National Cancer Institute CARCINOGENESIS Technical Report Series No. 154 1979

NCI-CG-TR-154

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

BIOASSAY OF

AZOBENZENE

FOR POSSIBLE CARCINOGENICITY

Carcinogenesis Testing Program Division of Cancer Cause and Prevention National Cancer Institute National Institutes of Health Bethesda, Maryland 20014

U. S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

DHEW Publication No. (NIH) 79-1710

BIOASSAY OF AZOBENZENE FOR POSSIBLE CARCINOGENICITY

Carcinogenesis Testing Program Division of Cancer Cause and Prevention National Cancer Institute National Institutes of Health

FOREWORD: This report presents the results of the bioassay of azobenzene conducted for the Carcinogenesis Testing Program, Cancer Cause Prevention, National Cancer Division of and Institute (NCI), National Institutes of Health. Bethesda. This is one of a series of experiments designed to Maryland. determine whether selected chemicals have the capacity to produce cancer in animals. A negative result, in which the test animals do not have a greater incidence of cancer than control animals, does not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of circumstances. A positive results demonstrates that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical is a potential risk to man. The actual determination of the risk to man from chemicals found to be carcinogenic in animals requires a wider analysis.

CONTRIBUTORS: This bioassay of azobenzene was conducted at the NCI Frederick Cancer Research Center (FCRC) (1), Frederick, Maryland, for NCI (2) by Litton Bionetics, Inc.

The manager of the bioassay at FCRC was Dr. B. Ulland, the toxicologist was Dr. E. Gordon, and Drs. R. Cardy and D. Creasia compiled the data. Ms. S. Toms was responsible for management of data, Mr. D. Cameron for management of histopathology, Mr. L. Callahan for management of the computer branch, and Mr. R. Cypher for management of the facilities. Mr. A. Butler performed the computer services. Histopathologic evaluations for rats and mice were performed by Dr. B. Ulland (1). The diagnoses included in this report represent his interpretations.

Animal pathology tables and survival tables were compiled at EG&G Mason Research Institute (3). Statistical analyses were performed by Dr. J. R. Joiner (4) and Ms. P. L. Yong (4), using methods selected for the bioassay program by Dr. J. J. Gart (5). The chemicals used in this bioassay were analyzed at FCRC by Dr. W. Zielinsky (1). The chemical narrative and analyses were reviewed and approved by Dr. W. Lijinsky (1).

This report was prepared at Tracor Jitco (4) under the direction of NCI. Those responsible for the report at Tracor Jitco were Dr. C. R. Angel, Acting Director of the Bioassay Program; Dr. S. S. Olin, Deputy Director for Science; Dr. J. F. Robens, toxicologist; Dr. R. L. Schueler, pathologist; Dr. G. L. Miller, Ms. L. A. Owen, Ms. M. S. King, and Mr. W. D. Reichardt, bioscience writers; and Dr. E. W. Gunberg, technical editor, assisted by Ms. Y. E. Presley.

The following scientists at NCI were responsible for evaluating the bioassay experiment, interpreting the results, and reporting the findings: Dr. Kenneth C. Chu, Dr. Cipriano Cueto, Jr., Dr. J. Fielding Douglas, Dr. Richard A. Griesemer, Dr. Thomas E. Hamm, Dr. William V. Hartwell, Dr. Morton H. Levitt, Dr. Harry A. Milman, Dr. Thomas W. Orme, Dr. A. R. Patel, Dr. Sherman F. Stinson, Dr. Jerrold M. Ward, and Dr. Carrie E. Whitmire.

- (1) Frederick Cancer Research Center, P.O. Box B, Frederick, Maryland.
- (2) Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- (3) EG&G Mason Research Institute, 1530 East Jefferson Street, Rockville, Maryland.
- (4) Tracor Jitco, Inc., 1776 East Jefferson Street, Rockville, Maryland.
- (5) Mathematical Statistics and Applied Mathematics Section, Biometry Branch, Field Studies and Statistics, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.

SUMMARY

A bioassay of azobenzene for possible carcinogenicity was conducted by administering the test chemical in feed to F344 rats and B6C3F1 mice.

Groups of 50 rats of each sex were administered azobenzene at one of two doses, either 200 or 400 ppm, for 105 or 106 weeks. Matched controls consisted of 20 untreated rats of each sex. All surviving rats were killed at the end of administration of the test chemical.

Groups of 50 male mice were administered azobenzene at one of two doses, either 200 or 400 ppm, for 105 weeks. Groups of 50 female mice were administered the test chemical at one of two doses, initially 400 or 800 ppm, for 38 weeks. Because of excessively lowered body weights in the dosed groups of the females, doses for the females were then reduced to 100 and 400 ppm, respectively, and administration at the lowered doses was continued for 67 or 68 weeks. The time-weighted average doses for the female mice were either 208 or 545 ppm. Matched controls consisted of 20 untreated mice of each sex. All surviving mice were killed at the end of administration of the test chemical.

Mean body weights of dosed rats and mice of each sex were lower than those of corresponding controls, and were generally dose related throughout the bioassay. Mortality was dose related in the male rats and the female mice, but was not significantly affected in either the female rats or the male mice. Survival was 70% or greater at week 90 on study in all dosed and control groups of each species and sex; thus, sufficient numbers of animals were at risk in all groups for the development of late-appearing tumors.

In rats, a large number of sarcomas, including fibrosarcomas, hemangiosarcomas, and osteosarcomas in both males and females and malignant hemangiopericytomas in females, occurred in the spleen and other abdominal organs at incidences that were dose related in each sex (P less than 0.001) and that in direct comparisons were significantly higher (P less than 0.001) in the high-dose groups of each sex than in the corresponding control groups (males: controls 0/20, low-dose 6/49, high-dose 31/49; females: controls 0/20, low-dose 5/50, high-dose 21/50).

In mice, no tumors occurred in either males or females at

incidences that were significantly higher in the dosed groups than in the corresponding control groups.

It is concluded that under the conditions of this bioassay, azobenzene was carcinogenic (sarcomagenic) for F344 rats, inducing various types of sarcomas in the spleen and other abdominal organs of both males and females. The test chemical was not carcinogenic for B6C3F1 mice of either sex.

TABLE OF CONTENTS

		Page
I.	Introduction	1
II.	Materials and Methods	3
	 A. Chemical. B. Dietary Preparation. C. Animals. D. Animal Maintenance. E. Subchronic Studies. F. Chronic Studies. G. Clinical and Pathologic Examinations. H. Data Recording and Statistical Analyses. 	3 3 4 5 7 11 11 14
III.	Results - Rats	21
	 A. Body Weights and Clinical Signs (Rats) B. Survival (Rats) C. Pathology (Rats) D. Statistical Analyses of Results (Rats) 	21 21 24 27
IV.	Results - Mice	31
	 A. Body Weights and Clinical Signs (Mice) B. Survival (Mice) C. Pathology (Mice) D. Statistical Analyses of Results (Mice) 	31 31 34 36
v.	Discussion	37
VI.	Bibliography	41

APPENDIXES

Appendix A	Summary of the Incidence of Neoplasms in Rats Administered Azobenzene in the Diet	43
Table Al	Summary of the Incidence of Neoplasms in Male Rats Administered Azobenzene in the Diet	45
Table A2	Summary of the Incidence of Neoplasms in Female Rats Administered Azobenzene in the Diet	49

Appendix B	Summary of the Incidence of Neoplasms in Mice Administered Azobenzene in the Diet	53
Table Bl	Summary of the Incidence of Neoplasms in Male Mice Administered Azobenzene in the Diet	55
Table B2	Summary of the Incidence of Neoplasms in Female Mice Administered Azobenzene in the Diet	58
Appendix C	Summary of the Incidence of Nonneoplastic Lesions in Rats Administered Azobenzene in the Diet	63
Table Cl	Summary of the Incidence of Nonneoplastic Lesions in Male Rats Administered Azobenzene in the Diet	65
Table C2	Summary of the Incidence of Nonneoplastic Lesions in Female Rats Administered Azobenzene in the Diet	70
Appendix D	Summary of the Incidence of Nonneoplastic Lesions in Mice Administered Azobenzene in the Diet	75
Table Dl	Summary of the Incidence of Nonneoplastic Lesions in Male Mice Administered Azobenzene in the Diet	77
Table D2	Summary of the Incidence of Nonneoplastic Lesions in Female Mice Administered Azobenzene in the Diet	81
Appendix E	Analyses of the Incidence of Primary Tumors in Rats Administered Azobenzene in the Diet	85
Table El	Analyses of the Incidence of Primary Tumors in Male Rats Administered Azobenzene in the Diet	87
Table E2	Analyses of the Incidence of Primary Tumors in Female Rats Administered Azobenzene in the Diet	94

Page

Appendix F	Analyses of the Incidence of Primary Tumors in Mice Administered Azobenzene in the Diet	101
Table Fl	Analyses of the Incidence of Primary Tumors in Male Mice Administered Azobenzene in the Diet	103
Table F2	Analyses of the Incidence of Primary Tumors in Female Mice Administered Azobenzene in the Diet	107
	TABLES	
Table l	Azobenzene Subchronic Feeding Studies in Rats and Mice	8
Table 2	Azobenzene Chronic Feeding Studies in Rats	12
Table 3	Azobenzene Chronic Feeding Studies in Mice	13
	FIGURES	
Figure l	Growth Curves for Rats Administered Azobenzene in the Diet	22
Figure 2	Survival Curves for Rats Administered Azobenzene in the Diet	23
Figure 3	Growth Curves for Mice Administered Azobenzene in the Diet	32
Figure 4	Survival Curves for Mice Administered Azobenzene in the Diet	33

I. INTRODUCTION

(CAS 103-33-3; Azobenzene NCI CO2926) occurs as a by-product during the manufacture of benzidine (Noller, 1965; Lurie, 1964). Benzidine is a widely used intermediate for the azo dyes and other organic chemicals and is a

Azobenzene

carcinogen (Department of Labor, 1974). Azobenzene itself has no known uses as a dyestuff and is produced only in small quantities for research purposes (International Agency for Research on Cancer, 1975).

Since 1950, there has been documented evidence of an increased risk of bladder cancer in persons employed in the dye industries (International Agency for Research on Cancer, 1975). Although it has not been possible to identify the causative dyes or intermediates by these epidemiological studies, some compounds have been shown to be carcinogenic in animal studies. Azobenzene has been regarded in the literature as a noncarcinogen (Daoust and Calamai, 1971; Eldredge and Luck, 1952), as a result of a

long-term study by Spitz et al. (1950) in which Sherman rats were given subcutaneous injections of the compound for life. More recently, azobenzene was tested by Innes et al. (1969) in a large-scale screen of industrial compounds for carcinogenic activity. Since the results of this preliminary bioassay in mice did not clearly associate the incidence of any tumor with administration of the test chemical, azobenzene was selected for further testing in the Carcinogenesis Testing Program.

II. MATERIALS AND METHODS

A. Chemical

Azobenzene (diphenyldiimide; azobenzide) was obtained from Eastman Chemical Company as a hard, dark-orange, crystalline material. Its purity was determined at Frederick Cancer Research Center using gas-liquid chromatography (GLC) to be 99.5%, with up to six minor contaminants and a melting point of $66^{\circ}C$ (literature: $68^{\circ}C$). Mass spectral analysis gave a molecular ion at m/e 182 and a base peak at m/e 77. The infrared spectrum was consistent with its structure, and was identical to that of a standard.

B. Dietary Preparation

Test diets containing azobenzene were prepared in 6-kg batches at the appropriate doses. A known weight of the chemical was first mixed with an equal weight of autoclaved Wayne[®] Sterilizable Lab Meal with 4% fat (Allied Mills, Inc., Chicago, Ill.), using a mortar and pestle. The mixing was continued with second and third additions of feed, and final mixing was performed with the

remaining quantity of feed for a minimum of 15 minutes in a Patterson-Kelly twin-shell blender with an intensifier bar.

Detailed GLC analyses of aliquots of azobenzene-feed mixtures taken from various locations in the blender showed that the mixture was homogeneous.

C. Animals

Male and female F344 (Fischer) rats and B6C3F1 mice were obtained as 4-week-old weanlings, all within 3 days of the same age, from the NCI Frederick Cancer Research Center animal farm (Frederick, Md.). The animals were housed within the test facility for 2 weeks and were then assigned four rats to a cage and five mice to a cage on a weight basis for each cage of animals of a given species and sex. For use in the chronic study, the male rats were required to weigh 90 to 105 g, averaging at least 100 g; the female rats, 80 to 95 g, averaging at least 90 g; the male mice, 18 to 22 g, averaging at least 19.5 g; and the female mice, 17 to 21 g, averaging at least 18.5 g. Individual animals were identified by ear punch.

D. Animal Maintenance

The animals were boused in polycarbonate cages (Lab Products, Inc., Garfield, N.J.), 19 x 10-1/2 x 8 inches for the rats and $11-1/2 \times 7-1/2 \times 5$ inches for the mice, which were suspended from aluminum racks (Scientific Cages, Inc., Bryan, Tex.) and were covered by nonwoven polyester-fiber 12-mil-thick filter paper (Hoeltge, Inc., Cincinnati, Ohio). The bedding used was Absorb-dri[®] hardwood chips (Northeastern Products, Inc., Warrenburg, N. Y.). The feed supplied was presterilized Wayne[®] Sterilizable Lab Meal, provided ad libitum in suspended stainless steel hoppers and replenished at least three times per week. Water, acidified to pH 2.5, was supplied ad libitum from glass Sipper tubes (Lab Products, Inc.) were suspended bottles. through the tops of the cages.

The contaminated bedding was disposed of through an enclosed vacuum line that led to a holding tank from which the bedding was fed periodically into an incinerator. The cages were sanitized twice per week and the feed hoppers twice per month at 82 to $88^{\circ}C$ in a tunnel-type cagewasher (Industrial Washing Corp., Mataway, N. J.), using the detergents, $Clout^{(0)}$ (Pharmacal Research Laboratories, Greenwich, Conn.) or Oxford D'Chlor (Oxford Chemicals, Atlanta, Ga.).

The glass bottles and sipper tubes were sanitized at 82 to 88°C in a tunnel-type bottle washer (Consolidated Equipment Supply Co., Mercersburg, Pa.) three times per week, using a Calgen Commercial Division detergent (St. Louis, Mo.). The racks for the cages were sanitized at or above 82°C in a rack washer (Consolidated Equipment Supply Co.) once per month, using Calgen Commercial Division detergent, and the filter paper was changed at the same time.

The air in the animal rooms was maintained at 22 to 24°C and 45 to 55% relative humidity. Fresh air was passed through a filter of 65% efficiency and a bag filter of 95% efficiency at the intake and through a "Z"-type roughing filter of 30% efficiency and a bag system of 90 to 95% efficiency at the exhaust (American Air Filters, Louisville, Ky.; Mine Safety Appliances, Pittsburgh, Pa.); the air was not recirculated. Room air was changed 15 times per hour. The air pressure was maintained negative to a clean hallway and positive to a return hallway. Fluorescent lighting was provided automatically on a 12-hour-per-day cycle.

Rats administered azobenzene and their corresponding controls were housed in the same room as rats on feeding studies of the following chemicals:

(CAS 72-56-0) p,p'-ethyl-DDD (CAS 120-62-7) piperonyl sulfoxide Mice administered azobenzene and their corresponding controls were housed in the same room as mice on feeding studies of the following chemicals:

```
(CAS 128-66-5) C. I. vat yellow 4
(CAS 72-56-0) p,p'-ethyl-DDD
(CAS 20941-65-5) ethyl tellurac
(CAS 298-00-0) methyl parathion
(CAS 85-44-9) phthalic anhydride
(CAS 51-03-6) piperonyl butoxide
(CAS 86-06-2) 2,4,6-trichlorophenol
```

E. Subchronic Studies

Subchronic feeding studies were conducted to estimate the maximum tolerated doses (MTD's) of azobenzene, on the basis of which two concentrations (referred to in this report as "low" and "high" doses) were selected for administration in the chronic studies. Groups of five rats of each sex and five mice of each sex were fed diets containing azobenzene at one of several doses, and groups of five control animals of each species and sex were administered basal diet only. The test chemical was administered for 7 weeks, followed by 1 week of additional observation. Each animal was weighed twice per week. Table 1 shows the survival of animals in each dose group at the end of the study and the week on study when the last death occurred; the table also shows the mean body weights of each dosed group at week 7, expressed as percentages of mean body weights of controls. At the end of the

		Male			Female	
Dose (ppm)	Surviv- _al (a)	Week on Study When Last Death Occurred	Mean Weight at Week 7 as % of <u>Control</u>	Surviv- _al (a)	Week on Study When Last Death Occurred	Mean Weight at Week 7 as % of Control
<u>Rats</u>						
500	5/5		88	5/5		96
700	5/5		75	5/5		83
1,000	5/5		73	5/5		69
2,200	5/5		33	0/5	6	
4,600	0/5	2		0/5	2	
Mice						
500	5/5		88	5/5		91
700	5/5		86	5/5		91
1,000	5/5		91	5/5		91
2,200	4/5	5	89	5/5		91
4,600	5/5		66	5/5		67

Table	1.	Azober	ızene	Sub	chro	onic	Feeding	
	S	tudies	in R	ats	and	Mice	2	

(a) Number surviving/number in group.

subchronic studies, all animals were killed using CO₂ and necropsied.

Groups of male and female rats receiving doses of 2,200 or 4,600 ppm were observed during clinical examination to be emaciated. At necropsy, the groups of rats receiving the four highest doses had slightly enlarged livers. Histopathologic changes due to administration of the azobenzene were noted in the kidneys and livers of male and female rats dosed at 1,000 or 2,200 ppm. In these animals the proximal convoluted tubules of the kidney contained generally moderate of amounts granular, yellowish-brown, intracytoplasmic pigment. Trace to moderate amounts of centrilobular cytoplasmic vacuolation of hepatocytes, suggestive of lipidosis, occurred in six male rats. Trace to very small amounts of bile stasis were noted in the livers of both males and females. The hepatic changes indicated mild Pigmentation of renal tubules was injury. considered to represent accumulation of lipofuscin in association with mild degenerative changes in the tubular epithelium.

No clinical signs were observed during examination of male and female mice in the groups dosed at 4,600 ppm. At necropsy the groups of mice receiving the four highest doses had enlarged spleens and mesenteric nodes. Trace to very slight stasis of the

bile, trace to very slight granular intracytoplasmic pigmentation of the proximal convoluted tubular epithelium, and slight pigmentation of the splenic red pulp were noted in all animals examined.

Ten percent depression in body weight was the major criterion for estimation of MTD's. The doses that were required to produce this response were determined by the following procedure: first, least square regressions of mean body weights versus days on study were used to estimate mean body weights of each of the dosed groups at day 49. Next, probits of the percent weights of corresponding control groups were plotted against the logarithms of the doses, and least squares regressions fitted to the data were used to estimate the doses required to induce 10% depression in weight.

Based on the data thus obtained, the low and high doses for chronic studies using male and female rats were set at 200 and 400 ppm; using male mice, 200 and 400 ppm; and using female mice, 400 to 800 ppm.

F. Chronic Studies

The test groups, doses administered, and durations of the chronic feeding studies are shown in tables 2 and 3. Due to excessive weight depression in the dosed female mice, doses for the lowand high-dose groups were reduced to 100 and 400 ppm, respectively, after week 38.

G. Clinical and Pathologic Examinations

All animals were observed twice daily. Observations for sick, tumor-bearing, and moribund animals were recorded daily. Clinical examination and palpation for masses were performed each month, and the animals were weighed at least once per month. Moribund animals and animals that survived to the end of the bioassay were killed using CO_2 and necropsied.

The pathologic evaluation consisted of gross and microsocopic examination of major tissues, major organs, and all gross lesions. The tissues were preserved in 10% buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. The following tissues were examined microscopically: skin, lungs and bronchi, trachea, bone marrow (femur), spleen,

Sex and Test Group	Initial No. of Animals (a)	Azobenzene in Diet (b) (ppm)	Time on Study (weeks)
Male			
Matched-Control	20	0	106
Low-Dose	50	200	106
High-Dose	50	400	105
Female			
Matched-Control	20	0	106
Low-Dose	50	200	106
High-Dose	50	400	105-106

Table 2. Azobenzene Chronic Feeding Studies in Rats

(a) All animals were 6 weeks of age when placed on study.

(b) Test and control diets were provided <u>ad libitum</u> 7 days per week.

Sex and Test Group	Initial No. of Animals (a)	Azobenzene in Diet (b) (ppm)	Time on Study (weeks)	Time-Weighted Average Dose (c) (ppm)
Male				
Matched- Control	20	0	106	
Low-Dose	50	200	105	
High-Dose	50	400	105	
Female				
Matched-				
Control	20	0	106	
Low-Dose	50	400	38	
		100	68	208
High-Dose	50	800	38	
		400	67	545

Table 3. Azobenzene Chronic Feeding Studies in Mice

(a) All animals were 6 weeks of age when placed on study.

(b) Test and control diets were provided <u>ad libitum</u> 7 days per week.

(c) Time-weighted average dose = $\frac{\Sigma(\text{dose in ppm x no. of weeks at that dose)}}{\Sigma(\text{no. of weeks receiving each dose})}$

lymph nodes (mesenteric and submandibular), thymus, heart, salivary glands (parotid, sublingual, and submaxillary), liver, pancreas, esophagus, stomach (glandular and nonglandular), small and large intestines, kidney, urinary bladder, pituitary, adrenal, thyroid, parathyroid, testis, prostate, mammary gland, uterus, ovary, brain (cerebrum and cerebellum), and all tissue masses. Peripheral blood smears also were made for all animals, whenever possible.

Necropsies were also performed on all animals found dead, unless precluded in whole or in part by autolysis or cannibalization. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and does not necessarily represent the number of animals that were placed on study in each group.

H. Data Recording and Statistical Analyses

Pertinent data on this experiment have been recorded in an automatic data processing system, the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, clinical observations, survival, body weight, and

individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969). Data tables were generated for verification of data transcription and for statistical review.

These data were analyzed using the appropriate statistical techniques described in this section. Those analyses of experimental results that bear on the possibility of carcinogenicity are discussed in the statistical narrative section.

Probabilities of survival were estimated by the product-limit procedure of Kaplan and Meier (1958) and are presented in this report in the form of graphs. Animals were statistically censored as of the time that they died of other than natural causes or were found to be missing; animals dying from natural causes were not statistically censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) extensions of Cox's methods for testing for a dose-related trend. One-tailed P values have been reported for all tests except the departure from linearity test, which is only reported when its two-tailed P values is less than 0.05.

The incidence of neoplastic or nonneoplastic lesions has been given as the ratio of the number of animals bearing such lesions at a specific anatomic site (numerator) to the number of animals in which that site is examined (denominator). In most instances, the denominators included only those animals for which that site histologically. examined However, when macroscopic was examination was required to detect lesions prior to histologic sampling (e.g., skin or mammary tumors), or when lesions could have appeared multiple sites (e.g., lymphomas), at the denominators consist of the number of animals necropsied.

The purpose of the statistical analyses of tumor incidence is to determine whether animals receiving the test chemical developed a significantly higher proportion of tumors than did the control As a part of these analyses, the one-tailed Fisher animals. exact test (Cox, 1970) was used to compare the tumor incidence of a control group with that of a group of dosed animals at each When results for a number of dosed groups (k) are dose level. compared simultaneously with those for a control group, a correction to ensure an overall significance level of 0.05 may be made. The Bonferroni inequality (Miller, 1966) requires that the P value for any comparison be less than or equal to 0.05/k. In cases where this correction was used, it is discussed in the

narrative section. It is not, however, presented in the tables, where the Fisher exact P values are shown.

The Cochran-Armitage test for linear trend in proportions, with continuity correction (Armitage, 1971), was also used. Under the assumption of a linear trend, this test determines if the slope of the dose-response curve is different from zero at the one-tailed 0.05 level of significance. Unless otherwise noted, the direction of the significant trend is a positive dose relationship. This method also provides a two-tailed test of departure from linear trend.

A time-adjusted analysis was applied when numerous early deaths resulted from causes that were not associated with the formation of tumors. In this analysis, deaths that occurred before the first tumor was observed were excluded by basing the statistical tests on animals that survived at least 52 weeks, unless a tumor was found at the anatomic site of interest before week 52. When such an early tumor was found, comparisons were based exclusively on animals that survived at least as long as the animal in which the first tumor was found. Once this reduced set of data was obtained, the standard procedures for analyses of the incidence of tumors (Fisher exact tests, Cochran-Armitage tests, etc.) were followed.

When appropriate, life-table methods were used to analyze the incidence of tumors. Curves of the proportions surviving without an observed tumor were computed as in Saffiotti et al. (1972). The week during which an animal died naturally or was sacrificed was entered as the time point of tumor observation. Cox's methods of comparing these curves were used for two groups; Tarone's extension to testing for linear trend was used for three groups. The statistical tests for the incidence of tumors which used life-table methods were one-tailed and, unless otherwise noted, in the direction of a positive dose relationship. Significant departures from linearity (P less than 0.05, two-tailed test) were also noted.

The approximate 95 percent confidence interval for the relative risk of each dosed group compared with its control was calculated from the exact interval on the odds ratio (Gart, 1971). The relative risk is defined as p_t/p_c where p_t is the true binomial probability of the incidence of a specific type of tumor in a dosed group of animals and p_c is the true probability of the spontaneous incidence of the same type of tumor in a control group. The hypothesis of equality between the true proportion of a specific tumor in a dosed group and the proportion in a control

of unity represent the condition of a larger proportion in the dosed group than in the control.

The lower and upper limits of the confidence interval of the relative risk have been included in the tables of statistical limits is The interpretation of the that in analyses. approximately 95% of a large number of identical experiments, the true ratio of the risk in a dosed group of animals to that in a control group would be within the interval calculated from the experiment. When the lower limit of the confidence interval is greater than one, it can be inferred that a statistically significant result (P less than 0.025 one-tailed test when the control incidence is not zero, P less than 0.050 when the control incidence is zero) has occurred. When the lower limit is less than unity, but the upper limit is greater than unity, the lower limit indicates the absence of a significant result while the upper limit indicates that there is a theoretical possibility of the induction of tumors by the test chemical, which could not be detected under the conditions of this test.

III. RESULTS - RATS

A. Body Weights and Clinical Signs (Rats)

Mean body weights of dosed male and female rats were lower than those of corresponding controls and were dose related throughout the bioassay (figure 1). Fluctuation in the growth curves may be due to mortality; as the size of a group diminishes, the mean body weight may be subject to variation. Other clinical signs, such as corneal opacity and tissue masses, occurred at low incidences and were common to dosed and control groups.

B. Survival (Rats)

The Kaplan and Meier curves estimating the probabilities of survival for male and female rats administered azobenzene in the diet at the doses of this bioassay, together with those of the matched controls, are shown in figure 2. In male rats, the result of the Tarone test for positive dose-related trend in mortality is significant (P less than 0.001). An indicated departure from linear trend is observed (P less than 0.001) because the low-dose animals survived longer than the control

Figure 1. Growth Curves for Rats Administered Azobenzene in the Diet

Figure 2. Survival Curves for Rats Administered Azobenzene in the Diet

animals. In females, the result of the Tarone test is not significant.

In male rats, 35/50 (70%) of the high-dose group, 47/50 (94%) of the low-dose group, and 17/20 (85%) of the control group lived at least as long as week 90 on study. In females, 48/50 (96%) of the high-dose group, 44/50 (88%) of the low-dose group, and 19/20 (95%) of the control group lived at least as long as week 90 on study.

Sufficient numbers of rats of each sex were at risk for the development of late-appearing tumors.

C. Pathology (Rats)

Histopathologic findings on neoplasms in rats are summarized in Appendix A, tables Al and A2; findings on nonneoplastic lesions are summarized in Appendix C, tables Cl and C2.

Long-term feeding of azobenzene to male and female rats was associated with a marked increase in the frequency of malignant mesenchymal tumors involving the abdominal viscera including mesentery and omentum. None of these neoplasms were seen in
control animals. These tumors often spread throughout the abdominal cavity involving multiple tissues and organs to such an extent that determination of the primary site was precluded. The spectrum of mesenchymal malignancies included a striking array of forms, from bizarre undifferentiated sarcomas to relatively welldifferentiated fibrosarcomas, osteogenic sarcomas, and vascular neoplasms.

The abdominal organ most constantly involved was the spleen, and the most commonly observed tumors of the spleen were fibrosarcomas. Some characterized were by proliferating anaplastic spindle cells forming broad sheets, the occurrence of tumor giant cells, the presence of numerous bizarre mitoses, and large areas of ischemic necrosis. Others were more differentiated, having varying amounts of collagen, and were composed of proliferating spindle cells growing in sheets and intersecting bundles. Occasionally, these tumors contained mature adipose tissue. Osteogenic sarcomas observed were all well-differentiated and contained large amounts of bone, often trabecular, and osteoid tissue. Hemangiosarcomas observed in dosed animals varied from solid tumors composed of proliferating sheets of spindle cells containing a myriad of cleft-like structures or vascular channels with varying numbers of erythrocytes to massive cavernous blood-filled tumors with

thick fibrotic walls and intersected by traberculae lined by neoplastic cells. A well-differentiated hemangiopericytoma, with a typical "whorling" pattern of proliferating pericytes was also observed in a dosed animal.

A large number of sarcomas were observed involving multiple organs of the abdominal cavity. These probably represent extensions of primary splenic neoplasms. Often, nearly every abdominal organ and tissue, including scrotal fat, was affected, testifying to the extreme invasiveness of these tumors.

A wide variety of other neoplasms were observed in all groups, but there was no clear-cut relationship of these neoplasms to azobenzene exposure.

Nonproliferative lesions associated with long-term dietary intake of azobenzene were observed in several instances. Increased amounts of hemosiderin were deposited in the spleen, liver, and tubular epithelium of dosed female renal rats. Chronic capsulitis of the spleen was observed in all dosed groups of males and females, but particularly in the females. This was characterized by a cystic papillary proliferation of serosal cells, thickening of the capsule, and focal collections of mononuclear cells and mineral deposits.

Several low-dose male and female rats had unusual accumulations of mature-appearing adipose tissue within the spleen, and several females had varying degrees of fibrosis of the splenic pulp. These changes may be within the spectrum of proliferative lesions already discussed.

A wide variety of lesions previously found in aged F344 rats occurred in all groups without relationship to administration of the test chemical.

Based the histopathologic examination, on azobenzene was carcinogenic (sarcomagenic) to F344 rats, being associated with a high incidence of malignant mesenchymal tumors that were not observed in control animals, under the conditions of this bioassay. The striking array of splenic proliferative lesions suggests that azobenzene may have an effect on primitive reticular cells that are the precursors of the various differentiated components.

D. Statistical Analyses of Results (Rats)

Tables El and E2 in Appendix E contain the statistical analyses of the incidences of those primary tumors that occurred in at least two animals of one group and at an incidence of at least 5% in one or more than one group.

The result of the Cochran-Armitage test for positive dose-related incidence of fibrosarcoma of the spleen is trend in the significant in both male (P = 0.020) and female (P = 0.012) rats, although the results of the Fisher exact test are not significant. The historical records for the rats maintained as controls at this laboratory show an incidence of tumors of 1/285(0.4%) in males and 0/285 in females. Using the incidence of 1/285 as a parameter and assuming a binomial distribution, the probability level of obtaining 7 or more such tumors out of 49 or 50 animals is less than 0.001.

In male rats, the result of the Cochran-Armitage test for the incidence of fibrosarcoma of multiple organs is significant (P less than 0.001). An indicated departure from linear trend is observed (P = 0.030), due to the steep increase in the incidence of tumors in the high-dose group. The Fisher exact test shows that the incidence in the high-dose group is significantly higher (P = 0.007) than that in the control group. The statistical conclusion is that the incidence of fibrosarcoma of multiple organs in male rats is associated with the administration of

azobenzene. No such tumor is observed at a significant incidence in females.

In female rats, the result of the Cochran-Armitage test for the incidence of osteosarcoma of the spleen is significant (P = 0.041), but the results of the Fisher exact test are not significant. The historical records of this laboratory show no such tumor among 285 control F344 female rats. Using 1/285 as a parameter and assuming a binomial distribution, the probability level of obtaining 5 such tumors out of 50 animals is less than 0.001.

When tests are performed using the incidences of animals with any type of sarcoma in the abdominal cavity, the P values for dose-related trend and for significance of direct comparisons of high-dose and control groups are less than 0.001 for both male and female rats.

Significant results in the negative direction are observed in the incidences of adenomas of the pituitary and of interstitial-cell tumors of the testis in male rats. The increased incidence in the negative direction may be due to the earlier mortality of the high-dose animals.

In summary, the incidences of male and female animals with sarcomas in the abdominal cavity are related to the administration of azobenzene.

IV. RESULTS - MICE

A. Body Weights and Clinical Signs (Mice)

Mean body weights of dosed male and female mice were lower than those of corresponding controls, and for female mice were dose related throughout the bioassay (figure 3). Fluctuation in the growth curve may be due to mortality; as the size of a group diminishes, the mean body weight may be subject to greater variation. Other clinical signs such as alopecia, corneal opacity, and tissue masses occurred at low incidences and were common to both dosed and control groups.

B. Survival (Mice)

The Kaplan and Meier curves estimating the probabilities of survival for male and female mice administered azobenzene in the diet at the doses of this bioassay, together with those of the matched controls, are shown in figure 4. The result of the Tarone test for positive dose-related trend in mortality is not significant in male mice, but is significant (P less than 0.001) in females.

Figure 4. Survival Curves for Mice Administered Azobenzene in the Diet

In male mice, 46/50 (92%) of the high-dose group, 49/50 (98%) of the low-dose group, and 18/20 (90%) of the control group lived at least as 'long as week 90 on study. In females, 37/50 (74%) of the high-dose group, 43/50 (86%) of the low-dose group, and 19/20 (95%) of the control group lived at least as long as week 90 on study.

Sufficient numbers of mice of each sex were at risk for the development of late-appearing tumors.

C. Pathology (Mice)

Histopathologic findings on neoplasms in mice are summarized in Appendix B, tables Bl and B2; findings on nonneoplastic lesions are summarized in Appendix D, tables Dl and D2.

A variety of neoplasms occurred with approximately equal frequency in dosed and control mice. The incidence, distribution, and nature of these neoplasms are similar to those of neoplasms commonly seen in aged B6C3F1 mice.

Several inflammatory, degenerative, and proliferative lesions commonly seen in aged B6C3F1 mice occurred with approximately

equal frequency in dosed and control animals. The occurrence of these lesions was unrelated to exposure to azobenzene.

Based on the histopathologic examination, changes related to administration of azobenzene were not observed in B6C3F1 mice receiving azobenzene under the conditions of this bioassay.

D. Statistical Analyses of Results (Mice)

Tables F1 and F2 in Appendix F contain the statistical analyses of the incidences of those primary tumors that occurred in at least two animals of one group and at an incidence of at least 5% in one or more than one group.

The results of the Cochran-Armitage for positive test dose-related trend in the incidence of tumors and the results of the Fisher exact test comparing the incidence of tumors in the control group with that in each dosed group in the positive direction are not significant in either sex. However, significant results in the negative direction are observed in the combined incidence of liver tumors in male mice.

In each of the 95% confidence intervals for relative risk, shown in the tables, the value of one or less than one is included; this indicates the absence of significant positive results. It should also be noted that each of the intervals, except that for the combined incidence of liver tumors in the high-dose male mice, has an upper limit greater than one, indicating the theoretical possibility of the induction of tumors by azobenzene, which could not be detected under the conditions of this test.

V. DISCUSSION

Mean body weights of the dosed rats and mice of each sex were lower than those of corresponding controls, and were generally dose related throughout the bioassay. Mortality was dose related in the male rats and the female mice, but was not significantly affected in the female rats and male mice. Survival was 70% or greater at week 90 on study in all dosed and control groups of each species and sex; thus, sufficient numbers of animals were at risk in all groups for the development of late-appearing tumors.

In rats, a large number of animals had various types of sarcomas of the spleen and other abdominal organs. Fibrosarcomas of the spleen occurred at incidences that were dose related in both male (P = 0.020) and female (P = 0.012) rats, although in direct comparisons incidences of the tumors in individual dosed groups were not significantly higher than those in corresponding controls (males: controls 0/20, low-dose 2/49, high-dose 7/49; females: controls 0/20, low-dose 1/50, high-dose 7/50). The incidence of fibrosarcomas of the spleen in historical-control male F344 rats at this laboratory is 1/285, and in female F344 rats it is 0/285; using 1/285 as a parameter and assuming a binomial distribution, the probability that the occurrence of 7

such tumors in 49 male or 50 female high-dose rats in the present bioassay was due to chance is less than 0.001.

Fibrosarcomas of multiple organs (organs other than the spleen) occurred at incidences that were dose related (P less than 0.001) in the male rats, and in a direct comparison the incidence in the high-dose group was significantly higher (P = 0.007) than that in the control group (controls 0/20, low-dose 0/49, high-dose 13/50). In females, fibrosarcomas of multiple organs occurred only in one high-dose animal.

Osteosarcomas of the spleen occurred at incidences that were dose related (P = 0.041) in the female rats, although in direct comparisons the incidences in the individual dosed groups were not significantly higher than that in the control group (controls 0/20, low-dose 1/50, high-dose 5/50). The incidence of osteosarcomas of the spleen in historical-control female F344 rats at this laboratory is 0/285; using 1/285 as a parameter and assuming a binomial distribution, the probability that the occurrence of 5 such tumors in the 50 high-dose female rats of the present bioassay was due to chance is less than 0.001. In males, osteosarcomas of the spleen occurred in one low-dose male and one high-dose male, but in no control males. Osteosarcomas also occurred in multiple organs in three additional high-dose

females and in three additional high-dose males, but in no controls of either sex.

When all types of sarcomas of the abdominal cavity were combined, the incidences of such tumors in both male and female rats were dose related (P less than 0.001); and in direct comparisons the incidences of these tumors in the high-dose groups of males and females were significantly higher (P less than 0.001) than those in the corresponding controls (males: controls 0/20, low-dose 5/49, high-dose 31/49; females: controls 0/20, low-dose 5/50, high-dose 21/50).

No tumors occurred in the male or female mice at incidences that were significantly higher in the dosed groups than in the corresponding controls.

Essentially no evidence of carcinogenicity of azobenzene for rats or mice was obtained in early work carried out from 1936 to 1952 (Hartwell, 1963; Eldredge and Luck, 1952; Spitz et al., 1950), and the compound has generally been considered by cancer investigators not to be carcinogenic. In the work of Innes et al. (International Agency for Research on Cancer, 1975; Innes et al., 1969; NTIS, 1968), however, it was reported that when azobenzene was administered at 21.5 mg/kg body weight by stomach

tube for 3 weeks, then in the diet at 56 ppm for 18 months, to hybrid mice (B6C3F1 and B6AKF1), an elevated incidence of hepatomas (P = 0.01) was observed in the male B6C3F1 hybrids; evaluation additional nevertheless, was proposed. The observation of an increased incidence of tumors of the liver in B6C3F1 mice in the study by Innes et al. was not confirmed by the results of the present bioassay. Damage to the spleen of the dosed F344 rats, characterized by hemosiderosis and capsulitis, occurred in the present bioassay; similar damage was reported for Wistar rats fed azobenzene in the diet in previous studies (Smith et al., 1943).

It is concluded that under the conditions of this bioassay, azobenzene was carcinogenic (sarcomagenic) for F344 rats, inducing various types of sarcomas in the spleen and other abdominal organs of both males and females. The test chemical was not carcinogenic for B6C3F1 mice of either sex.

VI. BIBLIOGRAPHY

Armitage, P., <u>Statistical Methods</u> in <u>Medical Research</u>, John Wiley & Sons, Inc., New York, 1971, pp. 362-365.

Berenblum. I., ed., <u>Carcinogenicity Testing</u>: <u>A Report of the</u> <u>Panel of Carcinogenicity of the Cancer Research Commission of the</u> <u>UICC, Vol. 2</u>. International Union Against Cancer, Geneva, 1969.

Cox, D. R., <u>Analysis of Binary Data</u>, Methuen and Co., Ltd., London, 1970, pp. 48-52.

Cox, D. R., Regression models and life tables. J. R. Statist. Soc. B 34 (2):187-220, 1972.

Daoust, R. and Calamai, R., Hyperbasophilic foci as sites of neoplastic transformation in hepatic parenchyma. <u>Cancer Res</u>. 31:1290-1296, 1971.

Department of Labor, Carcinogens - Occupational Health and Safety Standards. Federal Register 39 (20):3756-3757.

Eldredge, N. T. and Luck, J. M., Electrophoretic studies on the water-soluble proteins of liver during azo dye carcinogenesis in the rats. Cancer Res. 12:801-806, 1952.

Gart, J. J., The comparison of proportions: a review of significance tests, confidence limits and adjustments for stratification. Rev. Int. Stat. Inst. 39:148-169, 1971.

Hartwell, J. L., <u>Survey of Compounds Which Have Been Tested for</u> <u>Carcinogenic Activity</u>. Public Health Service Publication No. 149, National Cancer Institute, National Institutes of Health, Bethesda, Md., 1963.

Innes, J. R. M., Ulland, B. M., Valerio, M. G., Petrucelli, L., Fishbein, L., Hart, E. R., Pallota, A. J., Bates, R. R., Falk, H. L., Gart, J. J., Klein, M., Mitchell, I., and Peters, J., Bioassay of pesticides and industrial chemicals for tumorigenicity in mice: a preliminary note. J. <u>Natl Cancer Inst</u>. 42:1101-1114, 1969. International Agency for Research on Cancer, Azobenzene. In: <u>IARC Monographs on the Evaluation of the Carcinogenic Risk of</u> <u>Chemicals to Man - Some Aromatic Azo Compounds</u>, <u>Vol. 8</u>, International Agency for Research on Cancer, Lyon, France, 1975, pp. 75-81.

Kaplan, E. L. and Meier, P., Nonparametric estimation from incomplete observations. J. <u>Amer. Statist</u>. <u>Assoc</u>. <u>53</u>:457-481, 1958.

Linhart, M. S., Cooper, J. A., Martin, R. L., Page, N. P., and Peters, J. A., Carcinogenesis bioassay data system. <u>Comp.</u> and Biomed. Res. 7:230-248, 1974.

Lurie, A. P., Benzidine. In: <u>Kirk-Othmer</u> <u>Encyclopedia</u> of <u>Chemical</u> <u>Technology</u>, <u>Vol.</u> <u>3</u>, Interscience Publishers, New York, 1964, pp. 408-412 and 420.

Miller, R. G., Jr., <u>Simultaneous Statistical Inference</u>, McGraw-Hill Book Co., New York, 1966, pp. 6-10.

National Technical Information Service (NTIS), <u>Evaluation of</u> <u>Carcinogenic</u>, <u>Teratogenic</u>, <u>and Mutagenic</u> <u>Activities of Selected</u> <u>Pesticides and Industrial Chemicals</u>. <u>Vol. 1</u>. Carcinogenic Study. U.S. Department of Commerce, Washington, D.C., 1968.

Noller, C. R., Aromatic nitro compounds. In: <u>Chemistry of Organic</u> Compounds, W. B. Saunders Co., Philadelphia, 1966, pp. 518-520.

Saffiotti, U., Montesano, R., Sellakumar, A. R., Cefis, F., and Kaufman, D. G., Respiratory tract carcinogenesis in hamsters induced by different numbers of administrations of benzo (a)pyrene and ferric oxide. Cancer Res. 32:1073-1081, 1972.

Smith, M. I., Lillie, R. D., and Stohlman, E. F., The toxicity and histopathology of some azo compounds as influenced by dietary protein. <u>Publ. Hlth. Rep. 58:304-317, 1943.</u>

Spitz, S., Maguigan, W. H., and Dobriner, K., The carcinogenic action of benzidine. Cancer 3:789-804, 1950.

Tarone, R. E., Tests for trend in life table analysis. <u>Biometrika</u> 62 (3):679-682, 1975.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS ADMINISTERED AZOBENZENE IN THE DIET

TABLE A1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS **ADMINISTERED AZOBENZENE IN THE DIET**

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY	20	50	50
ANIMALS MISSING ANIMALS NECROPSIED	20	1 49	50
ANIMALS EXAMINED HISTOPATHOLOGICALLY		49 	50
NTEGUMENTARY SYSTEM			
*SUBCUT TISSUE	(20)	(49)	(50)
BASAL-CELL CARCINOMA	x = - <i>y</i>	1 (2%)	1 (2%)
FIBROMA		2 (4%)	1 (2%)
FIBROSARCCMA			1 (2%)
ESPIRATORY SYSTEM			
#LUNG	(20)	(49)	(50)
ALVEOLAR/ERONCHIOLAR ADENOMA		1 (2%)	
ALVEOLAR/EFONCHIOLAR CARCINOMA	1 (5%)		1 (2%)
C-CELL CARCINOMA, METASTATIC OSTEOSARCCMA, METASTATIC		1 (2%)	• (2%)
EMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS	(20)	(49)	(50)
MALIGNANT LYMPHOMA, NOS	1 (5%)		
MALIG.LYMPHCMA, UNDIFFER-TYPE			2 (4%)
MALIG. LYMPHCMA, LYMPHOCYTIC TYPE		4 40.77	1 (2%)
MUNOCYTIC IEUKEMIA	2 (10%)	1 (2%)	5 (10"
#SPL=EN	(20)	(49)	(49)
NEOPLASM, NOS, MALIGNANT			1 (2%)
SARCOMA, NCS		1 (2%)	2 (4%)
FI BROSARCCMA		2 (4%)	7 (14%)
HLNANGIOSAFCOMA Osteosarcoma		1 (2%) 1 (2%)	4 (8%) 1 (2%)
USIBUS ARCCHA		· (2/0)	1 (27)

NONE

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	MATCHED Control	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM			
#LIVER NEOPLASTIC NODULE H_PATOCEILULAR CARCINOMA HEMANGIOSAFCOMA OSTEOSARCCEA, METASTATIC	(20)	(49) 1 (2%) 1 (2%)	(50) 2 (4%) 1 (2%) 1 (2%) 1 (2%)
#PANCREAS HLMANGIOSARCCMA	(20)	(47)	(48) 1 (2%)
#COLGN MUCINOUS CYSTADENOCARCINGMA MUCINOUS ADENOCARCINOMA	(20) 1 (5%)	(47) 1 (2%)	(50)
URINARY SYSTEM			
NON±			
ENDOCRINE SYSTEM			
<pre>#PITUITARY ADENOMA, NOS CHROMOPHOEE ADENOMA</pre>	(20) 4 (23%)	(49) 2 (4%) 2 (4%)	(49) 3 (6%)
#ADRENAL PHEOCHROMCCYTCMA	(20) 1 (5%)	(49) 1 (2%)	(5C) 1 (2%)
#THYROID C-CELL CARCINOMA	(20)	(49) 1 (2%)	(48) 1 (2 %)
REPRODUCTIVE SYSTEM			
*MAMMARY GLANI FIBROADENCMA	(20)	(49) 2 (4%)	(50)
*PREPUTIAL GIAND SQUAMOUS CELL CARCINCMA	(20) 1 (5%)	(49)	(50)
#IESTIS INTERSTITIAL~CELL TUMOR	(20) 17 (85%)	(48) 41 (85%)	(49) 31 (63%)

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

-

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

NONE

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	MATCHED Control	LOW DOSE	HIGH DOSE
PECIAL SENSE CRGANS			
*EAR CANAL KERATOACANTHOMA	(20) 1 (5%)	(49)	(50)
USCULOSKELETAI SYSTEM			
NO N E			
ODY CAVITIES			
*ABDOMINAL CAVITY H&MANGIOSARCOMA	(20)	(49)	(50) 1 (2%
* MESENTERY	(20)	(49)	(50)
SARCOMA, NCS OSTEOSARCCEA, METASTATIC		1 (2%)	1 (2%
LL OTHER SYSTEMS			
*MULTIPLE ORGANS	(20)	(49)	(50)
SARCOMA, NCS FIBROSARCCMA			2 (4%) 13 (26
MESOTHELICEA, MALIGNANT		1 (2%)	•
OSTEOSABCCMA			3 (6%)
	20	50	50
ANIMALS INITIALLY IN STUDY Natural deathd	20 5	50 4	50 29
MORIBUND SACRIFICE	2	4	5
SCHEDULED SACRIFICE ACCIDENTALLY KILLED			
TERMINAL SACRIFICE Animal missing	13	4 1 1	16
maralina lituteng		ı	

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	MATCHED Control		
	LUNIKUL	LOW DOSE	HIGH DOSE
UMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS*	20	45	47
TOTAL PRIMARY TUMORS	29	63	87
TOTAL ANIMALS WITH BENIGN TUMORS	19	45	34
TOTAL EENIGN TUMORS	23	51	36
TOTAL ANIMALS WITH MALIGNANT TUMORS	6	11	42
TOTAL MALIGNANT TUMORS	6	11	49
TOTAL ANIMALS WITH SECONDARY TUMORS#		1	2
TOTAL SECONDARY TUMORS		2	2
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
BENIGN OR MAIIGNANT		1	2
TOTAL UNCERTAIN TUMORS		1	2
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
PRIMARY OR METASTATIC			
TOTAL UNCEFTAIN TUMORS			
PRIMARY TUMCRS: ALL TUMORS EXCEPT SEC	CONDARY TUMOR	S	
SECONDARY TUMORS: METASTATIC TUMORS (OR TUMORS INV.	ASIVE INTO AN AN	DJACENT ORGA

TABLE A2.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS
ADMINISTERED AZOBENZENE IN THE DIET

5) 50 50 (50) 1 (2%) (50)	50 50 50 (50)
ັ 1໌ (2%) (5 J)	(50)
ັ 1໌ (2%) (5 J)	(50)
2 (4%)	(50) 1 (2%) 1 (2%)
(50)	(50) 1 (2%) 1 (2%) 1 (2%)
(50) 2 (4%) 3 (6%)	(50) 1 (2%)
(50) 1 (2%) 1 (2%) 1 (2%)	(50) 7 (14% 4 (8%) 1 (2%) 5 (10%
(50) 1 (2%)	(5C)
(50) 1 (2%)	(50)
	(50) 1 (2%) (50)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	MATCHED Control	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM			
#LIVER NEOPLASTIC NODULE HEPATOCELIULAR CARCINONA	(20)	(50) 1 (2%)	(50) 2 (4%)
#JEJUNUM SARCOMA, NOS	(20)	(50) 1 (2%)	(50)
URINARY SYSTEM			
NON E			
ENDOCRINE SYSTEM			
#PITUITARY ADENOMA, NOS CHROMOPHCEE ADENOMA	(20) 4 (20%) 1 (5%)	(49) 7 (14%) 1 (2%)	(50) 7 (14%
# ADRENAL PHEOCHROMCCYTOMA	(20)	(50)	(50) 1 (2%)
#THYROID FOLLICULAR-CELL ADENOMA	(20)	(50) 1 (2%)	(48)
FOLLICULAR-CELL CARCINOMA C-CELL CARCINOMA	1 (5%)	1 (2%) 3 (6%)	1 (2%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLANE UNDIFFERENTIATED CARCINCMA AJENOMA, NOS	(20) 1 (5%)	(50) 1 (2%)	(50) 1 (2%)
ADENORAR, NOS ADENOCARCINOMA, NOS MIXED TUMCR, MALIGNANT FIBROADENCMA	1 (5%) 3 (15%)	5 (10%)	1 (2%) 3 (6%)
*CLITORAL GLAND Syuamous Cell Carcinoma	(20)	(50) 1 (2%)	(50) 1 (2%)
UTERUS	(20)	(50) <u>1 (2%)</u>	(50)

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

	MATCHED Control	LOW DOSE	HIGH DOSE
ENDOMETRIAL STROMAL FOLYP	2 (10%)	5 (10%)	1 (2%
NERVOUS SYSTEM			
#CEREBRUM ASTROCYTONA MENINGIONA	(20) 1 (5%)	(50) 1 (2%) 1 (2%)	(50)
SPECIAL SENSE CRGANS			
NO N E			
MUSCOLOSKELETAL SYSTEM			
NO N E			
FODY CAVITIES			
*ABDOMINAL CAVITY OSTEOSARCCHA		(50)	(50) 1 (2%
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS FIBROSARCCEA OSTEOSARCCEA	(20)	(50)	(50) 1 (2% 3 (6%
ANIMAL DISPOSITICN SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ MORIBUND SACRIFICE SCHEDULED SACRIFICE	20 2	50 9 3	50 9 3
ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	18	38	38
INCLUDES AUTOLYZED ANIMALS	المراجع		

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

-

	MATCHED CONTROL	LOW DOSE	HIGH DOSE	

TUMOR SUMMARY				
TOTAL ANIMALS WITH PRIMARY TUMORS*	10	32	33	
TOTAL PRIMARY TUMORS	15	43	45	
TOTAL ANIMAIS WITH BENIGN TUMORS	9	19	13	
TOTAL EENIGN TUMORS	10	23	16	
TOTAL ANIMALS WITH MALIGNANT TUMORS	5	18	24	
TOTAL MALICNANT TUMORS	5	2)	27	
TOTAL ANIMALS WITH SECONDARY TUMORS#			1	
TOTAL SECCNDARY TUMORS			1	
TOTAL ANIMALS WITH TUMORS UNCERTAIN-				
BENIGN OR MAIIGNANT			2	
TOTAL UNCERTAIN TUMORS			2	
TOTAL ANIMALS WITH TUMORS UNCERTAIN-				
PRIMARY OR METASTATIC				
TOTAL UNCERTAIN TUMORS				
* FRIMARY TUMORS: ALL TUMORS EXCEPT SEC	ONDARY TUMOR	S		
# SECONDARY TUMORS: METASTATIC TUMORS O	R TUMORS INV	ASIVE INTO AN AN	DJACENT ORGAN	

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE ADMINISTERED AZOBENZENE IN THE DIET

TABLE B1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE **ADMINISTERED AZOBENZENE IN THE DIET**

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY	20	50	50
ANIMALS MISSING Animals necropsied	2)	1 49	2 48
ANIMALS EXAMINED HISTOPATHOLOGICALLY	20	49	48
INTEGUMENTARY SYSTEM			
*SUBLUT TISSOE	(20)	(49)	(48)
SARCOMA, NCS			1 (2%)
FIBROSARCCMA			1 (2%)
RESPIRATORY SYSTEM			
#LUNG	(20)	(49)	(47)
HLPATOCEILULAR CARCINOMA, METAST Alveolar/Pronchiolar Adenoma	1 (5%) 2 (10%)	3 (6%)	1 (2%)
ALVEOLAR/ERCNCHIOLAR CARCINOMA		1 (2%)	
EMATOPOIETIC SYSTEM *MULTIPLE OFGANS MALIG.LYMPHCMA, UNDIFFER-TYPE MALIG.LYMPHOMA, LYMPHOCYTIC TYPE	(20) 1 (5%) 2 (10%)	(49) 2 (4%)	(48) 1 (2%) 3 (6%)
MALIG.LYMPHOMA, HISTIOCYTIC TYPE		2 (4%)	2 (4%)
#SPLLEN HEMANGIOSARCCMA	(20) 1 (5%)	(49) 2 (4%)	(47) 2 (4%)
#MESLNTERIC L_ NODE	(20)	(48)	(47)
MALIG.LYMPHCMA, UNDIFFER-TYPE MALIG.LYMPHCMA, LYMPHOCYTIC TYPE			1 (2%) 1 (2%)
#LIV&R	(20)	(49)	(48)
MALIG.LYMPHCMA, HISTIOCYTIC TYPE	1 (5%)		
*MESLNTERY	(20)	(49)	(48)
MALIG.LYEPBCMA, LYMPHOCYTIC TYPE			1 (2%)
#THYAUS	(12)	(40)	(40)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	MATCHED Control	LOW DOSE	HIGH DOSE
CIRCULATORY SYSTEM			
NONE			
CIGESTIVE SYSTEM			
#LIVER	(20)	(49)	(48)
NEOPLASTIC NODULE	6 (30%)	8 (16%)	.
HEPATOCELLULAR CARCINOMA HEMANGIOSAFCOMA	3 (15%)	10 (20%)	2 (4%) 3 (6%)
URINARY SYSTEM			
NONE			
ENDOCRINE SYSTEM			
#ADRENAL	(20)	(48)	(45)
PHEOCHROMCCYTOMA	()		3 (7%
SARCOMA, NCS		1 (2%)	
#THYROID	(18)	(49)	(47)
PAPILLARY ADENOCARCINOMA		1 (2%)	1 () ()
FOLLICULAR-CELL ADENOMA			1 (2%)
REPRODUCTIVE SYSTEM			
NO N &			
NERVOUS SYSTEM			
NO N E			
SPECIAL SENSE CRGANS			
NONE			
MUSCULOSKELEIAL SYSTEM			
NONE			
	KAMINED MICROSCOPI		

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

	MATCHED Control	LOW DOSE	HIGH DOS
DDY CAVITIES			
NONE			
LL OTHER SYSTEMS			
NONE			
NIMAL DISFOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	2)	5)	50
NATURAL DEATHƏ	2	4	5
MORIBUND SACRIFICE	2		3
SCHEDULED SACRIFICE			
ACCIDENTALLY KILLED		45	
TLRMINAL SACRIFICE Animal Missing	16	45 1	40 2
INCLUDES AUTCLYZED ANIMALS			
UMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS*		25	20
TOTAL PRIMARY TUMORS	16	31	23
TOTAL ANTHALS UTTL DENICH MUMORS	2	3	5
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	2	3	5
	~	2	5
TOTAL ANIMALS WITH MALIGNANT TUMORS	8	19	17
TOTAL MALIGNANT TUMORS	8	20	18
TOTAL ANIMALS WITH SECONDARY TUMORS#	1		
TOTAL SECONDARY TUMORS	I		
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
EENIGN OR MALIGNANT	6	8	
TOTAL UNCERTAIN TUMORS	6	8	
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
FRIMARY OR EFTASTATIC			
TOTAL UNCEFTAIN TUMORS			
PRIMARY TUMOES: ALL TUMORS EXCEPT SE		c	
ENTIMAL IUNUAD, ALL IUNUAD EXCEPT DE	CORDARI IONOR	<u>ل</u>	

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

TABLE B2.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE ADMINISTERED AZOBENZENE IN THE DIET

20		
	5)	50
20	1 47	7 38
20	47	38
(20)	(47)	(38)
	1 (2%)	
(20)	(46)	(36)
2 (10%)	2 (4%)	2 (6%)
(20)	(47)	(38)
1 (5%)	1 (2%)	4 (11%
2 (10%)	2 (4%)	
	1 (2%)	
	1 (2%)	2 (5%)
(20)	(47)	(8E)
	1 (2%)	
(20)	(47)	(36)
·	1 (2%)	
	(20) (20) 2 (10%) (20) 1 (5%) 2 (10%) 2 (10%) (20)	$ \begin{array}{c} (20) & (47) \\ 1 & (2\%) \\ \hline \\ (20) & (46) \\ 2 & (10\%) & 2 & (4\%) \\ \hline \\ (20) & (47) \\ 1 & (2\%) \\ 2 & (10\%) & 1 & (2\%) \\ 2 & (10\%) & 2 & (4\%) \\ 1 & (2\%) \\ 1 & (2\%) \\ \hline \\ (20) & (47) \\ 1 & (2\%) \\ \hline \\ (20) & (47) \\ 1 & (2\%) \\ \hline \\ (20) & (47) \\ 1 & (2\%) \\ \hline \\ (20) & (47) \\ 1 & (2\%) \\ \hline \\ (20) & (47) \\ 1 & (2\%) \\ \hline \end{array} $

* NUMBER OF ANIMALS NECROPSIED

TABLE B2.	FEMALE MICE: NEOPLASMS (CONTINUED)

	MATCHED Control	LOW DOSE	HIGH DOSI
HEMANGIOSAFCCMA ANGIOSARCCMA			1 {3% 1 (3%
JRINARY SYSTEM			
NON L			
INDOCRINE SYSTEM			
<pre>#PITUITARY ADENOMA, NCS</pre>	(19) 2 (11%)	(42) 1 (2%)	· (30)
# A DR EN AL PHEOCHROMCCYTOMA	(20)	(47) 2 (4%)	(37) 1 (3%
#THYROID Follicular-cell Adencma	(20) 1 (5%)	(45)	(35)
REPRODUCTIVE SYSTEM	, ,		
*MAMMARY GLANE Adenoma, ncs	(20)	(47)	(38) 1 (39
UTERUS HEMANGIOSARCOMA	(20)	(47) 1 (2%)	(37)
#OVARY GRANULOSA-CELL CARCINOMA	(19)	(46)	(37) 1 (39
NERVOUS SYSTEM			
NO N E			
SPECIAL SENSE CEGANS			
*HARDERIAN GLAND ADENOMA, NCS	[20]	(47) 3 (6%)	(38) 1 (3%
USCULOSKELETAI SYSTEM			
*ABDOMINAL MUSCLE HEMANGIOSAFCOMA	(20)	(47) 1 (2%)	(38)

* NUMBER OF ANIMALS NECROPSIED

	MATCHED Control	LOW DOSE	HIGH DOSE
EODY CAVITIES			
*MEDIASTINUM GRANULCSA-CELL CARCINOMA, METAST	(20)	(47)	(38) 1 (3%
*PERITCHEUM Sarcoma, NCS	(20)	(47) 1 <u>(</u> 2%)	(38)
*MESANTERY HEMANGIOSAFCOMA	(20)	(47) 1 (2%)	(38)
ALL OTHER SYSTEMS			
+MUITIPLE ORGANS HEMANGIOSAFCCMA	(20)	(47) 1 (2%)	(38)
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATH& Moribune Sacrifice Scheduled Sacrifice	20 1	50 9	50 16 3
ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	19	40 1	1 23 7
@ INCLUDES_AUTCLYZED_ANIMALS	er sjirair Ver Maase de die ier die Ver Maase aan		

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

* NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED
| | MATCHED
Control | LOW DOSE | HIGH DOSI |
|---|--------------------|------------------|--------------|
| | | | |
| UMOR SUMMARY | | | |
| TOTAL ANIMALS WITH PRIMARY TUMORS* | 9 | 20 | 12 |
| TOTAL PRIMARY TUMORS | 10 | 23 | 15 |
| TOTAL ANIMAIS WITH BENIGN TUMORS | 4 | 8 | 5 |
| TOTAL EENIGN TUMORS | 5 | 8 | 5 |
| TOTAL ANIMALS WITH MALIGNANT TUMORS | 5 | 13 | 8 |
| TOTAL MALIGNANT TUMORS | 5 | 15 | 10 |
| TOTAL ANIMALS WITH SECONDARY TUMORS# | | 1 | 1 |
| TOTAL SECCEDARY TUMORS | | 1 | 1 |
| TOTAL ANIMALS WITH TUMORS UNCERTAIN- | | | |
| BENIGN OR MAIIGNANT | | | |
| TOTAL UNCERTAIN TUMORS | | | |
| TOTAL ANIMALS WITH TUMORS UNCERTAIN- | | | |
| PRIMARY OR LETASTATIC | | | |
| TOTAL UNCEFTAIN TUMORS | | | |
| PRIMARY TUMORS: ALL TUMORS EXCEPT SEC | | | |
| # SECONDARY TUMORS: METASIATIC TUMORS O | R TUMORS INV | ASIVE INTC AN AI | DJACENI ORGA |

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS ADMINISTERED AZOBENZENE IN THE DIET

TABLE C1.

	MATCHED Control	LOW DOSE	HIGH DOSI
ANIMALS INITIAILY IN STUDY	2)	5) 1	50
	20 20	49 49	50 50
INTEGUMENTARY SYSTEM			
*SKIN	(29)	(49)	(50)
EPIDERMAL INCLUSION CYST Hyperkeraicsis	1 (5%)	1 (2%) 1 (2%)	
*SUBCUT TISSUF Hemorrhage Hematoma, Nos	(20)	(49)	(50) 1 (2% 1 (2%
RESPIRATORY SYSTEM			
#LUNG/BRONCHUS BronchiectAsis	(20)	(49)	(50) 1 (2%
#LUNG	(20)	(49)	(50) 1 (2%
ELONCHOPNEUMONIA, NOS INFLAMMATICN, NOS HYPERPLASIA, ALVEOLAR EPITHELIUM	1 (5%)	1 (2%)	1 (2%)
HEMATOPOIETIC SYSTEM			
*SPLEEN	(2))	(49)	(49) 1 (2%
CONGESTION, NOS FIBROSIS		1 (2%)	1 (2.8
METAMORPHCSIS FATTY Lymphoid lepletion		3 (6%)	1 (2%
HYPERPLASIA, FOCAL Hyperplasia, mesothelial			1 (2%) 1 (2%)
HYPERPLASIA, RETICULUM CELL			3 (6%)
#SPLLNIC CAPSULE INFLAMMATICN, NOS	(20)	(49) 1 (2%)	(49)

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS ADMINISTERED AZOBENZENE IN THE DIET

	MATCHED Control	LOW DOSE	HIGH DOSE
INFLAMMATICN, FOCAL INFLAMMATICN, CHRONIC SIDEROSIS		11 (22%)	1 (2%) 10 (20% 1 (2%)
#SPL_NIC RED FULP HYPERPLASIA, NOS	(20)	(49) 4 (8%)	(49) 1 (2%)
#MANDIBULAR L. NODE HEMORRHAGE SIDEROSIS	(20)	(49)	(50) 1 (2%) 1 (2%)
CIRCULATORY SYSTEM			
HEART THROMBOSIS, NOS FIBROSIS FIBROSIS, LIFFUSE DEGENERATICN, NOS	(20) 9 (45%)	(49) 1 (2%) 14 (29%) 1 (2%) 1 (2%)	(50) 2 (4%) 3 (6%)
#MYOCARDIUM INFLAMMATICN, FOCAL FIBROSIS D&GENERATION, NOS	(20) 1 (5%) 2 (10%)	(49) 1 (2%)	(50) 1 (2%) 2 (4%) 2 (4%)
<pre>#EN DO CAR DIUM FIBRO ELA SICSIS, NOS</pre>	(20)	(49) 1 (2%)	(50)
*PANCREATIC ARTERY, INFLAMMATICN, CHRONIC	(20) 1 (5%)	(49)	(50)
JIGESTIVE SYSTEM			
<pre>#PAROTID GLANE INFLAMMATICN, NOS INFLAMMATICN, NECROTIZING INFLAMMATICN, ACUTE INFLAMMATICN, CHRONIC</pre>	(20) 4 (20%)	(49) 2 (4%) 1 (2%) 1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%)
INFLAMMATICN, ACUTE	(20) 3 (15%)	(49) 4 (8%) 2 (4%)	(50) 1 (2%)
INFLAMMATICN, ACUTE/CHRONIC		2_(4%)	<u>1 (2%)</u>

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	MATCHED Control	LOW DOSE	HIGH DOSE
INFLAMMATICN, CHRONIC AIROPHY, NOS REGENERATICN, NOS			1 (2%) 1 (2%) 1 (2%)
<pre>#LIV_AR INFLAMMATICN, NECROTIZING G_ANULCMA, NOS FIBROSIS CHOLANGICFIBROSIS CIRRHOSIS, NOS N_CROSIS, NOS</pre>	(20) 11 (55%)	(49) 11 (22%) 35 (71%) 1 (2%)	(5C) 1 (2%) 3 (6%) 1 (2%) 13 (26%) 1 (2%) 3 (6%)
METAMORPHCSIS FATTY Focal Cellular Change		1 (2%) 3 (6%)	2 (4%) 4 (8%)
#LIVER/CENTRIIOBULAR CYTOPLASMIC VACUOLIZATICN MEGALOCYTCSIS	(20)	(49)	(5C) 1 (2%) 1 (2%)
<pre>#BILE DUCT HYPERPLASIA, NOS HYPERPLASIA, FOCAL</pre>	(20)	(49) 1 (2%) 1 (2%)	(5C) 3(6%)
#PANCREAS PERIARTERITIS ATROPHY, NCS	(20)	(47) 4 [9%) 4 (9%)	(48) 2 (4%) 2 (4%)
#STOMACH INFLAMMATICN, CHRONIC	(20)	(49) 1 (2%)	(5C) 2 (4%)
URINAKY SYSTEM			
<pre>#KIDNEY NEPHROPATHY INFARCT, NCS PIGMENTATICN, NOS</pre>	(20) 15 (75%)	(49) 34 (69%)	(50) 14 (28兆) 1 (2兆) 1 (2兆)
#KIDNEY/CORTEX CYST, NOS	(20)	(49)	(5C) 1 (2%)
#KIDNEY/TUBULE PIGMENTATICN, NOS	(20)	(49)	(50) 2 (4%)
#URINARY ELACCER INFLAMMATICN, ACUTE	(20)	(47) <u>1 (2%)</u>	(47)

	MATCHED Control	LOW DOSE	HIGH DOSE
NDOCAINE SYSTEM			
#PITUITARY	(20)	(49)	(49)
HAMORRHAGIC CYST		1 (2%)	
HYPERPLASIA, NOS Hyperplasia, Focal	1 (5%)	3 (6%)	4 (8%
HIPERPLASIA, FOCAL	1 (5%)	3 (6%)	
#ADRENAL	(20)	(49)	(50)
METAMORPHOSIS FATTY		1 (2%)	1 (2%
#ADRENAL CORTEX	(20)	(49)	(50)
NECROSIS, NOS	• •	•	1 (2%
#ADRLNAL MEDUILA	(20)	(49)	(50)
HYPERPLASIA, NOS	(20)	7 (14%)	1 (2%)
#THYROID	(20)	100	11:01
COLLOID CYST	(20)	(49) 1 (2%)	(48)
HYPERPLASIA, NOS		(=~)	1 (2%)
HYPERPLASIA, C-CELL	1 (5%)	2 (4%)	-
HYPERPLASIA, FOLLICULAR-CELL		1 (2%)	
*PREPUTIAL GIAND HYPERPLASIA, CYSTIC	(20)	(49) 1 (2%)	(50)
#PROSTATE INFLAMMATICN, ACUTE	(20)	(47) 8 (17%)	(47)
#TESTIS	(20)	(48)	(49)
GLANULCMA, SPERMATIC	\/	1 (2%)	* /
PERIARTERITIS		12 (25%)	
ATROPHY, NCS Hyperplasia, interstitial cell	1 (5%) 3 (15%)	6 (13%) 2 (4%)	1 (2%) 2 (4%)
ERVOUS SYSTEM			
#CER_BRUM	(20)	(49)	(50)
GLIOSIS		1 (2%)	-
PECIAL SENSE CRGANS NONE			

	MATCHED	LOW DOSE	HIGH DOSE
		LOW DUSE	
NUSCULOSKELETAL SYSTEM			
NONE			
EODY CAVITIES			
*MEDIASTINUM HEMORRHAGIC CYST	(20)	(49)	(50) 1 (2%)
*MESENTERY INFARCT, NCS	(20)	(49)	(50) 1 (2%)
ALL OTHER SYSTEMS			
ADIPOSE TISSUE INFLAMMATICN, CHRONIC		1	
SPECIAL MORPHCIOGY SUMMARY			
ANIMAL MISSING/NO NECROPSY		1	
 NUMBER OF ANIMALS WITH TISSUE EXAMI NUMBER OF ANIMALS NECROPSIED 	INED MICROSCOPI	CALLY	

TABLE C2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS **ADMINISTERED AZOBENZENE IN THE DIET**

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIAILY IN STODY	20	50	50
NIMALS NECROFSIED	20	50	50
ANIMALS EXAMINED HISTOPATHOLOGICALLY	20	50	50
INTEGUMENTARY SYSTEM			
*SKIN	(20)	(50)	(50)
EPIDERMAL INCLUSION CYST		1 (2%)	
ESPIRATORY SYSTEM			
#LUNG	(20)	(50)	(50)
BRONCHOPNEUMONIA, NOS			4 (8%)
INFLAMMATICN, NOS			3 (6%)
INFLAMMATICN, FOCAL			1 (2%)
PNEUMONIA, LIPID			1 (2%)
INFLAMMATICN, CHRONIC	1 (5%)		1 1000
GRANULCMA, NOS			1 (2%)
HEMATOPOIETIC SYSTEM			
#SPLEEN	(20)	(50)	(50)
HEMORRHAGE			1 (2%)
HEMATÓMA, NOS		1 (2%)	
HLMATOMA, CRGANIZED			1 (2%)
FIBROSIS		1 (2%)	2 (4%)
P4RIARTERIIIS			1 (2%)
DÉGENERATION, NOS Metamorphosis fatty		5 (10%)	2 (4%) 5 (10%
PAGMENTATION, NOS		4 (8%)	9 (187
HEMOSIDERCSIS	2 (10%)	4 (0%)	3 (6%)
HEMATOFOIESIS	2 (10,4)		1 (2%)
#SPLENIC CAPSULE	(20)	(50)	(5C)
INFLAMMATICN, NOS		1 (2%)	2 (4%)
INFLAMMATICN, CHBONIC		29 (58%)	31 (62%
#SPLENIC RED PULP	(20)	(50)	(50)
FIBROSIS			<u>1 (2%)</u>

	MATCHED Control	LOW DOSE	HIGH DOSE
PIGMENTATICN, NOS HYPERPLASIA, NOS		1 (2%) 2 (4%)	1 (2%)
#LYMPH NODE	(20)	(50)	(5C)
HEMORRHAGE HYPERPLASIA, NOS		1 (2%)	1 (2%)
CIRCULATORY SYSTEM			
#HEARI FIBROSIS	(20) 6 (30%)	(50) 3 (6%)	'(50) 11 (22%)
#MYOLARDIUM	(20)	(50)	(50)
FIBROSIS Degeneration, nos		1 (2%) 2 (4%)	
DIGESTIVE SYSTEM			
*PAROTID GLANE	(20)		(50)
INFLAMMATICN, NOS		1 (2%)	1 (2%)
INFLAMMATICN, NECROTIZING	1 (5%)		2 (4%)
INFLAMMATICN, ACUTE/CHRONIC INFLAMMATICN, CHRONIC		2 (4%) 2 (4%)	
#SUBMAXILLARY GLAND	(20)	(50)	(50)
INFLAMMATICN, NOS			7 (14%)
INFLAMMATICN, NECROTIZING	1 (5%)	7 (14%)	4 (8%)
INFLAMMATICN, ACUTE	1 (5%)		1 (2%)
INFLAMMATICN, ACUTE/CHRONIC INFLAMMATICN, CHRONIC	2 (10%)	1 (2%) 2 (4%)	1 (2%) 3 (6%)
#LIVÊR	(20)	(50)	(5C)
GRANULOMA, NOS		16 (32%)	15 (39%)
INFLAMMATICN, FOCAL GRANULOMATOU		1 (2%)	A (1) A
CHOLANGICFIBROSIS	3 (15%)	17 (34%)	2 (4%)
CIRRHOSIS, NOS	1 (5%)	1 (01)	
HEPATITIS, TOXIC		1 (2%)	2 (11)
NACROSIS, NOS Necrosis, focal		1 (2%) 1 (2%)	2 (4%)
NECROSIS, FOCAL NECROSIS, COAGULATIVE	1 (5%)	1 (27)	
MLTAMORPHOSIS FATTY	1 (5%)	2 (4%)	1 (2%)
PIGMENTATICN, NOS	. (5.4)	2 (),	11 (22%)
FOCAL CEILULAR CHANGE	3 (15%)	<u> </u>	3 (6%)

	MATCHED Control	LOW DOSE	HIGH DOSE
<pre>#LIVER/CENTRILOBULAR NECROSIS, NOS</pre>	(20)	(50)	(50) 1 (2%)
#LIVER/HEPATCCYTES Megalocytcsis	(20) 1 (5%)	(50)	(50)
#PANCREAS Atrophy, NCS	(20)	(50) 1 (2%)	(50) 1 (2%)
#STOMACH ULCER, NGS INFLAMMATICN, CHRONIC	(20) 1 (5%)	(50) 1 (2%)	(50)
URINARY SYSTEM			
#KIDNEY PYELONEPHRITIS, NOS NEPHROPATHY PIGMENTATICN, NOS	(20) 2 (10%)	(50) 4 (8%) 27 (54%)	(50) 1 (2%) 3 (6%) 2 (4%)
#KIDNEY/TUBULE PIGMENTATICN, NOS	(20) 1 (5 %)	(50)	(50) 5 (10%)
#URINARY ELACCER HYPERPLASIA, EPITHELIAL	(20)	(50) 1 (2%)	(50)
ENDOCAINE SYSTEM			
#PITUITARY CYST, NOS H&MORRHAGIC CYST	(20) 1 (5%) 1 (5%)	(49) 1 (2 %)	(50)
HYPERPLASIA, NOS HYPERPLASIA, FOCAL	2 (10%)	2 (4%) 2 (4%)	1 (2%) 5 (10%)
#ADRENAL HLMORRHAGE NECROSIS, NOS HYPERPLASIA, POCAL	(20) 1 (5%)	(50)	(50) 1 (2%) 1 (2%)
#ADRENAL CORTEX Metamorphosis fatty Hyperplasia, Nos	(20)	(50) 2 (4%)	(50) 1 (2%)

	MATCHED Control	LOW DOSE	HIGH DOSE
WADRENAL MEDUILA HYPERPLASIA, NOS	(20)	(50) 1 (2%)	(50) 6 (12%
#THYROID COLLOID CYST HYPERPLASIA, C-CELL	(20) 1 (5%) 2 (10%)	(50) 1 (2%) 4 (8%)	(48)
REPRODUCTIVE SYSTEM			
*MAMMARY GLANI CYST, NOS INFLAMMATICN, CHRONIC HYPERPLASIA, CYSTIC	(20) 1 (5%) 1 (5%)	(50) 1 (2%)	(50)
*PREPUTIAL GLAND Hyperplasia, cystic	(20)	(50)	(50) 1 (2%)
¥UTERUS F⊥BROSIS	(20) 1 (5 %)	(50) 1 (2%)	(50) 2 (4%)
#UTERUS/ENDCMETRIUM INFLAMMATICN, VESICULAR	(20)	(50) 2 (4%)	(50)
#OVARY CYST, NOS	(20) 1 (5%)	(50)	(50)
OVALY/MEDUIIA Hyperplasia, Nos	(20) 1 (5%)	(5J) 1 (2%)	(50) 7 (14%)
NERVOUS SYSTEM			
#CER∡BELLUM H⊥MORRHAGE	(20)	(50) 1 (2%)	(50)
SPECIAL SENSE ORGANS			
*EYE/LACRIMAI GLAND INFLAMMATICN, NOS	(20)	(50)	(50) 1 (2%)
MUSCULOSKELETAI SYSTEM			
NONE			

و می بود ها ها ها ها ها ها ها ها به به نوان ها بود این با این با این با این بود این بود این بود این بود این بو و های این این این این این این این این این ا					
	MATCHED Control	LOW DOSE	HIGH DOSE		
***************************************			یدی برویادی برود می بود می می می می برود می برود می می بود.		
EODY CAVITIES					
*ABDOMINAL CAVITY STEATITIS NECROSIS, FAT	[20]	(50)	(50) 1 (2%) 1 (2%)		
*MESLNTERY PLRIARTERITIS	(20)	(50) 1 (2%)	(50)		
ALL OTHER SYSTEMS					
NO N E					
SPECIAL MORPECIOGY SUMMARY					
NO LESION FEFORTED Auto/necrcpsy/histo perf	3	1			
NUMBER OF ANIMALS WITH TISSUE T * NUMBER OF ANIMALS NECROPSIED	EXAMINED MICROSCOPIC	ALLY			

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE ADMINISTERED AZOBENZENE IN THE DIET

TABLE D1.

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIAILY IN STUDY ANIMALS MISSING	20	50 50	50 2
	20	49	48
ANIMALS EXAMINED HISTOPATHOLOGICALLY	20	49	48
INTEGUMENTARY SYSTEM			
*SKIN HYPERPIASIA, CYSTIC	(20) 1 (5%)	(49)	(48)
RESPIRATORY SYSTEM			
<pre>#LUNG/BRONCHICLE HYPERPLASIA, LYMPHOID</pre>	(20)	(49) 3 (6%)	(47)
#LUNG	(20)	(49)	(47)
INFLAMMATICN, FOCAL Hyperplasia, alveolar epithelium	1 (5%)	1 (2%)	
LEMATUPOIETIC SYSTEM			
#SPLLEN	(20)	(49)	(47)
ATROPHY, NCS Hyperplasia, lymphoid	2 (10%)	4 (8%)	2 (4%) 1 (2%)
HLMATOPOIESIS	1 (5%)	1 (2%)	
#LYMPH NODE	(20)	(48)	(47)
HYPERPLASIA, LYMPHOID			15 (32%
#SUBMANDIBULAR L.NODE	(20)	(48)	(47)
HYPERPLASIA, IYMPHOID	1 (5%)		
#CERVICAL LYMPH NODE	(20)	(48)	(47)
NETAMORPHOSIS FATTY Hyperplasia, lymphoid	1 (5%) 1 (5%)	1 (2%)	
#PANCREATIC L_NODE	(20)	(48) 1 (2%)	(47)

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE **ADMINISTERED AZOBENZENE IN THE DIET**

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY # NUMBER OF ANIMALS NECROPSIED

	MATCHED Control	LOW DOSE	HIGH DOSE
#MESENTERIC I. NODE ATROPHY, NCS HYPERPLASIA, LYMPHOID HEMATOFOIESIS	(20) 2 (13%) 1 (5%) 1 (5%)	(48) 3 (6%) 3 (6%)	(47)
CIBCULATORY SYSTEM			
#MYOCARDIUM FIBROSIS FIBROSIS, FCCAL	(20)	(48) 1 (2%) 1 (2%)	(46)
DIGESTIVE SYSTEM			
<pre>#SALIVARY GLAND INFLAMMATICN, NOS</pre>	(19)	(48) 1 (2%)	(47)
#SUBMAXILLARY GLAND INFLAMMATICN, NOS	(19) 6 (32%)	(48) 16 (33%)	(47)
<pre>#LIVER THROMBOS IS, NOS HEMORRHAGIC CYST INFLAMMATICN ACUTE PUSTULAR INFLAMMATICN, CHRONIC POCAL INFARCT, NCS BASOPHILIC CYTO CHANGE FUCAL CEILULAR CHANGE MLGALOCYTOSIS HYPERPLASIC NODULE HYPERPLASIA, LYMPHOID</pre>	(20) 1 (5%) 1 (5%) 1 (5%) 1 (5%) 1 (5%) 1 (5%)	(49) 1 (2%) 1 (2%) 5 (10%) 2 (4%)	(48) 1 (2% 1 (2% 1 (2%
#LIVER/CENTRIIOBULAR BILE STASIS CYTOPLASMIC VACUOLIZATION	(20)	(49)	(4€) 1 (2%) 1 (2%)
#LIVER/KUFFFFE CELL Hyperplasia, Nos	(20) 1 (5%)	(49)	(48)
#STOMACH U_CER, NOS ABSCESS, NCS	(20)	(49)	(47) 1 [2% 1 (2%
#PBYLRS PATCH <u>HYPERPLASIA, LYMPHOID</u>	(20)	(49) 1 (2%)	(47)

TABLE D1. MALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

.

•	MATCHED Control	LOW DOSE	HIGH DOSE
JRINARY SYSTEM			
#KIDNEY	(20)	(49)	(46)
PYELONEPHRITIS, NOS INFLAMMATICN, CHRONIC		1 (2%) 1 (2%)	
GLONERULCNEPHRITIS, CHRONIC	1 (5%)	17 (254)	
HYPERPLASIA, LYMPHOID	6 (30%)	17 (35%)	
#URINARY ELACLER HYPERPLASIA, LYMPHOID	(20)	(49) 4 (8%)	(45)
NDOCRINE SYSTEM	#2#2#2#2#		
#PITUITARY	(17)	(45)	(38)
CYST, NOS		1 (2%)	
EPRODUCTIVE SYSTEM			
#PROSTATE INFLAMMATICN, CHRONIC	(20) 1 (5%)	(48) 1 (2%)	(46)
*SCROTUM	(20)	(49)	(48)
NECROSIS, FAT	1´ (5%)		
ERVOUS SYSTER			
#CEREBRUM	(20)	(49)	(46)
CALCIFICATION, NOS	12 (60%)	17 (35%)	
PECIAL SENSE CRGANS			
*HARDERIAN GLAND	(20)	(49)	(48)
INFLAMMATICN, NECROTIZING INFLAMMATICN, CHRONIC			1 (2%) 1 (2%)
USCULOSKELETAL SYSTEM			
*MUSCLE OF FACK	(20)	(49)	(48)
INFLAMMATICN, CHBONIC	1 (5%)	· · · · ·	

TABLE D1. MALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

* NUMBER OF ANIMALS NECROPSIED

	· · · · · · · · · · · · · · · · · · ·		
	MATCHED Control	LOW DOSE	HIGH DOSE
	# 88 6 8 - 88 4		
EOLY CAVITIES			
*ABDOMINAL CAVITY	(20)	(49)	(48)
NECROSIS, FAT Infarct, NCS	1 (5%)	1 (2%)	
Inthrony Dec		1 (2%)	
*MESANTERY Necrosis, Fat	(20) 1 (5%)	(49)	(48)

ALL OTHER SYSTEMS			
NONE			
SPECIAL MORPHCIOGY SUMMARY			
NO LESION REPORTED	1	2	10
ANIMAL MISSING/NC NECROFSY		1	2
AUTO/NECECESY/HISTO PERF			1
# NUMBER OF ANIMALS WITH TISSUE EXA	MINED MICROSCOPI	CALLY	
* NUMBER OF ANIMALS NECROPSIED			

TABLE D1. MALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

TABLE D2.

	MATCHED Control	LOW DOSE	HIGH DOSE
ADIDALS INITIALLY IN STUDY ANIMALS HISSING	20	50 . 1	50 7
ANIMALS NECECOPSIES ANIMALS EXAMINED HISTOPATHOLOGICALLY	20 20	47 47	38 38
INTEGU RENTAR Y SYSTER			
NCNA			
RESPLATORY SYSTEM			
<pre>\$LUNG/BRONCHICLE Hyperplasia, lynphoid</pre>	(20)	(46) 10 (22%)	(36)
UNG HEMORRHAGE	(20)	(46) 1 (2%)	(36)
INFLAMMATICH, NOS		xy	1 (3%)
HYPERPLASIA, FOCAL Hyperplasia, Lymphoid	1 (5%) 6 (30%)	2 (4%)	
HEMATOPOIETIC SYSTEM			
\$BONG MARROW Siderosis	(20)	(46)	(37) 1 (3%)
#SPLLEN HLMOSIDERCSIS	(20)	(47)	(38) 6 (16%)
HYPERPLASIA, LYMPHOID HEMATOPOIESIS	7 (35%) 7 (35%)	16 (34%) 8 (17%)	4 (11%)
#LYMPH NODE Hyperplasia, lymphoid	(20) 1 (5%)	(47)	(35) 8 (23%)
*SUBMANDIBUIAR L.NODE Hyperplasia, Lymphoid	(20)	(47) 1 (2%)	(35)
CERVICAL LYMPH NODE	(20)	(47) <u>1 (2%)</u>	(35)

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE ADMINISTERED AZOBENZENE IN THE DIET

	MATCHED Control	LOW DOSE	HIGH DOSE
HYPERPLASIA, LYMPHOID	4 (20%)		
#MESENTERIC L. NODE	(20)	(47)	(35)
ATROPHY, NCS	1 (5%)	2 (4%)	
HYPERPLASIA, NOS		1 (2%)	
LYMPHOCYTCSIS		1 (2%)	
HYPERPLASIA, LYMPHOID	1 (5%)	2 (4%)	
#THYAUS	(16)	(41)	(28)
AIROPHY, NCS	1 (6%)		
IRCULATORY SYSTEM			
NONE			
IGESTIVE SYSTEM			
#SALIVARY GLAND	(19)	(45)	(35)
INFLAMMATICN, NOS	2 (11%)	1 (2%)	
#SUBMAXILLARY GLAND	(19)	(45)	(35)
INFLAMMATICN, NOS	7 (37%)	14 (31%)	
#LIVER	(20)	(47)	(36)
INFLAMMATICN, NECROTIZING	• • •	1 (2%)	1 (3%)
NECROSIS, NOS			1 (3%)
NECROSIS, FOCAL	1 (5%)	1 (2%)	
METAMORPHOSIS FATTY			4 (11)
FOCAL CEILULAR CHANGE	1 (5%)	2 (4%)	4 / 7 #
MEGALOCYTCSIS Hyperplasia, lymphoid	1 (5%)	9 (19%)	1 (3%)
-			(24)
#LIVER/CAUDATE LOFE	(20)	(47)	(36) 1 (3%)
INFARCT, NCS			1 [34]
#PANCREAS	(20)	(47)	(34)
INFLAMMATICN, NOS	1 (5%)	1 (2%)	
INFLAMMATICN, ACUTE		1 (2%)	
# STOM ACH	(20)	(47)	(37)
H&MORRHAGE			1 (3%)
BINARY SYSTEM			
#KIDNEY	(20)	(47)	(38)
INFLAMMATICN, CHRONIC	1 (5%)		و هود ویک نکل میں بالاد مارد هم، جو چک جو میں

	MATCHED Control	LOW DOSE	HIGH DOSE
HYPEBPLASIA, LYMPHOID	10 (50%)	13 (28%)	
<pre>#KIDNBY/CORTEX CYST, NOS</pre>	(20)	(47)	(38) 1 (3%)
<pre>#KIDNEY/TUBULE PIGMENTATICN, NOS</pre>	(20)	(47)	(38) 1 (3%)
#URINARY BLACDER	(20)	(47)	(36)
INFLAMMATICN, CHRONIC Hyperplasia, lymphoid	5 (25%)	1 (2%) 10 (21%)	,
#U.BLADDER/SUEMUCOSA HYPERPLASIA, LYMPHOID	(20) 1 (5 %)	(47)	(36)
NDOCRINE SYSTEM			
<pre>#PITUITARY HYPERPLASIA, FOCAL</pre>	(19)	(42) 1 (2%)	(30)
#ADRENAL CORTEX DEGENERATION, NOS	(20)	(47) 1 (2%)	(37)
#ADRENAL MEDUILA Hyperplasia, Nos	(20)	(47)	(37) 2 (5%)
EPRODUCTIVE SYSTEM			
UTERUS	(20)	(47)	(37)
HY DROMETRA Hemorrhage		1 (2%)	2 (5%)
HEMORRHAGIC CYST		1 (2%)	1 (3%)
HYPERPLASIA, LYMPHOID		1 (2%)	
#UTERUS/ENDOMETRIUM	(20)	(47)	(37)
INFLAMMATICN, NOS			11 (309
INFLAMMATICN, VESICULAR	8 (40%)	27 (57%)	4 (119
#OVARY/PAROVARIAN	(20)	(47)	(37)
INFARCT, NCS	2 (10%)	,	
#OVARY	(19)	(46)	(37)
CYST. NOS	1 (5%)	9 (2)%)	<u> </u>

	MATCHED Control	LOW DOSE	
THROMBOSIS, NOS HEMORRHAGIC CYST	1 (5%)	2 (4%)	1 (3% 1 (3%
NERVOUS SYSTEM			
#CER_BRUM CALCIFICATION, NOS	(20) 13 (65%)	(47) 12 (26%)	(36)
SPECIAL SENSE CRGANS			
NONE			
MUSCULOSKELETAL SYSTEM			
NO N E			
EODY CAVITIES			
*ABDOMINAL CAVITY NECROSIS, FAT	(20)	(47) 1 (2%)	(38)
INFARCT, NCS HYPERPLASIA, LYMPHOID		1 (2%)	1 (3%)
*MESENTERY NECROSIS, FAT	(20)	(47) 1 (2%)	(38)
ALL OTHER SYSTEMS			
OMENTUM Nécrosis, fat	1		
SPECIAL MORPHOIOGY SUMMARY			
NO LESION FEFORTED ANIMAL MISSING/NO NECROPSY AUTOLYSIS/NO NECROPSY		1 2	2 7 5
NUMBER OF ANIMALS WITH TISSUE EXA NUMBER OF ANIMALS NECROPSIED	HINED MICROSCOPIC	CALLY	

APPENDIX E

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS IN RATS ADMINISTERED AZOBENZENE IN THE DIET

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Hematopoietic System:			
Lymphoma (b)	1/20 (5)	0/49 (0)	3/50 (6)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.000	1.200
Lower Limit		0.000	0.106
Upper Limit		7.624	61.724
Weeks to First Observed Tumor	105		65
Hematopoietic System:	u - 2014 mar an an an an Anna A	n - 19 ⁹ - Frida, 1 199 - 200 - 2019	
Monocytic Leukemia (b)	2/20 (10)	1/49 (2)	5/50 (10)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.204	1.000
Lower Limit		0.004	0.184
Upper Limit		3.754	10.007
Weeks to First Observed Tumor	80	94	78

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Hematopoietic System:			
Lymphoma or Leukemia (b)	3/20 (15)	1/49 (2)	8/50 (16)
P Values (c,d)	N.S.	N.S.	N.S.
Departure From Linear Trend (e)	P = 0.022		
Relative Risk (f)		0.136	1.067
Lower Limit		0.003	0.295
Upper Limit		1.599	5.813
Weeks to First Observed Tumor	80	94	65
Liver: Hepatocellular Carcinoma			
or Neoplastic Nodule (b)	0/20 (0)	1/49 (2)	3/50 (6)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.023	0.250
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		106	91

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Pituitary: Adenoma, NOS (b)	4/20 (20)	2/49(4)	0/49 (0)
P Values (c,d)	P = 0.002 (N)	N.S.	P = 0.006 (N)
Relative Risk (f)		0.204	0.000
Lower Limit		0.020	0.000
Upper Limit		1.323	0.435
Weeks to First Observed Tumor	105	106	
Pituitary: Chromophobe		<u></u>	
Adenoma (b)	0/20 (0)	2/49 (4)	3/49 (6)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.125	0.255
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		86	90

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Testis: Interstitial-cell			
Tumor (b)	17/20 (85)	41/48 (85)	31/49 (63)
P Values (c,d)	P = 0.012 (N)	N.S.	N.S.
Relative Risk (f)		1.005	0.744
Lower Limit		0.836	0.607
Upper Limit		1.335	1.083
Weeks to First Observed Tumor	76	82	82
Spleen: Fibrosarcoma (b)	0/20 (0)	2/49 (4)	7/49 (14)
P Values (c,d)	P = 0.020	N.S.	N.S.
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.125	0.826
Npper Limit		Infinite	Infinite
Weeks to First Observed Tumor		106	86

Table El.	Analyses of the 1	Incidence of Primary Tumors in Male Rats
	Administered A	Azobenzene in the Diet (a)

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
All Sites: Hemangiosarcoma (b)	0/20 (0)	1/49 (2)	4/50 (8)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.023	0.386
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		106	82
Multiple Organs: Fibrosarcoma (b)	0/20 (0)	0/49 (0)	13/50 (26)
P Values (c,d)	P less than 0.001		$\mathbf{P} = 0.007$
Departure From Linear Trend (e)	P = 0.030		
Relative Risk (f)			Infinite
Lower Limit			1.674
Upper Limit			Infinite
Weeks to First Observed Tumor			76

91

.

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Multiple Organs: Osteosarcoma (b)	0/20 (0)	0/49 (0)	3/50 (6)
P Values (c,d)	N.S.		N.S.
Relative Risk (f)		~~	Infinite
Lower Limit			0.250
Upper Limit			Infinite
Weeks to First Observed Tumor			97
Abdominal Cavity:			2 , . , . , . , . , . , . , . , . , .
Sarcoma (b,g)	0/20 (0)	6/49 (12)	31/49 (63)
P Values (c,d)	P less than 0.001	N.S.	P less than 0.001
Departure from Linear Trend (e)	P = 0.027		
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.680	4.415
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		106	76

Table El.	Analyses of the Incidence of Primary Tumors in Male Rats	
	Administered Azobenzene in the Diet (a)	

(continued)

- (a) Dosed groups received 200 or 400 ppm.
- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the matched-control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95 percent confidence interval of the relative risk between each dosed group and the control group.
- (g) Malignant neoplasm, NOS; sarcoma, NOS; fibrosarcoma; hemangiosarcoma; osteosarcoma; or mesothelioma.

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Hematopoietic System:			
Monocytic Leukemia (b)	1/20 (5)	3/50 (6)	0/50 (0)
P Values, (c,d)	N.S.	N.S.	N.S.
Relati v e Risk (f)		1.200	0.000
Lower Limit		0.106	0.000
Upper Limit		61.724	7.475
Weeks to First Observed Tumor	106	89	
Hematopoietic System :		<u>an an a</u>	
Lymphoma or Leukemia (b)	1/20 (5)	6/50 (12)	1/50 (2)
P Values, (c,d)	N.S.	N.S.	N.S.
Relati ve Ris k (f)		2.400	0.400
Lower Limit		0.325	0.005
Upper Limit		108.021	30.802
Weeks to First Observed Tumor	106	89	106

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Pituitary: Adenoma, NOS (b)	4/20 (20)	7/49 (14)	7/50 (14)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.714	0.700
Lower Limit		0.211	0.207
Upper Limit		3.052	2.994
Weeks to First Observed Tumor	106	106	105
Thyroid: C-cell	<u></u>		
Carcinoma (b)	1/20 (5)	3/50 (6)	1/48 (2)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		1.200	0.417
Lower Limit		0.106	0.006
Upper Limit		61.724	32.058
Weeks to First Observed Tumor	106	104	100

•

Table E2.	Analyses of the Incidence of Primary Tumors in Female Ra	its
	Administered Azobenzene in the Diet (a)	

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Mammary Gland:			
Fibroadenoma (b)	3/20 (15)	5/50 (10)	3/50 (6)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.667	0.400
Lower Limit		0.147	0.060
Upper Limit		4.014	2.802
Weeks to First Observed Tumor	106	106	105
Uterus: Endometrial Stromal	, , , , , , , , , , , , , , , , , , ,		
Polyp (b)	2/20 (10)	5/50 (10)	1/50 (2)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		1.000	0.200
Lower Limit		0.184	0.004
Upper Limit		10.007	3.681
Weeks to First Observed Tumor	106	106	100
	Matched	Low	High
-------------------------------	-----------	----------	-----------
Topography: Morphology	Control	Dose	Dose
Spleen: Fibrosarcoma (b)	0/20 (0)	1/50 (2)	7/50 (14)
? Values (c,d)	P = 0.012	N.S.	N.S.
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.022	0.809
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		106	91
Spleen: Osteosarcoma (b)	0/20 (0)	1/50 (2)	5/50 (10)
P Values (c,d)	P = 0.041	N.S.	N.S.
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.022	0.525
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		106	106

Table E2. Analyses of the Incidence of Primary Tumors in Female Rats Administered Azobenzene in the Diet (a)

97

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Spleen: Hemangiosarcoma (b)	0/20 (0)	1/50 (2)	4/50 (8)
P Values, (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.022	0.386
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		106	93
Multiple Organs: Osteosarcoma (b)	0/20 (0)	0/50 (0)	3/50 (6)
P Values, (c,d)	N.S.		N.S.
Relative Risk (f)			Infinite
Lower Limit			0.250
Upper Limit			Infinite
Weeks to First Observed Tumor			102

Table E2. Analyses of the Incidence of Primary Tumors in Female Rats Administered Azobenzene in the Diet (a)

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Abdominal Cavity:			
Sarcoma (b,g)	0/20 (0)	5/50 (10)	21/50 (42)
P Values (c,d)	P less than 0.001	N.S.	P less than
			0.001
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.525	2.840
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		106	91

Table E2. Analyses of the Incidence of Primary Tumors in Female Rats Administered Azobenzene in the Diet (a)

(a) Dosed groups received 200 or 400 ppm.

(continued)

- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the matched-control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95 percent confidence interval of the relative risk between each dosed group and the control group.
- (g) Fibrosarcoma, hemangiosarcoma, malignant hemagiopericytoma, osteosarcoma, or sarcoma, NOS.

APPENDIX F

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS IN MICE ADMINISTERED AZOBENZENE IN THE DIET

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Lung: Alveolar/Bronchiolar			
Carcinoma or Adenoma (b)	2/20 (10)	4/49 (8)	1/47 (2)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.816	0.213
Lower Limit		0.131	0.004
Upper Limit		8.603	3.909
Weeks to First Observed Tumor	106	92	85
Hematopoietic System:			
Lymphoma (b)	4/20 (20)	5/49 (10)	8/48 (17)
P Values (c,d)	N. S.	N.S.	N.S.
Relative Risk (f)		0.510	0.833
Lower Limit		0.126	0.261
Upper Limit		2.367	3.459
Weeks to First Observed Tumor	106	92	105

Table Fl. Analyses of the Incidence of Primary Tumors in Male Mice Administered Azobenzene in the Diet (a)

	Matched	Low	High
Copography: Morphology	Control	Dose	Dose
All Sites: Hemangiosarcoma (b)	1/20 (5)	2/49 (4)	5/48 (10)
? Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.816	2.083
Lower Limit		0.046	0.259
Upper Limit		47.195	96.358
Neeks to First Observed Tumor	106	105	100
liver: Hepatocellular			
Carcinoma (b)	3/20 (15)	10/49 (20)	2/48 (4)
? Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		1.361	0.278
Lower Limit		0.406	0.025
Upper Limit		7.138	2.278
Veeks to First Observed Tumor	106	91	105

:

Table Fl. Analyses of the Incidence of Primary Tumors in Male Mice Administered Azobenzene in the Diet (a)

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Liver: Hepatocellular Carcinoma or Neoplastic			
Nodule (b)	8/20 (40)	16/49 (33)	2/48 (4)
P Values (c,d)	P less than 0.001 (N)	N.S.	P = 0.001 (N)
Relative Risk (f)		0.816	0.104
Lower Limit		0.412	0.012
Upper Limit		1.896	0.469
Weeks to First Observed Tumor	106	91	105
Adrenal: Pheochromocytoma (b)	0/20 (0)	0/48 (0)	3/45 (7)
P Values (c,d)	N.S.		N.S.
Relative Risk (f)			Infinite
Lower Limit			0.278
Upper Limit			Infinite
Weeks to First Observed Tumor			105

Table Fl. Analyses of the Incidence of Primary Tumors in Male Mice Administered Azobenzene in the Diet (a)

105

(continued)

- (a) Dosed groups received 200 or 400 ppm.
- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the matched-control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Lung: Alveolar/Bronchiolar			
Adenoma (b)	2/20 (10)	2/46 (4)	2/36 (6)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.435	0.556
Lower Limit		0.034	0.044
Upper Limit		5.721	7.244
Weeks to First Observed Tumor	106	88	105
Hematopoietic System:		· · · · · · · · · · · · · · · · · · ·	
Lymphoma or Leukemia (b)	5/20 (25)	6/47 (13)	7/38 (18)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.511	0.737
Lower Limit		0.152	0.238
Upper Limit		1.916	2.626
Weeks to First Observed Tumor	87	61	80

Table F2. Analyses of the Incidence of Primary Tumors in Female Mice Administered Azobenzene in the Diet (a)

107

.

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
All Sites: Hemangiosarcoma (b)	0/20 (0)	4/47 (9)	1/38 (3)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		Infinite	Infinite
Lower Limit		0.411	0.029
Upper Limit		Infinite	Infinite
Weeks to First Observed Tumor		88	105
Pituitary: Adenoma, NOS (b)	2/19 (11)	1/42 (2)	0/30 (0)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.226	0.000
Lower Limit		0.004	0.000
Upper Limit		4.137	2.096
Weeks to First Observed Tumor	106	106	

Tabl	.e F2.	Analyses of the Incidence of Primary Tumors in Female Mi	ce
		Administered Azobenzene in the Diet (a)	

Matched	Low	High
Control	Dose	Dose
0/20 (0)	3/47 (6)	1/38 (3)
N.S.	N.S.	N.S.
	Infinite	Infinite
	0.266	0.029
	Infinite	Infinite
	106	105
	<u>Control</u> 0/20 (0)	Control Dose 0/20 (0) 3/47 (6) N.S. N.S. Infinite 0.266 Infinite 0.266

Table F2. Analyses of the Incidence of Primary Tumors in Female Mice Administered Azobenzene in the Diet (a)

(a) Dosed groups received 208 or 545 ppm.

109

(continued)

(b) Number of tumor-bearing animals/number of animals examined at site (percent).

- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the matched-control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

Review of the Bioassay of Azobenzene* for Carcinogenicity by the Data EvaluationRisk Assessment Subgroup of the Clearinghouse on Environmental Carcinogens

December 13, 1978

The Clearinghouse on Environmental Carcinogens was established in May, 1976, in compliance with DHEW Committee Regulations and the Provisions of the Federal Advisory Committee Act. The purpose of the Clearinghouse is to advise the Director of the National Cancer Institute on the Institute's bioassay program to identify and evaluate chemical carcinogens in the environment to which humans may be exposed. The members of the Clearinghouse have been drawn from academia, industry, organized labor, public interest groups, and State health officials. Members have been selected on the basis of their experience in carcinogenesis or related fields and, collectively, provide expertise in chemistry, biochemistry, biostatistics, toxicology, pathology, and epidemiology. Representatives of various Governmental agencies participate as ad hoc members. The Data Evaluation/Risk Assessment Subgroup of the Clearinghouse is charged with the responsibility of providing a peer review of reports prepared on NCI-sponsored bioassays of chemicals studied for carcinogenicity. It is in this context that the below critique is given on the bioassay of Azobenzene.

The primary reviewer for the report on the bioassay of Azobenzene agreed that the compound was carcinogenic in treated rats. After commenting on the conditions of test, he said that the bioassay was properly designed and conducted. Based on the results of the study, he concluded that Azobenzene may pose a carcinogenic risk to humans.

The secondary reviewer said that the study was straightforward and that she agreed with the conclusion in the report. It was moved that the report on the bioassay of Azobenzene be accepted as written. The motion was seconded and approved without objection.

Clearinghouse Members Present:

Arnold L. Brown (Chairman), University of Wisconsin Medical School Joseph Highland, Environmental Defense Fund William Lijinsky, Frederick Cancer Research Center Henry Pitot, University of Wisconsin Medical Center Verne A. Ray, Pfizer Medical Research Laboratory Verald K. Rowe, Dow Chemical USA Michael Shimkin, University of California at San Diego Louise Strong, University of Texas Health Sciences Center Kenneth Wilcox, Michigan State Health Department

* Subsequent to this review, changes may have been made in the bioassay report either as a result of the review or other reasons. Thus, certain comments and criticisms reflected in the review may no longer be appropriate.

CU.S. GOVERNMENT PRINTING OFFICE: 1979-231-217/3032

DHEW Publication (NIH) No. 79-1710