NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 287

NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development/validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is made up of four charter DHHS agencies: the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS.

NTP TECHNICAL REPORT

ì

ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

(CAS NO. 868-85-9)

IN F344/N RATS AND B6C3F1 MICE

(GAVAGE STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

November 1985

NTP TR 287

NIH Publication No. 86-2543

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NOTE TO THE READER

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for testing in the NTP Carcinogenesis Program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical has the potential for hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

Five categories of interpretative conclusions were adopted for use in June 1983 in the Technical Reports series to specifically emphasize consistency and the concept of actual evidence of carcinogenicity. For each definitive study result (male rats, female rats, male mice, female mice), one of the following quintet will be selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of malignant neoplasms, studies that exhibit a substantially increased incidence of benign neoplasms, or studies that exhibit an increased incidence of a combination of malignant and benign neoplasms where each increases with dose.
- Some Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of benign neoplasms, studies that exhibit marginal increases in neoplasms of several organs/tissues, or studies that exhibit a slight increase in uncommon malignant or benign neoplasms.
- Equivocal Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related marginal increase of neoplasms.
- No Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenicity demonstrates that because of major qualitative or quantitative limitations, the studies cannot be interpreted as valid for showing either the presence or absence of a carcinogenic effect.

Additionally, the following concepts (as patterned from the International Agency for Research on Cancer Monographs) have been adopted by the NTP to give further clarification of these issues:

The term *chemical carcinogenesis* generally means the induction by chemicals of neoplasms not usually observed, the earlier induction by chemicals of neoplasms that are commonly observed, or the induction by chemicals of more neoplasms than are generally found. Different mechanisms may be involved in these situations. Etymologically, the term *carcinogenesis* means induction of cancer, that is, of malignant neoplasms; however, the commonly accepted meaning is the induction of various types of neoplasms or of a combination of malignant and benign neoplasms. In the Technical Reports, the words *tumor* and *neoplasm* are used interchangeably.

This study was initiated by the National Cancer Institute's Carcinogenesis Bioassay Program, now part of the National Institute of Environmental Health Sciences, National Toxicology Program. The studies described in this Technical Report have been conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. All NTP toxicology and carcinogenesis studies are subjected to a data audit before being presented for peer review.

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to identify any mistakes so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP. Comments and questions about the National Toxicology Program Technical Reports on Toxicology and Carcinogenesis Studies should be directed to Dr. J.E. Huff, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3780).

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Public Information Office, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709.

2

CONTENTS

PAGE

ABSTRACT
CONTRIBUTORS
PEER REVIEW PANEL
SUMMARY OF PEER REVIEW COMMENTS
I. INTRODUCTION
PRODUCTION AND USE
TOXICITY AND MUTAGENICITY
STUDY RATIONALE
II. MATERIALS AND METHODS
PROCUREMENT AND CHARACTERIZATION OF DIMETHYL HYDROGEN PHOSPHITE 20
PREPARATION AND ANALYSIS OF DOSE MIXTURES
SINGLE-ADMINISTRATION STUDIES
FIFTEEN-DAY REPEATED-ADMINISTRATION STUDIES
THIRTEEN-WEEK STUDIES
TWO-YEAR STUDIES
STUDY DESIGN
SOURCE AND SPECIFICATIONS OF TEST ANIMALS
ANIMAL MAINTENANCE
CLINICAL EXAMINATIONS AND PATHOLOGY25
STATISTICAL METHODS
III. RESULTS
RATS
SINGLE-ADMINISTRATION STUDIES
FIFTEEN-DAY REPEATED-ADMINISTRATION STUDIES
THIRTEEN-WEEK STUDIES
TWO-YEAR STUDIES
BODY WEIGHTS AND CLINICAL SIGNS
SURVIVAL
PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS
MICE
SINGLE-ADMINISTRATION STUDIES42
FIFTEEN-DAY REPEATED-ADMINISTRATION STUDIES
THIRTEEN-WEEK STUDIES

CONTENTS (Continued)

TABLES

TABLE	1	SUMMARY OF ANALYSES OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE
		STUDIES OF DIMETHYL HYDROGEN PHOSPHITE
TABLE	2	EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE
		STUDIES OF DIMETHYL HYDROGEN PHOSPHITE
TABLE	3	SURVIVAL OF RATS IN THE SINGLE-ADMINISTRATION GAVAGE STUDIES
		OF DIMETHYL HYDROGEN PHOSPHITE
TABLE	4	SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FIFTEEN-DAY
		REPEATED-ADMINISTRATION GAVAGE STUDIES OF DIMETHYL HYDROGEN
		PHOSPHITE
TABLE	5	SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK
		GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE
TABLE	6	NUMBERS OF RATS WITH HISTOPATHOLOGIC LESIONS IN THE EYE AND
		LUNG IN THE THIRTEEN-WEEK GAVAGE STUDIES OF DIMETHYL HYDROGEN
		PHOSPHITE
TABLE	7	MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE
		STUDIES OF DIMETHYL HYDROGEN PHOSPHITE
TABLE	8	SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL
		HYDROGEN PHOSPHITE
TABLE	9	INCIDENCES OF LUNG LESIONS IN RATS IN THE TWO-YEAR GAVAGE
		STUDIES OF DIMETHYL HYDROGEN PHOSPHITE
TABLE 1	0	ANALYSIS OF LUNG TUMORS IN RATS IN THE TWO-YEAR GAVAGE
		STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

TABLES (Continued)

TABLE 11	INCIDENCES OF FORESTOMACH LESIONS IN RATS IN THE TWO-YEAR
	GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE
TABLE 12	ANALYSIS OF FORESTOMACH TUMORS IN MALE RATS IN THE
	TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE41
TABLE 13	SURVIVAL OF MICE IN THE SINGLE-ADMINISTRATION GAVAGE STUDIES
	OF DIMETHYL HYDROGEN PHOSPHITE42
TABLE 14	SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FIFTEEN-DAY
	REPEATED-ADMINISTRATION GAVAGE STUDIES OF DIMETHYL
	HYDROGEN PHOSPHITE
TABLE 15	INCIDENCES OF NONNEOPLASTIC LESIONS IN THE STOMACHS OF MICE IN
	THE FIFTEEN-DAY REPEATED-ADMINISTRATION GAVAGE STUDIES OF
	DIMETHYL HYDROGEN PHOSPHITE
TABLE 16	SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK
	GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE
TABLE 17	HISTOPATHOLOGIC LESIONS OBSERVED IN MICE IN THE THIRTEEN-WEEK
	GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE
TABLE 18	MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE
	STUDIES OF DIMETHYL HYDROGEN PHOSPHITE
TABLE 19	SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL
	HYDROGEN PHOSPHITE
TABLE 20	ANALYSIS OF LIVER TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE
	STUDY OF DIMETHYL HYDROGEN PHOSPHITE

FIGURES

FIGURE	1	GROWTH CURVES FOR RATS ADMINISTERED DIMETHYL HYDROGEN
		PHOSPHITE IN CORN OIL BY GAVAGE FOR TWO YEARS
FIGURE	2	KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED DIMETHYL
		HYDROGEN PHOSPHITE IN CORN OIL BY GAVAGE FOR TWO YEARS
FIGURE	3	GROWTH CURVES FOR MICE ADMINISTERED DIMETHYL HYDROGEN
		PHOSPHITE IN CORN OIL BY GAVAGE FOR TWO YEARS
FIGURE	4	KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED DIMETHYL
		HYDROGEN PHOSPHITE IN CORN OIL BY GAVAGE FOR TWO YEARS
FIGURE	5	INFRARED ABSORPTION SPECTRUM OF DIMETHYL HYDROGEN PHOSPHITE
		(LOT NO. DM113077)
FIGURE	6	NUCLEAR MAGNETIC RESONANCE SPECTRUM OF DIMETHYL HYDROGEN
		PHOSPHITE (LOT NO. DM113077)
FIGURE	7	INFRARED ABSORPTION SPECTRUM OF DIMETHYL HYDROGEN PHOSPHITE
		(LOT NO. KC031247) ,143
FIGURE	8	NUCLEAR MAGNETIC RESONANCE SPECTRUM OF DIMETHYL HYDROGEN
		PHOSPHITE (LOT NO. KC031247)144
FIGURE	9	RECONSTRUCTED ION CURRENT CHROMATOGRAM FROM THE FULL MASS SCAN
		GC/MS ANALYSIS OF DIMETHYL HYDROGEN PHOSPHITE (LOT NO. KC031247) 149
FIGURE	10	MASS SPECTRUM OF DIMETHYL HYDROGEN PHOSPHITE (LOT NO. KC031247) 150
FIGURE	11	MASS SPECTRUM OF TRIMETHYL PHOSPHATEDIMETHYL HYDROGEN
		PHOSPHITE IMPURITY (LOT NO. KC031247) ,151

Dimethyl Hydrogen Phosphite, NTP TR 287 6

APPENDIXES

2

	PAGE
APPENDIX A	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR
	GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE
TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE
	TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE
TABLE A2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE
	TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE61
TABLE A3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE
	TWO YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE64
TABLE A4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE
	TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE
APPENDIX B	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR
	GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE
TABLE B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE
TABLE B2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE
TABLE B3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE
TABLE B4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE
APPENDIX C	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN
	THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE $\dots 97$
TABLE C1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE
	RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN
	PHOSPHITE
TABLE C2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN
	PHOSPHITE

APPENDIXES (Continued)

ļ

	PAGE
APPENDIX D	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN
	THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE 107
TABLE D1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE
	MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN
	PHOSPHITE
TABLE D2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN
	PHOSPHITE
APPENDIX E	ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR
	GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE
TABLE E1	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR
	GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE
TABLE E2	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR
	GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE121
TABLE E3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR
	GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE
TABLE E4	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR
	GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE
APPENDIX F	HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS AND B6C3F ₁ MICE
	RECEIVING CORN OIL BY GAVAGE127
TABLE F1	HISTORICAL INCIDENCE OF LUNG TUMORS IN MALE F344/N RATS
	RECEIVING CORN OIL BY GAVAGE
TABLE F2	HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS
	RECEIVING CORN OIL BY GAVAGE129
TABLE F3	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE
	F344/N RATS RECEIVING CORN OIL BY GAVAGE
TABLE F4	HISTORICAL INCIDENCE OF STOMACH TUMORS IN MALE F344/N RATS
	RECEIVING CORN OIL BY GAVAGE

APPENDIXES (Continued)

	PAGE
TABLE F5	HISTORICAL INCIDENCE OF ALVEOLAR/BRONCHIOLAR TUMORS IN
	FEMALE F344/N RATS RECEIVING CORN OIL BY GAVAGE
TABLE F6	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE
	B6C3F ₁ MICE RECEIVING CORN OIL BY GAVAGE
TABLE F7	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN FEMALE
	B6C3F ₁ MICE RECEIVING CORN OIL BY GAVAGE
APPENDIX G	CHEMICAL CHARACTERIZATION OF DIMETHYL HYDROGEN PHOSPHITE 135
APPENDIX H	PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES
APPENDIX I	ANALYSIS OF DOSE MIXTURES: METHODS
APPENDIX J	ANALYSES OF DOSE MIXTURES: DATA
TABLE J1	ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF
	DIMETHYL HYDROGEN PHOSPHITE
TABLE J2	REFEREE SAMPLE DATA IN THE TWO-YEAR GAVAGE STUDIES OF
	DIMETHYL HYDROGEN PHOSPHITE164
APPENDIX K	GENETIC TOXICOLOGY OF DIMETHYL HYDROGEN PHOSPHITE
TABLE K1	MUTAGENICITY OF DIMETHYL HYDROGEN PHOSPHITE IN
	SALMONELLA TYPHIMURIUM
TABLE K2	INDUCTION OF SEX-LINKED RECESSIVE LETHAL MUTATIONS IN
	DROSOPHILA MELANOGASTER BY DIMETHYL HYDROGEN PHOSPHITE
APPENDIX L	SENTINAL ANIMAL PROGRAM
TABLE L1	MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN
	THE THIRTEEN-WEEK GAVAGE STUDIES OF DIMETHYL HYDROGEN
	рнозрніте
TABLE LS	MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN
	THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE 171

APPENDIXES (Continued)

	PAGE
APPENDIX M	INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS
	OF THE NIH 07 DIET
TABLE M1	INGREDIENTS OF THE NIH 07 DIET174
TABLE M2	VITAMINS AND MINERALS IN THE NIH 07 DIET
TABLE M3	NUTRIENT COMPOSITION OF THE NIH 07 DIET
TABLE M4	CONTAMINANT LEVELS OF THE NIH 07 DIET
APPENDIX N	DATA AUDIT SUMMARY

•

DIMETHYL HYDROGEN PHOSPHITE

CAS No. 868-85-9

Molecular Weight 110.6 Synonyms:

Molecular Formula C₂H₇O₃P

Phosphonic acid, dimethyl ester (9CI) Dimethyl phosphite Dimethyl phosphorus acid Methyl phosphonate Dimethyl phosphonate Dimethoxyphosphine oxide TL 585 DMHP Phosphorous acid, dimethyl ester Dimethylphosphite Dimethylphosphonate Dimethylphosphorous acid Bis (hydroxymethyl) phosphine oxide

ABSTRACT

Dimethyl hydrogen phosphite (DMHP) is used as an intermediate in the production of insecticides and herbicides, as an additive to lubricants, and as a stabilizer in oil and plaster and was considered for use as a chemical to simulate the physical (but not the biologic) properties of anticholinesterase agents. Results of 13-week gavage studies in F344/N rats (0-400 mg DMHP/kg body weight) and in B6C3F₁ mice (0-1,500 mg DMHP/kg body weight) were used to identify short-term toxicity and to establish doses for the 2-year toxicology and carcinogenesis studies. In these studies, dimethyl hydrogen phosphite (greater than 97% pure) was administered for 103 weeks in corn oil by gavage to groups of 50 male F344/N rats and to groups of 50 male and 50 female B6C3F₁ mice at doses of 0, 100, or 200 mg/kg and to groups of 50 female F344/N rats at doses of 0, 50, or 100 mg/kg.

In the 2-year studies, survival of high dose male rats and high dose male mice was lower (P < 0.05) than that of the vehicle controls (male rats: vehicle control, 39/50; low dose, 29/50; high dose, 23/50; male mice: 42/50; 34/50; 32/50). At the end of the studies, mean body weights were lower than those of the corresponding vehicle controls for high dose male rats (-15%), for high dose female rats (-5%), and for high dose male mice (-5%).

Dimethyl hydrogen phosphite caused dose-related increases in nonneoplastic and neoplastic lesions of the lung in male and female rats. In high dose male rats, there were increased incidences of lung neoplasms, including squamous cell carcinomas (0/50; 0/50; 5/50), alveolar/bronchiolar adenomas (0/50; 0/50; 5/50), and alveolar/bronchiolar carcinomas (0/50; 1/50; 20/50). In high dose female rats, there was a marginal increase in the incidence of alveolar/bronchiolar carcinomas of the lung (0/50; 1/49; 3/50). Hyperplasia of the lung and chronic interstitial pneumonia were increased in dosed male rats and in high dose female rats.

Dimethyl hydrogen phosphite caused increases in forestomach lesions in male and female rats. In male rats, there was an increased incidence of forestomach neoplasms, including squamous cell papillomas (0/50; 1/50; 3/50) and squamous cell carcinomas (0/50; 0/50; 3/50). High dose male rats had increased incidences of hyperkeratosis and hyperplasia of the forestomach. In high dose female rats,

the incidence of forestomach hyperplasia was increased. Neoplastic lesions of the forestomach (a squamous cell papilloma and a squamous cell carcinoma) were found in two high dose female rats.

Mineralization of the cerebellum was seen in high dose male rats (12/49) and in no other group. Focal calcification of the testis occurred at increased incidence in dosed male mice in the 2-year studies (2/50; 9/47; 24/50). Compound-related testicular atrophy was seen in male mice in the 13-week study.

Dimethyl hydrogen phosphite did not induce any neoplasms in male or female mice.

Dimethyl hydrogen phosphite was not mutagenic in *Salmonella typhimurium* strains TA98, TA100, TA1535, or TA1537 in the presence or absence of Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9. This chemical did not induce sex-linked recessive lethal mutations in *Drosophila melanogaster*.

An audit of the experimental data was conducted for these carcinogenesis studies on dimethyl hydrogen phosphite. No data discrepancies were found that influenced the final interpretations.

Under the conditions of these gavage studies, there was *clear evidence of carcinogenicity*^{*} in male F344/N rats receiving dimethyl hydrogen phosphite, as shown by increased incidences of alveolar/ bronchiolar adenomas, alveolar/bronchiolar carcinomas, and squamous cell carcinomas of the lung and of neoplasms of the forestomach. There was *equivocal evidence of carcinogenicity* in female F344/N rats receiving dimethyl hydrogen phosphite, as shown by marginally increased incidences of alveolar/bronchiolar carcinomas of the lung and of neoplasms of the forestomach. There was *no evidence of carcinogenicity* in male or female B6C3F₁ mice receiving dimethyl hydrogen phosphite at doses of 100 or 200 mg/kg for 103 weeks.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2.

CONTRIBUTORS

National Toxicology Program Box 12233 Research Triangle Park North Carolina 27709

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of Dimethyl Hydrogen Phosphite is based on 13-week studies that began in December 1978 and ended in March 1979 and on 2-year studies that began in March 1980 and ended in April 1982 at Litton Bionetics, Inc.

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

June K. Dunnick, Ph.D., Chemical Manager

Gary A. Boorman, D.V.M., Ph.D. Rajendra S. Chhabra, Ph.D. David M. DeMarini, Ph.D. Joseph K. Haseman, Ph.D. James Huff, Ph.D. C.W. Jameson, Ph.D. E.E. McConnell, D.V.M. G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D. Raymond W. Tennant, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report on 1/25/83)

Robert Sauer, V.M.D. (Chair) Clement Associates Gary A. Boorman, D.V.M., Ph.D. NTP Scot L. Eustis, D.V.M., Ph.D. NTP Lester Schwartz, D.V.M., Ph.D. Smith Kline & French Laboratories Philadelphia, PA Hendricus A. Solleveld, D.V.M., Ph.D. NTP

Principal Contributors at Litton Bionetics, Inc. (Conducted Studies and Evaluated Tissues)

Carter D. Johnston, Ph.D. Principal Investigator Allan G. Manus, D.V.M. Principal Investigator Jerry M. Fitzgerald. Ph.D. Chemist Richard H. Cardy, D.V.M. Pathologist John Langloss, D.V.M. Pathologist

Experimental Pathology Laboratories (Provided Pathology Quality Assurance)

M. Hamlin, D.V.M.

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D. Project Manager Abigail C. Jacobs, Ph.D. Senior Scientist John Warner, M.S. Chemist/Statistician

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the Technical Report on dimethyl hydrogen phosphite on July 27, 1984, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Jerry B. Hook, Ph.D. (Chair)* Vice President, Preclinical Research and Development Smith Kline & French Laboratories Philadelphia, Pennsylvania

Curtis Harper, Ph.D. (Acting Chair) Associate Professor of Pharmacology School of Medicine University of North Carolina Chapel Hill, North Carolina James Swenberg, D.V.M., Ph.D.* Chief of Pathology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

Ad Hoc Subcommittee Panel of Experts

Louis S. Beliczky, M.S., M.P.H. Director, Department of Industrial Hygiene United Rubber Workers International Union Akron, Ohio

Devra L. Davis, Ph.D. (Principal Reviewer) Board on Toxicology and Environmental Health Hazards National Academy of Sciences Washington, DC

Seymour L. Friess, Ph.D. Arlington, Virginia

Thomas C. Jones, D.V.M. Professor, Comparative Pathology New England Regional Primate Research Center Harvard Medical School Southborough, Massachusetts

Richard J. Kociba, D.V. M., Ph.D. (Principal Reviewer) Dow Chemical USA Midland, Michigan

David Kotelchuck, Ph.D. Research Department United Electrical, Radio and Machine Workers of America New York, New York

*Unable to attend meeting

Tom Slaga, Ph.D.* Science Park, Research Division University of Texas System Cancer Center Smithville, Texas

Steven R. Tannenbaum, Ph.D. (Principal Reviewer) Professor, Department of Nutrition and Food Science Massachusetts Institute of Technology Cambridge, Massachusetts

Bruce W. Turnbull, Ph.D. Professor and Associate Director College of Engineering Cornell University Ithaca, New York

John R. Van Ryzin, Ph.D. Division of Biostatistics School of Public Health Columbia University New York, New York

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

On July 27, 1984, the Technical Report on the toxicology and carcinogenesis studies of dimethyl hydrogen phosphite (DMHP) received peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting began at 9:00 a.m. in the Conference Center, Building 101, South Campus, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

Dr. Kociba, a principal reviewer, agreed with the conclusions as written. He asked for more discussion of the possible pathogenesis of the rat lung lesions, including the high incidence of interstitial pneumonia [see p. 38]. He said that the experimental design could have been improved by the inclusion of other indicators of toxicity, such as serum enzymes, organ weights, hematology, and urinalyses.

As a second principal reviewer, Dr. Davis agreed with the conclusions and suggested that a statement be added to the abstract concerning the compound-related testicular atrophy in male mice in the 13week study and focal calcification of the testis in male mice in the 2-year study [see p. 12]. She agreed with Dr. Kociba for expanded discussion of the lung lesions in rats as well as the dose-related lung lesions in male and female mice in the 13-week studies.

As a third principal reviewer, Dr. Tannenbaum agreed with the conclusions and concurred with the comments of the other reviewers. He wondered if the high incidence of pneumonia, especially if infectious, might not have compromised the conclusions. Dr. G. Boorman, NTP, explained that the pneumonia was chemically induced and not infectious in origin. The lesions in dosed animals were not inflammatory but were characterized as hyperplasias of the alveolar epithelium around the smaller bronchioles and the terminal bronchioles; this description would be expanded and clarified in the report. [See p. 38.]

Dr. Van Ryzin questioned the conclusion pertaining to neoplasms of the forestomach in support of equivocal evidence of carcinogenicity in female rats. Dr. J. Haseman, NIEHS, replied that even though there were only two neoplasms at the high dose, this incidence was similar to that seen in the low dose males that received the same dose on a milligram per kilogram basis as did the high dose females.

Dr. Davis moved that the Technical Report on the toxicology and carcinogenesis studies of dimethyl hydrogen phosphite be accepted with the minor changes discussed. Dr. Kociba seconded the motion, and the report was approved unanimously by the Peer Review Panel.

Dimethyl Hydrogen Phosphite, NTP TR 287 16

I. INTRODUCTION

Production and Use Toxicity and Mutagenicity Study Rationale

DIMETHYL HYDROGEN PHOSPHITE

CAS No. 868-85-9

Synonyms:

Molecular Weight 110.6

Molecular Formula C₂H₇O₃P

Phosphonic acid, dimethyl ester (9CI) Dimethyl phosphite Dimethyl phosphorus acid Methyl phosphonate Dimethyl phosphonate Dimethoxyphosphine oxide

phonate Din sphine oxide Din Bis

Production and Use

Dimethyl hydrogen phosphite (DMHP), a colorless liquid, is a neutral ester of phosphorous acid. DMHP is used as an intermediate in the production of insecticides and herbicides, as an additive to lubricants, and as a stabilizer in oil and plaster (Siemer, 1980; Lewis, 1975). The U.S. Army selected dimethyl hydrogen phosphite as a candidate for simulating the physical (but not biologic) properties of anticholinesterase nerve agents; it is no longer being considered for this use (U.S. Air Force, personal communication to J. Dunnick, 1982). Approximately 3 million pounds are produced per year (W. Smithey, Jr., personal communication to J. Dunnick, 1982). More current production figures are not available from other sources (USITC, 1983).

Toxicity and Mutagenicity

Oral LD₅₀ values of 3,050 to 4,250 mg/kg have been reported for rats of unspecified sex or strain (NIOSH, 1981; Mobil, 1977). No information on the toxicology or carcinogenicity of DMHP was located (NLM, 1984). TL 585 DMHP Phosphorous acid, dimethyl ester Dimethylphosphite Dimethylphosphonate Dimethylphosphorous acid Bis (hydroxymethyl) phosphine oxide

Dimethyl hydrogen phosphite was not mutagenic in Salmonella typhimurium strains TA98, TA100, TA1535, or TA1537 with or without Aroclor 1254-induced Sprague-Dawley or Syrian hamster liver metabolic activation (Appendix K). DMHP also did not induce sex-linked recessive lethal mutations in Drosophila melanogaster.

Study Rationale

Dimethyl hydrogen phosphite was nominated in 1976 by the U.S. Army for carcinogenesis testing because it was a candidate to simulate the physical (but not the biologic) properties of anticholinesterase agents. Additional information on the proposed use of this compound is not available. Recently, toxicology and carcinogenesis studies have been completed on three tris(2-ethylhexyl)phosphate other simulants: (NTP, 1984), dimethyl morpholinophosphoramidate (DMMPA; NTP, 1985), and dimethyl methylphosphonate (DMMP). All four chemicals were administered by gavage in corn oil. This vehicle was chosen because of the potential for chemical hydrolysis in water.

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF DIMETHYL HYDROGEN PHOSPHITE PREPARATION AND ANALYSIS OF DOSE MIXTURES SINGLE-ADMINISTRATION STUDIES FIFTEEN-DAY REPEATED-ADMINISTRATION STUDIES THIRTEEN-WEEK STUDIES TWO-YEAR STUDIES Study Design Source and Specifications of Test Animals Animal Maintenance Clinical Examinations and Pathology Statistical Methods

PROCUREMENT AND CHARACTERIZATION OF DIMETHYL HYDROGEN PHOSPHITE

Dimethyl hydrogen phosphite was obtained from the U.S. Army Chemical Systems Laboratory (Aberdeen Proving Grounds, Aberdeen, Maryland) in two lots. Lot no. DM113077 was used for the single-administration, 15-day repeatedadministration, and 13-week studies. Lot no. KC031247 was used for the 2-year studies.

Both lots of test chemical were identified as dimethyl hydrogen phosphite by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy (Appendix G). All spectra were consistent with the structure of the chemical; the infrared and nuclear magnetic resonance spectra were consistent with literature spectra.

Cumulative data indicated that lot no. DM113077 was approximately 96% pure. This purity estimation was based on elemental analyses that agreed with theoretical values and chromatographic data. Thin-layer chromatography detected a slight trace impurity and a very slight trace impurity by one system; a trace impurity was detected by a second system. Gas chromatography detected 10 impurities totaling 3.91% of the major peak on one system and 8 impurities totaling 3.87% of the major peak area on a second system. Two impurities with areas of 1.0% or greater relative to that of the major peak were detected by each gas chromatographic system.

Cumulative data indicated that lot no. KC031247 was approximately 97%-98% pure. This purity estimation was based on elemental analyses, in which the values for carbon and hydrogen agreed with the theoretical values but the value for phosphorus was 98.4% of the theoretical; a titration value of 97.5% \pm 0.3% based on reaction with excess sodium hydroxide; and chromatographic data. Thin-layer chromatography by two systems indicated no impurities. Gas chromatography detected seven impurities totaling 2.3% of the major peak on one system and four impurities totaling 1.9% of the major peak on a second system. An impurity with an area of 1.1% relative to that of the major peak was detected by each gas chromatographic system and identified as trimethyl phosphate.

Dimethyl hydrogen phosphite was found to be stable when stored in sealed containers at temperatures up to 60° C for 2 weeks; gas chromatography was used to monitor stability (Appendix G). The testing laboratory (Litton Bionetics, Inc.) stored several portions at -20° C as reference samples and the remainder at room temperature. Periodic reanalyses of the test and reference samples at the testing laboratory by infrared spectroscopy and gas chromatography indicated no deterioration of the chemical over the course of the studies.

PREPARATION AND ANALYSIS OF DOSE MIXTURES

Dimethyl hydrogen phosphite and corn oil were mixed to yield desired concentrations. Dimethyl hydrogen phosphite (1% w/w) in corn oil was stable when stored at room temperature for 7 days (Appendix H). Dimethyl hydrogen phosphite/corn oil mixtures were stored at room temperature for no longer than 7 days.

Analyses for dimethyl hydrogen phosphite in corn oil were performed on every eighth dose mixture to confirm that the correct concentrations were administered to the test animals. The method of analysis involved a methanolic extraction as a purification step and a gas chromatographic assay as a quantitation step (Appendix I). In addition, samples were sent to the analytical chemistry laboratory for referee analysis twice each year during the 2-year studies (Appendix J, Table J2). Because 40/46 samples tested were within 10% of the target concentations, the corn oil mixtures were estimated to have been within specifications 87% of the time (Table 1 and Appendix J, Table J1).

	Target Co	Target Concentration (mg/ml)		
	12.5	25.0	50.0	
Mean (mg/ml)	12.9	25.9	51.7	
Standard deviation Coefficient of	1.37	1.46	3.08	
variation (percent)	10.6	5.6	6.0	
Range (mg/ml)	11.2-16.5	23.4-29.1	47.0-59.2	
Number of samples	14	16	16	

TABLE 1. SUMMARY OF ANALYSES OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

SINGLE-ADMINISTRATION STUDIES

Single-administration studies were conducted to evaluate acute toxicity and to determine doses for the 15-day repeated-administration studies. Male and female F344/N rats and B6C3F₁ mice were obtained from Charles River Breeding Laboratories and observed for 2 weeks before the study began.

Groups of five males and five females of each species were administered a single dose of 1,470, 2,150, 3,160, 4,640, or 6,810 mg/kg dimethyl hydrogen phosphite in corn oil (5.675 ml/kg body weight) by gavage. Rats and mice were fasted overnight before dosing. All animals were observed for mortality immediately after dosing, 4 hours later, and then one time per day for 14 days; they were killed on day 15 or 16; no body weights were taken. Necropsies were performed on all animals; no histopathologic examinations were performed. Details of animal maintenance are given in Table 2.

FIFTEEN-DAY REPEATED-ADMINISTRATION STUDIES

Fifteen-day repeated-administration studies were conducted to determine doses for the 13week studies. Male and female F344/N rats and B6C3F₁ mice were obtained from Charles River Breeding Laboratories and held for 2-3 weeks before the studies began.

Groups of five males and five females of each species were administered 0, 250, 500, 1,000, 2,000, or 3,000 mg/kg (mice only) dimethyl hydrogen phosphite in corn oil by gavage daily for 15 consecutive days. The 3,000 mg/kg group of rats was administered undiluted dimethyl hydrogen phosphite. Animals were housed five per cage and received water (acidified to pH 2.5 with hydrochloric acid) and feed ad libitum. Further details of animal maintenance are presented in Table 2. The rats and mice were observed two times per day for mortality and were weighed on days 0 and 15 (mice) or on day 0 (rats). Initial (but not final) body weights were taken for rats. Necropsies were performed on all animals. No histopathologic examinations were performed on rats. Only the stomach was examined histopathologically in mice.

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxic effects of repeated administration of dimethyl hydrogen phosphite and to determine the doses to be used in the 2year studies.

Four- to five-week-old male and female F344/N rats and 4- to 6-week-old male and female $B6C3F_1$ mice were obtained from Charles River Breeding Laboratories, observed for 14 days, and assigned to cages according to a table of random numbers. The cages were then assigned to dosed and vehicle control groups according to another table of random numbers.

Groups of 10 rats of each sex were administered 0, 25, 50, 100, 200, or 400 mg/kg dimethyl hydrogen phosphite 5 days per week for 13 weeks. Groups of 10 mice of each sex were administered 0, 95, 190, 375, 750, or 1,500 mg/kg. Animals were checked two times per day for signs of moribundity and mortality; moribund animals were killed. Animal weights were recorded weekly. Further experimental details are summarized in Table 2.

	Single- Administration Studies	Fifteen-Day Repeated-Adminis- tration Studies	Thirteen-Week Studies	Two-Year Studies
EXPERIMENTAL DESIGN				
Testing Laboratory	Litton Bionetics, Inc.	Litton Bionetics, Inc.	Litton Bionetics, Inc.	Litton Bionetics, Inc.
Size of Test Groups	5 males and 5 females of each species	5 males and 5 females of each species	10 males and 10 fe- males of each species	50 males and 50 females of each species
Doses	1,470, 2,150, 3,160, 4,640, or 6,810 mg/kg dimethyl hydrogen phosphite in corn oil by gavage; dose vol 5.675 ml/kg	0, 250, 500, 1,000, 2,000, or 3,000 mg/kg (mice only) dimethyl hydrogen phosphite in corn oil by gavage; (3,000 mg/kg dose for rats administered as undiluted dimethyl hydrogen phosphite) dose vol10 ml/kg (mice), 2.5 ml/kg (rats)	Rats0, 25, 50, 100, 200, or 400 mg/kg di- methyl hydrogen phosphite in corn oil by gavage; mice0, 95, 190, 375, 750, or 1,500 mg/kg; dose vol3.33 ml/kg	Male rats and all mice0, 100, or 200 mg/kg di- methyl hydrogen phos- phite in corn oil by gavage; female rats0, 50, or 100 mg/kg; dose vol4.0 ml/kg
Date of First Dose	Rats8/9/78; mice8/2/78	Rats8/31/78; mice9/18/78	12/27/78	Rats3/13/80; mice4/3/80
Date of Last Dose	N/A	Rats9/14/78; mice10/2/78	Rats3/26/79; mice3/23/79	Rats3/5/82; mice3/26/82
Duration of Dosing	One time only	15 consecutive days	5 d/wk for 13 wk	5 d /wk for 103 wk
Type and Frequency of Observation	Observed immedi- ately after dosing, 1 h and 4 h later, and $1 \times$ d thereafter for 14 d	Observed 2 × d for mortality	Observed $2 \times d$ for signs of moribundity and mortality	Observed 2 \times d for signs of moribundity and mor- tality; weighed 1 \times wk for 13 wk, 1 \times 4 wk thereafter
Necropsy and Histologic Examination	Necropsy performed on all animals	Necropsy performed on all animals; stomach lesions examined micro- scopically (mice)	Necropsy performed on all animals; the following tissues from vehicle control and 400 mg/kg group of rats and vehicle con- trol and all but the 95 mg/kg dosed group of mice microscopically examined: gross le- sions, skin (mice), parathyroids, colon, esophagus, brain, sternebrae (including marrow), liver, lung and mainstem bron- chi, stomach, thymus, pancreas, kidney, uri- nary bladder, eyes, mandibular lymph node, salivary glands, thyroid gland, small intestine, ovaries/ uterus or prostate (mice)/testes, heart, trachea, spleen, adre- nal glands, pituitary gland. Only heart, liver, and kidney examined for the 95 mg/kg group of mice. Eyes of vehicle control and 200 mg/kg groups of rats examined	Necropsy performed on all animals. Tissues examined microscopically: tissue masses and gross lesions, regional lymph node, skin, blood smear, mandibular lymph node, mammary gland, salivary glands, thigh muscle, sciatic nerve, bone mar- row, costochondral junc- tion (rib), thymus, larynx, trachea, lungs and bron- chi, heart, thyroid gland, parathyroids, esophagus, stomach, duodenum, jejunum, ileum, colon, cecum, rectum, mesenteric lymph node, liver, gall- bladder (mice), pancreas, spleen, kidneys, adrenal glands, urinary bladder, seminal vesicles/prostate/ testes, or ovaries/uterus, nasal cavity, brain, pitui- tary gland, eyes, and spinal cord

	Single- Administration Studies	Fifteen-Day Repeated Adminis- tration Studies	Thirteen-Week Studies	Two-Year Studies
ANIMALS AND ANIMAL MAINTENANCE		. <u> </u>		
Strain and Species	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice
Animal Source	Charles River Breeding Labora- tories (Portage, MI)	Same as single-ad- ministration studies	Same as single-ad- ministration studies	Same as single-ad- ministration studies
Animal Identification Method	Not specified	Ear punch or notch	Ratear tag; miceear notch	Ratear tag; miceear notch, toe clip
'i me Held Bef ore T est	2 wk	Rats2 wk; mice18 d	2 wk	2 wk
Age When Placed on Study	Rats6 wk; mice5-6 wk (exact age not stated)	Rats43 d; miceapprox 6 wk (exact age not stated for mice)	Rats6-7 wk; mice6-8 wk	Rats7 wk; mice6-8 wk
ge When Killed	Rats8 wk; mice7-8 wk	Rats59 d; mice8 wk	Rats19-20 wk; mice19-21 wk	Rats111 wk; mice110-112 wk
ecropsy Dates	Rats8/24/78; mice8/16/78	Rats9/15/78; mice10/3/78	Rats3/28-3/29/79; mice3/26-3/27/79	Rats3/15-3/18/82; mice4/5-4/8/82
fethod of Animal Distribution	Assigned to cages so that average cage weights for each sex and species were approximately equal	Same as single-ad- ministration studies	Assigned to cages according to a table of random numbers; cages then assigned to groups according to another table of random numbers	Same as 13-wk studies
eed	Purina Lab Chow® meal (St. Louis, MO); available ad libitum	Same as single-ad- ministration studies	Purina Lab Chow [®] pellets (St. Louis, MO)	NIH 07 Open Formula (Zeigler Bros, Gardners, PA); available ad libitum
edding	Ab-Sorb-Dri● hardwood chips (Williams Feed and Bedding, Gaithers- burg, MD)	Same as single-ad- ministration studies	Same as single-ad- ministration studies	Ab-Sorb-Dri [®] hardwood chips, then Sani-Chips (P.J. Murphy Forest Products Corp., Rochelle Park, NJ)
Vater	Acidified with HCl (pH 2.5) tap water; available ad libitum	Same as single-ad- ministration studies	Same as single-ad- ministration studies	Same as single-ad- ministration studies
ages	Polycarbonate (Lab Products, Inc., Garfield, NJ)	Same as single-ad- ministration studies	Same as single-ad- ministration studies	Polycarbonate (Lab Products, Inc., Garfield o Rochelle Park, NJ, and Hazleton Systems, Aberdeen, MD)
Cage Filters	Nonwoven polyester filter sheets (Snow Filtration, Co., Cincinnati, OH)	Same as single-ad- ministration studies	Same as single-ad- ministration studies	Same as single-ad- ministration studies
Animals per Cage	5	5	5	5

TABLE 2. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

	Single- Administration Studies	Fifteen-Day Repeated-Adminis- tration Studies	Thirteen-Week Studies	Two-Year Studies
Animal Room Environment	Not reported	Not reported	Temp22°-24° C; humidity30%-70%; fluorescent light 12 h/d; 15 room air changes/h	Temp22°-24° C (maximum 28° C); humidity30%-70%; fluorescent light 12 h/d; 12-15 room air changes/h
Other Chemicals on Test in Same Room	Dimethyl methyl- phosphonate	Same as single-ad- ministration studies	None	None
CHEMISTRY				
Lot Numbers Used	DM113077	DM113077	DM113077	KC031247
Date of Initial Use of Subsequent Lot	N/A	N/A	N/A	N/A
Supplier	U.S. Army Chemical Systems Laboratory (Aberdeen, MD)	Same as single-ad- ministration studies	Same as single-ad- ministration studies	Same as single-ad- ministration studies
CHEMICAL/ VEHICLE				
Preparation	Appropriate amounts of dimethyl hydrogen phosphite and corn oil added by pipette to test tube; mixture was shaken for 1 min; mixtures resuspended before dosing	Highest rat dose undiluted; for all other doses, appropri- ate amounts of di- methyl hydrogen phosphite were mixed with corn oil on a vor- tex mixer for 2 min; mixtures resuspended before dosing	Appropriate amounts of dimethyl hydrogen phosphite mixed with corn oil; mixtures resuspended before dosing	Appropriate amounts of dimethyl hydrogen phos- phite and corn oil mixed in a graduated cylinder by inversion; mixtures re- suspended before dosing
Maximum Storage Time	N/A	3 d	Solutions prepared $1 \times wk$	7 d
Storage Conditions	N/A	Not specified	Not specified	Room temperature

TABLE 2.	EXPERIMENTAL DESIGN AND	MATERIALS AND METHODS IN THE GAVAGE S	TUDIES
	OF DIMETHYL	HYDROGEN PHOSPHITE (Continued)	

At the end of the 13-week studies, survivors were killed. Necropsies were performed on all animals, except those excessively autolyzed or cannibalized. Tissues, groups examined histologically, and animal maintenance information are listed in Table 2.

TWO-YEAR STUDIES

Study Design

Groups of 50 male rats and 50 male and female mice were administered 0, 100, or 200 mg/kg dimethyl hydrogen phosphite in corn oil by gavage 5 days per week for 103 weeks. Groups of 50 female rats were administered 0, 50, or 100 mg/kg on the same schedule.

Source and Specifications of Test Animals

The male and female F344/N rats and B6C3F1 (C57BL/6N, female, \times C3H/HeN MTV⁻, male) mice used in this study were produced under strict barrier conditions at Charles River Breeding Laboratories under a contract to the Carcinogenesis Program. Breeding starts for the foundation colony at the production facility originated at the National Institutes of Health Repository. Animals shipped for testing were progeny of defined microflora-associated parents that were transferred from isolators to barriermaintained rooms. Animals were shipped to the testing laboratory at 4-6 weeks of age. The animals were quarantined at the testing facility for 2 weeks. Thereafter, a complete necropsy was performed on five animals of each sex and species to assess their health status. The rats were placed on study at 6-7 weeks of age and the mice, at 6-8 weeks of age. The health of the animals was monitored during the course of the study according to the protocols of the NTP Sentinel Animal Program (Appendix L).

A quality control skin grafting program has been in effect since early 1978 to monitor the genetic integrity of the inbred mice used to produce the hybrid $B6C3F_1$ test animal. In mid-1981, data were obtained that showed incompatibility between the NIH C3H reference colony and the C3H colony from a Program supplier. In August 1981, inbred parental lines of mice were further tested for genetic integrity via isozyme and protein electropherotograms that demonstrate phenotype expressions of known genetic loci.

The C57BL/6 mice were homogeneous at all loci tested. Eighty-five percent of the C3H mice monitored were variant at one to three loci, indicating some heterogeneity in the C3H line from this supplier. Nevertheless, the genome of this line is more homogeneous than those of randomly bred stocks.

Male mice from the C3H colony and female mice from the C57BL/6 colony were used as parents for the hybrid B6C3F₁ mice used in these studies. The influence of the potential genetic nonuniformity in the hybrid mice on these results is not known, but results of the studies are not affected because matched concurrent controls were included in each study.

Animal Maintenance

Rats and mice were housed five per cage in polycarbonate cages and kept in the same animal room throughout the course of the studies. Feed and water (acidified with hydrochloric acid to pH 2.5 for bacterial control) were available ad libitum. The cages and the cage racks were not rotated during the studies. Details of animal maintenance are summarized in Table 2.

Clinical Examinations and Pathology

All animals were observed two times per day for signs of moribundity or mortality. Clinical signs were recorded once per week. Body weights by cage were recorded once per week for the first 13 weeks of the studies and once per month thereafter. Mean body weights were calculated for each group. Moribund animals were killed, as were animals that survived to the end of the studies. Necropsies were performed on all animals, including those found dead unless they were excessively autolyzed or cannibalized. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study in each group.

Examinations for grossly visible lesions were performed on major tissues or organs. Tissues

were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Tissues examined microscopically are listed in Table 2.

When the pathology examination was completed, the slides, individual animal data records, and summary tables were sent to an independent quality assurance laboratory. Individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10% of the animals were evaluated by a quality assurance pathologist. Slides of all target tissues and those about which the original and quality assurance pathologists disagreed were submitted to the Chairperson of the Pathology Working Group (PWG) for evaluation. Representative coded slides selected by the Chairperson were reviewed by PWG pathologists, who reached a consensus and compared their findings with the original and quality assurance diagnoses. When diagnostic differences were found, the PWG sent the appropriate slides and comments to the original pathologist for review. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnoses represent a consensus of contractor pathologists and the NTP Pathology Working Group.

Nonneoplastic lesions are not examined routinely by the quality assurance pathologist or PWG. Certain nonneoplastic findings are reviewed by the quality assurance pathologist and PWG if they are considered part of the toxic response to a chemical or if they are deemed of special interest.

Statistical Methods

Data Recording: Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969). Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found dead of other than natural causes or were found to be missing; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a dose-related trend. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which necropsies were performed.

Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data. The two that adjust for intercurrent mortality employ the classical method for combining contingency tables developed by Mantel and Haenszel (1959). Tests of significance included pairwise comparisons of high dose and low dose groups with vehicle controls and tests for overall dose-response trends.

For studies in which compound administration has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death. All reported P values for tumor analyses are one-sided.

Life Table Analyses--The first method of analysis assumed that all tumors of a given type observed in animals dying before the end of the study were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumor-bearing animals in the dosed and vehicle control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the study, were then combined by the Mantel-Haenszel method to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of Cox (1972) and of Tarone (1975).

Incidental Tumor Analyses--The second method of analysis assumed that all tumors of a given type observed in animals that died before the end of the study were "incidental"; i.e., they were merely observed at necropsy in animals dying of an unrelated cause. According to this approach, the proportions of tumor-bearing animals in dosed and control groups were compared in each of five time intervals: weeks 0-52, weeks 53-78, weeks 79-92, week 93 to the week before the terminal-kill period, and the terminal-kill period. The denominators of these proportions were the number of animals on which necropsies were actually performed during the time interval. The individual time interval comparisons were then combined by the previously described method to obtain a single overall result. (See Haseman, 1984, for the computational details of both methods.)

Unadjusted Analyses--Primarily, survival-adjusted methods are used to evaluate tumor incidence. In addition, the results of the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) are given. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences.

Dimethyl Hydrogen Phosphite, NTP TR 287 28

III. RESULTS

RATS

SINGLE-ADMINISTRATION STUDIES FIFTEEN-DAY REPEATED-ADMINISTRATION STUDIES THIRTEEN-WEEK STUDIES TWO-YEAR STUDIES Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

MICE

SINGLE-ADMINISTRATION STUDIES FIFTEEN-DAY REPEATED-ADMINISTRATION STUDIES THIRTEEN-WEEK STUDIES TWO-YEAR STUDIES Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

SINGLE-ADMINISTRATION STUDIES

Compound-related toxicity included inactivity, weakness, and shallow breathing on the day of dosing in animals receiving 3,160, 4,640, or 6,810 mg/kg. All the rats that received 4,640 or 6,810 mg/kg and 2/5 males and 3/5 females that received 3,160 mg/kg died on day 1 (Table 3). No other animals died. The LD₅₀ values as determined by the Spearman-Karber method (Finney, 1978) were 3,283 mg/kg (95% confidence limits of 2,729-3,949 mg/kg) for male rats and 3,040 mg/kg (95% confidence limits of 2,527-3,656 mg/kg) for female rats. Necropsy findings included gas in the stomach and/or intestines in some of the animals receiving 3,160, 4,640, or 6,810 mg/kg. Based on these findings, the high dose for the 15-day repeated-administration studies was set at 3,000 mg/kg.

TABLE 3. SURVIVAL OF RATS IN THE SINGLE-ADMINISTRATION GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE (a)

Dose (mg/kg)	Survival (b)	
MALE		
1,470	5/5	
2,150	5/5	
3,160	3/5	
4,640	0/5	
6,810	0/5	
FEMALE		
1,470	5/5	
2,150	5/5	
3,160	2/5	
4,640	0/5	
6,810	0/5	

(a) Body weights were not recorded.

(b) Number surviving/number initially in the group; all deaths occurred on day 1.

FIFTEEN-DAY REPEATED-ADMINISTRATION STUDIES

All the rats that received 1,000, 2,000, or 3,000 mg/kg and 4/5 males and 2/5 females that received 500 mg/kg died before the end of the studies (Table 4). Rats that received 500 mg/kg or more were inactive after dosing. There were no

dose-related findings at necropsy. Based on the mortality data and on the clinical signs, the high dose selected for the 13-week studies was 400 mg/kg.

Dose Survival (a) Initial Mean Body Weight (b) (mg/kg) (grams) MALE 0 5/5 116 250 5/5 116 500 (c) 1/5 116 1,000 (d) 0/5 116 2,000 (e) 0/5 115 3,000 (f) 0/5 130 FEMALE 0 5/5 95 250 5/5 91 500 (g) 3/5 93 1,000 (h) 0/5 93 2.000 (i) 0/5 92 3,000 (j) 0/5 92

TABLE 4. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FIFTEEN-DAY REPEATED-ADMINISTRATION GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

(a) Number surviving/number initially in the group

(b) Final body weights were not recorded.

(c) Day of death: 8, 9, 11, 11

(d) Day of death: 4, 5, 6, 6, 6

(e) Day of death: 2, 3, 4, 4, 4

(f) All deaths occurred on day 3.

(g) All deaths occurred on day 13.

(h) Day of death: 5, 6, 6, 6, 7

(i) Day of death: 3, 3, 3, 3, 4

(j) Day of death: 1, 1, 2, 2, 2

THIRTEEN-WEEK STUDIES

Nine of 10 males and 8/10 females that received 400 mg/kg died before the end of the studies (Table 5). Three of the five deaths that occurred in the 100 and 200 mg/kg groups may have been due to the accidental introduction of gavage solutions into the lungs. Final mean body weights of males and females that received 400 mg/kg were depressed 46% and 39% relative to those of the vehicle controls. The final mean body weight of females that received 200 mg/kg was depressed 14% relative to that of the vehicle controls.

Degeneration of the lens was observed in the eyes of 4/9 females and 1/7 males that received 400 mg/kg. Acute diffuse inflammation of the cornea was observed in 1/9 females that received 400 mg/kg. The eyes of the next lower dose group (200 mg/kg) were examined histologically; eye lesions were not seen in either males (0/10) or females (0/9). (Eyes from all animals were not available for analysis due to autolysis.) Urinary bladder calculi were observed in 2/10 male rats that received 400 mg/kg.

Lesions were observed in the lungs of vehicle controls and all dosed groups (Table 6). Blood taken at the end of the studies was found to be positive by the hemagglutination inhibition assay for pneumonia virus and by the complement fixation assay for Sendai virus in 5/5 vehicle control females and 5/5 vehicle control males (Appendix L, Table L1).

Dose Selection Rationale: Based on survival and weight gain information, the doses for male rats in the 2-year study were set at 100 and 200 mg/kg and for female rats at 50 and 100 mg/kg. Doses for female rats were set lower than those for male rats because the females showed a more severe weight depression at 200 mg/kg in the 13week studies.

		Mea	n Body Weights	Final Weight Relativ		
Dose (mg/kg)	Survival (b)	Initial	Final	Change (c)	to Vehicle Controls (percent)	
MALE						
0	10/10	186	308	+122		
25	10/10	185	290	+105	94.2	
50	10/10	188	266	+ 78	86.4	
100	10/10	194	314	+120	101.9	
200	(d) 9/10	184	298	+114	96.8	
400	(e) 1/10	184	168	- 16	54.5	
FEMALE						
0	10/10	136	193	+ 57		
25	10/10	137	195	+ 58	101.0	
50	10/10	136	191	+ 55	99.0	
100	(f) 8/10	138	185	+ 47	95.9	
200	(g) 8/10	137	167	+ 30	86.5	
400	(h) 2/10	135	117	- 18	60.6	

TABLE 5. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

(a) Only group weights were taken by laboratory; no individual animal weight data are available.

(b) Number surviving/number in group

(c) Mean weight change of the group

(d) Week of death: 10

(e) Week of death: 3, 4, 4, 5, 5, 7, 8, 9

- (f) Week of death; 7,11
- (g) Week of death: 9, 12 (b) Week of death: 2, 2, 2, 2

(h) Week of death: 2, 3, 3, 3, 3, 4, 5, 8, 10

	Vehicle Control		100 mg/kg	200 mg/kg		400 mg/kg	
Lesion	Male	Female	Female	Male	Female	Male	Female
Eye							
No. animals examined							
microscopically				10	9	7	9
Degeneration, lens						1	4
Inflammation, chronic, diffuse							
cornea		••			••		1
Lung							
No. animals examined							
microscopically	10	10	2	1	2	10	10
Inflammation, chronic, focal	4	1					
Inflammation, chronic, diffuse	3	2			1	5	6
Congestion	••		2	1	1		1
Congestion, diffuse						3	1
Congestion, acute						1	
Histiocytosis						5	

TABLE 6. NUMBERS OF RATS WITH HISTOPATHOLOGIC LESIONS IN THE EYE AND LUNG IN THE
THIRTEEN-WEEK GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of high dose male rats were 5% lower than those of the vehicle control males after week 24 and 10% lower after week 40 (Table 7 and Figure 1). Low dose male rats and high dose female rats showed marginal depressions in weight gain compared with the corresponding vehicle controls; by the end of the studies, they weighed 4% to 5% less than the corresponding vehicle controls.

Weeks on Study	Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of veh. controls	No. of Survivors	Av. Wt. (grams)	Wt. (percent of veh. contro	i No. of ls) Survivori
MALE	Vehicle	Control		100 mg/kg			200 mg/kg	
0 1 2 3 4 5 6 7 8 9 10 11 2 3 6 0 4 4 4 8 2 6 0 4 4 4 8 2 6 0 4 4 4 8 2 6 0 4 4 4 8 2 6 0 4 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 6 0 4 5 6 7 8 9 10 11 2 3 6 0 4 5 6 0 7 8 9 10 11 2 3 6 0 4 4 8 2 6 0 6 4 8 2 6 0 8 2 6 0 4 8 2 6 0 1 1 1 2 3 6 0 4 4 4 8 2 6 0 6 4 8 2 6 0 8 2 6 0 8 2 6 0 8 2 6 0 8 2 6 0 8 2 6 1 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8	$\begin{array}{c} 139\\ 168\\ 199\\ 2249\\ 257\\ 277\\ 291\\ 303\\ 315\\ 327\\ 3315\\ 327\\ 3341\\ 3569\\ 391\\ 410\\ 424\\ 456\\ 461\\ 424\\ 456\\ 461\\ 424\\ 456\\ 461\\ 483\\ 493\\ 493\\ 493\\ 493\\ 493\\ 493\\ 493\\ 49$	50000000000000000000000000000000000000	$\begin{array}{c} 143\\ 1203\\ 203\\ 2253\\ 257\\ 294\\ 3318\\ 3334\\ 343\\ 369\\ 3391\\ 418\\ 424\\ 451\\ 465\\ 481\\ 477\\ 4763\\ 477\\ 4763\\ 477\\ 4763\\ 477\\ 4659\\ 611\\ \end{array}$	102.9 103.0 102.0 100.4 101.6 100.0 101.3 101.0 100.6 100.6 100.6 100.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.5 100.0 100.0 100.0 99.5 100.0 100.0 98.5 98.5 98.5 98.1 98.5 98.6 98.6 96.6 97.1 96.6 97.1 96.1 96.1 96.4 95.8 95.4	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 135\\ 170\\ 198\\ 2247\\ 252\\ 288\\ 301\\ 324\\ 335\\ 336\\ 337\\ 382\\ 383\\ 363\\ 377\\ 382\\ 382\\ 386\\ 410\\ 419\\ 422\\ 432\\ 432\\ 432\\ 432\\ 432\\ 432\\ 432$	97.1 101.2 98.7 99.2 97.3 99.2 97.3 99.0 99.3 99.0 99.3 99.3 99.3 99.3 99	50 50 50 50 50 50 50 50 50 50 50 50 50 5
104	468	•-	459 451		32 29	413 399		30 23
FEMALE 0 12 3 4 5 6 7 8 9 10 11 12 24 28 26 40 44 48 52 56 60 44 48 52 56 60 64 8 7 7 6 80 84 88 89 95 100 10 40 10 10 10 10 10 10 10 10 10 10 10 10 10	Vehicis 111 125 139 159 159 168 174 181 184 195 196 208 216 222 228 231 238 243 243 243 243 248 252 252 252 257 266 272 288 298 298 298 298 302 305 302 302	≥ Controi 50 50 50 50 50 50 50 50 50 50	108 123 138 150 166 168 185 185 195 200 203 208 215 222 224 215 222 224 215 222 224 241 249 258 227 298 298 298 302 304 302 298	50 mg/kg 97.3 98.4 99.3 98.7 100.6 101.7 100.5 99.5 100.0 101.0 100.5 99.5 100.0 100.0 100.0 99.5 99.5 100.0 99.5 99.5 99.5 99.5 99.5 99.5 99.5	50 500 500 500 500 500 500 500 500 500	107 125 137 149 168 168 184 180 192 200 200 200 200 200 200 200 200 200 2	100 mg/kg 96.4 100.0 98.6 98.0 100.0 100.0 100.0 99.4 99.5 99.5 99.5 99.5 99.5 99.5 99.1 99.1	50 50 50 50 50 50 50 50 50 50 50 50 50 5

TABLE 7.	MEAN BODY	WEIGHTS AND	SURVIVAL (OF RATS IN	THE TWO-YEAR	GAVAGE STUDIES
		OF DI	METHYL HYD	ROGEN PH	OSPHITE	

Dimethyl Hydrogen Phosphite, NTP TR 287

FIGURE 1. GROWTH CURVES FOR RATS ADMINISTERED DIMETHYL HYDROGEN PHOSPHITE IN CORN OIL BY GAVAGE FOR TWO YEARS

Survival

Estimates of the probabilities of the survival of male and female rats administered dimethyl hydrogen phosphite at the doses used in these studies and those of the vehicle controls are shown in the Kaplan and Meier curves in Figure 2. Survival of female rats was comparable among all groups (Table 8). The survival of high dose male rats was significantly lower than that of the vehicle controls; the increased incidence of deaths in this group during the course of the experiment was attributed to the toxicity of the chemical.

Pneumonia was found in 0/10 vehicle control, 3/19 low dose, and 16/24 high dose male rats that died early in the study (nonaccidental deaths); thus, lung disease may have been a cause of the decreased survival in dosed male rats. Ten of 24 high dose male rats that died early in the study had lung tumors. The results of hemagglutination inhibition assays, complement fixation assays, and ELISA were negative for virus infection at 6, 12, 18, and 24 months (Appendix L, Table L2).

Pathology and Statistical Analyses of Results

ı

This section describes the significant or noteworthy changes in the incidence of animals with neoplastic or nonneoplastic lesions in the lung, forestomach, hematopoietic system, eye, cerebellum, and liver. Histopathologic findings on neoplasms in rats are summarized in Appendix A (Tables A1 and A2); Appendix A (Tables A3 and A4) also gives the survival and tumor status for individual male and female rats. Findings on nonneoplastic lesions are summarized in Appendix C (Tables C1 and C2). Appendix E (Tables E1 and E2) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. Historical incidences of tumors in control animals are listed in Appendix F. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).

	Vehicle Control	100 mg/kg	200 mg/kg
MALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	10	19	24
Accidentally killed (c)	1	1	0
Killed at termination	39	29	23
Died during termination period	0	1	3
Survival P values (d)	0.009	0.061	300.0
	Vehicle Control	50 mg/kg	100 mg/kg
FEMALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	10	14	15
Accidentally killed (c)	0	1	1
Killed at termination	40	33	32
Died during termination period	0	2	2
Survival P values (d)	0.303	0.496	0.344

TABLE 8. SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGENPHOSPHITE

(a) Terminal kill period: weeks 104-105

(b) Includes animals killed in a moribund condition

(c) Deaths were due to gavage accidents.

(d) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

FIGURE 2. KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED DIMETHYL HYDROGEN PHOSPHITE IN CORN OIL BY GAVAGE FOR TWO YEARS

Lung: The incidences of nonneoplastic and neoplastic lung lesions were increased in dosed male and female rats (Table 9). The terms alveolar epithelium hyperplasia, adenomatous hyperplasia, and interstitial chronic pneumonia were used to diagnose a complex compound-related lesion characterized by hyperplasia of the alveolar epithelium and thickening of the septal walls around terminal bronchioles and adjacent alveoli. The lesion was compound related and most severe in the high dose animals. The incidence of inflammatory cells did not appear to be increased. The interstitial pneumonia diagnosed in the vehicle controls was very mild, did not have a centriacinar distribution, and usually consisted of a focal collection of histiocytes and/or mild perivascular cuffing of lymphocytes.

Adenomatous hyperplasia was a focal expansile lesion characterized by extensive proliferation of well-differentiated pneumocytes. This lesion was considered hyperplastic rather than neoplastic because the underlying supporting tissues of the lung remained intact and cytomorphologic evidence of neoplasia was lacking. The expansile nature of the lesion plus proliferative infoldings into alveolar spaces distinguished this lesion from the commonly observed focal hyperplasia of the alveolar epithelium. The latter is usually seen as a minimal or mild lesion following type I pneumocyte injury. Squamous cell carcinomas, alveolar/bronchiolar adenomas, alveolar/bronchiolar carcinomas, and alveolar/bronchiolar adenomas or carcinomas (combined) in males and alveolar/bronchiolar carcinomas in females occurred with significant positive trends (Table 10). The incidences of squamous cell carcinomas, alveolar/bronchiolar adenomas, alveolar/bronchiolar carcinomas, and alveolar/bronchiolar adenomas or carcinomas (combined) in high dose male rats were significantly greater than those in the vehicle controls.

Alveolar/bronchiolar adenomas were characterized by focal areas of increased cellularity which caused compression of the adjacent parenchyma. The cells formed solid, glandular, or papillary patterns and obliterated the underlying alveolar structure. There was little cellular atypia, and mitotic figures were uncommon.

Compared with adenomas, alveolar/bronchiolar carcinomas showed more cellular atypia, invasion of adjacent lung parenchyma, and scirrhous response. On gross examination, the alveolar/ bronchiolar carcinomas were yellow or white firm masses involving one or more lobes of the lung. Microscopically, these neoplasms were composed of polyhedric cells usually arranged in a papillary pattern, although tubular and solid trabecular patterns were also observed. Cellular atypism and invasion of surrounding tissues

MALE	Vehicle Control	100 mg/kg	200 mg/kg
Hyperplasia, alveolar epithelium	2/50	7/50	16/50
Hyperplasia, adenomatous	0/50	3/50	26/50
Pneumonia, interstitial chronic	7/50	19/50	43/50
Metaplasia, squamous	0/50	0/50	3/50
Alveolar/bronchiolar adenoma	0/50	0/50	5/50
Alveolar/bronchiolar carcinoma	0/50	1/50	20/50
Squamous cell carcinoma	0/50	0/50	5/50
FEMALE	Vehicle Control	50 mg/kg	100 mg/kg
Typerplasia, alveolar epithelium	1/50	0/49	11/50
Iyperplasia, adenomatous	0/50	0/49	10/50
neumonia, interstitial chronic	4/50	5/49	33/50
lveolar/bronchiolar carcinoma	0/50	1/49	3/50

TABLE 9. INCIDENCES OF LUNG LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE (a)

TABLE 10. ANALYSIS OF LUNG TUMORS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF
DIMETHYL HYDROGEN PHOSPHITE (a)

MALE	Vehicle Control	100 mg/kg	200 mg/kg
Squamous Cell Carcinoma (b)			
Overall Rates	0/50 (0%)	0/50 (0%)	5/50 (10%)
Adjusted Rates	0.0%	0.0%	14.2%
Terminal Rates	0/39 (0%)	0/30 (0%)	1/26 (4%)
Life Table Tests	P = 0.004	(c)	P = 0.020
Incidental Tumor Tests	P=0.034	(c)	P=0.141
Alveolar/Bronchiolar Adenoma (d)			
Overall Rates	0/50 (0%)	0/50 (0%)	5/50 (10%)
Adjusted Rates	0.0%	0.0%	15.2%
Terminal Rates	0/39 (0%)	0/30 (0%)	2/26 (8%)
Life Table Tests	P = 0.004	(c)	P=0.018
Incidental Tumor Tests	P=0.017	(c)	P=0.074
Alveolar/Bronchiolar Carcinoma (e)			
Overall Rates	0/50 (0%)	1/50 (2%)	20/50 (40%
Adjusted Rates	0.0%	3.3%	63.5%
Terminal Rates	0/39 (0%)	1/30 (3%)	15/26 (58%
Life Table Tests	P<0.001	P = 0.448	P<0.001
Incidental Tumor Tests	P<0.001	P = 0.448	P<0.001
Alveolar/Bronchiolar Adenoma or Carci	noma (f)		
Overall Rates	0/50 (0%)	1/50 (2%)	24/50 (48%
Adjusted Rates	0.0%	3.3%	71.8%
Terminal Rates	0/39 (0%)	1/30 (3%)	17/26 (65%
Life Table Tests	P<0.001	P = 0.448	P<0.001
Incidental Tumor Tests	P<0.001	P=0.448	P<0.001
FEMALE	Vehicle Control	50 mg/kg	100 mg/kg
Alveolar/Bronchiolar Carcinoma (g)			
Overall Rates	0/50 (0%)	1/49 (2%)	3/50 (6%)
Adjusted Rates	0.0%	2.9%	8.8%
Terminal Rates	0/40 (0%)	1/35 (3%)	3/34 (9%)
Life Table Tests	P = 0.047	P=0.473	P = 0.094
Incidental Tumor Tests	P = 0.047	P = 0.473	P=0.094

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). (b) Historical incidence at this laboratory: 0%; historical incidence in NTP studies: $2/1,143,0.2\% \pm 0.58\%$

(c) No P value is presented because no tumors were observed in vehicle control and 100 mg/kg groups. (d) Historical incidence at this laboratory: 2/150, $1.3\% \pm 1.2\%$; historical incidence in NTP studies: $34/1,143,3.0\% \pm 1.9\%$ (e) Historical incidence at this laboratory: $3/150, 2.0\% \pm 0.0\%$; historical incidence in NTP studies: $16/1,143, 1.4\% \pm 1.5\%$ (f) Historical incidence at this laboratory: $5/150, 3.3\% \pm 1.2\%$; historical incidence in NTP studies: $50/1,143, 4.4\% \pm 2.4\%$ (g) Historical incidence at this laboratory: 1/150, $0.7\% \pm 1.2\%$; historical incidence in NTP studies: $10/1, 142, 0.9\% \pm 1.3\%$

were consistent features. The alveolar/bronchiolar carcinomas metastasized to the mediastinal tissues in three high dose males and one low dose male. No metastases were seen in the female rats with carcinoma of the lung.

Five high dose male rats had lung tumors composed entirely of squamous cells. For this reason, these tumors were diagnosed as squamous cell carcinomas. The criteria for distinguishing proliferative lesions of the rat lung have been described by Boorman (1984). Squamous cell carcinomas appeared grossly as white to green lung masses. Microscopically, these lung masses were characterized by squamous differentiation, cellular atypia, and invasion of surrounding tissues. One of the animals with a squamous cell carcinoma also had an alveolar/bronchiolar carcinoma involving a separate lobe.

Interstitial pneumonia was found in 0/10 vehicle control, 4/19 low dose, and 18/24 high dose male rats that died early in the studies (nonaccidental deaths); thus, pulmonary changes may have contributed in part to the decreased survival in the dosed male rats. The interstitial pneumonia was characterized by centriacinar alveolar epithelial hyperplasia and thickening of septal walls. There did not appear to be an increased incidence of inflammatory cells; the lesion is considered to be compound related and noninfectious.

Forestomach: In male rats, there were proliferative lesions of the forestomach. Diffuse to focal thickening of the squamous epithelium was diagnosed as hyperplasia. Lesions characterized by papillary projections lined by squamous epithelium with fibrovascular cores were diagnosed as squamous cell papillomas. When the squamous cells invaded the submucosa, the lesions were diagnosed as squamous cell carcinomas. The squamous cell carcinomas were characterized by invasion of subjacent tissues and marked cellular atypia.

The incidences of hyperplasia in high dose rats of each sex and the incidence of hyperkeratosis in high dose males were greater than those in the vehicle controls (Table 11). Squamous cell papillomas, squamous cell carcinomas, and squamous cell papillomas or carcinomas (combined) in male rats occurred with significant positive trends (Table 12). The incidence of squamous cell papillomas or carcinomas (combined) in high dose males was significantly greater than that in the vehicle controls. Two forestomach neoplasms were seen in high dose female rats.

Hematopoietic System: The incidence of mononuclear cell leukemia in low dose male rats was significantly greater than that in the vehicle controls by life table analysis (vehicle control, 9/50; low dose, 15/50; high dose, 13/50). No effects were observed in female rats (vehicle control, 6/50; low dose, 7/50; high dose, 7/50).

Eye: Cataracts were observed at an increased incidence in high dose male rats (vehicle control, 25/50, 50%; low dose, 19/50, 38%; high dose, 36/50, 72%). The following incidences were observed in females: vehicle control, 17/50 (34%); low dose, 13/50 (26%); high dose, 22/50 (44%). The incidences were not clearly related to cage placement.

Cerebellum: Focal mineralization in the granular layer of the cerebellum was present in 12/49 (24%) high dose male rats but not in any of the other groups of males or females. The mineralization was characterized by multiple spherical basophilic concretions up to 1 mm in diameter. The concretions tended to occur in clusters in the granular layer. No association between the presence of concretions and cell damage was found, nor did the concretions appear to be associated with vessels.

Liver: Neoplastic nodules in male rats occurred with a significant negative trend (vehicle control, 3/50; low dose, 0/50; high dose, 0/50; P=0.022). The incidences of neoplastic nodules in female rats were comparable among groups (vehicle control, 0/50; low dose, 0/50; high dose, 1/50).

TABLE 11. INCIDENCES OF FORESTOMACH LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

MALE	Vehicle Control	100 mg/kg	200 mg/kg
Hyperkeratosis	0/50	1/50	8/50
Hyperplasia	8/50	16/50	32/50
Squamous cell papilloma	0/50	1/50	3/50
Squamous cell carcinoma	0/50	0/50	3/50
FEMALE	Vehicle Control	50 mg/kg	100 mg/kg
Hyperplasia	4/50	2/50	14/48
Squamous cell papilloma	0/50	0/50	1/48
Squamous cell carcinoma	0/50	0/50	1/48

TABLE 12. ANALYSIS OF FORESTOMACH TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF DIMETHYL HYDROGEN PHOSPHITE

i .

	Vehicle Control	100 mg/kg	200 mg/kg
Squamous Cell Papilloma			
Overall Rates	0/50 (0%)	1/50 (2%)	3/50 (6%)
Adjusted Rates	0.0%	3.3%	10.8%
Terminal Rates	0/39 (0%)	1/30 (3%)	2/26 (8%)
Life Table Tests	P = 0.032	P = 0.448	P = 0.067
Incidental Tumor Tests	P = 0.052	P=0.448	P = 0.115
Squamous Cell Carcinoma			
Overall Rates	0/50 (0%)	0/50 (0%)	3/50 (6%)
Adjusted Rates	0.0%	0.0%	10.1%
Terminal Rates	0/39(0%)	0/30 (0%)	1/26 (4%)
Life Table Tests	P=0.023	(a)	P = 0.074
Incidental Tumor Tests	P=0.066	(a)	P = 0.196
Squamous Cell Papilloma or Carcinon	na (b)		
Overall Rates	0/50 (0%)	1/50 (2%)	6/50 (12%)
Adjusted Rates	0.0%	3.3%	20.0%
Terminal Rates	0/39 (0%)	1/30 (3%)	3/26 (12%)
Life Table Tests	P = 0.002	P = 0.448	P = 0.006
Incidental Tumor Tests	P=0.006	P = 0.448	P = 0.025

(a) No P value is presented because no tumors were observed in 100 mg/kg and vehicle control groups.
(b) Historical incidence at this laboratory: 0/147; historical incidence in NTP studies: 6/1,114, 0.5%

SINGLE-ADMINISTRATION STUDIES

All the mice of each sex that received 4,640 or 6,810 mg/kg and all the female mice and 4/5 male mice that received 3,160 mg/kg were dead by day 2 (Table 13). The LD₅₀ value as determined by the Spearman-Karber method (Finney, 1978) was 2,815 mg/kg (95% confidence limits of 2,420-3,273 mg/kg) for male mice. The steep survival curve precluded an accurate LD₅₀

determination for the females. Animals dosed at 2,150, 3,160, 4,640, or 6,810 mg/kg were inactive and prostrate and had shallow breathing for 2 days after being dosed. On gross necropsy, 2/10 high dose male mice had white opaque eyes; no other dose-related lesions were reported. Based on these findings, the high dose for the 15-day studies was set at 3,000 mg/kg.

TABLE 13. SURVIVAL OF MICE IN THE SINGLE-ADMINISTRATION GAVAGE STUDIESOF DIMETHYL HYDROGEN PHOSPHITE (a)

Dose (mg/kg)	Survival (b)	
MALE		
1,470	5/5	
2,150	5/5	
3,160	(c) 1/5	
4,640	(d) 0/5	
6,810	(e) 0/5	
FEMALE		
1,470	5/5	
2,150	5/5	
3,160	(e) 0/5	
4,640	(f) 0/5	
6,810	(e) 0/5	

(a) The initial mean body weight of each male group was 24 g and that of each female group was 18 g.

Final body weights were not recorded.

(b) Number surviving/number initially in the group

(c) All deaths occurred on day 2.

(d) Day of death: 1, 1, 1, 2, 2

(e) All deaths occurred on day 1. (f) Day of death: 1, 1, 1, 1, 2

FIFTEEN-DAY REPEATED-ADMINISTRATION STUDIES

All the mice that received 2,000 or 3,000 mg/kg were dead by day 9 (Table 14). No other compound-related deaths occurred. Mice that received 1,000 mg/kg or more were inactive. At necropsy, irregular thickening of the squamous region of the stomach was observed in 5/5 males and 4/5 females that received 1,000 mg/kg. Slight irregular thickening or irregular nodules were observed in the squamous portion of the stomach of two females and one male that received 500 mg/kg. Dose-related lesions were seen in the stomach of male and female mice after microscopic examination (Table 15). Based on the mortality data, the high dose for the 13week studies was set at 1,500 mg/kg.

TABLE 14. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FIFTEEN-DAY REPEATED-ADMINISTRATION GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

		Mean	Body Weights (g	Final Weight Relative	
Dose (mg/kg)	Survival (a)	Initial	Final	Change (b)	to Vehicle Controls (percent)
MALE					<u>, , , , , , , , , , , , , , , , , , , </u>
0	5/5	27	27	0	
250	5/5	27	27	0	100
500	5/5	27	25	-2	92.6
1,000	5/5	27	21	-6	77.8
2,000	(c) 0/5	27	(d)	(d)	(d)
3,000	(e) 0/5	27	(d)	(d)	(d)
FEMALE					
0	5/5	21	21	0	
250	(f) 4/5	21	21	Ō	100
500	5/5	21	20	-1	95.2
1,000	5/5	21	17	-4	81.0
2,000	(g) 0/5	21	(d)	(d)	(d)
3,000	(h) 0/5	21	(d)	(d)	(d)

(a) Number surviving/number initially in the group

(b) Mean weight change of the group

(c) Day of death: 3, 4, 4, 6, 7

(d) No data are presented due to the 100% mortality in this group.

(e) Day of death: 1, 1, 2, 2, 2

(f) Day of death: 7

(g) Day of death: 2, 4, 4, 4, 9

(h) All deaths occurred on day 2.

Lesion	0	250 mg/kg	500 mg/kg	1,000 mg/kg	2,000 mg/kg	3,000 mg/kg
MALE		<u> </u>	<u></u>			· · · · · · · · · · · · · · · · · · ·
Epithelial ulceration	••			1	4	
Gastritis, acute/chronic,						
hyperplastic		1	5	4	3	••
Squamous atrophy	••	••			1	5
Gastropathy, hyperplastic		••		1	ī	
Hyperkeratosis	1	1			••	
Submucosal abscess		ī			••	••
Intraepithelial abscess		-		1		
Massive necrosis					1	
FEMALE						
Epithelial ulceration				1	3	2
Gastritis, acute/chronic,				_	-	_
hyperplastic		1	5	5	4	1
Squamous atrophy		-		-	ī	2
Gastropathy, hyperplastic		2			-	
Glandular stomach		-				
ulceration			••			1

TABLE 15. INCIDENCES OF NONNEOPLASTIC LESIONS IN THE STOMACHS OF MICE IN THE FIFTEEN-DAY REPEATED-ADMINISTRATION GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

THIRTEEN-WEEK STUDIES

All the mice of each sex that received 750 or 1,500 mg/kg died during the first 4 weeks (Table 16). Two of 10 males and 5/10 females that received 375 mg/kg also died. Mice that received 375 mg/kg or more had tremors and decreased activity. Final weights of surviving dosed and vehicle control mice were comparable. Lung congestion in males and females, cardiac mineralization in males, and hepatocellular vacuolization in females were probably compound related (Table 17). Pulmonary congestion was observed in animals that died during the studies. Testicular atrophy, characterized by hypospermatogenesis with the formation of large giant spermatids and syncytial cells, was seen in male mice at 375, 750, and 1,500 mg/kg.

Dose Selection Rationale: The results from these 13-week studies were used to select doses for the 2-year studies. Decreased survival and toxicity to the lung were seen at 375, 750, and 1,500 mg/kg in male and female mice; these effects were not seen at 190 mg/kg. The maximum dose for the 2-year studies was set at 200 mg/kg.

Ż

		Mean	Body Weights (a	Final Weight Relative	
Dose (mg/kg)	Survival (b)	Initial	Final	Change (c)	to Vehicle Controls (percent)
ALE			· · · · · · · · · · · · · · · · · · ·		
0	10/10	24	29	+5	•••
95	10/10	24	30	+6	103.4
190	10/10	25	31	+6	106.9
375	(d) 8/10	24	28	+4	96.6
750	(e) 0/10	25	(f)	(f)	(f)
1,500	(g) 0/10	23	(f)	(f)	(f)
EMALE					
0	10/10	18	23	+5	
95	10/10	18	23	+5	100.0
190	10/10	18	22	+4	95.7
375	(h) 5/10	19	24	+5	104.3
750	(i) 0/10	18	(f)	(f)	(f)
1,500	(j) 0/10	18	(f)	(f)	(f)

TABLE 16. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

(a) Only group weights were taken by laboratory; no individual animal weight data are available.
(b) Number surviving/number in group
(c) Mean weight change of the survivors
(d) Week of death: 11, 12
(a) Week of death: 12, 22, 44, 44, 44, 44

(e) Week of death: 1, 3, 3, 3, 4, 4, 4, 4, 4, 4 (f) No results are reported due to the 100% mortality in this group.

(g) Week of death: 1, 1, 1, 1, 1, 2, 2, 2, 4, 4 (h) Week of death: 5, 10, 11, 12, 12

TABLE 17. HISTOPATHOLOGIC LESIONS OBSERVED IN MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

Dose (mg/kg)	Hepatocellular Vacuolization (a)	Cardiac Mineralization (minimal severity)	Testicular Atrophy	Lung Congestion
MALE	· · · · · · · · · · · · · · · · · · ·	a a a a a a a a a a a a a a a a a a a	**** <u>****************************</u>	
0 95 190 375 (c) 750 (c) 1,500	1/10 (b) 1/10 1/10 2/10 2/9 1/10	0/10 0/10 9/10 3/10 0/10 1/10	0/10 0/10 0/10 3/10 9/10 2/10	0/10 0/10 1/10 7/10 7/10
FEMALE				
0 95 190 375 (c) 750 (c) 1,500	0/10 0/10 5/10 5/10 0/9 2/7	1/10 0/10 1/10 2/10 0/9 0/10		0/10 0/10 0/10 4/10 7/10 9/10

(a) Male: diffuse or focal; female: diffuse

<u>ت</u>

(b) Observed by quality assurance pathologist (c) Most animals in these groups died early.

Dimethyl Hydrogen Phosphite, NTP TR 287

45

TWO-YEAR STUDIES

Body Weights and Clinical Signs

After week 28, mean body weights of high dose male mice were 5% to 10% lower than those of the vehicle controls. Mean body weights of dosed and vehicle control female mice were comparable (Table 18 and Figure 3). Results of hemagglutination inhibition assays, complement fixation assays, and ELISA were negative for virus infection at 6, 12, 18, and 24 months (Appendix L, Table L2).

TABLE 18.	MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES	
	OF DIMETHYL HYDROGEN PHOSPHITE	

Weeks on Study		Control		100 mg/kg			200 mg/ki	ť
on Study	(grams)	e Control No. of Survivors	Av. WL (grams)	100 mg/kg WL (percent of veh. contro	ls) Survivors	(grams)	200 mg/ki Wt. (percen of veh. contro	t No. of is) Survivors
MALE								
0 1 2 3 4 5 6 7 8 9 10 11 2 13 6 20 4 28 32 6 0 4 4 4 8 2 5 6 6 7 6 0 4 8 9 10 11 2 13 16 20 4 28 32 6 6 7 8 9 10 11 2 36 6 7 8 9 10 11 2 36 6 7 8 9 10 11 2 36 6 7 8 9 10 11 2 36 6 7 8 9 10 11 2 36 6 7 8 9 10 11 2 36 6 7 8 9 10 11 2 36 6 7 8 9 10 11 2 36 6 7 8 9 10 11 2 36 6 7 8 9 10 11 2 36 6 7 8 9 10 11 2 36 6 7 8 9 10 11 2 36 6 7 8 9 10 11 2 36 8 9 10 11 2 36 8 9 10 11 2 36 8 9 10 11 2 36 8 9 10 11 2 36 8 9 10 11 2 36 8 9 10 11 2 36 8 9 9 6 0 4 4 4 8 2 5 6 6 9 10 11 2 36 8 9 9 6 9 10 11 2 36 8 9 9 10 11 2 36 8 9 9 10 11 2 36 8 9 9 10 11 2 36 8 9 9 10 11 2 36 8 9 9 10 11 2 36 8 9 10 1 12 3 8 9 10 1 12 3 8 9 8 9 9 8 9 11 2 36 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 9 8 9 9 9 9 9 9 9 9 10 9 9 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9 10 9 9 9 9 9 10 9 9 9 9	23 25 87 90 311 332 334 46 79 02 132 44 45 66 66 66 66 66 55 53 10	50 49 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	23 22 56 27 89 31 33 23 34 46 33 99 91 11 23 34 44 55 54 44 34 22 23 33 34 44 55 54 44 34 22 50 33 34 44 55 54 44 55 44 44 55 54 44 54 54 54	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 96.7\\ 96.8\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 95.9\\ 95.3\\ 97.5\\ 95.7\\ 95.7\\ 95.7\\ 95.7\\ 95.7\\ 95.7\\ 95.7\\ 95.7\\ 95.8\\ 97.8\\ 9$	50 49 99 49 99 49 99 99 99 99 99 99 99 99	23 25 6 27 8 9 30 31 23 33 34 4 6 8 8 8 8 8 8 8 0 0 1 2 2 2 8 9 30 31 2 33 34 4 6 8 8 8 8 8 8 8 0 0 1 1 2 2 5 6 2 7 8 9 30 31 2 33 34 4 6 8 8 8 8 8 8 8 8 8 0 0 31 2 33 34 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$\begin{array}{c} 100.0\\ 100.0\\ 96.6\\ 96.7\\ 96.8\\ 96.8\\ 96.8\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 97.3\\ 97.3\\ 97.4\\ 95.0\\ 90.5\\ 90.9\\ 90.9\\ 90.9\\ 90.9\\ 91.1\\ 93.5\\ 93.0\\ 90.5\\ 90.9\\ 90.9\\ 91.1\\ 93.5\\ 95.6\\ 95.6\\ 95.6\\ 95.0\\ 9$	50 50 50 50 50 50 50 50 50 50 50 50 50 5
FEMALE								
0 1 2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 3 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 6 6 7 8 9 10 11 2 3 6 6 7 8 9 10 11 2 3 6 6 7 8 9 10 11 2 3 6 6 7 8 9 10 11 2 3 6 6 7 8 9 10 11 2 3 6 6 7 8 9 10 11 2 3 6 6 7 8 9 10 11 2 3 6 6 0 4 4 8 2 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 0 4 4 8 2 6 6 9 10 1 1 2 3 6 6 1 8 2 6 1 7 7 6 0 4 8 2 8 2 8 2 6 1 8 2 8 2 6 1 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8	19 20 222 233 244 255 266 677 899 311 333 45 367 389 419 398 376 376 376 376 376 376 376 377 37	50 50 50 50 50 50 50 50	19 201 222 233 244 245 255 227 279 290 311 333 424 255 255 277 279 290 311 333 345 367 389 401 411 339 388 370 411 411 339 388 370 411 411 339 388 370 411 411 339 388 370 411 411 339 388 370 411 411 339 388 370 411 411 339 388 370 411 411 339 388 370 411 411 339 388 370 411 411 339 388 370 411 411 339 388 370 411 411 339 388 370 411 411 339 388 370 411 411 339 388 370 411 411 339 388 370 371 381 	$\begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 95.8\\ 100.0\\ 96.0\\ 96.0\\ 100.0\\ 96.0\\ 100.0\\ 96.2\\ 96.2\\ 96.2\\ 96.2\\ 96.2\\ 100.0\\ 96.8\\ 100.0$	50 50 50 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 499 498 488 488 488 487 7 66666555555555324453 455 5 53245332145555553321455555332115555555555	19 201 222 234 245 266 272 239 301 323 334 567 389 90 400 409 387 377 36	$\begin{array}{c} 100.0\\ 102.6\\ 102.6\\ 102.6\\ 102.8\\ 97.3\\ 97.3\\ \end{array}$	50 50 50 50 50 50 50 50 50 50 50 50 50 5

Dimethyl Hydrogen Phosphite, NTP TR 287 46

FIGURE 3. GROWTH CURVES FOR MICE ADMINISTERED DIMETHYL HYDROGEN PHOSPHITE IN CORN OIL BY GAVAGE FOR TWO YEARS

Survival

Estimates of the probabilities of survival of male and female mice administered dimethyl hydrogen phosphite at the doses used in these studies and those of the vehicle controls are shown in the Kaplan and Meier curves in Figure 4. The survival of high dose male mice was significantly lower than that of the vehicle controls (Table 19). No significant differences for survival were seen in dosed female mice.

Pathology and Statistical Analyses of Results

This section describes significant or noteworthy changes in the incidence of animals with neo-

plastic or nonneoplastic lesions in the liver and testis. Histopathologic findings on neoplasms in mice are summarized in Appendix B (Tables B1 and B2); the survival and tumor status for individual male and female mice also are summarized in Appendix B (Tables B3 and B4). Findings on nonneoplastic lesions are summarized in Appendix D (Tables D1 and D2). Appendix E (Tables E3 and E4) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in corn oil vehicle control animals are listed in Appendix F.

TABLE 19. SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

	Vehicle Control	100 mg/kg	200 mg/kg
MALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	7	8	18
Accidentally killed	1	5	0
Animals missing	0	3	. 0
Killed at termination	42	33	32
Died during termination period	0	- 1	0
Survival P values (c)	0.018	0.793	0.029
FEMALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	11	8	15
Accidentally killed	0	3	0
Animals missing	0	1	0
Killed at termination	39	37	34
Died during termination period	0	- 1	1
Survival P values (c)	0.358	0.772	0.431

(a) Terminal kill period: week 105

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

FIGURE 4. KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED DIMETHYL HYDROGEN PHOSPHITE IN CORN OIL BY GAVAGE FOR TWO YEARS

Liver: Fatty metamorphosis was observed at increased incidences in dosed female mice (vehicle control, 0/50; low dose, 1/49, 2%; high dose, 4/50, 8%). The incidence of hepatocellular adenomas in low dose female mice was significantly greater than that in the vehicle controls (Table 20). Hepatocellular carcinomas were observed in two female vehicle controls but not in any dosed females. The incidence of hepatocellular adenomas carcinomas or (combined) in the low dose female group was not significantly greater than that in the vehicle The incidence of hepatocellular controls. carcinomas in low dose male mice was significantly lower than that in the vehicle controls (vehicle control, 9/50; low dose, 2/47;

high dose, 7/50; P=0.038), but the incidence of hepatocellular adenomas or carcinomas (combined) in the low dose group was not significantly different from that of vehicle controls (vehicle control, 19/50; low dose, 10/47; high dose, 13/50).

Testis: Focal calcification was observed at increased incidences in dosed male mice (vehicle control, 2/50, 4%; low dose, 9/47, 19%; high dose, 24/50, 48%). The lesions were more extensive in the dosed animals and appeared as circular-tooblong deposits that obliterated the underlying cellular features. The shape and location of the deposits suggest mineralization of seminiferous tubules.

 TABLE 20. ANALYSIS OF LIVER TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY

 OF DIMETHYL HYDROGEN PHOSPHITE (a)

	Vehicle Control	100 mg/kg	200 mg/kg
Hepatocellular Adenoma (b)			
Overall Rates	0/50 (0%)	6/49 (12%)	3/50 (6%)
Adjusted Rates	0.0%	15.8%	8.6%
Terminal Rates	0/39 (0%)	6/38 (16%)	3/35 (9%)
Life Table Tests	P = 0.115	P = 0.016	P = 0.102
Incidental Tumor Tests	P=0.115	P=0.016	P = 0.102
Tepatocellular Adenoma or Carcin	oma (c)		
Överall Rates	2/50 (4%)	6/49 (12%)	3/50 (6%)
Adjusted Rates	5.1%	15.8%	8.6%
Terminal Rates	2/39 (5%)	6/38 (16%)	3/35 (9%)
Life Table Tests	P = 0.364	P = 0.125	P = 0.450
Incidental Tumor Tests	P=0.364	P = 0.125	P = 0.450

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).

(b) Historical incidence at this laboratory: 4/148, $2.7\% \pm 2.4\%$; historical incidence in NTP studies: 47/1,176, $4.0\% \pm 2.6\%$ (c) Historical incidence at this laboratory: 7/148, $4.7\% \pm 3.0\%$; historical incidence in NTP studies: 80/1,176, $6.8\% \pm 3.4\%$

IV. DISCUSSION AND CONCLUSIONS

Dimethyl Hydrogen Phosphite, NTP TR 287 51

Dimethyl hydrogen phosphite (DMHP) was administered by gavage in corn oil to male F344/N rats and male and female $B6C3F_1$ mice at doses of 0, 100, or 200 mg/kg and to female F344/N rats at doses of 0, 50, or 100 mg/kg 5 days per week for 103 weeks. The survival of high dose male rats and high dose male mice was lower than that of the vehicle controls: dosed male rats that died during the course of the studies had a greater incidence of pneumonia than did the vehicle control animals that died during the studies. Survival of other groups was comparable to the corresponding vehicle control groups. Mean body weights of high dose male and female rats and high dose male mice were lower than those of the appropriate vehicle control group; other body weights were comparable.

Toxicity and Carcinogenicity in Rats

Dimethyl hydrogen phosphite caused an increased incidence of nonneoplastic and neoplastic lesions of the lung in male and female rats. In high dose male rats, lung neoplasms included squamous cell carcinoma, alveolar/bronchiolar adenoma, and alveolar/bronchiolar carcinoma (Tables 9 and 10). Increased incidences of chronic interstitial pneumonia, adenomatous hyperplasia, alveolar/epithelial hyperplasia, and squamous metaplasia (high dose only) were observed in dosed male rats. All 24 high dose male rats with lung neoplasms also had pneumonia; because pneumonia was widespread in this group (43/50), an association between pneumonia and these lesions could not be determined.

In high dose female rats, a marginal increase in the incidence of alveolar/bronchiolar carcinomas in the lung was observed. This neoplasm was probably related to the administration of DMHP because alveolar/bronchiolar carcinomas were seen in one male and in three female rats receiving 100 mg/kg, suggesting that rats of each sex were probably susceptible to the pulmonary changes. Toxicity to the lung was manifested by increased incidences of interstitial chronic pneumonia, adenomatous hyperplasia, and alveolar epithelium hyperplasia.

The incidence of neoplasms (squamous cell papilloma or squamous cell carcinoma) of the

forestomach was increased in the high dose male rats. DMHP also caused hyperplasia and hyperkeratosis of the forestomach in male rats. Dimethyl hydrogen phosphite caused an increased incidence of forestomach hyperplasia in female rats; one squamous cell papilloma and one squamous cell carcinoma were observed in the high dose group.

Dimethyl hydrogen phosphite caused mineralization in the granular layer of the cerebellum in high dose male rats.

Toxicity in Mice

In the 13-week studies, dimethyl hydrogen phosphite caused dose-related lesions of the lung in male and female mice; in contrast to the rat studies, increased incidences of lung neoplasms were not seen in mice after the 2-year dosing period. Compound-related testicular atrophy was seen in male mice in the 13-week studies, and compound-related focal calcification of the testis was seen in male mice in the 2-year studies.

Mutagenicity

Dimethyl hydrogen phosphite was not mutagenic in the Salmonella typhimurium assay system with or without metabolic activation and was not mutagenic in Drosophila melanogaster (Appendix K, Tables K1 and K2).

Conclusions: Under the conditions of these gavage studies, there was clear evidence of carcinogenicity* in male F344/N rats receiving dimethyl hydrogen phosphite, as shown by increased incidences of alveolar/bronchiolar adenomas, alveolar/bronchiolar carcinomas, and squamous cell carcinomas of the lung and of neoplasms of the forestomach. There was equivocal evidence of carcinogenicity in female F344/N rats receiving dimethyl hydrogen phosphite, as shown by marginally increased incidences of alveolar/bronchiolar carcinomas of the lung and of neoplasms of the forestomach. There was no evidence of carcinogenicity in male or female B6C3F₁ mice receiving dimethyl hydrogen phosphite at doses of 100 or 200 mg/kg for 103 weeks.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2.

V. REFERENCES

1. Abrahamson, S.; Lewis, E. (1971) The detection of mutations in *Drosophila melano-gaster*. Cited in Hollaender, A., Ed.: Chemical Mutagens: Principles and Methods for Their Detection, Vol. 2. New York: Plenum Press, pp. 461-487.

2. Ames, B.; McCann, J.; Yamasaki, E. (1975) Methods for detecting carcinogens and mutagens with the *Salmonella*/mammalian-microsome mutagenicity test. Mutat. Res. 31:347-364.

3. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.

4. Berenblum, I., Ed. (1969) Carcinogenicity Testing: A Report of the Panel on Carcinogenicity of the Cancer Research Commission of UICC, Vol. 2. Geneva: International Union Against Cancer.

5. Bernhardt, D.; Rattenbury, K. (1956) Determination of di- and trialkyl phosphites in the presence of each other. Anal. Chem. 28:1765-1766.

6. Boorman, G. (1984) Bronchiolar alveolar hyperplasia, adenoma and carcinoma of the rat lung and squamous cell carcinomas of the rat lung. Jones, T.; Mohr, U.; Hunt, R., Eds.: Monographs on Pathology of Laboratory Animals. Respiratory System. New York: Springer-Verlag.

7. Boorman, G.; Montgomery, C., Jr.; Hardisty, J.; Eustis, S.; Wolfe, M.; McConnell, E. (1985) Quality assurance in pathology for rodent toxicology and carcinogenicity tests. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications (in press).

8. Condensed Chemical Dictionary, 10th ed. (1981). New York: Van Nostrand Reinhold Co., p. 371.

9. Cox, D. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

10. Finney, D. (1978) Statistical Method in Biological Assay, 3rd ed. New York: MacMillan Publishing Co., pp. 394-401.

11. Gart, J.; Chu, K.; Tarone, R. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62(4):957-974.

12. Haseman, J. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.

13. Kaplan, E.; Meier, P. (1958) Nonparametric estimation of incomplete observations. J. Am. Stat. Assoc. 53:457-481.

14. Lewis, M. (1975) In Situ Soil Fumigation for Combating Nematodes Using Aminomethylphosphonates. U.S. Patent No. 3,865,936, Feb. 11.

15. Linhart, M.; Cooper, J.; Martin, R.; Page, N.; Peters, J. (1974) Carcinogenesis bioassay data system. Comp. Biomed. Res. 7:230-248.

16. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.

17. Maronpot, R.R.; Boorman, G.A. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80.

18. Mobil Chemical Company (1977) Product Information Bulletin on Dialkyl Hydrogen Phosphites and Trialkyl Phosphites. Industrial Chemicals Division.

19. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassay in Small Rodents, NCI Carcinogenesis Technical Report Series No. 1, February. 20. National Institute for Occupational Safety and Health (NIOSH) (1981) 1980 Registry of Toxic Effects of Chemical Substances, Vol. 2. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, p. 310.

21. National Institutes of Health (NIH) (1978) NIH Specification, NIH-11-133f, November 1.

22. National Library of Medicine (NLM) (1984) Toxback; Medline; Chemline; Toxicology Data Bank. Files searched January 11.

23. National Toxicology Program (NTP) (1985) Toxicology and Carcinogenesis Studies of Dimethyl Morpholinophosphoramidate in F344/N Rats and B6C3F₁ Mice. NTP TR 298. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health. Research Triangle Park, NC: National Toxicology Program. 24. Sadtler Standard Spectra, IR No. 3003, NMR No. 6652M. Philadelphia: Sadtler Research Laboratories.

25. Siemer, S. (1980) Phosphorus Compounds as Sugarcane Ripeners. U.S. Patent No. 4,229,203, Oct. 21.

26. Tarone, R. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

27. The Eight Peak Index of Mass Spectra (1980) Vol. 1, 2nd ed., Spectrum No. 512-56-1, p. 345.

28. U.S. International Trade Commission (USITC) (1983) Synthetic Organic Chemicals--United States Production and Sales, 1982. USITC Publication 1422. Washington, DC: USITC.

29. Yahagi, T.; Degawa, M.; Seino, Y.; Matsushima, T.; Nagao, M.; Sugimura, T.; Hashimoto, Y. (1975) Mutagenicity of carcinogenic azo dyes and their derivatives. Cancer Lett. 1:91-96.

Dimethyl Hydrogen Phosphite, NTP TR 287 56

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

С	ONTRO	OL (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50					
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
NTEGUMENTARY SYSTEM						
*SKIN	(50)		(50)		(50)	
SQUAMOUS CELL PAPILLOMA		(2%)	2	(4%)	1	(2%)
SQUAMOUS CELL CARCINOMA		(2%)				
KERATOACANTHOMA		(2%)				
OSTEOSARCOMA, INVASIVE *SUBCUT TISSUE	(50)	(2%)	(50)		(50)	
FIBROMA		(6%)		(2%)		(6%)
FIBROSARCOMA	Ū	(0,0)		(2,2)		(2%)
RESPIRATORY SYSTEM #TRACHEA	(48)		(46)		(47)	
C-CELL CARCINOMA, INVASIVE		(2%)	(40)		(++/)	
#LUNG	(50)	(270)	(50)		(50)	
SQUAMOUS CELL CARCINOMA	(00)		(00)		• •	(10%)
ALVEOLAR/BRONCHIOLAR ADENOMA						(10%)
ALVEOLAR/BRONCHIOLAR CARCINOMA			1	(2%)		(40%)
OSTEOSARCOMA, METASTATIC				•	1	(2%)
IEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
LEUKEMIA, MONONUCLEAR CELL	9	(18%)	15	(30%)	13	(26%)
#MEDIASTINAL L. NODE	(49)		(47)		(49)	
ALVEOLAR/BRONCHIOLAR CA, METASTA					1	(2%)
CIRCULATORY SYSTEM				··· <u>·</u> ··········		
#HEART	(50)		(50)		(50)	
SQUAMOUS CELL CARCINOMA, INVASIVE					2	(4%)
#ENDOCARDIUM	(50)		(50)		(50)	
NEURILEMOMA, MALIGNANT			1	(2%)		
DIGESTIVE SYSTEM						
*LIP	(50)		(50)		(50)	
SQUAMOUS CELL PAPILLOMA			1	(2%)	1	(2%)
#LIVER	(50)		(50)		(50)	
NEOPLASTIC NODULE	3	(6%)				
#STOMACH	(50)		(50)	(0.01)	(50)	
SARCOMA, NOS	/=			(2%)		
#FORESTOMACH	(50)		(50)	(90)	(50)	(60)
SQUAMOUS CELL PAPILLOMA			1	(2%)		(6%)
SQUAMOUS CELL CARCINOMA KERATOACANTHOMA						(6%) (2%)
#JEJUNUM	(50)		(49)		(48)	(2,10)
ADENOCARCINOMA, NOS	(00)		(-0)			(2%)
RINARY SYSTEM						
#URINARY BLADDER	(50)		(48)		(48)	
TRANSITIONAL-CELL PAPILLOMA						(2%)
NDOCRINE SYSTEM						
CNDOCRINE SYSTEM #PITUITARY	(48)		(50)		(48)	

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE

	CONTRO	L (VEH)	LOWI	DOSE	HIGH	DOSE
ENDOCRINE SYSTEM (Continued)				· · · · · · · · · · · · · · · · · · ·		
#ADRENAL	(50)		(50)		(50)	
PHEOCHROMOCYTOMA	((12%)	· · /	(18%)		(6%)
SARCOMA, NOS		(2%)		(10%)	5	(0,0)
#THYROID	(50)		(47)		(49)	
FOLLICULAR-CELL CARCINOMA		(4%)	(41)			(2%)
C-CELL ADENOMA		(4%)	4	(9%)		(6%)
C-CELL CARCINOMA		(4%)	-		J	(0%)
#PANCREATIC ISLETS	(49)	(470)	(49)		(48)	
ISLET-CELL ADENOMA	(40)			(4%)		(2%)
REPRODUCTIVE SYSTEM					· · · · · ·	
*MAMMARY GLAND	(50)		(50)		(50)	
ADENOCARCINOMA, NOS						(2%)
FIBROADENOMA	1	(2%)	2	(4%)		(2%)
*PREPUTIAL GLAND	(50)		(50)		(50)	
CARCINOMA, NOS	·/	(2%)			1	(4%)
#PROSTATE	(48)		(50)		(49)	
OSTEOSARCOMA, INVASIVE			((2%)
#TESTIS	(50)		(49)		(50)	,
INTERSTITIAL-CELL TUMOR	· · · ·	(84%)	< P	(76%)	· · · · ·	(70%)
MESOTHELIOMA, NOS		(8%)		(2%)		(2%)
NERVOUS SYSTEM						
#BRAIN	(50)		(50)		(49)	
GLIOMA, NOS	1	(2%)			1	(2%)
SPECIAL SENSE ORGANS						
*EYE	(49)		(50)		(50)	
GLIOMA, NOS	1	(2%)				
*EAR	(50)		(50)		(50)	
FIBROSARCOMA	1	(2%)	2	(4%)	1	(2%)
MUSCULOSKELETAL SYSTEM					-	
*TIBIA	(50)		(50)		(50)	
OSTEOSARCOMA	1	(2%)				
BODY CAVITIES						
*MEDIASTINUM	(50)		(50)		(50)	
UNDIFFERENTIATED CARCINOMA		(2%)				
SQUAMOUS CELL CARCINOMA, INVASIV						(2%)
ALVEOLAR/BRONCHIOLAR CA, METASTA	4			(2%)		(4%)
*ABDOMINAL CAVITY	(50)		(50)		(50)	
PARAGANGLIOMA, NOS			1	(2%)		
SARCOMA, NOS						(2%)
*PELVIS	(50)		(50)		(50)	
OSTEOSARCOMA					1	(2%)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

	CONTROL (VEH)	LOW DOSE	HIGH DOSE
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS	(50)	(50)	(50)
C-CELL CARCINOMA, METASTATIC	1 (2%)		
SARCOMA, NOS		1 (2%)	
SARCOMA, NOS, METASTATIC		1 (2%)	
MESOTHELIOMA, NOS	2 (4%)	2 (4%)	1 (2%)
OSTEOSARCOMA, METASTATIC	1 (2%)		
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	50	50	50
NATURAL DEATH	4	13	13
MORIBUND SACRIFICE	6	7	14
SCHEDULED SACRIFICE			
TERMINAL SACRIFICE	39	29	23
DOSING ACCIDENT			
ACCIDENTALLY KILLED, NDA			
ACCIDENTALLY KILLED, NOS	1	1	
ANIMAL MISSING			
ANIMAL MISSEXED			
TUMOR SUMMARY			~ <u></u> <u></u>
TOTAL ANIMALS WITH PRIMARY TUMOR	S** 50	46	49
TOTAL PRIMARY TUMORS	102	92	125
TOTAL ANIMALS WITH BENIGN TUMORS		41	42
TOTAL BENIGN TUMORS	72	67	72
TOTAL ANIMALS WITH MALIGNANT TUM	• =	20	39
TOTAL MALIGNANT TUMORS	21	21	51
TOTAL ANIMALS WITH SECONDARY TUM		2	6
TOTAL SECONDARY TUMORS	4	2	8
TOTAL ANIMALS WITH TUMORS UNCERT	'AIN-		
BENIGN OR MALIGNANT	7	4	2
TOTAL UNCERTAIN TUMORS	9	4	2
TOTAL ANIMALS WITH TUMORS UNCERT			
PRIMARY OR METASTATIC			
TOTAL UNCERTAIN TUMORS			

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

1

* NUMBER OF ANIMALS NECROPSIED ** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS # NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY ## SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

С	ONTRO	L(VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50			
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
INTEGUMENTARY SYSTEM						
*SUBCUT TISSUE	(50)		(50)		(50)	(a a)
NEOPLASM, NOS, UNC PRIM OR META TRICHOEPITHELIOMA	1	(2%)			1	(2%)
SARCOMA, NOS	1	(270)			1	(2%)
FIBROMA	1	(2%)	1	(2%)	-	(= /0)
RESPIRATORY SYSTEM					<u></u>	
#LUNG	(50)		(49)		(50)	
ALVEOLAR/BRONCHIOLAR CARCINOMA SARCOMA, NOS, METASTATIC			1	(2%)		(6%) (2%)
HEMATOPOIETIC SYSTEM					·····	
*MULTIPLE ORGANS	(50)		(50)		(50)	
LEUKEMIA, MONONUCLEAR CELL	6	(12%)	7	(14%)		(14%)
CIRCULATORY SYSTEM						
#KIDNEY HEMANGIOSARCOMA	(50)		(50) 1	(2%)	(50)	
DIGESTIVE SYSTEM						
*TONGUE	(50)		(50)		(50)	
SQUAMOUS CELL PAPILLOMA	(50)		1 (50)	(2%)	(50)	
#LIVER NEOPLASTIC NODULE	(50)		(50)		· · ·	(2%)
SARCOMA, NOS, METASTATIC						(2%)
#FORESTOMACH	(50)		(50)		(48)	
SQUAMOUS CELL PAPILLOMA						(2%)
SQUAMOUS CELL CARCINOMA	<u></u>				1	(2%)
URINARY SYSTEM			/ FA			
#KIDNEY NEOPLASM, NOS, METASTATIC	(50)		(50)		(50)	(2%)
#URINARY BLADDER	(48)		(50)		(48)	(20,00)
NEOPLASM, NOS, METASTATIC						(2%)
ENDOCRINE SYSTEM			·			
#PITUITARY	(49)	(2794)	(49)	(950)	(50)	(100)
ADENOMA, NOS #ADRENAL	(50)	(37%)	(50)	(35%)	(50)	(48%)
PHEOCHROMOCYTOMA	()	(8%)		(6%)		(10%)
#THYROID	(49)		(49)		(47)	
FOLLICULAR-CELL ADENOMA		(2%)		(00)		(2%)
C-CELL ADENOMA #PANCREATIC ISLETS	3 (50)	(6%)	1 (49)	(2%)	4 (48)	(9%)
			198271		(190)	

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE

	CONTRO	L (VEH)	LOWI	DOSE	HIGH	DOSE
REPRODUCTIVE SYSTEM						
*MAMMARY GLAND	(50)		(50)		(50)	
NEOPLASM, NOS, UNC PRIM OR META						(2%)
SARCOMA, NOS						(2%)
FIBROADENOMA		(18%)		(24%)		(28%)
*CLITORAL GLAND	(50)		(50)		(50)	
SQUAMOUS CELL PAPILLOMA						(2%)
ADENOMA, NOS	2	(4%)		(4%)	1	(2%)
CYSTADENOMA, NOS	(48)			(2%)	(49)	
#UTERUS NEOPLASM, NOS, METASTATIC	(45)		(48)			(2%)
ADENOCARCINOMA, NOS	1	(2%)			1	(270)
ENDOMETRIAL STROMAL POLYP		(22%)	10	(21%)	٩	(18%)
ENDOMETRIAL STROMAL SARCOMA		(2%)		(2%)		(10,0)
#CERVIX UTERI	(45)		(48)		(49)	
LEIOMYOSARCOMA	4 · · · · ·	(2%)	(30)		(10)	
#OVARY	(45)	(2,0)	(48)		(49)	
ADENOMA, NOS	(40)		((2%)
GRANULOSA-CELL TUMOR			2	(4%)	•	(- /- /
NERVOUS SYSTEM						
#BRAIN	(49)		(50)		(49)	
GLIOMA, NOS				(2%)		
NONE MUSCULOSKELETAL SYSTEM *TIBIA NEOPLASM, NOS, INVASIVE	(50)		(50)		(50) 1	(2%)
BODY CAVITIES NONE						<u> </u>
ALL OTHER SYSTEMS NONE						
ANIMAL DISPOSITION SUMMARY						
ANIMALS INITIALLY IN STUDY	50		50		50	
NATURAL DEATH	4		10		9	
MORIBUND SACRIFICE	6		6		8	
SCHEDULED SACRIFICE	-		-		± -	
TERMINAL SACRIFICE	40		33		32	
DOSING ACCIDENT					1	
ACCIDENTALLY KILLED, NDA			4			
			1			
ACCIDENTALLY KILLED, NOS						
ACCIDENTALLY KILLED, NOS ANIMAL MISSING ANIMAL MISSEXED						

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RAT IN THE TWO-YEARGAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

1

TABLE A2.	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR
	GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

CO	NTROL (VEH)	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS**	36	38	38
TOTAL PRIMARY TUMORS	59	61	78
TOTAL ANIMALS WITH BENIGN TUMORS	32	33	35
TOTAL BENIGN TUMORS	50	48	62
TOTAL ANIMALS WITH MALIGNANT TUMORS	9	11	12
TOTAL MALIGNANT TUMORS	9	11	13
TOTAL ANIMALS WITH SECONDARY TUMORS#	#		2
TOTAL SECONDARY TUMORS			6
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
BENIGN OR MALIGNANT		2	1
TOTAL UNCERTAIN TUMORS		2	1
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
PRIMARY OR METASTATIC			1
TOTAL UNCERTAIN TUMORS			2

NUMBER OF ANIMALS NECROPSIED
 PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS
 NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY
 ## SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

ANIMAL NUMBER		001	0	03	04	0 5	0 6	0	08	09	10	1	1 2	13	14	1 5	1	1	1	19	20	0 2 1	22	23	24	0.54.65
WEEKS ON STUDY		1 0 4	1) 0 4	1 0 4	104	1 0 1	1 0 4	1 0 4	0 6 8	1 0 4	0 2 8	1 0 4	1 0 4	104	1 0 5	1 0 5	1 0 5	1) 0 5	1 0 5	1 0 5	0 9 2	0 9 9	1 0 5	1 0 5	1 0 5	105
NTEGUMENTARY SYSTEM Skin Squamous cell papiiloma		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	
Squamous cell carcinoma Keratoacanthoma Osteosarcoma, invasive Jubcutaneous tissue Fibroma		+	+	+	÷	+	+	x +	+	+	+	+	+	+	+	÷	*	+	+	+	x +	+	+	*	+	-
LESPIRATORY SYSTEM Jungs and bronchi Tachea C-cell carcinoma, invasive	-	++	+++	+++	+++	++	+++	++	++	+++	++	+++	++	++	++	+++	++	+++	++	+ +	+++	++	++	+++	++	
IEMATOPOIETIC SYSTEM one marrow jeleen ymph nodes hymus	-	+++-	+++++	+++-	+++	+++-	1+++	++++	++++	++++	++++	+++-	+++ 1	++++	+++-	++++	+++	++++	++++	++++	++++	++++	++++	++++	++++	
CIRCULATORY SYSTEM		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
DICESTIVE SYSTEM alivary gland iver	-	+++	++	+ +	+++	+++	+++	++	++	+++	++	+++	+++	+++	+++	++	+++	+++	++	++	++	++	+++	+++	+++	
Neoplastic nodule Bile duct Jallbladder & common bile duct Pancreas Sophagus Sophagus Stomach Imall intestine		+ + + + ;	+ 2 + + + + +	X+N+ +++	+2++++	+ 2 + + + +	+ 2 + 1 + +	+ 2 + + + +	+ 2 + + + +	+ × + + × +	+2++++	+2++++	+2++++	+2++++	+2++++	+2++++	+ 2 + + + +	+2++++	+2++++	+ z + + + +	+z+++	+2++++	+2++++	+ 2 + + + +	+ 2 + + + +	
arge intestine RINARY SYSTEM idney	-	+	+	÷	+	+	+	÷	+	÷	÷	+	+	÷	+	+	÷	+	+	+	÷	÷	+	÷	÷	-
lidney Jrinary bladder		++	++	++	++	++	+ +	++	++	+ +	+++	++	+ +	++	++	++	+ +	++	++	++	++	++	+++	++	++	
NDOCRINE SYSTEM ituitary Adenoma, NOS drenal Pheochromocytoma	:	* *	+ x +	+ +	+. +	+ +	+ x +	* *	+ +	+ +	- +	+ +	+ +	+ + X	+ + +	++	+ +	+ +	+ x +	+ *	+ +	* *	+ +	+ +	++	
Sarcoma, NOS hyroid Follicular cell carcinoma C-cell adenoma	•	+	+	+	+	+	¥ +	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	*	+ X	+	•
C-cell carcinoma arathyroid		-	+	+	+	+	+	+	+	X +	+	+	+	+	-	+	+	-	+	+		+	-	+	+	
EPRODUCTIVE SYSTEM Iammary gland Fibroadenoma		+	N	+	+	+	+	+	+	+	N	+	+	+	N	+	+	+	N	+	+	+	+	N	+	
estis Interstitial cell tumor Mesothelioma, NOS		*	*	*	*	, x	* *	+	+	, x	+	* *	*	*	* x	*	*	* *	*	* *	+ X X	+ XX	* x	* x	×	
rostate reputial/clitoral gland Carcinoma, NOS		Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	+ N	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	+ N	+ N	Ň	Ň	Ň	2
ERVOUS SYSTEM Frain Glioma, NOS	-	*	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	-	+	+	+	+	+	
PECIAL SENSE ORGANS	-	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Glioma, NOS ar Fibrosarcoma		*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	2
IUSCULOSKELETAL SYSTEM one Osteosarcoma	-	N	N	N	N	N	N	N X	+	N	+	N	N	N	N	N	N	N	N	N	+	N	N	N	N	1
ODY CAVITIES fediastinum Undifferentiated carcinoma	-	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	2
LL OTHER SYSTEMS fultiple organs NOS C-cell carcinoma, metastatic		N	N		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	2
Mesothelioma, NOS Osteosarcoma, metastatic Leukemia, mononuclear cell				X		v	v	х	v								x				x					

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE: VEHICLE CONTROL

Tissue Examined Microscopically
 Sequired Tissue Not Examined Microscopically
 Tumor Incidence
 N Netropsy, No Autolysis, No Microscopic Examination
 S Animal Missexed

No Tissue Information Submitted
 Necropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animal Missing
 B : No Necropsy Performed

TABLE A3.	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS:	VEHICLE
	CONTROL (Continued)	

ANIMAL NUMBER	0 2 6	02	028	0 2 9	000	0 3 1	0 3 2	0 3 3	0 3 4	035	036	0 3 7	03	0 3	040	04	0 4 2	043	04	04	046	047	04	040	05	TOTAL
WEEKS ON STUDY	1	105	105	0 9	10	105	0	π	105	105	105	0 8 7	105	0 7 5	1	105	1015	105	04	105	105	105		ল	Ĩ	TISSUES TUMORS
INTEGUMENTARY SYSTEM	ופ א א	아 +	গ +	+	5	.이 +	4 +	이 +	이 +	গ +	গ +	4 +	ਅ +	이 +	아 +	아 +	이 	어 +	+	প +	প +	গ +	প +	শ +	- +	*50
Squamous cell papilloma Squamous cell carcinoma Keratoacanthoma Ostgosarcoma, invasive												x														
Subcutaneous tissue Fibroma	И	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50
RESPIRATORY SYSTEM Lungs and bronchi Trachea C-ceil carcinoma, invasive	+ +	++	++	++	++	+ +	+ +	++	+ +	++	+ +	+++	++	+ +	+ +	++	+-	+	++	+	+ -	++	+	++x	+ +	50 48 1
HEMATOPOIETIC SYSTEM Bone marrow Spieen	++	+++	+++	+++	++++	+++	++++	+++++	++++	++++	+++++	+++++	+++++	++++	++++	÷+	++++	++++	++++	++++	++++	++++		++++	+++++++++++++++++++++++++++++++++++++++	46 50 49
Lymph nodes Thymus	+	+	-	÷	+	Ŧ	Ŧ	Ŧ	÷	Ŧ	Ŧ	Ŧ	÷	-	Ŧ	÷	Ŧ	Ŧ	Ŧ	Ŧ	Ξ	Ξ	-	Ŧ	Ŧ	36
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DICESTIVE SYSTEM Salivary gland Liver Neoplastic nodule	• ++	+++	++	++	++X	‡	++	++	++	++	++	++x	++	++	+	+ +	+++	+ +	++	++	++	++	++	++	++	50 50
Bile duct Galibladder & common bile duct	, N	+ N	+ N	, N	n N	+ N	n N	n N	, N	* N	+ N	ň,	+ N	+ N		+ N	+ N	+ N		+ N	+N	+ N	+ N		+N	6 88 6 8 ⁶ 6.8
Pancreas Esophagus Stomach	+++++	++++	++++	+++	++++	+++	-++	++++	+++	+++	+++	+++	+++	+++	+++	* * *	+++	++++	+++	+++	+++	++++	++++	++++	+++	48
Somach Small intestine Large intestine	++++	+++	+++	+++	+++	+++	+	+ +	++	++	++	÷ +	+	÷ +	÷ +	÷	÷ +	÷ +	+ +	÷ +	÷ +	÷ +	÷ +	÷	÷ +	50 49
URINARY SYSTEM Kidney Urinary bladder	++	++	++	+	++	+	++	++	++	+++	++	++	++	++	+++	+++	+++	+++	++	+++	+++	++++	+++	++	+	50 50
ENDOCRINE SYSTEM Pituitary	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Adenoma, NOS Adrenal Pheochromocytoma	+	+	X +	+	, +	* *	× +	¥ +	+	+	+	+	X +	+	x * x	+	*	+	+	X +	¥ +	*	+	¥ +	* +	16 50 6
Sarcoma, NOS Thyroid Follicular cell carcinoma	+	+	+	+	*	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 2
C-cell carcinoma Parathyroid	+	-	+	+	-	+	•	+	+	+	_	_	+	+	+	+	+	+	_	_	х +	+	+	× +	+	2238
REPRODUCTIVE SYSTEM	N			+							N						<u> </u>		N	-	_	N			_	•50
Mammary giand Fibroadenoma Testis	+	+	+	+	×+×	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50
Interstitial cell tumor Mesothelioma, NOS		X	X	X	X	X		x		X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	42 4 48
Prostate Preputial/clitoral gland Carcinoma, NOS	Ň	Ň	Ň	Ň	Ň	Ñ	Ň	Ň	Ň	Ň	Ň	Ň	Ñ	Ň X	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	*50 1
NERVOUS SYSTEM Brain Glioma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1
SPECIAL SENSE ORGANS Eye	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50
Glioma, NOS Ear		X N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	•50
Fibrosarcoma MUSCULOSKELETAL SYSTEM																			_							1
Bone Osteosarcoma	N	N	N	N	N	N	+	N	N	N	N	+	N	+	N	N	N	N	+	N	N	N	N	+	N	*50 1
BODY CAVITIES Mediastinum Undifferentiated carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs NOS C-cell carcinoma, metastatic Mesothelioma, NOS	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N X	Ň	*50 1 2
Osteosarcoma, metastatic Leukemia, mononuclear cell	, x								x						x		x									1 9

Animals Necropsied

ļ

			_			_													_					_	
ANIMAL NUMBER	0	002	003	004	005	006	007	008	000	010	0	012	0 1 3	0	015	0	0	018	0	0 2 0	0 2 1	022	023	024	25
WEEKS ON STUDY	1	0 9 2	0 8 2	104	1 0 4	096	0 9 7	104	0 5 4	066	0 9 7	1 0 4	104	1	057	105	1 0 5	105	075	1 0 5	105	105	094	105	1 0 5
INTEGUMENTARY SYSTEM		+	 +	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	_ +
Squamous cell papilloma Subcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Trachea	+++	+ +	++	++	+++	++	++	++	++	+	+	++	++	++	++	++	+	+	+	+	+ +	+++	++	+ x +	+++
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	+++++	++++	++ -+	++++	++++	++++	++++	++++	++++	++++	++++	++++	+++	++++++	+++ -	++++	++++	++++	++++	++++	++++	++++	++++	-+++	++++
CIRCULATORY SYSTEM Heart Neurilemoma, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Salivary gland Liver Bile duct Gailbladder & common bile duct	+++ x	+++z	+++z	+++z	+++z	+++x	+++z	+++z	+++z	+++z	+++x	+ + + X	+ + + N	+++x	+++X	+++z	+++x	+++z	+++z	+++N	+ + + X	+++z	+++z	+++z	+++z
Pancreas Esophagus Stomach Squamous cell papilloma Sarcoma, NOS	++++++	++++	+++	+++	+++	-++ +	+++	++++	+++	+++ + X	+ - +	+++	++++	++++	++++	++++	+++	+++	+++	+++	+++	+++	+++	+++	+++
Small intestine Large intestine	+++	-	++	+++	+	+	Ŧ	+	+	++	+	++	++	+	++	+	++	+	++	++	+	+	+	+++	+
URINARY SYSTEM Kidney Urinary bladder	+++	+ +	+++	+ +	++	+ -	+++	+ +	+++	++	+ +	+ +	++	+ +	++	+ +	+ +	++	+++	+ +	++	+ +	+ +	++	++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal	+	+++	+ x +	+ X +	++	++	++	+++	++	+++	+++	+++	+++	+ x +	+++	* *	++	+++	+++	++	+ x +	+++	+ x +	++	+++
Pheochromocytoma Thyroid C-cell adenoma Parathyroid	+++	* x	++	++	x + x -	++	++	++	++	++	X + +	++	++	++	++	++	+	+ x -	-	++	+ +	× + +	+ +	X + +	+x+
Pancreatic islets Islet cell adenoma	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x	+	+	+	+
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	N	+	+	+	+	N	+
Testis Interstitial cell tumor Mesothelioma, NOS Prostate	x +	x +	+	*	х +	*	× +	x +	+	+	x +	x +	x +	× +	× ×	× +	x +	+	+	x +	× +	x +	+	x +	¥ +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Ear Fibrosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N
BODY CAVITIES Mediastinum Alveolar/bronchiolar ca, metastatic Peritoneum Paraganglioma, NOS								N N																х	
ALL OTHER SYSTEMS Multiple organs NOS Sarcoma, NOS Sarcoma, NOS, metastatic	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Mesothelioma, NOS Leukemia, mononuclear cell		x				x	x				x						x	x	x						x
			_			_		_	-		_	_		_	_		_								

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE: LOW DOSE

+ :

Tissue Examined Microscopically Required Tissue Not Examined Microscopically Tumor Incidence Necropsy. No Autolysis, No Microscopic Examination Animal Missexed X : N : S :

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animal Missing
 B : No Necropsy Performed

ANIMAL NUMBER	0 2 6	0 2 7	028	0 2 9	030	0 3 1	0 3 2	0 3 3	0 3 4	035	0 3 6	0 3 7	0 3 8	0 3 9	040	0 4 1	042	043	04	04	04	0 4 7	048	0 4 9	0 5 0	TOTAL
WEEKSON Study	105	0 8 4	1 0 5	1 0 5	105	1 0 4	1 0 5	054	1 0 5	0 6 6	1 0 5	1 0 5	0 6 1	1 0 5	044	045	105	105	1 0 2	0 8 1	1 0 1	1 0 5	105	0 5 7	1 0 5	TISSUES
INTEGUMENTARY SYSTEM		-	<u> </u>	*			<u> </u>	+		-			<u> </u>		-				-	-	-			-	 	*50
Squamous cell papilloma Subcutaneous tissue Fibroma	X +	+	+	+	+	*	+	+	+	¥	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	*50 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Trachea	+ +	++	+ +	+ +	++	++	++	+++	+ +	+++	++	+ +	++	+	++	+++	++	++	+ -	+++	++	++	++	+ +	+++	50 1 46
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	++++	++	++++	++++	++++	+++-	++++	++ ++	++++	++++	++++	++++	++++	.++++	++++	+++-	+++++	++++	++++	++++	++++	++++	++++	++++	++++	49 50 47 38
CIRCULATORY SYSTEM Heart Neurilemoma, malignant	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
Salivary gland Liver Bile duct Galibladder & common bile duct Pancreas Exophagus Stomach Squamous cell papilloma Sarcoma, NOS	+++2+++	-++2+++	+++2+++	+++Z+++X	+++Z+++	+++2+++	+++2+++	++Z+++	+++2+++	+++2+++	+++2+++	+++2+++	+++2+++	+++2+++	+++2+++	+++2+++	+++2+++	+++2+++	+++2+1+	+++2+++	+++2+++	+++X+++	+++X+++	+++2+++	+++X+++	48 50 50 50 49 48 50 1
Small intestine Large intestine	++	+++	+ +	++	++	÷	+ +	+++	+	++	++	+++	+++	++	++	+	+++	+++	+++	++	+ +	++	+++	++	+	49 49
URINARY SYSTEM Kidney Urinary bladder	++	+ +	++	+ +	++	+ +	++	++	+ +	+++	+ +	+ +	++	+ +	++	+ +	++	++	++	+ +	+-	+ +	++	++	++	50 48
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Pheochromocytoma Thyroid C-cell adenoma Parceatic islets islet cell adenoma	+ + + +	+ + + ++	+ + X+ ++	+ + + + + + + + + + + + + + + + + + + +	+x+ + ++	+X+ + ++	+ + X+ ++	+ + + ++	+ + + ++	+ + + ++	+ + + ++	+ + + -+	+ + + ++	+ + x - ++	+ + + ++	+ + + + + + + + + + + + + + + + + + +	+ + + ++	+ + + + + + + + + + + + + + + + + + + +	+ ++	+ + + + + + + + + + + + + + + + + + + +	+ +x+ ++	+ +x+ ++	+ + + - + x	+ + + + + + + + + + + + + + + + + + + +	+ + + -+	50 8 50 9 47 4 40 49 2
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Testus Interstitial cell tumor Mesothelioma, NOS Prostate	+ + X +	+ + + + + +	+ * *	+x+x +	+ + * +	+ + + +	+ + + + +	+	N + X +	N + +	+ + * +	+ + * +	+ - +	+ + + + + + +	м + +	+ + +	+ + * +	+ + x +	+ + x +	++++	+ * * +	+ * * +	+x+x +	+ + +	+ + X +	*50 2 49 37 1 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	50
SPECIAL SENSE ORGANS Ear Fibrosarcoma	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N '	'N	*50 2
BODY CAVITIES Mediastinum Alveolar/bronchiolar ca, metastatic Peritonaum Paraganglioma, NOS												N N														*50 1 *50 1
ALL OTHER SYSTEMS Multiple organs NOS Sarcoma, NOS, metastatic Mesothelioma, NOS Leukemia, mononuclear cell	N	N	N	N		N X	N	N		N X		N X X		N	N	N		N X		X	N X		N	N	א	*50 1 1 2 15

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

* Animals Necropsied

ANIMAL	0	0	अ	0	0	0	o	0	0	9	0	0	0	0	0	9	O	0	0	0	0	0	0	0	0
NUMBER	0	0 2	0	04	0 5	0 6	9 7	0 8	0 9	1	1	1 2	1 3	4	1 5	6	1	1 8	1 9	20	2 1	2	23	2	25
WEEKSON Study	1 0 4	0	1 0 4	0 9 5	104	1 0 4	1 0 4	104	0 9 2	0 80 4	1 0 4	0 9 4	0 9 2	1 0 5	999	026	0 5 0	99	1 0 5	1 0 5	089	1 0 5	1 0 5	1 0 0	105
INTEGUMENTARY SYSTEM Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Squamous cell papilloma Subcutaneous tissue Fibroma Fibrosarcoma	+	+	+	+	+	+	÷	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+ X	* x	1
RESPIRATORY SYSTEM	<u> </u>			- <u>-</u>															<u> </u>						-
Lungs and bronchi Squamous cell carcinoma Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Osteosarcoma, metastatic Trachea	+ X +	+	+ x +	+ XX +	+ x +	+ x +	+ x +	Ť	× +	+	+	+ x +	+	+ x;+	×	++	++	× +	+ X +	+ x +	+	-	+	- x	7 X
HEMATOPOIETIC SYSTEM Bone marrow	+							-	-								-	-			+			-	_
Spieen Lymph nodes Alveolar/bronchiolar ca, metastatic Thymus	+++++++++++++++++++++++++++++++++++++++	+++++	+++	+ -	+++++++++++++++++++++++++++++++++++++++	+++	+++++++++++++++++++++++++++++++++++++++	+++	++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++	+++++++++++++++++++++++++++++++++++++++	++	++	++	+++	++	+++++++++++++++++++++++++++++++++++++++	+++ +	++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++	+
CIRCULATORY SYSTEM Heart	+	- +	+	+	+	+	- +	- +	-+	+	+	- +		+		+	- +	+	+	+	+	+	+	+	- +
Squamous cell carcinoma, invasive DIGESTIVE SYSTEM															X			<u>х</u>	_						_
Oral cavity Squamous cell papilloma Salivary gland	+	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	м +	N +	N -	N +	N +	N +	N +	N +	N +	N X +	N +	+
Liver Bile duct Gallbladder & common bile duct	+ + N	+ + N	+ + N	++ + N	+ + N		+ + N	+ + + N			++ + N	+ + N			++ + N	+ + N	+ + N	++ N	+ + N	+ + N		+ + N	+ + N	++ N	
Pancreas Esophagus Stomach	++++	+++	+++	++++	+++	+++	+++	++++	+++	+++	++++	++++	+++	+ + +	++++	+++	- + +	++++	+++	++++	+++	+++	+++	+++	+++
Squamous cell papilloma Squamous cell carcinoma Keratoacanthoma Small intestine	+	+	X +	x +	+	+	+	•	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+
Adenocarcinoma, NOS Large intestine	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+
URINARY SYSTEM Kidney Urinary bladder Transitional cell papilloma	+ +	+ +	+	+++	+ +	++	++	+++	+++	+++	+++	++++	++++	+ +	+++	+	++	++++	+++	++	+++	++	++	+	++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	, x	, x	+	+	+	* x	+	* x	+	+	* x	*	+	+	-	+	+	-	+	*	+	+	+	+	 *
Adrenal Pheochromocytoma Thyroid	+	++	++	++	++	+ +	++	* *	+ +	++	+++	++	++	++	++	++	++	++	++	++	++	++	++	++	+
Follicular cell carcinoma C-cell adenoma Parathyroid	+	+	+	-	+	+	+	+	× +	+	+	+	+	+	+	+	+	X +	x	+	+	-	+	+	+
Pancreatic islets Islet cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Fibroadenoma	+	+	N	+	+	+	N	+	N	+	N	N	+	+	N	+	+	+	+	+	+	+	+	+	N
Testis Interstitial cell tumor Mesothelioma, NOS Prostate	x +	+	*	* *	* +	* *	+	* *	* *	* *	* *	+	+	* *	* *	+	+	+	* *	* *	* *	* *	* *	* *	+
Osteosarcoma, invasive Preputial/clitoral gland Carcinoma, NOS	N	N	N	N	N	N	N.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
NERVOUS SYSTEM Brain Glioma, NOS	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Ear Fibrosarcoma	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Mediastinum Squamous cell carcinoma, invasive Alveolar/bronchiolar ca, metastatic Peritoneum Sarcoma, NOS												N N													
Osteosarcoma ALLOTHER SYSTEMS Multiple organs NOS Mesothelioma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Ņ	N	N	N	N	N	N	N	N

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE: HIGH DOSE

Tissue Examined Microscopically Required Tissue Not Examined Microscopically

Tumor Incidence Necropsy, No Autolysis, No Microscopic Examination Animal Missexed

: No Tissue Information Submitted C : Necropsy, No Histology Due To Protocol A : Autolysis M : Animal Missing B : No Necropsy Performed

Dimethyl Hydrogen Phosphite, NTP TR 287

68

	-				A		-	A	0		-/	- 61	- 01	01	7	70	- 71	<u> </u>		~	- 74	-71	~	- 71	~	
ANIMAL NUMBER	26	27	28	29	30	3	32	33	3	3	36	3	38	39	40	4	42	43	4	4	46	47	4	49	5 0	TOTAL
WEEKSON STUDY	0 8 0	0 9 1	1 0 1	1 0 5	1 0 2	1 0 5	1 0 3	1 0 5	1 0 1	1 0 5	1 0 4	0 8 2	1 0 4	1 0 5	0 7 9	097	1 0 5	0 9 1	105	1 0 5	0 6 3	1 0 5	105	1 0 5	0 6 4	TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•50
Squamous cell papilloma Subcutaneous tissue Fibroma Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	X +	+	+	+	*50 3 1
RESPIRATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Squamous cell carcinoma Alveoiar/bronchiolar adenoma Alveoiar/bronchiolar carcinoma Osteosarcoma, metastatic Trachea	+	+	+	+	x +	+	+	+	+	+	x +	х +	x +	x +	+	x +	x +	X X +	X +	+	+	x +	X +	X +	X +	5 5 20 1 47
HEMATOPOIETIC SYSTEM Bone marrow	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Spieen Lymph nodes Alveolar/bronchiolar cs. metastatic Thymus	+++++	+++++	++ -	+++++	+++++	++++	+++++	++++	++ -	+++++	++ -	++++	++++	++ +	++	+++++	++++	++++	+ + +	++++	++ +	-+x+	++++	+ + +	+ + + +	49 49 1 39
CIRCULATORY SYSTEM Heart Squamous cell carcinoma, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 2
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N		*50
Salivary gland Liver Bile duct	+++++++++++++++++++++++++++++++++++++++	++++	++++	+++	++++	++++	+++	++++	++++	++++	++++	+++	+++	++++	++++	++++	++++	++++	++++	++++	++++	+++	+ + +	++++	++++	49 50 50
Gallbladder & common bile duct Pancreas Esophagus	N + +	N + +	N + +	N + +	N + +	+++++++++++++++++++++++++++++++++++++++	N + +	N + +	N ++	N - +	N + +	N + +	N + +	N + +	N + +	N + +	N ++	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	*50 48 50
Stomach Squamous cell papilloma Squamous cell carcinoma Keratoacanthoma	+	+	+	+	+	*	+ X	+	x	+	+ X	+	+	+	+	+	+	+	+	+	+	+	Ť	+	+	50 3 3 1
Adenocarcinoma, NOS Large intestine	++	+ +	-	+ +	+ +	+ +	+ •+	+ +	+ +	+ +	+ +	+ +	+ +	* *	+ +	+ +	+ +	+ +	48 1 48							
URINARY SYSTEM Kidney Urinary bladder Transitional cell papilloma	+	+++	+ +	+++	++	+++	+++	++	++	++	+ *	+++	++	+++	++	++	++	+++	++	+++	++	+	+ +	+ +	+++	50 48 1
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	+	* *	+	+	*	+	+	+	+ x	+	+	+	+	*	*	+	+	+	+	*	+	+	+	48 14
Adrenal Pheochromocytoma	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	÷	Ŧ	+	+	+	+	÷.	+	+	+	50 3
Thyroid Follicular cell carcinoma C-cell adenoma	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	49 1 3
Parathyroid Pancreatic islets Islet cell adenoma	- +	+ + X	++	++	++	+	- +	+ +	++	+ -	+ +	++	÷	+ +	+	+	Ŧ	+	+ +	++	+ +	+ +	+ +	Ŧ	+ +	38 48 1
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Fibroadenoma	+	+	N	+	+	+	+	+	*	+	+	N	+ x	+	+	+	+	+	N	+	+	N	+	+	+	*50 1
Testis Interstitial cell tumor Mesothelioma, NOS	×	*	*	*	*	*	+	* x	*	*	+ X X	* X	÷ x	+	+	+	* X	+	*	*	+	*	*	*	+	50 35
Prostate Osteosarcoma, invasive Preputia/Ciitoral gland Carcinoma, NOS	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N X	+ N	+ NX	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ X N	49 1 *50 2
NERVOUS SYSTEM Brain Glioma, NOS	+	+	+	+	÷	+	+	+	+	+	+	+	*	+	+	+	+	+	÷	+	+	+	+	+	+	49 1
SPECIAL SENSE ORGANS Ear Fibrosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
BODY CAVITIES Mediastinum Squamous cell carcinoma, invasive	И	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
Alveolar/bronchiolar ca, metastatic Peritoneum Sarcoma, NOS Osteosarcoma	N	N	N	N	X N	N	N	N	N	N	X N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N X	*50 1 1
ALL OTHER SYSTEMS Multiple organs NOS Mesothelioma, NOS			N	N	N	N	N	N			N	N				N	N	N			N	N	N	N	N	*50 1
Leukemia, mononuclear cell	X	X							x	x	_		X		X	_			x	x	-	_	x			13

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

*Animals Necropsied

TABLE A4	INDIVIDUAL A	NIMAL TUMOR	PATHOLOGY OF FEM	IALE RATS IN THE
TWO-YEAR GAV	AGE STUDY OF	DIMETHYL HY	DROGEN PHOSPHITE	· VEHICLE CONTROL

ANIMAL NUMBER	0 0 1	002	003	004	005	006	007	008	009	010	011	012	0 1 3	0	0 1 5	0	0 1 7	018	0 1 9	040	021	0 2 2	043	024	0 2 5
weeks on Study	104	104	104	094	086	104	104	104	104	104	104	104	105	1 0 5	1 0 5	1 0 1	105	105	105	105	83	105	080	105	
INTEGUMENTARY SYSTEM Subcutaneens tissue Trichespithelioma Fibroma	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Traches	+	+++	+	++	+++	+++	++	++	++	++	+	+++	++	+++	+ -	+	+	+	+	++	+++	‡	++	++	- +
HEMATOPOLETIC SYSTEM Bose marrow Spleen Lymph nodes Thymus	++ -+	-+++	++++	+++ -	++++	++++	+++=	-+++	+++++	++++	-++-	++++	++++	++++	++ -+	++ -+	++++	++++	++++	+++++	++++	++++	+++-	+++ -	++++-
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Selivery gland Liver Bile duct Gelibladder & common bile duct Pancreas Esophagus Stomach Stomach Small intestine Large intestine	+++2+++++	+++Z+++++	+++X+++++	+++2+++++	+++Z+++++	+++Z+++++	+++X+++++	+++Z+++++	+++2+++++	+++2+++++	+++Z+++++	+++2+++++	+++Z+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++z+++++	+++2+++++	+++2+++++	+++2+++++	+++2+++++	+++++++++
URINARY SYSTEM Kidney Urinary bladder	+	+	+	+	+	++	+	++	+	++	++	+	++	+++	+	+++	+++	+	+++	+++	+	+++	;	+++	++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenai Pheochromocytoma Thyroid Pollicular cell adenoma C-cell adenoma Parathyroid Pancreatic lafeta Lafet cell adenoma	+ + + ++	+x+ + -+	+ + + -+	+x+x+ ++	+ ++	+ + :+ ++	+ + + ++	+ + + ++	+x+ + -+	+ + + ++	+ + + -+	+ + · + x++	+ + + ++	+ + + + + + + + + + + + + + + + + + + +	+ + + -+	+x+ +x ++	+x+ + x -+	+ + + + + + + + + + + + + + + + + + + +	+ + + ++	+x+ + ++	+x+ + ++	+ + + + + + + + + + + + + + + + + + + +	+ + + -+	+ + + -+	+x+ + ++
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Preputia/clitoral gland Adenocarcinoma, NOS Uterus Adenocarcinoma, NOS Leiomyosarcoma	+ N +	+ N +	+xn -	+ N +	+ N -	+ N +	+ N +	N N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N -	+x N + x	+XN +	+ N +	+ N +	+ N +	+XNX+	+ N +	+	+ N +	- + N +
Endometrial stromal polyp Endometrial stromal sarcoma Ovary	+	+	-	+	-	+	+	+	+	+	+	+	+	*	-	+	+	+	+	+	+	+	+	л +	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs NOS Leukemia, mononuclear ceil	N	N X	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necropsy, No Autolysia, No Microscopic Examination

 S : Animal Missezed

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A Autolysis
 M : Animal Missing
 B : No Necropsy Performed
ANIMAL	0	0	Ø	Q	0	0	9	0	0	0	0	0	0	8	Ø	Ю	0	Ø	ল	0	0	DI	0	0	0	7
NUMBER	2 6	27	28	2 9	3 0	3 1	3 2	3 3	3	3	3 6	3	3	3	40	4	4 2	4 3	4	4 5	4 6	47	48	4 9	5 0	TOTAL
WEEKSON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 7 5	0 9 1	0 8 5	1 0 5	0.00	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 8 1	1 0 5	1 0 5	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Trichoepithelioma Fibroma	+	+	+	+	+	÷	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Trachea	+++	+	++	++	+++	++	+++	+++	++	+++	++	++	+	+++	+	+++	+++	+++	+++	++	+	++	+++	+++	+++	50 44
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	- + + +	+++++++++++++++++++++++++++++++++++++++	+++ -	++++	++++	++++	++++	++++	++++	++++	++ 1+	-+++	-++-	++++	++++	++++	++++	++++	-+++	-+++	-+++	++++	++++	++++	++++	41 50 45 41
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	+++;+++++++++++++++++++++++++++++++++++	+++7;+++++	++++++++++++++++	+++2++++++	+++7.+++++	+++7.+++++	+++7.+++++	+++2+++++	++++;++++++	+++2+++++	+++7.+++++	+++7;+++++	+++7;++++++	+++7+++++	+++2+++++	+++2+++++	+++2+++++	+++;;++++++++++	+++2+1+++	+++Z+++++	+++2+++++	+++2+++++	+++7++++++	+++;++++++	+++×++++++	50 50 *50 *50 50 49 50 50 50 50
URINARY SYSTEM Kidney Urinary bladder	+++	+++	++	+++	+ +	+++	+++	++	++	+ +	+++	+++	+ +	+++	+++	+++	+++	+++	++	++	++	++	+++	++++	+++	50 48
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenai Pheochromocytoma Thyroid Follicular cell adenoma C-cell adenoma Parathyroid Pancreatic islets Islet cell adenoma	+x+ + +	+x+ + x++	+ + + ++x	+X+ + ++ ·	+ + +	- + + + -	+ +x+ -+	+ + + ++	+ +x+ ++	+x+ + ++	+x+ + -+	+ + + +	+ + + ++	+ + + ++	+ + + ++	+x+ + -+	+ + + ++	+ + + ++	+x+x+ -+	+ + + + + + + + + + + + + + + + + + + +	+x+ + ++	+x+ + -+	+x+ + ++	+ + + -+	+ + + ++	49 18 50 4 49 1 3 32 50 1
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma PreputiaVclitoral gland Adenocarcinoma, NOS Uterus Adenocarcinoma, NOS Leiomyosarcoma Endometrial stromal polyp Endometrial stromal sarcoma Ovary	+ N X -	+ N + +	+ N + X +	N N -	+ N +	+ X + +	+ N + X +	+	+ N + X +	+	+ N + X +	+	+	+ N +	+xn + +	+ × +	+xn + +	÷	N N + X +	+	+ XX + +	+ × + × +	+	+x + + + + + + + + + + + + +	- + N + +	*50 9 *50 2 45 1 1 10 1 45
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	49
ALL OTHER SYSTEMS Multiple organs NOS Leukemia, mononuclear cell	N	N X	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- N	*50 6

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

• Animals Necropsied

ANIMAL NUMBER	0 0 1	0 0 2	0 0 3	0 0 4	005	000	0 0 7	0 0 8	0 0 9	0	0 1 1	0 1 2	0 1 3	0) 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	020	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
WEEKS ON STUDY	0 9 5	1 0 4	104	0 9 4	1 0 4	104	104	104	104	104	0 9 2	105	1 0 5	1 0 5	105	104	1 0 5	1 0 5	1 0 5	105	0 5 6	1 0 5	030	104	1 0 5
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma	+	+	+	N	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lunga and bronchi Alveolar/bronchiolar carcinoma Trachea	+	+++	++	++	++	++	++	++	++	++	++	++	++	+	+++	+++	++	+++	++	+++	+++	+	+++	+++	+ -
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++	++++	1+++	++++-	++++	++++	++++	++++	++++	1+++	++++	++++	++++	+++-	++++	+++ =	++++	++++	++++	++++	++++	++++	+++-	-+++	++++
CIRCULATORY SYSTEM Heart	+	+	+	+	÷	+	+	÷	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma Salvary gland Liver Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	2 +++2++++	Z +++Z++++	7. +++2+++++	X +++X+++++	Z +++Z+++++	2 +++2+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+1+++	Z +++Z++++	Z +++Z++++	Z +++Z++++	Z +++Z+++++	X +++X+++++	Z +++Z+++++	2 +++2++++	2 +++2+++++	Z +++Z++++1	2 +++2+++++	2 +++2+++++	Z. +++Z+++++	Z +++Z+++++	N +++N++++	ZX+++Z+++++	Z +++Z++++
URINARY SYSTEM Kidney Hemangiosarcoma Urinary bladder	+	+++	++	+++	++	++	++	+++	++	+++	+++	++	+	+++	++	+++	+++	+++	+++	+++	+	+++	+++	+++	+++++
ENDOCRINE SYSTEM Pituitary Adrenasi Pheochromocytoma Thyroid C-ceil adenoma Parathyroid	+ + + + +	+ + +	+ + + × -	+ + + + + +	+++++	+ + + +	+ + + + +	+x+x+ +	+x+ - +	+ + + +	+x+ + +	+++++	*x + + +	+ +x+ -	+ + + -	+x+ + +	+++++	+++++	+ + + +	+x+ + +	+ + + +	+x+ + +	++++	+x+ + +	+ + x + + + + + + + + + + + + + + + + + + +
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Preputia/icitoral gland Adenoma, NOS Cystadenoma, NOS	+ N	N N	+ X N N	+ N X	+ N	+xN	+ N	+ x N	+ N	+xN N	+xN	+ N	+ N	+ x N	+x N	+xN	+ N X	+ N	+ N	N N	+ א	+ N	+ N	+ N	R + 1
Uterus Endometrial stromal polyp Endometrial stromal sarcoma Ovary Granulosa cell tumor	* *	+ +	+ +	* *	+	* *	* *	++	++	+ +	++	++	+ +	+	* *	+ +	+ +	+ +	* *	++	+ +	+ +	+ +	+ +	* +
NERVOUS SYSTEM Brain Glioma, NOS	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs NOS Leukemis, mononuclear celi	N	N	N	N	N	N	N	N	N	И	N	N	N X	N	N	N X	N	N	N	N X	N X	N X	N	N	N

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE: LOW DOSE

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necropsy, No Autolysis, No Microscopic Examination

 S : Animal Missexed

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A Autolysis
 M : Animal Missing
 B : No Necropsy Performed

ANIMAL NUMBER	0 2 6	027	028	029	030	0 3 1	032	000	0 3 4	035	0 3 6	0 3 7	038	0 3 9	040	0 4 1	0 4 2	04	0 4 4	0 4 5	04	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL
WEEKSON STUDY	0	9 4	9 2	0 5	0 5	0 5	8 3	0	9 9	05	68	0 5	21	0 5	0 5	0 5	9 5	0 5	69	0 5	0 5	9 4	0 5	0 5	96	TISSUES TUMORS
NTEGUMENTARY SYSTEM ubcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	, x	+	+	+	+	+	*50 1
ESPIRATORY SYSTEM ungs and bronchi Alveolar/bronchiolar carcinoma rachea	+	++	+	++	+	+++	++	+	++	+	++	+	++	+	+++	**	++	+++	+++	+++	+ +	-+	+++	+++	++	49 1 47
EMATOPOIETIC SYSTEM one marrow pleen ymph nodes hymus	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	+++++	++++	1+++	++++	++++	+++1	++++-	++++	+ + + +	+++ +	++++	++++	++++	-+++	++++	++++	++++	+++	++++	++++	+++	45 50 44 40
IRCULATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	49
IGESTIVE SYSTEM Iral cavity Squamous cell papilloma alivery gland ille duct allbladder & common bile duct ancreas acophagus tomach mall intestine Arge intestine	Z +++Z+++++	Z +++Z+++++	Z +++Z++++ Z	Z +++Z+++++	7. +++7.+++++	2 +++2+++++	Z +++Z++++	2 +++2++++	7. +++7.+++++	Z +++Z+++++	Z. +++Z+++++	Z +++Z+1+++	Z +++Z+++++	Z +++Z+1+++	Z +++Z+++++	7. +++7.+++++	2 +++2+++++	2 +++2+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z 1++++	Z +++Z+++++	Z +++Z+++++	Z. +++Z+++++	*50 1 50 50 *50 49 47 50 50 48
RINARY SYSTEM idney Hemangiosarcoma rinary bladder	+ +	++	++	+++	+++	+++	+++	+++	+++	++	+++	+	++	++	+	+	++	+++	++	*	+	+++	+	++	+ +	50 1 50
NDOCRINE SYSTEM ituitary Adenoma, NOS drenai Pheochromocytama hyroid C-cell adenoma arathyroid	+ + + +	+ + + +	+x+++	+x+++	+ +x+ -	+ + +	+++++++++++++++++++++++++++++++++++++++	- + + +	+x+++	+++	+ x + + -	+++++	+++++	++++-	+ + + -	+x+ + +	+ + + +	+x+++	+ + +	+ + + +	+ + + +	+x+++	+++++	+x+ + +	+ + + +	49 17 50 3 49 1 39
EPRODUCTIVE SYSTEM ammary gland Fibroadenoma reputial/clitoral gland Adenoma, NOS Cystadenoma, NOS	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N X	N N	+ N	+ N	+x7	+. N	+ N	+x N	* x N	+ N	+ N	+ N	+ N	+ N	+ N	+xNN	+ N	*50 12 *50 2 1
itèrus Endometrial stromai polyp Endometrial stromai sarcoma Vary Granulosa cell tumor	+	++	+	+	+	+	`+ X +	* *	+	-	+	+	+	* +	-	+	+	+ *	+	+	+	+	+ *	* +	+	48 10 1 48 2
ERVOUS SYSTEM rain Glioma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
LL OTHER SYSTEMS luitiple organs NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	*50 7

TABLE A4.	INDIVIDUAL ANIMAL	TUMOR PATHOLOGY	OF FEMALE RATS:	LOW DOSE
		(Continued)		

• Animals Necropsied

ANIMAL NUMBER	0 0 1	002	003	004	005	006	007	008	009	0 1 0	0 1 1	0 1 2	0 1 3	0	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	020	0 2 1	022	023	024	025
weeks on Study	1 0 4	104	1 0 4	104	092	104	104	094	0 9 7	104	104	1 0 5	1 0 5	0 7 5	1 0 5	1 0 5	0 8 4	1 0 3	1 0 5	1 0 5	105	1 0 5	1 0 5	1 0 5	1 0 5
INTEGUMENTARY SYSTEM Subcutaneous tiesus Neopiasm, NOS, unc prim or metastatic Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Sarcoma, NOS, metastatic Traches	+	* *	+	+	++	+	++	+	++	++	+	+	++	+	+++	* +	++	+	+	+ +	+	+	++	+	++
HEMATOPOIETIC SYSTEM Bons marrow Spieen Lymph nodes Thymus	++++	++++	++++	++++	++++	+++ -	++++	++++	++++	++++	++++	++++	++++	++ -+	++++	++++	++++	++++	++++	++++	++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	++++	++++	++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Sarcoma, NOS, metastatic	++	++	+ * X	+++	++	+++	+++	+	+++	++	+++	++	+++	Ŧ	+++	+++	+++	++++	+++	+++	+++	+++	+++	+++	+++
Bile duct Galibladder & common bile duct Pancrees Eaophagus Stomach Squamous cell papilloma	+ x + + +	+ x + + +	+ z + + +	+N+++	+N+ + +	+ z + + +	+ z + + +	+ z + + +	+ N + + +	+ 2 + + +	+ z + + +	+ z + + +	+ 2 + + +	+ N + + +	+ X + + +	+z+++	+ z +	+ N + + +	+ z + + +	+ N + + +	+z+++	+ 2 + + +	+ 2 + + +	+ N + + +	+ 2 + + +
Squamous cell carcinoma Small intestine Large intestine	+ +	+++	+ +	+ +	++	+ +	+ +	++	+ +	+ +	+ +	-	++	+ +	++	+ +	-	++	+	+ +	X + +	+ +	+++	++	+ +
URINARY SYSTEM Kidney Neoplasm, NOS, metastatic Urinary bladder Neoplasm, NOS, metastatic	+ +	++	++	++	+++	+ +	+ +	+ +	++	++	+ +	++	+	++	++	+ +	+ +	++	+x + x	++	++	++	++	+ +	- + +
ENDOCRINE SYSTEM Pituitary Adrenal Pheochromocytoma Thyroid Follicular cell adenoma	+ + + +	+x+x+	+ + +	++++	+ + +	+x+ +	++++	+x+ +x	+X+X+	+x+ +	++++	++++	+x+ +	+ + +	+ + +	+x+ +	+x+ -	+ + +	+x+ + •	+x+ +	++++	++++	+x+ +	++++	- + + + +
C-ceil adenoma Parathyroid Pancreatic isleta Islet cell adenoma	+ +	++	+ +	+	+++	+++	X + +	+++	+++	++*X	-+	+	+ +	+ +	+ +	+ +	+ -	÷	× - +	Ŧ	+ +	+ +	++	- +	Ŧ
REPRODUCTIVE SYSTEM Mammary gland Neoplaam, NOS, unc prim or metastatic Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	N		N	+	+	+	+	ż	+	+	+	+	+	+
Fibroadenoma Preputial/ciltoral gland Squamous cell papilloma Adenoma, NOS	N	X N	N	N	N	X N	N X	X N	N	X N	X N	N	N	N	N	X N	N	N	N	N	N	N	N	N	N
Uterus Neoplasm, NOS, metastatic Endometrial stromal polyp Ovary Adenoma, NOS	+	+ X +	+	++	++	++	+	+	+ X +	++	+	+	+	+	+ x +	+ X +	+	+	+ X X +	+	+ x+	+ X +	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+
MUSCULOSKELETAL SYSTEM Bone Neoplasm, NOS, invasive	N	N	N	N	+	N	N	+	N	N	N	N	N	+	N	N	+	N	N X	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs NOS Leukemia, mononuclear cell	N	N	N X	N	N X	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE: HIGH DOSE

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necropsy, No Autolysis, No Microscopic Examination

 S : Animal Missexed

- No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A Autolysis
 M : Animal Missing
 B : No Necropsy Performed

ANIMAL NUMBER	01 21 61	0 2 7	1) 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	034	0 3 5	0 3 6	0 3 7	038	0 3 9	040	0 4 1	0 4 2	0 4 3	044	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL
WEEKS ON STUDY	0 5 3	0 8 7	1 0 5	1 0 2	1 0 5	1 0 4	1 0 4	0 8 5	1 0 5	1 0 5	0 9 8	0 9 2	1 0 5	0 6 5	1 0 5	0 7 6	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 9 2	1 0 5	0 7 5	1 0 5	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Neoplaam, NOS, unc prim or metastatic Sarcoma, NOS	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	N	+	+	*50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Sarcoma, NOS, metastatic Frachea	+	+	+	+	* *	+	+	+ X +	+	+	+	++	+	+	+	+	++	+	+	++	+	+	+	+	++	50 3 1 49
IEMATOPOIETIC SYSTEM Sone marrow pleen ,ymph nodes Thymus	+ A + + +	++++	-+++	+++:+	+ + + + +	++ ++	++++	+++++	++++	++++	++ -+	++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	++++++	++	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	++++	L ++++	49 49 40 47
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule	++	++	++	++	++	Ŧ	++	++	+++	++	+++	++	+++	++	++	+++	+++	+++	+++	+++	+	++	++	++	++	48 50 1
Sarcoma, NOS, metastatic Bile duct Sallbladder & common bile duct Pancreaa Esophagus Stomach Squamous cell papilloms Squamous cell carcinoma Squamous cell carcinoma Squamous cell carcinoma	+ N A + A A	+2+++ +-	+Z+++ +.	+z+++	+Z+++ +-	+z+++ +.	+z+++ +	X+N+++ +	+2.+++ +-	+7.+++ +-	+Z+++X +-	+7.+++ +-	+Z+++ +-	+2+++ +-	+2+++ +-	+7.+++ +-	+2.+++ +.	+2+++ +-	+7.+++ +	+Z+++ +-	+ + + + + Z +	+Z+++ +-	+2+++ +-	+ + + + - 7 + 7 +	+Z+++ +.	1 50 •50 48 49 48 1 1 46
arge intestine RINARY SYSTEM Gidney Neoplasm, NOS, metastatic Jrinary bladder Neoplasm, NOS, metastatic	A + +	++++	+++	+	++++	+++	- + +	++++	++++	+++	+ + +	+++	+ + +	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	++++	++++	+ - + +	46 50 1 48 1
NDOCRINE SYSTEM Vituitary Adenoma, NOS Varenai Pheochromocytoma hyroid Follicular cell adenoma C-cell adenoma arathyroid ancratic islets Ialet cell adenoma	+ + A A A	+ +x+ ++	+ + + ++	+X+ + ++	+ + + + + + + + + + + + + + + + + + +	+ + + -+	+x+ + ++	+x+ + -+	+x+x+ -+	+ + + ++	+ + + + + + + + + + + + + + + + + + + +	+ + + ++	+x+ + ++	+x+ + ++	+ + + ++	+ + + ++	+ + + x++	+x+ + -+	+x+ + ++	+ + + ++	+x+ + ++	+x++	+ + + -+	+x+ + -+	+x+ + x++	50 24 50 5 47 1 4 34 48 1
EPRODUCTIVE SYSTEM Aanmary gland Neoplasm, NOS, unc prim or metastatic Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+		N	+	+	*50 1 1
Fibroadenoma reputia/ciitoral gland Squamous cell papilloma Adenoma, NOS	N	N	N	N	N	X N	N	X N	XN X	N	N	N	N	N	N	N	Ň	X N	A N	N	N	N	N	N	N	14 *50 1 1
/terus Neoplasm, NOS, metastatic Endometrial stromal polyp Vary Adenoma, NOS	+	+	+	+	+	+ + x	+	+	+	+	+	+	+. ×	.7 +	+	+	+ X +	+	+	≁	-	+	+	+	+	49 1 9 49
SERVOUS SYSTEM	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
NUSCULOSKELETAL SYSTEM Sone Neoplasm, NOS, invasive	+	+	N	N	N	N	N	+	N	N	N	+	N	N	N	+	N	N	N	N	N	+	N	+	- N	*50 1
ALL OTHER SYSTEMS Multiple organa NOS Leukemia, mononuclear cell	N	NX	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N X	N	N	- N	*50 7

1

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

*Animals Necropsied

Dimethyl Hydrogen Phosphite, NTP TR 287 76

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

	CONTRO	OL (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY		<u> </u>	50	<u> </u>	50	
ANIMALS MISSING	••		3			
ANIMALS NECROPSIED	50		47		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	Y 50		47		50	
NTEGUMENTARY SYSTEM						
*SKIN	(50)		(47)		(50)	
SQUAMOUS CELL CARCINOMA			1	(2%)		
BASAL-CELL TUMOR			1	(2%)		
FIBROMA					1	(2%)
*SUBCUT TISSUE	(50)		(47)		(50)	
SARCOMA, NOS					1	(2%)
FIBROSARCOMA			1	(2%)	-	
RHABDOMYOSARCOMA	1	(2%)		(90)	2	(4%)
NEURILEMOMA, MALIGNANT	····		1	(2%)		·
RESPIRATORY SYSTEM						
#LUNG	(50)		(47)		(50)	
HEPATOCELLULAR CARCINOMA, METAS		(4%)	-		-	
ALVEOLAR/BRONCHIOLAR ADENOMA		(12%)		(4%)		(6%)
ALVEOLAR/BRONCHIOLAR CARCINOMA	6	(12%)	5	(11%)		(16%)
IEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(47)		(50)	
MALIGNANT LYMPHOMA, NOS			1	(2%)		
MALIG. LYMPHOMA, LYMPHOCYTIC TYP		(2%)			0	
MALIG. LYMPHOMA, HISTIOCYTIC TYPE		(2%)			2	(4%)
UNDIFFERENTIATED LEUKEMIA		(2%)				
MAST-CELL LEUKEMIA GRANULOCYTIC SARCOMA	1	(2%)	1	(2%)		
#LIVER	(50)		(47)	(2.10)	(50)	
MALIG. LYMPHOMA, HISTIOCYTIC TYPE		(2%)			(00)	
CIRCULATORY SYSTEM						
#SPLEEN	(50)		(47)		(49)	
HEMANGIOSARCOMA		(2%)	(=()		(
ANGIOSARCOMA	•		1	(2%)		
#MESENTERIC L. NODE	(27)		(26)		(25)	
ANGIOSARCOMA	(=.)			(4%)	~~~~	
*ADIPOSE TISSUE	(50)		(47)		(50)	
HEMANGIOMA				(2%)		
#LIVER	(50)		(47)		(50)	(0.0)
HEMANGIOSARCOMA					4	(8%)
DIGESTIVE SYSTEM						
#LIVER	(50)		(47)		(50)	
HEPATOCELLULAR ADENOMA	12	(24%)	8	(17%)		(16%)
HEPATOCELLULAR CARCINOMA	9	(18%)	2	(4%)	7	(14%)
#FORESTOMACH	(50)		(45)		(47)	
PAPILLOMA, NOS			1	(2%)		
SQUAMOUS CELL CARCINOMA	1	(2%)			1	(2%)
JRINARY SYSTEM						
#KIDNEY	(50)		(47)		(50)	
TUBULAR-CELL ADENOMA		(2%)				

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEARGAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE

	CONTROL	(VEH)	LOW	DOSE	HIGH	DOSE
ENDOCRINE SYSTEM						
#PITUITARY	(49)		(45)		(48)	
ADENOMA, NOS				(4%)		(2%)
#ADRENAL	(50)		(46)		(49)	
CORTICAL ADENOMA	3	(6%)				
#THYROID	(44)		(45)		(49)	(00)
FOLLICULAR-CELL ADENOMA #PANCREATIC ISLETS	(50)	(7%)	(47)		(49)	(2%)
ISLET-CELL ADENOMA		(2%)		(4%)	• •	(2%)
REPRODUCTIVE SYSTEM						
*PREPUCE	(50)		(47)		(50)	
PAPILLOMA, NOS		(2%)	(41)		(00)	
NERVOUS SYSTEM	(50)		(47)		(40)	
#BRAIN/MENINGES SARCOMA, NOS	(50)		(47)	(2%)	(49)	
#BRAIN	(50)		(47)	(470)	(49)	
GRANULAR-CELL TUMOR, MALIGNAN		(2%)	(41)		(40)	
SPECIAL SENSE ORGANS						
*HARDERIAN GLAND	(50)		(47)		(50)	
ADENOMA, NOS	(00)		(41)		· · · ·	(2%)
ADENOCARCINOMA, NOS						(2%)
MUSCULOSKELETAL SYSTEM						
*SKULL	(50)		(47)		(50)	
GRANULAR-CELL TUMOR, INVASIVE	1	(2%)				
BODY CAVITIES						
*ABDOMINAL WALL	(50)		(47)		(50)	
FIBROSARCOMA			()		1	(2%)
ALL OTHER SYSTEMS						
*MULTIPLE ORGANS	(50)		(47)		(50)	
MESOTHELIOMA, MALIGNANT				(2%)		
ANIMAL DISPOSITION SUMMARY						
ANIMALS INITIALLY IN STUDY	50		50		50	
NATURAL DEATH	6		4		14	
MORIBUND SACRIFICE	1		5		4	
SCHEDULED SACRIFICE	-		-			
TERMINAL SACRIFICE	42		33		32	
DOSING ACCIDENT	1					
ACCIDENTALLY KILLED, NDA			-			
ACCIDENTALLY KILLED, NOS			5 3			
ANIMAL MISSING ANIMAL MISSEXED			3			

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

CON	frol (veh)	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS**	34	21	31
TOTAL PRIMARY TUMORS	51	33	43
TOTAL ANIMALS WITH BENIGN TUMORS	22	12	14
TOTAL BENIGN TUMORS	27	17	16
TOTAL ANIMALS WITH MALIGNANT TUMORS	20	12	22
TOTAL MALIGNANT TUMORS	24	16	27
TOTAL ANIMALS WITH SECONDARY TUMORS##	3		
TOTAL SECONDARY TUMORS	3		
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
BENIGN OR MALIGNANT			
TOTAL UNCERTAIN TUMORS			
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
PRIMARY OR METASTATIC			
TOTAL UNCERTAIN TUMORS			

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

* NUMBER OF ANIMALS NECROPSIED **PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS # NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY ##SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE B2.	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR
	GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE

C	ONTRO	DL (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50	- <u></u> .	50	
ANIMALS MISSING			1			
ANIMALS NECROPSIED	50		49		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		49		50	
INTEGUMENTARY SYSTEM						
*SUBCUT TISSUE	(50)		(49)		(50)	
FIBROSARCOMA	(,			(4%)		
FIBROUS HISTIOCYTOMA, MALIGNANT RHABDOMYOSARCOMA	1	(2%)		(2%)		
RESPIRATORY SYSTEM	·					
#LUNG	(50)		(49)		(50)	
HEPATOCELLULAR CARCINOMA, METAST		(2%)	(-•)			
ALVEOLAR/BRONCHIOLAR ADENOMA		(4%)	3	(6%)	1	(2%)
ALVEOLAR/BRONCHIOLAR CARCINOMA		(4%)	U		-	(= /~/
SARCOMA, NOS, METASTATIC	4	(= /0)			1	(2%)
OSTEOSARCOMA, METASTATIC	1	(2%)			-	(_ /• /
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(49)		(50)	
MALIGNANT LYMPHOMA, NOS	1	(2%)	1	(2%)	3	(6%)
MALIG. LYMPHOMA, LYMPHOCYTIC TYPE	6	(12%)	5	(10%)	6	(12%)
MALIG. LYMPHOMA, HISTIOCYTIC TYPE	5	(10%)	3	(6%)		(6%)
MALIGNANT LYMPHOMA, MIXED TYPE	3	(6%)	1	(2%)		
PLASMA-CELL MYELOMA		•	1	(2%)		
UNDIFFERENTIATED LEUKEMIA	2	(4%)		(,	3	(6%)
*ABDOMINAL CAVITY	(50)		(49)		(50)	(0.0)
MALIG, LYMPHOMA, LYMPHOCYTIC TYPE	(00)		(,			(2%)
#SPLEEN	(50)		(48)		(48)	(270)
MALIG. LYMPHOMA, HISTIOCYTIC TYPE	(00)		(10)		· · · · ·	(2%)
#MANDIBULAR L. NODE	(39)		(37)		(33)	(2,2)
SARCOMA, NOS, METASTATIC	(00)		(01)			(3%)
#LUMBAR LYMPH NODE	(39)		(37)		(33)	(0,0)
MALIG. LYMPHOMA, HISTIOCYTIC TYPE	(00)		• •	(3%)	(/	
#MESENTERIC L. NODE	(39)		(37)		(33)	
MALIG. LYMPHOMA, HISTIOCYTIC TYPE	/					(3%)
#THYMUS	(44)		(38)		(45)	
MALIG. LYMPHOMA, LYMPHOCYTIC TYPE	1	(2%)			1	(2%)
CIRCULATORY SYSTEM						
*SUBCUT TISSUE	(50)		(49)		(50)	
HEMANGIOSARCOMA	1	(2%)				
HEMANGIOSARCOMA, UNC PRIM OR MET						(2%)
#SPLEEN	(50)		(48)		(48)	
HEMANGIOSARCOMA, UNC PRIM OR MET						(2%)
#LIVER	(50)		(49)		(50)	
ANGIOSARCOMA				(2%)		
#UTERUS	(49)		(49)		(49)	
HEMANGIOMA						(2%)
#OVARY	(47)		(48)		(49)	
HEMANGIOMA	1	(2%)				

	CONTROL	. (VEH)	LOWI	DOSE	HIGH	DOSE
DIGESTIVE SYSTEM		<u> </u>				
#LIVER	(50)		(49)		(50)	
HEPATOCELLULAR ADENOMA			6	(12%)	3	(6%)
HEPATOCELLULAR CARCINOMA		(4%)				
#JEJUNUM	(47)		(49)		(45)	
LEIOMYOSARCOMA			1	(2%)		
URINARY SYSTEM NONE						
ENDOCRINE SYSTEM	<u></u>		<u> </u>			
#PITUITARY	(46)		(45)		(48)	
ADENOMA, NOS		(26%)		(20%)		(21%)
CHROMOPHOBE ADENOMA		(2%)	9			(21%)
#ADRENAL	(49)	- ~/	(45)		(47)	(- ~)
CORTICAL ADENOMA		(2%)		(2%)	()	
#THYROID	(47)	,	(48)	((48)	
FOLLICULAR-CELL ADENOMA		2%)				(4%)
REPRODUCTIVE SYSTEM						
*MAMMARY GLAND	(50)		(49)		(50)	
ADENOMA, NOS	(00)			(2%)	(
ADENOCARCINOMA, NOS					1	(2%)
FIBROADENOMA	1 (2%)				
#UTERUS	(49)		(49)		(49)	
SARCOMA, NOS					1	(2%)
FIBROSARCOMA					1	(2%)
LEIOMYOSARCOMA	1 (2%)				
ENDOMETRIAL STROMAL POLYP				(2%)		
#OVARY	(47)		(48)		(49)	
PAPILLARY CYSTADENOMA, NOS	2 (4%)				
GRANULOSA-CELL TUMOR	1 (2%)				
NERVOUS SYSTEM NONE						
SPECIAL SENSE ORGANS					<u> </u>	
*HARDERIAN GLAND	(50)		(49)		(50)	
ADENOMA, NOS			1	(2%)		
MUSCULOSKELETAL SYSTEM						
*VERTEBRA	(50)		(49)		(50)	
OSTEOSARCOMA		2%)				
*LUMBAR VERTEBRA	(50)		(49)		(50)	
FIBROSARCOMA	1 (2%)				
BODY CAVITIES						
*ABDOMINAL CAVITY	(50)		(49)		(50)	(00)
LIPOMA					1	(2%)

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

CO	NTROL (VEH)	LOW DOSE	HIGH DOSE
ALL OTHER SYSTEMS		····	
*MULTIPLE ORGANS	(50)	(49)	(50)
FIBROSARCOMA			1 (2%)
HEAD			
SARCOMA, NOS			1
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	50	50	50
NATURAL DEATH	8	4	13
MORIBUND SACRIFICE	3	5	3
SCHEDULED SACRIFICE	-	-	-
TERMINAL SACRIFICE	39	37	34
DOSING ACCIDENT			
ACCIDENTALLY KILLED, NDA			
ACCIDENTALLY KILLED, NOS		3	
ANIMAL MISSING		1	
ANIMAL MISSEXED			
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS**	37	30	32
TOTAL PRIMARY TUMORS	49	39	45
TOTAL ANIMALS WITH BENIGN TUMORS	20	18	16
TOTAL BENIGN TUMORS	21	22	19
TOTAL ANIMALS WITH MALIGNANT TUMORS	25	15	23
TOTAL MALIGNANT TUMORS	27	17	24
TOTAL ANIMALS WITH SECONDARY TUMORS#			1
TOTAL SECONDARY TUMORS	2		2
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
BENIGN OR MALIGNANT	1		
TOTAL UNCERTAIN TUMORS	1		
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
PRIMARY OR METASTATIC			1
TOTAL UNCERTAIN TUMORS			2

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

* NUMBER OF ANIMALS NECROPSIED

** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY ## SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

.

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE: VEHICLE CONTROL

ANYAL NUMBER 01 (1) 2) 3 4 5 6 7 8 9 0 1 2 1 4 5 4 5 8 7 1 5 2 1 2 3 4 5 6 (1) 2 3 4 5 6 7 8 9 0 1 2 1 4 5 4 5 8 7 1 5 2 1 2 3 4 5 6 (1) 2 3 4 5 6 7 8 9 0 1 2 1 1 2 5 4 5 6 7 1 8 9 0 1 2 1 2 5 4 5 6 7 1 5 1 5 5 (1) 2 3 4 5 6 7 1 8 9 0 1 2 5 1 4 5 6 7 1 8 9 0 1 1 2 5 4 5 6 7 1 5 1 5 5 (1) 2 3 4 5 6 7 1 8 9 0 1 2 5 1 4 5 6 7 1 8 9 0 1 1 2 5 4 5 6 7 1 5 1 5 5 (1) 2 3 4 5 6 7 1 8 9 0 1 2 5 1 4 5 6 7 1 8 9 0 1 1 2 5 4 5 6 7 1 5 1 7 5 1 5 5 (1) 2 3 4 5 6 7 1 8 9 0 1 2 5 1 4 5 6 7 1 8 9 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0																										
STUDY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 1	0 0 2	0 0 3	0 0 4	005	0 0 6	007	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 L 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	025
Subcitaneous listue Subcitaneous listue + + N + + + + + + + + + + + + + + + + +			1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 6 3		1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5			0 6 8	1 0 5		0 9 7		0
Lungs and bronchi Hepstocellular carcinoma, metastatic Alveolar/bronchiolar acterionma Traches Hepstocellular carcinoma Traches HEMATOPOLETIC SYSTEM Bose marrow Spiesen Hematow CIRCULATORY SYSTEM Heator Hymna CIRCULATORY SYSTEM Heator Hugar Hestocellular acterionma Salivary gland Liver Hepstocellular acterionma Salivary gland Liver Hepstocellular acterionma Salivary gland Liver Hepstocellular acterionma Salivary gland Liver Hepstocellular acterionma Salivary gland Liver Hepstocellular acterionma Statustry Gland Hestor He	Subcutaneous tissue	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Bone marrow ************************************	Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+	+	++	+	+	+	+	+ x +	+++	+	+	+ X +	+	+ X +	+	+	+	+ X X +	+ x +	+	+	
Heart+ + + + + + + + + + + + + + + + + + +	Bone marrow Spieen Hemangiosarcoma	++ ++ ++	++ ++	++ + -	++ 1+	++ ++	++ ++	++ -+	++ -+	++++	++ -+	+++++	++ ++	++ -+	++ ++	++ -+	++	++ ++	++ -+	++ ++	++ -+	-+ ++	++ ++	++	++ -+	******
Salivary gland Liver Hepatocellular astenoma Mailg. Jymphoma. histiocytic type Bile duct Pancreas Summous cell carcinoma. Summous cell carcinoma. Sumall intestine Large intestine URINARY SYSTEM Tubular cell adenoma Thyroid Printiary Adrenal Cortical adenoma Parctesson Carcinal denoma Carcinal denoma Printiary REPRODUCTIVE SYSTEM Mammary gland Carcinal denoma Parctesson REPRODUCTIVE SYSTEM Prantityroid Parctesson Parctesson REPRODUCTIVE SYSTEM Printiary Adrenal Printiary Carcinal denoma Parctesson Parctesson N N N N N N N N N N N N N N N N N N N	CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Bile duct Galblader & common bile duct Pancreas Esophagus Standards A common bile duct Pancreas Esophagus Standards Panches Pa	Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	+++	+++	++++	+ +	+++	+ * x	++++	+ * X	+ * X	++++	+++	+ * x	+ +	+++	+ * x	+++	++	+ + x	+++	++++	+ + X	+++	+++	+++	+ + X
URNARY SYSTEM Kidney Tubular cell adenoma Utinary bladder Pituitary Adrenal Cortical adenoma Thyroid Pollicular cell adenoma Thyroid Parathyroid Mammary gland Testis Parail Paris	Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Squamous cell carcinoma. Small intestine	+++++++++++++++++++++++++++++++++++++++	+++++ ++	+++++ ++	+++++ ++	+++++ ++	+++++++++++++++++++++++++++++++++++++++	+++++ ++	+++++ ++		+N+++)+	+++++++++++++++++++++++++++++++++++++++	÷	+++++ ++	+++++ ++	+++++ ++	+++++ ++		+++++ ++	+++++ ++	+++++ ++	+++++ ++	+++++ ++	+2+++ 1	+++++++++++++++++++++++++++++++++++++++	+
Pituitary + + + + + + + + + + + + + + + + + + +	CRINARY SYSTEM Kidney Tubular cell adenoma	+	+ + +	++++	+++	++++	++++	+++++++++++++++++++++++++++++++++++++++	+++	+++	+++	+++	+++++	+	++++	++++	++++	+++	+++	+ + + + + + + + + + + + + + + + + + + +	+++	+++	+ x +	+++	+++	- + +
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate Penis Papilloma, NOS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Pituitary Adrenai Cortical adenoma Thyroid Follicular cell adenoma Parathyroid Pancreatic isleta	+++++++++++++++++++++++++++++++++++++++	+++	~	++++-+	++++-+	+++	++ + x -+	+++++	++ ++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	++ + ++	++ + + + + + + + + + + + + + + + + + + +	++ +x -+	++ + ++	++ + ++	++ + -+	++ + -+x	++ + ++	++ ++	++ + ++++++++++++++++++++++++++++++++++	++++-++	++ +++	- + + + + + + + + + + + + + + + + + + +
Brain Granular cell tumor, malignant + + + + + + + + + + + + + + + + + + +	REPRODUCTIVE SYSTEM Mammary gland Testis Prostate Penis	X + + X	N + + N	+	Z + + Z	+	++	+	+	+	+	+	+	+	+	+	+	+	+++	++	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+
Bone Granular cell tumor, invasive N N N N N N N N N N N N N N N N N N N	Brain	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Multiple organs NOS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Bone	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- И
	Multiple organs NOS Malig. lymphoma, lymphocytic type Malig. lymphoma, histiocytic type Undifferentiated leukemia	N	N	N	N		N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N		N	- N

 + : Tissue Examined Microscopically
 - : Required Tissue Not Examined Microscopically
 X : Tumor Incidence
 N : Necropsy. No Autolysis. No Microscopic Examination
 S : Animal Missexed x N S

No Tissue Information Submitted
 C : Necropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animal Missing
 B : No Necropsy Performed

ANIMAL NUMBER WEEKSON STUDY	0 2 6	0 2 7	028	0 2 9	03	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	
		• •	8	9	ŏ	3 1	$\frac{3}{2}$	3 3	3 4	3 5	3 6	3 7	3 8	3 9	4	4 1	4 2	4 3	4	4 5	4 6	4	8	4 9	5 0	TOTAL
	0 5	0 7 6	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 7 8	1 0 5	0 7 9	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 8 6	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TISSUES TUMORS
INTECUMENTARY SYSTEM Subcutaneous tissue Rhabdomyosarcoma	+	, x	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	*50 1
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	+	+ x	+	+ X	+ x	+	+ X +	+ ×	+	+	+	+	+ X	+	+	+	+	* *	+	+	50 2 6 6 47
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangiosarcoma Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	++++	++	+++++	++++	+++++	++++++	++	+++++	++ -+	++ -+	++	· + + + + + + + + + + + + + + + + + + +	++++	++	++++	+ + +	++	+++++	++++	++ ++	+++++	· _ ++ +	49 50 1 27 36
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Malig. lymphoma, histiocytic type Bile duct	+++++	++x +	+++++	+ + x +	+++++	+++++	+ + + × +	+ * * *	+++++	+++++	+ + x +	++++++	+ + x +	+ + x +	+++++	+++++	+	++ * *	+++++	++++	+ + + X X +	+	+ + x +	+++++	+ + * × +	50 50 12 9 1 50
Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell carcinema Smail intestine Large intestine	++++×++	Z+++ ++	++ + + + + + +	++++ ++	++++ ++	++++ ++	++++ ++	++++ ++	++++ ++	++-+ ++	Z+++ +	++++ ++	++++ ++	++++ ++	++++ ++	++++ ++	++++ ++	++++ ++	++++ ++	z+++ ++	++++ ++	X+++ ++	++++ ++	++++ ++	X +++ ++	*50 50 46 50 1 46 49
URINARY SYSTEM Kidney Tubular cell adenoma Urinary bladder	++	++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+ +	+++	++	+++	+++	+++	+ +	+ +	+++	50 1 50
ENDOCRINE SYSTEM Pituitary Adrenai Cortical adenoma Thyroid Follicular cell adenoma Parathyroid Pancreatic islets I siet cell adenoma	++ + ++	++ + -+	++ + ++	+++++++++++++++++++++++++++++++++++++++	+++	+++	, ++x+ ++	++ + ++	+++ + + +	+++-+	-+ + -+	++ + ++	++++-+	++ + ++	++ +x -+	++ + ++	++ + ++	+++++++++++++++++++++++++++++++++++++++	++x+	+++++++++++++++++++++++++++++++++++++++	++ + -+	++ + ++	++ + ++	+++	++ + ++	49 50 3 44 3 15 50 1
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate Penis Papilloma, NOS	+++	N++N	Z++Z	N + + N	+++	+++	+++	+++	++++	+++	+++	++++	+++	+++	+ +	+	+	+++	++++	+	+	+ +	+++	N + + N	+++	*50 50 46 *50 1
NERVOUS SYSTEM Brain Granular cell tumor, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
MUSCULOSKELETAL SYSTEM Bone Granular cell tumor, invasive	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- N	*50 1
ALL OTHER SYSTEMS Multiple organs NOS Malig. lymphoma. lymphocytic type Malig. lymphoma. histiocytic type Undifferentiated leukemia Mast cell leukemia	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- N	*50 1 1 1

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: VEHICLE CONTROL (Continued)

• Animals Necropsied

۰.

ANIMAL NUMBER	0 0 1	0 2	003	0 0 4	005	006	0 0 7	000	00	0 1 0	011	0 1 2	0 1 3	0	0 1 5	0 1 6	0 1 7	018	0 1 9	020	0 2 1	022	023	024	0 2 5
WEEKSON Study	1 0 5	0 7 6	076	1 0 5	1 0 5	0 4 3	1 0 5	1 0 5	1 0 5	1 0 5	1 0 1	1 0 5	1 0 5	0 7 6	1 0 5	0 2 7	L 0 5		1 0 5						
INTEGUMENTARY SYSTEM Skin	+	м	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	-
Squamous cell carcinoma Basal cell tumor Subcutaneous tissue Fibrosarcoma Neurilemoma, malignant	+	м	м	+	+	+	+	+	+	+	+	+	+	× +	+	÷	+	+	+	*	+	+	+	M	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma	+	м	м	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	-
Alveolar/bronchiolar carcinoma Trachea	X +		M		+	+	÷	+	+	+	+	+	+	X +	¥ +	+	+	+	+	+	+	+	+	м	¥
HEMATOPOIETIC SYSTEM Bone marrow Spieen	+	M	M	+	++	++	+	++	++	+	+	++	+	++	+	++	++	+	++	+	+	++	, + +	X K	-
Angiosarcoma Lymph nodes	+		м	+	-	+	+	+	+	-	+	-	+	-	+	-	<u>x</u>	+	_	+	_	-	+	ж	_
Angiosarcoma Thymus	+	м	M	+	+	+	-	х -	+	-	+	-	÷	+	+	+	-	-	+	-	+	+	+	M	-
CIRCULATORY SYSTEM Heart	+	M	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+
DIGESTIVE SYSTEM Salivary gland Liver	+	M M	M M	+++	+	+++	++	++	+	++	++	Ŧ	++	++	;	++	++	+++	+++	+	+	Ŧ	+	M	+
Hepatocellular adenoma Hepatocellular carcinoma	x		•••				x						X			x									X
Bile duct Gallbladder & common bile duct	N N	M	M	+	÷	÷	÷	÷	÷	+	++	Ň	÷	Ŧ	÷	Ŧ	÷	Ŧ	Ŧ	Ŧ	÷	Ŧ	Ŧ	M	+
Pancreas Esophagus	++	MM	MM	+	++	÷	++	+	÷	++	++++	+++	++	++++	+++	÷	+++	+++	++	÷	+++	++	++	M	ŧ
Stomach Papilloma, NOS	+			+	+	+	+	-	+	•	+	+	Ť	•	•	Ţ	+	Ţ		Ţ	•	•	Ţ	39L	+
Small intestine Large intestine	‡	м М	M	-	++	+	++	-	÷	+++	+	Ŧ	÷	÷	÷	+	Ŧ	+	÷	÷	-	-	÷	M	+
URINARY SYSTEM Kidney Urinary bladder	:	M M	M M	+	+++	+ +	++++	+++	+++	++++	+++	+++	+ +	++	+++	++	++	+++	+	+	+	+	+++	M M	=
ENDOCRINE SYSTEM Pituitary	+	м	M	+	+	+	+	+	+	+	+	+	+	+	÷	*	+	+	+	+	+	+	+	M	-
Adenoma, NOS Adrenal	+	M M	M M	+	+	+	+	+	+	+	+	+++	+	+	+ +	* *	Ŧ	+	+++	++++	+ +	+++	ŧ		+
Thyroid Parathyroid	1 +	M M	M M M	+++	+++	÷	+++	+ -	+	-	+++	Ŧ	Ŧ	+ -	÷	Ŧ	Ŧ	+	Ξ	Ξ	-	Ξ	+	M	Ŧ
Pancreatic islets Islet cell adenoma	+	M	M	+	+	+	+	+	+	-	+	•	•	<u> </u>	Ŧ	_	-	<u> </u>	<u> </u>	Ť	Ť.,		Ť		x
REPRODUCTIVE SYSTEM Mammary gland	N	м	M	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	м	
Testis Prostate	+	M M	M M	+++	+++	++	+++	+++	+ +	+++	++	++	++	+++	++	++	++	+	++	++	++	++	++	M	+
NERVOUS SYSTEM Brain Sarcoma, NOS	+	M	M	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	M	-+
ALL OTHER SYSTEMS Multiple organs NOS Mesothelioma, malignant Malignant lymphoma, NOS	N	M	M	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	M	- N
Granulocytic sarcoma Adipose tissue Hemangioma		М	м																					м	
		-	-	-		-							_	_	-	_	-	_	_	-	_		_	_	

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE: LOW DOSE

Tissue Examined Microscopically
 Required Tissue Not Examined Microscopically
 Tumor Incidence
 N : Necropsy, No Autolysis, No Microscopic Examination
 S : Animal Missexed

No Tissue Information Submitted Necropsy, No Histology Due To Protocol Autolysis Animal Missing No Necropsy Performed

C: A: M: B:

:

TABLE B3.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE	MICE:	LOW	DOSE
			(C	ontinued)	•				

ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	030	03	0 3 2	033	034	0 3 5	0	0 3 7	03	0 3	04	0 4	0 4 2	04	0	0 4 5	0 4 6	0 4 7	0 4 8	() 4 9	0 5 0	TOTAL
WEEKS ON STUDY	1 0 5	1 0 5	0	1 0 5	1 0 5	0 8 7	065	105	036	105	0 2 7	0 3 8	0 8 0	1 0 5	105		1	105	105	105	1 0 5	1 0 5	0 6 2	096	105	TISSUES
INTEGUMENTARY SYSTEM Skin Squamous cell carcinoma Basai cell tumor Subcutaneous tissue Fibrosarcoma Neurilemoma, malignant	+	+	* * +	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ + X	++	*47 1 *47 1 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	++	+	+ X +	+	+	++	+	+	+	+	+	+	+	* * +	+	+	+	+	++	++	++	+	++	47 2 5 46
HEMATOPOIETIC SYSTEM Bone marrow Spleen Angiosarcoma Lymph nodes Angiosarcoma Thymus	++ + - +	++ + +	++++++	++++++	+++-++	++ ++ +	++ - +	+ + - +	++	++ - +	++ ++ +	++++++	++++-	++ ++ +	++++-	+ + - +	+ + - +	+ + + +	++	++ - +	++ + - +	+++++	+ + + +	++ + +	+++++	47 47 1 26 1 35
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Stomach Papilloma, NOS Small intestine Large intestine	++ +++++ ++	++ +++++ ++	++ +++++ ++	++ +++++ ++	++ ++++++++	++ x+z++	++ +Z+++ I+	++X +++++ ++	++ +X+++ ++	++ +++++ ++	++ +++++ -+	++ +2+++ ++	++ ++++++++	++ +++++ ++	++ +++++ ++	X +++ +	++++	++ +++++ ++	++X +++++ ++	++ +++++ ++	++ +++++ ++	++ +++++ ++	+ + +	++ +Z+++X++	++x +++++ ++	45 47 8 2 47 47 47 46 45 1 39 43
URINARY SYSTEM Kidney Urinary bladder	+ +	+++	+ +	+++	+ +	+ +-	+ +	+ +	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	+ +	+ +	+ +	++	47 46
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenai Thyroid Parathyroid Pancreatic islets Islet cell adenoma	+ ++++	+ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +	+ ++-+	+ + +	+ ++-+	+ ++++	+ +++++	+ ++-+	+ + +	+ ++++	+ ++-+	+ ++-+	++	+ X + + + +	+ -+	_	-	-			+ ++++	- ++++	+ ++++	+ ++-+	+ ++++	45 2 46 45 21 47 2
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N + +	N + +	N + +	N + +		N : + +		N + +			N 1 + +		N 1 + +		N 1 + +					N + +		N + + +	- N + +	•47 47 44
NERVOUS SYSTEM Brain Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ ·	+	+	+	+	+	+	+	47 1
ALL OTHER SYSTEMS Multiple organs NOS Mesothelioma, malignant Malignant lymphoma, NOS Granulocytic sarcoma Adipose tissue	N	N	N X	N	N	N	N I	N	N	N	N 3	N	N	N		3	N P K	N I	N :	N	N I	N	N I	N	N	*47 1 1 1
Hemangioma																K										1

*Animals Necropsied

ANIMAL	0	0	0	01	0	0	01	- 6V	01	0	a	ar	ar	al	a	al	N	0	0	2	0	D.	701	DT	0
NUMBER	0	02	03	04	0 5	0	0 7	0 8	0 9	1	1	1	1 3	1	15	1	17	1	19	20	2	22	23	24	2 5
WEEKSON STUDY	1 0 5	0 6 4	105	1 0 5	0 6 6	1 0 5	1 0 5	0 3 1	0 7 8	1 0 5	1 0 5	1 0 0	0 9 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 3	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	040	1 0 5
INTECUMENTARY SYSTEM												-										_			
Skin Fibroma Subcutaneous tissue Sarcoma, NOS Rhabdomyosarcoma	+	+	+	+	+	+	+ +	N N	+	+	+	N N	N N X	+	+	+	+	+	• +	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+ X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+ X	+ X +	+	+	+	++
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	++++	+++++++++++	+++++	+++	++++	++	+++++	++++	++++	++++	++ ++	++++	+++++	+++++	++++	++++	++	++++	+++	++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	++	+++++++++++++++++++++++++++++++++++++++	++++	A A A A	+++1
CIRCULATORY SYSTEM Heart	+	·+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	+++	++	+++	+++	+++	++	++	+++	+++	+ +	+ * x	++	++	++ *	+ +	+ + x	+++	++	++ *	++	++	+ + x	+++	A +	++ * X
Hemangiosarcoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach	++++	++++	++++	+ 2 + + +	++++	++++	++++	+ + + + + +	+ + + + + +	++++	++++	++++	+ + + + + +	++++	++++	++++	++++	X++++	++++	++++	++++	. ++++	++++	+NAA	++++
Squamous cell carcinoma Squamous cell carcinoma Small intestine Large intestine	+ +	+ +	+ +	+ +	- X + +	+ +	+ + +	+ -	- +	+ + +	+ +	+ + +	÷	+ +	+++	+ + +	+++	+ +	+ +	+ + +	+ +	+ +	+ + +	A A	+++++++++++++++++++++++++++++++++++++++
URINARY SYSTEM Kidney Urinary bladder	+++	· + +	+++	+	+++++++++++++++++++++++++++++++++++++++	+++	++	+++	+++	+++	++++	+++	+++	+++	+++	+++	+++	++	+++	+++	+++	+++	+++	, Å	++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	+	+	+	+	+	+	-	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+
Adrenal Thyroid Follicular cell adenoma Parathyroid	+++++	+++++++++++++++++++++++++++++++++++++++	++x -	+ -	+++	+ + +	++++	++	+ + +	++	++++	++	+++++	++++	++++	++++	++++	++ -	++	+++++	++	++	++	Å A	+++++
Pancreatic islets Islet cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	A	+
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N + -	N + +	N + +	N + +	N + +	X + +	N + +	N + + +	N + +	N + +	N + +	X + +	N + +	N + +	N + +	X + +	N ++ +	N + +	N ++ +	N + +	N + +	N + A	N + +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	A	-+
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS Adenocarcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Peritoneum Fibrosarcoma	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	- N
ALL OTHER SYSTEMS Multiple organs NOS Malig. lymphoma, histiocytic type	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE: HIGH DOSE

+ ;

Tissue Examined Microscopically Required Tissue Not Examined Microscopically Tumor Incidence Necropsy. No Autolysis, No Microscopic Examination Animal Missexed -X N S

No Tissue Information Submitted Necropsy, No Histology Due To Protocol Autolysis Animal Missing No Necropsy Performed C A M B

:

TABLE B3.	INDIVIDUAL ANIMAL	TUMOR	PATHOLOGY	OF	MALE	MICE:	HIGH	DOSE
		(C	Continued)					

ANIMAL NUMBER	0 2 6	0 2 7	028	0 2 9	03	0 3 1	032	0 3 3	0 3 4	0 3 5	036	0 3 7	0 3 8	() 3 9	0 4 0	0 4	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL
WEEKSON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	0 8 8	1 0 5	1 0 5	1 0 5	0 8 5	1 0 5	1 0 5	1 0 0	1 0 5	0 9 9	1 0 5	1 0 5	1 0 5	0 7 0	1 0 5	1 0 3	0 7 4	0 9 3	0 9 1	1 0 5	1 0 1	TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Fibroma Subcutaneous tissue Sarcoma, NOS Rhabdomyosarcoma	+	+ +	+ +	+	+ + X	+ .+	+ +	+ +	+	+ +	+	+	+ +	+ +	+	+ +	+ +	+ +	+++	+ +	+ + x + x	+ +	+ +	+ +	+++	*50 1 *50 1 2
RESPIRATORY SYSTEM Lungs and bronchi Alveoiar/bronchiolar adenoma Alveoiar/bronchiolar carcinoma Trachea	+	+ x .+	+	* *	* *	+	* *	+	++	+	+	+	+ X +	+ X +	++	++	+	+	+	+ +	+	+	+	+ +	+ X +	50 3 8 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++	++ + + + + + + + + + + + + + + + + + + +	+++-	+++ 1	++	++++	++++	++-+	++++	++ + + + + + + + + + + + + + + + + + + +	++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++ ++ ++	++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	-+	++++	++++	++-++-++	++++	++	48 49 25 37
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangiosarcoma	+ +	+ +	++	++	+ + x	+++	++	+++	+ + x	++	+ * X	+++	+ + + x x	÷	++	+ + X X	+ + x	++	+++	+ + x	+++	+ + x	+ + x	+++	- + +	48 50 8 7 4
Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Squamous cell carcinoma	++++	+++++	+++++	+++++	+ z + + +	+++++	+++++	+++++	+ + + - + z + +	+ z + + +	+++++	+++++	+++++	++++	+++++	+++++	+ 2 + + +	+++++	+++++	++++ -	+++++	+++++	+++++	+++-+	+ + + 5 + + +	50 *50 49 48 47 1
Small intestine Large intestine	+ +	++	+ +	+ +	++	+++	++	+ +	Ŧ	+ +	+ +	+ +	+ +	-	+++	+ +	+ +	+	+ +	-	+ +	+ +	+ +	+ +	+ +	43 46
CRINARY SYSTEM Kidney Urinary bladder	+++	+++	+++	++	+++	+++	+++	++	+++	++	+++	++++	+++	+	+++	+++	+++	+++	+++	+	+++	++++	+++	+++	+	50 46
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	+	+	+	+	+	+	+	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 1
Adrenal Thyroid Follicular cell adenoma Parathyroid Pancreatic islets	+ -+	++ -+	++ ++	++ ++	++ -+	++ -+	++ -+	++ ++	++++	++++	++ -+;	++ ++	++ ++	++++	++ -+	++ -+	++ ++	+++++	++++	++ -+	++-+	+ -+	++ ++	-+ -+	++ ++	49 49 1 26 49
Isiet cell adenoma REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N++	N++	N++	N + +	N + +	N + +	Z + +	N + +	X N ++	N + +	N + +	N + +	N + +	N + +	N + +	X + +	Z++	N + +	N + +	N + +	×++	N + +	- x + +	1 *50 50 48
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	49
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS Adenocarcinoma, NOS	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	И	*50 1 1
BODY CAVITIES Peritoneum Fibrosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs NOS Malig. lymphoma, histioèytic type	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- N	*50 2

89

*Animals Necropsied

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE: VEHICLE CONTROL

ANIMAL 0 <th>1 1 1 0 0 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</th> <th>1 1 0 5 1 1 0 5 1 1 0 5 1</th> <th>105 + + + ++++X + ++ +++</th> <th>+ + + + + + + + + + + + + + + + + + + +</th> <th>387 380 + + + + ++++ + +</th> <th>com com +<th></th><th></th><th>011 088 + + + + +++ I + ++ +Z+++</th><th></th><th>5-3 105 + x + 1 ++++ + + +++++</th><th>014 105 X + + ++++ + +++++</th><th><u>5-55</u> + + + + ++++ + ++++++</th><th>0-16</th><th>017 105 + + + + ++++ + + +++++</th><th>0110 1105 +x + + + ++++ + +++++</th><th>019 105 + + + + ++++</th><th>3NO 105 + + + + ++++ + ++++</th><th>021 105 + + + + ++++</th><th>0222 1055 + + + + +++++</th><th>0000 7 + + + + + + + + + + + + + + + + +</th><th>4 105 X + + ++++ + +++++</th><th>0815 105 1 7 1 7 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7</th></th>	1 1 1 0 0 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 0 5 1 1 0 5 1 1 0 5 1	105 + + + ++++X + ++ +++	+ + + + + + + + + + + + + + + + + + + +	387 380 + + + + ++++ + +	com com + <th></th> <th></th> <th>011 088 + + + + +++ I + ++ +Z+++</th> <th></th> <th>5-3 105 + x + 1 ++++ + + +++++</th> <th>014 105 X + + ++++ + +++++</th> <th><u>5-55</u> + + + + ++++ + ++++++</th> <th>0-16</th> <th>017 105 + + + + ++++ + + +++++</th> <th>0110 1105 +x + + + ++++ + +++++</th> <th>019 105 + + + + ++++</th> <th>3NO 105 + + + + ++++ + ++++</th> <th>021 105 + + + + ++++</th> <th>0222 1055 + + + + +++++</th> <th>0000 7 + + + + + + + + + + + + + + + + +</th> <th>4 105 X + + ++++ + +++++</th> <th>0815 105 1 7 1 7 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7</th>			011 088 + + + + +++ I + ++ +Z+++		5-3 105 + x + 1 ++++ + + +++++	014 105 X + + ++++ + +++++	<u>5-55</u> + + + + ++++ + ++++++	0-16	017 105 + + + + ++++ + + +++++	0110 1105 +x + + + ++++ + +++++	019 105 + + + + ++++	3NO 105 + + + + ++++ + ++++	021 105 + + + + ++++	0222 1055 + + + + +++++	0000 7 + + + + + + + + + + + + + + + + +	4 105 X + + ++++ + +++++	0815 105 1 7 1 7 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7
STUDY00000STUDY000000Subcutaneous tissue Fibrous histicytoma, malignant Hemangiosarcoma+ + + +RESPIRATORY SYSTEM Lungs and bronchi I Hepatocellular carcinoma, metastatic Traches+ + + +HEMATOPOIETIC SYSTEM Bone marrow Osteosarcoma, metastatic Truches+ + + +HEMATOPOIETIC SYSTEM Bone marrow Digensitive System Heart+ + + +DIGESTIVE SYSTEM Balixary gland Liver Hepatocellular carcinoma Bile duct+ + + +DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular carcinoma Bile duct+ + + +DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular carcinoma Bile duct+ + + +CIRCULATORY SYSTEM Heart+ + + +DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular carcinoma Bile duct+ + + +CIRCULATORY SYSTEM Folicular calcinoma Bile duct+ + + +CRINARY SYSTEM Filicular carcinoma Bile duct+ + + +CRINARY SYSTEM Filicular calcinoma Thyroid+ + + +CRINARY SYSTEM Filicular calcinoma Adrenai Chromophobe adenoma Adrenai Chromophobe adenoma Adrenai Chromophobe adenoma Adrenai Chromophobe adenoma Parathyroid+ + + +REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Uterus Curuos ceil tumor Hemangioma+ + + +NOS Granulosa ceil tumor Hemangioma+ + + +NERVOUS SYSTEM+ + + +	× + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + ++++X + ++ +++++	5 + + + +++++	+ + ++ ++++	++ + ++ +++++	+ + + ++++ + ++++++	+ + + ++++ + ++++++	+- + ++ +z++	5 + + + + +++ + ++++	+ x + - ++++ + +++++	X + + + +++ × × × × × × × × × × × × × ×	- + + + ++++ + +++++	- + + x + ++++ + +++++	+ + + ++++ + +++++	+x + + + ++++ + +++++	5 + + + + ++++ + ++ ++++	5 + + + + ++++ + ++++++	+ + + +++++++++++++++++++++++++++++++++	5 + + + ++ ++ ++ +++	- Z + + + + + + + + + + + + + + + + + +	5 7 + + ++++ + ++++	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Subcutaneous insule + + + Fibrous histiocytoma, malignant + + + Hemangiosarcoma + + + + RESPIRATORY SYSTEM + + + + Lungs and bronchi + + + + Hepatocellular carcinoma, metastatic + + + + Circolar/bronchiolar adenoma + + + + Metastroma, metastatic + + + + Trachea + + + + HEMATOPOIETIC SYSTEM + + + + Bone marrow + + + + Spiesen + + + + Lymph nodes + + + + Thymus + + + + Malig. lymphoma, lymphocytic type + + + + CIRCULATORY SYSTEM + + + + Salivary gland + + + + Liver Hepatocellular carcinoma Bile duct + + + + Galibiadder & common bile duct + + + + Pancreas + + + + CRIMARY SYSTEM + + + + Liver + + + + Critical adenoma + + + + Critical adenoma + + + + Pituitary + + + + Prituitary celadenoma + + + +	+ + + + + + + + + + + + + + + + + + + +	- ++-++ ++ +++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	1+ + ++ +++++	+ + ++ ++++	++ + ++ +++++			+- + ++ +z++	++ + ++++	+ - ++++ + ++++++	+ + ++++ + ++ +++++	+ + ++++ + +++++	+ ++++ + ++ ++++	÷	+ + ++++ + +++++				-++++++++++++++++++++++++++++++++++++++	+ + + ++ == + = + + + + + + + + + + + +	+ + ++++ + ++ +++	** * ** *
Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Osteosarcoma, metastatic Trachea HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus Malig, lymphoma, lymphocytic type CIRCULATORY SYSTEM Heart DICESTIVE SYSTEM Salivary gland Liver Hepatocellular carcinoma Bile duct CIRCULATORY SYSTEM Heart DICESTIVE SYSTEM Salivary gland Liver Hepatocellular carcinoma Bile duct CIRINARY SYSTEM Kidney Urinary bladder ENDOCRINE SYSTEM Pituitary Adenoma, NOS Chromophobe adenoma Adrenal Cortical adenoma Adrenal Covary Papillary cystadenoma, NOS Granulosa cell tumor Hemangtomal NERVOUS SYSTEM	+ + + + + + + + + + + + + + + + + + + +	- ++-++ ++ +++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	1+ + ++ +++++	+ + ++ ++++	++ + ++ +++++			+- + ++ +z++	++ + ++++	+++	+ + ++ +++++	++ + ++ ++++	+ ++++ + ++ ++++	÷	+				-++++++++++++++++++++++++++++++++++++++	+	+	** * ** *
Trachea + + + - HEMATOPOIETIC SYSTEM Bone marrow Bone marrow + + + + Spieen + + + + Lymph nodes + + + + Thymus + + + + Malig. lymphoma. lymphocytic type + + + + CIRCULATORY SYSTEM + + + + Salivary gland + + + + Liver + + + + Bile duct + + + + Galibiadder & common bile duct + + + + Pancreas + + + + Stomach + + + + Stomach + + + + Stomach + + + + CRINARY SYSTEM + + + + Kidney + + + + Urinary bladder + + + + ENDOCRINE SYSTEM + + + + Pituitary + + + + Adenoma, NOS + + + + Chromophobe adenoma + + + Parathroid REPRODUCTIVE SYSTEM + + + + Fibroadenoma + + + Uterus + + + Loida adenoma + + + Parathroid	+++++++++++++++++++++++++++++++++++++++	-+ + ++ +++++ + ++ +++++	++x + ++ ++++	1+ + ++ +++++	+ + ++ ++++	++ + ++ +++++			+- + ++ +z++	++ + ++++	+++	+ + ++ +++++	++ + ++ ++++	++ + ++++	÷	+				-++++++++++++++++++++++++++++++++++++++	+	+	** * ** *
Maig. lympnoma. lympnocycle type CIRCULATORY SYSTEM Heart DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular carcinoma Bile duct Galibiadder & common bile duct Pancreas Stomach Stomach Stomach Stomach Stomach Yet Stomach Yet CRINARY SYSTEM Kidney Urinary bladder Pituitary Adenoma, NOS Chromophobe adenoma Adrenai Chromophobe adenoma Adrenai Chromophobe adenoma Heartail Chromophobe adenoma Adrenai Chromophobe adenoma Parathyroid Parathyroid REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Uterus Leiomyosarcoma Ovary Papillary cystadenoma, NOS Granulosa cell tumor Hemangtoma	· + · ·	+ + +	+ ++ ++++	++	÷	÷	+	+++++	+		+++	÷ + +	÷		÷	+				+	+	+	•
DICESTIVE SYSTEM Salivary gland Liver Hepatocellular carcinoma Bile duct Galibiader & common bile duct Pancreas Esophagus Stomach Stomach Heratocellular carcinoma Bile duct Galibiader & common bile duct Pancreas Esophagus Stomach Stomach Het CRINARY SYSTEM Vinnary bladder ENDOCRINE SYSTEM Pituitary Adrenal Chromophobe adenoma Adrenal Chromophobe adenoma Parathyroid Parathyroid Parathyroid Parathyroid Parathyroid Parathyroid Papillary cystadenoma, NOS Granulosa cell tumor Hemangioma NERVOUS SYSTEM	+ +	+ + +	+	++	÷	÷	+	+++++	+		+++	÷ + +	÷		÷	+				+	+	+	•
Gailbiadder & common bile duct Pancreas Stomach Stomach Stomach Stomach Stanili intestine Large intestine CRINARY SYSTEM Kidney Urinary bladder ENDOCRINE SYSTEM Pituitary Adenoma, NOS Chromophobe adenoma Adrenal Chromophobe adenoma Adrenal Chromophobe adenoma Adrenal Chromophobe adenoma Parathyroid Parathyroid Parathyroid REPRODCCTIVE SYSTEM Mammary gland Fibroadenoma Uterus Cyary Papillary cystadenoma, NOS Granulosa cell tumor Hemangtoma NERVOUS SYSTEM	+ +	+ + +	+	++	÷	÷	+	+++++	+		+++	÷ + +	÷		÷	+				+	+	+	•
CRINARY SYSTEM Kidney Kidney Urinary bladder ENDOCRINE SYSTEM Pituitary Adenoma, NOS Chromophobe adenoma Adrenal Cortical adenoma Policular cell adenoma Parathvroid Parathvroid REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Uterus Leiomyosarcoma Ovary Papillary cystadenoma, NOS Granulosa cell tumor Hemangioma NERVOUS SYSTEM	+ +	+ + +	+	+ + + + + + + + + + + + + + + + + + + +	+	+	+	+	÷	÷	+	+	÷	÷	÷	ŧ	+++	++	++++	+++	++++	+ +	+++++
Pituitary + + + Adenoma, NOS + + + Chromophobe adenoma + + + Adrenal + + + Cortical adenoma + + + Follicular cell adenoma + + + Parathyroid REPRODUCTIVE SYSTEM + + + Mammary gland + + + Vibroadenoma + + + Uterus + + + Leiomyosarcoma Ovary Ovary + + + Memangioma NERVOUS SYSTEM	+ +	+ +	+	+		+	+	+	++	++	+++	++	++	+	+	+	+	++	+++	+	+ +	+ + +	+++++
Adrenal + + + Cortical adenoma + + + Thyroid + + + Parathyroid REPRODUCTIVE SYSTEM + + + Mammary gland + + + Fibroadenoma + + + Uterus + + + Leiomyosarcoma X Ovary + + + Remangioma NOS Memangioma NERVOUS SYSTEM					+	+	+	*	+	*	+	+	*	+	*	-	+	+	+	+	+	+	- +
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Uterus Ovary Papillary cystadenoma, NOS Granulosa cell tumor Hemangioma NERVOUS SYSTEM	+ +	* * * +	++	+ +	+ +	++	+ +	+ +	+	+	+	++	++	+ +	++	+ +	- +	+ +	+ +	+ +	+ +	+ +	+ +
Uterus + + + Leiomyosarcoma X Ovary Papillary cystadenoma, NOS Granulosa cell tumor Hemangioma NERVOUS SYSTEM	+ +	+ +	+	+	+	+	+	+	+	- +	+	N	+	+	+	+	+	+	+	N	+	+	+
NERVOUS SYSTEM	• + •	+ + + +	+	+	+ +	+ +	+ +	+ +	+ +	+	+	+ +	+ +	+	+ +	+ * X	+	+	+ +	+	+ +	+ + X	+
	+ +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
MUSCULOSKELETAL SYSTEM Bone Fibrosarcoma Osteosarcoma	N N	N N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N
ALL OTHER SYSTEMS Multiple organs NOS Malie, lymphoma, NOS Malie, lymphoma, lymphocytic type Malig. lymphoma, histiccytic type Malignant lymphoma, mixed type Undifferentiated leukemia	14 2																						

 + : Tissue Examined Microscopically

 - : Required Tissue Not Examined Microscopically

 X : Tumor Incidence

 N : Necropsy, No Autolysis, No Microscopic Examination

 S : Animal Missered

No Tissue Information Submitted
 Necropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animsl Missing
 B : No Necropsy Performed

TABLE B4.	INDIVIDUAL A	ANIMAL	TUMOR	PATHOLOGY	OF	FEMALE	MICE:	VEHICLE
			CONTR	OL (Continued)			

ANIMAL NUMBER	026	027	028	029	0 3 0	0 3 1	0 3 2	033	0 3 4	0 3 5	0 3 6	0 3 7	038	0 3	040	0 4 1	0 4 2	0 4 3	044	045	046	0 4 7	048	0 4 9	0 5 0	TOTAL
WEEKS ON STUDY	1 0 5	105	1 0 5	1 0 5	1 0 5	0 9 2	0 9 0	0 8 3	1 0 5	100	1 0 5	1 0 5	1 0 5	1 0 5	105	0 9 9	1 0 5	094	1 0 5	1 0 5	1 0 5	1 0 2	105	1 0 5	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrous histiocytoma, malignant Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	*50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Osteosarcoma, metastatic Trachea	+	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	+ X +	+ X +	+	+	+	+	+ x -	+	+	+	50 1 2 2 1 46
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus Malig. lymphoma, lymphocytic type	++++	+++-	++++	+++1	++++	++++	++++	++++	+++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	++-+	++++	++-+	++++	++-+	++++	+++++	+++-	++++	++++	++++	48 50 39 44 1
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Esophagua Stomach Stomach Small intestine Large intestine	++ +++++++	++ +++++++	++X+++++++	++ ++++++++	++ ++++++++	++ +++++++	++ +++1+1+	++ +z+++++	++ +++++++	++ +++++++	++ +++++++	++ ++++++++++++++++++++++++++++++++++++	++ +++++++	++X+++++++	++ +++++++	++ ++++++++++++++++++++++++++++++++++++	++ +++++++	++ +++++++	++ ++++++++	++ +++++++	++ +++++++	1+ +z11111	++ +z+++++	++ ++++++++	++ ++++++++++++++++++++++++++++++++++++	48 50 2 50 50 49 49 49 49 47 49
CRINARY SYSTEM Kidney Urinary bladder	+ +	++	++	++	+	++	+++	+++	+	++	+++	+	+++	+++	+ +	+	‡	+ +	*	++	+++	+++	+++	+++	++	50 48
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Chromophobe adenoma Adrenai Cortical adenoma Thyroid Follicular cell adenoma Parathyroid	+ + +	+++-	+ + + + +	+ x + + + -	+ + + +	+ + + × -	- .+ +	+ x+ + +	* * + + -	* + + + -	+ + + -	+ + + +	* + -	+ + +	+ + +	+ + + +	+ + +	- + +	* * + + +	+ + + -	+ + + +	- + -	+ + + +	+ + + + +	+ + + +	46 12 1 49 1 47 1 15
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Uterus Leiomyosarcoma Ovary Papillary cystadenoma, NOS Granulosa cell tumor Hemangioma	+ + +	+ + +	+ + + X	+ + -	+ + +	++++	++++	+ + +	+ + +	+x++	+ + +	+++++	+ + +	+ + +	++++	+ + +	+ + +		N + +	 + +	++++	+	++++	+ + + X	- z + +	*50 1 49 1 47 2 1 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	50
MUSCULOSKELETAL SYSTEM Bone Fibrosarcoma Osteosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N		N X	N	N	N	N	N	N	N	N	- N	*50 1 1
ALL OTHER SYSTEMS Multiple organs NOS Malignant lymphoma, NOS Malig. lymphoma, lymphocytic type Malignant lymphoma, mixed type Malignant lymphoma, mixed type Undifferentiated leukemia	N	N X	N	N X		N X			N X		N X	N	N	N	N	N			N X	N	N	N X	N	N	- N	*50 1 6 5 3 2

• Animals Necropsied

ANIMAL NUMBER	0	0	0	0	0	006	0 0 7	008	00	0	0 1	0 1 2	0	0	0	0	0	0	0	$\frac{0}{2}$	0 2 1	0 2 2	0 2 3	2	02
WEEKSON	1	2	3 - AL	4	5	6	7	8	9 -	0	1	2	3	4	5 न	6	7	8	9	이	ม - 11	2	3	4	5
STUDY	0	05	9 7	05	0	5	84	0 5	0 5	05	0 5	9	50	0	0 5	05	03	5	05	05	05	0	9.21	9	05
INTEGU MENTARY SYSTEM Subcutaneous tissue Fibrosarcoma Rhabdomyosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	N X	-
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Frachea	+++	++	++	++	+	+	+++	+++	+ +	++	+ +	+++	++	*	++	+++	+ +	+++	++	+++	++	+ +	++	++	4
IEMATOPOIETIC SYSTEM Sone marrow Spieen ymph nodes Malig. lymphoma, histiocytic type Thymus	+ + + +	+++ +	+++ +	+++++++++++++++++++++++++++++++++++++++	+++ +	+++ +	+++ -	++++++++	+++ +	+++ +	++-+	+++++++++++++++++++++++++++++++++++++++	+ -	+++ +	+++ +	++-+	+++++++++++++++++++++++++++++++++++++++	++-+	+++ -	+++++++++	+++-+	+++ +	+++ -	++	+++++++++++++++++++++++++++++++++++++++
CIRCULATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM alivary gland Jver Hepatocellular adenoma Angiosarcoma Sile duct	+ + x	++	+++	+	++	+++	+ +	‡	++++	+ + x	+	‡	‡	+	++	‡	+++	+ +	+ +	+ + x	+	++	++	-	+++
ille duct Fallbladder & common bile duct ancreas Sophagus Komach mall intestine	+ + + + + +	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	++++++	+++++	+++++	+++++	+++++	+++++++	+++++	+++++	++++++	+++++	+++++	++++++	+++++	+++++	+z+++	*****
Leiomyosarcoma arge intestine	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	× +	+	+
RINARY SYSTEM Lidney Frinary bladder	++	++	+ +	+++	++	<u>+</u>	<u>+</u>	+	+	+	+	++	+	++	++	++	+ -	+ +	+ +	+ +	++	++	+	++	++
NDOCRINE SYSTEM ituitary Adenoma, NOS drenai Corticai adenoma hyroid	+	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + + +	+++	***	+++	+x+	++	- +	* * *	***	+ +	+	+++	+++++	-+	+++	* -	++++++	+ + +	+++++	+++++	+	+ +
arathyroid		-	÷	-	÷	÷	-	÷	÷	-	-	-	÷	-	-	÷	-	-	÷	-	-	-	÷	÷	_
fummary gland Adenoma, NOS Sterus Endometrial stromal polyp Ovary	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	N + +	+ + +	+ + +	+ + +	+ + +	+ + x +	N + +	+ + +	+ + +	+ + +	N + +	+ + +	+ + +	+ + +	N + +	+ + +	+ + +	N + +	++++
RERVOUS SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
PECIAL SENSE ORGANS larderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
LL OTHER SYSTEMS luitiple organs NOS Malignast lymphoma, NOS Malig. lymphoma, lymphocytic type Malig. lymphoma, histlocytic type Malignast.lymphoma, mixed type	N	N	N	N X		N	N	N	N	N X	N	N	N		N X	N	N	N		N X		N X	N	N	N

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE: LOW DOSE

Tissue Examined Microscopically Required Tissue Not Examined Microscopically Tumor Incidence Necropsy, No Autolysis, No Microscopic Examination Animal Missexed

: No Tissue Information Submitted C : Necropsy, No Histology Due To Protocol A : Autolysis M : Animal Missing B : No Necropsy Performed

TABLE B4.	INDIVIDUAL ANIMAL	TUMOR PATHOLOGY	OF FEMALE MICE:	LOW DOSE
		(Continued)		

ANIMAL NUMBER	0 2 6	0 21 7	0	0 2 9	030	0 3	032	0	0 3 4	0 3 5	0	0 3 7	0 3 8	0 3 9	04	4	04	04	04	0	0 4 6	0 4	04	049	0 5 0	TOTAL
WEEKS ON STUDY	0 0 9	105	0	9 0 8 6	030	105	1 0 5	1 0 5	1 0 5	105	0 91 91	105	π	5 0 5	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	105	1 0 5	0 5	1	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma Rhabdomyosarcoma	+	+	М	, x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*49 2 1
RESPIRATORY SYSTEM Lungs and bronchi Aiveolar/bronchiolar adenoma Trachea	+++	++	м м	++	* * +	++	++	++	++	++	+++	++	+	++	++	+++	+	* *	++	+ +	* *	++	+ +	++	+++	49 3 47
HEMATOPOIETIC SYSTEM Bune marrow Spleen Lymph nodes Malig. lymphoma, histiocytic type Thymus	++-++-+++++++++++++++++++++++++++++++++	+++++	M M M M	+++ -	+++ +	++++++	++++++	+++ +	++	+++++++	+++ -	++++++	+++-+	++++++	+++ ++ -	+++ +	+++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++-+	+++++++++	+++ +	++	++1 1	++++ +	49 48 37 1 38
CIRCULATORY SYSTEM Heart	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Angiosarcoma	++	++	M M	++++	++++	++++	++++	+ + X	+++	++++	- +	++++	+ +	+++	++	+ + X	+ + X	+ +	+++	+ + X	+ +	+++	++++	+++	++	47 49 6 1
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Leiomyosarcoma Large intestine	+++++ +	++++++ +	M M M M M M	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	+z++++ +	++++++ +	+++++	+++ ++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	++++++ +	+++++ +	49 *49 45 49 49 49 1 48
CRINARY SYSTEM Kidney Urinary bladder	+++	++	M M	+++	++	++	+++	++	+	++	++	+++	++	++	+++	+++	++++	++	++	+++	+ +	++	+++	+++	+	49 44
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Cortical adenoma Thyroid Parathyroid	++++	+++	M M M M	+++-	- + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + +	++++-	++++	+ + + -	++++	+ + + +	+ - + -	+ + + + +	+ + + X + +	++++	*	+ + + -	++++	++++-	+ + + + -	++++	+ + + =	+++-	+ + + + + + + + + + + + + + + + + + + +	45 9 45 1 48 18
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Uterus Endometrial stromal polyp Ovary	N + +	+++++	м м м	+++++	+ + +	++++	+ + +	+ + +	+ + +	+ + +	N + +	++	+ + +	++++	+ + +	+ + + +	++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	++++	*49 1 49 1 48
NERVOUSSYSTEM Brain	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	М	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*49 1
ALL OTHER SYSTEMS Multiple organs NOS Malignant lymphoma. NOS Malig. lymphoma. lymphocytic type Malignant lymphoma. mixed type Plasma cell myeloma	N	N	м	N	N	N	N	N X	N		N X	N X	N	N	N	N	N	N	N	N		N X	N	N	N X	*49 1 5 3 1 1

Animals Necropsied

.

ANIMAL NUMBER	0 0 1	0 0 2	0 0 3	004	005	0 0 6	0 0 7	0 0 8	00	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	020	0 2 1	022	023	024	C
WEEKSON STUDY	0 9 9	1 0 5	1 0 5	1 0 5	064	1 0 5	1 0 1	1 0 5	1 0 2	1 0 5	1 0 5	1 0 5	105	1 0 5	01 81 5	1 0 5	1 0 5	1 0 5	105	1 0 5	1 0 5	0 5 1	1 0 5	1 0 5	104
INTEGUMENTARY SYSTEM Subcutaneous tissue Hemangiosarcoma, unc prim or meta	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	-
RESPIRATORY SYSTEM and bronchi Alveolar/bronchiolar adenoma Sarcoma. NOS, metastatic	+	+	+	+	+	+	+ X	+	+	+	+	+	+	*	+	÷	+	+	+	+	+	+	+	+	
Trachea HEMATOPOIETIC SYSTEM	<u> </u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	-	+	+	_ !
Bone marrow Spleen Hemangiossrcoma, unc prim or meta	‡	++	+ +	++	+++	+	‡	‡	+	+	+ +	++	++	++	+ +	+	+	+	+	+	+	+	+ +	+ +	:
Malig. lymphoma, histiocytic type Lymph nodes Surcoma, NOS, metastatic	-	+	X +	+	+	+	*	-	-	+	-	-	-	-	+	-	+	+	+	-	-	+	+	+	•
Malig. lymphoma, histiocytic type Thymus Malig. lymphoma, lymphocytic type	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	-	+	+	•
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
DICESTIVE SYSTEM Salivary gland Liver	t	+	+	<u>+</u>	+	+	+	+	+	+	t	+	+	<u>+</u>	+	+	<u>+</u>	+	+	-	+	+	+	<u>+</u>	3
Hepatoceilular adenoma Bile duct	+ N	+	+	+	+	•	•	+	÷	+	+	+	+	+	+ N	+	•	* *	•	÷	+	+ N	+ N	+	
Gailbiadder & common bile duct Pancreas	+ +	÷	Ŧ	÷	÷	Ŧ	Ŧ	Ŧ	Ŧ	÷	Ŧ	÷	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	* + *	+ -	Ŧ	
Esophagus Stomach	÷	÷	÷	÷	Ŧ	÷	Ŧ	Ŧ	Ŧ	Ŧ	ŧ	ŧ	Ŧ	ŧ	Ŧ	Ŧ	÷	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ]
Small intestine Large intestine	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	
CRINARY SYSTEM Kidney Urinary bladder	+	+	++	+++	+++	+++	+++	+++	++	+	++	+++	+++	+++	+ +	++	+++	+++	++	++	+	++	+	+	-
ENDOCRINE SYSTEM Pituitary Adapta NOS	+	+	+	+	+	+	*	+	+	÷	*	+	+	+	+	+	+	+	+	*	+	-	* *	+	- ;
Adenoma, NOS Chromophobe adenoma Adrenal	+		+	_	+	+	_	+	+	-	-	+	+	-	+	+	+	Ţ	+	Ţ	÷	+	<u>,</u>	÷	
Thyroid Follicular cell adenoma	÷	÷	×	+	÷	÷ x	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	-	÷	÷	•
Parathyroid	+	-	-	-	-	Ŧ	+	-	-	-	+	-	-	+	-	-	-	-	+	-	+	-	-	-	-
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	+ x	+	+	N	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	-
Uterus Sarcoma, NOS	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•
Fibrosarcoma Hemangioma Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	х +	+	+	+	+	+	+	Ķ
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
BODY CAVITIES Peritoneum	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- N
Lipoma Malig. lymphoma. lymphocytic type		.,	••			.,	••		X		••			••				.,	••		••	••			•
ALL OTHER SYSTEMS Multiple organs NOS Fibrosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Malignant lymphoma, NOS Malig. lymphoma, lymphocytic type Malig. lymphoma, histiocytic type		X															x		X						x
Undifferentiated leukemia Head NOS Sarcoma, NOS	x						x								x							X			
	1																								

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE: HIGH DOSE _

:

Tissue Examined Microscopically Required Tissue Not Examined Microscopically Tumor Incidence Necropsy, No Autolysis, No Microscopic Examination Animal Missexed X N: S:

No Tissue Information Submitted
 Necropsy, No Histology Due To Protocol
 A : Autolysis
 M : Animal Missing
 B : No Necropsy Performed

							00				.,															
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL
WEEKSON STUDY	1 0 5	0 9 2	1 0 5	1 0 5	1 0 5	0 9 6	1 0 5	1 0 5	1 0 5	0 7 5	0 8 0	0 9 8	1 0 5	1 0 5	105	105	0 5 4	0 9 4	1 0 5	0 9 6	1 0 5	1 0 5	1 0 5	0 9 2	1 0 5	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Hemangiosarcoma, unc prim or meta	+	+	+	+	+	N	+	+	+	+	+	+	+	+	*	+	+	N	+	N	+	+	+	+		*50 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Sarcoma, NOS, metastatic Trachea	++	+++	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	++	+	+	- +	50 1 1 44
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangiosarcoma, unc prim or meta Malig. lymphoma, histiocytic type	++ +	+	+++	+	+	-	+	+	+	++	+	+++	++++	++	+ *	‡	+	+	++	++	+++	++	++	+++	++	48 48 1 1
Lymph nodes Sarcoma, NOS, metastatic Malig. lymphoma, histiocytic type Thymus Malig. lymphoma, lymphocytic type	+ X +	+	+	- +	- +	+	+	+	+	+	+	+	+ +	+	+	+ + X	- +	-	+	+	+	+	+	+ +	+	33 1 1 45 1
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	÷	+	+	+	+	+	+	49
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	++ +++++++	++ ++++++++++++++++++++++++++++++++++++	++X+++++++	-+ ++++++++		++ +Z+++++	++ +z+++11	++ ++++++++	++ +++++++	1+ +Z+++++	++ ++++++++	++ ++++++++	++ ++++++++	++ +++++++	++x+++++++	++ ++++++++	++ +2+++++	1+ +z11111	++ ++++++++	++ +Z+++++	++ ++++++++	++ ++++++++	++ +++++++	++ +++++++	++ +++++++	45 50 3 50 *50 49 49 49 49 45 48
URINARY SYSTEM Kidney Urinary bladder	++	+ +	++++	++++	<u>+</u>	+++	+	+++	.+ +	+++	++	++	+++	+	+++	++++	+++	-	+++	+++	+++	+++	+++	++	++	49 47
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Chromophobe adenoma Adrenai Thyroid Follicular cell adenoma Parathyroid	+ ++ +	+ ++ +	+ ++ -	+ +++++++++++++++++++++++++++++++++++++	+ ++ +	+ ++ -	·+ ++ -	+ ++ -	* * + +	+ ++	+ X + +	+ + + -	+ + + + +	+ +++ -	+ + + -	+ +++ +	+ + + + +	-	+ + + + -	+x ++ +	+ + + +	* * * + +	+ +++	+ ++ -	+ ++ -	48 10 1 47 48 2 16
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Sarcoma, NOS Fibrosarcoma Hemangioma	++	+ +	++	+++	+ +	+++	+ +	+ +	+ +	+ +	+ +	+ +	++	++	+ +	++	+ +	N -	+ +	+ +	+ +	+	++	++	+++	+50 1 49 1 1
Ovary NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	49 50
BODY CAVITIES Peritoneum Lipoma Malig. lymphoma, lymphocytic type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	*50 1 1
ALL OTHER SYSTEMS Multiple organs NOS Fibrosarcoma Malignant lymphoma, NOS Malig. lymphoma, lymphocytic type Malig. lymphoma, histiocytic type Undifferentiated leukemia Head NOS Sarcoma, NOS	N	N	N X	N		N X		N	N	N	N	N	N	N	N	N		N X		N X			N X	X	N X	*50 1 3 6 3 3 3

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

Animals Necropsied

Dimethyl Hydrogen Phosphite, NTP TR 287

96

l

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

CC	ONTRO	OL (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50	<u></u>	50	
NIMALS NECROPSIED	50		50		50	
NIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
NTEGUMENTARY SYSTEM						
*SKIN	(50)		(50)		(50)	
EPIDERMAL INCLUSION CYST		(2%)				
INFLAMMATION, CHRONIC	(50)	(2%)	(50)		(50)	
*SUBCUT TISSUE EPIDERMAL INCLUSION CYST		(2%)	(50)		(50)	
FIBROSIS		(2%)				
NECROSIS, FAT			1	(2%)		
ESPIRATORY SYSTEM						
#LUNG	(50)		(50)		(50)	
MINERALIZATION		(2%)				
CONGESTION, NOS	1	(2%)				(2%)
HEMORRHAGE			1	(2%)	1	(2%)
INFLAMMATION, NOS	1	(2%)		(90)		
INFLAMMATION, CHRONIC PNEUMONIA INTERSTITIAL CHRONIC	7	(14%)		(2%) (38%)	40	(86%)
INFLAMMATION, GRANULOMATOUS	'	(14,70)		(38%)	40	(00%)
HYPERPLASIA, ADENOMATOUS				(6%)	26	(52%)
HYPERPLASIA, ALVEOLAR EPITHELIUM	2	(4%)		(14%)		(32%)
METAPLASIA, ŚQUAMOUS						(6%)
METAPLASIA, OSSEOUS					1	(2%)
HISTIOCYTOSIS	5	(10%)	1	(2%)		
IEMATOPOIETIC SYSTEM						
#BONE MARROW	(46)		(49)		(49)	
INFLAMMATION, GRANULOMATOUS	1	(2%)				
HYPOPLASIA, NOS		(2%)				(2%)
MYELOFIBROSIS		(4%)				(2%)
#SPLEEN	(50)		(50)		(49)	(00)
NECROSIS, NOS	c	(12%)	4	(8%)		(2%) (4%)
HEMOSIDEROSIS HEMATOPOIESIS		(12%)		(2%)	-	(16%)
#MANDIBULAR L. NODE	(49)	(-1/07	(47)	(2 /07	(49)	(10,0)
ANGIECTASIS	,		,			(2%)
#MEDIASTINAL L. NODE	(49)		(47)		(49)	
EDEMA, NOS						(2%)
HEMORRHAGE	1	(2%)		(2%)	1	(2%)
HEMORRHAGE, CHRONIC	(40)			(2%)	(40)	
#HEPATIC LYMPH NODE EDEMA, NOS	(49)		(47)		(49)	(2%)
#MESENTERIC L. NODE	(49)		(47)		(49)	(270)
INFLAMMATION, PYOGRANULOMATOUS	(10)		(=,)			(2%)
NECROSIS, NOS						(2%)
#LIVER	(50)		(50)		(50)	
HEMATOPOIESIS		(2%)	(FO			
#ADRENAL	(50)		(50)		(50)	(69-)
HEMATOPOIESIS #THYMUS	(36)		(38)		3 (39)	(6%)
CYST, NOS		(3%)	(00)		(39)	
URCULATORY SYSTEM						
XIRCULATORY SYSTEM *MEDIASTINUM	(50)		(50)		(50)	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THETWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE

CIRCULATORY SYSTEM (Continued)						
*STERNUM	(50)		(50)		(50)	
ANEURYSM	1	(2%)				
#HEART	(50)		(50)		(50)	
INFLAMMATION, CHRONIC					-	(2%)
FIBROSIS		(70%)		(74%)	32	(64%)
DEGENERATION, NOS		(4%)	-	(6%)		
#HEART/ATRIUM	(50)		(50)		(50)	
THROMBOSIS, NOS					2	(4%)
FIBROSIS		(2%)	(50)		(50)	
*MESENTERIC ARTERY	(50)	(00)	(50)		(50)	
ANEURYSM		(2%)				
ARTERIOSCLEROSIS, NOS		(2%)	(50)		(50)	
#LIVER	(50)		(50)		(50)	(2%)
THROMBOSIS, NOS	(50)		(50)		_	(270)
#STOMACH PERIARTERITIS	(50)		(50)		(50)	(2%)
#KIDNEY	(50)		(50)		(50)	14 101
THROMBOSIS, NOS	(50)		(30)			(2%)
#URINARY BLADDER	(50)		(48)		(48)	
PERIARTERITIS			(10)			(2%)
DIGESTIVE SYSTEM						
#SALIVARY GLAND	(50)		(48)		(49)	
ATROPHY, NOS	1	(2%)				(2%)
#LIVER	(50)		(50)		(50)	
CONGENITAL MALFORMATION, NOS CONGESTION, NOS		(4%)	1	(2%)		(6%) (2%)
INFLAMMATION, SUPPURATIVE	-	(2%)				
INFLAMMATION, CHRONIC		(2%)	1	(2%)		
INFLAMMATION, GRANULOMATOUS		(2%)				
DEGENERATION, NOS	1	(2%)		(8%)	-	(2%)
NECROSIS, NOS				(2%)		(2%)
CYTOPLASMIC VACUOLIZATION		(16%)	-	(26%)		(26%)
BASOPHILIC CYTO CHANGE		(32%)	-	(26%)		(14%)
EOSINOPHILIC CYTO CHANGE		(16%)	5	(10%)	4	(8%)
CLEAR-CELL CHANGE	2	(4%)			-	.00.
ANGIECTASIS						(2%)
#LIVER/CENTRILOBULAR	(50)		(50)		(50)	(40)
DEGENERATION, NOS	-	(90)	•	(90)		(4%) (4%)
NECROSIS, NOS		(2%)		(2%)	2 (50)	(48%))
#LIVER/PERIPORTAL HYPERTROPHY, NOS	(50)		(50)			(2%)
#BILE DUCT	(50)		(50)		(50)	(270)
#BILE DUCI HYPERPLASIA, NOS		(86%)		(88%)		(88%)
#PANCREAS	(49)	(00 ///	(49)	100/07	(48)	.00.07
LYMPHOCYTIC INFLAMMATORY INFIL		(4%)		(2%)	(40)	
ATROPHY, NOS		(27%)		(27%)	13	(27%)
HYPERPLASIA, NODULAR		(4%)	.0			(2%)
HYPERPLASIA, FOCAL	4		1	(2%)	-	
ANGIECTASIS				(2%)		
#ESOPHAGUS	(48)		(48)		(50)	
INFLAMMATION, SUPPURATIVE		(2%)				
#ESOPHAGEAL ADVENTITIA	(48)		(48)		(50)	
HEMOSIDEROSIS				(2%)		
#STOMACH	(50)		(50)		(50)	
MINERALIZATION	1	(2%)				
LYMPHOCYTIC INFLAMMATORY INFILT		(2%)				
	1	(2%)				
INFLAMMATION, ACUTE						- ·
INFLAMMATION, ACUTE INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, CHRONIC		(2%)				(2%) (2%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

	CONTRO)L(VEH)	LOWI	DOSE	HIGH	DOSE
DIGESTIVE SYSTEM (Continued)						
#FORESTOMACH	(50)		(50)		(50)	
ULCER, NOS	(00)			(2%)		(2%)
ULCER, CHRONIC			-			(2%)
HYPERPLASIA, NOS	8	(16%)	16	(32%)		(64%)
HYPERKERATOSIS	•	((2%)		(16%)
#LARGE INTESTINE	(49)		(49)	(=,	(48)	(10,0)
PARASITISM	(10)		(10)		• • • •	(2%)
IDINIA DV SVSTEM						
JRINARY SYSTEM	(50)		(50)		(50)	
#KIDNEY MINERALIZATION		(2%)		(4%)	(50)	
	1	(2%)	4	(4%)		(2%)
HYDRONEPHROSIS NEPHROPATHY	20	(76%)	24	(68%)		(66%)
NEPHROSIS, NOS	30	10701		(08%)	აპ	(00%)
INFARCT, ACUTE			1	(2,0)	1	(2%)
HYPERPLASIA, TUBULAR CELL			1	(2%)	1	101
#KIDNEY/TUBULE	(50)		(50)	(2.01	(50)	
PIGMENTATION, NOS		(16%)		(18%)		(6%)
INCLUSION, CYTOPLASMIC	0		9			(4%)
#KIDNEY/PELVIS	(50)		(50)		(50)	(
INFLAMMATION, SUPPURATIVE		(2%)		(2%)	(00)	
FIBROSIS, FOCAL		(2%)	-	12/01		
HYPERPLASIA, FOCAL		(2%)				
#URINARY BLADDER	(50)	(2,0)	(48)		(48)	
HEMORRHAGE	(00)			(2%)	(40)	
LYMPHOCYTIC INFLAMMATORY INFILT	R 1	(2%)	•	(2.0)	1	(2%)
INFLAMMATION, SUPPURATIVE		(2.0)	1	(2%)	-	(= (0))
HYPERPLASIA, EPITHELIAL			-		1	(2%)
#U. BLADDER/SEROSA	(50)		(48)		(48)	(=,
INFLAMMATION, CHRONIC					1	(2%)
NDOCRINE SYSTEM	*****					
#PITUITARY	(48)		(50)		(48)	
CYST, NOS		(8%)		(10%)	• •	(13%)
HEMORRHAGE		(2%)	v	(10,0)	v	(10 ///)
HEMOSIDEROSIS	1	(270)			1	(2%)
HYPERTROPHY, FOCAL	2	(4%)	9	(4%)		(8%)
HYPERPLASIA, FOCAL		(19%)		(14%)		(17%)
ANGIECTASIS		(2%)		(14.0) (2%)		(2%)
METAPLASIA, OSSEOUS		(2%)	•		1	- ~ /
#PITUITARY INTERMEDIA	(48)	,	(50)		(48)	
HYPERPLASIA, FOCAL	,,			(2%)		
#ADRENAL	(50)		(50)		(50)	
LIPOIDOSIS				(4%)		(2%)
ANGIECTASIS	1	(2%)	_			(4%)
#ADRENAL CORTEX	(50)		(50)		(50)	
LIPOIDOSIS		(10%)		(14%)		(16%)
FOCAL CELLULAR CHANGE	Ū		•			(2%)
HYPERPLASIA, FOCAL	4	(8%)	1	(2%)		(4%)
ANGIECTASIS	-		-			(2%)
#ADRENAL MEDULLA	(50)		(50)		(50)	
HYPERPLASIA, FOCAL		(14%)		(6%)		(2%)
#THYROID	(50)	-	(47)		(49)	
CYST, NOS						(2%)
INFLAMMATION, CHRONIC						(2%)
HYPERPLASIA, C-CELL	24	(48%)	27	(57%)		(41%)
HYPERPLASIA, FOLLICULAR-CELL				(2%)		(2%)
#PANCREATIC ISLETS	(49)		(49)		(48)	
HYPERPLASIA, FOCAL						(4%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

	CONTRO	L(VEH)	LOWE	OSE	HIGH	DOSE
REPRODUCTIVE SYSTEM	<u>-</u>	·····				
*MAMMARY GLAND	(50)		(50)		(50)	
DILATATION/DUCTS		(8%)		(4%)		(2%)
INFLAMMATION, GRANULOMATOUS	•	(0,0)		(4%)	-	
INFLAMMATION, PYOGRANULOMATOU	IS		-	(,	1	(2%)
HYPERPLASIA, FOCAL	.0		1	(2%)	-	(=,
*PREPUCE	(50)		(50)	(2.0)	(50)	
INFLAMMATION CHRONIC SUPPURATI		(2%)	(00)		(00)	
*PREPUTIAL GLAND	(50)	(2,0)	(50)		(50)	
INFLAMMATION, GRANULOMATOUS	(007		(00)			(2%)
	(48)		(50)		(49)	(2.0)
#PROSTATE		(2%)		(2%)	(10)	
INFLAMMATION, SUPPURATIVE		(6%)	-	(2.07		
INFLAMMATION, CHRONIC		(0%)	1	(2%)	9	(4%)
INFLAMMATION CHRONIC SUPPURATIV		(100)		(10%)		(4%)
INFLAMMATION, GRANULOMATOUS	э	(10%)	Э	(10%)		
HYPERTROPHY, NOS		(999)	15	(200)		(2%) (29%)
HYPERTROPHY, FOCAL		(23%)		(30%)	14	(2370)
HYPERTROPHY, DIFFUSE		(4%)		(2%) (10%)		
HYPERPLASIA, FOCAL		(8%)	(49)	(10%)	(50)	
#TESTIS	(50)			(2%)	(50)	
MINERALIZATION			1	(270)	1	(2%)
INFARCT, ACUTE	0	(100)	4	(9.07.)	-	(18%
ATROPHY, NOS		(16%)		(8%) (4%)	5	110%
HYPERPLASIA, FOCAL		(4%)		•	14	(28%
HYPERPLASIA, INTERSTITIAL CELL		(12%)		(10%)		(20%)
*EPIDIDYMIS	(50)		(50)		(50)	1900.
LYMPHOCYTIC INFLAMMATORY INFIL	rr					(2%)
INFLAMMATION, CHRONIC	(50)		(50)			(2%)
*SCROTUM	(50)		(50)		(50)	(9 <i>0</i> 7)
INFLAMMATION, GRANULOMATOUS	10		•	(00)	1	(2%)
INFLAMMATION, PYOGRANULOMATOU		(10)	L	(2%)	9	(ACL)
NECROSIS, FAT	2	(4%)				(4%) (2%)
PIGMENTATION, NOS		<u> </u>			L	(2%)
NERVOUS SYSTEM					(10)	
#BRAIN	(49)		(50)		(49)	
LYMPHOCYTIC INFLAMMATORY INFIL	r k 1	(2%)	-	(0~)		
MALACIA				(2%)	(10)	
#CEREBELLUM	(49)		(50)		(49)	(0 + 10)
MINERALIZATION				······	12	(24%)
PECIAL SENSE ORGANS						
*EYE	(50)		(50)		(50)	
MINERALIZATION				(2%)		
CATARACT	25	(50%)	19	(38%)		(72%
PHTHISIS BULBI						(2%)
*EYE/CORNEA	(50)		(50)		(50)	(A)
INFLAMMATION, CHRONIC						(2%)
*EYE/RETINA	(50)		(50)		(50)	
DETACHMENT		(2%)				
		(38%)	00	(58%)	01	(42%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

MUSCULOSKELETAL SYSTEM NONE

TABLE C1.	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
	TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

C	ONTROL (VEH)	LOW DOSE	HIGH DOSI
BODY CAVITIES			
*MEDIASTINUM	(50)	(50)	(50)
INFLAMMATION, SUPPURATIVE	1 (2%)		
*ABDOMINAL CAVITY	(50)	(50)	(50)
NECROSIS, FAT	1 (2%)	3 (6%)	
*PLEURA	(50)	(50)	(50)
INFLAMMATION, CHRONIC	1 (2%)		
*PERICARDIUM	(50)	(50)	(50)
LIPOGRANULOMA	1 (2%)		
*MESENTERY	(50)	(50)	(50)
INFLAMMATION, PYOGRANULOMATOUS	1 (2%)		'

SPECIAL MORPHOLOGY SUMMARY NONE

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY • NUMBER OF ANIMALS NECROPSIED

	CONTRO	OL (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50	<u></u>				
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		50		50	
NTEGUMENTARY SYSTEM NONE						
RESPIRATORY SYSTEM						
#LUNG/BRONCHIOLE	(50)		(49)		(50)	
HYPERPLASIA, EPITHELIAL	(50)		(40)			(2%)
#LUNG	(50)		(49)	(90)	(50)	
CONGESTION, NOS			1	(2%)		(901)
EDEMA, NOS		(00)			1	(2%)
INFLAMMATION, INTERSTITIAL	ł	(2%)	1	(2%)		
PNEUMONIA, ASPIRATION			1	(270)	1	(2%)
INFLAMMATION, SUPPURATIVE INFLAMMATION, ACUTE			2	(6%)	1	(470)
			3	(070)	1	(2%)
INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, CHRONIC			1	(2%)	1	(270)
PNEUMONIA INTERSTITIAL CHRONIC	· A	(8%)		(10%)	33	(66%)
INFLAMMATION, GRANULOMATOUS	4	(0%)		(10%)		(2%)
FIBROSIS, FOCAL	1	(2%)	L	(270)	-	(270)
HEMOSIDEROSIS	1	(2.70)	2	(4%)	1	(2%)
HYPERPLASIA, ADENOMATOUS			2	(4.07	-	(20%)
HYPERPLASIA, ALVEOLAR EPITHELIUM	1	(2%)				(22%)
HISTIOCYTOSIS		(8%)	3	(6%)	3	(6%)
HEMATOPOIETIC SYSTEM						
#BONE MARROW	(41)		(45)		(49)	
HYPOPLASIA, NOS	,					(2%)
OSTEOSCLEROSIS			1	(2%)		(6%)
HISTIOCYTOSIS						(2%)
MYELOFIBROSIS					1	(2%)
#SPLEEN	(50)		(50)		(49)	
HEMOSIDEROSIS	17	(34%)	9	(18%)	13	(27%)
HYPERPLASIA, STROMAL	1	(2%)				
HEMATOPOIESIS	8	(16%)		(8%)		(14%)
#SPLENIC SEROSA	(50)		(50)		(49)	
FIBROSIS						(2%)
#MEDIASTINAL L. NODE	(45)		(44)		(40)	
HEMORRHAGE				(2%)	(17)	
#THYMUS	(41)		(40)		(47)	(90)
CYST, NOS					1	(2%)
CIRCULATORY SYSTEM						
#HEART	(50)		(49)		(50)	
FIBROSIS		(34%)		(33%)		(26%)
DEGENERATION, NOS		(10%)		(12%)		(8%)
#HEART/ATRIUM	(50)	(-0/0/	(49)		(50)	
INFLAMMATION, CHRONIC	(00)			(2%)	(00)	
*AORTA	(50)		(50)		(50)	
INFLAMMATION, CHRONIC		(2%)	(2.57			
	(50)		(50)		(50)	
#LIVER	(007					
THROMBUS, MURAL	(507		(00)			(2%)

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE

	CONTROL (VEH)		LOW DOSE		HIGH DOSE	
CIRCULATORY SYSTEM (Continued)						
#COLON	(50)		(48)		(46)	
PERIARTERITIS		(2%)	(10)			
#UTERUS	(45)		(48)		(49)	
THROMBUS, FIBRIN	,		(,		-	(2%)
DIGESTIVE SYSTEM				· · · · · · · · · · · · · · · · · · ·		
*TONGUE	(50)		(50)		(50)	
ABSCESS, NOS				(2%)		
#SALIVARY GLAND	(50)		(50)		(48)	
LYMPHOCYTIC INFLAMMATORY INFILT	'R		1	(2%)		
#LIVER	(50)		(50)		(50)	
CONGENITAL MALFORMATION, NOS	3	(6%)	2	(4%)	4	(8%)
CONGESTION, NOS		(2%)				
LYMPHOCYTIC INFLAMMATORY INFILT	R 4	(8%)	1	(2%)		
INFLAMMATION, SUPPURATIVE						(2%)
INFLAMMATION, CHRONIC	1	(2%)	4	(8%)	-	(16%)
INFLAMMATION, GRANULOMATOUS	17	(34%)	8	(16%)	10	(20%)
NECROSIS, NOS			2	(4%)	1	(2%)
PIGMENTATION, NOS					1	(2%)
CYTOPLASMIC VACUOLIZATION	3	(6%)	3	(6%)	3	(6%)
BASOPHILIC CYTO CHANGE	36	(72%)	28	(56%)	26	(52%)
EOSINOPHILIC CYTO CHANGE			1	(2%)	1	(2%)
#HEPATIC SEROSA	(50)		(50)		(50)	
FIBROSIS					1	(2%)
#LIVER/CENTRILOBULAR	(50)		(50)		(50)	
NECROSIS, NOS	1	(2%)			1	(2%)
CYTOPLASMIC VACUOLIZATION	2	(4%)				
#LIVER/PERIPORTAL	(50)		(50)		(50)	
CYTOPLASMIC VACUOLIZATION			1	(2%)	- 1	(2%)
#BILE DUCT	(50)		(50)		(50)	
HYPERPLASIA, NOS	18	(36%)	25	(50%)	18	(36%)
#PANCREAS	(50)		(49)		(48)	
DILATATION/DUCTS				(2%)		(2%)
LYMPHOCYTIC INFLAMMATORY INFILT	R 1	(2%)				(2%)
ATROPHY, NOS		(18%)	11	(22%)		(15%)
#ESOPHAGUS	(49)	((47)		(49)	
INFLAMMATION, CHRONIC	(- - ,					(4%)
#STOMACH	(50)		(50)		(48)	
INFLAMMATION, ACUTE						(2%)
INFLAMMATION, CHRONIC	1	(2%)				
#GASTRIC SEROSA	(50)		(50)		(48)	
FIBROSIS					1	(2%)
#FORESTOMACH	(50)		(50)		(48)	
CYST, NOS						(2%)
HYPERPLASIA, NOS	4	(8%)	2	(4%)		(29%)
JRINARY SYSTEM			an a			
#KIDNEY	(50)		(50)		(50)	
CALCULUS, MICROSCOPIC EXAMINATIO						(4%)
MINERALIZATION		(16%)	8	(16%)		(12%)
HYDRONEPHROSIS		(4%)	Ŭ		U	
CYST, NOS	2	、-··· <i>,</i>			1	(2%)
INFLAMMATION, INTERSTITIAL						(2%)
NEPHROPATHY	9	(18%)	9	(18%)		(6%)
METAMORPHOSIS FATTY	v					(2%)
#KIDNEY/TUBULE	(50)		(50)		(50)	,
PIGMENTATION, NOS		(78%)		(50%)		(68%)
PIGMENTATION, NOS	39	(78%)	25	(00%)	34	(68%)

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

	CONTROL (VEH)		LOW DOSE		HIGH DOSE	
JRINARY SYSTEM (Continued)					<u></u>	
#KIDNEY/PELVIS	(50)		(50)		(50)	
HYPERPLASIA, EPITHELIAL		(2%)	(00)		()	(2%)
#URINARY BLADDER	(48)		(50)		(48)	
HEMORRHAGE			1	(2%)		
LYMPHOCYTIC INFLAMMATORY INFIL	.TR				3	(6%)
INFLAMMATION CHRONIC SUPPURATI	VE 1	(2%)				
HYPERPLASIA, EPITHELIAL					1	(2%)
NDOCRINE SYSTEM						
#PITUITARY	(49)		(49)		(50)	
CYST, NOS	19	(39%)	24	(49%)	17	(34%)
HEMORRHAGE			1	(2%)	1	(2%)
HEMOSIDEROSIS	1	(2%)				
HYPERTROPHY, FOCAL		(2%)	1	(2%)		
HYPERPLASIA, FOCAL	7	(14%)	8	(16%)	7	(14%)
ANGIECTASIS	5	(10%)	3	(6%)	3	(6%)
#PITUITARY INTERMEDIA	(49)		(49)		(50)	
HYPERPLASIA, FOCAL		(2%)				
#ADRENAL	(50)		(50)		(50)	
CONGESTION, NOS				(2%)		
LYMPHOCYTIC INFLAMMATORY INFIL			1	(2%)		
INFLAMMATION, CHRONIC	-	(4%)				(2%)
#ADRENAL CORTEX	(50)		(50)		(50)	
LIPOIDOSIS		(18%)		(14%)	4	(8%)
HYPERTROPHY, FOCAL		(2%)		(2%)		
HYPERPLASIA, FOCAL		(8%)		(4%)		(6%)
#ADRENAL MEDULLA	(50)		(50)		(50)	
FOCAL CELLULAR CHANGE	_	(2%)				
HYPERPLASIA, FOCAL		(4%)				(2%)
#THYROID	(49)		(49)		(47)	
CYST, NOS	1	(2%)		(90)		
INFLAMMATION, GRANULOMATOUS	90	(200)		(2%) (43%)		(47%)
HYPERPLASIA, C-CELL HYPERPLASIA, FOLLICULAR-CELL		(53%) (2%)	21	(4370)	44	(42 (70)
#PARATHYROID	(32)	(270)	(39)		(34)	
ATROPHY, NOS	(02)			(3%)	(04)	
			ـ ـــــــــــــــــــــــــــــــــــ	······		
REPRODUCTIVE SYSTEM	(2.0)				(FA)	
*MAMMARY GLAND	(50)		(50)	(2%)	(50)	(2%)
DILATATION/DUCTS			1	(470)	-	(2%)
ABSCESS, NOS		(9%)			1	4 70 1
INFLAMMATION, CHRONIC INFLAMMATION CHRONIC SUPPURATI		(2%)	1	(2%)		
INFLAMMATION CHRONIC SUPPORATI		(4%)		(2%) (8%)	Q	(6%)
#UTERUS	(45)	(-170)	(48)	(3,0)	(49)	00101
PROLAPSE	(40)			(2%)	(43)	
HYDROMETRA	1	(2%)	•	(= /• /		
CYST, NOS	•				1	(2%)
INFLAMMATION, SUPPURATIVE	1	(2%)	1	(2%)		(2%)
INFLAMMATION CHRONIC SUPPURATI		(·- ·	*	((2%)
#CERVIX UTERI	(45)		(48)		(49)	<u>, </u>
EPIDERMAL INCLUSION CYST	(+0)			(2%)	(= 0 /	
#UTERUS/ENDOMETRIUM	(45)		(48)		(49)	
CYST. NOS	(40)		(40)			(2%)
HYPERPLASIA, CYSTIC	3	(7%)	7	(15%)		(2%)
#OVARY	(45)		(48)		(49)	/0 /
					· · · · · · · · · · · · · · · · · · ·	

ŝ

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

	CONTROL (VEH)		LOW DOSE		HIGH DOSE	
NERVOUS SYSTEM NONE						
SPECIAL SENSE ORGANS	<u> </u>					
*EYE	(50)		(50)		(50)	
INFLAMMATION, CHRONIC		(2%)			(00)	
FIBROSIS	-	(2%)				
CATARACT	-	(34%)	13	(26%)	22	(44%)
PHTHISIS BULBI		(6%)		(8%)	20	(**/0)
EYE/CHOROID	(50)	(0,0)	(50)	(0,0)	(50)	
INFLAMMATION, CHRONIC	(00)			(2%)	(00)	
EYE/IRIS	(50)		(50)	(2 /0)	(50)	
HYPERPLASIA, FOCAL	(007			(2%)	(00)	
*EYE/RETINA	(50)		(50)		(50)	
ATROPHY, NOS	(++)	(60%)		(56%)		(42%)
*HARDERIAN GLAND	(50)		(50)		(50)	
INFLAMMATION, GRANULOMATOUS			1	(2%)		
MUSCULOSKELETAL SYSTEM NONE						
BODY CAVITIES						
*THORACIC CAVITY	(50)		(50)		(50)	
GRANULOMA, NOS			1	(2%)		
*MEDIASTINUM	(50)		(50)		(50)	
INFLAMMATION, ACUTE			1	(2%)		
INFLAMMATION CHRONIC SUPPURATI					1	(2%)
HEMOSIDEROSIS	1	(2%)				
*ABDOMINAL CAVITY	(50)		(50)		(50)	
NECROSIS, FAT	3	(6%)	8	(16%)	4	(8%)
*PLEURA	(50)		(50)		(50)	
INFLAMMATION, CHRONIC			1	(2%)		
INFLAMMATION CHRONIC SUPPURATI						(2%)
FIBROSIS		(2%)		(4%)		(4%)
*PERICARDIUM	(50)		(50)		(50)	
INFLAMMATION, CHRONIC				(2%)		(2%)
*EPICARDIUM	(50)		(50)		(50)	
INFLAMMATION, CHRONIC					1	(2%)
ALL OTHER SYSTEMS ADIPOSE TISSUE						
DEGENERATION, NOS	2		1		1	
SPECIAL MORPHOLOGY SUMMARY AUTO/NECROPSY/HISTO PERF					1	

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED
APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

	CONTRO	L (VEH)	LOW DOSE		HIGH DOSI	
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS MISSING			3			
ANIMALS NECROPSIED	50		47		50	
ANIMALS EXAMINED HISTOPATHOLOGICAI	LLY 50		47		50	
NTEGUMENTARY SYSTEM	<u></u>		·			
*SKIN	(50)		(47)		(50)	
INFLAMMATION, SUPPURATIVE			1	(2%)		
INFLAMMATION, CHRONIC						(2%)
ACANTHOSIS			<i>i</i> —:			(2%)
*SUBCUT TISSUE	(50)		(47)		(50)	
EDEMA, NOS		(2%)				
INFLAMMATION GRANULOMATOUS F	OCAL				I	(2%)
RESPIRATORY SYSTEM						
#LUNG/BRONCHUS	(50)		(47)		(50)	
FOREIGN BODY, NOS			1	(2%)		
CYST, NOS		(2%)			=	
#LUNG	(50)		(47)		(50)	
CONGESTION, NOS	-	(0.07.)		(6%)		(4%)
HEMORRHAGE		(2%)		(4%)		(4%)
LYMPHOCYTIC INFLAMMATORY INFII	LTR 6	(12%)		(11%)	2	(4%)
INFLAMMATION, ACUTE	-			(2%)		
INFLAMMATION, ACUTE NECROTIZIN			1	(2%)		
HISTIOCYTOSIS		(2%)				
#LUNG/ALVEOLI	(50)		(47)		(50)	
HISTIOCYTOSIS			1	(2%)		
HEMATOPOIETIC SYSTEM *MULTIPLE ORGANS MYELOPROLIFERATIVE DISORDER #BONE MARROW	(50) (49)		(47)	(2%)	(50) (48)	
HYPERPLASIA, HEMATOPOIETIC			1	(2%)		
HYPERPLASIA, GRANULOCYTIC		(2%)				
#SPLEEN	(50)		(47)		(49)	
HYPERPLASIA, LYMPHOID		(4%)		(2%)		(2%)
		(100()		(9%)		
HEMATOPOIESIS	5	(10%)			4	(8%)
ERYTHROPOIESIS		(10%)	1	(2%)		(8%)
ERYTHROPOIESIS #SPLENIC FOLLICLES	5 (50)	(10%)			(49)	
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS	(50)	(10%)	1 (47)		(49) 1	(8%) (2%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE		(10%)	1 (47) (26)	(2%)	(49)	
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC	(50) (27)	(10%)	1 (47) (26) 1		(49) 1 (25)	
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE	(50)	(10%)	1 (47) (26)	(2%)	(49) 1 (25) (25)	(2%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE PLASMACYTOSIS	(50) (27)	(10%)	1 (47) (26) 1	(2%)	(49) 1 (25) (25) 1	(2%) (4%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE PLASMACYTOSIS HYPERPLASIA, LYMPHOID	(50) (27) (27)	(10%)	1 (47) (26) 1 (26)	(2%)	(49) 1 (25) (25) 1 1	(2%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE PLASMACYTOSIS HYPERPLASIA, LYMPHOID #MESENTERIC L. NODE	(50) (27)	(1076)	1 (47) (26) 1	(2%)	(49) 1 (25) (25) 1 1 (25)	(2%) (4%) (4%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE PLASMACYTOSIS HYPERPLASIA, LYMPHOID #MESENTERIC L. NODE CYST, NOS	(50) (27) (27) (27)		1 (47) (26) 1 (26) (26)	(2%) (4%)	(49) 1 (25) (25) 1 1 (25)	(2%) (4%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE PLASMACYTOSIS HYPERPLASIA, LYMPHOID #MESENTERIC L. NODE CYST, NOS CONGESTION, NOS	(50) (27) (27) (27)	(11%)	1 (47) (26) 1 (26) (26)	(2%) (4%) (4%)	(49) 1 (25) (25) 1 1 (25)	(2%) (4%) (4%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE PLASMACYTOSIS HYPERPLASIA, LYMPHOID #MESENTERIC L. NODE CYST, NOS CONGESTION, NOS HEMORRHAGE	(50) (27) (27) (27)		1 (47) (26) 1 (26) (26) 1 1	(2%) (4%) (4%) (4%)	(49) 1 (25) (25) 1 (25) 1	(2%) (4%) (4%) (4%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE PLASMACYTOSIS HYPERPLASIA, LYMPHOID #MESENTERIC L. NODE CYST, NOS CONGESTION, NOS HEMORRHAGE HYPERPLASIA, LYMPHOID	(50) (27) (27) (27) 3	(11%)	1 (47) (26) 1 (26) (26) 1 1 4	(2%) (4%) (4%) (4%) (15%)	(49) 1 (25) (25) 1 (25) 1 (25) 1	(2%) (4%) (4%) (4%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE PLASMACYTOSIS HYPERPLASIA, LYMPHOID #MESENTERIC L. NODE CYST, NOS CONGESTION, NOS HEMORRHAGE HYPERPLASIA, LYMPHOID HEMATOPOIESIS	(50) (27) (27) (27) 3 3		1 (47) (26) 1 (26) (26) 1 1 4 4	(2%) (4%) (4%) (4%)	(49) 1 (25) (25) 1 (25) 1 (25) 1 1 3	(2%) (4%) (4%) (4%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE PLASMACYTOSIS HYPERPLASIA, LYMPHOID #MESENTERIC L. NODE CYST, NOS CONGESTION, NOS HEMORRHAGE HYPERPLASIA, LYMPHOID HEMATOPOIESIS #INGUINAL LYMPH NODE	(50) (27) (27) (27) 3	(11%)	1 (47) (26) 1 (26) (26) 1 1 4	(2%) (4%) (4%) (4%) (15%)	(49) 1 (25) (25) 1 (25) 1 (25) 1 1 3 (25)	(2%) (4%) (4%) (4%) (12%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE PLASMACYTOSIS HYPERPLASIA, LYMPHOID #MESENTERIC L. NODE CYST, NOS CONGESTION, NOS HEMORRHAGE HYPERPLASIA, LYMPHOID HEMATOPOIESIS #INGUINAL LYMPH NODE NECROSIS, NOS	(50) (27) (27) (27) 3 3	(11%)	1 (47) (26) 1 (26) (26) 1 1 4 4	(2%) (4%) (4%) (4%) (15%)	(49) 1 (25) (25) 1 (25) 1 (25) 1 3 (25) 1	(2%) (4%) (4%) (4%) (12%) (4%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE PLASMACYTOSIS HYPERPLASIA, LYMPHOID #MESENTERIC L. NODE CYST, NOS CONGESTION, NOS HEMORRHAGE HYPERPLASIA, LYMPHOID HEMATOPOIESIS #INGUINAL LYMPH NODE NECROSIS, NOS HYPERPLASIA, RETICULUM CELL	 (50) (27) (27) (27) 3 3 (27) 	(11%)	1 (47) (26) 1 (26) (26) 1 1 4 4 (26)	(2%) (4%) (4%) (4%) (15%)	(49) 1 (25) (25) 1 (25) 1 (25) 1 3 (25) 1 1 1	(2%) (4%) (4%) (4%) (12%)
ERYTHROPOIESIS #SPLENIC FOLLICLES ATROPHY, NOS #LYMPH NODE INFLAMMATION, ACUTE/CHRONIC #MANDIBULAR L. NODE PLASMACYTOSIS HYPERPLASIA, LYMPHOID #MESENTERIC L. NODE CYST, NOS CONGESTION, NOS HEMORRHAGE HYPERPLASIA, LYMPHOID HEMATOPOIESIS #INGUINAL LYMPH NODE NECROSIS, NOS	(50) (27) (27) (27) 3 3	(11%)	1 (47) (26) 1 (26) (26) 1 1 4 4 (26) (47)	(2%) (4%) (4%) (4%) (15%)	(49) 1 (25) (25) 1 (25) 1 (25) 1 3 (25) 1 1 (50)	(2%) (4%) (4%) (4%) (12%) (4%)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE

	CONTR	OL (VEH)	LOW	OSE	HIGH	DOSE
HEMATOPOIETIC SYSTEM (Continued)					- <u></u>	
#DUODENUM	(46)		(39)		(43)	
HYPERPLASIA, LYMPHOID	(10)			(3%)		
#JEJUNUM	(46)		(39)		(43)	
HYPERPLASIA, LYMPHOID	•	(2%)	,			
#THYMUS	(36)	· ·	(35)		(37)	
INFLAMMATION, ACUTE			1	(3%)		
NECROSIS, NOS			1	(3%)		
HYPERPLASIA, LYMPHOID			1	(3%)		
#THYMIC LYMPHOCYTES	(36)		(35)		(37)	
NECROSIS, NOS			1	(3%)		
IRCULATORY SYSTEM						
#MESENTERIC L. NODE	(27)		(26)		(25)	
LYMPHANGIECTASIS					1	(4%)
#HEART	(50)		(47)		(50)	
THROMBOSIS, NOS			1	(2%)		
CALCIFICATION, FOCAL				(2%)		
#MYOCARDIUM	(50)		(47)		(50)	
MINERALIZATION			1	(2%)		
DEGENERATION, NOS	1	(2%)				
CALCIFICATION, FOCAL	-		14795			(2%)
*PULMONARY ARTERY LYMPHOCYTIC INFLAMMATORY INFILTR	(50)		(47)		(50)	(2%)
DIGESTIVE SYSTEM #SALIVARY GLAND	(50)		(45)		(48)	
LYMPHOCYTIC INFLAMMATORY INFILTE	t 1	(2%)				
#LIVER	(50)		(47)		(50)	
HAMARTOMA	1	(2%)				
CYST, NOS	1	(2%)				
HEMORRHAGE			1	(2%)		
HEMATOCELE			•			(2%)
LYMPHOCYTIC INFLAMMATORY INFILTR	1	(2%)		(4%)	2	(4%)
FIBROSIS, FOCAL			1	(2%)		(00)
DEGENERATION, NOS						(2%)
NECROSIS, FOCAL	~	(401)				(4%)
INFARCT, NOS		(4 %)	1	(99)		(4%) (2%)
METAMORPHOSIS FATTY	I	(2%)	1	(2%)		(2%) (2%)
PIGMENTATION, NOS CYTOPLASMIC VACUOLIZATION						(2%)
BASOPHILIC CYTO CHANGE			9	(4%)		(2%)
GROUND-GLASS CYTO CHANGE	1	(2%)	2	(3/0)	•	(20)
FOCAL CELLULAR CHANGE	1	\			1	(2%)
INCLUSION, CYTOPLASMIC						(2%)
HEPATOCYTOMEGALY			1	(2%)		(2%)
#LIVER/CENTRILOBULAR	(50)		(47)	,	(50)	
CYTOPLASMIC VACUOLIZATION		(2%)	(/		(20)	
#LIVER/KUPFFER CELL	(50)		(47)		(50)	
HYPERPLASIA, NOS		(2%)				
#LIVER/HEPATOCYTES	(50)		(47)		(50)	
MULTINUCLEATE GIANT-CELL	1	(2%)				
#PANCREAS	(50)		(47)		(49)	
CYST, NOS				(2%)		
CYSTIC DUCTS				(2%)		
#PANCREATIC ACINUS	(50)		(47)		(49)	
ATROPHY, NOS ATROPHY, FOCAL		(2%) (2%)		(2%) (6%)	1	(2%)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

	CONTRO	DL (VEH)	LOWI	DOSE	HIGH	DOSE
DIGESTIVE SYSTEM (Continued)		·				
#ESOPHAGUS	(46)		(46)		(48)	
INFLAMMATION, ACUTE NECROTIZING			,	(2%)	(40)	
#PERIESOPHAGEAL TISSUE	(46)		(46)	(2,0)	(48)	
HEMORRHAGE		(2%)	(10)		(40)	
INFLAMMATION ACTIVE CHRONIC	-	(,	1	(2%)		
#STOMACH	(50)		(45)		(47)	
MINERALIZATION				(2%)		
ULCER, NOS				(2%)		
INFLAMMATION, SUPPURATIVE			-	(=);	1	(2%)
INFLAMMATION, ACUTE/CHRONIC						(2%)
EOSINOPHILIC INFILTRATE			2	(4%)		
INFLAMMATION, CHRONIC FOCAL				(/	1	(2%)
ANGIECTASIS						(2%)
#GASTRIC MUCOSA	(50)		(45)		(47)	
CYST, NOS		(2%)	,			
#GLANDULAR STOMACH	(50)	(=);;	(45)		(47)	
ABSCESS, NOS						(2%)
CALCIFICATION, FOCAL						(2%)
#GASTRIC SUBMUCOSA	(50)		(45)		(47)	(270)
INFLAMMATION, ACUTE FOCAL	(007		(40)			(2%)
#FORESTOMACH	(50)		(45)		(47)	(2.10)
INFLAMMATION, ACUTE	(00)		(40)			(2%)
INFLAMMATION, ACUTE/CHRONIC						(2%)
JRINARY SYSTEM						
#KIDNEY	(50)		(47)	(90)	(50)	
MINERALIZATION			1	(2%)		
HYDRONEPHROSIS						(2%)
CYST, NOS	1	(2%)	1	(2%)		(4%)
PYELONEPHRITIS, NOS			· ·			(2%)
LYMPHOCYTIC INFLAMMATORY INFILT		(38%)	13	(28%)	13	(26%)
PYELONEPHRITIS, ACUTE	1	(2%)				· ·
INFLAMMATION, CHRONIC FOCAL						(2%)
NEPHROPATHY		(4%)				(2%)
CALCIFICATION, FOCAL	5	(10%)		(9%)	6	(12%)
ATROPHY, FOCAL				(2%)		
METAPLASIA, OSSEOUS			2	(4%)		
#KIDNEY/CORTEX	(50)		(47)		(50)	
ATROPHY, FOCAL					2	(4%)
#KIDNEY/TUBULE	(50)		(47)		(50)	
DEGENERATION, HYALINE	1	(2%)				
NECROSIS, NOS						(2%)
CYTOPLASMIC VACUOLIZATION						(4%)
#URINARY BLADDER	(50)		(46)		(46)	
CALCULUS, GROSS OBSERVATION ONLY	7				1	(2%)
HEMORRHAGE	1	(2%)				
LYMPHOCYTIC INFLAMMATORY INFILT		(6%)			1	(2%)
INFLAMMATION, ACUTE	1	(2%)				
INFLAMMATION, CHRONIC						(2%)
HYPERPLASIA, PAPILLARY					1	(2%)
NDOCRINE SYSTEM						
#PITUITARY	(49)		(45)		(48)	
		(4%)		(4%)		
CYST. NOS		(2%)		(2%)	1	(2%)
CYST, NOS HYPERPLASIA FOCAL	1				*	
HYPERPLASIA, FOCAL		(270)		x = <i>x</i> = <i>x</i>	(49)	
HYPERPLASIA, FOCAL #ADRENAL	(50)		(46)		(49)	
HYPERPLASIA, FOCAL	(50) 1	(2%) (2%)		((49)	

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

	CONTRO	DL (VEH)	LOWI	DOSE	HIGH DOS	
ENDOCRINE SYSTEM (Continued)						
#ADRENAL CORTEX	(50)		(46)		(49)	
ACCESSORY STRUCTURE	(30)			(2%)	(43)	
				(2%)		
HEMATOMA, NOS				(2%)	0	(4%)
DEGENERATION, NOS FOCAL CELLULAR CHANGE	1	(2%)	1	(270)	2	(4,70)
HYPERPLASIA, FOCAL		(4%)	9	(4%)	9	(4%)
				(4970)		(4970)
#ADRENAL MEDULLA	(50)		(46)		(49)	
FIBROSIS, FOCAL	1	(2%)				(00)
HYPERPLASIA, NOS					-	(2%)
#THYROID	(44)		(45)		(49)	
FOLLICULAR CYST, NOS						(2%)
HYPERPLASIA, FOLLICULAR-CELL	2	(5%)	2	(4%)	5	(10%)
EPRODUCTIVE SYSTEM						
*PREPUCE	(50)		(47)		(50)	
INFLAMMATION, ACUTE		(2%)	(=1)		(00)	
*PREPUTIAL GLAND	(50)	(2.10)	(47)		(50)	
DILATATION, NOS		(4%)	(=1)		(00)	
	4	(4970)			1	(2%)
INFLAMMATION, SUPPURATIVE						
ABSCESS, NOS					-	(4%)
INFLAMMATION, CHRONIC	1	(2%)				(2%)
INFLAMMATION, GRANULOMATOUS						(2%)
INFLAMMATION, PYOGRANULOMATOU	S				-	(2%)
HYPERPLASIA, NOS					1	(2%)
#PROSTATE	(46)		(44)		(48)	
LYMPHOCYTIC INFLAMMATORY INFILT	R 1	(2%)	3	(7%)		
INFLAMMATION, SUPPURATIVE	1	(2%)				
INFLAMMATION, ACUTE		(2%)				
INFLAMMATION, CHRONIC	-				1	(2%)
INFLAMMATION, CHRONIC FOCAL						(2%)
HYPERPLASIA, FOCAL						(2%)
*SEMINAL VESICLE	(50)		(47)		(50)	(2,0)
DILATATION, NOS		(4%)		(2%)		(2%)
*COAGULATING GLAND		(4,0)	(47)	(2,0)	(50)	(2 10)
	(50)	(10)	(487)		,	(4%)
DILATATION, NOS		(4%)	(10)			(4970)
#TESTIS	(50)		(47)		(50)	
MINERALIZATION						(4%)
CALCIFICATION, NOS						(2%)
CALCIFICATION, FOCAL	2	(4%)		(19%)	24	(48%)
ATROPHY, NOS	_			(2%)		
#TESTIS/TUBULE	(50)		(47)		(50)	_
CALCIFICATION, FOCAL	1	(2%)				(2%)
CYTOMEGALY					1	(2%)
ATROPHY, FOCAL	1	(2%)				
#SPERMATID	(50)		(47)		(50)	
CYTOMEGALY			1	(2%)	1	(2%)
IERVOUS SYSTEM						
#BRAIN/MENINGES	(50)		(47)		(49)	
LYMPHOCYTIC INFLAMMATORY INFILT		(2%)		(2%)		(2%)
#LATERAL VENTRICLE	(50)		(47)		(49)	
		(90)	(41)		(483)	
DILATATION, NOS		(2%)	(A 17) \		(50)	
*CHOROID PLEXUS	(50)		(47)	(00)	(50)	
HEMOSIDEROSIS				(2%)		
#BRAIN CALCIFICATION, FOCAL	(50)		(47)		(49)	
	00	(44%)	15	(32%)	92	(47%)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

	CONTROL (VEH)	LOWDO	OSE	HIGH	DOSE
SPECIAL SENSE ORGANS NONE					
MUSCULOSKELETAL SYSTEM NONE					
BODY CAVITIES			<u></u>		
*MEDIASTINUM	(50)	(47)		(50)	
VEGETABLE FOREIGN BODY			2%)		
INFLAMMATION, SUPPURATIVE INFLAMMATION, FIBRINOUS			2%) 2%)		
ABSCESS, NOS		- ,	2%) 2%)		
FOREIGN MATERIAL, NOS			2%) 2%)		
*ABDOMINAL CAVITY	(50)	(47)	270)	(50)	
NECROSIS, FAT	1 (2%)		2%)	(,	
*PERITONEUM	(50)	(47)		(50)	
INFLAMMATION, ACUTE/CHRONIC				1	(2%)
*PLEURA	(50)	(47)		(50)	
INFLAMMATION, SUPPURATIVE			2%)		
*EPICARDIUM	(50)	(47)		(50)	
INFLAMMATION, FIBRINOUS			2%)		
INFLAMMATION, ACUTE/CHRONIC		1 (2%) 		
ALL OTHER SYSTEMS					
*MULTIPLE ORGANS	(50)	(47)		(50)	
LYMPHOCYTIC INFLAMMATORY INFILT	R	2 (4%)		
SPECIAL MORPHOLOGY SUMMARY					
NO LESION REPORTED	2	2			
ANIMAL MISSING/NO NECROPSY		3			
AUTO/NECROPSY/HISTO PERF				1	

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY *** NUMBER OF** ANIMALS NECROPSIED

(CONTROL (VEH)	LOW DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50	50	50	
ANIMALS MISSING		1		
ANIMALS NECROPSIED	50	49	50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50	49	50	
NTEGUMENTARY SYSTEM				
*SKIN	(50)	(49)	(50)	
ULCER, NOS			1	(2%)
ESPIRATORY SYSTEM				
#LUNG	(50)	(49)	(50)	
MINERALIZATION	1 (2%)		(00)	
ATELECTASIS	2 (4%)		1	(2%)
CONGESTION, NOS	1 (2%)		1	(2%)
HEMORRHAGE	1 (2%)		2	(4%)
LYMPHOCYTIC INFLAMMATORY INFILTE	2 9 (18%)	7 (14%		(30%)
INFLAMMATION, INTERSTITIAL		1 (2%)		(2%)
PNEUMONIA, ASPIRATION			1	(2%)
INFLAMMATION, ACUTE/CHRONIC		1 (2%)		
#LUNG/ALVEOLI	(50)	(49)	(50)	
HISTIOCYTOSIS			1	(2%)
IEMATOPOIETIC SYSTEM				
*MULTIPLE ORGANS	(50)	(49)	(50)	
MYELOPROLIFERATIVE DISORDER		1 (2%)		
#BONE MARROW	(48)	(49)	(48)	
MYELOFIBROSIS	37 (77%)	38 (78%) 37	(77%)
#SPLEEN	(50)	(48)	(48)	
HYPERPLASIA, LYMPHOID	2 (4%)	2 (4%)		(6%)
HEMATOPOIESIS	2 (4%)	5 (10%	. –	(4%)
#MANDIBULAR L. NODE	(39)	(37)	(33)	
HYPERPLASIA, LYMPHOID	1 (3%)	1 (3%)	1	(3%)
#MESENTERIC L. NODE	(39)	(37)	(33)	
HEMORRHAGE		1 (3%)		
ABSCESS, NOS			1	(3%)
#LIVER	(50)	(49)	(50)	
HEMATOPOIESIS		2 (4%)		(2%)
#JEJUNUM	(47)	(49)	(45)	
HYPERPLASIA, LYMPHOID	1 (2%)			
#THYMUS	(44)	(38)	(45)	(00)
ULTIMOBRANCHIAL CYST		0 /F~	1	(2%)
HYPERPLASIA, LYMPHOID	1 (2%)	2 (5%)	(AP)	
#THYMIC LYMPHOCYTES	(44)	(38)	(45)	(90)
NECROSIS, NOS			1	(2%)
RCULATORY SYSTEM	(00)		/ * - ·	
#LYMPH NODE	(39)	(37)	(33)	
LYMPHANGIECTASIS	/ 	1 (3%)		
#HEART	(50)	(49)	(49)	
INFLAMMATION, CHRONIC FOCAL				(2%)
*PULMONARY ARTERY	(50)	(49)	(50)	
MINERALIZATION	1 (2%)			(a)
CALCIFICATION, FOCAL	(F A)			(2%)
*MESENTERIC ARTERY	(50)	(49)	(50)	
INFLAMMATION, CHRONIC	(F A)	1 (2%)		
*OVARIAN ARTERY	(50)	(49)	(50)	
NECROSIS, FIBRINOID		1 (2%)		

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE

C	ONTRO	L (VEH)	LOWI	DOSE	OSE HIGH D	
DIGESTIVE SYSTEM		<u> </u>			<u></u>	
#SALIVARY GLAND	(48)		(47)		(45)	
LYMPHOCYTIC INFLAMMATORY INFILTR	1	(2%)			1	(2%)
#LIVER	(50)		(49)		(50)	
LYMPHOCYTIC INFLAMMATORY INFILTR	2	(4%)	2	(4%)	4	(8%)
INFLAMMATION GRANULOMATOUS FOCA	L		1	(2%)		
NECROSIS, NOS	-	(2%)				
NECROSIS, FOCAL	1	(2%)				(6%)
METAMORPHOSIS FATTY			1	(2%)		(8%)
LIPOIDOSIS		(07)			1	(2%)
BASOPHILIC CYTO CHANGE		(2%)		(6%)	(50)	
#PORTAL TRACT	(50)	(2%)	(49)		(50)	
INFLAMMATION, ACUTE/CHRONIC #LIVER/HEPATOCYTES	(50)	(270)	(49)		(50)	
#LIVENHEFATOCITES HYPERTROPHY, NOS		(2%)	(49)		(50)	
#PANCREAS	(49)	(270)	(40)		(40)	
#PANCREAS CYST, NOS		(2%)	(49)		(49)	
CYSTIC DUCTS	1	(270)		(2%)	1	(2%)
METAMORPHOSIS FATTY	1	(2%)	1	(470)	1	(270)
#PANCREATIC ACINUS	(49)	(470)	(49)		(49)	
ATROPHY, NOS	(43)			(2%)		(4%)
ATROPHY, FOCAL			1	(270)		(4.70)
#STOMACH	(49)		(49)		(49)	(270)
ULCER, NOS	(40)		(43/			(2%)
LYMPHOCYTIC INFLAMMATORY INFILTR						(2%)
INFLAMMATION, ACUTE						(2%)
INFLAMMATION, CHRONIC FOCAL						(2%)
HYPERPLASIA, ADENOMATOUS	1	(2%)			-	(=,
#GASTRIC MUCOSA	(49)	(= / • /	(49)		(49)	
NECROSIS, FOCAL	()		(,			(2%)
#GASTRIC SUBMUCOSA	(49)		(49)		(49)	
INFLAMMATION, CHRONIC				(2%)		
#FORESTOMACH	(49)		(49)	L = 1 1 1	(49)	
ULCER, NOS					1	(2%)
INFLAMMATION, ACUTE/CHRONIC					2	(4%)
HYPERPLASIA, EPITHELIAL					2	(4%)
#PEYER'S PATCH	(47)		(49)		(45)	
HYPERPLASIA, NOS			1	(2%)		
#DUODENUM	(47)		(49)		(45)	
ULCER, NOS						(2%)
#JEJUNUM	(47)		(49)		(45)	
EOSINOPHILIC GRANULOMA	1	(2%)				
RINARY SYSTEM						
#KIDNEY	(50)		(49)		(49)	
HYDRONEPHROSIS	1	(2%)			1	(2%)
LYMPHOCYTIC INFLAMMATORY INFILTR	18	(36%)		(31%)		(33%)
GLOMERULONEPHRITIS, MEMBRANOUS			1	(2%)		
GLOMERULONEPHRITIS, CHRONIC		(2%)				
NEPHROSIS, NOS	1	(2%)				
AMYLOIDOSIS			1	(2%)		(2%)
CALCIFICATION, FOCAL			-		1	(2%)
ATROPHY, FOCAL		(00)	2	(4%)		(00)
METAPLASIA, OSSEOUS		(2%)				(2%)
#KIDNEY/INTERST.TISSUE	(50)		(49)		(49)	(0.07)
INFLAMMATION, CHRONIC FOCAL	/=					(2%)
#KIDNEY/CORTEX	(50)	(0.00)	(49)		(49)	
ATROPHY, FOCAL		(6%)		(4%)		(4%)
#KIDNEY/PELVIS	(50)		(49)	(2%)	(49)	
INFLAMMATION, CHRONIC						

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

	CONTROL (VEH)		LOW DOSE		HIGH DOSE		
URINARY SYSTEM (Continued)							
#URINARY BLADDER	(48)		(44)		(47)		
LYMPHOCYTIC INFLAMMATORY INFILT		(29%)		(39%)		(34%)	
INFLAMMATION, CHRONIC		(23%)		(2%)	10	104/07	
INFLAMMATION, CHRONIC FOCAL	1	(2%)	1	(270)			
#U. BLADDER/MUCOSA	(48)		(44)		(47)		
INFLAMMATION, ACUTE	(40)			(2%)	(=//		
#U. BLADDER/SUBMUCOSA	(48)		(44)	(2,0)	(47)		
LYMPHOCYTIC INFLAMMATORY INFILTI			(,			(2%)	
NDOCRINE SYSTEM							
#PITUITARY	(46)		(45)		(48)		
CYST, NOS	2	(4%)		(7%)		(2%)	
HEMORRHAGIC CYST	-		-			(2%)	
HEMATOCELE	1	(2%)			-	(= /0 /	
HYPERPLASIA, FOCAL		(15%)	8	(18%)	7	(15%)	
ANGIECTASIS			0	(10/0/		(6%)	
#ANTERIOR PITUITARY	(46)		(45)		(48)		
HYPERPLASIA, FOCAL			,			(2%)	
ANGIECTASIS						(2%)	
#ADRENAL	(49)		(45)		(47)		
CYST, NOS	(10)			(2%)	,		
CONGESTION, NOS			-		1	(2%)	
FOCAL CELLULAR CHANGE	1	(2%)			-		
#ADRENAL CORTEX	(49)	(=	(45)		(47)		
DEGENERATION, NOS	(,	(2%)		(2%)		(2%)	
HYPERPLASIA, FOCAL	-	(= / • /		(2%)	-		
#ADRENAL MEDULLA	(49)		(45)	(2,0)	(47)		
HYPERPLASIA, FOCAL	(40)			(2%)		(4%)	
#PERIADRENAL TISSUE	(49)		(45)	(2.10)	(47)	(12/07	
LYMPHOCYTIC INFLAMMATORY INFILT				(2%)	(41)		
#THYROID	(47)		(48)	(270)	(48)		
FOLLICULAR CYST, NOS		(2%)	(40)		(40)		
LYMPHOCYTIC INFLAMMATORY INFILTE		(2.10)	2	(4%)	1	(2%)	
ATROPHY, FOCAL	•		2	(4,0)		(2%)	
HYPERPLASIA, DIFFUSE						(2%)	
HYPERPLASIA, FOLLICULAR-CELL	3	(6%)	5	(10%)		(8%)	
EPRODUCTIVE SYSTEM *MAMMARY GLAND	(50)		(49)		(50)		
INFLAMMATION, CHRONIC		(2%)			(00)		
LACTATION		(2%)	1	(2%)	4	(8%)	
*MAMMARY DUCT	(50)		(49)	,,	(50)		
FIBROSIS, FOCAL	(00)					(2%)	
*MAMMARY LOBULE	(50)		(49)		(50)		
HYPERPLASIA, NOS		(2%)				(2%)	
#UTERUS	(49)		(49)		(49)		
HYDROMETRA	,			(2%)			
INFLAMMATION, SUPPURATIVE				(2%)			
INFLAMMATION, FIBRINOUS				(2%)			
#UTERUS/ENDOMETRIUM	(49)		(49)		(49)		
HYPERPLASIA, NOS			1	(2%)	1	(2%)	
HYPERPLASIA, CYSTIC	43	(88%)		(84%)	41	(84%)	
#OVARY	(47)		(48)		(49)		
CYST, NOS		(21%)		(10%)		(14%)	
MULTIPLE CYSTS		(2%)					
HEMORRHAGIC CYST	-				1	(2%)	
HEMATOCELE	1	(2%)					
ANGIECTASIS	-			(2%)			

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

CONTROL (VEH)	LOW DOSE	HIGH DOS		
		· ····=		
(50)	(49)	(50)		
		2 (4%)		
(50)	(49)	(50)		
		1 (2%) 1 (2%)		
20 (40%)	20 (41%)	23 (46%)		
(50)	(49)	(50)		
	1 (2%)			
(50)	(49)	(50)		
/E		1 (2%)		
·				
(50)	(49)	(50)		
	3 (6%)			
	,			
		1		
	1			
	1			
	$\frac{(50)}{(50)}$ $\frac{20}{(40\%)}$ (50) $\frac{(50)}{7E}$ (50)	$\frac{(50)}{(50)} \qquad \begin{array}{c} (49)\\ 2 \\ (49)\\ (50)\\ \hline \\ 20 \\ (40\%)\\ \hline \\ 20 \\ (40\%)\\ \hline \\ 20 \\ (49)\\ \hline \\ 1 \\ (2\%)\\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$		

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

APPENDIX E

ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OFDIMETHYL HYDROGEN PHOSPHITE

	Vehicle Control	100 mg/kg	200 mg/kg
Subcutaneous Tissue: Fibroma		***************************************	
Overall Rates (a)	3/50 (6%)	1/50 (2%)	3/50 (6%)
Adjusted Rates (b)	7.7%	3.3%	9.5%
Terminal Rates (c)	3/39 (8%)	1/30 (3%)	1/26 (4%)
Life Table Tests (d)	P=0.438	P = 0.403N	P=0.497
Incidental Tumor Tests (d)	P = 0.579	P = 0.403N	P = 0.661 N
Cochran-Armitage Trend Test (d)	P = 0.594		
Fisher Exact Test		P=0.309N	P=0.661
ubcutaneous Tissue: Fibroma or Fibrosa	rcoma		
Overall Rates (a)	3/50 (6%)	1/50 (2%)	4/50 (8%)
Adjusted Rates (b)	7.7%	3.3%	13.2%
Terminal Rates (c)	3/39 (8%)	1/30 (3%)	2/26 (8%)
Life Table Tests (d)	P=0.259	P = 0.403N	P = 0.316
Incidental Tumor Tests (d)	P = 0.373	P=0.403N	P = 0.477
Cochran-Armitage Trend Test (d)	P = 0.412		
Fisher Exact Test		P=0.309N	P=0.500
ung: Squamous Cell Carcinoma			
Overall Rates (a)	0/50 (0%)	0/50 (0%)	5/50 (10%)
Adjusted Rates (b)	0.0%	0.0%	14.2%
Terminal Rates (c)	0/39 (0%)	0/30 (0%)	1/26 (4%)
Life Table Tests (d)	P = 0.004	(e)	P=0.020
Incidental Tumor Tests (d)	P = 0.034	(e)	P = 0.141
Cochran-Armitage Trend Test (d)	P = 0.006	(0)	
Fisher Exact Test		(e)	P=0.028
ung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	0/50 (0%)	0/50 (0%)	5/50 (10%)
Adjusted Rates (b)	0.0%	0.0%	15.2%
Terminal Rates (c)	0/39 (0%)	0/30 (0%)	2/26 (8%)
Life Table Tests (d)	P = 0.004	(e)	P=0.018
Incidental Tumor Tests (d)	P = 0.017	(e)	P = 0.074
Cochran-Armitage Trend Test (d)	P = 0.006		
Fisher Exact Test	1 -0.000	(e)	P = 0.028
ung: Alveolar/Bronchiolar Carcinoma			
Overall Rates (a)	0/50 (0%)	1/50 (2%)	20/50 (40%)
Adjusted Rates (b)	0.0%	3.3%	63.5%
Terminal Rates (c)	0/39 (0%)	1/30 (3%)	15/26 (58%)
Life Table Tests (d)	P<0.001	P = 0.448	P<0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.448	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001	* - VI FTV	6 3VIVV6
Fisher Exact Test	0.001	P=0.500	P<0.001
ung: Alveolar/Bronchiolar Adenoma or C	arcinoma		
Overall Rates (a)	0/50 (0%)	1/50 (2%)	24/50 (48%)
Adjusted Rates (b)	0.0%	3.3%	71.8%
Terminal Rates (c)	0/39 (0%)	1/30 (3%)	17/26 (65%)
Life Table Tests (d)	P<0.001	P=0.448	P<0.001
Incidental Tumor Tests (d)	P<0.001	P=0.448	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Test		P=0.500	P<0.001
lematopoietic System: Mononuclear Cell l	Leukemia		
Overall Rates (a)	9/50 (18%)	15/50 (30%)	13/50 (26%)
Adjusted Rates (b)	21.1%	39.0%	36.3%
Terminal Rates (c)	6/39 (15%)	7/30 (23%)	6/26 (23%)
Life Table Tests (d)	P = 0.068	P = 0.048	P = 0.084
Incidental Tumor Tests (d)	P = 0.458	P = 0.196	P = 0.467
	P = 0.208		
Cochran-Armitage Trend Test (d)			

	Vehicle Control	100 mg/kg	200 mg/kg
liver: Neoplastic Nodule	<u>,</u>		
Overall Rates (a)	3/50 (6%)	0/50 (0%)	0/50 (0%)
Adjusted Rates (b)	7.2%	0.0%	0.0%
Terminal Rates (c)	2/39 (5%)	0/30 (0%)	0/26 (0%)
Life Table Tests (d)	P = 0.061 N	P = 0.169N	P = 0.180N
Incidental Tumor Tests (d)	P = 0.022N	P = 0.109N	P = 0.074N
Cochran-Armitage Trend Test (d)	P = 0.022 N P = 0.037 N	F=0.1091	r - 0.07414
Fisher Exact Test	F = 0.0371	P = 0.121N	P = 0.121 N
orestomach: Squamous Cell Papilloma			
Overall Rates (a)	0/50 (0%)	1/50 (2%)	3/50 (6%)
Adjusted Rates (b)	0.0%	3.3%	10.8%
Terminal Rates (c)	0/39 (0%)	1/30 (3%)	2/26 (8%)
Life Table Tests (d)	P = 0.032	P = 0.448	P=0.067
Incidental Tumor Tests (d)	P = 0.052	P = 0.448	P=0.115
Cochran-Armitage Trend Test (d)	P = 0.060		
Fisher Exact Test		P = 0.500	P=0.121
Call Card			
orestomach: Squamous Cell Carcinoma Overall Rates (a)	0/50 (0%)	0/50 (0%)	3/50 (6%)
Adjusted Rates (b)	0.0%	0.0%	10.1%
· · · · · · · · · · · · · · · · · · ·			
Terminal Rates (c)	0/39 (0%)	0/30 (0%)	1/26 (4%)
Life Table Tests (d)	P = 0.023	(e)	P=0.074
Incidental Tumor Tests (d)	P = 0.066	(e)	P = 0.196
Cochran-Armitage Trend Test (d) Fisher Exact Test	P=0.037	(e)	P = 0.121
rishel Bract Test		(6)	r = 0.121
orestomach: Squamous Cell Papilloma or	Carcinoma		
Overall Rates (a)	0/50 (0%)	1/50 (2%)	6/50 (12%)
Adjusted Rates (b)	0.0%	3.3%	20.0%
Terminal Rates (c)	0/39 (0%)	1/30 (3%)	3/26 (12%)
Life Table Tests (d)	P = 0.002	P = 0.448	P = 0.006
Incidental Tumor Tests (d)	P = 0.006	P = 0.448	P = 0.025
Cochran-Armitage Trend Test (d)	P = 0.005	1-0.440	r = 0.020
Fisher Exact Test	P=0.005	P=0.500	P=0.013
risher Daact rest		r = 0.000	1 -0.015
tuitary: Adenoma			
Overall Rates (a)	16/48 (33%)	8/50 (16%)	14/48 (29%)
Adjusted Rates (b)	37.8%	24.2%	45.3%
Terminal Rates (c)	13/39 (33%)	6/30 (20%)	10/26 (38%)
Life Table Tests (d)	P=0.329	P = 0.173N	P=0.316
Incidental Tumor Tests (d)	P = 0.501N	P=0.069N	P = 0.563
Cochran-Armitage Trend Test (d)	P = 0.364N		
Fisher Exact Test		P=0.039N	P=0.413N
drenal: Pheochromocytoma	0/00 /100	0/50 (10%)	0/60 /04
Overall Rates (a)	6/50 (12%)	9/50 (18%)	3/50 (6%)
Adjusted Rates (b)	15.4%	27.9%	11.5%
Terminal Rates (c)	6/39 (15%)	7/30 (23%)	3/26 (12%)
Life Table Tests (d)	P = 0.483N	P = 0.134	P = 0.471N
Incidental Tumor Tests (d)	P = 0.387N	P = 0.173	P = 0.471N
Cochran-Armitage Trend Test (d)	P = 0.221N		
Fisher Exact Test		P=0.288	P=0.243N
yroid: C-Cell Adenoma			
Overall Rates (a)	2/50 (4%)	4/47 (9%)	3/49 (6%)
Adjusted Rates (b)	5.1%	12.8%	9.5%
Terminal Rates (c)	2/39 (5%)	3/29 (10%)	5.570 1/26 (4%)
Life Table Tests (d)	•		
	P = 0.263	P = 0.221	P = 0.353
Incidental Tumor Tests (d)	P = 0.454	P=0.275	P = 0.532
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.407	P=0.310	P=0.490

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

	Vehicle Control	100 mg/kg	200 mg/kg
hyroid: C-Cell Adenoma or Carcinoma	-,		
Overall Rates (a)	4/50 (8%)	4/47 (9%)	3/49 (6%)
Adjusted Rates (b)	9.8%	12.8%	9.5%
Terminal Rates (c)	3/39 (8%)	3/29 (10%)	1/26 (4%)
Life Table Tests (d)	P = 0.539	P = 0.492	P = 0.635
Incidental Tumor Tests (d)	P = 0.368N	P = 0.582	P = 0.442N
Cochran-Armitage Trend Test (d)	P = 0.436N		
Fisher Exact Test		P = 0.607	P = 0.511N
estis: Interstitial Cell Tumor			
Overall Rates (a)	42/50 (84%)	37/49 (76%)	35/50 (70%)
Adjusted Rates (b)	91.3%	97.3%	91.8%
Terminal Rates (c) Life Table Tests (d)	35/39 (90%)	29/30 (97%)	23/26 (88%) P=0.148
Incidental Tumor Tests (d)	P = 0.106 P = 0.108N	P = 0.197 P = 0.557N	P = 0.148 P = 0.127N
		P=0.557N	P = 0.127 N
Cochran-Armitage Trend Test (d) Fisher Exact Test	P=0.063N	P=0.212N	P = 0.077N
risner Exact lest		P = 0.212N	$\mathbf{F} = 0.0771\mathbf{N}$
estis: Mesothelioma			
Overall Rates (a)	4/50 (8%)	1/49 (2%)	1/50 (2%)
Adjusted Rates (b)	8.6%	2.2%	3.8%
Terminal Rates (c)	0/39 (0%)	0/30 (0%)	1/26 (4%)
Life Table Tests (d)	P = 0.139N	P = 0.227N	P = 0.241N
Incidental Tumor Tests (d)	P = 0.024N	P = 0.056N	P = 0.034N
Cochran-Armitage Trend Test (d)	P = 0.102N		
Fisher Exact Test		P = 0.188N	P=0.181N
ll Sites: Mesothelioma			
Overall Rates (a)	6/50 (12%)	3/50 (6%)	2/50 (4%)
Adjusted Rates (b)	13.3%	7.7%	5.8%
Terminal Rates (c)	2/39 (5%)	1/30 (3%)	1/26 (4%)
Life Table Tests (d)	P = 0.152N	P = 0.341N	P = 0.218N
Incidental Tumor Tests (d)	P = 0.046N	P = 0.111N	P = 0.044N
Cochran-Armitage Trend Test (d)	P = 0.040 N P = 0.090N	1 -0.11111	1 - 0.04411
Fisher Exact Test	r - 0.03011	P = 0.244N	P=0.135N

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is presented because no tumors were observed in the 100 mg/kg and vehicle control groups.

TABLE E2.	ANALYSIS	OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE	
		STUDY OF DIMETHYL HYDROGEN PHOSPHITE	

	Vehicle Control	50 mg/kg	100 mg/kg	
ung: Alveolar/Bronchiolar Carcinoma				
Overall Rates (a)	0/50 (0%)	1/49 (2%)	3/50 (6%)	
Adjusted Rates (b)	0.0%	2.9%	8.8%	
Terminal Rates (c)	0/40 (0%)	1/35 (3%)	3/34 (9%)	
Life Table Tests (d)	P = 0.047	P = 0.473	P=0.094	
Incidental Tumor Tests (d)	P = 0.047	P = 0.473	P = 0.094	
Cochran-Armitage Trend Test (d)	P = 0.061	1 - 0.110		
Fisher Exact Test	1 = 0.001	P = 0.495	P = 0.121	
ematopoietic System: Mononuclear Cell				
Overall Rates (a)	6/50 (12%)	7/50 (14%)	7/50 (14%)	
Adjusted Rates (b)	12.8%	18.0%	17.4%	
Terminal Rates (c)	2/40 (5%)	5/35 (14%)	3/34 (9%)	
Life Table Tests (d)	P=0.368	P = 0.438	P = 0.434	
Incidental Tumor Tests (d)	P = 0.490	P = 0.534	P = 0.529	
Cochran-Armitage Trend Test (d)	P = 0.442			
Fisher Exact Test		P = 0.500	P = 0.500	
•/ •/ •				
ituitary: Adenoma Overall Rates (a)	18/49 (37%)	17/49 (35%)	24/50 (48%)	
		42.5%	24/30 (48%) 56.3%	
Adjusted Rates (b)	39.7%	42.5% 12/34 (35%)	50.3% 16/34 (47%)	
Terminal Rates (c)	13/40 (33%)			
Life Table Tests (d)	P = 0.067	P = 0.487	P = 0.081	
Incidental Tumor Tests (d)	P = 0.156	P = 0.515N	P = 0.220	
Cochran-Armitage Trend Test (d)	P = 0.148		D 0150	
Fisher Exact Test		P = 0.500N	P = 0.176	
drenal: Pheochromocytoma				
Overall Rates (a)	4/50 (8%)	3/50 (6%)	5/50 (10%)	
Adjusted Rates (b)	9.4%	8.6%	13.3%	
Terminal Rates (c)	2/40 (5%)	3/35 (9%)	3/34 (9%)	
Life Table Tests (d)	P = 0.358	P = 0.548N	P = 0.431	
Incidental Tumor Tests (d)	P = 0.308 P = 0.408	P = 0.508N	P = 0.542	
		1 = 0.00014	1 - 0.042	
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.427	P = 0.500 N	P = 0.500	
FISHEL DAACT TEST		1 - 0.00011		
hyroid: C-Cell Adenoma			1110 (00)	
Overall Rates (a)	3/49 (6%)	1/49 (2%)	4/47 (9%)	
Adjusted Rates (b)	7.5%	2.9%	11.8%	
Terminal Rates (c)	3/40 (7%)	1/34 (3%)	4/34 (12%)	
Life Table Tests (d)	P=0.338	P = 0.365N	P = 0.411	
Incidental Tumor Tests (d)	P = 0.338	P = 0.365N	P = 0.411	
Cochran-Armitage Trend Test (d)	P = 0.392			
Fisher Exact Test		P = 0.309 N	P = 0.476	
fammary Gland: Fibroadenoma	0/50 (194)	12/50 (24%)	14/50 (28%)	
Overall Rates (a)	9/50 (18%)			
Adjusted Rates (b)	21.2%	30.8%	37.1% 11/34 (32%)	
Terminal Rates (c)	7/40 (18%)	9/35 (26%) D0 220		
Life Table Tests (d)	P = 0.081	P = 0.229	P = 0.097	
Incidental Tumor Tests (d)	P = 0.091	P = 0.245	P = 0.124	
Cochran-Armitage Trend Test (d)	P = 0.144	B	D	
Fisher Exact Test		P = 0.312	P = 0.171	
litoral Gland: Adenoma, Cystadenoma, o	r Squamous Cell Papilloma			
Overall Rates (a)	2/50 (4%)	3/50 (6%)	2/50 (4%)	
Adjusted Rates (b)	4.5%	7.8%	5.9%	
Terminal Rates (c)	1/40 (3%)	1/35 (3%)	2/34 (6%)	
Life Table Tests (d)	P = 0.535	P = 0.461	P = 0.643	
Incidental Tumor Tests (d)	P = 0.555 P = 0.568N	P = 0.636	P = 0.635	
Cochran-Armitage Trend Test (d)	P = 0.508 N P = 0.594	r V.000	r = 0,000	
	F = U 1774			

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

	Vehicle Control	50 mg/kg	100 mg/kg
Uterus: Endometrial Stromal Polyp			
Overall Rates (a)	10/45 (22%)	10/48 (21%)	9/49 (18%)
Adjusted Rates (b)	27.8%	27.9%	26.2%
Terminal Rates (c)	10/36 (28%)	8/33 (24%)	8/33 (24%)
Life Table Tests (d)	P = 0.535N	P = 0.520	P=0.585N
Incidental Tumor Tests (d)	P = 0.460 N	P = 0.570N	P=0.537N
Cochran-Armitage Trend Test (d)	P = 0.368N		
Fisher Exact Test		P = 0.535N	P = 0.417N

1

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

	Vehicle Control	100 mg/kg	200 mg/kg
Lung: Alveolar/Bronchiolar Adenoma		·····	
Overall Rates (a)	6/50 (12%)	2/47 (4%)	3/50 (6%)
Adjusted Rates (b)	14.3%	5.9%	8.5%
Terminal Rates (c)	6/42 (14%)	2/34 (6%)	2/32 (6%)
Life Table Tests (d)	P = 0.276N	P = 0.210N	P = 0.375N
Incidental Tumor Tests (d)	P = 0.257N	P = 0.210N	P = 0.347N
Cochran-Armitage Trend Test (d)	P = 0.171N		
Fisher Exact Test		P = 0.156N	P=0.244N
ung: Alveolar/Bronchiolar Carcinoma			
Overall Rates (a)	6/50 (12%)	5/47 (11%)	8/50 (16%)
Adjusted Rates (b)	13.8%	14.7%	22.5%
Terminal Rates (c)	5/42 (12%)	5/34 (15%)	5/32 (16%)
Life Table Tests (d)	P=0.183	P = 0.609	P = 0.230
Incidental Tumor Tests (d)	P = 0.391	P = 0.602	P = 0.511
Cochran-Armitage Trend Test (d)	P = 0.327		
Fisher Exact Test		P = 0.544N	P=0.387
ung: Alveolar/Bronchiolar Adenoma or Ca	rcinoma		
Overall Rates (a)	12/50 (24%)	7/47 (15%)	11/50 (22%)
Adjusted Rates (b)	27.8%	20.6%	30.0%
Terminal Rates (c)	11/42 (26%)	7/34 (21%)	7/32 (22%)
Life Table Tests (d)	P = 0.402	P=0.299N	P=0.434
Incidental Tumor Tests (d)		P = 0.299 N P = 0.305 N	P = 0.434 P = 0.479N
	P = 0.469N	r = 0.300N	r=0.479N
Cochran-Armitage Trend Test (d) Fisher Exact Test	P=0.451N	P=0.192N	P=0.500N
ematopoietic System: Lymphoma, All Mali	mont		
Overall Rates (a)	3/50 (6%)	1/47 (2%)	2/50 (4%)
Adjusted Rates (b)	7.1%	2.9%	6.2%
Terminal Rates (c)			
	3/42 (7%)	1/34 (3%) D = 0.020N	2/32 (6%)
Life Table Tests (d)	P = 0.511N	P=0.383N	P = 0.623N
Incidental Tumor Tests (d)	P = 0.511N	P = 0.383N	P=0.623N
Cochran-Armitage Trend Test (d)	P = 0.400N	D - 0 000NT	D-0 60031
Fisher Exact Test		P=0.333N	P=0.500N
lematopoietic System: Lymphoma or Leuko		1 (47 (07))	0/50 (4/2)
Overall Rates (a)	5/50 (10%)	1/47 (2%)	2/50 (4%)
Adjusted Rates (b)	11.6%	2.9%	6.2%
Terminal Rates (c)	4/42 (10%)	1/34 (3%)	2/32 (6%)
Life Table Tests (d)	P = 0.213N	P = 0.160N	P=0.329N
Incidental Tumor Tests (d)	P = 0.130N	P = 0.117N	P=0.209N
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.135N	P=0.117N	P=0.218N
		0.1 8 / 11	0,21011
irculatory System: Hemangiosarcoma Overall Rates (a)	1/50 (2%)	(e) 2/47 (4%)	4/50 (8%)
Adjusted Rates (b)	2.4%	5.7%	10.7%
Terminal Rates (c)	2.470 1/42 (2%)	1/34 (3%)	0/32 (0%)
Life Table Tests (d)		P = 0.430	P=0.135
Incidental Tumor Tests (d)	P = 0.087	P = 0.430 P = 0.529	P = 0.135 P = 0.594
	P = 0.497	Г = V.048	r ≈0,0 7 4
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.120	P=0.447	P=0.181
		*	
irculatory System: Hemangioma or Heman		(a) 3/47 (BOL)	A/KA (904)
Overall Rates (a)	1/50 (2%)	(e) 3/47 (6%)	4/50 (8%)
Adjusted Rates (b)	2.4%	8.6% 2/24 (6%)	10.7%
Terminal Rates (c)	1/42 (2%) D-0.004	2/34 (6%) D = 0.929	0/32 (0%) R=0 125
Life Table Tests (d)	P = 0.094	P = 0.238	P = 0.135
Incidental Tumor Tests (d)	P = 0.478	P=0.307	P = 0.594
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.135	P=0.285	P=0.181

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OFDIMETHYL HYDROGEN PHOSPHITE

	Vehicle Control	100 mg/kg	200 mg/kg
liver: Hepatocellular Adenoma	<u> </u>		
Overall Rates (a)	12/50 (24%)	8/47 (17%)	8/50 (16%)
Adjusted Rates (b)	27.0%	23.5%	25.0%
Terminal Rates (c)	10/42 (24%)	8/34 (24%)	8/32 (25%)
Life Table Tests (d)	P = 0.391N	P = 0.404N	P = 0.447N
Incidental Tumor Tests (d)	P = 0.372N	P = 0.417N	P = 0.420N
Cochran-Armitage Trend Test (d)	P = 0.372N P = 0.186N	F = 0.41714	F = 0.42014
Fisher Exact Test	r - 0.100M	P=0.276N	P = 0.227 N
iver: Hepatocellular Carcinoma			
Overall Rates (a)	9/50 (18%)	2/47 (4%)	7/50 (14%)
Adjusted Rates (b)	20.8%	5.6%	18.8%
Terminal Rates (c)	8/42 (19%)	1/34 (3%)	4/32 (13%)
Life Table Tests (d)	P = 0.474N	P = 0.060N	P = 0.576N
Incidental Tumor Tests (d)	P = 0.322N	P = 0.038N	P = 0.413N
Cochran-Armitage Trend Test (d)	P = 0.324N		
Fisher Exact Test		P = 0.033N	P=0.393N
iver: Hepatocellular Adenoma or Carcir	Ioma		
Overall Rates (a)	19/50 (38%)	10/47 (21%)	13/50 (26%)
Adjusted Rates (b)	42.0%	28.5%	36.2%
Terminal Rates (c)	16/42 (38%)	9/34 (26%)	10/32 (31%)
Life Table Tests (d)	P=0.319N	P = 0.133N	P=0.389N
Incidental Tumor Tests (d)	P = 0.209N	P = 0.109N	P = 0.247N
Cochran-Armitage Trend Test (d)	P = 0.112N		
Fisher Exact Test		P = 0.057 N	P = 0.142N
drenal: Cortical Adenoma			
Overall Rates (a)	3/50 (6%)	0/46 (0%)	0/49 (0%)
Adjusted Rates (b)	7.1%	0.0%	0.0%
Terminal Rates (c)	3/42 (7%)	0/34 (0%)	0/31 (0%)
Life Table Tests (d)	P = 0.060N	P = 0.161 N	P = 0.180N
Incidental Tumor Tests (d)	P=0.060N	P = 0.161 N	P = 0.180N
Cochran-Armitage Trend Test (d)	P=0.040N		
Fisher Exact Test		P = 0.137N	P = 0.125N
hyroid: Follicular Cell Adenoma			
Overall Rates (a)	3/44 (7%)	0/45 (0%)	1/49 (2%)
Adjusted Rates (b)	8.3%	0.0%	3.1%
Terminal Rates (c)	3/36 (8%)	0/33 (0%)	1/32 (3%)
Life Table Tests (d)	P=0.203N	P = 0.136N	P = 0.348N
Incidental Tumor Tests (d)	P = 0.203N	P = 0.136N	P = 0.348N
Cochran-Armitage Trend Test (d)	P = 0.154N		
Fisher Exact Test		P = 0.117N	P = 0.269N

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF **DIMETHYL HYDROGEN PHOSPHITE (Continued)**

J.

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality (c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence. rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) Diagnosed as angiosarcoma

	Vehicle Control	100 mg/kg	200 mg/kg
Lung: Alveolar/Bronchiolar Adenoma	<u> </u>		····
Overall Rates (a)	2/50 (4%)	3/49 (6%)	1/50 (2%)
Adjusted Rates (b)	5.0%	7.3%	2.9%
Terminal Rates (c)	1/39 (3%)	2/38 (5%)	1/35 (3%)
Life Table Tests (d)	P = 0.435N	P = 0.483	P = 0.537N
Incidental Tumor Tests (d)	P = 0.4351 P = 0.371N	P = 0.650	P = 0.507N
Cochran-Armitage Trend Test (d)	P = 0.371N P = 0.400N	F = 0.850	P=0.507N
Fisher Exact Test	F - 0.4001N	P = 0.490	P = 0.500 N
ing: Alveolar/Bronchiolar Adenoma or C		0/40 (07)	1 (50 (00)
Overall Rates (a)	4/50 (8%)	3/49 (6%)	1/50 (2%)
Adjusted Rates (b)	10.0%	7.3%	2.9%
Terminal Rates (c)	3/39 (8%)	2/38 (5%)	1/35 (3%)
Life Table Tests (d)	P = 0.160N	P = 0.519N	P = 0.215N
Incidental Tumor Tests (d)	P = 0.120N	P = 0.379N	P = 0.198N
Cochran-Armitage Trend Test (d)	P = 0.134N		
Fisher Exact Test		P = 0.511N	P = 0.181 N
matopoietic System: Malignant Lympho	ma. Lymphocytic Type		
Overall Rates (a)	7/50 (14%)	5/49 (10%)	8/50 (16%)
Adjusted Rates (b)	17.4%	13.2%	21.4%
Terminal Rates (c)	6/39 (15%)	5/38 (13%)	6/35 (17%)
Life Table Tests (d)	P = 0.362	P = 0.400N	P=0.414
Incidental Tumor Tests (d)			
Cochran-Armitage Trend Test (d)	P = 0.392	P = 0.420N	P = 0.453
Fisher Exact Test	P = 0.442	P = 0.394N	P = 0.500
			_ 0.000
ematopoietic System: Malignant Lympho Overall Rates (a)	ma, Histiocytic Type 5/50 (10%)	4/49 (8%)	5/50 (10%)
Adjusted Rates (b)	11.8%	10.5%	14.3%
Terminal Rates (c)			
Life Table Tests (d)	3/39 (8%) P=0.503	4/38 (11%) P=0.522N	5/35(14%) P=0.565
		P = 0.022 m	P = 0.565
		D-0 FCON	D = A F A F
Incidental Tumor Tests (d)	P = 0.526	P = 0.568N	P = 0.595
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)			
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.526 P = 0.568	P=0.568N P=0.513N	P = 0.595 P = 0.630
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lympho	P = 0.526 P = 0.568 ma, Mixed Type	P=0.513N	P=0.630
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lympho Overall Rates (a)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%)	P=0.513N 1/49 (2%)	P=0.630 0/50 (0%)
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphor Overall Rates (a) Adjusted Rates (b)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7%	P=0.513N 1/49 (2%) 2.6%	P=0.630 0/50 (0%) 0.0%
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%)	P=0.513N 1/49 (2%) 2.6% 1/38 (3%)	P=0.630 0/50 (0%) 0.0% 0/35 (0%)
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7%	P=0.513N 1/49 (2%) 2.6%	P=0.630 0/50(0%) 0.0%
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%)	P=0.513N 1/49 (2%) 2.6% 1/38 (3%)	P=0.630 0/50 (0%) 0.0% 0/35 (0%)
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test matopoietic System: Malignant Lympho Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N	P=0.513N 1/49 (2%) 2.6% 1/38 (3%) P=0.328N	P=0.630 0/50 (0%) 0.0% 0/35 (0%) P=0.139N
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test matopoietic System: Malignant Lympho Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N	P=0.513N 1/49 (2%) 2.6% 1/38 (3%) P=0.328N	P=0.630 0/50 (0%) 0.0% 0/35 (0%) P=0.139N
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphor Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N	P = 0.513N $1/49 (2%)$ $2.6%$ $1/38 (3%)$ $P = 0.328N$ $P = 0.401N$	P=0.630 0/50(0%) 0.0% 0/35(0%) P=0.139N P=0.148N
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphot Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Lymphoma, All Mal	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant	P = 0.513N 1/49 (2%) 2.6% 1/38 (3%) $P = 0.328N$ $P = 0.401N$ $P = 0.316N$	P=0.630 0/50 (0%) 0.0% 0/35 (0%) P=0.139N P=0.148N P=0.121N
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphot Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Lymphoma, All Mal Overall Rates (a)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%)	P = 0.513N $1/49 (2%)$ $2.6%$ $1/38 (3%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $11/49 (22%)$	P = 0.630 0/50 (0%) 0.0% 0/35 (0%) P = 0.139N P = 0.148N P = 0.121N 16/50 (32%)
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2%	P = 0.513N $1/49 (2%)$ $2.6%$ $1/38 (3%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $11/49 (22%)$ $28.9%$	P = 0.630 0/50 (0%) 0.0% 0/35 (0%) P = 0.139N P = 0.148N P = 0.121N 16/50 (32%) 40.7%
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test matopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test matopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b) Terminal Rates (c)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2% 10/39 (26%)	P = 0.513N $1/49 (2%)$ $2.6%$ $1/38 (3%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $11/49 (22%)$ $28.9%$ $11/38 (29%)$	P = 0.630 0/50 (0%) 0.0% 0/35 (0%) P = 0.139N P = 0.148N P = 0.121N 16/50 (32%) 40.7% 12/35 (34%)
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test matopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test matopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2% 10/39 (26%) P = 0.421	$P = 0.513N$ $\frac{1}{49} (2\%)$ 2.6% $\frac{1}{38} (3\%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $\frac{11}{49} (22\%)$ 28.9% $\frac{11}{38} (29\%)$ $P = 0.224N$	P = 0.630 $0/50 (0%)$ $0.0%$ $0/35 (0%)$ $P = 0.139N$ $P = 0.148N$ $P = 0.121N$ $16/50 (32%)$ $40.7%$ $12/35 (34%)$ $P = 0.455$
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test matopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test matopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.526 $P = 0.568$ ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2% 10/39 (26%) P = 0.421 P = 0.467	P = 0.513N $1/49 (2%)$ $2.6%$ $1/38 (3%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $11/49 (22%)$ $28.9%$ $11/38 (29%)$	P = 0.630 0/50 (0%) 0.0% 0/35 (0%) P = 0.139N P = 0.148N P = 0.121N 16/50 (32%) 40.7% 12/35 (34%)
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphot Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test matopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2% 10/39 (26%) P = 0.421	P = 0.513N $1/49 (2%)$ $2.6%$ $1/38 (3%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $11/49 (22%)$ $28.9%$ $11/38 (29%)$ $P = 0.224N$ $P = 0.292N$	P = 0.630 $0/50 (0%)$ $0.0%$ $0/35 (0%)$ $P = 0.139N$ $P = 0.148N$ $P = 0.121N$ $16/50 (32%)$ $40.7%$ $12/35 (34%)$ $P = 0.455$ $P = 0.518$
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b)	P = 0.526 $P = 0.568$ ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2% 10/39 (26%) P = 0.421 P = 0.467	$P = 0.513N$ $\frac{1}{49} (2\%)$ 2.6% $\frac{1}{38} (3\%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $\frac{11}{49} (22\%)$ 28.9% $\frac{11}{38} (29\%)$ $P = 0.224N$	P = 0.630 $0/50 (0%)$ $0.0%$ $0/35 (0%)$ $P = 0.139N$ $P = 0.148N$ $P = 0.121N$ $16/50 (32%)$ $40.7%$ $12/35 (34%)$ $P = 0.455$
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphot Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.526 $P = 0.568$ ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2% 10/39 (26%) P = 0.421 P = 0.467 P = 0.544 sukemia	P = 0.513N $1/49 (2%)$ $2.6%$ $1/38 (3%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $11/49 (22%)$ $28.9%$ $11/38 (29%)$ $P = 0.224N$ $P = 0.224N$ $P = 0.292N$ $P = 0.200N$	P = 0.630 0/50 (0%) 0.0% 0/35 (0%) P = 0.139N P = 0.148N P = 0.121N 16/50 (32%) 40.7% 12/35 (34%) P = 0.455 P = 0.518 P = 0.585N
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Undifferentiated Le Overall Rates (a)	P = 0.526 $P = 0.568$ ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2% 10/39 (26%) P = 0.421 P = 0.467 P = 0.544 sukemia 2/50 (4%)	P = 0.513N $1/49 (2%)$ $2.6%$ $1/38 (3%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $11/49 (22%)$ $28.9%$ $11/38 (29%)$ $P = 0.224N$ $P = 0.292N$ $P = 0.200N$ $0/49 (0%)$	P = 0.630 $0/50 (0%)$ $0.0%$ $0/35 (0%)$ $P = 0.139N$ $P = 0.148N$ $P = 0.121N$ $16/50 (32%)$ $40.7%$ $12/35 (34%)$ $P = 0.518$ $P = 0.585N$ $3/50 (6%)$
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Undifferentiated Les Overall Rates (a) Adjusted Rates (b)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2% 10/39 (26%) P = 0.421 P = 0.467 P = 0.544 sukemia 2/50 (4%) 4.1%	$P = 0.513N$ $\frac{1}{49} (2\%)$ 2.6% $\frac{1}{38} (3\%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $\frac{11}{49} (22\%)$ 28.9% $\frac{11}{38} (29\%)$ $P = 0.224N$ $P = 0.292N$ $P = 0.200N$ $\frac{0}{49} (0\%)$ 0.0%	P = 0.630 $0/50 (0%)$ $0.0%$ $0/35 (0%)$ $P = 0.139N$ $P = 0.148N$ $P = 0.121N$ $16/50 (32%)$ $40.7%$ $12/35 (34%)$ $P = 0.585N$ $P = 0.585N$ $3/50 (6%)$ $6.7%$
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoletic System: Undifferentiated Les Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2% 10/39 (26%) P = 0.421 P = 0.467 P = 0.544 sukemia 2/50 (4%) 4.1% 0/39 (0%)	$P = 0.513N$ $\frac{1}{49} (2\%)$ 2.6% $\frac{1}{38} (3\%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $\frac{11}{49} (22\%)$ 28.9% $\frac{11}{38} (29\%)$ $P = 0.224N$ $P = 0.292N$ $P = 0.200N$ $\frac{0}{49} (0\%)$ 0.0% $0/38 (0\%)$	P = 0.630 $0/50 (0%)$ $0.0%$ $0/35 (0%)$ $P = 0.139N$ $P = 0.148N$ $P = 0.121N$ $16/50 (32%)$ $40.7%$ $12/35 (34%)$ $P = 0.518$ $P = 0.585N$ $3/50 (6%)$ $6.7%$ $0/35 (0%)$
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoletic System: Undifferentiated Le Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Fisher Exact Test ematopoletic System: Undifferentiated Le Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2% 10/39 (26%) P = 0.421 P = 0.467 P = 0.544 sukemia 2/50 (4%) 4.1% 0/39 (0%) P = 0.365	$P = 0.513N$ $\frac{1}{49} (2\%)$ 2.6% $\frac{1}{38} (3\%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $\frac{11}{49} (22\%)$ 28.9% $\frac{11}{38} (29\%)$ $P = 0.224N$ $P = 0.292N$ $P = 0.292N$ $P = 0.200N$ $\frac{0}{49} (0\%)$ 0.0% $0/38 (0\%)$ $P = 0.267N$	P = 0.630 $0/50 (0%)$ $0.0%$ $0/35 (0%)$ $P = 0.139N$ $P = 0.148N$ $P = 0.121N$ $16/50 (32%)$ $40.7%$ $12/35 (34%)$ $P = 0.455$ $P = 0.518$ $P = 0.585N$ $3/50 (6%)$ $6.7%$ $0/35 (0%)$ $P = 0.464$
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoletic System: Undifferentiated Le Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2% 10/39 (26%) P = 0.421 P = 0.467 P = 0.544 sukemia 2/50 (4%) 4.1% 0/39 (0%)	$P = 0.513N$ $\frac{1}{49} (2\%)$ 2.6% $\frac{1}{38} (3\%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $\frac{11}{49} (22\%)$ 28.9% $\frac{11}{38} (29\%)$ $P = 0.224N$ $P = 0.292N$ $P = 0.200N$ $\frac{0}{49} (0\%)$ 0.0% $0/38 (0\%)$	P = 0.630 $0/50 (0%)$ $0.0%$ $0/35 (0%)$ $P = 0.139N$ $P = 0.148N$ $P = 0.121N$ $16/50 (32%)$ $40.7%$ $12/35 (34%)$ $P = 0.518$ $P = 0.585N$ $3/50 (6%)$ $6.7%$ $0/35 (0%)$
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Malignant Lymphon Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Lymphoma, All Mal Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test ematopoietic System: Undifferentiated Le Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Fisher Exact Test ematopoietic System: Undifferentiated Le Overall Rates (c) Life Table Tests (d)	P = 0.526 P = 0.568 ma, Mixed Type 3/50 (6%) 6.7% 1/39 (3%) P = 0.072N P = 0.083N P = 0.061N ignant 16/50 (32%) 35.2% 10/39 (26%) P = 0.421 P = 0.467 P = 0.544 sukemia 2/50 (4%) 4.1% 0/39 (0%) P = 0.365	$P = 0.513N$ $\frac{1}{49} (2\%)$ 2.6% $\frac{1}{38} (3\%)$ $P = 0.328N$ $P = 0.401N$ $P = 0.316N$ $\frac{11}{49} (22\%)$ 28.9% $\frac{11}{38} (29\%)$ $P = 0.224N$ $P = 0.292N$ $P = 0.292N$ $P = 0.200N$ $\frac{0}{49} (0\%)$ 0.0% $0/38 (0\%)$ $P = 0.267N$	P = 0.630 $0/50 (0%)$ $0.0%$ $0/35 (0%)$ $P = 0.139N$ $P = 0.148N$ $P = 0.121N$ $16/50 (32%)$ $40.7%$ $12/35 (34%)$ $P = 0.455$ $P = 0.518$ $P = 0.585N$ $3/50 (6%)$ $6.7%$ $0/35 (0%)$ $P = 0.464$

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGESTUDY OF DIMETHYL HYDROGEN PHOSPHITE

.

	Vehicle Control	100 mg/kg	200 mg/kg
Hematopoietic System: Lymphoma or Leu	ukemia		
Overall Rates (a)	18/50 (36%)	11/49 (22%)	19/50 (38%)
Adjusted Rates (b)	37.9%	28.9%	44.6%
Terminal Rates (c)	10/39 (26%)	11/38 (29%)	12/35 (34%)
Life Table Tests (d)	P = 0.341	P = 0.133N	P = 0.374
Incidental Tumor Tests (d)	P = 0.384	P = 0.191 N	P = 0.495
Cochran-Armitage Trend Test (d)	P = 0.457		
Fisher Exact Test		P=0.103N	P≈0.500
Liver: Hepatocellular Adenoma			
Overall Rates (a)	0/50 (0%)	6/49 (12%)	3/50 (6%)
Adjusted Rates (b)	0.0%	15.8%	8.6%
Terminal Rates (c)	0/39 (0%)	6/38 (16%)	3/35 (9%)
Life Table Tests (d)	P=0.115	P=0.016	P = 0.102
Incidental Tumor Tests (d)	P=0.115	P = 0.016	P = 0.102
Cochran-Armitage Trend Test (d)	P=0.147		
Fisher Exact Test		P = 0.012	P=0.121
liver: Hepatocellular Adenoma or Carcin			
Overall Rates (a)	2/50 (4%)	6/49 (12%)	3/50 (6%)
Adjusted Rates (b)	5.1%	15.8%	8.6%
Terminal Rates (c)	2/39 (5%)	6/38 (16%)	3/35 (9%)
Life Table Tests (d)	P=0.364	P=0.125	P=0.450
Incidental Tumor Tests (d)	P=0.364	P=0.125	P = 0.450
Cochran-Armitage Trend Test (d)	P=0.424		
Fisher Exact Test		P = 0.128	P = 0.500
Pituitary: Adenoma			
Overall Rates (a)	13/46 (28%)	9/45 (20%)	11/48 (23%)
Adjusted Rates (b)	31.2%	24.2%	28.4%
Terminal Rates (c)	10/38 (26%)	8/36 (22%)	8/35 (23%)
Life Table Tests (d)	P=0.447N	P=0.289N	P = 0.501 N
Incidental Tumor Tests (d)	P=0.358N	P=0.282N	P=0.401N
Cochran-Armitage Trend Test (d)	P=0.316N		
Fisher Exact Test		P=0.250N	P≈0.360N

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF DIMETHYL HYDROGEN PHOSPHITE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact test compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

APPENDIX F

HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS AND B6C3F1 MICE

RECEIVING CORN OIL BY GAVAGE

TABLE F1. HISTORICA	L INCIDENCE OF LUNG	G TUMORS IN MALE	F344/N RATS	RECEIVING CORN
	OIL	BY GAVAGE (a)		

		Incidence in Vehi	cle Controls	
Alv	eolar/Bronchiolar Adenoma	Alveolar/Bronchiolar Carcinoma	Alveolar/Bronchiolar Adenoma or Carcinoma	Squamous Cell Carcinoma
listorical Incidence at L	itton Bionetics, Inc.			<u> </u>
Diallylphthalate	1/50	1/50	2/50	0/50
Fris(2-ethylhexyl)phosphat Foluenediisocyanate	e 0/50 1/50	1/50	1/50 2/50	0/50
TOTAL SD (b)	2/150 (1.3%) 1.15%	3/150 (2.0%) 0.00%	5/150 (3.3%) 1.15%	0/150 (0.0%) 0.00%
5D (6)	1.10 %	0.00 %	1.10 %	0.00 %
Range (c)				
High Low	1/50 0/50	1/50 1/50	2/50 1/50	0/50
LUW	0/00	1/00	1/50	
Overall Historical Incide	nce			
TOTAL	34/1,143 (3.0%)	16/1,143 (1.4%)	50/1,143 (4.4%)	2/1,143 (0.2%)
SD (b)	1.93%	1.53%	2.40%	0.58%
Range (c)				
High	3/48	3/50	4/50	1/50
Low	0/50	0/50	0/50	0/52

(a) Data as of March 16, 1983, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

TABLE F2. HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS RECEIVING CORN OIL BY GAVAGE (a)

	Incidence of Leukemia in Vehicle Controls	
Historical Incidence at Litton Bionetics, In	nc.	
Diallylphthalate	13/50	
Tris(2-ethylhexyl)phosphate	2/50	
Toluenediisocyanate	11/50	
TOTAL	26/150 (17.3%)	
SD (b)	. 11.72%	
Range (c)		
High	13/50	
Low	2/50	
Overall Historical Incidence		
TOTAL	140/1,146 (12.2%)	
SD (b)	7.59%	
Range (c)		
High	13/50	
Low	1/50	

(a) Data as of March 16, 1983, for studies of at least 104 weeks (b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

129 Dimethyl Hydrogen Phosphite, NTP TR 287

TABLE F3.	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE F344/N RATS
	RECEIVING CORN OIL BY GAVAGE (a)

	Inc	idence in Vehicle Co	ntrols
Study	Neoplastic Nodule	Carcinoma	Neoplastic Nodule or Carcinoma
listorical Incidence at Litton B	ionetics, Inc.		
Diallylphthalate	1/50	1/50	2/50
Fris(2-ethylhexyl)phosphate	0/50	0/50	0/50
Foluenediisocyanate	7/50	0/50	7/50
TOTAL	8/150 (5.3%)	1/150 (0.7%)	9/150 (6.0%)
SD (b)	7.57%	1.15%	7.21%
ange (c)			
High	7/50	1/50	7/50
Low	0/50	0/50	0/50
verall Historical Incidence			
TOTAL	31/1,141 (2,7%)	9/1.141 (0.8%)	40/1.141 (3.5%)
SD (b)	3.36%	1.45%	3.66%
ange (c)			
High	7/50	2/50	7/50
Low	0/50	0/52	0/50

(a) Data as of March 16, 1983, for studies of at least 104 weeks (b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

TABLE F4. HISTORICAL INCIDENCE OF STOMACH TUMORS IN MALE F344/N RATS RECEIVING CORN OIL BY GAVAGE (a)

	No. of Animals Examined	Number with Tumors	Site	Diagnosis
Incidence at Litton Bionetic	cs, Inc.			
	147	No tumors reporte	d	
Overall Historical Incidenc	e			
	1,114	2	Stomach, NOS	Squamous cell papilloma
	- •	1	Stomach, NOS	Squamous cell carcinoma
		2	Forestomach	Squamous cell papilloma
		1	Cardiac stomach	Squamous cell papilloma
TOTAL		5 papilloma 1 carcinoma		

(a) Data as of March 16, 1983, for studies of at least 104 weeks

	Inc	idence in Vehicle Con	trols
Study	Adenoma	Carcinoma	Adenoma or Carcinoma
istorical Incidence at Litton B	lionetics, Inc.		
Diallylphthalate	0/50	0/50	0/50
ris(2-ethylhexyl)phosphate	0/50	0/50	0/50
Foluenediisocyanate	0/50	1/50	1/50
TOTAL	0/150 (0.0%)	1/150 (0.7%)	1/150 (0.7%)
SD (b)	0.00%	1.15%	1.15%
ange (c)			
High	0/50	1/50	1/50
Low	0/50	0/50	0/50
verall Historical Incidence			
TOTAL	14/1,142 (1.2%)	10/1,142 (0.9%)	24/1,142 (2.1%)
SD (b)	1.91%	1.34%	2.07%
ange (c)			
High	4/49	2/48	4/49
Low	0/52	0/50	0/50

TABLE F5. HISTORICAL INCIDENCE OF ALVEOLAR/BRONCHIOLAR TUMORS IN FEMALE F344/N RATS RECEIVING CORN OIL BY GAVAGE (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks
(b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

TABLE F6. HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE B6C3F1 MICERECEIVING CORN OIL BY GAVAGE (a)

	In	cidence in Vehicle Cont	rols
Study	Adenoma	Carcinoma	Adenoma or Carcinoma
listorical Incidence at Litton	Bionetics, Inc.		··· ···· · · · ·
Toluenediisocyanate	5/49	6/49	11/49
Diallylphthalate	0/50	7/50	7/50
Tris(2-ethylhexyl)phosphate	7/50	9/50	15/50
TOTAL	12/149 (8.1%)	22/149 (14.8%)	33/149 (22.1%)
SD (b)	7.24%	2.95%	8.00%
Range (c)			
High	7/50	9/50	15/50
Low	0/50	6/49	7/50
Overall Historical Incidence			
TOTAL	133/1,084 (12.3%)	(d) 222/1,084 (20.5%)	340/1,084 (31.4%)
SD (b)	6.70%	7.90%	10.30%
Range (c)			
High	13/50	18/50	25/50
Low	0/50	4/50	5/50

(a) Data as of March 16, 1983, for studies of at least 104 weeks (b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.
(d) One hepatoblastoma also was observed.

	Inc	idence in Vehicle Con	trols
Study	Adenoma	Carcinoma	Adenoma or Carcinoma
listorical Incidence at Litton E	lionetics, Inc.		, <u> </u>
Toluenediisocyanate	2/50	2/50	4/50
Diallylphthalate	0/50	1/50	1/50
fris(2-ethylhexyl)phosphate	2/48	0/48	2/48
TOTAL	4/148 (2.7%)	3/148 (2.0%)	7/148 (4.7%)
SD (b)	2.36%	2.00%	3.04%
ange (c)			
High	2/48	2/50	4/50
Low	0/50	0/48	1/50
verall Historical Incidence			
TOTAL	47/1,176 (4.0%)	34/1,176 (2.9%)	80/1,176 (6.8%)
SD (b)	2.55%	2.18%	3.37%
Range (c)			
High	5/50	4/50	7/50
Low	0/50	0/50	1/50

TABLE F7. HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN FEMALE $B6C3F_1$ MICE RECEIVING CORN OIL BY GAVAGE (a)

(a) Data as of March 16, 1983, for studies of at least 104 weeks (b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

Dimethyl Hydrogen Phosphite, NTP TR 287 134

,

APPENDIX G

CHEMICAL CHARACTERIZATION OF DIMETHYL HYDROGEN PHOSPHITE

I. Identity and Purity Determinations of Lot No. DM113077 Performed by Midwest Research Institute

A. Physical Properties		
1. Boiling Point:	<u>Determined</u>	<u>Literature Values</u>
	$175.2^{\circ} \pm 2(\delta)^{\circ} C \text{ at } 739 \text{ mm}$ (visual, micro boiling point)	72°-73° C at 25 mm (Condensed Chemical Dictionary, 1981)
2. Index of Refraction:	Determined	Literature Values
	n_{D}^{20} : 1.4018 ± 0.0002(8)	No literature reference found
3. Density:	Determined	Literature Values
	d_{22}^{25} :1.1954 ± 0.0004	d_{4}^{20} : 1.20
	-	(Condensed Chemical Dictionary, 1981)
4. Appearance:	Clear, colorless liquid	
B. Spectral Data		
1. Infrared	Determined	<u>Literature Values</u>
Instrument:	Beckman IR-12	
Cell:	Thin film between silver chloride plates	
Results:	See Figure 5	Consistent with literature spectrum (Sadtler Standard Spectra)
2. Ultraviolet/Visible	Determined	Literature Values
Instrument:	Cary 118	
Solvent:	95% Ethanol	
Results:	No absorbance between 350 and 800 nm. No maximum between 216 and 350 nm, but a small absorbance (less than 0.05 absorbance units) was observed toward	No literature reference found. Spectrum consistent with structure.

the short wavelength end.

FIGURE 5. INFRARED ABSORPTION SPECTRUM OF DIMETHYL HYDROGEN PHOSPHITE (LOT NO. DM113077)

137 Dimethyl Hydrogen Phosphite, NTP TR 287

3. Nuclear Magnetic Resonance

	Determined	<u>Literature Values</u>
Instrument:	Varian EM-360-A	
Solvent:	Deuterated chloroform with internal tetramethylsilane	
Assignments:	See Figure 6	Consistent with literature spectrum (Sadtler Standard Spectra)
Chemical Shift (8):	a d, 3.75 ppm J _{P-a} = 12 b d, 6.75 ppm J _{P-b} = 693 c s, 3.35 ppm (impurity)	Hz
Integration Ratios:	a 6.08 b 0.92 c No integration (impurity)	

C. Elemental Analyses:

Element	С	Н	P	
Theory (T)	21.83	6.41	28.14	•
Determined (D)	21.75 21.89	6.42 6.47	28.37	
D/T (percent)	99.95	100.55	100.82	

D. Chromatographic Analyses

1. Thin-Layer Chromatography

Plates: Silica Gel 60 F-254 Reference Standard: Tri-*n*-butyl phosphate (100 µg), 10 µg/µl in acetone. Amount Spotted: 100 µg and 300 µg (10 µg/µl in acetone) Visualization: Iodine vapor

System 1: Methanol:water (90:10) **R**_f: 0.71 (major); 0.01 (slight trace); origin (very slight trace) **R**_{st}: 0.86; 0.01; origin

System 2: 1,4-Dioxane (100%) **Rf:** 0.42 (major); origin (trace) **Rst:** 0.64; origin

END OF SWEEP 11111

TTT

5

Integration

S(ppm)

2. Gas Chromatography

Instrument: Tracor MT220 Detector: Flame ionization Inlet temperature: 200° C Detector temperature: 310° C Carrier gas: Nitrogen Carrier flow rate: 70 ml/min

a. System 1:

Column: 20% SP-2100/0.1% Carbowax 1500 on 100/120 Supelcoport, 1.8 m \times 4 mm ID, glass

Oven temperature program: 5 min at 50° C, then 50°-170° at 10° C/min **Sample injected:** Neat liquid (5 μ l) and 1.0% and 0.5% dimethyl hydrogen phosphite in methylene chloride to quantitate the major peak and check for overloading.

Results: Major peak and 10 impurities. Two impurities had areas 1.4% and 1.5% relative to the major peak; the other eight impurities had a total area of 1.0% of the major peak area.

<u>Peak</u>	Retention Time (min)	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>
1	0.47	0.05	0.01
2	0.59	0.07	1.40
3	9.01	1.00	100
4	10.3 4	1.15	0.60
5	10.92	1.21	0.03
6	11.08	1.23	1.50
7	13.30	1.48	0.05
8	13.81	1.53	0.01
9	14.59	1.62	0.24
10	15.29	1.70	0.04
11	17.43	1.94	0.03

b. System 2:

Column: 10% Carbowax 20M-TPA on 80/100 Chromasorb W (AW), 1.8 m \times 4 mm ID, glass **Oven temperature program:** 5 min at 50° C, then 50°- 200° at 10° C/min **Sample injected:** Neat liquid (5 µl) and 1.0% and 0.5% dimethyl hydrogen phosphite in methylene chloride to quantitate the major peak and check for overloading.

Results: Major peak and eight impurities. Two impurities had areas 1.6% and 1.0% of the major peak area; the other six impurities had a combined area of 1.3% relative to the major peak area.

	Retention	Retention Time Relative to	Area (percent of
<u>'eak</u>	<u>Time (min)</u>	<u>Major Peak</u>	major peak)
1	0.33	0.03	0.02
2	1.72	0.14	1.60
3	4.64	0.37	0.05
4	12.40	1.00	100
5	12.93	1.04	0.39
6	13.03	1.05	0.22
7	13.24	1.07	0.35
8	14.04	1.13	1.00
9	15.52	1.25	0.24

E. Conclusions: Results of elemental analyses for carbon, hydrogen and phosphorus were in agreement with the theoretical values. Thin-layer chromatography by one system indicated one slight trace impurity and one very slight trace impurity. A second thin-layer chromatography system indicated one trace impurity. Gas chromatography by one system indicated 10 impurities. Two impurities had areas of 1.4% and 1.5% of the major peak area. The other eight impurities had a combined area of 1.0% of the major peak area. Another gas chromatography system indicated eight impurities. Two impurities had areas of 1.6% and 1.0% of the major peak area. The other six impurities totaled 1.3% of the major peak area. The infrared, ultraviolet/visible, and nuclear magnetic resonance spectra were consistent with the structure and literature spectra.

II. Identity and Purity Determinations of Lot No. KC031247 Performed by Midwest Research Institute

A. Physical Properties

1. Boiling Point:	<u>Determined</u>	Literature Values
	167.5° C at 745 mm (visual, micro boiling point)	72°-73° C at 25 mm (Condensed Chemical Dictionary, 1981)
2. Appearance:	Clear, colorless, nonviscous liqu	ıid
B. Spectral Data		
1. Infrared	Determined	Literature Values
Instrument:	Perkin-Elmer 283	
Cell:	Neat liquid between silver chloride plates, 0.2 mm thick	
Results:	See Figure 7	Consistent with literature spectrum (Sadtler Standard Spectra)
2. Ultraviolet/Visible	Determined	Literature Values
Instrument:	Cary 118	
Solvent:	Absolute ethanol	
Results:	No absorbance between 350 and 800 nm using a 1% solution. In the ultraviolet region, a small increase in absorbance was noted in a 1% solution between 350-215 nm.	No literature reference found. Spectrum consistent with structure.
3. Nuclear Magnetic Resona	nce	
	Determined	Literature Values
Instrument:	Varian EM-360	
Solvent:	Deuterated chloroform with tetramethylsilane as reference	
Assignments:	See Figure 8	Spectrum consistent with literature spectrum (Sadtler Standard Spectra)

FIGURE 7. INFRARED ABSORPTION SPECTRUM OF DIMETHYL HYDROGEN PHOSPHITE (LOT NO. KC031247)

FIGURE 8. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF DIMETHYL HYDROGEN PHOSPHITE (LOT NO. KC031247)

APPENDIX G. CHEMICAL CHARACTERIZATION

Chemical Shift (8):	a b c	d, 5	8.75 ppm 6.80 ppm 8.45 ppm	$J_{P-a} = 12 Hz$ $J_{P-b} = 696 Hz$ (impurity)
Integration Ratios:	b	5.98 1.03 No ir	ntegration (im	purity)
Elemental Analyses:				
Element	C		Н	Р
Theory (T)	21.83		6.41	28.14
Determined (D)	22.11 22.14		6.63 6.60	27.73 27.64

101.35

D. Titration:

C.

1. Procedure: Six samples of dimethyl hydrogen phosphite were dissolved in absolute ethanol and reacted with excess 0.1N aqueous sodium hydroxide. The unreacted excess was then titrated potentiometrically with 0.1N aqueous hydrochloric acid (Bernhardt and Rattenbury, 1956).

103.19

98.38

2. Results: 97.5% \pm 0.3(δ)%

D/T (percent)

E. Chromatographic Analyses

1. Thin-Layer Chromatography

Plates: Silica Gel 60 F-254, 0.25 mm thick Reference Standard: 120 µg (12 µg/µl in acetone) of tributyl phosphate Amount Spotted: 10, 50, 100 and 300 µg (10 µg/µl in acetone) Visualization: Iodine vapor Results:

Spot intensity	R _f	$\mathbf{R_{st}}$
System 1: Methanol	:water (90:10)	
Major	0.84	1.10
System 2: 1,4-Dioxa	ne (100%)	
Major	0.74	0.82

2. Gas Chromatography

Instrument: Varian 3700 Detector: Flame ionization Inlet temperature: 200° C Detector temperature: 300° C Carrier gas: Nitrogen

a. System 1:

Column: 10% Carbowax 20M-TPA on 80/100 Chromasorb W (AW), 1.8 m \times 4 mm ID, silylated glass

Carrier flow rate: 70 ml/min

Oven temperature program: 5 min at 50° C, then 50°-200° C at 10° C/min

Sample injected: Neat liquid (2 µl) and 1.0% and 0.5% dimethyl hydrogen phosphite in methylene chloride to quantitate the major peak and check for overloading.

Results: A major peak and seven impurities, one preceding and six following the major, with relative areas greater than 0.1%. Their respective relative areas were 0.2%, 0.3%, 0.2%, 0.2%, 0.1%, 1.1%, and 0.2%. Two additional impurities, following the major peak and having relative areas less than 0.1%, were detected.

<u>Peak</u>	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>
1	2.7	0.20	0.2
2	13.7	1.00	100
3 (shoulder)	14.2	1.04	0.3
4	14.4	1.05	0.2
5	14.8	1.08	0.2
6 (shoulder)	15.7	1.15	0.1
7	15.9	1.16	1.1
8	18.2	1.33	0.2

b. System 2:

Column: 20% SP-2100/0.1% Carbowax 1500 on 100/120 Supelcoport, $1.8 \text{ m} \times 4 \text{ mm ID}$, silylated glass

Carrier flow rate: 70 ml/min

Oven temperature program: 5 min at 50° C, then 50°-170° C at 10° C/min Sample injected: Neat liquid (2 µl) and 1.0% and 0.5% dimethyl hydrogen phosphite in methylene chloride to quantitate the major peak and check for overloading.

Results: Four impurities, one preceding and three following the major peak, were detected with relative areas greater than 0.1%. Three other impurities with relative areas smaller then 0.1% were observed following the major peak.

Peak	Retention <u>Time (min)</u>	Retention Time Relative to <u>Major Peak</u>	Area (percent of <u>major peak)</u>
1	0.8	0.09	0.5
2	9.0	1.00	100
3	11.1	1.23	0.2
4	12.1	1.34	1.1
5	17.2	1.91	0.1

F. Conclusions: Spectroscopy confirmed the identity of the material. Titration indicated an approximate purity of 97.5%. Gas chromatography indicated a maximum of seven impurities, each having individual relative areas greater than 0.1%; the total relative area was 2.3%. Spectroscopic and chromatographic data indicated that this batch was very similiar to lot no. DM113077.

II. Identification and Quantitation of an Impurity in Dimethyl Hydrogen Phosphite

A. Introduction

An impurity peak was detected in this batch of dimethyl hydrogen phosphite during the previous analysis. The impurity peak was observed by packed column gas chromatography and was estimated at 1.1% relative to the major component. Analysis was conducted to identify and quantitate this impurity.

B. Experimental Design

Packed column gas chromatography/mass spectrometry (GC/MS) full mass scan was used to identify the impurity in dimethyl hydrogen phosphite. The impurity was then quantitated against a specific standard by packed column gas chromatography by the internal standard method. The gas chromatography parameters used for this analysis duplicated those used in the previous analysis. The analyzed sample was taken from frozen reference material stored at Midwest Research Institute.

C. Impurity Identification

1. Sample Preparation

Solutions of dimethyl hydrogen phosphite (1.0% and 10.0%) were prepared volumetrically in high purity methylene chloride.

2. Instrumental System

Instrument: Finnigan MAT CH-4 mass spectrometer interfaced to a Varian 3700 gas chromatograph Column: 20% SP-2100/0.1% Carbowax 1500 on 100/120 Supelcoport, 1.8 m × 4 mm ID, glass Carrier gas: Helium, approximately 30 ml/min Inlet temperature: 200°C Oven temperature program: 50°-170° C at 10° C/min with a 5 min initial hold **Mass spectrometer parameters Temperatures**: Transfer line: 250° C Helium separator: 250° C Ion source: 230° C Electron energy: 70 eV **Emission current**: 40 µA Accelerator voltage: 2.2 kV Electron multiplier voltage: 2,200V **Resolution**: 370 Data type: **Exponential centroid** Scan range: 0-600 scans Mass range: 10-280 amu Scan times: Up: 1.75 Top: 0.05 Down: 0.05 Bottom: 0.70

3. Results

The impurity was identified from the mass spectrum as trimethyl phosphate. The data are tabulated below (only m/z with relative abundance counts greater than 0.1% of the base peak are included). The identity of the impurity as trimethyl phosphate was confirmed by comparison of the observed mass spectrum to a literature reference of the compound (The Eight Peak Index of Mass Spectra, 1980).

The impurity that eluted after the major component is illustrated on the reconstructed ion current chromatogram (Figure 9). Mass spectra of dimethyl hydrogen phosphite and the trimethyl phosphate impurity are presented in Figures 10 and 11, respectively.

Mass (<u>m/z)</u>	Relative Abundance (percent of base peak)	Mass (<u>m/z)</u>	Relative Abundance (percent of base peak)
14	0.58	80	39.77
15	36.53	81	1.40
16	0.44	82	0.46
19	0.14	83	0.13
29	6.93	86	3.83
30	1.50	87	3.66
31	9.21	88	0.57
33	0.62	89	0.23
44	0.24	90	0.12
45	2.12	92	0.23
47	12.13	93	2.39
48	1.85	94	0.32
49	1.37	95	36.20
50	0.32	96	0.74
57	2.13	97	0.75
58	5.32	98	0.10
59	1.01	105	0.14
60	0.21	106	0.20
61	0.23	107	0.21
62	0.38	108	0.34
63	0.52	109	56.57
64	0.61	110	100.00
65	5.86	111	4.58
66	0.51	112	1.04
67	0.16	139	1.03
77	1.48	140	24.72
78	1.03	141	0.93
7 9	50.46	142	0.19

FIGURE 9. RECONSTRUCTED ION CURRENT CHROMATOGRAM FROM THE FULL MASS SCAN GC/MS ANALYSIS OF DIMETHYL HYDROGEN PHOSPHITE (LOT NO. KC031247)

FIGURE 10. MASS SPECTRUM OF DIMETHYL HYDROGEN PHOSPHITE (LOT NO. KC031247)

FIGURE 11. MASS SPECTRUM OF TRIMETHYL PHOSPHATE--DIMETHYL HYDROGEN PHOSPHITE IMPURITY (LOT NO. KC031247)

D. Impurity Quantitation

1. Sample Preparation

A 10.0% solution of dimethyl hydrogen phosphite containing 0.1% tripropyl phosphate internal standard was prepared volumetrically in high purity methylene chloride. Solutions of trimethyl phosphate standard (trimethyl phosphate, Aldrich Chemical Co., greater than 99% pure) (0.05%, 0.1%, and 0.2%), containing 0.1% tripropyl phosphate internal standard, also were prepared volumetrically with methylene chloride solvent.

t

2. Instrumental System

Instrument: Varian Vista 6000 with AutoSampler

Detector: Flame ionization

Column: 20% SP-2100/0.1 Carbowax 1500 on 100/120 Supelcoport, 1.8 m \times 4 mm ID, glass

Carrier gas: Nitrogen, 70 ml/min

Inlet temperature: 200° C

Detector temperature: 250° C

Column oven temperature: 50°-170° C at 10° C/min with a 5 min initial hold

3. Results

The concentration of trimethyl phosphate in dimethyl hydrogen phosphite was 0.99% \pm 0.04(8)% by volume (n=2).

The impurity peak in the dimethyl hydrogen phosphite had a retention time of 10.8 minutes, which coincided with that of the trimethyl phosphate standards. Additionally, the impurity peak was enhanced when the dimethyl hydrogen phosphite sample was spiked with a trimethyl phosphate standard.

Retention Times:

Trimethyl phosphate: 10.8 min Internal standard: 19.9 min

The gas chromatographic profile obtained for this analysis was consistent with the reconstructed ion current chromatogram obtained by GC/MS analysis.

4. Conclusions

The impurity observed by GC during the original analysis of this batch of chemical was identified as trimethyl phosphate by GC/MS. The impurity was quantitated at 0.99% \pm 0.04(δ)% (v/v) against a specific standard by GC.

III. Reanalysis of Bulk Material Performed by the Testing Laboratory

A. Analytical Methods

1. Gas Chromatography:

Instrument: Hewlett Packard 5880 or 5840A with 7672 Autosampler Detector: Flame ionization Column: 20% SP2100/0.1% Carbowax 1500 on 100/120 mesh Supelcoport, 1.8 m × 2 mm ID, silanized glass Detector temperature: 270° C Inlet temperature: 200° C Temperature program: 50° C for 5 min; 50°-200° C at 10° C/min; 200° C for 5 min Carrier gas: Nitrogen Carrier flow rate: 40 ml/min Sample injection: 1 µl each of neat, 1.0% and 0.5% dimethyl hydrogen phosphite in methylene chloride to check for column and/or detector overload.

2. Infrared:

Instrument: Perkin-Elmer model 398, 1457, or 283B **Cell:** Neat liquid between sodium chloride or potassium bromide plates

B. Results

1. Gas Chromatography:

Percent purity of dimethyl hydrogen phosphite

<u>Date</u>	Reference	Bulk
12/79		97.8
02/80	95.2	99.1
06/80	98.2	98.0
10/80	100	100
02/81	99.0	99.0
06/81	99.0	99.0
10/81	98.6	97.5
02/82	99.6	99.4
04/82	91.7	99.2

- **2. Infrared:** All spectra were consistent with those supplied by the analytical testing laboratory.
- C. Conclusion: No significant degradation of the test material occurred during the studies.

IV. Heat Stability Study Performed by the Analytical Chemistry Laboratory

A. Sample Storage: Dimethyl hydrogen phosphite samples were stored for 2 weeks at -20° , 5°, 25°, and 60° C in glass tubes with Teflon[®]-lined lids.

A.

B. Analytical Method: Samples were analyzed by gas chromatography with the following system:

Instrument: Varian 3700 auto sampler Column: 10% Carbowax 20M-TPA on 80/100 Chromasorb W(AW), 1.8 m × 4 mm ID, glass Detector: Flame ionization Inlet temperature: 200° C Detector temperature: 310° C Carrier gas: Nitrogen Carrier flow rate: 70 ml/min Oven temperature program: 140° C, isothermal Retention time of major component: 3.0 min Retention time of internal standard: 7.2 min Sample injected: Solutions of 0.4% dimethyl hydrogen phosphite in methylene chloride containing 0.4% triethylphosphate internal standard were injected. The sample peak areas were compared with internal standard peak areas. The results were compared with the values obtained for the - 20° C sample.

C. Results:

Storage Temperature	Percent Recovery
– 20° C	100.0 ± 3.2
5° C	101.5 ± 3.2
25° C	99.8 ± 3.2
60° C	100.1 ± 3.2

D. Conclusion: Dimethyl hydrogen phosphite is stable as the bulk chemical when stored for 2 weeks at temperatures up to 60° C.

APPENDIX H

PREPARATION AND CHARACTERIZATION

OF DOSE MIXTURES

APPENDIX H. PREPARATION AND CHARACTERIZATION

1

I. Sample Preparation and Storage: A stock solution was prepared by weighing 0.5098 ± 0.0001 g of dimethyl hydrogen phosphite into a 50-ml volumetric flask and diluting to the mark with corn oil, swirling occasionally. The solution then was manually shaken for 30 sec and placed in an ultrasonic vibratory bath for 5 min. As soon as the solution had been prepared, two accurately weighed 1.6-g aliquots were removed and sealed in separate 8.5-ml septum vials (Microsep F-138 gas chromatography septa with Teflon® film facing, from Canton Biomedical Products, Inc.; aluminum crimp seals from Wheaton Scientific Company, Inc.), for use as initial, or zero-time, samples. The rest of the stock solution was stored at room temperature (25° C), and duplicate 1.6-g aliquots were removed for analysis after 1, 2, 6, and 7 days.

II. Sample Extraction and Analysis: Extracting solvent containing an internal reference standard was prepared by weighing 0.1477 ± 0.0001 g of triethylphosphate into a 50-ml volumetric flask and diluting to the mark with absolute methanol. Concentration of the reference standard is 2.954 ± 0.001 mg/ml.

To extract each sample aliquot, the septum vial was opened, 4.0 ml of the extracting solvent was added by volumetric pipette, and the vial was immediately resealed. The corn oil/methanol mixture was shaken by hand for 15 sec, agitated on a vortex mixer for 1 min, and placed in an ultrasonic vibratory bath for 2 min. The two phases were allowed to separate overnight, and 5-µl aliquots of the methanol layer were analyzed by the gas chromatographic system outlined below.

Instrument: Bendix 2500 with Heath chart recorder Column: 10% Carbowax 20M-TPA on 80/100 Chromasorb W (AW), 1.8 m × 4 mm ID, glass Detection: Flame ionization Inlet temperature: 170° C Detector temperature: 225° C Carrier gas: Nitrogen Carrier flow rate: 40 ml/min Oven temperature program: 130° C isothermal Retention time of major component: 3.6 min Retention time of internal standard: 10.3 min

III. Quality Control Protocols: Analyses were performed in duplicate with triethylphosphate as an internal reference standard. Recovery studies (zero-time samples) were performed in duplicate at the same concentration level as the test samples, both at the start and at the end of the 7-day period. Gas chromatographic linearity was determined with standard solutions in methanol at concentrations of 3.91, 2.95, and 1.96 mg/ml for the dimethyl hydrogen phosphite and 2.93, 1.94, and 1.00 mg/ml for the internal reference standard. The least-squares plot correlation coefficients were 0.9999 for the test chemical and 0.9946 for the internal reference (effectively 1.0, linear).

APPENDIX H. PREPARATION AND CHARACTERIZATION

IV. Results:

1

Storage Time (days)	Average Percent (w/w) DMHP Found in DMHP/ Corn Oil Mixture (a,b,c)
1	1.03 ± 0.02
2	1.02 ± 0.02
6	1.01 ± 0.02
7	1.01 ± 0.02

(a) Mean \pm standard instrumental deviation

(b) Zero-time recovery yield, 100% \pm 2%

(c) Theoretical concentration of dimethyl hydrogen phosphite in corn oil, $1.020\% \pm 0.001\%$

V. Conclusion: Dimethyl hydrogen phosphite in corn oil solution at the 1% concentration is stable within experimental error when stored at room temperature $(25^{\circ} C)$ for 7 days.

Dimethyl Hydrogen Phosphite, NTP TR 287 158

1

APPENDIX I

t

ANALYSIS OF DOSE MIXTURES: METHODS

I. Testing Laboratory

A. Standard Solution Preparations:

1. Prepare a stock dimethyl hydrogen phosphite solution by weighing approximately 1.25 g into a 25-ml volumetric flask and diluting to volume with control corn oil. Target concentration is 50 mg/ml corn oil. Shake well and place the volumetric flask in an incubator (37° C) for about 10 min (the temperature of the stock solution is 1°-2° C higher than the room temperature, but there is no change in the volume).

l

2. Use the standard from step 1 to prepare a set of five calibration standards in the range of 50-10 mg/ml by volumetric dilutions of stock standard with undosed corn oil (similarly warmed) into 50-ml centrifuge tubes. Total volume should be 1.00 ml.

3. Prepare extractant with internal standard triethylphosphate in methanol to give a final concentration of 6 mg/ml.

B. Preparation of Gavage Solutions for Assay:

1. Together with standard solutions and control corn oil, incubate the samples to be assayed at 37° C for 10 minutes. Immediately prior to pipetting, mix each sample by vigorous shaking to form a uniformly homogeneous emulsion.

2. Using SMI pipettes, transfer in duplicate 1.0 ml aliquots of each sample (12.5 mg/ml and 25 mg/ml) into 50-ml centrifuge tubes. For the 50 mg/ml sample aliquot, transfer 500 µl in duplicate followed by 500 µl of undosed corn oil.

C. Extraction of Samples:

Add 5.00 ml of extractant to each centrifuge tube, seal, and shake for 10 min in a shaker box. Centrifuge at 1000 rpm for 10 min, and prepare aliquots of the methanol extract for gas chromatographic analysis.

D. Gas Chromatographic Conditions:

Instrument: HP 5880A with 7672A ALS Detector: Flame ionization Column: 10% Carbowax 20M TPA on Chromasorb W(AW), 1.8 m × 2 mm ID, silanized glass Detector temperature: 225°C Inlet temperature: 175°C Temperature program: 130°C, isothermal Carrier gas: Nitrogen Flow rate: 40 ml/min. Retention times: Dimethyl hydrogen phosphite, 2.6 min; triethylphosphate, 7.0 min

II. Analytical Chemistry Laboratory

- A. Preparation of Standard Spiked Corn Oil: Two working standard solutions of dimethyl hydrogen phosphite in methanol were prepared independently at concentrations of 6.79 and 4.61 mg/ml. These solutions were diluted with methanol to concentrations of 3.40, 2.30, 1.70, and 1.15 mg/ml. Aliquots (20 ml) of the six standard solutions were pipetted into individual 35-ml septum vials containing 2 g of undosed corn oil to make spiked corn oil standards bracketing the specified dose range of the referee sample. One 35-ml septum vial containing 2 g of undosed corn oil was treated with 20 ml of methanol for use as a blank. The spiked corn oil mixtures and the corn oil blank were extracted immediately and were analyzed by the procedure described below.
- **B.** Preparation of the Referee Sample: Three portions (approximately 2 g each) of the referee corn oil sample were transferred to individually tared 35-ml septum vials and were weighed to the nearest 0.001 g. Methanol (20 ml) was pipetted into each vial; the referee samples were then extracted immediately and analyzed by the procedure described below.
- C. Analysis: The vials were sealed (vial seals were Microsep F-138 gas chromatography septa with Teflon[®] film facing available from Canton Biomedical Products, Inc., Boulder, CO; the aluminum crimp seals and vials were available from Wheaton Scientific Co., Inc., Millville, NJ), vigorously agitated for 10 sec on a vortex mixer, and then shaken at maximum stroke for 15 min on a Burrell, Model 75, Wrist-Action[®] shaker. After the extraction, mixtures were centrifuged for 3 min, a 5-ml aliquot of the upper methanol layer from each vial was combined with 5 ml of internal standard solution (triethylphosphate in methanol, 7.5 mg/ml). The solutions were thoroughly mixed, and the dimethyl hydrogen phosphite content of each solution was determined by the gas chromatography system described below.

Instrument: Varian 3700 Gas Chromatograph with Autosampler and Varian CDS 111-C integrator

Column: 10% Carbowax 20M TPA on 80/100 Chromosorb W(AW), 1.8 m \times 2 mm ID, silanized glass

Detection: Flame ionization Detector temperature: 230°C Inlet temperature: 180°C Temperature program: 120°C isothermal Carrier gas: Nitrogen Flow rate: 30 ml/min Volume of solution injected: 3 µl Retention times:

(1) Dimethyl hydrogen phosphite: 4.6 min

(2) Triethylphosphate:13.5 min

The total amount of dimethyl hydrogen phosphite in the referee corn oil samples was computed from the linear regression equation obtained by plotting the ratio of the peak area of each spiked corn oil sample to the peak area of the internal standard versus the amount of chemical in the respective spiked corn oil sample. **D.** Quality Assurance Measures: The dosed referee corn oil sample was analyzed in triplicate, and the corn oil blank sample was analyzed once. Individually spiked portions of undosed corn oil (six concentrations) prepared from two independently weighed standards were used for obtaining standard curve data. Triplicate injections of each standard and sample were made into the gas chromatograph in a randomized order.

APPENDIX J

ANALYSES OF DOSE MIXTURES: DATA

163 Dimethyl Hydrogen Phosphite, NTP TR 287

TABLE J1. ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

	Concentration of Dimethyl Hydrogen Phosphite in Corn Oil for Target Concentration (mg/ml)(a)			
Date Mixed	12.5 mg/ml 25 mg/ml		50 mg/ml	
03/19/80	12.4	24.9	52.2	
(b) 05/14/80		25.5	48.7	
(c) 05/14/80	11.2	23.5	47.0	
(b) 07/09/80		26.2	51.3	
(c) 07/09/80	11.6	23.4	47.3	
09/03/80	13.0	26.0	51.0	
10/29/80	13.4	26.0	53.0	
12/24/80	(d) 14.3	26.6	50.9	
03/04/81	13.7	26.9	53.5	
04/15/81	12.8	25.0	51.1	
06/10/81	(d) 16.5	(d) 29.1	(d) 59.2	
06/12/81	(d,e) 15.2	(d,e) 32.0	(d,e) 64.5	
06/15/81	(e) 12.3	(e) 24.6	(e) 49.2	
08/05/81	12.6	25.0	51.2	
09/30/81	12.5	26.2	52.5	
11/24/81	13.1	27.3	53.6	
01/20/82	12.0	(d) 27.6	(d) 55.7	
01/25/82		(e) 26.8	(e) 53.9	
03/17/82	11.3	25.4	48.9	
Mean (mg/ml)	12.9	25.9	51.7	
Standard deviation	1.37	1.46	3.08	
Coefficient of variation (percent)	10.6	5.6	6.0	
lange (mg/ml)	11.2-16.5	23.4-29.1	47.0-59.2	
Number of samples (f)	14	16	16	

(a) The data presented are the results of duplicate analyses.(b) Mice only(c) Rats only

(d) Differs more than 10% from target value

(e) Remix

(f) Remixes not included in statistics so as to provide a measure of the overall accuracy of dose preparation

TABLE J2. REFEREE SAMPLE DATA IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE

		Determined Concentration	
Date Mixed	Target Concentration (mg/ml)	Testing Laboratory	Referee Laboratory
5/14/80	12.5	11.20	12.28
10/29/80	12.5	13.40	12.54
6/10/81	50.0	59.15	49.80
11/24/81	12.5	13.15	12.50
3/17/82	25.0	25.30	24.90

APPENDIX K

GENETIC TOXICOLOGY OF DIMETHYL HYDROGEN PHOSPHITE

			Revertants/plate (a)	
Strain	Dose (µg/plate)	- S9	+ S9 (rat)	+ S9 (hamster)
TA100	0	149 ± 5.4	197 ± 8.4	110 ± 6.1
	100	152 ± 11.5	170 ± 4.4	92 ± 3.3
	333	156 ± 9.8	186 ± 17.7	112 ± 6.2
	1,000	151 ± 6.5	189 ± 13.3	110 ± 4.3
	3,333	179 ± 9.6	199 ± 5.9	84 ± 13.8
	10,000	168 ± 9.1	224 ± 3.6	Toxic
FA1535	0	26 ± 3.0	11 ± 1.7	13 ± 2.2
	100	34 ± 3.5	10 ± 3.0	13 ± 2.0
	333	33 ± 1.9	13 ± 1.5	11 ± 1.2
	1,000	32 ± 2.8	12 ± 2.0	12 ± 0.3
	3,333	32 ± 1.9	14 ± 4.1	13 ± 2.4
	10,000	26 ± 1.5	Toxic	Toxic
A1537	0	16 ± 0.9	19 ± 1.5	22 ± 3.2
	100	14 ± 2.2	27 ± 1.9	27 ± 4.3
	333	13 ± 0.7	18 ± 2.4	19 ± 2.9
	1,000	18 ± 2.7	19 ± 4.2	25 ± 2.4
	3,333	14 ± 0.6	19 ± 2.6	24 ± 1.8
	10,000	11 ± 1.2	15 ± 0.9	17 ± 4.2
FA98	0	31 ± 3.2	39 ± 2.7	43 ± 4.2
	100	35 ± 2.6	35 ± 2.1	36 ± 8.5
	333	33 ± 1.8	36 ± 2.5	39 ± 4.3
	1,000	37 ± 4.4	26 ± 6.0	31 ± 3.5
	3,333	37 ± 3.2	34 ± 1.9	29 ± 6.1
	10,000	42 ± 5.9	Toxic	Toxic

TABLE K1. MUTAGENICITY OF DIMETHYL HYDROGEN PHOSPHITE IN SALMONELLA TYPHIMURIUM

(a) The S9 fractions were prepared from the livers of Aroclor 1254-induced animals (male Sprague-Dawley rats and male Syrian hamsters). Cells and test compound or solvent (water) were incubated for 20 min at 37° C in the presence of either S9 or buffer (Yahagi et al., 1975). After the addition of soft agar, the contents of each tube were poured onto minimal medium, and the plates were incubated at 37° C for 48 h (Ames et al., 1975). The experiment was performed twice, each in triplicate; because the results were similar, data from only one experiment are shown.

Route of	Dose		No. of Lethals/No. of X Chromosomes Tested (a)		
Exposure	(ppm)	Mating 1	Mating 2	Mating 3	Total (percent)
Feeding	0	2/1,124	0/300	0/173	2/1,597
-		0/1,789	1/1,461	1/1,265	2/4,515
		0/1,200	1/937	0/567	1/2,704
					5/8,816 (0.06)
	650	0/959	0/474	0/243	0/1,676
		2/1,156	0/1,150	1/965	3/3,271
		0/397	1/264	0/13	1/674
					4/5,621 (0.07)
Injection	0	1/1,358	3/1,360	6/1,349	10/4,067
	•	1/1,118	1/1,028	0/846	2/2.992
		2/2,110	1,1,020	0,010	12/7,059 (0.17)
					<i>,</i>
	1,500	1/1,400	0/1,360	1/1,333	2/4,093
		1/798	0/733	3/698	4/2,229
					6/6,322 (0.09)

TABLE K2. INDUCTION OF SEX-LINKED RECESSIVE LETHAL MUTATIONS IN DROSOPHILA MELANOGASTER BY DIMETHYL HYDROGEN PHOSPHITE

(a) The sex-linked recessive lethal assay was performed essentially as described by Abrahamson and Lewis (1971). Exposure by feeding was done by allowing 24-h-old Canton-S males to feed for 3 d on a solution of the test chemical dissolved in 5% sucrose. Exposure by injection was done by injecting 72-h-old adult males at the base of the halteres with enough of the test chemical dissolved in 0.7% sodium chloride to distend the abdomen (approximately 0.3 μ l). Injected flies were allowed to recover for 24 h before being mated. Exposed males were mated to three *Basc* females for 3 d and given fresh females at 2-d intervals to produce three broods of 3, 2, and 2 d, after which the parents were discarded. F₁ heterozygous females were crossed to their siblings and placed in individual vials. F₁ daughters from the same parental males were kept together to identify clusters; none were found. After 17 d, presumptive lethals were identified as vials containing no wild-type males; these were retested.

Dimethyl Hydrogen Phosphite, NTP TR 287 168

APPENDIX L

SENTINEL ANIMAL PROGRAM

169 Dimethyl Hydrogen Phosphite, NTP TR 287

I. Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect test results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via viral serology on sera from extra (sentinel) animals in the test rooms. These animals are untreated, and these animals and the test animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen $B6C3F_1$ mice and 15 F344/N rats of each sex are selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group were killed at 6, 12, and 18 months on study. Data from animals surviving 24 months were collected from 5/50 randomly selected control animals of each sex and species. The blood from each animal was collected and clotted and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. Sera from vehicle controls in the 13-week studies were also collected. The following tests were performed:

	Hemagglutination Inhibition	Complement <u>Fixation</u>	<u>ELISA</u>
Mice	PVM (pneumonia virus of mice) Reo 3 (reovirus type 3) GDVII (Theiler's encephalomyelitis virus) Poly (polyoma virus) MVM (minute virus of mice) Ectro (ectromelia virus)	M.Ad. (mouse adenovirus) MHV (mouse hepatitis virus) Sendai LCM (lymphocytic choriomeningitis virus)	MHV (24 mo.)
Rats	PVM KRV (Kilham rat virus) H-1 (Toolan's H-1 virus)	RCV (rat coronavirus) Sendai	

II. Results

Results are presented in Tables L1 and L2.

TABLE L1. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE THIRTEEN-
WEEK GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE (a)

	No. of Animals	Positive Serologic Reaction for	
RATS			
	2/10 10/10 10/10	RCV PVM Sendai	
MICE			
	3/10 10/10	PVM Sendai	

(a) Blood samples were taken from vehicle control animals (5/sex) just before the animals were killed.

TABLE L2. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF DIMETHYL HYDROGEN PHOSPHITE (a)

	Interval	No. of Animals	Positive Serologic Reaction for
RATS			
	6 months 12 months 18 months 24 months	10 10 10 10	None positive None positive None positive None positive
MICE			
	6 months 12 months 18 months 24 months	10 1/10 10 6/10	None positive MVM None positive MHV

(a) Blood samples were taken from sentinel animals (5/sex) at 6, 12, and 18 months after the start of dosing and from the vehicle control animals (5/sex) just before they were killed. The samples were sent to Microbiological Associates, Inc. (Bethesda, MD) for the Animal Disease Screeening Program.

Dimethyl Hydrogen Phosphite, NTP TR 287 172 .

APPENDIX M

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS OF THE NIH 07 DIET

Pelleted Diet: March 1980 to April 1982 (Manufactured by Zeigler Bros., Inc., Gardners, PA)

TABLE M1. INGREDIENTS OF THE NIH 07 DIET (a)

Ingredients (b)	Percent by Weight	
Ground #2 yellow shelled corn	24.50	
Ground hard winter wheat	23.00	
Soybean meal (49% protein)	12.00	
Fish meal (60% protein)	10.00	
Wheat middlings	10.00	
Dried skim milk	5.00	
Alfalfa meal (dehydrated, 17% protein)	4.00	
Corn gluten meal (60% protein)	3.00	
Soy oil	2.50	
Brewer's dried yeast	2.00	
Dry molasses	1.50	
Dicalcium phosphate	1.25	
Ground limestone	0.50	
Salt	0.50	
Premixes (vitamin and mineral)	0.25	

(a) NIH, 1978; NCI, 1976
(b) Ingredients should be ground to pass through a U.S. Standard Screen #16 before mixing.

	Amount	Source
Vitamins		
A	5,500,000 IU	Stabilized vitamin A
		palmitate or acetate
D ₃	4,600,000 IU	D activated animal stero
d-A-tocopheryl acetate	20,000 IU	
Riboflavin	3.4 g	
Thiamine	10.0 g	Thiamine mononitrate
Niacin	30.0 g	
d-Pantothenic acid	18.0 g	d-Calcium pantothenate
Folic acid	2.2 g	•
Pyridoxine	1.7 g	Pyridoxine hydrochlorid
B ₁₂	4000 µg	
Biotin	140.0 mg	d-Biotin
Ka	2.8 g	Menadione activity
Choline	560.0 g	Choline chloride
Minerals		
Iron	120.0 g	Iron sulfate
Manganese	60.0 g	Manganous oxide
Zinc	16.0 g	Zinc oxide
Copper	4.0 g	Copper sulfate
Iodine	1.4 g	Calcium iodate
Cobalt	0.4 g	Cobalt carbonate

TABLE M2. VITAMINS AND MINERALS IN THE NIH 07 DIET (a)

(a) Per ton (2,000 lb) of finished product

TABLE M3. NUTRIENT COMPOSITION OF THE NIH 07 DIET (a)

Nutrient	Mean \pm Standard Deviation	Range	Number of Samples
Crude protein (percent)	24.14 ± 0.88	22.7-25.1	24
Crude fat (percent)	4.77 ± 0.34	4.1-5.4	24
Crude fiber (percent)	3.31 ± 0.50	1.4-4.3	24
Ash (percent)	6.67 ± 0.49	5.83-7.43	24
litamins			
/itamin A (IU/kg)	$10,700 \pm 2,350$	7,200-17,000	24
itamin D (IU/kg)	6,300		1
-tocopherol (ppm)	37.6	31.1-44.0	2
'hiamine (ppm)	16.4 ± 4.5	7.3-27.0	(b) 23
liboflavin (ppm)	6.9	6.1-7.4	2
liacin (ppm)	75 30.2	65-85	2
antothenic acid (ppm)	30.2 7.2	29.8-30.5 5.6-8.8	2 2
yridoxine (ppm) olic acid (ppm)	2.1	1.8-2.4	2
liotin (ppm)	0.24	0.21-0.27	2
$(itamin B_{12}(ppm))$	12.8	10.6-15.0	2
Choline (ppm)	3,315	3,200-3,430	2
••	0,010	J,4UU-J, 4 JU	4
finerals alcium (percent)	1.32 ± 0.20	0.81-1.69	24
hosphorous (percent)	1.01 ± 0.08	0.88-1.10	24
otassium (percent)	0.809	0.772-0.846	2
hloride (percent)	0.557	0.479-0.635	2
odium (percent)	0.304	0.258-0.349	2
lagnesium (percent)	0.172	0.166-0.177	2
ulfur (percent)	0.278	0.270-0.285	2
ron (ppm)	418	409-426	2
langanese (ppm)	90.8	86.0-95.5	2
inc (ppm)	55.1	54.2-56.0	2
opper (ppm)	12.68	9.65-15.70	2
odine (ppm)	2.58	1.52-3.64	2
hromium (ppm)	1.86	1.79-1.93	2
obalt (ppm)	0.57	0.49-0.65	2
Essential Fatty Acids			
inoleic	2.37		1
inolenic	0.308		1
rachidonic	0.008		1
ssential Amino Acids	1 929	1 01 1 01	•
rginine	1.260	1.21-1.31	2
ystine	0.395 1.75	0.39-0.40	2 2
lycine		1.15-1.20	2
listidine soleucine	0.553 0.908	0.530-0.576 0.881-0.934	2
eucine	1.905	1.85-1.96	2
ysine	1.905	1.20-1.30	22
ysine Iethionine	0.310	0.306-0.314	2
'henylalanine	0.967	0.960-0.974	2
henylalanine hreonine	0.834	0.827-0.840	2
ryptophan	0.175	0.171-0.178	2
yrosine	0.587	0.566-0.607	2
aline	1.085	1.05-1.12	2

(a) One or two of the analyzed feed batches came from diet manufactured in January and/or April 1983. (b) One batch (7/22/81) was not analyzed for thiamine.

TABLE M4. CONTAMINANT LEVELS OF THE NIH 07 DIET

Contaminant	Mean \pm Standard Deviation	Range	Number of Sample
Arsenic (ppm)	0.38 ± 0.23	< 0.05-1.06	24
Cadmium (ppm)	0.11 ± 0.07	(a) < 0.01 - 0.40	24
ead (ppm)	0.91 ± 0.51	0.50-2.65	24
fercury (ppm)	(b) 0.05	0.00-2.00	24
Selenium (ppm)	0.30 ± 0.09	0.10-0.52	24
Aflatoxins (ppb)	(b,c) <10	<5.0-<10.0	24
Nitrate nitrogen (ppm) (d)	7.17 ± 3.66	(e) <0.1-13.0	24
Nitrite nitrogen (ppm) (d)	1.88 ± 1.58	(e) <0.1-6.9	24
3HA (ppm) (f)	4.39 ± 3.72	(g) < 0.4-13.0	24
BHT (ppm) (f)	2.67 ± 1.50	0.8-5.9	24
Aerobic plate count (CFU/g)	45,008 ± 33,225	5500-120000	24
Coliform (MPN/g) (d)	(h) 36.4 ± 52.5	<3-240	23
	(i) 125 ± 304	<3-1100	24
. coli (MPN/g)	(j) <3		24
otal nitrosamines (ppb)	7.16 ± 6.92	(k) 0.8-24.5	21
	29.36 ± 64.76	(1) 0.8-273	24
N-Nitrosodimethylamine (ppb)	5.54 ± 6.03	(k) 0.8-20.0	21
	27.55 ± 64.41	(1) 0.8-272	$\overline{24}$
I-Nitrosopyrrolidine (ppb)	1.34 ± 0.93	0-3.5	24
esticides (ppm)			
lpha BHC (m)	(b) <0.01		24
leta BHC	(b) < 0.02		24
amma BHC-Lindane	(b) < 0.01		24
elta BHC	(b) < 0.01		24
leptachlor	(b) < 0.01		24
ldrin	(b) < 0.01		24
leptachlor epoxide	(b) < 0.01		24
DE	(b) < 0.01		24
DD	(b) <0.01		24
ICB	(b) < 0.01		24
firex	(b) < 0.01		24
fethoxychlor	(b) < 0.05	(n) 0.09 (8/26/81)	24
Dieldrin	(b) < 0.01	(11) 0.09 (8/20/81)	24
Indrin	(b) < 0.01		
			24
elodrin	(b) < 0.01		24
hlordane	(b) < 0.05		24
'oxaphene stimated PCB's	(b) < 0.1		24
connel	(b) < 0.2		24 24
	(b) < 0.01 (b) < 0.02		
thion	(b) < 0.02		24
'rithion	(b) < 0.05	() 0 0 (4007/01)	24
Diazinon	(b) <0.01	(n) 0.2 (4 /27/81)	24
fethyl parathion	(b) < 0.02		24
thyl parathion	(a) < 0.02		24
falathion	0.09 ± 0.07	(o) <0.05-0.27	24
ndosulfan I	(b) <0.01		24
Indosulfan II	(b) < 0.01		24
ndosulfan sulfate	(b) <0.03		24

TABLE M4. CONTAMINANT LEVELS OF THE NIH 07 DIET (Continued)

(a) Two batches contained more than 0.1 ppm.

(b) All values less than detection limit given in the table as the mean.

(c) Detection limit reduced from 10 ppb to 5 ppb after 7/81.

(d) Source of contamination--alfalfa, grains, and fish meal

(e) Two batches contained less than 0.1 ppm.

(f) Source of contamination--soy oil and fish meal

(g) Three batches contained less than 0.5 ppm.

(h) Excludes one very high value of 1100 obtained in the batch produced on 12/16/80

(i) Excludes one very high value of 1100 obtained in the batch produced on 12/16/80
(j) All values were <3 MPN/g; MPN = most probable number
(k) All values are corrected for percent recovery; excludes three very high values in the range of 115-280 ppb in batches

produced on 1/26/81, 2/23/81, and 4/27/81.

(1) All values are corrected for percent recovery; includes three very high values in the range of 115-280 ppb in batches produced on 1/26/81, 2/23/81, and 4/27/81.

(m) BHC is hexachlorocyclohexane or benzene hexachloride.

(n) One value above the detection limit (noted in the range column) was obtained on this date.

(o) Twelve batches contained more than 0.05 ppm.

Dimethyl Hydrogen Phosphite, NTP TR 287 178

APPENDIX N

DATA AUDIT SUMMARY

179 Dimethyl Hydrogen Phosphite, NTP TR 287

The experimental data and tables of the NTP Technical Report on the toxicology and carcinogenesis studies of dimethyl hydrogen phosphite in F344/N rats and B6C3F₁ mice were examined during the period February to May 1984 for completeness, consistency, and accuracy and for procedures consistent with Good Laboratory Practice requirements. The audit was conducted by Argus Research Laboratories and NTP personnel. The following persons were audit team members: Dr. E. Feussner, Dr. P. Ference, Dr. J. Goeke, Mr. J. Hills, Dr. R. Long, and Ms. C. Veigle. The 2-year studies in rats and mice were conducted between March 1980 and April 1982 at Litton Bionetics, Inc.

The full report of the audit is on file at the NTP Archives, Research Triangle Park, North Carolina. The audit consisted of a review of the records for the in-life portion of the studies; a review of 100% of the chemistry data, including chemical characterization, bulk chemical analysis, and characterization of dose mixtures; and a review of the pathology data. All Individual Animal Data Records for rats and mice were reviewed for correlation of gross lesions and microscopic diagnosis. Ten percent of wet tissues (random samples) were reviewed for animal identification and untrimmed lesions. A complete slide/block match for both sexes of rats and mice in the high dose and control groups was performed.

This audit review revealed no major problems with the execution of the studies or with the collection or reporting of the experimental data. The chemistry information in the Technical Report accurately reflects the data. Animals were identified individually as well as by test group. Animal record identification was good with no discrepancies seen in rats. One animal identification discrepancy was seen in mice: The records of two low dose female mice in the same cage were interchanged. Untrimmed lesions were infrequent and did not involve target organs. There were no discrepancies involving correlation of gross lesions with microscopic diagnosis in target organs (male rats--lung and forestomach; female rats--lung and forestomach). Discrepancies involving correlation of gross lesions with microscopic diagnosis in other nontarget organs were infrequent and randomly distributed among dose groups. Slide/block match was good: Questionable matches were infrequent (5 out of a total of 3,677 slides). Other minor problems not mentioned here were considered not to affect the outcome of the studies. In conclusion, no data discrepancies were found that would influence the final interpretation of this experiment.