NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 220

NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of chemically induced disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development/ validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is comprised of four charter DHHS agencies: the National Cancer Institute, National Institutes of Health; the National Institute of Environmental Health Sciences, National Institutes of Health; the National Center for Toxicological Research, Food and Drug Administration; and the National Institute for Occupational Safety and Health, Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS.

NTP Technical Report

on the

CARCINOGENESIS BIOASSAY

of

C.I. ACID RED 14

(CAS NO. 3567-69-9)

IN F344 RATS AND B6C3F1 MICE

(FEED STUDY)

NATIONAL TOXICOLOGY PROGRAM Research Triangle Park P.O. Box 12233 North Carolina 27709 and Bethesda, Maryland 20205

March 1982

NTP-80-67 NIH Publication No. 82-1776

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NOTE TO THE READER

This is one in a series of experiments designed to determine whether selected chemicals produce cancer in animals. Chemicals selected for testing in the NTP carcinogenesis bioassay program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical is a potential hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

This study was initiated by the National Cancer Institute's Carcinogenesis Testing Program, now part of the National Institute of Environmental Health Sciences, National Toxicology Program.

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650).

Comments and questions about the National Toxicology Program Technical Reports on Carcinogenesis Bioassays should be directed to the National Toxicology Program, located at Room A-306, Landow Building, Bethesda, MD 20205 (301-496-1152) or at Research Triangle Park, NC 27709 (919-541-3991).

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to communicate any mistakes to the Deputy Director, NTP (P.O. Box 12233, Research Triangle Park, NC 27709), so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP.

TABLE OF CONTENTS

Page

	Abstract	vii
	Contributors	ix
	Peer Review Comments	xi
I.	Introduction	1
II.	Materials and Methods	5
	A. Chemical	5
	B. Dietary Preparation	6
	C. Animals	6
	D. Animal Maintenance	6
	E. Single-Day Dosing and 14-Day Repeated Dose Studies	8
	F. 13-Week Study \ldots \ldots \ldots \ldots \ldots	8
	G. Chronic Studies	15
	H. Clinical Examinations and Pathology	15
	I. Data Recording and Statistical Analyses	17
	I. Data Recording and Statistical Analyses	17
III.	Results - Rats	21
	A. Body Weights and Clinical Signs (Rats)	21
	B. Survival (Rats)	21
	C. Pathology (Rats)	24
	D. Statistical Analyses of Results (Rats)	24
IV.	Results - Mice	37
	A. Body Weights and Clinical Signs (Mice)	37
	B. Survival (Mice)	37
	C. Pathology (Mice)	37
	D. Statistical Analyses of Results (Mice)	40
v.	Discussion	51
VI.	Conclusion	55
		.
VII.	Bibliography	57

TABLES

Table l	Specifications and Sources of Materials Used for Animal Maintenance	7
Table 2	Dosage, Survival, and Mean Body Weights of Rats Fed Diets Containing C.I. Acid Red 14 for 14 Days	9

Page

Table	3	Dosage, Survival, and Mean Body Weights of Mice Fed Diets Containing C.I. Acid Red 14	10
		for 14 Days \ldots \ldots \ldots \ldots \ldots \ldots	10
Table	4	Dosage, Survival, and Mean Body Weights of Rats Fed Diets Containing C.I. Acid Red 14 for 13 Weeks	12
Table	5	Dosage, Survival, and Mean Body Weights of Mice Fed Diets Containing C.I. Acid Red 14 for 13 Weeks	13
Table	6	Incidence of Lesions in the Urinary Bladders of Mice Fed Diets Containing C.I. Acid Red 14 for 13 Weeks	14
Table	7	Experimental Design of Chronic Feeding Studies with C.I. Acid Red 14 in Rats and Mice	16
Table	8	Analyses of the Incidence of Primary Tumors in Male Rats Fed Diets Containing C.I. Acid Red 14	27
Table	9	Analyses of the Incidence of Primary Tumors in Female Rats Fed Diets Containing C.I. Acid Red 14	32
Table	10	Analyses of the Incidence of Primary Tumors in Male Mice Fed Diets Containing C.I. Acid Red 14	42
Table	11	Analyses of the Incidence of Primary Tumors in Female Mice Fed Diets Containing C.I. Acid Red 14	46

FIGURES

Figure l	Growth Curves for Rats Fed Diets Containing C.I. Acid Red 14	22
Figure 2	Survival Curves for Rats Fed Diets Containing C.I. Acid Red 14	23
Figure 3	Growth Curves for Mice Fed Diets Containing C.I. Acid Red 14	38
Figure 4	Survival Curves for Mice Fed Diets Containing C.I. Acid Red 14	39

Infrared Absorption Spectrum of C.I. Acid Figure 5 126 Figure 6 Nuclear Magnetic Resonance Spectrum of 127 Infrared Absorption Spectrum of C.I. Acid Figure 7 133 Figure 8 Nuclear Magnetic Resonance Spectrum of C.I. Acid Red 14 (Lot No. A83650) 135

Page

APPENDIXES

Appendix A	Summary of the Incidence of Neoplasms in Rats Fed Diets Containing C.I. Acid Red 14	61
Table Al	Summary of the Incidence of Neoplasms in Male Rats Fed Diets Containing C.I. Acid Red 14	63
Table A2	Summary of the Incidence of Neoplasms in Female Rats Fed Diets Containing C.I. Acid Red 14	68
Appendix B	Summary of the Incidence of Neoplasms in Mice Fed Diets Containing C.I. Acid Red 14	73
Table Bl	Summary of the Incidence of Neoplasms in Male Mice Fed Diets Containing C.I. Acid Red 14	75
Table B2	Summary of the Incidence of Neoplasms in Female Mice Fed Diets Containing C.I. Acid Red 14	79
Appendix C	Summary of the Incidence of Nonneoplastic Lesions in Rats Fed Diets Containing C.I. Acid Red 14	85
Table Cl	Summary of the Incidence of Nonneoplastic Lesions in Male Rats Fed Diets Containing C.I. Acid Red 14	87
Table C2	Summary of the Incidence of Nonneoplastic Lesions in Female Rats Fed Diets Containing C.I. Acid Red 14	96
Appendix D	Summary of the Incidence of Nonneoplastic Lesions in Mice Fed Diets Containing C.I. Acid Red 14	105
Table Dl	Summary of the Incidence of Nonneoplastic Lesions in Male Mice Fed Diets Containing C.I. Acid Red 14	107
Table D2	Summary of the Incidence of Nonneoplastic Lesions in Female Mice Fed Diets Containing C.I. Acid Red 14	114

Appendix E	Analysis of C.I. Acid Red 14 (Lot No. A77716) Midwest Research Institute	121
Appendix F	Analysis of C.I. Acid Red 14 (Lot No. A83650) Midwest Research Institute	129
Appendix G	Theoretical Calculation of Batch Composition	137
Appendix H	Analysis of Formulated Diets for Concentrations of C.I. Acid Red 14	141
Appendix I	Analysis of Formulated Diets for Stability of of C.I. Acid Red 14	145

.

Page

ABSTRACT

A carinogenesis bioassay of textile grade C.I. Acid Red 14 (67%-71% purity) was conducted by feeding diets containing 6,000 or 12,500 ppm of this dye for 103-104 weeks to groups of 50 male F344 rats, 12,500 or 25,000 ppm to groups of 50 female F344 rats, and 3,000 or 6,000 ppm to groups of 50 B6C3F1 mice of either sex. Groups of 90 untreated rats of either sex and 50 untreated mice of either sex served as controls.

Throughout the study, mean body weights of dosed rats of either sex and of dosed female mice were comparable with those of the controls, while the mean body weight of high-dose male mice was slightly lower than that of the controls.

Fourteen male rats in the low-dose group and 2 in the high-dose group accidentally drowned between weeks 84 and 103; 56% and 60% of these groups survived to terminal kill compared with 78% of the controls. These losses may have reduced the sensitivity of the assay in male rats.

Rats and mice may have tolerated higher doses, but the slight depression of mean body weight in high-dose male mice and the nonneoplastic lesions observed in dosed female mice and in rats of both sexes suggest that doses administered in this study could be considered maximum tolerated doses.

Endometrial stromal polyps of the uterus were observed in high-dose female rats at an incidence significantly higher (P=0.008) than that seen in the controls (controls: 9/87, 10%; low-dose: 11/50, 22%; high-dose: 14/50, 28%). However, the observed incidence of this tumor in the dosed groups was similar to the historical rate in untreated female F344 rats at this laboratory (65/286, 23%; range 10%-37%). Hence, the increased incidence of this lesion is not regarded as being associated with the administration of C.I. Acid Red 14.

Administration of C.I. Acid Red 14 to mice was not associated with an increased incidence of any tumor type.

Under the conditions of this bioassay, C.I. Acid Red 14 was not carcinogenic for F344 rats or B6C3F1 mice of either sex.

. .

CONTRIBUTORS

This carcinogenesis bioassay of C.I. Acid Red 14 was conducted from December 1976 to January 1979 at Battelle Columbus Laboratories, Columbus, Ohio, under a subcontract to Tracor Jitco, Inc., Rockville, Maryland, prime contractor for the NTP Carcinogenesis Testing Program.

Dr. A. Peters (1) was the principal investigator for this study. Doses of the test chemical were selected by Drs. A. Peters and J. Robens (2,3). Drs. A. Peters, H. Harroff (1), and P. Stromberg (1) were in charge of animal care.

Necropsies were directed by Drs. G. Dill (1), R. Persing (1), R. Everett (1,4), and D. Thake (1). Histopathologic evaluations were performed by Drs. G. Dill (rats) and R. Persing (mice) (1). The pathology report and selected slides were evaluated by the NTP Pathology Working Group as described by Ward et al. (1978). The diagnoses represent a consensus of contracting pathologists and the NTP Pathology Working Group with final approval by the NTP Pathology Working Group.

Animal pathology tables and survival tables were compiled at EG&G Mason Research Institute (5). Statistical analyses were performed by Dr. J. R. Joiner (2) and Mr. J. Warner (2) using methods selected for the bioassay program by Dr. J. J. Gart (6). Original analyses of the test chemical were conducted at Midwest Research Institute (7). Bulk chemical reanalysis and dosage analysis were conducted at Battelle Columbus Laboratories and supervised by Drs. R. Freudenthal (1) and P. Leber (1,8) and Mr. D. Emmerling (1).

This report was prepared at Tracor Jitco (2) under the direction of Dr. C. Cueto (9), Director of the Bioassay Program; Dr. S. S. Olin, Associate Director; Dr. M. A. Stedham, pathologist; Dr. A. C. Jacobs, bioscience writer; and Dr. W. D. Theriault and Ms. M. W. Glasser, technical editors.

The following scientists at NCI/NTP (10) were responsible for evaluating the bioassay experiment, interpreting the results, and reporting the findings: Dr. Michael P. Dieter, Dr. J. Fielding Douglas, Dr. Charles Grieshaber, Dr. Larry Hart, Dr. Joseph Haseman, Dr. James Huff, Dr. Richard Irwin (Chemical Manager), Dr. C. W. Jameson, Dr. Mary R. Kornreich, Dr. Eugene E. McConnell, Dr. John Mennear, Dr. John A. Moore, Dr. Raymond Tennant, and Dr. Jerrold M. Ward.

- (1) Battelle Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201.
- (2) Tracor Jitco, Inc., 1776 East Jefferson Street, Rockville, Maryland 20852.
- (3) Now with National Program Staff, U.S. Dept. of Agriculture, Beltsville, Maryland 20705.
- (4) E.I. duPont de Nemours & Co., Wilmington, Delaware 19898.

ix

- (5) EG&G Mason Research Institute, 1530 East Jefferson Street, Rockville, Maryland 20852.
- (6) Mathematical Statistics and Applied Mathematics Section, Biometry Branch, Field Studies and Statistics, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205.
- (7) Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110.
- (8) Now with PPG Industries, Inc., One Gateway Center, Pittsburgh, Pennsylvania 15222
- (9) Now with Clement Associates, 1010 Wisconsin Avenue, N.W., Washington, D.C. 20007.
- (10) National Toxicology Program, Bethesda, Maryland 20205 and Research Triangle Park, Box 12233, North Carolina 27709.

PEER REVIEW COMMENTS

On October 15, 1980 this report underwent peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting began at 9 a.m. in Room 6, Building 31C, National Institutes of Health, Bethesda, Maryland. Members of the Subcommittee are: Drs. Margaret Hitchcock (Chairperson), Curtis Harper, Thomas Shepard, and Alice Whittemore. Members of the Panel are: Drs. Norman Breslow, Joseph Highland, Charles Irving, Frank Mirer, Sheldon Murphy, Svend Nielsen, Bernard Schwetz, Roy Shore, James Swenberg, and Gary Williams. Drs. Highland, Irving, Whittemore, and Williams were unable to attend the review.

Dr. Breslow, a principal reviewer for the report on the carcinogenesis bioassay of C.I. Acid Red 14, agreed with the conclusion in the report that C.I. Acid Red 14 was not clearly shown to be carcinogenic for either F344 rats or B6C3F1 mice in this bioassay. He noted that the deaths by drowning of 14 male rats in the low-dose group and two in the high-dose group between weeks 84 and 103 were not taken into account in the statistical analysis. However, he felt that this shortcoming was unlikely to have altered the conclusions. [This report now includes the results of life table analyses, which adjust for premature deaths. These analyses did not produce any additional evidence of carcinogenicity.] Dr. Breslow also observed that the dose levels, especially for mice, were probably set too low.

Dr. Schwetz, a second principal reviewer, agreed with the conclusion that C.I. Acid Red 14 was not carcinogenic for either species. He emphasized that two separate batches of the compound, one of 67% purity and the other of 71% purity, were used in this bioassay. Further, the concentrations selected were at the MTD for male mice but not for female mice or rats of either sex. Thus, he thought the conclusions were appropriate for the data collected, but the study was not a strong challenge of the carcinogenicity of this dye.

Dr. Breslow moved that the report on the bioassay of C.I. Acid Red 14 be accepted after inclusion of certain identified modifications. Dr. Schwetz seconded the motion, and the report was approved unanimously by the Peer Review Panel.

I. INTRODUCTION

C.I. ACID RED 14 (CARMOISINE)

Molecular Weight: 502.5 Chemical Formula: C₂₀H₁₂N₂Na₂O₇S₂ Chemical Name: 4-hydroxy-3- (4-Sulfo-1naphthalenyl)azo -1-naphthalemesulfonic acid, disodium

C.I. Acid Red 14 (CAS No. 3567-69-9) is a water soluble monoazo dye used on nylon, silk, wool, leather, acetate, cellulose, anodized aluminum, paper, and wood; some foods processed (before 1971) in Europe also contained C.I. Acid Red 14 (Society of Dyers and Colourists, 1971). First synthesized by Witt in 1883, large scale U.S. production of carmoisine was first reported in 1914; in 1921, ten U.S. manufacturers reported a total of 106,000 kg (IARC, 1975). In the United States, the dye was used in cosmetics and externally applied drugs until approval was withdrawn in October 1966 (CFR, 1974). At present, the composition of C.I. Acid Red 14 manufactured in the United States may vary according to the customer's shade and intensity requirements; thus, it is not produced according to rigid chemical specifications and may contain numerous inorganic salts. The

British Standards Institution (1960) and the FAO/WHO (1966) require a minimum of 85% carmoisine in the commercial product. Production of C.I. Acid Red 14 in the United States was 51,000 pounds in 1978 (USITC, 1979).

Intraperitoneal LD_{50} values of 1.1 g/kg for male E strain rats and 0.9 g/kg for male and female Alderly Park ICI mice have been reported, but single oral doses as high as 10 g/kg and 8 g/kg (in the same strains of rats and mice) have not produced death (Gaunt et al., 1967).

C.I. Acid Red 14 was not mutagenic in <u>Salmonella</u> <u>typhimurium</u> TA 1538, TA 1535, TA 1537, TA 100, and TA 98 with or without metabolic activation with S-9 microsomes (Garner and Nutman, 1977; Viola and Nosotti, 1978; and Brown et al., 1978).

Groups of 15 male and 15 female albino mice (strain not specified) received twice weekly subcutaneous injections of 0.1 ml of a 3% carmoisine suspension in arachis oil (6 mg/week) for 6 months; for the next 6 months, the concentration was doubled (6% suspension, 12 mg/week). The total dose at 52 weeks equaled 468 mg/mouse. Thereafter, mice were allowed to survive as long as possible. The control group (30 of each sex) was given 0.1 ml arachis oil. The authors concluded that "carmoisine induced no tumors" (Bonser et al., 1956).

IARC (1975) recorded three other studies (unpublished) in rats exposed via diet (0.2%), drinking water (1%), or subcutaneous injection (total dose 500 mg). In these 1957 studies, no tumors were reported.

Groups of 30 male and 30 female ASH/CS1 mice were fed diets containing 0.01%, 0.05%, 0.25%, or 1.25% carmoisine (purity > 85%) for 80 weeks. These concentrations are equivalent to 100, 500, 2,500, or 12,500 mg dye per kg diet. Groups of 60 males and 60 females were used as controls. Both weight gain, organ weights, and survival were comparable between control and test groups. Significantly decreased (P < 0.001) hemoglobin values were observed for the 0.25% and 1.25% males and for the 1.25% females. Under

these experimental conditions, carmoisine was not carcinogenic for ASH/CS1 mice (Mason et al., 1974; IARC, 1975).

In an experiment with exposure beginning <u>in utero</u> and extending for one year after birth, test groups of 30 males and 30 females received diets containing 0.35%, 0.8%, or 2.0% carmoisine (3,500, 8,000, or 20,000 mg dye per kg diet). Control groups contained 50 males and 50 females. Other than an increase in thyroid weights for males and females fed the 2.0% diet and a higher incidence of minimal bronchitis, tracheal inflammation, and lymph node congestion in males at the 2.0% level, no compound-related effects were observed (Holmes et al., 1978).

C.I. Acid Red 14 was selected for testing because of its widespread use and because previous studies for carcinogenicity of this compound were considered not definitve.

II. MATERIALS AND METHODS

A. Chemical

Textile grade C.I. Acid Red 14 (CAS No. 3567-69-9) -- 4-hydroxy-3-((4-sulfono-1-naphthaleny1)azo-1-naphthalenesulfonic acid, disodium salt -- was obtained from GAF (Linden, NJ) in two batches. Lot No. A77716 was used for the subchronic studies and the first 11 months of the chronic studies, and Lot No. A83650 was used for the final 13 months of the chronic studies.

Results of purity and identity analyses performed at Midwest Research Institute indicated that Lot No. A77716 was 71.4% dye (based on titration of the azo function), 7.4% water (based on a Karl Fisher analysis), and 11.7% sodium chloride (based on elemental analysis), although the values for sodium and sulfur were slightly higher than those calculated (Appendix E). Four trace or slight impurities were indicated by thin-layer chromatography and three impurities by high-pressure liquid chromatography. Lot No. A83650 was found to contain 67.3% dye, 7.48% water, 7.85% sodium chloride, and 12.21% sodium sulfate (calculated from elemental analysis); values for carbon and sodium were slightly higher than those calculated (Appendix F). A slight impurity was detected by thin-layer chromatography in two solvent systems, and a trace impurity with an area of 0.6% of the major peak was detected by high-pressure liquid chromatography. These impurities were not identified.

The infrared, ultraviolet, and nuclear magnetic resonance spectra were consistent with the structure. Since the percentages of the individual constituents of each batch do not add up to 100%, a theoretical composition was calculated for each batch (Appendix G). This calculation was based on the actual elemental analyses, the titration of the azo function, the Karl Fisher water analysis, and information about the manufacturing process.

The textile grade material, referred to in this report as C.I. Acid Red 14, was stored at $23^{\circ}+1^{\circ}$ C throughout the study.

B. Dietary Preparation

Feed samples containing 100,000 ppm C.I. Acid Red 14 were stable for 2 weeks at temperatures up to 45° C (Appendix I).

Test diets were formulated by mixing Purina[®] Laboratory Chow and the weighed amount of textile grade C.I. Acid Red 14 for 15 minutes in a Patterson-Kelly[®] twin-shell blender equipped with an intensifier bar. One-week supplies of each diet were prepared no more than 4 days before use and were stored at 23[°]C for no longer than 10 days. Control diets consisted of Purina[®] Laboratory Chow.

The concentration of C.I. Acid Red 14 in randomly selected batches of formulated diets was measured every 8 weeks and was found to be within $\pm 10\%$ of the desired concentration (Appendix H).

C. Animals

Fischer 344 rats and B6C3F1 mice were used in both the prechronic and the chronic studies. Four-week-old male rats, 3-week-old female rats, and 5-week-old mice were obtained from NCI Frederick Cancer Research Center, Frederick, Maryland, acclimated for 2 weeks, assigned randomly to cages, and these cages were randomly assigned to the various groups.

D. Animal Maintenance

Rats and mice were housed five per cage in solid-bottom polycarbonate cages (Table 1) supplied with DuPont 2024 spun bonded polyester filters and

Item	Specifications	Source	
Bedding	Absorb-dri [®] hardwood chips	Lab Products, Inc. (Garfield, NJ)	
Cages	Solid bottom, polycarbonate	Lab Products, Inc. (Garfield, NJ)	
Feed	Purina [®] meal Laboratory Chow	Ralston Purina Co. (Richmond, IN)	
Watering System	Edstrom Automatic	Edstrom Industries (Waterford, WI)	

Table 1. Specifications and Sources of Materials Used for Animal Maintenance

hardwood chip bedding. Cages and bedding were changed twice weekly and feed hoppers once weekly. Rat cages were changed three times per week for the final 15 months of the chronic study. Water was supplied by an automatic watering system, and the test diet for the dosed animals and feed for the controls were available <u>ad libitum</u>. Temperature in the animal rooms was 22 to 24^oC and the relative humidity was 45%-55%. Incoming air was passed through a filter equipped with an electrostatic precipitator. Animal rooms received at least 15 changes of air per hour. Fluorescent lighting was provided 12 hours per day.

Rats and mice fed C.I. Acid Red 14 were housed in the same room as animals of the same species on feeding studies of C.I. Acid Orange No. 10 (CAS 1936-15-8) and F D & C Yellow No. 6 (CAS 2783-94-0).

E. Single-Day Dosing and 14-Day Repeated Dose Studies

Single-day dosing and 14-day repeated-dose feed studies were conducted using F344 rats and B6C3F1 mice to determine the concentrations of C.I. Acid Red 14 to be used in the 90-day prechronic study.

In the single-day dosing study, groups of five males and five females of each species were fed diets containing 6,000, 12,500, 50,000, 100,000 or 200,000 ppm C.I. Acid Red 14 for 1 day and then 1ab chow for 13 days. All animals survived to the end of the 2-week test period. In the repeated-dose study, similar groups of rats and mice fed diets containing 6,000-100,000 ppm of the test chemical for 14 days also survived to the end of the test period (Tables 2 and 3); weight loss in male and female rats fed 100,000 ppm was the only compound-related effect observed.

F. 13-Week Study

Subchronic studies were conducted using F344 rats and B6C3F1 mice to determine the target organs and the concentrations to be used in the chronic

Dose			Mean Body	Weights (g	
(ppm)		Survival (a)	Initial	Final	Gain
Male					
6,0	00	5/5	137	138	1
12,5	00	5/5	134	160	26
25,0	00	5/5	142	153	11
50,0	00	5/5	139	146	7
100,0	00	5/5	142	134	-8
Female					
6,0	00	5/5	112	118	6
12,5		5/5	108	116	8
25,0		5/5	110	116	6
50,0		5/5	112	114	2
100,0		5/5	111	98.2	-12.8

Table 2.	Dosage, Survival, and Mean Body Weights of Rats Fed Diets
	Containing C.I. Acid Red 14 for 14 Days

(a) Number surviving/number per group

	Dose		Mean Body	v Weights (g	rams)
	(ppm)	Survival (a)	Initial	Final	Gain
Male	"# •		<u>, , , , , , , , , , , , , , , , , , , </u>		
	6,000	5/5	23.0	26.8	3.8
	12,500	5/5	21.8	25.6	3.8
	25,000	5/5	22.8	28.0	5.2
	50,000	5/5	22.4	25.2	2.8
	100,000	5/5	22.0	23.6	1.6
Female					
	6,000	5/5	19.0	20.0	1.0
	12,500	5/5	19.0	20.4	1.4
	25,000	5/5	18.2	20.2	2.0
	50,000	5/5	19.2	19.6	0.4
	100,000	5/5	19.4	19.2	-0.2

Table 3. Dosage, Survival, and Mean Body Weights of Mice Fed Diets Containing C.I. Acid Red 14 for 14 Days

.

(a) Number surviving/number per group

studies. Diets containing 0, 6,000, 12,500, 25,000, 50,000, or 100,000 ppm C.I. Acid Red 14 were fed for 13 weeks to groups of five males or five females of each species (Tables 4 and 5). Clinical observations were made twice daily and individual animals were weighed weekly. At the end of the 91-day study, survivors were killed, necropsies were performed on all animals, and tissues (see Section H) were taken for histopathologic analysis.

<u>Rats</u>: Two male rats died, one that received 12,500 ppm and one that received 100,000 ppm. No deaths occurred among the females. Mean weight gain in male rats was depressed 11.3% in the 12,500-ppm group, 9.2% in the 25,000-ppm group, and 23% and 28% in the 50,000 and 100,000-ppm groups, and less than 10% in all female rats. Toxic nephrosis of renal proximal convoluted tubules, considered to be compound related, was observed in male rats fed 25,000, 50,000, or 100,000 ppm and in female rats fed 100,000 ppm. Based on the histopathologic effects observed in the kidney during the subchronic study, doses selected for rats in the chronic studies were 6,000 and 12,500 ppm C.I. Acid Red 14 for males and 12,500 and 25,000 ppm for females.

<u>Mice</u>: Two male mice (one receiving 25,000 ppm and one receiving 50,000 ppm) and one female control mouse died. Mean weight gain was depressed 78% among male mice fed 100,000 ppm, 53% among females fed 12,500 ppm, 24% among females fed 50,000 ppm, and 76% among females fed 100,000 ppm.

Spleens of male mice fed 100,000 ppm were enlarged up to 1.5 times their normal size. A dose-related increase in extramedullary hematopoiesis and hemosiderosis was observed in mice of either sex.

A generalized, but not strictly dose-related, increase in lymphocytic cystitis and an active-chronic cystitis were seen in urinary bladders of mice of either sex (Table 6). Neither type of cystitis was observed in control mice.

Based on the findings of urinary bladder lesions in the subchronic studies, doses selected for the mice in the chronic studies were 3,000 and 6,000 ppm.

		Mean Body	Weights (gran	ns)	Weight Change Relative to
Dose (ppm)	Survival(a)	Initial	Final	Gain	Controls (%) (b)
	·				
<u>Male</u>					
0	10/10	95.2	290.6	195.4	
6,000	10/10	97.0	298.8	201.8	+3.2
12,500	9/10	98.6	272.0	173.4	-11.3
25,000	10/10	102.4	279.8	177.4	- 9.2
50,000	10/10	98.4	248.7	150.3	-23.1
100,000	9/10	87.3	228.1	140.8	-27.9
Female					
0	10/10	104.7	186.7	82.0	
6,000	10/10	99.7	182.7	83.0	+1.2
12,500	10/10	100.0	178.4	78.4	-4.4
25,000	10/10	96.2	175.5	79.3	-3.3
50,000	10/10	90.9	174.0	83.1	+1.3
100,000	10/10	88.7	164.0	75.3	-8.2

Table 4.	Dosage, Survival,	and Mean Body	Weights of Rats	Fed Diets
	Containing C.I. A	cid Red 14 for	13 Weeks	

(a) Number surviving/number group

(b) Weight change relative to controls =

Weight Gain (Dosed Group) - Weight Gain (Control Group) x 100 Weight Gain (Control Group)

_		Mean Body Weights (grams)			Weight Change Relative to	
Dose (ppm)	Survival(a)	Initial	Final	Gain	Controls (%) (b)	
Male		<u>, , , , , , , , , , , , , , , , , , , </u>				
0	10/10	18.5	29.4	10.9		
6,000	10/10	18.6	30.0	11.4	+4.6	
12,500	10/10	18.1	29.7	11.6	+6.4	
25,000	9/10	18.5	29.6	11.1	+1.8	
50,000	9/10	19.0	29.0	10.0	-8.3	
100,000	10/10	18.6	21.0	2.4	-78.0	
Female						
0	9/10	15.9	22.9	7.0		
6,000	10/10	16.0	23.6	7.6	+8.6	
12,500	10/10	16.0	19.3	3.3	-52.9	
25,000	10/10	16.4	22.9	6.5	-7.1	
50,000	10/10	16.7	22.0	5.3	-24.3	
100,000	10/10	16.7	18.4	1.7	-75.7	

Table 5. Dosage, Survival, and Mean Body Weights of Mice Fed Diets Containing C.I. Acid Red 14 for 13 Weeks

(a) Number surviving/number group

(b) Weight change relative to controls =

Weight Gain (Dosed Group) - Weight Gain (Control Group) x 100 Weight Gain (Control Group)

Dose (mg/kg)	Sex	Active-Chronic Cystitis (a)	Lymphocytic Cystitis (a)	
	М	0/8	0/8	
0	F	0/7	0/7	
	М	0/10	1/10	
6000	F	0/9	0/9	
	M	0/10	3/10	
12,500	F	0/8	6/8	
	М	0/9	4/9	
25,000	F	0/9	7/9	
<u> </u>	М	1/10	8/10	
50,000	F	1/10	8/10	
100.000	М	8/9	4/9	
100,000	F	5/10	5/10	

Table 6. Incidence of Lesions in the Urinary Bladders of Mice Fed Diets Containing C.I. Acid Red 14 for 13 Weeks

(a) <u>Number affected</u> Number examined

G. Chronic Studies

The test groups, doses administered, and durations of the chronic studies are shown in Table 7.

H. Clinical Examinations and Pathology

All animals were observed twice daily to discern sick or moribund animals. Clinical examination and palpation for masses were performed each month, and the animals were weighed at least monthly. Moribund animals and animals that survived to the end of the bioassay were killed with carbon dioxide and necropsied.

Gross and microscopic examinations were performed on major tissues, major organs, and all gross lesions from killed animals and from animals found dead. The tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. The following tissues were examined microscopically: skin (abdominal), lungs and bronchi, trachea, bone, bone marrow (femur) and thigh muscle, spleen, lymph nodes, thymus, heart, salivary glands, liver, pancreas, esophagus, stomach, gall bladder (mice), duodenum, jejunum, ileum, cecum, colon, kidney, urinary bladder, pituitary, adrenal, thyroid, parathyroid, testis, prostate, mammary gland, uterus, ovary, brain, epididymus, eye, and all tissue masses.

Necropsies were performed on all animals found dead, unless precluded in whole or in part by autolysis or cannibalization. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and does not necessarily represent the number of animals that were placed on study in each group.

	Initial			on Study
Test Group	No. of Animals	Dose (ppm)	Dosed (weeks)	Observed (weeks)
		<u></u>		
<u>Male Rats</u> Control	90 (a)	0	0	104
Low-Dose	50	6,000	103	1
High-Dose	50	12,500	103	1
Female Rats				
Control	90 (a)	0	0	104
Low-Dose	50	12,500	103	2
High-Dose	50	25,000	103	2
Male Mice				
Control	50	0	0	103
Low-Dose	50	3,000	103	1
High-Dose	50	6,000	103	1
Female Mice				
Control	50	0	0	104
Low-Dose	50	3,000	103	1
High-Dose	49	6,000	103	1

Table 7.	Experimental Design of Chronic Feeding Studies with
	C.I. Acid Red 14 in Rats and Mice

(a) Controls were shared with feeding studies of C.I. Acid Orange 10 and FD and C Yellow No. 6 which were conducted concurrently.

I. Data Recording and Statistical Analyses

Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, clinical observations, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969). Probabilities of survival were estimated by the product-limit procedure of Kaplan and Meier (1958) and are presented in this report in the form of graphs. Animals were statistically censored as of the time that they died of other than natural causes or were found to be missing; animals dying from natural causes were not statistically censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) extensions of Cox's methods for testing for a dose-related trend. One-tailed P values have been reported for all tests except the departure from linearity test, which is reported only when its two-tailed P value is less than 0.05.

The incidence of neoplastic or nonneoplastic lesions has been given as the ratio of the number of animals bearing such lesions at a specific anatomic site (numerator) to the number of animals in which that site is examined (denominator). In most instances, the denominators included only those animals for which that site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) before histologic sampling or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the numbers of animals necropsied.

The purpose of the statistical analyses of tumor incidence is to determine whether animals receiving the test chemical developed a significantly higher proportion of tumors than did the control animals. As a part of these analyses, the one-tailed Fisher exact test (Cox, 1970) was used to compare the tumor incidence of a control group with that of a group of dosed animals at each dose level. When the results from two dosed groups are compared simultaneously with that for a control group, a correction to

ensure an overall significance level of 0.05 may be made. The Bonferroni inequality criterion (Miller, 1966) requires that the P values for any comparison be less than or equal to 0.025. When this correction was used, it is discussed in the narrative section. It is not presented in the tables, where the Fischer exact P values are shown.

The Cochran-Armitage test for linear trend in proportions, with continuity correction (Armitage, 1971), was also used. Under the assumption of a linear trend, this test determines if the slope of the dose-response curve is different from zero at the one-tailed 0.05 level of significance. Unless otherwise noted, the direction of the significant trend is a positive dose relationship. This method also provides a two-tailed test of departure from linear trend.

A time-adjusted analysis was applied when numerous early deaths resulted from causes that were not associated with the formation of tumors. In this analysis, deaths that occurred before the first tumor was observed were excluded by basing the statistical tests on animals that survived at least 52 weeks, unless a tumor was found at the anatomic site of interest before week 52. When such an early tumor was found, comparisons were based exclusively on animals that survived at least as long as the animal in which the first tumor was found. Once this reduced set of data was obtained, the standard procedures for analyses of the incidence of tumors (Fisher exact tests, Cochran-Armitage tests, etc.) were followed. Life table methods were used to analyze the incidence of tumors. Curves of the proportions surviving without an observed tumor were computed as in Saffiotti et al. (1972). The week during which an animal died naturally or was killed was entered as the time point of tumor observation. The methods of Cox and of Tarone were used for the statistical tests of the groups. The statistical tests were one-tailed.

The approximate 95 percent confidence interval for the relative risk of each dosed group compared with its control was calculated from the exact interval on the odds ratio (Gart, 1971). The lower and upper limits of the confidence interval of the relative risk have been included in the tables of

statistical analyses. The interpretation of the limits is that, in approximately 95% of a large number of identical experiments, the true ratio of the risk in a dosed group of animals to that in a control group would be within the interval calculated from the experiment. When the lower limit of the confidence interval is greater than one, it can be inferred that a statistically significant result has occurred (P less than 0.025 one-tailed test when the control incidence is not zero, P less than 0.050 when the control incidence is zero). When the lower limit is less than unity but the upper limit is greater than unity, the lower limit indicates the absence of a significant result while the upper limit indicates that there is a theoretical possibility of the induction of tumors by the test chemical, which could not be detected under the conditions of this test.

Statistical analyses and interpretations of the Carcinogenesis Bioassay data, issues of false positivity and false negativity, and time-adjusted analyses of incidence rates are discussed in Gart et al. (1979). • .

III. RESULTS - RATS

A. Body Weights and Clinical Signs (Rats)

Mean body weights of dosed rats of either sex were comparable with those of the controls throughout most of the study (Figure 1). No compoundrelated clinical signs were observed.

B. Survival (Rats)

Estimates of the probabilities of survival of male and female rats fed diets containing C.I. Acid Red 14 at the concentrations of this bioassay, together with those of the control group, are shown by the Kaplan and Meier curves in Figure 2. The survival of the low-dose group of male rats was significantly greater than that of the controls (P=0.046) or of the high-dose group (P < 0.001). No significant differences were observed between the control and high-dose groups of male rats or between any groups of female rats. Fourteen low-dose and 2 high-dose male rats drowned as a result of a failure in the automatic watering system during the study. Animals accidentally killed were censored from the estimates of the probability of survival (Figure 2), but were included in other statistical analyses.

In male rats, 70/90 (78%) of the controls, 28/50 (56%) of the low-dose, and 30/50 (60%) of the high-dose lived to the termination period of the study at 104 weeks. In female rats, 66/88 (75%) of the controls, 41/50 (82%) of the low-dose, and 38/50 (76%) of the high-dose group lived to the termination period of the study at 104 weeks. These incidences include animals accidentally killed.

Figure 2. Survival Curves for Rats Fed Diets Containing C.I. Acid Red 14

C. Pathology (Rats)

Histopathologic findings on neoplasms in rats are summarized in Appendix A, Tables Al and A2; findings on nonneoplastic lesions are summarized in Appendix C, Tables Cl and C2. Only tumors of the uterus appeared to be associated with administration of C.I. Acid Red 14. The incidence of endometrial stromal polyps of the uterus in dosed females was increased relative to controls (high dose: 14/50, 28%; low dose: 11/50, 22%; and controls: 9/87, 10%); however, the incidence in the high-dose group is within the range observed in control groups of aging F344 female rats in this laboratory (65/286, 23%).

The various nonneoplastic lesions represented among both control and dosed animals have been encountered previously as spontaneous occurrences in aging laboratory rats. An increased incidence of adrenal cortical focal hyperplasias, characterized by focal collections of basophilic, eosinophilic, or vacuolated cells, was seen in high-dose rats of both sexes (males: 5/89, 6%; 6/49, 12%; 8/50, 16%; females: 7/86, 8%; 7/50, 14%; 18/50, 36%).

Results of histopathologic examination indicated that C.I. Acid Red 14 was not carcinogenic to male or female F344 rats under the conditions of this bioassay.

D. Statistical Analyses of Results (Rats)

Tables 8 and 9 contain the statistical analyses of those primary tumors that occurred in at least two animals of one group and with an incidence of at least 5% in one or more groups.

Endometrial stromal polyps of the uterus in female rats were observed in a statistically significant positive relation (9/87, 10% in the controls; 11/50, 22% in the low-dose; and 14/50, 28% in the high-dose). The Cochran-Armitage test for linear trend was statistically significant in the positive direction (P=0.006). The Fisher exact test between the high-dose

group and the control group was significant (P=0.008); no statistically significant increase was observed in the low-dose group when compared to the control rate, but this tumor occurred more frequently in the low-dose group compared with the control group. The historical incidence of endometrial stromal polyps in untreated F344 female rats at this laboratory is 23% (65/286), with a range of 10%-37%. Because the incidence of this tumor in the dosed group is similar to the historical control rate, the observed increase in this lesion is not regarded as being associated with the administration of C.I. Acid Red 14.

Lymphomas or leukemia of the hematopoietic system in female rats were observed in decreased incidence in the low-dose group compared with the other two groups. The Cochran-Armitage test for linear trend was not significant. The Fisher exact test between the low-dose group and the control group was significant (P=0.043). The value of P=0.043 is above the value of P=0.025 required by the Bonferroni inequality criterion for an overall significance of P=0.05 when two dosed groups are compared with a common control group. No significant incidence is observed in the high-dose group. In male rats, this tumor was not observed in statistically significant proportions.

Chromophobe adenomas or carcinomas of the pituitary in female rats were observed in decreased incidence in the low-dose group compared with the other two groups. The Cochran-Armitage test for linear trend was not significant, but there was a departure from linear trend due to decreased incidence in the low-dose group compared with the other two groups. The Fisher exact test between the low-dose group and the control group was significant (P=0.037), but this value of P=0.037 is above the value of P=0.025 required by the Bonferroni inequality criterion for an overall significance of P=0.05 when two dosed groups are compared with a common control group. No significant incidence was observed in the high-dose group. In male rats, this tumor was not observed in a statistically significant proportion.

Time-adjusted tests, eliminating those animals dying before 52 weeks, and life table analyses did not produce any additional evidence of carcinogenicity.

Based on the statistical analysis, there was no site at which an increase in tumor incidence could be associated with the administration of the chemical.

Topography: Morphology	Control	Low Dose	High Dose
Hematopoietic System: Lymphocytic Leukemia (b)	22/90(24)	7/50(14)	11/50(22)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.573 0.220 1.273	0.900 0.427 1.754
Weeks to First Observed Tumor	74	65	76
Hematopoietic System: Lymphomas or Leukemias (b)	23/90(26)	7/50(14)	11/50(22)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.548 0.212 1.208	0.861 0.410 1.664
Weeks to First Observed Tumor	20	65	76
Liver: Neoplastic Nodule (b)	5/90(6)	1/50(2)	2/49(4)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.360 0.008 3.079	0.735 0.072 4.276
Weeks to First Observed Tumor	104	104	104

Table 8. Analyses of the Incidence of Primary Tumors in Male Rats Fed Diets Containing C.I. Acid Red 14 (a)

Topography: Morphology	Control	Low Dose	High Dose
Liver: Neoplastic Nodule or Hepatocellular Carcinoma (b)	5/90(6)	3/50(6)	3/49(6)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.080 0.173 5.280	1.102 0.177 5.383
Weeks to First Observed Tumor	104	104	104
Pituitary: Chromophobe Adenoma (b)	4/84(5)	2/48(4)	4/50(8)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.875 0.081 5.831	1.680 0.325 8.594
Weeks to First Observed Tumor	104	98	89
Pituitary: Chromophobe Carcinoma (b)	1/84(1)	1/48(2)	3/50(6)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.750 0.023 134.531	5.040 0.416 259.132
Weeks to First Observed Tumor	104	104	104

Table 8. Analyses of the Incidence of Primary Tumors in Male Rats Fed Diets Containing C.I. Acid Red 14 (a)

Topography: Morphology	Control	Low Dose	High Dose
Pituitary: Chromophobe Adenoma or Carcinoma (b)	5/84(6)	3/48(6)	7/50(14)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.050 0.169 5.121	2.352 0.677 8.865
Weeks to First Observed Tumor	104	98	89
Adrenal: Pheochromocytoma (b)	11/89(12)	5/49(10)	3/50(6)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.826 0.236 2.402	0.485 0.090 1.727
Weeks to First Observed Tumor	86	79	89
Preputial Gland: Sebaceous Adenoma or Adenocarcinoma (b)	1/90(1)	0/50(0)	3/50(6)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.000 0.000 33.570	5.400 0.446 277.604
Weeks to First Observed Tumor	104		76

Table 8. Analyses of the Incidence of Primary Tumors in Male Rats Fed Diets Containing C.I. Acid Red 14 (a) (continued)

Topography: Morphology	Contro1	Low Dose	High Dose
Testis: Interstitial-Cell Tumor (b)	86/90 (96)	50/50(100)	47/50(94)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.047 0.970 1.047	0.984 0.900 1.060
Weeks to First Observed Tumor	74	65	72
Tunica Vaginalis: Sebaceous Adenoma or Adenocarcinoma (b) P Values (c),(d)	1/90(1) N.S	0/50(0) N.S.	3/50(6) N.S
Relative Risk (Control) (e) Lower Limit Upper Limit		0.000 0.000 33.570	5.400 0.446 277.604
Weeks to First Observed Tumor	104	ang ant	76
Tunica Vaginalis, Peritoneum, or Multiple Organs: Mesothelioma (b)	3/90(3)	0/50(0)	3/50(6)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.000 0.000 3.000	1.800 0.248 12.905
Weeks to First Observed Tumor	97		104

Table 8. Analyses of the Incidence of Primary Tumors in Male Rats Fed Diets Containing C.I. Acid Red 14 (a) (continued)

- (a) Dosed groups received doses of 6,000 or 12,500 ppm in the diet.
 (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates lower incidence in a dosed group than in a control group.
- (e) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

Topography: Morphology	Control	Low Dose	High Dose
Hematopoietic System: Lymphocytic Leukemia (b)	16/88(18)	4/50(8)	5/50(10)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.440 0.112 1.270	0.550 0.166 1.457
Weeks to First Observed Tumor	5	95	93
Hematopoietic System: Lymphomas or Leukemias (b)	18/88(20)	4/50(8)	6/50(12)
P Values (c),(d)	N.S.	P=0.043(N)	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.391 0.101 1.104	0.587 0.202 1.423
Weeks to First Observed Tumor	5	95	93
Pituitary: Chromophobe Adenoma (b)	25/83(30)	9/46(20)	15/49(31)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.650 0.290 1.296	1.016 0.550 1.783
Weeks to First Observed Tumor	81	94	82

Table 9. Analyses of the Incidence of Primary Tumors in Female Rats Fed Diets Containing C.I. Acid Red 14 (a)

Topography: Morphology	Control	Low Dose	High Dose
Pituitary: Chromophobe Carcinoma (b)	5/83(6)	0/46(0)	3/49(6)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.000 0.000 1.432	1.016 0.163 4.960
Weeks to First Observed Tumor	104		105
Pituitary: Chromophobe Adenoma or Carcinoma (b)	30/83(36)	9/46(20)	18/49(37)
P Values (c),(d)	N.S.	P=0.037(N)	N.S.
Departure from Linear Trend (f)	P=0.036		
Relative Risk (Control) (e) Lower Limit Upper Limit		0.541 0.247 1.050	1.016 0.597 1.653
Weeks to First Observed Tumor	81	94	82
Adrenal: Cortical Adenoma (b)	6/86(7)	3/50(6)	6/50(12)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.860 0.144 3.816	1.720 0.483 6.056
Weeks to First Observed Tumor	104	105	88

Table 9. Analyses of the Incidence of Primary Tumors in Female Rats Fed Diets Containing C.I. Acid Red 14 (a) (continued)

Topography: Morphology	Control	Low Dose	High Dose
Thyroid: C-Cell Carcinoma (b)	3/86(3)	1/49(2)	4/50(8)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.585 0.011 7.016	2.293 0.402 15.010
Weeks to First Observed Tumor	104	105	101
Mammary Gland: Fibroadenoma (b)	18/88(20)	7/50(14)	10/50(20)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.684 0.257 1.579	0.978 0.434 2.036
Weeks to First Observed Tumor	81	105	104
Clitoral Gland: Sebaceous Adenoma (b)	0/88(0)	0/50(0)	3/50(6)
P Values (c),(d)	P=0.015	N.S.	P=0.046
Relative Risk (Control) (e) Lower Limit Upper Limit			Infinite 1.047 Infinite
Weeks to First Observed Tumor			105

Table 9. Analyses of the Incidence of Primary Tumors in Female Rats Fed Diets Containing C.I. Acid Red 14 (a) (continued)

Topography: Morphology	Control	Low Dose	High Dose
Clitoral Gland: Sebaceous Adenoma or Squamous Cell Papilloma or Carcinoma (b)	1/88(1)	1/50(2)	3/50(6)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.760 0.023 135.430	5.280 0.436 271.440
Weeks to First Observed Tumor			105
Uterus: Endometrial Stromal Polyp (b)	9/87(10)	11/50(22)	14/50(28)
P Values (c),(d)	P=0.006	N.S.	P=0.008
Relative Risk (Control) (e) Lower Limit Upper Limit		2.127 0.857 5.359	2.707 1.176 6.499
Weeks to First Observed Tumor	88	95	100

Table 9. Analyses of the Incidence of Primary Tumors in Female Rats Fed Diets Containing C.I. Acid Red 14 (a)

(continued)

(a) Dosed groups received doses of 12,500 or 25,000 ppm in the diet.

- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates lower incidence in a dosed group than in a control group.
- (e) The 95 percent confidence interval of the relative risk between each dosed group and the control group.
- (f) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.

.

.

IV. RESULTS - MICE

A. Body Weights and Clinical Signs (Mice)

The mean body weight of the high-dose male mice was slightly lower than that of the controls throughout most of the study; the mean body weight of the high-dose female mice was comparable with that of the controls (Figure 3). No other compound-related clinical signs were observed.

B. Survival (Mice)

Estimates of the probabilities of survival of male and female mice administered C.I. Acid Red 14 in the diet at the concentrations of this bioassay, together with those of the control group, are shown by the Kaplan and Meier curves in Figure 4. There was no significant decrease in survival between any of the groups of male or female mice. The control female mice had lower survival than the dosed groups after 84 weeks.

In female mice, 33/50 (66%) of the control group, 39/50 (78%) of the low-dose group, and 41/50 (82%) of the high-dose group lived to the end of the study at 104 weeks. In male mice, 34/50 (68%) of the control group, 38/50 (76%) of the low-dose group, and 35/50 (70%) of the high-dose group lived to the end of the study at 103-104 weeks.

C. Pathology (Mice)

Histopathologic findings on neoplasms in mice are summarized in Appendix B, Tables Bl and B2; findings on nonneoplastic lesions are summarized in Appendix D, Tables Dl and D2. Each type of tumor

and the various nonneoplastic lesions represented among both control and dosed animals have been encountered previously as spontaneous occurrences in aging 2-year-old laboratory mice.

Results of histopathologic examination indicated that administration of C.I. Acid Red 14 to male or female B6C3F1 mice under the conditions of the bioassay was not associated with an increased incidence of any tumor type.

D. Statistical Analyses of Results (Mice)

Tables 10 and 11 contain the statistical analyses of those primary tumors that occurred in at least two animals of one group and with an incidence of at least 5% in one or more groups.

Chromophobe adenomas of the pituitary in female mice were observed in increased incidence in the high-dose group (0/36, 0% in the controls; 0/33, 0% in the low-dose; and 3/41, 7% in the high-dose). The Cochran-Armitage test for linear trend was statistically significant in the positive direction (P=0.049). The Fisher exact tests were not significant. In male mice, this tumor was not observed in statistically significant proportions. The historical records at this laboratory indicate this tumor was observed in 3/200 (1.5%) of the female mice.

Malignant lymphomas (histiocytic type) of the hematopoietic system in female mice were observed in decreased incidence in the high-dose group compared with the control group (9/50, 18% in the controls; 10/50, 20% in the low-dose; and 2/48, 4% in the high-dose). The Cochran-Armitage test for linear trend was statistically significant in the negative direction (P=0.036). The Fisher exact test between the high-dose group and the control group indicated a value of P=0.030, but this value is above the value of P=0.025 required by the Bonferroni inequality criterion for an overall significance of P=0.05 when two dosed groups are compared with a

common control group. In male mice, this tumor was not observed in statistically significant proportions.

In the male mice, six of the controls and four in each of the dosed groups died before 52 weeks. The analysis of male mice was repeated, eliminating those animals, and no significant results were observed. Only one of the control group and one of the high-dose female mice were lost to the study before 52 weeks; therefore, time-adjusted tests were not performed. Life table analyses did produce any additional evidence of not carcinogenicity.

The conclusion, based on statistical analysis, is that no increase in tumor incidence at any site is associated with the administration of the chemical.

Topography: Morphology	Control	Low Dose	High Dose
Subcutaneous Tissue:			
Fibrosarcoma (b)	3/49(6)	2/50(4)	5/50(10)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		0.653	1.633
Lower Limit		0.057	0.337
Upper Limit		5.457	10.018
Weeks to First Observed Tumor	61	88	93
Lung: Alveolar/Bronchiolar			
Adenoma (b)	4/46(9)	3/49(6)	4/50(8)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		0.704	0.920
Lower Limit		0.109	0.182
Upper Limit		3.940	4.670
Weeks to First Observed Tumor	103	99	88
Lung: Alveolar/Bronchiolar			
Adenoma or Carcinoma (b)	4/46(9)	4/49(8)	4/50(8)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		0.939	0.920
Lower Limit		0.185	0.182
Upper Limit		4.761	4.670
Weeks to First Observed Tumor	103	99	88

Table 10. Analyses of the Incidence of Primary Tumors in Male Mice Fed Diets Containing C.I. Acid Red 14 (a)

_

Topography: Morphology	Control	Low Dose	High Dose
Hematopoietic System:			
Malignant Lymphoma, Histiocytic Type (b)	1/49(2)	4/50(8)	4/50(8)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		3.920 0.407 188.989	3.920 0.407 188.989
Weeks to First Observed Tumor	102	80	72
Hematopoietic System: Malignant Lymphoma, NOS (b)	3/49(6)	2/50(4)	3/50(6)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.653 0.057 5.457	0.980 0.137 6.989
Weeks to First Observed Tumor	87	95	100
Hematopoietic System: Lymphomas (b)	6/49(12)	7/50(14)	9/50(18)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.143 0.355 3.831	1.920 0.507 4.652
Weeks to First Observed Tumor	86	80	72

Table 10. Analyses of the Incidence of Primary Tumors in Male Mice Fed Diets Containing C.I. Acid Red 14 (a) (continued)

Topography: Morphology	Control	Low Dose	High Dose
Hematopoietic System: Lymphomas or Leukemias (b)	7/49(14)	7/50(14)	10/50(20)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.980 0.317 3.032	1.400 0.525 3.988
Weeks to First Observed Tumor	86	80	72
Liver: Hepatocellular Adenoma (b)	6/48(13)	2/50(4)	10/50(20)
P Values (c),(d)	N.S.	N.S.	N.S.
Departure from Linear Trend (f)	P=0.031		
Relative Risk (Control) (e) Lower Limit Upper Limit		0.320 0.033 1.687	1.600 0.574 4.953
Weeks to First Observed Tumor	103	104	92
Liver: Hepatocellular Carcinoma (b)	10/48(21)	7/50(14)	6/50(12)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.672 0.236 1.792	0.576 0.186 1.607
Weeks to First Observed Tumor	103	82	93

Table 10. Analyses of the Incidence of Primary Tumors in Male Mice Fed Diets Containing C.I. Acid Red 14 (a)

(continued)

Topography: Morphology	Control	Low Dose	High Dose
Liver: Hepatocellular Adenoma or Carcinoma (b)	15/48(31)	9/50(18)	14/50(28)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.576 0.247 1.264	0.896 0.452 1.768
Weeks to First Observed Tumor	103	82	93

Table 10. Analyses of the Incidence of Primary Tumors in Male Mice Fed Diets Containing C.I. Acid Red 14 (a)

(continued)

(a) Dosed groups received doses of 3,000 or 6,000 ppm in the diet.

- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates lower incidence in a dosed group than in a control group.
- (e) The 95 percent confidence interval of the relative risk between each dosed group and the control group.
- (f) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.

Topography: Morphology	Control	Low Dose	High Dose
Subcutaneous Tissue:			
Fibrosarcoma (b)	3/50(6)	2/50(4)	1/48(2)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		0.667	0.347
Lower Limit		0.058	0.007
Upper Limit		5.570	4.143
Weeks to First Observed Tumor	85	93	104
Lung: Alveolar/Bronchiolar			
Adenoma (b)	1/50(2)	4/50(8)	3/48(6)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		4.000	3.125
Lower Limit		0.415	0.262
Upper Limit		192.805	160.536
Weeks to First Observed Tumor	104	87	104
Lung: Alveolar/Bronchiolar			
Carcinoma (b)	3/50(6)	0/50(0)	1/48(2)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		0.000	0.347
Lower Limit		0.000	0.007
Upper Limit		1.663	4.143
Weeks to First Observed Tumor	89		87

Table 11. Analyses of the Incidence of Primary Tumors in Female Mice Fed Diets Containing C.I. Acid Red 14 (a)

Topography: Morphology	Control	Low Dose	High Dose
Lung: Alveolar/Bronchiolar Adenoma or Carcinoma (b)	4/50(8)	4/50(8)	4/48(8)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.000 0.197 5.083	1.042 0.205 5.286
Weeks to First Observed Tumor	89	87	87
Hematopoietic System: Malignant Lymphoma, Histiocytic Type (b)	9/50(18)	10/50(20)	2/48(4)
P Values (c),(d)	P=0.036(N)	N.S.	P=0.030(N)
Relative Risk (Control) (e) Lower Limit Upper Limit		1.111 0.445 2.823	0.231 0.025 1.045
Weeks to First Observed Tumor	82	93	104
Hematopoietic System: Malignant Lymphoma, Lymphocytic Type (b)	2/50(4)	2/50(4)	3/48(6)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.000 0.075 13.326	1.563 0.187 18.028
Weeks to First Observed Tumor	76	85	104

Table 11. Analyses of the Incidence of Primary Tumors in Female Mice Fed Diets Containing C.I. Acid Red 14 (a) (continued)

Topography: Morphology	Control	Low Dose	High Dose
Hematopoietic System: Malignant Lymphoma, NOS (b)	0/50(0)	4/50(8)	2/48(4)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		Infinite 0.927 Infinite	Infinite 0.308 Infinite
Weeks to First Observed Tumor		104	87
Hematopoietic System: Lymphomas (b)	11/50(22)	15/50(30)	8/48(17)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.364 0.653 2.943	0.758 0.289 1.882
Weeks to First Observed Tumor	76	85	87
Hematopoietic System: Lymphomas or Leukemias (b)	11/50(22)	17/50(34)	8/48(17)
P Values (c),(d)	N.S.	N.S.	N.S.
Departure from Linear Trend (f)	P=0.049		
Relative Risk (Control) (e) Lower Limit Upper Limit		1.545 0.765 3.257	0.758 0.289 1.882
Weeks to First Observed Tumor	76	85	87

Table 11. Analyses of the Incidence of Primary Tumors in Female Mice Fed Diets Containing C.I. Acid Red 14 (a)

(continued)

Topography: Morphology	Control	Low Dose	High Dose
Circulatory System: Hemangiosarcoma (b)	3/50(6)	1/50(2)	2/48(4)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.333 0.006 3.983	0.694 0.060 5.794
Weeks to First Observed Tumor	101	104	90
Liver: Hepatocellular Carcinoma (b)	2/50(4)	4/50(8)	1/48(2)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		2.000 0.301 21.316	0.521 0.009 9.666
Weeks to First Observed Tumor	76	97	104
Liver: Hepatocellular Adenoma or Carcinoma (b)	3/50(6)	5/50(10)	2/48(4)
P Values (c),(d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.667 0.344 10.225	0.694 0.060 5.794
Weeks to First Observed Tumor	76	97	104

Table 11. Analyses of the Incidence of Primary Tumors in Female Mice Fed Diets Containing C.I. Acid Red 14 (a) (continued)

Topography: Morphology	Control	Low Dose	High Dose
Pituitary: Chromophobe Adenoma (b)	0/36(0)	0/33(0)	3/41(7)
P Values (c),(d)	P=0.049	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit			Infinite 0.534 Infinite
Weeks to First Observed Tumor			102

Table 11. Analyses of the Incidence of Primary Tumors in Female Mice Fed Diets Containing C.I. Acid Red 14 (a) (continued)

(a) Dosed groups received doses of 3,000 or 6,000 ppm in the diet.

- Number of tumor-bearing animals/number of animals examined at (Ъ) site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates lower incidence in a dosed group than in a control group.
- The 95 percent confidence interval of the relative risk between (e) each dosed group and the control group.
- (f) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.

V. DISCUSSION

Mean body weights of dosed rats of either sex and of dosed female mice were comparable with those of the controls. The mean body weight of highdose male mice was slightly lower than that of the controls. Microscopic renal lesions observed in the subchronic study in male rats fed 25,000 ppm or more and in females fed 100,000 ppm, and splenomegaly in male mice fed 100,000 ppm in the 90-day subchronic study, were not detected in the chronic study.

Survival of low-dose male rats was significantly longer than the survival in the high-dose or control groups. Because there was no appreciable loss in weight gain and because only minimal toxic effects were observed, rats and female mice may have been able to tolerate higher doses in the chronic study. Some nonneoplastic lesions observed in dosed rats of both sexes and in dosed female mice suggest, however, that the doses used approach the maximum tolerated doses. These lesions include focal hyperplasia and lipoidosis of the adrenal cortex in male rats, focal atrophy of the pancreatic acinus in female rats, and lymphoid hyperplasia of the spleen, hematopoiesis in the liver, and lymphoid hyperplasia of the submucosa of the urinary bladder in female mice.

Sebaceous adenomas of the clitoral gland in the female rats occurred in the high-dose group at an incidence significantly higher than that in the controls, but the Bonferroni inequality criterion for comparing two dosed groups with a single control was not met. Furthermore, when adenomas, papillomas and carcinomas of the clitoral gland are combined (high dose 3/50 6%, low dose, 1/50, 2%, control, 1/88 1%) there is no significant difference in incidences and the only carcinoma occurred in the control group.

The true significance of apparent increases in the incidences of clitoral and preputial gland neoplasms is difficult to interpret because only the glands with grossly observable masses were examined microscopically. Small lesions, not easily found during gross examination, could

have been missed. When this sampling technique was used, neoplasms of the clitoral gland were found in 50/2924 (1.7%) control F344 female rats used in the Bioassay Program. However, incidences of neoplasms of the clitoral or preputial glands of 8% to 11% have been reported in rats of the same strain and age (Coleman, et. al., 1977; Reznik and Reznik-Schuller, 1980). There-fore, the apparent increase in the incidences of clitoral gland neoplasms (control, 1/88, 1%; low-dose, 1/50, 2%; high-dose, 3/50, 6%) in this study is not regarded as being associated with compound administration.

Endometrial stromal polyps of the uterus occurred in 28% of the highdose female rats and at an incidence significantly higher (P=0.008) than that in the controls. However, the observed incidence of this tumor in the dosed groups was similar to the historical control rate at this laboratory (65/286, 23%) thus, the increased incidence of this lesion is not regarded as being associated with the administration of C.I. Acid Red 14.

Since feeding studies on C.I. Acid Orange 10 (NTP, 1982) and on FD&C Yellow No. 6 (NTP, 1981) were conducted in the same room as that on C.I. Acid Red 14, the results from these two experiments are given for comparative uses. Both chemicals were considered not carcinogenic for male and female F344 rats and B6C3F1 mice. Nonetheless, for male mice in the study of FD&C Yellow No. 6, there was a slight increase in the incidence of hepatocellular carcinomas (control: 13/50, 26%; low-dose: 22/48, 46%; high-dose: 16/50, 32%).

Chemical disposition studies were not done on this chemical, and none were located in the literature. Being a water-soluble, highly ionized azo dye, C.I. Acid Red 14 would most likely not be absorbed intact. The potential sulfonic acid metabolites generated from reductive cleavage of the azo linkage in the gastrointestinal tract would probably be absorbed and excreted later via the urine as conjugates. Metabolism studies should be undertaken to clarify the extent of abosorption of C.I. Acid Red 14 or its metabolites. Although previous <u>in vitro</u> mutagenicity studies (Garner and Nutman, 1977; Viola and Nosotti, 1978; and Brown et al., 1978) did not demonstrate a mutagenic effect, the preincubation procedures were oxidative and would be predicted to yield metabolites different from those produced by a system using anaerobic conditions similar to those encountered in the gastrointestinal tract.

The data from this bioassay, coupled with the results of previous long-term studies (Bonser et al., 1956; IARC, 1975; Mason et al., 1974; Holmes et al., 1978), support the finding that C.I. Acid Red 14 is not carcinogenic.

VI. CONCLUSION

Under the conditions of this bioassay, C.I. Acid Red 14 was not carcinogenic for F344 rats or B6C3F1 mice of either sex.

VII. BIBLIOGRAPHY

Armitage, P., <u>Statistical Methods</u> in <u>Medical Research</u>, John Wiley & Sons, Inc., New York, 1971, pp. 362-365.

Berenblum, I., ed., <u>Carcinogenicity Testing</u>: <u>A Report of the Panel on Car-</u> <u>cinogenicity of the Cancer Research Commission of UICC</u>, <u>Vol. 2</u>, <u>Inter-</u> national Union Against Cancer, Geneva, 1969.

Bonser, G.M., Clayson, D.B., and Jull, J.W., The induction of tumours of the subcutaneous tissues, liver and intestine in the mouse by certain dyestuffs and their intermediates. Br. J. Cancer 10: 653-667, 1956.

British Standards Institution. Methods for the analysis of water-soluble coal-tar dyes permitted for use in foods. London, 1960, BS3210:1960.

Brown, J., Roehm, G., and Brown, R., Mutagenicity testing of certified food colors and related azo, xanthene and triphenylmethane dyes with the Salmonella/microsome system. <u>Mutat. Res.</u> 56:249-271, 1978.

CFR, U.S. Code of Federal Regulations 21:8.510, 1974.

Coleman, G., Barthold, S., Osbaldistow, G., Foster, S., Jonas, A., Pathological changes during aging in barrier-reared F344 male rats. J. <u>Gerontol</u>. 32: 258-278, 1977.

Cox, D.R., <u>Analysis of Binary Data</u>, Methuen & Co., Ltd., London, 1970, pp. 48-52.

Cox, D.R., Regression models and life tables. J. R. Stat. Soc. <u>B34</u>:187-220, 1972.

FAO/WHO Joint Expert Committee on Food Additives. Specifications for identity and purity and toxicological evaluation of food colours,

FAO Nutr. Mtgs. Rep. Ser. No. 38B, WHO/Food Add. /66.25, 1966, p. 106.

Garner, R. and Nutman, C., Testing of some azo dyes and their reduction products for mutagenicity using <u>Salmonella</u> typhimurium TA 1538. <u>Mutat.</u> <u>Res.</u> 44:9-19, 1977.

Gart, J. J., The comparison of proportions: a review of significance tests, confidence limits and adjustments for stratification. <u>Rev. Int. Stat. Inst.</u> 39:148-169, 1971.

Gart, J. J., Chu, K., and Tarone, R., Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62: 957-974, 1979.

Gaunt, I., Farmer, M., Grasso, P., and Gangolli, S., Acute (mouse and rat) and short-term (rat) toxicity studies on carmoisine. Food Cosmet. Toxicol. 5:179-185, 1967.

Holmes, P.A., Pritchard, A.B., and Kirschman, J.C., A one year feeding study with carmoisine in rats. Toxicology 10:185-193, 1978.

Horowitz, W., Ed., Official Methods of Analysis of the Association of the Analytical Chemists, 12th ed., Association of Official Analytical Chemists, Washington, D.C., 1975, pp. 636-637, 34.017-34.019.

IARC, IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man, Some aromatic azo compounds. Lyon, France: International Agency for Research on Cancer. Vol. 8:83-89, 1975.

Jones, A. V. and Thomas, J. D. R., J. Food Technol. 3:1, 1968.

Kaplan, E. L. and Meier, P., Nonparametric estimation from incomplete observations. J. Amer. Stat. Assoc. 53:457-481, 1958.

Linhart, M. S., Cooper, J. A., Martin, R. L., Page, N. P., and Peters, J. A., Carcinogenesis bioassay data system. Comp. Biomed. Res. 7:230-248, 1974.

Mason, P.L., Gaunt, I.F., Butterworth, K.R., Hardy, J., Kiss, I.S., and Grasso, P., Long-term toxicity studies of carmoisine in mice. Food Cosmet. Toxicol. 12:601-607, 1974.

Miller, R. G., Jr., <u>Simultaneous</u> <u>Statistical</u> <u>Inference</u>, McGraw-Hill Book Co., New York, 1966, pp. 6-10.

NTP, National Toxicology Program. NTP Technical report on the carcinogenesis bioassay of C.I. Acid Orange 10, NTP TR211, Carcinogenesis Testing Program, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Md., 1982.

NTP National Toxicology Program. NTP Technical report on the carcinogenesis bioassay of FD&C Yellow No. 6, NTP TR208, Carcinogenesis Testing Program, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Md., 1981.

Pellerin, F., Gautier, J. A., and Kiger, J. G., Ann. Pharm. Fr. 21:355, 1963.

Reznik, G., Reznik-Schuller, H., Pathology of clitoral and preputial glands in aging F344 rats. Lab. Animal Science 30(5):845-849, 1980.

Saffiotti, U., Montesano, R., Sellakumar, A.R., Cefis, F., and Kaufman, D.G., Respiratory tract carcinogenesis in hamsters induced by different numbers of administrations of benzo(a)pyrene and ferric oxide. <u>Cancer Res.</u> 32:1073-81, 1972.
Society of Dyers and Colourists, <u>Colour</u> <u>Index</u>. The Society of Dyers and Colourists, Bradford, England, 1971; <u>Vol.</u> <u>2</u>, p. 2776; <u>Vol.</u> <u>3</u>, p. 3131; <u>Vol.</u> <u>4</u>, p. 4068.

Tarone, R. E., Tests for trend in life table analysis. <u>Biometrika</u> 62:679-682, 1975.

USITC, United States International Trade Commission, <u>Synthetic Organic</u> <u>Chemicals</u>--United States Production and Sales 1978, USITC <u>Publication 1001</u>, U.S. Government Printing Office, Washington, D.C., 1979.

Viola, M. and Nosotti, A., Applicazione del test di Ames su alcuni coloranti. Boll. Chim. Farm. 117:402-415, 1978.

Ward, J. M., Goodman, D. G., Griesemer, R. A., Hardisty, J. F., Schueler, R. L., Squire, R. A., and Strandberg, J. D., Quality assurance for pathology in rodent carcinogenesis tests. J. Environ. Path. Toxicol. 2:371-378, 1978.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS FED DIETS CONTAINING C.I. ACID RED 14

TABLE A1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS FED DIETS CONTAINING C.I. ACID RED 14

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	90 90 90	50 50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN SQUAMOUS CELL PAPILLOMA SEBACEOUS ADENOMA KERATOACANTHOMA FIBROMA	(90) 3 (3%) 1 (1%) 1 (1%)	(50)	(50) 1 (2%)
*SUBCUT TISSUE FIBROMA FIBROSARCOMA	(90) 4 (4%) 1 (1%)	(50) 1 (2%)	(50) 1 (2%)
RESPIRATORY SYSTEM			
#LUNG HEPATOCELLULAR CARCINOMA, METAST ALVEOLAR/BRONCHIOLAR CARCINOMA CORTICAL CARCINOMA, METASTATIC PHEOCHROMOCYTOMA, METASTATIC FIBROSARCOMA, METASTATIC		(49) 1 (2%) 2 (4%) 1 (2%)	(50) 1 (2%)
OSTEOSARCOMA, METASTATIC	1 (1%)		1 (2%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS	(90)	(50)	(50)
MALIG.LYMPHOMA, HISTIOCYTIC TYPE Lymphocytic leukemia	21 (23%)	6 (12%)	11 (22%)
#BONE MARROW OSTEOMA	(84) 1 (1%)	(49)	(47)
#SPLEEN ISLET-CELL CARCINOMA, METASTATIC	(90)	(50)	(49) <u>1 (2%)</u>

	CONTROL	LOW DOSE	HIGH DOSE
LYMPHOCYTIC LEUKEMIA	1 (1%)	1 (2%)	
#MANDIBULAR L. NODE Squamous cell carcinoma, metasta	(89)	(48) 1 (2%)	(44)
#LYMPH NODE OF THORAX INTERSTITIAL-CELL TUMOR, METASTA	(89) 1. (1%)	(48)	(44)
LEIOMYOSARCOMA, METASTATIC	(89) 1 (1%)	(48)	(44) 1 (2%)
CIRCULATORY SYSTEM			
#HEART ALVEOLAR/BRONCHIOLAR CA, INVASIV Nonchromaffin Paraganglioma	(90) 1 (1%) 1 (1%)	(50)	(50)
		1 (2%)	1 (2%)
DIGESTIVE SYSTEM			
*INTESTINAL TRACT Mucinous adenocarcinoma	(90)	(50)	(50)
LEIOMYOSARCOMA			1 (2%)
#SALIVARY GLAND MIXED TUMOR, MALIGNANT	(89) 1 (1%)	(50)	(50)
#LIVER NEOPLASTIC NODULE	(90) 5 (6%)	(50) 1 (2%)	(49) 2 (4%)
HEPATOCELLULAR CARCINOMA Fibrosarcoma, metastatic	1 (1%)	2 (4%)	2 (4%)
#PANCREAS CORTICAL CARCINOMA, METASTATIC	(88)	(47) 1 (2%)	(49)
LEIOMYOSARCOMA, INVASIVE			2 (4%)
#GASTRIC SEROSA NEOPLASM, NOS	(87)	(50)	(48) 1 (2%)
#CARDIAC STOMACH Squamous cell papilloma	(87) 1 (1%)	(50)	(48)
#LARGE INTESTINE LEIDHYOSARCOMA	(87)	(47)	(46) <u>1 (2%)</u>

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
#COLON Adenomatous Polyp, Nos	(87) 1 (1%)	(47)	(46)
URINARY SYSTEM			
#KIDNEY TUBULAR-CELL ADENOMA CORTICAL CARCINOMA, METASTATIC	(90)	(50) 1 (2%) 1 (2%)	(50)
ENDOCRINE SYSTEM			
#PITUITARY ADENOMA, NOS CHROMOPHOBE ADENOMA CHROMOPHOBE CARCINOMA ACIDOPHIL ADENOMA	1 (1%)	(48) 2 (4%) 1 (2%)	
#ADRENAL CORTICAL ADENOMA CORTICAL CARCINOMA PHEOCHROMOCYTOMA PHEOCHROMOCYTOMA, MALIGNANT	(89) 3 (3%) 11 (12%) 3 (3%)	(49) 1 (2%) 1 (2%) 5 (10%)	(50) 1 (2%) 1 (2%) 3 (6%)
<pre>#THYROID FOLLICULAR-CELL ADENOMA FOLLICULAR-CELL CARCINOMA C-CELL CARCINOMA</pre>	(89) 2 (2%) 2 (2%) 2 (2%) 2 (2%)	(49) 1 (2%)	(50) 1 (2%) 2 (4%)
#PANCREATIC ISLETS ISLET~CELL CARCINOMA	(88) 3 (3%)	(47) 1 (2%)	(49) 2 (4%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND FIBROADENOMA	(90) 2 (2%)	(50)	(50) 1 (2%)
*PREPUTIAL GLAND Sebaceous adenoma Sebaceous adenocarcinoma	(90)	(50)	(50) 1 (2%) 2 (4%)
#TESTIS CORTICAL CARCINOMA, METASTATIC	(90)	(50) 1 (2%)	(50)

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED) ______

	CONTROL	LOW DOSE	HIGH DOSE
INTERSTITIAL-CELL TUMOR INTERSTITIAL-CELL TUMOR, MALIGNA	86 (96%) 1 (1%)	50 (100%)	47 (94%)
NERVOUS SYSTEM			
#CEREBRUM ASTROCYTOMA	(90) 1 (1%)	(50)	(50)
#BRAIN SQUAMOUS CELL CARCINOMA, METASTA	(90)	(50)	(50)
CHROMOPHOBE CARCINOMA, INVASIVE ASTROCYTOMA OLIGODENDROGLIOMA	1 (1%)		1 (2%)
SPECIAL SENSE ORGANS			
SEBACEDUS ADENDCARCINOMA		(50)	(50) 1 (2%)
MUSCULOSKELETAL SYSTEM			
*FEMUR OSTEOSARCOMA	(90)	(50)	(50) 1 (2%)
*INTERCOSTAL MUSCLE Alveolar/bronchiolar ca, invasiv	(90) 1 (1%)	(50)	(50)
BODY CAVITIES			
*PERITONEUM MESOTHELIOMA, MALIGNANT	(90) 1 (1%)	(50)	(50)
<pre>*MESENTERY LEIOMYOSARCOMA, INVASIVE</pre>	(90)	(50)	(50) 2 (4%)
<pre>*TUNICA VAGINALIS CORTICAL CARCINOMA, METASTATIC</pre>	(90)	(50)	(50)
MESOTHELIOMA, NOS			3 (6%)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS MESOTHELIONA, NOS	(90)	(50)	(50)

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
MESOTHELIOMA, MALIGNANT	1 (1%)		
NIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY Natural deathg Moribund sacrifice	90 9 11	50 7 1	50 12 6
SCHEDULED SACRIFICE TERMINAL SACRIFICE DOSING ACCIDENT	70	28	30
ACCIDENTALLY KILLED, NDA ACCIDENTALLY KILLED, NOS ANIMAL MISSING ANIMAL MISSEXED OTHER CASES		14	2
) INCLUDES AUTOLYZED ANIMALS			
UMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* Total primary tumors	90 175	50 79	49 95
TOTAL ANIMALS WITH BENIGN TUMORS Total benign tumors	86 124	50 61	48 60
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	40 45	13 17	27 29
TOTAL ANIMALS WITH SECONDARY TUMORS Total secondary tumors	† 4 7	3 8	5 8
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or malignant Total uncertain tumors	- 6 6	1	6 6
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			
<pre> PRIMARY TUMORS: ALL TUMORS EXCEPT SE SECONDARY TUMORS: METASTATIC TUMORS </pre>			ADJACENT ORG

TABLE A2.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS FED DIETS
CONTAINING C.I. ACID RED 14

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS MISSING	90 2	50	50
ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	88	50 50	50 50
INTEGUMENTARY SYSTEM			
*SKIN SQUAMOUS CELL PAPILLOMA BASAL-CELL CARCINOMA	(88)	(50) 1 (2%)	(50) 1 (2%)
*SUBCUT TISSUE FIBROMA	(88) 2 (2%)	(50) 1 (2%)	(50)
RESPIRATORY SYSTEM			
#LUNG SQUAMOUS CELL CARCINOMA, METASTA CORTICAL CARCINOMA, METASTATIC		(48)	(50) 1 (2%) 1 (2%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS Malighant Lymphoma, nos Malig.lymphoma, undiffer-type	(88) 2 (2%)	(50)	(50) 1 (2%)
LYMPHOCYTIC LEUKEMIA	14 (16%)	4 (8%)	5 (10%)
#SPLEEN LYMPHOCYTIC LEUKEMIA	(88) 2 (2%)	(50)	(50)
#BRONCHIAL LYMPH NODE Cortical carcinoma, metastatic	(86)	(43)	(45) 1 (2%)
<pre>#RENAL LYMPH NODE TRANSITIONAL-CELL CARCINOMA, MET</pre>	(86)	(43)	(45)
CIRCULATORY SYSTEM			
#SPLEEN ANGIOSARCOMA	(88)	(50)	(50) 1 (2%)

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
#BRONCHIAL LYMPH NODE Hemangiosarcoma, metastatic	(86)	(43) 1 (2%)	(45)
#LUNG Hemangiosarcoma, metastatic	(88)	(48) 1 (2%)	(50)
*PLEURA HEMANGIOSARCOMA	(88)	(50) 1 (2%)	(50)
*MEDIASTINAL PLEURA HEMANGIOSARCOMA, METASTATIC	(88)	(50) 1 (2%)	(50)
#HEART NEURILEMOMA, MALIGNANT	(88) 1 (1%)	(49)	(48)
DIGESTIVE SYSTEM			
#LIVER NEOPLASTIC NODULE	(88) 3 (3%)	(50) 1 (2%)	(50) 1 (2%)
#JEJUNUM FIBROSARCOMA	(85)	(48) 1 (2%)	(48)
#ILEUM FIBROSARCOMA	(85)	(48)	(48) 1 (2%)
JRINARY SYSTEM			
#KIDNEY/PELVIS TRANSITIONAL-CELL CARCINOMA	(88) 1 (1%)	(50)	(50)
#URINARY BLADDER LEIOMYOSARCOMA, INVASIVE	(80)	(45)	(48) 1 (2%)
ENDOCRINE SYSTEM			
<pre>#PITUITARY CHROMOPHOBE ADENOMA CHROMOPHOBE CARCINOMA ACIDOPHIL ADENOMA ACIDOPHIL CARCINOMA</pre>	(83) 25 (30%) 5 (6%)	(46) 9 (20%) 1 (2%) 1 (2%)	(49) 15 (31%) 3 (6%)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

69

	CONTROL	LOW DOSE	HIGH DOSE
#ADRENAL Cortical Adengma Cortical Carcingma Pheochromocytoma Pheochromocytoma, Malignant	(26) 6 (7%) 1 (1%) 3 (3%) 1 (1%)	(50) 3 (6%) 1 (2%) 1 (2%)	(50) 6 (12%) 1 (2%) 2 (4%)
#THYROID Follicular-cell adenoma C-cell carcinoma	(86) 1 (1%) 3 (3%)	(49) 1 (2%)	(50) 1 (2%) 4 (8%)
<pre>#PANCREATIC ISLETS ISLET-CELL CARCINOMA</pre>	(83) 1 (1%)	(48) 1 (2%)	(50) 1 (2%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND Adenoma, Hos Adenocarcinoma, Hos Cystadenoma, Hos Acinar-Cell Adenoma Fibroadenoma	(38) 2 (2%) 2 (2%) 18 (20%)	(50) 1 (2%) 1 (2%) 7 (14%)	(50) 2 (4%) 1 (2%) 1 (2%) 10 (20%)
*CLITORAL GLAND Squamous cell papilloma Sebaceous adenoma	(88)	(50) 1 (2%)	(50) 3 (6%)
SQUAMOUS CELL CARCINOMA	1 (1%)		
*VAGINA FIBROMA	(88) 1 (1%)	(50)	(50)
#UTERUS LEIOMYOSARCOMA ENDOMETRIAL STROMAL POLYP	(87) 9 (10%)	(50) 2 (4%) 11 (22%)	(50) 1 (2%) 14 (28%)
NERVOUS SYSTEM			
#BRAIN Chromophobe Carcinoma, invasive Ependymoma Astrocytoma	(88)	(50)	(50) 1 (2%) <u>1 (2%)</u>

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)	

	CONTROL	LOW DOSE	HIGH DOSE
SPECIAL SENSE ORGANS			
*ZYMBAL'S GLAND Squamous Cell Carcinoma		(50)	1 (2%)
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
*MESENTERY CORTICAL CARCINOMA, METASTATIC	(88)	(50)	(50) 1 (2%)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS Sarcoma, NOS	(88) 1 (1%)	(50)	(50)
FACE Squamdus Cell Carcinoma		1	
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHЭ MORIBUND SACRIFICE SCHEDULED SACRIFICE	90 11 11	50 4 5	50 8 4
ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	66 2	4 1	38
a INCLUDES AUTOLYZED ANIMALS			

	CONTROL	LOW DOSE	HIGH DOSE
UMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	68 106	34 52	44 77
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	50 67	26 37	32 54
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	33 36	13 14	19 22
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS	1 1	1 3	4 6
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or malignant Total Uncertain Tumors	3 3	1 1	1
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			
PRIMARY TUMORS: ALL TUMORS EXCEPT SE SECONDARY TUMORS: METASTATIC TUMORS			JACENT ORGAN

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE FED DIETS CONTAINING C.I. ACID RED 14

•

TABLE B1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE FED DIETS CONTAINING C.I. ACID RED 14

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 49 48	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN FIBROMA FIBROSARCOMA	(49)	(50)	(50) 1 (2%) 1 (2%)
*SUBCUT TISSUE Sarcoma, nos Fibroma	(49) 1 (2%)	(50) 1 (2%)	(50) 2 (4%) 2 (4%)
FIBROSARCOMA OSTEOSARCOMA	3 (6%)	2 (4%) 1 (2%)	5 (10%)
RESPIRATORY SYSTEM			
#LUNG HEPATOCELLULAR CARCINOMA, METAST ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA SARCOMA, NOS, METASTATIC	(46) 1 (2%) 4 (9%)	(49) 2 (4%) 3 (6%) 1 (2%) 1 (2%)	(50) 1 (2%) 4 (8%) 1 (2%)
HEMATOPOIETIC SYSTEM			
<pre>*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS MALIG.LYMPHOMA, UNDIFFER-TYPE MALIG.LYMPHOMA, LYMPHOCYTIC TYPE MALIG.LYMPHOMA, HISTIOCYTIC TYPE MALIGNANT LYMPHOMA, MIXED TYPE LYMPHOCYTIC LEUKEMIA</pre>	(49) 1 (2%) 1 (2%)	(50) 1 (2%)	(50)
	1 (2%)	2 (4%) 1 (2%)	1 (2%) 2 (4%) 1 (2%) 1 (2%)
#SPLEEN MALIGNANT LYMPHOMA, NOS MALIG.LYMPHOMA, LYMPHOCYTIC TYPE	(45) 1 (2%)	(49)	(50) 3 (6%) 1 (2%)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

75

TABLE B1, MALE MICE: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSI
#LYMPH NODE Malig.lymphoma, histiocytic type	(36)	(39) 2 (5%)	(38)
#BRONCHIAL LYMPH NODE Malignant Lymphoma, Nos	(36) 1 (3%)	(39)	(38)
#MESENTERIC L. NODE Malig.lymphoma, histiocytic type	(36)	(39)	(38) 2 (5%)
#PEYER'S PATCH Malignant Lymphoma, NOS Malignant Lymphoma, Mixed Type	(40) 1 (3%)	(49) 1 (2%)	(45)
CIRCULATORY SYSTEM			
#BONE MARROW Angiosarcoma, metastatic	(46)	(49) 1 (2%)	(46)
#SPLEEN Angiosarcoma	(45)	(49) 1 (2%)	(50)
#LIVER HEMANGIOSARCOMA ANGIOSARCOMA	(48) 2 (4%)	(50) 1 (2%) 1 (2%)	(50)
DIGESTIVE SYSTEM			
BTLE DUCT CARCINOMA	(48) 6 (13%) 10 (21%)	(50) 1 (2%) 2 (4%) 7 (14%) 1 (2%)	(50) 10 (20%) 6 (12%)
#STOMACH ADENOMA, NOS		(49)	(46) 2 (4%)
URINARY SYSTEM			
#KIDNEY HEPATOCELLULAR CARCINOMA, METAST	(48) 1 (2%)	(50)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
ENDOCRINE SYSTEM			
#ADRENAL Cortical Adenoma	(46) 2 (4%)	(47) 1 (2%)	(46) 2 (4%)
#ADRENAL/CAPSULE ADENOMA, NOS	(46) 2 (4%)	(47)	(46)
#THYROID Follicular-cell Adenoma Papillary cystadenoma, nos	(44)	(49) 2 (4%)	(44) 1 (2%)
#PANCREATIC ISLETS ISLET-CELL ADENOMA	(46) 1 (2%)	(48)	(48)
REPRODUCTIVE SYSTEM			
#TESTIS INTERSTITIAL-CELL TUMOR	(47)	(50) 1 (2%)	(49)
NERVOUS SYSTEM			
NONE			
SPECIAL SENSE ORGANS NONE			
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
*MEDIASTINUM SARCOMA, NOS, METASTATIC		(50)	(50) 1 (2%)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS Alveolar/bronchiolar ca, metasta	(49)	(50)	(50)

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
FIBROSARCOMA, METASTATIC	1 (2%)		
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ MORIBUND SACRIFICE SCHEDULED SACRIFICE ACCIDENTALLY KILLED	50 15 1	50 10 2	50 13 2
TERMINAL SACRIFICE Animal missing	34	38	35
a INCLUDES AUTOLYZED ANIMALS			
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	31 38	28 33	31 47
TOTAL ANIMALS WITH BENIGN TUMORS Total Benign Tumors	13 15	9	19 22
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	21 23	2 1 24	2 1 25
TOTAL ANIMALS WITH SECONDARY TUMORS Total secondary tumors	2 3	5 5	2 3
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or malignant Total uncertain tumors			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Primary or metastatic Total uncertain tumors			
* PRIMARY TUMORS: ALL TUMORS EXCEPT SE # SECONDARY TUMORS: METASTATIC TUMORS			JACENT ORGAN

TABLE B1, MALE MICE: NEOPLASMS (CONTINUED)

TABLE B2.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE FED DIETS **CONTAINING C.I. ACID RED 14**

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50 50	50 50 50 50	50 48 48
INTEGUMENTARY SYSTEM			
*SKIN FIBROSARCOMA	(50) 1 (2%)	(50)	(48)
*SUBCUT TISSUE FIBROSARCOMA OSTEOSARCOMA	(50) 3 (6%)		(48) 1 (2%)
RESPIRATORY SYSTEM			
#LUNG ADENOCARCINOMA, NOS, METASTATIC ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA ADENOSQUAMOUS CARCINOMA, METASTA OSTEOSARCOMA, METASTATIC	1 (2%) 3 (6%)	(50) 4 (8%) 1 (2%) 1 (2%)	(48) 3 (6%) 1 (2%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS MALIG.LYMPHOMA, LYMPHOCYTIC TYPE MALIG.LYMPHOMA, HISTIOCYTIC TYPE MALIGNANT LYMPHOMA, MIXED TYPE LYMPHOCYTIC LEUKEMIA	(50) 2 (4%) 9 (18%)	3 (6%) 1 (2%)	(48) 1 (2%) 2 (4%) 1 (2%)
#SPLEEN MALIG.LYMPHOMA, HISTIOCYTIC TYPE	(48)	(50) 1 (2%)	(48)
#LYMPH NODE Malignant Lymphoma, Nos Malig.lymphoma, Lymphocytic type	(41)	(38)	(37) 1 (3%)

	CONTROL	LOW DOSE	HIGH DOSE
#MANDIBULAR L. NODE Malig.lymphoma, lymphocytic type	(41)	(38)	(37) 1 (3%)
<pre>#PANCREATIC L.NODE MALIG.LYMPHOMA, HISTIOCYTIC TYPE</pre>	(41)	(38) 1 (3%)	(37)
<pre>#PEYER'S PATCH MALIGNANT LYMPHOMA, NOS</pre>	(44)	(47)	(45) 1 (2%)
#THYMUS OSTEOSARCOMA, METASTATIC MALIGNANT LYMPHOMA, NOS MALIG.LYMPHOMA, LYMPHOCYTIC TYPE	(35) 1 (3%)	(39)	(42)
CIRCULATORY SYSTEM			
*SUBCUT TISSUE HEMANGIOSARCOMA	(50) 2 (4%)	(50)	(48)
#SPLEEN Hemangiosarcoma	(48)	(50) 1 (2%)	(48) 1 (2%)
#LIVER HEMANGIOSARCOMA ANGIOSARCOMA	(50) 1 (2%) 1 (2%)	(50)	(48) 1 (2%)
#UTERUS HEMANGIOMA	(49)	(49)	(48) 1 (2%)
#OVARY HEMANGIOMA	(45)	(47)	(44) 1 (2%)
DIGESTIVE SYSTEM			
#LIVER HEPATOCELLULAR ADENOMA HEPATOCELLULAR CARCINOMA OSTEOSARCOMA, METASTATIC	(50) 1 (2%) 2 (4%) 1 (2%)	(50) 1 (2%) 4 (8%)	(48) 1 (2%) 1 (2%)
#CARDIAC STOMACH Squamous cell papilloma	(50)	(48)	(48) 1 (2%)

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED) _____

NONE

	CONTROL	LOW DOSE	HIGH DOSE
ENDOCRINE SYSTEM			
#PITUITARY Adenoma, Nos Chromophobe Adenoma	(36) 1 (3%)	(33)	(41) 3 (7%)
#ADRENAL CORTICAL ADENOMA PHEOCHROMOCYTOMA PHEOCHROMOCYTOMA, MALIGNANT	(46) 1 (2%) 1 (2%)	(48)	(48)
#ADRENAL/CAPSULE ADENOMA, NOS	(46) 1 (2%)	(48)	(48)
#THYROID FOLLICULAR-CELL ADENOMA FOLLICULAR-CELL CARCINOMA	(48) 1 (2%)	(49) 2 (4%)	(48) 1 (2%) 1 (2%)
#THYROID FOLLICLE CYSTADENOMA, NOS	(48)	(49)	(48) 1 (2%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND Adehocarcinoma, nos Acinar-cell Adenoma Adenosquamous carcinoma	(50) 1 (2%)	(50)	(48) 1 (2%)
#UTERUS LEIOMYOSARCOMA ENDOMETRIAL STROMAL POLYP	(49)	(49) 1 (2%)	(48) 2 (4%)
#OVARY PAPILLARY ADENOMA LUTEOMA GRANULOSA-CELL TUMOR	(45) 2 (4%)	(47)	(44) 1 (2%) 1 (2%)
NERVOUS SYSTEM			
NONE			
SPECIAL SENSE ORGANS			
*EYE/LACRIMAL GLAND ADENOMA, NOS	(50) 1 (2%)	(50) 1 (2%)	(48) 1 (2%)

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED) _____

	CONTROL	LOW DOSE	HIGH DOSE
ADENOCARCINOMA, NOS	1 (2%)		
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
NONE			
ALL OTHER SYSTEMS			
THORACIC CAVITY OSTEOSARCOMA	1		
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY Natural deathg Moribund Sacrifice Scheduled Sacrifice	50 13 4	50 9 2	50 6 2
ACCIDENTALLY KILLED Terminal sacrifice Animal missing	33	39	4 1
A INCLUDES AUTOLYZED ANIMALS			

	CONTROL	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	28 37	29 39	23 32
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	10 11	7 8	13 17
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	20 26	25 30	13 15
TOTAL ANIMALS WITH SECONDARY TUMORS TOTAL SECONDARY TUMORS	# 2 4	2 2	
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or malignant Total uncertain tumors	-	1 1	
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS	-		
* PRIMARY TUMORS: ALL TUMORS EXCEPT SE # SECONDARY TUMORS: METASTATIC TUMORS			LACENT ORGAN

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS FED DIETS CONTAINING C.I. ACID RED 14

TABLE C1.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS FED DIETS CONTAINING C.I. ACID RED 14

		LOW DOSE	
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	90 90	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN EPIDERMAL INCLUSION CYST EROSION	(90) 2 (2%)	(50)	(50) 2 (4%) 1 (2%)
*SUBCUT TISSUE INFLAMMATION, ACUTE ABSCESS, CHRONIC		1 (2%)	(50) 1 (2%)
RESPIRATORY SYSTEM			
#LUNG/BRONCHIOLE Hyperplasia, epithelial	(89)	(49) 1 (2%)	(50)
#LUNG Mucdcele	(89)	(49)	(50)
EDEMA, NOS HEMORRHAGE	1 (1%)	9 (18%)	3 (6%)
INFLAMMATION, INTERSTITIAL PNEUMONIA, ASPIRATION	2 (2%)		1 (2%) 1 (2%)
INFLAMMATION, ACUTE NECROTIZING INFLAMMATION, ACUTE/CHRONIC		1 (2%)	1 (2%)
NECROSIS, FOCAL Hyperplasia, alveolar epithelium Metaplasia, squamous			1 (2%) 1 (2%)
HEMATOPOIETIC SYSTEM			
#BONE MARROW Congestion, acute	(84)	(49)	(47)
FIBROSIS, FOCAL HYPERPLASIA, NOS	1 (1%)		1 (2%)

	CONTROL	LOW DOSE	HIGH DOSE
MYELOFIBROSIS Hyperplasia, reticulum cell		1 (2%)	1 (2%)
HYPOPLASIA, HEMATOPOIETIC	4 (5%)	1 (2%)	
#SPLEEN CONGESTION, NOS	(90) 1 (1%)	(50)	(49)
INFLAMMATION, NECRO GRAN FIBROSIS, DIFFUSE INFARCT, FOCAL	1 (1%) 1 (1%)	1 (2%)	
HEMOSIDEROSIS LYMPHOID DEPLETION		1 (2%) 1 (2%)	2 (4%)
#SPLENIC CAPSULE HEMORRHAGE	(90)	(50)	(49) 1 (2%)
#SPLENIC RED PULP HEMOSIDEROSIS	(90)	(50)	(49) 1 (2%)
#LYMPH NODE EDEMA, NOS LYMPHOID DEPLETION	(89) 1 (1%) 1 (1%)	(48)	(44) 1 (2%)
#SUBMANDIBULAR L.NODE HEMORRHAGE	(89) 1 (1%)	(48)	(44)
#MANDIBULAR L. NODE Abscess, chronic	(89)	(48)	(44) 1 (2%)
#MESENTERIC L. NODE LYMPHOID DEPLETION	(89) 1 (1%)	(48)	(44)
#LUNG HYPERPLASIA, LYMPHOID	(89) 1 (1%)	(49)	(50)
#THYMUS ATROPHY, DIFFUSE HYPERPLASIA, EPITHELIAL	(69)	(36)	(28) 1 (4%) 1 (4%)
CIRCULATORY SYSTEM			
#MESENTERIC L. NODE Lymphangiectasis	(89)	(48)	(44) 1 (2%)
#HEART MINERALIZATION	(90) 1 (1%)	(50)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
PERIARTERITIS ENDOCARDIOSIS HYPERPLASIA, FOCAL	1 (1%)	1 (2%)	1 (2%)
#HEART/ATRIUM Thrombosis, Nos Thrombus, organized	(90) 1 (1%)	(50) 1 (2%) 1 (2%)	(50) 2 (4%)
#LEFT ATRIUM THROMBOSIS, NOS	(90) 1 (1%)	(50)	(50)
#MYOCARDIUM INFLAMMATION, ACUTE/CHRONIC FIBROSIS, FOCAL DEGENERATION, NOS	(90) 1 (1%) 1 (1%) 31 (34%)	(50)	(50) 1 (2%) 24 (48%)
#ENDOCARDIUM INFLAMMATION PROLIFERATIVE	(90)	(50) 1 (2%)	(50)
#CARDIAC VALVE INFLAMMATION, CHRONIC FOCAL FIBROSIS FIBROSIS, FOCAL FIBROSIS, DIFFUSE	(90) 1 (1%) 1 (1%) 1 (1%)	(50)	(50) 1 (2%)
*PULMONARY ARTERY MINERALIZATION	(90)	(50) 1 (2%)	(50)
*PANCREATIC ARTERY MINERALIZATION FIBROSIS	(90) 1 (1%)	(50) 1 (2%) 1 (2%)	(50)
*MESENTERIC ARTERY THROMBOSIS, NOS INFLAMMATION, ACUTE/CHRONIC	(90) 1 (1%) 1 (1%)	(50)	(50)
#LIVER THROMBOSIS, NOS	(90) 1 (1%)	(50)	(49)
*MESENTERY PERIARTERITIS	(90)	(50) 1 (2%)	(50)
#KIDNEY PERIARTERITIS	(90)	(50)	(50) 1 (2%)
#U.BLADDER/SEROSA PERIARTERITIS	(82)	(44)	(43)

	CONTROL	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM			
#SALIVARY GLAND Cytoplasmic change, nos Atrophy, focal	(89) 2 (2%)	(50) 1 (2%)	(50) 1 (2%)
#LIVER INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, CHRONIC FOCAL GRANULOMA, NOS INFLAMMATION, FOCAL GRANULOMATOU	(90) 2 (2%) 1 (1%)	(50) 1 (2%)	(49) 1 (2%)
CIRRHOSIS, NOS DEGENERATION, NOS NECROSIS, FOCAL LIPOIDOSIS BASOPHILIC CYTO CHANGE FOCAL CELLULAR CHANGE ANGIECTASIS	1 (1%) 1 (1%) 63 (70%) 2 (2%)	1 (2%) 28 (56%) 5 (10%)	1 (2%) 1 (2%) 26 (53%) 4 (8%) 3 (6%)
#PORTA HEPATIS FIBROSIS	(90) 1 (1%)	(50)	(49)
#PORTAL TRACT FIBROSIS, FOCAL	(90)	(50)	(49) 1 (2%)
#LIVER/CENTRILOBULAR DEGENERATION, NOS NECROSIS, FOCAL	(90) 1 (1%) 1 (1%)	(50) 1 (2%) 2 (4%)	(49) 2 (4%) 4 (8%)
#BILE DUCT Hyperplasia, Nos Hyperplasia, Focal	(90) 7 (8%) 15 (17%)	(50) 2 (4%) 9 (18%)	(49) 1 (2%) 8 (16%)
#PANCREATIC ACINUS Atrophy, NOS Atrophy, Focal Hyperplasia, Focal	(88) 2 (2%) 12 (14%)	(47) 10 (21%) 1 (2%)	(49) 1 (2%) 3 (6%)
#STOMACH ULCER, ACUTE	(87)	(50)	(48)

	CONTROL	LOW DOSE	HIGH DOSE
INFLAMMATION, ACUTE FOCAL ULCER, CHRONIC HYPERPLASIA, BASAL CELL	1 (1%) 1 (1%)		1 (2%)
#GASTRIC MUCOSA MINERALIZATION NECROSIS, FOCAL	(87) 1 (1%) 2 (2%)	(50)	(48) 1 (2%)
#GASTRIC SUBMUCOSA EDEMA, NOS	(87)	(50)	(48) 1 (2%)
#CARDIAC STOMACH ECTOPIA HYPERPLASIA, BASAL CELL ACANTHOSIS	(87) 1 (1%) 1 (1%)	(50)	(48) 1 (2%)
#COLON NEMATODIASIS	(87) 8 (9%)	(47) 4 (9%)	(46) 1 (2%)
URINARY SYSTEM			
#KIDNEY CYST, NOS ABSCESS, CHRONIC NEPHROPATHY DEGENERATION, HYALINE GLOMERULOSCLEROSIS, NOS PIGMENTATION, NOS ANGIECTASIS	(90) 1 (1%) 80 (89%) 1 (1%) 4 (4%)	(50) 1 (2%) 44 (88%) 1 (2%) 1 (2%)	(50) 1 (2%) 41 (82%) 1 (2%)
#KIDNEY/CORTEX NEPHROSIS, NOS PIGMENTATION, NOS	(90) 2 (2%)	(50)	(50) 1 (2%)
#KIDNEY/TUBULE PIGMENTATION, NOS REGENERATION, NOS	(90) 1 (1%) 1 (1%)	(50)	(50) 2 (4%)
<pre>#KIDNEY/PELVIS INFLAMMATION, ACUTE FOCAL HYPERPLASIA, EPITHELIAL</pre>	(90)	(50) 1 (2%)	(50) 1 (2%) 1 (2%)
*PROSTATIC URETHRA METAPLASIA, SQUAMOUS	(90)	(50)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
ENDOCRINE SYSTEM			
#PITUITARY Ultimobranchial cyst Hyperplasia, focal	(84)	(48) 1 (2%)	(50)
HYPERPLASIA, CHROMOPHOBE-CELL ANGIECTASIS		2 (4%) 1 (2%)	3 (6%)
#PITUITARY ACIDOPHIL Hyperplasia, focal	(84) 1 (1%)	(48)	(50) 1 (2%)
#PITUITARY/BASOPHIL Hyperplasia, focal	(84)	(48) 2 (4%)	(50) 1 (2%)
#ADRENAL Focal Cellular Change	(89)	(49) 1 (2%)	(50)
#ADRENAL CORTEX LIPOIDOSIS CYTOPLASMIC VACUOLIZATION	(89) 3 (3%) 1 (1%)	(49) 2 (4%)	(50) 9 (18%)
HYPERPLASIA, NODULAR HYPERPLASIA, FOCAL	5 (6%)	6 (12%)	1 (2%) 8 (16%)
#ADRENAL MEDULLA Hyperplasia, Nos	(89)	(49)	(50) 2 (4%)
HYPERPLASIA, FOCAL Angiectasis	4 (4%) 1 (1%)	7 (14%)	3 (6%)
#THYROID Mineralization	(89)	(49)	(50)
HYPERPLASIA, C-CELL		5 (10%)	9 (18%)
#PARATHYROID Hyperplasia, Nos	(70)	(37) 1 (3%)	(39)
#PANCREATIC ISLETS	(88)	(47)	(49)
HYPERPLASIA, NOS Hyperplasia, focal	2 (2%) 3 (3%)	5 (11%)	2 (4%)
REPRODUCTIVE SYSTEM			
XMAMMARY GLAND Dilatation, Nos	(90)	(50)	(50)

.

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
HYPERPLASIA, NODULAR HYPERPLASIA, CYSTIC HYPERPLASIA, ADENOMATOUS	1 (1%)		1 (2%) 1 (2%) 1 (2%)
MAMMARY ACINUS Dilatation, Nos Cyst, Nos	(90)	(50)	(50) 1 (2%) 1 (2%)
HYPERPLASIA, NOS Hyperplasia, cystic	5 (6%)		2 (4%)
PREPUTIAL GLAND CYST, HOS	(90) 1 (1%)	(50)	(50) 1 (2%)
PROSTATE INFLAMMATION, SUPPURATIVE	(84)	(46)	(44)
INFLAMMATION, ACUTE FOCAL INFLAMMATION, ACUTE SUPPURATIVE INFLAMMATION ACTIVE CHRONIC		2 (4%)	1 (2%) 1 (2%) 1 (2%)
INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, FOCAL GRANULOMATOU	2 (2%) 1 (1%)		
PROSTATIC GLAND DILATATION, NOS HYPERPLASIA, EPITHELIAL	(84) 1 (1%) 1 (1%)	(46)	(44)
SEMINAL VESICLE CYST, NOS	(90) 1 (1%)	(50)	(50)
TESTIS	(90)	(50)	(50)
STEATITIS ATROPHY, NOS	4 (4%) 1 (1%) 1 (1%)	1 (2%)	1 (2%)
HYPOSPERMATOGENESIS Hyperplasia, interstitial Cell	1 (14)	2 (4%)	3 (6%)
TESTIS/TUBULE ATROPHY, DIFFUSE	(90)	(50)	(50) 1 (2%)
EPIDIDYMIS GRANULOMA, SPERMATIC	(90)	(50) 1 (2%)	(50)
ERVOUS SYSTEM			
HBRAIN Hydrocephalus, Nos	(90)	(50) 1 (2%)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
HEMORRHAGE Abscess, Nos Necrosis, Nos	1 (1%)	2 (4%)	1 (2%) 1 (2%) 1 (2%) 1 (2%)
NECROSIS, FOCAL Atrophy, pressure	1 (1%)	1 (2%)	1 (2%) 1 (2%)
#HIPPOCAMPUS NECROSIS, NOS	(90)	(50)	(50)
NECROSIS, FOCAL	1 (1%)		1 (24)
#HYPOTHALAMUS Atrophy, pressure	(90)	(50)	(50) 2 (4%)
#CEREBELLUM HEMORRHAGE	(90)	(50)	(50) 1 (2%)
NECROSIS, HEMORRHAGIC	1 (1%)		
#MEDULLA OBLONGATA NECROSIS, HEMORRHAGIC	(90) 1 (1%)	(50)	(50)
PECIAL SENSE ORGANS			
*EYE Synechia, posterior	(90) 1 (1%)	(50)	(50)
*EYE/RETINA DETACHMENT	(90) 1 (1%)	(50)	(50)
*EYE/CRYSTALLINE LENS DEGENERATION, NOS	(90) 1 (1%)	(50)	(50)
USCULOSKELETAL SYSTEM			
NONE			
ODY CAVITIES			
*ABDOMINAL CAVITY Steatitis Necrosis, fat	(90)	(50) 1 (2%) 1 (2%)	(50)
*PERITONEUM INFLAMMATION, ACUTE/CHRONIC	(90)	(50)	(50) 1 (2%)

.

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

.
	CONTROL	LOW DOSE	HIGH DOSE
INFLAMMATION, CHRONIC FOCAL	1 (1%)		
*MESENTERY STEATITIS	(90) 4 (4%)	(50)	(50)
GRANULOMA, NOS INFLAMMATION, FOCAL GRANULOMATOU NECROSIS, FAT	4 (4%)	1 (2%) 4 (8%) 3 (6%)	1 (2%)
ALL OTHER SYSTEMS			
CRANIOBUCCAL POUCH Cystic Ducts	11		1
SPECIAL MORPHOLOGY SUMMARY			
NONE			
<pre># NUMBER OF ANIMALS WITH TISSUE EXAMIN * NUMBER OF ANIMALS NECROPSIED</pre>	NED MICROSCOPI	CALLY	

TABLE C2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS FED DIETS CONTAINING C.I. ACID RED 14

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS MISSING	90 2	50	50
ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	88	50 50	50 50
INTEGUMENTARY SYSTEM			
*SKIN INFLAMMATION, ACUTE FOCAL	(88)	(50)	(50) 1 (2%)
INFLAMMATION, FOCAL GRANULOMATOU		1 (2%)	1 (24)
*SUBCUT TISSUE Abscess, chronic	(88) 1 (1%)	(50)	(50)
RESPIRATORY SYSTEM			
#PERITRACHEAL TISSUE Inflammation, chronic	(86) 1 (1%)	(47)	(50)
#LUNG EDEMA, NOS	(88) 2 (2%)	(48)	(50)
HEMORRHAGE Inflammation, acute/chronic Pheumonia interstitial chronic	1 (1%)	1 (2%)	
HEMOSIDEROSIS HYPERPLASIA, ALVEOLAR EPITHELIUM		1 (2%)	1 (2%)
HEMATOPOIETIC SYSTEM			
BONE MARROW	(86)	(50)	
DEPLETION Hyperplasia, reticulum cell Hypoplasia, hematopoietic	1 (1%) 2 (2%) 6 (7%)	6 (12%) 1 (2%)	3 (6%)
#SPLEEN CONGESTION, NOS INFLAMMATION, FOCAL GRANULOMATOU FIBROSIS, FOCAL	(88) 1 (1%) 1 (1%) 1 (1%)	(50) 5 (10%)	(50) 1 (2%)

	CONTROL	LOW DOSE	HIGH DOSE
INFARCT, FOCAL HEMOSIDEROSIS	1 (1%)	2 (4%)	
LYMPHOID DEPLETION HEMATOPOIESIS	2 (2%) 1 (1%)	2 (74)	1 (2%)
#LYMPH NODE EDEMA, NOS GRANULOMA, NOS LYMPHOID DEPLETION	(86)	(43) 1 (2%) 1 (2%)	(45)
#SUBMANDIBULAR L.NODE EDEMA, NOS	(86)	(43) 1 (2%)	(45)
#MANDIBULAR L. NODE LYMPHOCYTIC INFLAMMATORY INFILTR PLASMACYTOSIS	(86) 1 (1%) 1 (1%)	(43)	(45)
#LYMPH NODE OF THORAX Granuloma, Nos	(86)	(43) 2 (5%)	(45)
#MESENTERIC L. NODE INFLAMMATION, GRANULOMATOUS	(86)	(43)	(45)
INFLAMMATION, FOCAL GRANULOMATOU Lymphoid depletion Plasmacytosis	1 (1%) 1 (1%)		2 (4%)
#LUNG LEUKOCYTOSIS, NEUTROPHILIC HYPERPLASIA, LYMPHOID	(88) 1 (1%)	(48)	(50) 1 (2%)
#THYMUS Cyst, Nos		(39)	(39)
CIRCULATORY SYSTEM			
#MANDIBULAR L. NODE Lymphangiectasis	(86)	(43) 2 (5%)	(45) 1 (2%)
<pre>#PANCREATIC L.NODE LYMPHANGIECTASIS</pre>	(86) 1 (1%)	(43)	(45)
#LUNG EMBOLUS, FAT	(88)	(48) 1 (2%)	(50)
#HEART FIBROSIS, FOCAL	(88)	(49)	(48)

	CONTROL	LOW DOSE	HIGH DOSE
#HEART/ATRIUM Thrombosis, Nos	(88) 1 (1%)	(49)	(48)
#LEFT ATRIUM Thrombosis, Nos	(88)	(49) 1 (2%)	(48)
#MYOCARDIUM Inflammation, Chronic Focal Fibrosis, Diffuse Degeneration, Nos	(88) 1 (1%) 1 (1%) 11 (13%)	(49) 19 (39%)	(48) 15 (31%)
*PULMONARY ARTERY MINERALIZATION		(50)	(50) 1 (2%)
*MESENTERY PERIVASCULITIS	(88)	(50) 1 (2%)	(50)
DIGESTIVE SYSTEM			
#SALIVARY GLAND ATROPHY, FOCAL METAPLASIA, SQUAMOUS	(87)	(50) 1 (2%) 1 (2%)	(48)
<pre>#LIVER LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, CHRONIC INFLAMMATION, CHRONIC FOCAL INFLAMMATION, FOCAL GRANULOMATOU NECROSIS, FOCAL NECROSIS, CENTRAL</pre>	<pre>(88) 2 (2%) 3 (3%) 19 (22%) 1 (1%) 1 (1%) 1 (1%)</pre>	(50) 1 (2%) 5 (10%) 1 (2%)	(50) 4 (8%) 2 (4%) 2 (4%)
BASOPHILIC CYTO CHANGE Focal cellular change	62 (70%) 3 (3%)	42 (84%) 4 (8%)	41 (82%) 2 (4%)
<pre>#PORTAL TRACT INFLAMMATION, CHRONIC</pre>	(88) 1 (1%)	(50)	(50)
#LIVER/CENTRILOBULAR NECROSIS, FOCAL PIGMENTATION, NOS	(88) 1 (1%) 1 (1%)	(50) 1 (2%)	(50) 1 (2%)
<pre>#BILE DUCT HYPERPLASIA, NOS</pre>	(88)	(50)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
HYPERPLASIA, FOCAL	5 (6%)	3 (6%)	1 (2%)
#PANCREATIC ACINUS DEGENERATION, NOS ATROPHY, NOS	(83) 1 (1%) 5 (6%)	(48)	(50)
ATROPHY, FOCAL Atrophy, Diffuse	1 (1%) 1 (1%)	6 (13%)	8 (16%)
#PERIESOPHAGEAL TISSU INFLAMMATION, CHRONIC	(87) 1 (1%)	(47)	(49)
#STOMACH MINERALIZATION ULCER, ACUTE FIBROSIS, DIFFUSE	(86)	(50) 1 (2%) 1 (2%)	(49)
#GASTRIC MUCOSA Necrosis, focal	(86) 1 (1%)	(50)	(49)
#CARDIAC STOMACH EDEMA, NOS INFLAMMATION, FOCAL INFLAMMATION, VESICULAR ULCER, CHRONIC HYPERPLASIA, EPITHELIAL	(86) 1 (1%) 1 (1%) 1 (1%) 1 (1%) 1 (1%)	(50)	(49)
#COLON NEMATODIASIS	(72) 6 (8%)	(48)	(48)
*RECTUM Nematodiasis	(88) 1 (1%)	(50)	(50)
*RECTAL MUCOUS MEMBRA Atrophy, Nos	(88) 1 (1%)	(50)	(50)
URINARY SYSTEM			
#KIDNEY Cyst, Nos	(88)	(50)	(50) 1 (2%)
NEFHROPATHY INFARCT, NOS	12 (14%)	9 (18%)	14 (28%)
PIGMENTATION, NOS Hyperplasia, epithelial	$\begin{array}{c} 12 & (14\%) \\ 1 & (1\%) \\ 3 & (3\%) \end{array}$	1 (2%) 1 (2%)	
#KIDNEY/CORTEX MINERALIZATION	(88)	(50)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
PIGMENTATION, NOS	1 (1%)	1 (2%)	
#KIDNEY/TUBULE PIGMENTATION, NOS REGENERATION, NOS	(88) 2 (2%) 1 (1%)	(50)	(50)
#KIDNEY/PELVIS MINERALIZATION	(88) 2 (2%)	(50) 3 (6%)	(50) 7 (14%)
#U.BLADDER/SUBMUCOSA INFLAMMATION, FOCAL GRANULOMATOU	(80)	(45)	(48) 1 (2%)
ENDOCRINE SYSTEM			
<pre>#PITUITARY HYPERPLASIA, CHROMOPHOBE-CELL ANGIECTASIS</pre>	(83) 12 (14%) 2 (2%)	(46) 7 (15%) 1 (2%)	(49) 10 (20%)
#PITUITARY ACIDOPHIL Hyperplasia, Nos	(83)	(46)	(49)
#ADRENAL ABSCESS, CHRONIC LIPOIDOSIS ATROPHY, NOS HYPERTROPHY, FOCAL ANGIECTASIS	(86) 1 (1%) 1 (1%) 1 (1%)	(50) 1 (2%) 1 (2%)	(50) 1 (2%)
#ADRENAL CORTEX CYST, NOS LIPOIDOSIS FOCAL CELLULAR CHANGE HYPERTROPHY, FOCAL HYPERPLASIA, NOS HYPERPLASIA, FOCAL ANGIECTASIS	(86) 15 (17%) 1 (1%) 5 (6%) 7 (8%) 1 (1%)	(50) 1 (2%) 6 (12%) 2 (4%) 7 (14%)	(50) 9 (18%) 2 (4%) 18 (36%)
#ZONA FASCICULATA LIPOIDOSIS	(86) 1 (1%)	(50)	(50)
#ADRENAL MEDULLA HYPERPLASIA, NOS HYPERPLASIA, FOCAL HYPERPLASIA, DIFFUSE	(86) 1 (1%)	(50) 1 (2%) 2 (4%) 1 (2%)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
#THYROID Thyroglossal duct cyst	(86)	(49)	(50) 2 (4%)
FOLLICULAR CYST, NOS Hyperplasia, C-Cell Hyperplasia, Follicular-Cell	16 (19%) 1 (1%)	t (2%) 11 (22%)	10 (20%)
#PANCREATIC ISLETS Hyperplasia, focal	(83)	(48) 2 (4%)	(50) 1 (2%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND DILATATION, NOS	(88) 2 (2%)	(50)	(50) 1 (2%)
DILATATION/DUCTS Cyst, nos Cystic ducts	3 (3%) 2 (2%) 2 (2%)		1 (2%)
HYPERPLASIA, NOS HYPERPLASIA, EPITHELIAL	1 (1%)	1 (2%)	1 (2%)
HYPERPLASIA, CYSTIC	19 (22%)		6 (12%)
*MAMMARY ACINUS Dilatation, Nos	(88)	(50)	(50)
CYST, NOS MULTIPLE CYSTS	3 (3%)	5 (10%)	4 (8%)
HYPERPLASIA, NOS Hyperplasia, cystic	4 (5%) 2 (2%)	2 (4%) 9 (18%)	1 (2%) 11 (22%)
*CLITORAL GLAND	(88)	(50)	(50)
CYST, NOS Metaplasia, squamous	1 (1%)	1 (2%)	
*VAGINA POLYP	(88) 1 (1%)	(50)	(50)
#UTERUS DILATATION, NOS HYPOPLASIA, NOS	(87)	(50) 5 (10%)	(50) 1 (2%) 1 (2%)
#CERVIX UTERI Inflammation, acute/chronic	(87)	(50) 1 (2%)	(50)
#UTERUS/ENDOMETRIUM NECROSIS, NOS-	(87)	(50)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
HYPERPLASIA, NOS HYPERPLASIA, EPITHELIAL HYPERPLASIA, FOCAL HYPERPLASIA, CYSTIC	1 (1%)	1 (2%) 1 (2%)	1 (2%)
#ENDOMETRIAL GLAHD CYST, HOS MULTIPLE CYSTS HYPERPLASIA, NOS	(87) 4 (5%)	(50) 8 (16%) 1 (2%)	(50) 5 (10%) 9 (18%)
#OVARY Follicular cyst, Nos Hypoplasia, Nos	(86) 3 (3%)	(50) 2 (4%)	(50) 1 (2%)
#OVARY/RETE OVARII Hyperplasia, Nos	(86) 1 (1%)	(50)	(50)
#MESOVARIUM NECROSIS, FAT	(86)	(50)	(50)
 NERVOUS SYSTEM			
#CEREBRAL VENTRICLE HYDROCEPHALUS, NOS	(88)	(50) 1 (2%)	(50)
#BRAIN HYDROCEPHALUS, NOS HEMORRHAGE NECROSIS, FOCAL	(88)	(50) 1 (2%) 1 (2%)	(50) 3 (6%)
ATROPHY, PRESSURE	2 (2%)		2 (4%)
#HYPOTHALAMUS ATROPHY, PRESSURE	(88) 6 (7%)	(50) 2 (4%)	(50) 4 (8%)
#CEREBELLUM MINERALIZATION	(88) 1 (1%)	(50)	(50)
SPECIAL SENSE ORGANS			
*EYE SYNECHIA, ANTERIOR	(88) 1 (1%)	(50)	(50)
*EYE/RETINA ATROPHY, NOS	(88)	(50)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
ATROPHY, DIFFUSE	1 (1%)		
*EYE/CRYSTALLINE LENS DEGENERATION, NOS	(88) 2 (2%)	(50)	
MUSCULOSKELETAL SYSTEM			
DECENERATION NOS		(50)	(50) 1 (2%)
BODY CAVITIES			
*MESENTERY Inflammation, granulomatous Inflammation, focal granulomatou		(50)	(50) 1 (2%) 1 (2%)
NECROSIS, FAT	3 (3%)	1 (2%)	1 (2%)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS HEMORRHAGE BACTERIAL SEPTICEMIA	(88) 1 (1%)	(50) 1 (2%)	(50)
BROAD LIGAMENT STEATITIS	1		
SPECIAL MORPHOLOGY SUMMARY			
ANIMAL MISSING/NO NECROPSY	2		
# NUMBER OF ANIMALS WITH TISSUE EXAMI * NUMBER OF ANIMALS NECROPSIED	NED MICROSCOPI	CALLY	****

ĺ

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE FED DIETS CONTAINING C.I. ACID RED 14

TABLE D1.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE FED DIETS CONTAINING C.I. ACID RED 14

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 49 48	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN ULCER, NOS ULCER, FOCAL FIBROSIS	(49) 1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%)	(50)
*SUBCUT TISSUE Abscess, Nos Inflammation, granulomatous	(49) 1 (2%) 1 (2%)	(50)	(50)
RESPIRATORY SYSTEM			
#LUNG CONGESTION, NOS HEMORRHAGE BRONCHOPNEUMONIA, FOCAL LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL PNEUMONIA INTERSTITIAL CHRONIC GRANULOMA, PYOGENIC HYPERPLASIA, ALVEOLAR EPITHELIUM	15 (33%) 1 (2%)	13 (27%) 1 (2%)	(50) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 10 (20%) 17 (34%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS HYPERPLASIA, LYMPHOID	(49) 1 (2%)	(50)	(50) 1 (2%)
#BONE MARROW INFLAMMATION, GRANULOMATOUS DEPLETION HYPERPLASIA, GRANULOCYTIC HYPERPLASIA, RETICULUM CELL	(46) 4 (9%) 1 (2%)	(49) 3 (6%) 1 (2%)	(46) 1 (2%)

TABLE D1. MALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
#SPLEEN INFLAMMATION, ACUTE FOCAL Hemosiderosis	(45)	(49) 1 (2%)	(50)
LYNPHOID DEPLETION Hyperplasia, Lymphoid Hematopoiesis	1 (2%) 3 (7%)	2 (4%) 1 (2%) 1 (2%)	1 (2%) 2 (4%) 4 (8%)
#SPLENIC RED PULP HEMATOPOIESIS	(45) 7 (16%)	(49) 5 (10%)	(50) 4 (8%)
#LYMPH NODE Inflammation, acute/chronic	(36)	(39)	(38) 1 (3%)
#MANDIBULAR L. NODE HYPERPLASIA, LYMPHOID	(36)	(39) 1 (3%)	(38)
<pre>#PANCREATIC L.NODE FIBROSIS</pre>	(36) 1 (3%)	(39)	(38)
#MESENTERIC L. NODE CONGESTION, NOS	(36) 1 (3%)	(39)	(38)
ANGIECTASIS Erythrophagocytosis Hematopoiesis	2 (6%) 6 (17%)	4 (10%)	1 (3%) 2 (5%) 3 (8%)
#LUNG/BRONCHIOLE Hyperplasia, lymphoid	(46)	(49) 1 (2%)	(50)
#LUNG Hyperplasia, lymphoid	(46) 9 (20%)	(49) 11 (22%)	(50) 16 (32%)
#SALIVARY GLAND Hyperplasia, lymphoid	(45) 9 (20%)	(50) 6 (12%)	(49) 8 (16%)
#LIVER HYPERPLASIA, LYMPHOID	(48) 1 (2%)	(50)	(50)
HEMATOPOIESIS #PANCREAS HYPERPLASIA, LYMPHOID	(46)	3 (6%) (48) 1 (2%)	(48)
#KIDNEY Hyperplasia, lymphoid	(48) 21 (44%)	(50) 26 (52%)	(50) 20 (40%)
#U.BLADDER/SUBMUCOSA HYPERPLASIA, LYMPHOID	(45) 4 (9%)	(50) 1 (2%)	(47)

	CONTROL	LOW DOSE	HIGH DOSE
#THYMIC CORTEX Lymphoid Depletion	(27)	(33) 1 (3%)	(34) 1 (3%)
CIRCULATORY SYSTEM			
#MESENTERIC L. NODE Lymphangiectasis	(36)	(39) 1 (3%)	(38)
#LUNG Embolism, Nos Perivasculitis	(46) 1 (2%)	(49) 1 (2%)	(50)
#HEART PERIVASCULITIS	(45)	(50)	(50) 1 (2%)
#LEFT VENTRICLE Thrombus, Mural	(45)	(50)	(50) 1 (2%)
#MYOCARDIUM Inflammation, acute/chronic	(45)	(50) 1 (2%)	(50) 1 (2%)
#CARDIAC VALVE HEMOSIDEROSIS	(45)	(50) 3 (6%)	(50)
#U.BLADDER/SUBMUCOSA PERIARTERITIS	(45)	(50)	(47) 1 (2%)
DIGESTIVE SYSTEM			
#LIVER Cyst, Nos	(48)	(50)	(50)
INFLAMMATION, ACUTE/CHRONIC Inflammation, focal granulomatou Degeneration, nos	6 (13%)		1 (2%) 1 (2%) 1 (2%)
NECROSIS, NOS NECROSIS, FOCAL NECROSIS, COAGULATIVE	1 (2%) 1 (2%)		1 (2%) 3 (6%)
METAMORPHOSIS FATTY Focal cellular change Angiectasis		1 (2%)	1 (2%) 1 (2%)
<pre>#PORTAL TRACTLYMPHOCYTIC INFLAMMATORY INFILTR</pre>	(48)	(50)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
#LIVER/CENTRILOBULAR DEGENERATION, NOS NECROSIS, FOCAL ANGIECTASIS	(48)	(50) 1 (2%) 1 (2%)	(50) 1 (2%)
#LIVER/PERIPORTAL NECROSIS, NOS	(48)	(50)	(50) 1 (2%)
#LIVER/KUPFFER CELL HYPERPLASIA, FOCAL	(48)	(50)	(50) 1 (2%)
*GALLBLADDER Inflammation, acute/chronic	(49)	(50) 1 (2%)	(50)
#BILE DUCT MULTIPLE CYSTS	(48)	(50)	(50)
#PANCREATIC ACINUS NECROSIS, FOCAL ATROPHY, FOCAL	(46)	(48) 1 (2%)	(48) 1 (2%)
#GASTRIC FUNDUS GROWTH ARREST	(44)	(49) 1 (2%)	(46)
#JEJUNUM Hyperplasia, adenomatous	(40)	(49)	(45) 1 (2%)
URINARY SYSTEM			
#KIDNEY MINERALIZATION LYMPHOCYTIC INFLAMMATORY INFILTR INFLANMATION, INTERSTITIAL PYELONEPHRITIS, ACUTE	(48)	(50) 2 (4%) 1 (2%) 1 (2%)	(50)
SCLEROSIS GLOMERULOSCLEROSIS, NOS	1 (2%)	1 (2%) 1 (2%)	1 (2%)
#KIDNEY/CORTEX MINERALIZATION INFLAMMATION, INTERSTITIAL NEPHROSIS, NOS	(48) 1 (2%)	(50) 1 (2%) 2 (4%)	(50) 1 (2%) 2 (4%)
#KIDNEY/MEDULLA MINERALIZATION	(48)	(50)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
#KIDNEY/GLOMERULUS NEPHROSIS, NOS	(48)	(50) 1 (2%)	(50)
#KIDNEY/TUBULE MINERALIZATION DILATATION, NOS NEPHROSIS, NOS LIPOIDOSIS CYTOLOGIC DEGENERATION	(48) 1 (2%)	(50)	(50) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)
REGENERATION, NOS #KIDNEY/PELVIS LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, ACUTE FOCAL	27 (56%) (48)	30 (60%) (50) 1 (2%) 1 (2%)	27 (54%) (50)
#URINARY BLADDER INFLAMMATION, ACUTE NECROTIZING	(45)	(50)	(47) 1 (2%)
#U. BLADDER/MUCOSA Degeneration, Nos	(45)	(50) 1 (2%)	(47)
#U.BLADDER/SUBMUCOSA Degeneration, hyaline	(45)	(50)	(47) 1 (2%)
*URETHRA INFLAMMATION, ACUTE NECROTIZING	(49)	(50)	(50) 1 (2%)
*PROSTATIC URETHRA HEMORRHAGE INFLATMATION, ACUTE NECROTIZING EROSION NECROSIS, DIFFUSE	(49)	(50) 1 (2%) 1 (2%) 1 (2%)	(50) 1 (2%)
ENDOCRINE SYSTEM			
#ADRENAL CORTEX Focal cellular change Hyperplasia, nodular	(46) 1 (2%)	(47) 1 (2%)	(46) 1 (2%)
#THYROID FOLLICULAR CYST, NOS INFLAMMATION, FOCAL HYPERPLASIA, FOLLICULAR-CELL	(44)	(49) 1 (2%) 1 (2%) 2 (4%)	(44) 1 (2%)

	CONTROL	LOW DOSE	HIGH DOSE
#THYROID FOLLICLE MULTILOCULAR CYST NUCLEAR CRYSTALLINE AGGREGATE	(44)	(49) 1 (2%) 1 (2%)	(44)
REPRODUCTIVE SYSTEM			
*PENIS CALCULUS, NOS	(49)	(50)	(50) 1 (2%)
*PREPUCE LYMPHOCYTIC INFLAMMATORY INFILTR	(49) 1 (2%)	(50)	(50)
*PREPUTIAL GLAND Inflammation, acute/chronic	(49)	(50) 1 (2%)	(50)
INFLANMATION, CHRONIC Inflammation, granulomatous	1 (2%)	1 (2%)	1 (2%)
#PROSTATE Inflammation, focal Inflammation, acute	(44)	(49)	(46) 1 (2%) 1 (2%)
INFLAMMATION, ACUTE FOCAL Inflammation, acute/chronic	1 (2%)		1 (2%)
*SEMINAL VESICLE PERIVASCULAR CUFFING	(49)	(50)	(50) 1 (2%)
HYPOPLASIA, NOS Atrophy, Nos		1 (2%) 1 (2%)	
#TESTIS Hyperplasia, interstitial cell	(47)	(50) 1 (2%)	(49)
#TESTIS/TUBULE MINERALIZATION	(47) 1 (2%)	(50) 1 (2%)	(49)
*EPIDIDYMIS INFLAMMATION, MULTIFOCAL	(49)	(50)	(50)
INFLAMMATION, ACUTE NECROTIZING INFLAMMATION, ACUTE/CHRONIC		1 (2%) 1 (2%)	
INFLAMMATION, GRANULOMATOUS Perivascular cuffing		2 (4%)	1 (2%)
ERVOUS SYSTEM			
#BRAIN/MENINGES LYMPHOCYTIC INFLAMMATORY INFILTR	(44)	(50)	(49) 1 (2%)

	CONTROL	LOW DOSE	
#CEREBRUM MINERALIZATION	(44) 17 (39%)	(50) 17 (34%)	(49) 20 (41%)
#BRAIN MINERALIZATION	(44)	(50)	(49) 1 (2%)
SPECIAL SENSE ORGANS			
NONE			
MUSCULOSKELETAL SYSTEM			
*SKELETAL MUSCLE INFLAMMATION, MULTIFOCAL	(49)	(50) 1 (2%)	(50)
BODY CAVITIES			
NONE			
ALL OTHER SYSTEMS			
NONE			
SPECIAL MORPHOLOGY SUMMARY			
NO LESION REPORTED Auto/Necropsy/No histo Autolysis/No Necropsy	1	1	
<pre># NUMBER OF ANIMALS WITH TISSUE EX * NUMBER OF ANIMALS NECROPSIED</pre>	AMINED MICROSCOPI	CALLY	

TABLE D2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE FED DIETS CONTAINING C.I. ACID RED 14

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50	50 50 50	50 48 48
INTEGUMENTARY SYSTEM			
*SUBCUT TISSUE EDEMA, NOS		(50)	
RESPIRATORY SYSTEM			
#LUNG CONGESTION, NOS EDEMA, NOS BRONCHOPNEUMONIA, FOCAL INFLAMMATION, INTERSTITIAL PNEUMONIA INTERSTITIAL CHRONIC INFLAMMATION WITH FIBROSIS HYPERPLASIA, ALVEOLAR EPITHELIUM METAPLASIA, OSSEOUS	(50) 5 (10%) 22 (44%) 1 (2%) 1 (2%) 32 (64%)	(50) 2 (4%) 2 (4%) 3 (6%) 18 (36%) 26 (52%)	(48) 2 (4%) 15 (31%) 1 (2%) 22 (46%) 1 (2%)
HEMATOPOIETIC SYSTEM			
· · · · · · · · · · · · · · · · · · ·	(50)	(50) 11 (22%)	(48)
#BONE MARROW FIBROUS OSTEODYSTROPHY	(47)	(48) 1 (2%)	(46)
ANGIECTASIS Plasmacytosis Hyperplasia, granulocytic Hyperplasia, reticulum cell	1 (2%) 1 (2%)	1 (2%) 2 (4%) 1 (2%)	1 (2%)
HYPOPLASIA, HEMATOPOIETIC Hypoplasia, erythroid	3 (6%)	1 (2%)	
#SPLEEN HEMORRHAGE	(48)	(50)	(48)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

.

	CONTROL	LOW DOSE	HIGH DOSE
LYMPHOID DEPLETION ANGIECTASIS	1 (2%)	3 (6%)	3 (6%)
LEUKEMOID REACTION Hyperplasia, lymphoid Hematopoiesis	1 (2%)	1 (2%) 8 (16%) 1 (2%)	10 (21%)
#SPLENIC RED PULP HEMOSIDEROSIS	(48) 1 (2%)	(50)	(48)
LYMPHOID DEPLETION Hematopoiesis	10 (21%)	1 (2%) 10 (20%)	4 (8%)
#LYMPH NODE Hyperplasia, lymphoid	(41)	(38) 1 (3%)	(37)
#LUNG LEUKEMOID REACTION	(50)	(50)	(48)
HYPERPLASIA, LYMPHOID	12 (24%)	7 (14%)	13 (27%)
#SALIVARY GLAND Hyperplasia, lymphoid	(48) 4 (8%)	(48) 8 (17%)	(46) 7 (15%)
#LIVER HYPERPLASIA, LYMPHOID	(50) 4 (8%)	(50)	(48)
HEMATOPOIESIS	2 (4%)	16 (32%)	10 (21%)
#LIVER/CENTRILOBULAR Hyperplasia, lymphoid	(50) 1 (2%)	(50)	(48)
#PANCREAS Hyperplasia, lymphoid	(48) 6 (13%)	(49) 2 (4%)	(46) 2 (4%)
#KIDNEY Hyperplasia, lymphoid	(50) 16 (32%)	(50) 25 (50%)	(48) 20 (42%)
#URINARY BLADDER Hyperplasia, lymphoid	(47) 1 (2%)	(48) 1 (2%)	(47) 1 (2%)
#U.BLADDER/SUBMUCOSA Hyperplasia, lymphoid	(47) 8 (17%)	(48) 19 (40%)	(47) 20 (43%)
#ADRENAL Hematopoiesis	(46) 1 (2%)	(48)	(48)
#THYMUS Involution, Nos	(35)	(39)	(42)

	CONTROL	LOW DOSE	HIGH DOSE
METAPLASIA, OSSEOUS	1 (3%)		
LYMPHOID DEPLETION	(35)	(39) 3 (8%)	(42) 2 (5%)
CIRCULATORY SYSTEM			
#LUNG PERIVASCULITIS	(50)	(50)	(48) 2 (4%)
#HEART PERIARTERITIS	(50)	(50) 1 (2%)	(48) 2 (4%)
#MYOCARDIUM INFLANMATION, ACUTE/CHRONIC INFLAMMATION, CHRONIC FOCAL DEGENERATION, NOS	(50) 1 (2%) 1 (2%)	(50) 1 (2%)	(48) 2 (4%)
#CARDIAC VALVE HEMOSIDEROSIS	(50) 4 (8%)	(50) 5 (10%)	(48) 5 (10%)
#U.BLADDER/SUBMUCOSA PERIARTERITIS	(47)	(48)	(47) 2 (4%)
#OVARY Thrombosis, Nos	(45) 1 (2%)	(47)	(44)
DIGESTIVE SYSTEM			
#SALIVARY GLAND Lymphocytic inflammatory infiltr	(48)	(48)	(46) 1 (2%)
#LIVER INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, FOCAL GRANULOMATOU DEGENERATION, NOS FOCAL CELLULAR CHANGE	(50) 2 (4%) 7 (14%) 1 (2%)	(50) 2 (4%) 15 (30%)	(48) 5 (10%) 14 (29%) 1 (2%)
#LIVER/CENTRILOBULAR NECROSIS, FOCAL ANGIECTASIS	(50)	(50) 2 (4%)	(48)
#LIVER/KUPFFER CELL Hyperplasia, focal	(50)	(50)	(48)

	CONTROL	LOW DOSE	HIGH DOSE
HYPERPLASIA, DIFFUSE		1 (2%)	1 (2%)
*GALLBLADDER CYST, NOS Inflammation, Focal	(50) 1 (2%) 1 (2%)	(50)	(48)
#BILE DUCT DILATATION, NOS CYST, NOS	(50) 1 (2%) 1 (2%)	(50)	(48)
INFLAMMATION, ACUTE/CHRONIC		1 (2%)	
#PANCREAS DILATATION/DUCTS CYSTIC DUCTS	(48) 3 (6%)	(49) 1 (2%)	(46) 1 (2%)
INFLAMMATION, MULTIFOCAL Inflammation, acute/chronic		1 (2%)	1 (2%) 2 (4%)
#PANCREATIC DUCT Multiple cysts	(48)	(49) 1 (2%)	(46)
#PANCREATIC ACINUS ATROPHY, NOS ATROPHY, FOCAL ATROPHY, DIFFUSE	(48) 1 (2%)	(49)	(46) 2 (4%) 1 (2%)
#PERIPANCREATIC TISSU	(48)	(49)	(46)
NECROSIS, FAT			1 (2%)
#STOMACH INFLAMMATION, MULTIFOCAL	(50)	(48) 1 (2%)	(48)
#JEJUNUM INFLAMMATION, ACUTE/CHRONIC	(44)	(47) 1 (2%)	(45)
RINARY SYSTEM			
#KIDNEY Hydronephrosis	(50)	(50)	(48)
INFLAMMATION, INTERSTITIAL GLOMERULONEPHRITIS, CHRONIC	1 (2%)	1 (2%)	1 (2%)
GLOMERULOSCLEROSIS, NOS	3 (6%)	3 (6%)	2 (4%)
#KIDNEY/CORTEX MINERALIZATION	(50) 1 (2%)	(50)	(48)

	CONTROL	LOW DOSE	HIGH DOSE
CYST, NOS Inflammation, Interstitial Nephrosis, Nos		1 (2%) 1 (2%)	1 (2%)
#KIDNEY/TUBULE MINERALIZATION DILATATION, NOS HEMOSIDEROSIS REGENERATION, NOS	(50) 1 (2%) 2 (4%) 12 (24%)	(50)	(48) 1 (2%) 7 (15%)
#URINARY BLADDER LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, MULTIFOCAL	(47)	(48)	(47) 1 (2%) 1 (2%)
#U.BLADDER/SUBMUCOSA EDEMA, NOS INFLAMMATION, MULTIFOCAL INFLAMMATION, ACUTE/CHRONIC	(47)	(48) 2 (4%)	(47) 3 (6%) 1 (2%)
ENDOCRINE SYSTEM			
#PITUITARY CYTOPLASMIC VACUOLIZATION FOCAL CELLULAR CHANGE HYPERPLASIA, CHROMOPHOBE-CELL ANGIECTASIS	(36) 1 (3%) 1 (3%)	(33) 1 (3%)	(41) 1 (2%) 1 (2%) 1 (2%)
#PITUITARY ACIDOPHIL Hyperplasia, focal	(36)	(33)	(41) 1 (2%)
#ADRENAL HEMORRHAGE NECROSIS, NOS ANGIECTASIS	(46) 1 (2%) 1 (2%)	(48) 1 (2%)	(48)
#ADRENAL CORTEX CYST, NOS DEGENERATION, NOS HYPERPLASTIC NODULE	(46) 1 (2%)	(48) 1 (2%) 1 (2%)	(48) 1 (2%)
#ADRENAL MEDULLA Hyperplasia, focal	(46)	(48)	(48) 1 (2%)
#THYROID Follicular cyst, Nos	(48)	(49)	(48)

	CONTROL	LOW DOSE	HIGH DOSE
HYPERPLASIA, FOLLICULAR-CELL	1 (2%)		1 (2%)
#PARATHYROID CYST, NOS ATROPHY, NOS	(22)	(20)	(26) 1 (4%) 1 (4%)
HYPERPLASTA NOS		1 (5%)	
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND DILATATION/DUCTS	(50)	(50) 2 (4%)	(48) 2 (4%)
*MAMMARY ACINUS Hyperplasia, focal	(50)	(50)	(48)
HYPERPLASIA, DIFFUSE	(24)	1 (2%)	
#UTERUS DILATATION, NOS	(49)	(49)	(48) 1 (2%)
#UTERUS/ENDOMETRIUM HYPERPLASIA, CYSTIC	(49)	(49)	(48) 1 (2%)
#ENDOMETRIAL GLAND HYPERPLASIA, CYSTIC	(49) 34 (69%)	(49) 39 (80%)	(48) 37 (77%)
#OVARY CYST, NOS Multilocular cyst	(45) 7 (16%) 1 (2%)	(47) 7 (15%) 1 (2%)	(44) 7 (16%)
PAROVARIAN CYST Hemorrhagic cyst TNELAMMATION HOS	2 (4%)		1 (2%) 1 (2%)
NERVOUS SYSTEM			
#BRAIN/MENINGES PERIVASCULAR CUFFING	(49) 3 (6%)	(50)	(48) 3 (6%)
#CEREBRUM MINERALIZATION	(49) 17 (35%)	(50) 12 (24%)	(48) 20 (42%)
#BRAIN MINERALIZATION PERIVASCULAR CUFFING	(49) 2 (4%)	(50) 1 (2%)	(48)

	CONTROL	LOW DOSE	HIGH DOSE
*SPINAL NERVE Inflammation, acute focal	(50)	(50)	(48) 1 (2%)
SPECIAL SENSE ORGANS None	、		
MUSCULOSKELETAL SYSTEM			
*FEMUR EXOSTOSIS	(50)	(50)	(48) 1 (2%)
*SKELETAL MUSCLE INFLAMMATION, FOCAL	(50)	(50) 1 (2%)	(48)
BODY CAVITIES			
*ABDOMINAL WALL NECROSIS, NOS	(50)	(50) 1 (2%)	(48)
ALL OTHER SYSTEMS			
NONE			
SPECIAL MORPHOLOGY SUMMARY			
AUTOLYSIS/NO NECROPSY			1

APPENDIX E

ANALYSIS OF C.I. ACID RED 14 (LOT NO. A77716) MIDWEST RESEARCH INSTITUTE

Appendix E

Analysis of C.I. Acid Red 14 (Lot No. A77716) Midwest Research Institute

A. ELEMENTAL ANALYSIS

Element:	C	Н	N	S	Na	C1
Theory:	47.81	2.41	5.58	12.76	9.15	
Theory(a):	34.14	2.55	3.98	9.11	11.13	7.10
Determined:	34.16	2.64	3.65	10.42	14.2 <u>+</u> 0.1(b)	7.1 <u>+</u> 0.3(δ)
	34.38	2.69	3.69	10.48		

- (a) Theoretical composition based on 71.4% C.I. Acid Red 14 as determined by titration, 7.4% water from the Karl Fisher analysis, and 11.7% sodium chloride based on the determined chloride content.
- B. WATER ANALYSIS

(Karl Fisher) 7.39+0.09 (**b**)%

C. TITRATION WITH TITANOUS CHLORIDE

71.4+0.(δ)2%. Modification of the method (Horowitz, 1975): sample 0.02 (δ)% weighed directly into titration vessel.

D. MELTING POINT

Determined

Literature Values

290°-320°C dec. (visual capillary)

No literature value found

E. THIN-LAYER CHROMATOGRAPHY

Plates: Silica gel 60 F254 Amount Spotted: 100 and 300 µg Kef. Standard: Methyl red Visualization: Visible and ultraviolet light (366 and 254 nm)

<u>System 1</u>: 95% ethanol:concentrated ammonium hydroxide (90:10) R_f: 0.91 (trace); 0.83 (slight trace); 0.72 (trace); 0.63 (major) R_{st}: 1.10; 1.00; 0.88; 0.76

System 2: n-Butanol:methyl ethyl ketone:concentrated aqueous ammonium hydroxide:water (50:30:10:10) R_f: 0.66 (trace); 0.56 (trace); 0.32 (trace); 0.15 (slight trace); 0.12 (trace); 0.09 (major) R_{st}: 2.10; 1.85; 1.00; 0.46; 0.38; 0.28

F. HIGH-PRESSURE LIQUID CHROMATOGRAPHY

Instrument: Waters ALC 202 with Model 660 solvent programmer. Detector: Ultraviolet 254 nm Column: $C_{18} \mu$ -Bondapak, 300 x 4 mm I.D. Solvent: 63% B A - 0.005M tetrabutylammonium hydroxide and 1% acetic acid in water B - 0.005M tetrabutylammonium hydroxide and 1% acetic acid in methanol Flow rate: 1.5 ml/min Results: Major peak and three impurities

Peak	Retention Time (min)	Retention Time (Relative to <u>C.I. Acid Red 14</u>)	Area (Relative to C.I. Acid Red 14)
Minor	2.8	0.31	0.52
Minor	7.5	0.83	0.78
Major	9.0	1.00	100.00
Minor	13.0	1.44	0.52

G. SPECTRAL DATA

(1)	Infrared: Instrument: Beckman IR-12 Cell: 1.5% potassium bro- mide pellet	No literature spectrum found. Spectrum con- sistent with structure.
(2)	Results: See Figure 5 <u>Ultraviolet/Visible</u> Instrument: Cary 118	

λ_{max} (nm)	$\epsilon \times 10^{-3}$	λ max (nm)	$\epsilon x 10^{-3}$
218	43.9+0.4 (δ)	220	-
235 (shoulder)	17.4 - 0.2 (δ)	290	-
281	10.5 - 0.1 (δ)	320	-
292	$11.1+0.1(\delta)$	515	26.1
322	$12.2+0.1(\delta)$		
334 (shoulder) 405 (shoulder)	11.5+0.1 (δ) 4.36+0.02 (δ)	Solvent:	0.02 M ammonium ace- tate (Pellerin
518	19.2 - 0.2 (δ)		et al., 1963)
Solvent: Water	_	510	17.6
		Solvent:	7.4 buffer (Jones

(3) Nuclear magnetic resonance

Instrument:Varian HA-100No literature referenceSolvent:Dimethylsulfoxide-d6foundD_20 (1:1)with internal sodium3-trimethylsilylpropionate-2,2,3,3-d4Assignments:(see Figure 6)

and Thomas, 1968)

Figure 5. Infrared Absorption Spectrum of C.I. Acid Red 14 (Lot No. A77716)

Figure 6. Nuclear Magnetic Resonance Spectrum of C.I. Acid Red 14 (Lot No. A77716)

(a) $\delta = 7.14 \text{ ppm}$ (b)(c) $\delta = 7.48-7.80 \text{ ppm}$ (d) $\delta = 7.69 \text{ ppm}$ (e,f,g) $\delta = 7.90-8.18 \text{ ppm}$ (h) $\delta = 8.34 \text{ ppm}$ (i) $\delta = 8.78$ (j) $\delta = 4.71 \text{ ppm}$ (k) $\delta = 7.26 \text{ ppm}$ (impurity)

Integration ratios:

(a) = 0.80 (b,c,d) = 4.70 (e,f,g) = 2.99 (h) = 1.28 (i) = 0.75

 $J_{ae} = 8 Hz$ $J_{bi} = 9 Hz$ $J_{ch} = 9 Hz$

(j) = under solvent

(k) = 0.48 (impurity)

APPENDIX F

ANALYSIS OF C.I. ACID RED 14 (LOT NO. A83650) MIDWEST RESEARCH INSTITUTE
Appendix F Analysis of C.I. Acid Red 14 (Lot No. A83650) Midwest Research Institute

A. ELEMENTAL ANALYSIS

С	H	N	S	Na	C1
47.81	2.41	5.58	12.76	9.15	
32.17	2.45	3.75	11.35	13.20(Ъ)	4.76
33.00	2.50	3.97	11.29	14.63	4.76 <u>+</u> 0.17(δ)
32.91	2.45	3.84	11.38	14.39	
	47.81 32.17 33.00	47.812.4132.172.4533.002.50	47.812.415.5832.172.453.7533.002.503.97	47.812.415.5812.7632.172.453.7511.3533.002.503.9711.29	47.812.415.5812.769.1532.172.453.7511.3513.20(b)33.002.503.9711.2914.63

- (a) Theory based on 67.3% compound (by titration), 7.48% H₂O (by Karl Fisher), 7.85% NaCl (from determined chloride content), and 12.21% Na₂SO₄ (based on calculations from sulfur and sodium content).
- (b) It is possible that the 1.3% excess of sodium is present as carbonates.

B. WATER ANALYSIS

(Karl Fisher) 7.48<u>+</u>0.12 (δ)%

C. TITRATION WITH TITANOUS CHLORIDE

67.3%+0.5(§)% Modification of the method (Horowitz, 1975): sample weighed directly into titration vessel.

D. THIN-LAYER CHROMATOGRAPHY

Plates: Silica gel G-25 UV₂₅₄ Ref. Standard: Methyl red (10.0µg/µ1 methano1)

Amount Spotted: 100 and 300µg (10.0µg/µ1 methano1)	Visualization: Visible and ultraviolet light (366 nm and 254 nm)
System 1: Ethanol:concentrated ammonium hydroxide (90:10)	System 2: <u>n</u> -Butanol:methyl ethyl ketone:concentrated ammonium hydroxide:water (50:30:10:10)
R _f : 0.49 (major), 0.64 (slight trace, 366 nm only)	R _f : 0.15 (major), 0.37 (trace, 366 nm only)
R _{st} : 0.71, 0.92	R _{st} : 0.42, 1.01

E. HIGH-PRESSURE LIQUID CHROMATOGRAPHY

Instrument: Waters ALC 202 with Model 660 solvent programmer Detector: Ultraviolet, 254 nm Column: C_{18µ} Bondapak Solvent: 55A:45B, isocratic

- A. 0.005 M tetrabutyl ammonium hydroxide in water with phosphoric acid to adjust pH to 7.4
- B. 0.005 M tetrabutyl ammonium hydroxide in methanol (Fischer HPLC) with equivalent amount of phosphoric acid added as for Solvent A

Peak	Retention Time (min)	Retention Time (Relative to <u>C.I. Acid Red 14</u>)	Area (Relative to C.I. Acid Red 14)
1	6.6	0.79	0.57
2	8.4	1.0	100

F. SPECTRAL DATA

(1) Infrared:

Instrument: Beckman IR-12	No literature spectrum found.
Cell: 1.2% potassium bromide pellet	Spectrum consistent with structure and with spectrum obtained
perret	previously at MRI (Lot No. A77716).
Results: See Figure 7	

Figure 7. Infrared Absorption Spectrum of C.I. Acid Red 14 (Lot No. A83650)

(2) Ultraviolet/Visible

Instrument: Cary 118

Determined

Literature Values

λ max (nm)	$\epsilon \ge 10^{-4}$	$\lambda \max$ (nm)	$\epsilon x 10^{-4}$
217	4.25+0.06(δ)	220	-
233 (shoulder)	$1.67+0.02(\delta)$	290	_
281	0.94+0.01(b)	320	-
292	$0.98+0.01(\delta)$	515	2.61
320 334 (shoulder)	$1.09+0.01(\delta)$ $1.05+0.01(\delta)$	Solvent: 0.02 acet	M ammonium ate
400 (shoulder) 517	0.385+0.002(b) 1.77+0.09(b)	(Peller	in et al., 1963)
556 (shoulder)	1.25 <u>+</u> 0.02(b)	510	1.96
Solvent: 0.02M ammo	nium acetate	Solvent: 7.4 b (Jones	uffer and Thomas, 1968)

(a) The absorbance of this lot at 517 nm is 67.8% of that reported in the literature.

(3) Nuclear Magnetic Resonance

Instrument: Varian EM-360A No literature reference found. Consistent with Solvent: DMSO:D₂O (1:2, v:v) with internal sodium 3-trimethylstructure and previous spectrum obtained at MRI sily1-propionate-2,2,3,3-d₄) (Lot No. A77716).

Assignments: (see Figure 8)

(a)	δ	7.28 ppm		(h) 8	8.25	ppm	
(b,c)	δ	7.58-7.86		(i) ð	8.72	ppm	
(b)	δ	7.82 ppm			4.72		
(e,f,g)	δ	7.96-8.16	ppm				(impurity)
				(1) δ	3.38	ppm	(impurity)

Figure 8, Nuclear Magnetic Resonance Spectrum of C.I. Acid Red 14 (Lot No. A83650)

APPENDIX G

Theoretical Calculation of Batch Composition

.

APPENDIX G

Theoretical Calculation of Batch Composition

Based on the amounts of pure dye, water, and elemental composition that were experimentally determined (see Appendixes E and F), the composition of each batch was determined to be:

	Lot No. A77716	Lot No. A83650
C.I. Acid Red 14	71.4%	67.30%
H ₂ 0	7.39	7.48
NaC1	11.70	7.85
Na ₂ SO ₄	5.79	12.20
NaĤCO3	3.72	5.16

The values for the elemental composition of each, based on these components, compare favorably with actual determined values as shown below.

Lot No. A77716

Element:	C	H	N	s	Na	C1
Theory:	34.67	2.59	3.98	10.42	14.02	7.10
Determined (a):	34.27	2.66	3.67	10.45	14.20	7.10
Lot No. A83650						
Element:	C	H	N	s	Na	C1
Theory:	32.92	2.52	3.75	11.34	14.61	4.76
Determined (a):	32.95	2.48	3.90	11.34	14.66	4.76

(a) Average values from results at Midwest Research Institute (Appendixes E and F).

APPENDIX H

.

Analyses of Formulated Diets for Concentrations of C.I. Acid Red 14

APPENDIX H

Analyses of Formulated Diets for Concentrations of C.I. Acid Red 14

A 100-milligram sample of the dye-feed mixture was mixed with 40 ml of 0.025N NaOH and vortexed for 30 seconds. The supension was centrifuged for 10 minutes at 10,000 rpm in a Sorvall RC-2B centrifuge at 4° C. An appropriate volume of the supernatant was removed and diluted with distilled water to achieve a final concentration in the linear portion of the standard Internal standards were prepared using plain feed assayed in the curve. same manner. All samples and standards were run in triplicate. The absorbance was determined at 519 nm in a Gilford 2400-S spectrophotometer. The spectrophotometer was blanked with a 100-mg feed sample treated in the same manner as the samples. The standard curve developed with feed-dye standards (triplicate) automatically incorporated a correction for recovery. The concentration of dye in a feed sample could be read directly from the curve without any further adjustment for recovery.

Theoretical		Sample	Coefficient	
Dietary	No. of	Analytical	of Variation	Range
Level (ppm)	Samples	Mean (ppm)	(%)	(ppm)
3,000	10	2,996	3.9	2,880 - 3,140
6,000	21	5,954	3.4	5,670 - 6,380
12,500	20	12,411	4.6	11,140 - 13,300
25,000	11	24,551	3.7	23,700 - 26,400

APPENDIX I

Analysis of Formulated Diets for Stability of C.I. Acid Red 14

.

APPENDIX I

Analysis of Formulated Diets for Stability of C.I. Acid Red 14

HEAT STABILITY

1. <u>Mixing and storage</u>: C.I. Acid Red 14 (3.057 g) and Wayne Lab-Blox[®] Rodent Feed (24.577 g) were mixed in a mortar. Samples of the mixture were removed and stored for 2 weeks at -20° , 5° , 25° , and 45° C, respectively. These samples were then analyzed by visible spectrophotometry, as described below.

2. Extraction: One-gram samples of each of the above mixtures were triturated twice with 50-ml portions of Fisher pH 10.4 buffer solution (THAM[®]) using a Polytron[®] high-speed blender. Two-milliliter aliquots of this solution (made up exactly to 100 ml) were further diluted 100 m1 with buffer in a volumetric flask to and analyzed spectrophotometrically in the visible region at 519 nm.

3.

Analytical Results:

Instrument: Cary 118

Sample ([°] C)	Compound (a)
-20	10.3+0.4
5	9.6+0.4
25	9.6+0.4
45	10.1 ± 0.4

Average Percent

(a) Corrected for a spiked recovery value of 96.6%.

4. <u>Conclusion</u>: There is no significant difference between the samples stored at the various temperatures. C.I. Acid Red 14 mixed with feed is stable for 2 weeks at temperatures up to 45^oC. .

NIH Publication No. 82-1776 March 1982