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Problem Statement

Too many chemicals to test with standard 
animal-based methods

–Cost (~$1,000,000/chemical), time, animal welfare
–10,000 chemicals to be tested for EDSP
–Fill the data gaps and bridge the lack of knowledge

Alternative
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Recent Cheminformatics development at NCCT

• We are building a new cheminformatics architecture
• PUBLIC dashboard gives access to curated chemistry
• Focus on integrating EPA and external resources
• Aggregating and curating data, visualization elements and 
“services” to underpin other efforts

• RapidTox
• Read-across
• Predictive modeling
• Non-targeted screening
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Quantitative Structure Activity/Property
Relationships (QSAR/QSPR)

Congenericity principle: QSARs correlate, within congeneric series of compounds,
their chemical or biological activities, either with certain structural features or with
atomic, group or molecular descriptors.

Katritzky, A. R.; Lobanov, V. S.; Karelson, M. Chem. Soc. Rev. 1995, 279-287

Original Structure

Representation Feature selection

Activities

Descriptors

Y = f(bi , X )
X - descriptors (selected variables)

bi - fitted parameters
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QSARs validity, reliability, applicability 
and adequacy for regulatory purposes

ORCHESTRA. Theory, 
guidance and application 
on QSAR and REACH; 
2012. http://home. 
deib.polimi.it/gini/papers/or
chestra.pdf. 
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The conditions for the validity of QSARs

The 5 
OECD 
principles: 

Principle Description

1) A defined endpoint Any physicochemical, biological or environmental effect
that can be measured and therefore modelled.

2) An unambiguous 
algorithm

Ensure transparency in the description of the model
algorithm.

3) A defined domain of 
applicability

Define limitations in terms of the types of chemical
structures, physicochemical properties and mechanisms of
action for which the models can generate reliable
predictions.

4) Appropriate measures 
of goodness-of-fit,   
robustness and 
predictivity

a) The internal fitting performance of a model
b) the predictivity of a model, determined by using an

appropriate external test set.

5) Mechanistic 
interpretation, if possible

Mechanistic associations between the descriptors used in
a model and the endpoint being predicted.
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Development of a QSAR model
• Curation of the data 

» Flagged and curated files available for sharing
• Preparation of training and test sets

» Inserted as a field in SDFiles and csv data files
• Calculation of an initial set of descriptors 

» PaDEL 2D descriptors and fingerprints generated and shared
• Selection of a mathematical method

» Several approaches tested: KNN, PLS, SVM…
• Variable selection technique

» Genetic algorithm
• Validation of the model’s predictive ability

» 5-fold cross validation and external test set
• Define the Applicability Domain

» Local (nearest neighbors) and global (leverage) approaches



Public domain data sources
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Structure curation procedure

Remove of 
duplicates

Normalize of 
tautomers

Clean salts and 
counterions

Remove inorganics 
and mixtures

Final inspection 
QSAR-ready 

structures

Aim of the workflow:  
• Combine  different procedures and ideas  
• Minimize the differences  between the structures used for 

prediction
• Produce a flexible free and open source workflow to be shared

Indigo

KNIME workflow
Mansouri et al. (2016) EHP 124:1023–1033 DOI:10.1289/ehp.1510267
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Molecular structures in the computer

Bitstrings in databases

Fragmental  keys & fingerprints

- substructural search

- read-across 

- similarity search
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Classification methods

• kNN: k Nearest  Neighbors

classification according to the 
majority class of the k neighbors

• SVM: Support Vector Machines

Kernel function maximizing the margin 
between the classes

Other methods: Self organized maps (SOM), Kohonen maps, PLSDA, LDA
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Regression methods

• MLR: Multiple 
Linear 
Regression

𝒚𝒚� = 𝐛𝐛𝐛𝐛 
𝐛𝐛 = (𝐛𝐛′𝐛𝐛)−1𝐛𝐛′𝐲𝐲 

• PLS: Partial 
Least Squares

𝐛𝐛 = 𝐓𝐓𝐏𝐏′ + 𝐄𝐄 
𝐘𝐘 = 𝐔𝐔𝐐𝐐′ + 𝐅𝐅 

PLS is the vector on the PCR ellipse upon which MLR has the longest projection

Other methods: Artificial Neural Networks (ANN), Random Forest, LASSO, PCR…



Variable selection procedure
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Create initial descriptor population

Evaluate fitness of the populations

Select and reproduce
(Crossover, Mutation)

MLR (Multiple Linear Regression)
PLS (Partial Least squares)
SVM (Support Vector Machines)
….

Replace the descriptors of old 
populations with new descriptors Stopping 

criteria

Final 
models

The Genetic  Algorithms diagram 

- Many more descriptors 
than chemicals

- Many irrelevant 
descriptors

Only the most important 
descriptors are selected
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Cross-validation and test-set to avoid
the “by chance” correlation problem
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“There is a concern in West Germany over the falling birth rate. The accompanying
graph might suggest a solution that every child knows makes sense”.

H. Sies, Nature 332, 495 (1988)

5- Fold Cross Validation

Fold : 1 2 53 4
training set

initia data 
set

20 -
25%

training 
set

test



Defining the Applicability Domain (AD)

Sahigara, Mansouri et al. Molecules 17 (5), 4791-4810



An overview of 
Different AD Approaches

AD Approaches

Distance BasedRange Based

Bounding 
Box

Bounding 
Box with

PCA

Geometric

Convex Hull Centroid
Approach 

Fixed 
Knn

Variable
Knn

Sahigara, Mansouri et al. Molecules 17 (5), 4791-4810



Structure-Activity landscape
Smooth landscape: 
Congenericity principle fulfilled

Rugged landscape: 
Activity cliffs & structural cliffs

Maggiora (2006):  The difference between “the gently rolling hills found on 
the Kansas prairie” and “the rugged landscapes of Utah’s Bryce Canyon”



Activity cliffs/Structural cliffs

Activity Cliffs

Structural Cliffs

X-space

Y-
sp
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Activity Cliffs: 
Two  structurally similar compounds with diverse values of the activity 

Structural Cliffs: 
Two  structurally diverse compounds with similar values of the activity 



Discontinuous SARs
19

A: the activity of a given molecule
Sim:  the similarity coefficient

Structure-Activity Landscape index (SALI)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑡𝑡 =
|𝑆𝑆𝑠𝑠 − 𝑆𝑆𝑡𝑡 |

1.01 − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠, 𝑡𝑡)
  



ER & AR modeling projects:
Background and Goals

• U.S. Congress mandated that the EPA screen chemicals for 
their potential to be endocrine disruptors

• This led to the development of the Endocrine Disruptor 
Screening Program (EDSP)

• The initial focus was on environmental estrogens, but the 
program was expanded to include androgens and thyroid 
pathway disruptors



Office of Research and Development
National Center for Computational Toxicology

CERRAP : Collaborative Estrogen Receptor Activity Prediction Project 
40 scientists, 17 research groups

• EPA/NCCT: U.S. Environmental Protection Agency / National Center for Computational Toxicology. USA
• DTU/food: Technical University of Denmark/ National Food Institute. Denmark
• FDA/NCTR/DBB: U.S. Food and Drug Administration. USA
• FDA/NCTR/DSB:  U.S. Food and Drug Administration. USA
• Helmholtz/ISB: Helmholtz Zentrum Muenchen/Institute of Structural Biology. Germany
• ILS&EPA/NCCT: ILS Inc & EPA/NCCT. USA
• IRCSS: Istituto di Ricerche Farmacologiche “Mario Negri”. Italy
• JRC_Ispra: Joint Research Centre of the European Commission, Ispra. Italy
• LockheedMartin&EPA: Lockheed Martin IS&GS/ High Performance Computing. USA
• NIH/NCATS: National Institutes of Health/ National Center for Advancing Translational Sciences. USA
• NIH/NCI: National Institutes of Health/ National Cancer Institute. USA
• RIFM: Research Institute for Fragrance Materials, Inc. USA
• UMEA/Chemistry: University of UMEA/ Chemistry department. Sweden
• UNC/MML: University of North Carolina/ Laboratory for Molecular Modeling. USA
• UniBA/Pharma: University of Bari/ Department of Pharmacy. Italy
• UNIMIB/Michem: University of Milano-Bicocca/ Milano Chemometrics and QSAR Research Group. Italy
• UNISTRA/Infochim: University of Strasbourg/ ChemoInformatique. France

Mansouri et al. (2016) EHP 124:1023–1033 DOI:10.1289/ehp.1510267
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CERAPP data and results

• Classification / Qualitative:
–Binding: 22 models
–Agonists:  11 models
–Antagonists:  9 models

40 Models received:
Regression / Quantitative:
Binding:  3 models
Agonists:  3 models
Antagonists:  2 models

Datasets of the project
• Training set: 1,677 chemicals (EPA ToxCast data) 
• Prediction set: 32,464 chemicals (The Human Exposure Universe)
• Evaluation set: 7,000 chemicals (Literature: Tox21, FDA, METI…)

Consensus modeling:
Weighted vote based on rankings of the predictions accuracy scores

Mansouri et al. (2016) EHP 124:1023–1033 DOI:10.1289/ehp.1510267



Consensus Qualitative Accuracy
Prediction Accuracy Strongly Depends on Data Quality

Total binders: 3961
Agonists: 2494
Antagonists: 2793

ToxCast 
data

Literature 
data

(All: 7283)

Literature data 

(>6 sources: 
1209)

Sensitivity 0.93 0.30 0.87
Specificity 0.97 0.91 0.94
Balanced accuracy 0.95 0.61 0.91

ToxCast data 
(training set)

Literature data    
(test set)

Observed\Predicted Actives Inactives Actives Inactives
Actives 83 6 597 1385
Inactives 40 1400 463 4838

ROC curve of the external validation set (literature)
Mansouri et al. (2016) EHP 124:1023–1033 DOI:10.1289/ehp.1510267



Consensus Quantitative Accuracy 

Box plot of the active classes of the 
consensus model.
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Potency classes

• positive concordance < 0.6 => Potency class= Very weak
• 0.6=<positive concordance<0.75 => Potency class= Weak
• 0.75=<positive concordance<0.9 => Potency class= Moderate
• positive concordance>=0.9 => Potency class= Strong

Variation of the balanced accuracy with 
positive concordance thresholds 

Mansouri et al. (2016) EHP 124:1023–1033 DOI:10.1289/ehp.1510267
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Concordance of the qualitative models

st models predict most chemicals as inactive
Actives

Prioritization 

Mo

InactivesOnly 757 chemicals have >75% positive concordance

Only a small fraction of chemicals require further testing!

Mansouri et al. (2016) EHP 124:1023–1033 DOI:10.1289/ehp.1510267
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Mansouri et al. (2016) EHP 124:1023–
1033 DOI:10.1289/ehp.1510267
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From CERAPP to CoMPARA : Collaborative
Modeling Project for Androgen Receptor Activity

• Follow the CERAPP framework
• Use larger size prioritization set
• Use data from the combined EPA ToxCast AR assays 
• Collect and curate data from the literature for validation
• Use agonists, antagonists, and binding data
• Build continuous and classification models 
• Similar approach for consensus modeling and validation
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CoMPARA participants: 34 international groups

From CERAPP

• EPA/NCCT. USA
• DTU/food. Denmark
• FDA/NCTR/DBB. USA
• Helmholtz. Germany
• ILS&EPA/NCCT. USA
• IRCSS. Italy
• LockheedMartin&EPA. USA
• NIH/NCATS. USA
• NIH/NCI. USA
• UMEA/Chemistry. Sweden
• UNC/MML. USA
• UniBA/Pharma. Italy
• UNIMIB/Michem. Italy
• UNISTRA/Infochim. France
• VCCLab. Germany

New research groups
• NCSU. Department of Chemistry, Bioinformatics Research Center. USA 

• EPA/NRMRL. National Risk Management Research Laboratory. USA

• INSUBRIA. University of Insubria. Environmental Chemistry. Italy

• Tartu. University of Tartu. Institute of Chemistry. Estonia

• NIH/NTP/NICEATM. USA

• Chemistry Institute.  Lab of Chemometrics. Slovenia

• SWETOX. Swedish toxicology research center. Sweden

• Lanzhou University . China

• BDS. Biodetection Systems. Netherlands

• MTI. Molecules Theurapetiques in silico. France

• IBMC. Institute of Biomedical Chemistry. Russia

• UNIMORE. University of Modena Reggio-Emilia. Italy

• UFG. Federal University of Golas. Brazil

• MSU. Moscow State University. Russia

• ZJU. Zhejiang University. China

• JKU. Johannes Kepler University. Austria

• CTIS. Centre de Traitement de l'Information Scientifique. France

• IdeaConsult. Bulgaria

• ECUST. East China University of Science and Technology. China
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Developing “OPERA Models”

• Interest in physicochemical properties to include in exposure modeling, 
augmented with ToxCast HTS in vitro data etc.

• Our approach to modeling:
– Obtain high quality training sets
– Apply appropriate modeling approaches 
– Validate performance of models
– Define the applicability domain and limitations of the models
– Use models to predict properties across our full datasets
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PHYSPROP Data: Available from:
http://esc.syrres.com/interkow/EpiSuiteData.htm

• Water solubility 
• Melting Point
• Boiling Point
• LogP (KOWWIN: Octanol-water partition coefficient)
• Atmospheric Hydroxylation Rate
• LogBCF (Bioconcentration Factor)
• Biodegradation Half-life
• Ready biodegradability
• Henry's Law Constant
• Fish Biotransformation Half-life
• LogKOA (Octanol/Air Partition Coefficient)
• LogKOC (Soil Adsorption Coefficient)
• Vapor Pressure
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KNIME Workflow to Evaluate the Dataset

Mansouri et al. SAR QSAR Environ. Res. 2016, 27 (11), 939−965.
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LogP dataset: 15,809 chemicals (structures)
• CAS Checksum: 12163 valid, 3646 invalid (>23%)
• Invalid names: 555 
• Invalid SMILES 133
• Valence errors: 322 Molfile, 3782 SMILES (>24%)
• Duplicates check:

–31 DUPLICATE MOLFILES 
–626 DUPLICATE SMILES
–531 DUPLICATE NAMES

• SMILES vs. Molfiles (structure check)
–1279 differ in stereochemistry (~8%)
–362 “Covalent Halogens”
–191 differ as tautomers
–436 are different compounds (~3%)

Mansouri et al. SAR QSAR Environ. Res. 2016, 27 (11), 939−965.
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Examples of Errors

Valence Errors Different Compounds

Mansouri et al. SAR QSAR Environ. Res. 2016, 27 (11), 939−965.
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Examples of Errors

Duplicate Structures Covalent Halogens

Mansouri et al. SAR QSAR Environ. Res. 2016, 27 (11), 939−965.
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Summary:

Property Initial file flagged Updated 3-4 STAR Curated QSAR ready
AOP 818 818 745
BCF 685 618 608
BioHC 175 151 150
Biowin 1265 1196 1171
BP 5890 5591 5436
HL 1829 1758 1711
KM 631 548 541
KOA 308 277 270
LogP 15809 14544 14041
MP 10051 9120 8656
PC 788 750 735
VP 3037 2840 2716
WF 5764 5076 4836
WS 2348 2046 2010

Mansouri et al. SAR QSAR Environ. Res. 2016, 27 (11), 939−965.
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OPERA 
models

Prop Vars 5-fold CV (75%) Training (75%) Test (25%)

Q2 RMSE N R2 RMSE N R2 RMSE

BCF 10 0.84 0.55 465 0.85 0.53 161 0.83 0.64

BP 13 0.93 22.46 4077 0.93 22.06 1358 0.93 22.08

LogP 9 0.85 0.69 10531 0.86 0.67 3510 0.86 0.78

MP 15 0.72 51.8 6486 0.74 50.27 2167 0.73 52.72

VP 12 0.91 1.08 2034 0.91 1.08 679 0.92 1

WS 11 0.87 0.81 3158 0.87 0.82 1066 0.86 0.86

HL 9 0.84 1.96 441 0.84 1.91 150 0.85 1.82
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OPERA 
models

Prop Vars 5-fold CV (75%) Training (75%) Test (25%)

Q2 RMSE N R2 RMSE N R2 RMSE

AOH 13 0.85 1.14 516 0.85 1.12 176 0.83 1.23

BioHL 6 0.89 0.25 112 0.88 0.26 38 0.75 0.38

KM 12 0.83 0.49 405 0.82 0.5 136 0.73 0.62

KOC 12 0.81 0.55 545 0.81 0.54 184 0.71 0.61

KOA 2 0.95 0.69 202 0.95 0.65 68 0.96 0.68

BA Sn-Sp BA Sn-Sp BA Sn-Sp

R-Bio 10 0.8 0.82-0.78 1198 0.8 0.82-0.79 411 0.79 0.81-0.77
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LogP Model: Weighted kNN Model, 
9 descriptors

Weighted 5-nearest neighbors
9 Descriptors
Training set: 10531 chemicals
Test set: 3510 chemicals

5 fold Cross-validation:
Q2=0.85  RMSE=0.69
Fitting:
R2=0.86   RMSE=0.67
Test:
R2=0.86    RMSE=0.78
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The iCSS Chemistry Dashboard
at https://comptox.epa.gov

39

https://comptox.epa.gov/
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