 0.49	60.98 ± 1.02	54.08 ± 1.25	64.94 ± 1.19**	63.57 ± 2.55**	63.44 ± 3.64**
Lungs						
Absolute	0.157 ± 0.008	0.194 ± 0.035	0.156 ± 0.019	0.163 ± 0.020	0.150 ± 0.010	0.146 ± 0.009
Relative	8.19 ± 0.48	9.42 ± 1.56	8.23 ± 1.01	8.19 ± 1.09	8.34 ± 0.44	9.37 ± 0.50
Thymus						
Absolute	0.064 ± 0.007	0.092 ± 0.015	0.068 ± 0.003	0.083 ± 0.005	$0.036 \pm 0.010^*$	$0.019 \pm 0.003^{**}$
Relative	3.35 ± 0.37	4.46 ± 0.63	3.60 ± 0.18	4.14 ± 0.27	$1.92 \pm 0.45^*$	$1.20 \pm 0.16^{**}$
Trachea						
Absolute	0.231 ± 0.011	0.203 ± 0.034	0.226 ± 0.013	0.239 ± 0.017	0.214 ± 0.009	$0.173 \pm 0.017^*$
Relative	12.03 ± 0.60	9.99 ± 1.68	11.92 ± 0.67	11.98 ± 0.83	12.00 ± 0.71	11.23 ± 1.35

TABLE H8 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 14-Day Feed Study of *o*-Nitroanisole (continued)

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight
 (mean ± standard error)

b n=4

TABLE H9 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 13-Week Feed Study of o-Nitroanisole^a

	0 ppm	60 ppm	200 ppm	600 ppm	2,000 ppm	6,000 ppm
Male						
n	10	10	7	9	10	10
Necropsy body wt	33.4 ± 0.5	31.8 ± 0.4	30.9 ± 2.0	33.2 ± 0.8	33.5 ± 0.6	$26.1 \pm 0.4^{\circ \circ}$
Brain						
Absolute	0.489 ± 0.006	0.486 ± 0.010	0.477 ± 0.008^{b}	0.479 ± 0.007	0.468 ± 0.004	0.473 ± 0.005
Relative	14.66 ± 0.32	15.27 ± 0.33	16.25 ± 1.40 ^b	14.47 ± 0.29	14.02 ± 0.21	18.18 ± 0.26**
Heart						
Absolute	0.191 ± 0.006	0.182 ± 0.005	0.182 ± 0.011	0.181 ± 0.004	$0.171 \pm 0.005^{\circ}$	$0.147 \pm 0.006^{\circ \circ}$
Relative	5.70 ± 0.13	5.72 ± 0.18	5.98 ± 0.36	5.46 ± 0.12	5.12 ± 0.12	5.61 ± 0.19
R. Kidney						
Absolute	0.343 ± 0.009	0.318 ± 0.012	0.315 ± 0.012^{b}	0.318 ± 0.008	0.336 ± 0.015	$0.238 \pm 0.009^{\circ \circ}$
Relative	10.28 ± 0.33	9.99 ± 0.36	10.61 ± 0.58 ^b	9.58 ± 0.22	10.01 ± 0.38	9.15 ± 0.36°
Liver						
Absolute	1.873 ± 0.082	1.725 ± 0.037	1.654 ± 0.202	2.059 ± 0.109	2.192 ± 0.051	1.804 ± 0.058
Relative	56.07 ± 2.37	54.15 ± 0.71	52.21 ± 3.71	61.74 ± 2.23	65.50 ± 1.09**	69.18 ± 1.59°°
Lungs						
Absolute	0.264 ± 0.010	0.254 ± 0.008	0.255 ± 0.011^{b}	0.276 ± 0.010	0.274 ± 0.010	$0.223 \pm 0.007^{\circ\circ}$
Relative	7.88 ± 0.27	7.97 ± 0.25	8.57 ± 0.49 ^b	8.31 ± 0.32	8.19 ± 0.25	8.55 ± 0.29
Spleen						
Absolute	0.112 ± 0.005	0.122 ± 0.009	0.098 ± 0.014	0.096 ± 0.007	0.113 ± 0.007	$0.076 \pm 0.003^{\circ \circ c}$
Relative	3.36 ± 0.13	3.81 ± 0.27	3.08 ± 0.33	2.88 ± 0.18	3.38 ± 0.20	$2.92 \pm 0.09^{\circ}$
R. Testis						
Absolute	0.120 ± 0.003	0.124 ± 0.003	0.120 ± 0.004^{b}	0.114 ± 0.004	0.129 ± 0.004	0.121 ± 0.003
Relative	3.59 ± 0.10	3.89 ± 0.13	4.03 ± 0.21^{b}	3.44 ± 0.17	3.86 ± 0.12	4.66 ± 0.17**
Thymus						
Absolute	0.040 ± 0.004	0.048 ± 0.003	0.042 ± 0.007	0.043 ± 0.003	0.038 ± 0.003	0.044 ± 0.002
Relative	1.19 ± 0.11	1.51 ± 0.11	1.33 ± 0.18	1.30 ± 0.12	1.15 ± 0.09	$1.69 \pm 0.10^{\circ}$

	0 ppm	60 ppm	200 ppm	600 ppm	2,000 ppm	6,000 ppm
Female			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
n	10	10	10	10	10	10
Necropsy body wt	26.4 ± 0.6	26.0 ± 0.3	25.7 ± 0.5	26.3 ± 0.4	$25.0 \pm 0.3^*$	20.9 ± 0.6**
Brain						
Absolute	0.511 ± 0.007^{c}	0.482 ± 0.010	0.491 ± 0.013^{c}	0.513 ± 0.015	0.502 ± 0.012	$0.461 \pm 0.015^{\circ}$
Relative	19.27 ± 0.45^{c}	18.54 ± 0.39	$18.82 \pm 0.55^{\circ}$	19.54 ± 0.60	20.15 ± 0.57	$22.11 \pm 0.74^{**}$
Heart	• •			•		· · ·
Absolute	0.154 ± 0.007	0.160 ± 0.007	0.159 ± 0.007^{c}	0.152 ± 0.004	0.147 ± 0.005	$0.131 \pm 0.008^{*}$
Relative	5.82 ± 0.20	6.14 ± 0.26	$6.08 \pm 0.25^{\circ}$	5.78 ± 0.14	5.91 ± 0.21	6.23 ± 0.31
R. Kidney						
Absolute	0.221 ± 0.008	0.213 ± 0.007	0.226 ± 0.010	0.224 ± 0.007	0.224 ± 0.019	$0.175 \pm 0.007^{**}$
Relative	8.39 ± 0.29	8.18 ± 0.27	8.79 ± 0.36	8.54 ± 0.30	9.00 ± 0.84	8.32 ± 0.15
Liver				•		
Absolute	1.366 ± 0.059	1.367 ± 0.024	1.346 ± 0.042	$1.568 \pm 0.040^*$	$1.613 \pm 0.033^*$	1.532 ± 0.096*
Relative	51.74 ± 1.57	52.53 ± 0.61	52.32 ± 1.16	59.75 ± 1.53**	$64.74 \pm 1.66^{**}$	72.85 ± 3.18**
Lungs				•		
Absolute	0.224 ± 0.011	0.241 ± 0.008	0.243 ± 0.010	0.266 ± 0.013	0.228 ± 0.008	0.199 ± 0.005
Relative	8.51 ± 0.42	9.28 ± 0.28	9.42 ± 0.25	$10.12 \pm 0.44^{**}$	9.11 ± 0.27	9.54 ± 0.36
Spleen		•				
Absolute	0.103 ± 0.005	0.111 ± 0.005	0.109 ± 0.005	0.122 ± 0.006	0.105 ± 0.004	$0.089 \pm 0.007^{**}$
Relative	3.93 ± 0.23	4.28 ± 0.15	4.23 ± 0.15	4.66 ± 0.25	4.20 ± 0.15	4.21 ± 0.27
Thymus						
Absolute	0.055 ± 0.007	0.049 ± 0.003	0.057 ± 0.004	0.060 ± 0.006	0.064 ± 0.004	0.051 ± 0.004
Relative	2.13 ± 0.28	1.89 ± 0.12	2.23 ± 0.15	2.30 ± 0.24	2.55 ± 0.16	2.43 ± 0.19

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 13-Week Feed Study of o-Nitroanisole (continued)

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error)

^b n=6 ^c n=9

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice at the 15-Month Interim Evaluation in the 2-Year Feed Study of o-Nitroanisole^a

	0 ррт	666 ррт	2,000 ppm	6,000 ррт
Male		<u> </u>		
n	10	10	9	10
Necropsy body wt	46.1 ± 1.4	43.8 ± 2.8	46.1 ± 2.0	$31.1 \pm 0.6^{\circ \circ}$
Brain				
Absolute	0.472 ± 0.006	0.462 ± 0.008	0.468 ± 0.007	$0.451 \pm 0.005^{\circ}$
Relative	10.31 ± 0.28	10.94 ± 0.69	10.26 ± 0.37	14.56 ± 0.37°°
R. Kidney				
Absolute	0.385 ± 0.009	0.404 ± 0.020	0.426 ± 0.018	$0.288 \pm 0.008^{\circ\circ}$
Relative	8.40 ± 0.23	$9.36 \pm 0.32^{\circ}$	$9.26 \pm 0.25^{\circ}$	$9.27 \pm 0.24^{\circ}$
Liver				
Absolute	1.885 ± 0.102	2.077 ± 0.168	$2.463 \pm 0.113^{\circ\circ}$	2.001 + 0.079
Relative	40.77 ± 1.33	$47.35 \pm 1.99^{**}$	$53.51 \pm 1.31^{**}$	$64.27 \pm 1.81^{\circ\circ}$
Spleen				
Absolute	0.068 ± 0.006	0.065 ± 0.005	0.068 ± 0.005	0.062 + 0.006
Relative	1.46 ± 0.09	1.49 ± 0.08	1.48 ± 0.12	$1.99 \pm 0.18^{\circ\circ}$
R. Testis		100 2 000		1.77 2 0.10
Absolute	0.121 ± 0.004	0.113 ± 0.005	0.127 ± 0.005	0.120 + 0.001
Relative	2.63 ± 0.08	2.66 ± 0.16	2.76 ± 0.10	$3.88 \pm 0.10^{\circ\circ}$
Female				
n	10	10	10	10
Necropsy body wt	46.2 ± 1.8	50.7 ± 2.1	41.6 ± 1.6	$25.3 \pm 0.4^{\circ \circ}$
Brain				
Absolute	0.489 ± 0.004	0.487 ± 0.003	0.487 ± 0.005	0 469 - 0 00400
Relative	10.72 ± 0.004	0.487 ± 0.003	0.487 ± 0.003	$0.400 \pm 0.004^{++}$
R Kidney	10.72 ± 0.36	9.77 ± 0.43	11.80 ± 0.45	$18.54 \pm 0.24^{\circ\circ}$
Abcolute	0.260 + 0.009	0.276 + 0.000	0.2/2 + 0.010	0.105 . 0.00540
Relative	5.200 ± 0.008	0.270 ± 0.009	0.203 ± 0.010	$0.187 \pm 0.005^{\circ\circ}$
Tiver	5.08 ± 0.19	5.49 ± 0.17	6.55 ± 0.19	$7.40 \pm 0.18^{\circ\circ}$
Abcolute	1 695 + 0.044	2065 . 0.094	1021 . 0110	1 100
Delotive	1.083 ± 0.044	2.065 ± 0.084	1.931 ± 0.110	$1.433 \pm 0.053^{\circ}$
Spleen	30.67 I 1.43	40.8/±0.9/	$40.21 \pm 1.52^{\circ 3}$	$56.60 \pm 1.66^{\circ \circ}$
Absolute	0.101 ± 0.010	0.000 + 0.004	0.001 + 0.007	0.0/E · 0.000++
Relative	2.32 ± 0.33	1.99 ± 0.16	2.18 ± 0.09	2.57 ± 0.13

* Significantly different (P \leq 0.05) from the control group by Williams' or Dunnett's test

¹ * 1 hab. Just Appendix

deficition is a second

Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error)

^{°°} P≤0.01
428

and a state of the second state of the

o-Nitroanisole, NTP TR 416

APPENDIX I HEMATOLOGY, CLINICAL CHEMISTRY, AND URINALYSIS RESULTS

Table I1	Hematology, Clinical Chemistry, and Urinalysis Data for Male Rats	
	in the 14-Day Feed Study of o-Nitroanisole	430
Table I2	Hematology, Clinical Chemistry, and Urinalysis Data for Rats	
	in the 13-Week Feed Study of o-Nitroanisole	431
Table I3	Hematology and Clinical Chemistry Data for Rats	
	at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study	
	of o-Nitroanisole	433
Table 14	Hematology and Clinical Chemistry Data for Rats	
	at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study	
	of <i>o</i> -Nitroanisole	434
Table 15	Hematology and Clinical Chemistry Data for Rats	
	at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study	
	of o-Nitroanisole	435
Table 16	Hematology, Clinical Chemistry, and Urinalysis Data for Mice	
	in the 13-Week Feed Study of o-Nitroanisole	436

	0 ррт	583 ppm	1,166 ррш	2,332 ppm	4,665 ppm	9,330 ppm
n	5	5	5	5	5	5
Hematology						
Hematocrit (%)	44.0 ± 0.4	41.9 ± 0.2**	41.9 ± 0.3**	39.8 ± 0.2**	38.2 ± 0.2**	32.4 ± 1.7**
Hemoglobin (g/dL)	15.5 ± 0.1	$14.8 \pm 0.0^{**}$	$14.9 \pm 0.1^*$	$14.1 \pm 0.1^{**}$	$13.6 \pm 0.1^{**}$	11.9 ± 0.6**
Erythrocytes (10 ⁶ /µL) 7.54 ± 0.07	7.20 ± 0.03**	7.24 ± 0.05**	$6.92 \pm 0.05^{**}$	6.71 ± 0.06**	5.57 ± 0.27**
Reticulocytes (10 ⁶ /µl	L) 0.10 ± 0.01	0.14 ± 0.02	$0.18 \pm 0.02^*$	$0.17 \pm 0.02^*$	$0.26 \pm 0.02^{**}$	$0.59 \pm 0.06^{**}$
Leukocytes (10 ³ /µL)	5.80 ± 0.17	5.33 ± 0.17	5.74 ± 0.16	5.49 ± 0.31	5.07 ± 0.34	5.86 ± 0.37
Segmented neutroph	$(10^{\circ}/\mu L)$ 0.69 ± 0.02	0.80 ± 0.07	0.85 ± 0.06	$1.23 \pm 0.09^{**}$	$1.51 \pm 0.34^{**}$	1.35 ± 0.25**
Monocytes (10 ³ /µL)	5.03 ± 0.14	$4.40 \pm 0.13^*$	4.83 ± 0.19	4.09 ± 0.29**	3.47 ± 0.17**	4.43 ± 0.33**
Equation $(10^3/\mu L)$	0.04 ± 0.02	$0.10~\pm~0.02$	0.05 ± 0.01	0.12 ± 0.03	0.06 ± 0.02	0.06 ± 0.03
Nucleated erythrocyt	0.03 ± 0.01 tes (10 ³ /µL)	0.03 ± 0.01	0.02 ± 0.01	0.04 ± 0.01	0.03 ± 0.02	0.02 ± 0.01
Total bone marrow of	0.01 ± 0.01 cellularity (10 ⁶ /fe	0.03 ± 0.02 mur)	0.00 ± 0.00	0.01 ± 0.01	0.03 ± 0.01	$0.11 \pm 0.03^{**}$
· · · · · · · · · · · · · · · · · · ·	9.65 ± 0.46	10.58 ± 0.49	11.37 ± 0.67	11.08 ± 0.46	9.99 ± 0.18	10.84 ± 0.42
Clinical Chemistry				· .		
Methemoglobin (g/d)	L) 1.75 ± 0.20	2.15 ± 0.05	2.43 ± 0.06**	2.44 ± 0.13**	3.19 ± 0.13**	8.01 ± 0.42**
Urinalysis			•			
Specific gravity	1.022 ± 0.001	1.027 ± 0.002	1.023 ± 0.009	1.023 ± 0.002	1.026 ± 0.005	1.016 ± 0.002

TABLE I1 Hematology, Clinical Chemistry, and Urinalysis Data for Male Rats in the 14-Day Feed Study of o-Nitroanisole^a

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

•• P≤0.01

^a Mean ± standard error

	0 ppm	200 ppm	600 ppm	2,000 ppm	6,000 ррт	18,000 ppm
Male						
Hematology						
n	10	10	10	10	10	10
Hematocrit (%)						
	45.0 ± 0.7	44.5 ± 0.3	44.4 ± 0.4	$42.8 \pm 0.5^{\circ}$	$39.5 \pm 0.4^{\circ \circ}$	$39.4 \pm 0.4^{\circ \circ}$
Hemoglobin (g/dL)) 157 ± 0.2	154 ± 01	152 ± 01	146 - 0 299	135 - 0100	146 + 0.200
Erythrocytes (10 ⁶ /	15.7 ± 0.5	13.4 ± 0.1	15.5 ± 0.1	$14.0 \pm 0.2^{\circ}$	$15.5 \pm 0.1^{+1}$	$14.0 \pm 0.2^{+1}$
	8.17 ± 0.12	8.11 ± 0.04	8.16 ± 0.07	8.05 ± 0.10	6.97 ± 0.08°°	$6.02 \pm 0.11^{\circ \circ}$
Mean cell volume	(fL)			7		··· · · · · · ·
Mean cell hemoria	55.0 ± 0.3	54.8 ± 0.2	54.4 ± 0.2	53.2 ± 0.1	$56.7 \pm 0.2^{\circ}$	$65.6 \pm 0.9^{\circ \circ}$
Mean cen nemogie	19.2 ± 0.1	19.0 ± 0.1	18.7 ± 0.1	18.1 ± 0.1	19.4 ± 0.1	$24.4 \pm 0.4^{\circ\circ}$
Mean cell hemogic	obin concentration	(g/dL)				
D	34.9 ± 0.1	34.7 ± 0.2	34.4 ± 0.2	$34.0 \pm 0.2^{\circ}$	34.2 ± 0.1	37.1 ± 0.3
Reticulocytes (10%	(μL) 0.76 + 0.18	1 40 + 0 14*	1 47 + 0 18**	$1.54 \pm 0.20^{\circ}$	4 56 + 0 5000	8 04 + 1 10°°
Leukocytes (10 ³ /µI	L)	1.40 ± 0.14	1.47 ± 0.10	1.54 ± 0.20	4.50 ± 0.50	0.04 ± 1.17
• • •	5.51 ± 0.32	5.65 ± 0.20	$6.37 \pm 0.25^{\circ}$	$6.63 \pm 0.22^{\circ \circ}$	$8.29 \pm 0.27^{**}$	$10.31 \pm 0.77^{\circ\circ}$
Segmented neutrop	phils $(10^{\circ}/\mu L)$	1.00 . 0.12	1.00 + 0.10	0.05 + 0.11	0.02 + 0.10	101 . 001
Lymphocytes (10 ³ /	0.99 ± 0.20	1.09 ± 0.12	1.09 ± 0.10	0.85 ± 0.11	0.98 ± 0.19	1.21 ± 0.21
2.jp	4.40 ± 0.17	4.45 ± 0.18	$5.15 \pm 0.25^{\circ}$	5.66 ± 0.17**	7.17 ± 0.14°°	8.98 ± 0.63**
Monocytes (10 ³ /µL	.)					
Essimonhile (10 ³ /m)	0.08 ± 0.01	0.09 ± 0.03	0.09 ± 0.03	0.07 ± 0.02	0.10 ± 0.04	0.10 ± 0.04
Eositiophilis (10 /µ	0.05 ± 0.02	0.03 ± 0.01	0.04 ± 0.02	0.05 ± 0.02	0.05 ± 0.03	0.02 ± 0.02
Nucleated erythroo	cytes $(10^3/\mu L)$	0100 - 0101		0.05 - 0.02	0.05 2 0.05	0.02 - 0.02
	0.20 ± 0.13	0.50 ± 0.22	$0.10~\pm~0.10$	0.20 ± 0.13	$2.00 \pm 0.47^{\circ\circ}$	5.67 ± 1.41°° ^b
Clinical Chemistry						
n n	10	0	10	10	10	10
u Mathamaalahin (a	10	9	10	10	10	10
Methemoglobin (g	5.16 ± 0.58	5.81 ± 0.32	5.16 ± 0.26	5.15 ± 0.21	10.28 ± 0.63**	16.23 ± 0.74**
Urinalysis						
n	10	10	10	10	10	10
Specific gravity	1 020 ± 0 004	1 022 + 0 002	1.024 \ 0.005	1 020 + 0 022	1.022 + 0.021	1.040 + 0.0040
	1.030 ± 0.004	1.022 ± 0.003	1.034 ± 0.005	1.029 ± 0.003	1.032 ± 0.001	$1.040 \pm 0.004^{\circ}$

TABLE I2

Hematology, Clinical Chemistry, and Urinalysis Data for Rats in the 13-Week Feed Study of o-Nitroanisole^a

۰.

Female Hematology n 1 Hematocrit (%) 44.9 : Hemoglobin (g/dL) 15.4 : Erythrocytes ($10^{6}/\mu$ L) 7.45 : Mean cell volume (fL) 60.3 : Mean cell hemoglobin (pg) 20.6 : Mean cell hemoglobin concu- 34.2 : Reticulocytes ($10^{6}/\mu$ L) 0.92 : Leukocytes ($10^{3}/\mu$ L) 4.84 : Segmented neutrophils (10^{3} Lymphocytes ($10^{3}/\mu$ L) 3.97 : Monocytes ($10^{3}/\mu$ L) 0.04 : Eosinophils ($10^{3}/\mu$ L) 0.02 : Nucleated erythrocytes (10^{3}	10 ± 0.2 ± 0.1 ± 0.03 ± 0.2 ± 0.1 centration (± 0.2	10 45.3 ± 0.4 15.3 ± 0.2 7.50 ± 0.08 60.4 ± 0.3 20.4 ± 0.1 (g/dL) 22.8 ± 0.2	10 45.5 ± 0.4 15.2 ± 0.1 7.54 ± 0.06 60.2 ± 0.1 20.1 ± 0.1	9 43.7 \pm 0.2* 14.5 \pm 0.1** 7.27 \pm 0.03* 60.1 \pm 0.1	10 $39.3 \pm 0.2^{**}$ $13.0 \pm 0.1^{**}$ $6.40 \pm 0.05^{**}$ $61.5 \pm 0.2^{**}$	10 $39.5 \pm 0.2^{**}$ $14.2 \pm 0.1^{**}$ $5.89 \pm 0.05^{**}$ $67.2 \pm 0.4^{**}$
Hematology n 1 Hematocrit (%) 44.9 : Hemoglobin (g/dL) 15.4 : Erythrocytes $(10^6/\mu L)$ 7.45 : Mean cell volume (fL) 60.3 : Mean cell hemoglobin (pg) 20.6 : Mean cell hemoglobin conc 34.2 : Reticulocytes $(10^6/\mu L)$ 0.92 : Leukocytes $(10^6/\mu L)$ 0.92 : Leukocytes $(10^3/\mu L)$ 8.84 : Segmented neutrophils $(10^3$ Lymphocytes $(10^3/\mu L)$ 0.04 : Eosinophils $(10^3/\mu L)$ 0.02 : Nucleated erythrocytes $(10^3$	10 \pm 0.2 \pm 0.1 \pm 0.03 \pm 0.2 \pm 0.1 centration (\pm 0.2	10 45.3 ± 0.4 15.3 ± 0.2 7.50 ± 0.08 60.4 ± 0.3 20.4 ± 0.1 (g/dL) 22.8 ± 0.2	10 45.5 ± 0.4 15.2 ± 0.1 7.54 ± 0.06 60.2 ± 0.1 20.1 ± 0.1	9 43.7 \pm 0.2* 14.5 \pm 0.1** 7.27 \pm 0.03* 60.1 \pm 0.1	10 $39.3 \pm 0.2^{\bullet\bullet}$ $13.0 \pm 0.1^{\bullet\bullet}$ $6.40 \pm 0.05^{\bullet\bullet}$ $61.5 \pm 0.2^{\bullet\bullet}$	10 $39.5 \pm 0.2^{**}$ $14.2 \pm 0.1^{**}$ $5.89 \pm 0.05^{**}$ $67.2 \pm 0.4^{**}$
n 1 Hematocrit (%) 44.9 : Hemoglobin (g/dL) 5.4 : Erythrocytes $(10^6/\mu L)$ 7.45 : Mean cell volume (fL) 60.3 : Mean cell hemoglobin (pg) 20.6 : Mean cell hemoglobin conce 34.2 : Reticulocytes $(10^6/\mu L)$ 0.92 : Leukocytes $(10^6/\mu L)$ 0.92 : Leukocytes $(10^3/\mu L)$ 4.84 : Segmented neutrophils $(10^3/\mu L)$ 0.81 : Lymphocytes $(10^3/\mu L)$ 0.04 : Eosinophils $(10^3/\mu L)$ 0.02 : Nucleated erythrocytes $(10^3/\mu L)$ 0.02 : Clinical Chemistry	10 \pm 0.2 \pm 0.1 \pm 0.03 \pm 0.2 \pm 0.1 centration (\pm 0.2	10 45.3 ± 0.4 15.3 ± 0.2 7.50 ± 0.08 60.4 ± 0.3 20.4 ± 0.1 (g/dL) 22.8 ± 0.2	10 45.5 ± 0.4 15.2 ± 0.1 7.54 ± 0.06 60.2 ± 0.1 20.1 ± 0.1	9 43.7 \pm 0.2* 14.5 \pm 0.1** 7.27 \pm 0.03* 60.1 \pm 0.1	10 $39.3 \pm 0.2^{**}$ $13.0 \pm 0.1^{**}$ $6.40 \pm 0.05^{**}$ $61.5 \pm 0.2^{**}$	10 $39.5 \pm 0.2^{**}$ $14.2 \pm 0.1^{**}$ $5.89 \pm 0.05^{**}$ $67.2 \pm 0.4^{**}$
Hematocrit (%) 44.9 : Hemoglobin (g/dL) 15.4 : Erythrocytes ($10^{6}/\mu$ L) 7.45 : Mean cell volume (fL) 60.3 : Mean cell hemoglobin (pg) 20.6 : Mean cell hemoglobin conce 34.2 : Reticulocytes ($10^{6}/\mu$ L) 0.92 : Leukocytes ($10^{3}/\mu$ L) 4.84 : Segmented neutrophils (10^{3} Lymphocytes ($10^{3}/\mu$ L) 3.97 : Monocytes ($10^{3}/\mu$ L) 0.04 : Eosinophils ($10^{3}/\mu$ L) 0.02 : Nucleated erythrocytes (10^{3}	± 0.2 ± 0.1 ± 0.03 ± 0.2 ± 0.1 centration (± 0.2	45.3 ± 0.4 15.3 ± 0.2 7.50 ± 0.08 60.4 ± 0.3 20.4 ± 0.1 (g/dL) 22.8 ± 0.2	45.5 ± 0.4 15.2 ± 0.1 7.54 ± 0.06 60.2 ± 0.1 20.1 ± 0.1	$43.7 \pm 0.2^{\circ}$ $14.5 \pm 0.1^{\circ \circ}$ $7.27 \pm 0.03^{\circ}$ 60.1 ± 0.1	$39.3 \pm 0.2^{**}$ $13.0 \pm 0.1^{**}$ $6.40 \pm 0.05^{**}$ $61.5 \pm 0.2^{**}$	$39.5 \pm 0.2^{**}$ $14.2 \pm 0.1^{**}$ $5.89 \pm 0.05^{**}$ $67.2 \pm 0.4^{**}$
44.9 : Hemoglobin (g/dL) 15.4 : Erythrocytes $(10^6/\mu L)$ 7.45 : Mean cell volume (fL) 60.3 : Mean cell hemoglobin (pg) 20.6 : Mean cell hemoglobin conce 34.2 : Reticulocytes $(10^6/\mu L)$ 0.92 : Leukocytes $(10^3/\mu L)$ 4.84 : Segmented neutrophils $(10^3$ Lymphocytes $(10^3/\mu L)$ 0.04 : Eosinophils $(10^3/\mu L)$ 0.02 : Nucleated erythrocytes $(10^3$	± 0.2 ± 0.1 ± 0.03 ± 0.2 ± 0.1 centration (± 0.2	45.3 ± 0.4 15.3 ± 0.2 7.50 ± 0.08 60.4 ± 0.3 20.4 ± 0.1 (g/dL) 228 ± 0.2	45.5 ± 0.4 15.2 ± 0.1 7.54 ± 0.06 60.2 ± 0.1 20.1 ± 0.1	$43.7 \pm 0.2^{\circ}$ $14.5 \pm 0.1^{\circ\circ}$ $7.27 \pm 0.03^{\circ}$ 60.1 ± 0.1	$39.3 \pm 0.2^{**}$ $13.0 \pm 0.1^{**}$ $6.40 \pm 0.05^{**}$ $61.5 \pm 0.2^{**}$	$39.5 \pm 0.2^{**}$ $14.2 \pm 0.1^{**}$ $5.89 \pm 0.05^{**}$ $67.2 \pm 0.4^{**}$
Hemoglobin (g/dL) 15.4 : Erythrocytes ($10^{6}/\mu$ L) 7.45 : Mean cell volume (fL) 60.3 : Mean cell hemoglobin (pg) 20.6 : Mean cell hemoglobin conc 34.2 : Reticulocytes ($10^{6}/\mu$ L) 0.92 : Leukocytes ($10^{6}/\mu$ L) 0.92 : Leukocytes ($10^{3}/\mu$ L) 0.81 : Lymphocytes ($10^{3}/\mu$ L) 0.04 : Eosinophils ($10^{3}/\mu$ L) 0.02 : Nucleated erythrocytes (10^{3}	± 0.1 ± 0.03 ± 0.2 ± 0.1 centration (± 0.2	15.3 ± 0.2 7.50 ± 0.08 60.4 ± 0.3 20.4 ± 0.1 (g/dL) 22.8 ± 0.2	15.2 ± 0.1 7.54 ± 0.06 60.2 ± 0.1 20.1 ± 0.1	$14.5 \pm 0.1^{**}$ $7.27 \pm 0.03^{*}$ 60.1 ± 0.1	$13.0 \pm 0.1^{**}$ $6.40 \pm 0.05^{**}$ $61.5 \pm 0.2^{**}$	$14.2 \pm 0.1^{**}$ $5.89 \pm 0.05^{**}$ $67.2 \pm 0.4^{**}$
Erythrocytes $(10^6/\mu L)$ 7.45 : Mean cell volume (fL) 60.3 : Mean cell hemoglobin (pg) 20.6 : Mean cell hemoglobin conce 34.2 : Reticulocytes $(10^6/\mu L)$ 0.92 : Leukocytes $(10^3/\mu L)$ 4.84 : Segmented neutrophils $(10^3 - 0.81)$ Lymphocytes $(10^3/\mu L)$ 0.04 : Eosinophils $(10^3/\mu L)$ 0.04 : Eosinophils $(10^3/\mu L)$ 0.02 : Nucleated erythrocytes $(10^3 - 0.2)$ Clinical Chemistry	± 0.03 ± 0.2 ± 0.1 entration (± 0.2	7.50 ± 0.08 60.4 ± 0.3 20.4 ± 0.1 (g/dL) 22.8 ± 0.2	7.54 ± 0.06 60.2 ± 0.1 20.1 ± 0.1	$7.27 \pm 0.03^{*}$ 60.1 ± 0.1	$6.40 \pm 0.05^{**}$ $61.5 \pm 0.2^{**}$	$5.89 \pm 0.05^{**}$ $67.2 \pm 0.4^{**}$
7.45 : Mean cell volume (fL) 60.3 : Mean cell hemoglobin (pg) 20.6 : Mean cell hemoglobin conce 34.2 : Reticulocytes $(10^6/\mu L)$ 0.92 : Leukocytes $(10^3/\mu L)$ 4.84 : Segmented neutrophils $(10^3$ Lymphocytes $(10^3/\mu L)$ 3.97 : Monocytes $(10^3/\mu L)$ 0.04 : Eosinophils $(10^3/\mu L)$ 0.02 : Nucleated erythrocytes $(10^3$ 0.20 : Clinical Chemistry	± 0.03 ± 0.2 ± 0.1 centration (± 0.2	7.50 ± 0.08 60.4 ± 0.3 20.4 ± 0.1 (g/dL) 22.8 ± 0.2	7.54 ± 0.06 60.2 ± 0.1 20.1 ± 0.1	$7.27 \pm 0.03^*$ 60.1 ± 0.1	$6.40 \pm 0.05^{**}$ $61.5 \pm 0.2^{**}$	$5.89 \pm 0.05^{**}$ $67.2 \pm 0.4^{**}$
Mean cell volume (fL) 60.3 : Mean cell hemoglobin (pg) 20.6 : Mean cell hemoglobin conc 34.2 : Reticulocytes $(10^6/\mu L)$ 0.92 : Leukocytes $(10^3/\mu L)$ 4.84 : Segmented neutrophils $(10^3$ Lymphocytes $(10^3/\mu L)$ 0.04 : Eosinophils $(10^3/\mu L)$ 0.02 : Nucleated erythrocytes $(10^3$	\pm 0.2 \pm 0.1 entration (\pm 0.2	60.4 ± 0.3 20.4 ± 0.1 (g/dL) 22.8 ± 0.2	60.2 ± 0.1 20.1 ± 0.1	60.1 ± 0.1	61.5 ± 0.2**	67.2 ± 0.4**
Mean cell hemoglobin (pg) 20.6 : Mean cell hemoglobin conc 34.2 : Reticulocytes $(10^6/\mu L)$ 0.92 : Leukocytes $(10^3/\mu L)$ 4.84 : Segmented neutrophils $(10^3$ Lymphocytes $(10^3/\mu L)$ 3.97 : Monocytes $(10^3/\mu L)$ 0.04 : Eosinophils $(10^3/\mu L)$ 0.02 : Nucleated erythrocytes $(10^3$	± 0.2 ± 0.1 centration (± 0.2	20.4 ± 0.3 20.4 ± 0.1 (g/dL)	60.2 ± 0.1 20.1 ± 0.1	00.1 ± 0.1	$61.5 \pm 0.2^{++}$	$07.2 \pm 0.4^{++}$
Mean cell hemoglobin (pg) 20.6 : 20.6 : 20.6 : 20.6 : 20.6 : 20.6 : 34.2 : 0.92 : Leukocytes $(10^{3}/\mu L)$ 4.84 : Segmented neutrophils $(10^{3}/\mu L)$ 0.81 : Lymphocytes $(10^{3}/\mu L)$ 3.97 : Monocytes $(10^{3}/\mu L)$ 0.04 : Eosinophils $(10^{3}/\mu L)$ 0.02 : Nucleated erythrocytes $(10^{3}/\mu L)$ 0.20 : Clinical Chemistry	\pm 0.1 centration (\pm 0.2	20.4 ± 0.1 (g/dL)	20.1 ± 0.1			
Mean cell hemoglobin conce $34.2 \pm$ Reticulocytes $(10^6/\mu L)$ $0.92 \pm$ Leukocytes $(10^3/\mu L)$ $4.84 \pm$ Segmented neutrophils $(10^3 \pm$ Lymphocytes $(10^3/\mu L)$ $0.04 \pm$ Eosinophils $(10^3/\mu L)$ $0.02 \pm$ Nucleated erythrocytes $(10^3 \pm$ $0.20 \pm$	$\begin{array}{c} \text{entration} \\ \pm 0.2 \end{array}$	(g/dL)		20.0 ± 0.1 **	20.3 ± 0.1	24.1 ± 0.2
34.2 = 34.2 =	± 0.2	<u> </u>				
Kenculocytes $(10^{7}/\mu L)$ 0.92: Leukocytes $(10^{3}/\mu L)$ 4.84 ± 3 Segmented neutrophils $(10^{3} \pm 10^{3})$ Lymphocytes $(10^{3}/\mu L)$ $0.04 \pm 3.97 \pm 0.04$ Eosinophils $(10^{3}/\mu L)$ $0.02 \pm 0.02 \pm 0.02 \pm 0.02$ Nucleated erythrocytes $(10^{3} \pm 10^{3})$ Clinical Chemistry		33.8 ± 0.2	33.4 ± 0.2	$33.3 \pm 0.2^*$	$33.1 \pm 0.2^*$	36.0 ± 0.2
Leukocytes $(10^3/\mu L)$ 4.84 Segmented neutrophils (10^3) 0.81 Lymphocytes $(10^3/\mu L)$ 3.97 Monocytes $(10^3/\mu L)$ 0.04 Eosinophils $(10^3/\mu L)$ 0.02 Nucleated erythrocytes (10^3) 0.20 Clinical Chemistry	± 0.27	0.79 ± 0.18	1.26 ± 0.18	2.36 ± 0.17**	4.36 ± 0.44**	$11.01 \pm 1.15^{**}$
4.84 Segmented neutrophils (10 ³) 0.81 Lymphocytes (10 ³ /µL) 3.97 Monocytes (10 ³ /µL) 0.04 Eosinophils (10 ³ /µL) 0.02 Nucleated erythrocytes (10 ³ 0.20 Clinical Chemistry						
Segmented neutrophils (10° 0.81 : Lymphocytes $(10^3/\mu L)$ 3.97 : Monocytes $(10^3/\mu L)$ 0.04 : Eosinophils $(10^3/\mu L)$ 0.02 : Nucleated erythrocytes $(10^3$ 0.20 : Clinical Chemistry	± 0.35	4.48 ± 0.18	5.16 ± 0.29	4.83 ± 0.22	6.97 ± 0.26**	9.96 ± 0.68**
Lymphocytes (10 ³ /µL) 3.97 : Monocytes (10 ³ /µL) 0.04 : Eosinophils (10 ³ /µL) 0.02 : Nucleated erythrocytes (10 ³ 0.20 : Clinical Chemistry	7μL) +012	0.70 + 0.09	0.88 ± 0.08	0.61 ± 0.08	0.79 ± 0.07	1.15 ± 0.16
3.97 Monocytes (10 ³ /µL) Eosinophils (10 ³ /µL) 0.02 Nucleated erythrocytes (10 ³ 0.20 Clinical Chemistry	_ 0.12					
Monocytes (10 ³ /µL) 0.04 : Eosinophils (10 ³ /µL) 0.02 : Nucleated erythrocytes (10 ³ 0.20 : Clinical Chemistry	± 0.32	3.72 ± 0.16	4.18 ± 0.24	4.19 ± 0.15	$6.13 \pm 0.26^{**}$	$8.69 \pm 0.59^{*4}$
Eosinophils (10 ³ /µL) 0.02 : Nucleated erythrocytes (10 ³ 0.20 : Clinical Chemistry	+ 0.02	0.02 ± 0.01	0.07 ± 0.02	0.01 ± 0.01	0.02 ± 0.01	015 + 003*
0.02 Nucleated erythrocytes (10 ³ 0.20 Clinical Chemistry	± 0.02	0.02 ± 0.01	0.07 ± 0.02	0.01 ± 0.01	0.02 1 0.01	0.15 ± 0.05
Nucleated erythrocytes (10 ³ 0.20 : Clinical Chemistry	± 0.01	0.04 ± 0.01	0.04 ± 0.01	0.03 ± 0.02	0.03 ± 0.01	0.01 ± 0.01
0.20 : Clinical Chemistry	³ /μL)		0.00	0.54 . 0.04	1 (0 + 0.07	0 40 4 1 71 1
Clinical Chemistry	± 0.13	0.30 ± 0.15	0.30 ± 0.21	0.56 ± 0.34	1.60 ± 0.97	8.40 ± 1.71
- n 1						
13 1	10	10	10	9	10	10
Methemoglobin (g/dL)						
2.56	± 0.44	1.83 ± 0.07	2.23 ± 0.07	$2.51 \pm 0.09*$	6.70 ± 0.24**	16.46 ± 0.41 **
Irinalucie						
01111d1y515	10	10	o	0	o	10
	10	10	0	7	7	10
Specific gravity		1 076 - 0 005	1 034 + 0 004	1 027 + 0 002	1.046 + 0.006	1.035 + 0.003

TABLE I2 Hematology, Clinical Chemistry, and Urinalysis Data for Rats in the 13-Week Feed Study of *o*-Nitroanisole (continued)

• Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

•

** P≤0.01

^a Mean \pm standard error

^b n=9

	0 ррт	6,000 ppm	18,000 ppm
Male			
Hematology			
n	10	10	10
Homotoprit (%)	453 + 05	280 + 05**	36 Q ± 0 4**
Hemalochi (%)	43.3 ± 0.3 16.4 ± 0.2	$36.9 \pm 0.3^{++}$	30.7 ± 0.4
Enthroates (10 ⁶ /41)	10.4 ± 0.2 9.61 ± 0.07	13.0 ± 0.3 8 10 + 0.00**	6.46 ± 0.07 °°
Mean cell volume (fl.)	9.01 ± 0.07	474 ± 0.09	$57.0 \pm 0.5^{\circ}$
Mean cell bemoglobin (ng)	47.0 ± 0.2	$\frac{166 \pm 0.2}{166 \pm 0.3}$	$21.1 \pm 0.1^{\circ\circ}$
Mean cell hemoglobin (pg)	361 ± 0.2	349 ± 0.6	370 ± 03
Platelets $(10^3/\mu I)$	5.3 ± 0.1	$7.0 \pm 0.1^{**}$	4.7 ± 0.2
Reticulocytes $(10^6/\mu L)$	1.99 ± 0.13	$4.86 \pm 0.45^{\circ\circ}$	$11.38 \pm 1.05^{\circ\circ}$
Leukocytes $(10^3/\mu L)$	3.48 ± 0.22	3.99 ± 0.33	3.39 ± 0.10
Segmented neutrophils $(10^3/\mu L)$	0.65 ± 0.05	0.75 ± 0.07	0.57 ± 0.06
Lymphocytes $(10^3/\mu L)$	2.76 ± 0.20	3.20 ± 0.35	2.73 ± 0.12
Atypical lymphocytes $(10^3/\mu L)$	0.06 ± 0.01	0.03 ± 0.01	0.08 ± 0.02
Monocytes $(10^3/\mu L)$	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Eosinophils $(10^3/\mu L)$	0.01 ± 0.01	$0.01~\pm~0.01$	0.01 ± 0.01
Clinical Chemistry			
n	9	10	10
Methemoglobin (g/dL)	0.27 ± 0.07	$0.60 \pm 0.08^{\circ}$	$1.17 \pm 0.17^{\circ \circ}$
Ferrals			
remate			
Hematology			
n	9	9	8
Hematocrit (%)	45.0 ± 1.1	$38.1 \pm 0.5^{\circ \circ}$	$34.7 \pm 0.8^{\circ \circ}$
Hemoglobin (g/dL)	15.8 ± 0.4	$13.4 \pm 0.2^{\circ \circ}$	$12.5 \pm 0.6^{\circ \circ}$
Erythrocytes (10 ⁶ /µL)	8.79 ± 0.19	$7.45 \pm 0.08^{**}$	$6.29 \pm 0.15^{**}$
Mean cell volume (fl)	51.2 ± 0.2	51.1 ± 0.4	$55.4 \pm 0.4^{**}$
Mean cell hemoglobin (pg)	18.0 ± 0.1	18.0 ± 0.1	$19.8 \pm 0.5^{**}$
Mean cell hemoglobin concentration (g/dL)	35.1 ± 0.2	35.3 ± 0.2	$35.9 \pm 1.0^{**}$
Platelets $(10^3/\mu L)$	5.7 ± 0.2	$7.1 \pm 0.2^*$	4.4 ± 0.2
Reticulocytes (10°/µL)	2.27 ± 0.39	$4.82 \pm 0.42^{\circ \circ}$	$9.50 \pm 0.90^{**}$
Leukocytes $(10^{3}/\mu L)$	3.20 ± 0.30	2.86 ± 0.21	2.96 ± 0.13
Segmented neutrophils (10 [°] /µL)	0.81 ± 0.08	$0.55 \pm 0.08^{\circ}$	0.44 ± 0.05
Lymphocytes $(10^{7}/\mu L)$	2.28 ± 0.28	2.26 ± 0.18	2.44 ± 0.09
Atypical lymphocytes $(10^{3}/\mu L)$	0.08 ± 0.01	$0.03 \pm 0.02^{*}$	0.07 ± 0.01
Monocytes (10°/µL)	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Examples $(10^{7}/\mu L)$	0.03 ± 0.02	0.02 ± 0.01	U.UI ± U.UI
Nucleated erythrocytes $(10^{\circ}/\mu L)$	0.11 ± 0.11	0.07 ± 0.44	4.13 ± 0.79**
Clinical Chemistry			
n	9	10	8
Methemoglobin (g/dL)	0.31 ± 0.08	$0.58 \pm 0.05^{\circ}$	$1.16 \pm 0.12^{**}$

TABLE I3

Hematology and Clinical Chemistry Data for Rats at the 3-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole^a

 $^\circ$ Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test $^{\circ\circ}$ P≤0.01

^a Mean \pm standard error

	0 ppm	6,000 ppm	18,000 ppm	
Male	······································	· · ·	114 ⁻¹¹ -11-11-11-11-11-11-11-11-11-11-11-11	
Hematology				
n	. 9	10	9	
Hematocrit (%)	45.6 ± 0.7^{b}	300 + 05**	408 + 07**b	
Hemoglobin (%)	43.0 ± 0.7 146 ± 05	$12.7 \pm 0.1^{++}$	130 ± 0.7	
Frothrootes (10 ⁶ /µ ^I)	850 ± 0.3	$739 \pm 0.05**$	6 66 + 0 11**	
Mean cell volume (fl.)	542 ± 23	52.7 ± 0.65	$612 \pm 13^{**}$	
Mean cell hemoglobin (ng)	172 ± 02	172 + 01	$196 \pm 0.2^{**}$	
Mean cell hemoglobin (pg)	32.0 ± 0.9	32.6 ± 0.5	32.2 ± 0.6	
Platelets (10 ³ /µI)	59 ± 0.7	77 ± 01	$39 \pm 0.2^{\circ}$	
$\frac{1}{\mu} \frac{1}{\mu} \frac{1}$	234 ± 0.78^{b}	306 ± 0.37	$913 \pm 121 **^{b}$	
Leukocutes $(10^3/\mu L)$	450 ± 0.79	5.00 ± 0.37 5.49 ± 0.23	$3.62 \pm 0.21*$	
Segmented neutronbils $(10^3/\mu I)$	1.13 ± 0.12	1.29 ± 0.15	1.06 ± 0.21	
Lymphocytes $(10^3/\mu L)$	3.19 ± 0.30	4.02 ± 0.13	250 ± 0.09	
Atypical lymphocytes $(10^3/\mu I)$	0.06 ± 0.02	0.03 ± 0.02	0.03 ± 0.01	
Monomies $(10^3 \mu I)$	0.00 ± 0.02	0.03 ± 0.02	0.03 ± 0.01	
Equation $(10^3/\mu L)$	0.05 ± 0.02	0.07 ± 0.02	0.01 ± 0.01	
	0.07 ± 0.02	0.05 2 0.01	0.02 ± 0.01	
Clinical Chemistry				
n	10	10	10	
Methemoglobin (g/dL)	0.64 ± 0.22	1.80 ± 0.36**	$1.93 \pm 0.25^{**}$	
Female				
Temetalam.				
Hematology		•	<u>^</u>	
n	9	8	9	
Hematocrit (%)	42.6 ± 1.0	$37.6 \pm 0.9^{**c}$	$38.4 \pm 0.4^{**}$	
Hemoglobin (g/dL)	14.1 ± 0.2	$12.5 \pm 0.2^{**}$	$12.1 \pm 0.1^{**}$	
Erythrocytes (10 ⁶ /µL)	7.56 ± 0.11	$6.62 \pm 0.08^{**}$	$6.21 \pm 0.11^{**}$	
Mean cell volume (fL)	56.2 ± 1.4	56.8 ± 1.4	$62.2 \pm 1.5^*$	
Mean cell hemoglobin (pg)	18.6 ± 0.1	$18.9 \pm 0.1^*$	$19.5 \pm 0.2^{**}$	
Mean cell hemoglobin concentration (g/dL)	33.1 ± 0.8	33.4 ± 0.8	31.5 ± 0.5	
Platelets (10 ³ /µL)	5.4 ± 0.1	6.2 ± 0.2	$3.4 \pm 0.1^{**}$	
Reticulocytes (10 ⁶ /µL)	1.18 ± 0.16	$4.22 \pm 0.55^{**c}$	$12.29 \pm 1.41^{**}$	
Leukocytes (10 ³ /µL)	2.52 ± 0.13	$3.48 \pm 0.22^{**}$	$3.07 \pm 0.13^{**}$	
Segmented neutrophils (10 ³ /µL)	0.59 ± 0.05	0.71 ± 0.08	0.62 ± 0.09	
Lymphocytes $(10^3/\mu L)$	1.8 ± 0.1	$2.7 \pm 0.2^{**}$	$2.4 \pm 0.1^{**}$	
Atypical lymphocytes (10 ³ /µL)	0.03 ± 0.01	0.05 ± 0.02	0.03 ± 0.03	
Monocytes (10 ³ /µL)	0.03 ± 0.02	0.01 ± 0.01	0.03 ± 0.01	
Eosinophils (10 ³ /µL)	0.03 ± 0.01	0.01 ± 0.01	$0.00 \pm 0.00^{**}$	
Nucleated erythrocytes (10 ³ /µL)	2.00 ± 0.96	2.78 ± 0.78^{c}	$7.67 \pm 1.52^{**}$	
Clinical Chemistry				
n	9	9	9	
Methemoglobin (g/dL)	0.75 ± 0.23	1.85 ± 0.59	$2.98 \pm 0.48^{**}$	

TABLE I4

Hematology and Clinical Chemistry Data for Rats at the 6-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole^a

• Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

•• P≤0.01

^a Mean \pm standard error ^b n=10 ^c n=9

TABLE IS

Hematology and Clinical Chemistry Data for Rats at the 9-Month Interim Evaluation in the Stop-Exposure Feed Study of o-Nitroanisole^a

	0 ppm	6,000 ppm	18,000 ppm
Male		<u> </u>	
Hematology			
n	10	10	6
Homotoonit (01)	27.9 + 0.6	26 5 + 0.20	22.7 + 2.4
Hematochi (%)	37.8 ± 0.0	$30.3 \pm 0.3^{\circ}$	33.7 ± 2.4
Further artes (10 ⁶ /ul)	14.4 ± 0.1	$14.0 \pm 0.1^{\circ}$	$12.9 \pm 0.6^{\circ}$
Moon coll volume (fl.)	6.91 ± 0.12	6.30 ± 0.06	$7.62 \pm 0.03^{\circ}$
Mean cell volume (IL)	42.3 ± 0.3	43.0 ± 0.3	43.4 ± 0.7
Mean cell hemoglobin (pg)	10.2 ± 0.2	10.5 ± 0.1	10.0 ± 0.4
Restation (10 ³ /I)	38.3 ± 0.3	36.3 ± 0.3	50.4 ± 0.7
Platelets $(10^{7}\mu L)$	4.7 ± 0.2	$5.4 \pm 0.1^{\circ}$	5.1 ± 0.5
$L_{\text{outropyles}} (10^{3}/\mu L)$	1.40 ± 0.27	1.07 ± 0.20	$3.43 \pm 1.01^{\circ\circ}$
Leukocyles $(10^{7} \mu L)$	3.10 ± 0.14	3.34 ± 0.23	$4.93 \pm 0.02^{\circ}$
Segmented neutrophils $(10^{7}\mu L)$	0.79 ± 0.12	$0.90 \pm 0.10^{\circ}$	2.30 ± 0.45
$A tunical human a star (103/\mu L)$	2.20 ± 0.10	2.47 ± 0.18	2.53 ± 0.23
Monomies $(10^3 \mu L)$	0.04 ± 0.01	0.05 ± 0.01	0.01 ± 0.01
Equipophils $(10^3/\mu L)$	0.04 ± 0.01	0.03 ± 0.01	0.03 ± 0.02
Nucleated emithromites $(10^3/\mu L)$	0.02 ± 0.01	0.05 ± 0.01	0.01 ± 0.01
Nucleated crythrocytes (10 /µL)	0.20 ± 0.13	0.40 ± 0.10	0.05 1 0.54
Clinical Chemistry			
1	4	6	2
Methemoglobin (g/dL)	0.21 ± 0.07	0.22 ± 0.02	0.25 ± 0.03
Female			
I Cimate la mi			
Hematology			
n	9	10	6
Hematocrit (%)	34.7 ± 0.6	37.3 ± 0.6	32.0 ± 2.5
Hemoglobin (g/dL)	14.0 ± 0.2	14.7 ± 0.2	12.3 ± 1.1
Erythrocytes (10 ⁶ /µL)	7.76 ± 0.09	8.08 ± 0.15	6.76 ± 0.58
Mean cell volume (fL)	44.9 ± 0.4	46.1 ± 0.5	47.7 ± 0.8**
Mean cell hemoglobin (pg)	18.0 ± 0.1	18.3 ± 0.1	18.2 ± 0.4
Mean cell hemoglobin concentration (g/dL)	40.2 ± 0.5	39.6 ± 0.4	$38.2 \pm 0.5^{\circ}$
Platelets (10 ³ /µL)	4.3 ± 0.2	4.4 ± 0.2	4.7 ± 0.4
Reticulocytes (10 ⁶ /µL)	1.56 ± 0.18	1.53 ± 0.18	$9.20 \pm 3.85^{\circ}$
Leukocytes $(10^3/\mu L)$	1.49 ± 0.08	$1.96 \pm 0.10^{**}$	$4.40 \pm 0.32^{\circ \circ}$
Segmented neutrophils (10 ³ /µL)	0.29 ± 0.02	0.36 ± 0.04	$1.86 \pm 0.27^{\circ \circ}$
Lymphocytes $(10^3/\mu L)$	1.15 ± 0.08	$1.55 \pm 0.09^{\circ}$	$2.40 \pm 0.18^{\circ\circ}$
Atypical lymphocytes (10 ³ /µL)	0.02 ± 0.01	0.02 ± 0.01	0.04 ± 0.02
Monocytes (10 ³ /µL)	0.01 ± 0.00	0.01 ± 0.01	$0.07 \pm 0.02^{\circ}$
Eosinophils $(10^3/\mu L)$	0.02 ± 0.01	0.02 ± 0.00	0.03 ± 0.01
Nucleated erythrocytes (10 ³ /µL)	0.44 ± 0.24	0.20 ± 0.13	1.00 ± 0.52
Clinical Chemistry			
r	5	6	4
Methemorlohin (a/dl)	0.22 + 0.07	0 70 ± 0 10	-7
Methemoglobin (g/aL)	0.22 ± 0.07	0.28 ± 0.10	0.31 ± 0.07

Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test
 P≤0.01
 a Mean ± standard error

	0 ppm	60 ppm	200 ppm	600 ppm	2,000 ppm	6,000 ppm
Male						<u> </u>
Hematology						
n	10	10	7	8 -	10	10
Hematocrit (%)						
	44.4 ± 0.7	$41.7 \pm 0.9^*$	45.7 ± 1.3	$42.1 \pm 0.4^*$	$41.1 \pm 0.9^*$	$41.5 \pm 0.2^{**}$
Hemoglobin (g/dL)					
E	14.6 ± 0.2	$13.8 \pm 0.3^{*}$	15.2 ± 0.5	$14.0 \pm 0.1^{\circ}$	$13.5 \pm 0.3^{\circ}$	$13.6 \pm 0.1^{\bullet\bullet}$
Erythrocytes (107)	μ L) 832 + 014	7.68 ± 0.24	854 + 036	7.94 ± 0.11	7.02 ± 0.14	8 08 ± 0 04
Mean cell volume	(fL)	7.00 ± 0.24	0.54 ± 0.50	7.34 ± 0.11	7.52 ± 0.14	0.00 ± 0.00
	53.3 ± 0.3	54.5 ± 0.9	53.9 ± 1.5	53.1 ± 0.4	$51.9 \pm 0.2^{**}$	51.3 ± 0.2**
Mean cell hemogle	obin (pg)					
	17.6 ± 0.1	18.0 ± 0.2	17.9 ± 0.4	17.6 ± 0.1	$17.1 \pm 0.1^*$	$16.9 \pm 0.1^{**}$
Mean cell hemogle	obin concentration	(g/dL)				
Pationlogitar (106	33.0 ± 0.2	33.0 ± 0.2	33.3 ± 0.3	33.2 ± 0.2	33.0 ± 0.2	32.9 ± 0.2
Reliculocytes (10)	$^{\mu L}$	$2.98 \pm 0.36 *^{b}$	251 ± 0.85	221 ± 0.43	2 91 + 0 20**	2.28 ± 0.16
Leukocytes (10 ³ /µ)	L)	2.70 ± 0.50	2.51 ± 0.05	2.21 ± 0.45	2.91 ± 0.20	2.23 ± 0.10
	4.38 ± 0.53	4.39 ± 0.48	5.26 ± 1.08	4.18 ± 0.43	4.74 ± 0.52	3.08 ± 0.17
Segmented neutro	phils (10 ³ /µL)					
2	1.60 ± 0.48	2.13 ± 0.29	2.67 ± 0.75	2.75 ± 0.35	2.37 ± 0.45	0.52 ± 0.06^{b}
Lymphocytes (10 ³)	/μL)					
Managed and (103/1)	2.73 ± 0.15	2.22 ± 0.32	2.51 ± 0.51	$1.35 \pm 0.16^{**}$	2.32 ± 0.39	2.37 ± 0.17
Monocytes (10°/µ1	$-)$ 0.01 \pm 0.01	0.02 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.02 ± 0.01	0.00 + 0.00
Eosinophils (10 ³ /m	0.01 ± 0.01	0.03 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.02 ± 0.01	0.00 ± 0.00
	0.04 ± 0.02	0.01 ± 0.01	0.04 ± 0.02	0.04 ± 0.01	0.04 ± 0.01	0.07 ± 0.02
Nucleated erythro	cytes (10 ³ /µL)					
	0.10 ± 0.10	0.00 ± 0.00	0.00 ± 0.00	0.13 ± 0.13	0.10 ± 0.10	0.10 ± 0.10
Clinical Chamister						
Clinical Chemistry			_	_		_
n	10	10	7	7	10	9
Methemoglobin (g	/dL)	•				
	2.80 ± 0.16	2.74 ± 0.35	2.00 ± 0.23	2.51 ± 0.18	2.73 ± 0.18	$3.94 \pm 0.22^{**}$
Urinalysis						
-	2	~	2	0	F	0
	3	/	2	8	3	8
Specific gravity						
	1.050 ± 0.015	1.043 ± 0.011	1.031 ± 0.002	1.027 ± 0.005	1.031 ± 0.007	1.023 ± 0.006

TABLE I6 Hematology, Clinical Chemistry, and Urinalysis Data for Mice in the 13-Week Feed Study of *o*-Nitroanisole^a

,

Hematology, Clinical Chemistry, and Urinalysis Analyses

TABLE IG

Hematology, Clinical Chemistry, and Urinalysis Data for Mice in the 13-Week Feed Study of o-Nitroanisole (continued)

	0 ррт	60 ppm	200 ppm	600 ррт	2,000 ppm	6,000 ppm
Female					<u></u>	
Hematology						
n	10	10	10	10	10	10
Hematocrit (%)						
	47.6 ± 0.5	48.8 ± 0.3	48.5 ± 0.4	47.7 ± 0.3	46.6 ± 0.5	$43.2 \pm 0.2^{\circ \circ}$
Hemoglobin (g/dL)						
	15.5 ± 0.2	15.7 ± 0.1	15.7 ± 0.1	15.4 ± 0.1	$15.0 \pm 0.1^{\circ}$	14.1 ± 0.1
Erythrocytes (10%)µ1	-) 076 + 010	0.02 + 0.07	P 05 ± 0.07	877 + 0.07	857 + 0.08	8.22 + 0.00**
Mean cell volume (f	8.76 ± 0.10	9.03 ± 0.07	8.95 ± 0.07	0.77 ± 0.07	0.57 ± 0.08	0.44 1 0.07
Mean cen volume (r	54.3 ± 0.3	54.1 ± 0.1	54.3 ± 0.2	53.4 ± 0.9	54.4 ± 0.4	$52.5 \pm 0.5^{\circ \circ}$
Mean cell hemoglob	in (pg)					
-	17.7 ± 0.1	$17.4 \pm 0.1^{\circ}$	17.5 ± 0.1	17.6 ± 0.1	17.5 ± 0.1	$17.2 \pm 0.1^{\circ \circ}$
Mean cell hemoglob	in concentration	(g/dL)				
Detion 1 (106/	32.6 ± 0.2	32.2 ± 0.1	32.4 ± 0.2	32.3 ± 0.1	32.2 ± 0.2	32.8 ± 0.1
Reficulocytes (10%)	L) 246 ± 0.28	2.01 ± 0.20	2.09 ± 0.25	251 ± 0.38	1.93 ± 0.09	3.07 ± 0.31
Leukocytes $(10^3/\mu L)$	2.40 ± 0.38	2.71 ± 0.30	2.09 ± 0.25	2.51 ± 0.56	1.95 ± 0.09	5.07 ± 0.51
	2.75 ± 0.12	2.88 ± 0.28	2.91 ± 0.30	2.24 ± 0.18^{b}	1.98 ± 0.13°	3.15 ± 0.28
Segmented neutroph	nils $(10^3/\mu L)$					
	0.50 ± 0.07	0.66 ± 0.10	1.01 ± 0.25	0.48 ± 0.07^{b}	0.47 ± 0.11	0.47 ± 0.05
Lymphocytes $(10^3/\mu)$	L)					
No (10 ³ /J.)	2.19 ± 0.10	2.17 ± 0.21	1.86 ± 0.15	$1.72 \pm 0.14^{\circ}$	1.47 ± 0.10^{00}	2.61 ± 0.26
Monocytes (10°/µL)	0.01 ± 0.01	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00^{b}	0.02 ± 0.01	0.01 ± 0.01
Fosinophils (10 ³ /µL)	0.01 ± 0.01	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00	0.02 ± 0.01	0.01 ± 0.01
	0.06 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.01^{b}	0.03 ± 0.01	0.06 ± 0.01
Nucleated erythrocy	tes $(10^{3}/\mu L)$					
	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.10 ± 0.10	$0.00~\pm~0.00$	0.00 ± 0.00
Clinical chamistry						
Chinical chemistry			_			
n	10	10	9	10	10	10
Methemoglobin (g/d	IL)					
	1.86 ± 0.26	2.39 ± 0.16	2.33 ± 0.12	0.93 ± 0.34	0.69 ± 0.22	2.66 ± 0.48
Urinalysis						
	(10	C	7	0	10
n Specific gravity	0	10	0	1	У.	10
Specific gravity	1.018 ± 0.003	1.020 + 0.002	1.025 ± 0.002	1.019 ± 0.003	1.016 ± 0.001	1.020 + 0.003
	1.010 - 0.003	1.020 - 0.002	1.025 - 0.002	1.017 - 0.003	1.010 ± 0.001	1.020 2 0.005

 $^\circ$ Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test $^{\circ\circ}$ P≤0.01

Mean ± standard error а

b n=9

-

7-1-22-0-1

APPENDIX J CHIEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES

Procuremen	NT AND CHARACTERIZATION OF <i>o</i> -NITROANISOLE	440
PREPARATION	N AND ANALYSIS OF DOSE FORMULATIONS	441
Figure J1	Infrared Absorption Spectrum of o-Nitroanisole	443
Figure J2	Nuclear Magnetic Resonance Spectrum of o-Nitroanisole	ধৰ্মক
Table J1	Preparation and Storage of Dose Formulations in the Feed Studies	
	of o-Nitroanisole	445
Table J2	Results of Analysis of Dose Formulations Administered to Rats and Mice	
	in the 14-Day Feed Studies of o-Nitroanisole	446
Table J3	Results of Analysis of Dose Formulations Administered to Rats and Mice	
	in the 13-Week Feed Studies of o-Nitroanisole	447
Table J4	Results of Analysis of Dose Formulations Administered to Rats and Mice	
	in the 2-Year Feed Studies of o-Nitroanisole	449
Table J5	Results of Referee Analysis of Dose Formulations Administered to Rats and Mice	
	in the 2-Year Feed Studies of o-Nitroanisole	45 4

CHEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES

PROCUREMENT AND CHARACTERIZATION OF O-NITROANISOLE

o-Nitroanisole was obtained from Aldrich Chemical Company (Milwaukee, WI) in three lots (lot TE061197, lot 2712DL, and lot 1517AM). Lot TE061197 was used throughout the 14-day and 13-week studies in rats and mice and in a portion of the stop-exposure and 2-year studies in rats. Lot 2712DL was used in a portion of the stop-exposure study in rats and the 2-year studies in rats and mice; lot 1517AM was used in a portion of the 2-year studies in rats and mice. Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory, Midwest Research Institute (MRI; Kansas City, MO). MRI reports on analyses performed in support of the o-nitroanisole studies are on file at the National Institute of Environmental Health Sciences.

All three lots of the chemical, a clear yellow liquid, were identified as *o*-nitroanisole by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. All spectra were consistent with those expected for the structure and with the literature spectra of *o*-nitroanisole (*Sadtler Standard Spectra*), as shown in Figures J1 and J2.

The purity of all lots was determined by Karl Fischer water analysis, elemental analyses, titration, thin-layer chromatography (TLC), and gas chromatography. Titration was performed by reducing the nitro group with titanous chloride in a glacial acetic acid:hydrochloric acid:hydrofluoric acid medium followed by back-titration of the excess titanous chloride with 0.25 N ferric ammonium sulfate. Titration was monitored potentiometrically with a platinum foil indicator electrode versus a silver/silver chloride reference electrode. TLC was performed on Silica Gel 60 F-254 plates with two solvent systems: 1) toluene and 2) methylene chloride. Plates were examined under shortwave (254 nm) and longwave (366 nm) ultraviolet light and a spray of 5% titanous chloride. Gas chromatographic analysis was performed with a flame ionization detector (FID) with a nitrogen carrier gas at a flow rate of 70 mL/minute. Two systems were used: A) 10% SP-2100 on 80/100 Supelcoport, with an oven temperature program of 50° C for 5 minutes, then 50° to 250° C at 10° C per minute, and B) 10% Carbowax 20M/TPA on 80/100 Chromosorb W(AW) with an oven temperature program of 60° C for 6 minutes, then 60° to 200° C at 10° C per minute.

Elemental analyses of lot TE061197 for carbon, hydrogen, and nitrogen were in agreement with the theoretical values for o-nitroanisole. Karl Fischer water analysis indicated $0.238 \pm 0.008\%$ water. Titration indicated a purity of at least 97%. Each TLC system indicated only a major spot. Gas chromatography using the first system indicated a major peak and one impurity with a total area of less than 0.3% relative to the major peak. A major peak with no impurities with areas greater than or equal to 0.1% of the major peak area was observed with the second column. The overall purity was determined to be approximately 99%.

Lot 2712DL was received in two shipments, which were analyzed separately. For the first batch, elemental analyses for carbon, hydrogen, and nitrogen were in agreement with the theoretical values for o-nitroanisole. Karl Fischer water analysis indicated $0.091 \pm 0.003\%$ water. Titration indicated a purity of at least 97%. Each TLC system indicated only a major spot. Gas chromatography using the first system indicated a major peak and three impurities with a total area of 0.4% relative to the major peak. A major peak and two impurities with a total area of 0.3% relative to the major peak was observed with the second system. For the second batch, elemental analyses for carbon were slightly low, while values for hydrogen and nitrogen were in agreement with the theoretical values for o-nitroanisole. Titration indicated a purity of at least 96%. Each TLC system indicated only a major spot. Gas chromatography using both systems indicated a major peak and two impurities with a total area of 0.3% relative to the major peak. A concomitant analysis of lot TE061197 using gas chromatography indicated a major peak and one impurity

Chemical Characterization and Dose Formulations

Ŧ

with an area of 0.1% relative to the major peak by system A. The second system indicated a major peak and one impurity with an area of 0.1% relative to the major peak. The overall purity of this batch of lot 2712DL was determined to be approximately 99%, which is consistent with lot TE061197.

Elemental analyses of lot 1517AM for carbon, hydrogen, and nitrogen were in agreement with the theoretical values for o-nitroanisole. Karl Fischer water analysis indicated $0.037 \pm 0.002\%$ water. Titration indicated a purity of at least 98%. Each TLC system indicated one major spot and no impurities. Gas chromatography using system A indicated a major peak and three impurities with a total area of 0.67% relative to the major peak. A major peak and three impurities with a total area of 0.67% relative to the major peak. A major peak and three impurities with a total area of 0.66% relative to the major peak was observed with system B as described above, but with an oven temperature program of 60° C for 6 minutes, then 60° to 225° C at 10° C per minute. A concomitant analysis of lot TE061197 with lot 1517AM by gas chromatography using system A, but with an oven temperature of 180° C, and with pentadecane added as an internal standard, gave a relative purity of approximately 100% for lot 1517AM relative to lot TE061197.

Stability studies were performed by the analytical chemistry laboratory on lot TE061197. Gas chromatography was performed using system A described above, but with *n*-pentadecane added as an internal standard and an oven temperature of 180° C. These studies indicated that *o*-nitroanisole was stable as a bulk chemical for at least 2 weeks at temperatures up to 60° C. The stability of the bulk chemical was monitored periodically at the study laboratory with infrared and ultraviolet/visible spectroscopy and gas chromatography methods similar to those described above. No degradation of the bulk chemical was observed.

PREPARATION AND ANALYSIS OF DOSE FORMULATIONS

The dose formulations were prepared by mixing the appropriate amounts of *o*-nitroanisole and feed in a blender (Patterson-Kelley Twin Shell with intensifier bar) for 15 minutes (Table J1). Studies to determine homogeneity and stability of the dosed feed preparations were conducted by the analytical chemistry laboratory. For homogeneity analyses, feed samples were extracted with 100 mL of acetonitrile, centrifuged, and further diluted with acetonitrile. The absorbance of the samples was measured versus acetonitrile by ultraviolet spectroscopy at 325 nm. For the stability studies, feed samples were extracted with 100 mL of 0.25 N hydrochloric acid in acetonitrile, centrifuged, and further diluted with acetonitrile. The samples were then injected into a high-performance liquid chromatographic system equipped with a μ Bondpak C₁₈ column. The mobile phase was a mixture of water:acetonitrile at a ratio of 60:40 and a flow rate of 1 mL/minute. Ultraviolet detection was at 254 nm. Homogeneity was confirmed and the stability of the dose formulations was established for at least 2 weeks when stored in the dark at temperatures up to 25° C and for 1 week when stored open to air and light.

Periodic analyses of the dose formulations of *o*-nitroanisole were conducted at the study laboratory and the analytical chemistry laboratory using an ultraviolet spectroscopic method as well as two HPLC methods. During the 14-day studies, the dose formulations were analyzed at the beginning of the studies (Table J2). During the 13-week studies, the dose formulations were analyzed at the initiation, midpoint, and termination of the studies (Table J3). In both the 14-day and 13-week studies, an ultraviolet spectroscopic method that required an acetonitrile extraction was used.

During the 2-year studies, the dose formulations were analyzed at least once every 8 weeks using two HPLC methods (Table J4). The two methods differed primarily in the extraction and clean-up procedures. The earlier subchronic studies had demonstrated that *o*-nitroanisole binds strongly to feed; it was also observed that the analytical recovery was time dependent so that the longer the chemical stayed in contact with the feed, the lower the recovery. The first method used to overcome this problem involved an elaborate extraction and clean-up procedure. The feed formulations were first digested with approximately 8 N hydrochloric acid, diluted with ethanol, and then extracted with petroleum ether:ethyl ether (1:1). After evaporation to dryness, the oily residue was dissolved in corn oil, and the corn oil solution was then extracted with acetonitrile. Prior to the injection into the HPLC, the acetonitrile extract was diluted with water and filtered. The complexity of the first method contributed to periodic analysis problems. During the second year of the 2-year study, the extraction and clean-up method was simplified. In the modified procedure, the untreated feed formulations were extracted directly with 0.25 N hydrochloric acid in acetonitrile; the extracts were then neutralized with sodium hydroxide and injected into the HPLC. The method was limited by the requirement that the analyses had to be conducted immediately after the dose formulations were prepared. The change was worthwhile because during the remainder of the studies only three formulations were outside of the specifications. While the analytical recovery problem was overcome by the immediate analysis of the feed formulations, there was concern that the bioavailability of *o*-nitroanisole would be affected by the physical binding to feed. In a subsequent separate study, it was demonstrated that the physical binding of *o*-nitroanisole to feed did not affect its bioavailability (Yuan *et al.*, 1991).

In the stop-exposure and 2-year studies, 85% (141/166) of the dose formulations were within \pm 10% of the target concentrations. Results of the periodic referee analyses performed by the analytical chemistry laboratory were in good agreement with the results obtained by the study laboratory (Table J5).

FIGURE J1 Infrared Absorption Spectrum of *o*-Nitroanisole

FIGURE J2 Nuclear Magnetic Resonance Spectrum of o-Nitroanisole

Chemical Characterization and Dose Formulations

Table J1

Preparation and Storage of Dose Formulations in the Feed Studies of o-Nitroanisole

14-Day Studies	13-Week Studies	2-Year Studies
Preparation Dose formulations were prepared at the beginning of the studies. Premix was prepared by mixing feed and o-nitroanisole; premix and remaining feed were layered in a blender with an intensifier bar and mixed for 15 minutes.	Same as 14-day studies except that dose formulations were prepared weekly.	Same as 14-day studies except that dose formulations were prepared weekly. For the 666 ppm dose groups, feed was placed in a sieve and shaken to obtain feed flour. The premix was prepared by mixing <i>o</i> -nitroanisole and feed flour; premix and remaining feed were placed in a blender with an intensifier bar and mixed for 15 minutes.
Lot Number TE061197	TE061197	TE061197, 2712DL, and 1517AM
Maximum Storage Time 14 days	Same as 14-day studies	Same as 14-day studies
Storage Room temperature, in glass jugs	Same as 14-day studies	Same as 14-day studies
Study Laboratory Hazleton Raltech, Inc., Madison, WI	Same as 14-day studies	Southern Research Institute, Birmingham, AL
Analytical Chemistry Laboratory Midwest Research Institute, Kansas City, MO	Same as 14-day studies	Same as 14-day studies

Date Prepared	Date Analyzed	Target Concentration (ppm)	Determined Concentration ^a (ppm)	Difference from Target (%)
Rats			······································	
31 March 1982	31 March 1982	583	320	-45
		1,166	891	-24
		2,332	1,742	-25
		4,665	4,056	-13
, ··		9,330	7,470	-20
7 April 1982	7 April 1982	250	206 ^b	-18
Mice				
31 March 1982	31 March 1982	250	57	-76
	. ,	500	278	-44
	·	1,000	894	-11
		2,000	1,502	-25
		4,000	3,146	-22
7 April 1982	7 April 1982	250	206	-18

TABLE J2 Results of Analysis of Dose Formulations Administered to Rats and Mice in the 14-Day Feed Studies of o-Nitroanisole

^a Results of duplicate analyses
 ^b Result of seven analyses. Excludes one outlier value of 370 ppm.

Table J3

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 13-Week Feed Studies of o-Nitroanisole

Date Prepared	Date Analyzed	Concentration (ppm)	Concentration ^a (ppm)	from Target (%)
			L	
5 May 1982	5 May 1982	60	52.7°	-12
		60	46.2°	-23
		60	59.1°	-2
		60	57.9°	-4
		60	40.7°	-32
		60 200	37.9	-3/ 21 ^C
		200	158	-21
		2 000	034	+9
		6,000	5 300	12 ^C
		18,000	17 570 ^b	-12
		18,000	17,570 17 720 ^b	-2
		18,000	17,730 ^b	-2
		18,000	17,670 ^b	-2
		18,000	17.920 ^b	ō
		18,000	17,930 ^b	0
10 May 1982 ^d	10 May 1982	200	164	-18 ^c
		6,000	5,305	-12 ^c
12 May 1982 ^d	12 May 1982	200	209	+4
12 May 1902	12 May 1702	6,000	5925	-1
17 June 1982	17 June 1982	60	22.7 ^b	-62
		60	15.1 ^b	-75
		60	20.4 ^b	-66
		60	13.9 ^b	-77
		60	15.0 ^b	-75
		60	19.7 ^b	67
		200	146 ^e	-27 ^c
		600	459 ^e	-23 ^c
		2,000	1,750 ^e	-12 ^c
		6,000	5,442 ^e	-9
		18,000	17,200 ^e	-4
21 June 1982 ^d	21 June 1982	60	35.3 ^b	41
		60	44.9 ^D	-25
		60	37.8 ⁰	-37
		60	39.9 ⁰	-34
		60	31.60	-47
		60	40.10	-33
		200	225	+13
		2,000	4/8-	-20° -15
21 June 1000f	21 June 1092	20	<u> </u>	
21 Julie 1982	21 June 1982	00	00./	+11
		200	302 440	+51

TABLE J3 Results of Analysis of Dose Formulations Administered to Rats and Mice in the 13-Week Feed Studies of o-Nitroanisole (continued)

Date Prepared	Date Analyzed	Target Concentration (ppm)	Determined Concentration (ppm)	Difference from Target (%)
1 July 1982	1 July 1982	60	55.4	_8
1 July 1702	100.9 1702	200	174	-13
		600	517	-14
		2,000	1,671	-16
		6,000	5,171	-14
		18,000	16,300	-9
5 August 1982	5 August 1982	60	58.3	-3
5	e e	200	182	-9
		600	540	-10
		2,000	2,445	+22
		6,000	6,490	+8
		18,000	18,260	+1

^a Results of duplicate analyses unless otherwise noted

^b Results of homogeneity analyses

^c Sample remixed

^d Results of remix

^e Results of quadruple analyses

f Results of remix; analyzed using modified method

÷

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Feed Studies of o-Nitroanisole^a

Date Prepared	Date Analyzed	Target Concentration (ppm)	Determined Concentration ^b (ppm)	Difference from Target (%)
3 September 1984	4-11 September 19840	222 222 222 222 222 222 222 666	155 ^c 173 ^c 199 ^c 192 196 628	-30 -22 -10 -14 -12 -6
		666 666 2,000 2,000 2,000 2,000 2,000	638 628 2,060 ^c 1,970 ^c 2,060 ^c 1,940 1,960	-4 -6 +3 -2 +3 -3 -2
10 September 1984	11-17 September 1984	222 222 222 6,000 6,000 6,000 18,000 18,000 18,000	218 243 214 5,200 ^c 5,520 ^c 5,720 ^c 17,900 ^c 18,500 ^c 19,400 ^c	-2 +9 -4 -13 -8 -5 -1 +3 +8
17 September 1984	17-19 September 1984	222 222 222 222 222 222	204 208 ^c 211 ^c 198 ^c 234	8 6 5 11 +5
15 October 1984	15-20 October 1984	666 666 666 666 2,000 2,000 2,000 2,000 6,000 6,000 6,000 6,000 6,000 6,000	657 ^c 692 ^c 636 ^c 675 675 638 1,560 1,640 1,680 1,840 5,400 ^c 5,720 ^c 6,260 ^c 5,740 5,400 5,400	-1 + 4 -5 + 1 + 1 -5 + 1 + 1 -4 -22 -18 -16 -8 -10 -5 + 4 -4 -10 -9 -9
	23-29 October 1984 ^d	6,000	6,050	+1

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Feed Studies of *o*-Nitroanisole (continued)

22 October 1984 23-29 October 1984 2,000 1,900 -5 2,000 2,120 +6 -5 -5 2,000 2,000 2,000 0 5 November 1984 5-10 November 1984 222 227 +2 666 680 +2 666 680 +2 666 674 +1 -9 -2,000 1,820 -9 2,000 1,820 -9 -2,000 1,820 -9 -2,000 1,820 -9 2,000 1,820 -9 -2,000 1,820 -9 -2,000 1,820 -9 -2,000 1,800 -11 1,800 1,7,00 -2 1,800 17,700 -2 1,800 16,000 -2 1,800 16,000 -2 1,800 16,000 -2 1,800 16,000 -2 1,800 16,000 -2 1,900 16,000 -2 1,900 1,900 -2 1,900 1,900 -2 1,900 <t< th=""><th>Date Prepared</th><th>Date Analyzed</th><th>Determined Concentration (ppm)</th><th>Difference from Target (%)</th></t<>	Date Prepared	Date Analyzed	Determined Concentration (ppm)	Difference from Target (%)	
2000 1910 -5 2000 2120 +6 2,000 2,000 0 5 November 1984 5-10 November 1984 222 227 +2 666 680 +2 666 724 +9 666 672 +1 1 2,000 1,830 -9 2,000 1,890 -6 2,000 1,890 -6 2,000 1,890 -6 2,000 1,890 -9 2,000 1,890 -6 2,000 1,890 -9 2,000 1,890 -6 2,000 1,800 -1 18,000 17,700 -2 18,000 17,600 -2 18,000 17,600 -2 18,000 1,950 -1 2,000 1,960 -1 2,000 1,960 -2 2,000 1,960 -2 2,000 1,960 -2 2,000 1,960 -5 6 666	22 October 1984 ^e	23-29 October 1984	2,000	1,900	-5
2,000 2,120 +6 2,000 2,000 0 5 November 1984 5-10 November 1984 222 227 +2 666 680 +2 666 74 +1 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,800 10 6,000 5,200 +4 6,000 5,340 -11 18,000 17,600 -2 18,000 17,600 -2 18,000 17,600 -2 2,000 1,960 -2 2,000 1,960 -1 2,000 1,960 -2 2,000 1,960 <td< td=""><td></td><td></td><td>2,000</td><td>1,910</td><td>-5</td></td<>			2,000	1,910	-5
2,000 2,000 0 5 November 1984 5-10 November 1984 222 227 +2 666 680 +2 666 724 +9 666 674 +1 -9 -2,000 1,820 -9 2,000 1,820 -9 -2,000 1,820 -9 2,000 1,820 -9 -2,000 1,820 -9 2,000 1,820 -9 -3 -6,000 6,200 +3 6,000 6,200 -3 -11 -13 -11 -13,000 17,760 -2 18,000 17,760 -2 -2 18,000 17,600 -2 18,000 17,600 -1 -1 -2 -2 18,000 -1 2,000 1,900 -1,760 -2 -2 -2 -2 18,000 17,900 -1 -2 -2 -2 -2 -2 2,000 1,960 -2 <			2,000	2,120	+6
5 November 1984 5-10 November 1984 222 227 +2 666 660 +2 666 674 +1 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,950 -3 6,000 6,200 +3 6,000 6,233 +4 6,000 5,340 -11 18,000 17,700 -2 18,000 17,600 -2 18,000 17,600 -2 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,00	. •		2,000	2,000	0
666 680 +2 666 724 +9 666 674 +1 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 6,000 6,010 0 6,000 5,340 -11 18,000 17,700 18,000 17,600 -2 18,000 17,600 -2 18,000 17,600 -2 18,000 17,600 -2 18,000 17,600 -2 18,000 17,600 -2 18,000 17,600 -2 2,000 1,980 -1 2,000 1,960 -2 2,000 1,920 -4 2,000 1,960 -2 2,000 1,920 -4 2,000 1,960 -2 2,000 1,920 -4 2,000 1,960 <	5 November 1984	5-10 November 1984	222	227	+2
3 December 1984 3-6 December 1984 666 666 674 11 2,000 1,820 1,820 2,000 -9 2,000 3 December 1984 666 600 6,000 6,010 6,000 0 6,000 6,230 +4 4 6,000 3 December 1984 666 666 616 666 633 -9 2,000 3 December 1984 666 666 633 -9 666 633 -9 666 633 7 December 1984 666 633 -9 666 635 -13 2,000 7 December 1984 666 666 704 7 +4 666 701 7 December 1984 666 666 704 7 +6 666 701 7 December 1984 666 701 74 7 -2 2,000 14 January 1985 14-17 January 1984 222 22 66 70 214 7 -4 2,000 14 January 1985 14-17 January 1984 222 7 214 7 -4 7 14 January 1985 14-17 January 1984 222 7 214 7 -4 7 14 January 1985 14-17 January 1984 222 7 214 7 -4 7 14 January 1985 14-17 January 1984 222 7 214 7 -4 7 14 January 1984 222 7 -6 7 -6 7			666	680	+2
3 December 1984 3-6 December 1984 666 674 +1 2,000 1,820 -9 -3 2,000 1,950 -3 6000 6,200 +3 6,000 6,200 +3 6,000 6,230 +4 6,000 6,230 +4 6,000 5,340 -11 18,000 17,700 -2 18,000 17,600 -2 18,000 17,700 -2 18,000 17,600 -2 18,000 17,600 -2 18,000 17,600 -2 18,000 17,600 -2 18,000 17,600 -2 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -5 6,000 5,660 -6 6,000 5,700 -5 6,000 5,880 -2 14 January 1985 14-17 January 1984 222 21		1	666	724	+9
2,000 1,820 -9 2,000 1,820 -9 2,000 1,820 -9 2,000 1,950 -3 6,000 6,230 +4 6,000 5,340 -11 18,000 17,700 -2 18,000 17,700 -2 18,000 17,700 -2 18,000 18,000 0 3 December 1984 666 616 -8 2,000 1,960 -1 -9 2,000 1,960 -2 -2 18,000 17,000 -2 -3 2,000 1,960 -1 -2 2,000 1,960 -1 -13 2,000 1,960 -1 -2 2,000 1,960 -2 -2 2,000 1,960 -4 -4 2,000 5,560 -4 6,000 5,760 -4 6,000 5,880	•		666	674	+1
2,000 1,890 -6 2,000 1,820 -9 2,000 1,820 -3 6,000 6,200 +3 6,000 6,230 +4 6,000 6,230 +4 6,000 5,340 -11 18,000 17,700 -2 18,000 17,600 -2 18,000 17,600 -2 18,000 17,600 -2 18,000 18,000 0 3 December 1984 666 603 -9 666 581 -13 -2 2,000 1,980 -1 -2 2,000 1,980 -4 -2 2,000 1,980 -1 -2 2,000 1,980 -1 -2 2,000 1,980 -1 -2 2,000 1,980 -1 -2 2,000 1,980 -1 -4 2,000 5,760	÷		2,000	1,820	-9
2,000 1,820 -9 2,000 1,950 -3 6,000 6,200 +3 6,000 6,230 +4 6,000 5,340 -11 18,000 17,600 -2 18,000 17,600 -2 18,000 18,000 0 3 December 1984 666 616 -8 6666 633 -9 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 5,760 -4 6,000 5,760 -4 6,000 5,780 -2 14 January 1984 222 214 -4 2,000 </td <td></td> <td></td> <td>2,000</td> <td>1,890</td> <td>-6</td>			2,000	1,890	-6
2,000 1,950 -3 6,000 6,200 +3 6,000 6,210 0 6,000 6,230 +4 6,000 5,340 -11 18,000 17,700 -2 18,000 17,600 -2 18,000 17,600 -2 18,000 18,000 0 3 December 1984 666 663 -9 6666 636 -5 666 636 -5 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 2,000 1,990 -5 6,000 5,660 -6 6,000 5,760 -4 6,000 5,700 -3 6,000 5,700 -3 -2 14 4 2222 214 -4 222 24			2,000	1,820	-9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2,000	1,950	-3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6.000	6,200	+3
6,000 6,230 +4 6,000 5,340 -11 18,000 17,600 -2 18,000 17,600 -2 18,000 18,000 0 3 December 1984 3-6 December 1984 666 616 -8 6666 603 -9 -5 666 581 -13 2,000 1,980 -1 -2 2,000 1,980 -1 2,000 1,980 -1 -2,000 1,980 -1 2,000 1,980 -1 -2,000 -4 2,000 -5 6,000 5,760 -4 -4 6,000 5,760 -4 6,000 5,760 -5 -6 6,000 -12 -12 7 December 1984 666 704 +6 -6 -2 -2 14 January 1985 14-17 January 1984 222 214 -4 -4 2,000 1,980 -1 -5 -6	•		6,000	6,010	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6.000	6.230	+4
18,000 17,700 -2 18,000 17,600 -2 18,000 18,000 0 3 December 1984 3-6 December 1984 666 616 -8 666 633 -9 -6 666 633 -9 2,000 1,960 -2 <td></td> <td></td> <td>6.000</td> <td>5.340</td> <td>-11</td>			6.000	5.340	-11
$\begin{array}{c cccc} 18,000 & 17,600 & -2 \\ 18,000 & 18,000 & 0 \\ \hline 3 \ December 1984 & 3-6 \ December 1984 & 666 & 616 & -8 \\ 666 & 603 & -9 \\ 666 & 636 & -5 \\ 2,000 & 1,960 & -2 \\ 2,000 & 1,980 & -1 \\ 2,000 & 1,920 & -4 \\ 2,000 & 1,920 & -4 \\ 2,000 & 1,900 & -5 \\ 6,000 & 5,660 & -6 \\ 6,000 & 5,760 & -4 \\ 6,000 & 5,760 & -5 \\ 6,000 & 5,760 & -5 \\ 6,000 & 5,270 & -12 \\ \hline 7 \ December 1984 & 666 & 704 & +6 \\ 6,000 & 5,880 & -2 \\ \hline 14 \ January 1985 & 14-17 \ January 1984 & 222 & 214 & -4 \\ 222 & 226 & +2 \\ 666 & 625 & -6 \\ 666 & 701 & +5 \\ 2,000 & 1,980 & -1 \\ 2,000 & 1,980 & -1 \\ 2,000 & 1,980 & -1 \\ 2,000 & 1,980 & -1 \\ 2,000 & 1,980 & -1 \\ 2,000 & 1,980 & -1 \\ 2,000 & 1,980 & -1 \\ 3,000 & 5,600 & -1 \\ 3,000 & 5,600 & -1 \\ 3,000 & 17,800 & -1 \\ 18,000 & 17,800 & -1 \\ 18,000 & 16,300 & -9 \\ \hline \end{array}$			18.000	17.700	-2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			18.000	17.600	-2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			18,000	18,000	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 December 1984	3-6 December 1984	666	616	8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			666	603	-9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			666	636	-5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			666	581	-13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1		2,000	1,960	-2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2,000	1,980	-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2,000	1,920	-4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2,000	1,900	-5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			6,000	5,660	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			6,000	5,760	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. Sec.		6.000	5.700	-5
7 December 1984 ^e 10 December 1984 6666 6,000 704 5,880 +6 -2 14 January 1985 14-17 January 1984 222 222 214 222 -4 222 6666 625 -6 6666 701 +5 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 1,000 5,480 -9 6,000 6,040 +1 18,000 17,800 -1 18,000 16,300 -9			6,000	5,270	-12
6,000 5,880 -2 14 January 1985 14-17 January 1984 222 214 -4 222 226 +2 666 625 -6 666 666 701 +5 2,000 1,980 -1 2,000 1,980 -1 2,000 1,980 -1 6,000 6,040 +1 18,000 17,800 -1 18,000 16,300 -9 -9 -9 -1	7 December 1984 ^e	10 December 1984	666	704	+6
14 January 1985 14-17 January 1984 222 214 -4 222 226 +2 666 625 -6 666 701 +5 2,000 1,980 -1 2,000 1,980 -1 2,000 5,480 -9 6,000 6,040 +1 18,000 17,800 -1 18,000 16,300 -9			6,000	5,880	-2
$\begin{array}{ccccccc} 222 & 226 & +2 \\ 666 & 625 & -6 \\ 666 & 701 & +5 \\ 2,000 & 1,980 & -1 \\ 2,000 & 1,980 & -1 \\ 6,000 & 5,480 & -9 \\ 6,000 & 6,040 & +1 \\ 18,000 & 17,800 & -1 \\ 18,000 & 16,300 & -9 \end{array}$	14 January 1985	14-17 January 1984	222	214	-4
$\begin{array}{ccccc} 6666 & 625 & -6 \\ 6666 & 701 & +5 \\ 2,000 & 1,980 & -1 \\ 2,000 & 1,980 & -1 \\ 6,000 & 5,480 & -9 \\ 6,000 & 6,040 & +1 \\ 18,000 & 17,800 & -1 \\ 18,000 & 16,300 & -9 \end{array}$	•	-	222	226	+2
$\begin{array}{ccccccc} 6666 & 701 & +5 \\ 2,000 & 1,980 & -1 \\ 2,000 & 1,980 & -1 \\ 6,000 & 5,480 & -9 \\ 6,000 & 6,040 & +1 \\ 18,000 & 17,800 & -1 \\ 18,000 & 16,300 & -9 \end{array}$			666	625	6
2,000 1,980 -1 2,000 1,980 -1 6,000 5,480 -9 6,000 6,040 +1 18,000 17,800 -1 18,000 16,300 -9			666	701	+5
2,000 1,980 -1 6,000 5,480 -9 6,000 6,040 +1 18,000 17,800 -1 18,000 16,300 -9			2,000	1,980	-1
6,0005,480-96,0006,040+118,00017,800-118,00016,300-9			2,000	1,980	-1
6,0006,040+118,00017,800-118,00016,300-9			6,000	5,480	9
18,000 17,800 -1 18,000 16,300 -9			6,000	6,040	+1
18,000 16,300 -9			18,000	17,800	-1
			18,000	16,300	-9

450

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Feed Studies of o-Nitroanisole (continued)

Date Prepared 11 March 1985 15 March 1985 ^e 6-7 May 1985 23-24 September 1985 2 December 1985	Date Analyzed	Target Concentration (ppm)	Determined Concentration (ppm)	Difference from Target (%)
11 March 1985	11-14 March 1985	222 222 666 666 2,000 2,000 6,000	70 34 502 509 1,900 2,010 5,350	$ \begin{array}{c} -68^{f} \\ -85^{f} \\ -25^{f} \\ -24^{f} \\ -5^{f} \\ +1^{f} \\ -11^{f} \end{array} $
		6,000 18,000 18,000	5,630 15,100 18,700	-6 ^f -16 ^f +4 ^f
15 March 1985 ^e	15-17 March 1985	222 222 666 666 2,000 2,000 6,000 6,000 18,000 18,000	224 303 836 812 2,280 2,100 5,540 5,570 18,500 18,500	+10 +36 +26 +22 +14 +5 -8 -7 +3 +3
6-7 May 1985	6-8 May 1985	222 222 666 2,000 2,000 6,000 6,000	248 266 659 723 1,840 1,860 5,480 5,400	+12 ^g +20 ^g -1 +9 -8 -7 -9 -10
23-24 September 1985	23 September -11 October 1985	222 222 666 666 2,000 2,000 6,000 6,000	211 225 666 676 2,040 1,940 5,710 5,580	-5 +1 0 +2 +2 -3 -5 -7
2 December 1985	2-5 December 1985	222 222 666 666 2,000 2,000 6,000 6,000	170 180 594 656 1,940 1,980 5,740 4,900	$ \begin{array}{r} -23^{f} \\ -19^{f} \\ -11^{f} \\ -2 \\ -3 \\ -1 \\ -4 \\ -18^{f} \end{array} $

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Feed Studies of *o*-Nitroanisole (continued)

Date Prepared	Pate Prepared Date Analyzed December 1985 6 December 1985 3-14 January 1986 13-15 January 1986 4 February 1986 24-27 February 1986 1 April 1986 21-23 April 1986 3-24 June 1986 23-25 June 1986	Target Concentration (ppm)	Determined Concentration (ppm)	Difference from Target (%)
6 December 1985	6 December 1985	222	223 ^e	. 0 .
		222	214 ^e	-4
		666	663 ^e	0
		6,000	6,000	0
13-14 January 1986	13-15 January 1986	222	242	+9
		222	242	+9
		666	632	-5
		666	650	-2
		2,000	1,800	-10
	•	2,000	1,860	· _7
		6,000	6,020	. 0
		6,000	6,110	+2
24 February 1986	24-27 February 1986	222	228	+3
	-	222	227	+2
		666	652	-2
		666	636	5
		2,000	2,000	0
		2,000	1,980	-1
		6,000	5,800	-3
		6,000	5,710	-5
21 April 1986	21-23 April 1986	222	202	-9
•	-	222	207	7
		666	614	8
		666	630	-5
		2,000	2,000	0
		2,000	1,990	0
		6,000	5,890	2
		6,000	5,960	-1
23-24 June 1986	23-25 June 1986	222	208	6
		222	202	-9
		666	631	-5
		666	606	-9
		2,000	1,930	-4
		2,000	1,980	-1
		6,000	5,740	-4
		6,000	5,860	-2
11-12 August 1986	11 August 1986	222	203	-9
		222	205	-8
		666	647	-3
		666	609	-9
		2,000	1,990	-1
		2,000	1,860	-7
		6,000	5,930	-1
		6,000	5,760	-4

Chemical Characterization and Dose Formulations

TABLE J4

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Feed Studies of *o*-Nitroanisole (continued)

Date Prepared	Date Analyzed	Target Concentration (ppm)	Determined Concentration (ppm)	Difference from Target (%)
22 September 1986	22-23 September 1986	666	616	8
•	-	666	637	-4
		2,000	2,120	+6
		2,000	2,090	+4
		6,000	5,880	-2
		6,000	5,900	-2

^a Dose formulations for rats: 222, 666, and 2,000 ppm; dose formulations for mice: 666, 2,000, and 6,000 ppm; dose formulations for stop study rats: 6,000 and 18,000 ppm.

^b Results of duplicate analyses

^c Homogeneity analysis results (top left, top right, and bottom ports of blender)

^d Results of reanalysis

e Results of remix

f Sample remixed

^g Used for dosing; high results believed due to analytical, not mixing, procedure.

			Determined Conce	entration (ppm)	
1	Date Prepared	Target Concentration (ppm)	Study Laboratory ^a	Refer ce Laboratory ^b	
Rats					
	3 September 1984	2,000	1,940	2,030	
	11 March 1985	666	502	643	
	15 March 1985	222	303	225	
. •		666	836	685	
		2,000	2,280	1,950	
	2 December 1985	666	656	655	
	23 June 1986	222	208	222	•
		n .		and the second second second	
.				·	
Mice		· ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·
•	3 December 1984	666	603	. 600	
	• • • •	666	580	614	
		2,000	1,920	1,900	
	,	2,000	1,900	1,890	
		6,000	5,660	5,600	
		6,000	5,270	5,680	
	11 March 1985	666	502	643	
	15 March 1985	666	836	685	
		666	812	652	
		2,000	2,280	1,950	
	23-24 September 1985	6,000	5,710	5,760	
	2-3 December 1985	655	656	655	
	22 September 1986	2,000	2,090	1,920	

TABLE J5 Results of Referee Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Feed Studies of o-Nitroanisole

a Results of duplicate analyses
 b Results of triplicate analyses

.

APPENDIX K FEED AND COMPOUND CONSUMPTION IN THE 2-YEAR FEED STUDIES

Table K1	Feed and Compound Consumption by Male Rats in the 2-Year Feed Study	
	of o-Nitroamisole	456
Table K2	Feed and Compound Consumption by Female Rats in the 2-Year Feed Study	
	of o-Nitroanisole	457
Table K3	Feed and Compound Consumption by Male Rats in the Stop-Exposure Feed Study	
	of o-Nitroanisole	458
Table K4	Feed and Compound Consumption by Female Rats in the Stop-Exposure Feed Study	
	of o-Nitroanisole	459
Table K5	Feed and Compound Consumption by Male Mice in the 2-Year Feed Study	
	of o-Nitroanisole	460
Table KG	Feed and Compound Consumption by Female Mice in the 2-Year Feed Study	
	of o-Nitroanisole	461

. . . . i

456

TABLE K1

Feed and Compound Consumption by Male Rats in the 2-Year Feed Study of o-Nitroanisole

	0 pr	m		222 ppm	L		666 ppm	1		2,000_ppr	n
Week	Feed (g/day) ^a	Body Weight (g)	Feed (g/day)	Body Weight (g)	Dose/ Day ^b (mg/kg/day)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day)
1	13.7	109	14.8	108	30	14.0	106	88	13.2	107	246
5	16.0	245	16.5	258	14	16.3	255	43	17.0	259	131
9	16.1	302	15.0	302	11	15.9	301	35	16.2	301	108
12	16.5	331	16.1	326	11	16.6	324	34	16.8	324	104
16	16.6	364	16.5	360	10	16.5	357	31	16.9	353	96
21	15.5	380	15.4	375	9	15.7	373	28	16.0	371	86
24	16.0	403	15.6	389	9	15.6	392	27	15.7	391	80
28	15.2	408	15.1	401	8	15.5	400	26	16.0	399	80
32	16.2	421	16.4	413	9	16.8	413	27	16.3	412	79
36	16.2	428	16.2	420	9	16.5	421	26	15.5	421	74
40	16.5	438	17.6	424	9	15.9	432	24	16.5	429	77
44	16.0	444	16.4	437	8	16.3	438	25	16.5	435	76
48	15.0	450	15.5	439	8	15.5	440	23	15.7	438	72
52	15.1	441	14.6	437	7	15.6	440	24	16.2	437	74
56	15.2	447	15.2	441	8	15.2	441	23	15.6	435	72
60	14.7	445	14.8	437	8	15.1	441	23	15.3	436	70
64	14.7	447	15.1	438	8	15.1	442	23	13.4	430	62
68	14.3	446	14.9	435	8	15.1	441	23	14.1	427	66
72	15.1	443	14.6	436	7	15.2	443	23	14.7	420	70
76	14.4	441	14.3	433	7	14.7	438	22	14.8	415	71
80	14.7	440	14.3	434	7	14.6	439	22	14.5	411	70
84	13.5	435	14.1	427	7	13.8	430	21	13.9	389	71
88	13.9	430	13.3	426	7	13.7	430	21	13.8	395	70
92	14.1	428	14.3	419	8	13.6	415	22	14.6	378	77
96	13.3	418	14.2	411	8	13.0	412	21	14.8	368	80
100	15.1	417	14.8	407	8	14.5	402	24	15.7	351	89
Mean f	or weeks										
1-13	15.6	247	15.6	249	17	15.7	246	50	15.8	248	147
14-52	15.8	418	15.9	409	9	16.0	411	26	16.1	409	79
52-100	14.4	437	14.5	429	8	14.5	431	22	14.6	405	72

.

....

8

Grams of feed consumed per animal per day Milligrams of *o*-nitroanisole consumed per day per kilogram body weight b

TABLE K2

Feed and Compound Consumption by Female Rats in the 2-Year Feed Study of o-Nitroanisole

	0 pr	m		222 ppm	L		666 ppn	n		2,000 ppr	<u>n</u>
Week	Feed (g/day) ^a	Body Weight (g)	Feed (g/day)	Body Weight (g)	Dose/ Day ^b (mg/kg/day)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day)
	10.8	92	10.9	90	27	11.1	90	82	10.6	92	230
ŝ	0.0	143	10.3	160	14	10.6	160	44	10.8	152	142
9	10.4	175	9.9	174	13	10.0	172	39	9.6	174	111
12	97	184	10.0	179	13	10.0	179	37	9.8	179	109
16	10.2	196	10.0	190	12	10.1	191	35	10.0	190	105
21	9.9	201	9.7	196	11	9.6	197	32	9.4	194	97
24	9.8	203	9.4	200	10	10.3	201	34	9.7	200	97
28	9.3	211	9.8	207	11	9.5	207	31	9.2	204	91
32	10.3	217	10.3	213	11	10.2	214	32	10.0	209	95
36	10.4	221	10.3	217	11	10.6	218	32	9.8	216	91
40	10.5	232	11.3	226	11	10.9	228	32	10.9	221	99
44	10.4	238	10.4	233	10	11.5	234	33	10.5	227	92
48	10.2	246	10.3	240	10	10.5	242	29	10.4	234	89
52	10.7	255	10.8	245	10	11.1	249	30	10.9	240	91
56	11.0	261	10.7	253	9	11.3	259	29	10.9	248	88
60	10.5	268	10.7	262	9	11.1	266	28	10.7	256	84
64	11.1	275	11.0	266	9	10.8	273	26	9.8	262	75
68	10.7	282	11.2	272	9	11.2	279	27	10.9	266	82
72	11.4	289	11.1	279	9	11.2	284	26	11.3	273	82
76	11.5	298	11.1	284	9	11.4	289	26	11.4	279	82
80	11.3	304	11.8	293	9	10.8	294	25	11.2	285	78
84	11.6	306	11.8	294	9	11.8	294	27	11.4	286	80
88	11.7	313	11.1	309	8	11.2	302	25	10.5	295	71
92	11.1	316	11.2	305	8	11.2	305	24	11.4	293	78
96	11.2	315	11.2	308	8	11.8	304	26	11.7	291	81
100	11.2	317	11.9	304	9	12.5	304	27	12.1	289	84
Mean í	for weeks										
1-13	10.2	148	10.3	151	17	10.4	151	50	10.2	149	148
14-52	10.1	222	10.2	217	11	10.4	218	32	10.1	214	95
52-100	11.2	295	11.2	286	9	11.4	288	26	11.1	277	80

^a Grams of feed consumed per animal per day
 ^b Milligrams of *o*-nitroanisole consumed per day per kilogram body weight

- 1

458

TABLE K3

Feed and Compound Consumption by Male Rats in the Stop-Exposure Feed Study of o-Nitroanisole

	0 pp	m		6,000 ppm	L		18,000 ppm		
Week	Feed (g/day) ^a	Body Weight (g)	Feed (g/day)	Body Weight (g)	Dose/ Day ^b (mg/kg/day)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day)	
2	15.7	160	14.5	146	596	7.3	102	1.287	
6	16.3	264	15.0	229	343	9.1	135	1.215	
10	16.4	315	11.8	237	299	9.0	150	1.080	
13	16.8	339	14.8	271	328	9.5	158	1.082	
17	15.7	371	14.0	294	286	9.8	164	1.071	
21	15.4	382	14.2	305	280	10.1	174	1.040	
25	16.3	398	14.9	318	282	9.8	179	980	•
29	16.0	411	15.2	341		13.1	217		
33	15.5	417	17.4	363		13.2	255		
37	16.6	437	16.5	386		12.5	277		
41	16.3	437	16.2	393		10.7	279		
45	17.0	447	15.4	406		15.6	273	.*	
49	15.7	447	16.0	414		_c	_		
53	15.3	444	16.3	410	· .			:1	,
57	15.8	444	15.9	415				•	
61	16.1	450	16.0	413					
65	15.6	443	14.3	405					4
69	14.9	452	15.0	403					
73	15.3	444	14.3	398		,			
77	14.4	444	15.7	402					
81	15.0	435	17.4	390					
85	15.1	439	16.6	369					
89	14.6	436	14.7	369					
93	14.9	427	13.8	381					
97	12.8	420	24.1	296					
101	11.5	404	18.7	354					
Mean for	weeks								
1-13	16.4	269	14.1	221	405	8.7	136	1,166	
14-52	16.1	416	15.6	358	282	11.8	227	1,030	÷
52-101	14.7	437	16.4	385		-	-	-	

a Grams of feed consumed per animal per day
 b Milligrams of *o*-nitroanisole consumed per day per kilogram body weight
 c No measurements taken due to 100% mortality

Feed and Compound Consumption

TABLE K4

Feed and Compound Consumption by Female Rats in the Stop-Exposure Feed Study of o-Nitroanisole

	0 ppm			6,000 ppm		18,000 ppm					
Week	Feed (g/day) ²	Body Weight (g)	Feed (g/day)	Body Weight (g)	Dose/ Day ^b (mg/kg/day)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day)			
2	11.5	120	10.5	112	560	6.1	86	1.279			
6	10.7	163	9.7	149	390	6.2	101	1.105			
10	10.1	179	7.5	154	292	6.3	109	1.048			
13	10.8	185	8.8	166	318	7.2	113	1.160			
17	9.7	198	8.5	176	289	6.6	120	993			
21	9.3	204	8.1	175	277	6.7	124	979			
25	10.0	208	9.4	180	312	7.2	127	1,014			
29	9.9	214	9.4	193		10.4	150	,			
33	11.0	219	10.5	196		10.6	166				
37	10.9	230	10.7	205		8.9	173				
41	11.0	237	10.2	208		9.9	175				
45	10.1	246	10.2	216		10.1	185				
49	10.9	254	10.4	220		10.7	189				
53	10.9	261	10.3	224		9.2	187				
57	11.1	273	11.0	230		7.3	192				
61	11.7	279	10.8	233		_c	-				
65	11.2	287	10.1	236							
69	11.3	294	10.8	246							
73	11.2	299	11.1	249							
77	11.6	305	11.9	252							
81	11.4	307	11.7	253							
85	12.2	317	12.3	254							
89	11.9	320	11.5	258							
93	11.9	321	10.8	271							
97	12.1	321	12.4	268							
101	12.7	324	11.3	269							
Mean for	weeks										
1-13	10.8	162	9.2	145	393	6.5	102	1,148			
14-52	10.3	223	9.7	197	292	9.0	156	995			
52-101	11.6	301	11.2	249		8.3	190				

a Grams of feed consumed per animal per day
 b Milligrams of *o*-nitroanisole consumed per day per kilogram body weight
 c No measurements taken due to 100% mortality

Feed	Feed and Compound Consumption by Male Mice in the 2-Year Feed Study of o-Nitroanisole												
Week	0 ppm		0 ppm 666 ppm				2,000 ppr	m	6,000 ppm				
	Feed (g/day) ^a	Body Weight (g)	Feed (g/day)	Body Weight (g)	Dose/ Day ^b (mg/kg/day)	Feed (g/day)	Body Weight (g)	Dose/ Day ^b (mg/kg/day)	Feed (g/day) ^a	Body Weight (g)	Dose/ Day (mg/kg/day)		
2	4.7	25.1	4.5	24.7	122	4.4	24.7	354	3.6	21.2	1,017		
6	4.6	29.1	4.6	28.7	107	4.3	28.3	306	4.3	24.8	1,033		
10	4.5	31.1	4.7	30.7	102	4.5	30.6	296	4.7	25.9	1,090		
13	4.4	32.7	4.5	32.5	91	4.0	31.9	252	4.1	27.3	898		
17	4.6	35.1	4.4	34.5	85	4.5	34.0	263	3.9	27.6	843		
21	4.2	37.8	4.2	37.3	75	4.3	36.5	234	4.0	28.0	_ 862		
25	5.1	39.6	5.6	38.4	97	5.6	37.7	297	4.6	28.9	952		
29	5.0	41.6	5.1	40.3	84	5.1	39.5	258	4.2	29.1	861		
33	5.1	43.7	5.1	42.3	80	5.1	41.7	244	4.6	30.1	911		
37	5.0	44.5	5.2	43.2	80	5.1	42.4	238	4.2	30.1	834		
41	4.8	45.0	4.8	44.2	73	4.6	42.7	216	3.4	30.4	666		
45	5.1	45.0	5.2	43.8	79	5.1	43.1	238	4.1	30.0	817		
49	5.0	45.7	5.2	44.1	79	5.1	43.7	234	4.0	29.9	811		
53	4.9	46.7	5.2	45.2	77	4.9	44.7	218	4.4	30.5	862		
57	5.0	46.9	5.3	45.9	76	5.0	45.3	219	4.3	31.0	824		

4.8

4.6

5.2

4.9

5.3

5.1

5.0

5.0

5.2

5.3

5.3

4.3

4.9

5.0

45.6

46.6

47.2

47.2

47.4

46.9

46.3

45.8

44.8

43.8

42.2

28.9

40.1

45.7

209

199

221

208

224

216

217

219

232

244

250

302

247

221

4.0

3.6

4.3

3.9

4.0

4.0

3.9

3.9

4.0

4.2

4.2

4.2

4.1

4.0

.

30.9

31.5

31.7

31.8

31.9

31.8

31.8

31.8

31.7

31.6

32.0

24.8

29.3

31.5

773

693

812

737

746

761

742

727

755

795

793

1,009

840

771

TABLE K5

Feed and	Compound	Consumption	by	Male	Mice	in the	2-Y	ear Fee	d Study	y of a	<i>o</i> -Nitroanis	sol
----------	----------	-------------	----	------	------	--------	-----	---------	---------	--------	---------------------	-----

а Grams of feed consumed per animal per day

ь Milligrams of o-nitroanisole consumed per day per kilogram body weight

61

65

69

73

77

81

85

89

93

97

101

1-13

14-52

52-101

4.8

4.9

5.4

5.1

5.4

5.2

5.4

5.2

5.3

4.9

5.4

4.5

4.9

5.1

Mean for weeks

47.8

48.0

49.2

49.0

48.7

48.9

48.4

47.9

47.7

48.0

47.6

29.5

42.0

48.1

4.8

5.0

5.2

5.0

5.3

5.3

5.4

5.2

5.4

5.1

5.4

4.6

5.0

5.2

46.5

47.6

48.0

48.2

48.3

47.9

47.4

47.6

46.5

46.6

46.1

29.2

40.9

47.1

69

70

73

69

73

73

75

73

77

72

78

106

81

74

TABLE K6

Feed and Compound Consumption by Female Mice in the 2-Year Feed Study of o-Nitroanisole

	0 pr	m		666 ppm	L		2,000 ppi	n	6,000 ppm			
Week	Feed (g/day) ^a	Body Weight (g)	Feed (g/day)	Body Weight (g)	Dose/ Day ^b (mg/kg/day)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day)	
4	5.9	23.0	5.9	23.2	170	5.5	22.3	490	4.1	19.2	1,296	
8	5.2	25.6	5.6	25.8	146	5.5	24.6	445	4.0	21.2	1,128	
12	5.3	27.1	5.2	27.5	126	4.9	26.2	375	3.6	21.4	998	
17	6.1	29.7	5.7	30.2	127	5.9	27.9	420	4.7	22.2	1,272	
21	5.6	32.7	5.9	33.3	117	5.6	30.2	368	5.0	23.4	1,291	
25	5.3	34.1	5.7	34.7	109	5.4	30.9	352	5.2	23.4	1,332	
29	6.4	36.7	6.1	37.3	108	6.2	32.9	378	6.4	24.4	1,581	
33	5.9	38.8	6.3	39.0	108	6.0	34.8	346	5.6	24.7	1,370	
37	5.9	39.0	6.7	39.9	112	6.4	35.6	360	5.1	24.5	1,240	
41	5.7	40.4	5.8	41.2	94	5.4	35.9	300	4.3	25.0	1,028	
45	5.6	40.9	5.6	41.1	92	5.5	36.3	304	4.8	25.0	1,146	
49	6.1	42.5	6.1	42.2	97	5.6	37.4	299	5.5	24.7	1,344	
53	5.5	43.7	5.9	43.5	91	5.2	37.9	274	4.7	25.1	1,120	
57	6.0	44.9	6.3	44.6	94	5.8	39.0	299	6.1	25.4	1.435	
61	5.8	47.4	5.9	46.3	84	5.4	40.3	269	4.5	25.4	1.053	
65	5.7	48.1	5.8	47.7	80	5.4	41.2	261	4.8	25.6	1.119	
69	5.7	49.6	5.9	47.4	82	5.4	42.1	257	4.2	26.1	969	
73	5.5	49.6	5.6	47.1	79	5.2	42.1	246	4.2	26.1	967	
77	6.1	51.0	6.0	48.0	83	5.7	42.2	271	4.9	26.7	1.098	
81	6.1	51.1	6.5	47.9	91	5.7	42.3	271	5.3	26.6	1.194	
85	6.0	51.7	6.3	48.2	86	5.8	42.1	275	5.0	26.7	1.133	
89	5.9	51.1	5.9	48.0	82	5.4	42.7	253	4.5	27.1	992	
93	5.9	49.8	6.3	46.3	90	5.8	41.7	276	4.6	26.7	1.026	
97	6.4	49.6	6.0	45.6	88	5.9	41.7	281	4.9	27.0	1.087	
101	6.4	48.0	6.7	44.6	101	5.8	39.2	294	5.6	27.2	1,238	
Mean	for weeks											
1-13	5.5	25.2	5.6	25.5	147	5.3	24.4	437	3.9	20.6	1,141	
14-52	5.9	37.2	6.0	37.7	107	5.8	33.5	347	5.2	24.1	1,289	
52-101	5.9	48.9	6.1	46.6	87	5.6	41.1	271	4.9	26.3	1,110	

a b

a tribula da

Grams of feed consumed per animal per day Milligrams of o-nitroanisole consumed per day per kilogram body weight

APPENDIX L

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH-07 RAT AND MOUSE RATION

Table L1	Ingredients of NIH-07 Rat and Mouse Ration	464
Table L2	Vitamins and Minerals in NIH-07 Rat and Mouse Ration	464
Table L3	Nutrient Composition of NIH-07 Rat and Mouse Ration	465
Table LA	Contaminant Levels in NIH-07 Rat and Mouse Ration	466

463
	· · · · · · · · · · · · · · · · · · ·	
Ingredients ^b	Percent by Weight	
Ground #2 yellow shelled corn	24.50	• · · · · · · · · · · · · · · · · · · ·
Ground hard winter wheat	23.00	
Soybean meal (49% protein)	12.00	
Fish meal (60% protein)	10.00	
Wheat middlings	10.00	
Dried skim milk	5.00	
Alfalfa meal (dehydrated, 17% protein)	4.00	
Corn gluten meal (60% protein)	3.00	
Soy oil	2.50	
Dried brewer's yeast	2.00	
Dry molasses	1.50	•
Dicalcium phosphate	1.25	
Ground limestone	0.50	at a second second
Salt	0.50	
Premixes (vitamin and mineral)	0.25	

TABLE L1 Ingredients of NIH-07 Rat and Mouse Ration^a

a

NCI, 1976; NIH, 1978 Ingredients were ground to pass through a U.S. Standard Screen No. 16 before being mixed. b

TABLE L2 Vitamins and Minerals in NIH-07 Rat and Mouse Ration^a

	Amount	Source	
Vitamins			
Α	5,500,000 IU	Stabilized vitamin A palmitate or acetate	
D ₃	4,600,000 IU	D-activated animal sterol	
K ₁	2.8 g	Menadione	
d-a-Tocopheryl acetate	20,000 IŬ		
Choline	560.0 g	Choline chloride	
Folic acid	2.2 g		
Niacin	30.0 g		
d-Pantothenic acid	18.0 g	d-Calcium pantothenate	
Riboflavin	3.4 g	-	
Thiamine	10.0 g	Thiamine mononitrate	
B ₁₂	4,000 µg		
Pyridoxine	1.7 g	Pyridoxine hydrochloride	
Biotin	140.0 mg	<i>d</i> -Biotin	
Minerals	· .		
Iron	120.0 g	Iron sulfate	
Manganese	60.0 g	Manganous oxide	
Zinc	16.0 g	Zinc oxide	
Copper	4.0 g	Copper sulfate	
Iodine	1.4 g	Calcium iodate	
Cobalt	0.4 g	Cobalt carbonate	
	and the second		

^a Per ton (2,000 lb) of finished product

Nutrient Composition of NIH-07 Rat and Mouse Ration

	Mean 🛨 Standard		
Nutrient	Deviation	Range	Number of Samples
Protein (% by weight)	22.32 ± 0.57	21.2-23.2	25
Crude fat (% by weight)	5.60 ± 0.44	4.6-6.4	25
Crude fiber (% by weight)	3.54 ± 0.54	2.8-5.4	25
Ash (% by weight)	6.62 ± 0.44	6.0–7.9	25
mino Acids (% of total diet)	н. 1		
Arginine	1.308 ± 0.060	1.210-1.390	8
Cystine	0.306 ± 0.084	0.1810.400	8
Glycine	1.150 ± 0.047	1.060-1.210	8
Histidine	0.576 ± 0.024	0.531-0.607	8
Isoleucine	0.917 ± 0.029	0.881-0.944	8
Leucine	1.946 ± 0.055	1.850-2.040	8
Lysine	1.270 ± 0.058	1.200-1.370	8
Methionine	0.448 ± 0.128	0.306-0.699	8
Phenylalinine	0.987 ± 0.140	0.665-1.110	. 8
Threonine	0.877 ± 0.042	0.824-0.940	8
Tryptophan	0.236 ± 0.176	0.107-0.671	8
Tyrosine	0.676 ± 0.105	0.564-0.794	8
Valine	1.103 ± 0.040	1.050-1.170	8
ssential Fatty Acids (% of total di	et)		
Linoleic	2.393 ± 0.258	1.830-2.570	7
Linolenic	0.280 ± 0.040	0.210-0.320	7
litamins		· •	
Vitamin A (IU/kg)	$9,212 \pm 4,047$	4,500–19,000	25
Vitamin D (IU/kg)	$4,450 \pm 1,382$	3,000-6,300	4
a-Tocopherol (ppm)	··· 37.95 ± 9.406	22.50-48.90	8
Thiamine (ppm)	21.76 ± 3.41	19.0-37.0	25
Riboflavin (ppm)	7.92 ± 0.87	6.10-9.00	8
Niacin (ppm)	103.38 ± 26.59	65.0-150.0	8
Pantothenic acid (ppm)	29.54 ± 3.60	23.0-34.0	8
Pyridoxine (ppm)	9.55 ± 3.48	5.60-14.0	8
Folic acid (ppm)	2.25 ± 0.73	1.80-3.70	8
Biotin (ppm)	0.254 ± 0.042	0.19-0.32	8
Vitamin B ₁₂ (ppb)	38.45 ± 22.01	10.6-65.0	8
Choline (ppm)	3,089 ± 328.69	2,400–3,430	8
finerals	•		
Calcium (%)	1.12 ± 0.13	0.87-1.40	25
Phosphorus (%)	0.93 ± 0.06	0.81-1.00	25
Potassium (%)	0.883 ± 0.078	0,772-0.971	6
Chloride (%)	0.526 ± 0.092	0.380-0.635	8
Sodium (%)	0.313 ± 0.390	0.258-0.371	8
Magnesium (%)	0.168 ± 0.010	0.151-0.181	8
Sulfur (%)	0.280 ± 0.064	0.208-0.420	8
Iron (ppm)	360.54 ± 100	255.0-523.0	8
Manganese (ppm)	91.97 ± 6.01	81.70-99.40	8
Zinc (ppm)	54.72 ± 5.67	46.10-64.50	8
Copper (ppm)	11.06 ± 2.50	8.090-15.39	8
Iodine (ppm)	3.37 ± 0.92	1.52-4.13	6
Chromium (ppm)	1.79 ± 0.36	1.04-2.09	8

· · · ·

	Mean ± Standard			
	Deviation ^a	Range	Number of Samples	*
Contaminants	,			·····
Arsenic (ppm)	0.74 ± 0.16	0.22-0.98	25	•
Cadmium (ppm)	0.10 ± 0.20	<0.10-0.20	25	
Lead (ppm)	0.47 ± 0.20	0.05-0.87	25	
Mercury (ppm) ^b	0.05 ± 0.01	0.05-0.08	25	
Selenium (ppm)	0.34 ± 0.08	0.17-0.48	25	
Aflatoxins (ppb)	<5.0		25	
Nitrate nitrogen (ppm)	15.41 ± 5.02	2.90-22.0	25	
Nitrite nitrogen (ppm)	0.25 ± 0.43	<0.10-2.10	25	
BHA (ppm) ^c	2.36 ± 0.81	<2.00-5.00	25	
BHT (ppm) ^c	1.88 ± 1.17	<1.00-5.00	25	
Aerobic plate count (CFU/g) ^d	117.596 ± 151.945	3.900-570.000	25	
Coliform (MPN/g) ^e	248 ± 513	<3.00-2.400	25	
E. coli (MPN/g) ¹	10.9 ± 30.07	<3.00-150.0	25	
$E_{\rm coli}$ (MPN/g) ^g	5.2 + 8.17	<3.00-43.00	24	
Total pitrosoamines (nnh) ^h	6.61 ± 2.50	3.30-13.30	25	
$N_{\rm N}$ Nitrosodimethylamine (npb) ^h	5.95 ± 2.35	3.00-13.00	25	
<i>N</i> -Nitrosopyrrolidine (ppb) ^h	0.66 ± 0.78	0.30-4.00	25	
Pesticides				
a-BHC ⁱ	<0.01		25	
B-BHC	<0.02		25	
γ-BHC	<0.01		25	
S-BHC	<0.01		25	
Heptachlor	<0.01		25	
Aldrin	<0.01		25	
Heptachlor epoxide	< 0.01		25	
DDE	< 0.01		25	
	<0.01		25	
DDT	< 0.01		25	
НСВ	<0.01		25	
Mirex	<0.01		25	
Methorychlor	<0.01		25	
Dieldrin	<0.05		25	
Endrin	< 0.01		25	
Telodrin	< 0.01		25	
Chlordane	<0.01		25	
Toyanhene	<0.05		25	
Estimated BCBs	<0.2		25	
Ronnel	<0.01		25	
Ethion	<0.01		25	
Trithion	<0.02		25	
Diazinon	<01		یں ۲۲	
Mothul consthion	<0.02		25	
Fibul norothion	<0.02		22 75	
Emyr paratnion Malashian		0.05 2.20	20 25	
	0.23 ± 0.03	0.03-3.20	23 25	
Endosulfan I	<0.01		<u>ل</u> ت 25	
	<0.01		40 25	
Endosulian suitate	< 0.05		43	

TABLE L4 Contaminant Levels in NIH-07 Rat and Mouse Ration

-

-

TABLE IA Contaminant Levels in NIH-07 Rat and Mouse Ration (continued)

- ^a For values less than the limit of detection, the detection limit is given as the mean.
- ^b Mean, standard deviation, and range include one value of 0.08 ppm. All other values are less than 0.05 ppm.
- ^c Sources of contamination soy oil and fish meal.
- ^d CFU = colony forming units.
- MPN = most probable number.
- ^f Mean, standard deviation, and range include one large value of 150 MPN/g obtained in batch milled 17 October 1984.
- ^g Mean, standard deviation, and range include value given in ^f.
- h All values were corrected for percent recovery.
- ⁱ BHC = hexachlorocyclohexane or benzene hexachloride
- ^j Ten lots contained more than 0.05 ppm, including one with 3.20 ppm milled 7 May 1985.

en en en en en la facta de la companya de la compan La companya de la comp

الم المراجعين المراجع المراجعين ا المراجعين ا

APPENDIX M SENTINEL ANIMAL PROGRAM

Methods	•••••••••••••••••••••••••••••••••••••••	470
Results	• • • • • • • • • • • • • • • • • • • •	472
Table M1	Murine Virus Antibody Determinations for Rats and Mice in the 14-Day,	
	13-Week, 2-Year, and Stop-Exposure Feed Studies of o-Nitroanisole	473

4

SENTINEL ANIMAL PROGRAM

METHODS

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. The sentinel animals come from the same production source and weanling groups as animals used for the studies of chemical compounds, and these animals and the study animals are subject to identical environmental conditions.

Serum samples were collected from randomly selected rats and mice during the 14-day, 13-week, and 2-year studies, and rats during the stop-exposure study. Blood from each animal was collected from the orbital sinus, allowed to clot, and the serum separated. The serum was cooled and sent to Microbiological Associates, Inc. (Bethesda, MD), for determination of antibody titers. The laboratory serology methods and viral agents for which testing was performed are tabulated blow; the times during the studies at which blood was collected for serological testing are also listed.

Test and Method

PVM

Rats 14-Day Studies Hemagglutination Inhibition PVM (pneumonis virus of mice) Sendai KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Polyoma virus **Complement** Fixation RCV (rat coronavirus) **13-Week Studies** Hemagglutination Inhibition **PVM** KRV H-1 **Complement Fixation** Sendai RCV 2-Year Studies Hemagglutination Inhibition KRV H-1 ELISA Mycoplasma pulmonis Mycoplasma arthritidis

> Sendai RCV/SDA (rat coronavirus/sialodacryoadenitis virus) CARB

Study termination Study termination Study termination Study termination

Time of Analysis

Sec. A started

Study termination

Study termination Study termination Study termination

Study termination Study termination

6, 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months

24 months

Sentinel Animal Program

Test and Method (continued)

Rats (continued) Stop-Exposure Study

Hemagglutination Inhibition KRV H-1

ELISA

Mycoplasma arthritidis Mycoplasma pulmonis PVM Sendai RCV/SDA CARB

Mice

14-Day Studies Hemagglutination Inhibition PVM Reovirus 3 GDVII Sendai MVM Ectromelia virus

> Complement Fixation Mouse adenoma virus LCM RCV

ELISA MHV

13-Week Studies Hemagglutination Inhibition PVM Reovirus 3 GDVII MVM Ectromelia virus

> Complement Fixation Sendai Mouse adenoma virus MHV LCM

Time of Analysis (continued)

6, 12, 18, and 24 months 6, 12, 18, and 24 months

6, 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 24 months

Study termination Study termination Study termination Study termination Study termination

Study termination Study termination Study termination

Study termination

Study termination Study termination Study termination Study termination

Study termination Study termination Study termination Study termination

o-Nitroanisole, NTP TR 416

· .

.

. . . .

and the second second

.

Test and Method (continued)	Time of Analysis (continued)	
Mice (continued) 2-Year Studies Hemagglutination Inhibition	and the second secon Second second	•
K (papovirus) MVM	6, 12, 18, and 24 months 6, 12, 18, and 24 months	
Complement Fixation	· · · · · · · · · · · · · · · · · · ·	•
LCM	6, 12, and 18 months	*
ELISA	. až :	
Mycoplasma pulmonis	6, 12, 18, and 24 months	
Mycoplasma arthritidis	6, 12, 18, and 24 months	
PVM	6, 12, 18, and 24 months	
Sendai	6, 12, 18, and 24 months	
MHV	6, 12, 18, and 24 months	
Ectromelia virus	6, 12, 18, and 24 months	2
GDVII	6, 12, 18, and 24 months	
Reovirus 3	6, 12, 18, and 24 months	
Mouse adenoma virus	6, 12, 18, and 24 months	
Immunofluorescence Assay	an baranta an	
EDIM (epizootic diarrhea of infant mice)	6, 12, 18, and 24 months	
LCM	24 months	<i>á</i> .
	14 July 19 Jul	

RESULTS

The serology results for sentinel animals are presented in Table M1.

الا ال دار دار دار الموجد العالية

.....

TABLE M1

Murine Virus Antibody Determinations for Rats and Mice

in the 14-Day, 13-Week, 2-Year, and Stop-Exposure Feed Studies of o-Nitroanisole

	Interval	Incidence of Antibody in Sentinel Animals	Positive Serologic Reaction for
14-Day Studies Rats	14 days	0/10	None positive
Mice	14 days	0/10	None positive
13-Week Studies Rats	13 weeks	0/10	None positive
Mice	13 weeks	0/10	None positive
2-Year Studies Rats	6 months	1/10	Possible M. arthritidis
	12 months	1/10	Possible M. arthritidis
	18 months	0/9	None positive
	24 months	0/10	None positive
Mice	6 months	0/10	None positive
	12 months	1/9	Possible M. arthritidis
	18 months	1/8	Possible M. arthritidis
	24 months	0/10	None positive
Stop-Exposure Study	6 months	1/9	Possible M. arthritidis
	12 months	1/10	Possible M. arthritidis
	18 months	1/10	Possible M. arthritidis
	24 months	1/10	Possible M. arthritidis

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS **PRINTED AS OF MAY 1993**

TR No. CHEMICAL

201	2,3,7,8-Tetrachlorodibenzo-p-dioxin (Dermal)
206	1,2-Dibromo-3-chloropropane
207	Cytembena
208	FD & C Yellow No. 6
209	2,3,7,8-Tetrachlorodibenzo-p-dioxin (Gavage)
210	1,2-Dibromoethane
211	C.I. Acid Orange 10
212	Di(2-ethylbexyl)adinate
213	Butyl Benzyl Phthalate
214	Caprolactam
215	Bishenol A
216	11. Aminoundecanoic Acid
217	Di/2-Ethylhoyd) nhthalate
210	2.6-Dichloro, n. nhenvlenediamine
220	2,0-Dichioro-p-phenylenediamine
220	Laguet Boon Gum
222	CL Dimense Vellen 2
222	C.I. Disperse Yellow 3
223	Eugenoi
224	Tara Gum
223	D & C Red No. 9
226	C.I. Solvent Yellow 14
227	Gum Arabic
228	Vinylidene Chloride
229	Guar Gum
230	Agar
231	Stannous Chloride
232	Pentachloroethane
233	2-Biphenylamine Hydrochloride
234	Allyl Isothiocyanate
235	Zearalenone
236	D-Mannitol
237	1,1,1,2-Tetrachloroethane
238	Ziram
239	Bis(2-chloro-1-Methylethyl)ether
240	Propyl Gallate
242	Diallyl Phthalate (Mice)
243	Trichlorethylene (Rats and Mice)
244	Polybrominated Biphenyl Mixture
245	Melamine
246	Chrysotile Asbestos (Hamsters)
247	L-Ascorbic Acid
248	4,4' -Methylenedianiline Dihydrochloride
249	Amosite Asbestos (Hamsters)
250	Benzyl Acetate
251	2,4- & 2,6-Toluene Diisocyanate
252	Geranyl Acetate
253	Allyl Isovalerate
254	Dichloromethane (Methylene Chloride)
255	1,2-Dichlorobenzene
257	Diglycidyl Resorcinol Ether
259	Ethyl Acrylate
261	Chlorobenzene
263	1,2-Dichloropropane
266	Monuron
267	1,2-Propylene Oxide
269	Telone II® (1,3-Dichloropropene)
271	HC Blue No. 1

272 Propylene

TR

No.	CHEMICAL
273	Trichloroethylene (Four Rat Strains)
274	Tris(2-ethylhexyl)phosphate
275	2-Chloroethanol
276	8-Hvdroxyauinoline
277	Tremolite
278	2.6-Xvlidine
279	Amosite Asbestos
280	Crocidolite Ashestos
281	HC Red No. 3
282	Chlorodibromomethane
202	Diallyinhthelate (Bate)
285	C L Basic Red 9 Monobydrochloride
205	Dimethyl Hydrogen Phosphite
700	1 3 Butadiana
200	Penzene
207	Isonhorone
271	UC Dive No. 2
275	Chloringted Trigodium Phoenhate
274	Christile Aspestos (Rats)
206	Tetrakis (hydronymethyl) phosphonium Sulfate &
290	Tetrakis(hydroxymethyl) phospholinum Sunate &
200	Dimethyl Morpholinonbornhormidate
200	C L Disperse Blue 1
300	3. Chloro-2. methylpropene
301	o-Phenylphenol
303	A-Vinvloycloberene
304	Chlorendic Acid
305	Chlorinated Paraffins (C., 43% chlorine)
306	Dichloromethane (Methylene Chloride)
307	Enhedrine Sulfate
308	Chlorinated Pariffins (C ₁₀ , 60% chlorine)
309	Decabromodinhenvl Oxide
310	Marine Diesel Fuel and JP-5 Navy Fuel
311	Tetrachloroethylene (Inhalation)
312	<i>n</i> -Butyl Chloride
313	Mirex
314	Methyl Methacrylate
315	Oxytetracycline Hydrochloride
316	1-Chloro-2-methylpropene
317	Chlorpheniramine Maleate
318	Ampicillin Trihydrate
319	1.4-Dichlorobenzene
320	Rotenone
321	Bromodichloromethane
322	Phenylephrine Hydrochloride
323	Dimethyl Methylphosphonate
324	Boric Acid
325	Pentachloronitrobenzene
326	Ethylene Oxide
327	Xylenes (Mixed)
328	Methyl Carbamate
329	1,2-Epoxybutane
330	4-Hexylresorcinol
331	Malonaldehyde, Sodium Salt

- 332 2-Mercaptobenzothiazole 333 N-Phenyl-2-naphthylamine
- 334 2-Amino-5-nitrophenol
- 335 C.I. Acid Orange 3

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS PRINTED AS OF MAY 1993 (CONT.)

TR No. CHEMICAL

336 Penicillin VK

가는 가장 알려졌던 말을 한 것을 가장 가장 못했다.

아이를 해내해 문제가 생활한다. 그 가는 책 한 수가 한 것 가에 가장 가지가 것 같아.

- 337 Nitrofurazone
- 338 Erythromycin Stearate
- 2-Amino-4-nitrophenol 339
- Iodinated Glycerol 340
- 341 Nitrofurantoin
- 342 Dichlorvos
- 343 Benzyl Alcohol
- Tetracycline Hydrochloride 344
- 345 Roxarsone
- 346 Chloroethane
- 347 **D-Limonene**
- a-Methyldopa Sesquihydrate 348
- Pentachlorophenol 349
- 350 Tribromomethane
- 351 p-Chloroaniline Hydrochloride
- N-Methylolacrylamide 352
- 353 2,4-Dichlorophenol
- 354 Dimethoxane
- 355 Diphenhydramine Hydrochloride
- 356 Furosemide
- 357 Hydrochlorothiazide
- 358 Ochratoxin A
- 359 8-Methoxypsoralen
- 360 N,N-Dimethylaniline
- 361 Hexachloroethane
- 362 4-Vinyl-1-Cyclohexene Diepoxide
- 363 Bromoethane (Ethyl Bromide)
- 364 Rhodamine 6G (C.I. Basic Red 1)
- Pentaerythritol Tetranitrate 365
- 366 Hydroquinone
- 367
- Phenylbutazone 368
- Nalidixic Acid
- 369 Alpha-Methylbenzyl Alcohol
- 370 Benzofuran
- 371 Toluene
- 3,3'-Dimethoxybenzidine Dihydrochloride 372
- 373 Succinic Anhydride

TR No. CHEMICAL

- 374 Glycidol
- 375 Vinyl Toluene
- 376 Allyl Glycidyl Ether
- o-Chlorobenzalmalononitrile 377
- 378 Benzaldehyde
- 2-Chloroacetophenone 379
- 380 Epinephrine Hydrochloride
- 381 d-Carvone
- 382 Furfural
- 385 Methyl Bromide
- 386 Tetranitromethane
- 387 Amphetamine Sulfate
- Ethylene Thiourea 388
- 389 Sodium Azide
- 3,3' -Dimethylbenzidine Dihydrochloride 390
- 391 Tris(2-chloroethyl) Phosphate
- 392 Chlorinated Water and Chloraminated Water
- 393 Sodium Fluoride
- 394 Acetaminophen
- 395 Probenecid
- 396
- Monochloroacetic Acid 397
- C.I. Direct Blue 15
- 399 Titanocene Dichloride
- 401 2,4-Diaminophenol Dihydrochloride
- 402 Furan
- 403 Resorcinol
- 405 C.I. Acid Red 114
- 406 y-Butyrolactone
- C.I. Pigment Red 3 407
- 408 Mercuric Chloride
- 409 Quercetin
- 410 Naphthalene
- C.I. Pigment Red 23 411
- 412 4,4'-Diamino-2,2'-Stilbenedisulfonic Acid
- 413 Ethylene Glycol
- 415 Polysorbate 80
- 419 HC Hellow 4
- These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Central Data Management, NIEHS, P.O. Box 12233, MD A0-01, Research Triangle Park, NC 27709.

DEPARTMENT OF HEALTH & HUMAN SERVICES

Public Health Service National Toxicology Program Central Data Management P.O. Box 12233, MD A0-01 Research Triangle Park, NC 27709

> Official Business Penalty for Private Use - \$300

SPECIAL FOURTH-CLASS RATE POSTAGE AND FEES PAID DHHS/NIH Permit No. G-763

NIH Publication No. 93-3147 May 1993