Measurement Assurance in a Nanocytotoxicity Assay

Elijah Petersen and John Elliott
Cell Systems Science Group
Material Measurement Laboratory
National Institute of Standards and Technology

How do we improve confidence in alternative model measurements?

- Cellular measurements are complicated
 - Cell culture, extended periods, manual
 - Manual steps in setting up experiments
 - Multiple reagents
 - Instrumentation
- How do you prove measurement quality?

What can we do to increase confidence in the measurement

- Treat the assay as a measurement process
- Add process controls as evidence that the measurement process is proceeding as expected
- Adapt the "seven basic tools for quality" to cell assays
 - Cause and effect diagram
 - Check sheet
 - Control charts
 - Histogram
 - Pareto chart
 - Scatter diagram
 - Flow chart

The importance and challenge of nanotechnology risk assessment

- Nanotechnology is expected to have a massive commercial impact
- However, measuring their potential toxicological effects is challenging
 - Many of the standard methods for dissolved chemicals require nanoparticle-specific modifications
 - Nanoparticles may cause artifacts with many assays
 - There is a huge range of nanoparticles (different sizes, coatings, chemical compositions, etc.) to test
 - Prioritization is needed for screening the potential effects and in vitro methods have been suggested for this purpose
 - But, there are disagreements among laboratories on the cytotoxic effects of many nanoparticles

NIST Role in Nano-Environmental Health & Safety

National Nanotechnology Initiative 2011 Environmental Health and Safety Research Strategy

Identification and Avoidance of Potential Artifacts and Misinterpretations in Nanomaterial Ecotoxicity Measurements

Elijah J. Petersen,^{†,*} Theodore B. Henry,^{‡,§,∥} Jian Zhao,[⊥] Robert I. MacCuspie,^{#,∇} Teresa L. Kirschling,[○] Marina A. Dobrovolskaia,[♠] Vincent Hackley,[#] Baoshan Xing,[⊥] and Jason C. White[¶]

Perspective

pubs.acs.org/crt

Use of Cause-and-Effect Analysis to Design a High-Quality Nanocytotoxicology Assay

Find sources of variability in assay

Cause and effect diagram for MTS assay

Design a new plate format with process control measurements

Results

Results

Interlaboratory comparison

JOINT RESEARCH CENTRE

The European Commission's in-house science service

- Experimental design:
 - Share two A549 cell lines from ATCC and EMPA
 - Serum from local provider
 - Reagents from local provider
 Serum and serum-free tests
 Multiple replicates
 - Share nanoparticles (+ve PS) and chemical control (CdCl₂)

Dose Response Curves NP

NP EC50 values

- Looks like harmonization between the laboratories
- No cell line differences
- The serum conditions increases variability

Lets look at the controls

Chemical Process Control- tests overall measurement system

Serum free conditions, variability less than with NP Differences between cell lines

Cell line differences?

How sensitive are we to cell seeding variability

- Correlation between notreatment cells and NP EC50
- If outliers are removed, no strong correlation
- Suggests that within this range of cell seeding variability (OD=1.5-2.5) no big effect on EC50

Pipetting volumes and cells

Variability in pipetting volumes<< variability in pipetting cells

Specification of process controls:

Control	Serum free: target value	Serum free: range	Serum free: variability	Serum: target value	Serum: range	Serum: variability
Control 1 (within) B6 – G6	1.8 OD	1.5-2.0 OD	<10%	2.0 OD	1.8-2.3	<7%
Control 2 (between) B3-B6 B8-B10	1.5 OD	1.3-1.8 OD	<12%	2.2 OD	1.8-2.8	<7%
Control 3A Background B7-G7	0.06 OD	0.05-0.09 OD	< 6%	0.06 OD	0.05-0.09 OD	< 6%
Control 3B ¹⁾ Background Chemical Control B2-G2	0.06	0.05-0.09	<6%	0.06	0.05-0.09	<6%
Control 3C ²⁾ Background NP B11- G11						
Control 4 3) Chemical reaction control	49.9	47.5-51.5		77.2	54.3-99.4	

Conclusions:

- Interlab data with process controls presents a powerful view of a biological assay
- The findings regarding the sources of variability in this assay may be relevant for other cytotoxicity assays
- Check cell line ID. May affect controls and not test result
- The process used to quantify the sources of variability and generate test specifications can be used with other assays
- Meeting specifications provides evidence that the test procedure is as expected. "Accept test result"
- Adds Measurement Assurance to a Cell Assay

Collaborators

Matthias Rosslein

Harald Krug

Peter Wick

Cordula Hirst

Rawiwan Maniratanochote

Nam Woong Song

Francois Rossi

Agnieska Kinsner-Ovaskainen