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Rat Acute Toxicity ANNE Models

• ANNE methodology
– Regression, binary classification, and multiclass models

• Data set curation
• Results
• Summary
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Building ANNE Models
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Structures and 
experimental data

Select best model

Remove low 
variance and

correlated 
descriptors

Test Set Selection
1) Kohonen map
2) Stratified sampling
3) Random
4) K-means
5) Manual

Sequestered
Test SetApply model 

to test set

ANNE 
Training

Grid of ANNE Models
(X descriptors by Y neurons)

Compute >300 
Descriptors

Constitutional
Topological
Hbonding
Ionization
Electrotopological
Charge/reactivity

• No. of neurons and descriptors
• Create models with different architectures

• Sensitivity analysis
• Which descriptors create the best model? Training Set

Ensemble of 33 ANNs



Regression Neural Network
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Weights are adjusted iteratively to 
optimize model performance on the training set

n

Obj =∑ (yk − g(k))2

k=1

where yk is the observed value for observation k
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Early Stopping Prevents Overtraining
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Applicability Domains

applicability domain
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Binary Classification Neural Network
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Predicted “Positive”
Yes

Predicted “Negative”No

Output

Weights and threshold adjusted iteratively to 
optimize model performance on the training set.

n

Obj =∑w0 (1− c(k))(g(k))2 + w1c(k)(1− g(k))2

k=1

where c(k) is 0 if observation k is in the negative
class and 1 if observation k is in the positive class.
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Threshold Adjustment
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The neural network outputs a continuous value (g) between 0 and 1 for each compound.  The graph below illustrates a 
possible distribution plot of the observed negatives (green bars) and positives (red bars) of these  values.

A threshold value is adjusted to give the best classification statistics
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Confidence Estimates
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Confidence estimates are 
computed for binary 
classification predictions.  
These are displayed in 
parenthesis next to the binary 
prediction.



Confidence Analysis
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Prediction uncertainty is based on the degree of concordance 
among individual neural networks in an ensemble.

log scale

• Continuity correction for natural error rate
• Observed distributions of experimental 

positives and negatives are fitted to separate 
beta binomial distributions



Removing “Black-Box” Stigma with ANN
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• Descriptor Sensitivity Analysis (DSA) shows the predicted effect of changing each 
model descriptor on the corresponding property for the selected molecule.

– This provides guidance to the medicinal chemists as to how they may improve a property by 
changing some structural feature(s) of the molecule



Data Set Curation

• Standardize functional groups and tautomers
• Exclude molecules that contain atoms other than H, C, N, 

O, P, S, F, Cl, Br, or I
• Find and analyze duplicate structures and neighbors

– Remove compounds with widely varying endpoint values 
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Matched Molecular Pair Analysis

9 pairs of compounds 
have a single heavy atom 
modification that 
converts the compound 
from GHS=1 to GHS=5.  
These pairs represent 
“activity cliffs”.  A small 
structural change results 
in a large change in 
biological activity.

GHS=1 GHS=5
GHS=1 GHS=5
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Widely Varying LD50 of Similar Compounds 

22787-58-2

All the close analogs have single digit LD50 values 
while this compound has a very high LD50.
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Widely Varying LD50 of Similar Compounds

89427-25-8

LD50 = 3,955 mg/kg

• 31 most similar structures
• Tanimoto > 0.8
• LD50 range is 0.245 to 77 mg/kg
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Submitted Models

Endpoint Type Training
set size

Test
set size

EPA class (1-4) Multiclass 6,531 1,633
GHS class (1-5) Multiclass 6,951 1,648
LD50 Regression 5,037 1,209
LD50 > 2,000 mg/kg Binary 7,059 1,246
LD50 ≤ 50 mg/kg Binary 6,699 1,675

LD50 data set is smaller than the others because qualitative values, e.g., >2,000 mg/kg were not included.
Submitted 2 models from each endpoint
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External Validation (Test) Set Predictions
Model Endpoint Data Size Outside AD (%) Performance stat1

EPACat_1 EPA class (1-4) 2812 50 (1.8%) 0.696

EPACat_2 EPA class (1-4) 2812 51 (1.8%) 0.691

GHSCat_1 GHS class (1-5) 2882 51 (1.8%) 0.666

GHSCat_2 GHS class (1-5) 2882 51 (1.8%) 0.671

LD50_1 LD50 2172 41 (1.8%) 0.638

LD50_2 LD50 2172 41 (1.8%) 0.605

NonTox_1 LD50 > 2,000 mg/kg 2887 54 (1.9%) 0.750

NonTox_2 LD50 > 2,000 mg/kg 2887 55 (1.9%) 0.748

VeryTox_1 LD50 ≤ 50 mg/kg 2891 52+166 with low 
confidence (7.5%)

0.873

VeryTox_2 LD50 ≤ 50 mg/kg 2891 53+185 with low 
confidence (8.2%)

0.825

1TST_BA (test set balanced accuracy) for EPA, GHS, NT, and VT.  TST_RMSE for LD50
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Using Confidence Estimates for VeryTox Model 

Black points have low confidence (<28%)
Eliminating them decreases sensitivity (Sn) and increases specificity (Sp)

External Prediction (Test) Set
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Sn = 0.76; Sp = 0.86 Sn = 0.73; Sp = 0.91



Summary

• Used ANNE technology to develop regression and classification models
• Curation identified activity cliffs and questionable LD50 values
• Model applicability domain is defined by the minimum and maximum 

descriptor values in the training set
• Confidence estimates are included in binary classification models
• Submitted two models for each of the five endpoints
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