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Abstract 
A major component of the National Toxicology Program’s effort to evolve the practice of 
toxicology from an observational science to one that is more mechanistic involves using 
functional omic technologies, such as transcriptomics. NTP’s approach to genomic dose-
response modeling focuses on identifying biological potency of the test article. The approach 
reflects recommendations of experts in toxicology and toxicogenomics. The steps in the process 
include 1) developing a study design that includes a broad range of doses that sufficiently 
describe the shape of the dose-response and maximizes the accuracy of benchmark dose (BMD) 
values derived for all responsive genes; 2) incorporating a signal detection filter to ensure the 
modeled data contain adequate signal to lend confidence that any effect is treatment related; 
3) conducting effect size and trend tests to identify those genes exhibiting a biologically 
plausible and reproducible response to test article treatment; 4) fitting of parametric dose-
response models derived from the EPA BMD software to identify a biological potency estimate 
(i.e., a BMD) for each gene exhibiting a dose-related response to treatment; 5) grouping of genes 
into predefined Gene Ontologies (GO), identifying the GO gene sets responding to treatment, 
and then determining the composite potency of the gene set (i.e., a gene-set BMD); and 
6) providing a biologically and mechanistically focused interpretation. NTP has developed a 
software package, BMDExpress 2.0, which enables users to implement the approach and 
perform extensive data visualization. The approach to genomic dose-response modeling is 
anticipated to lead to greater consistency in reporting of genomic dose-response data and to 
facilitate the use of genomic dose-response data in risk assessment. 
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Introduction 

Changes in the approach to toxicological assessment1 and the advent of inexpensive, high- 
throughput transcriptomics data generation platforms have led to significant interest in the 
integration of genomic dose-response studies (GDRS) for determining test article biological 
potency. The focus on biological potency is related to observation that gene set-level potencies 
derived from GDRS generally provide a good approximation of toxicological potency (i.e., the 
most sensitive effects that are typically used as a point of departure for risk assessment) that have 
been determined using long-term, resource-intensive toxicity studies (e.g., carcinogenicity) in the 
same model organism (e.g., rat)2. Such an approximation of biological potency from short-term 
GDRS could significantly decrease the time required to estimate safe exposure levels and, when 
combined with estimated human exposure levels, can be used for prioritization based on margin 
of exposure for more in-depth testing. 
The National Toxicology Program (NTP) proposes the use of the approach outlined here for both 
in vivo and in vitro genomic dose-response studies. Although the case for using such an 
approach in the context of in vivo studies seems straightforward and has been demonstrated in 
several publications3-13, how in vitro studies will be used in a similar context is less clear. A 
critical additional component of the analysis of in vitro GDRS data required to translate the 
results into the current context of a regulatory setting will be in vitro-to-in vivo extrapolation 
(IVIVe). IVIVe uses bioactive in vitro concentrations to estimate external doses in an intact 
organism that would be predicted to produce a biological effect. Discussion of IVIVe technology 
is beyond the scope of this document but has been discussed extensively in recent publications14. 
Overall, NTP is aware of the additional challenges associated with in vitro GDRS within the 
context of influencing regulatory decision making and will make a concerted effort to address 
these issues in future research. 
Independent of the challenges associated with in vivo or in vitro GDRS, many questions exist 
regarding how best to design, perform, and interpret these studies and to facilitate integration of 
these types of assessments into the safety assessment paradigm. Consensus or, at a minimum, 
guidance on how to carry out and analyze such studies would be helpful in advancing the utility 
of the findings in decision making regarding safety and exposure limits. This document describes 
a framework for performing genomic dose-response analysis that is largely consistent with the 
published approach to analysis embodied in the BMDExpress software3; 15. The described 
approach aims to develop screening-level assessments of test articles for use in prioritizing and 
setting interim exposure limits. 
NTP convened an expert panel on October 23–25, 2017, at the National Institute of 
Environmental Health Sciences, Research Triangle Park, NC to obtain input on specific details 
of its proposed approach to genomic dose-response modeling. NTP carefully considered the 
panel’s input and recommendations in determining what changes to the approach might be 
needed prior to finalization and has herein modified the proposed approach accordingly. NTP 
also will continue to monitor the scientific literature for the development of improved 
approaches to data modeling and analysis. Importantly, in considering the proposed approach, 
readers are asked to keep in mind that NTP’s goal in pursuing GDRS is not to perform 
toxicogenomic-based hazard identification but instead to develop a testing tool that can quickly 
and cost effectively provide an approximation of biological potency that tracks closely with 
toxicological potencies used as points of departure in the traditional risk assessment paradigm. 
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We envision the NTP-proposed approach as a necessary step in considering the use of GDRS-
based biological potency estimates for future use in more traditional risk assessment.  
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Overview of NTP’s Approach 

Approach: NTP’s approach is generally consistent with an approach to genomic dose-response 
modeling outlined by Thomas et al.3 and used extensively by other researchers with various 
slight modifications4-13. This approach entails (1) initial determination of an adequate signal in 
the data for modeling; (2) filtering the measured features (genes/probe sets) to remove those not 
responding to chemical treatment; (3) fitting each filtered feature to multiple, parametric, dose-
response models, identifying the best-fit model, and deriving a potency value (BMD) from that 
model for the feature16; (4) parsing the features into predefined gene sets (e.g., Gene Ontology 
Biological Processes17); and (5) determining potency for each adequately populated gene set by 
deriving the median potency of the genes in each set. BMDExpress is a software package that 
facilitates data analysis in accordance with the outlined approach15. NTP recently modified the 
software to produce the new, freely available version, BMDExpress 2.0.a 
Two additional issues, which are not immediately central to the data modeling pipeline but are 
critical to overall success of the genomic dose-response approach, are study design and 
biological interpretation of findings. With this in mind, NTP will employ the study-design 
approach of Slob et al.18, in which biological samples are distributed over a broad dose range, 
allowing for more accurate estimates of model parameters. This design contrasts with a more 
traditional toxicology study design that includes a limited number of dose levels combined with a 
high level of biological replication. The addition of other study-design parameters (detailed 
below), such as study duration, organ/tissue/cell line selection, and others, will be based on 
published findings and consistent with guideline studies, where appropriate. To facilitate 
interpretation of results from genomic dose-response analysis, NTP will employ a variety of gene 
sets curated in the MsigDB Database that describe or embody a wide variety of signaling and 
biological processes. Initially, NTP plans to limit the interpretation of the findings to information 
curated by external sources with the goal of avoiding inaccurate associations with traditional 
toxicological hazard that could be misconstrued. Finally, for quantitative interpretation, NTP will 
use the genomic dose-response results from the most sensitive gene set based on median BMD 
when identifying the lowest dose at which biological changes occur (i.e., biological effect point 
of departure [BEPOD]). Based on previous work, NTP anticipates the BEPOD will provide a 
reasonable approximation (within a half log) of the most sensitive toxicological effect level from 
longer-term studies in the same model (e.g., rat or mouse). 
To illustrate the envisioned use of genomic dose-response studies at NTP, we present the results 
of the BEPOD identification for multiple, 5-day, repeat-dose studies in rats (Appendix A). To 
allow for comparison with results from the GDRS, the most sensitive neoplastic and 
nonneoplastic endpoints from either the 2-year studies or subchronic studies were modeled to 
determine BMDs.  
Justification for the approach: The primary justifications for the overall approach are historical 
precedent and peer review, as several research groups in government, academic, and private 
sectors have used the general approach, which has been peer reviewed3-13. Further, this approach 
to dose-response modeling is largely consistent with standards the U.S. Environmental 
Protection Agency (US EPA) uses to evaluate data from guideline toxicological assessments and 
to make regulatory decisions. US EPA methods have been extensively documented and 
                                                 
ahttps://github.com/auerbachs/BMDExpress-2.0/releases. 

https://github.com/auerbachs/BMDExpress-2.0/releases
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reviewedb. The design of the in-life portion of the proposal is focused on achieving the most 
accurate estimation of biological potencies within the context of the BMD analysis paradigm for 
all features that change with treatment18. NTP’s mission includes providing data for regulatory 
decision making; thus, we hope that employing methods already accepted by much of the 
regulatory community will remove one major barrier to using genomic data in a regulatory 
context. Finally, results derived from GDRS of multiple chemicals, which used this approach, 
yielded estimated potency values that are similar to potency estimates derived from apical 
toxicological endpoints19. This finding is critical to the approach, as it relates to the translation of 
findings from GDRS for determining safety-focused interim exposure limits and for evaluating 
how the proposed approach can be used to support more standard risk assessments in the future2. 
NTP’s approach to study design focuses on obtaining the best data to determine accurate 
estimates of biological potency using modeling. The use of a broad array of gene sets such as 
those curated in MSigDB is to ensure that all known biological and signaling processes are 
covered, therefore ensuring the most sensitive estimation of biological potency. Finally, 
reporting of the most sensitive gene-set BMD as the BEPOD is based on observations that the 
BMD for the most sensitive gene set from short-term, in vivo, GDRS closely approximates the 
most sensitive BMD values from guideline toxicological assessments of the same test article.  
Despite the relatively broad use of the methods in the NTP analysis pipeline, questions remain 
about specific aspects of the analysis performed inconsistently across the published literature. 
The following section presents a detailed description of the steps in the analysis and the rationale 
behind the selection of specific settings and parameters.  

                                                 
bhttps://www.epa.gov/sites/production/files/2015-01/documents/benchmark_dose_guidance.pdf. 

https://www.epa.gov/sites/production/files/2015-01/documents/benchmark_dose_guidance.pdf
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A Detailed Description of the Steps in the Genomic Dose-
Response Analysis 

Determining Adequate Signal in the Data 
Approach: In the first step of the genomic dose-response analysis protocol, we will apply a 
commonly used statistical analysis (ANOVA, with a Benjamini and Hochberg False Discovery 
Rate [FDR] <0.05) to determine globally whether the signal in the data is adequate to model and 
likely to yield minimally reproducible findings. At least one feature must pass the test to deem 
the data set worthy of further analysis. 
Justification for approach: Use of a premodeling test to determine signal is essential to avoid  
modeling data with no statistically plausible signal. Modeling data with no statistically plausible 
signal is likely to yield unreproducible results with highly inaccurate estimates of BMD values. 
Use of FDR-adjusted ANOVA takes into account the variance intrinsic to the data set under 
consideration and is therefore an effective means of identifying data sets populated solely with 
noise. Importantly, efforts by the MicroArray Quality Control project indicate that such a filter is 
not ideal for maximizing reproducibility across laboratories. Thus, a distinct filter process is used 
in the next step in the analysis with the focus on achieving maximum reproducibility of genomic 
dose-response results. 

Filtering of Measured Features 
Approach: In the second step of the genomic dose-response analysis protocol, we will apply a 
statistical trend test (Williams’ Trend Test20) and effect size (i.e., fold change relative to control 
threshold to be determined empirically for each technology) filter to each data set (one data set 
per chemical) to remove measured features (i.e., genes/transcripts/probe sets) from subsequent 
analysis that do not demonstrate a response to test article treatment. Due to technical differences 
in signal detection and the effect of different normalization processes, thresholds for the 
statistical and effect-size filter will be determined empirically for each transcriptomic platform 
(e.g., RNA-Seq, TempO-Seq21, Affymetrix microarray) using an optimal combination of three 
metrics, including noise elimination (elimination of false signal), permissiveness (detection of 
true signal), and reproducibility (maximizing overlap in findings from independent study 
replication). Specifically upon embarking on the use of the new platform, an initial study will be 
performed three times independently. Each experiment will use a large number of vehicle control 
samples and a minimum of three test article treatments. To identify a noise elimination threshold, 
multiple permutations of statistical thresholds and effect sizes will be employed to perform a 
complete modeling (i.e., run through the analysis pipeline described here) of the “null signal” 
data sets derived from randomly sampled vehicle controls. Parameter thresholds that yield 
“active” (see below for definition) gene sets will be eliminated. Remaining parameter settings 
will be ranked by their degree of permissivity by quantifying the total differential effected 
features from experiments demonstrating a dose-related response to treatment. Parameter settings 
yielding the higher number of differentially expressed features will be given higher ranks than 
those yielding fewer. Independent reproducibility will be assessed to evaluate the percentage of 
overlapping “active” gene sets from each replicate experiment with the parameter settings that 
yield the highest overlap receiving the highest rank. The ranks provided by the noise elimination/ 
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permissiveness and the reproducibility assessments will be combined to identify an optimal 
threshold for processing the data. 
Justification for approach: The use of a trend test such as the Williams’ Test is consistent with 
practices the US EPA recommends when performing BMD modeling.c Regarding genomic dose-
response modeling, NTP acknowledges limitations to using a more traditional trend test such as 
the Williams’ Test that identifies only monotonic trends. Due to the complexity embodied in 
genomic dose-response, biologically meaningful, nonmonotonic gene and gene set-level 
responses to treatment are possible. To address this concern, NTP proposes to evaluate the use of 
nonparametric tests such as those embodied in the Origene analysis tool. The goal in this 
evaluation will be to gauge biological plausibility of additional features identified by the 
nonparametric trend test. 
The basis for combining a statistical and effect size filter is rooted in the observation from 
MicroArray Quality Control studies that found that a nominal p-value combined with the fold-
change filter yields the highest cross-laboratory and cross-platform reproducibility when 
evaluating transcriptomic data22. Because simply a fold change filter can yield greater cross-lab 
reproducibility in certain cases, NTP will also evaluate the use of an effect-size filter in isolation 
using the three criteria described above. 

Fitting Features to Dose-Response Models 
Approach: In the third step of the genomic dose-response analysis, we will fit dose-response 
curves to each measured feature that exhibits a response to chemical treatment as determined by 
the filtering approach described above. Dose-response modeling will be performed as described 
previously, with minor modifications3; 15. To model the data, polynomial 2°, linear, power, Hill, 
and exponential 2, 3, 4, and 5 dose-response models will be fitted to the measured features. 
Equations describing each model are given below. Dose values used in the modeling will be on 
the linear scale and thus will include true “0” values. NTP’s BMDExpress 2.0 software for 
performing dose-response modeling includes the US EPA model executables used in US EPA’s 
BMDS software and will incorporate the constrained high-degree polynomial models and 
nonparametric modeling approaches in the future.d The specific details on each model are 
described in the BMDS software guidance document.e 

Model equations 

Equations for the models are taken from the BMDS software guidance document.f In all 
equations, µ is the mean response predicted by the model. 

Polynomial model 

𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝛽𝛽0 + 𝛽𝛽1  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +  𝛽𝛽2  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2 + ⋯  +  𝛽𝛽𝑛𝑛  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 

where n is the degree of the polynomial. 

                                                 
chttps://www.epa.gov/sites/production/files/2015-01/documents/benchmark_dose_guidance.pdf. 
dhttps://www.epa.gov/bmds/download-benchmark-dose-software-bmds-model-executables and 
https://www.epa.gov/bmds. 
ehttps://www.epa.gov/sites/production/files/2015-01/documents/benchmark_dose_guidance.pdf. 
fhttps://www.epa.gov/sites/production/files/2015-01/documents/benchmark_dose_guidance.pdf. 

https://www.epa.gov/sites/production/files/2015-01/documents/benchmark_dose_guidance.pdf
https://www.epa.gov/bmds/download-benchmark-dose-software-bmds-model-executables
https://www.epa.gov/bmds
https://www.epa.gov/sites/production/files/2015-01/documents/benchmark_dose_guidance.pdf
https://www.epa.gov/sites/production/files/2015-01/documents/benchmark_dose_guidance.pdf
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Linear model 

The linear model is a special case of the polynomial model with n fixed at 1. 

Power model 

𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝛾𝛾 +  𝛽𝛽  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝛿𝛿  

where 0 < γ < 1, β ≥ 0, and 18 ≥ δ > 0.  

Hill model 

𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝛾𝛾 +  
𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛

𝑘𝑘𝑛𝑛 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛
 

Exponential modela 

The four exponential models (2 through 5) are: 

𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑎𝑎 ∗ exp (𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 ∗  𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  

𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑎𝑎 ∗ exp (𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 ∗  (𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑑𝑑) 

𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑎𝑎 ∗ (𝑐𝑐 − (𝑐𝑐 − 1) ∗ exp (−1 ∗  𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)) 

𝜇𝜇(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑎𝑎 ∗ (𝑐𝑐 − (𝑐𝑐 − 1) ∗ exp (−1 ∗  (𝑏𝑏 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑑𝑑)) 
aFor the first two exponential models, ‘sign’ is the adverse direction. 

NTP will include additional higher degree poly models in the future when constraining the US 
EPA model executables becomes possible to allow change direction only once. Incorporation of 
these additional models will allow for more accurate modeling of a variety of nonmonotonic 
responses. NTP also intends to evaluate the use of nonparametric modeling approaches to 
determine if such approaches can be used to describe the shape of the diversity of dose-response 
behaviors observed in genomic dose-response with more accuracy. Nonparametric modeling 
approaches will be selected in consultation with the US EPA.  
The data will be log2 adjusted and presumed to have a normal distribution; each model will be 
run assuming constant variance. In the future, a test for dose-related variance will be 
implemented for each feature, and nonconstant variance will be used in the modeling when 
appropriate.  
The potency value derived from each model is the BMD16.  

• BMD is defined as the estimated dose or concentration that produces a predetermined 
change in the response rate of a biological response (called the benchmark response or 
BMR) compared to background16.  

• The BMR for each feature will be the standard deviation (SD) at zero dose. When 
constant variance is assumed, SD is estimated using the entire fitted curve, not just the 
control data. The use of 1 SD as a BMR is consistent with the proposed approach to 
modeling continuous data by the US EPA when the known, predefined adversity 
threshold is unknown. Currently, the degree of change associated with adversity in the 
gene expression space is largely unknown, thus the choice of 1 SD is appropriate. Note: 
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In the future, when the nonconstant variance assumption is selected and implemented for 
certain features, a BMR of 1 SD will be used and based solely on the variance at control, 
not the entire fitted curve as is done with the assumption of constant variance.   

• An adverse direction (i.e., the direction of response indicating up- or down-regulation) is 
not selected a priori, but determined by a trend test embedded in the model executable. 
The selection of an adverse direction is based on the direction that gives the best fit to the 
specific model.  

To identify the best-fit model for each feature, the Akaike information criterion (AIC) will be 
used23. AIC provides an estimation of the relative quality of models for a given set of data by 
balancing the complexity of the model with how well the model fits the data. The model with the 
lowest AIC will be selected as the final model and used to calculate the probe set BMD, BMD 
lower confidence limit (BMDL), and BMD upper bound (BMDU)24. For some features, the best-
fit model has an estimated BMD that is well below (i.e., three-fold or more) the lowest positive 
dose in the study. This case occurs most often with the Hill model, but also can occur with the 
exponential 4 and 5 models. Due to how the data are reported (median gene-set BMD), some 
small amount of extreme model extrapolation can be tolerated. If, however, the median BMD for 
a gene set is derived from a gene with extreme model extrapolation, identifying implausibly low 
gene-set BMD values is possible. In such cases, the ideal solution is to rerun the study with 
additional lower dose levels, but resource constraints sometimes preclude reruns. To facilitate 
resolution of this issue without running an additional study, several approaches have been 
developed to deal with extreme model extrapolation, many of which are implemented in the 
BMDExpress software. NTP will flag all BMD values from best-fit models that are estimated to 
be less than 10-fold the lowest positive dose but allow them to pass through into the gene-set 
analysis assuming they meet other criteria (as defined in the next section of this document). If 
these flagged BMD values are identified as the median BMD value for a gene set (described in 
greater detail in the next section), the gene set will be flagged in the subsequent part of the 
analysis and reported simply as having a BMD value <10-fold below the lowest positive dose. In 
limited cases, all model executables will fail parameter convergence (i.e., BMD, BMDL, or 
BMDU). In such cases, the feature will not be considered in the gene-set analysis described 
below. Note: The US EPA is currently working on methods for model averaging that will obviate 
the need to select a best-fit model25. NTP plans to evaluate model averaging for use in genomic 
dose-response analysis once the US EPA establishes it as a viable alternative to the best model 
selection approach. 
Justification for approach: The choice of using the parametric models specified in the US EPA 
BMDS software is based, in part, on validation of the model algorithms for use in regulatory data 
modeling and their greater simplicity. With the scale of data that NTP will generate, parametric 
models provide a considerable gain in computational efficiency as compared to alternative 
approaches26,27. 
NTP will use all continuous models currently available from the US EPA use in the modeling, in 
part, because a prior hypothesis for the behavior of any given transcript is unknown due to the 
complexity of the biological response. Further, use of multiple models maximizes the likelihood 
that a feature with dose-related response will fit the model well enough to be considered further 
in gene-set analysis. 
NTP selected BMD as the potency metric because it is consistent with common practice in 
regulatory toxicology. The BMD potency metric is used in regulatory toxicology because it 
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provides a model-based determination of the minimum dose level expected to have a significant 
biological effect. The BMD often occurs between the no observed effect level and the lowest 
observed effect level, both of which are determined by more traditional, pairwise statistical 
analysis.  
A BMR of 1 SD of the control was selected because it is consistent with US EPA 
recommendations when modeling continuous data for which an adverse effect level of change is 
unknown. The US EPA’s justification for selection of 1 SD relates to the observation that a 1-SD 
BMR at control when the data are normally distributed yields an excess risk of approximately 
10% for the proportion of individuals less than the 2nd percentile or greater than the 98th 
percentile of controls. Thus, the 1-SD threshold approximates a 10% change in response 
consistent with the commonly used BMR used to model dichotomous data. 
Prior to data analysis and after data normalization, the counts (in the case of RNA-Seq) or 
intensities (in the case of microarray) from the measured features are log transformed. Log 
transformation of data is generally agreed to produce data that approximate a normal distribution 
with predominantly constant variance28; therefore, the data are assumed to exhibit constant 
variance. As noted above, future versions of the BMDExpress software will implement a test for 
heteroscedasticity for each feature, and the results will inform the modeling assumption of 
constant or nonconstant variance. 
For best model selection, NTP will use an AIC. This approach is consistent with current 
standards of practice recommended by the US EPA. Using AIC for model selection helps 
balance the goodness of fit that favors smaller residual error to a model, but negatively selects 
for overparameterization (excessive complexity), which helps avoid overfitting.  

Determining Gene-Set Level Potencies 
Approach: After selecting the best model, the measured features and their associated 
BMD/BMDL/BMDU values are parsed into predefined gene sets (the specific gene sets are 
discussed below). For features to be passed into the gene-set analysis, the best-fit model must: 
(1) demonstrate convergent BMD, BMDL and BMDU values; (2) have a BMD less than the 
highest positive dose used in the study; (3) not map to more than one gene; (4) have a model fit 
p-value > 0.1 determined by a likelihood ratio test; and (5) have a BMDU-to-BMDL ratio <40. 
All features passing these selection criteria are converted to their corresponding National Center 
for Biotechnology Information Entrez Gene ID and then parsed into predefined gene sets. Gene 
sets that contain at least three genes and are at least 5% populated (based on total annotated gene 
number) with genes from the study are declared “active,” and BMD, BMDL and BMDU are 
determined by calculating a median BMD, BMDL, and BMDU for each “active” gene set. When 
the median BMD is less than 10-fold the lowest positive dose (i.e., the feature associated with 
the gene is flagged, as noted above), the BMD for that gene set will be reported as <10-fold the 
lowest positive dose and the BMDL and BMDU will not be reported.  
Justification for approach: Features that exhibit no convergent BMDs or BMDs greater than the 
highest dose are removed because of significant uncertainty in the model, the derived potency, or 
both. Features that map to more than one gene are removed because the gene the signal 
represents is uncertain. A fit p-value > 0.1 is a standard threshold the US EPA recommends to 
ensure adequate goodness of fit of the data to a model. In certain cases, the global goodness-of-
fit statistic will filter features exhibiting a clear dose-response due to poor fit of the model to a 
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subset of dose groups. Notably, these features often measure genes considered as biomarker 
genes (e.g., CYP3A4 in response to rifampicin in human hepatocytes). Although loss of these 
features often has limited impact on the gene set-level potency estimates, they undermine the 
biologist’s confidence in and comfort with the proposed approach to modeling. For this reason, 
future efforts related to a measure of a goodness of fit will seek potentially to replace or combine 
the log likelihood fit p-value test with an evaluation of fit residuals around the BMD and an R2 
statistic. Finally, a BMDU-to-BMDL threshold <40 removes features with high uncertainty in 
their fit to the model, which is often related to noisy data that should not be considered in the 
gene-set analysis. 
The thresholds for calling a gene set “active” have been subject to significant debate, as most 
notably indicated by the many different thresholds used in the peer-reviewed literature29. 
Selection of the three-gene and 5% populated thresholds have been based on expert opinion to 
represent general minimum thresholds required to consider a gene set to be altered by chemical 
treatment (i.e., active). Further, three is the minimum number of genes to determine a median 
value. Future efforts will consider the use of resampling-based statistical tests for gene set-level 
enrichment to align analysis protocols related to genomic dose-response analysis more closely 
with best practices used in analysis of functional genomic studies. Importantly, even with the 
additional filters based on enrichment statistics, hard thresholds for identifying “active” gene sets 
likely will remain necessary.  
The selection of median BMD, BMDL, and BMDU values as representative gene-set potency 
values is based on estimating the central tendency of the gene BMDs in a gene set. This 
relatively simple approach to estimating gene set-level potency has been effective in limited 
empirical assessments. In future efforts, NTP will explore the use of bootstrapping-based 
identification of confidence intervals of the median gene-set BMD. In addition, NTP will 
evaluate the use of predefined, absolute-rank BMD values for reporting gene-set BMDs (i.e., the 
2nd or 3rd ranked BMD based on potency). The focus of such an evaluation will be to determine 
if these alternative methods for estimating gene-set BMD values yield more accurate estimates of 
the most sensitive apical BMDs and the reproducibility of gene-set BMDs between replicate 
studies.  

Addressing the Study Design 
Approach: Two paradigms are related to study design in toxicology studies30. Paradigm 1 is the 
standard study design prescribed by the toxicological testing guidelines of the Organisation for 
Economic Co-operation and Development, for which the goal is to maximize the power for 
performing pairwise comparisons between dose groups to identify a no observed effect level31. 
This design is highly dependent on prior knowledge of the biological potency, particularly if 
applying dose-response, model-based approaches to the data analysis, such as those proposed 
herein. In paradigm 2, the study design focuses on creating a data set on which dose-response 
modeling is performed on the entire data set16. The goal of this type of analysis is to identify a 
model-based estimate of the minimal dose that produces an effect (i.e., a BMD). The number of 
biological replicates for paradigm 2 is less than for paradigm 1, and more dose levels are 
employed. NTP will use paradigm 2 for in vivo and in vitro GDRS. Note: NTP’s initial efforts in 
the area of in vivo genomic dose-response used paradigm 1 to allow for comparison with 
traditional measures of toxicity that often requires well-powered pairwise statistical methods, 
particularly in the case of dichotomous data such as pathology. Thus, many of the early studies 
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reported by NTP have fewer dose levels (≤7) than proposed herein. All future studies, however, 
will use paradigm 2.  
In addition to the two paradigms described above, several critical study design parameters 
require discussion, including the species/sex of the model system, age of the animals at study 
start (in vivo), duration of exposure, organ (in vivo studies) or cell type (in vitro studies) 
selection for genomic analysis, and high-dose selection.  
For in vivo studies, NTP proposes the following study parameters:  

• Using 6- to 8-week-old male or female rats. Prior to the main study, a dose range finding 
study will be performed, and the sex exhibiting greater dose-related sensitivity will be 
used in the subsequent genomic dose-response study. This will allow for consideration of 
both sexes and lead to the identification of more sensitive/protective gene set-level BMD 
values. 

• Setting exposure duration to 5 days (i.e., 5 repeated doses, 1 per day, followed by 
euthanasia 24 hours after the last dose). Duration of exposure might be extended or 
paired kinetic studies to allow for dose adjustment performed for chemicals that do not 
achieve steady state after 5 days of dosing. In silico-based modeling will be employed to 
determine if confounding toxicokinetic parameters need to be considered when 
determining duration of exposure. 

• Selecting organs/tissues for evaluation based on route of proposed exposure and review 
of the literature with a specific focus on target organs from guideline toxicity studies of 
the test article or structurally related test articles. In addition, liver will be evaluated in all 
studies, as it is commonly affected by chemical challenge and often serves as a biosensor 
of systemic toxicological effects. 

• Setting the highest dose for a test article based on determining the 5-day maximum 
tolerated dose (MTD; i.e., the highest dose that produces less than 20% decrease in body 
weight gain after 5 days of repeated dosing). 

For in vitro studies, NTP proposes the following study parameters: 

• Using human cell lines/types with sex as male or female depending on availability. 
• Setting exposure duration based on expert review and results from range-finding studies. 
• Selecting cell type based on several variables including culturability in 384-well format; 

patterns of use in the field (i.e., cell types that are more commonly used by the testing 
community will be given higher priority); and representation of common tissues of 
concern (i.e., organotypic representation of in vivo target tissues such as liver, e.g., 
HepaRG). 

• Setting the highest dose for the test article to target the lethal concentration 20 (LC20; 
20% reduction in cell viability relative to control). LC20 values will be determined by a 
range-finding study. Alternatively, some chemicals will not reach an LC20, and the high 
dose will be set at the solubility limit. 

Justification for approach: With most test articles, prior knowledge of their biological 
(toxicogenomic) potency is limited; therefore, NTP will employ a broad dose range to capture 
the entire dose-response space adequately for all measured features. This study design is 
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consistent with recommendations for the design of studies for which the goal is deriving a 
BMD18.  
For in vivo study parameters, 6- to 8-week-old male or female rats were chosen, in part, to be 
congruent with subchronic toxicological assessments and existing toxicogenomic databases such 
as DrugMatrix32 and Open TG-Gates33, which commonly use this strain in this age range. Rats in 
this age range grow rapidly and, therefore, often are more susceptible to toxicological challenge. 
Legacy toxicogenomics data are often used for interpreting results obtained from new test 
articles.  
The duration of exposure selected was based on findings by Thomas et al.19, which demonstrated 
that 5 days of exposure is sufficient for non-bioaccumulative chemicals to achieve a genomic 
point of departure similar to that observed for apical endpoints such as cancer. As noted above, if 
prestudy kinetic predictions suggest the test article has bioaccumulative properties, the study 
duration could be extended to allow for achievement of steady-state levels. Alternatively, paired 
pharmacokinetic studies will be performed to allow kinetic-based adjustment of biological 
potency estimates34. Future studies will consider the use of an earlier time point to evaluate the 
temporal effects on biology and begin to associate early findings with later effects to build the 
necessary mechanistic bridges likely required for use of genomic dose-response results in a 
formal risk assessment setting. 
Selecting organs/tissues for gene expression studies based on anticipated target organs is 
common practice in targeted toxicological assessments. Further, analyzing effects on the liver for 
every test article, particularly if administered by the oral route, is justified primarily because liver 
is the most frequently affected toxicological target35 and effects in this organ often are used as 
the basis for selecting a point of departure when determining safe exposure levels. Second, liver 
responds to significant disease-related changes in other organ systems and, therefore, often can 
serve as a sensor for systemic toxicological effects36. 
Using a 5-day MTD as the highest dose helps ensure a clear toxicogenomic response at the top 
dose level that can be modeled effectively into lower dose levels. A strong response at the top 
dose is critical because, without a clear toxicogenomic response, identification of features that 
are responding is uncertain and leads to inaccurate estimates of potency. 
For in vitro study parameters, the most critical decision point is likely the cell types to use. NTP 
has chosen to use primary and organotypic cell systems as opposed to transformed cells because 
we believe the data derived from primary and organotypic cultures will have greater qualitative 
and quantitative biological relevance to the organs/tissues we hope to model37. Further, using 
organotypic cell types enables evaluation of known, prototypical, expression-related changes that 
have been observed in intact organisms, thereby providing a level of model validation37. NTP is 
not naïve to the challenges associated with primary and organotypic cultures, such as 
reproducibility due to genetic variation, sensitivity to culture environment, and complexity38. 
Prior to using systems, issues of reproducibility will be assessed through in-depth model 
characterization, replication studies, development of detailed protocols, and use of culture 
systems that promote stable cellular phenotypes such as 3D spheroids39. Similar to the MTD-
based selection of the highest dose for in vivo studies, the highest dose in in vitro studies is 
meant to challenge the cells significantly to obtain a clear toxicogenomic response at the top 
dose level that can be modeled into lower dose levels. 
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Addressing Biological Interpretation 
Approach: A major challenge for interpreting toxicogenomics data relates to linking the 
observations to higher-order phenotypes, such as pathology and other endpoints typically 
associated with adverse effects40. NTP acknowledges that such a linkage between genomic 
changes and more standard metrics of adversity likely will be necessary to gain acceptance in the 
more formal risk assessment process. Building a collection of phenotypically linked gene sets, 
however, is a major undertaking that should be accomplished through a community effort with 
oversight from toxicologists familiar with pathology and genomics. Many curated gene sets are 
publicly available, such as the KEGG (Kyoto Encyclopedia of Genes and Genomes)41 and Gene 
Ontology resources17. Although these databases have several shortcomings, such as redundancy 
in certain areas of biology (e.g., p53 signaling) and poor coverage in uncharacterized biological 
space, the existing gene sets collectively cover a sizable portion of characterized biological space 
and likely are adequate to describe many of the biological processes of toxicological concern. 
The challenge with the existing curated gene sets is the lack of a formal association with 
toxicological processes. 
NTP is focused on identifying the most potent gene set-level biological effect in the genomic 
dose-response study, and the lack of linkage to adverse effects therefore is not critical. As noted 
above, to advance the results of these studies beyond screening-level assessments of potency, 
such linkage likely will become essential. Considering NTP’s goal of identifying biological 
potency and recognizing the challenges noted above in creating a toxicity-associated collection 
of gene sets, we will use two large curated, public gene sets for analysis of genomic dose-
response data: the MSigDB C242 and the Gene Ontology Biological Processes17. The C2 gene set 
is a collection of curated pathways (i.e., structured relationships between the genes are defined, 
gene sets represent cell signaling processes) from well-known public resources such as KEGG41, 
Reactome43, and Biocarta44, in addition to published chemical and genetic perturbation 
signatures. The gene sets in the Gene Ontology Biological Processes are expert curated and 
unstructured and are recognized as contributing a vast array of biological processes (e.g., fatty 
acid metabolism, cell migration). Often, these gene sets are highly redundant, which might be 
advantageous, as the identification of multiple, related gene sets can increase confidence that 
treatment is altering biological space. Further, the likelihood also increases that the most 
sensitive combination of genes in a given biological space will be represented and therefore will 
identify the lowest possible, most protective gene-set BMD in a given biological space. Use of 
these gene sets will enable development and evaluation of genomic dose-response in the manner 
proposed herein. The comprehensive nature of the gene sets will ensure broad coverage of 
biological space and, therefore, sensitive BEPODs. Future efforts will focus on using an adverse 
outcome pathway framework to start mapping gene sets from the Gene Ontology to key events 
associated with toxicity. Once established, these linkages can be used to draw more formal 
conclusions about the toxicological significance of findings from GDRS. 
NTP is best known for its efforts related to hazard identification using guideline testing methods. 
Although these efforts protect public health, they also can influence commerce significantly. 
Thus, a high degree of certainty must be associated with NTP’s hazard identification process. In 
some cases, gene sets from MSigDB or Gene Ontology that might be identified as “active” in 
GDRS have names and descriptions that suggest a hazard (e.g., Response to DNA Damage, in 
the case of genotoxity). Although in certain cases effects on such a gene set might be related to a 
hazard such as genotoxicity, it is not always the case when determined by guideline testing 
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methods (e.g., Ames assay). Several reasons for this include how the gene sets were curated (i.e., 
they might not be meant specifically for interpreting gene expression data), the direction of 
response in the gene set indicates different effects, and the diversity of response to genes in the 
set is based on the biological setting (i.e., different organs or cell types). Although unlikely, it is 
also possible that the guideline testing method is wrong in certain cases and the gene set could be 
correctly indicating a hazard. Due to the uncertainty and to avoid potential confusion, NTP will 
limit the interpretation of the findings to descriptions of the gene sets the curators provide. In 
addition, any reporting of genomic dose studies will include clarifying statements indicating that 
the studies should not be used for formal hazard identification/characterization. This is, of 
course, subject to change as consensus is formed on how to state the confidence in the 
association between gene sets and key events related to adverse effects (e.g., more formal 
adverse outcome pathway-based linkage, as noted above). 
In addition to the limited qualitative interpretation of the genomic dose-response data, NTP 
proposes to interpret the results quantitatively by identifying the BMD median from the most 
sensitive gene set (i.e., the BMD from the gene set with the lowest BMD). The BMD median 
from this gene set is described as the dose at which a test article begins to demonstrate an effect 
on a biological system or a BEPOD, as described above.  
Justification for approach: Use of the MSigDB C2 and Gene Ontology Biological Process sets 
will provide broad coverage of biological space and capture sensitive gene-set BMD values. 
Although formulating adverse effect-associated gene sets will be pursued, requiring this to 
advance the approach presented here will hamper progress toward developing a biological 
potency-focused assessment unnecessarily. 
NTP wishes to avoid confusing users about the goal of performing GDRS, which is first and 
foremost to identify biological potency. The names and descriptions of certain gene sets might be 
misleading regarding their association with adverse toxicological effects. To avoid the challenge 
of interpretation in the context of hazard, standard language will be used in the introduction of 
each report to make clear that GDRS results should not be used to make formal hazard 
conclusions at this time. 
Using the BMD median of the most sensitive gene set to determine the most sensitive biological 
effect level is based on the observation from in vivo GDRS that this approach leads to 
identification of the biological effect level that approximates the point of departure from 
guideline toxicology studies19.  
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A.1 Introduction

This appendix contains the results of an analysis using the revised National Toxicology Program 
(NTP) genomic dose-response study (GDRS) analysis pipeline of in vivo genomic data from rats. 
The analysis compares the biological effect point of departure (BEPOD) benchmark dose (BMD) 
values with the most sensitive apical BMD identified from guideline toxicity studies carried out 
with the same strain of rat used in the genomic studies. The guideline toxicity studies used to 
identify the most sensitive apical BMD range from 28-day subchronic studies to developmental 
toxicity and 2-year carcinogenicity studies. When the cancer BMD was not the most sensitive 
BMD, the cancer BMD values are listed in the figure legend for reference. 

A.2 Individual Comparisons of Apical POD to BEPOD

Figure 1. Comparison of the Most Sensitive Apical Endpoint BMD from a 2-Year Cancer Study of 
Ginkgo biloba Extract (GBE) to the Most Sensitive Gene-Set BMD from a 5-Day GDRS of GBE 

In a 2-year study, F344/N male rats were exposed to doses of 0, 100, 200, and 1000 mg/kg/day in corn oil1. The most sensitive 
apical endpoint was thyroid follicular cell hypertrophy with BMD10 and BMD10L values of 33.4 and 23.9 mg/kg/day, 
respectively (multistage-cancer model on unadjusted incidence counts, 95% confidence limits). A ½ log range above and below 
the apical BMD of 33.4 mg/kg/day is shown at the top of the plot. The ½ log range is shown to facilitate comparison with the 
genomic BMD values. In the 5-day GDRS, F344/N male rats were exposed to doses of 0, 3, 30, 100, 300, and 1000 mg/kg/day in 
corn oil (Unpublished NTP data). BMDExpress 2.0 was used to identify the most sensitive gene-set BMD, BMD lower 
confidence limit (BMDL), and BMD upper bound (BMDU) values from the Gene Ontology (GO) Biological Processes2 and the 
MSigDB C2 set3 from gene expression measured in liver of the treated animals. The BMDL-to-BMDU ranges of the most 
sensitive gene sets in both cases overlapped with the ½ log range of the most sensitive apical BMD from the 2-year study. 
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Figure 2. Comparison of the Most Sensitive Apical Endpoint BMD from a Developmental Toxicity 
Study of 4-Methylcyclohexanemethanol (MCHM) to the Most Sensitive Gene-Set BMD from a 
5-day GDRS of MCHM 

In a developmental toxicity study performed by NTP, pregnant Harlan Sprague Dawley rats were exposed to doses of 0, 50, 100, 
200, and 400 mg/kg/day in corn oil4. The most sensitive apical endpoint identified in the developmental toxicity study was fetal 
body weight, which exhibited BMD01 and BMD01L values of 95.9 and 95.6 mg/kg/day, respectively (polynomial, restricted to 
non-positive coefficients based on relative deviation of fetal weight). A ½ log range above and below the apical BMD of 
95.9 mg/kg/day is shown at the top of the plot. The ½ log range is shown to facilitate comparison with the genomic BMD values. 
In the 5-day GDRS, male Harlan Sprague Dawley rats were exposed to doses of 0, 0.1, 1, 10, 100, 300, and 500 mg/kg/day in 
corn oil, and liver gene expression was measured5. BMDExpress 2.0 was used to identify the most sensitive gene-set BMD, 
BMDL and BMDU values from the GO Biological Processes2 and the MSigDB C2 set3 from gene expression measured in liver of 
the treated animals. The BMDL-to-BMDU ranges of the most sensitive gene sets in both cases overlapped with the ½ log range of 
the most sensitive apical BMD from the developmental toxicity study of MCHM.  
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Figure 3. Comparison of the Most Sensitive Apical Endpoint BMD from a Developmental Toxicity 
Study of 4-Methylcyclohexanemethanol (MCHM) to the Most Sensitive Gene-Set BMD from a 
5-Day GDRS of Crude MCHM 

In a developmental toxicity study of MCHM performed by NTP, pregnant Harlan Sprague Dawley rats were exposed to doses of 
0, 50, 100, 200, and 400 mg/kg/day in corn oil4. The most sensitive apical endpoint identified in the developmental toxicity study 
was fetal body weight, which exhibited BMD01 and BMD01L values of 95.9 and 95.6 mg/kg/day, respectively (polynomial, 
restricted to non-positive coefficients based on relative deviation of fetal weight). A ½ log range above and below the apical 
BMD of 95.9 mg/kg/day is shown at the top of the plot. The ½ log range is shown to facilitate comparison with the genomic 
BMD values. In the 5-day GDRS of crude MCHM (~90% MCHM), male Harlan Sprague Dawley rats were exposed to doses of 
0, 0.1, 1, 10, 100, 300, and 500 mg/kg/day in corn oil, and liver gene expression was measured5. BMDExpress 2.0 was used to 
identify the most sensitive gene-set BMD, BMDL and BMDU values from the GO Biological Processes2 and the MSigDB C2 set3 
from gene expression measured in liver of the treated animals. The BMDL-to-BMDU ranges of the most sensitive gene sets in 
both cases overlapped with the ½ log range of the most sensitive apical BMD from the developmental toxicity study of MCHM.  
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Figure 4. Comparison of the Most Sensitive Apical Endpoint BMD from a 90-Day Subchronic 
Toxicity Study of Propylene Glycol Phenyl Ether (PPH) to the Most Sensitive Gene-Set BMD from 
a 5-Day GDRS of PPH 

In a 90-day subchronic study, male Wistar rats were exposed to doses of 0, 35, 146, and 429 mg/kg/day in drinking water. The 
most sensitive apical endpoints were mild renal impairment and body weight decreases with NOAEL (no-observed-adverse-
effect-level) and LOAEL (lowest-observed-adverse-effect-level) values of 35 and 146 mg/kg/day, respectively6 (data were not 
available for BMD modeling). A ½ log range above and below the apical NOAEL of 35 mg/kg/day is shown at the top of the 
plot. The ½ log range is shown to facilitate comparison with the genomic BMD values. In the 5-day GDRS, Harlan Sprague 
Dawley male rats were exposed to doses of 0, 0.1, 1, 10, 100, 500, and 1000 mg/kg/day in corn oil, and liver and kidney gene 
expression was measured5. BMDExpress 2.0 was used to identify the most sensitive gene-set BMD, BMDL and BMDU values 
from the GO Biological Processes2 and the MSigDB C2 set3 from gene expression measured in liver and kidney of the treated 
animals. The BMDL-to-BMDU ranges of the most sensitive MSigDB C2 gene set overlapped with the ½ log range of the apical 
NOAEL from the 90-day subchronic study. The other most sensitive gene-set BMD ranges did not overlap with the apical 
NOAEL range. 
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Figure 5. Comparison of the Most Sensitive Apical Endpoint BMD from a 2-Year Cancer Study of 
Tricresyl Phosphate (TCP) to the Most Sensitive Gene-Set BMD from a 4-Day GDRS of TCP 

In the 2-year study, F344/N male rats were exposed to doses of 0, 3, 6, and 13 mg/kg/day in feed (mg/kg/day dose were estimated 
based on body weight and feed consumption)7. The most sensitive apical endpoint was adrenal cortex vacuolization with NOAEL 
and LOAEL values of 13 and 26 mg/kg/day, respectively (data were inadequate for BMD determination). A ½ log range above 
and below the apical NOAEL of 13 mg/kg/day is shown at the top of the plot. The ½ log range is shown to facilitate comparison 
with the genomic BMD values. In the 4-day GDRS, male Harlan Sprague Dawley rats were exposed to doses of 0, 3, 30, 100, 
300, and 1000 mg/kg/day in corn oil, and liver gene expression was measured (NTP unpublished data). BMDExpress 2.0 was 
used to identify the most sensitive gene-set BMD, BMDL and BMDU values from the GO Biological Processes2 and the MSigDB 
C2 set3. The BMDL-to-BMDU ranges of the most sensitive gene sets in both cases overlapped with the ½ log range of the apical 
NOAEL from the 2-year study.  
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Figure 6. Comparison of the Most Sensitive Apical Endpoint BMD from a 2-Year Cancer Study of 
N,N-Dimethyl-p-toluidine (DMPT) to the Most Sensitive Gene-Set BMD from a 5-day GDRS of 
DMPT 

In a 2-year study, F344/N male rats were exposed to doses of 0, 6, 20, and 60 mg/kg/day in corn oil8. The most sensitive apical 
endpoint was bile duct fibrosis with BMD10 and BMD10L values of 1.7 and 1 mg/kg/day, respectively (log-logistic model on 
incidence, 95% confidence limit). A ½ log range above and below the apical BMD of 1.7 mg/kg/day is shown at the top of the 
plot. The ½ log range is shown to facilitate comparison with the genomic BMD values. Not shown on the plot but provided for 
reference is the hepatocellular carcinoma or adenoma BMD10 and BMD10L values of 50.1 and 32.6 mg/kg/day, respectively, and 
the nose adenoma or carcinoma BMD10 and BMD10L values of 21.1 and 14.0, respectively, that were derived from the 2-year 
study (log-logistic model on incidence, 95% confidence limit). In the 5-day GDRS, F344/N male rats were exposed to doses of 
0, 1, 6, 20, 60, and 120 mg/kg/day in corn oil, and liver gene expression was measured9. BMDExpress 2.0 was used to identify 
the most sensitive gene-set BMD, BMDL and BMDU values from the GO Biological Processes2 and the MSigDB C2 set3. The 
BMDL-to-BMDU ranges of the most sensitive gene sets in both cases overlapped with the ½ log range of the most sensitive apical 
BMD from the 2-year study.  
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Figure 7. Comparison of the Most Sensitive Apical Endpoint BMD from a 28-Day Subchronic 
Toxicity Study of Bromobenzene (BB) to the Most Sensitive Gene-Set BMD from a 5-Day GDRS of 
BB 

In a 28-day subchronic study, F344/N male rats were exposed to doses of 0, 25, 100, 200, 300, and 400 mg/kg/day in corn oil by 
gavage10; 11. The most sensitive apical endpoint was absolute liver weight with BMD1SD and BMD1SDL values of 70 and 40.2 
mg/kg/day, respectively11. A ½ log range above and below the apical BMD of 70 mg/kg/day is shown at the top of the plot. The 
½ log range is shown to facilitate comparison with the genomic BMD values. In the 5-day GDRS, F344 male rats were exposed 
to doses of 0, 25, 100, 200, 300, and 400 mg/kg/day in corn oil, and liver gene expression was measured11. BMDExpress 2.0 was 
used to identify the most sensitive gene-set BMD, BMDL and BMDU values from the GO Biological Processes2 and the MSigDB 
C2 set3. The BMDL-to-BMDU ranges of the most sensitive gene sets in both cases were slightly more sensitive than the ½ log 
range of the most sensitive apical BMD from the 28-day subchronic study.  
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Figure 8. Comparison of the Most Sensitive Apical Endpoint BMD from a 2-Year Study of 
Hydroxyazobenzene (HZBZ) to the Most Sensitive Gene-Set BMD from a 5-Day GDRS of HZBZ 

In a 2-year study, F344/N male rats were exposed to doses of 0, 80, and 300 ppm in feed12. The most sensitive apical endpoint 
was hepatocellular carcinomas and neoplastic nodules with BMD10 and BMD10L values of 38.1 and 21.1 ppm, respectively 
(second-order, multistage-cancer model based on tumor incidence, 95% confidence limits)11. A ½ log range above and below the 
apical BMD of 38.1 ppm is shown at the top of the plot. The ½ log range is shown to facilitate comparison with the genomic 
BMD values. In the 5-day GDRS, F344 male rats were exposed to doses of 0, 5, 20, 80, 200, and 300 ppm in feed, and liver gene 
expression was measured11; 13. BMDExpress 2.0 was used to identify the most sensitive gene-set BMD, BMDL and BMDU values 
from the GO Biological Processes2 and the MSigDB C2 set3. The BMDL-to-BMDU range of the most sensitive GO Biological 
Processes overlapped with the ½ log range of the most sensitive apical BMD from the 2-year study. The most sensitive MSigDB 
C2 set BMDL-to-BMDU range was slightly less sensitive than the ½ log range of the most sensitive apical BMD from the 2-year 
study.  
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Figure 9. Comparison of the Most Sensitive Apical Endpoint BMD from a 90-Day Subchronic 
Study of 1,2,4-Tribromobenzene (TRBZ) to the Most Sensitive Gene-Set BMD from a 5-Day GDRS 
of TRBZ 

In a 90-day subchronic study, male Sprague Dawley rats were exposed to doses of 0, 2.5, 5, 10, 25, and 75 mg/kg/day in corn 
oil11; 14. The most sensitive apical endpoint was absolute liver weight with BMD1SD and BMD1SDL values of 3.8 and 
2 mg/kg/day, respectively11. A ½ log range above and below the apical BMD of 3.8 mg/kg/day is shown at the top of the plot. 
The ½ log range is shown to facilitate comparison with the genomic BMD values. In the 5-day GDRS, male Sprague Dawley rats 
were exposed to doses of 0, 2.5, 5, 10, 25, and 75 mg/kg/day in corn oil, and liver gene expression was measured11. BMDExpress 
2.0 was used to identify the most sensitive gene-set BMD, BMDL, and BMDU values from the GO Biological Processes2 and the 
MSigDB C2 set3. The BMDL-to-BMDU ranges of the most sensitive gene sets in both cases overlapped with the ½ log range of 
the most sensitive apical BMD from the 90-day subchronic study. Note: A positive regulation of mRNA metabolic process (from 
GO Biological Processes), had a BMD < 0.25 mg/kg/day (10-fold <lowest positive dose), and BMDL and BMDU values were not 
reported. To obtain a BMDL-to-BMDU range for comparison, the next most sensitive process from GO Biological Processes is 
shown in the plot.  
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Figure 10. Comparison of the Most Sensitive Apical Endpoint BMD from a 90-Day Subchronic 
Study of 2,3,4,6-Tetrachlorophenol (TTCP) to the Most Sensitive Gene-Set BMD from a 5-Day 
GDRS of TTCP 

In a 90-day subchronic study, male Sprague Dawley rats were exposed to doses of 0, 10, 25, 50, 100, and 200 mg/kg/day in corn 
oil11; 15. The most sensitive apical endpoint was hepatocyte vacuolation with BMD10 and BMD10L values of 1 and 0.6 
mg/kg/day, respectively11. A ½ log range above and below the apical BMD of 1 mg/kg/day is shown at the top of the plot. The ½ 
log range is shown to facilitate comparison with the genomic BMD values. In the 5-day GDRS, male Sprague Dawley rats were 
exposed to doses of 0, 10, 25, 50, 100, and 200 mg/kg/day in corn oil, and liver gene expression was measured11. BMDExpress 
2.0 was used to identify the most sensitive gene-set BMD, BMDL, and BMDU values from the GO Biological Processes2 and the 
MSigDB C2 gene sets3. The BMDL-to-BMDU ranges of the most sensitive gene sets in both cases overlapped with the ½ log 
range of the most sensitive apical BMD from the 90-day subchronic study.  
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Figure 11. Comparison of the Most Sensitive Apical Endpoint BMD from a 28-Day Subchronic 
Study of 4,4′-Methylenebis (N,N-dimethyl) benzenamine (MDMB) to the Most Sensitive Gene-Set 
BMD from a 5-Day GDRS of MDMB 

In a 28-day subchronic study, male F344 rats were exposed to doses of 0, 50, 200, 375, 500, and 750 ppm in feed11; 16. The most 
sensitive apical endpoint was thyroid follicular cell hypertrophy with BMD10 and BMD10L values of 17.0 and 3.1 ppm, 
respectively11. A ½ log range above and below the apical BMD of 17.0 ppm is shown at the top of the plot. The ½ log range is 
shown to facilitate comparison with the genomic BMD values. Not shown on the plot is the thyroid follicular cell adenoma and 
carcinoma BMD and BMDL values of 381 and 283 ppm, respectively, that were derived from 2-year study findings in the same 
rat strain11; 17. In a 5-day GDRS, male F344 rats were exposed to doses of 0, 50, 200, 375, 500, and 750 ppm in feed, and thyroid 
gene expression was measured. BMDExpress 2.0 was used to identify the most sensitive gene-set BMD, BMDL and BMDU 
values from the GO Biological Processes2 and the MSigDB C2 set3. The BMDL-to-BMDU ranges of the most sensitive gene sets 
in both cases as sensitive as the ½ log range of the most sensitive apical BMD from the 28-day subchronic study.  

1 10 100 1000 10000
ppm in feed

½ log around most sensitive apical BMD (28-
day subchronic study) 
 

Thyroid follicular cell hypertrophy BMDL-BMD (28-
day subchronic study) 
 

GO Biological Process: protein localization to Golgi 
apparatus BMDL-BMD-BMDU (5-day GDRS) 

MSigDB C2: SMID Breast Cancer Normal 
Like DN BMDL-BMD-BMDU (5-day GDRS) 



National Toxicology Program Approach to Genomic Dose-Response Modeling 

 A-14 

 
Figure 12. Comparison of the Most Sensitive Apical Endpoint BMD from a 2-Year Study of 
Chloroprene (CHLP) to the Most Sensitive Gene-Set BMD from a 5-Day GDRS of CHLP 

In a 2-year study, female F344/N rats were exposed to doses of 0, 12.8, 32, and 80 ppm in air18. The most sensitive apical 
endpoint was alveolar epithelium hyperplasia with BMD10 and BMD10L values of 4.9 and 3.3 ppm, respectively (log-logistic 
model, 95% confidence limit). A ½ log range above and below the apical BMD of 17.0 ppm is shown at the top of the plot. The 
½ log range is shown to facilitate comparison with the genomic BMD values. In a 5-day GDRS female F344 rats were exposed to 
doses of 0, 5, 30, 90, and 200 ppm in air, and lung gene expression was measured19. BMDExpress 2.0 was used to identify the 
most sensitive gene-set BMD, BMDL and BMDU values from the GO Biological Processes2 and the MSigDB C2 set3. The BMD-
to-BMDU ranges of the most sensitive gene sets in both cases overlapped with the ½ log range of the most sensitive apical BMD 
from the 2-year study.  
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Figure 13. Comparison of the Most Sensitive Apical Endpoint BMD from a 90-Day Subchronic 
Study of N-Nitrosodiphenylamine (NDPA) to the Most Sensitive Gene-Set BMD from a 5-Day 
GDRS of NDPA 

In a 90-day subchronic study, female F344 rats were exposed to doses of 0, 250, 1000, 2000, 3000, and 4000 ppm in feed11; 20. 
The most sensitive apical endpoint was diffuse transitional epithelial hyperplasia of the bladder with BMD10 and BMD10L 
values of 1567 and 971 ppm, respectively11. A ½ log range above and below the apical BMD of 1567 ppm is shown at the top of 
the plot. The ½ log range is shown to facilitate comparison with the genomic BMD values. Not shown on the plot is the 
transitional cell carcinoma of the bladder BMD and BMDL values of 2002 and 1499 ppm, respectively, that were derived from 
2-year study findings in the same rat strain11; 21. In a 5-day GDRS, male F344 rats were exposed to doses of 0, 250, 1000, 2000, 
3000, and 4000 ppm in feed, and bladder gene expression was measured. BMDExpress 2.0 was used to identify the most 
sensitive gene-set BMD, BMDL, and BMDU values from the GO Biological Processes2 and the MSigDB C2 set3. The 
BMDL-to-BMDU ranges of the most sensitive gene sets in both cases were less sensitive than the ½ log range of the most 
sensitive apical BMD from the 90-day subchronic study. 
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A.3 Global Comparison of POD and BEPOD 

 
Figure 14. Comparison of the Most Sensitive Apical ½ Log Potency Range to the Most Sensitive GO 
Biological Processes BEPOD 

Data from Figure 1–Figure 13 in this document were compiled to allow a larger scale comparison of apical and gene set-based 
biological potency estimates. The most sensitive apical potency values (NOAEL or BMD) from guideline toxicity assessments 
are plotted on the x-axis and the BEPOD range (BMDL-BMD-BMDU) from the GO Biological Processes analysis from 4- or 
5-day GDRS studies are plotted on the y-axis. A diagonal 1-to-1 line is drawn as reference to perfect agreement between the 
potency values. The points to the left of the line demonstrate more sensitive apical endpoints, whereas those to the right exhibited 
more sensitive BEPODs. Overall, the apical and BEPOD values strongly agree, as indicated by R2 = 0.89.  
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Figure 15. Comparison of the Most Sensitive Apical ½ Log Potency Range to the Most Sensitive 
MSigDB C2 Gene-Set BEPOD 

Data from Figure 1– Figure 13 in this document were compiled to allow a larger scale comparison of apical and gene set-based 
biological potency estimates. The most sensitive apical potency values (NOAEL or BMD) from guideline toxicity assessments 
are plotted on the x-axis and the BEPOD range (BMDL-BMD-BMDU) from the MSigDB C2 gene-set analysis from 4- or 5-day 
GDRS studies are plotted on the y-axis. A diagonal 1-to-1 line is drawn as a reference to perfect agreement between the types of 
potency values. The points to the left of the line demonstrate more sensitive apical endpoints, whereas those to the right exhibited 
more sensitive BEPODs. Overall, the apical and BEPOD values as indicated by R2 = 0.92 strongly agree.  
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