NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 219

NTP Technical Report

on the

CARCINOGENESIS BIOASSAY

of

2,6-DICHLORO-p-PHENYLENEDIAMINE

(CAS NO. 609-20-1)

IN F344 RATS and B6C3F1 MICE

(FEED STUDY)

NATIONAL TOXICOLOGY PROGRAM Research Triangle Park Box 12233 North Carolina 27709 and Bethesda, Maryland 20205

March 1982

NTP-80-36 NIH Publication No. 82-1775

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NOTE TO THE READER

This is one in a series of experiments designed to determine whether selected chemicals produce cancer in animals. Chemicals selected for testing in the NTP carcinogenesis bioassay program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical is a potential hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

This study was initiated by the National Cancer Institute's Carcinogenesis Testing Program, now part of the National Institute of Environmental Health Sciences, National Toxicology Program.

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650).

Comments and questions about the National Toxicology Program Technical Reports on Carcinogenesis Bioassays should be directed to the National Toxicology Program, located at Room A-306, Landow Building, Bethesda, MD 20205 (301-496-1152) or at Research Triangle Park, NC 27709 (919-541-3991).

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to communicate any mistakes to the Deputy Director, NTP (P.O. Box 12233, Research Triangle Park, NC 27709), so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP.

TABLE OF CONTENTS

		Page
	Abstract	vii
	Contributors	ix
	Reviewers	xi
	Summary of Peer Review Comments	xiii
I.	Introduction	1
II.	Materials and Methods	3
	A. Chemical	3
	B. Dietary Preparation	3
	C. Animals	4
	D. Animal Maintenance	4
	E. Repeated Dose Studies	4
	F. Subchronic Studies	6
	G. Design of Chronic Studies	11
	H. Clinical Examinations and Pathology	11
	I. Data Recording and Statistical Analyses	13
111.	Results - Rats	17
	A. Body Weights and Clinical Signs (Rats)	17
	B. Survival (Rats)	17
	C. Pathology (Rats)	17
	D. Statistical Analyses of Results (Rats)	20
IV.	Results - Mice	31
	A. Body Weights and Clinical Signs (Mice)	31
	B. Survival (Mice)	31
	C. Pathology (Mice)	31
	D. Statistical Analyses of Results (Mice)	34
v.	Discussion	43
VI.	Conclusions	45
VII.	Bibliography	47

Page

TABLES

Table	1	Descriptions and Sources of Materials Used for Animal Maintenance	5
Table	2	Doses, Survival, and Mean Body Weights of Rats Fed Diets Containing 2,6-Dichloro-p- phenylenediamine for 14 Days	7
Table	3	Doses, Survival, and Mean Body Weights of Mice Fed Diets Containing 2,6-Dichloro-p- phenylenediamine for 14 Days	8
Table	4	Doses, Survival, and Mean Body Weights of Rats Fed Diets Containing 2,6-Dichloro-p- phenylenediamine for 13 Weeks	9
Table	5	Doses, Survival, and Mean Body Weights of Mice Fed Diets Containing 2,6-Dichloro-p- phenylenediamine for 13 Weeks	10
Table	6	Experimental Design of Chronic Feeding Studies with 2,6-Dichloro-p-phenylenediamine in Rats and Mice	12
Table	7	Analyses of the Incidence of Primary Tumors in Male Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	22
Table	8	Analyses of the Incidence of Primary Tumors in Female Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	26
Table	9	Incidence of Hepatocellular Neoplasms in Mice Fed Diets Containing 2,6-Dichloro-p- phenylenediamine	35
Table	10	Analyses of the Incidence of Primary Tumors in Male Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	37
Table	11	Analyses of the Incidence of Primary Tumors in Female Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	40

FIGURES

Figure l	Growth Curves for Rats Fed Diets Containing	
-	2,6-Dichloro-p-phenylenediamine	18

Page

Figure 2	Survival Curves for Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	19
Figure 3	Growth Curves for Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	32
Figure 4	Survival Curves for Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	33
Figure 5	Infrared Absorption Spectrum of 2,6-Dichloro-p- phenylenediamine (Lot No. 0005)	102
Figure 6	Nuclear Magnetic Resonance Spectrum of 2,6-Dichloro-p-phenylenediamine (Lot No. 0005)	103
Figure 7	Infrared Absorption Spectrum of 2,6-Dichloro-p- phenylenediamine (Lot No. R9231-127)	111
Figure 8	Nuclear Magnetic Resonance Spectrum of 2,6-Dichloro-p-phenylenediamine (Lot No. R9231-127)	113

APPENDIXES

Appendix A	Summary of the Incidence of Neoplasms in Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	49
Table Al	Summary of the Incidence of Neoplasms in Male Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	51
Table A2	Summary of the Incidence of Neoplasms in Female Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	55
Appendix B	Summary of the Incidence of Neoplasms in Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	59
Table Bl	Summary of the Incidence of Neoplasms in Male Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	61
Table B2	Summary of the Incidence of Neoplasms in Female Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	65

Page

Appendix C	Summary of the Incidence of Nonneoplastic	
	Lesions in Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	69
Table Cl	Summary of the Incidence of Nonneoplastic Lesions in Male Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	71
Table C2	Summary of the Incidence of Nonneoplastic Lesions in Female Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	78
Appendix D	Summary of the Incidence of Nonneoplastic Lesions in Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	85
Table Dl	Summary of the Incidence of Nonneoplastic Lesions in Male Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	87
Table D2	Summary of the Incidence of Nonneoplastic Lesions in Female Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine	92
Appendix E	Analysis of 2,6-Dichloro-p-phenylenediamine (Lot No. 0005) Midwest Research Institute	97
Appendix F	Analysis of 2,6-Dichloro-p-phenylenediamine (Lot No. R9231-127) Midwest Research Instiute	105
Appendix G	Analysis of Formulated Diets for Stability of 2,6-Dichloro-p-phenylenediamine, Midwest Research Institute	115
Appendix H	Analyses of Formulated Diets for Concentrations of 2,6-Dichloro-p-phenylenediamine, Litton Bionetics, Inc	119

ABSTRACT

A carcinogenesis bioassay of 2,6-dichloro-p-phenylenediamine, a chemical intermediate, was conducted in groups of 50 F344 rats and B6C3F1 mice of either sex. Male rats were fed diets containing 1,000 or 2,000 ppm 2,6-dichloro-p-phenylenediamine and female rats were fed 2,000 or 6,000 ppm for 103 weeks. Mice were fed 1,000 or 3,000 ppm of the test chemical for 103 weeks and observed for an additional 8 weeks. Controls consisted of 50 untreated rats and 50 untreated mice of each sex.

Throughout the study, mean body weights of dosed rats and mice of either sex were lower than those of the corresponding controls. A dose-related weight gain depression was particularly pronounced for rats.

Ectopic hepatocytes were observed at an increased incidence in the pancreas and nephrosis was observed in increased severity in dosed rats of either sex when compared with the corresponding controls. No increase in any tumor type was observed in treated male or female rats when compared to controls.

Increased incidences of liver tumors were observed in mice of both sexes. In male mice, the incidence of hepatocellular adenomas exhibited a significant positive dose-related trend (P=0.002), and the increased incidence of hepatocellular adenomas was statistically significant in the high-dose group (4/50, 7/50, 15/50: P=0.005). The combined incidence of hepatocellular adenomas and carcinomas showed a significant positive dose-related trend (P=0.004) and was statistically significant in the high-dose group (16/50, 19/50, 29/50: P=0.008).

In female mice, hepatocellular carcinomas exhibited a significant positive dose-related trend (P=0.025), but no single dose group had a statistically significant increased incidence of either adenomas (4/50, 4/50, 9/50; high-dose effect: P=0.12) or carcinomas (2/50, 2/50, 7/50; high-dose effect: P=0.08) alone. When the incidences of hepatocellular adenomas and carcinomas were combined (6/50, 6/50, 16/50), these data gave a positive dose-related trend (P=0.004) and were statistically significant in the high-dose group (P=0.014).

Under the conditions of this bioassay, 2,6-dichloro-p-phenylenediamine was carcinogenic for male and female B6C3Fl mice, causing increased incidences of combined hepatocellular adenomas and carcinomas, and for male B6C3Fl mice, causing an increased incidence of hepatocellular adenomas alone. 2,6-Dichloro-p-phenylenediamine was not carcinogenic for male or female F344 rats.

viii

CONTRIBUTORS

The bioassay of 2,6-dichloro-p-phenylenediamine was conducted by Litton Bionetics, Inc., Kensington, Maryland, under a subcontract to Tracor Jitco, Inc., the prime contractor for the NCI Carcinogenesis Testing Program. The chronic study was begun in February 1977 and completed in March 1979.

The bioassay was conducted under the supervision of Dr. E. Gordon (1,2), principal investigator. Doses of the test chemical were selected by Drs. W. MacDonald (3), J. Robens (3,4), C. Cueto (5), R. Schueler (3), and E. Gordon (1,2). Mr. D. Kinsel (1) and Ms. J. Sheldon (1) were in charge of animal care, and Mr. G. North (1) supervised the preparation of the feed mixtures and collected samples of the diets for analysis. Drs. G. Parker, R. Cardy, and A. DePaoli (1), pathologists, directed the necropsies and performed the histopathologic examinations. The pathology report and selected slides were evaluated by the NCI Pathology Working Group as described in Ward et al. (1978). The diagnoses represent a consensus of contracting pathologists and the NCI Pathology Working Group with final approval by the NCI Pathology Working Group.

Animal pathology tables and survival tables were compiled at EG&G Mason Research Institute, Rockville, Maryland (6). The statistical analyses were performed by Dr. J. R. Joiner (3) using methods selected for the bioassay program by Dr. J. J. Gart (7).

Chemicals used in this bioassay were analyzed at Midwest Research Institute (8), and dosed feed mixtures were analyzed by Mr. H. Paulin (1) at Litton Bionetics, Inc.

This report was prepared at Tracor Jitco (3) and reviewed by NCI. Those responsible for the report at Tracor Jitco were Dr. C. Cueto (5), Director of the Bioassay Program; Dr. S. S. Olin, Associate Director; Dr. M. A. Stedham, pathologist; Dr. A. C. Jacobs, bioscience writer; and Dr. W. D. Theriault and Ms. M. W. Glasser, technical editors.

The following scientists at NCI/NTP (7) were responsible for evaluating the bioassay experiment, interpreting the results, and reporting the findings: Dr. J. Fielding Douglas, Dr. Charles K. Grieshaber, Dr. Larry Hart, Dr. Joseph Haseman, Dr. James Huff, Dr. C. W. Jameson, Dr. Eugene E. McConnell, Dr. John A. Moore, Dr. Gerd Reznik, Dr. Sherman F. Stinson, Dr. R. Tennant, and Dr. Jerrold M. Ward.

⁽¹⁾ Litton Bionetics, Inc., 5516 Nicholson Lane, Kensington, Maryland 20795.

⁽²⁾ Now with Mobil Oil Company, P.O. Box 1026, Princeton, New Jersey 08540.

⁽³⁾ Tracor, Jitco, Inc., 1776 East Jefferson Street, Rockville, Maryland 20852.

⁽⁴⁾ Now with Bureau of Veterinary Medicine, Food and Drug Administration, 5600 Fishers Lane, Rockville, Maryland 20857.

⁽⁵⁾ Now with Clement Associates, 1010 Wisconsin Ave., N.W., Washington, D.C. 20007.

- (6) EG&G Mason Research Institute, 1530 East Jefferson Street, Rockville, Maryland 20852.
- (7) National Toxicology Program, National Institutes of Health, Research Triangle Park, Box 12233, North Carolina 27709, and Bethesda, Maryland 20205.
- (8) Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110.

REVIEWERS

National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee

Margaret Hitchcock, Ph.D. (Chairperson) Pharmacology/Toxicology John B. Pierce Foundation Laboratory New Haven, Connecticut

Curtis Harper, Ph.D Associate Professor of Pharmacology University of North Carolina Chapel Hill, North Carolina

Thomas Shepard, M.D. University of Washington School of Medicine Seattle, Washington Alice Whittemore, Ph.D.* Biostatistics Stanford University School of Medicine Palo Alto, California

Subcommittee Panel of Experts

Svend Nielsen, D.V.M., Ph.D. Professor of Pathology The University of Connecticut Storrs, Connecticut

Norman Breslow, Ph.D. Biostatistics University of Washington Seattle, Washington

Joseph Highland, Ph.D.* Toxicology Environmental Defense Fund Washington, D.C.

Charles Irving, Ph.D.* Veterans Administration Hospital Cancer Research Laboratory Memphis, Tennessee

Frank Mirer, Ph.D. United Auto Workers International Union Detroit, Michigan Sheldon Murphy, Ph.D. (Principal Reviewer) University of Texas Medical School Houston, Texas

- Bernard Schwetz, Ph.D. (Principal Reviewer) Toxocology Research Laboratory Dow Chemical U.S.A. Midland, Michigan
- Roy Shore, Ph.D. Statistics New York University Medical Center New York, New York
- James Swenberg, Ph.D. Chief of Pathology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina
- Gary Williams, M.D.* Chief of Experimental Pathology American Health Foundation Valhalla, New York

*Unable to attend October 15, 1980 meeting

xii

SUMMARY OF PEER REVIEW COMMENTS

On October 15, 1980 this carcinogenesis bioassay report on 2-6-dichlorop-phenylenediamine was peer reviewed by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts at an open meeting held in Conference Room 6, Building 31C, National Institutes of Health, Bethesda, Maryland.

Dr. Murphy, a principal reviewer for the report on the carcinogenesis bioassay of 2,6-dichloro-p-phenylenediamine, agreed with the conclusion that, under the conditions of this bioassay, this chemical was not carcinogenic for F344 rats of either sex, and caused an increased incidence of hepatocellular adenomas and an increased incidence of combined hepatocellular adenomas/carcinomas in B6C3F1 mice of either sex. In neither male nor female mice was there a significant increase in hepatocellular carcinomas alone. For males, the incidence of hepatocellular adenomas was statistically significant. Dr. Murphy noted that male rats had liver angiectasis at 28% and 24% in low- and high-dose groups compared with 6% in controls, and the unusual lesion of ectopic hepatocytes was found in male and female rats.

As a second principal reviewer, Dr. Schwetz agreed with the conclusions and with the lack of significance in mice for hepatocellular carcinomas alone; yet there was a significant trend for hepatocellular carcinomas in female mice.

Dr. Murphy moved that the report on the bioassay of 2,6-dichloro-pphenylenediamine be accepted with additions to the conclusion and abstract indicating that the increased incidence of liver tumors in mice was based on the sum of adenomas and carcinomas, and that, taken alone, hepatocellular carcinomas were not significantly increased. Also, a note should be made in the summary that there was a reduction in weight gain to indicate the bioassay was a valid test. Dr. Schwetz seconded the motion and the report was approved unanimously by the Peer Review Panel.

I. INTRODUCTION

2, 6-DICHLORO-p-PHENYLENEDIAMINE

Chemical Formula: C₆H₆Cl₂N₂ Molecular Weight: 177.04

2,6-Dichloro-p-phenylenediamine (CAS No. 609-20-1; C.I. 37020), a gray microcrystalline powder, is a chemical intermediate that has been considered for use as a polyurethane curative (Ong and Saxon, 1976) and as a monomer in the manufacture of polyamide fiber (Kwolek, 1970). The sole manufacturer in the United States ceased production in 1978 (Saxon, 1978).

The oral LD₅₀ in male Harlan-Wistar albino rats was reported as 0.7 g/kg body weight (American Cyanamid, 1971). Dose-related depressions in weight gain and increases in liver weights were observed in 6-week old Harlan-Wistar albino rats of each sex fed diets containing 500, 2,000, or 8,000 ppm 2,6-dichloro-p-phenylenediamine for 7 days, and increased spleen weights were seen in males and females receiving the 8,000-ppm dose (American Cyanamid, 1971).

2,6-Dichloro-p-phenylenediamine is a metabolite of the herbicidefungicide, 2,6-dichloro-4-nitroaniline, in man, rhesus monkeys, dogs, rats, and mice (Gallo et al., 1976).

At the time this bioassay was initiated, 2,6-dichloro-p-phenylenediamine was being considered as a substitute for 4,4'-methylenebis(2-chloroaniline) in polymer synthesis and increased usage of the former compound was anticipated. Apparently, 2,6-dichloro-p-phenylenediamine has not been used or further considered for this purpose.

A. Chemical

The 2,6-dichloro-p-phenylenediamine (CAS No. 609-20-1) used in this study was obtained in two batches from American Cyanamid (Bound Brook, NJ). Lot No. 0005 was used for the subchronic study and the first 52 weeks of the chronic studies and Lot No. R9231-127 was used for the final 51 weeks of the chronic studies.

The results of purity and identity analyses performed at Midwest Research Institute were consistent with those expected from the structure and with literature values (Appendixes E and F). Results from thin-layer and vaporphase chromatography indicated three unidentified minor impurities totaling less than 0.25% of the major peak for Lot No. 0005 and a single small impurity comprising 0.02% to 0.03% of the major peak for Lot No. R9231-127. 2,6-Dichloro-p-phenylenediamine was stored at 4° C.

B. Dietary Preparation

Test diets were formulated by mixing a small amount of Purina[®] Lab Chow (Table 1) and the required amount of 2,6-dichloro-p-phenylenediamine with a mortar and pestle and then adding this premix to the required amount of animal meal and mixing 20 minutes in a Patterson-Kelly[®] twin-shell blender equipped with an intensified bar. The mixture was stored in the dark at 4° C for no longer than 2 weeks. Control diets consisted of Purina[®] Laboratory Chow.

Results of vapor-phase chromatography performed at Midwest Research Institute indicated that 2,6-dichloro-p-phenylenediamine at 100,000 ppm in feed was stable for 2 weeks at temperatures up to 45° C (Appendix G). The mean concentrations of test chemical in selected batches of formulated diets were 1,727.6+209.7 and 6,062+218.1 ppm for samples having target concentrations of 2,000 and 6,000 ppm, respectively (Appendix H).

C. Animals

Three-week old male and female F344 rats and B6C3F1 mice were obtained from the NCI Frederick Cancer Research Center, Frederick, Maryland, observed for 2 weeks, and then assigned to test groups according to a table of random numbers.

D. Animal Maintenance

Rats and mice were housed five per cage in polycarbonate cages covered with non-woven polyester filter sheets (Table 1). Racks and filters were changed once every 2 weeks and cages, bedding, and glass water bottles equipped with stainless steel sipper tubes were replaced twice a week. Tap water acidified with hydrochloric acid to pH 2.5, and feed were available <u>ad</u> <u>libitum</u>. The stainless steel feed hoppers that contained the diets were changed once per week. The animal rooms were maintained at $22^{\circ}-26^{\circ}C$ and humidity was 30%-70%.

Air was filtered through AG-55 Ameriglass Roughing filters and then through HEPA-100 filters. Room air was changed 10 times per hour and fluorescent lighting provided illumination 12 hours per day.

Rats fed 2,6-dichloro-p-phenylenediamine were housed in a room in which feeding studies on 11-aminoundecanoic acid (CAS 2432-99-7) were being carried out; mice fed 2,6-dichloro-p-phenylenediamine were housed in a room in which feeding studies were being conducted on bisphenol A (CAS 80-05-7), 11-aminoundecanoic acid (CAS 2432-99-7), and caprolactam (CAS 105-60-2).

E. Repeated Dose Studies

Single-dose acute studies for 2,6-dichloro-p-phenylenediamine were not done. Repeated dose studies were conducted using groups of five F344 rats and B6C3F1 mice of each sex to determine the concentrations of 2,6-dichloro-p-phenylenediamine to be used in the subchronic studies. In the first repeated dose study, rats were fed diets containing 250-4,000 ppm

Item	Description	Manufacturer or Supplier
Bedding	Absorb-dri [®]	Lab Products, Inc.
_	hardwood chips	Garfield, NJ
Cages	Polycarbonate	Lab Products, Inc. Garfield, NJ
Feed	Ralston Purina [®]	Ralston Purina
	Laboratory Chow	Richmond, IN
Filters	AG-55 Ameriglass	American Air Filter
	Roughing Filter	Louisville, KY
Filters	HEPA-100	American Air Filter Louisville, KY
Filter Sheets	Non-woven	Snow Filtration
	Polyester	Cincinnati, Ohio

Table 1. Descriptions and Sources of Materials Used for Animal Maintenance

and mice 250-2,000 ppm of the test chemical for 14 days and then killed and necropsied. Because no compound-related effects on survival or weight gain were observed for female rats or for mice of either sex (Tables 2 and 3), a second repeated dose study was undertaken using 8,000 ppm for rats and 4,000 ppm for mice.

No rats died in either repeated dose study, but mean body weight gain was depressed 75% in males fed 4,000 ppm, 93% in males fed 8,000 ppm, and 67% in females fed 8,000 ppm. Mottled lungs were observed in 3/5 female rats fed 500 ppm, 2/5 males and 3/5 females fed 4,000 ppm, and 2/5 males fed 8,000 ppm.

No mice died, and mean body weight gains were comparable among all dosed groups. Bright red lungs were observed at necropsy in 3/5 female mice fed the highest dose (4,000 ppm).

F. Subchronic Studies

Subchronic studies were conducted to determine the two concentrations to be used in the chronic studies. Groups of 12 male and 12 female rats were fed diets containing 1,000-8,000 ppm 2,6-dichloro-p-phenylenediamine and groups of 10 male and 10 female mice received 625-7,500 ppm in diets for 13 weeks (Tables 4 and 5). Animals were observed twice daily and weighed weekly. At the end of 91 days, survivors were killed, necropsies were performed on all animals, and selected tissues were taken for histopathologic analyses.

<u>Rats</u>: No deaths occurred during this trial. Weight gain depression was dose-related among males and only slightly decreased among females. Papillary necrosis of the kidney was found in 3/10 males, pyelonephritis in 4/10 males, and transitional cell hyperplasia in 3/10 males fed diets containing 8,000 ppm. None of these effects were observed in controls, and no compoundassociated pathologic lesions were found in the female rats.

Because of papillary necrosis in the kidney and depression in weight gain, doses selected for males in the chronic study were 1,000 and 2,000 ppm 2,6-dichloro-p-phenylenediamine in feed. Doses selected for the female rats were 2,000 and 6,000 ppm.

Dose	6	Survival	Mean Body Weights (grams)		Weight Chang Relative to Controls (b)	
(ppm)	surv (a		Initial	Final	Gain	(Percent)
MALE						
0		5/5	211	251	40	
250		5/5	211	244	33	-17
500		5/5	218	250	32	-20
1,000		5/5	207	243	36	-10
2,000		5/5	217	249	32	-20
4,000		5/5	227	237	10	-75
0	(c)	5/5	236	263	27	
8,000	(c)	5/5	254	256	2	-93
FEMALE						
0		5/5	146	159	13	
250		5/5	144	159	15	+15
500		5/5	140	159	19	+46
1,000		5/5	143	1 56	13	0
2,000		5/5	138	152	14	+8
4,000		5/5	147	164	17	+31
0	(c)	5/5	153	165	12	
8,000	(c)	5/5	146	150	4	-67

Table 2. Doses, Survival, and Mean Body Weights of Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine for 14 Days

(a) Number surviving/number per group.

(b) Weight Change Relative to Controls = <u>Weight Gain (Dosed Group) - Weight Gain (Control Group) x 100</u> Weight Gain (Control Group)

(c) A second repeated-dose study conducted at two doses (0 and 8,000 ppm)

Dose		Survival	Mean Bod	y Weights (gra	ams)
(ppm)		(a)	Initial	Final	Gain
MALE					<u></u>
0		5/5	23	24	+1
250		5/5	24	23	-1
500		5/5	27	24	-3
1,000		5/5	26	25	-1
1,500		5/5	25	24	-1
2,000		5/5	25	24	-1
-	(b)	5/5	25	27	+2
4000		5/5	27	28	+1
FEMALE					
0		5/5	17	18	+1
250		5/5	20	19	-1
500		5/5	19	18	-1
1,000		5/5	20	20	0
1,500		5/5	21	20	-1
2,000		5/5	19	19	0
0	(b)	5/5	19	20	+1
4,000	(b)	5/5	19	20	+1

Table 3. Doses, Survival, and Mean Body Weights of Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine for 14 Days

(a) Number surviving/number per group.(b) A second repeated dose study conducted at two doses (0 and 4,000 ppm).

Dose	Survival	Mean Bo	ly Weights (g	orama)	Weight Change Relative to Controls (b)
(ppm)	(a)	Initial	Final	Gain	(Percent)
MALE			 		
0	10/10	135	307	172	
1,000	12/12	135	296	161	-6
2,000	12/12	135	268	133	-23
4,000	12/12	136	267	131	-24
6,000	12/12	136	265	129	-25
8,000	12/12	136	243	107	-38
FEMALE					
0	14/14	104	182	78	
1,000	12/12	104	181	77	-1
2,000	12/12	104	182	78	0
4,000	12/12	105	169	64	-18
6,000	12/12	104	176	72	-8
8,000	12/12	104	173	69	-12

Table 4. Doses, Survival, and Mean Body Weights of Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine for 13 Weeks

(a) Number surviving/number per group.

(b) Weight Change Relative to Controls =

Weight Gain (Dosed Group) - Weight Gain (Control Group) Weight Gain (Control Group) x 100

					Weight Change Relative to
Dose	Survival		ly Weights (g		Controls (b)
(ppm)	(a)	Initial	Final	Gain	(Percent)
MALE					
0	10/10	20	30	10	
625	10/10	20	28	8	-20
1,250	10/10	20	29	9	-10
2,500	10/10	20	28	8	-20
5,000	10/10	20	27	7	-30
7,500	10/10	20	27	7	-30
FEMALE					
0	10/10	17	26	9	
625	10/10	17	26	9	0
1,250	10/10	17	24	7	-22
2,500	10/10	17	23	6	-33
5,000	10/10	17	22	5	-44
7,500	10/10	17	22	5	-44

Doses, Survival, and Mean Body Weights of Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine for 13 Weeks Table 5.

Weight Gain (Control Group)

<u>Mice</u>: No deaths occurred and no compound-associated histopathologic effects were observed. Mean body weight gain depression greater than 10% occurred in all dosed mice except the females fed 625 ppm in the diet.

Because of weight gain depression in the subchronic study and concern about possible latent effects, doses selected for mice in the chronic study were 1,000 and 3,000 ppm 2,6-dichloro-p-phenylenediamine in feed.

G. Design of Chronic Studies

The test groups, doses administered, and durations of the chronic studies are shown in Table 6.

H. Clinical Examinations and Pathology

Animals were inspected twice daily. Body weights were recorded every 4 weeks. Animals that were moribund and those that survived to the end of the study were killed with CO₂ and necropsied.

Gross and microscopic examinations were performed on major tissues, major organs, and all gross lesions from killed animals and from animals found dead. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. The following tissues were examined microscopically: skin, lungs and bronchi, trachea, bone and bone marrow, spleen, lymph nodes, heart, salivary gland, liver, pancreas, stomach, small intestine, large intestine, kidneys, urinary bladder, pituitary, adrenal, thyroid, parathyroid, mammary gland, prostate and seminal vesicle or uterus, testis or ovary, brain, thymus, larynx, and esophagus.

Necropsies were performed on all animals found dead, unless precluded in whole or in part by autolysis or cannibalization. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and does not necessarily represent the number of animals that were placed on study in each group.

	Initial	2,6-Dichloro-p-	Time o	n Study
Test Group	No. of Animals	phenylenediamine (ppm)	Dosed (weeks)	Observed (weeks)
	All 1881 5	(p bm)	(weeks /	(WEEKS)
MALE RATS				
Control	50	0	0	111
Low Dose	50	1,000	103	8
High Dose	50	2,000	103	8
FEMALE RATS				
Control	50	0	0	111
Low Dose	50	2,000	103	8
High Dose	50	6,000	103	8
MALE MICE				
Control	50	0	0	111
Low Dose	50	1,000	103	8
High Dose	50	3,000	103	8
FEMALE MICE				
Control	50	0	0	111
Low Dose	50	1,000	103	8
High Dose	50	3,000	103	8

Table 6. Experimental Design of Chronic Feeding Studies with 2,6-Dichloro-p-phenylendiamine in Rats and Mice

I. Data Recording and Statistical Analyses

Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, clinical observations, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Probabilities of survival were estimated by the product-limit procedure of Kaplan and Meier (1958) and are presented in this report in the form of graphs. Animals were statistically censored as of the time that they died of other than natural causes or were found to be missing; animals dying from natural causes were not statistically censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) extensions of Cox's methods for testing for a dose-related trend. One-tailed P values are reported for all tests except the departure from linearity test, which is reported only when its two-tailed P value is less than 0.05.

The incidence of neoplastic or nonneoplastic lesions has been presented as the ratio of the number of animals bearing such lesions at a specific anatomic site (numerator) to the number of animals in which that site is examined (denominator). In most instances, the denominators included only those animals for which that site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) before histologic sampling or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the numbers of animals necropsied.

The statistical analyses of tumor incidence are intended to determine whether animals receiving the test chemical developed a significantly higher proportion of tumors than did the control animals. As a part of these analyses, the one-tailed Fisher exact test (Cox, 1970) was used to compare the tumor incidence of a control group with that of a group of dosed animals at each dose level. When results for two dosed groups are compared simultaneously with those for a control group, a correction to ensure an overall significance level of 0.05 may be made. The Bonferroni test for inequality (Miller, 1966) requires that the P value for any comparison be less than or

equal to 0.025. When this correction was used, it is discussed in the narrative section. It is not, however, presented in the tables, where the Fisher exact P values are shown.

A time-adjusted analysis was applied when numerous early deaths resulted from causes that were not associated with the formation of tumors. In this analysis, deaths that occurred before the first tumor was observed were excluded by basing the statistical tests on animals that survived at least 52 weeks, unless a tumor was found at the anatomic site of interest before week 52. When such an early tumor was found, comparisons were based exclusively on animals that survived at least as long as the animal in which the first tumor was found. Once this reduced set of data was obtained, the standard procedures for analyses of the incidence of tumors (Fisher exact tests, Cochran-Armitage tests, etc.) were followed.

Life table methods were used to analyze the incidence of tumors. Curves of the proportions surviving without an observed tumor were computed as in Saffiotti et al. (1972). The week during which an animal died naturally or was killed was entered as the time point of tumor observation. The methods of Cox and of Tarone were used for the statistical tests of the groups. The statistical tests were one-tailed.

The Cochran-Armitage test for linear trend in proportions, with continuity correction (Armitage, 1971), was also used. Under the assumption of a linear trend, this test determines if the slope of the dose-response curve is different from zero at the one-tailed 0.05 level of significance. Unless otherwise noted, the direction of the significant trend is a positive dose relationship. This method also provides a two-tailed test of departure from linear trend.

The approximate 95% confidence interval for the relative risk of each dosed group compared with its control was calculated from the exact interval on the odds ratio (Gart, 1971). The lower and upper limits of the confidence interval of the relative risk have been included in the tables of statistical analyses. The interpretation of the limits is that, in approximately 95% of a large number of identical experiments, the true ratio of the risk in a dosed group of animals to that in a control group would be within the interval calculated from the experiment. When the lower limit of the confidence

interval is greater than one, it can be inferred that a statistically significant result has occurred (P less than 0.025 one-tailed test when the control incidence is not zero, P less than 0.050 when the control incidence is zero). When the lower limit is less than unity but the upper limit is greater than unity, the lower limit indicates the absence of a significant result while the upper limit indicates that there is a theoretical possibility of the induction of tumors by the test chemical which could not be detected under the conditions of this test.

III. RESULTS - RATS

A. Body Weights and Clinical Signs (Rats)

Mean body weights of dosed rats of either sex were lower than those of the corresponding controls (Figure 1). By the end of the two-year study, the weight gain of high-dose male rats was 19% less than that of controls and the weight gain of high-dose female rats was 47% less than that of controls. Weight gain of low-dose rats was between that of high-dose and control animals throughout the study. No other compound-related clinical signs were observed.

B. Survival (Rats)

Estimates of the probabilities of survival for male and female rats administered 2,6-dichloro-p-phenylenediamine in feed at the concentrations of this bioassay, together with those of the control group, are shown by the Kaplan and Meier curves in Figure 2. There were no significant differences between the survival of the groups of male rats or the groups of female rats.

In male rats, 30/50 (60%) of the control group, 30/50 (60%) of the low-dose group, and 21/50 (42%) of the high-dose group lived to the end of the study at 111 weeks. In female rats, 36/50 (72%) of the control group, 32/50 (64%) of the low-dose group, and 38/50 (76%) of the high-dose group lived to the end of the study at 111 weeks.

C. Pathology (Rats)

Histopathologic findings on neoplasms in rats are summarized in Appendix A, Tables Al and A2; findings on nonneoplastic lesions are summarized in Appendix C, Tables Cl and C2.

A variety of neoplasms were found in both the control and compoundtreated animals. There was no increased incidence of any particular type of neoplasm, or of neoplasms in general, in the dosed versus the control

Figure 1. Growth Curves for Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine

Figure 2. Survival Curves for Rats Fed Diets Containing 2,6-Dichloro-p-phenylenediamine

animals. The observed neoplasms were typical of those seen in this strain of rat.

Nonneoplastic nephropathy occurred at an increased incidence in high-dose females (control, 38/50; low dose, 35/50; high dose, 49/49) and with increased severity in dosed males and dosed females. This lesion was not apparent during macroscopic examination, although a few of the most severely affected kidneys were pitted. Microscopic examination revealed effects ranging from an accumulation of homogeneous eosinophilic material in a few cortical tubules (particularly in those near the cortico-medullary junction) to very extensive accumulations of intratubular protein, subchronic to chronic interstitial inflammation, and glomerulosclerosis of variable extent and severity.

An unusual lesion recorded as ectopic pancreas was found only in dosed rats and was in fact ectopic hepatocytes associated with the islets in the pancreas. All other nonneoplastic lesions were considered to be degenerative changes, incidental findings, or part of spontaneous disease complexes of rats. There was no discernible alteration in incidence or severity of these lesions.

Histopathologic examination indicated that there was no evidence for the carcinogenicity of 2,6-dichloro-p-phenylenediamine in F344 rats under the conditions of this bioassay.

D. Statistical Analyses of Results (Rats)

Tables 7 and 8 contain the statistical analyses of those primary tumors that occurred in at least two animals of one group and with an incidence of at least 5% in one or more groups.

Pheochromocytomas of the adrenal in male rats were observed in decreased incidence in the low-dose group compared with the other two groups. The Fisher exact test between the low-dose group and the control group was significant (P=0.045), but this value of P=0.045 is above the value of P=0.025 required by the Bonferroni inequality criterion for an overall significance of P=0.05 when two dosed groups are compared with a common control group. Pheochromocytomas of the adrenal in female rats were not observed in significant incidence.
Islet-cell adenomas of the pancreatic islets in male rats were observed in decreased incidences in the dosed group compared with the control group. The Cochran-Armitage test for linear trend was statistically significant in the negative direction (P=0.017). The Fisher exact test between the low-dose group and the control group was significant (P=0.013). In female rats, this tumor was not observed in statistically significant proportions.

Leukemias of the hematopoietic system in female rats were observed in decreased incidence in the high-dose group. The Cochran-Armitage test for linear trend was statistically significant in the negative direction (P=0.044; control, 19/50; low dose, 25/50; high dose, 12/49). The Fisher exact tests were not significant. The incidences of this tumor were not statistically significant in male rats.

C-cell adenomas or carcinomas of the thyroid in female rats were observed in decreased incidence in the low-dose group compared with the other two groups. The Cochran-Armitage test for linear trend was not significant, but there was a departure from linear trend due to decreased incidence in the low-dose group compared with the other two dosed groups. The Fisher exact test between the low-dose group and the control group was significant (P=0.046), but this value of P=0.046 is above the value of P=0.025 required by the Bonferroni inequality criterion for an overall significance of P=0.05 when two dosed groups are compared with a common control group. In male rats, this tumor was not observed in statistically significant proportions.

Time adjusted analysis, eliminating those animals that died before 52 weeks on study, did not materially change the statistical results. Analysis by life table methods did not discern an overall trend to shorter times to observation of tumors.

The statistical conclusion was that at no site could an increase in tumor incidence be associated with the administration of the chemical. Islet-cell adenomas in male rats and C-cell tumors in female rats were observed in smaller incidence in the low-dose group than in the controls, to the extent that the upper limit of the relative risk is less than one. With these exceptions, in each of the 95% confidence intervals for relative risk the value of one is included: this indicates the absence of significant positive results. It should also be noted that each of the intervals has an upper limit greater than one indicating the theoretical possibility of tumor induction by 2,6-dichloro-p-phenylenediamine, which could not be detected under the conditions of this test.

Topography: Morphology	Control	Low Dose	High Dose
Subcutaneous Tissue: Fibroma (b)	3/50(6)	5/50(10)	1/50(2)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.667 0.344 10.225	0.333 0.006 3.983
Weeks to First Observed Tumor	108	104	111
Hematopoietic System: Lymphoma or Leukemia (b)	23/50(46)	23/50(46)	22/50(44)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.000 0.628 1.593	0.957 0.594 1.538
Weeks to First Observed Tumor	79	62	85
Liver: Neoplastic Nodule (b)	1/50(2)	3/50(6)	4/50(8)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit	1	3.000 0.251 54.270	4.000 0.415 192.805
Weeks to First Observed Tumor	111	111	98

	Control	Low	High
Topography: Morphology		Dose	Dose
Liver: Neoplastic Nodule			
or Hepatocellular Carcinoma (b)	1/50(2)	3/50(6)	5/50(10)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		3.000	5.000
Lower Limit		0.251	0.588
Opper Limit	1	54.270 2	31.346
Weeks to First Observed Tumor	111	111	98
Pituitary: Adenoma,			
NOS (b)	9/48(19)	9/47(19)	6/46(13)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		1.021	0.696
Lower Limit		0.394	0.221
Upper Limit		2.644	2.007
Weeks to First Observed Tumor	85	96	79
Adrenal:			
Pheochromocytoma (b)	15/50(30)	7/50(14)	9/50(18)
P Values (c),(d)	N.S.	P=0.045(N)	N.S.
Relative Risk (Control) (e)		0.467	0.600
Lower Limit		0.177	0.259
Upper Limit		1.103	1.319
Weeks to First Observed Tumor	90	100	91

(Continued)

(concluded)			
Topography: Morphology	Contro1	Low Dose	High Dose
Thyroid: C-Cell			
Adenoma (b)	2/48(4)	3/47(6)	0/44(0)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		1.532	0.000
Lower Limit		0.184	0.000
Upper Limit		17.658	3.675
Weeks to First Observed Tumor	104	111	
Pancreatic Islets:			
Islet Cell Adenoma (b)	6/49(12)	0/49(0)	1/48(2)
P Values (c),(d)	P=0.017(N)	P=0.013(N)	N.S.
Relative Risk (Control) (e)		0.000	0.170
Lower Limit		0.000	0.004
Upper Limit		0.625	1.327
Weeks to First Observed Tumor	90	anga daga	100
Preputial Gland:			
Carcinoma, NOS (b)	3/50(6)	3/50(6)	1/50(2)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		1.000	0.333
Lower Limit		0.140	0.006
Upper Limit		7.133	3.983

(Continued)

Topography: Morphology	Control	Low Dose	High Dose
Testis: Interstitial Cell Tumor (b)	48/50(96)	47/50(94)	45/50(90)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.979 0.910 1.076	0.938 0.870 1.061
Weeks to First Observed Tumor	79	74	59

(Continued)

(a) Dosed groups received doses of 1,000 or 2,000 ppm in feed.

(b) Number of tumor-bearing animals/number of animals examined at site (percent).

(c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise not significant (N.S.) is indicated.

- (d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.
- (e) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

Topography: Morphology	Control	Low Dose	High Dose
Hematopoietic System: Leukemia, NOS (1)	19/50(38)	25/50(50)	12/49(24)
P Values (c),(d)	P=0.044(N)	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.316 0.808 2.158	0.644 0.323 1.238
Weeks to First Observed Tumor	4	86	84
Liver: Neoplastic Nodule (b)	3/50(6)	2/50(4)	5/49(10)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.667 0.058 5.570	1.701 0.351 10.426
Weeks to First Observed Tumor	111	110	97
Liver: Neoplastic Nodule or Hepatocellular Carcinoma (b)	3/50(6)	2/50(4)	6/49(12)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Opper Limit		0.667 0.058 5.570	2.041 0.464 11.991
Weeks to First Observed Tumor	111	110	97

(Continued)		<u>, ,</u>	······
Topography: Morphology	Control	Low Dose	High Dose
Pituitary: Adenoma, NOS (b)	21/48(44)	27/48(56)	27/49(55)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.286 0.827 2.001	1.259 0.809 1.968
Weeks to First Observed Tumor	77	98	84
Adrenal: Pheochromocytoma (b)	4/50(8)	3/49(6)	5/49(10)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Opper Limit		0.765 0.118 4.288	1.276 0.292 6.070
Weeks to First Observed Tumor	98	111	107
Thyroid: C-Cell Adenoma (b)	2/42(5)	0/47(0)	3/48(6)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.000 0.000 3.014	1.313 0.158 15.124
Weeks to First Observed Tumor	111		111

(Continued)

(Continued)			
Topography: Morphology	Control	Low Dose	High Dose
Thyroid: C-Cell Adenoma or Carcinoma (b)	4/42(10)	0/47(0)	3/48(6)
P Values (c),(d)	N.S.	P=0.046(N)	N.S.
Departure from Linear Trend (f)	P=0.038		
Relative Risk (Control) (e) Lower Limit Upper Limit		0.000 0.000 0.961	0.656 0.102 3.663
Weeks to First Observed Tumor	111		111
Mamm <i>a</i> ry Gland: Cystadenoma, NOS (b)	3/50(6)	1/50(2)	0/49(0)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.333 0.006 3.983	0.000 0.000 1.696
Weeks to First Observed Tumor	92	111	
Mammary Gland: Fibroadenoma (b)	8/50(16)	4/50(8)	3/49(6)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Contrcl) (e) Lower Limit Upper Limit		0.500 0.117 1.737	0.383 0.069 1.488
Weeks to First Observed Tumor	107	103	111

(Continued)

Table 8.	Analyses of the Incidence of Primary Tumors in Female Rats
	Fed Diets Containing 2,6-Dichloro-p-phenylenediamine (a)

(C	on	ti	nu	led)

Topography: Morphology	Control	Low Dose	High Dose
Uterus: Endometrial Stromal Polyp (b)	10/47(21)	5/50(10)	4/48(8)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.470 0.136 1.390	0.392 0.096 1.253
Weeks to First Observed Tumor	110	111	97

(a) Dosed groups received doses of 2,000 or 6,000 ppm in feed.

(b) Number of tumor-bearing animals/number of animals examined at site (percent).

- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.

(e) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

(f) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.

IV. RESULTS - MICE

A. Body Weights and Clinical Signs (Mice)

Mean body weights of high-dose mice of either sex were lower than those of the controls (Figure 3). No other compound-related clinical signs were reported.

B. Survival (Mice)

Estimates of the probabilities of survival for male and female mice administered 2,6-dichloro-p-phenylenediamine in feed at the concentrations of this bioassay, together with those of the control group, are shown by the Kaplan and Meier curves in Figure 4. The survival in the groups of male mice were comparable. In female mice, the survival in the low-dose group was better than that in the control group. No significant compound-related linear trend was observed; however, the survival in the high-dose group was significantly shorter (P=0.033) than that in the low-dose group.

In male mice, 39/50 (78%) of the control group, 41/50 (82%) of the low-dose group, and 42/50 (84%) of the high-dose group lived to the end of the study at 111 weeks. In female mice, 40/50 (80%) of the control group, 45/50 (90%) of the low-dose group, and 35/50 (70%) of the high-dose group lived to the end of the study at 111 weeks. One high-dose female caught its head in the feeder and died. This animal was censored in the survival analysis.

C. Pathology (Mice)

Histopathologic findings on neoplasms in mice are summarized in Appendix B, Tables Bl and B2; findings on nonneoplastic lesions are summarized in Appendix D, Tables Dl and D2.

Figure 3. Growth Curves for Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine

Figure 4. Survival Curves for Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine

A variety of tumors were observed in the control groups and/or compoundtreated groups. Most of these lesions are common in this strain of mouse independent of any dosing; however, the incidence of hepatocellular neoplasms was higher in dosed animals compared with the controls (Table 9).

Grossly and microscopically, these lesions were consistent with reported descriptions of hepatocellular neoplasms in the mouse. Grossly, carcinomas were irregular and generally larger than adenomas, and frequently had areas of necrosis. The tumors in high-dose male and female mice were almost always composed of large hepatocytes with eosinophilic cytoplasm, while tumors in controls had basophilic cytoplasm. Microscopically, malignancy was based on mitotic index, cellular atypia, development of a trabecular pattern, and invasion and/or metastasis. Only three mice (control males) had metastases. No toxic hepatic lesiors were seen.

In addition to the meoplastic lesions, a number of degenerative, proliferative, and inflammatory changes were encountered in animals in the dosed and control groups. Most of these nonneoplastic lesions are seen commonly in mice of this age.

Histopathologic examination indicated that, under the conditions of this bioassay, the administration of 2,6-dichloro-p-phenylenediamine to B6C3F1 mice is associated with liver tumors.

D. Statistical Analyses of Results (Mice)

Tables 10 and 11 contain the statistical analyses of those primary tumors that occurred in at least two animals in one group and with an incidence of at least 5% in one or more groups.

Hepatocellular adencmas of the liver in male mice were observed in a statistically significant positive relation (4/50, 8% in the controls; 7/50, 14% in the low-dose; and 15/50, 30% in the high-dose). The Cochran-Armitage test for linear trend was statistically significant in the positive direction (P=0.002). The Fisher exact test between the high-dose group and the control group was significant (P=0.005); no significant incidence was observed in the low-dose group, bu: this tumor occurred in increased incidence in that group compared with the control group. Hepatocellular adenomas or carcinomas

	1	Males		Females		
	Control	Low Dose	High Dose	Control	Low Dose	High Dose
Number of Tissues Examined	50	50	50	50	50	50
Hepatocellular adenoma	4	7	15	4	4	9
Hepatocellular carcinoma	12	13	17	2	2	7
Animals with either hepatocellular adenoma or carcinoma	16	19	29	6	6	16

Table 9. Incidence of Hepatocellular Neoplasms in Mice Fed Diets Containing 2,6-Dichloro-p-phenylenediamine

of the liver occurred with increased incidence (16/50, 32% in the controls; 19/50, 38% in the low-dose; and 29/50, 58% in the high-dose). The Cochran-Armitage test for linear trend is significant (P=0.004) as is the Fisher exact test of the high-dose group (P=0.008). The combined incidence in the low-dose group is higher than that in the control group but not significantly different. The historical record of the bioassay program shows 281 adenomas (7.9%) and 587 carcinomas (16.6%) for a combined incidence of 868 liver tumors in 3,543 untreated male mice (24.5%) compared with 58% observed in the high-dose group in this study. Hepatocellular carcinomas or adenomas of the liver were observed in female mice in a statistically significant positive relation (6/50, 12% in the controls; 6/50, 12% in the low-dose; 16/50, 32% in the high-dose). The Cochran-Armitage test for linear trend was significant (P=0.004) and the Fisher exact test of the high-dose was P=0.014. Historical records of the bioassay program indicate that 72 adenomas and 99 carcinomas of the liver (totaling 171/3,617, 4.7%) have been observed in untreated female mice, compared with 32% in the high-dose group in this study. Time adjusted analysis, eliminating those animals that died before 49 weeks (the week of the first observation of a liver tumor), and the life table method of analysis did not materially alter the results of the statistical analysis of the liver tumors.

Alveolar/bronchiolar adenomas of the lung in male mice occurred in decreased incidence in the dosed groups compared with the control group. The Cochran-Armitage test for linear trend was statistically significant in the negative direction (P=0.041). The P values of the Fisher exact tests are both below P=0.05 (P=0.045 in the high-dose and P=0.041 in the low-dose) and above the value of P=0.025 required by the Bonferroni inequality criterion for an overall significance of P=0.05 when two dosed groups are compared with a common control group. In female mice, this tumor was not observed in statistically significant proportions.

Life table analyses of the time to observation of tumors or time-adjusted analysis, eliminating those animals that died before 52 weeks, produced no statistical evidence of carcinogenicity other than that previously described.

In summary of the positive results observed, tumors of the liver occurre at a dose-related incidence in male and female mice.

Topography: Morphology	Control	Low Dose	High Dose
Lung: Alveolar/Bronchiolar Adenoma (b)	11/49(22)	4/50(8)	4/49(8)
P Values (c),(d)	P=0.041(N)	P=0.041(N)	P=0.045(N)
Relative Risk (Control) (e) Lower Limit Upper Limit		0.356 0.088 1.111	0.364 0.090 1.132
Weeks to First Observed Tumor	103	111	105
Lung: Alveolar/Bronchiolar Adenoma or Carcinoma (b)	13/49(27)	5/50(10)	4/49(8)
P Values (c),(d)	P=0.014(N)	P=0.030(N)	P=0.015(N)
Relative Risk (Control) (e) Lower Limit Upper Limit Weeks to First Observed Tumor	102	0.377 0.114 1.032 111	0.308 0.078 0.915 111
Hematopoietic System: Malignant Lymphoma, NOS (b)	2/50(4)	3/50(6)	5/50(10)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.500 0.180 17.329	2.500 0.432 25.286
Weeks to First Observed Tumor	102	100	111

Table 10.	Analyses of the Incidence of Primary Tumors in Male Mice
	Fed Diets Containing 2,6-Dichloro-p-phenylenediamine (a)

	Control	Low	High
Topography: Morphology		Dose	Dose
lematopoietic System:			
Lymphoma (b)	5/50(10)	8/50(16)	8/50(16)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)	1.600	1.600
Lower Li	mit	0.497	0.497
Upper Li	mit	5.808	5.808
Weeks to First Observed Tu	mor 102	100	103
Hematopoietic System: Lymphomas or	5/50(10)	8/50(16)	9/50(18)
Leukemias (b)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,00(10)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
? Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e		1.600	1.800
Lower Li	mit	0.497	0.586
Cpper Li	mit	5.808	6.377
Weeks to First Obs∉rved Tu	mor 102	100	97
Liver: Hepatocellular			
Carcinoma (b)	12/50(24)	13/50(26)	17/50(34)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)	1.083	1.417
Lower Li	mit	0.507	0.716
Cpper Li	mit	2.334	2.892
Weeks to First Observed Tu		111	105

Topography: Morphology	Control	Low Dose	High Dose
Liver: Hepatocellular			
Adenoma (b)	4/50(8)	7/50(14)	15/50(30)
P Values (c),(d)	P=0.002	N.S.	P=0.005
Relative Risk (Control) (e)		1.750	3.750
Lower Limit		0.476	1.302
Upper Limit		7.682	14.451
Weeks to First Observed Tumor	111	86	105
Liver: Hepatocellular		=	
Carcinoma or Adenoma (b)	16/50(32)	19/50(38)	29/50(58)
P Values (c),(d)	P=0.004	N.S.	P=0.008
Relative Risk (Control) (e)		1.188	1.813
Lower Limit		0.659	1.107
Upper Limit	:	2.162	3.017
L L L L L L L L L L			

(Continued)

(a) Dosed groups received doses of 1,000 or 3,000 ppm in feed.

(b) Number of tumor-bearing animals/number of animals examined at site (percent).

- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.
- (e) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

Topography: Morphology	Control	Low Dose	High Dose
Hematopoietic System: Lymphoma (b)	17/50(34)	11/50(22)	16/50(32)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Opper Limit		0.647 0.307 1.308	0.941 0.505 1.746
Weeks to First Observed Tumor	77	88	86
Hematopoietic System: Lymphoma or Leukemia (b)	18/50(36)	12/50(24)	18/50(36)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.667 0.330 1.300	1.000 0.561 1.782
Weeks to First Observed Tumor	77	88	86
Circulatory System: Hemangiosarcoma (b)	1/50(2)	3/50(6)	1/50(2)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit	1	3.000 0.251 54.270	1.000 0.013 76.970
Weeks to First Observed Tumor	84	111	97

Table 11. An	alyses of t	the Incidence	of Primary	Tumors in	Female Mice
		ntaining 2,6-1			

(Continued)

Topography: Morphology	Control	Low Dose	High Dose
Liver: Hepatocellular			· · · · · · · · · · · · · · · · · · ·
Carcinoma (b)	2/50(4)	2/50(4)	7/50(14)
P Values (c),(d)	P=0.025	N.S.	N.S.
Relative Risk (Control) (e)		1.000	3.500
Lower Limit		0.075	0.708
Upper Limit		13.326	33.206
Weeks to First Observed Tumor	111	111	111
Liver: Hepatocellular			
Adenoma (b)	4/50(8)	4/50(8)	9/50(18)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		1.000	2.250
Lower Limit		0.197	0.676
Upper Limit		5.083	9.394
Weeks to First Observed Tumor	111	111	97
Liver: Hepatocellular			
Carcinoma or Adenoma (b)	6/50(12)	6/50(12)	16/50(32)
P Values (c),(d)	P=0.004	N.S.	P=0.014
Relative Risk (Control) (e)		1.000	2.667
Lower Limit		0.287	1.091
Opper Limit		3.489	7.612
Weeks to First Observed Tumor	111	111	97

Topography: Morphology	Control	Low Dose	High Dose
Pituitary: Chromophobe Adenoma (b)	3/43(7)	2/48(4)	1/44(2)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.597 0.052 4.974	0.326 0.006 3.869
Weeks to First Observed Tumor	111	111	101

(Continued)

(a) Dosed groups received doses of 1,000 or 3,000 ppm in feed.

(b) Number of tumcr-bearing animals/number of animals examined at site (percent).

- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.
- (e) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

V. DISCUSSION

Mean body weights of dosed rats and mice of either sex were lower than those of the controls throughout the study. A dose-related weight gain depression was particularly pronounced for rats.

Nephrosis was found in increased incidence in high-dose female rats and with increased severity in dosed male and female rats. An unusual nonneoplastic lesion, ectopic hepatocytes in the pancreas, was observed in low-dose (4/49) and high-dose (5/48) male rats and in low-dose (10/50) and high-dose (4/49) female rats but was not seen in the controls.

Liver tumors in mice were associated with the administration of 2,6-dichloro-p-phenylenediamine to the mice. In male mice, the incidence of hepatocellular adenomas exhibited a significant positive dose-related trend. and the incidence of hepatocellular adenomas was statistically significant in the high-dose group. When hepatocellular carcinomas and adenomas were combined, there was a significant positive dose-related trend and a statistically significant increase in the high-dose group. Hepatocellular carcinomas were not statistically significant in male mice. In female mice, hepatocellular carcinomas exhibited a significant positive dose-related trend, but no single dose group had a statistically significant increased incidence of either carcinomas or adenomas alone. However, the combined incidence of hepatocellular adenomas and carcinomas exhibited a positive dose-related trend and was statistically significant in the high-dose group as well as when compared with the incidences observed in historical controls of the bioassay program. The combined incidence of hepatocellular carcinomas and adenomas (4/17, 12/49, 20/46) also occurred with a dose-related trend (P=0.038) in male mice fed diets for 87 weeks containing 2,000 or 6,000 ppm of the related compound 2-chloro-p-phenylenediamine sulfate in a previous study (NCI, 1978). However, neither the high-dose nor the low-dose group had a significantly increased incidence when compared to controls. Further, 4chloro-m-phenylenediamine was carcinogenic in male F344 rats, causing adrenal pheochromocytomas and in female B6C3F1 mice, inducing hepatocellular adenomas or carcinomas (NCI, 1978a). 4-Chloro-o-phenylenediamine was carcinogenic in

F344 rats, producing carcinomas of the urinary bladder in male and female rats and inducing hepatocellular carcinomas in male and female mice (NCI, 1978b).

VI. CONCLUSIONS

Under the conditions of this bioassay, 2,6-dichloro-p-phenylenediamine was carcinogenic for male and female B6C3F1 mice, causing increased incidences of combined hepatocelluar adenomas and carcinomas, and for male B6C3F1 mice, causing an increased incidence of hepatocellular adenomas alone. 2,6-Dichloro-p-phenylenediamine was not carcinogenic for male or female F344 rats.

VII. BIBLIOGRAPHY

American Cyanamid Co., 2,6-Dichloro-p-phenylenediamine, Report No. 71-21, American Cyanamid Co., Wayne, New Jersey, 1971, pp. 34-37.

Armitage, P., <u>Statistical Methods</u> in <u>Medical Research</u>, John Wiley & Sons, Inc., New York, 1971, pp. 362-365.

Berenblum, I., ed., <u>Carcinogenicity Testing</u>: <u>A</u> <u>Report of the Panel on</u> <u>Carcinogenicity of the Cancer Research Commission of UICC</u>, <u>Vol. 2</u>, International Union Against Cancer, Geneva, 1969.

Cox, D. R., <u>Analysis of Binary Data</u>, Methuen & Co., Ltd., London, 1970, pp. 48-52.

Cox, D. R., Regression models and life tables. J. R. Stat. Soc. B34:187-220, 1972.

Drake, N. L., Eaker, C. M., Garman, J. A., Hamlin, K. E., Hayes, R. A., Haywood, S. T., Peck, R. M., Preston, R. K., Sterling, J., Van Hook, J. O., and Walton, E., Synthetic antimalarials. The preparation of certain derivatives of sulfanilamide. J. <u>Am</u>. <u>Chem</u>. <u>Soc.</u>, <u>68</u>:1602, 1946.

Gallo, M., Bachmann, E., and Golberg, L., Mitochondrial effects of 2,6dichloro-4-nitroaniline and its metabolites. <u>Toxicol</u>. <u>Appl</u>. <u>Pharmacol</u>. <u>35</u>:51-61, 1976.

Gart, J. J., The comparison of proportions: a review of significance tests, confidence limits and adjustments for stratification., <u>Rev. Int. Stat. Inst.</u> 39:148-169, 1971.

Kaplan, E. L. and Meier, P., Nonparametric estimation from incomplete observations. J. Amer. Stat. Assoc. 53:457-481, 1958.

Kwolek, S. (E. I. du Pont de Nemours & Co.), Ger. Offen. Patent 1,810,426, 1970.

Linhart, M. S., Cooper, J. A., Martin, R. L., Page, N. P., and Peters, J. A., Carcinogenesis bioassay data system. Comp. Biomed. Res. 7:230-248, 1974.

Miller, R. G., Jr., <u>Simultaneous Statistical Inference</u>, McGraw-Hill Book Co., New York, 1966, pp. 6-10.

NCI, National Cancer Institute, <u>Bioassay of 2-Chloro-p-phenylenediamine</u> <u>Sulfate</u>, NCI TR 113, National Cancer Institute, National Institutes of Health, Bethesda, Md., 1978.

NCI, National Cancer Institute, <u>Bioassay of 4-Chloro-m-phenylenediamine</u>, NCI TR 85, National Cancer Institute, National Institutes of Health, Bethesda, Md., 1978a.

NCI, National Cancer Institute, <u>Bioassay of</u> <u>4-Chloro-e-phenylenediamine</u>, NCI TR 63, National Cancer Institute, National Institutes of Health, Bethesda, Md., 1978b.

Ong, C. and Saxon, R., Viscoelastic properties and heat generation in urethane elastomers. J. Appl. Polym. Sci. 20(6):1695-1710, 1976.

Sadtler Standard Spectra, Sadtler Research Laboratories, Philadelphia, Pennsylvania, IR No. 19962; UV No. 7843.

Saffiotti, U., Montesano, R., Sellarkumar, A.R., Cefis, F., and Kaufman, D.G., Respiratory tract carcinogenesis in hamsters induced by different numbers of administrations of benzo(a)pyrene and ferric oxide. <u>Cancer Res.</u> 32:1073-1081, 1972.

Saxon, R., American Cyanamid, Personal communication, 1978.

Tarone, R. E., Tests for trend in life table analysis. <u>Biometrika</u> 62:679-682, 1975.

Ward, J. M., Goodman, I¹. G., Griesemer, R. A., Hardisty, J. F., Schueler, R. L., Squire, R. A., and Strandberg, J. D., Quality assurance for pathology in rodent carcinogenesis tests. J. <u>Environ. Pathol. Toxicol. 2</u>:371-378, 1978.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS

IN RATS FED DIETS CONTAINING

2,6-DI CHLORO-p-PHEN YLE NE DIAMINE

TABLE A1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS FED DIETS CONTAINING 2,6-DICHLORO-P-PHENYLENEDIAMINE

		LOW DOSE	HIGH DOSE
	50 50	50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN Squamous cell carcinoma	(50) 1 (2%)	(50)	(50)
*SUBCUT TISSUE PAPILLOMA, NOS SQUAMOUS CELL CARCINOMA TRICHOEPITHELIOMA	(50) 1 (2%) 1 (2%) 1 (2%)	(50) 1 (2%)	(50) 1 (2%)
CYSTADENOMA, NOS SARCOMA, NOS FIBROMA	3 (6%)	5 (10%)	1 (2%) 1 (2%) 1 (2%)
RESPIRATORY SYSTEM			
#LUNG ALVEOLAR/BRONCHIOLAR ADENOMA	(50)	(50) 1 (2%)	(50)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS Malignant Lymphoma, NOS Leukemia,NOS	(50) 1 (2%) 22 (44%)	(50) 22 (44%)	(50) 22 (44%
#SPLEEN LEUKEMIA,NOS	(50)	(50) 1 (2%)	(50)
CIRCULATORY SYSTEM			
NONE			
DIGESTIVE SYSTEM			
#LIVER NEOPLASTIC NODULE	(50) 1 (2%)	(50) 3 (6%)	(50) 4 (8%)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

		LOW DOSE	
HEPATOCELLULAR CARCINOMA			1 (2%)
#DUODENUM ADENOCARCINOMA, NOS	(50) 1 (2%)	(48)	(49)
URINARY SYSTEM			
#KIDNEY TUBULAR-CELL ADENOCARCINOMA	(50)	(50) 1 (2%)	(50)
ENDOCRINE SYSTEM			
#PITUITARY Adenoma, Nos	(48) 9 (19%)	(47) 9 (19%)	(46) 6 (13%)
#ADRENAL Cortical Adenoma Pheochromocytoma	(50) 1 (2%) 15 (30%)	(50) 1 (2%) 7 (14%)	(50) 9 (18%)
#THYROID Follicular-cell Adenoma C-cell Adenoma	(48) 1 (2%) 2 (4%)	(47) 1 (2%) 3 (6%)	(44) 1 (2%)
#PANCREATIC ISLETS ISLET-CELL ADENOMA ISLET-CELL CARCINONA	(49) 6 (12%) 1 (2%)	(49)	(48) 1 (2%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND Adenoma, nos Fibroadenoma	(50) 2 (4%)	(50) 1 (2%) 2 (4%)	(50)
*PREPUTIAL GLAND CARCINOMA,NOS SQUAMOUS CELL CARCINOMA ADENOMA, NOS	(50) 3 (6%) 2 (4%)	(50) 3 (6%) 1 (2%)	(50) 1 (2%)
#PROSTATE Adenoma, nos	(46) 2 (4%)	(49)	(45)
#TESTIS INTERSTITIAL~CELL [UMOR	(50) 48 (96%)	(50) 47 (94%)	(50) 45 (90%)

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	CONTROL	LOW DOSE	HIGH DOSE
NERVOUS SYSTEM			
#BRAIN Astrocytoma	(50)	(50) 2 (4%)	(50)
SPECIAL SENSE ORGANS None			
MUSCULOSKELETAL SYSTEM			
*SACRUM FIBROMA	1 (2%)	(50)	
BODY CAVITIES			
*ABDOMINAL CAVITY NEOPLASM, NOS, MALIGNANT	(50) 1 (2%)	(50)	(50)
ALL OTHER SYSTEMS			
<pre>*MULTIPLE ORGANS MESOTHELIOMA, NOS</pre>	(50) 1 (2%)	(50)	(50) 1 (2%)
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	50_	50	50
NATURAL DEATHƏ MORIBUND SACRIFICE SCHEDULED SACRIFICE	7 13	6 14	4 25
ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	30	30	21
a INCLUDES AUTOLYZED ANIMALS			

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	CONTROL	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PEIMARY TUMORS* Total primary tumors	49 127	49 111	48 95
TOTAL ANIMALS WITH BENIGN TUMORS Total Benign Tumors	48 94	47 78	47 64
TOTAL ANIMALS WITH M/LIGNANT TUMORS TOTAL MALIGNANT TUMORS	27 31	28 30	25 26
TOTAL ANIMALS WITH SECONDARY TUMORS Total Secondary Tumors	•		
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or Malignant Total Uncertain Tumors	.2 2	3 3	5 5
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Primary or metastatic Total uncertain tutiors			
* PRIMARY TUMORS: ALL "UMORS EXCEPT SE # SECONDARY TUMORS: METASTATIC TUMORS			DJACENT DRGAN

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

TABLE A2.

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY Animals necropsied Animals examined histopathologically	20	50 50 50	50 49 49
INTEGUMENTARY SYSTEM			
*SKIN TRICHOEPITHELIOMA	(50) 1 (2%)	(50)	(49)
*SUBCUT TISSUE Squamous cell carcinoma	(50) 2 (4%)	(50)	(49) 1 (2%)
ADNEXAL ADENOMA FIBROMA		2 (4%)	1 (2%) 1 (2%)
RESPIRATORY SYSTEM			
*NOSE Papilloma, nos	(50) 1 (2%)	(50)	(49)
#TRACHEA C-CELL CARCINOMA, INVASIVE≠*	(50) '(2%)	(3)	(3)
#LUNG C-CELL CARCINOMA, METASTATIC	(50) 2 (4%)	(50)	(49)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS	(50)	(50) 1 (2%)	(49)
MALIGNANT LYMPHOMA, NOS Leukemia,nos	19 (38%)	25 (50%)	12 (24%)
CIRCULATORY SYSTEM			
NONE			
DIGESTIVE SYSTEM			
#LIVER NEOPLASTIC NODULE		(50) 2 (4%)	(49)

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS FED DIETS CONTAINING 2,6-DICHLORO-P-PHENYLENEDIAMINE

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

** INVASIVE FROM THYROID

	CONTROL	LOW DOSE	HIGH DOSE
HEPATOCELLULAR CARCINOMA			1 (2%)
#PANCREAS ACINAR-CELL ADENOM!	(50)	(50)	4 / 04/ \
URINARY SYSTEM			
NONE			
ENDOCRINE SYSTEM			
#PITUITARY Adenoma, Nos	(48) 21 (44%)	(48) 27 (56%)	(49) 27 (55%)
#ADRENAL Adenoma, Nos	(50) 1 (2%)	(49)	(49)
CORTICAL ADENOMA Phedchromocytoma Ganglioneuroma	2 (4%) 4 (8%) 1 (2%)	3 (6%)	1 (2%) 5 (10%)
#THYROID Follicular-Cell Adenoma	(42)	(47)	(48)
FOLLICULAR-CELL CARCINOMA C-CELL ADENOMA	2 (5%)	1 (2%)	3 (6%)
C-CELL CARCINOMA Papillary Cystadenuma, Nos	2 (5%)		1 (2%)
<pre>#THYROID FOLLICLE CYSTADENOMA, NOS</pre>	(42) 1 (2%)	(47)	(48)
#PARATHYROID Papillary cystaden()MA, NOS	(29)	(27)	(28) 1 (4%)
REPRODUCTIVE SYSTEM		· · ·	
*MAMMARY GLAND	(50)	(50) 1 (2%)	(49)
ADENOMA, NOS Cystadenoma, nos Fibroadenoma	3 (6%) 8 (16%)		3 (6%)
*CLITORAL GLAND CARCINOMA,NOS	(50)	(50)	(49)

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED
	CONTROL	LOW DOSE	HIGH DOSE
#UTERUS ENDOMETRIAL STROMAL POLYP	(47) 10 (21%)	(50) 5 (10%)	(48) 4 (8%)
IERVOUS SYSTEM			
#BRAIN GLIOMA, NOS Astrocytoma		(50)	(49) 1 (2%)
PECIAL SENSE ORGANS			
NONE			
1USCULOSKELETAL SYSTEM			
*SACRUM FIBROMA	(50) 1 (2%)	(50)	
BODY CAVITIES			
NONE			
NLL OTHER SYSTEMS			
NONE			
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ MORIBUND SACRIFICE SCHEDULED SACRIFICE	50 6 8	50 2 16	50 3 9
ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	36	32	38
a INCLUDES AUTOLYZED ANIMALS		<u></u>	

TABLE A2, FEMALE RATS: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
UMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	49 84	45 74	38 68
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	38 57	35 43	32 4 8
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	23 24	26 29	14 15
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS	2 3		
TOTAL ANIMALS WITH TLMORS UNCERTAIN- Benign or malignant Total uncertain tumors	3 3	22	5 5
TOTAL ANIMALS WITH TLMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			
PRIMARY TUMORS: ALL TUMORS EXCEPT SE SECONDARY TUMORS: METASTATIC TUMORS			DJACENT ORGA

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED) _____

58

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE FED DIETS CONTAINING 2,6-DICHLORO-p-PHENYLENEDIAMINE

TABLE B1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE FED DIETS CONTAINING 2,6-DICHLORO-P-PHENYLENEDIAMINE

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SUBCUT TISSUE SARCOMA, NOS NEUROFIBROMA	(50) 1 (2%) 1 (2%)	(50)	(50)
RESPIRATORY SYSTEM			
#LUNG HEPATOCELLULAR CARCINOMA, METAST ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA	4 (8%) 11 (22%)	(50) 4 (8%) 1 (2%)	
EMATOPOIETIC SYSTEM			
<pre>*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS MALIG.LYMPHOMA, UNDIFFER-TYPE MALIG.LYMPHOMA, LYMPHOCYTIC TYPE MALIG.LYMPHOMA, HISTIOCYTIC TYPE LEUKEMIA,NOS</pre>	(50) 1 (2%) 1 (2%) 1 (2%)	(50) 3 (6%) 2 (4%) 2 (4%)	(50) 3 (6%) 1 (2%) 1 (2%) 1 (2%)
#SPLEEN Malignant Lymphoma, nos Malig.lymphoma, histiocytic type	(50) 1 (2%)	(50)	(50) 1 (2%)
#MESENTERIC L. NODE Malignant Lymphoma, NOS Malig.lymphoma, Undiff er -type	(37) 1 (3%)	(45)	(39) 1 (3%) 1 (3%)
*MESENTERY MALIG.LYMPHOMA, HISTIOCYTIC TYPE	(50)	(50)	(50)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

61

	CONTROL	LOW DOSE	HIGH DOSE
CIRCULATORY SYSTEM			
*SUBCUT TISSUE Hemangioma	(50)	(50) 1 (2%)	(50)
#LIVER Hemangiosarcoma	(50)	(50) 1 (2%)	(50)
#TESTIS HEMANGIOMA	(49) 1 (2%)	(49)	(50)
DIGESTIVE SYSTEM			
#LIVER HEPATOCELLULAR ADENOMA HEPATOCELLULAR CARCINOMA NEUROFIBROSARCOMA	(50) 4 (8%) 12 (24%)	(50) 7 (14%) 13 (26%)	(50) 15 (30%) 17 (34%) 1 (2%)
#DUODENUM Adenocarcinoma, nos	(50) 2 (4%)	(48)	(46)
#JEJUNUM ADENOCARCINOMA, NOS	(50)	(48)	(46) 1 (2%)
URINARY SYSTEM			
NONE			
ENDOCRINE SYSTEM			
NONE			
REPRODUCTIVE SYSTEM			
#TESTIS INTERSTITIAL-CELL TUMOR	(49)	(49) 1 (2%)	(50) 1 (2%)
NERVOUS SYSTEM			
#BRAIN Meningioma	(50)	(50)	(50) 1 (2%)

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
SPECIAL SENSE ORGANS			
*HARDERIAN GLAND Adenoma, Nos		(50)	4 4 6 4 7
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
*ABDOMINAL CAVITY Mesothelioma, Malignant	(50) 1 (2%)	(50)	(50)
*MESENTERY HEPATOCELLULAR CARCINOMA, METAST	(50) 1 (2%)	(50)	
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS MESOTHELIOMA, MALIGNANT	(50) 1 (2%)	(50)	(50)
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ MORIBUND SACRIFICE SCHEDULED SACRIFICE	50 6 5	50 7 2	50 4 4
ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	39	41	42
3 INCLUDES AUTOLYZED ANIMALS			

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

63

	CONTROL	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* Total primary tumors	31 41	30 36	38 50
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	17 17	13 13	21 22
TOTAL ANIMALS WITH MALIGNANT TUMORS Total malignant tumors	19 24	21 23	25 28
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS	5		
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or malignant Total Uncertain Tumors			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Primary or metastatic Total uncertain tumors			
<pre>* PRIMARY TUMORS: ALL TUMORS EXCEPT SE # SECONDARY TUMORS: METASTATIC TUMORS</pre>			DJACENT ORGAN

TABLE B1. MALE MICE: NE OPLASMS (CONTINUED)

TABLE B2.

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50 50
INTEGUMENTARY SYSTEM			
*SUBCUT TISSUE LEIOMYOMA OSTEOSARCOMA NEUROFIBROMA NEUROFIBROSARCOMA	(50) 1 (2%)	(50)	(50) 1 (2%) 1 (2%) 1 (2%)
RESPIRATORY SYSTEM			
<pre>#LUNG ALVEOLAR/BRONCHIOLAR ADENOMA OSTEOSARCOMA, METASTATIC</pre>	(50) 2 (4%)	(50) 2 (4%) 1 (2%)	(50) 2 (4%) 1 (2%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS MALIG.LYMPHOMA, UNDIFFER-TYPE MALIG.LYMPHOMA, LYMPHOCYTIC TYPE MALIG.LYMPHOMA, HISTIOCYTIC TYPE MALIGNANT LYMPHOMA, MIXED TYPE LYMPHOCYTIC LEUKEMIA GRANULOCYTIC LEUKEMIA		(50) 3 (6%) 2 (4%) 5 (10%) 1 (2%) 1 (2%)	(50) 5 (10%) 2 (4%) 2 (4%) 2 (4%) 1 (2%) 1 (2%) 1 (2%)
#SPLEEN Malignant lymphoma, mixed type	(49) 1 (2%)	(50)	(50)
#LYMPH NODE Malignant lymphoma, nds Malig.lymphoma, histiocytic type	(46)	(45)	(48) 1 (2%) 1 (2%)
#MESENTERIC L. NODE Malignant Lymphoma, Nos	(46)	(45)	(48)

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE FED DIETS CONTAINING 2,6-DICHLORO-P-PHENYLENEDIAMINE

	CONTROL	LOW DOSE	
#LIVER MALIGNANT LYMPHOMA, NOS	(50)	(50)	(50)
CIRCULATORY SYSTEM			
*INGUINAL REGION HEMANGIOMA	(50)	(50)	(50) 1 (2%)
#SPLEEN HEMANGIOMA HEMANGIOSARCOMA	(49)	(50) 1 (2%)	(50) 1 (2%)
*SKELETAL MUSCLE HEMANGIOSARCOMA	(50)	(50) 1 (2%)	(50)
#LIVER HEMANGIOMA HEMANGIOSARCOMA	(50) 1 (2%)	(50) 1 (2%) 1 (2%)	(50)
*MESENTERY HEMANGIOMA	(50)	(50) 1 (2%)	(50)
#UTERUS HEMANGIOSARCOMA	(50)	(50)	(49) 1 (2%)
DIGESTIVE SYSTEM			
#LIVER HEPATOCELLULAR ADENJMA HEPATOCELLULAR CARCINOMA	(50) 4 (8%) 2 (4%)	(50) 4 (8%) 2 (4%)	(50) 9 (18% 7 (14%
*PERIANAL TISSUE Squamous Cell Papilloma	(50) 1 (2%)	(50)	(50)
JRINARY SYSTEM			
NONE			
ENDOCRINE SYSTEM			
#PITUITARY CHROMOPHOBE ADENOMA	(43)	(48)	(44) <u>1 (2%)</u>

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

* NUMBER OF ANIMALS NECROPSIED

	CONTROL	LOW DOSE	HIGH DOSE
#THYROID Follicular-cell Adenoma	(46) 2 (4%)	(48) 1 (2%)	(49)
#PANCREATIC ISLETS ISLET-CELL ADENOMA	(50)	(48) 1 (2%)	(49)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND Adenoma, nos	(50)	(50) 2 (4%)	(50) 1 (2%)
#UTERUS LEIOMYOMA	(50)	(50)	(49) 1 (2%)
LEIOMYOSARCOMA Endometrial stromal polyp	1 (2%)	1 (2%)	1 (24)
#OVARY CARCINOMA,NOS MUCINOUS ADENOCARCINOMA	(47) 1 (2%) 1 (2%)	(49)	(42)
NERVOUS SYSTEM			
NONE			
SPECIAL SENSE ORGANS			
*HARDERIAN GLAND ADENOMA, NOS		(50)	(50) 1 (2%)
MUSCULOSKELETAL SYSTEM None			
BODY CAVITIES *MESENTERY	(50)	(50)	(50)
CARCINOMA, NOS, METASTATIC			
ALL OTHER SYSTEMS None	·		

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED) _____

	CONTROL	LOW DOSE	HIGH DOSE
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ Moribund sacrifice Scheduled sacrifice	50 6 4	50 4 1	50 9 5
ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	40	45	1 35
a INCLUDES AUTOLYZED ANIMALS			
IUMOR SUMMARY			
TOTAL ANIMALS WITH FRIMARY TUMORS* TOTAL PRIMARY TUMCRS	31 · 37	25 33	37 46
TOTAL ANIMALS WITH FENIGN TUMORS TOTAL BENIGN TUMORS	12 13	12 15	17 18
TOTAL ANIMALS WITH NALIGNANT TUMORS TOTAL MALIGNANT TUMORS	22 24	16 18	25 28
TOTAL ANIMALS WITH SECONDARY TUMORS Total secondary tumors	# 1 1	1 1	1 1
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or malignant Total uncertain tumors	-		
TOTAL ANIMALS WITH "UMORS UNCERTAIN Primary or metastat"C Total uncertain tumors	-		
* PRIMARY TUMORS: ALL TUMORS EXCEPT SI # SECONDARY TUMORS: METASTATIC TUMORS			ADJACENT ORGAI

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS FED DIETS CONTAINING 2,6-DICHLORO-p-PHENYLENEDIAMINE

TABLE C1.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS FED DIETS CONTAINING 2,6-DICHLORO-P-PHENYLENEDIAMINE

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN INFLAMMATION, NOS Hyperkeratosis Parakeratosis	(50) 1 (2%)	(50) 1 (2%) 1 (2%)	(50)
RESPIRATORY SYSTEM			
*LARYNX INFLAMMATION, SUPPURATIVE INFLAMMATION ACTIVE CHRONIC INFLAMMATION, CHRONIC	(50) 1 (2%)	(50) 1 (2%)	(50) 1 (2%) 1 (2%) 1 (2%)
<pre>#TRACHEA INFLAMMATION, SUPPURATIVE</pre>	(3)	(4) 1 (25%)	(4)
INFLAMMATION, SUPPURATIVE INFLAMMATION, CHRONIC Hemosiderosis Epithelialization		(50) 2 (4%) 1 (2%) 1 (2%) 2 (4%) 5 (10%) 1 (2%)	(50) 5 (10% 2 (4%) 2 (4%) 4 (8%) 1 (2%)
HEMATOPOIETIC SYSTEM			
#BONE MARROW NECROSIS, NOS Myelofibrosis Hyperplasia, Hematopoietic	(47)	(46) 1 (2%)	(48) 2 (4%)

	CONTROL	LOW DOSE	HIGH DOSE
#SPLEEN HEMOSIDEROSIS ATROPHY, NOS	(50)	(50) 1 (2%) 1 (2%)	(50) 1 (2%)
#LYMPH NODE Hemosiderosis	(50)	(48) 1 (2%)	(49)
#MANDIBULAR L. NODE CYST, NOS Plasmacytosis	(50) 2 (4%)	(48)	(49) 1 (2%)
#MEDIASTINAL L.NODE HEMORRHAGE MASTOCYTOSIS	(50) 1 (2%)	(48)	(49) 1 (2%)
#MESENTERIC L. NODE Hemorrhage Necrosis, fat	(50) 1 (2%) 1 (2%)	(48) 1 (2%)	(49) 4 (8%)
#RENAL LYMPH NODE HISTIOCYTOSIS	(50)	(48)	(49) 1 (2%)
<pre>#THYMUS INFLAMMATION ACTIVE CHRONIC</pre>	(12)	(15)	(19) 1 (5%)
IRCULATORY SYSTEM			
*MEDIASTINUM PERIARTERITIS	(50)	(50)	(50) 1 (2%)
#LUNG PERIVASCULITIS	(50)	(50)	(50) 1 (2%)
#HEART MINERALIZATION	(50)	(50)	(49)
THROMBOSIS, NOS THROMBUS, ORGANIZED ENDOCARDITIS, BACTERIAL	1 (2%) 1 (2%)	1 (2%) 1 (2%)	2 (4%)
INFLAMMATION, NOS Inflammation, suppurative			1 (2%) 1 (2%)
INFLAMMATION, CHRUNIC FIBROSIS PERIARTERITIS	40 (80%) 1 (2%)	1 (2%) 36 (72%)	27 (55% 1 (2%)

	CONTROL	LOW DOSE	HIGH DOSE
#MYOCARDIUM Inflammation, nos	(50) 2 (4%)	(50)	(49)
#ENDOCARDIUM Inflammation, Nos	(50)	(50) 1 (2%)	(49)
#LIVER Thrombosis, Nos	(50) 1 (2%)	(50)	(50)
#PANCREAS PERIARTERITIS	(49) 2 (4%)	(49)	(48)
#STOMACH PERIARTERITIS	(50)	(50)	1 (2%)
IGESTIVE SYSTEM			
CHOLANGIOFIBROSIS NECROSIS, COAGULATIVE METAMORPHOSIS FATTY CYTOPLASMIC CHANGE, NOS CYTOPLASMIC VACUOLIZATION BASOPHILIC CYTO CHANGE GROUND-GLASS CYTO CHANGE	<pre>(50) 8 (16%) 2 (4%) 3 (6%) 3 (6%) 12 (24%) 7 (14%) 6 (12%) 1 (2%) 3 (6%)</pre>	(50) 1 (2%) 1 (2%) 5 (10%) 3 (6%) 3 (6%) 1 (2%) 1 (2%) 7 (14%) 6 (12%) 6 (12%) 14 (28%)	(50) 2 (4%) 3 (6%) 1 (2%) 3 (6%) 1 (2%) 2 (4%) 2 (4%) 7 (14% 6 (12%) 12 (24%)
#LIVER/CENTRILOBULAR NECROSIS, NOS	(50) 1 (2%)	(50)	(50) 1 (2%)
#BILE DUCT Hyperplasia, Nos	(50) 34 (68%)	(50) 30 (60%)	(50) 22 (44%
#PANCREAS ECTOPIA DILATATION∕DUCTS FIBROSIS	(49)	(49) 4 (8%) 1 (2%)	(48) 5 (10% 2 (4%)

	CONTROL	LOW DOSE	HIGH DOSE
FIBROSIS, DIFFUSI: NECROSIS, FAT	1 (2%)		2 (4%)
#PANCREATIC ACINUS Atrophy, Nos	(49) 15 (31%)	(49) 16 (33%)	(48) 15 (31%)
#STOMACH INFLAMMATION, SUFPURATIVE INFLAMMATION, ACUTE INFLAMMATION, CHEONIC HYPERKERATOSIS	(50)	(50) 1 (2%) 1 (2%)	(49) 1 (2%) 2 (4%) 1 (2%)
#SMALL INTESTINE INFLAMMATION, CHEONIC	(50)	(48)	(49) 1 (2%)
#DUODENUM Polyp	(50)	(48) 1 (2%)	(49)
#COLON INFLAMMATION, SUFPURATIVE NEMATODIASIS	(49) 2 (4%)	(48) 2 (4%) 3 (6%)	(46) 1 (2%)
URINARY SYSTEM			
#KIDNEY MINERALIZATION CONGESTION, NOS HEMORRHAGE	(50)	(50) 1 (2%) 1 (2%)	(50) 2 (4%)
INTLAMMATION, SUFPURATIVE GLOMERULONEPHRITIS, MEMBRANOUS DEGENERATION, HYALINE NEPHROSIS, NOS CYTOPLASMIC VACUCLIZATION	1 (2%) 2 (4%) 46 (92%) 1 (2%)	49 (98%)	1 (2%) 47 (94%)
#KIDNEY/TUBULE CYTOPLASMIC VACULLIZATION	(50) 1 (2%)	(50)	(50)
#URINARY BLADDER HEMORRHAGE HYPERPLASIA, EPITHELIAL	(49) 1 (2%)	(49) 1 (2%)	(47)
ENDOCRINE SYSTEM			
#PITUITARY CYST, NOS	(48)	(47)	(46) <u> </u>

	CONTROL	LOW DOSE	HIGH DOSE
HEMORRHAGE		1 (2%)	
#ADRENAL HEMORRHAGE NECROSIS, NOS LIPOIDOSIS	(50) 1 (2%)	(50) 3 (6%)	1 (2%) 2 (4%)
#ADRENAL MEDULLA Hyperplasia, nos	(50) 1 (2%)	(50) 1 (2%)	(50) 1 (2%)
#THYROID Hyperplasia, C-Cell	(48) 4 (8%)	(47) 5 (11%)	(44) 3 (7%)
<pre>#PANCREATIC ISLETS HYPERPLASIA, NOS</pre>	(49) 1 (2%)	(49) 2 (4%)	(48) 1 (2%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND DILATATION/DUCTS	(50) 1 (2%)	(50) 3 (6%)	(50)
*MAMMARY DUCT Hyperplasia, epithelial	(50) 1 (2%)	(50)	(50)
*PREPUTIAL GLAND Inflammation, suppurative	(50) 1 (2%)	(50)	(50)
#PROSTATE INFLAMMATION, SUPPURATIVE INFLAMMATION ACTIVE CHRONIC INFLAMMATION, CHRONIC	(46) 4 (9%) 1 (2%) 1 (2%)	(49) 12 (24%) 1 (2%) 1 (2%)	(45) 3 (7%)
FIBROSIS Hyperplasia, nos		6 (12%)	1 (2%) 1 (2%)
*SEMINAL VESICLE MINERALIZATION	(50)	(50) 1 (2%)	(50)
INFLAMMATION, NOS INFLAMMATION, SUPPURATIVE	1 (2%)	1 (2%)	
#TESTIS MINERALIZATION HEMORRHAGE INFLAMMATION, SUPPURATIVE	(50)	(50) 1 (2%) 1 (2%)	(50) 2 (4%) 1 (2%)
DEGENERATION, NOS	1 (2%)	3 (6%)	

	CONTROL	LOW DOSE	HIGH DOSE
CYTOMEGALY Hypospermatogenesis Hyperplasia, interstitial cell		2 (4%) 3 (6%) 2 (4%)	1 (2%) 6 (12%) 4 (8%)
*EPIDIDYMIS HYPERPLASIA, NOS	(50) 1 (2%)	(50) 1 (2%)	(50) 2 (4%)
NERVOUS SYSTEM			
#BRAIN/MENINGES MINERALIZATION FIBROSIS	(50)	(50)	(50) 1 (2%) 1 (2%)
#BRAIN Hemorrhage Malacia	(50)	(50) 1 (2%)	(50) 2 (4%)
#CEREBELLUM Hemorrhage	(50)	(50) 1 (2%)	(50)
SPECIAL SENSE ORGANS	an wa dar ver dan an sin da dar dar dar dar dar dar dar dar		
*EYE INFLAMMATION, SUPPURATIVE INFLAMMATION, ACUTE CATARACT	(50) 8 (16%)	(50) 1 (2%) 7 (14%)	1 (2%)
*EYE ANTERIOR CHAMBER Hemorrhage, Chronic Inflammation, Suppurative	(50) 1 (2%)	(50)	(50)
*EYE POSTERIOR CHAMBE Hemorrhage, Chronic	(50) 1 (2%)	(50)	(50)
*SCLERA MINERALIZATION	(50) 4 (8%)	(50)	(50) 1 (2%)
*EYE/CORNEA MINERALIZATION INFLAMMATION, SUPPURATIVE INFLAMMATION, ACUTE CATARACT	(50) 1 (2%) 8 (16%)	(50) 1 (2%) 2 (4%) 7 (14%) 1 (2%)	(50) 1 (2%) 1 (2%)
*EYE/RETINA Degeneration, Nos	(50) <u>8 (16%)</u>	(50) 7 (14%)	(50) 6 (12%)

	CONTROL	LOW DOSE	HIGH DOSE
*HARDERIAN GLAND Inflammation, nos Porphyrin	(50)	(50) 1 (2%)	(50) 1 (2%)
*EAR INFLAMMATION ACTIVE CHRONIC	(50)	(50) 1 (2%)	(50)
1USCULOSKELETAL SYSTEM			
*STERNUM NECROSIS, NOS	(50) 9 (18%)	(50) 16 (32%)	(50) 12 (24%
BODY CAVITIES			
*MEDIASTINUM HEMOSIDEROSIS	(50)	(50) 2 (4%)	(50)
*ABDOMINAL CAVITY Mineralization Necrosis, fat	(50) 1 (2%)	(50)	(50) 1 (2%) 1 (2%)
*MESENTERY NECROSIS, FAT	(50) 1 (2%)	(50)	(50) 2 (4%)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS INFECTION, BACTERIAL	(50)	(50)	(50) 1 (2%)
TAIL INFLAMMATION, SUPPURATIVE HYPERKERATOSIS	9 1		
BASE OF TAIL EPIDERMAL INCLUSION CYST	1		
ADIPOSE TISSUE Congestion, nos	1		
SPECIAL MORPHOLOGY SUMMARY			
NONE			

TABLE C2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS FED DIETS CONTAINING 2,6-DICHLORO-P-PHENYLENEDIAMINE

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50 50	50 50 50 50	50 49 49
INTEGUMENTARY SYSTEM NONE			
RESPIRATORY SYSTEM			
*LARYNX INFLAMMATION, NOS Hyperplasia, Nos	(50)	(50) 1 (2%) 1 (2%)	(49)
#LUNG CONGESTION, NOS HEMORRHAGE INFLAMMATION, INTERSTITIAL INFLAMMATION, CHRONIC	(50) 1 (2%) 7 (14%) 7 (14%)	(50) 2 (4%) 1 (2%) 4 (8%) 7 (14%)	(49) 1 (2%) 2 (4%) 2 (4%)
#LUNG/ALVEOLI HISTIOCYTOSIS	(50)	(50) 1 (2%)	(49)
HEMATOPOIETIC SYSTEM			
#BONE MARROW NECROSIS, NOS Myelofibrosis Hyperplasia, Hemaiopoietic	(45) 1 (2%)	(46) 1 (2%) 1 (2%)	(44) 2 (5%)
#SPLEEN MINERALIZATION HEMORRHAGE FIBROSIS	(50) 1 (2%) 1 (2%)	(49) 1 (2%) 1 (2%)	(49)
HEMOSIDEROSIS LYMFHOID DEFLETION HYPERPLASIA, RETICULUM CELL	1 (2%) 1 (2%)	1 (2%)	2 (4%) <u>1 (2%)</u>

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

.

	CONTROL	LOW DOSE	HIGH DOSE
HEMATOPOIESIS	1 (2%)		***********
#LYMPH NODE Hyperplasia, reticulum cell	(50)	(49) 1 (2%)	(48)
#MANDIBULAR L. NODE HEMOSIDEROSIS PLASMACYTOSIS HYPERFLASIA, RETICULUM CELL	(50)	(49)	(48) 1 (2%) 2 (4%) 1 (2%)
#MEDIASTINAL L.NODE Hyperplasia, reticulum cell	(50)	(49)	(48) 1 (2%)
#i1ESENTERIC L. NODE HISTIOCYTOSIS HYPERPLASIA, RETICULUM CELL	(50) 1 (2%) 1 (2%)	(49) 1 (2%)	(48) 1 (2%)
SIRCULATORY SYSTEM			
#HEART MINERALIZATION	(50) 2 (4%)	(50)	(49)
THROMBOSIS, NOS Inflammation, Nos	1 (2%)	2 (4%)	1 (2%) 2 (4%)
INFLAMMATION, CHRONIC Fibrosis Arteriosclerosis, nos	32 (64%) 1 (2%)	24 (48%)	19 (39%
#AORTIC VALVE Thrombosis, nos	(50)	(50)	(49) 1 (2%)
#LIVER Thrombosis, Nos	(50)	(50) 1 (2%)	(49) 1 (2%)
#UTERUS Thrombus, organized	(47)	(50) 1 (2%)	(48)
DIGESTIVE SYSTEM		·····	
#SALIVARY GLAND MINERALIZATION	(50)	(48)	(48) 1 (2%)
#LIVER ECTOPIA	(50)	(50)	(49)

	CONTROL		HIGH DOSE
CONGESTION, NOS HENORRHAGE INFLAMMATION, ACUTE	1 (2%)		1 (2%)
INFLAMMATION, ACUTE Inflammation, chronic Necrosis, nos	20 (40%)	1 (2%) 12 (24%)	11 (22%)
NECROSIS, COAGULATIVE METAMORPHOSIS FATTY	1 (2%) 1 (2%) 1 (2%)		1 (2%) 1 (2%)
HEMOSIDEROSIS		1 (2%)	(24)
CYTOPLASMIC CHANGE, NOS Cytoplasmic vacualization	3 (6%) 2 (4%) 23 (46%)	4 (8%)	1 (2%)
BASOPHILIC CYTO CHANGE	23 (46%)	2 (4%)	6 (12%)
GROUND-GLASS CYTO CHANGE Eosinophilic cyto change		2 (4%) 4 (8%) 4 (8%)	2 (4%)
HEPATOCYTOMEGALY		4 (84)	1 (2%)
ANGIECTASIS		4 (8%)	1 (2%)
#BILE DUCT Hyperplasia, Nos	(50) 12 (24%)	(50) 18 (36%)	(49) 13 (27%)
#PANCREAS	(50)	(50) 10 (20%)	(49)
ECTOPIA Fibrosis		10 (20%)	4 (8%) 1 (2%)
#PANCREATIC ACINUS Atrophy, nos	(50) 10 (20%)	(50) 19 (38%)	(49) 23 (47%)
#STOMACH	(50)	(49)	(49)
EDEMA, NOS Ulcer, Nos		1 (2%) 1 (2%)	
INFLAMMATION, SUPPURATIVE		1 (2%)	
INFLAMMATION, ACUTE Ulcer, acute		1 (2%)	1 (2%)
#COLON	(48) 2 (4%)	(48)	(49)
NEMATODIASIS		2 (4%)	
*RECTUM NEMATODIASIS	(50)	(50) 1 (2%)	(49)
RINARY SYSTEM			
#KIDNEY	(50)	(49)	(49)
CALCULUS, NOS Mineralization		5 (10%)	1 (2%)

	CONTROL	LOW DOSE	HIGH DOSE
CONGESTION, NOS PYELONEPHRITIS, NOS INFLAMMATION, SUPPURATIVE	1 (2%)	1 (2%) 1 (2%)	1 (2%)
INFLAMMATION, CHRONIC FIBROSIS FIBROSIS, FOCAL	2 (4%)	3 (6%) 1 (2%)	9 (18%) 1 (2%)
NEPHROSIS, NOS NECROSIS, NOS METAMORPHOSIS FATTY	38 (76%) 1 (2%) 1 (2%)	35 (71%)	49 (100%) 1 (2%)
CYTOPLASMIC VACUOLIZATION HYPERPLASIA, EPITHELIAL	1 (2%)	1 (2%)	1 (2%)
#RENAL PAPILLA MINERALIZATION HEMORRHAGE	(50)	(49)	(49) 3 (6%) 1 (2%)
#KIDNEY/TUBULE PIGMENTATION, NOS	(50)	(49) 1 (2%)	(49)
#KIDNEY/PELVIS HYPERPLASIA, EPITHELIAL	(50)	(49)	(49) 1 (2%)
#URINARY BLADDER EPIDERMAL INCLUSION CYST HYPERPLASIA, EPITHELIAL	(50) 1 (2%)	(49)	(48) 1 (2%)
ENDOCRINE SYSTEM			
#PITUITARY Cyst, nos Congestion, no s Angiectasis	(48) 6 (13%)	(48) 4 (8%) 1 (2%) 1 (2%)	(49) 5 (10%)
#ADRENAL MINERALIZATION	(50)	(49) 1 (2%)	(49)
CYST, NOS HEMORRHAGE HEMORRHAGE	2 (4%)	1 (2 %)	3 (6%) 1 (2%)
HEMORRHAGIC CYST NECROSIS, NOS ANGIECTASIS	2 (4%)	1 (2%)	1 (2%) 1 (2%)
#THYROID CYSTIC FOLLICLES	(42)	(47)	(48) 1 (2%)
HYPERPLASIA, C-CELL	4 (10%)	3 (6%)	1 (2%)

	CONTROL	LOW DOSE	HIGH DOSE
#PANCREATIC ISLETS HYPERFLASIA, NOS	(50) 1 (2%)	(50)	(49) 1 (2%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND DILATATION/DUCTS GALACTOCELE	(50) 2 (4%) 2 (4%)	(50) 1 (2%)	(49)
CYST, NOS CYSTIC DUCTS		1 (2%)	1 (2%) 1 (2%)
#UTERUS CYST, NOS	(47)	(50)	(48) 1 (2%)
#UTERUS∕ENDOMETRIUM CYST, NOS	(47)	(50)	(48) 1 (2%)
HYPERPLASIA, NOS	2 (4%)	1 (2%)	1 (24)
#OVARY PAROVARIAN CYST CONGESTION, NOS	(48) 1 (2%)	(49) 1 (2%)	(48) 1 (2%)
NERVOUS SYSTEM			
#BRAIN MALACIA	(50)	(50) 1 (2%)	(49)
SPECIAL SENSE ORGANS			
*EYE Hemorrhage	(50) 1 (2%)	(50)	(49) 1 (2%)
INFLAMMATION, ACUTE Cataract Growth Arrest	1 (2%) 11 (22%)	11 (22%) 1 (2%)	13 (27%)
*SCLERA MINERALIZATION	(50) 6 (12%)	(50) 4 (8%)	(49) 1 (2%)
*EYE/CORNEA INFLAMMATION, ACLTE VASCULARIZATION	(50) 19 (38%) 1 (2%)	(50) 7 (14%)	(49) 1 (2%)

TABLE C2. FEMALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
*EYE/RETINA Degeneration, Nos	(50) 9 (18%)	(50) 9 (18%)	(49) 14 (29%)
*EAR INFLAMMATION ACTIVE CHRONIC	(50)	(50) 1 (2%)	(49)
MUSCULOSKELETAL SYSTEM			
*STERNUM Hemorrhage Necrosis, Nos	(50) 1 (2%) 26 (52%)	(50) 18 (36%)	(49) 13 (27%)
BODY CAVITIES			
*ABDOMINAL CAVITY NECROSIS, FAT	(50)	(50) 2 (4%)	(49) 1 (2%)
*PELVIS NECROSIS, FAT	(50)	(50)	(49) 1 (2%)
*INGUINAL REGION NECROSIS, FAT	(50)	(50)	(49) 1 (2%)
*MESENTERY NECROSIS, FAT	(50) 1 (2%)	(50) 1 (2%)	(49)
ALL OTHER SYSTEMS			
ADIPOSE TISSUE MINERALIZATION FIBROSIS			1 1
OMENTUM NECROSIS, FAT	1		
SPECIAL MORPHOLOGY SUMMARY			
NO NECROPSY PERFORMED			1

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE FED DIETS CONTAINING 2,6-DICHLORO-p-PHENYLENE DIAMINE

.

.

TABLE D1.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE FED DIETS CONTAINING 2,6-DICHLORO-P-PHENYLENEDIAMINE

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN INFLAMMATION, NOS INFLAMMATION, CHRONIC	(50)	(50) 1 (2%)	(50) 1 (2%) 1 (2%)
*SUBCUT TISSUE EPIDERMAL INCLUSION CYST	(50) 1 (2%)	(50)	(50)
RESPIRATORY SYSTEM			
#LUNG CONGESTION, NOS EDEMA, NOS HEMORRHAGE INFLAMMATION, INTERSTITIAL PNEUMONIA, ASPIRATION	(49) 1 (2%) 1 (2%) 1 (2%)	(50) 1 (2%)	(49) 1 (2%) 1 (2%) 1 (2%)
FNEUMONIA, CHRONIC MURINE HEMOSIDEROSIS HYPERPLASIA, ALVEOLAR EPITHELIUM	1 (2%) 1 (2%)	5 (10%) 1 (2%)	3 (6%) 1 (2%)
HEMATOPOIETIC SYSTEM			
#BONE MARROW HYPERPLASIA, NOS HYPERPLASIA, HEMATOPOIETIC	(48)	(50) 1 (2%) 1 (2%)	(50)
#SPLEEN HEMOSÍDEROSIS	(50)	(50)	(50)
HYPERPLASIA, LYMPHOID Hematopoiesis	1 (2%)	6 (12%) 1 (2%)	
#LYMPH NODE Hyperplasia, Lymphoid	(37)	(45)	(39)

	CONTROL	LOW DOSE	HIGH DOSE
#MESENTERIC L. NODE Hemorrhage Degeneration, hyaline Hyperplasia, lymphoid	(37) 3 (8%) 1 (3%) 5 (14%)	(45) 7 (16%) 3 (7%)	(39) 4 (10%) 4 (10%)
CIRCULATORY SYSTEM		* = = = = = = = = = = = = = = = = = = =	****
#LUNG Thrombosis, nos	(49) 1 (2%)	(50)	(49)
#HEART PERIARTERITIS	(50)	(50) 2 (4%)	(49)
#MYOCARDIUM Inflammation, acute Inflammation, chronic	(50) 1 (2%)	(50)	(49) 1 (2%)
#ENDOCARDIUM Inflammation, ChroniC	(50)	(50) 1 (2%)	(49)
*MESENTERIC ARTERY Inflammation proliferative	(50)	(50) 1 (2%)	(50)
*TESTICULAR ARTERY DEGENERATION, HYALINE	(50)	(50) 1 (2%)	(50)
#KIDNEY HEMANGIOMATOSIS	(50)	(50)	(50) 1 (2%)
DIGESTIVE SYSTEM			
#SALIVARY GLAND Lymphocytic inflammatory infiltr	(48) 1 (2%)	(50)	(49) 1 (2%)
#LIVER HEMORRHAGE Inflammation, Multïfocal Inflammation, acute focal	(50)	(50) 1 (2%) 1 (2%)	(50) 1 (2%)
NECROSIS, FOCAL NECROSIS, COAGULATIVE INFARCT, NOS FOCAL CELLULAR CHANGE	1 (2%)	1 (2%) 1 (2%)	1 (2%) 3 (6%)

	CONTROL	LOW DOSE	HIGH DOSE
HYPERPLASIA, FOCAL ANGIECTASIS	1 (2%)	1 (2%)	1 (2%)
#BILE DUCT MINERALIZATION	(50)	(50)	(50) 1 (2%)
#PANCREAS CYSTIC DUCTS	(49)	(49) 1 (2%)	(49)
INFLAMMATION, CHRONIC Cytologic degeneration	1 (2%) 25 (51%)	28 (57%)	19 (39%)
#PANCREATIC ACINUS Atrophy, Nos	(49) 2 (4%)	(49) 1 (2%)	(49)
#ESOPHAGUS INFLAMMATION, NOS	(50)	(50)	(49) 1 (2%)
#STOMACH MINERALIZATION	(49) 1 (2%)	(50)	(49)
INFLAMMATION, NOS INFLAMMATION, CHRONIC	1 (2%) 1 (2%)	1 (2%)	1 (2%)
#DUODENUM Abscess, nos	(50) 1 (2%)	(48)	(46)
#LARGE INTESTINE NEMATODIASIS	(50) 2 (4%)	(47)	(48)
URINARY SYSTEM			
#KIDNEY MINERALIZATION HYDRONEPHROSIS INFLAMMATION, NOS	(50) 2 (4%) 1 (2%) 2 (4%)	(50) 4 (8%)	(50) 7 (14%)
INFLAMMATION, FOCAL LYMPHOCYTIC INFLAMMATORY INFILTR GLOMERULONEPHRITIS, MEMBRANOUS	9 (18%)	12 (24%)	1 (2%) 5 (10%) 1 (2%)
INFLAMMATION, CHRONIC INFLAMMATION, CHRONIC FOCAL INFARCT, NOS	4 (8%) 2 (4%)	4 (8%)	7 (14%) 1 (2%) 2 (4%)
INFARCT, FOCAL METAPLASIA, OSSEOUS	3 (6%)	4 (8%) 1 (2%)	2 (4%) 2 (4%) 1 (2%)
#KIDNEY/TUBULE NECROSIS, NOS	(50)	(50)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
ENDOCRINE SYSTEM			
#PITUITARY Cyst, Nos	(39)	(43)	(45) 1 (2%)
#ADRENAL CORTEX Hyperplasia, focal	(50) 1 (2%)	(48)	(49) 1 (2%)
#THYROID MINERALIZATION HYPERPLASIA, FOLLICULAR-CELL	(44)	(48)	(47) 1 (2%)
REPRODUCTIVE SYSTEM			
*PREPUTIAL GLAND EPIDERMAL INCLUSION CYST Cystic Ducts Inflammation, granulomatous	(50)	(50) 1 (2%) 1 (2%)	(50) 1 (2%)
*SEMINAL VESICLE Inflammation, chronic	(50) 1 (2%)	(50)	(50)
#TESTIS MINERALIZATION CALCIFICATION, FOCAL ATROPHY, NOS	(49) 2 (4%) 1 (2%)	(49) 7 (14%) 1 (2%)	(50) 8 (16%) 1 (2%)
*EPIDIDYMIS MINERALIZATION LIPOGRANULOMA	(50)	(50) 1 (2%)	(50) 1 (2%)
NERVOUS SYSTEM			
#BRAIN/MENINGES Inflammation, Nos	(50) 5 (10%)	(50) 3 (6%)	(50)
*CHOROID PLEXUS Inflammation, Nos	(50) 1 (2%)	(50)	(50) 1 (2%)
#BRAIN Corpora Amylacea	(50) 21 (42%)	(50) 24 (48%)	(50) 23 (46%)

		LOW DOSE	HIGH DOSE
SPECIAL SENSE ORGANS			
*EYE INFLAMMATION, PYOGRANULOMATOUS	(50) 1 (2%)	(50)	(50)
MUSCULOSKELETAL SYSTEM			
*MANDIBLE EPIDERMAL INCLUSION CYST INFLAMMATION, CHRONIC	(50) 1 (2%) 1 (2%)	(50)	(50)
BODY CAVITIES			
UVDEDTDODUV NOC	(50)	(50) 1 (2%)	(50)
ALL OTHER SYSTEMS			
PERIORBITAL REGION Abscess, Nos			1
SPECIAL MORPHOLOGY SUMMARY			
NONE			

TABLE D2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE FED DIETS CONTAINING 2,6-DICHLORO-P-PHENYLENEDIAMINE

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN INFLAMMATION, NOS		(50)	(50) 5 (10%)
RESPIRATORY SYSTEM			
#LUNG	(50)	(50)	(50)
CONGESTION, NOS PNEUMONIA, CHRONIC MURINE HYPERPLASIA, FOCAL		1 (2 %)	11 (22%)
HEMATOPOIETIC SYSTEM			
#SPLEEN HYPERPLASIA, LYMPHOID HEMATOPOIESIS	(49) 8 (16%) 3 (6%)	(50) 8 (16%) 1 (2%)	(50) 5 (10%) 1 (2%)
#LYMPH NODE Hyperplasia, lymphoid	(46)	(45) 1 (2%)	(48)
#SUBMANDIBULAR L.NODE PLASMACYTOSIS	(46)	(45)	(48) 1 (2%)
#PARASTERNAL LYMPH NO Hemorrhagic cyst	(46)	(45) 1 (2%)	(48)
#MESENTERIC L. NODE Hemorrhage	(46)	(45) 1 (2%)	(48,) 1 (2%)
GRANULOMA, NOS HYPERPLASIA, LYMPHOID	1 (2%) 2 (4%)	3 (7%)	1 (2%)
#ADRENAL HEMATOPOIESIS	(50)	(50)	(50) 1 (2%)
	CONTROL	LOW DOSE	HIGH DOSE
---	--	---	---
#THYMUS Hyperplasia, lymphoid	(37) 1 (3%)	(45)	(34)
CIRCULATORY SYSTEM			
#MESENTERIC L. NODE Lymphangiectasis	(46) 1 (2%)	(45)	(48) 1 (2%)
#ENDOCARDIUM INFLAMMATION, CHRONIC	(50)	(50)	(50) 1 (2%)
DIGESTIVE SYSTEM			
#SALIVARY GLAND Lymphocytic inflammatory infiltr	(47)	(49) 1 (2%)	(49)
#LIVER INFLAMMATION, NOS LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, MULTIFOCAL INFLAMMATION, ACUTE FOCAL NECROSIS, NOS NECROSIS, FOCAL METAMORPHOSIS FATTY FOCAL CELLULAR CHANGE HYPERPLASIA, FOCAL ANGIECTASIS	1 (2%) 2 (4%) 2 (4%)	(50) 1 (2%) 1 (2%) 5 (10%) 1 (2%) 1 (2%)	(50) 1 (2%) 4 (8%) 1 (2%) 1 (2%) 5 (10%)
*GALLBLADDER INFLAMMATION, NOS	(50)	(50) 1 (2%)	(50)
#PANCREAS DILATATION/DUCTS CYSTIC DUCTS INFLAMMATION ACTIVE CHRONIC INFLAMMATION, CHRONIC CYTOLOGIC DEGENERATION	(50) 1 (2%) 1 (2%) 1 (2%) 27 (54%)	(48) 1 (2%) 3 (6%) 32 (67%)	(49) 1 (2%) 2 (4%) 22 (45%)
<pre>#PANCREATIC ACINUS ATROPHY, NOS</pre>	(50) 3 (6%)	(48) 4 (8%)	(49) 3 (6%)
#STOMACH NINERALIZATION	(49)	(48)	(50)

TABLE D2. FEMALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	CONTROL	LOW DOSE	HIGH DOSE
INFLAMMATION, NOS	****	1 (2%)	3 (6%)
EPIDERMAL INCLUSION CYST	(50)	(50)	(50) 1 (2%)
URINARY SYSTEM			
#KIDNEY MINERALIZATION	(50)	(50)	(50) 1 (2%)
GLOMERULONEPHRITIS, NOS LYMPHOCYTIC INFLAMMATORY INFILTR GLOMERULONEPHRITIS, MEMBRANOUS	1 (2%) 8 (16%) 1 (2%)	21 (42%)	15 (30%)
GLOMERULONEPHRITIS, MEMBRANDUS Inflammation, Chronic Inflammation, Chronic Focal	3 (6%) 1 (2%)	4 (8%)	4 (8%)
NEPHROSIS, NOS Infarct, focal		1 (2%) 2 (4%)	3 (6%)
AMYLOIDOSIS Metaplasia, osseous	1 (2%) 3 (6%)		1 (2%)
#KIDNEY/PELVIS MINERALIZATION	(50)	(50) 1 (2%)	(50)
#URINARY BLADDER LYMPHOCYTIC INFLAMMATORY INFILTR	(50)	1 (2%)	(47)
ENDOCRINE SYSTEM			
#PITUITARY	(43)	(48)	(44)
HEMORRHAGIC CYST Angiectasis	1 (2%)	2 (4%)	
#ADRENAL ANGIECTASIS	(50)	(50)	(50) 1 (2%)
#ADRENAL CORTEX Hyperplasia, focal	(50) 1 (2%)	(50)	(50) 1 (2%)
#THYROID INFLAMMATION, ACUTE FOCAL HYPERPLASIA, FOLLICULAR-CELL	(46)	(48)	(49) 2 (4%) 1 (2%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND Cystic Ducts	(50)	(50)	(50)

TABLE D2. FEMALE MICE: NONNEOPLASTIC LESIONS (CONTINUED) _____

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	CONTROL	LOW DOSE	HIGH DOSE
#UTERUS CYST, NOS Inflammation, acute	(50) 1 (2%)	(50)	(49) 4 (8%)
#UTERUS/ENDOMETRIUM CYST, NOS HYPERPLASIA, NOS HYPERPLASIA, CYSTIC	(50) 1 (2%) 31 (62%)	(50) 1 (2%) 39 (78%)	(49) 1 (2%) 26 (53%)
<pre>#ENDOMETRIAL GLAND CYST, NOS</pre>	(50)	(50)	(49) 1 (2%)
#OVARY/OVIDUCT Inflammation, Nos	(50) 1 (2%)	(50)	(49)
#OVARY Cyst, Nos Parovarian Cyst Hemorrhagic Cyst	(47) 6 (13%)	(49) 8 (16%) 3 (6%) 1 (2%)	(42) 2 (5%) 1 (2%)
NERVOUS SYSTEM			
#BRAIN/MENINGES Inflammation, Nos	(50) 8 (16%)	(50) 6 (12%)	(50) 1 (2%)
*CHOROID PLEXUS Inflammation, Nos	(50) 2 (4%)	(50) 3 (6%)	(50) 2 (4%)
#BRAIN Inflammation, Nos	(50)	(50) 1 (2%)	(50)
INFLAMMATION, SUPPURATIVE Corpora Amylacea	1 (2%) 21 (42%)	20 (40%)	24 (48%)
SPECIAL SENSE ORGANS			
*EYE/CORNEA MINERALIZATION INFLAMMATION, CHRONIC	(50) 1 (2%)	(50) 1 (2%)	(50) 1 (2%)

TABLE D2. FEMALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

NONE

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
* NUMBER OF ANIMALS NECROPSIED

		LOW DOSE	HIGH DOSE
BODY CAVITIES			
*ABDOMINAL VISCERA Inflammation, granulomatous	(50) 1 (2%)	(50)	(50)
*INGUINAL REGION Inflammation, Nos	(50)	(50)	(50) 1 (2%)
*MESENTERY NECROSIS, FAT	(50) 1 (2%)	(50)	(50)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS Congestion, nos Necrosis, fat	(50)	(50)	(50) 1 (2%) 1 (2%)
FOOT Inflammation, Nos			1
SPECIAL MORPHOLOGY SUMMARY			
NONE			
# NUMBER OF ANIMALS WITH TISSUE EXA * NUMBER OF ANIMALS NECROPSIED	MINED MICROSCOPI	CALLY	

TABLE D2. FEMALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

APPENDIX E

ANALYSIS OF 2,6-DICHLORO-p-PHENYLENEDIAMINE

(LOT NO. 0005)

MIDWEST RESEARCH INSTITUTE

Appendix E

Analysis of 2,6-Dichloro-p-phenylenediamine (Lot No. 0005) Midwest Research Institute

A. ELEMENTAL ANALYS IS

Element:	C	H	N	C1
Theory:	40.70	3.42	15.83	40.05
Determined:	40.47	3.36	15.64	39.5 <u>+</u> 0.4 (ð)
	40.53	3.36	15.73	

B. WATER ANALYS IS

(Karl Fisher) less than 0.1%

C. TITRATION OF ONE AMINO GROUP WITH PERCHLORIC ACID

99.3%+0.3 (**ð**) %

D. MELTING POINT

Determined

Literature Values

122 [°] -124 [°] C (visual,	124 [°] -125 [°] C
capillary)	(Drake et al., 1946)
119 ⁰ -122 ⁰ C (Dupont 900DTA)	

Plates: Silica gel 60 F254 Ref. Standard: Aniline Amount Spotted: 100 and Visualization: Ultraviolet, 254 300 µg and 366 nm, and visible light System 1: Benzene:chloroform (80:20)

R_f: 0.19 (major), origin
 (trace, visualized
 at 366 nm only)
R_{st}: 0.76, origin

<u>System 2</u>: Methanol, 100% R_f: 0.72 (trace, visualized at 366 nm only), 0.68 (major) R_{st}: 1.04, 0.99

D. VAPOR-PHASE CHROMATOGRAPHY

Instrument: Tracor MT 220 Detector: Flame ionization Column: 3% OV-17, 1.8 mm x 4 mm I.D., glass Oven temperature program: 100°-225°C at 10°C/min Results: Major peak and four impurities

Peak 1	Retention Time (min)	Retention Time (Relative to 2,6-Dichloro-p- phenylenediamine)	phenylenediamine)
1	6.1	0.68	0.02
2	6.5	0.72	0.01
3	7.4	0.83	0.01
4	9.0	1.00	100
5	10.1	1.12	0.2

E. SPECTRAL DATA

(1)	Infrared	Consistent	with literature
	Instrument: Beckman IR-12	spectrum	n (<u>Sadtler</u> <u>Standard</u>
	Cell: 1.5% KBr pellet	Spectra))
	Results: See Figure 5		
(2)	Ultraviolet/Visible	Literature	Values (<u>Sadtler</u>
	Instrument: Cary 118	Standard	Spectra)
<u>λmax</u>	(nm) $\epsilon \times 10^{-3}$	<u>λmax</u> (nm)	$\epsilon \times 10^{-3}$
		324.5	3.57
325	3.36 <u>+</u> 0.03 (ð)	246	11.000
245	11.766 <u>+</u> 0.008 (ð)	208	26.6
Solv	ent: 95% ethanol	Solvent:	methanol

No maximum observed in the visible range (350-800 nm), but there was a gradual increase in absorbance toward 350 nm. Concentration: 0.3 mg/ml.

(3) Nuclear Magnetic Resonance No literature spectrum found Instrument: Varian HA-100 Solvent: CDC1₃ with internal tetramethylsilane
 Assignments: See Figure 6

 (a) § 3.11-3.53 ppm
 (b) § 3.77-4.28 ppm
 (c) s, § 6.65 ppm

Integration Ratios: (a + b) 4.11, (c) 2.00

100	<mark>ा─┬┲╁╫┯╓╶╓╴╓╴</mark> ╖	35 1 - 1 - 1 - 1 - 1		TAVELENGTH IN MILICUNS			100 SPECTRUM
┍╺┽━┿╸┟	+}	+					41-Dunes 10/100
				[표] 백화 문제 문제	이 것 이 것 이 안 물 방법을 받았다.		the second s
				iste por la post			
							80
~+-++		<u></u> t		テレート			
'n					1-17-1-1-10/1-1		
							and a state of the
- 1			60				
				金融 化离性化 化乙二乙基			58. 08 (MR
-						1 1 1 1	50 se. 50 million (1997) 50 million (1997) 50 million (1997) 50 million (1997)
							Jan Street
			50				
n i T	11#17 V						/ <u>NJ</u>
				華い市口に同じ		輪輪側 お 侍命力	/ maxoe
	╤┰╠╢╴╡╽╸╼┟┅╴┝╼╸┝╸╴			***			30 CROUCATE S
	┈╾┼╌╿┟┥┫╗╶╾┝╌╌┤╶─┆╌╴	+					ANALYST T
		╪╼╞╌═╋					20 Corr_1
ner				₩- ₩ ₩ 			
把出出空上							
		- 1144				i hasha in basistiking i s	SPECINOP
					이 고 [이] 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이		VSE /

Figure 5. Infrared Absorption Spectrum of 2, 6-Dichloro-p-phenylenediamine (Lot No. 0005)

Figure 6. Nuclear Magnetic Resonance Spectrum of 2, 6-Dichloro-p-phenylenediamine (Lot No. 0005)

APPENDIX F

ANALYSIS OF 2,6-DICHLORO-p-PHENYLENEDIAMINE

(LOT NO. R9231-127)

MIDWEST RESEARCH INSTITUTE

Appendix F

Analysis of 2,6-Dichloro-p-phenylenediamine (Lot No. R9231-127) Midwest Research Institute

A. ELEMENTAL ANALYS IS

Element:	С	H	N	C 1
Theory:	40.70	3.43	15.83	40.05
Determined:	40.54	3.52	15.64	40.06
	40.65	3.42	15.80	40.19

B. WATER ANALYS IS

(Karl Fisher) 0.45%+0.06(**ð**)%

C. TITRATION OF ONE AMINO GROUP WITH PERCHLORIC ACID

98.5%<u>+</u>0.3(**ð**) %

D. MELTING POINT

Determined

Literature Values

124° to 125°C (visual, capillary) 124°-125°C (Drake et al., 1946)

```
Plates: Silica Gel 60 F-254
                                            Ref. Standard: Aniline, 10 µg
                                                              UV (254 nm) and
    Amount Spotted: 100 and
                                            Visualization:
                          300 µg
                                                               ninhydrin
      (10 and 30 \mu1 of a 10.0 mg/m1
      solution in methanol)
    System 1: Benzene:chloroform
                   (80:20)
     R<sub>f</sub>: 0.09 (major); origin
               (trace, 254 nm only)
     R<sub>st</sub>: 0.30; origin
    System 2: Methanol
     R<sub>f</sub>: 0.84 (major)
                 (trace, visualized)
     R<sub>st</sub>: 1.03
F. VAPOR-PHASE CHROMATOGRAPHY
```

```
Instrument: Varian Aerograph 2400
Detector: Flame ionization
Column: 190°C
Carrier gas: Nitrogen
Oven temperature program: 100°C 3 min, 100° to 250°C at
10°C/min
```

1. System 1
Detector temperature: 280°C
Carrier flow rate: 30 cc/min
Column: 3% OV-17 on 80/100 Supelcoport, 1.8 m x 2 mm I.D.,
glass

Sample inj	jected:	A 1.0% solution (4 μ 1) of 2,6-dichloro-p-
		phenylenediamine in chloroform was
		injected. A 0.5% solution was injected
		to check for overloading.
Results:	Major p	eak and one impurity.

Retention Time (RelativeArea (Relative toRetentionto 2,6-Dichloro-p-2,6-Dichloro-p-PeakTime (min)phenylenediamine)phenylenediamine)

1	7.8	0.67	0.02
2	11.6	1.00	100

2. System 2

Detector temperature: 260°C
Carrier flow rate: 50 cc/min
Column: 3% OV-1 on 80/100 Supelcoport, 1.8 m x 4 mm I.D.,
glass
Sample injected: A 1.0% solution (4 μ 1) of 2,6-dichloro-p-
phenylenediamine in chloroform was
injected. A 0.5% solution was injected
to check for overloading.
Results: Major peak and one impurity.

Peak	Retention Time (min)	Retention Time (Relative to 2,6-Dichloro- p-phenylenediamine)	Area (Relative to 2,6-Dichloro-p- phenylenediamine)
1	7.8	0.75	0.03
2	10.4	1.00	100

G. SPECTRAL DATA

Determined	Literature	Values
(1) Infrared:		
Instrument: Beckman IR-12	Consistent	with lit-
Cell: 1% potassium bromide	erature spectrum	
pell et	(Sadtler Standard	
Results: See Figure 7	<u>Spectra</u>)	
(2) Ultraviolet/Visible		
Instrument: Cary 118		
$\underline{\lambda}$ max ^(nm) $\underline{\epsilon} \times 10^{-3}$	<u>Amax</u> (nm)	$\epsilon \times 10^{-3}$
325 3.33 <u>+</u> 0.02(ð)	324.5	3.57
246 10.13 <u>+</u> 0.07(ð)	246	11.000
	208	26.6
No maximum from 350 to 800		

nm (visible region), but	
a gradual increase in ab-	
sorbance toward 350 nm.	

Solvent: 95% ethanol Solvent: Methanol

Figure 7. Infrared Absorption Spectrum of 2, 6-Dichloro-p-phenylenediamine (Lot No. R9231-127)

Instrument: Varian EM-360A No literature Solvent: CDC1₃ with internal spectrum found tetramethylsilane Assignments (see Figure 8) (a) **ð** 3.35 ppm (b) **§** 3.95 ppm (c) **ð** 6.60 ppm (d) **ð** 1.64 ppm Integration ratios: (a)3.99 (ъ)} (c) 2.01 (d) 0.04

The impurity peak present at 1.64 ppm is due to ammonium chloride at a concentration of 1.6% relative to 2,6-dichloro-p-phenylenediamine. This is consistent with the titration value of 98.5%+0.3%.

Figure 8. Nuclear Magnetic Resonance Spectrum of 2, 6-Dichloro-p-phenylenediamine (Lot No. R9231-127)

٩.

APPENDIX G

ANALYSIS OF FORMULATED DIETS FOR STABILITY OF 2,6-DICHLORO-p-PHENYLENEDIAMINE MIDWEST RESEARCH INSTITUTE

,

Appendix G

Analysis of Formulated Diets for Stability of 2,6-Dichloro-p-phenylenediamine Midwest Research Institute

A. MIXING AND STORAGE

2,6-Dichloro-p-phenylenediamine (2.5367 g) and Wayne Lab-Blox[®] Rodent Feed (22.5042 g) were mixed for 15 minutes in a mortar. Samples of this 100,000 ppm mix were then removed and stored for 2 weeks at -20° , 5° , 25° , and 45° C, respectively.

B. ANALYSIS

The samples were mixed with methanol in an ultrasonic bath and triturated using a Polytron mixer. The resulting mixture was centrifuged and extracted in the same manner. The combined extracts were further diluted and analyzed by vapor-phase chromatography using the following system:

C. RESULTS

<u>Temperature (</u> ^O C)	Average % Compound Recovered
-20	9.82+0.50
5	9.08+0.50
25	9.09 <u>+</u> 0.50
45	9.70 <u>+</u> 0.50

There were no significant differences between the samples stored at the various temperatures.

D. CONCLUSION

2,6-Dichloro-p-phenylenediamine mixed with feed is stable for 2 weeks at temperatures up to 45° C.

APPENDIX H

ANALYSES OF FORMULATED DIETS FOR

CONCENTRATIONS OF 2,6-DICHLORO-p-PHENYLENEDIAMINE

LITTON BIONETICS, INC.

Appendix H

Analyses of Formulated Diets for Concentrations of 2,6-Dichloro-p-phenylenediamine Litton Bionetics, Inc.

A. Method

Two-gram samples, accurately weighed, were extracted by shaking for 10 minutes in an automatic shaker with two 50-ml portions of methanol. Each extraction was followed by centrifugation for 10 minutes at 1,350 rpm. The two portions of solvent were combined and mixed well. Analysis was performed by gas chromatography on a Varian Model 2100 instrument equipped with flame ionization detectors. The column used was $1.8 \text{ m} \times 2 \text{ mm}$ ID glass packed with 3% OV-1 on 80/100 mesh Supelcoport. The column temperature was 120°C with a nitrogen (carrier) flow rate of 25 ml/min. Concentrations were determined by comparison with standard solutions of the test compound analyzed under the same parameters. In the case of samples containing 1,000 or 2,000 ppm of the test material, 5.0 ml of the extract were reduced to 1.0 ml in a warm water bath under nitrogen prior to analysis.

A control sample was run concurrently for each extraction.

B. Results

Theoretical Concentration in Diet (ppm)	No. of Samples	Sample Analytical Mean (ppm)	Coefficient of Variation (%)	Range (ppm)
1,000	5	861.2	12.8	666-927
2,000	7	1,727.6	8.2	1,507-2,046
3,000	2	2,740.5	0.99	2,721-2,760
6,000	3	6,062.3	2.78	5,916-6,313

&U.S. GOVERNMENT PRINTING OFFICE: 1982-361-132/3794

NIH Publication No. 82-1775 March 1982