Units of Measurement

Weight/Mass

Da	dalton	1 Da	$= 1.65 \times 10^{-24} \mathrm{g}$
g	gram	1 g	= 0.3035 oz (avoirdupois)
kg	kilogram	1 kg	= 2.2 lb
Mg	megagram, metric ton	1 Mg	= 10 ⁶ g or 2,205 lb
μg	microgram	1 μg	$= 10^{-6} g$
mg	milligram	1 mg	$= 1/1,000 g; 10^{-3} g$
mol	mole	1 mol	= molecular weight in grams
ng	nanogram	1 ng	$= 10^{-9} g$
OZ	ounce (avoirdupois)	1 oz	= 28.3 g
pg	picogram	1 pg	$= 10^{-12} g$
lb	pound	1 lb	= 0.45 kg

Length

cm	centimeter	100 cm	n = 1 m
dm	decimeter	1 dm	= 1/10 m
ft	foot	1 ft	= 0.3 m
in.	inch	1 in.	= 2.54 cm
km	kilometer	1 km	= 0.6 mi
m	meter	1 m	= 3.3 ft
μm	micrometer, micron	1 μm	$= 10^{-6} \text{ m}$
mi	mile	1 mi	= 1.6 km
mm	millimeter	1 mm	$= 1/1,000 \text{ m}; 10^{-3} \text{ m}$

nm nanometer $1 \text{ nm} = 10^{-9} \text{ m}$

Area

Α	acre	1 A	$= 4047 \text{ m}^2$
Ha	hectare	1 Ha	= 2.47 A
m^2	square meter	1 m ²	$= 10.8 \text{ ft}^2$

Volume

ft³	cubic foot	1 ft³	= 0.028 m ³
m^3	cubic meter	1 m^3	$= 35 \text{ ft}^3$
cm³ or cc	cubic centimeter	1 cc	= approximately 1 mL
gal	gallon (U.S.)	1 gal	= 3.8 L
L	liter	1 L	= 1.05 liquid quarts
mL	milliliter	1 mL	$= 10^{-3} L$
p.g.	proof gallon	1 p.g.	= 1 liquid gal of spirits that
	cm³ or cc gal L mL	m³ cubic meter cm³ or cc cubic centimeter gal gallon (U.S.) L liter mL milliliter	m³ cubic meter 1 m³ cm³ or cc cubic centimeter 1 cc gal gallon (U.S.) 1 gal L liter 1 L mL milliliter 1 mL

Concentration

mM	millimolar	1 mM	= 1 M/1,000
mppcf	millions of particles per cubic foot	mppcf × 35.3	B = millions of particles/m ³
M	molar; moles of solute	per liter of solu	ution
N	normal; 1 gram equival	ent of solute p	per L of solution
ppm	parts per million	1 ppm	= 1 mg/kg = $(mg/m^3)(24.45)/(mol wt)$
ppb	parts per billion	1 ppb	= 1 μg/kg
ppt	parts per trillion	1 ppt	= 1 ng/kg

contains 50% alcohol at 60°F

Pressure

kPa	kilopascal	1 kPa	$= 0.145 \text{ lb/in}^2$
MPa	megapascal	1 MPa	$= 1 \text{ Pa} \times 10^6$
mm Hg	millimeter of mercury	1 mm Hg	= 0.0193 lb/in ²
Pa	pascal	1 Pa	$= 1 \text{ N/m}^2$

Force

N newton $1 \text{ N} = 1 \text{ kg} \times \text{m per s}^2$

Temperature

ىر	degrees Celsius	$= (^{\circ}F - 32) \times 5/9$
°F	degrees Fahrenheit	$= (^{\circ}C \times 9/5) + 32$
K	kelvin	1 K = 3.6609×10^{-3} of the thermodynamic temperature of the triple point of pure water
		= °C + 273.15

 $= [(^{\circ}F - 32)/1.8] + 273.15$

Energy/Power

Α	ampere	1 A	= 1 C/s
C	coulomb	1 C	$= 1 A \times s$
eV	electronvolt	1 eV	$= 1.6 \times 10^{-12} \text{ erg}$
	erg	1 erg	$= 10^{-7} J$
J	joule	1 J	$= 10^7 \text{ erg}$
keV	kiloelectronvolt	1 keV	= 1,000 eV
MeV	megaelectronvolt	1 MeV	$= 1 \times 10^{6} eV$
mW	milliwatt	1 mW	$= 10^4 \text{ erg/s}$

Radiation

Bq	becquerel	1 Bq	= 1 disintegration per second
Ci	curie	1 Ci	$= 3.7 \times 10^{10}$ disintegrations per second
Gy	gray	1 Gy	= 1 J/kg (physical quantity)
mCi	millicurie	1 mCi	= 10 ⁻³ Ci
pCi	picocurie	1 pCi	$= 10^{-12} \text{Ci}$
	rad	1 rad	= 0.01 Gy
R	roentgen	1 R	$= 2.58 \times 10^{-4} \text{C per kg}$
rem	roentgen equivalent man	1 rem	= 0.01 Sv
Sv	sievert	1 Sv	= 1 J/kg (biological effect)

DNA or RNA (length of nucleic acid chain)

kb	kilobase	1 kb	= 1,000 nucleotides of RNA
			= 2,000 nucleotides of DNA
			(1.000 pairs of nucleotides)

Exponentials (Scientific Notation)

 10^2 , 10^3 , 10^6 , etc.: superscripts refer to the number of times 10 is multiplied by itself, e.g., $10^2=10\times10=100$; $10^3=10\times10\times10=1,000$, etc.