Multitask Deep learning modelling of rodent acute toxicity

04/11/2018 Alexey Zakharov

NCATS

Acute toxicity data set

NICEATM web site:

• 6734 compounds with LD₅₀ values measured on rats, oral administration

In addition, we have collected the following data from **ChemIDPlus** web-site*:

- About 50,000 chemical structures with data on acute rodent (mouse and rat) toxicity
- Toxicity endpoints are expressed in LD₅₀ (mg/kg) values
- Four types of administration:

Oral
Intravenous
Intraperitoneal
Subcutaneous

* http://chem.sis.nlm.nih.gov/chemidplus/

National Center for Advancing Translational Sciences * http://chem.sis.n

Data set preparation

- All structures were standardized/normalized
- All duplicate compounds were eliminated
- Mixtures and salts were removed
- LD₅₀ values in mg/kg were converted to mmol/kg

Activity	Number of compounds after curation
Rat Oral LD ₅₀ (NICEATM)	6,349
Rat Intraperitoneal LD ₅₀	4,297
Rat Intravenous LD ₅₀	2,360
Rat Oral LD ₅₀ (ChemIDPlus)	7,241
Rat Subcutaneous LD ₅₀	1,456
Mouse Intraperitoneal LD ₅₀	29,564
Mouse Intravenous LD ₅₀	15,494
Mouse Oral LD ₅₀	16,525
Mouse Subcutaneous LD ₅₀	5,609

Overlap Analysis

Reproducibility

Interspecies comparisons

Multitask Deep learning (MDL)

QSAR Methods

Descriptors:

- RDkit Morgan fingerprints
 Circular fingerprints, 2048 bit, radius 2
- RDkit Avalon fingerprints
 Path based fingerprints, 2048 bit
- RDkit physical-chemical descriptors SLogP, topological polar surface area, molecular weight, number of hydrogen bond donors and acceptors

- Morgan Fingerprint and 5 phys-chem descriptors
- Avalon Fingerprint and 5 phys-chem descriptors

Machine Learning approaches

- Random Forest as baseline approach: 300 trees, 2048+5 features
- Multitask Deep Learning: ReLu, 4 hidden layers, ADAM optimizer, Dropout, Dense layers

Modeling workflow

AD: Tanimoto Similarity

calculated between compounds using Morgan fingerprints

External 5 fold CV prediction results

Can Multitask improve results?

Analysis of external test set

Test set coverage

Data reproducibility, NICEATM training vs test

RMSE: 0.417

Data reproducibility, combined training vs NICEATM test

RMSE: 0.161

RMSE: 0.402

External test set prediction results

Models Dissemination: NCATS Predictor

- Predict 1121 biological activities
- Supports SMILES, drug name, images
- Allows to send the batch of compounds
- Show up neighbor activity and structure

https://predictor.ncats.io/

Acknowledgments

National Center for Advancing Translational Sciences (NCATS)

- Tongan Zhao
- Timothy Sheils
- Gergely Zahoranszky-Kohalmi
- Tyler Peryea
- Dac-Trung Nguyen
- Noel Southall
- Anton Simeonov

