NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 221

NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of chemically induced disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development/validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is comprised of four charter DHHS agencies: the National Cancer Institute, National Institutes of Health; the National Institute of Environmental Health Sciences, National Institutes of Health; the National Center for Toxicological Research, Food and Drug Administration; and the National Institute for Occupational Safety and Health, Centers for Disease Control. In June 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS.

NTP Technical Report

on the

CARCINOGENESIS BIOASSAY

of

LOCUST BEAN GUM

(CAS No. 9000-40-2)

IN F344 RATS AND B6C3F₁ MICE

(FEED STUDY)

NATIONAL TOXICOLOGY PROGRAM Research Triangle Park Box 12233 North Carolina 27709 and Bethesda, Maryland 20205

FEBRUARY 1982

NTP-80-66 NIH Publication No. 82-1777

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NOTE TO THE READER

This is one in a series of experiments designed to determine whether selected chemicals produce cancer in animals. Chemicals selected for testing in the NTP carcinogenesis bioassay program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical is a potential hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

This study was initiated by the National Cancer Institute's Carcinogenesis Testing Program, now part of the National Institute of Environmental Health Sciences, National Toxicology Program.

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650).

Comments and questions about the National Toxicology Program Technical Reports on Carcinogenesis Bioassays should be directed to the National Toxicology Program, located at Room A-306, Landow Building, Bethesda, MD 20205 (301-496-1152) or at Research Triangle Park, NC 27709 (919-541-3991).

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to communicate any mistakes to the Deputy Director, NTP (P.O. Box 12233, Research Triangle Park, NC 27709), so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP.

TABLE OF CONTENTS

Page

	Abstract vi Contributors in Peer Review Panel and Comments xi	ĸ
I.	Introduction	1
II.	Materials and Methods	3
	A. Chemical	3
		3
		4
		4
		4
		6
		6
		6
	I. Data Recording and Statistical Analyses	0
III.	Results - Rats	3
	A. Body Weights and Clinical Signs (Rats)	3
	B. Survival (Rats)	
	C. Pathology (Rats)	
	D. Statistical Analyses of Results (Rats)	0
IV.	Results - Mice	5
	A. Body Weights and Clinical Signs (Mice)	5
	C. Pathology (Mice)	
	D. Statistical Analyses of Results (Mice)	8
v.	Discussion	7
VI.	Conclusion)
VII.	Bibliography	L
	TABLES	
Table		5
Table	2 Dosage, Survival, and Mean Body Weights of Rats Fed	
		7
ጥልሬነ-	2 Denses Curving and Mean Padr Weishts of Miss Pad	
Table		8

Table 4	Experimental Design of Chronic Feeding Studies with Locust Bean Gum in Rats and Mice	9
Table 5	Analyses of the Incidence of Primary Tumors in Male Rats Fed Diets Containing Locust Bean Gum	17
Table 6	Analyses of the Incidence of Primary Tumors in Female Rats Fed Diets Containing Locust Bean Gum	21
Table 7	Analyses of the Incidence of Primary Tumors in Male Mice Fed Diets Containing Locust Bean Gum	30
Table 8	Analyses of the Incidence of Primary Tumors in Female Mice Fed Diets Containing Locust Bean Gum	33
	FIGURES	
Figure l	Growth Curves for Rats Fed Diets Containing Locust Bean Gum	14
Figure 2	Survival Curves for Rats Fed Diets Containing Locust Bean Gum	15
Figure 3	Growth Curves for Mice Fed Diets Containing Locust Bean Gum	26
Figure 4	Survival Curves for Mice Fed Diets Containing Locust Bean Gum	27
Figure 5	Infrared Absorption Spectrum (Lot No. CN-361) Locust Bean Gum	93
Figure 6	Infrared Absorption Spectrum (Lot No. 265-76) Locust Bean Gum	99
	APPENDIXES	
Appendix	A Summary of the Incidence of Neoplasms in Rats Fed Diets Containing Locust Bean Gum	43
Table A	l Summary of the Incidence of Neoplasms in Male Rats Fed Diets Containing Locust Bean Gum	45
Table A	2 Summary of the Incidence of Neoplasms in Female Rats Fed Diets Containing Locust Bean Gum	49
Appendix	B Summary of the Incidence of Neoplasms in Mice Fed Diets Containing Locust Bean Gum	53
Table B	I Summary of the Incidence of Neoplasms in Male Mice Fed Diets Containing Locust Bean Gum	55

Page

Summary of the Incidence of Neoplasms in Female Mice Table B2 Fed Diets Containing Locust Bean Gum 60 Appendix C Summary of the Incidence of Nonneoplastic Lesions in Rats Fed Diets Containing Locust Bean Gum 65 Table Cl Summary of the Incidence of Nonneoplastic Lesions in Male Rats Fed Diets Containing Locust Bean Gum 67 Table C2 Summary of the Incidence of Nonneoplastic Lesions in Female Rats Fed Diets Containing Locust Bean Gum . . . 73 Appendix D Summary of the Incidence of Nonneoplastic Lesions in Mice Fed Diets Containing Locust Bean Gum 77 Table Dl Summary of the Incidence of Nonneoplastic Lesions in Male Mice Fed Diets Containing Locust Bean Gum 79 Table D2 Summary of the Incidence of Nonneoplastic Lesions in Female Mice Fed Diets Containing Locust Bean Gum . . . 84 Appendix E Analyses of Locust Bean Gum (Lot No. CN-361) 89 Appendix F Analyses of Locust Bean Gum (Lot No. 265-76) Midwest Research Institute 95

Page

ABSTRACT

A carcinogenesis bioassay of locust bean gum, a widely used food stabilizer, was conducted by feeding diets containing 25,000 or 50,000 ppm of the test substance to 50 F344 rats and 50 B6C3F1 mice of either sex for 103 weeks. Groups of 50 untreated rats and mice of either sex served as controls.

Mean body weights of high- and low-dose rats of either sex, of low-dose male mice, and of high- and low-dose female mice were comparable with those of the controls; mean body weights of high-dose male mice were slightly lower than those of controls. No other compound-related clinical signs or effects on survival were observed. Although the rats and mice might have been able to tolerate higher doses, 50,000 ppm (5%) is the recommended maximum concentration of a test chemical mixed in feed according to the guidelines of the Bioassay Program.

Although alveolar/bronchiolar adenomas occurred in low-dose male mice at a significantly (P=0.017) higher incidence than that in the controls (7/50, 17/50, 11/50), no significant statistical results were obtained when the combined incidence of animals with either alveolar/bronchiolar adenomas or carcinomas was analyzed (14/50, 21/50, 14/50). Cortical adenomas in the adrenal gland of female rats occurred with a statistically significant (P=0.042) positive trend (1/50, 4/50, 6/50), but comparisons between test groups and the control group were not statistically different.

Under the conditions of this bioassay, locust bean gum was not carcinogenic for male or female F344 rats or B6C3F1 mice.

CONTRIBUTORS

The bioassay of locust bean gum was conducted at EG&G Mason Research Institute, Worcester, Massachusetts, from October 1977 to November 1979 under a subcontract to Tracor Jitco, Inc., the prime contractor for the NCI Carcinogenesis Testing Program.

The bioassay was conducted under the supervision of Drs. H. Lilja (1) and E. Massaro (1,2), principal investigators. Doses of the test chemical were selected by Drs. J. Robens (3,4) and C. Cueto (5). The program manager was Ms. R. Monson (1). Ms. A. Good (1) supervised the technicians in charge of animal care, and Ms. E. Zepp (1) supervised the preparation of the feed mixtures and collected samples of the diets for analysis. Ms. D. Bouthot (1) kept all daily records of the test. Drs. D. S. Wyand (1) and R. W. Fleischman (1) pathologists, directed the necropsies and performed the histopathologic evaluations. The pathology report and selected slides were evaluated by the NCI Pathology Working Group as described in Ward et al. (1978). The diagnoses represent a consensus of contracting pathologists and the NCI Pathology Working Group, with final approval by the NCI Pathology Working Group.

Animal pathology tables and survival tables were compiled at EG&G Mason Research Institute, Rockville, Maryland (7). The statistical analyses were performed by Dr. J. R. Joiner (3) and Mr. J. Warner (3), using methods selected for the bioassay program by Dr. J. J. Gart (8).

Chemicals used in this study were analyzed at Midwest Research Institute (9), and dosed feed mixtures were analyzed by Dr. M. Hagopian (1).

This report was prepared at Tracor Jitco (3) and reviewed by NTP. Those responsible for the report at Tracor Jitco were Dr. C. Cueto, Director of the Bioassay Program; Dr. S. S. Olin, Associate Director; Dr. M. A. Stedham, pathologist; Dr. W. D. Theriault, reports manager; Dr. A. C. Jacobs, bioscience writer; and Ms. M. W. Glasser, technical editor.

The following scientists at NTP (6) were responsible for evaluating the bioassay experiment, interpreting the results, and reporting the findings: Dr. J. Fielding Douglas, Dr. Charles K. Grieshaber. Dr. Larry Hart, Dr. Joseph Haseman, Dr. James Huff, Dr. C. W. Jameson, Dr. Eugene E. McConnell, Dr. John A. Moore, Dr. R. Tennant, and Dr. Jerrold M. Ward.

⁽¹⁾ EG&G Mason Research Institute, 57 Union Street, Worcester, Massachusetts 06108.

⁽²⁾ Now with Pennsylvania State University, 226 Fenske Laboratory, University Park, Pennsylvania 16802.

⁽³⁾ Tracor Jitco, Inc., 1776 East Jefferson Street, Rockville, Maryland 20852.

- (4) Now with Bureau of Veterinary Medicine, Food and Drug Administration, 5600 Fishers Lane, Rockville, Maryland 20857.
- (5) Now with Clement Associates, 1010 Wisconsin Avenue, N.W., Washington, D.C. 20007.
- (6) Carcinogenesis Testing Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205; National Toxicology Program, Research Triangle Park, Box 12233, North Carolina 27709.
- (7) EG&G Mason Research Institute, 1530 East Jefferson Street, Rockville, Maryland 20852.
- (8) Mathematical Statistics and Applied Mathematics Section, Biometry Branch, Field Studies and Statistics, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205.
- (9) Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110.

PEER REVIEW PANEL AND COMMENTS

On October 15, 1980 this report underwent peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting began at 9 a.m. in Conference Room 6, Building 31C, National Institutes of Health, Members of the Subcommittee are: Bethesda, Maryland. Drs. Margaret Shepard. Hitchcock (Chairperson). Curtis Harper. Thomas and Alice Drs. Norman Breslow, Joseph Whittemore. Members of the Panel are: Highland, Charles Irving, Frank Mirer, Sheldon Murphy, Svend Nielsen, Bernard Schwetz, Roy Shore, James Swenberg, and Gary Williams. Drs. Highland, Irving, Whittemore, and Williams were unable to attend the review.

Dr. Shore, as the primary reviewer for the report on the bioassay of locust bean gum, agreed with the conclusion in the report that the compound was not carcinogenic for male or female F344 rats or B6C3F1 mice under the conditions of this carcinogenesis bioassay. He stressed that a maximum tolerated dose may not have been attained. He noted, however, that the high dose (50,000 ppm) was in keeping with the upper limit established for the bioassay program (five percent concentration in the feed). Also the actual concentration of locust bean gum could not be measured with sufficient accuracy to verify the dose levels. He commented on a statistically significant negative trend for lymphomas of the hematopoietic system in female mice.

As the secondary reviewer, Dr. Mirer also agreed with the conclusions that locust bean gum was not carcinogenic. He reported that there were small increases in several tumor types but the biological significance of each was questionable because they were statistically marginal, or did not follow an increasing trend with dose, or were within the range of historical controls, and in each case were found only in one sex of one species.

Dr. Shore moved that the report on the bioassay of locust bean gum be accepted. Dr. Nielsen seconded the motion, and the report was approved unanimously by the Peer Review Panel. Locust bean gum (CAS No. 9000-40-2) is a neutral galactomannan polymer consisting of a main chain of D-mannose units and a side chain of D-galactose on every fourth or fifth unit (Furia, 1972).

Locust bean gum -- also known as carob seed gum -- is produced by milling the endosperm of the fruit pod of the carob tree, <u>Ceratonia</u> <u>siliqua</u>. Widely used in the food industry as a stabilizer in ice cream, sauces, salad dressings, pie fillings, jams, and jellies and as a binder in processed meat products, locust bean gum is also used in the manufacture of pharmaceuticals and cosmetics, textiles, paper, ceramics, paints, and gun powder (LSRO, 1972; <u>Kirk-Othmer</u>, 1966). It is on the list of food additives "generally recognized as safe" by the U.S. Food and Drug Administration (CFR, 1974) and is approved for use in foods when it contains not less than 73% galactomannans and not more than 15% water, 8% protein, 5% insoluble material, and 1.2% ash (<u>Food Chemicals Codex</u>, 1972). In 1970, 4.9 million kilograms of locust bean gum were imported to the United States, primarily from the Mediterranean area (Furia, 1972; LSRO, 1972).

The oral LD_{50} of locust bean gum in rats and mice was reported as 13.0 g/kg body weight (Bailey and Morgareidge, 1976).

Locust bean gum was tested without S-9 activation in several short term mutagenicity assay systems, including <u>Salmonella typhimurium</u> TA 1530 and G-46, and <u>Saccharomyces cerevisiae</u> D-3 (Green, 1977), and was found to be non-mutagenic.

Locust bean gum was tested for potential carcinogenicity by the Bioassay Program because of its widespread use as a food additive for human consumption.

II. MATERIALS AND METHODS

A. Chemical

Locust bean gum (CAS No. 9000-40-2) was obtained in two batches from Stein Hall Company (Louisville, KY), a division of the Celanese Corporation Lot No. CN-361 was used for the subchronic studies and the first 15 weeks of the chronic studies, and Lot No. 265-76 was used for the remainder of the chronic studies. Both lots were food grade material.

Purity and identity analyses were performed at Midwest Research Institute (Kansas City, MO). Results of titration by periodate oxidation indicated that both lots contained more than the 73% minimum of galactomannans specified in the <u>Food Chemicals Codex</u> (1972) -- Lot No. CN-361 contained 77.2% and Lot No. 265-76 contained 88.0%. Results of Karl Fisher titration indicated 5.7% water in each of the batches. Results of thin-layer chromatography of the hydrolysis products of locust bean gum indicated that D-mannose is the major component and D-galactose is a minor component. The infrared spectra of both batches were consistent with the literature spectra (Appendixes E and F).

Locust bean gum was stored in the dark in its original paperboard drum at 4^oC.

B. Dietary Preparation

Each test diet was prepared by mixing the chemical and an aliquot of Wayne[®] Lab Blox animal meal with a mortar and pestle and then adding this premix to the rest of the feed and mixing in a Patterson-Kelly[®] twin-shell V-blender for 20 minutes. Test diets were sealed in plastic bags and stored at 4° C for no longer than 14 days.

Due to the chemical similarity of the test compound and the feed, the quantitative method available could not measure chronic dose levels reproducibly within \pm 10%. Thus formulated diets were not analyzed for concentrations of locust bean gum during the study.

C. Animals

Four-week old F344 rats and B6C3F1 mice were obtained from the NCI Frederick Cancer Research Center (Frederick, Maryland), observed for the presence of parasites and other diseases for 8 days (mice) or 9 days (rats), and then assigned to control or dosed groups according to a table of random numbers.

D. Animal Maintenance

Rats and mice were housed five per cage in suspended polycarbonate cages equipped with disposable nonwoven fiber filter sheets (Table 1). Hardwood chip bedding and cages were changed twice weekly, and cage racks were changed every 2 weeks. Water was supplied by an Edstrom automatic watering system, and Wayne Lab Blox diet in stainless-steel, gang-style hoppers was available ad libitum.

The temperature in the animal rooms was $19^{\circ}-32^{\circ}C$ and relative humidity was uncontrolled (0%-66%). Incoming air was filtered through Tri-Dek 15/40 denier Dacron filters, with 10 to 12 changes of air per hour. Fluorescent lighting was provided 12 hours per day. Rats and mice were housed by species in rooms in which chronic feed studies were also being conducted on gum arabic (CAS No. 9000-01-5).

E. Range Finding and Repeated-Dose Studies

Range finding and repeated-dose feed studies were conducted using F344 rats and B6C3F1 mice to determine the concentrations of locust bean gum to be used in the subchronic studies.

In the range finding study, groups of five males and five females of each species were administered single doses of 0.3, 0.77, or 1.09 g/kg locust bean gum by gavage. All survived to the end of the test period at day 15. No compound-related effects were observed.

In the repeated-dose study, groups of five males and five females of each species were administered 0, 6,300, 12,500, 25,000, 50,000, or 100,000

Wayne [®] Lab Blox meal Stainless steel, gang style	Allied Mills (Chicago, IL) Scientific Cages, Inc. (Bryan, TX)
•	
Polycarbonate	Lab Products, Inc. (Garfield, NJ)
Disposable, nonwoven Eiber	Lab Products, Inc. (Rochelle Park, NJ)
lardwood chips: Aspen bed®	American Excelsior (Baltimore, MD)
Setta Chips $^{f R}$	Agway Corp. (Syracuse, NY)
	Disposable, nonwoven Eiber Mardwood chips: Aspen bed®

Table 1. Source and Descriptions of Materials Used for Animal Maintenance

ppm locust bean gum in feed for 2 weeks and then killed. No compound-related effects were observed. Two male mice died, one that received 25,000 ppm and one that received 100,000 ppm.

F. Subchronic Studies

Subchronic studies were conducted to determine the concentrations to be used in the chronic studies. Diets containing 0, 6,300, 12,500, 25,000, 50,000, or 100,000 ppm locust bean gum were fed for 13 weeks to groups of 10 males and 10 females of each species (Tables 2 and 3). Clinical observations were made twice daily and animals were weighed weekly. At the end of the 91-day study, survivors were killed, necropsies were performed on all animals, and tissues were taken for histopathologic analysis.

<u>Rats:</u> One female rat receiving 12,500 ppm died. Weight gain depression was 10% or less for all dosed groups. No compound-related effects were detected. Doses selected for the rats for the chronic study were 25,000 and 50,000 ppm locust bean gum in the diet, since the upper limit recommended for chronic feeding studies is 50,000 ppm (NCI, 1976).

<u>Mice:</u> Two male mice (one that received 100,000 ppm and one control) and two female mice (one that received 50,000 and one that received 100,000 ppm) died from accidental causes. No compound-related weight gain depression was observed. Doses selected for the mice for the chronic study were 25,000 and 50,000 ppm.

G. Design of Chronic Studies

The number of animals in test groups, doses administered, and durations of the chronic studies are shown in Table 4.

H. Clinical Examinations and Pathology

Animals were inspected twice daily and weighed monthly. Animals that were moribund and those that survived to the end of the study were killed using CO_2 and necropsied.

Dose (ppm)	Survival (a)	_ <u>Mean Body</u> Initial	Weights (gram Final (s) Gain	Weight Change Relative to Controls (b) (Percent)
<u>IALE</u>			 		**** ********************************
0	10/10	88.0	371.1	283.1	
6,300	10/10	88.7	369.1	280.4	-1.0
12,500	10/10	88.7	374.4	285.7	+0.9
25,000	10/10	88.3	367.2	278.9	-1,5
50,000	10/10	88.3	356.2	267.9	-5.4
100,000	10/10	88.4	343.3	254.9	-10.0
FEMALE					
0	10/10	68.8	194.7	125.9	
6,300	10/10	70.8	202.1	131.3	+4.3
12,500	9/10	68.6	196.6	128.0	+1.7
25,000	10/10	71.0	199.9	128.9	+2.4
50,000	10/10	73.3	197.7	124.4	-1.2
100,000	10/10	71.4	196.8	125.4	-0.4
		umber per group tive to Control			

Table 2. Dosage, Survival, and Mean Body Weights of Rats Fed Diets Containing Locust Bean Gum for 13 Weeks

						Weight Change Relative to	
Dose	Survival		Mean Body	y Weights (gr	ams)	Controls (b)	
(ppm)	(a)		Initial Final		Gain	(Percent)	
MALE							
0	9/10	(c)	20.1	33.9	13.8		
6,300	10/10		20.8	32.7	11.9	-13.8	
12,500	10/10		20.6	34.3	13.7	-0.7	
25,000	10/10		20.5	34.9	14.4	+4.3	
50,000	10/10		20.6	32.9	12.3	-10.9	
100,000	9/10	(c)	20.1	32.6	12.5	-9.4	
FEMALE							
0	10/10		16.3	26.2	9.9		
6,300	10/10		16.2	25.4	9.2	-7.1	
12,500	10/10		16.2	25.5	9.3	-6.1	
25,000	10/10		15.9	25.0	9.1	-8.1	
50,000	9/10	(c)	16.2	25.1	8.9	-10.1	
100,000	9/10	(c)	15.9	25.5	9.6	-3.0	
			ber per group				
•			ve to Control Group) - Wei	ls = lght Gain (Com	ntrol Group)	- 100	
<u></u>			in (Control (<u></u>	x 100	
(c) Deat	hs were acc						

Table 3. Dosage, Survival, and Mean Body Weights of Mice Fed Diets Containing Locust Bean Gum for 13 Weeks

	Initial		Time o	on Study
Test Group	No. of Animals	Dose	Dosed (weeks)	Observed (weeks)
Group	Animais	(ppm.)	(weeks)	(weeks)
Male Rats				
Control	50	0	0	105
Low-dose	50	25,000	103	2
High-dose	50	50,000	103	2
Female Rats				
Control	50	0	0	106
Low-dose	50	25,000	103	2
High-dose	50	50,000	103	2
Male Mice				
Control	50	0	0	105
Low-dose	50	25,000	103	2
High-dose	50	50,000	103	1
Female Mice				
Control	50	0	0	105
Low-dose	50	25,000	103	2
High-dose	50	50,000	103	1

Table 4. Experimental Design of Chronic Feeding Studies with Locust Bean Gum in Rats and Mice

Gross and microscopic examinations were performed on major tissues, major organs, and all gross lesions from killed animals and from animals found dead. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. The following tissues were examined microscopically: skin, lungs and bronchi, trachea, bone and bone marrow, spleen, lymph nodes, heart, salivary gland, liver, pancreas, stomach, small intestine, large intestine, kidneys, urinary bladder, pituitary, adrenal, thyroid, parathyroid, mammary gland, prostate and seminal vesicles or uterus, testis or ovary, brain, thymus, larynx, and esophagus.

Necropsies were performed on all animals found dead unless precluded in whole or in part by autolysis or cannibalization. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and does not necessarily represent the number of animals that were placed on study in each group.

I. Data Recording and Statistical Analyses

Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, clinical observations, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Probablilities of survival were estimated by the product-limit procedure of Kaplan and Meier (1958) and are presented in this report in the form of graphs. Animals were statistically censored as of the time they died of other than natural causes or were found to be missing; animals dying from natural causes were not statistically censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) extension of Cox's methods for testing for a dose-related trend. One-tailed P values have been reported for all tests except the departure from linearity test, which is reported only when its two-tailed P value is less than 0.05.

The incidence of neoplastic or nonneoplastic lesions has been given as the ratio of the number of animals bearing such lesions at a specific anatomic site (numerator) to the number of animals in which that site is examined (denominator). In most instances, the denominators included only those animals for which that site was examined histologically. However, when macroscopic examination was required to detect lesions prior to histologic sampling (e.g., skin or mammary tumors) or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the numbers of animals necropsied.

The purpose of the statistical analyses of tumor incidence is to determine whether animals receiving the test chemical developed a significantly higher proportion of tumors than did the control animals. As part of these analyses, the one-tailed Fisher exact test (Cox, 1970) was used to compare the tumor incidence of a control group with that of a group of dosed animals at each level. When results for two dosed groups are compared simultaneously with those for a control group, a correction to ensure an overall significance level of 0.05 is made. The Bonferroni inequality criterion (Miller, 1966) requires that the P value for any comparison be less than or equal to 0.025. When this correction was used, it is discussed in the narrative section. It is not presented in the tables, where the Fisher exact P values are shown.

The Cochran-Armitage test for linear trend in proportions, with continuity correction (Armitage, 1971), was also used. Under the assumption of a linear trend, this test determines if the slope of the dose-response curve is different from zero at the one-tailed 0.05 level of significance. Unless otherwise noted, the direction of the significant trend is a positive dose relationship. This method also provides a two-tailed test of departure from linear trend.

A time-adjusted analysis was applied. In this analysis, deaths that occurred before the first tumor was observed were excluded by basing the statistical tests on animals that survived at least 52 weeks, unless a tumor was found at an anatomic site of interest before week 52. When such an early tumor was found, comparisons were based exclusively on animals that survived at least as long as the animal in which the first tumor was found. Once this

reduced set of data was obtained, the standard procedures for analyses of the incidence of tumors (Fisher exact tests, Cochran-Armitage tests, etc.) were followed.

Life table methods were used to analyze the incidence of tumors. Curves of the proportions surviving without an observed tumor were computed as in Saffiotti et al. (1972). The week during which an animal died naturally or was killed was entered as the time point of tumor observation. The methods of Cox and of Tarone were used for the statistical tests of the groups. The statistical tests were one-tailed.

The approximate 95% confidence interval for the relative risk of each dosed group compared with its control was calculated from the exact interval on the odds ratio (Gart, 1971). The lower and upper limits of the confidence interval of the relative risk have been included in the tables of statistical analyses. The interpretation of the limits is that, in approximately 95% of a large number of identical experiments, the true ratio of the risk in a dosed group of animals to that in a control group would be within the interval calculated from the experiment. When the lower limit of the confidence interval is greater than one, it can be inferred that a statistically significant result has occurred (P less than 0.025 one-tailed test when the control incidence is not zero, P less than 0.025 when the control incidence is zero). When the lower limit is less than unity but the upper limit is greater than unity, the lower limit indicates the absence of a significant result while the upper limit indicates there is a theoretical possiblity of the induction of tumors by the test chemical, which could not be detected under the conditions of this test.

III. RESULTS - RATS

A. Body Weights and Clinical Signs (Rats)

Mean body weights of dosed and control rats of either sex were comparable throughout the study (Figure 1). No compound-related clinical signs were reported.

B. Survival (Rats)

Estimates of the probabilities of survival of male and female rats administered locust bean gum in the diet at the concentrations of this bioassay, together with those of the control group, are shown by the Kaplan and Meier curves in Figure 2. No significant differences were found between any of the groups of either sex.

In male rats, 34/50 (68%) of the control group, 36/50 (72%) of the low-dose group, and 33/50 (66%) of the high-dose group lived to the end of the study at 105 weeks. In female rats, 42/50 (84%) of the control group, 38/50 (76%) of the low-dose group, and 39/50 (78%) of the high-dose group lived to the end of the study at 105-106 weeks.

C. Pathology (Rats)

Histopathologic findings on neoplasms in rats are summarized in Appendix A, Tables Al and A2; findings on nonneoplastic lesions are summarized in Appendix C, Tables C1 and C2.

The tumors encountered were those commonly found in aging rats of this strain. They occurred in comparable numbers in test animals and controls and were not considered to be related to administration of the test compound.

The degenerative and inflammatory lesions encountered are often found in F344 rats of this age group and were not associated with exposure to locust bean gum.

The results of histopathologic examination indicated that locust bean gum was not carcinogenic when fed to F344 rats, under the conditions of this bioassay.

Figure 1. Growth Curves for Rats Fed Diets Containing Locust Bean Gum

Figure 2. Survival Curves for Rats Fed Diets Containing Locust Bean Gum

D. Statistical Analyses of Results (Rats)

Tables 5 and 6 contain the statistical analyses of those primary tumors that occurred in at least two animals of one group and with an incidence of at least 5% in one or more groups.

Cortical adenomas of the adrenal gland in female rats were observed in increasing incidence (1/50, 2% in the controls; 4/50, 8% in the low-dose; 6/50, 12% in the high-dose). The Cochran-Armitage test for linear trend was statistically significant in the positive direction (P=0.042) but the Fisher exact tests were not significant. The incidence of control animals with cortical adenomas under this contract at this laboratory is 8/346(2.3%). In male rats, this tumor was not observed in statistically significant proportions.

Carcinomas of the pituitary in female rats were observed in decreased incidence in the low-dose group compared with the other two groups. The Cochran-Armitage test for linear trend was not significant. The Fisher exact test between the low-dose group and the control group was significant (P=0.049) but the value of P=0.049 is above the value of P=0.025 required by the Bonferroni inequality criterion for an overall significance of P=0.05when two dosed groups are compared with a common control group. No significant incidence was observed in the high-dose group. When the incidence of female rats with either adenomas or carcinomas in the pituitary is analyzed, the result is not significant. This tumor was not observed in a statistically significant proportion in males.

Analyses of the time to observation of tumors by life table methods and analyses by the time-adjusted tests, eliminating those animals that died prior to 52 weeks, did not materially alter the significance of test results in Tables 5 and 6.

Statistically, there was no site at which an increase in tumor incidence could be associated unequivocally with administration of the chemical.

Topography: Morphology	Control	Low Dose	High Dose
Subcutaneous Tissue: Fibroma (b)	0/50(0)	3/50(6)	1/50(2)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		Infinite 0.601 Infinite	Infinite 0.054 Infinite
Weeks to First Observed Tumor		78	105
Hematopoietic System: Myelomonocytic Leukemia (b)	21/50(42)	13/50(26)	15/50(30)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.619 0.325 1.141	0.714 0.393 1.274
Weeks to First Observed Tumor	68	86	75
Hematopoietic System: Lymphoma or Leukemia (b)	21/50(42)	13/50(26)	16/50(32)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.619 0.325 1.141	0.762 0.427 1.340
Weeks to First Observed Tumor	68	86	68

Table 5. Analyses of the Incidence of Primary Tumors in Male Rats Fed Diets Containing Locust Bean Gum (a)

Table 5.	Analyses of the Incidence of Primary Tumors in Male Rats
	Fed Diets Containing Locust Bean Gum (a)

Topography: Morphology	Control	Low Dose	High Dose
Pituitary: Adenoma, NOS (b)	5/47(11)	6/46(13)	8/45(18)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		1.226	1.671
Lower Limit		0.335	0.523
Upper Limit		4.735	6.020
Weeks to First Observed Tumor	105	105	90
Pituitary: Carcinoma, NOS (b)	3/47(6)	0/46(0)	1/45(2)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		0.000	0.348
Lower Limit		0.000	0.007
Upper Limit		1.695	4.143
Weeks to First Observed Tumor	72		98
Pituitary: Adenoma or			
Carcinoma (b)	8/47(17)	6/46(13)	9/45(20)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		0.766	1.175
Lower Limit		0.237	0.442
Upper Limit		2.315	3.187
Weeks to First Observed Tumor	72	105	90

(Continued)

Table 5.Analyses of the Incidence of Primary Tumors in Male RatsFed Diets Containing Locust Bean Gum (a)

(Con	tin	ued)

Topography: Morphology	Control	Low Dose	High Dose
Adrenal: Pheochromocytoma (b)	4/50(8)	10/50(20)	7/49(14)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		2.500 0.779 10.246	1.786 0.486 7.830
Weeks to First Observed Tumor	103	100	105
Thyroid: C-Cell Carcinoma (b)	4/49(8)	1/50(2)	1/47(2)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.245 0.005 2.362	0.261 0.005 2.507
Weeks to First Observed Tumor	105	105	98
Thyroid: C-Cell Adenoma or Carcinoma (b)	5/49(10)	1/50(2)	2/47(4)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.196 0.004 1.665	0.417 0.041 2.405
Weeks to First Observed Tumor	105	105	98

Table 5.	Analyses of the Incidence of Primary Tumors in Male Rats
	Fed Diets Containing Locust Bean Gum (a)

Topography: Morphology	Control	Low Dose	High Dose
Preputial Gland:			
Carcinoma, NOS (b)	3/50(6)	4/50(8)	0/50(0)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		1.333	0.000
Lower Limit		0.238	0.000
Opper Limit		8.684	1.663
Weeks to First Observed Tumor	96	88	
Testis: Interstitial-Cell Tumor (b)	46/50(92)	50/50(100)	47/48(98)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		1.087	1.064
Lower Limit		0.985	0.954
Upper Limit		1.087	1.110
Weeks to First Observed Tumor	74	78	68

(Continued)

(a) Dosed groups received doses of 25,000 or 50,000 ppm in the diet.

(b) Number of tumor-bearing animals/number of animals examined at site (percent).

(c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.

(d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.

(e) The 95 percent confidence interval for the relative risk between each dosed group and the control group.

Topography: Morphology	Control	Low Dose	High Dose
Hematopoietic System: Myelomonocytic Leukemia (b)	9/50(18)	15/50(30)	9/50(18)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.667 0.758 3.901	1.000 0.384 2.603
Weeks to First Observed Tumor	72	83	86
Pituitary: Adenoma, NOS (b)	20/49(41)	27/48(56)	22/49(45)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.378 0.876 2.173	1.100 0.666 1.822
Weeks to First Observed Tumor	84	87	86
Pituitary: Carcinoma, NOS (b)	8/49(16)	2/48(4)	4/49(8)
P Values (c), (d)	N.S.	P=0.049(N)	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.255 0.028 1.197	0.500 0.117 1.735
Weeks to First Observed Tumor	89	105	93

Table 6.Analyses of the Incidence of Primary Tumors in Female RatsFed Diets Containing Locust Bean Gum (a)

Table 6. Analyses of the Incidence of Primary Tumors in Female Rats Fed Diets Containing Locust Bean Gum (a)

(Continued))
-------------	---

Topography: Morphology	Control	Low Dose	High Dose
Pituitary: Adenoma or Carcinoma (b)	28/49(57)	29/48(60)	26/49(53)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		1.057 0.734 1.517	0.929 0.629 1.372
Weeks to First Observed Tumor	84	87	86
Adrenal: Cortical Adenoma (b)	1/50(2)	4/50(8)	6/50(12)
P Values (c), (d)	P=0.042	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		4.000 0.415 192.805	6.000 0.768 269.891
Weeks to First Observed Tumor	106	103	93
Thyroid: C-Cell Carcinoma (b)	5/50(10)	2/46(4)	3/46(7)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.435 0.043 2.506	0.652 0.106 3.152
Weeks to First Observed Tumor	95	105	105
Table 6.	Analyses of the Incidence of Primary Tumors in Female Rats		
----------	--		
	Fed Diets Containing Locust Bean Gum (a)		

Topography: Morphology	Control	Low Dose	High Dose
Thyroid: C-Cell Adenoma or Carcinoma (b)	6/50(12)	3/46(7)	3/46(7)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.543 0.093 2.383	0.543 0.093 2.383
Weeks to First Observed Tumor	95	105	105
Mammary Gland: Fibroadenoma (b)	16/50(32)	11/50(22)	15/50(30)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.688 0.323 1.411	0.938 0.488 1.793
Weeks to First Observed Tumor	89	99	93
Uterus: Endometrial Stromal Polyp (b)	12/50(24)	7/50(14)	6/50(12)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.583 0.212 1.467	0.500 0.167 1.318
Weeks to First Observed Tumor	84	83	101

(Continued)

Table 6.Analyses of the Incidence of Primary Tumors in Female RatsFed Diets Containing Locust Bean Gum (a)

(Continued)

- (a) Dosed groups received doses of 25,000 or 50,000 ppm in the diet.
- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.
- (e) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

A. Body Weights and Clinical Signs (Mice)

Throughout the second year of the study, the mean body weight of high-dose male mice was slightly lower than that of the controls. Mean body weights of low-dose male mice and dosed female mice were comparable with those of controls (Figure 3). No other compound-related clinical signs were reported.

B. Survival (Mice)

Estimates of the probabilities of survival of male and female mice administered locust bean gum in the diet at the concentrations of this bioassay, together with those of the control group, are shown by the Kaplan and Meier curves in Figure 4. No significant differences were observed between any of the groups for either males or females.

In female mice, 39/50 (78%) of the control group, 41/50 (82%) of the low-dose group, and 44/50 (88%) of the high-dose group lived to the end of the study at 105 weeks. In male mice, 35/50 (70%) of the control group, 34/50 (68%) of the low-dose group, and 41/50 (82%) of the high-dose group lived to the end of the study at 105 weeks.

C. Pathology (Mice)

Histopathologic findings on neoplasms in mice are summarized in Appendix B, Tables Bl and B2; findings on nonneoplastic lesions are summarized in Appendix D, Tables Dl and D2.

Neoplastic, proliferative, degenerative, inflammatory, and developmental lesions observed in the dosed mice were considered to be unrelated to administration of the test compound and to be within the normal incidence limits in historical B6C3F1 control mice, with the possible exception of lung tumors

Figure 3. Growth Curves for Mice Fed Diets Containing Locust Bean Gum

Figure 4. Survival Curves for Mice Fed Diets Containing Locust Bean Gum

in males. The incidence of alveolar/bronchiolar adenomas or carcinomas was 14/50 in the controls, 21/50 in the low-dose group, and 14/50 in the highdose group. There was no difference in the number of mice with multiple lung tumors in each group.

D. Statistical Analyses of Results (Mice)

Tables 7 and 8 contain the statistical analyses of those primary tumors that occurred in at least two animals of one group and with an incidence of at least 5% in one or more groups.

Alveolar/bronchiolar adenomas of the lung in male mice were observed in a statistically significant positive association (P=0.017) in the low-dose group compared with the control (7/50, 14%, controls; 17/50, 34%, low-dose; 11/50, 22%, high-dose) but no significant incidence was observed in the high-dose group. The Cochran-Armitage test for linear trend was not significant, but there was a departure from linear trend due to the sharp increase of the incidence in the low-dose group compared with the other two The historical incidence for this tumor type in untreated control groups. male mice is 289/3,543 (8.1%). The incidence in control groups at this laboratory has ranged up to 13/50 (26%). In female mice, this tumor was not observed in statistically significant proportions. The lack of significant results in the high-dose group, taken together with the relatively high variation in the background rate of this tumor, precludes a clear decision as to the effect of locust bean gum at this site. Moreover, when the incidence of male mice with adenomas or carcinomas is analyzed, there are no significant increases in the dosed groups (14/50, 28%, controls; 21/50, 42%, low-dose; 14/50, 28%, high-dose).

Lymphomas of the hematopoietic system in female mice were observed in a statistically significant negative relation (31/50, 62%, controls; 23/50, 46%, low-dose; 14/50, 28%, high-dose). The Cochran-Armitage test for linear trend was statistically significant in the negative direction (P=0.001). The Fisher exact test between the high-dose group and the control group was significant (P=0.001). No significant incidence was observed in the low-dose group; however, this tumor occurred in decreased incidence in the low-dose group compared with the control group.

Adenomas of the pituitary in female mice were observed in increased incidence in the low-dose group (4/36, 11%) compared with the other two groups (controls, 0/39, 0%; high-dose 1/41, 2%). The Cochran-Armitage test of linear trend was not significant, but there was a departure from linear trend due to the increased incidence in the low-dose group compared with the other two groups. The Fisher exact test between the low-dose group and the control group was significant (P=0.048), but this value of P=0.048 is above the value of P=0.025 required by the Bonferroni inequality criterion for an overall significance of P=0.05 when two dose groups are compared with a common control group. No significant incidence was observed in the highdose group. Historical records of seven control groups at this laboratory show a combined incidence of this tumor of 21/289 (7%), with the highest incidence being 8/39 (21%). This tumor was not observed in statistically significant proportions in male mice.

Endometrial stromal polyps of the uterus in female mice were observed in increased incidence in the high-dose group (0/45, 0% in the controls; 0/49, 0% in the low-dose; 3/49, 6% in the high-dose). The Cochran-Armitage test for linear trend was statistically significant in the positive direction (P=0.041). The Fisher exact tests were not significant. The historical incidence of control female mice with endometrial stromal polyps at this laboratory and under this contract is 4/335(1.2%), and the maximum incidence seen in a control group is 2/48(4.2%).

Analyses of the time to observation of tumors by life table methods and analyses by the time-adjusted test, eliminating those animals that died prior to week 52, did not materially alter the significance of the test results reported in Tables 7 and 8.

Statistically, there was no site at which an increase in tumor incidence could be associated unequivocally with administration of the chemical.

Topography: Morphology	Control	Low Dose	High Dose
Lung: Alveolar/Bronchiolar Adenoma (b)	7/50(14)	17/50(34)	11/50(22)
P Values (c)	N.S.	P=0.017	N.S.
Departure from Linear Trend (e)	P=0.029		
Relative Risk (Control) (d) Lower Limit Upper Limit		2.429 1.059 6.285	1.571 0.608 4.394
Weeks to First Observed Tumor	90	83	74
Lung: Alveolar/Bronchiolar Carcinoma (b)	8/50(16)	5/50(10)	4/50(8)
P Values (c)	N.S.	N.S.	N.S.
Relative Risk (Control) (d) Lower Limit Upper Limit		0.625 0.172 2.011	0.500 0.117 1.737
Weeks to First Observed Tumor	64	91	74
Lung: Alveolar/Bronchiolar Adenoma or Carcinoma (b)	14/50(28)	21/50(42)	14/50(28)
P Values (c)	N.S.	N.S.	N.S.
Relative Risk (Control) (d) Lower Limit Upper Limit		1.500 0.828 2.789	1.000 0.496 2.018
Weeks to First Observed Tumor	64	83	74

Table 7. Analyses of the Incidence of Primary Tumors in Male Mice Fed Diets Containing Locust Bean Gum (a)

Table 7.	Analyses of the Incidence of Primary Tumors in Male Mice
	Fed Diets Containing Locust Bean Gum (a)

Topography: Morphology	Control	Low Dose	High Dose
Hematopoietic System:			
Malignant Lymphoma, NOS (b)	12/50(24)	13/50(26)	11/50(22)
P Values (c)	N.S.	N.S.	N.S.
Relative Risk (Control) (d)		1.083	0.917
Lower Limit		0.507	0.406
Upper Limit		2.334	2.049
Weeks to First Observed Tumor	92	101	104
Hematopoietic System:			
Lymphoma (b)	12/50(24)	14/50(28)	11/50(22)
P Values (c)	N.S.	N.S.	N.S.
Relative Risk (Control) (d)		1.167	0.917
Lower Limit		0.559	0.406
Upper Limit		2.475	2.049
Weeks to First Observed Tumor	92	101	104
Liver: Hepatocellular			
Adenoma (b)	6/50(12)	7/49(14)	5/49(10)
P Values (c)	N.S.	N.S.	N.S.
Relative Risk (Control) (d)		1.190	0.850
Lower Limit		0.369	0.219
Upper Limit		3.987	3.123
Weeks to First Observed Tumor	105	105	104

(Continued)

Topography: Morphology	Control	Low Dose	High Dose
Liver: Hepatocellular Carcinoma (b)	15/50(30)	10/49(20)	9/49(18)
P Values (c)	N.S.	N.S.	N.S.
Relative Risk (Control) (d)		0.680	0.612
Lower Limit		0.304	0.262
Upper Limit		1.453	1.344
Weeks to First Observed Tumor	90	92	101
Liver: Hepatocellular	99-99 - 99 - 99 - 99 - 99 - 99 - 99 -		
Adenoma or Carcinoma (b)	18/50(36)	16/49(33)	14/49(29)
P Values (c)	N.S.	N.S.	N.S.
Relative Risk (Control) (d)		0.907	0.794
Lower Limit		0.493	0.414
Upper Limit		1.654	1.490
Weeks to First Observed Tumor	90	92	101

Table 7. Analyses of the Incidence of Primary Tumors in Male Mice Fed Diets Containing Locust Bean Gum (a)

(Continued)

(a) Dosed groups received doses of 25,000 or 50,000 ppm in the diet.

(b) Number of tumor-bearing animals/number of animals examined at site (percent).

(c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.

(d) The 95 percent confidence interval of the relative risk between each dosed group and the control group.

(e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.

Topography: Morphology	Control	Low Dose	High Dose
Subcutaneous Tissue:			
Sarcoma, NOS (b)	0/50(0)	3/50(6)	0/50(0)
P Values (c), (d)	N.S.	N.S.	N.S.
Departure from Linear Trend (f)	P=0.014		
Relative Risk (Control) (e)		Infinite	
Lower Limit		0.601	
Upper Limit		Infinite	
Weeks to First Observed Tumor		103	
Lung: Alveolar/Bronchiolar			
Adenoma (b)	2/50(4)	1/50(2)	4/49(8)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		0.500	2.041
Lower Limit		0.009	0.308
Upper Limit		9.290	21.737
Weeks to First Observed Tumor	105	105	93
Lung: Alveolar/Bronchiolar	4		
Carcinoma (b)	3/50(6)	1/50(2)	0/49(0)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e)		0.333	0.000
Lower Limit		0.006	0.000
Upper Limit		3.983	1.696
Veeks to First Observed Tumor	86	105	~-

Table 8.Analyses of the Incidence of Primary Tumors in Female MiceFed Diets Containing Locust Bean Gum (a)

Topography: Morphology	Control	Low Dose	High Dose
Lung: Alveolar/Bronchiolar Adenoma or Carcinoma (b)	5/50(10)	2/50(4)	4/49(8)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.400 0.040 2.313	0.816 0.171 3.567
Weeks to First Observed Tumor	86	105	93
Hematopoietic System: Malignant Lymphoma, NOS (b)	30/50(60)	20/50(40)	13/50(26)
P Values (c), (d)	P=0.001(N)	P=0.036(N)	P=0.001(N)
Relative Risk (Control) (e) Lower Limit Upper Limit		0.667 0.430 1.032	0.433 0.245 0.740
Weeks to First Observed Tumor	78	93	104
Hematopoietic System: Lymphoma (b)	31/50(62)	23/50(46)	14/50(28)
P Values (c), (d)	P=0.001(N)	N.S.	P=0.001(N)
Relative Risk (Control) (e) Lower Limit Upper Limit		0.742 0.499 1.106	0.452 0.265 0.752
Weeks to First Observed Tumor	58	68	74

Table 8.Analyses of the Incidence of Primary Tumors in Female MiceFed Diets Containing Locust Bean Gum (a)

(Continued)

Topography: Morphology	Control	Low Dose	High Dose
Liver: Hepatocellular Carcinoma (b)	2/49(4)	1/49(2)	1/49(2)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit		0.500 0.009 9.284	0.500 0.009 9.284
Weeks to First Observed Tumor	97	105	105
Liver: Hepatocellular Adenoma or Carcínoma (b)	3/49(6)	2/49(4)	2/49(4)
P Values (c), (d)	N.S.	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit Weeks to First Observed Tumor	97	0.667 0.058 5.565 105	0.667 0.058 5.565 104
	91	105	104
Pituitary: Adenoma, NOS (b)	0/39(0)	4/36(11)	1/41(2)
P Values (c), (d)	N.S.	P=0.048	N.S.
Departure from Linear Trend (f)	P=0.015		
Relative Risk (Control) (e) Lower Limit Upper Limit		Infinite l.014 Infinite	Infinite 0.051 Infinite
Weeks to First Observed Tumor		104	105

Table 8. Analyses of the Incidence of Primary Tumors in Female Mice Fed Diets Containing Locust Bean Gum (a)

(Continued)

Table 8. Analyses of the Incidence of Primary Tumors in Female Mice Fed Diets Containing Locust Bean Gum (a)

Topography: Morphology	Control	Low Dose	High Dose
Uterus: Endometrial Stromal Polyp (b)	0/45(0)	0/49(0)	3/49(6)
P Values (c), (d)	P=0.041	N.S.	N.S.
Relative Risk (Control) (e) Lower Limit Upper Limit			Infinite 0.554 Infinite
Weeks to First Observed Tumor			104

(Continued)

(a) Dosed groups received doses of 25,000 or 50,000 ppm in the diet.

- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in a control group.
- (e) The 95 percent confidence interval of the relative risk between each dosed group and the control group.
- (f) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.

V. DISCUSSION

Throughout the study, mean body weights of dosed rats of either sex and of low-dose male and dosed female mice were comparable with those of the controls; those of the high-dose male mice were slightly lower. No other compound-related clinical signs or effects on survival were observed in the chronic study at doses of 50,000 ppm. No compound-related histopathology, effects on survival, or consistent mean body weight gain depressions were noted in the subchronic studies, even at doses as high as 100,000 ppm. Although the results of both the subchronic and chronic studies suggest that the rats and mice might have been able to tolerate higher doses of locust bean gum than 50,000 ppm, this 5% level is the recommended maximum concentration of a test chemical in feed in the Bioassay Program.

Tumors commonly occurring in these strains were seen in both control and dosed animals, but none of these tumors was considered compound related. Although alveolar/bronchiolar adenomas occurred in low-dose male mice at an incidence significantly higher (P=0.017) than that in the controls, when the combined incidence of male mice with either alveolar/ bronchiolar adenomas or carcinomas was analyzed, no significant statistical results were obtained.

Cortical adenomas in the adrenal gland of female rats occurred with a statistically significant positive trend (P = 0.042), but the Fisher exact tests were not significant.

Adenomas of the pituitary in low-dose female mice were observed at a probability level of P=0.048 when compared with the controls, but this value is above the P=0.025 required by the Bonferroni inequality criterion for an overall significance of P=0.05 when two dosed groups are compared with a common control group. The incidence in the high-dose group was not significant.

A significant linear trend was observed (P=0.041) in the incidence of female mice with endometrial stromal polyps of the uterus; however, the Fisher exact tests were not significant.

Besides locust bean gum, four other "gums' have been tested recently by the NCI/NTP bioassay program; each was added to the diet (2.5% and 5.0%) and fed for 104 weeks to F344 rats and B6C3F1 mice of each sex. Under these

test conditions, all were considered not carcinogenic (agar, NTP 1982a; gum arabic, NTP 1982b; guar gum, NTP 1982c; and tara gum, NTP 1982d).

Under the conditions of this bioassay, locust bean gum was not carcinogenic for male or female F344 rats or B6C3F1 mice.

Armitage, P., <u>Statistical Methods</u> in <u>Medical Research</u>, John Wiley & Sons, Inc., New York, 1971, pp. 362-365.

Bailey, D. and Morgareidge, K., Comparative acute oral toxicity of 12 food grade gums in the mouse, rat, hamster, and rabbit. Food and Drug Research Labs Papers No. 124, 1976.

Berenblum, I., ed., <u>Carcinogenicity Testing</u>: <u>A Report of the Panel on Car-</u> <u>cinogenicity of the Cancer Research Commission of UICC</u>, <u>Vol. 2</u>, International Union Against Cancer, Geneva, 1969.

CFR, U.S. Code of Federal Regulations 21:121.101, 1974.

Cox, D. R., <u>Analysis of Binary Data</u>, Methuen & Co., Ltd., London, 1970, pp. 48-52.

Cox, D. R. Regression models and life tables. J. R. Stat. Soc. <u>B34</u>:187-220, 1972.

Dubois, M. and Gill, K. A., Colorimetric method for determining sugars and related substances, Analytical Chemistry, 28 (3):350, 1956.

Food Chemicals Codex, National Academy of Sciences, Washington, D.C., 1972, pp. 464-466.

Furia, T., ed., <u>CRC</u> <u>Handbook</u> <u>of</u> <u>Food</u> <u>Additives</u>, CRC Press, Cleveland, Ohio, 1972, pp. 295-359.

Gart, J. J., The comparison of proportions: a review of significance tests, confidence limits and adjustments for stratifications, <u>Rev. Int. Stat. Inst.</u> 39:148-169, 1971.

Green, S., Present and future uses of mutagenicity tests for assessment of the safety of food additives. J. Environ. Pathol. Toxicol. 1:49-54, 1977.

Kaplan, E. L. and Meier, P., Nonparametric estimation from incomplete observations. J. Amer. Stat. Assoc. 53:457-481, 1958.

Kirk, R. E. and Othmer, D. F., eds., <u>Encyclopedia of Chemical Technology</u>, 2nd ed. Vol. 10, Interscience Publishers, 1966, pp. 748-752.

LSRO (Life Sciences Research Office), Evaluation of the health aspects of carob bean gum as a food ingredient. Federation of American Societies for Experimental Biology, Bethesda, Md., Dec. 1972.

Linhart, M. S., Cooper, J. A., Martin, R. L., Page, N. P., and Peters, J. A., Carcinogenesis bioassay data system. <u>Comp. Biomed. Res. 7</u>:230-248, 1974. McNaulty, J. A., <u>Assoc. Off. Anal. Chem.</u>, <u>43</u> (3):624-32, 1960.

Miller, R. G., Jr., <u>Simultaneous Statistical Inference</u>, McGraw-Hill Book Co., New York, 1966, pp. 6-10.

NCI, National Cancer Institute, <u>Guidelines for Carcinogen Bioassay in Small</u> <u>Rodents</u>. DHEW Publication No. (NIH) 76-801, Carcinogenesis Testing Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 1976.

NTP, National Toxicology Program. NTP Technical report on the carcinogenesis bioassay of agar, NTP TR230, Carcinogenesis Testing Program, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Md., 1982a.

NTP, National Toxicology Program. NTP Technical report on the carcinogenesis bioassay of gum arabic, NTP TR227, Carcinogenesis Testing Program, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Md., 1982b.

NTP, National Toxicology Program. NTP Technical report on the carcinogenesis bioassay of guar gum, NTP TR229, Carcinogenesis Testing Program, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Md., 1982c.

NTP, National Toxicology Program. NTP Technical report on the carcinogenesis bioassay of tara gum, NTP TR224, Carcinogenesis Testing Program, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Md., 1982d.

Saffiotti, U., Montesano, R., Skellakumar, A.R., Cefis, F., and Kaufman, D.G., Respiratory tract carcinogenesis in hamsters induced by different numbers of administrations of benzo(a)pryene and ferric oxide. <u>Cancer Res. 32</u>: 1073-1081, 1972.

Tarone, R. E., Tests for trend in life table analysis. <u>Biometrika</u> 62:679-682, 1975.

USP, The Pharmacopeia of the United States of America, 18th ed., Mack Printing Company, Easton, Pennsylvania, 1970, pp. 378-9.

Varma, R., Varma, R. S., and Ward, A. H., J. Chromatog. 77:222, 1973.

Ward, J. M., Goodman, D. G., Griesemer, R. A., Hardisty, J. F., Schueler, R. L., Squire, R. A., and Strandberg, J. D., Quality assurance for pathology in rodent carcinogenesis tests. J. Environ. Path. <u>Toxicol. 2</u>:371-378, 1978.

APPENDIX A

Summary of the Incidence of Neoplasms in Rats Fed Diets Containing Locust Bean Gum

TABLE A1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS FED DIETS CONTAINING LOCUST BEAN GUM

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN SQUAMOUS CELL PAPILLOMA TRICHOEPITHELIOMA	(50) 1 (2%)	(50)	(50) 1 (2%) 1 (2%)
*SUBCUT TISSUE SARCOMA, NOS	(50)	(50)	(50) 1 (2%)
FIBROMA	1 (2%)	3 (6%) 1 (2%)	1 (2%)
LIPOMA HIBERNOMA	1 (2%)	1 (2%)	
RESPIRATORY SYSTEM			
*NOSE Squamous cell papilloma	(50) 1 (2%)	(50)	(50)
IEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS	(50)	(50)	(50)
MALIGNAHT LYMPHOMA, NOS Myelomonocytic leukemia	21 (42%)	13 (26%)	1 (2%) 15 (30%
#SPLEEN Sarcoma, Nos	(50) 1 (2%)	(50)	(50)
CIRCULATORY SYSTEM			
#SPLEEN HEMANGIOSARCOMA	(50)	(50) 1 (2%)	(50)

	CONTROL	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM			
#LIVER NEOPLASTIC NODULE HEPATOCELLULAR CARCINOMA	(50) 1 (2%)	(50) 1 (2%) 1 (2%)	
#FORESTOMACH SQUAMOUS CELL PAPILLOMA	(50) 1 (2%)	(50)	(49)
#ILEUM MUCINOUS CYSTADENOCARCINOMA	(49) 1 (2%)	(50)	(48)
URINARY SYSTEM			
#URINARY BLADDER TRANSITIONAL-CELL PAPILLOMA	1 (2%)	(48)	
ENDOCRINE SYSTEM			
#PITUITARY CARCINOMA,NOS ADENOMA, NOS	(47) 3 (6%) 5 (11%)	(46) 6 (13%)	(45) 1 (2%) 8 (18%)
#ADRENAL CORTICAL ADENOMA PHEOCHROMOCYTOMA	(50) 1 (2%) 4 (8%)	(50) 10 (20%)	(49) 7 (14%)
#THYROID C-CELL ADENOMA C-CELL CARCINOMA	(49) 1 (2%) 4 (8%)	(50) 1 (2%)	(47) 1 (2%) 1 (2%)
#THYROID FOLLICLE PAPILLARY CARCINOMA	(49)	(50) 1 (2%)	(47)
<pre>#PANCREATIC ISLETS ISLET-CELL ADEHOMA ISLET-CELL CARCINOMA</pre>	(49) 1 (2%)	(49)	(49) 1 (2%) 1 (2%)
REPRODUCTIVE SYSTEM			
*MANMARY GLAND ADENOCARCINOMA, NOS	(50)	(50)	(50)

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
FIBROADENOMA	1 (2%)	2 (4%)	
*PREPUTIAL GLAND CARCINOMA,NOS	(50) 3 (6%)	(50) 4 (8%)	(50)
#TESTIS INTERSTITIAL-CELL TUMOR	(50) 46 (92%)	(50) 50 (100%)	(48) 47 (98%)
*SCROTUM Squamous cell papilloma	(50) 1 (2%)	(50)	(50)
NERVOUS SYSTEM			
NONE			
SPECIAL SENSE ORGANS			
*EXTERNAL EAR FIBROSARCOMA	(50)	(50)	(50) 1 (2%)
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
*TUNICA VAGINALIS Mesothelioma, nos	(50)	(50)	(50) 1 (2%)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS Mesothelioma, Nos	(50) 1 (2%)	(50) 1 (2%)	(50)
TAIL Squamous cell papilloma Fibrosarcoma	1		1
OMENTUM Mesothelioma, Nos			f

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHЭ MORIBUND SACRIFICE SCHEDULED SACRIFICE	50 8 8	50 7 7	50 12 5
ACCIDENTALLY KILLED Terminal sacrifice Animal Missing	34	36	33
INCLUDES AUTOLYZED ANIMALS			
UMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* Total primary tumors	49 102	50 96	48 95
TOTAL ANIMALS WITH BENIGN TUMORS Total benign tumors	46 65	50 72	48 68
TOTAL ANIMALS WITH MALIGNANT TUMORS Total Malignant tumors	32 36	2 1 22	23 25
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or malignant Total uncertain tumors	1	2 2	2 2
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			
PRIMARY TUMORS: ALL TUMORS EXCEPT SE Secondary tumors: metastatic tumors			DIACENT OPGA

TABLE A2.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS FED DIETS	
CONTAINING LOCUST BEAN GUM	

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SUBCUT TISSUE SARCOMA, NOS FIBROMA FIBROSARCOMA FIBROADENOMA	(50) 1 (2%) 1 (2%) 1 (2%)		(50) 1 (2%) 1 (2%)
RESPIRATORY SYSTEM			
NONE			
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS MYELOMONOCYTIC LEUKEMIA	(50) 9 (18%)	(50) 14 (28%)	(50) 9 (18%)
MYELOMONOCYTIC LEUKEMIA	(50)	1 (2%)	(50)
CIRCULATORY SYSTEM			
NONE			
DIGESTIVE SYSTEM			
#FORESTOMACH Squamous cell papilloma	(49) 1 (2%)	(50)	(50)
#JEJUNUM Sarcoma, Nos	(50)	(50)	(50) 1 (2%)

	CONTROL	LOW DOSE	HIGH DOSE
URINARY SYSTEM			
#KIDNEY UNDIFFERENTIATED CARCINOMA	(50)	(50)	(50) 1 (2%)
ENDOCRINE SYSTEM			
#PITUITARY CARCINOMA,NOS ADENOMA, NOS	(49) 8 (16%) 20 (41%)	(48) 2 (4%) 27 (56%)	(49) 4 (8%) 22 (45%)
#ADRENAL CORTICAL ADENOMA PHEOCHROMOCYTOMA PHEOCHROMOCYTOMA, MALIGNANT	(50) 1 (2%) 1 (2%)	(50) 4 (8%)	(50) 6 (12%) 1 (2%) 1 (2%)
#THYROID C-CELL ADENGMA C-CELL CARCINOMA	(50) 1 (2%) 5 (10%)	(46) 1 (2%) 2 (4%)	(46) 3 (7%)
#THYROID FOLLICLE PAPILLARY CYSTADENOMA, NOS	(50)	(46) 1 (2%)	(46)
<pre>#PANCREATIC ISLETS ISLET-CELL ADENOMA</pre>	(49)	(48) 1 (2%)	(50) 1 (2%)
REPRODUCTIVE SYSTEM			
XMAMMARY GLAND Adenocarcinoma, nos Papillary adenocarcinoma	(50) 1 (2%)	(50) 1 (2%)	(50) 1 (2%) 1 (2%)
CYSTADENOMA, NOS FIBROADENOMA	16 (32%)	2 (4%) 11 (22%)	15 (30%)
*CLITORAL GLAND CARCINOMA,NOS SQUAMOUS CELL CARCINOMA ADENOMA, NOS	(50) 1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%) 1 (2%)	(50)
#UTERUS ENDCMETRIAL STROMAL POLYP	(50) 12 (24%)	(50) 7 (14%)	(50)

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED) ____

	CONTROL	LOW DOSE	HIGH DOSE
NERVOUS SYSTEM			
#CEREBRUM ASTROCYTOMA	(50) 1 (2%)	(50)	(50)
SPECIAL SENSE ORGANS			
*EAR Squamous cell papilloma	(50) 1 (2%)	(50)	(50)
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
NONE			**
ALL OTHER SYSTEMS			
NONE			
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY Natural Deathg Moribund Sacrifice Scheduled Sacrifice	50 2 6	50 7 5	50 6 5
ACCIDENTALLY KILLED Terminal sacrifice Animal missing	42	38	39
<u>a includes autolyzed animals</u>		·····	•_ • ·, • _,·· <u>,</u> ·· · <u>,</u> ·· · · · · · · · · · · · · · · · · · ·

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

TABLE A2.	FEMALE RATS:	NEOPLASMS	(CONTINUED)
			/

	CONTROL	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* Total Primary tumors	44 82	43 80	42 74
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	35 56	37 57	36 52
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	21 26	22 23	18 22
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benion or malignant Total uncertain tumors			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			
* PRIMARY TUMORS: ALL TUMORS EXCEPT SEC * SECONDARY TUMORS: METASTATIC TUMORS (ADJACENT ORGAN

APPENDIX B

Summary of the Incidence of Neoplasms in Mice Fed Diets Containing Locust Bean Gum

TABLE B1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE FED DIETS CONTAINING LOCUST BEAN GUM

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN Squamous cell carcinoma Fibroma	(50) 2 (4%)	(50) 1 (2%)	(50) 1 (2%)
*SUBCUT TISSUE SARCOMA, NOS FIBROMA FIBROSARCOMA		(50) 1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%)
RESPIRATORY SYSTEM			
#LUNG CARCINOMA, NOS, METASTATIC HEPATOCELLULAR CARCINOMA, METAST ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA OSTEOSARCOMA, METASTATIC	(50) 1 (2%) 2 (4%) 7 (14%) 8 (16%) 1 (2%)	(50) 1 (2%) 17 (34%) 5 (10%)	(50) 2 (4%) 11 (22%) 4 (8%)
HEMATOPOIETIC SYSTEM			
<pre>*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS</pre>	(50) 8 (16%)	(50) 10 (20%)	(50) 10 (20%)
#SPLEEN Malignant Lymphoma, Nos	(47)	(46) 1 (2%)	(49)
#BRONCHIAL LYMPH NODE Alveolar/bronchiolar ca, metasta	(41)	(40) 1 (3%)	(44)
#MESENTERIC L. NODE HEPATOCELLULAR CARCINOMA, METAST	(41)	(40)	(44)

	CONTROL	LOW DOSE	HIGH DOSE
MALIGNANT LYMPHOMA, NOS Nalig.lymphona, lymphocytic type	3 (7%)	1 (3%) 1 (3%)	1 (2%)
#PEYER'S PATCH Malignant Lymphoma, NOS	(48) 1 (2%)	(50) 1 (2%)	(49)
CIRCULATORY SYSTEM			
*MULTIPLE ORGANS Hemangiosarcoma	(50)	(50) 1 (2%)	(50)
#SPLEEN ANGIOSARCOMA	(47) 1 (2%)	(46)	(49)
#MEDIASTINAL L.NODE HENANGIOMA	(41) 1 (2%)	(40)	(44)
#MESENTERIC L. NODE Hemangiosarcoma	(41) 1 (2%)	(40)	(44)
*MUSCLE OF LEG Angiosarcoma	(50)	(50)	(50) 1 (2%)
#HEART Angiosarcoma	(50)	(50) 1 (2%)	(50)
#LIVER Angiosarcoma	(50)	(49) 1 (2%)	(49) 1 (2%)
#KIDNEY ANGIOSARCOMA	(47) 1 (2%)	(48)	(50)
DIGESTIVE SYSTEM			
#LIVER BILE DUCT ADENOMA	(50)	(49)	(49)
HEPATOCELLULAR ADENOMA HEPATOCELLULAR CARCINOMA	6 (12%) 15 (30%)	1 (2%) 7 (14%) 10 (20%)	5 (10%) 9 (18%)
#PANCREAS ACINAR-CELL ADENOMA	(45)	(48)	(48) 1 (2%)
<pre>#PERIESOPHAGEAL TISSU ALVEOLAR/BRONCHIOLAR_CA, INVASIV</pre>	(39)	(39)	. (47)

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
#STOMACH Adenomatous Polyp, Nos	(47)	(48) 1 (2%)	(47)
#FORESTOMACH PAPILLOMA, NOS	(47)	(48) 1 (2%)	(47)
#JEJUNUM Adenocarcinoma, nos	(48) 1 (2%)	(50)	(49) 1 (2%)
#COLON Adenocarcinoma, nos	(43) 1 (2%)	(44)	(47)
URINARY SYSTEM			
#KIDNEY OSTEOSARCOMA, METASTATIC	(47) 1 (2%)	(48)	
ENDOCRINE SYSTEM			
#THYROID Adenoma, Nos Follicular-cell Adenoma	(46) 1 (2%)	(45) 1 (2%)	(49)
#PANCREATIC ISLETS ISLET-CELL ADENOMA	(45) 2 (4%)	(48)	(48)
REPRODUCTIVE SYSTEM			
*PREPUTIAL GLAND CARCINOMA,NOS	(50)	(50) 1 (2%)	(50)
#TESTIS INTERSTITIAL-CELL TUMOR	(48) 1 (2%)	(48)	(50) 1 (2%)
NERVOUS SYSTEM			
#BRAIN Alveolar/bronchiolar ca, metasta	(45)	(41) 1 (2%)	(45)
SPECIAL SENSE ORGANS			
*HARDERIAN GLAND CARCINOMA,NOS	(50)	(50)	(50)

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

CONTROL	LOW DOSE	HIGH DOSE	
	1 (2%)	2 (4%)	
(50)	(50) 1 (2%)	(50)	
(50)	(50) 1 (2%)	(50)	
50 9 2	50 7 2	50 4 2	
39	4 1	44	
	2 (4%) (50) (50) 50 9 2	$\begin{array}{c} 2 (4\%) & 1 (2\%) \\ (50) & (50) \\ 1 (2\%) \\ \end{array}$ $\begin{array}{c} (50) & (50) \\ 1 (2\%) \\ \end{array}$ $\begin{array}{c} 50 & 50 \\ 9 & 7 \\ 2 & 2 \end{array}$	
	CONTROL	LOW DOSE	HIGH DOSE
---	----------	------------	---------------
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* Total primary tumors	35 64	4 1 6 5	38 50
TOTAL ANIMALS WITH BENIGN TUMORS Total benigh tumors	16 20	24 31	2 1 2 1
TOTAL ANIMALS WITH MALIGNANT TUMORS Total malignant tumors	29 44	30 34	26 29
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS	4 5	3 6	3 3
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or malignant Total uncertain tumors			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			
PRIMARY TUMORS: ALL TUMORS EXCEPT SE SECONDARY TUMORS: METASTATIC TUMORS			DJACENT ORGAN

TABLE B2.

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50 50	50 50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN Squamdus cell carcindma	(50)	(50) 1 (2%)	(50)
*SUBCUT TISSUE SARCOMA, NOS SARCOMA, NOS, METASTATIC	(50)	(50) 3 (6%) 1 (2%)	(50)
RESPIRATORY SYSTEM			
#LUNG ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA PAPILLARY ADENOCARCINGMA, METAST	(50) 2 (4%) 3 (6%) 1 (2%)	(50) 1 (2%) 1 (2%)	(49) 4 (8%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS MALIG.LYMPHOMA, LYMPHOCYTIC TYPE MALIG.LYMPHOMA, HISTIGCYTIC TYPE MALIGNANT LYMPHOMA, MIXED TYPE	(50) 28 (56%) 1 (2%)	(50) 17 (34%) 1 (2%) 2 (4%)	(50) 12 (24%) 1 (2%)
*HEMATOPOIETIC SYSTEM NEOPLASH, NOS	(50) 2 (4%)	(50) 1 (2%)	(50)
#SPLEEN Malignant lymphoma, Nos	(50) 2 (4%)	(50) 3 (6%)	(47) 1 (2%)
#LYMPH NODE Squamous cell carcingma, metasta	(41)	(43) 1 (2%)	(41)
<pre>#BRONCHIAL LYMPH NODE ALVEOLAR/BRONCHIOLAR_CA, METASTA</pre>	(41)	(43)	(41)

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE FED DIETS **CONTAINING LOCUST BEAN GUM**

	CONTROL	LOW DOSE	HIGHDOSE
#STOMACH MAST-CELL SARCOMA	(50) 1 (2%)	(48)	(47)
IRCULATORY SYSTEM			
*MULTIPLE ORGANS Hemangiosarcoma	(50) 1 (2%)	(50)	(50)
#SPLEEN Angiosarcoma	(50)	(50) 2 (4%)	(47)
#LIVER HEMANGIOSARCOMA ANGIOSARCOMA	(49) 1 (2%) 1 (2%)	(49)	(49)
DIGESTIVE SYSTEM			
#LIVER HEPATOCELLULAR ADENOMA HEPATOCELLULAR CARCINOMA	(49) 1 (2%) 2 (4%)	(49) 1 (2%) 1 (2%)	(49) 1 (2%) 1 (2%)
#STOMACH Papilloma, Nos	(50) 1 (2%)	(48) 1 (2%)	(47)
#FORESTOMACH Papilloma, NOS	(50)	(48)	(47) 1 (2%)
#CECUM LEIOMYOSARCOMA	(46)	(47)	(47) 1 (2%)
JRINARY SYSTEM			
NONE			
ENDOCRINE SYSTEM			
#PITUITARY Adenoma, nos	(39)	(36) 4 (11%)	(41) 1 (2%)
#ADRENAL Pheochromocytoma	(45)	(46)	(46)

	CONTROL	LOW DOSE	HIGH DOSE
#THYROID Follicular-Cell Adenoma Follicular-Cell Carcinoma	(47) 1 (2%)	(50) 1 (2%)	(41)
#PANCRFATIC ISLETS ISLET-CELL ADENOMA ISLET-CELL CARCINOMA	(45) 1 (2%) 1 (2%)	(46)	(47) 1 (2%)
REPRODUCTIVE SYSTEM			
*MANNIARY GLAND ADENOCARCINOMA, NOS PAPILLARY ADENOCARCINOMA FIBROADENOMA	(50) 1 (2%) 1 (2%)	(50) 1 (2%)	(50) 1 (2%)
#UTERUS NEOPLASM, NOS LEIOMYOMA LEIONYOSARCOMA ENDOMETRIAL STROMAL POLYP	(45)	(49) 1 (2%)	(49) 1 (2%) 2 (4%) 3 (6%)
#OVARY/OVIDUCT Papillary adenoma	(45) 1 (2%)	(49)	(49)
#OVARY CYSTADENOCARCINOMA, NOS PAPILLARY CYSTADENOMA, NOS TERATOMA, NOS	(47)	(48) 1 (2%) 1 (2%)	(45)
NERVOUS SYSTEM			
#BRAIN MENINGIOMA	(48) 2 (4%)	(48)	(45)
*HARDERIAN GLAND Adenoma, Nos	(50) 1 (2%)	(50)	(50) 1 (2%)
NONE			

	CONTROL	LOW DOSE	HIGH DOSE
BODY CAVITIES			
*MEDIASTINUM Alveolar/bronchiolar ca, metasta	(50) 1 (2%)	(50)	(50)
*PERITONEUM SARCOMA, NOS, METASTATIC	(50)	(50) 1 (2%)	(50)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS Sarcoma, Nos, Metastatic	(50)	(50) 1 (2%)	(50)
OMENTUM CYSTADENOCARCINOMA, METASTATIC		1	
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ MORIBUND SACRIFICE SCHEDULED SACRIFICE	50 14 1	50 10 6	50 8 1
ACCIDENTALLY KILLED TERMINAL SACRIFICE ANIMAL MISSING	35	34	4 1
a INCLUDES AUTOLYZED ANIMALS			

	CONTROL	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* Total primary tumors	45 56	36 44	30 33
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	9 11	8 10	11 12
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	38 43	30 33	18 19
TOTAL ANIMALS WITH SECONDARY TUMORS# Total secondary tumors	23	4 5	
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or Malignant Total Uncertain Tumors	2 2	1 1	2 2
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Primary or metastatic Total uncertain tumors			
* PRIMARY TUMORS: ALL TUMORS EXCEPT SEC # SECONDARY TUMORS: METASTATIC TUMORS (JACENT ORGAN

APPENDIX C

Summary of the Incidence of Nonneoplastic Lesions in Rats Fed Diets Containing Locust Bean Gum

TABLE C1.

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN INFLAMMATION, ACUTE Hyperkeratosis Acanthosis	(50) 1 (2%) 2 (4%)	(50) 1 (2%) 1 (2%)	(50) 1 (2%)
*SUBCUT TISSUE EPIDERMAL INCLUSION CYST STEATITIS PUS INFLAMMATION, CHRONIC FOCAL NECROSIS, NOS	(50) 1 (2%) 1 (2%) 1 (2%) 1 (2%)	(50)	(50)
NECROSIS, FAT 	1 (2%)		
#LUNG EDEMA, NOS HEMORRHAGE		(50) 1 (2%)	(50) 1 (2%) 1 (2%)
HEMATOPOIETIC SYSTEM			
#SPLEEN FIBROSIS, FOCAL DEGENERATION, HYALINE HEMOSIDEROSIS HEMATOPOIESIS ERYTHROPOIESIS	(50) 1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%)	(50) 1 (2%)
#SPLENIC FOLLICLES ATROPHY, NOS	(50)	(50) 1 (2%)	(50)

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS FED DIETS CONTAINING LOCUST BEAN GUM

	CONTROL	LOW DOSE	HIGH DOSE
#MESENTERIC L. NODE CYST, NOS CONGESTION, NOS	(46) 1 (2%)	(47)	(49)
CIRCULATORY SYSTEM			
#HEART FIBROSIS FIBROSIS, DIFFUSE PERIARTERITIS	(49) 2 (4%) 1 (2%) 1 (2%)	(50)	(50)
#HEART/ATRIUM Thrombus, Mural	(49)	(50) 1 (2%)	(50) 3 (6%)
#LEFT VENTRICLE FIBROSIS	(49)	(50)	(50) 2 (4%)
#MYOCARDIUM FIBROSIS	(49)	(50) 1 (2%)	(50)
*PANCREATIC ARTERY, MEDIAL CALCIFICATION Hyperplasia, Nos	(50)	(50)	(50) 1 (2%) 1 (2%)
#PANCREAS PERIARTERITIS	(49) 1 (2%)	(49) 1 (2%)	(49)
DIGESTIVE SYSTEM			
#LIVER INFLAMMATION ACTIVE CHRONIC NECROSIS, NOS NECROSIS, FOCAL	(50)	(50) 1 (2%)	(50) 1 (2%) 1 (2%)
METAMORPHOSIS FATTY BASOPHILIC CYTO CHANGE GROUND-GLASS CYTO CHANGE	1 (2%) 3 (6%)	1 (2%)	2 (4%) 3 (6%) 1 (2%)
FOCAL CELLULAR CHANGE CLEAR-CELL CHANGE ATROPHY, NOS		1 (2%) 1 (2%)	1 (2%)
#LIVER/CENTRILOBULAR NECPOSIS, NOS	(50)	(50)	(50) 2 (4%)

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
METAMORPHOSIS FATTY		1 (2%)	
#LIVER/KUPFFER CELL HEMOSIDEROSIS	(50)	(50)	(50) 1 (2%)
#BILE DUCT Hyperplasia, nos	(50) 26 (52%)	(50) 30 (60%)	(50) 24 (48%)
#PANCREAS Inflammation, interstitial	(49) 1 (2%)	(49)	(49)
#GASTRIC MUCOSA ULCER, NOS CALCIFICATION, NOS	(50) 1 (2%)	(50)	(49) 1 (2%)
#FORESTOMACH Inflammation, acute	(50)	(50)	(49) 1 (2%)
#COLON NEMATODIASIS	(46) 2 (4%)	(50) 6 (12%)	(48) 4 (8%)
URINARY SYSTEM			
#KIDNEY PYELONEPHRITIS, ACUTE NEFHROSIS, NOS CALCIFICATION, NOS HEMOSIDEROSIS	(50) 1 (2%) 46 (92%)	(50) 45 (90%) 1 (2%) 2 (4%)	(50) 48 (96%) 1 (2%)
#KIDNEY/CORTEX HAMARTOMA CYST, NOS	(50)	(50) 1 (2%)	(50) 1 (2%)
#RENAL PAPILLA NECROSIS, FOCAL	(50)	(50) 1 (2%)	(50)
#KIDNEY/TUBULE NECROSIS, CORTICAL HEMOSIDEROSIS	(50) 1 (2%) 1 (2%)	(50)	(50)
#KIDNEY/PELVIS HYPERPLASIA, PAPILLARY	(50)	(50) 1 (2%)	(50)
#URINARY BLADDER PARASITISI1	(48)	(48)	(45) <u>1 (2%)</u>

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED) _____

	CONTROL	LOW DOSE	HIGH DOSE
ENDOCRINE SYSTEM			
#PITUITARY CYST, NOS HEMORRHAGIC CYST	(47) 1 (2%)	(46) 1 (2%)	(45)
#ADRENAL Hyperplastic nodule Hyperplasia, focal	(50) 1 (2%) 1 (2%)	(50)	(49)
#ADRENAL MEDULLA Hyperplasia, focal	(50) 2 (4%)	(50) 1 (2%)	(49) 3 (6%)
#THYROID Hyperplasia, C-Cell	(49) 2 (4%)	(50) 1 (2%)	(47)
#THYROID FOLLICLE Hyperplasia, papillary	(49)	(50)	(47) 1 (2%)
#PARATHYROID Hyperplasia, Nos	(23) 1 (4%)	(23)	(11)
#PANCREATIC ISLETS Hyperplasia, nos	(49) 1 (2%)	(49) 1 (2%)	(49)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND Hyperplasia, cystic	(50) 1 (2%)	(50)	(50)
*PREPUTIAL GLAND PUS INFLAMMATION, ACUTE ABSCESS, NOS INFLAMMATION, CHRONIC	(50) 4 (8%) 2 (4%) 1 (2%) 1 (2%)	(50) 4 (8%)	(50) 1 (2%)
HYPERPLASIA, NOS	5 (10%)	4 (8%)	1 (2%)
#PROSTATE PUS	(49)	(49)	(46) 1 (2%)
INFLAMMATION, SUPPURATIVE INFLAMMATION, CHRONIC	1 (2%)	3 (6%) 1 (2%)	2 (4%)
#TESTIS NECROSIS, NOS	(50)	(50)	(48)

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
#TESTIS/TUBULE DEGENERATION, NOS	(50) 2 (4%)	(50) 1 (2%)	(48)
*SCROTUM STEATITIS NECROSIS, FAT	(50)		(50) 1 (2%) 1 (2%)
NERVOUS SYSTEM			
#CEREBRUM CYST, NOS	(50) 1 (2%)	(49)	(50)
#CEREBRAL CORTEX Malacia	(50)	(49)	(50) 1 (2%)
#CEREBELLUM HEMORRHAGE	(50) 1 (2%)	(49) 1 (2%)	(50) 1 (2%)
SPECIAL SENSE ORGANS			
NONE			
MUSCULOSKELETAL SYSTEM			
NONE		***	
BODY CAVITIES			
*MESENTERY STEATITIS NECROSIS, FAT CALCIFICATION, NOS	(50) 3 (6%) 3 (6%)	(50) 4 (8%) 1 (2%) 2 (4%)	(50) 1 (2%) 1 (2%)
ALL OTHER SYSTEMS			
TAIL EPIDERMAL INCLUSION CYST			1
ADIPOSE TISSUE INFLAMMATION, CHRONIC	1		1

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

* NUMBER OF ANIMALS NECROPSIED

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
NECROSIS, FAT	1		
OMENTUM STEATITIS NECROSIS, FAT		1	1
SPECIAL MORPHOLOGY SUMMARY None			
# NUMBER OF ANIMALS WITH TISSUE EXAM * NUMBER OF ANIMALS NECROPSIED	INED MICROSCOPI	CALLY	

TABLE C2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS FED DIETS CONTAINING LOCUST BEAN GUM

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SUBCUT TISSUE ABSCESS, NOS NECROSIS, FAT	(50)	(50)	(50) 2 (4%)
RESPIRATORY SYSTEM			
NONE			
HEMATOPOIETIC SYSTEM			
#SPLEEN NECROSIS, DIFFUSE HEMATOPOIESIS	(50) 1 (2%)	(50) 1 (2%)	(50)
#MESENTERIC L. NODE FIBROSIS	(48)	(48)	(49) 1 (2%)
#LIVER HYPERPLASIA, BASOPHILIC	(50)	(50) 2 (4%)	(50)
CIRCULATORY SYSTEM			
NONE			
DIGESTIVE SYSTEM			
#LIVER	(50)	(50)	(50)
HEPATITIS, TOXIC Metamorphosis fatty	3 (6%)	2_(4%)	1 (2%)

	CONTROL		
CYTOPLASMIC CHANGE, HOS BASOPHILIC CYTO CHANGE ANGIECTASIS	1 (2%) 35 (70%)	29 (58%) 1 (2%)	1 (2%) 36 (72%)
#LIVER∕CENTRILOBULAR CONGESTION, NOS NECROSIS, FAT	(50)	(50)	(50) 1 (2%) 1 (2%)
#BILE DUCT CYST, NOS HYPERPLASIA, NOS	(50) 10 (20%)	(50) 4 (8%)	(50) 1 (2%) 7 (14%)
#STOMACH Inflammation, Chronic Focal	(49)	(50)	(50) 1 (2%)
#FORESTOMACH EDEMA, NOS INFLAMMATION, ACUTE	(49) 1 (2%)	(50) 1 (2%) 2 (4%)	(50)
#COLON NEMATODIASIS	(49) 5 (10%)		(50) 2 (4%)
URINARY SYSTEM			
#KIDNEY NEPHROSIS, NOS HEMOSIDEROSIS	(50) 35 (70%)	(50) 34 (68%) 1 (2%)	(50) 22 (44%)
#KIDNEY/TUBULE CALCIFICATION, NDS	(50)	(50) 1 (2%)	(50)
ENDOCRINE SYSTEM			
#PITUITARY CYST, NOS Hemorrhagic Cyst Hyperplasia, Focal Angiectasis	(49)	(48) 1 (2%) 1 (2%) 1 (2%)	(49) 1 (2%)
#ADRENAL Metamorphosis Fatty	(50) 1 (2%)	(50) 1 (2%)	(50)
#ADRENAL CORTEX METAMORPHOSIS FATTY	(50) 1 (2%)	(59)	(50)

TABLE C2. FEMALE RATS: NONNEOPLASTIC LESIONS (CONTINUED) ****

	CONTROL	LOW DOSE	HIGH DOSE
CALCIFICATION, NOS		1 (2%)	
#THYROID Hyperplasia, C-Cell	(50)	(46)	(46) 2 (4%)
#THYROID FOLLICLE HYPERPLASIA, CYSTIC	(50)	(46) 1 (2%)	(46)
#PANCREATIC ISLETS HYPERPLASIA, NOS	(49) 1 (2%)	(48)	(50)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND	(50) 2 (4%)	(50)	(50) 1 (2%)
DILATATION/DUCTS Hyperplasia, nos Hyperplasia, cystic Lactation	2 (4%) 2 (4%) 1 (2%)	1 (2%) 4 (8%)	6 (12%) 1 (2%) 1 (2%)
*MAMMARY LOBULE Hyperplasia, nos	(50) 3 (6%)	(50)	(50)
*CLITORAL GLAND PUS	(50)	(50) 2 (4%)	(50)
INFLAMMATION, SUPPURATIVE INFLAMMATION, CHRONIC SUPPURATIV HYPERPLASIA, NOS	1 (2%)	1 (2%)	1 (2%) 3 (6%)
#UTERUS HYDROMETRA	(50)	(50) 2 (4%)	(50) 1 (2%)
HEMORRHAGE HEMATOMA, NOS	1 (2%)		1 (2%)
FIBROSIS NECROSIS, NOS INFARCT, NOS HEMOSIDEROSIS	1 (2%) 1 (2%) 1 (2%) 1 (2%)	1 (2%)	1 (2%)
#UTERUS/ENDOMETRIUM	(50)	(50)	(50)
HYPERPLASIA, NOS Hyperplasia, cystic	1 (2%)	1 (2%)	2 (4%)
#ENDOMETRIAL GLAND HYPERPLASIA, NOS	(50)	(50)	(50) 1 (2%)
#OVARY CYST, NOS	(48) <u>1 (2%)</u>	(50)	(49)

TABLE C2. FEMALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
CYSTIC FOLLICLES FOLLICULAR CYST, NOS PAROVARIAN CYST	1 (2%) 1 (2%)	1 (2%) 1 (2%)	
NERVOUS SYSTEM			
#CEREBRUM HEMORRHAGE Malacia Calcification, Focal	(50)	(50) 1 (2%) 1 (2%) 1 (2%)	(50)
#BRAIN INFLAMMATION WITH CAVITATION HEMOSIDEROSIS	(50)	(50)	(50) 1 (2%) 1 (2%)
#CEREBELLUM Malacia	(50)	(50) 1 (2%)	(50)
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
<pre>*MESENTERY STEATITIS NECROSIS, FAT</pre>	(50)	(50) 1 (2%)	(50)
ALL OTHER SYSTEMS			
ADIPOSE TISSUE Necrosis, Fat		1	
SPECIAL MORPHOLOGY SUMMARY NONE			
# NUMBER OF ANIMALS WITH TISSUE EXAM * NUMBER OF ANIMALS NECROPSIED	MINED MICROSCOPI	CALLY	

TABLE C2. FEMALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

APPENDIX D

Summary of the Incidence of Nonneoplastic Lesions in Mice Fed Diets Containing Locust Bean Gum

TABLE D1.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE FED DIETS CONTAINING LOCUST BEAN GUM

		LOW DOSE	HIGH DOSE
· · · ·	50 50	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN ULCER, FOCAL ABSCESS, NOS FIBROSIS	1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%)	(50) 1 (2%)
RESPIRATORY SYSTEM			
#LUNG MINERALIZATION CONGESTION, NOS EDEMA, NOS HEMORRHAGE INFLAMMATION, NOS INFLAMMATION, FOCAL	(50) 1 (2%) 1 (2%) 1 (2%) 3 (6%) 1 (2%)	(50)	(50) 1 (2%) 1 (2%) 1 (2%)
INFLAMMATION, HEMORRHAGIC BRONCHOPNEUMONIA, ACUTE	1 (2%)	1 (2%)	
HEMATOPOIETIC SYSTEM			
#SPLEEN HYPERPLASIA, HEMATOPOIETIC HYPERPLASIA, LYMPHOID HEMATOPOIESIS	(47) 8 (17%) 1 (2%)	(46) 1 (2%) 6 (13%)	(49) 4 (8%)
#SPLENIC FOLLICLES Atrophy, Nos	(47)	(46) 2 (4%)	(49)
#LYMPH NODE Necrosis, focal	(41)	(40)	(44) 1 (2%)
#PANCREATIC L.NODE Hemorrhage	(41)	(40)	(44)

	CONTROL	LOW DOSE	HIGH DOSE
#MESENTERIC L. NODE HEMORRHAGE INFLAMMATION, NOS ANGIECTASIS HYPERFLASIA, RETICULUM CELL	(41) 10 (24%) 2 (5%)	(40) 1 (3%) 7 (18%)	(44) 1 (2%) 7 (16%) 2 (5%)
HYPERPLASIA, LYMPHOID Myeloid metaplasia	3 (7%)	1 (3%)	2 (5%) 1 (2%)
<pre>#PEYER'S PATCH HYPERPLASIA, LYMPHOID</pre>	(48) 1 (2%)	(50)	(49) 2 (4%)
#THYMUS CYST, NOS	(22) 1 (5%)	(21)	(14)
CIRCULATORY SYSTEM			
*MULTIPLE ORGANS PERIARTERITIS	(50) 1 (2%)	(50)	(50)
#HEART Degeneration, NOS	(50)	(50)	(50) 1 (2%)
#MYOCARDIUM CALCIFICATION, NOS	(50) 1 (2%)	(50)	(50)
DIGESTIVE SYSTEM			
#LIVER NECROSIS, FOCAL METAMORPHOSIS FATTY PIGMENTATION, NOS NUCLEAR ENLARGEMENT CLEAR-CELL CHANGE	(50) 1 (2%)	(49)	(49) 2 (4%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)
#BILE DUCT Cyst, nos Hyperplasia, focal	(50) 1 (2%)	(49) 1 (2%)	(49) 1 (2%)
#PANCREAS CYST, NOS CYSTIC DUCTS ABSCESS, NOS	(45) 1 (2%) 1 (2%) 1 (2%)	(48)	(48)

TABLE D1. MALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
INFLAMMATION, CHRONIC INFLAMMATION, FOCAL GRANULOMATOU	1 (2%)	1 (2%)	
#PANCREATIC ACINUS Cytologic degeneration Atrophy, NOS	(45) 2 (4%)	(48)	(48) 1 (2%)
#STOMACH Hyperplasia, basal cell	(47)	(48)	(47) 1 (2%)
#FORESTOMACH METAPLASIA, SQUAMOUS	(47) 1 (2%)	(48)	(47)
URINARY SYSTEM			
#KIDNEY INFLAMMATION, INTERSTITIAL	(47) 1 (2%)	(48)	(50)
NEPHROPATHY Metaplasia, osseous		1 (2%)	1 (2%)
#KIDNEY/TUBULE MINERALIZATION	(47)	(48)	(50) 1 (2%)
#U.BLADDER/SUBMUCOSA FIBROSIS		(50)	(49) 1 (2%)
ENDOCRINE SYSTEM			
#PITUITARY Hyperplasia, focal	(39)	(46) 1 (2%)	(44)
CYST, NOS	(46) 1 (2%)	(45)	(49)
FOLLICULAR CYST, NOS INFLAMMATION, INTERSTITIAL HYPERPLASIA, EPITHELIAL	1 (2%)	1 (2%) 1 (2%)	
<pre>#PANCREATIC ISLETS HYPERPLASIA, NOS</pre>	(45) 1 (2%)	(48) 3 (6%)	(48)
REPRODUCTIVE SYSTEM			
*PREPUCE ABSCESS, NOS	(50)	(50)	(50) 1 (2%)

TABLE D1. MALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSI
ABSCESS, CHRONIC			1 (2%)
*PREPUTIAL GLAND CYST, NOS	(50) 1 (2%)	(50)	(50)
EPIDERMAL INCLUSION CYST		1 (2%)	1 (2 %)
ABSCESS, NOS Hyperplasia, nos	2 (4%) 1 (2%)		1 (2%)
#TESTIS	(48)	(48)	(50)
MINERALIZATION DEGENERATION, NOS	1 (2%)	2 (4%)	3 (6%) 1 (2%)
IERVOUS SYSTEM			
NONE			
PECIAL SENSE ORGANS			
NONE			
1USCULOSKELETAL SYSTEM			
NONE			
ODY CAVITIES			
*PERITONEUM Inflammation, Nos	(50)	(50) 1 (2%)	(50)
*MESENTERY	(50)	(50)	(50)
INFLAMMATION, GRANULOMATOUS NECROSIS, FAT		1 (2%) 1 (2%)	
LL OTHER SYSTEMS			
OMENTUM			
HEMORRHAGE NECROSIS, FAT	2		1
PECIAL MORPHOLOGY SUMMARY			
NO LESION REPORTED	2	6	4

TABLE D1. MALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

* NUMBER OF ANIMALS NECROPSIED

TABLE D1. MALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
AUTO/NECROPSY/HISTO PERF	2		
# NUMBER OF ANIMALS WITH TISSUE E * NUMBER OF ANIMALS NECROPSIED	EXAMINED MICROSCOPICA	LLY	

TABLE D2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE FED DIETS CONTAINING LOCUST BEAN GUM

	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SUBCUT TISSUE FIBROSIS		(50)	1 (2%)
RESPIRATORY SYSTEM			
#LUNG HEMORRHAGE INFLAMMATION, FOCAL		(50)	(49) 2 (4%)
HEMATOPOIETIC SYSTEM			
<pre>*MULTIPLE ORGANS HYPERPLASIA, LYMPHOID</pre>	(50)	(50) 1 (2%)	(50) 1 (2%)
#SPLEEN HEMORRHAGE ANGIECTASIS HYPERPLASIA, GRAHULOCYTIC HYPERPLASIA, RETICULUM CELL	(50) 1 (2%) 1 (2%) 1 (2%)	(50) 1 (2%)	2 (4%) 1 (2%)
HYPERPLASIA, LYNPHOID #SPLENIC FOLLICLES	6 (12%) (50)	11 (22%) (50)	8 (17%) (47)
ATROPHY, NOS		1 (2%)	(177
#LUMBAR LYMPH NODE Hemorrhage	(41)	(43) 1 (2%)	(41)
#MESENTERIC L. NODE Hematoma, Nos	(41)	(43)	(41)
ANGIECTASIS HYPERPLASIA, RETICULUM CELL	2 (5%)	1 (2/1)	1 (2%) 1 (2%)

	CONTROL	LOW DOSE	HIGH DOSE
HYPERPLASIA, LYMPHOID			1 (2%)
#PEYER'S PATCH Hyperplasia, lymphoid	(46)	(49) 1 (2%)	(47)
#THYMUS Cyst, Nos Necrosis, Nos	(25) 1 (4%)	(17)	(24) 1 (4%)
CIRCULATORY SYSTEM			
#MESENTERIC L. NODE LYMPHANGIECTASIS	(41) 1 (2%)	(43)	(41)
#LUNG PERIVASCULITIS	(50)	(50) 1 (2%)	(49)
#HEART MINERALIZATION	(47) 1 (2%)	(50)	(47)
PÉRIARTERITIS Degeneration, nos		1 (2%)	1 (2%)
DIGESTIVE SYSTEM			
#SALIVARY GLAND FIBROSIS, DIFFUSE	(47) 1 (2%)	(48)	(46)
#LIVER ADSCESS, NOS	(49)	(49)	(49) 1 (2%)
NECROSIS, NOS NECROSIS, FOCAL METAMORPHOSIS FATTY BASOPHILIC CYTO CHANGE CLEAR-CELL CHANGE	2 (4%) 1 (2%) 1 (2%)	2 (4%) 1 (2%)	2 (4%) 1 (2%)
#BILE DUCT CYST, NOS	(49) 1 (2%)	(49)	(49)
#PANCREAS DILATATION/DUCTS	(45) 2 (4%)	(46)	(47)
INFLAMMATION, NOS INFLAMMATION, ACUTE ABSCESS, NOS	1 (2%)		1 (2%)

TABLE D2. FEMALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
ATROPHY, NOS	1 (2%)		
#PANCREATIC ACINUS Cytologic degeneration Atrophy, focal	(45)	(46) 1 (2%)	(47) 1 (2%)
#STOMACH INFLAMMATION, ACUTE FOCAL PIGMENTATION, NOS Hyperplasia, Basal Cell Hyperkeratosis Acanthosis	(50) 1 (2%) 1 (2%) 1 (2%)	(48) 1 (2%) 1 (2%) 1 (2%)	(47)
#GASTRIC MUCOSA METAPLASIA, SQUAMOUS	(50)	(48)	(47) 1 (2%)
#FORESTOMACH ULCER, FOCAL INFLAMMATION, ACUTE FOCAL	(50) 1 (2%)	(48) 1 (2%)	(47) 1 (2%)
HYPERPLASIA, BASAL CELL ACANTHOSIS	1 (2%)	2 (4%) 1 (2%)	1 (2%)
#ILEUM Congestion, Nos	(46)	(49) 1 (2%)	(47)
#COLON NEMATODIASIS	(46)	(47)	(47) 1 (2%)
#CECUM EDEMA, NOS	(46)	(47) 1 (2%)	(47)
JRINARY SYSTEM			
#KIDNEY INFLAMMATION, INTERSTITIAL GLOMERULOSCLEROSIS, NOS INFARCT, HEALED	(48) 1 (2%) 2 (4%)	(50) 1 (2%)	(49) 1 (2%) 1 (2%)
#KIDNEY/TUBULE NECROSIS, FOCAL METAMORPHOSIS FATTY PIGMENTATION, NOS REGENERATION, NOS	(48) 1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%)	(49)

TABLE D2. FEMALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

	CONTROL	LOW DOSE	HIGH DOSE
ENDOCRINE SYSTEM			
#PITUITARY CYST, NOS HYPERPLASIA, FOCAL	(39) 1 (3%)	(36) 1 (3%)	(41) 1 (2%)
#THYROID Cyst, Nos	(47)	1 (2%)	(41)
REPRODUCTIVE SYSTEM			
#UTERUS HYDROMETRA Abscess, NOS		(49) 4 (8%)	(49) 5 (10%) 1 (2%)
#UTERUS/ENDOMETRIUM INFLAMMATION, NECROTIZING INFLAMMATION, ACUTE HYPERPLASIA, NOS HYPERPLASIA, CYSTIC	(45) 2 (4%) 2 (4%) 30 (67%)	(49) 2 (4%) 1 (2%) 32 (65%)	(49) 2 (4%) 2 (4%) 28 (57%)
#OVARY MINERALIZATION CYST, NCS PAROVARIAN CYST HEMORRHAGIC CYST ABSCESS, NOS HYPERPLASIA, GRANULOSA-CELL HYPERPLASIA, CYSTIC	(47) 8 (17%) 3 (6%) 1 (2%)	(48) 2 (4%) 3 (6%) 1 (2%) 3 (6%)	(45)
NERVOUS SYSTEM			
#BRAIN Mineralization Malacia	(48) 1 (2%) 1 (2%)	(48)	(45) 1 (2%)
#CEREBELLUM GLIOSIS	(48) 1 (2%)	(48)	(45)

TABLE D2, FEMALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

_____ _____

	CONTROL	LOW DOSE	HIGH DOSE
1USCULOSKELETAL SYSTEM			
*SKULL HYPERPLASIA, NOS	(50) 1 (2%)	(50)	(50)
BODY CAVITIES			
*PERITONEUM INFLAMMATION, ACUTE	(50) 1 (2%)	(50)	(50) 2 (4%)
*MESENTERY Cyst, NDS Necrosis, Fat		(50) 1 (2%) 1 (2%)	(50)
ALL OTHER SYSTEMS			
OMENTUM Necrosis, FAT	2	2	
SPECIAL MORPHOLOGY SUMMARY			
NO LESION REPORTED Auto/Necropsy/histo perf		1	1
NUMBER OF ANIMALS WITH TISSUE EXA NUMBER OF ANIMALS NECROPSIED	MINED MICROSCOPI	CALLY	

TABLE D2. FEMALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

APPENDIX E

Analyses of Locust Bean Gum

(Lot No. CN-361)

Midwest Research Institute

APPENDIX E

Analyses of Locust Bean Gum (Lot No. CN-361) Midwest Research Institute

A. MELTING POINT

Determined

Literature Values

m.p.: 210^o-300^oC, decomp. (visual, capillary) Exotherm beginning at 302^oC, decomp. (DuPont 900 DTA) No literature value found

B. THIN-LAYER CHROMATOGRAPHY (of hydrolysis products after reaction with H₂SO₄, neutralization with BaOO₃, and filtration)

Plates Silica Gel 60 F-254 Ref. Standard: D-Galactose and D-Mannose

Potassium permanganate in 1N sodium hydroxide

Amount Spotted: 42 µg

System 1:

- n-Butanol:acetic acid:water (63:12:25)
- R_f: 0.24 (major) (mannose) 0.17 (minor) (galactose)
- R_{st}: 0.96, 0.68 relative to D-mannose 1.33, 0.94 relative to D-galactose
- C. <u>WATER ANALYS IS</u> (Karl Fisher) $5.7\% \pm 0.8(\delta)\%$

- System 2:
 - n-Butanol:pyridine:water (46:31:23)
- R_f: 0.45 (major) 0.36 (minor)

Visualization: 0.5%

R_{st} 0.98, 0.78 relative to D-mannose 1.25, 1.00 relative to D-galactose

D. TITRATION BY PERIODATE OXIDATION

Modification of U.S.P. Assay for Mannitol (USP, 1970)

Samples were dissolved in 25 ml concentrated sulfuric acid and 150 ml water in 250-ml volumetric flasks and left at room temperature for 65 hours. The solutions were then boiled for 55 minutes on a hot plate. The flasks were cooled and diluted to volume with water. Aliquots (5 ml) were transferred to 125-ml Erlemmeyer flasks and 50.0 ml potassium periodate/sulfuric acid solution was added. One sample and the blank were heated on a steam bath for 25 hours. Potassium iodide was added and the samples were titrated with sodium thiosulfate. A second sample was heated on a steam bath for 5 hours and left at room temperature for 16 hours before potassium iodide was added and the sample titrated. The assumption was made that each monomer unit reacted with 5 moles of periodate. A discussion of this procedure appears in Appendix F.

Purity: $77.2\% + 0.4(\delta)\%$ as compared to glucose

E. SPECTRAL DATA

Determined

l. Infrared

Instrument: Beckman IR-12 Cell: 1% in potassium bromide Results: See Figure 5

Determined

2. Ultraviolet/Visible

Instrument: Cary 118
No absorbance between 220 and
350 nm (ultraviolet range) or
between 350 and 800 nm (visible
range)
Concentration: 0.1 mg/ml
Solvent: Water

Literature Values

Consistent with literature spectrum (McNaulty, 1960)

Literature Values

No literature values found

Figure 5. Infrared Absorption Spectrum (Lot No. CN-361) Locust Bean Gum

APPENDIX F

Analyses of Locust Bean Gum

(Lot No. 265-76)

Midwest Research Institute

APPENDIX F

Analyses of Locust Bean Gum Lot. (No. 265-76) Midwest Research Institute

A. THIN-LAYER CHROMATOGRAPHY OF ACID HYDROLYSIS PRODUCTS

Plates Silica Gel 60 F-254	Ref. Standard: D-Galactose and D-Mannose (Varma et al., 1973)
Amount Spotted: 40 μ g	Visualization: 0.5%
2 μ g/ μ l in methanol:	Potassium permanganate
H ₂ O (75:25)	in lN sodium hydroxide
System 1:	System 2:
n-Butanol:acetic acid:water	n-Butanol:pyridine:
(63:12:25)	water (46:31:23)
R _f : 0.18 (minor) 0.28 (major)	R _f : 0.49, 0.58
R _{st} : 0.71, 1.01 relative to	R _{st} : 0.88, 1.03 relative
D-mannose	to D-mannose
0.94, 1.33 relative to	1.03, 1.20 relative
D-galactose	to D-galactose

B. WATER ANALYSIS

(Karl Fisher) $5.7\% \pm 0.4$ (**\dot{o}**)%

C. TITRATION BY PERIODATE OXIDATION

Modification of U.S.P. Assay for Mannitol (USP, 1970)

Samples were dissolved in 25 ml concentrated sulfuric acid and 150 ml water in 250-ml volumetric flasks and left at room temperature for 18 hours. The solutions were then boiled on a hot plate until they started to discolor. All samples began to discolor before 15 minutes. The flasks were cooled and diluted to volume with water. Aliquots (5 ml) were transferred to 125-ml Erlenmeyer flasks and 50.0 ml potassium periodate/sulfuric acid solution added. Each sample and a blank were heated on a steam bath for 2.5 hours. Potassium iodide was added and the samples titrated with sodium thiosulfate. The assumption was made that each monomer unit reacted with 5 moles of periodate.

Purity: 88.0% + 2.5(**ð**)%

The use of this procedure for a comparative analysis of different lots at different points in time is tenuous because of the variability inherent in the procedure. Milder conditions were used for the hydrolysis of Lot No. 265-76 than for Lot No. CN-361, which may have led to further oxidation of the latter and to a lower calculated purity. Purities determined for both lots should be considered minimum values.

D. SPECTRAL DATA

1. Infrared

Instrument: Beckman	IR-12	Consistent with
Cell: Thin Film		literature
Results: See Figure	6	spectrum (McNaulty, 1960)

Figure 6. Infrared Absorption Spectrum (Lot No. 265-76) Locust Bean Gum

NIH Publication No. 82-1777 February 1982