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Outline

= A little history on zebrafish AHR genes
= PAH toxicity

= Classifying PAHS

* AHR Downstream events

* AHR regulated non coding RNAS



AHR Gene Duplication
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AHR1B, a new functional aryl hydrocarbon receptor in zebrafish: tandem arrangement of ahrlb and ahr2 genes
Sibel I. Karchner, Diana G. Franks, Mark E. Hahn, Biochem J. 2005 Nov 15; 392(Pt 1): 153-161.



The AHR and PAH pathways of toxicity
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Predicting AHR Ligands




Modeling a “Target” Zebrafish AHRs

/ebrafish three AHRs

e AHRZ2 primary mediator of toxicity

e AHR1A deficient in TCDD binding and
transactivation activity

e AHR1B functional but no known toxicological
roles

AHR Homology Mode|

< AHR ligand binding domain models built
using NMR structure of HIF2a (PAS domain)

e Mouse, rat, human, zebrafish

= Performed molecular docking of putative
AHR ligands

Bisson, W.H. et al. 2009, J Med Chem. O’Donnell, E.F. et al. 2010, PLOS One



TCDD Molecular Docking with the
Zebrafish AHRsS

AHR2 AHR1B AHR1A
Unable to
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Predicted binding energy
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Bisson, W.H. et al. 2009, J Med Chem.



The ahr2hu3335 Zebrafish Line
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Goodale et al. PloS one 2012 _ _
Edwin Cuppen, PhD The Hubrecht Institute



Ahr2hv333s Mutants Are Resistant to TCDD-
Induced Developmental Toxicity
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Leflunomide Molecular Docking

AHR2 AHR1B AHR1A

-2.13 -1.97 -2.19

Predicted binding energy
(kcal/mole)

O’Donnell, E.F. et al. 2010, PLOS One




Leflunomide-induced CYP1A expression
Is partially AHR2 dependent
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AHR1A Dependent CYP1A Expression

l1a  1b .

Control morpholino

ahr2h=ss 10 uM Lef

AHR1B + AHR1A morpholino

ahr2hussss 10 uM Lef
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AHR1B morpholino

ahr2hu3sss 10 uM Lef

Control morpholino

ahr2hU3335 1% DMSO




Log, Fold Change
(Relative to Control)
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ahr2 Mutants Are Resistant to TCDD-induced
CYP Expression Changes
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AHR2 importance confirmed in CRISPR/Cas? line

Garcia GR, Bugel SM, Truong L, Spagnoli S, Tanguay RL. AHR2 required for normal behavioral
responses and proper development of the skeletal and reproductive systems in zebrafish. PloS
one. 2018;13(3)
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Toxicity Mechanisms for Most PAHs are Unknown
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Environmental samples can contain
100’s PAHs

Environmentally Dynamic
Parent, substituted compounds

Toxicity data is scarce for substituted
PAHs

PAHSs induce AHR-dependent and
AHR-independent developmental
toxicity, dependent on structure

We lack the structural basis for
developmental and neurotoxicity



High-Throughput Screening of PAHS
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Exposure 24 hour evaluations 5 day evaluations
 Dechorionated  Behavior « Morphology
6 hpfto 120 hpf « Morphology  Behavior
« 5 concentrations « CYP1A Localization
e 50-1 uM
e 5-0.1 uM

e N=32



HTS Platform for Chemical Screening

1 day 5 days

Chemical Exposure

Embryo Collection 30 40
Time (s) Developmental
Assessments

Truong et al. (2014) Toxicol Sci 137: 212-233.

Mandrell, D., Truong, L., etal . 2012. Automated zebrafish chorion removal and single embryo placement: Optimizing throughput of zebrafish
developmental toxicity screens. Journal of Laboratory Automation 17 (1) 66-74.

All dependent on a custom made LIM system “ZAAP”









What About The 24 hpf Photomotor Response (EPR)?

e Control fish (in the absence of chemical) will respond after the 1st light

pulse (Excitatory interval) but not after the 2"d light pulse (Refractory
interval).
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Larval Photomotor Response (LPR)
Behavioral Testing (5 day Larvae)

Distance Moved During Alternating Periods of Light and Dark

Larval Photomotor Behavior

ol
e LTI

acclimation LPR assay

The LPR assay is 18 mins, with a 6 min acclimation period. Statistical significant was determined using a K-S test with a p<0.01, and a minimum
of 30% AUC change (relative to control).



Larval Photomotor Response (LPR)
Behavioral Testing (5 day Larvae)

96-well plate

Distance moved over time
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Total Movment (mm)

Larval Photomotor Response (LPR)
Example Output (5 day Larvae)
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Comparative PAH Screening Effort




Number of PAHs

Developed a Library of PAHs for
Comparative Analysis
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CYP1A Expression Patterns as a
Biomarker of AHR Activation

120 hpf



Summary of Results




Example Parent and Derivatives




16 EPA Priority PAHs Do Not Reflect Full
Range of Effects




i, 127 PAHSs Clustered by Cypla Expression Patterns
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RNA-SEQ Analysis (Embryonic Expression)
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Case Study - two OPAHSs

Benz[a]anthracene-7,12-dione
(7,12-Ba[A]Q)

1,9-Benz-10-anthrone (BEZO)



Differential Downsiream AHR Activation (Measured
CYP1A Expression)



Overt Toxicity for both — AHR2 Dependent

zfCyp1A Promoter Green Fluorescent Protein




Complexity of Defining Molecular Responses — Even if
MIE Is known



Looking Downstream of AHR2 activation




Novel Transcript identified as long non-coding RNA (IncRNA)
and mapped adjacent to Sox%b gene

Top significantly elevated transcripts
identified from RNA-Seq in whole 48 hpf sox9b long intergenic non-coding RNA (slincR)

embryo exposure to 10 uM B[a]AQ

Gene log2 (fold change)
cypla 7.9
cyplcl 4.8
cyplc2 4.6
cyplbl 3.6
novel transcript 3.2

I 5 kb Promoter T AHRE [ Poly (A) == Splice blocking MO — Validation primers
Ch3: slincR
' ———150306bp ——— Forward Strand >
+1
T 1 1 —
-4792 -2432 -806 -86
-4828 -893
o6y i 38,995 bp i
+1
< Reverse Strand ————5126bp ———

sox9b

Spatial arrangement conserved
Adjacency of AHREs in promoter region of IncRNA conserved
Expect IncRNA-target regulation to be similar between fish

and mammals




Sox9b and “SlincR” Expression in Mammalian Tissues

Mouse

Human

RNA-seq expression data from NCBI BioProjects PRINA66167 (Mouse) and PRJEB4337 (Human)



Sox9? Importance for Toxicology and Human Health

Sox9 in humans:

e Dysregulation of Sox9 has been implicated in skeletal deformities, fibrosis,
and cancer (Pritchett 2011)

Upon developmental exposure to TCDD, zebrafish Sox9b:
* Is one of the most reduced transcripts in several target organ toxicities
e |s hypothesized to have a causal role in TCDD toxicity

 The mechanism of Sox9b repression was unknown



Predicted slincR Structure

Selective 2-Hydroxyl Acylation Analyzed
by Primer Extension (SHAPE)



slincR Expression Is Elevated by
Other AHR Ligands

slincR Expression
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Induction of slincR Expression Requires AHR2
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Expression of Sox?b and SlicnR Expression

48 hpf
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Knockdown of slincR Results
In a Relief in Repression of Sox9b

Confirmation of Knockdown:

slincR (48hpf)
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What is the transcriptional impact of knocking
slincR down?

slincR splice blocking morpholino design:

RNA-Seqg Experimental Objectives:

|dentify the transcripts, pathways, and biological [ F1 F— P F—1 E3
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SlincR Transcriptional
regulation

Garcia et al. Sighaling events downstream of AHR activation that
contribute to toxic responses: The functional role of an AHR-
dependent long non-coding RNA (slincR) using the zebrafish
Model In press EHP



Proposed mechanism of AHR-dependent control of gene
expression during normal development

4. Altered biological
processes

2. slincR is elevated in response to Trernsie (1)
the activation of the AHR signaling /

pathway /

& other targets ;S Cell adhesion (1)

slincR ;L
1. slincR is a direct AHR target gene 3. slincR represses Sox9b & *___ (Notch signaling (1)
regulates other unknown targets



To Summarize

* AHR gene duplication - zebrafish have three functional AHRs
* [Increasingly possible to predict igand/AHR binding

» Platform for structure-based PAH screening

= Complex downstream AHR targets

= AHR/SlincR/Sox9b relationship

* Highly amenable for mixture assessments
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