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Objective 
Given: 
● Large numbers of chemicals we know little to nothing 

about 
● Multiple ‘omics’ type studies and screening data 
● AOPs are useful tools for connecting HTS to regulatory 

endpoints 
Can we: 
● Create an approach that can identify 100s of putative 

AOPs using this data 



What do we need? 

● Methods that can deal with 
o Sparse, categorical, continuous data 
o Missing values and mixed data types 
o Lack of “training set” or gold standards 
o New data streams - framework for data integration 

● Outputs that are informative and intuitive to biological 
domain experts 
o This is key for helping evaluate the cpAOPs 

 



 



 



Creating a cpAOP network 
● TG GATES data 

o Large screen of hundreds of chemicals 
 Used only rat liver data 

o Includes microarray, clinical chemistry and 
pathology data 

● Resulting network has liver-focused cpAOPs 
 





Carbon tetrachloride example 
● Given: 

o Large cpAOP network enriched with liver-specific 
data 

● Objective: 
o Probe cpAOPnet to find an adverse outcome 

pathway associated with CCl4  
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Take home 

● Developed a framework for integrating diverse 
information  
o Framework is flexible to data types using edge 

properties to hold meta data 
● Demonstrated a (manual) way to extract cpAOPs 

associated with a chemical from the network 
 



Future work 
● Automating the cpAOP identification and ranking 

o Engage domain expertise for model refinement 
o Generate “straw man” cpAOP to serve as a starting 

point for curation 
o Conform to established AOP definitions 

● Integrate Tox21-type data 
o Challenge is in matching names!! 

 



Implications 
● Provide AOPs for more HTS assays - enhanced 

interpretation 
● cpAOPs can feed AOP development efforts 
● Point towards new assay needs 

 





Thank you 

Steve Edwards, US EPA 
Charles Wood, US EPA 
Noffisat Oki, ORISE 
Lyle Burgoon, US EPA 
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