NATIONAL TOXICOLOGY PROGRAM **Technical Report Series** No. 296

A SERVICES US

TOXICOLOGY AND CARCINOGENESIS STUDIES OF **TETRAKIS(HYDROXYMETHYL)PHOSPHONIUM** SULFATE (THPS) (CAS NO. 55566-30-8) AND **CHLORIDE (THPC)** (CAS NO. 124-64-1) (GAVAGE STUDIES) **Public Health Service** National Institutes of Health

TETRAKIS(HYDROXYMETHYL)PHOSPHONIUM

IN F344/N RATS AND B6C3F₁ MICE

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development/validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is made up of four charter DHHS agencies: the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS.

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF

TETRAKIS(HYDROXYMETHYL)PHOSPHONIUM SULFATE (THPS)

(CAS NO. 55566-30-8)

AND

TETRAKIS(HYDROXYMETHYL)PHOSPHONIUM CHLORIDE (THPC)

(CAS NO. 124-64-1)

IN F344/N RATS AND B6C3F1 MICE

(GAVAGE STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

February 1987

NTP TR 296

NIH Publication No. 87-2552

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NOTE TO THE READER

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for testing in the NTP Carcinogenesis Program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical has the potential for hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

Five categories of interpretative conclusions were adopted for use in June 1983 in the Technical Reports series to specifically emphasize consistency and the concept of actual evidence of carcinogenicity. For each definitive study result (male rats, female rats, male mice, female mice), one of the following quintet will be selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of malignant neoplasms, studies that exhibit a substantially increased incidence of benign neoplasms, or studies that exhibit an increased incidence of a combination of malignant and benign neoplasms where each increases with dose.
- Some Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of benign neoplasms, studies that exhibit marginal increases in neoplasms of several organs/tissues, or studies that exhibit a slight increase in uncommon malignant or benign neoplasms.
- Equivocal Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related marginal increase of neoplasms.
- No Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- **Inadequate Study of Carcinogenicity** demonstrates that because of major qualitative or quantitative limitations, the studies cannot be interpreted as valid for showing either the presence or absence of a carcinogenic effect.

Additionally, the following concepts (as patterned from the International Agency for Research on Cancer Monographs) have been adopted by the NTP to give further clarification of these issues:

The term *chemical carcinogenesis* generally means the induction by chemicals of neoplasms not usually observed, the earlier induction by chemicals of neoplasms that are commonly observed, or the induction by chemicals of more neoplasms than are generally found. Different mechanisms may be involved in these situations. Etymologically, the term *carcinogenesis* means induction of cancer, that is, of malignant neoplasms; however, the commonly accepted meaning is the induction of various types of neoplasms or of a combination of malignant and benign neoplasms. In the Technical Reports, the words *tumor* and *neoplasm* are used interchangeably.

This study was initiated by the National Cancer Institute's Carcinogenesis Bioassay Program, now part of the National Institute of Environmental Health Sciences, National Toxicology Program. The studies described in this Technical Report have been conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. Animal care and use were in accordance with the U.S. Public Health Service Policy on Humane Care and Use of Animals. All NTP toxicology and carcinogenesis studies are subjected to a data audit before being presented for peer review.

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to identify any mistakes so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP. Comments and questions about the National Toxicology Program Technical Reports on Toxicology and Carcinogenesis Studies should be directed to Dr. J.E. Huff, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3780).

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Public Information Office, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709.

TETRAKIS(HYDROXYMETHYL)PHOSPHONIUM SULFATE

CAS No. 55566-30-8

C₈H₂₄O₁₂P₂S

Molecular weight 406.28

TETRAKIS(HYDROXYMETHYL)PHOSPHONIUM CHLORIDE

CAS No. 124-64-1

 $C_4H_{12}O_4PCl$

Molecular weight 190.56

ABSTRACT

Toxicology and carcinogenesis studies of tetrakis(hydroxymethyl)phosphonium sulfate (THPS) and tetrakis(hydroxymethyl)phosphonium chloride (THPC) were conducted because of the widespread use of these chemicals as flame retardants in cotton fabrics. THPS was available as a 72% aqueous solution and THPC as a 75% aqueous solution. Short-term gavage studies with a range of doses were conducted first to identify toxic effects and affected sites and to determine doses for the 2-year studies. The doses selected for the 14-day studies ranged from 12.5 to 200 mg/kg THPS for rats and mice, 9.4 to 150 mg/kg THPC for rats, and 18.8 to 300 mg/kg THPC for mice. Mortality and reduction in body weight gain occurred at the two highest doses in the 14-day studies. There was hind limb paralysis in some rats and mice dosed at the highest concentrations of THPS and THPC.

In the 13-week studies, doses of THPS ranged from 5 to 60 mg/kg in rats and from 2 to 180 mg/kg in mice; doses of THPC ranged from 3.75 to 60 mg/kg in rats and from 1.5 to 135 mg/kg in mice. Mortality and reduction in body weight gain occurred at the two higher doses for both sexes and species. Vacuolar degeneration of hepatocytes or hepatocellular necrosis was a common histopathologic finding. Hind limb paralysis was noted in rats and mice receiving the highest dose of THPC, and axonal degeneration, characterized by swollen axon sheaths, missing or fragmented axons, and some proliferation of neurolemma cells, was observed in rats. These lesions were found in the sciatic nerve, dorsal roots of the caudal spinal nerves, and tracts of the spinal cord, particularly in the dorsal column of the lumbar cord.

Two-year studies were conducted in F344/N rats by administering 0, 5, or 10 mg/kg THPS or 0, 3.75, or 7.5 mg/kg THPC in deionized water by gavage to groups of 49 or 50 animals of each sex, 5 days per week for 103 or 104 weeks. Groups of 49 or 50 B6C3F₁ mice were administered 0, 5, or 10 mg/kg THPS (each sex), 0, 7.5, or 15 mg/kg THPC (males), or 0, 15, or 30 mg/kg THPC (females).

Survival of male rats was reduced for the low dose (after week 102) and the high dose (after week 67) groups given THPS compared with that of the vehicle controls; survival at terminal kill was as follows: vehicle control, 28/50; low dose, 13/50; high dose, 16/50. Survival of the high dose group of female rats given THPC was lower after week 70 than that of the vehicle controls (survival at terminal kill: 37/50; 34/50; 21/50). Mean body weights of rats dosed with THPS or THPC were comparable to those of the vehicle controls. There was no difference in survival or mean body weights between the vehicle controls and mice dosed with either THPS or THPC. No neurotoxicity or any other signs of clinical toxicity were observed.

A nonneoplastic effect common to 13-week and 2-year exposure to THPS or THPC was an increase in the incidence of hepatocellular lesions, primarily cytoplasmic vacuolization. The incidences of this lesion in the 2-year studies were dose related for all studies except for the mice receiving THPS. Other lesions observed included focal hyperplasia of the adrenal medulla in high dose male mice given THPS and follicular cell hyperplasia of the thyroid gland in high dose female mice given THPC. The increased incidences of hematopoietic system lesions observed in these studies were not considered biologically related to chemical exposure because the increases were marginal, no dose-response relationship was observed, and the incidences of these lesions are highly variable in untreated rats and mice.

The incidences of mononuclear cell leukemia in low dose male rats administered THPS or THPC were somewhat greater than those in the vehicle controls (THPS: 30/50; 36/50; 20/50; THPC: 19/50; 25/50; 16/50). Low dose male mice administered THPS had an increased incidence of malignant lymphomas when compared with vehicle controls (2/50; 9/50; 0/50). These marginal increases in the incidences of hematopoietic system tumors were not considered related to chemical exposure, since they were significant only by the life table tests and were not dose related.

THPC demonstrated no mutagenic activity in Salmonella typhimurium strains TA98, TA100, TA1535, or TA1537 with or without metabolic activation. Both THPS and THPC induced forward mutations in mouse lymphoma L5178Y cells without metabolic activation; neither was tested in the presence of S9. THPC increased the frequency of sister-chromatid exchanges and chromosomal aberrations in Chinese hamster ovary cells in the presence and absence of exogenous metabolic activation.

An audit of the experimental data was conducted for the 2-year studies of THPS and THPC. No discrepancies were found that influenced the final interpretations.

Under the conditions of these 2-year gavage studies, there was no evidence of carcinogenicity* of THPS in either sex of F344/N rats or B6C3F₁ mice given 5 or 10 mg/kg. There was no evidence of carcinogenicity of THPC in either sex of F344/N rats given 3.75 or 7.5 mg/kg, in male B6C3F₁ mice given 7.5 or 15 mg/kg, or in female B6C3F₁ mice given 15 or 30 mg/kg.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on page 9.

CONTENTS

NOTE TO THE READER2
ABSTRACT
PEER REVIEW PANEL
SUMMARY OF PEER REVIEW COMMENTS9
CONTRIBUTORS
I. INTRODUCTION
II. MATERIALS AND METHODS
PROCUREMENT AND CHARACTERIZATION OF THPS AND THPC
PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES
SINGLE-ADMINISTRATION STUDIES
FOURTEEN-DAY STUDIES20
THIRTEEN-WEEK STUDIES
TWO-YEAR STUDIES
STUDY DESIGN25
SOURCE AND SPECIFICATIONS OF ANIMALS
ANIMAL MAINTAINANCE
CLINICAL EXAMINATIONS AND PATHOLOGY26
STATISTICAL METHODS
III. RESULTS
RATS
SINGLE-ADMINISTRATION STUDIES
FOURTEEN-DAY STUDIES
THIRTEEN-WEEK STUDIES
TWO-YEAR STUDIES
BODY WEIGHTS AND CLINICAL SIGNS
SURVIVAL
PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS
MICE
SINGLE-ADMINISTRATION STUDIES45
FOURTEEN DAY STUDIES46
THIRTEEN-WEEK STUDIES
TWO-YEAR STUDIES
BODY WEIGHTS AND CLINICAL SIGNS
SURVIVAL

PAGE

CONTENTS (Continued)

PAGE

	PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS
IV.	DISCUSSION AND CONCLUSIONS
v.	REFERENCES

APPENDIXES

APPENDIX A	SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE
	STUDY OF THPS
APPENDIX B	SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE
	STUDY OF THPS
APPENDIX C	SUMMARY OF LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE
	STUDY OF THPS117
APPENDIX D	SUMMARY OF LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE
	STUDY OF THPS141
APPENDIX E	SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE
	STUDY OF THPC
APPENDIX F	SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE
	STUDY OF THPC
APPENDIX G	SUMMARY OF LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE
	STUDY OF THPC
APPENDIX H	SUMMARY OF LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE
	STUDY OF THPC
APPENDIX I	GENETIC TOXICOLOGY OF THPS
APPENDIX J	GENETIC TOXICOLOGY OF THPC
APPENDIX K	CHEMICAL CHARACTERIZATION OF THPS
APPENDIX L	CHEMICAL CHARACTERIZATION OF THPC
APPENDIX M	PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES OF THPS 263
APPENDIX N	PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES OF THPC 265
APPENDIX O	METHODS OF ANALYSIS OF DOSE MIXTURES OF THPS
APPENDIX P	METHODS OF ANALYSIS OF DOSE MIXTURES OF THPC
APPENDIX Q	RESULTS OF ANALYSIS OF DOSE MIXTURES OF THPS
APPENDIX R	RESULTS OF ANALYSIS OF DOSE MIXTURES OF THPC

6

APPENDIXES (Continued)

APPENDIX S	SENTINEL ANIMAL PROGRAM
APPENDIX T	INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN
	NIH 07 RAT AND MOUSE RATION
APPENDIX U	DATA AUDIT SUMMARY

r

THPS and THPC, NTP TR 296

PAGE

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on THPS and THPC on March 26, 1986, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Jerry B. Hook, Ph.D. (Chair) Vice President, Preclinical Research and Development Smith Kline & French Laboratories, Philadelphia, Pennsylvania

Frederica Perera, Dr. P.H. Division of Environmental Sciences School of Public Health, Columbia University New York, New York James Swenberg, D.V.M., Ph.D. Head, Department of Biochemical Toxicology and Pathobiology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

Ad Hoc Subcommittee Panel of Experts

Charles C. Capen, D.V.M., Ph.D. Department of Veterinary Pathobiology Ohio State University Columbus, Ohio

Vernon M. Chinchilli, Ph.D. Department of Biostatistics Medical College of Virginia Virginia Commonwealth University Richmond, Virginia

John J. Crowley, Ph.D. (Principal Reviewer) Division of Public Health Science The Fred Hutchinson Cancer Research Center Seattle, Washington

Kim Hooper, Ph.D. Hazard Evaluation System and Information Services Department of Health Services State of California Berkeley, California

Donald H. Hughes, Ph.D. (Principal Reviewer) Scientific Coordinator, Regulatory Services Division, The Procter and Gamble Company Cincinnati, Ohio Franklin E. Mirer, Ph.D. Director, Health and Safety Department International Union, United Auto Workers, Detroit, Michigan

James A. Popp, D.V.M., Ph.D. Head, Department of Experimental Pathology and Toxicology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

I.F.H. Purchase, B.V.Sc., Ph.D., F.R.C. Path.* Director, Central Toxicology Laboratory Imperial Chemical Industries, PLC Alderley Park, England

Robert A. Scala, Ph.D. (Principal Reviewer) Senior Scientific Advisor, Medicine and Environmental Health Department Research and Environmental Health Division, Exxon Corporation East Millstone, New Jersey

Andrew Sivak, Ph.D. Vice President, Biomedical Science Arthur D. Little, Inc. Cambridge, Massachusetts

^{*}Unable to attend

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF THPS AND THPC

On March 26, 1986, the draft Technical Report on the toxicology and carcinogenesis studies of tetrakis(hydroxymethyl)phosphonium sulfate (THPS) and tetrakis(hydroxymethyl)phosphonium chloride (THPC) received peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

Dr. C.W. Jameson, NTP, introduced the toxicology and carcinogenesis studies of THPS and THPC by reviewing the experimental design, results, and proposed conclusions (no evidence of carcinogenicity of THPS for rats or mice of each sex and no evidence of carcinogenicity of THPC for rats or mice of each sex).

Dr. Scala, a principal reviewer, agreed with the conclusions as written. He was pleased that the Chemical Manager emphasized the dosing errors in mice for 3 days but expressed concern about the effect these dosing mixups in some animal groups may have had on the validity of the studies and asked for more explanation. He noted that since THPS and THPC differ in their chemical structure only by the sulfate or chloride anion, yet show differences in toxic effects, some speculative discussion would have been interesting.

As a second principal reviewer, Dr. Crowley agreed with the conclusions but questioned the possible effects of the dosing mixups. In view of the elevated rates of mononuclear cell leukemia in male rats at the end of the study, he wondered if the life table test was the appropriate statistical test for interpreting the data. Dr. S. Eustis, NIEHS, emphasized that mononuclear cell leukemia takes several months to develop and is considered a fatal disease. Dr. J. Haseman, NIEHS, said that this was a good illustration of the difficulty of choosing the most appropriate statistical test, and this uncertainty was considered in the overall evaluation of the studies. Dr. J. Huff, NTP, added that leukemia is often a late-developing neoplasm and is usually fatal within 6-8 weeks after occurrence.

As a third principal reviewer, Dr. Hughes also agreed with the conclusions. He concurred with the other reviewers in calling for more explanation on the dosing mixups. He thought the rationale for choosing the gavage route of exposure was not particularly convincing, especially since information on absorption, distribution, metabolism, and excretion was not available. Dr. Hughes commented that the section in the Introduction on the reported initiation/promotion studies with THPC was potentially misleading because he viewed THPC as a "suspected" promoter rather than a promoter per se.

In response to the reviewers' concerns about the dosing mixups, Dr. Jameson said that the laboratory technicians inadvertently switched vials of THPS and THPC for dosing mice on only 3 days at about the midpoint of the study. This represents less than 0.6% (3/520) of the gavage days. No adverse effects were observed, and the NTP considered the incident to have no impact on the outcome of the studies. Documentation from the laboratory indicated this was an isolated incident. More information is given in the text of the Technical Report. [See pages 25-26.]

Dr. Scala moved that the Technical Report on THPS and THPC with the conclusions as written for rats and mice of each sex, no evidence of carcinogenicity, be accepted subject to inclusion of the more detailed explanation of the dosing mixups as presented by Dr. Jameson. Dr. Popp seconded the motion, which was approved unanimously with 11 affirmative votes.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of Tetrakis(hydroxymethyl)phosphonium Sulfate (THPS) and Tetrakis(hydroxymethyl)phosphonium Chloride (THPC) is based on the 13-week studies of THPS that began in April 1979 and ended in July 1979, the 2-year studies of THPS that began in March 1980 and ended in April 1982, the 13-week studies of THPC that began in October 1979 and ended in January 1980, and the 2-year studies of THPC that began in September 1980 and ended in September 1982 at Battelle Columbus Laboratories.

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

C.W. Jameson, Ph.D., Chemical Manager

Jack Bishop, Ph.D. Michael P. Dieter, Ph.D. Scot L. Eustis, D.V.M., Ph.D. Joseph K. Haseman, Ph.D. James Huff, Ph.D. E.E. McConnell, D.V.M. John Mennear, Ph.D. G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D. James K. Selkirk, Ph.D.

NTP Pathology Working Group for THPS (Evaluated Slides and Prepared Pathology Report for Rats on 6/2/83)

Robert Sauer, V.M.D. (Chair) (Clement Associates) Richard Bruner, D.V.M. (USAF) Scot L. Eustis, D.V.M., Ph.D. (NTP) Fletcher Hahn, D.V.M., Ph.D. Lovelace Inhalation Research Institute

Bob Jones, M.D. Lovelace Inhalation Research Institute James MacLachlan, B.V.Sc., Ph.D. North Carolina State University Henk Solleveld, D.V.M., Ph.D. (NTP)

NTP Pathology Working Group for THPS (Evaluated Slides and Prepared Pathology Report for Mice on 6/3/83)

Robert Sauer, V.M.D. (Chair) (Clement Associates) Gary A. Boorman, D.V.M., Ph.D. (NTP)

Scot L. Eustis, D.V.M., Ph.D. (NTP) Henk Solleveld, D.V.M., Ph.D. (NTP)

Principal Contributors at Battelle Columbus Laboratories (Conducted Studies and Evaluated Tissues for THPS)

A. Peters, D.V.M., Principal Investigator E. Leighty, Ph.D., Chemist R. Persing, D.V.M., Pathologist (for rats)

D. Donofrio, D.V.M., Pathologist (for mice)

Principal Contributors at Experimental Pathology Laboratories, Inc. (Conducted Pathology Quality Assurance for THPS)

Deborah Banas, D.V.M.

J. Gauchat, Pathology Coordinator

NTP Pathology Working Group for THPC (Evaluated Slides and Prepared Pathology Report for Rats on 6/3/85)

Leroy Hall, D.V.M., Ph.D. (Chair) (NTP) Gary A. Boorman, D.V.M., Ph.D. (NTP) Melvin Hamlin, D.V.M. (Experimental Pathology Laboratories, Inc.) (Observer) Kunitoshi Mitsumori, D.V.M., Ph.D. (NTP) Ronald Persing, D.V.M. (Battelle Columbus Laboratories) (Observer) Henk Solleveld, D.V.M., Ph.D. IVEG, TNO, The Netherlands Jeffrey Wilson, M.Sc. (Sandoz)

10

CONTRIBUTORS (Continued)

NTP Pathology Working Group for THPC (Evaluated Slides and Prepared Pathology Report for Mice on 6/20/85)

Robert Kovatch, D.V.M. (Chair) Pathology Associates Gary A. Boorman, D.V.M., Ph.D. (NTP) Sondra Grumbein, D.V.M., Ph.D. Battelle Columbus Laboratories Kunitoshi Mitsumori, D.V.M. (NTP) Kenneth Pierce, D.V.M., Ph.D. NTP Guestworker Linda Uraih, D.V.M. (NTP) Jeffrey Wilson, M.Sc. (Sandoz)

Principal Contributors at Battelle Columbus Laboratories (Conducted Studies and Evaluated Tissues for THPC)

A. Peters, D.V.M., Principal Investigator R. Persing, D.V.M., Pathologist (for rats) E. Leighty, Ph.D., Chemist S. Grumbein, D.V.M., Ph.D., Pathologist (for mice)

Principal Contributors at Experimental Pathology Laboratories, Inc. (Conducted Pathology Quality Assurance for THPC)

Melvin Hamlin, D.V.M. (for rats) J. Gauchat, Pathology Coordinator Jerry Hardisty, D.V.M. (for mice)

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D., Project Manager Abigail C. Jacobs, Ph.D., Senior Scientist John Warner, M.S., Chemist/Statistician

I. INTRODUCTION

Production Acute Toxicity Genetic Toxicology Carcinogenicity Study Rationale

TETRAKIS(HYDROXYMETHYL)PHOSPHONIUM SULFATE

CAS No. 55566-30-8

 $C_8H_{24}O_{12}P_2S$

Molecular weight 406.28

TETRAKIS(HYDROXYMETHYL)PHOSPHONIUM CHLORIDE

CAS No. 124-64-1

C₄H₁₂O₄PCl

Molecular weight 190.56

Tetrakis(hydroxymethyl)phosphonium (THP) salts represent the major class of chemicals used as flame retardants for cotton fabrics. Before 1976, all THP flame retardants were the chloride salt tetrakis(hydroxymethyl)phosphonium chloride (THPC) (Kirk-Othmer, 1980). The textile industry favored this compound because of the relatively low cost of the reactants. THPC is a crystalline compound that is readily soluble in water and is produced in high yield through the reversible reaction of formaldehyde with phosphine and hydrogen chloride. THPC is added to cotton fabric by treatment with ammonia or other amine-containing compounds, reacts with the amine groups, and hydrolyzes and loses chlorine to yield a highly cross-linked aminated phosphine oxide. The final flame retardant permeating the fibers of the fabric is durable and not readily removed by laundering.

Heat and moisture can degrade THPC finishes to release formaldehyde and hydrogen chloride. The carcinogen bis(chloromethyl)ether has been reported to spontaneously form in the presence of moisture and excess formaldehyde and hydrogen chloride (Kallos and Solomon, 1973). Afansa'eva and Evseenko (1971) reported detectable levels of formaldehyde, hydrochloric acid, and phosphine for as long as 1 year after fabric treatment. Bis(chloromethyl)ether was not detectable at the 0.1-ppm level in commercial THPC or in extracts of fabric treated with THPC (Loewengart and Van Duuren, 1977) and was also reported undetectable at levels of 0.1 ppb in manufacturing, use, and storage processes by chemical manufacturers. However, societal pressures dictated that industry develop a replacement for THPC. This was accomplished by replacing hydrogen chloride in the THPC with the sulfate anion to form tetrakis(hydroxymethyl)phosphonium sulfate, or THPS.

Production

The TSCA inventory for THPS and THPC indicated two U.S. suppliers. The combined annual use of each compound is between 1,000 and 5,000 tons in the United States.

Acute Toxicity

No LD₅₀ values for THPS were reported in the literature. The oral LD₅₀ value of THPC was reported as 282 mg/kg in male rats (Ulsamer et al., 1980). The dermal LD_{50} value in albino rabbits was greater than 4,084 mg/kg after a 24-hour exposure; erythema and edema of the integumentary system were observed, but mortality was not increased. Both THPC and THPS were toxic when applied dermally for longer exposures. Rabbits and rats were dosed daily for 20 days with 15%, 20%, or 30% aqueous solutions of THPC (Aoyama, 1975). Severe skin lesions occurred, and all rats in the highest dose group died after 9 days' administration. Dermal application of THPS to mice at doses of 125, 350, 700, and 1,000 mg/kg resulted in superficial necrosis at the application site and body weight loss (Connor et al., 1980). The two higher concentrations also resulted in the paralysis of back muscles in survivors. Similar effects in mice for THPC were reported by Afansa'eva and Evseenko (1971). Hepatocellular toxicity (shown by increased serum transaminase enzyme activity in rats) and increased liver mucopolysaccharide levels in mice were observed after administration of THPC in drinking water at 20-200 ppm (Ishizu, 1975).

Genetic Toxicology

Reports on the mutagenicity of THPS and THPC in the literature are generally negative. The few exceptions lack sufficient experimental data to allow a critical evaluation of the results. Salmonella/microsomal assays in the presence or absence of metabolic activation have shown uniformly negative results for both THPC and THPS (Connor et al., 1980; Ulsamer et al., 1980), as well as for six other phosphorus-containing flame retardants (MacGregor et al., 1980). A review of the extensive mutagenicity data generated by Japanese investigators from 1973 to 1978 confirmed the negative results for THPC activity in Salmonella (Kawachi et al., 1980a,b) but indicated positive results in the Bacillus subtilis rec assay with and without metabolic activation and equivocal results in chromosomal

aberration tests with rat bone marrow and hamster lung fibroblast cells. The authors provided no experimental details or reference to original publications but concluded that THPC is neither a carcinogen nor a mutagen.

Dimethyl sulfoxide extracts of THPS- and THPC-treated cotton fabrics were reported to mutate V79 hamster lung cells in the presence and absence of rat liver S9 (Ehrlich et al., 1980). These extracts also induced cell transformation in baby hamster kidney cells and 3T3 mouse embryo cells. The mutagenic components of these fabric extracts were not identified or quantitated. Coutino (1979) investigated the effects of several chemicals on the mitotic process of cultured Chinese hamster ovary cells and reported a significant increase in the occurrence of sticky chromosomes, anaphase bridges, chromosomal lag, and multipolar spindles after exposure of cells to 2.4×10^{-4} M THPS. The author proposed that interaction with chromosomal structural proteins and/or the spindle fiber apparatus, rather than direct alteration of DNA, be considered responsible for these observed mitotic abnormalities.

NTP short-term test data reveal no mutagenic effect of THPC in bacteria. The chemical was not mutagenic in the Salmonella/microsome assay with the preincubation protocol in strains TA98, TA100, TA1535, or TA1537 with or without metabolic activation from S9 of Aroclor 1254-induced male Sprague-Dawley rat and male Syrian hamster liver (Appendix J. Table J1). However, both THPC and THPS demonstrated genotoxic activity in mammalian cells. Both compounds were positive in the mouse lymphoma L5178Y/TK $^{+/-}$ forward mutation assay without metabolic activation (Table J2; Appendix I, Table I1); neither was tested with metabolic activation. THPC induced a doserelated increase in the level of sister-chromatid exchanges (SCEs) in Chinese hamster ovary (CHO) cells both with and without activation by Aroclor 1254-induced male Sprague-Dawley rat liver S9 (Table J3). The positive SCE response was more pronounced without activation. THPC was also found to be an inducer of chromosomal aberrations in CHO cells both with and without activation (Table J4). Once again, the positive response was stronger in the absence of S9.

Results of in vivo tests for mutagenic effects of THPS in rodents were presented by Connor et al. (1980). THPS was administered to mice by gavage or dermal application or by mixing treated cloth with the animals' feed. The urine of these dosed mice was analyzed for mutagenicity in the Salmonella/microsome assay, and frequencies of micronuclei and chromosomal aberrations were evaluated in bone marrow cells. None of these investigations demonstrated mutagenic activity for THPS. THPS was tested in the dominant lethal assay with ICR mice (Legator, 1977). At the highest dose of 1,000 mg/kg, there was a significant decrease in the number of pregnant females per male as well as some slight increase in the number of fetal deaths per pregnant female. However, these effects were attributed to the extreme toxicity of THPS at this high dose rather than to any specific mutagenic activity of the compound.

Carcinogenicity

In a preliminary dermal experiment with mice, Loewengart and Van Duuren (1977) applied 2 mg THPC in 0.1 ml dimethyl sulfoxide to 20 female IRC/Ha Swiss mice three times per week for 400 days. A squamous cell carcinoma occurred in one dosed mouse; none occurred in vehicle controls. Further initiation/promotion studies were conducted with THPC. All study chemicals were applied to the shaved backs of ICR/Ha Swiss mice for 400 days. There were 20 mice per dose group for each experiment. Using phorbol myristate acetate (2.5 µg in 0.1 ml acetone) as a promoter, the investigators concluded that THPC was inactive as an initiator of carcinogenesis. With 7,12-dimethylbenz(a)anthracene (DMBA, 20 µg in 0.1 ml acetone) used as the initiator, THPC (2 mg in 0.1 ml dimethyl sulfoxide) was applied three times per week. Papillomas that progressed to squamous cell

carcinomas occurred in 3/20 dosed mice. No tumors were observed in the DMBA control groups. The authors concluded that THPC had moderate tumor-promoting activity, but the interpretation of the results was complicated by the unusually low number of tumors observed in the positive controls, which the authors attributed to the use of dimethyl sulfoxide as the application solvent. A larger study was conducted in 60 female ICR/Ha Swiss mice with acetone:water (9:1) used as the vehicle for administration of THPC and following the dosing regimen used in the previous study. No tumors were attributed to THPC administration. The difference in tumor response was ascribed to the difference in solvents and the unusual effects of dimethyl sulfoxide in mouse skin carcinogenesis (Van Duuren et al., 1978).

Study Rationale

These two tetrakis(hydroxymethyl)phosphonium salts were nominated for toxicity and carcinogenicity study by the National Cancer Institute because of potential human exposure. They constitute the predominant chemicals used as flame retardants for cotton apparel, especially children's sleepwear. The possibility that a known carcinogen, bis(chloromethyl)ether, might spontaneously form from excess chemical, heat, and moisture in THPC-treated cotton clothing was the major impetus for initiating studies of THPC; industry's substitution of THPS for use as a cotton flame retardant prompted the decision to compare the toxicity and carcinogenicity of both tetrakis(hydroxymethyl)phosphonium salts in rodents. The gavage route of administration was chosen to obtain maximum systemic exposure and to mimic ingestion of the flame retardants by babies and young children.

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF

THPS AND THPC

PREPARATION AND CHARACTERIZATION OF

DOSE MIXTURES

SINGLE-ADMINISTRATION STUDIES

FOURTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Study Design Source and Specifications of Animals Animal Maintenance Clinical Examinations and Pathology Statistical Methods

PROCUREMENT AND CHARACTERIZATION OF THPS AND THPC

THPS

Tetrakis(hydroxymethyl)phosphonium sulfate (THPS) was obtained from Hooker Chemicals and Plastics Corporation (Niagara Falls, New York) as a 75% (nominal) aqueous solution in one 5-gallon lot (lot no. 7340). The identity and purity analyses of THPS were conducted at Midwest Research Institute (Kansas City, Missouri) (Appendix K).

The identity of the THPS study material was confirmed by infrared, ultraviolet/visible, and nuclear magnetic resonance analyses (Appendix K). All spectroscopic data were in general agreement with limited literature values or consistent with those expected for the substance. The purity of the THPS study material was determined to be approximately 72% THPS and 28% water by iodate/thiosulfate titration, elemental analysis, and thin-layer chromatographic analyses.

The bulk chemical was stable when stored for 2 weeks at temperatures up to 60° C (Appendix K). The study laboratory stored several 2-g portions of the bulk chemical as reference samples at -20° C and the remainder of the lot at room temperature. Results of periodic reanalysis of the bulk and reference samples at the study laboratory by infrared spectroscopy and titration procedures indicated that no detectable deterioration occurred over the course of the studies.

THPC

Tetrakis(hydroxymethyl)phosphonium chloride (THPC) was obtained from Aceto Chemical Company (Flushing, New York) as an 80% (nominal) aqueous solution in two 5-gallon cans (lot no. ON2). The identity and purity analyses of THPC were conducted at Midwest Research Institute (Kansas City, Missouri) (Appendix L).

The identity of the THPC study material was confirmed by infrared, ultraviolet/visible, and nuclear magnetic resonance analyses (Appendix L). All spectroscopic data were in agreement with literature values or were consistent with those expected for the substance. The purity of the THPC study material was determined to be approximately 75% THPC and 25% water by iodate-thiosulfate titration, elemental analysis, and thin-layer chromatographic analyses.

The bulk chemical was stable when stored for 2 weeks at temperatures as high as 60° C (Appendix L). The study laboratory stored several 2-g portions of the bulk chemical as reference samples at -20° C and the remainder of the lot at room temperature. Results of periodic reanalysis of the bulk and reference samples at the study laboratory by infrared and titration procedures indicated that no detectable deterioration occurred over the course of the studies.

PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES

Since both study chemicals (72% THPS or 75% THPC in aqueous solution) were stable when stored for 2 weeks at temperatures ranging from -20° to 60° C and dose mixtures were to be prepared by dilution of the study chemical with water, stability studies of dose mixtures were not conducted (Appendixes M and N). Aqueous solutions containing from 74% to 25% (w/v) of the study chemicals were readily prepared and were homogeneous.

The study material was diluted with deionized water to give a stock solution containing THPS or THPC at the desired concentration for the high dose (Table 1). Other concentrations were prepared by dilution of an appropriate portion of the stock solution with deionized water. Formulations of THPS and THPC in water were periodically selected at random and analyzed in duplicate by the study laboratory to determine the accuracy with which formulations were prepared over the course of the studies (Appendixes O and P). In addition to the analyses of the dose mixtures performed by the study laboratory, referee analyses of a split sample were performed by the analytical chemistry laboratory twice each year during the 2-year studies.

The first set of dose mixtures prepared for the 13-week studies was analyzed and found to be

within $\pm 10\%$ of the target concentrations. Sets of samples were analyzed at approximately 8week intervals during the 2-year studies. All mixes of THPS were within the specified $\pm 10\%$ of the target concentrations. (Table 2; Appendix Q). For the THPC study, the mixes were formulated within $\pm 10\%$ of the target concentrations approximately 91% (49/54) of the time (Table 2; Appendix R). Of the five dose formulations determined to be out of specifications, three were within $\pm 12\%$ and the remaining two were within $\pm 20\%$.

TABLE 1. PREPARATION OF DOSE MIXTURES OF THPS AND THPC

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Preparation THPS or THPC weighed into a graduated cylinder and water added to vol; vigorously shaken for 10 sec	Stock solution prepared by placing THPS or THPC in graduated cylinder and adding distilled water to vol; mechanically stirred for 5-10 min	Mixed on a w/v basis with distilled water and stirred mechanically for 5-10 min	THPS or THPC added to appropriate volume of deionized water and mixed by inverting 20 times
Maximum Storage Time 14 d	14 d	14 d	14 d
THPS Storage Conditions 23°C	23° C	1 week at 4° C, followed by 1 wk at room temperature	Same as 13-wk studies
THPC Storage Conditions 23° C	23° C	23° C	23° C

TABLE 2. SUMMARY OF RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF THPS AND THPC

		Target Concent	ation (mg/ml)	
THPS		1.0	2.0	
Mean (mg/ml)		1.0	2.0	
Standard deviation		0.039	0.083	
Coefficient of variation (percent)		3.9	4.3	
Range (mg/ml)		0.94-1.1	1.9-2.1	
Number of samples		12	12	
	Т	arget Concentrat	ion (mg/ml) (a)	
тнрс	1.0	2.0	4.0	8.0
			4.10	7.85
Mean (mg/ml)	0.98	2.09	4.17	1.00
Mean (mg/ml) Standard deviation	0.98 0.090	2.09 0.096	4.17	0.300
Standard deviation	0.090			
		0.096	0.232	0.300

(a) Milligrams of bulk chemical/milliliters of water

SINGLE-ADMINISTRATION STUDIES

THPS

Four-week-old F344/N rats and $B6C3F_1$ mice of each sex were obtained from Charles River Breeding Laboratories and held for 16 days before being placed on study. Groups of five rats and five mice of each sex were administered a single dose of 100, 200, 400, 800, or 1,600 mg/kg THPS in water by gavage. Animals were housed five per cage. Feed and water were available ad libitum. Further details of animal maintenance are given in Table 3.

THPC

Four- to five-week-old F344/N rats and $B6C3F_1$ mice of each sex were obtained from Charles River Breeding Laboratories. Rats were held for 17 days and mice for 18 days before being placed on study. Groups of five rats and five mice of each sex were administered a single dose of 75, 150, 300, 600, or 1,200 mg/kg THPC in deionized water by gavage. Animals were housed five per cage. Feed and water were available ad libitum. Further details of animal maintenance are given in Table 4.

FOURTEEN-DAY STUDIES

THPS

Four-week-old F344/N rats and 5-week-old $B6C3F_1$ mice of each sex were obtained from Charles River Breeding Laboratories and observed for 20 days (rats) or 14 days (mice) before being placed on study. Groups of five rats and five mice of each sex were administered 12.5, 25, 50, 100, or 200 mg/kg THPS in water by gavage for 14 consecutive days. Controls were untreated. Animals were housed five per cage. Feed and water were available ad libitum. Further details of animal maintenance are given in Table 3.

THPC

Six-week-old F344/N rats and B6C3F₁ mice of each sex were obtained from Harlan Industries

and observed for 16 days before being placed on study. Groups of five rats of each sex were administered 9.4, 18.8, 37.5, 75, or 150 mg/kg THPC in deionized water by gavage for 14 consecutive days. Groups of five mice of each sex were administered 18.8, 37.5, 75, 150, or 300 mg/kg THPC. Controls were untreated. Animals were housed five per cage. Feed and water were available ad libitum. Further details on animal maintenance are given in Table 4.

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxic effects of repeated administration of THPS and of THPC to determine the doses to be used in the 2-year studies.

THPS

Five- to six-week-old F344/N rats and $B6C3F_1$ mice of each sex were obtained from Harlan Industries and were observed for 14 days before being placed on study. Groups of 10 rats and 10 mice of each sex were administered 0, 5, 10, 20, 40, or 60 mg/kg THPS in distilled water by gavage 5 days per week for 13 weeks.

THPC

Four-week-old F344/N rats and B6C3F₁ mice of each sex were obtained from Charles River Breeding Laboratories and were observed for 18 days before being placed on study. Groups of 10 rats of each sex were administered 0, 3.75, 7.5, 15, 30, or 60 mg/kg THPC in distilled water by gavage, 5 days per week for 13 weeks. Groups of 10 mice of each sex were administered 0, 1.5, 4.5, 15, 45, or 135 mg/kg THPC on the same schedule.

THPS and THPC

Further experimental details are summarized in Tables 3 and 4. Rats and mice were weighed weekly and checked twice daily; moribund animals were killed. At the end of the 13-week studies, survivors were killed. A necropsy was performed on all animals except those excessively autolyzed or cannibalized. Tissues and groups examined are listed in Tables 3 and 4.

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
EXPERIMENTAL DESIG	GN		
Size of Study Groups 5 males and 5 females of each species	Same as single- administration studies	10 males and 10 females of each species	50 males and 49 or 50 females of each species
Doses 100, 200, 400, 800, or 1,600 mg/kg THPS in water by gavage; dose vol5 ml/kg	12.5, 25, 50, 100, or 200 mg/kg THPS in distilled water by gavage; dose vol 5 ml/kg; controls untreated	0, 5, 10, 20, 40, or 60 mg/kg THPS in distilled water by gavage; dose vol5 ml/kg	0, 5, or 10 mg/kg THPS in distilled water by gavage; dose vol5 ml/kg
Date of First Dose 11/6/78	Rats12/28/78; mice1/4/79	4/17/79	3/27/80
Date of Last Dose NA	Rats1/10/79; mice1/17/79	7/16/79	3/29/82
Duration of Dosing Once only	14 consecutive d	5 d/wk for 13 wk	5 d/wk for 104 wk
Type and Frequency of Observed 2 × d; animals weighed initially	Observation Clinical signs recorded 1 × d; weighed initially and at termination	Observed $2 \times d$; weighed initially and $1 \times wk$ thereafter	Observed $2 \times d$; clinical signs recorded daily between 6/25/8 and 11/30/81; monthly during other periods. Body weights recorded $1 \times wk$ for 13 wk, then $1 \times mo$
Necropsy and Histologic None	Examination Necropsy performed on all animals; histologic exam not performed	Necropsy performed on all animals; the following tissues from high dose and vehicle control animals and animals dying early examined microscopically: mandibular lymph node, salivary gland, femur, thyroid gland, parathyroids, small intestine, colon, liver, prostate/testis or ovaries/uterus, lungs and mainstem bronchi, mammary gland, heart, esophagus, stomach, brain, thymus, trachea, pancreas, spleen, kidney, adrenal glands, urinary bladder, pituitary gland, and gallbladder (mice)	Necropsy performed on all animals; the following tissues examined histologically: gros lesions and tissue masses, blood smear, mandibular or mesenteric lymph node, sali- vary gland, femur or vertebra including marrow, thyroid gland, parathyroids, small intestine, colon, liver, gall- bladder (mice), prostate/testis or ovaries/uterus, lungs and mainstem bronchi, skin, hear esophagus, stomach, brain, pancreas, adrenal glands, thymus, trachea, urinary bladder, kidneys, spinal cord, eyes, spleen, mammary gland and pituitary gland
ANIMALS AND ANIMAI	L MAINTENANCE		
Strain and Species F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice
Animal Source Charles River Breeding Laboratories (Portage, MI)	Same as single- administration studies	Harlan Industries (Indianapolis, IN)	Charles River Laboratories (Kingston, NY)
Study Laboratory Battelle Columbus Laboratories	Same as single- administration studies	Same as single- administration studies	Same as single- administration studies

TABLE 3. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF THPS

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
ANIMALS AND ANIMA	L MAINTENANCE (Con	tinued)	
Time Held Before Study 16 d	Rats20 d; mice14 d	14 d	15 d
Age When Placed on Sta 45 d	udy 7 wk	53 d	Rats6 wk; mice7 wk
Age When Killed 60 d	9-10 wk	21 wk	112 wk
Necropsy Dates 11/21/78	Rats1/12/79; mice1/19/79	7/17-7/20/79	Rats4/5-4/17/82; mice3/30-4/1/82
Method of Animal Distri Two-step randomization to cages and then to groups according to tables of random numbers	bution Same as single- administration studies	Same as single- administration studies	Same as single- administration studies
Feed Purina Lab Chow®	Purina Lab Chow®	NIH 07 Rat and Mouse Ration (Zeigler Bros., Gardners, PA)	NIH 07 Rat and Mouse Ration (Zeigler Bros., Gardners, PA) and Purina rodent diet (Ralston Purina, St. Louis, MO) (7 drats)
Bedding Absorb-Dri® (Lab Products, Inc., Garfield, NJ)	Same as single- administration studies	Same as single- administration studies	Absorb-Dri® (Absorb-Dri, Inc., Rochelle, NJ)
Water Freely available; auto- matic watering system (Edstrom Industries, Waterford, WI)	Same as single- administration studies	Same as single- administration studies	Same as single- administration studies
Cages Polycarbonate (Lab Products, Inc., Garfield, NJ)	Same as single- administration studies	Same as single- administration studies	Polycarbonate (Lab Products, Inc., Rochelle, NJ)
Cage Filters Spun-bonded polyester filter sheets (Snow Fil- tration, Cincinnati, OH)	Same as single- administration studies	Same as single- administration studies	Same as single- administration studies
Animals per Cage 5	5	5	5
Animal Room Environme Temp21°-23° C; hum40%-60%; fluorescent light 12 h/d; 15 room air changes/h	ent Same as single- administration studies	Same as single- administration studies	Temp23° ± 3°C; hum40%-60%; fluorescent light 12 h/d; 15 room air changes/h

TABLE 3. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF THPS (Continued)

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
EXPERIMENTAL DESIG	GN		
Size of Study Groups 5 males and 5 females of each species	5 males and 5 females of each species	10 males and 10 females of each species	49 or 50 males and 50 females of each species
Doses 75, 150, 300, 600, or 1,200 mg/kg THPC in deionized water by gavage; dose vol5 ml/kg	Rats9.4, 18.8, 37.5, 75, or 150 mg/kg THPC in deionized water by gavage; dose vol5 ml/kg; mice18.8, 37.5, 75, 150, or 300 mg/kg THPC in deionized water by gavage; controls untreated	Rats0, 3.75, 7.5, 15, 30, or 60 mg/kg THPC in deionized water by gavage; mice0, 1.5, 4.5, 15, 45, or 135 mg/kg THPC in deionized water by gavage; dose vol5 ml/kg	Rats0, 3.75, or 7.5 mg/kg THPC in deionized water by gavage; male mice0, 7.5, or 15 mg/kg; female mice0, 15, or 30 mg/kg; dose vol5 ml/kg
Date of First Dose 10/30/78	5/31/79	10/16/79	9/15/80
Date of Last Dose N/A	6/13/79	1/14/80	9/3/82
Duration of Dosing Single dose only	14 consecutive d	5 d/wk for 13 wk	5 d/wk for 103 wk
Type and Frequency of Observed 2 × d	Observation Observed 2 × d; weighed initially and at necropsy	Observed 2 $ imes$ d; weighed 1 $ imes$ wk	Observed $2 \times d$; weighed 1 \times wk for 12 wk and then monthly
Necropsy and Histologic None	Examination Necropsy performed on all animals; histologic examinations not per- formed	Necropsy performed on all animals; histologic examin- ations performed on the following tissues from all rats that died before end of studies in the vehicle control, 30 mg/kg, and 60 mg/kg groups, and from 2 rats/sex in 15 mg/kg group; from all mice that died before end of studies, from vehicle control, 45 mg/kg, and 135 mg/kg groups, and from 2 mice/sex in 15 mg/kg group: skin, mandibular lymph node, mammary gland, salivary gland, skeletal muscle, sciatic nerve, bone marrow, thymus, trachea, lungs and bronchi, heart, thyroid gland, parathyroids, esophagus, stomach, small intestine, large intestine, mesenteric lymph node, liver, pancreas, spleen, kidneys, adrenal glands, urinary bladder, prostate/testis or ovaries/uterus, brain, pituitary gland, spinal cord, and gallbladder (mice).	Necropsy and histologic examination performed on all animals; the following tissues examined: gross lesions and tissue masses, regional lymph nodes, man- dibular or mesenteric lymph node, salivary gland, ster- num or femur or vertebrae including marrow, thyroid gland, parathyroids, small intestine, colon, liver, prostate/testis or ovaries/ uterus, heart, esophagus, stomach, brain, thymus, trachea, pancreas, spleen, skin, lungs and mainstem bronchi, kidneys, adrenal glands, urinary bladder, pituitary gland, eyes, mam- mary gland, and gallbladder (mice)

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIESOF THPC

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Necropsy and Histologic	Examination (Continued)	Liver, stomach, and skeletal	
		muscle examined from all rats in 3.75, 7.5, and 15 mg/kg groups and kidneys from female rats in 3.75, 7.5, and 15 mg/kg groups. Foreleg sections examined in 15 and 45 mg/kg mouse groups; liver examined in 1.5 and 4.5 mg/kg mouse groups; spinal cord examined from 2 mice/sex/dose.	
ANIMALS AND ANIMA	L MAINTENANCE		
Strain and Species F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice
Animal Source Charles River Breeding Laboratories (Portage, MI)	Harlan Industries (Indianapolis, IN)	Same as single- administration studies	Same as single-administration studies
Study Laboratory Battelle Columbus Laboratories	Same as single- administration studies	Same as single- administration studies	Same as single-administration studies
Method of Animal Identi None	ification Toe mark	Toe mark	Toe and ear marks
Time Held Before Study Rats17 d; mice18 d	16 d	18 d	Rats17 d; mice24 d
Age When Placed on Stu 7 wk	ıdy 8 wk	7 wk	Rats7 wk; mice8 wk
Age When Killed 9 wk	11 wk	20 wk	Rats111 wk; mice112-113 wk
Necropsy Dates 11/13/78	6/19/79	Rats1/16/80-1/17/80; mice1/17/80-1/18/80	9/13/82-9/15/82
Method of Animal Distri Animals assigned from weight classes to cages according to a table of random numbers; cages assigned to groups according to another table of random numbers	bution Same as single- administration studies	Same as single- administration studies	Same as single-administration studies
Feed Purina 5001 Lab Chow,® pelleted (Ralston Purina, St. Louis, MO); available ad libitum	Same as single- administration studies	NIH 07 Rat and Mouse Ration (Zeigler Bros., Gardners, PA); available ad libitum	Same as 13-wk studies
Bedding Absorb-Dri® (Lab Products, Inc., Garfield, NJ)	Same as single- administration studies	Same as single- administration studies	Same as single-administration studies

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF THPC (Continued)

Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
ANIMALS AND ANIMAL M	IAINTENANCE (Continue	ed)	
Water Automatic watering system (Edstrom Industries, Waterford, WI); available ad libitum	Same as single- administration studies	Same as single- administration studies	Same as single-administration studies
Cages Polycarbonate (Lab Products, Inc., Rochelle Park, NJ)	Same as single- administration studies	Same as single- administration studies	Same as single-administration studies
Cage Filters Spun-bonded polyester filter sheets (Snow Filtration, Cincinnati, OH)	Same as single- administration studies	Same as single- administration studies	Same as single-administration studies
Animals per Cage 5	5	5	5
Animal Room Environment Temp21°-23°C; hum40%-60%; fluorescent light 12 h/d; 15 room air changes/h	Same as single- administration studies	Same as single- administration studies	Same as single-administration studies

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF THPC (Continued)

TWO-YEAR STUDIES

Study Design

THPS

Groups of 49 or 50 rats and 50 mice of each sex were administered 0, 5, or 10 mg/kg THPS in deionized water by gavage, 5 days per week for 104 weeks (rats) or 103 weeks (mice). On March 2, 3, and 4, 1981 (12th month of studies), high dose male and low dose female mice accidentally received 15 mg/kg THPC, low dose male mice received 7.5 mg/kg THPC, and high dose female mice received 30 mg/kg THPC.

THPC

Groups of 50 rats of each sex were administered 0, 3.75, or 7.5 mg/kg THPC in deionized water by gavage, 5 days per week, for 103 weeks. Groups of 49 or 50 male mice were administered 0, 7.5, or 15 mg/kg THPC, and groups of 50 female mice were administered 0, 15 or 30 mg/kg THPC for 103 weeks. On March 2, 3, and 4, 1981 (the 6th month of the studies), low dose mice of each sex received 5 mg/kg THPS and high dose mice of each sex accidentally received 10 mg/kg THPS. On October 14, 1981 (the 13th month of the study), five female vehicle control mice (numbers 1-5) received 30 mg/kg THPC. On October 29, 1981, all low dose female rats (3.75 mg/kg) received 7.5 mg/kg THPC.

The above-described misdosing with the wrong chemical was the result of a technician error that occurred when the THPS and THPC dosing vials for mice were switched before delivery to the animal rooms for 3 days in March 1981. As soon as the error was discovered, dosing was stopped; new dose mixtures were prepared and verified to insure that the proper compound was being administered to the animals. In addition, new, more rigorous procedures were instituted; dosing technicians had to go to the dose preparation area, sign for the dose mixtures, and verify that they were getting the right compound. After the misdosing incident, there were no deaths and no effect on body weights of any of the animals involved. Because the dosing error occurred during a short period of time relatively early in the studies and the chemicals involved are different salt forms of the same tetrahydroxymethyl phosphonium moiety, the misdosing incident is considered to have no impact on the final outcome of these studies. In addition, documentation from the study laboratory, detailing steps taken to insure misdosing of this kind would not happen again, would indicate that this was an isolated incident that did not recur during these studies.

Source and Specifications of Animals

The male and female F344/N rats and $B6C3F_1$ (C57BL/6N, female, \times C3H/HeN, MTV⁻, male) mice used in these studies were produced under strict barrier conditions at Charles River Laboratories under a contract to the Carcinogenesis Program. Breeding stock for the foundation colonies at the production facility originated at the National Institutes of Health Repository. Animals shipped for study were progeny of defined microflora-associated parents that were transferred from isolators to barrier-maintained rooms. Animals were shipped to the study laboratory at 4-5 weeks of age and were guarantined at the study laboratory for 15 days (THPS), 17 days (THPC rats), or 24 days (THPC mice). Thereafter, a complete necropsy was performed on five animals of each sex and species in each study to assess their health status. The rats and mice were placed on study at 6-7 weeks of age (THPS), 7 weeks (THPC rats), or 8 weeks (THPC mice). The health of the animals was monitored during the course of the studies according to the protocols of the NTP Sentinel Animal Program (Appendix S).

A quality control skin grafting program has been in effect since early 1978 to monitor the genetic integrity of the inbred mice used to produce the hybrid $B6C3F_1$ study animal. In mid-1981, data were obtained that showed incompatibility between the NIH C3H reference colony and the C3H colony from a Program supplier. In August 1981, inbred parental lines of mice were further tested for genetic integrity via isozyme and protein electrophoresis profiles that demonstrate phenotype expressions of known genetic loci.

The C57BL/6N mice were homogeneous at all loci tested. Eighty-five percent of the C3H mice monitored were variant at one to three loci, indicating some heterogeneity in the C3H line from this supplier. Nevertheless, the genome of this line is more homogeneous than that of randomly bred stocks.

Male mice from the C3H colony and female mice from the C57BL/6N colony were used as parents for the hybrid B6C3F₁ mice used in these studies. The influence of the potential genetic nonuniformity in the hybrid mice on these results is not known, but the results of the studies are not affected because concurrent controls were included in each study.

Animal Maintenance

Rats and mice were housed five per cage. Feed and water were available ad libitum. Further details of animal maintenance are given in Tables 3 and 4.

Clinical Examinations and Pathology

All animals were observed twice daily, and clinical signs were recorded daily from month 4 to month 21 and monthly at other times. Body weights by cage were recorded once per week for the first 13 weeks (THPS) or 12 weeks (THPC) of the studies and once per month thereafter. Mean body weights were calculated for each group. Animals found moribund and those surviving to the end of the studies were humanely killed. A necropsy was performed on all animals including those found dead, unless they were excessively autolyzed or cannibalized, missexed, or found missing. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study.

During necropsy, all organs and tissues were examined for grossly visible lesions. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Tissues examined microscopically are listed in Tables 3 and 4.

When the pathology evaluation was completed, the slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were sent to an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10% of the animals were evaluated by a quality assessment pathologist. The quality assessment report and slides were submitted to the Pathology Working Group (PWG) Chairperson, who reviewed all target tissues and those about which there was a disagreement between the laboratory and quality assessment pathologists.

Representative slides selected by the Chairperson were reviewed by the PWG, which includes the laboratory pathologist, without knowledge of previously rendered diagnoses. When the consensus diagnosis of the PWG differed from that of the laboratory pathologist, the laboratory pathologist was asked to reconsider the original diagnosis. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnoses represent a consensus of contractor pathologists and the NTP Pathology Working Group. For subsequent analysis of pathology data, the diagnosed lesions for each tissue type are combined according to the guidelines of McConnell et al. (1986).

Slides/tissues are generally not evaluated in a blind fashion (i.e., without knowledge of dose group) unless the lesions in question are subtle or unless there is an inconsistent diagnosis of lesions by the laboratory pathologist. Nonneoplastic lesions are not examined routinely by the quality assessment pathologist or PWG unless they are considered part of the toxic effect of the chemical.

Statistical Methods

Data Recording: Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found dead of other than natural causes or were found to be missing; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a dose-related trend. When significant survival differences were detected, additional analyses using these procedures were carried out to determine the time point at which significant differences in the survival curves were first detected. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data. The two that adjust for intercurrent mortality employ the classical method for combining contingency tables developed by Mantel and Haenszel (1959). Tests of significance included pairwise comparisons of high dose and low dose groups with vehicle controls and tests for overall dose-response trends.

For studies in which compound administration has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death. Continuity-corrected tests are used in the analysis of tumor incidence, and reported P values are one-sided.

Life Table Analyses--The first method of analysis assumed that all tumors of a given type observed in animals dying before the end of the studies were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumor-bearing animals in the dosed and vehicle control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the studies, were then combined by the Mantel-Haenszel method to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of Cox (1972) and of Tarone (1975). The underlying variable considered by this analysis is time to death due to tumor. If the tumor is rapidly lethal, then time to death due to tumor closely approximates time to tumor onset. In this case, the life table test also provides a comparison of the time-specific tumor incidences.

Incidental Tumor Analyses--The second method of analysis assumed that all tumors of a given type observed in animals that died before the end of the study were "incidental"; i.e., they were merely observed at necropsy in animals dying of an unrelated cause. According to this approach, the proportions of tumor-bearing animals in dosed and vehicle control groups were compared in each of five time intervals: weeks 0-52, weeks 53-78, weeks 79-92, week 93 to the week before the terminal-kill period, and the terminal-kill period. The denominators of these proportions were the number of animals on which a necropsy was actually performed during the time interval. The individual time interval comparisons were then combined by the previously described method to obtain a single overall result. (See Haseman, 1984, for the computational details of both methods.)

Unadjusted Analyses--Primarily, survival-adjusted methods are used to evaluate tumor incidence. In addition, the results of the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) are given in the appendixes containing the analyses of primary tumor incidence. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences.

Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984, 1985) are included for those tumors appearing to show compound-related effects.

III. RESULTS

RATS

SINGLE-ADMINISTRATION STUDIES FOURTEEN-DAY STUDIES THIRTEEN-WEEK STUDIES TWO-YEAR STUDIES Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

MICE

SINGLE-ADMINISTRATION STUDIES

FOURTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

SINGLE-ADMINISTRATION STUDIES

THPS

All rats that received 1,600 mg/kg, 4/5 males and 5/5 females that received 800 mg/kg, and 4/5 males and 4/5 females that received 400 mg/kg THPS died within 24 hours of dosing (Table 5). Mean body weights were not recorded, and necropsies were not performed.

THPC

All male and female rats that received 600 or 1,200 mg/kg THPC and all males that received 300 mg/kg THPC were dead by day 2 (Table 6). Surviving rats of each sex that received 150 mg/kg had reddish fluid around the nostrils by day 3 and labored breathing. Final weights were not recorded. Necropsies were not performed.

TABLE 5. SURVIVAL OF RATS IN THE SINGLE-ADMINISTRATION GAVAGE STUDIES OF THPS

Dose	Sur	vival
(mg/kg)	Male (a)	Female (b)
100	5/5	5/5
200	(c) 4 /5	(d) 3/5
400	(c) 1/5	(c) 1/5
800	(c) 1/5	(e) 0/5
1,600	(e) 0/5	(e) 0/5

(a) LD_{50} value by probit analysis: 333 mg/kg (95% confidence interval, 185-585 mg/kg) (b) LD_{50} value by probit analysis: 248 mg/kg (95% confidence interval, 144-426 mg/kg) (c) Day of death: all 2

(d) Day of death: 2, 4

(e) Day of death: all 1

TABLE 6. SURVIVAL OF RATS IN THE SINGLE-ADMINISTRATION GAVAGE STUDIES OF THPC

Dose	Survival		
(mg/kg)	Male (a)	Female (b)	
75	5/5	5/5	
150	(c) 4/5	(d) 3/5	
300	(e) 0/5	(f) 0/5	
600	(e) 0/5	(e) 0/5	
1,200	(e) 0/5	(e) 0/5	

(a) LD₅₀ value by Spearman-Karber method: 185 mg/kg (95% confidence limits, 141-242 mg/kg)

(b) LD₅₀ value by Spearman-Karber method: 161 mg/kg (95% confidence limits, 115-224 mg/kg)

(c) Day of death: 3

(d) Day of death: 1,4

(e) Day of death: all 2

(f) Day of death: 3, 4, 6, 6, 13

FOURTEEN-DAY STUDIES

THPS

All rats that received 100 or 200 mg/kg died before the end of the studies (Table 7). Rats that received 25 or 50 mg/kg gained notably less weight than did the controls. Males that received 50 mg/kg lost weight. Males that received 100 or 200 mg/kg had tremors after the second day of dosing. One male that received 200 mg/kg had partial loss of movement of the hindlegs 5 days after dosing. No compoundrelated lesions were observed at necropsy.

THPC

All rats that received 150 mg/kg THPC died within 8 days of dosing (Table 8). Two male rats that received 75 mg/kg died by day 15. The final mean body weight of male rats that received 18.8 or 37.5 mg/kg was 6% or 11% lower than that of the controls. The final mean body weight of female rats that received 18.8 or 37.5 mg/kg was comparable to that of the controls. The 75 mg/kg groups of males and females had rough coats by day 3; swollen abdomens and arched backs were evident by day 13. At necropsy, rats that received 150 mg/kg had yellow to tan or mottled red livers.

TABLE 7. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-DAY GAVAGESTUDIES OF THPS

Dose (mg/kg)	Survival (a)	Mean Body Weights (grams)			Final Weight Relative
		Initial (b)	Final	Change (c)	to Controls (percent)
MALE					
(d) 0	5/5	218	257	+39	
12.5	4/5	217	255	+38	99.2
25	4/5	216	229	+13	89.1
50	5/5	223	203	-20	79.0
100	(e) 0/5	221	(f)	(f)	(f)
200	(g) 0/5	211	(f)	(f)	(f)
FEMALE					
(d) 0	5/5	134	151	+17	••
12.5	4/5	136	152	+16	100.7
25	5/5	138	149	+11	98.7
50	5/5	138	141	+ 3	93.4
100	(h) 0/5	137	(f)	(f)	(f)
200	(i) 0/5	140	(f)	(f)	(f)

(a) Number surviving/number in group

(b) Initial mean group body weight

(c) Mean body weight change

(d) Controls were untreated.

(e) Day of death: 9, 9, 10, 11, 12

(f) No data are reported because of the 100% mortality in this group.

(g) Day of death: 2, 2, 3, 4, 6

(h) Day of death: 9, 10, 11, 12, 12

(i) Day of death: 2, 2, 2, 2, 5

Dose (mg/kg)		Mean	Body Weigh	Final Weight Relative	
	Survival (a)	Initial (b)	Final	Change (c)	to Controls (percent
ÍALE	***	· · · · · · · · · · · · · · · · · · ·		,	
(d) 0	5/5	114	175	+61	*=
9.4	5/5	117	179	+62	102.2
18.8	5/5	108	164	+56	93.7
37.5	5/5	116	156	+ 40	89.1
75	(e) 3/5	102	107	+5	61.1
150	(f) 0/5	106	(g)	(g)	(g)
EMALE					
(d) 0	5/5	94	123	+29	
9.4	5/5	95	125	+30	101.6
18.8	5/5	92	118	+26	95.9
37.5	5/5	96	122	+26	99.2
75	5/5	92	90	-2	73.2
150	(h) 0/5	94	(g)	(g)	(g)

TABLE 8. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-DAY GAVAGESTUDIES OF THPC

(a) Number surviving/number initially in group

(b) Initial mean group body weight

(c) Mean body weight change

(d) Controls were untreated.

(e) Day of death: 12, 15

(f) Day of death: 3, 5, 7, 7, 8

(g) No data are reported due to the 100% mortality in this group.

(h) Day of death: 3, 3, 5, 5, 8

THIRTEEN-WEEK STUDIES

THPS

Three of 10 male rats that received 60 mg/kg died before the end of the studies (Table 9). All other rats survived to the end of the studies. Final mean body weights were 5%, 15%, and 22% lower than those of the vehicle controls for males that received 20, 40, or 60 mg/kg and from 7% to 19% lower for all groups of dosed female rats. Diarrhea occurred in all groups of dosed rats during weeks 3 and 4.

Vacuolar degeneration of the hepatocytes occurred in all males receiving 10 mg/kg or more, in all females receiving 40 or 60 mg/kg, and in 5/10 females receiving 20 mg/kg. The severity of this lesion was greatest in the 60 mg/kg group. In other groups, the severity was generally minimal to mild. Lymphoid depletion in the spleen or thymus was observed in the three males in the 60 mg/kg group which died before the end of the studies. Bone marrow hypoplasia was diagnosed in 3/10 male and 4/10 female rats in the 60 mg/kg groups.

Dose Selection Rationale: Because of the vacuolar degeneration of the hepatocytes and reduced body weight gain, THPS doses selected for rats for the 2-year studies were 5 and 10 mg/kg administered by gavage in water 5 days per week.

Dose (mg/kg)	Survival (a)	Mean Body Weights (grams)			Final Weight Relative
		Initial (b)	Final	Change (c)	to Vehicle Controls (percent)
MALE					
0	10/10	105	291	+186	
0 5	10/10	105	291	+186	0.0
10	10/10	110	285	+175	97.9
20	10/10	103	275	+172	94.5
40	10/10	105	248	+143	85.2
60	(d) 7/10	108	228	+120	78.4
FEMALE					
0	10/10	91	182	+91	
0 5	10/10	9 0	169	+79	92.9
10	10/10	87	163	+76	89.6
20	10/10	90	165	+75	90.7
40	10/10	87	160	+73	87.9
60	10/10	86	148	+62	81.3

TABLE 9. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF THPS

(a) Number surviving/number in group

(b) Initial mean group body weight

(c) Mean body weight change

(d) Week of death: 11, 11, 12

THPC

All males and 5/10 females that received 60 mg/kg THPC and 2/10 males and 1/10 females that received 15 mg/kg died before the end of the studies (Table 10). Deaths in the 15 mg/kg groups may have been due to gavage error. The final mean body weight of males that received 30 mg/kg was 89% that of the vehicle controls. The final mean body weight of femalés that received 60 mg/kg was 80% that of the vehicle controls. Rough coats, hunched backs, diarrhea, lethargy, and paresis and hyperextension of the rear limbs were observed for rats that received 60 mg/kg.

Periportal hepatocellular necrosis was observed in 9/10 males and 7/10 females that received 15 mg/kg, 10/10 males and 10/10 females that received 30 mg/kg, and 7/10 males and 8/10 females that received 60 mg/kg. (The severity at 15 mg/kg was minimal.) Periportal cytoplasmic vacuolization was observed in 8/10 males that received 7.5 mg/kg, 9/10 males and 8/10 females that received 15 mg/kg, and all rats that received 30 or 60 mg/kg. Degeneration of the axons was found in 2/10 females that received 60 mg/kg but not in any of the rats that received 30 mg/kg.

Dose Selection Rationale: Because of the hepatocellular necrosis observed at 15 mg/kg, THPC doses selected for rats for the 2-year studies were 3.75 and 7.5 mg/kg administered by gavage in water 5 days per week.

Dose (mg/kg)		Mean	Final Weight Relative		
	Survival (a)	Initial (b)	Final	Change (c)	to Vehicle Controls (percent)
IALE	· · · · · · · · · · · · · · · · · · ·			- <u>-</u>	
0	10/10	150 ± 6	350 ± 7	$+200 \pm 2$	
3.75	10/10	150 ± 4	343 ± 10	$+193 \pm 9$	98
7.5	10/10	151 ± 5	326 ± 8	$+175 \pm 5$	93
15	(d) 8/10	149 ± 4	335 ± 6	$+188 \pm 4$	96
30	10/10	153 ± 5	312 ± 9	$+159 \pm 7$	89
60	(e) 0/10	151 ± 4	(f)	(f)	(f)
EMALE					
0	10/10	116 ± 2	191 ± 2	$+75 \pm 2$	
3.75	10/10	115 ± 2	196 ± 3	$+81 \pm 2$	103
7.5	10/10	113 ± 3	197 ± 4	$+84 \pm 3$	103
15	(g) 9/10	114 ± 2	197 ± 2	$+82 \pm 2$	103
30	10/10	114 ± 2	197 ± 4	$+83 \pm 4$	103
60	(h) 5/10	114 ± 2	152 ± 9	$+39 \pm 11$	80

TABLE 10. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK GAVAGESTUDIES OF THPC

(a) Number surviving/number initially in the group

(b) Initial mean group body weight \pm standard error of the mean. Subsequent calculations are based on those animals surviving to the end of the study.

(c) Mean body weight change of the survivors of the group \pm standard error of the mean

(d) Week of death: 5,8

(e) Week of death: 4, 5, 7, 8, 8, 8, 9, 9, 9, 10

(f) No data are reported due to the 100% mortality in this group.

(g) Week of death: 5

(h) Week of death: 4, 6, 8, 10, 11

TWO-YEAR STUDIES

Body Weights and Clinical Signs

THPS

Mean body weights of dosed and vehicle control rats of each sex were comparable throughout most of the studies (Table 11 and Figure 1). Compound-related clinical signs consisted primarily of rough hair coats and diarrhea.

THPC

Mean body weights of dosed and vehicle control male and female rats were comparable throughout most of the studies (Table 12 and Figure 2). Compound-related clinical signs consisted primarily of rough hair coats and diarrhea.
Weeks		Control		5 mg/kg			10 mg/kg Wt. (percent	
on	Av. Wt. No. of		Av. Wt. Wt. (percent No. of			Av. Wt.	No. of	
Study	(grams)	Survivors	(grams)	of veh. controls)	Survivors	(grams)	of veh. controls)	Survivor
IALE								
0	119	50	118	99	50	114	96	50
1	143	50	139	97	50	141	99	50
2	166	50	164	99	50	167	101	50
3	191	50	187	98	50	191	100	49
4	214	50	208	97	50	213	100	48
5	232	50	227	98	50	232	100	46
6	248	50	244	98 97	50	247 252	100 95	45 45
7 8	266 277	50 50	257 271	98	50 50	268	93 97	45
9	292	50	281	96	50	288	99	45
10	306	50	296	97	50	297	97	45
11	316	50	310	98	50	313	99	45
12	326	50	319	98	50	324	99	45
13	332	50	329	99	50	335	101	45
16	355	50	355	100	50	357	101	45
21	384	50	381	99	50	385	100	45
25	405	50	401	99	50	399	99	45
29	425	50	420	99	50	417	98	45
33	436	50	431	99	50	426	98	45
37	447	48	442	99	50	433	97	45
42	456	48	455	100	50	447	98	45
46	453	48	459	101	49	448	99	45
50	469	48	468	100	49	456	97	45
54	481	48	473	98	49	464	96	45 43
58	473	48	465	98 99	49 49	454 449	96 96	43
63	467	48	464 475	98	49	471	97	40
68 72	484 468	48 48	468	100	48	464	99	37
77	408	47	468	99	48	465	98	37
81	481	46	477	99	45	475	99	35
86	482	42	479	99	43	472	98	32
90	465	41	471	101	37	458	98	28
94	469	37	469	100	34	472	101	23
99	453	33	434	96	29	446	98	22
103	435	31	443	102	18	436	100	18
105	433	29	440	102	13	433	100	16
EMALE								
0	103	(a) 50	105	102	50	103	100	50
L	116	50	118	102	50	113	97	50
2	128	50	127	99	50	125	98	50
3	139	50	139	100	50	135	97	50
4	148	50	149	101	50	145	98	50
5	157	50	156	99	50	153	97	50
6	162	50	162	100	50	157	97	50
7	165	50	168	102	50	163	99	50
8	170	50	172	101	50	167	98	50
9	176	50	178	101	50 50	173 179	98 98	50 50
10 11	182 186	50 50	183 186	101 100	50	182	98	50
12	188	50	188	100	50	185	98	50
13	191	50	192	101	50	189	99	50
16	198	50	201	102	50	194	98	50
21	209	50	211	101	50	207	99	
25	215	50	217	101	50	212	99	50 49 48 48 48
25 29	224	50	224	100	50	217	97	48
33	228	50	226	99	50	225	99 98	48
37	231	50	232	100	50	225 227	98	48
42	239	50	241	101	50	239	100	47 47 47
42 46	246	50	248	101	50	243	99 102	47
50	250	50	257 262	103	50	254	102	47
54 58	262	50	262	100	50	259	99	47
58	271	50	272	100	50 50	270 283	100	48 45
63	288	50	287	100	50	283	98	45
68	299	50	300	100	50 50	295 298	99	45
72 77	300	50	302	101	50	298	99	45
TI	309	49	305	99 100	49 48	302 314	98 99	44 43
61	317	49	316 317	100	40	314	100	40
81	318	47 45	317	101	46 43	316	700	42 40
86	910		344	101		010	30	
86 90	319	40	000	109		204	101	20
86 90 94	319 322	42	328	101 102 102	41	324 307	99 101 96	38
86 90	319 322 320 319	42 39 38	328 325 326	102 102 102		324 307 326	101 96 102	38 38 31

TABLE 11. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF THPS

(a) One vehicle control female, removed after 73 weeks on study, was inadvertently treated as part of the low dose group for an unknown period of time.

FIGURE 1. GROWTH CURVES FOR RATS ADMINISTERED THPS IN WATER BY GAVAGE FOR TWO YEARS

36

Weeks	Vehicle	Control	<u>3.75 mg/kg</u>		7.5 mg/kg			
on Study	Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. of Survivors
IALE							 	
0	112	50	117	104	50	115	103	50
1 2	159	50	166	104	50	164	103	50
2	190	50	203	107	50	201	106	50
3 4	225 253	50 50	230 252	102 100	50 50	232 256	103 101	49 48
5	268	50	270	100	50	271	101	40
6	282	50	285	101	50	287	102	47
7	297	50	300	101	50	302	102	47
8	312	50	315	101	50	318	102	47
9 10	323 332	50 50	325 329	101 99	50 50	328 338	102 102	47 47
10	335	50	329	100	50	345	102	47
12	349	50	349	100	50	354	101	47
16	374	50	378	101	50	382	102	47
20	400	50	406	102	49	404	101	47
24	414	50	418	101	48	417	101	47
29	430	50	434	101	48	432	100	46
33 37	439 446	50 50	442 445	101 100	47 47	444 449	101 101	46 46
43	458	50	452	99	46	456	100	46
47	462	50	460	100	46	461	100	45
52	467	49	464	99	46	468	100	45
56	473	49	469	99	46	471	100	45
61 64	475 488	49 48	470 478	99 98	45 45	472 479	99 98	45 44
69	487	46	486	100	44	483	99	43
74	486	44	476	98	44	477	98	43
77	488	43	480	98	43	485	99	43
81	485	42	476	98	41	480	99	41
85	482	41	474	98	40	475	99	39
89	472	38	462	98	39	466	99	36
94 98	467 455	37 35	448 438	96 96	35 27	453 444	97 98	32 27
103	460	27	433	94	18	427	93	20
EMALE								
0	103	50	102	99	50	105	102	50
1	127	50	126	99	50	129	102	50
2	144	50	143	99	50	146	101	50
3 4	156 143	50 50	155 142	99 99	50 50	157 144	101 101	50 50
5	165	50	164	99	50	164	99	50
6	178	50	175	98	50	175	98	50
7	184	50	184	100	50	184	100	49
8	193	50	189	98	50	191	99	49
9	196	50	191	97	50	194	99 99	49 49
10 11	199 200	50 50	195 197	98 99	50 50	197 198	99 99	49
11	205	50	202	99	50	204	100	49
16	210	50	211	100	50	212	101	49
20	220	50	218	99	50	221	100	49
24	229	50	226	99	50	228	100	49 49
29 33	234 245	50 50	232 242	99 99	50 50	236 244	101 100	49 49
37	245 247	50	244	99	50	247	100	49
43	258	50	259	100	49	262	102	49 49
47	263	50	263	100	49	265	101	49
52	271	50	271	100	49	274	101	49 47
56	274 286	50 50	275 281	100 98	49 49	277 283	101 99	41 47
61 64	286 292	50 50	281	98 99	49	283	100	47 47
69	300	50	296	99	48	301	100	44
74	309	49	305	99	48	306	100 99	44 34
77	313	47	311	99	47	308	98	35
81	316	46	313	99	45	310	98	33 32
85	321	45	316	98 98	43 43	312 314	97 97	32 30
89 94	323 325	44 43	317 320	98 98	43 41	314 322	97 99	28
94 98	325	43	317	97	37	315	96	28 24
103	319	37	312	98	34	301	94	22

TABLE 12. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIESOF THPC

FIGURE 2. GROWTH CURVES FOR RATS ADMINISTERED THPC IN WATER BY GAVAGE FOR TWO YEARS

Survival

THPS

Estimates of the probabilities of survival for male and female rats administered THPS at the doses used in these studies and for vehicle controls are shown in the Kaplan and Meier curves in Figure 3. The survival of both the male low dose (after week 102) and high dose (after week 67) groups was significantly lower than that of the vehicle controls (Table 13).

THPC

Estimates of the probabilities of survival for male and female rats administered THPC at the doses used in these studies and for vehicle controls are shown in the Kaplan and Meier curves in Figure 4. The survival of the high dose group of female rats was significantly lower than that of the vehicle controls (after week 70) and that of the low dose group (P = 0.013) (Table 14).

TABLE 13. SUR	VIVAL OF RATS IN	THE TWO-YEAR	GAVAGE STUDIES OF THPS
---------------	------------------	--------------	------------------------

	Vehicle Control	5 mg/kg	10 mg/kg
MALE (a)			
Animals initially in study Nonaccidental deaths before termination (b) Accidentally killed Killed at termination Survival P values (d)	50 21 1 28 0.004	50 33 (c) 4 13 0.036	50 33 1 16 0.006
FEMALE (a)			
Animals initially in study Nonaccidental deaths before termination (b) Accidentally killed Killed at termination Survival P values (d)	(e) 49 12 0 37 0.095	50 12 0 38 0.976	50 20 1 29 0.132

(a) Terminal-kill period: week 106 (b) Includes animals killed in a moribund condition

(c) Individual animal records indicate that four low dose male rats may have drowned during week 104 of the study.

(d) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

(e) One vehicle control female was discarded because it was dosed as a low dose female for an unknown length of time.

TABLE 14. SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF THPC

			•
	Vehicle Control	3.75 mg/kg	7.5 mg/kg
MALE (a)			
Animals initially in study Nonaccidental deaths before termination (b) Accidentally killed Killed at termination Survival P values (c)	50 23 1 26 0.088	50 32 1 17 0.097	50 32 0 18 0.104
FEMALE (a)			
Animals initially in study Nonaccidental deaths before termination (b) Accidentally killed Killed at termination Died during termination period Survival P values (c)	50 12 1 36 1 < 0.001	50 16 0 33 1 0.477	50 27 2 21 0 0.001

(a) Terminal-kill period: week 104

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

FIGURE 3. KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED THPS IN WATER BY GAVAGE FOR TWO YEARS

FIGURE 4. KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED THPC IN WATER BY GAVAGE FOR TWO YEARS

Pathology and Statistical Analyses of Results

This section describes the significant or noteworthy increases in the incidences of rats with neoplastic or nonneoplastic lesions in the hematopoietic system, pituitary gland, liver, lung, spleen, and uterus.

Histopathologic findings in the THPS studies on neoplasms in rats are summarized in Tables A1 and B1; Tables A2 and B2 give the survival and tumor status for individual male and female rats. Tables A3 and B3 contain the statistical analyses of those primary tumors in the THPS studies that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Tables A3 and B3 (footnotes). The historical incidence of tumors in control male and female F344/N rats is given in Tables A4 and B4. Findings on nonneoplastic lesions in the THPS studies are summarized in Tables A5 and B5.

Histopathologic findings in the THPC studies on neoplasms in rats are summarized in Tables E1

and F1; Tables E2 and F2 give the survival and tumor status for individual male and female rats. Tables E3 and F3 contain the statistical analyses of those primary tumors in the THPC studies that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Tables E3 and F3 (footnotes). The historical incidence of tumors in control male F344/N rats is given in Table E4. Findings on nonneoplastic lesions in the THPC studies are summarized in Tables E5 and F4.

Hematopoietic System (THPS): The incidence of mononuclear cell leukemia in low dose (but not high dose) male rats was significantly greater than that in the vehicle controls by the life table test (Table 15). The incidences of mononuclear cell leukemia in dosed and vehicle control female rats were not significantly different (vehicle control, 23/49; low dose, 19/50; high dose, 22/50).

Hematopoietic System (THPC): The incidence of mononuclear cell leukemia in low dose male rats was significantly greater than that in the vehicle controls by the life table test (Table 15).

 TABLE 15. ANALYSIS OF HEMATOPOIETIC SYSTEM TUMORS IN MALE RATS IN THE TWO-YEAR

 GAVAGE STUDIES OF THPS AND THPC (a)

	Vehicle Control	Low Dose	High Dose
THPS		5 mg/kg	10 mg/kg
Mononuclear Cell Leukemia (b)			
Overall Rates	30/50 (60%)	36/50 (72%)	20/50 (40%)
Adjusted Rates	66.3%	97.0%	78.9%
Terminal Rates	13/28 (46%)	12/13 (92%)	11/16 (69%)
Week of First Observation	72	80	82
Life Table Tests	P = 0.267	P = 0.003	P = 0.437
Incidental Tumor Tests	P = 0.265N	P = 0.304	P = 0.225N
тнрс		3.75 mg/kg	7.5 mg/kg
Mononuclear Cell Leukemia(b)			
Overall Rates	19/50 (38%)	25/50 (50%)	16/50 (32%)
Adjusted Rates	47.0%	69.8%	55.6%
Terminal Rates	6/26 (23%)	8/17 (47%)	7/18 (39%)
Week of First Observation	73	80	80
Life Table Tests	P = 0.398	P = 0.049	P = 0.484
Incidental Tumor Tests	P = 0.201 N	P = 0.282	P = 0.250N

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix A, Table A3 (footnotes). (b) Historical incidence of leukemia in water gavage vehicle controls (mean \pm SD): 74/150 (49% \pm 11%); historical incidence in untreated controls: 458/1,727 (27% \pm 9%) Anterior Pituitary Gland (THPS): The incidence of adenomas in low dose male rats was significantly greater than that in the vehicle controls by the life table test (Table 16). A carcinoma was observed in one low dose male rat. The incidences of adenomas in female rats were as follows: vehicle control, 23/46; low dose, 19/50; high dose, 16/46.

Liver (THPS): Cytoplasmic vacuolization was observed at increased incidences in dosed male and female rats; the incidence of cystic

degeneration was increased in dosed male rats (Table 17).

Liver (THPC): Cytoplasmic vacuolization was observed at increased incidences in dosed male and female rats (Table 17). This lesion was characterized by large, generally homogeneous, eosinophilic droplets in the cytoplasm of hepatocytes near triads. The nuclei of those cells were either not apparent or were displaced to one side. Cystic degeneration was observed at increased incidences in dosed male rats.

TABLE 16. ANALYSIS OF ANTERIOR PITUITARY GLAND LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS

	Vehicle Control	5 mg/kg	10 mg/kg
Hyperplasia		· _ · _ ·	
Overall Rates	8/50 (16%)	3/49 (6%)	5/48 (10%)
Adenoma			
Overall Rates	21/50 (42%)	26/49 (53%)	14/48 (29%)
Adjusted Rates	54.9%	75.9%	65.1%
Terminal Rates	12/28 (43%)	6/13 (46%)	9/16 (56%)
Week of First Observation	72	68	89
Life Table Tests	P=0.309	P = 0.012	P = 0.455
Incidental Tumor Tests	P = 0.278 N	P = 0.334	P = 0.385N
Carcinoma			
Overall Rates	0/50 (0%)	1/49 (2%)	0/48 (0%)
Adenoma or Carcinoma(a)			
Overall Rates	21/50 (42%)	27/49 (55%)	14/48 (29%)
Adjusted Rates	54.9%	77.1%	65.1%
Terminal Rates	12/28 (43%)	6/13 (46%)	9/16 (56%)
Week of First Observation	72	68	89
Life Table Tests	P = 0.301	P=0.008	P = 0.455
Incidental Tumor Tests	P = 0.281N	P = 0.282	P = 0.385N

(a) Historical incidence in water gavage vehicle controls (mean \pm SD): 51/150 (34% \pm 9%); historical incidence in untreated controls: 363/1,614 (22% \pm 11%)

TABLE 17. INCIDENCES OF CYTOPLASMIC VACUOLIZATION AND CYSTIC DEGENERATION OFTHE LIVER IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF THPS AND THPC

	THPS				тнрс			
	Vehicle Control		10 mg/kg		Vehicle Control	3.75 mg/kg	7.5 mg/kg	
Cytoplasr	nic Vacuolization							
Male Female	2/50 1/ 49	4/50 3/50	9/49 8/49	Male Female	0/50 3/50	9/50 11/50	23/ 49 25/50	
Cystic De	generation							
Male Female	7/50 None observed	15/50	14/49	Male Female	12/50 None observed	26/50	23/49	

Lung (THPC): Acute congestion and edema were observed at increased incidences in dosed rats that died during the studies (acute congestion--male: vehicle control, 0/50; low dose, 1/50; high dose, 9/50; female: 3/50; 2/50; 12/50; edema--male: 1/50; 1/50; 6/50; female: 0/50; 2/50; 11/50). Spleen (THPC): Hematopoiesis of the red pulp was observed at increased incidences in dosed female rats (male: vehicle control, 1/50; low dose, 5/50; high dose, 3/49; female: 3/50; 9/50; 15/50).

Uterus (THPS): Endometrial stromal polyps in female rats occurred with a significant positive trend, and the incidence in the high dose group was significantly greater than that in the vehicle controls (Table 18).

TABLE 18. ANALYSIS OF UTERINE TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS

	Vehicle Control	5 mg/kg	10 mg/kg
Endometrial Stromal Polyp (a)		······································	
Overall Rates	6/49 (12%)	9/50 (18%)	12/49 (24%)
Adjusted Rates	16.2%	23.0%	36.2%
Terminal Rates	6/37 (16%)	8/38 (21%)	9/29 (31%)
Week of First Observation	106	102	82
Life Table Tests	P = 0.024	P = 0.307	P = 0.035
Incidental Tumor Tests	P = 0.035	P = 0.304	P = 0.045

(a) Historical incidence in water gavage vehicle controls (mean \pm SD): 27/148 (18% \pm 5%); historical incidence in untreated controls: 381/1,750 (22% \pm 8%)

SINGLE-ADMINISTRATION STUDIES

THPS

All mice that received 400, 800, or 1,600 mg/kg THPS were dead by day 2 (Table 19). Mean body weights were not recorded; necropsies were not performed.

THPC

All males and females that received 600 or 1,200 mg/kg THPC were dead by day 4 (Table 20). Three of five female mice that received 300 mg/kg died before the end of the studies. All mice were lethargic and had rough coats within several hours of dosing. All surviving mice appeared normal within 24 hours of dosing. Final body weights were not recorded; necropsies were not performed.

TABLE 19. SURVIVAL OF MICE IN THE SINGLE-ADMINISTRATION GAVAGE STUDIES OF THPS (a)

Dose (mg/kg)	Su	rvival
	Male	Female
100	5/5	5/5
200	5/5	5/5
400	(b) 0/5	(b) 0/5
800	(b) 0/5	(c) 0/5
1,600	(c) 0/5	(d) 0/5

(a) The survival patterns preclude meaningful LD₅₀ value determinations.
(b) Day of death: all 2
(c) Day of death: 1, 1, 2, 2, 2
(d) Day of death: all 1

TABLE 20. SURVIVAL OF MICE IN THE SINGLE-ADMINISTRATION GAVAGE STUDIESOF THPC

Dose (mg/kg)	S	urvival
	Male	Female (a)
75	5/5	5/5
150	5/5	5/5
300	5/5	(b) 2/5
600	(b) 0/5	(c) 0/5
1,200	(d) 0/5	(b) 0/5

(a) LD₅₀ value by Spearman-Karber method: 280 mg/kg (95% confidence limits, 201-390 mg/kg)

(b) Day of death: all 3

(c) Day of death: 3, 3, 3, 3, 4

(d) Day of death: 1, 3, 3, 3, 3

FOURTEEN-DAY STUDIES

THPS

Four of five male and 5/5 female mice that received 200 mg/kg and 1/5 male and 2/5 female mice that received 100 mg/kg died before the end of the studies (Table 21). Male mice that received 100 or 200 mg/kg and female mice that received 100 mg/kg lost weight. The final mean body weights of mice that received 25 or 50 mg/kg were 91% and 88% that of the controls for males and 97% and 93% that of the controls for females. Labored breathing and rough coats were observed in male and female mice at 100 and 200 mg/kg; female mice in these groups had loss of movement in their hindlegs.

THPC

All males and females that received 300 mg/kg THPC died by day 12 of the studies (Table 22). Mice that received 150 mg/kg lost weight. Final mean body weights of mice that received 18.8, 37.5, or 75 mg/kg were 91%-97% of the control values. No clinical signs of toxicity were observed in animals surviving to the end of the studies. No compound-related effects were observed at necropsy.

TABLE 21. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FOURTEEN-DAY GAVAGESTUDIES OF THPS

Dose		Mean Body Weights (grams)			Final Weight Relativ	
(mg/kg)	Survival (a)	Initial (b)	Final	Change (c)	to Controls (percent)	
MALE					<u></u>	
(d) 0	5/5	25.2	29.2	+4.0		
12.5	(e) 4/5	24.6	28.3	+ 3.7	96.9	
25	5/5	25.6	26.6	+1.0	91.1	
50	5/5	24.4	25.6	+1.2	87.7	
100	(f) 4/5	24.0	21.8	-2.2	74.7	
200	(g) 1/5	25.2	16.0	-9.2	54.8	
FEMALE						
(d) 0	5/5	18.4	21.0	+ 2.6		
12.5	5/5	18.6	20.8	+2.2	99.0	
25	(h) 4/5	18.4	20.3	+1.9	96.7	
50	5/5	17.6	19.6	+2.0	93.3	
100	(i) 3/5	18.2	18.0	-0.2	85.7	
200	(j) 0/5	18.8	(k)	(k)	(k)	

(a) Number surviving/number in group

(b) Initial mean group body weight

(c) Mean body weight change

(d) Controls were untreated.

(e) Day of death: 2

(f) Day of death: 10

(g) Day of death: 8, 10, 10, 12

(h) Day of death: 6

(i) Day of death: 3, 14

(j) Day of death: 8, 9, 9, 9, 12

(k) No data are reported because of the 100% mortality in this group.

Dose		Mean	Body Weigh	Final Weight Relative	
(mg/kg)	(mg/kg) Survival (a)	Initial (b)	Final	Change (c)	to Controls (percent)
IALE					
(d) 0	5/5	24.6	28.2	+3.6	
18.8	5/5	24.6	27.4	+2.8	97.2
37.5	5/5	25.4	26.6	+1.2	94.3
75	5/5	24.6	26.4	+1.8	93.6
150	5/5	24.0	23.2	-0.8	82.3
300	(e) 0/5	22.8	(f)	(f)	(f)
EMALE					
(d) 0	5/5	20.0	23.0	+3.0	
18.8	5/5	19.2	21.4	+2.2	93.0
37.5	5/5	20.0	21.4	+1.4	93.0
75	5/5	19.2	21.0	+1.8	91.3
150	5/5	19.6	18.4	-1.2	80.0
300	(g) 0/5	19.2	(f)	(f)	(f)

TABLE 22. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FOURTEEN-DAY GAVAGE STUDIES OF THPC

(a) Number surviving/number initially in group

(b) Initial mean group body weight

(c) Mean body weight change

(d) Controls were untreated.

(e) Day of death: 7, 8, 9, 9, 10

(f) No data are reported due to the 100% mortality in this group.

(g) Day of death: 6, 10, 11, 12, 12

THIRTEEN-WEEK STUDIES

THPS

Two vehicle control female mice were killed during the second week of the studies because they had inner ear infections. One of 10 females that received 60 mg/kg and 2/10 males and 1/10 females that received 40 mg/kg died before the end of the studies (Table 23). Final mean body weights of mice that received 20, 40, or 60 mg/kg were 4%, 7%, and 11% lower than those of the vehicle controls for males and 3%, 5%, and 11% lower for females. At various times during the first 11 weeks of the studies, mice from vehicle control groups, as well as from some dose groups, lost weight.

Periportal vacuolar degeneration occurred in 10/10 male and 10/10 female mice that received 60 mg/kg (minimal to moderate severity), 10/10 male and 9/10 female mice that received 40 mg/kg, and 8/10 male mice that received 20 mg/kg (minimal to mild severity). The dosed mice that died before the end of the studies had severe pulmonary lesions that were characterized by degeneration and/or necrosis with hyperplasia and/or squamous metaplasia of bronchiolar epithelium. Subacute multifocal or diffuse pneumonia was usually present in these animals, together with bronchiolar/alveolar hyperplasia that was sometimes severe. In one animal, diffuse bronchiolar/alveolar squamous metaplasia was present. Death of these animals was attributed to these pulmonary lesions. Pneumonia with bronchiolar/alveolar epithelial hyperplasia occurred commonly in vehicle control animals; the lesions were usually of minimal or mild severity but were extensive in one vehicle control animal. Unlike the lesions in the 40 and 60 mg/kg groups, those in vehicle control animals did not exhibit degenerative, hyperplastic, or metaplastic changes higher in the bronchiolar tree and did not cause death. Microscopically, the lung lesions were typical of those produced by Sendai virus infection in mice.

Dose Selection Rationale: Based on microscopic lesions in the liver and reduced body weight gain, THPS doses selected for mice for the 2-year studies were 5 and 10 mg/kg administered by gavage in water 5 days per week.

		Mear	n Body Weigl	nts (grams)	Final Weight Relative
Dose (mg/kg)	Survival (a)	Initial (b)	Final	Change (c)	to Vehicle Controls (percent)
MALE		,	······		
0	10/10	22.5	32.2	+9.7	
0 5	10/10	22.7	33.2	+10.5	103.1
10	10/10	22.9	33.3	+10.4	103.4
20	10/10	23.8	30.9	+7.1	96.0
40	(d) 8/10	24.9	29.9	+ 5.0	92.9
60	10/10	23.5	28.5	+ 5.0	88.5
FEMALE					
0	(e) 8/10	17.5	25.3	+7.8	
0 5	10/10	17.0	25.2	+ 8.2	99.6
10	10/10	17.1	24.4	+7.3	96.4
20	10/10	18.3	24.5	+6.2	96.8
40	(f) 9/10	18.7	24.1	+5.4	95.3
60	(g) 9/10	18.8	22.5	+3.7	88.9

TABLE 23. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF THPS

(a) Number surviving/number in group
(b) Initial mean group body weight
(c) Mean body weight change
(d) Week of death: 8, 9
(e) Two animals killed during week 2 because of inner ear infection
(f) Week of death: 6
(g) Week of death: 7

.

тнрс

Seven of 10 males and 6/10 females that received 135 mg/kg died before the end of the studies (Table 24). Final mean body weights for mice that received 135 mg/kg THPC were 8% lower than that of the vehicle controls for males and 19% lower for females.

Paresis of the hindlegs and loss of coordination were observed in 10/10 males and 9/10 females that received 135 mg/kg but not in any other groups. Mice in the 135 mg/kg group had marked axonal degeneration that was characterized by swollen axon sheaths, missing or fragmented axons, and some proliferation of neurolemmal cells (Table 25). These changes were seen in the sciatic nerve, dorsal roots of the caudal spinal nerves, and tracts of the spinal cord, particularly in the dorsal column of the lumbar cord. Eosinophilic spherical intracytoplasmic vacuoles in periportal hepatocytes, which in some cells displaced the nucleus to one side, were seen in the 135 mg/kg group and to a lesser extent in the 45 and 15 mg/kg groups of mice. Some of these vacuolated cells contained a finely granular basophilic material, and some had pyknotic or missing nuclei. The hepatocytes in some dosed animals had a notably greater number of mitotic figures than was seen in the vehicle controls.

Dose Selection Rationale: Because hepatocellular necrosis was observed at higher doses, THPC doses selected for mice for the 2-year studies were 7.5 and 15 mg/kg in water by gavage for male mice and 15 and 30 mg/kg for female mice.

		Mean I	Body Weights (s	Final Weight Relative	
Dose (mg/kg)	Survival (a)	Initial (b)	Final	Change (c)	to Vehicle Controls (percent)
MALE					,,,,_,,,,,,,,,,,,,,,,,,,,,,,,
0	10/10	24.2 ± 0.4	32.9 ± 0.9	$+8.7 \pm 0.7$	
1.5	10/10	24.8 ± 0.4	31.1 ± 1.2	$+6.3 \pm 1.0$	94.5
4.5	10/10	24.6 ± 0.3	34.8 ± 0.9	$+10.2 \pm 0.9$	105.8
15	10/10	24.7 ± 0.4	34.2 ± 0.4	$+9.5 \pm 0.6$	104.0
45	10/10	24.8 ± 0.5	33.0 ± 0.9	$+8.2 \pm 0.9$	100.3
135	(d) 3/10	25.1 ± 0.5	30.3 ± 1.8	$+4.7 \pm 1.8$	92.1
FEMALE					
0	10/10	19.6 ± 0.5	25.6 ± 0.4	$+6.0 \pm 0.3$	
1.5	10/10	19.9 ± 0.4	25.7 ± 0.4	$+5.8 \pm 0.4$	100.4
4.5	10/10	19.6 ± 0.4	25.9 ± 0.3	$+6.3 \pm 0.3$	101.2
15	10/10	20.2 ± 0.4	26.4 ± 0.5	$+6.2 \pm 0.5$	103.1
45	10/10	19.4 ± 0.4	24.8 ± 0.5	$+5.4 \pm 0.4$	96.9
135	(e) 4/10	20.1 ± 0.3	20.8 ± 0.6	$+1.0 \pm 0.7$	81.3

TABLE 24. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF THPS

(a) Number surviving/number initially in the group

(b) Initial mean group body weight \pm standard error of the mean. Subsequent calculations are based on those animals surviving to the end of the study.

(c) Mean body weight change of the survivors of the group \pm standard error of the mean

(d) Week of death: 6, 8, 11, 12, 13, 13, 13

(e) Week of death: 3, 8, 10, 11, 11, 13

			Dose (m	ig/kg)		
Site/Lesion	0	1.5	4.5	15	45	135
MALE (a)						
Liver, hepatocytes						
Cytoplasmic vacuolation, periportal Liver	0	0	0	10	10	10
Hepatocellular necrosis, periportal	0	0	0	0	10	8
Thymus, cortex Lymphoid depletion	0				0	4
Skeletal muscle						_
Degeneration Peripheral nerve	0	0	0	0	0	6
Axonal degeneration Sciatic nerve	0	0	0	0	0	0
Axonal degeneration	0	0	0	0	0	8
Spinal nerve	Ũ	v	Ū	v	0	0
Axonal degeneration	0	0	0	0	0	10
Spinal cord						
Axonal degeneration	0	0	0	0	0	6
FEMALE (a)						
Liver, hepatocytes						
Cytoplasmic vacuolation, periportal	0	0	0	10	10	9
Liver Hepatocellular necrosis, periportal	0	0	0	0	0	7
The particular necrosis, periportal	v	U	v	v	U	1
Lymphoid depletion	0				0	4
Skeletal muscle	Ŷ				Ū	•
Degeneration	0	0	0	0	0	2
Peripheral nerve						
Axonal degeneration	0	0	0	0	0	1
Sciatic nerve	0	0	0	0	0	
Axonal degeneration Spinal nerve	0	0	0	0	0	8
Axonal degeneration	0	0	0	0	0	9
Spinal cord	v	v	v	v	v	5
Axonal degeneration	0	0	0	0	0	4

TABLE 25. NUMBER OF MICE WITH COMPOUND-RELATED LESIONS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF THPC

(a) Ten males and 10 females were examined in each group.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

THPS

Mean body weights of dosed and vehicle control female mice and high dose and vehicle control male mice were comparable throughout the studies (Table 26 and Figure 5). Compoundrelated clinical signs consisted primarily of rough hair coats and diarrhea.

THPC

Between week 50 and week 63, mean body weights of high dose male mice were 5% or more lower than those of the vehicle controls (Table 27 and Figure 6). Mean body weights of high dose female mice were comparable to or greater than those of the vehicle controls throughout the studies. Compound-related clinical signs consisted primarily of rough hair coats and diarrhea.

Weeks		Control		5 mg/kg	<u> </u>		10 mg/kg	
on Study	Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. of Survivors
ÍALE			<u>.</u>	<u></u>	<u></u>		···	
0	25.6	50	25.2	98	50	24.3	95	50
1	27.1	50	27.3	101	49 49	27.4 27.4	101 101	50
2 3	27.2 29.1	50 50	27.3 29.3	100 101	49	28.5	98	50 50
4	29.8	50	29.7	100	49	29.6	99	50
5	30.8	50	31.4	102	49	30.3	98	50
6	31.1	50	31.9	103	49	31.1	100	50
7 8	32.1 32.5	50 50	33.2 32.5	103 100	49 49	31.9 31.3	99 96	50 50
9	33,1	50	33.7	102	49	31.8	96	50
10	33.6	50	34.1	101	49	32.6	97	50
11	34.3	50	34.6	101	49	33.4	97	50
12	34.1	50	34.9	102 101	49 49	33.8	99 99	50 50
13 17	34.3 36.5	50 50	34.8 37.5	101	49	33.9 36.2	99	50
22	37.6	50	38.3	102	49	37.2	99	50
26	38.1	48	39.8	104	49	38.2	100	49
30	38.1	48	39.4	103	49	38.0	100	49
34 38	39.6 38.8	47 45	40.8 41.2	103 106	49 49	39.9 39.8	101 103	49 49
43	40.8	45	42.7	105	49	40.8	100	49
47	40.7	44	42.4	104	48	41.0	101	48
51	41.4	44	42.8	103	48	40.3	97	48
55	41.0	43	42.8	104	47	40.5	99	48
60 64	40.6 41.3	43 42	41.6 42.4	102 103	46 46	40.3 39.9	99 97	47 47
69	41.3	42	43.0	103	45	41.2	98	47
73	40.8	40	42.6	104	45	40.2	99	47
78	42.3	39	41.9	99	43	41.5	98	46
82 87	42.4 41.8	39 36	42.2 42.7	100 102	41 37	41.5 42.0	98 100	42 41
91	41.8	29	41.9	102	37	40.6	97	37
95	40.7	29	40.8	100	37	39.7	98	35
100	39.6	27	39.3	99	35	37.9	96	30
104	39.1	23	39.3	101	31	37.1	95	25
FEMALE								
0	20.1	50	20.3	101	50	20.1	100 99	50 50
1 2	20.2 21.1	49 48	20.7 21.9	102 104	50 50	20.0 21.3	99 101	50
3	21.5	48	22.2	103	50	21.7	101	49
4	22.5	48	23.2	103	50	23.2	103	49
5	23.1	48	24.0	104	50	23.3	101	49
6 7	23.1 23.8	48 48	23.9 24.2	103 102	50 50	23.8 24.2	103 102	49 49
8	23.7	48	23.7	102	50	23.6	102	49
9	24.3	48	24.8	102	50	24.2	100	49
10	24.4	48	24.1	99	50	24.4	100	48
11 12	25.1 25.1	48 48	25.4 25.3	101 101	50 50	25.0 24.8	100 99	48 48
13	25.5	48	25.6	100	50	25.0	98	48
17	26.6	47	27.1	102	50	27.2	102	48
22	27.8	47	27.9	100	50	28.0	101	48
26	29.3	47	28.9	99 97	50 50	28.6 28.9	98 96	48 48
30 34	30.0 30.6	47 46	29.1 31.0	101	50 50	28.9 30.8	101	48 48
38	31.1	46	30.6	98	50	30.7	99	48
43	32.8	46	33.3	102	50	33.2	101	48
47	33.3	46	33.7	101	50	33.8	102	48
51	34.1	46	34.9	102 101	50 50	33.5 35.5	98 100	48 48
55 60	35.5 35.2	46 44	36.0 36.7	104	50	35.0	99	48
64	37.9	43	38.9	103	50	38.1	101	48
69 73	39.1	42	40.3	103	47	39.1	100	48
73 78	39.0 41.2	42 40	40.3 41.5	103 101	45 40	39.8 42.4	102 103	47 43
82	41.2	36	41.8	99	39	42.7	101	43
87	42.1	36	41.7	99 99	39	42.1	100	41
91	42.6	35	42.6	100	38	42.4	100	39
95	42.5	35 31	43.0 40.0	101 102	35 34	42.8 40.0	101 102	38 35
100	39.3							

TABLE 26. MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIESOF THPS

FIGURE 5. GROWTH CURVES FOR MICE ADMINISTERED THPS IN WATER BY GAVAGE FOR TWO YEARS

Weeks on Study	Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. of Survivors
MALE	Vehicle	Control		7.5 mg/kg		- <u></u>	15 mg/kg	
0	24.6	50	23.7	96	49	23.5	96	50
1	25.2	50	24.5	97	49	24.2	96	50
2	25.2	50	26.0	103	49	25.0	99	50
3	26.3	50	26.3	100	49	25.7	98	50
4 5	27.0 28.6	50 50	27.8 28.7	103 100	49 49	27.1 28.0	100 98	50 50
6	28.5	50	28.3	99	49	28.0	96	50
7	28.9	50	30.0	104	49	29.0	100	50
8	31.9	50	30.9	97	49	31.8	100	50
9	33.1	50	32.3	98	49	32.0	97	50
11	33.1	50	32.8	99	49	32.7	99	50
12	32.9	50	32.1	98	48	31.3	95	50
13	33.7	50	33.3	99	48	33.2	99	50
17	33.5	50	33.1	99	47	32.7	98	50
20 25	35.0 36.7	50 50	34.6 36.4	99 99	47 47	34.3 35.5	98 97	50 50
25	36.4	50	36.0	99 99	47	35.4	97	50
32	38.0	50	38.4	101	47	36.5	96	50
36	38.4	50	38.6	101	47	37.4	97	50
40	39.8	50	39.7	100	47	37.5	94	50
45	40.0	50	39.5	99	46	38.7	97	50
50	41.5	50	40.8	98	46	39.6	95	50
54	41.4	50	41.0	99	46	38.8	94	49
58	41.9	50	41.5	99	46	39.3	94	49
63	43.4	50	39.5	91	46	39.6	91	48
67	40.7	48	39.5	97 97	44	39.3	97 99	47 43
72 77	40.7 41.8	44 42	39.6	97 95	40 39	40.3 40.1	99 96	43
81	40.1	42	39.8 40.2	100	38	39.2	98	42
85	41.6	36	40.8	98	38	40.5	97	41
90	40.7	34	40.4	99	36	39.9	98	40
95	42.0	29	41.4	99	33	40.5	96	37
99	39.5	28	39.9	101	32	38.9	98	36
103	40.1	25	38.2	95	31	37.5	94	35
EMALE	Vehicle	Control		15 mg/kg			30 mg/kg	
0	19.8	50	19.9	101	50	19.7	99	50
1	20.8	50	20.5	99	50	20.9	100	50
2	21.4	50	21.1	99	50	21.4	100	50
3	21.5	50	21.7	101	50	22.0	102	50
3			21.8	100	50	22.3	102	50
4	21.9	50		99	50	23.1	101	50
4 5	22.8	50	22.5					
4 5 6	22.8 22.7	50 50	23.7	104	50	23.3	103	50
4 5 6 7	22.8 22.7 22.7	50 50 50	23.7 23.6	104	50	23.3 23.5	104	50
4 5 6 7 8	22.8 22.7 22.7 23.6	50 50 50 50	23.7 23.6 24.6	104 104	50 50	23.3 23.5 24.4	104 103	50 50
4 5 6 7 8 9	22.8 22.7 22.7 23.6 23.8	50 50 50 50 50	23.7 23.6 24.6 25.9	104 104 109	50 50 50	23.3 23.5 24.4 24.7	104 103 104	50 50 50
4 5 6 7 8 9 11	22.8 22.7 23.6 23.8 25.1	50 50 50 50 50 50	23.7 23.6 24.6 25.9 25.9	104 104 109 103	50 50 50 50	23.3 23.5 24.4 24.7 25.4	104 103 104 101	50 50 50 50
4 5 6 7 8 9	22.8 22.7 23.6 23.8 25.1 24.4	50 50 50 50 50	23.7 23.6 24.8 25.9 25.9 25.2	104 104 109	50 50 50	23.3 23.5 24.4 24.7	104 103 104	50 50 50
4 5 6 7 8 9 11 12	22.8 22.7 23.6 23.8 25.1	50 50 50 50 50 50 50 50	23.7 23.6 24.6 25.9 25.9	104 104 109 103 103	50 50 50 50 50 50	23.3 23.5 24.4 24.7 25.4 25.1	104 103 104 101 103	50 50 50 50 50 50
4 5 6 7 8 9 11 12 13 17 20	22.8 22.7 23.6 23.8 25.1 24.4 24.2	50 50 50 50 50 50 50 50 50	23.7 23.6 24.6 25.9 25.9 25.2 25.1	104 104 109 103 103 104 102 107	50 50 50 50 50 50 50 50 50	23.3 23.5 24.4 24.7 25.4 25.1 25.6 27.0 27.2	104 103 104 101 103 106 104 105	50 50 50 50 50 50 50 50 50
4 5 6 7 8 9 11 12 13 13 17 20 25	22.8 22.7 23.6 23.8 25.1 24.4 24.2 25.9 25.9 25.9 27.9	50 50 50 50 50 50 50 50 50 50	23.7 23.6 24.6 25.9 25.9 25.2 25.1 26.5 27.8 28.7	104 104 109 103 103 104 102 107 103	50 50 50 50 50 50 50 50 50	23.3 23.5 24.4 24.7 25.4 25.1 25.6 27.0 27.2 28.7	104 103 104 101 103 106 104 105 103	50 50 50 50 50 50 50 50 50 50
4 5 6 7 8 9 11 12 13 17 20 25 29	22.8 22.7 23.6 23.8 25.1 24.4 24.2 25.9 25.9 25.9 27.9 28.8	50 50 50 50 50 50 50 50 50 50	23.7 23.6 24.6 25.9 25.9 25.2 25.1 26.5 27.8 28.7 29.4	104 109 103 103 104 102 107 103 102	50 50 50 50 50 50 50 50 50 50 50	23.3 23.5 24.4 24.7 25.4 25.1 25.6 27.0 27.2 28.7 28.7 29.7	104 103 104 101 103 106 104 105 103 103	50 50 50 50 50 50 50 50 50 50 50
4 5 6 7 8 9 11 12 13 17 20 25 29 32	22.8 22.7 23.6 23.8 25.1 24.4 24.2 25.9 25.9 25.9 25.9 27.9 28.8 29.9	50 50 50 50 50 50 50 50 50 50	23.7 23.6 24.8 25.9 25.9 25.2 25.1 26.5 27.8 28.7 29.4 30.8	104 104 109 103 103 104 102 107 103 102 103	50 50 50 50 50 50 50 50 50 50 50 50	23.3 23.5 24.4 25.4 25.4 25.6 27.0 27.2 28.7 29.7 31.1	104 103 104 101 103 106 104 105 103 103	50 50 50 50 50 50 50 50 50 50 50
4 5 6 7 8 9 11 12 13 17 20 25 29 32 36	22.8 22.7 22.7 23.6 23.8 25.1 24.4 24.2 25.9 25.9 27.9 28.8 29.9 30.7	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.7 23.6 24.8 25.9 25.9 25.2 25.1 26.5 27.8 28.7 29.4 30.8	104 109 103 103 104 102 107 103 102 103 102	50 50 50 50 50 50 50 50 50 50 50 50 50	23.3 23.5 24.4 25.4 25.1 25.6 27.0 27.2 28.7 29.7 31.1 30.8	104 103 104 101 103 106 104 105 103 103 103 104 100	50 50 50 50 50 50 50 50 50 50 50 50 50
4 5 6 7 8 9 11 12 13 17 20 25 29 32 36 40	22.8 22.7 23.6 23.8 25.1 24.4 24.2 25.9 25.9 27.9 28.8 29.9 30.7 31.3	50 50 50 50 50 50 50 50 50 50 50 50 50	23.7 23.6 24.8 25.9 25.9 25.2 25.1 26.5 27.8 28.7 29.4 30.8 31.4 33.3	104 109 103 103 104 102 107 103 102 103 102 103 102 103 102 106	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.3 23.5 24.4 24.7 25.4 25.6 27.0 27.2 28.7 29.7 31.1 30.8 32.5	104 103 104 101 103 106 104 105 103 103 103 104 100 104	50 50 50 50 50 50 50 50 50 50 50 50 50 5
4 5 6 7 8 9 11 12 13 17 20 25 29 32 36 40	22.8 22.7 23.6 23.8 25.1 24.4 24.2 25.9 27.9 27.9 28.8 29.9 30.7 31.3 31.7	50 50 50 50 50 50 50 50 50 50 50 50 50	23.7 23.6 24.6 25.9 25.9 25.2 25.1 26.5 27.8 28.7 29.4 30.8 31.4 33.3 34.6	104 109 103 103 104 102 107 103 102 103 102 103 102 106 109	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.3 23.5 24.4 24.7 25.4 25.1 27.0 27.0 27.2 28.7 29.7 31.1 30.8 32.5 33.5	104 103 104 101 103 106 104 105 103 103 103 104 100 104 106	50 50 50 50 50 50 50 50 50 50 50 50 50 5
4 5 6 7 8 9 11 12 13 17 20 25 29 32 29 32 36 40 45 50	22.8 22.7 22.7 23.6 23.8 25.1 24.4 24.2 25.9 27.9 28.8 29.9 30.7 31.3 31.7 34.9	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.7 23.6 24.8 25.9 25.9 25.2 25.1 26.5 27.8 28.7 29.4 30.8 31.4 33.3 34.6 36.0	104 109 103 103 104 102 107 103 102 103 102 103 102 106 109 103	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.3 23.5 24.4 25.4 25.1 25.6 27.0 27.2 28.7 29.7 31.1 30.8 32.5 33.5 35.3	104 103 104 101 103 106 104 105 103 103 103 104 100 104 106 101	50 50 50 50 50 50 50 50 50 50 50 50 50 5
4 5 6 7 8 9 11 12 13 17 20 25 29 32 36 40 45 50 54 55	22.8 22.7 23.6 23.8 25.1 24.4 24.2 25.9 27.9 28.8 29.9 30.7 31.3 31.7 34.9 35.0 36.7	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.7 23.6 24.6 25.9 25.9 25.2 25.1 26.5 27.8 28.7 29.4 30.8 31.4 33.3 34.6	104 104 109 103 103 104 102 107 103 102 103 102 103 104 109 103 104 103	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.3 23.5 24.4 24.7 25.4 25.1 25.6 27.0 27.2 28.7 29.7 31.1 30.8 32.5 33.5 35.3 36.3 37.3	104 103 104 101 103 106 104 105 103 103 103 103 104 100 104 106 101 104 102	50 50 50 50 50 50 50 50 50 50 50 50 50 5
4 5 6 7 8 9 11 12 13 17 20 25 29 32 36 40 45 50 54 55 8	22.8 22.7 22.7 23.6 23.8 25.9 27.9 28.8 29.9 27.9 28.8 29.9 30.7 31.3 31.7 34.9 35.0 36.7 35.3	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.7 23.6 24.8 25.9 25.9 25.2 25.1 26.5 27.8 28.7 29.4 30.8 31.4 33.3 34.6 36.0 36.3 37.8 38.1	104 109 103 103 104 102 107 103 102 103 102 106 109 103 103 103 103 103 103 103	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.3 23.5 24.4 25.4 25.1 25.6 27.0 27.2 28.7 29.7 31.1 30.8 32.5 33.5 35.3 36.3 37.3 35.4	104 103 104 101 103 106 104 105 103 103 103 104 100 104 106 101 104 106 101 104	50 50 50 50 50 50 50 50 50 50 50 50 50 5
4 5 6 7 8 9 11 12 13 17 20 25 29 32 36 40 45 50 45 50 45 54 58 63 67	22.8 22.7 23.6 23.8 25.1 24.4 24.2 25.9 27.9 28.8 29.9 30.7 31.3 31.7 34.9 35.0 36.7 35.3 35.3	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.7 23.6 24.8 25.9 25.9 25.1 26.5 27.8 28.7 29.4 30.8 31.4 33.3 34.6 36.0 36.3 37.8 38.1 36.3	104 109 103 103 104 102 107 103 102 103 102 106 109 103 104 103 104 103 108	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.3 23.5 24.4 25.4 25.4 25.6 27.0 27.2 28.7 29.7 31.1 30.8 32.5 35.3 36.3 37.3 35.4 36.4	104 103 104 101 103 106 104 105 103 103 103 103 104 100 104 106 101 104 102 100 103	50 50 50 50 50 50 50 50 50 50 50 50 50 5
4 5 6 7 8 9 11 12 13 17 20 25 29 32 36 40 45 50 45 50 54 58 63 67	22.8 22.7 23.6 23.8 25.1 24.4 24.2 25.9 27.9 28.8 29.9 30.7 31.3 31.7 34.9 35.0 36.7 35.3 35.3 36.5	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.7 23.6 24.6 25.9 25.9 25.2 25.1 26.5 27.8 28.7 29.4 30.8 31.4 33.3 34.6 36.0 36.3 37.8 38.1 36.3 37.8 38.1 36.3 37.2	104 104 109 103 103 104 102 107 103 102 103 102 106 109 103 104 103 104 103 108 103	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.3 23.5 24.4 24.7 25.4 25.1 25.6 27.0 27.2 28.7 29.7 31.1 30.8 32.5 33.5 35.3 36.3 37.3 35.4 36.4 37.9	104 103 104 101 103 106 104 105 103 103 103 103 104 100 104 106 101 104 102 100 103	50 50 50 50 50 50 50 50 50 50 50 50 50 5
4 5 6 7 8 9 11 12 13 17 20 25 29 32 25 29 32 25 29 32 36 40 45 50 54 58 63 67 72 77	22.8 22.7 22.7 23.6 23.8 25.1 24.4 24.2 25.9 27.9 28.9 27.9 28.9 29.9 30.7 31.3 31.7 34.9 35.0 36.7 35.3 35.3 36.5 36.8	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23,7 23,6 24,6 25,9 25,9 25,2 25,1 26,5 27,8 28,7 29,4 30,8 31,4 33,3 34,6 36,0 36,3 37,8 38,1 36,3 37,2 36,3 37,2 36,3	104 109 103 103 104 102 107 103 103 103 103 103 109 103 103 103 103 104 103 108 103 108 103 102 99	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 23.3\\ 23.5\\ 24.4\\ 24.7\\ 25.4\\ 25.1\\ 25.6\\ 27.0\\ 27.2\\ 28.7\\ 29.7\\ 31.1\\ 30.8\\ 32.5\\ 33.5\\ 35.3\\ 36.3\\ 37.3\\ 35.4\\ 36.4\\ 37.9\\ 37.5\\ \end{array}$	104 103 104 101 103 106 104 105 103 103 103 104 100 104 106 101 104 102 100 103 103 104 102	50 50 50 50 50 50 50 50 50 50 50 50 50 5
4 5 6 7 8 9 11 12 13 17 20 25 29 32 25 29 32 25 29 32 36 40 45 50 54 58 63 67 72 77	22.8 22.7 23.6 23.8 25.1 24.4 24.2 25.9 27.9 28.8 29.9 30.7 31.3 31.7 34.9 35.0 36.7 35.3 36.5 36.8 36.2	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.7 23.6 24.8 25.9 25.2 25.1 28.5 28.7 29.4 30.8 31.4 33.3 34.6 36.0 36.3 37.8 38.1 36.3 37.2 36.3 37.2 36.3 36.4	104 109 103 103 104 102 107 103 102 103 102 106 109 103 104 103 104 103 104 103 104 103 102 103 104 103 102 103 103 103 103 103 103 103 103 103 103	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.3 23.5 24.4 25.1 25.6 27.0 27.2 28.7 29.7 31.1 30.8 32.5 35.3 36.3 37.3 35.4 36.4 37.9 37.5 37.2	104 103 104 101 103 106 104 105 103 103 104 100 104 106 101 104 102 100 103 104 102 103 104 105 103 104 105 105 103 104 105 105 103 104 105 103 104 105 103 104 106 106 107 108 109 109 100 100 100 100 101 104 105 103 104 105 103 104 105 106 101 106 101 105 103 104 105 103 104 105 105 105 105 105 105 105 105	50 50 50 50 50 50 50 50 50 50 50 50 50 5
4 5 6 7 8 9 11 12 13 17 20 25 29 32 36 40 45 50 45 54 58 63 67 72 77 81 85	22.8 22.7 23.6 23.8 25.1 24.4 24.2 25.9 27.9 28.8 29.9 30.7 31.3 31.7 34.9 35.0 36.7 35.3 36.7 35.3 36.5 36.8 28.6 28.9 27.9 28.8 29.9 30.7 31.3 31.7 35.0 36.7 35.3 36.5 36.5 36.8 23.7 27.9 28.8 29.9 27.9 28.8 29.9 27.9 28.8 29.9 27.9 28.8 29.9 27.9 28.8 29.9 27.9 28.8 29.9 27.9 28.8 29.9 27.9 28.8 29.9 27.9 28.8 29.9 27.9 28.8 29.9 27.9 28.8 29.9 27.9 28.8 29.9 30.7 31.3 31.7 35.0 35.0 27.9 28.9 27.9 28.8 29.9 27.9 28.8 29.9 27.9 28.8 29.9 30.7 31.3 31.7 35.0 35.0 36.7 35.0 36.7 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.7 23.6 24.6 25.9 25.9 25.2 25.1 26.5 27.8 28.7 29.4 30.8 31.4 33.3 34.6 36.0 36.3 37.8 38.1 36.3 37.8 38.1 36.3 37.2 36.3 37.2 36.3 36.4 38.5	104 109 103 103 104 102 107 103 102 103 102 106 109 103 104 103 104 103 108 103 102 99 90 101	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.3 23.5 24.4 24.7 25.4 25.1 25.6 27.0 27.2 28.7 29.7 31.1 30.8 32.5 33.5 35.3 36.3 37.3 35.4 36.4 37.9 37.5 37.2 39.0	104 103 104 101 103 106 104 105 103 103 104 100 104 106 101 104 102 103 103 104 102 103 103 104 102 103 103 104 105 105 105 105 105 105 105 105	50 50 50 50 50 50 50 50 50 50 50 50 50 5
4 5 6 7 8 9 11 12 13 17 20 25 29 32 25 29 32 25 29 32 36 40 45 50 54 55 54 58 63 67 72 77 81 85 90	22.8 22.7 22.7 23.6 23.8 25.9 27.9 28.9 27.9 28.9 27.9 28.9 29.9 30.7 31.3 31.7 34.9 35.0 36.7 35.3 36.5 36.8 36.2 37.6	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.7 23.6 24.6 25.9 25.9 25.2 25.1 26.5 27.8 28.7 29.4 30.8 31.4 33.3 34.6 36.0 36.3 37.8 36.1 36.3 37.2 36.3 37.2 36.3 36.4 38.5 39.3	104 109 103 103 104 102 107 103 103 103 103 103 103 103 103 103 103	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.3 23.5 24.4 25.1 25.6 27.0 27.2 28.7 31.1 30.8 32.5 33.5 35.3 35.3 35.3 35.3 35.3 35.4 36.3 37.9 37.5 37.2 39.0 39.2	104 103 104 101 103 106 104 105 103 103 104 104 106 101 104 102 100 103 104 102 103 104 102 103 104 102 103 104	50 50 50 50 50 50 50 50 50 50 50 50 50 5
4 5 6 7 8 9 11 12 13 17 20 25 29 32 36 40 45 50 54 58 63 67 72 77 81 85	22.8 22.7 23.6 23.8 25.1 24.4 24.2 25.9 27.9 28.8 29.9 30.7 31.3 31.7 34.9 35.0 36.7 35.3 36.7 35.3 36.5 36.8 36.5 36.8 237.0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.7 23.6 24.6 25.9 25.9 25.2 25.1 26.5 27.8 28.7 29.4 30.8 31.4 33.3 34.6 36.0 36.3 37.8 38.1 36.3 37.8 38.1 36.3 37.2 36.3 37.2 36.3 36.4 38.5	104 109 103 103 104 102 107 103 102 103 102 106 109 103 104 103 104 103 108 103 102 99 90 101	50 50 50 50 50 50 50 50 50 50 50 50 50 5	23.3 23.5 24.4 24.7 25.4 25.1 25.6 27.0 27.2 28.7 29.7 31.1 30.8 32.5 33.5 35.3 36.3 37.3 35.4 36.4 37.9 37.5 37.2 39.0	104 103 104 101 103 106 104 105 103 103 104 100 104 106 101 104 102 103 103 104 102 103 103 104 102 103 103 104 105 105 105 105 105 105 105 105	50 50 50 50 50 50 50 50 50 50 50 50 50 5

TABLE 27. MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIESOF THPC

FIGURE 6. GROWTH CURVES FOR MICE ADMINISTERED THPC IN WATER BY GAVAGE FOR TWO YEARS

Survival

THPS

Estimates of the probabilities of survival for male and female mice administered THPS at the doses used in these studies and for vehicle controls are shown in the Kaplan and Meier curves in Figure 7. No significant differences in survival were observed between any groups of mice of either sex (Table 28).

THPC

Estimates of the probabilities of survival for male and female mice administered THPC at the doses used in these studies and for vehicle controls are shown in the Kaplan and Meier curves in Figure 8. No significant differences in survival were observed between any groups of either sex (Table 29).

TABLE 28. SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF THPS

	Vehicle Control	5 mg/kg	10 mg/kg
MALE (a)			·······
Animals initially in study Nonaccidental deaths before termination (b) Killed at termination Died during termination period Survival P values (c)	50 27 23 0 0.629	50 19 31 0 0.144	50 26 23 1 0.649
FEMALE (a)			
Animals initially in study Nonaccidental deaths before termination (b) Accidentally killed Animals missing Killed at termination Survival P values (c)	50 20 2 0 28 0.376	50 20 0 30 0.896	50 16 0 1 33 0.444

(a) Terminal-kill period: week 106

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

TABLE 29. SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF THPC

MALE (a)	Vehicle Control	7.5 mg/kg	15 mg/kg
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	25	17	15
Accidentally killed Animals missexed	2	1	õ
Cilled at termination	23	30	34
Died during termination period Survival P values (c)	0 0.068	1 0.252	1 0.079
'EMALE (a)	Vehicle Control	15 mg/kg	30 mg/kg
Animals initially in study	50	50	50
Vonaccidental deaths before termination (b)	12	10	11
Accidentally killed	_1	0	1
Cilled at termination	37	40 0.755	38 0.867
Survival P values (c)	0.939	0.755	0.007

(a) Terminal-kill period: week 104

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons

FIGURE 7. KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED THPS IN WATER BY GAVAGE FOR TWO YEARS

FIGURE 8. KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED THPC IN WATER BY GAVAGE FOR TWO YEARS

Pathology and Statistical Analyses of Results

This section describes the significant or noteworthy increases in the incidences of mice with neoplastic or nonneoplastic lesions in the hematopoietic system, skin, adrenal gland, liver, and thyroid gland.

Histopathologic findings in the THPS studies on neoplasms in mice are summarized in Tables C1 and D1; Tables C2 and D2 give the survival and tumor status for individual male and female mice. Tables C3 and D3 contain the statistical analyses of those primary tumors in the THPS studies that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Tables C3 and D3 (footnotes). The historical incidences of tumors in control male $B6C3F_1$ mice are listed in Table C4. Findings on nonneoplastic lesions in the THPS studies are summarized in Tables C5 and D4. Histopathologic findings in the THPC studies on neoplasms in mice are summarized in Tables G1 and H1; Tables G2 and H2 give the survival and tumor status for individual male and female mice. Tables G3 and H3 contain the statistical analyses of those primary tumors in the THPC studies that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Tables G3 and H3 (footnotes). Findings on nonneoplastic lesions in the THPC studies are summarized in Tables G4 and H4.

Hematopoietic System (THPS): Increased incidences of granulocytic hyperplasia of the bone marrow in dosed female mice and hematopoiesis of the splenic red pulp and liver in high dose male mice were observed (Table 30). These lesions are considered secondary to the subcutaneous and liver lesions observed in these animals. Malignant lymphomas (all types) occurred at a significantly increased incidence by the incidental tumor test in low dose male mice but not in high dose mice (Table 31).

	Vehicle Control	5 mg/kg	10 mg/kg	
MALE			- Marana,	
Bone marrow granulocytic hyperplasia	6/49	4/49	9/50	
All malignant lymphomas	2/50	9/50	0/50	
Splenic red pulp hematopoiesis	14/48	10/49	24/49	
Liver hematopoiesis	1/48	4/49	6/50	
Thymus lymphoid depletion	1/27	8/38	9/32	
FEMALE				
Bone marrow granulocytic hyperplasia	0/50	6/49	6/49	
All malignant lymphomas	16/50	17/50	18/49	
Splenic red pulp hematopoiesis	5/50	6/50	9/49	
Liver hematopoiesis	2/50	5/50	6/49	
Thymus lymphoid depletion	5/41	3/44	2/41	

TABLE 30. INCIDENCES OF HEMATOPOIETIC SYSTEM LESIONS IN MICE IN THE TWO-YEARGAVAGE STUDIES OF THPS

TABLE 31. ANALYSIS OF MALIGNANT LYMPHOMAS IN MALE MICE IN THE TWO-YEAR GAVAGESTUDY OF THPS (a,b)

	Vehicle Control	5 mg/kg	10 mg/kg
Overall Rates	2/50 (4%)	9/50 (18%)	0/50 (0%)
Adjusted Rates	6.3%	23.1%	0.0%
Terminal Rates	1/23 (4%)	4/31 (13%)	0/24 (0%)
Week of First Observation	23	54	••
Life Table Tests	P = 0.253N	P=0.063	P = 0.233N
Incidental Tumor Tests	P = 0.350N	P = 0.023	P = 0.308N

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix C, Table C3 (footnotes). (b) Historical incidence in water gavage vehicle controls (mean \pm SD): 24/200 (12% \pm 7%); historical incidence in untreated controls: 217/1,791 (12% \pm 7%)

Skin (THPS): The incidences of hyperkeratosis and acanthosis of the skin were increased in low dose male mice (hyperkeratosis: vehicle control, 0/50; low dose, 9/50; high dose, 3/50; acanthosis: 1/50; 12/50; 3/50). Some of these lesions were associated with ulcerated subcutaneous tumors, and others are possibly the result of fighting. Hyperkeratosis and acanthosis were not observed in the skin of female mice.

Adrenal Gland (THPS): The incidences of focal hyperplasia of the adrenal capsule were increased in dosed mice of each sex (male: vehicle control, 18/49; low dose, 26/48; high dose, 26/49; female: 29/50; 43/50; 44/49).

The incidence of focal hyperplasia of the adrenal medulla was increased in dosed male mice (male: vehicle control, 3/49; low dose, 5/48; high dose, 10/49; female: 2/50; 0/50; 2/49). The incidences of pheochromocytomas were increased in high dose male mice and dosed female mice, but the incidences in the dosed groups were not significantly greater than those in the vehicle controls (male: 4/49; 1/48; 7/49; female: 0/50; 3/50; 2/49).

Liver (THPC): Cytoplasmic vacuolization was observed at increased incidences in dosed male and dosed female mice (male: vehicle control, 0/49; low dose, 39/49; high dose, 44/50; female: 0/49; 42/50; 48/50). Affected hepatocytes were periportal and had large cytoplasmic vacuoles. In some cells, the nuclei were displaced to one side by the vacuoles.

Thyroid Gland (THPC): Follicular cell hyperplasia was observed at an increased incidence in high dose female mice (vehicle control, 3/48; low dose, 5/50; high dose, 11/49). A follicular cell adenoma was observed in one vehicle control and one low dose female mouse.

IV. DISCUSSION AND CONCLUSIONS

Thirteen-week studies with THPS and THPC were conducted to identify affected organs, characterize toxic effects, and determine doses to be used for the 2-year studies. Doses for the THPS studies ranged from 5 to 60 mg/kg for both rats and mice. Doses for the THPC studies ranged from 3.75 to 60 mg/kg for rats and 1.5 to 135 mg/kg for mice. Clinical signs, which included rough hair coats, labored breathing, swollen abdomens, tremors, arched backs, hind limb paralysis, and diarrhea, occurred in rats and mice dosed with THPS or THPC. Most of these effects occurred in the groups receiving the higher doses. In earlier studies, paralysis of the back muscles occurred in mice receiving lethal doses of THPS or THPC by the dermal route (Connor et al., 1980; Afansa'eva and Evseenko, 1971). In the present 13-week studies, the clinical neurotoxicity was confirmed by evidence of histopathologic changes in the central and peripheral nervous systems of female rats and both sexes of mice dosed with THPC. The lesions consisted of axonal degeneration of the spinal cord and sciatic nerve in animals from the high dose groups. Similar histopathologic changes were not present in animals receiving THPS.

In the 14-day and 13-week studies of THPS and THPC, the liver was the primary site affected in both rats and mice. Cytoplasmic vacuolization and necrosis of hepatocytes in the periportal region progressed to vacuolar degeneration. Earlier investigators reported elevated serum transaminase enzyme activity in rats and elevated liver mucopolysaccharide levels in mice administered THPC in drinking water, indicating hepatocellular toxicity (Ishizu, 1975).

Doses for the 2-year studies were selected on the bases of mortality, decreased body weight, and hepatocellular lesions that occurred in the three highest dose groups in the 13-week studies. The observed toxicity varied with species and sex, resulting in a fourfold range in dose selection for the 2-year studies of THPS and THPC. THPS doses in rats and mice of each sex were 0, 5, and 10 mg/kg. THPC doses for rats of each sex were 0, 3.75, and 7.5 mg/kg. THPC doses in male mice were 0, 7.5, and 15 mg/kg and in female mice, 0, 15, and 30 mg/kg.

Neither THPS nor THPC significantly affected body weight gains of either rats or mice (see Figures 1, 2, 5, and 6). Compound-related signs of toxicity in rats and mice consisted primarily of rough hair coats and diarrhea. None of the neurotoxic clinical signs seen at higher doses in the 13-week studies was observed. Earlier dermal studies in rats (Ulsamer et al., 1980) and rats and rabbits (Aoyama, 1975) reported erythema and edema at lower doses and body weight loss, severe skin lesions, and death at higher doses.

Survival of the male rats given the low dose (after week 102) or the high dose (after week 67) of THPS was lower than that of the vehicle controls (survival at terminal kill: vehicle control, 28/50; low dose, 13/50; high dose, 16/50). Survival of the high dose group of female rats given THPC was also lower (after week 70) than that of vehicle controls (survival at terminal kill: 36/50; 33/50; 21/50). There were no significant differences in survival between the vehicle controls and mice dosed with THPS or THPC (see Tables 26 and 27; Figures 7 and 8). The survival of rats and mice in these studies was considered adequate to assess the carcinogenic potential of THPS and THPC.

Organ toxicity was mainly restricted to the liver, and the predominant nonneoplastic lesions were similar to those observed in the 13-week studies. Increased incidences of hepatocellular cytoplasmic vacuolization were observed in rats and mice dosed with THPS or THPC (Table 32).

Low dose male rats administered THPS or THPC had marginally increased incidences of mononuclear cell leukemia when compared with the concurrent vehicle controls (Table 33). These incidences were statistically significant by the life table test (P < 0.05). Survival in low dose males in each study was similar until week 94, which is well within the period of greatest risk for development of mononuclear cell leukemia. The lack of similar dose-related increases of mononuclear cell leukemia in the high dose groups suggests that the increases in low dose male rats were not chemically related. Although mononuclear cell leukemia is generally considered a life-threatening tumor, the data indicate that these tumors were not the primary contributing cause of death in some of the low dose male rats with these tumors. Low dose male mice receiving THPS had an increased incidence of malignant lymphomas (all types) when compared with vehicle controls (Table 34).

TABLE 32. COMPARISON OF INCIDENCES OF CYTOPLASMIC VACUOLIZATION OF THE LIVER INTHE TWO-YEAR GAVAGE STUDIES OF THPS AND THPC

	THPS				ТНРС			
RATS	Vehicle Control	5 mg/kg	10 mg/kg		Vehicle Control	3.75 mg/kg	7.5 mg/kg	
Male Female	2/50 1/49	4/50 3/50	9/49 8/49	Male Female	0/50 3/50	9/50 11/50	23/49 25/50	
MICE						7.5 mg/kg	15 mg/kg	
Male	0/48	1/49	0/50	Male	0/49	39/49	44 /50	
						15 mg/kg	30 mg/kg	
Female	6/50	13/50	7/49	Female	0/49	42/50	48/50	

TABLE 33. COMPARISON OF INCIDENCES OF LEUKEMIA IN RATS IN THE TWO-YEAR GAVAGESTUDIES OF THPS AND THPC

- <u></u>	THPS				TH	PC	
	Vehicle Control	5 mg/kg	10 mg/kg		Vehicle Control	3.75 mg/kg	7.5 mg/kg
Male Female	30/50 23/49	(a) 36/50 20/50	20/50 22/50	Male Female	19/50 4/50	(a) 25/50 8/50	16/50 7/50

(a) Statistically significant; P<0.05 by life table test.

TABLE 34. COMPARISON OF INCIDENCES OF MALIGNANT LYMPHOMAS IN MICE IN THE TWO-YEAR GAVAGE STUDIES OF THPS AND THPC

	THPS				ТНРС			
	Vehicle Control	5 mg/kg	10 mg/kg		Vehicle Control	7.5 mg/kg	15 mg/kg	
Male	2/50	9/50	0/50	Male	9/50	4/49	8/50	
						15 mg/kg	30 mg/kg	
Female	16/50	17/50	18/49	Female	21/50	14/50	19/50	

These increased incidences were not present in female mice dosed with THPS or in male or female mice administered THPC. The increased incidences of hematopoietic system lesions observed in these studies were not considered biologically related to chemical exposure because the increases were marginal, no dose-response relationship was observed, and the incidences of these lesions are highly variable in untreated rats and mice (Haseman et al., 1984; Tables A4 and C4).

The incidence of adenomas of the anterior pituitary gland in low dose male rats given THPS was marginally increased relative to that of the vehicle controls (see Table 16). Although statistically significant by the life table test, many of these tumors were not life threatening and are not considered to be the primary contributing cause of death in rats. The result was not significant by the incidental tumor test (P=0.334), which is considered the more appropriate analysis. The elevated incidence of anterior pituitary gland adenomas in low dose rats is not believed to be chemically related.

Hyperplasia of the adrenal medulla occurred with an increased incidence in high dose male

mice given THPS (vehicle control, 3/49; low dose, 5/48; high dose, 10/49). Although the incidences of pheochromocytomas in the high dose and vehicle control groups were similar (4/49; 1/48; 7/49), the incidences of adrenal medullary hyperplasia or pheochromocytomas (combined) (7/49; 6/48; 15/49) suggest a marginal chemically related effect.

Follicular cell hyperplasia of the thyroid gland occurred with an increased incidence in high dose female mice given THPC (vehicle control, 3/48; low dose, 5/50; high dose, 11/49). No published data on the effect of THPC on the thyroid gland have been located. Since this is a common degenerative lesion in rodents, this increase is not considered to be clearly related to chemical administration.

Endometrial stromal polyps in female rats given THPS occurred with a positive trend, and the incidence in the high dose group was greater than that in the vehicle controls (see Table 18). This common lesion of female rats occurs with a relatively wide range of incidences. Since the incidence of polyps in the high dose group is similar to the mean for historical control rats (water, 18%; untreated, 22%; Table B4), this lesion is not considered to be compound related.

Concern about the possible chronic toxicity of THPC was due in part to the potential decomposition of this compound to formaldehyde and hydrochloric acid, which might react to form bis(chloromethyl)ether (BCME), a known carcinogen. BCME is carcinogenic in mice by the dermal route (Van Duuren et al., 1972), causing squamous cell carcinomas of the skin, and in rats and mice by the inhalation route (Laskin et al., 1971; Leong et al., 1971), causing squamous cell carcinomas of the lung.

However, Kallos and Solomon (1973) reported that 100 ppm each of hydrogen chloride and formaldehyde, when combined in air at ambient temperature and humidity, failed to form BCME at detection limits of 0.1 ppb. Therefore, occupational health problems from BCME exposure would not be expected when ambient hydrogen chloride and formaldehyde were present in the workplace, since reactant concentrations would have to be far above those that could be tolerated by humans. In addition, the industrial use of THPC to treat fabrics consists of the formation of THPC in polymer form (Hindersinn and Wagner, 1967) with extremely low concentrations of residual formaldehyde and hydrogen chloride. BCME could form only from the residual chemicals, and concentrations would have to be much higher than those found in the fabric treatment processes.

Although no mutagenic activity for THPS or THPC in bacteria has been reported, there is evidence for genotoxicity in mammalian cell cultures. Both compounds gave strongly positive responses in the mouse lymphoma L5178Y/TK^{+/-} forward mutation assay without exogenous metabolic activation (Appendixes I and J) as well as in V79 hamster lung cells both with and without S9. THPC also produced increases in the frequency of chromosomal aberrations and sister-chromatid exchanges in cultured Chinese hamster ovary (CHO) cells with and without metabolic activation (Tables J3 and J4). The cytogenetic responses were more pronounced in the absence of exogenous metabolic activation. These results with mammalian cells suggest that the chemical is a direct-acting mutagen.

In vitro studies by Coutino (1979) indicate that THPS may produce the various anaphase anomalies observed in CHO cells by disrupting mitosis through interference with the spindle apparatus or chromosomal proteins. Whether this interference with the mitotic process leads to aneuploidy remains to be determined. In vivo assays of the cytogenetic effects of THPS in Swiss mice dosed orally or dermally with the chemical, however, have not revealed any increase in bone marrow micronuclei or chromosomal aberrations (Connor et al., 1980).

Conclusions: Under the conditions of these 2year gavage studies, there was no evidence of carcinogenicity* of THPS in either sex of F344/N rats or $B6C3F_1$ mice given 5 or 10 mg/kg. There was no evidence of carcinogenicity of THPC in

either sex of F344/N rats given 3.75 or 7.5 mg/kg, in male B6C3F1 mice given 7.5 or 15 mg/kg, or in female B6C3F₁ mice given 15 or 30 mg/kg.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2. A summary of the Peer Review comments and the public discussion on this Technical Report appears on page 9.

THPS and THPC, NTP TR 296

66

V. REFERENCES

.

.

V. REFERENCES

1. Afansa'eva, L.; Evseenko, N. (1971) Hygienic evaluation of fireproof textiles processed with an organophosphorus impregnant based on tetrahydroxymethyl phosphonium chloride. Hyg. Sanit. 36:450-452.

2. Aoyama, M. (1975) Effect of anti-flame treating agents on the skin. Nagoya Med. J. 20:11-19.

3. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.

4. Berenblum, I., Ed. (1969) Carcinogenicity Testing: A Report of the Panel on Carcinogenicity of the Cancer Research Commission of UICC, Vol. 2. Geneva: International Union Against Cancer.

5. Boorman, G.; Montgomery, C., Jr.; Eustis, S.; Wolfe, M.; McConnell, E.; Hardisty, J. (1985) Quality assurance in pathology for rodent carcinogenicity studies. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications, pp. 345-357.

6. Clive, D.; Johnson, K.; Spector, J.; Batson, A.; Brown, M. (1979) Validation and characterization of the L5178Y/TK^{+/-} mouse lymphoma mutagen assay system. Mutat. Res. 59:61-108.

7. Connor, T.; Meyne, J.; Legator, M. (1980) The mutagenic evaluation of tetrakis (hydroxymethyl) phosphonium sulfate using a combined testing protocol approach. J. Environ. Pathol. Toxicol. 4:145-158.

8. Coutino, R. (1979) Analysis of anaphase in cell culture: An adequate test system for the distinction between compounds which selectively alter the chromosome structure or the mitotic apparatus. Environ. Health Perspect. 31:131-136.

9. Cox, D. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

10. Ehrlich, K.; Hulett, A.; Turnham, T. (1980) Mammalian cell culture mutagenicity and carcinogenicity testing of dimethyl sulfoxide extracts of flame retardant-treated cotton fabrics. J. Toxicol. Environ. Health 6:259-271. 11. Frank, A. (1977) The iodometric determination of P(III) in flame retardants for cotton; Part IV: Reaction of THPS with iodate. Tex. Res. J., pp. 60-61.

12. Galloway, S.; Bloom, A.; Resnick, M.; Margolin, B.,; Nakamura, F.; Archer, P.; Zeiger, E. (1985) Development of a standard protocol for in vitro cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. Environ. Mutagen. 7:1-51.

13. Gart, J.; Chu, K.; Tarone, R. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62:957-974.

14. Haseman, J. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.

15. Haseman, J; Huff, J.; Boorman, G. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12:126-135.

16. Haseman, J.; Huff, J.; Rao, G.; Arnold, J.; Boorman, G.; McConnell, E. (1985) Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. J. Natl. Cancer Inst. 75:975-984.

17. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. 5(Suppl. 1):3-142.

18. Hindersinn, R.; Wagner, G. (1967) Encyclopedia of Polymer Science and Technology. New York: John Wiley & Sons, Inc.

19. Ishizu, S. (1975) Toxicity of organophosphorus fire retardants. Kabunshi 24:788-792.

20. Kallos, G.; Solomon, R. (1973) Investigations of the formation of bis-chloromethyl ether in simulated hydrogen chloride-formaldehyde atmospheric environments. Am. Ind. Hyg. Assoc. J. 34:469-473. 21. Kaplan, E.; Meier, P. (1958) Nonparametric estimation of incomplete observations. J. Am. Stat. Assoc. 53:457-481.

22. Kawachi, T.; Komatsu, T.; Kada, T.; Ishidate, M.; Sasaki, M.; Sugiyama, T.; Tazima, Y. (1980a) Results of recent studies on the relevance of various short-term screening tests in Japan. The Predictive Value of Short-Term Screening Tests in Carcinogenicity Evaluation. Appl. Methods Oncol. 3:253-267.

23. Kawachi, T.; Yahagi, T.; Kada, T.; Tazima, Y.; Ishidate, M.; Sasaki, M.; Sugiyama, T. (1980b) Cooperative program on short-term assays for carcinogenicity in Japan. Montesano, R., et al., Eds.: Molecular and Cellular Aspects of Carcinogen Screening Tests. International Agency for Research on Cancer Sci. Publ. 27:323-330.

24. Kirk-Othmer Encyclopedia of Chemical Technology (1980) 3rd ed., Vol. 10. Grayson, M., Ed. New York: John Wiley & Sons, Inc., pp. 432-434.

25. Laskin, S.; Kuschner, M.; Drew, R.; Coppullo, V.; Nelson, N. (1971) Arch. Environ. Health 23:135.

26. Legator, M. (1977) Report to Hooker Chemicals and Plastic Corp.

27. Leong, B.; MacFarland, H; Reese, W. (1971) Arch. Environ. Health 22:663.

28. Linhart, M.; Cooper, J.; Martin, R.; Page, N.; Peters, J. (1974) Carcinogenesis bioassay data system. Comput. Biomed. Res. 7:230-248.

29. Loewengart, G.; Van Duuren, B. (1977) Evaluation of chemical flame retardants for carcinogenic potential. J. Toxicol. Environ. Health 2:539-546.

30. MacGregor, J.; Diamond, M.; Mazzeno, L., Jr.; Friedman, M. (1980) Mutagenicity tests of fabric-finishing agents in *Salmonella typhimurium*: Fiber-reactive wool dyes and cotton flame retardants. Environ. Mutagen. 2:405-418. 31. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.

31. Maronpot, R.; Boorman, G. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80.

32. McConnell, E.; Solleveld, H.; Swenberg, J; Boorman, G. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. 76:283-289.

33. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassay in Small Rodents. NCI Carcinogenesis Technical Report Series No. 1. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health.

34. National Institutes of Health (NIH) (1978) NIH Specification, NIH-11-133f, November 1.

35. Sadtler Research Laboratories, Sadtler Standard Spectra. IR No. 13510; NMR No. 11664M. Philadelphia, PA.

36. Tarone, R. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

37. Ulsamer, A.; Osterberg, R.; McLaughlin, J., Jr. (1980) Flame-retardant chemicals in textiles. Clin. Toxicol. 17:101-131.

38. Van Duuren, B.; Katz, C.; Goldschmidt, B.; Frenkel, K.; Sivak, A. (1972) Carcinogenicity of haloethers. II. Structure-activity relationships of analogs of bis(chloromethyl)ether. J. Natl. Cancer Inst. 48:1431-1439.

39. Van Duuren, B.; Loewengart, G.; Seidman, I.; Smith, A.; Melchionne, S. (1978) Mouse skin carcinogenicity tests of the flame retardants tris(2,3-dibromopropyl)phosphate, tetrakis(hydroxymethyl)phosphonium chloride, and polyvinyl bromide. Cancer Res. 38:3236-3240.

THPS and THPC, NTP TR 296
APPENDIX A

SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS

		PAGE
TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS	73
TABLE A2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS	76
TABLE A3	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS	82
TABLE A4a	HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS	86
TABLE A4b	HISTORICAL INCIDENCE OF PITUITARY GLAND TUMORS IN MALE F344/N RATS	87
TABLE A5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS	88

THPS and THPC, NTP TR 296

 ~ 100 K

,

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS

enicie	Control	Low D	ose	High l	Dose
50		50		50	<u>-</u>
50		50		50	
			·····		
(50)		(50)		(50)	
				1	(2%)
	(4%)		(4%)		(2%)
(50)		(50)		,	(1.00)
	(07)		(07)	2	(4%)
1	(2%)				
		1	(2%)		(00)
	(40)			1	(2%)
Z	(4.%)				
		(50)		(49)	
1	(2%)				
					(2%)
				1	(2%)
				<u> </u>	
(50)		(50)		(50)	
30	(60%)	36	(72%)	20	(40%)
(48)	((49)	, ,	(46)	(,
		1	(2%)		
(48)		(49)		(46)	
1	(2%)				
				- <u></u>	
(50)		(50)		(50)	
					(2%)
					·
(50)		(50)		(49)	
(00)		(50)			(2%)
(50)		(50)			(2.10)
	(6%)		(10%)	,	(2%)
	(0 %)		(10,0)		(270)
(10)					(2%)
<u></u>				······	
(47)		(48)		(45)	
			(2%)		(2%)
			<u></u>	۰ <u>ــــــــــــــــــــــــــــــــــــ</u>	·
(50)		(49)			(00)
-					(2%)
(50)			(90)	(48)	
01	(490)			14	(90%)
	(42%)		(03%)		(29%)
	(696)		(996)	(00)	
3	(0%)	1	(470)		
	(50) 3 1 2 (50) 1 2 (50) 1 (50) (50) (50) (50) (50) (50) (50) (50)	$ \begin{array}{c} 50\\ 50\\ 50\\ \end{array} $ $ \begin{array}{c} (50)\\ 3 & (6\%)\\ 1 & (2\%)\\ 2 & (4\%)\\ (50)\\ 1 & (2\%)\\ 2 & (4\%)\\ \end{array} $ $ \begin{array}{c} (50)\\ (50)\\ (50)\\ (50)\\ (50)\\ (48)\\ \end{array} $ $ \begin{array}{c} (47)\\ (50)\\ (50)\\ (50)\\ (50)\\ (50)\\ (21 & (42\%)\\ \end{array} $	50 50 50 50 50 50 3 $6%$) 1 1 $(2%)$ 1 2 $(4%)$ 2 (50) (50) (50) 1 $(2%)$ 1 2 $(4%)$ 1 2 $(4%)$ (49) (50) $(60%)$ (50) (48) (49) 1 (48) (49) 1 (50) (50) (50) (50) (50) (50) (47) (48) 1 (50) (49) 1 (50) (49) 1 (50) (49) 1 (50) (49) 1 (50) (49) 1 (50) (49) 1	50 50 50 50 50 50 3 (6%) 1 (2%) 1 (2%) 1 (2%) 2 (4%) (50) (50) 1 (2%) 1 (2%) 2 (4%) (50) (50) 1 (2%) 1 (2%) 2 (4%) (50) (50) (50) (50) 36 (72%) (48) (49) 1 (2%) (48) (49) 1 (2%) (50) (50) (50) (50) (50) (50) (50) (50) (47) (48) (2%) (49) (47) (48) (50) (49) (50) (49) 1 (2%) (50) (49) 1 (2%) (50) (49) 1 (2%) (50) (49) 1 (2%) (50) (49) 1 (2%) (50) (49) 1<	50 50 50 50 (50) (50) (50) (50) 1 (2%) 1 (2%) 1 1 (2%) 1 (2%) 1 2 (4%) 2 (4%) 1 (50) (50) (50) (50) 1 (2%) 1 (2%) 1 2 (4%) 1 (50) (50) (50) 2 (4%) 1 (2%) 1 1 (50) (50) (50) (49) 1 1 (50) (50) (50) (46) 1 1 (48) (49) (46) 1 1 1 (50) (50) (50) (48) 1 1 (50) (50) (50) (48) 1 1 (47) (48) (50) 1 1 1 (47) (48) 1 (2%)

N N	/ehicle	Control	Low D	ose	High I	Dose
ENDOCRINE SYSTEM (Continued)						
#Adrenal medulla	(50)		(49)		(50)	
Pheochromocytoma		(44%)		(39%)		(32%)
Pheochromocytoma, malignant	1	(2%)			2	(4%)
Ganglioneuroma				(2%)		
#Thyroid	(47)		(47)		(49)	
Follicular cell carcinoma		(2%)				
C-cell adenoma		(4%)		(9%)		(8%)
C-cell carcinoma		(2%)	-	(6%)		(4%)
#Parathyroid Adenoma, NOS	(41)	(5%)	(46)	(2%)	(44)	
#Pancreatic islets	(48)	(0.07	(50)	(2,0)	(47)	
Islet cell adenoma		(8%)	(00)			(2%)
Islet cell carcinoma		(2%)				(2%)
REPRODUCTIVE SYSTEM		<u> </u>	·····			
*Mammary gland	(50)		(50)		(50)	
Adenoma, NOS					1	(2%)
Adenocarcinoma, NOS	-	((2%)		
Fibroadenoma		(4%)	_	(2%)	(FA)	
*Preputial gland	(50)		(50)		(50)	(90)
Adenoma, NOS			•	(6%)		(2%) (2%)
Adenocarcinoma, NOS #Testis	(50)		3 (49)	(070)	(50)	(270)
Interstitial cell tumor		(80%)		(71%)		(66%)
NERVOUS SYSTEM						
#Cerebrum	(50)		(49)		(50)	
Carcinoma, NOS, invasive				(2%)		
#Brain	(50)		(49)		(50)	
Astrocytoma			1	(2%)		
SPECIAL SENSE ORGANS						
*Zymbal gland	(50)		(50)	(90)	(50)	(99)
Carcinoma, NOS			1	(2%)	1	(2%)
MUSCULOSKELETAL SYSTEM	(EA)		120		(50)	
*Mandible Squamous cell carcinoma	(50)		(50)			(2%)
BODY CAVITIES			<u></u>			
*Mediastinum	(50)		(50)		(50)	
Neurilemoma, metastatic			,			(2%)
*Peritoneum	(50)		(50)		(50)	
Mesothelioma, NOS		(2%)				
*Tunica vaginalis	(50)		(50)	(4~~)	(50)	
Mesothelioma, NOS	1	(2%)	2	(4%)	2	(4%)
ALL OTHER SYSTEMS	/ = .					
*Multiple organs	(50)		(50)		(50)	(2%)
Sarcoma, NOS, unclear primary or metastatic					1	(470)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

		-	High Dose
NIMAL DISPOSITION SUMMARY		······································	<u>ч</u>
Animals initially in study	50	50	50
Natural death	6	8	17
Moribund sacrifice	15	25	16
Terminal sacrifice	28	13	16
Dosing accident	1		
Accidentally killed, NDA		4	
Accidentally killed, NOS			1
UMOR SUMMARY			
Total animals with primary tumors**	48	49	39
Total primary tumors	145	148	113
Total animals with benign tumors	48	48	39
Total benign tumors	102	92	77
Total animals with malignant tumors	32	40	26
Total malignant tumors	38	48	31
Total animals with secondary tumors##	1	2 2	2 2
Total secondary tumors	1	Z	2
Total animals with tumors uncertain		_	•
benign or malignant	4	7	3
Total uncertain tumors	5	8	4
Total animals with tumors uncertain			
primary or metastatic Total uncertain tumors			1

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 Primary tumors: all tumors except secondary tumors
 Number of animals examined microscopically at this site
 ## Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

			<u>v</u> .			<u>.</u>							140												
ANIMAL NUMBER	0	002	003	004	005	0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
WEEKS ON STUDY	1 0 6	0 8 3	1 0 5	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	0 9 7	1 0 6	0 8 0	0 9 4	1 0 4	1 0 6	1 0 6	0 7 2	1 0 6	0 3 3	0 9 7	1 0 6
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Basal cell tumor	+	+	÷	N	+	+	ż	+	+	+	+	+	*	+	+ x	+	+	+	+	+	+	+	+	+	+
Keratoacanthoma Subcutaneous tissue Fibrosarcoma Neurofibrosarcoma	+	+	+ x	N	+	X +	+	+	+	+	+	+	÷	· +	+	+	X +	+	+	+	+	+	+	+	+
Lungs and bronchi Squamous cell carcinoma Trachea	+	+	+ +	++	+ +	+ +	+ +	+++	++	++	+ +	++	+ +	+ +	+	+ +	++	+ +	+ +	+ +	* *	+ +	++	+ +	+ +
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Squamous cell carcinoma, metastatic Thymus	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++ +	+++++++	++++++	++++++	++++++++	+++++++	+++++++	+ + + + +	+++-	++++++++	++ ++ +	- + + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	++ ++ +	+++ x -	++ ++ +	+ : + +	++ ++ +	+ + + + +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule	- +++++++++++++++++++++++++++++++++++++	++	+++	++	+ + X	+++	+ +	++++	++	+++	+ +	+++++++++++++++++++++++++++++++++++++++	+++	+++	+ +	+ +	+++	+ +	+ +	+ +	++	+ +	+ +	+++	+ +
Bile duct Galibledder & common bile duct Pancreas Esophagus Stomach Small intestine	+ N + + + +	+2++++	+ 2 + + + +	+ 2 + + + +	+ z + + + +	+ Z + + + +	+ 2 + + + +	+ z + + + +	+2+++	+ z + + + +	+ z + + + +	+ Z + + + +	+ 2 + + + +	+ Z + H + I	+ 2 + + + +	+ z + + 1	+ 2 + + + +	+ z + + + +	+N++++	+ z + + + +	+ Z + + + +	+ z + + + +	+ z +	+ Z + +	+ 2 + + + +
URINARY SYSTEM	- +	÷	÷	+	+	+	+	÷	+	÷	+	+	+	-	+	-	+	+	÷	÷	+	÷			+
Kidney Urinary bladder	+++	+	++	+++	+++	++	+ +	+ +	+ +	+ +	+++	+ +	+++	-	+ +	+ -	+ +	+ +	+ +	+++	++	++++	+ -	+ +	+ +
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenai	++++	+ x +	+++	* *	+	+++	+	+	+ +	+ +	* *	+++	+ +	* *	+	+	+++	+ x +	+++	+ +	* *	* *	+++	* *	* *
Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant	x			x	x	X				X	X		x		x			X X		x					X
Thyroid Follicular cell carcinoma C-cell adenoma C-cell carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	÷	+	+	+ x	+	-	+	+
Parathyroid Adenoma, NOS Pancreatic islets Islet cell adenoma Islet cell carcinoma	- + x	+ +	+ +	+ +	- +	+ +	+ +	+ +	+ +	- +	+ +	+ +	+ +	+ +	- +	+ +	-	+	+ +						
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Testia	- + x + x + x	N +	+	N +	+	+	N +	+	N +	+	N .:	+ +	N ±	N +	N +	N +	N +	N +	N +	N +	++	N +	++	+++	+
Interstitial cell tumor Prostate	X	+	X +	X +	X +	X +	X -	X +	¥	X +	X +	X +	X +	+	X +	X +	X +	X +	X +	X +	+	X +	+	-	X +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
BODY CAVITIES Peritoneum Mesothelioma, NOS Tunica vaginalis Mesothelioma, NOS	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear ceil	N	N X	N X	N	N	N X	N	N X	N	N	N X	N X	N	N X	N X	N X	N X	N X	N X	N X	N X	N	N	N	N

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS: VEHICLE CONTROL

+: Tissue examined microscopically -: Required tissue not examined microscopically X: Tumor incidence N: Necropsy, no autolysis, no microscopic examination S: Animal missexed

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL
WEEKS ON STUDY	0 8 3	1 0 6	0 9 2	1 0 6	1 0 6	1 0 6	1 0 6	0 8 4	1 0 6	1 0 6	1 0 5	1 0 0	0 9 7	1 0 0	0 9 4	1 0 6	0 8 9	0 9 4	0 8 3	1 0 6	1 0 6	1 0 6	0 3 4	0 9 1	1 0 6	TISSUES TUMORS
INTEGUMENTARY SYSTEM	}												_													·
Skin Squamous cell papilloma Basal cell tumor	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	*50 3 1
Keratoacanthoma Subcutaneous tissue Fibrosarcoma Neurofibrosarcoma	+	+	+	+	+ X	+	+	+	*	+	+	+	+	+	+	÷	÷	+	+	+	+	+	+	+	÷	2 *50 1 2
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcinoma Trachea	+++++++++++++++++++++++++++++++++++++++	+++	++++	+++	+++	+ + +	+ +	++++	++++	++++	+++	+++	+++	+++	++++	+++	+++	+++	+++	++	+++	+ +	++	+++	++	50 1 49
HEMATOPOIETIC SYSTEM Bone marrow	+		 +	+	+		 +	+	+	+	 +	 +	 +	+	+	+				+		+				48
Spleen	+	+	÷	+	÷	+	÷	÷	+	÷	÷	÷	+	+	÷	+	÷	÷	+	+	÷	+	+	+	÷	49
Lymph nodes Squamous cell carcinoma, metastatic Thymus	+++++++++++++++++++++++++++++++++++++++	+ +	+ +	+ +	+ +	+ -	+ +	+ +	+ +	+ +	- +	+ +	+	+ +	+	+ +	+ +	48 1 47								
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver	++++	++++	++++	+++++	++++	++++	++++	+++	+++	++++	* *	+ + +	+++	+++++	++	++	+	++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	+++	+++	+++	+++	50 50
Neoplastic nodule Bile duct			X																		i.	X				3
Gallbladder & common bile duct Pancreas	Ň +	Ň +	* *	+ X +	+ N +	+ Z +	+ N +	+ N +	ň +	ň +	Ň +	+ N +	+ N +	+ N +	+ + +	+ N +	* * *	+ N +	ň +	* *	Ň	+ X +	ч Ч	+ Z +	+ Ч	50 *50 48
Esophagus	+	+++	+	+	+	+	+	+	+	+	+	÷	÷	+	+	+	+	÷	÷	÷	+-	+	+	+	+	50
Stomach Small intestine Large intestine	+ + +	++++	+ + +	++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ - +	+ + +	+++	46 45 46										
URINARY SYSTEM Kidney Urinary bladder	 +	++++	++++	+ +	+ +	++++	+++++	++++	+ +	+++	+++	++++	++++	++++	+ + +	+++	+++	+++	++++	+++	+++	+++	+ +	+ +	++++++	48 47
ENDOCRINE SYSTEM		_			<u>.</u>							_											-		_	
Pituitary Adenoma, NOS	x x	x x	*	*	*	+	*	+	*	+	+	*	+	+	+	*	+	+	+	+	*	+	+	*	* x	50 21
Adrenal	+	÷	+	+	+	+	÷	+	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	50
Cortical adenoma Pheochromocytoma Bheochromocytoma			x				х		x	x	X	X	x	x		X				x	x	x				$\begin{array}{c} 3\\22\\1\end{array}$
Pheochromocytoma, malignant Thyroid	+	+	+	*	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	47
Follicular cell carcinoma C-cell adenoma C-cell carcinoma	1			Х				x					v													1 2 1
Parathyroid	+	+	+	+	+	+		+	+	+	+	+	X +	+	-	+	+	+	+	+	+	+	-	+	+	41
Adenoma, NOS Pancreatic islets Islet cell adenoma	x +	+	+	+	*	+	+	+	+	+	+	* X	+	+	+	+	+	+	X +	+	+	+	-	X +	+	2 48 4
Islet cell carcinoma							X										_									1
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	+	+	+	N	+	N	+	+	N	+	+	N	+	N	+	+	N	N	+	N	+	N	+	+	+	*50
Testis Interstitial cell tumor Prostate	++	* *	× +	* *	* *	* *	* *	++	* *	* *	* *	+ +	+ +	* *	* *	++	* *	* *	50 40 48							
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
BODY CAVITIES Peritoneum	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
Mesothelioma, NOS Tunica vaginalis Mesothelioma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x + x	+	+	+	+	+	+	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS	N	N	N	N	N	N	N	N	Ņ	N	N X	N	N	Ņ	N	N	N	Ņ	N	N	Ņ	Ņ	N	N	N X	*50

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: VEHICLE CONTROL (Continued)

* Animals necropsied

		511			Jr		~ ~); L		-	00														
ANIMAL NUMBER	0 0 1	0 0 2	0 0 3	0 0 4	0 0 5	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
WEEKS ON STUDY	1 0 1	0 8 9	0 8 7	0 9 7	0 8 0	1 0 6	1 0 6	1 0 6	0 9 0	1 0 6	1 0 1	0 8 1	0 9 4	1 0 6	0 9 9	0 9 0	1 0 6	1 0 6	1 0 0	0 9 1	0 9 3	0 8 9	1 0 6	0 9 5	1 0 1
INTEGUMENTARY SYSTEM																									
Skin Squamous cell papilloma Basal cell tumor Keratoacanthoma Subcutaneous tissue	+	++	++	++	++	++	++	+ X +	++	* *	++	+	++	++	+ +	++	+	++	++	++	N N	+	+	+ +	+ +
Fibrosarcoma Fibrous histiocytoma, malignant		х																							
RESPIRATORY SYSTEM Lungs and bronchi Trachea	++++	+++	+++	++++	++++	+++	+++	+ +	++	+++	++++	+ + +	+++	+ +	+++	+ +	+ +	++++	+++++	+ +	+ + +	++++	+ +	 + +	+++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Fibrous histiocytoma, metastatic Thymus	+++++++	+ + + X -	+++++++	++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	++++	+ + + +	+++++++++++++++++++++++++++++++++++++++	+++++++	+ + + +	+++++++	+ + + + +	++ ++ +	+ + + +	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + + +	+++ -	+++++++++++++++++++++++++++++++++++++++	++++++	-+++++++++++++++++++++++++++++++++++++	+++ +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule	++++	++++	+++	++	++++	+ + x	 + +	+ +	+ +	+ +	+ +	+++	++++	++	+++	+ +	++	++++	+ +	+ +	++	+ +	+ +	+ +	+ + X
Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Small intestine	+2++++	+ 2 + + + +	+ Z + + 1 - 1	+ z + + +	+ Z + + + +	+ Z + + + +	+ Z + + + +	+ 2 + + + +	+ 7 + + + +	+ N + + + +	+ 2 + + + +	+ 2 + + + +	+ z + + + +	+ z + + + +	+ 2 + + + +	+ 1 + + 1	+ 2 + + + +	+ z + + + +	+ X + + + +	+ 2 + + + +	+ X + + + +	+ z + + + +	+ z + + + +	+ z + + + +	+ 2 + + + +
Large intestine URINARY SYSTEM	+	+	-	+	+	+	+	+	+	+	+	+	+	+	-	-	+	+	+	+	+	+	+	+	+
Kidney Urinary bladder Mesothelioma, NOS	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	++	+ -	++	+ +	+ +	++	+ +	++	+ +	++	+++
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS	+ x	+	+ x	+	+ x	+ x	+	+ X	+	+	+ `x	+	+ x	+	+	+	+	+	+ X	+ X	+ X	+	+ x	+	+ X
Adrenal Cortical adenoma Pheochromocytoma	+ X	+	+	+	+	÷ x	+	+ X	+ X	+	+ X	+	+	+	-	+	+ X	+	÷ x	÷ x	+	+ X	÷ x	+ X	+
Ganglioneuroma Thyroid C-cell adenoma	+	+	-	+	+	+	+	+	+	+	+	+	+	+ x	-	-	+	+	+	+ X	÷	X +	+	+	+
C-cell carcinoma Parathyroid Adenoma, NOS	+	X +	+	-	+	+	Х +	+	+	+	+	+	+	+	+	-	+	-	+	+	+	+	+	+	+
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Fibroadenoma	+	N	+	N	+	+	+ X	+	N	+	N	N	N	N	N	N	N	N	+	+	+	N	+	N	N
Testis Interstitial cell tumor Prostate	++	* *	-	* *	+	*x +	+ X +	* *	* *	* *	* * *	+	* *	* *	* *	* *	+ x +	* *	+	+	+	* *	+	+ x +	+ X +
Preputial/clitoral gland Adenocarcinoma, NOS	N	N	N	N X	N	N	N	N	N	N	N	Ν	N	N	N	Ν	N	N	N	N	N	N X	N	N	N
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive Astrocytoma	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Tunica vaginalis Mesothelioma, NOS	+	+	N	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N X	N	N X	N	N X	N	N X	N X	N	N X	N	N X	N	N X	N X	N X	N X	N X	N X	N	N	N X	N X	N X	N X

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF THPS: LOW DOSE

															_											
ANIMAL NUMBER	026	027	028	0 2 9	030	0 3 1	0 3 2	033	034	035	0 3 6	0 3 7	0 3 8	039	40	0 4 1	0 4 2	043	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL:
WEEKS ON STUDY	106	1 0 6	0 9 6	1 0 6	0 7 3	0 9 9	1 0 6	0 4 4	1 0 3	0 9 9	1 0 4	1 0 4	0 8 3	1 0 4	104	1 0 3	0 6 8	1 0 1	0 7 9	0 8 9	0 9 4	1 0 2	0 9 1	1 0 6	1 0 2	TISSUES
INTEGUMENTARY SYSTEM																										
Skin Squamous cell papilloma Bassi cell tumor Keratoacanthoma Subcutaneous tissue Fibrosarcoma Fibrosa histiocytoma, malignant	+	+	+	+	+	+	+	+	+	+	+	+ X +	+	+	+ X +	+	+	+	N N	+	+	+ + x	+	+	+	•50 1 2 *50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Trachea	+	+	+ +	++++	‡ +	++++	+	÷	+	++	++++	++++	+ +	+++	+++	++++	+++	+++	+++++	++++	+ +	++++	++++	++++	++++	50 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Fibrous histiocytoma, metastatic Thymus	+++++++++	+++ ++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	+ + + + +	+ + + + +	+++ +	++++++	++++++++	+++ +	+++	+++ +	+ + + +	++++++++	++++++++++++++++++++++++++++++++++++++	++++++	+++-+	+++ -	+++++++++++++++++++++++++++++++++++++++	+++++++++	+ + + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	+++ +	+++++++++++++++++++++++++++++++++++++++	+ + + +	50 50 49 1 45
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	++ +2+++++	++x+z+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +Z+++++	++X+Z+++++	++ +Z+++++	++ +2+++++	++ +2+++++	++ +Z+++++	++ +2+++++	++ +2++ 1	++ +Z+++++	++ +2+++++	++ +2+++++	++ +2++++++	++ +2+++++	++ +Z+++++	++ +Z+++++	++ +Z+++++	++ +2+++++	++x+z++++++	++ +2+++++	++ +2+++++	50 50 50 50 50 50 50 47 44 46
URINARY SYSTEM Kidney Urinary bladder Mesothelioma, NOS	+	+ +	+	+ +	++	+++	++++	+++	+++	+++	+++	+++	++++	+ +	+ +	+++	+++	++++	+ +	+++	+++	+++	+++	+++	+++	50 48 1
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adrenal Cortical adenoma Pheochromocytoma Ganglioneuroma Thyroid C-ceil adenoma C-ceil adenoma C-ceil adenoma Parathyroid Adenoma, NOS	+ + x + x +	+ x + + + +	+ + +	+ x + + +	+ x + + +	+ + + -	+ + X + +	- + +	+ x + x + + +	+ x + x + +	+ + *	+ x + x + +	+ + X +	+ x + x + x + x +	+ x + + +	+ x + + +	+ x+ + +	+ x + + +	+ + + +	++++	+ + +	+ X + + +	+ x + + +	+ x + x + +	* + x + x + x +	49 1 26 49 1 19 1 47 4 3 46 1
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Fibroadenoma Testis Intersitial cell tumor Prostate Preputial/clitoral gland Adenocarcinoma, NOS	N +K N	N +X+N	+ + × N	+ +x+x	+ + + N	N +x+N	+ +x+N	+ + +z	+ + +z	+ + + 2	N +X+N	N + X + N	+ + x + N	N + x - N	N + X + N	+ +x+z	+ + +z	N + +N	N + X + NX	N + X + N	N + X + N	+ + * N	N + X + N	+ + + x + x	+ x + x + N	*50 1 49 35 46 *50 3
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	*	49 1 1
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
BODY CAVITIES Tunica vaginalis Mesothelioma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	÷	*50 2
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	x	N X	N X	N X	N	N X	N X	N	N X	N X	N X	N X	N	N X	N	N X	N	N X	N	N X	N X	N X	N X	N X	N X	*50 36

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

* Animals necropsied

							1.0	:	10		υu	00													
ANIMAL NUMBER	0 0 1	0 0 2	0 0 3	0 0 4	0 0 5	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
WEEKS ON STUDY	0 9 1	1 0 1	0 8 0	0 9 2	0 0 2	1 0 6	1 0 6	0 0 4	0 0 5	1 0 6	1 0 6	0 8 9	0 6 1	0 8 9	0 9 4	0 5 6	0 9 3	0 0 5	1 0 6	0 5 7	0 9 0	1 0 5	1 0 6	1 0 3	0 8 1
INTEGUMENTARY SYSTEM	· [-													· · ·		· · ·								
Skin Squamous cell papilloma	+	+	+	+	+	+	+	+	N	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+
Keratoacanthomá Subcutaneous tissue Fibroma Lipoma	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	* X
RESPIRATORY SYSTEM Lungs and bronchi	· +	+	+	+	+	+	+	+	+	+	* *	+	+	+	+	+	+	-	+	+	+	+	+	+	+
Alveolar/bronchiolar carcinoma Pheochromocytoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow	·																								
Spleen	Ŧ	÷	Ŧ	÷	÷	÷	Ŧ	÷	Ŧ	Ŧ	÷	÷	Ŧ	Ŧ	Ŧ	Ŧ	÷	-	÷	+	÷	+	÷	+	++
Lymph nodes Thymus	+ -	+	<u>+</u>	+	++	++	++	++	+++	+++	++	+	++	+	+++	+	++	+	++	+	++	+ +	++	++	++
CIRCULATORY SYSTEM Heart Neurilemoma, malignant	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM	· [
Salivary gland Neurilemoma, malignant Liver	++++	++	+++	++	++	++	++	++	++	++	++	++	+ +	++	++	+	++	+	++	++	++	++	+ +	+ +	+ +
Neoplastic nodule Bile duct	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+
Galibiadder & common bile duct Pancreas Acinar cell adenoma	N +	N +	N -	N + X	N +	N +	N +	N +	N +	N +															
Esophagus Stomach	+	+++	‡	+	+	+	++++	+	+	+++	+++	+ +	+	+ +	+ +	++++	+	+	++++	+	+ +	+ +	+	+ +	+++
Small intestine Large intestine		+ + +	+ + +	+ + +	-	+++	+ + +	+ + +	÷ +	+ + +	-	+ + +	-	+ + +	+ - +	+ + +	+ + +	+ + +							
URINARY SYSTEM Kidney	·								<u> </u>		<u> </u>							<u> </u>							
Urinary bladder Mesothelioma, NOS	++	+	+	+	++	+ +	+	+ +	+	+	+	+	+	+	+	+	+	-	+	+	++	+	+	+ +	+ +
ENDOCRINE SYSTEM Pituitary	·	<u>+</u>	+	<u>+</u>	+	+		-	+	+	<u>+</u>	+	_	+	+	+	+	+	+	+	+	<u>+</u>	+	+	+
Adenoma, NOS Adrenal	+ x	X +	+	X +	+	+	X +	+	+	<u>+</u>	X +	+	+	*	+	+	+	+	+	+	+	X + X	X +	+	+
Pheochromocytoma Pheochromocytoma, malignant Thyroid		×	-	+	_	-	Ŧ	+	L	х	Ŧ	+	+		+	+	х 	_	Ŧ	ــ	т	л 	x ±	х +	+
C-cell adenoma C-cell carcinoma		Ŧ		T		*	*	*	T		,	'	,	*	Ŧ	Ŧ			т	т	т		x	x	,
Parathyroid Pancreatic islets	-+	+	+	+	+	+	+	+	±	-	+	+	+	-	+	+	+	-	+	+	+	+	+	+	+
Islet cell adenoma Islet cell carcinoma		*	*	т	Ŧ	Ŧ	Ŧ	Ŧ	т	т	T			Ŧ	т	т	Ŧ		т	Ŧ	т			,	
REPRODUCTIVE SYSTEM Mammary gland	N	N	N	N	+	+	+	+	N	N	+	N	+	N	N	N	N	N	N	+	N	N	+	N	N
Adenoma, NOS Testis	+	+	<u>+</u>	+	+	±	x +	+	+	+	÷	÷	+	+	±	+	+	+	+	+	+	+	+	+	+
Interstitial cell tumor Prostate	+	X +	X +	.+	<u>.</u>	x +	X +	÷	<u>.</u>	+	X +	X +	<u>+</u>	X +	X +	+	X +	+	X +	+	X +	X +	X +	X +	X +
Preputial/clitoral gland Adenoma, NOS Adenocarcinoma, NOS	N	N X	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N
NERVOUS SYSTEM Brain	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM	·										N7			<u>.</u>						·····	<u></u>				
Bone Squamous cell carcinoma	N	N	N	N	N	N	14	N	14	14	14	14	N	N	LA	14	14	τN	IN	ΤN	IN	ΤN	14	N	14
BODY CAVITIES Mediastinum	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Neurilemoma, metastatic Tunica vaginalis Mesothelioma, NOS	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+
	· [N	N				N		N
ALL OTHER SYSTEMS Multiple organs, NOS Sarcoma, NOS, unclear primary or metastatic	N	Ν	NX	Ν	Ν	N	N	N	N	N	N	N	Ν	N	Ν	N	14	14	14	N	Ν	Ν	T.		

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS: HIGH DOSE

								(U	on	un	ued)														
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL:
WEEKS ON STUDY	1 0 6	1 0 0	0 7 0	0 8 9	0 6 1	1 0 4	1 0 6	0 6 6	0 7 1	1 0 6	1 0 6	1 0 6	1 0 2	1 0 6	0 7 8	0 9 7	0 0 4	0 9 0	0 6 8	0 8 2	1 0 6	1 0 6	1 0 6	0 8 1	1 0 6	TISSUES
INTEGUMENTARY SYSTEM																										·
Skin Squamous cell papilloma Keratoacanthoma Subcutaneous tissue Fibroma	+ + X	+	+	+	+	+	+	+	+	+	+	+	+ X +	+	+	+	+	+	N N	+	+	+	+	+	+ +	*50 1 1 *50 2
Lipoma		_																			X					1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	49 1 1
Pheochromocytoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
HEMATOPOIETIC SYSTEM Bone marrow	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	48
Spleen Lymph nodes	+++	+++	++	+ +	+++	+++	+++	+++	+++	+++	++	++	++	+ +	+	++++	+++	+	+++	+ +	++	+++	++	+++	++	49
Thymus CIRCULATORY SYSTEM	+	+	+		+		+	+		_	+	+	+	+	+	+	+		+		+	+	+	+	+	37
Heart Neurilemoma, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
DIGESTIVE SYSTEM Salivary giand Neurilemoma, malignant Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* *	+	+	+	+		+	+	+	+	+	48 1 49
Neoplastic nodule Bile duct	+	+	, +	÷	+	+	+	+	+	÷	×,	Ļ	, +	, +	+	÷	+	+	+	+	+	+	+	+	+	1 49
Gallbladder & common bile duct Pancreas Acinar cell adenoma	N +	Ń +	N +	Ņ +	́ +	N +	N +	N +	Ň	Ň +	N +	+	Ň +	Ń +	N +	Ń +	Ń +	N +	Ń +	N +	Ň +	Ň +	N +	N	N +	*50 47 1
Esophagus Stomach	+++++	+++	+	++++	+++	+ +	+++	+	+	+++	+	+++	++	++	+	+++	+	+ +	+	+ +	+ +	++	+ +	+ +	+ +	50 41
Small intestine Large intestine	+++++	+++++++++++++++++++++++++++++++++++++++	-	+++	+	+ +	+++	-	-	+ +	÷ +	+ +	+ +	+ +	+	÷ +	+ +	++	-	÷ +	+ +	+++	+++	+	+ +	37 43
URINARY SYSTEM Kidney Urinary bladder	++++	+	+	+++	+++	++++	+++	++++	+	++++	+++	++	+++	++++	+++	+++	 +	+++	+	+ +	++++	+++	++++	 + +	+++	48 45
Mesothelioma, NOS				-																					x	1
ENDOCRINE SYSTEM Pituitary	+	+	+	<u>+</u>	+	+	÷	÷	+	÷	÷	÷	+	÷	+	+	+	+	+	+	+	+	+ X	+	* x	48
Adenoma, NOS Adrenal	+	+	+	X + X	+	*	X + X	+	+	+	X t	X +	X +	X +	+	X +	+	*	+	+	+	+	+	+	* *	15 50 16
Pheochromocytoma Pheochromocytoma, malignant				X		X	X				X		X					Å		x			X	4	+ X X	10 2 49
Thyroid C-cell adenoma C-cell carcinoma	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	Ŧ	+	Ŧ	÷	+	+	×	+	*	
Parathyroid Pancreatic islets	+	+	-	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4 +	+	++++	44
Islet cell adenoma Islet cell carcinoma	+	Ŧ	Ŧ	+	Ŧ	+	+	Ŧ	-	Ŧ	+	x	Ŧ	Ŧ	Ť	T	T	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	-	Ŧ	1
REPRODUCTIVE SYSTEM				;																						·
Mammary gland Adenoma, NOS	N	N	N	+	N	N	N	N	N	+	N	+	N	+	+	N	+	N	N	+	N	N	+	+	N	*50
Testis Interstitial cell tumor	x x	*	ż	+	+	+	*	x	x	x	*	*	*	*	*	*	+	x	+	x	x	x	+	+	*	50 33
Prostate Preputial/clitoral gland	, N	ň	n N	ň	n N	n N	n N	+ N	n N	ň	ň	ň	ň,	ň	ň	ň	ň	ň	ň	ň	, N	ň	'n	N N	'n	50 *50
Adenoma, NOS Adenocarcinoma, NOS	}																									1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
MUSCULOSKELETAL SYSTEM								. .	•••							 },,		**	»'			»			Þ7	#50
Bone Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	IN	N	IN	+	N	м	N	ţN	IN	*50
BODY CAVITIES Mediastinum	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	•50
Neurilemoma, metastatic Tunica vaginalis Mesothelioma, NOS	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	1 *50 2
ALL OTHER SYSTEMS Multiple organs, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	м	N	N	N	N	N	N	N	N	*50
				• •		•••				- •						•••										i

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

* Animals necropsied

	Vehicle Control	5 mg/kg	10 mg/kg
Skin: Squamous Cell Papilloma			
Overall Rates (a)	3/50 (6%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (b)	10.7%	7.7%	3.1%
Terminal Rates (c)	3/28 (11%)	1/13 (8%)	0/16 (0%)
Week of First Observation	106	106	89
Life Table Tests (d)	P = 0.378N	P = 0.602N	P = 0.490N
Incidental Tumor Tests (d)	P = 0.340N	P = 0.602N	P = 0.430 N P = 0.429 N
Cochran-Armitage Trend Test (d)	P = 0.340 N P = 0.202 N	P=0.002N	F=0.4291
Fisher Exact Test	P = 0.202 N	P=0.309N	P=0.309N
Fisher Exact Test		P=0.309N	P=0.309N
ubcutaneous Tissue: Fibrosarcoma or Neur			
Overall Rates (a)	3/50 (6%)	1/50 (2%)	0/50(0%)
Adjusted Rates (b)	10.2%	4.8%	0.0%
Terminal Rates (c)	2/28 (7%)	0/13 (0%)	0/16(0%)
Week of First Observation	105	102	
Life Table Tests (d)	P = 0.156N	P = 0.568N	P = 0.238N
Incidental Tumor Tests (d)	P = 0.098N	P=0.306N	P = 0.209 N
Cochran-Armitage Trend Test (d)	P = 0.060 N		
Fisher Exact Test		P = 0.309N	P = 0.121 N
ubcutaneous Tissue: Fibroma, Fibrosarcom	a. or Neurofibrosarcoma		
Overall Rates (a)	3/50 (6%)	1/50 (2%)	2/50 (4%)
Adjusted Rates (b)	10.2%	4.8%	8.9%
Terminal Rates (c)	2/28 (7%)	0/13 (0%)	1/16 (6%)
Week of First Observation	105	102	81
Life Table Tests (d)	P = 0.580	P = 0.568N	P = 0.641
Incidental Tumor Tests (d)	P = 0.527N	P = 0.306N	P = 0.638N
Cochran-Armitage Trend Test (d)	P = 0.399N		
Fisher Exact Test		P=0.309N	P = 0.500N
	• • • • • • •		
Iematopoietic System: Mononuclear Cell Leu		00/20 (50%)	00/50 (400)
Overall Rates (a)	30/50 (60%)	36/50 (72%)	20/50 (40%)
Adjusted Rates (b)	66.3%	97.0%	78.9%
Terminal Rates (c)	13/28 (46%)	12/13 (92%)	11/16 (69%)
Week of First Observation	72	80	82
Life Table Tests (d)	P = 0.267	P = 0.003	P = 0.437
Incidental Tumor Tests (d)	P = 0.265N	P = 0.304	P = 0.225N
Cochran-Armitage Trend Test (d)	P = 0.027 N		
Fisher Exact Test		P = 0.146	P = 0.036N
iver: Neoplastic Nodule			
Overall Rates (a)	3/50 (6%)	5/50 (10%)	1/49 (2%)
Adjusted Rates (b)	9.5%	28.1%	6.3%
Terminal Rates (c)	2/28 (7%)	3/13 (23%)	1/16 (6%)
Week of First Observation	92	91	106
Life Table Tests (d)	P = 0.527 N	P = 0.122	P = 0.506N
Incidental Tumor Tests (d)	P = 0.436N	P = 0.207	P = 0.429N
Cochran-Armitage Trend Test (d)	P = 0.272N		
Fisher Exact Test		P=0.357	P=0.316N
ituitary: Adenoma			
Overall Rates (a)	21/50 (42%)	26/49 (53%)	14/48 (29%)
Adjusted Rates (b)	54.9%	26/49 (83%) 75.9%	65.1%
Terminal Rates (c)	12/28 (43%)	6/13 (46%)	9/16 (56%)
Week of First Observation	12/28 (43%) 72	68	89 9/10 (00%)
		P = 0.012	P = 0.455
Life Table Tests (d)	P = 0.309 P = 0.278N		
	P = 0.309 P = 0.278N P = 0.122N	P = 0.334	P = 0.385N

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS

	Vehicle Control	5 mg/kg	10 mg/kg
ituitary: Adenoma or Carcinoma	01/50 (400)	27/49 (55%)	14/48 (29%)
Overall Rates (a)	21/50 (42%)	77.1%	65.1%
Adjusted Rates (b)	54.9%		9/16 (56%)
Terminal Rates (c)	12/28 (43%)	6/13 (46%)	89
Week of First Observation	72	68	P = 0.455
Life Table Tests (d)	P = 0.301	P = 0.008	P = 0.435 P = 0.385N
Incidental Tumor Tests (d)	P = 0.281 N	P = 0.282	P=0.365IN
Cochran-Armitage Trend Test (d)	P = 0.124N		D 0 10001
Fisher Exact Test		P = 0.135	P = 0.132N
drenal: Cortical Adenoma		1 (10 (97))	0/50 (0%)
Overall Rates (a)	3/50 (6%)	1/49 (2%)	0/50 (0%)
Adjusted Rates (b)	9.8%	5.3%	0.0%
Terminal Rates (c)	1/28 (4%)	0/13 (0%)	0/16 (0%)
Week of First Observation	104	103	
Life Table Tests (d)	P = 0.157N	P = 0.562N	P = 0.239N
Incidental Tumor Tests (d)	P = 0.070N	P = 0.197N	P = 0.181N
Cochran-Armitage Trend Test (d)	P = 0.061 N		
Fisher Exact Test	_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	P = 0.316N	P = 0.121 N
Adrenal: Pheochromocytoma			
Overall Rates (a)	22/50 (44%)	19/49 (39%)	16/50 (32%)
Adjusted Rates (b)	64.3%	71.0%	60.2%
Terminal Rates (c)	16/28 (57%)	7/13 (54%)	6/16 (38%)
Week of First Observation	92	83	89
	P = 0.248	P=0.091	P = 0.315
Life Table Tests (d)	P = 0.531	P = 0.558	P = 0.562
Incidental Tumor Tests (d)	P = 0.129N		
Cochran-Armitage Trend Test (d) Fisher Exact Test	r = 0.1251	P = 0.373N	P = 0.152N
	Malignant		
Adrenal: Pheochromocytoma or Pheochro	mocytoma, Manghant	19/49 (39%)	17/50 (34%)
Overall Rates (a)	23/50 (46%)	71.0%	61.4%
Adjusted Rates (b)	67.3%		6/16 (38%)
Terminal Rates (c)	17/28 (61%)	7/13 (54%)	82
Week of First Observation	92	83	
Life Table Tests (d)	P = 0.232	P = 0.112	P = 0.289
Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.520	P = 0.112 P = 0.564N	P = 0.289 P = 0.551
Life Table Tests (d) Incidental Tumor Tests (d)		P = 0.564N	P = 0.551
Life Table Tests (d)	P = 0.520		
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma	P=0.520 P=0.130N	P=0.564N P=0.300N	P = 0.551 P = 0.154N
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.520 P = 0.130N 2/47 (4%)	P = 0.564N P = 0.300N 4/47 (9%)	P = 0.551 P = 0.154N 4/49 (8%)
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma	P=0.520 P=0.130N 2/47 (4%) 4.4%	P = 0.564N P = 0.300N 4/47 (9%) 19.5%	P = 0.551 P = 0.154N 4/49 (8%) 21.3%
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a)	P = 0.520 P = 0.130 2/47 (4%) 4.4% 0/28 (0%)	P = 0.564N P = 0.300N 4/47 (9%) 19.5% 1/13 (8%)	P = 0.551 P = 0.154N 4/49 (8%) 21.3% 3/16 (19%)
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c)	P=0.520 P=0.130N 2/47 (4%) 4.4% 0/28 (0%) 72	P = 0.564N $P = 0.300N$ $4/47 (9%)$ $19.5%$ $1/13 (8%)$ 91	P = 0.551 $P = 0.154N$ $4/49 (8%)$ $21.3%$ $3/16 (19%)$ 89
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation	P = 0.520 P = 0.130N 2/47 (4%) 4.4% 0/28 (0%) 72 P = 0.116	P = 0.564N $P = 0.300N$ $4/47 (9%)$ $19.5%$ $1/13 (8%)$ 91 $P = 0.214$	P = 0.551 $P = 0.154N$ $4/49 (8%)$ $21.3%$ $3/16 (19%)$ 89 $P = 0.173$
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d)	P=0.520 P=0.130N 2/47 (4%) 4.4% 0/28 (0%) 72	P = 0.564N $P = 0.300N$ $4/47 (9%)$ $19.5%$ $1/13 (8%)$ 91	P = 0.551 P = 0.154N 4/49 (8%) 21.3% 3/16 (19%) 89
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.520 P = 0.130N 2/47 (4%) 4.4% 0/28 (0%) 72 P = 0.116	P = 0.564N $P = 0.300N$ $4/47 (9%)$ $19.5%$ $1/13 (8%)$ 91 $P = 0.214$ $P = 0.483$	P = 0.551 $P = 0.154N$ $4/49 (8%)$ $21.3%$ $3/16 (19%)$ 89 $P = 0.173$ $P = 0.375$
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d)	P = 0.520 P = 0.130N 2/47 (4%) 4.4% 0/28 (0%) 72 P = 0.116 P = 0.279	P = 0.564N $P = 0.300N$ $4/47 (9%)$ $19.5%$ $1/13 (8%)$ 91 $P = 0.214$	P = 0.551 $P = 0.154N$ $4/49 (8%)$ $21.3%$ $3/16 (19%)$ 89 $P = 0.173$
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.520 P = 0.130 2/47 (4%) 4.4% 0/28 (0%) 72 P = 0.116 P = 0.279 P = 0.293	P = 0.564N $P = 0.300N$ $4/47 (9%)$ $19.5%$ $1/13 (8%)$ 91 $P = 0.214$ $P = 0.483$ $P = 0.339$	P = 0.551 $P = 0.154N$ $4/49 (8%)$ $21.3%$ $3/16 (19%)$ 89 $P = 0.173$ $P = 0.375$ $P = 0.359$
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Carcinoma	P = 0.520 P = 0.130N 2/47 (4%) 4.4% 0/28 (0%) 72 P = 0.116 P = 0.279	$P = 0.564N$ $P = 0.300N$ $\frac{4}{47} (9\%)$ 19.5% $1/13 (8\%)$ 91 $P = 0.214$ $P = 0.483$ $P = 0.339$ $3/47 (6\%)$	P = 0.551 $P = 0.154N$ $4/49 (8%)$ $21.3%$ $3/16 (19%)$ 89 $P = 0.173$ $P = 0.375$ $P = 0.359$ $2/49 (4%)$
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Carcinoma Overall Rates (a)	P = 0.520 P = 0.130 2/47 (4%) 4.4% 0/28 (0%) 72 P = 0.116 P = 0.279 P = 0.293	$P = 0.564N$ $P = 0.300N$ $\frac{4}{47} (9\%)$ 19.5% $1/13 (8\%)$ 91 $P = 0.214$ $P = 0.483$ $P = 0.339$ $\frac{3}{47} (6\%)$ 15.2%	P = 0.551 $P = 0.154N$ $4/49 (8%)$ $21.3%$ $3/16 (19%)$ 89 $P = 0.173$ $P = 0.375$ $P = 0.359$ $2/49 (4%)$ $11.2%$
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Carcinoma Overall Rates (a) Adjusted Rates (b)	P = 0.520 P = 0.130 2/47 (4%) 4.4% 0/28 (0%) 72 P = 0.116 P = 0.279 P = 0.293 1/47 (2%)	$P = 0.564N$ $P = 0.300N$ $\frac{4}{47} (9\%)$ 19.5% $1/13 (8\%)$ 91 $P = 0.214$ $P = 0.483$ $P = 0.339$ $\frac{3}{47} (6\%)$ 15.2% $1/13 (8\%)$	$P = 0.551$ $P = 0.154N$ $\frac{4}{49} (8\%)$ 21.3% $3/16 (19\%)$ 89 $P = 0.173$ $P = 0.375$ $P = 0.359$ $\frac{2}{49} (4\%)$ 11.2% $1/16 (6\%)$
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Carcinoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c)	P = 0.520 P = 0.130N 2/47 (4%) 4.4% 0/28 (0%) 72 P = 0.116 P = 0.279 P = 0.293 1/47 (2%) 2.9%	$P = 0.564N$ $P = 0.300N$ $\frac{4}{47} (9\%)$ 19.5% $1/13 (8\%)$ 91 $P = 0.214$ $P = 0.483$ $P = 0.339$ $\frac{3}{47} (6\%)$ 15.2%	$P = 0.551$ $P = 0.154N$ $\frac{4}{49} (8\%)$ 21.3% $3/16 (19\%)$ 89 $P = 0.173$ $P = 0.375$ $P = 0.359$ $\frac{2}{49} (4\%)$ 11.2% $1/16 (6\%)$ 103
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Carcinoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation	P = 0.520 $P = 0.130N$ $2/47 (4%)$ $4.4%$ $0/28 (0%)$ 72 $P = 0.116$ $P = 0.279$ $P = 0.293$ $1/47 (2%)$ $2.9%$ $0/28 (0%)$	$P = 0.564N$ $P = 0.300N$ $\frac{4}{47} (9\%)$ 19.5% $1/13 (8\%)$ 91 $P = 0.214$ $P = 0.483$ $P = 0.339$ $\frac{3}{47} (6\%)$ 15.2% $1/13 (8\%)$	$P = 0.551$ $P = 0.154N$ $\frac{4}{49} (8\%)$ 21.3% $3/16 (19\%)$ 89 $P = 0.173$ $P = 0.375$ $P = 0.359$ $\frac{2}{49} (4\%)$ 11.2% $1/16 (6\%)$ 103 $P = 0.334$
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Carcinoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d)	P = 0.520 $P = 0.130N$ $2/47 (4%)$ $4.4%$ $0/28 (0%)$ 72 $P = 0.116$ $P = 0.279$ $P = 0.293$ $1/47 (2%)$ $2.9%$ $0/28 (0%)$ 97 $P = 0.227$	$P = 0.564N$ $P = 0.300N$ $\frac{4}{47} (9\%)$ 19.5% $1/13 (8\%)$ 91 $P = 0.214$ $P = 0.483$ $P = 0.339$ $\frac{3}{47} (6\%)$ 15.2% $1/13 (8\%)$ 89	$P = 0.551$ $P = 0.154N$ $\frac{4}{49} (8\%)$ 21.3% $3/16 (19\%)$ 89 $P = 0.173$ $P = 0.375$ $P = 0.359$ $\frac{2}{49} (4\%)$ 11.2% $1/16 (6\%)$ 103
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d) Fisher Exact Test Thyroid: C-Cell Carcinoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Week of First Observation	P = 0.520 $P = 0.130N$ 2/47 (4%) 4.4% 0/28 (0%) 72 $P = 0.116$ $P = 0.279$ $P = 0.293$ 1/47 (2%) 2.9% 0/28 (0%) 97	$P = 0.564N$ $P = 0.300N$ $\frac{4}{47} (9\%)$ 19.5% $1/13 (8\%)$ 91 $P = 0.214$ $P = 0.483$ $P = 0.339$ $\frac{3}{47} (6\%)$ 15.2% $1/13 (8\%)$ 89 $P = 0.186$	$P = 0.551$ $P = 0.154N$ $\frac{4/49}{8\%}$ $\frac{3/16}{19\%}$ 89 $P = 0.173$ $P = 0.375$ $P = 0.359$ $\frac{2/49}{11.2\%}$ $\frac{1/16}{6\%}$ 103 $P = 0.334$

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF
THPS (Continued)

.

	Vehicle Control	5 mg/kg	10 mg/kg
Thyroid: C-Cell Adenoma or Carcinoma			
Overall Rates (a)	3/47 (6%)	7/47 (15%)	6/49 (12%)
Adjusted Rates (b)	7.1%	32.5%	31.2%
Terminal Rates (c)	0/28 (0%)	2/13 (15%)	4/16 (25%)
Week of First Observation	72	89	.89
Life Table Tests (d)	P = 0.058	P = 0.066	P = 0.085
Incidental Tumor Tests (d)	P = 0.172	P = 0.284	P = 0.224
Cochran-Armitage Trend Test (d)	P = 0.231	1 - 0,201	1 - 0.251
Fisher Exact Test	1 - 0.201	P = 0.158	P = 0.264
ancreatic Islets: Islet Cell Adenoma			
Overall Rates (a)	4/48 (8%)	0/50 (0%)	1/47 (2%)
Adjusted Rates (b)	12.0%	0.0%	4.8%
Terminal Rates (c)	2/28 (7%)	0/13 (0%)	0/16 (0%)
Week of First Observation	83	0/10(0/0/	101
Life Table Tests (d)	P = 0.176N	P = 0.132N	P = 0.340N
Incidental Tumor Tests (d)	P = 0.176N P = 0.116N	P = 0.132N P = 0.068N	P = 0.340 N P = 0.264 N
Cochran-Armitage Trend Test (d)	P = 0.083N	E - 0.00014	r - 0.2041
Fisher Exact Test	r 0.00011	P = 0.054 N	P = 0.187N
ancreatic Islets: Islet Cell Adenoma or Carcino	ma		
Overall Rates (a)	5/48 (10%)	0/50 (0%)	2/47 (4%)
Adjusted Rates (b)	15.3%	0.0%	10.7%
Terminal Rates (c)			
Week of First Observation	3/28 (11%)	0/13(0%)	1/16 (6%)
	83		101
Life Table Tests (d)	P = 0.277N	P = 0.094N	P = 0.445N
Incidental Tumor Tests (d)	P = 0.215N	P = 0.049N	P = 0.372N
Cochran-Armitage Trend Test (d)	P = 0.120N		
Fisher Exact Test		P = 0.025N	P = 0.226 N
reputial Gland: Adenocarcinoma			
Overall Rates (a)	0/50 (0%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	0.0%	7.6%	3.1%
Terminal Rates (c)	0/28 (0%)	0/13 (0%)	0/16 (0%)
Week of First Observation		7 9	89
Life Table Tests (d)	P=0.285	P = 0.113	P = 0.446
Incidental Tumor Tests (d)	P = 0.431	P = 0.221	P = 0.564
Cochran-Armitage Trend Test (d)	P = 0.378		
Fisher Exact Test	1 0.010	P = 0.121	P = 0.500
reputial Gland: Adenoma or Adenocarcinoma			
Överall Rates (a)	0/50 (0%)	3/50 (6%)	2/50 (4%)
Adjusted Rates (b)	0.0%	7.6%	7.7%
Terminal Rates (c)	0/28 (0%)	0/13 (0%)	0/16(0%)
Week of First Observation		79	89
Life Table Tests (d)	P = 0.127	P=0.113	P = 0.171
Incidental Tumor Tests (d)	P = 0.210	P = 0.221	P = 0.251
Cochran-Armitage Trend Test (d)	P = 0.202		
Fisher Exact Test		P=0.121	P = 0.247
estis: Interstitial Cell Tumor			
Overall Rates (a)	40/50 (80%)	35/49 (71%)	33/50 (66%)
Adjusted Rates (b)	100.0%	96.8%	93.9%
Terminal Rates (c)	28/28 (100%)	12/13 (92%)	14/16 (88%)
Week of First Observation	80	79	66
Life Table Tests (d)	P = 0.034	P = 0.015	P = 0.048
Incidental Tumor Tests (d)	P = 0.034 P = 0.427	P = 0.587	P = 0.517
Cochran-Armitage Trend Test (d)	P = 0.427 P = 0.073N	1 - 0.001	1 -0.011

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF
THPS (Continued)

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

Study	Incidence in Controls	
Historical Incidence in All Water Controls		
THPS (b)	30/50	
THPC (b)	19/50	
Chlorpheniramine maleate (b)	25/50	
TOTAL	74/150 (49.3%)	
SD	11.02%	
Overall Historical Incidence in Untreated C	Controls	
TOTAL	458/1,727 (26.5%)	
SD(c)	8.83%	
Range (d)		
High	23/50	
Low	5/50	

TABLE A4a. HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS (a)

(a) Data as of August 3, 1984, for studies of at least 104 weeks
(b) Battelle Columbus Laboratories
(c) Standard deviation
(d) Range and SD are presented for groups of 35 or more animals.

		Incidence in Controls	1
Study	Adenoma	Carcinoma	Adenoma or Carcinom
listorical Incidence in All Wate	r Vehicle Controls		
`HPS (b)	21/50	0/50	21/50
HPC (b)	17/50	1/50	18/50
Chlorpheniramine maleate (b)	12/50	0/50	12/50
TOTAL	50/150 (33.3%)	1/150 (0.7%)	51/150 (34.0%)
SD (c)	9.02%	1.15%	9.17%
Range (d)			
High	21/50	1/50	21/50
Low	12/50	0/50	12/50
Overall Historical Incidence in 1	Untreated Controls		
TOTAL SD (c)	(e) 325/1,614 (20.1%) 11.14%	(f) 38/1,614 (2.4%) 3.04%	(e,f) 363/1,614 (22.5%) 10.98%
Range (d)			
High	24/46	5/45	25/46
Low	2/39	0/50	2/39

TABLE A4b. HISTORICAL INCIDENCE OF PITUITARY GLAND TUMORS IN MALE F344/N RATS (a)

(a) Data as of August 3, 1984, for studies of at least 104 weeks(b) Battelle Columbus Laboratories

(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.
(e) Includes 39 chromophobe adenomas and 3 acidophil adenomas
(f) Includes eight chromophobe adenomas

v	/ehicle	Control	Low I	Jose	High	Dose
ANIMALS INITIALLY IN STUDY	50		50	• • • • • • • • • • • • • • • • • • • •		
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
NTEGUMENTARY SYSTEM						
*Skin	(50)		(50)		(50)	
Inflammation, active chronic				(2%)		
Hyperkeratosis				(2%)		
Acanthosis	(50)			(2%)		
*Subcutaneous tissue Hemorrhage	(50)		(50)		(50)	
Inflammation, active chronic	2	(4%)			1	(2%)
RESPIRATORY SYSTEM						
#Trachea	(49)		(50)		(50)	
Inflammation, acute/chronic	·/		(00)			(2%)
#Peritracheal tissue	(49)		(50)		(50)	
Inflammation, necrotizing granulomatous			•	(2%)	(00)	
#Bronchus/muscularis	(50)		(50)		(49)	
Hyperplasia, focal	/		(2.27)		• • •	(2%)
#Lung/bronchiole	(50)		(50)		(49)	
Inflammation, chronic focal			1	(2%)		
#Lung	(50)		(50)		(49)	
Aspiration, foreign body			4	(8%)		(2%)
Congestion, NOS		(2%)			-	(6%)
Congestion, acute	1	(2%)	3	(6%)		(6%)
Edema, NOS Edema, interstitial	•	(99)			7	(14%)
Edema, interstitial Hemorrhage		(2%) (4%)				
Inflammation, interstitial		(4.70) (6%)				
Inflammation, active chronic		(2%)				
Inflammation, acute/chronic	•				A	(8%)
Pneumonia, interstitial chronic	2	(4%)	3	(6%)	-	(14%)
Inflammation, granulomatous focal	-	(1,0)	-	(14%)		(2%)
Alveolar macrophages	1	(2%)		(2%)		(2%)
Hyperplasia, alveolar epithelium		(4%)	-	(10%)	-	(=,
#Lung/alveoli	(50)		(50)		(49)	
Edema, NOS			-			(2%)
Hemorrhage	-		1	(2%)	1	(2%)
Hemorrhage, chronic	1	(2%)				05
Crystals, NOS					1	(2%)
HEMATOPOIETIC SYSTEM	(40)		/EA\		(40)	
#Bone marrow Myelofibrosis	(48)	(90)	(50)	(90)	(48)	(40)
Myeionorosis Hyperplasia, granulocytic	T	(2%)		(2%) (6%)		(4%) (6%)
Aplasia, hematopoietic			3	(070)		(0%)
#Spleen	(49)		(50)		(49)	(470)
Hemorrhage		(2%)	(00)		(43)	
Infarct, hemorrhagic		(2%)				
Depletion, lymphoid	-		1	(2%)	4	(8%)
#Splenic red pulp	(49)		(50)		(49)	,
Congestion, NOS						(2%)
Inflammation, chronic focal					1	(2%)
Fibrosis, focal				(2%)		
Necrosis, focal			1	(2%)		
Necrosis, ischemic	1	(2%)				
Infarct, NOS	-	(= /•)		(2%)		

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS

	Vehicle	Control	Low D	ose	High I)ose
EMATOPOIETIC SYSTEM		=				
#Splenic red pulp (Continued)	(49)		(50)		(49)	
Infarct, acute			1	(2%)		
Infarct, hemorrhagic					1	(2%)
Hematopoiesis			1	(2%)	1	(2%)
#Splenic trabeculae	(49)		(50)		(49)	
Hyperplasia, focal	()		2	(4%)		
#Mandibular lymph node	(48)		(49)		(46)	
Dilatation, NOS	(10)				1	(2%)
Dilatation/sinus	1	(2%)				
Cyst, NOS	-	(4%)	10	(20%)	3	(7%)
Multiple cysts		(2%)				
Hemorrhage		(4%)	1	(2%)	2	(4%)
Inflammation, multifocal	-		-		1	(2%)
Inflammation, chronic	1	(2%)			-	
Inflammation, granulomatous focal		(2%)				
	1				2	(4%)
Depletion, lymphoid	- 21	(65%)	37	(76%)		(63%)
Plasmacytosis	(48)		(49)	(10,0)	(46)	(00,07
#Thoracic lymph node		(90)	(43)		(40)	
Pigmentation, NOS		(2%)				
Histiocytosis	1	(2%)			1	(2%)
Plasmacytosis	(10)		(40)			(270)
#Mediastinal lymph node	(48)		(49)	(07)	(46)	
Inflammation, chronic focal				(2%)		
Inflammation, granulomatous				(2%)	(40)	
#Pancreatic lymph node	(48)		(49)		(46)	(40)
Inflammation, granulomatous focal						(4%)
Depletion, lymphoid						(2%)
#Mesenteric lymph node	(48)		(49)		(46)	
Dilatation/sinus				(2%)		
Cyst, NOS				(2%)		
Multiple cysts	2	(4%)	1	(2%)		
Inflammation, chronic focal					1	(2%)
Depletion, lymphoid			1	(2%)		
#Renal lymph node	(48)		(49)		(46)	
Dilatation, NOS					1	(2%)
Hemorrhage					1	(2%)
Inflammation, active chronic						(2%)
Inflammation, granulomatous focal					_	(4%)
						(2%)
Depletion, lymphoid	(48)		(49)		(46)	
#Inguinal lymph node	(40)			(2%)	(10)	
Inflammation, chronic	(48)		(49)	(= /• /	(46)	
#Thymic lymph node	(40)			(2%)	(10)	
Dilatation/sinus			1	(4 //)	1	(2%)
Congestion, NOS		(90%)	0	(6%)	•	()
Hemorrhage	1	(2%)		(4%)	1	(2%)
Inflammation, active chronic					1	
Inflammation, chronic		(00)	1	(2%)	1	(2%)
Inflammation, chronic focal		(2%)	•	(40)		
Inflammation, granulomatous focal	1	(2%)		(4%)		(4%)
Depletion, lymphoid			2	(4%)	1	(2%)
Plasmacytosis				(4%)		
#Liver	(50)		(50)		(49)	
Hematopoiesis						(2%)
#Hepatic sinusoid	(50)		(50)		(49)	
Leukocytosis, NOS		(2%)				
#Thymus	(47)		(45)		(37)	
Hemorrhage	2	(4%)				(3%)
Depletion, lymphoid				(2%)		(5%)
#Thymic cortex	(47)		(45)		(37)	
Depletion, lymphoid					3	(8%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

IEMATOPOIETIC SYSTEM (Continued) #Thymic lymphocytes Necrosis, diffuse ZIRCULATORY SYSTEM #Thymic lymph node Lymphangiectasis #Lung Perivasculitis #Heart/atrium Dilatation, NOS Thrombosis, NOS #Right atrium Dilatation, NOS #Right atrium Dilatation, NOS #Left atrium Thrombosis, NOS Thrombus, fibrin #Myocardium Mineralization	(50) 1 (50) 1 (50) 1 (50) 3 1 (50)	(2%) (2%) (2%) (2%)	(50) (50)	(4%)	(46) (49) (50) 3 1 (50)	(3%) (6%) (2%) (2%)
<pre>#Thymic lymphocytes Necrosis, diffuse ZIRCULATORY SYSTEM #Thymic lymph node Lymphangiectasis #Lung Perivasculitis #Heart/atrium Dilatation, NOS Thrombosis, NOS #Right atrium Dilatation, NOS #Left atrium Thrombosis, NOS Thrombus, fibrin #Myocardium</pre>	(48) 1 (50) 1 (50) 1 (50) 3 1 (50)	(2%) (2%) (2%) (2%) (6%)	(49) (50) (50) 2 (50) (50)	(4%)	1 (46) (49) (50) 3 1 (50) 1	(6%) (2%)
Necrosis, diffuse ZIRCULATORY SYSTEM #Thymic lymph node Lymphangiectasis #Lung Perivasculitis #Heart/atrium Dilatation, NOS Thrombosis, NOS #Right atrium Dilatation, NOS #Left atrium Thrombosis, NOS #Left atrium Thrombosis, NOS Myocardium	(48) 1 (50) 1 (50) 1 (50) 3 1 (50)	(2%) (2%) (2%) (2%) (6%)	(49) (50) (50) 2 (50) (50)	(4%)	1 (46) (49) (50) 3 1 (50) 1	(6%) (2%)
 #Thymic lymph node Lymphangiectasis #Lung Perivasculitis #Heart/atrium Dilatation, NOS Thrombosis, NOS #Right atrium Dilatation, NOS #Left atrium Thrombosis, NOS Thrombosis, NOS Thrombus, fibrin 	1 (50) 1 (50) 1 (50) 1 (50) 3 1 (50)	(2%) (2%) (2%) (2%) (6%)	(50) (50) 2 (50) (50)		(49) (50) 3 1 (50) 1	(2%)
 #Thymic lymph node Lymphangiectasis #Lung Perivasculitis #Heart/atrium Dilatation, NOS Thrombosis, NOS #Right atrium Dilatation, NOS #Left atrium Thrombosis, NOS Thrombosis, NOS Thrombus, fibrin 	1 (50) 1 (50) 1 (50) 1 (50) 3 1 (50)	(2%) (2%) (2%) (2%) (6%)	(50) (50) 2 (50) (50)		(49) (50) 3 1 (50) 1	(2%)
Lymphangiectasis #Lung Perivasculitis #Heart/atrium Dilatation, NOS Thrombosis, NOS #Right atrium Dilatation, NOS #Left atrium Thrombosis, NOS Thrombus, fibrin #Myocardium	1 (50) 1 (50) 1 (50) 1 (50) 3 1 (50)	(2%) (2%) (2%) (2%) (6%)	(50) (50) 2 (50) (50)		(49) (50) 3 1 (50) 1	(2%)
<pre>#Lung Perivasculitis #Heart/atrium Dilatation, NOS Thrombosis, NOS #Right atrium Dilatation, NOS #Left atrium Thrombosis, NOS Thrombus, fibrin #Myocardium</pre>	(50) 1 (50) 1 (50) 1 (50) 3 1 (50)	(2%) (2%) (2%) (6%)	(50) 2 (50) (50)		(50) 3 1 (50) 1	(2%)
Perivasculitis #Heart/atrium Dilatation, NOS Thrombosis, NOS #Right atrium Dilatation, NOS #Left atrium Thrombosis, NOS Thrombus, fibrin #Myocardium	1 (50) 1 (50) 1 (50) 3 1 (50)	(2%) (2%) (6%)	(50) 2 (50) (50)		(50) 3 1 (50) 1	(2%)
 #Heart/atrium Dilatation, NOS Thrombosis, NOS #Right atrium Dilatation, NOS #Left atrium Thrombosis, NOS Thrombosis, fibrin #Myocardium 	(50) 1 (50) 1 (50) 3 1 (50)	(2%) (2%) (6%)	2 (50) (50)		3 1 (50) 1	(2%)
Dilatation, NOS Thrombosis, NOS #Right atrium Dilatation, NOS #Left atrium Thrombosis, NOS Thrombus, fibrin #Myocardium	1 (50) 1 (50) 3 1 (50)	(2%) (6%)	2 (50) (50)		3 1 (50) 1	(2%)
Thrombosis, NOS #Right atrium Dilatation, NOS #Left atrium Thrombosis, NOS Thrombus, fibrin #Myocardium	(50) 1 (50) 3 1 (50)	(2%) (6%)	(50) (50)		1 (50) 1	(2%)
 #Right atrium Dilatation, NOS #Left atrium Thrombosis, NOS Thrombus, fibrin #Myocardium 	(50) 1 (50) 3 1 (50)	(2%) (6%)	(50)	(6%)	(50) 1	
Dilatation, NOS #Left atrium Thrombosis, NOS Thrombus, fibrin #Myocardium	1 (50) 3 1 (50)	(6%)	(50)	(6%)	1	(2%)
#Left atrium Thrombosis, NOS Thrombus, fibrin #Myocardium	(50) 3 1 (50)	(6%)		(6%)		(2.10)
Thrombosis, NOS Thrombus, fibrin #Myocardium	3 1 (50)	(6%)		(6%)		
Thrombus, fibrin #Myocardium	1 (50)		0		(00)	
#Myocardium	(50)	(=,0)		(0,0)		
			(50)		(50)	
	45		(00)			(2%)
Degeneration, NOS		(90%)	48	(96%)	-	(68%)
#Cardiac valve	(50)	((50)	(00.00)	(50)	(,
Thrombosis, NOS	(,		(()))			(2%)
*Splenic artery	(50)		(50)		(50)	,
Thrombus, mural			((2%)
#Hepatic sinusoid	(50)		(50)		(49)	
Congestion, NOS	,					(2%)
Hemorrhagic cyst	1	(2%)				
#Pancreas	(48)		(50)		(47)	
Periarteritis	1	(2%)				
IGESTIVE SYSTEM						
#Salivary gland	(50)		(50)		(48)	
Atrophy, focal		(2%)		(2%)		(2%)
Hyperplasia, focal		(2%) (2%)	1	(2%)	+	(270)
#Liver	(50)	(270)	(50)		(49)	
Congestion, NOS	(30)		(50)			(2%)
Inflammation, acute focal			1	(2%)	1	(270)
Inflammation, granulomatous	1	(2%)	1	(270)		
Inflammation, granulomatous focal		(16%)	6	(12%)	14	(29%)
Degeneration, cystic		(14%)		(30%)		(29%)
Necrosis, focal	•	(14/0)		(2%)	14	(20,0)
Basophilic cyto change	11	(22%)		(32%)	10	(20%)
Eosinophilic cyto change		(2%)		(4%)		(20,0)
Clear cell change		(4%)		(4%)	5	(10%)
Hyperplasia, focal		(2%)	-	(,		(2%)
Angiectasis		(2%)	5	(10%)	2	(4%)
#Hepatic capsule	(50)		(50)		(49)	
Hemorrhage					1	(2%)
#Liver/centrilobular	(50)		(50)		(49)	
Congestion, chronic passive	1	(2%)				
Necrosis, focal	3	(6%)		(4%)		(12%)
Cytoplasmic vacuolization		(2%)		(4%)		(2%)
#Liver/periportal	(50)		(50)		(49)	
Cytoplasmic vacuolization		(2%)		(2%)		(12%)
#Liver/hepatocytes	(50)		(50)		(49)	
Necrosis, focal				(2%)		
Cytoplasmic change, NOS				(2%)	-	(100)
Cytoplasmic vacuolization				(2%)	2	(4%)
Cell size alteration	(20)			(2%)		
#Bile duct Hyperplasia, focal	(50)	(92%)	(50)	(92%)	(49)	(51%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle	Control	Low D	ose	High I	Dose
DIGESTIVE SYSTEM (Continued)						
#Pancreas	(48)		(50)		(47)	
Dilatation/ducts			4	(8%)		
Cystic ducts		(2%)				
Inflammation, chronic focal		(2%)				
#Pancreatic acinus	(48)	(000)	(50)	(0.4.07.)	(47)	(0.400)
Atrophy, focal	18	(38%)	17	(34%)		(34%) (2%)
Hyperplasia, focal	(50)		(50)		(50)	(2%)
#Esophagus Lacerated wound		(2%)	(50)		(00)	
Dilatation, NOS	•	(2 R)	1	(2%)		
Inflammation, necrotizing granulomatous				(2%)		
#Periesophageal tissue	(50)		(50)	(=,,	(50)	
Inflammation, acute/chronic	4 4 - 7	(2%)	(00)		(00)	
#Stomach	(46)	(=,0)	(47)		(41)	
Mineralization	(40)		(/		, -,	(5%)
#Cardiac stomach	(46)		(47)		(41)	
Ulcer, acute		(2%)	(-//		(/	
Inflammation, active chronic	•	()	1	(2%)		
Hyperkeratosis	1	(2%)	_	(6%)		
Acanthosis		(2%)	2	(4%)		
#Gastric fundus	(46)		(47)		(41)	
Necrosis, focal	1	(2%)	1	(2%)		
#Duodenum	(45)		(44)		(37)	
Hyperplasia, epithelial				(2%)		
#Colon	(46)		(46)		(43)	
Inflammation, chronic focal					1	(2%)
Parasitism	1	(2%)	2	(4%)		
<pre>#Kidney Congestion, NOS Lymphocytic inflammatory infiltrate Nephropathy Nephrosis, NOS #Kidney/cortex Cyst, NOS Multiple cysts Granuloma, NOS #Kidney/medulla Hyperplasia, epithelial #Kidney/glomerulus Cyst, NOS #Kidney/tubule Pigmentation, NOS #Kidney/pelvis Hyperplasia, epithelial #Urinary bladder Calculus, microscopic examination Inflammation, active chronic</pre>	45 1 (48) 4 (48) (48) 1 (48) 1 (48) 1 (48) 1 (47)	(2%) (94%) (2%) (8%) (2%) (2%) (2%) (2%)	(50) 2 3 (50)	(98%) (4%) (6%) (4%)	41 1 (48) 2 2 1 (48) (48) (48) 1 (48) 1 (48) 1 (48) 1 (45) 1	(2%) (85%) (2%) (4%) (4%) (2%) (2%) (2%)
Hyperplasia, epithelial ENDOCRINE SYSTEM #Pituitary intermedia Hyperplasia, focal #Anterior pituitary Embryonal duct cyst	(50) (50) 5	(10%)	(49) 1 (49)	(2%) (2%) (2%)	(48) (48)	(2%)
Cyst, NOS Multiple cysts	•	<u></u>		(2%)	1	(2%) (2%)
Hemorrhagic cyst				(2%)		
Hemorrhage, chronic		(2%)				

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle	Control	Low I	Dose	High	Dose
NDOCRINE SYSTEM	· · · · · · · · · · · · · · · · · · ·					
#Anterior pituitary (Continued)	(50)		(49)		(48)	
Fibrosis, diffuse		(2%)	(40)		(
Hyperplasia, NOS		(2%)				
Hyperplasia, focal		(14%)	3	(6%)	5	(10%)
#Adrenal/capsule	(50)		(49)		(50)	
Fibrosis, multifocal			1	(2%)		
#Adrenal cortex	(50)		(49)		(50)	
Cyst, NOS	1	(2%)				
Congestion, NOS					1	(2%)
Hemorrhage		(0)	1	(2%)		
Degeneration, NOS	1	(2%)			•	(0.00)
Degeneration, cystic		(00)			3	
Necrosis, focal	1	• • • •		(41.00)		(2%)
Cytoplasmic vacuolization		(24%)		(41%)	11	(22%)
Focal cellular change		(4%)		(10%)	0	(00)
Hyperplasia, focal		(12%)		(14%)		(6%)
#Adrenal medulla	(50)		(49)		(50)	
Necrosis, NOS		(90)	1	(2%)		
Necrosis, focal Cytoplasmic vacuolization		(2%) (2%)				
Hyperplasia, NOS		(2%)				
Hyperplasia, focal		(16%)	2	(6%)	C C	(12%)
Hyperplasia, diffuse		(10%)	3	(0%)	0	(1270)
#Thyroid	(47)	(270)	(47)		(49)	
Embryonal duct cyst		(2%)		(2%)		(2%)
Follicular cyst, NOS	•	(2 %)	-	(2,0)		(2%)
Atrophy, NOS			1	(2%)	-	(270)
Hyperplasia, C-cell	30	(64%)		(36%)	8	(16%)
#Thyroid follicle	(47)	(01/0/	(47)		(49)	(10,0)
Multiple cysts		(2%)		(2%)	(40)	
#Parathyroid	(41)	(2,0)	(46)	(2/0)	(44)	
Hyperplasia, NOS	• /	(5%)	(10)			(9%)
Hyperplasia, focal	_	(2)	3	(7%)	-	(,
#Pancreatic islets	(48)		(50)	()))	(47)	
Hyperplasia, focal	1	(2%)				
EPRODUCTIVE SYSTEM						
*Mammary gland	(50)		(50)		(50)	
Dilatation, NOS				(4%)		
Dilatation/ducts	-			(10%)		
Galactocele	3	(6%)		(6%)		
Inflammation, granulomatous focal	~	(10)		(2%)		(0.00)
Hyperplasia, focal		(4%)		(2%)		(2%)
Hyperplasia, cystic		(14%)		(12%)		(14%)
*Epididymal cytologic material	(50)	(90)	(50)		(50)	
Mineralization *Preputial gland		(2%)	(50)		(50)	
Cystic ducts	(50)	(2%)		(2%)	(50)	
Inflammation, active chronic		(8%)		(2%)	0	(4%)
Inflammation, chronic focal		(20%)	1	(270)		(10%)
Inflammation, granulomatous	10					(2%)
Inflammation, granulomatous focal	4	(8%)	9	(18%)		(12%)
Hyperplasia, NOS		(2%)	Ũ		v	\-= <i>\</i> /
Hyperplasia, focal		(2%)				
#Prostate	(48)		(46)		(50)	
Inflammation, acute focal		(2%)	()			(2%)
Inflammation, acute diffuse	-		· 1	(2%)	-	
Inflammation, active chronic	1	(2%)		(11%)	2	(4%)
Inflammation, acute/chronic		(2%)	Ŭ		-	

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle	Control	Low D	lose	High l	Dose
REPRODUCTIVE SYSTEM						
#Prostate (Continued)	(48)		(46)		(50)	
Abscess, chronic	(-0)		(10)			(2%)
Inflammation, granulomatous focal			1	(2%)		
Hyperplasia, epithelial				(7%)		
Hyperplasia, focal	1	(2%)	-	()))		
*Seminal vesicle	(50)		(50)		(50)	
Dilatation, NOS	(,		• • • •	(2%)		
#Testis	(50)		(49)	(= / • ·	(50)	
Inflammation, chronic focal		(2%)				
Atrophy, focal		(2%)				
Aspermatogenesis	•		1	(2%)		
Hyperplasia, interstitial cell	3	(6%)		(2%)	3	(6%)
#Testis/tubule	(50)	(0,0)	(49)	(2.0)	(50)	(0,0)
Degeneration, NOS	(00)		/	(2%)	(00)	
Atrophy, focal	14	(28%)		(24%)	6	(12%)
Atrophy, pressure		(28%)		(20%)		(12%) (28%)
Atrophy, diffuse	17	(20/0)	10			(20%)
*Epididymis	(50)		(50)		(50)	(0,0)
Inflammation, acute/chronic		(2%)	(00)		(00)	
		(2 <i>1</i> 0)				
NERVOUS SYSTEM						
#Brain/meninges	(50)		(49)		(50)	
Hemorrhage			1	(2%)		
#Lateral ventricle	(50)		(49)		(50)	
Hydrocephalus, NOS				(2%)		
#Cerebrum	(50)		(49)		(50)	
Atrophy, pressure	2	(4%)	2	(4%)		(2%)
#Brain	(50)		(49)		(50)	
Hemorrhage	1	(2%)			2	(4%)
#Cerebellum	(50)		(49)		(50)	
Hemorrhage			1	(2%)		
#Medulla oblongata	(50)		(49)		(50)	
Hemorrhage					1	(2%)
SPECIAL SENSE ORGANS		- <u></u>				
*Eye, posterior chamber	(50)		(50)		(50)	
Hemorrhage			• /	(4%)		
*Eye/cornea	(50)		(50)		(50)	
Inflammation, chronic focal				(4%)		
*Eye/retina	(50)		(50)		(50)	
Degeneration, NOS			3	(6%)		
Atrophy, focal			2	(4%)		(2%)
Atrophy, diffuse	3	(6%)			1	(2%)
*Eye/crystalline lens	(50)		(50)		(50)	
Cataract		(6%)		(6%)		(4%)
Cytoplasmic vacuolization		(2%)	-			-
*Harderian gland	(50)	,	(50)		(50)	
Hemorrhage	(00)		(•••)			(2%)
Inflammation, chronic focal						(2%)
Hyperplasia, epithelial	1	(2%)				(2%)
ALICCITI OCKET FTAL CUCHEM						
IUSCULOSKELETAL SYSTEM	(50)		(50)		(50)	
*Femur Osteosclerosis		(2%)		(4%)		(4%)
(Asconcier 0818	1	(470)	4		4	

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle	Control	Low D	ose	High I	Dose
BODY CAVITIES		<u> </u>	<u> </u>		<u>.</u>	
*Mediastinum	(50)		(50)		(50)	1.1.4
Inflammation, acute/chronic			1	(2%)	·	
*Mediastinal pleura	(50)		(50)		(50)	
Inflammation, chronic diffuse	1	(2%)				
*Epicardium	(50)		(50)		(50)	
Inflammation, acute/chronic			1	(2%)		
Inflammation, chronic focal	1	(2%)				
*Mesentery	(50)		(50)		(50)	
Inflammation, granulomatous focal	2	(4%)	3	(6%)	3	(6%)
Hyperplasia, focal			1	(2%)		
ALL OTHER SYSTEMS						
*Multiple organs	(50)		(50)		(50)	
Inflammation, active chronic	1	(2%)			1	(2%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

None

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

APPENDIX B

SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS

		PAGE
TABLE BI	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN	
	THE TWO-YEAR GAVAGE STUDY OF THPS	95
TABLE B2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE	
	TWO-YEAR GAVAGE STUDY OF THPS	100
TABLE B3	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR	
	GAVAGE STUDY OF THPS	106
TABLE B4	HISTORICAL INCIDENCE OF UTERINE ENDOMETRIAL STROMAL	
	TUMORS IN FEMALE F344/N RATS	110
TABLE B5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN	
	FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS	111

THPS and THPC, NTP TR 296

THPS and THPC, NTP TR 296

ANIMALS INITIALLY IN STUDY 50 50 ANIMALS NECROPSIED 49 50 ANIMALS EXAMINED HISTOPATHOLOGICALLY 49 50 INTEGUMENTARY SYSTEM *Skin (49) (50) Squamous cell papilloma 3 (6%) Basal cell tumor 1 (2%) 1 (2%) *Subcutaneous tissue (49) (50) Neurofibrosarcoma 1 (2%) RESPIRATORY SYSTEM #Lung (49) (50) Alveolar/bronchiolar adenoma 1 (2%) RESPIRATOPOIETIC SYSTEM *Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) HEMATOPOIETIC SYSTEM *Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) HEMATOPOIETIC SYSTEM *Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) #Thymic medulla (48) (45) Thymoma 1 (2%)	i (50) (49) 1 (50)	(2%) (2%) (2%) (44%)
ANIMALS NECROPSIED 49 50 ANIMALS EXAMINED HISTOPATHOLOGICALLY 49 50 INTEGUMENTARY SYSTEM *Skin (49) (50) Squamous cell papilloma 3 (6%) Basal cell tumor 1 (2%) 1 (2%) *Subcutaneous tissue (49) (50) Neurofibrosarcoma 1 (2%) 2 (4%) Alveolar/bronchiolar adenoma 1 (2%) 2 (4%) Alveolar/bronchiolar carcinoma 1 (2%) HEMATOPOIETIC SYSTEM *Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) 19 (38%) #Thymic medulla (48) (45)	50 50 (50) 1 (50) (49) 1 (50) 22	(2%) (2%) (2%) (44%)
INTEGUMENTARY SYSTEM *Skin (49) (50) Squamous cell papilloma 3 (6%) Basal cell tumor 1 (2%) 1 (2%) *Subcutaneous tissue (49) (50) Neurofibrosarcoma 1 (2%) RESPIRATORY SYSTEM #Lung (49) (50) Alveolar/bronchiolar adenoma 1 (2%) 2 (4%) Alveolar/bronchiolar carcinoma 1 (2%) HEMATOPOIETIC SYSTEM *Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) Leukemia, mononuclear cell 23 (47%) 19 (38%) #Thymic medulla (48) (45)	(50) 1 (50) (49) 1 (50) 22	(2%) (2%) (2%) (2%)
*Skin (49) (50) Squamous cell papilloma 3 (6%) Basal cell tumor 1 (2%) 1 (2%) *Subcutaneous tissue (49) (50) Neurofibrosarcoma 1 (2%) RESPIRATORY SYSTEM #Lung (49) (50) Alveolar/bronchiolar adenoma 1 (2%) 2 (4%) Alveolar/bronchiolar carcinoma 1 (2%) HEMATOPOIETIC SYSTEM *Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) Lymphocytic leukemia 1 (2%) Lymphocytic leukemia 1 (2%) Lymphocytic leukemia 1 (2%) Lymphocytic leukemia (48) (45)	1 (50) (49) 1 (50) 22	(2%) (2%) (2%) (2%)
Squamous cell papilloma 3 (6%) Basal cell tumor 1 (2%) *Subcutaneous tissue (49) Neurofibrosarcoma 1 (2%) RESPIRATORY SYSTEM (49) #Lung (49) Alveolar/bronchiolar adenoma 1 (2%) Alveolar/bronchiolar carcinoma 1 (2%) HEMATOPOIETIC SYSTEM *Multiple organs (49) Lymphocytic leukemia 1 (2%) Leukemia, mononuclear cell 23 (47%) #Thymic medulla (48)	1 (50) (49) 1 (50) 22	(2%) (2%) (2%) (2%)
Basal cell tumor 1 (2%) 1 (2%) *Subcutaneous tissue (49) (50) Neurofibrosarcoma 1 (2%) RESPIRATORY SYSTEM (49) (50) #Lung (49) (50) Alveolar/bronchiolar adenoma 1 (2%) 2 (4%) Alveolar/bronchiolar carcinoma 1 (2%) 2 (4%) HEMATOPOIETIC SYSTEM (49) (50) *Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) Leukemia, mononuclear cell 23 (47%) 19 (38%) #Thymic medulla (48) (45)	1 (50) (49) 1 (50) 22	(2%) (2%) (44%)
*Subcutaneous tissue (49) (50) Neurofibrosarcoma 1 (2%) RESPIRATORY SYSTEM #Lung (49) (50) Alveolar/bronchiolar adenoma 1 (2%) 2 (4%) Alveolar/bronchiolar carcinoma 1 (2%) HEMATOPOIETIC SYSTEM *Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) Leukemia, mononuclear cell 23 (47%) 19 (38%) #Thymic medulla (48) (45)	(50) (49) 1 (50) 22	(2%)
Neurofibrosarcoma 1 (2%) RESPIRATORY SYSTEM (49) (50) #Lung (49) (50) Alveolar/bronchiolar adenoma 1 (2%) 2 (4%) Alveolar/bronchiolar carcinoma 1 (2%) 2 (4%) HEMATOPOIETIC SYSTEM (49) (50) *Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) Leukemia, mononuclear cell 23 (47%) 19 (38%) #Thymic medulla (48) (45)	(49) 1 (50) 22	(2%)
#Lung (49) (50) Alveolar/bronchiolar adenoma 1 (2%) 2 (4%) Alveolar/bronchiolar carcinoma 1 (2%) HEMATOPOIETIC SYSTEM (49) (50) *Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) Leukemia, mononuclear cell 23 (47%) 19 (38%) #Thymic medulla (48) (45)	1 (50) 22	(2%)
#Lung (49) (50) Alveolar/bronchiolar adenoma 1 (2%) 2 (4%) Alveolar/bronchiolar carcinoma 1 (2%) HEMATOPOIETIC SYSTEM (49) (50) *Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) Leukemia, mononuclear cell 23 (47%) 19 (38%) #Thymic medulla (48) (45)	1 (50) 22	(2%)
Alveolar/bronchiolar carcinoma1 (2%)HEMATOPOIETIC SYSTEM *Multiple organs(49)(50)Lymphocytic leukemia1 (2%)Leukemia, mononuclear cell23 (47%)19 (38%)#Thymic medulla(48)(45)	(50)	(44%)
HEMATOPOIETIC SYSTEM *Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) Leukemia, mononuclear cell 23 (47%) 19 (38%) #Thymic medulla (48) (45)	(50)	(44%)
*Multiple organs (49) (50) Lymphocytic leukemia 1 (2%) Leukemia, mononuclear cell 23 (47%) 19 (38%) #Thymic medulla (48) (45)	22	
Lymphocytic leukemia1 (2%)Leukemia, mononuclear cell23 (47%)19 (38%)#Thymic medulla(48)(45)	22	
Leukemia, mononuclear cell 23 (47%) 19 (38%) #Thymic medulla (48) (45)		
#Thymic medulla (48) (45)		
	/	
CIRCULATORY SYSTEM None		
DIGESTIVE SYSTEM		
#Liver (49) (50)	(49)	(10)
Neoplastic nodule 3 (6%) 2 (4%) #Cardiac stomach (46) (48)	(44)	(4%)
Squamous cell papilloma		(2%)
URINARY SYSTEM None		
ENDOCRINE SYSTEM	(46)	
#Anterior pituitary (46) (50) Carcinoma, NOS		(2%)
Adenoma, NOS 23 (50%) 19 (38%)		(35%)
Adenocarcinoma, NOS 20 (00 %) 10 (00 %)		(00 %)
#Adrenal (47) (50)	(48)	
Cortical adenoma 3 (6%) 3 (6%)	4	(8%)
Cortical carcinoma 1 (2%)	(10)	
#Adrenal medulla (47) (50)	(48)	(60)
Pheochromocytoma 4 (9%) 4 (8%)	J	(6%)
Pheochromocytoma, malignant 2 (4%) Ganglioneuroma 1 (2%)		
#Thyroid (49) (50)	(47)	
Follicular cell adenoma 1 (2%)		(2%)
Follicular cell carcinoma 1 (2%)	-	
C-cell adenoma 2 (4%) 2 (4%)		
C-cell carcinoma 3 (6%) 2 (4%)		
#Parathyroid (35) (44)	(36)	
Adenoma, NOS 1 (2%)		

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS

	Vehicle	Control	Low [Jose	High l	Dose
ENDOCRINE SYSTEM (Continued)						
#Pancreatic islets	(48)		(50)		(48)	
Islet cell adenoma	1	(2%)			2	(4%)
REPRODUCTIVE SYSTEM	¥27 · · · · · · · · · · · · · · · · · · ·	·				
*Mammary gland	(49)		(50)		(50)	
Adenoma, NOS	1	(2%)				
Adenocarcinoma, NOS			-	(6%)		(2%)
Papillary cystadenoma, NOS				(2%)		(2%)
Fibroadenoma		(43%)		(22%)		(16%)
*Mammary duct	(49)		(50)		(50)	
Fibroadenoma				(2%)		
*Clitoral gland	(49)		(50)		(50)	(
Carcinoma, NOS		(8%)	-	(2%)		(10%)
Adenoma, NOS	4	(8%)	-	(10%)		(8%)
Adenocarcinoma, NOS			-	(2%)	1	(2%)
Cystadenoma, NOS			-	(2%)		
#Uterus	(49)		(50)		(49)	
Carcinoma, NOS				(2%)		
Adenocarcinoma, NOS		(2%)		(2%)	10	(0.10)
Endometrial stromal polyp	-	(12%)	-	(18%)		(24%)
#Ovary	(49)		(50)		(49)	(00)
Granulosa cell tumor					ا	(2%)
NERVOUS SYSTEM						
#Cerebrum	(49)		(50)		(47)	
Adenocarcinoma, NOS, invasive			1	(2%)		
Astrocytoma			-	(2%)		(2%)
#Medulla oblongata	(49)		(50)		(47)	
Adenocarcinoma, NOS, invasive			1	(2%)		
SPECIAL SENSE ORGANS	<u> </u>					
*External ear	(49)		(50)		(50)	
Fibrosarcoma	1	(2%)				
MUSCULOSKELETAL SYSTEM None	<u></u>		<u>- ,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,</u>			
BODY CAVITIES						
*Mediastinum	(49)		(50)		(50)	
Lipoma					1	(2%)
ALL OTHER SYSTEMS	<u></u>	·····				
*Multiple organs	(49)		(50)		(50)	
Adenocarcinoma, NOS, metastatic			1	(2%)		

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle Control	Low Dose	High Dose
ANIMAL DISPOSITION SUMMARY	· · · · · · · · · · · · · · · · · · ·		
Animals initially in study	50	50	50
Natural death	8	4	9
Moribund sacrifice	4	8	11
Terminal sacrifice	37	38	29
Dosing accident	† 1		
Accidentally killed, NOS			1
Total animals with primary tumors** Total primary tumors Total animals with benign tumors Total benign tumors Total animals with malignant tumors Total anignant tumors	45 106 39 68 29 35	46 102 38 65 27 35	41 90 32 55 25 32
Total animals with secondary tumors##		3	
Total animals with secondary tumors## Total secondary tumors		3	
Total animals with secondary tumors##	3		3

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR **GAVAGE STUDY OF THPS (Continued)**

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 # Number of animals examined microscopically at this site
 # Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

t One vehicle control female, removed after 73 weeks on study, was inadvertently dosed as part of the low dose group for an unknown period of time.

					- 1									01			-									
ANIMAL NUMBER		0 0 1	0 0 2	0 0 3	0 0 4	0 0 5	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
WEEKS ON STUDY		1 0 6	1 0 6	1 0 6	1 0 6	0 9 0	1 0 6	0 9 4	1 0 6	1 0 4	1 0 6	1 0 6	0 9 9	1 0 6	1 0 6	1 0 6	1 0 6	0 8 1	1 0 6	1 0 6	1 0 6	1 0 6	0 8 5	1 0 6	1 0 6	0 7 3
INTEGUMENTARY SYSTEM																										
Skin Basal cell tumor Subcutaneous tissue Neurofibrosarcoma		N N	+	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ * X	+	+ +	+ +	+	+ + +	+ +	B B
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma		+	* x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	в
Alveolar/bronchiolar carcinoma Trachea		÷	÷	+	+	÷	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	в
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus		++++	++++	++++	++++	++++	++++	 + + + + + +	++++	++++	++++	++++	++++	++++	++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	 + + + +	++++	++++	++++	++++	8 8 8 8 8 8 8
CIRCULATORY SYSTEM Heart		+	+	 +	+	+	+		+		+		+			+			 +			 +	+	+	 +	 B
DIGESTIVE SYSTEM																										
Salivary gland Liver Neoplastic nodule		+ +	++	+ + X	+++++++++++++++++++++++++++++++++++++++	++	+++	+ +	+ +	++	+++	+ +	+ +	+ +	++	+++	+ +	+ + X	+++++++++++++++++++++++++++++++++++++++	+ +	+ +	+ +	+ +	+ +	+ +	B B
Bile duct Gallbladder & common bile duct		, N	ň	+ N	+ N	,+ N	, N	+ N	+ N	n+	+ N	, N	+ N	ň	+ N	, N	+ N	+ N	+ N	ň,	, N	, N	n+	ň,	+ N	B
Pancreas Esophagus Stomach		+++++	++++	++++	+++++	+++++	++++	++++	++++	++	+++++	+++++	++	+++++	++++	++++	+++++	++++	++++++	++++	++++++	++++	++++	+++++	++++	B B B
Somain Small intestine Large intestine		+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	- +	+ + +	+ + +	+	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	B B
URINARY SYSTEM Kidney	<u> </u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	в
Urinary bladder	,	÷	÷	÷	÷	÷	÷	÷	÷	-	÷	÷	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	÷	÷	÷	B
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Cortical adenoma		+ +	* *	* * +	* X +	+ x +	+ +	* *	+ X +	++	+ +	++	* *	+ +	- +	+ X +	* *	+ +	+ X +	++	+	* x * x * x	++	++	+	B B
Pheochromocytoma Ganglioneuroma Thyroid Follicular cell carcinoma		+	+	+	+ x	+	X +	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	B
C-cell adenoma C-cell carcinoma		x																			X					
Parathyroid Pancreatic islets Islet cell adenoma		+ +	+	+ +	+	+	+	+	+ +	++	+	+ +	+ +	++	+	+ +	+ +	+ +	+	+	+ +	+ +	+ +	+ +	+	B B
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS		N	+	+	+	+	+	+	+	N	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	в
Fibroadenoma Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS		N	N	X N	X N	X N	N	N X	N X	N	N	X N	X N	N X	X N	N	N	X N	X N	X N	X N X	X N	X N	N	N	В
Adenocarcinoma, NOS Adenocarcinoma, NOS Endometrial stromal polyp		+	+	+	+	+	+	+	+	+	+	+ X	+	+	+ ¥	+	+	+	+	*	+	+	+	+	+	В
Ovary		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	В
NERVOUS SYSTEM Brain		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	В
SPECIAL SENSE ORGANS Ear Fibrosarcoma		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	+	N	N	N	N	*	N	В
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell		N	N	N X	N X	N	N	N	N	N	N	N X	N	N X	N	N X	N	N	N	N	N	N X	N	N	N X	B

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS: VEHICLE CONTROL

+: Tissue examined microscopically
 -: Required tissue not examined microscopically
 X: Tumor incidence
 Necropsy, no autolysis, no microscopic examination
 S: Animal missexed

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

								• •				-/														
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL:
WEEKS ON STUDY	0 8 9	0 9 2	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	0 9 4	0 9 2	1 0 6	1 0 6	1 0 6	1 0 6	0 9 1	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	0 9 5	1 0 6	1 0 6	1 0 6	TISSUES
INTEGUMENTARY SYSTEM Skin Bassl cell tumor Subcutaneous tissue Neurofibrosarcoma	++++	+++	+++	+ +	++	+ +	+++	+++	+++	++	+++	+++	++	++	++	+ +	++	++	+ + +	+++	+ +	++	+ +	+ +	+++	*49 1 *49 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1 1
Trachea HEMATOPOIETIC SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	48
Bone marrow Spisen Lymph nodes Thymus	++	+ + - +	++++	++++	++++	++++	++++	++++	+ + + +	++++	++++	+ + + +	++++	++++	++++	++++	+ + + +	+ + + +	++++	++++	++++	++++	+ + + + +	++++	++++	49 49 46 48
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
DICESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Stamach Small intestine Large intestine	++++2+++++	++ +2+++++	++ +Z+++++	++ +2+++++	++ +z+++++	++ +Z+++++	++ +Z+++++	++x+z+++++	++ +Z+++++	++ +2+++++	++ +Z+++++	++ +Z+++++	++ +Z ++ + + + + + + + + + + + + +	++ +Z+++++	++ +Z+++++	++ +z+++++	49 49 3 49 *49 48 49 46 45 46									
URINARY SYSTEM Kidney Urinary bladder	++++	+++	+++	+++	+++	+ +	+	+++	+++	+++	+++	• + +	+ +	++++	+++	+++	+ +	++++	++++	+++	+++	+	++	+ +	+ +	48 46
ENDOCRINE SYSTEM Pituitary Adeaoma, NOS Adrenai Cortical adenoma Pheochromocytoma	+	* *	++	+ + X	+ +	+ +	* *	+ +	* *	- +	+ +	+ +	* *	+ +	** *	* *	++	* *	+ +	+ X +	+ X + X X	-	+ x + x + x x	+ x +	+ X +	48 23 47 3 4
Ganglioneuroma Thyroid Follicular cell carcinoma C-cell adenoma	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	1 49 1 2
C-cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma	++++	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	X + +	+ +	+	+ +	X + +	+ +	+ +	- +	+ +	+ +	+ +	+ +	+	~ +	+	- + X	3 35 48 1
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS	+	+	+	+	+	+	+	+	+	+	*	+	N	+	+	+	+	+	+	+	+	+	+	+	+	*49
Fibroadenoma Preputial/clitoral gland Carcinoma NOS	N	N	N	X N	X N	N	N	X N	N	X N	X X N	X N	N	X N	X N	N	N	X N	N	N	N	N	N	N	N X	21 *49 4
Adenoma, NOS Uterus Adenocarcinoma, NOS Endometrial stromal polyp	+	+	+	X +	X +	+	+	+	+	+	+ X	+	+ X	+	+	+	+ X	X +	+	+ X	+	+	+	+	+	4 49 1 6
Ovary NERVOUS SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Brain SPECIAL SENSE ORGANS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Ear Fibrosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*49
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N X	N X	N	N X	N X	N X	N X	N	N X	N X	N	N X	N X	N	N X	N X	N X	N	N X	N	N X	N	N	N X	*49 23

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

* Animals necropsied

ANIMAL NUMBER	0 0 1	0 0 2	0	0	0 0 5	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0	0 1 5	0 1 6	0	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	02	0 2 5
WEEKS ON STUDY		106	1 0 2	1 0 6	1 0 6	0 8 9	106	1 0 6	9 1 0 6	106	1 0 6	1 0 6	106	9 7 3	1 0 6	106	1 0 6	0 1 0 6	9 1 0 6	1 0 6	1 0 6	2 0 9 4	1 0 6	4 1 0 6	5 1 0 6
INTEGUMENTARY SYSTEM	·			•					-,		-1						-1	- 1		-			-1		
Skin Squamous cell papilloma Basal cell tumor	×	+	+	*	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+	+	+	+	+	+++++	+++	+	+++	+++	+	* *	+++	+	+	+++	+	+	+	+	+	+	+	+	+++
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes	+++++	++++	++++	 + + +	++++	+++++	++++	++++	++++	+++++	+++	+++++	 + + + +	+++	++++	++++	+++	++++	++++	++++	++++	+++++	+++++	++++	++++
Thymus Thymoma	-	+	-	+	+	+	+	÷	+	÷	+	÷	+	+	÷	÷	+	+	+	÷	+	+	+	÷	-
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver	++++	+++	+++	+++	+++	+++	++	++	+++	++	+++	+++	++	+ +	+++	+++	+++	++++	+++	+++	++++	++++	++++	++++	+++
Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus	+ N +	+ N +	+ N + -	X + N +	+N+	+ x +	+ N + -	+ N + -	+ N + +	+ N +	+ N + +	+ X +	+ 2 + -	+2+	+ X +	+ N +	+ N +	+ N + +	X + N +	+ N + +	+ N + -	+ x +	+ N + +	+ N + -	+ N + +
Stomach Stomach Large intestine	+++++++++++++++++++++++++++++++++++++++	+ + + +	++++	+ + + +	++++	++++	++++	++++	+ + + +	++++	++++	++++	++++	++++	++++	++++	++++	+ + + + +	++++	++++	++++	++++	++++	+++++	++++
U RINARY SYSTEM Kidney Urinary bladder	++++	+ +	+++	+++	+ +	++++	+++	+++	+++	+++	+++	+++	+ + +	+++	+++	+++	+ +	+ +	++++	+ +	+++	+++	+ + +	+++	+++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	*	+	+	* x	*	+	*	+	*	* *	+	* x	+	+	+	+	+	+	*	+	+	+	+	+
Adenocarcinoma, NOS Adrenal Cortical adenoma Cortical carcinoma	+	+	+	X +	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	*	+
Pheochromocytoma Pheochromocytoma, malignant Thyroid Follicular cell adenoma	+	+	Х +	+	+	+	+	+	+	х +	+	+	+	+	+	+	+	Х +	+	*	+	+	+	+	+
C-cell adenoma C-cell carcinoma Parathyroid Adenoma, NOS	+	-	+	+	*	+	+	+	+	+	-	+	+	-	+	+	+	+	+	+	+	X +	+	x +	+
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS		+	N	*	+	+	+	+	N	+	+	+	+	N	+	+	N	+	+	+	+	+	+	N	+
Papillary cystadenoma, NOS Fibroadenoma Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	N	X N X	N	X N	N X	N	X N X	X N	N	N	X N	X N	N	N	N	N	N X	N	N	N	N	N	N	N	N
Adenocarcinoma, NOS Cystadenoma, NOS Uterus Carcinoma, NOS	+	+	+ x	+	+	+	+	+	+	+	х +	+	+	+	X +	+	+	+	+	+	+	+	+	+	+
Adenocarcinoma, NOS Endometrial stromal polyp Ovary	X +	+	X +	+	+	+	x +	+	+	X +	+	+	÷	+	X +	+	+	+	X +	+	+	+	+	+	+
NERVOUS SYSTEM Brain Adenocarcinoma, NOS, invasive Astrocytoma	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X
ALL OTHER SYSTEMS Multiple organs, NOS Adenocarcinoma, NOS, metastatic Lymphocytic leukemia	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N
Leukemia, mononuclear cell	x	X			X	x								A	x						X		X		

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS: LOW DOSE

								10	on	un	ueu	.,														
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL:
WEEKS ON STUDY	1 0 6	1 0 6	0 8 1	1 0 6	0 8 6	1 0 6	1 0 6	0 8 5	1 0 6	0 9 3	1 0 4	0 9 3	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	0 8 7	1 0 6	1 0 6	1 0 6	0 8 4	1 0 6	1 0 6	TISSUES
INTECIUMENTARY SYSTEM Skin Squamous cell papilloma Basal cell tumor	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	*50 3 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	- +	+++	+++	++	+	++	+++	++	++	++	++	+	++	* *	+++	++	+ +	+ +	++	+++	++	+++	++	+++	+++	50 2 49
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus Thymoma	- + + + + + +	++++	++++	+ + + +	 +++++++	++++	+++++	+ + + + X	+ +++++++++++++++++++++++++++++++	+++++	+++1	+++++	++++++	 + + + +	+++1	+++++	+ + + +	++++++	++++	++++	+++++	+++++	+++++++	++++++	+++++	50 50 50 45 1
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile durt Galibladder & common bile duct	+ + + N	Z+ ++	+++ ×	+++ +	++ ++ N	++ +x	++ +z	+++ + + N	+++ + + N	++ ++ N	+++ + + X	++ +z	++ ++ X	++ ++ N	+ + + N	z+ '+	++ + X	+++ ++ +N	++ ++ N	++ ++ N	++ ++ N	++ +z	++++N	+++ ++ +N	++ ++ N	50 50 2 50 *50
Esophagus Stomach Small intestine Large intestine	+++++++++++++++++++++++++++++++++++++++	;+++++	+++++	:+++++	;++1 ·	;+++++	;+++++	+++++	;+++++	+++++	;+++++	;+++++	;+++++	+++++	;++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	;++	+++++	+++++	50 50 48 48 48 48
URINARY SYSTEM Kidney Urinary bladder	++++	++++	+++	+++	++++	++++	++++	+ +	+++	++++	+++	+ +	+++	++++	++	+++	+++	++++	++++	+++	++	+ +	-	+ +	+++	49 49
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Cortical adenoma	- +	++	* *	++	* *	* * +	++	* * +	+	++	+	* * +	* *	+	+ +	+	+ +	* *	+	* *	+ X +	* *	* *	+ x +	++	50 19 2 50 3
Cortical carcinoma Pheochromocytoma Pheochromocytoma, malignant Thyroid Follicular cell adenoma C-cell adenoma	+	+	+	+	+	+	+	x +	+	+	x +	+	÷	+	+	+	+	÷	+	+	+	X +	X +	+	+	1 4 2 50 1 2
C-cell carcinoma Parathyroid Adenoma, NOS	+	+	+	X +	-	+	+	-	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	-	+	+	2 44 1
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Papillary cystadenoma, NOS	-	+	+	+	+	*	+	*	+	N	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 3 1
Proputal/clitoral gland Carcinoma, NOS Adenoma, NOS Adenocarcinoma, NOS	N	X N X	N	N	N	N	N	N	N	N	N	X N	N	X N	X N	X N X	N	N	N	X N	N	N	N	X N	N	12 *50 1 5
Cystadenoma, NOS Uterus Carcinoma, NOS Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+ X	+	÷	+	1 1 50 1 1
Endometrial stromal polyp Ovary	_ _+	+	+	+	+	+	X +	+	X +	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	9 50
NERVOUS SYSTEM Brain Adenocarcinoma, NOS, invasive Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	50 2 1
ALL OTHER SYSTEMS Multiple organs, NOS Adenocarcinoma, NOS, metastatic Lymphocytic leukemia	[N	N	N	N		N		N	N		N		N				N				N X	N	N	N	*50 1 1
Leukemia, mononuclear cell	X					X		X			X		X		Χ	X	X		л 	X						19

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

* Animals necropsied

																			_			_				
ANIMAL NUMBER	000		0 0 2	0 0 3	0 0 4	0 0 5	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	-0 1 9	0 2 0	0 2 1	0 2 2	023	0 2 4	0 2 5
WEEKS ON STUDY			1 0 6	0 9 6	1 0 6	0 5 6	0 6 3	1 0 6	1 0 6	0 2 1	0 8 2	1 0 6	0 9 0	1 0 6	1 0 6	1 0 0	1 0 6	0 8 0	1 0 6	1 0 5	1 0 3	0 7 5	1 0 6	1 0 6	0 8 9	0 2 6
INTEGUMENTARY SYSTEM																										
Skin Squamous cell papilloma Basal cell tumor	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM																	·									
Lungs and bronchi Alveolar/bronchiolar carcinoma Trachea			+ +	+	+ +	+	+ +	+	+ +	+	++	+	+ +	+ +	+ +	+ +	+ +	+ +	+	+	+ +	+ +	+ +	+ +	+ +	+
HEMATOPOIETIC SYSTEM																								-		
Bone marrow Spieen		-	+++	++++	+++++++++++++++++++++++++++++++++++++++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	++++	+++++++++++++++++++++++++++++++++++++++	++	++++	+++++++++++++++++++++++++++++++++++++++	++	+++	+++	++
Lymph nodes	-	+	÷	÷	-	÷	÷	÷	÷	<u> </u>	+	÷	+	+++++++++++++++++++++++++++++++++++++++	+	+	÷	÷	÷	÷÷	÷	÷	+	+	+	+
Thymus	-	۲	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+
CIRCULATORY SYSTEM Heart		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver			++++	+++	-+	+++	++++	++	+++	++	+++	+++	+++	++++	+	+++	+++	+++	++	++	++	+++	+++	+++	++	+++
Neoplastic nodule			÷	÷						÷													X			
Bile duct Gallbladder & common bile duct	1	1	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	+ N	Ň	Ň	Ň
Pancreas		ŀ	+	+++	++++	++++	-	+	+++++++++++++++++++++++++++++++++++++++	++++	++++	+	+	+++	+++++	+++	+++	++	+++	++	+++	++	+++	+++	++	++
Esophagus Stomach			+++++	+	++	+	+	+++	+++++++++++++++++++++++++++++++++++++++	+	+	++++	+++	++	+	++	+	+	++	-	+	+	++	+	-	+
Squamous cell papilloma	ĺ																									+
Small intestine Large intestine		۴ ۲	+	+	++	+	-	++	++	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	-	÷
URINARY SYSTEM																										
Kidney Urinary bladder	-	+ ⊦	+ +	+ +	+ +	+ +	+ -	+ +	+ +	+ -	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	_	+ +
ENDOCRINE SYSTEM Pituitary		+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma, NOS Adenoma, NOS	2	,			v						x	x			x								x	x	х	
Adrenal	:		+	+	÷	+	+	+	+	+	÷	÷	+	+	-	+	* x	+	+	+	+	+	÷ x	+	+	+
Cortical adenoma Pheochromocytoma									x								х			х			х			
Thyroid	·	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Follicular cell adenoma Parathyroid		۲	_	+	+	-	+		+	-	+	+	+	+	_		+		+	_	+	+	+	+	+	+
Pancreatic islets Islet cell adenoma	•	٠	+	+	+	+	-	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
REPRODUCTIVE SYSTEM Mammary gland		+	+	+	+	N	N	+	N	N	+	N	+	+	+	N	+	+	+	+	+	+	+	+	+	+
Adenocarčinoma, NOS Papillary cystadenoma, NOS																							х			
Fibroadenoma								X						X					X					•••		
Preputial/clitoral gland Carcinoma, NOS	I	1	N	Ν	N	N	N	N	N	N	N	NX	N	N	N	Ν	N	Ν	N	N	Ν	N	N	Ν	Ν	N
Adenoma, NOS														Х			X									
Adenocarcinoma, NOS Uterus		+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+
Endometrial stromal polyp Ovary	ĺ.	•	X	X	-			X	X	-	X	·			ـ	-	<u>ــ</u>	<u>ـ</u>	X	ц		т	ъ	X	ـــ	L
Granulosa cell tumor			~	٣	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	-	Ŧ	Ŧ	-	-	Ŧ	Ŧ	-	Ŧ	Ŧ	7
NERVOUS SYSTEM							_					·														
Brain Astrocytoma		÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
BODY CAVITIES																										
Mediastinum Lipoma	1	V	N	N	N	N	Ν	Ν	N	Ν	N	N	N	N X	N	N	N	Ν	N	N	N	N	N	N	Ν	N
ALL OTHER SYSTEMS			N	N	N	N		N7	N	N7	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Multiple organs, NOS									EN I							CN .	1 N	1.1	- IN	IN		IN IN	1	IN	N X	14

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS: HIGH DOSE

								(C	/UN	un	uec	U .														
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL:
WEEKS ON STUDY	105	1 0 6	0 3 7	1 0 6	1 0 6	1 0 6	1 0 6	0 9 4	1 0 6	1 0 6	1 0 0	1 0 6	0 9 2	1 0 2	1 0 0	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	1 0 6	TISSUES
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Basal cell tumor	+	+	+	+ X	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Trachea	A A	+++	+	+++	+ x +	+++	+++	+++	+++	+++	+++	+ +	+ +	++	+	+++	++	+++	+++	+++	+ +	+++	+++	+++	+++	49 1 45
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+ A A A	-++-	+++++	+++-	+++	+++++	++++++	++++	+++++	++++	++++	+++++	++++	++++	++++	+++++	++++	+++++	++++	++++	+ + + + +	++++	+++++	+++++	+++-	48 49 47 43
CIRCULATORY SYSTEM Heart	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Galiblader & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Small intestine Large intestine	~~ ~N~~~ ~~	++ +Z+++ ++	+ +z+	++ +Z+++×++	++ +Z+++ ++	++ +Z+++ ++	++ +2+++ ++	++ +2+++ ++	++ +2+++ ++	++ +Z+++ ++	++ +Z+++ ++	++x+x++ ++ ++	++ +2+++ ++	++ +2+++ ++	++ +2++1 11	++ +Z+++ ++	++ +2+++ ++	++ +z+++ ++	++ +++ ++	++ +z+++ ++	++ +2+++ ++	++ +Z+++ ++	++ +Z+++ ++	+++ Z ++++++	++ +Z+++ ++	46 49 2 49 *50 48 48 48 44 1 45 45
URINARY SYSTEM Kidney Urinary bladder		 + +	+++	 + +	+++	+++	++++	+++	++++	+++	++	+++	+++	+++	+	++++	+++	++++	++++	+++	+ +	+ +	+++	++++	++++	48 45
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular cell adenoma Pancreatic islets	A A A A	+ x+ + + -+	- + -+	+ + + +	* * + + +	+ + + -+	+ + x+x++	+ x + + + + + + + + + + + + + + + + + +	+ + + +	+ + + + + + + + + + + + + + + + + + + +	+ X+ + +	+ X + + +	++++	+ x + + -+	+ x + + + + + +	+ + X + +	+ + + + +	- + + +	+ + + ++	+ x+ + + +	+ + + + +	+ + X + + +	+ + + + + +	+ + + +	+ X + + +	46 1 16 48 4 3 47 1 36 48
Islet cell adenoma REPRODUCTIVE SYSTEM		x																								2
Mammary gland Adenocarcinoma, NOS Papillary cystadenoma, NOS Fibroadenoma Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	+ N	+ X N	N N	+ N	+ XNX	+ N	+ N	+ N	N	+ N	+ X N	* N	+ N	+ N	+ N	+ N	+ N X	+ N	+ X N	+ N X	+ N X	+ X N	+ N X	N N X	+ N	*50 1 8 *50 5 4
Adenocarcinoma, NOS Uterus Endometrial stromal polyp Ovary Granulosa cell tumor	A A	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ x +	+ +	+ +	+ + x	+ +	+ X +	* *	+ +	+ +	+ X +	+ +	+ +	+ X +	+ +	+ +	1 49 12 49 1
NERVOUS SYSTEM Brain Astrocytoma	•		-	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	47
BODY CAVITIES Mediastinum Lipoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N X	N X	N X	N	N	N X	N X	N X	N	N X	N X	N X	N	N X	N	*50 22

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

* Animals necropsied

	Vehicle Control	5 mg/kg	10 mg/kg
Skin: Squamous Cell Papilloma	······································		<u></u>
Overall Rates (a)	0/49 (0%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	0.0%	7.9%	3.4%
Terminal Rates (c)	0/37 (0%)	3/38 (8%)	1/29(3%)
Week of First Observation			
	 D . 0.000	106 D=0.186	106 D=0.451
Life Table Tests (d)	P = 0.303	P = 0.126	P = 0.451
Incidental Tumor Tests (d)	P = 0.303	P = 0.126	P = 0.451
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.384	P = 0.125	P=0.505
Jamptonoiotia System, Mananualaan Call L	ulanta		
Hematopoietic System: Mononuclear Cell Le Overall Rates (a)		10/50 (280)	99/50 (AAQ.)
	23/49 (47%)	19/50 (38%)	22/50 (44%)
Adjusted Rates (b)	55.8%	44.8%	53.8%
Terminal Rates (c)	19/37 (51%)	15/38 (39%)	11/29 (38%)
Week of First Observation	91	85	75
Life Table Tests (d)	P = 0.315	P = 0.259N	P = 0.341
Incidental Tumor Tests (d)	P = 0.503	P = 0.268N	P = 0.580N
Cochran-Armitage Trend Test (d)	P = 0.425N		
Fisher Exact Test	0.74011	P = 0.243 N	P = 0.464 N
Iematopoietic System: Leukemia			
Overall Rates (a)	23/49 (47%)	20/50 (40%)	22/50 (44%)
Adjusted Rates (b)	55.8%	45.9%	53.8%
Terminal Rates (c)		15/38 (39%)	11/29 (38%)
	19/37 (51%)		
Week of First Observation	91	73	75
Life Table Tests (d)	P = 0.315	P = 0.327 N	P = 0.341
Incidental Tumor Tests (d)	P = 0.518N	P = 0.268N	P = 0.580N
Cochran-Armitage Trend Test (d)	P = 0.425N		
Fisher Exact Test		P = 0.311N	P = 0.464N
Liver: Neoplastic Nodule			
Overall Rates (a)	3/49 (6%)	2/50 (4%)	2/49 (4%)
Adjusted Rates (b)	7.3%	5.3%	6.9%
Terminal Rates (c)	2/37 (5%)	2/38 (5%)	2/29 (7%)
Week of First Observation	81	106	106
Life Table Tests (d)	P = 0.501N	P = 0.490N	P = 0.600N
			P = 0.618N
Incidental Tumor Tests (d)	P=0.514N	P = 0.504N	P=0.010N
Cochran-Armitage Trend Test (d)	P = 0.406N		.
Fisher Exact Test		P = 0.490N	P = 0.500N
Pituitary: Adenoma			
Overall Rates (a)	23/46 (50%)	19/50 (38%)	16/46 (35%)
Adjusted Rates (b)	56.9%	42.3%	43.8%
Terminal Rates (c)	18/35 (51%)	13/38 (34%)	9/28 (32%)
Week of First Observation	90	81	82
Life Table Tests (d)	P = 0.269N	P = 0.219N	P = 0.315N
Incidental Tumor Tests (d)	P = 0.147N	P = 0.206N	P = 0.148N
Cochran-Armitage Trend Test (d)	P = 0.084N	2 0120011	* *******
Fisher Exact Test	r 0,00 art	P = 0.164N	P = 0.103 N
'ituitary: Adenoma, Adenocarcinoma, or Ca	rcinoma		
Overall Rates (a)	23/46 (50%)	21/50 (42%)	17/46 (37%)
Adjusted Rates (b)			
	56.9%	46.9%	46.8%
Terminal Rates (c)	18/35 (51%)	15/38 (39%)	10/28 (36%)
Week of First Observation	90	81	82
Life Table Tests (d)	P = 0.352N	P = 0.338N	P = 0.394N
	P = 0.217N	P = 0.335N	P = 0.210N
Incidental Tumor Tests (d)	F - 0.2171	r = 0.00011	1 - 0.21011
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.123N	1 - 0.00011	1 - 0.21011

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS
	Vehicle Control	5 mg/kg	10 mg/kg
drenal: Cortical Adenoma		· <u>·····</u> ······························	
Overall Rates (a)	3/47 (6%)	3/50 (6%)	4/48 (8%)
Adjusted Rates (b)	8.1%	7.9%	13.7%
Terminal Rates (c)	3/37 (8%)	3/38 (8%)	3/28 (11%)
Week of First Observation	106	106	105
Life Table Tests (d)	P=0.287	P = 0.651 N	P = 0.356
Incidental Tumor Tests (d)	P=0.338	P = 0.651 N	P = 0.429
Cochran-Armitage Trend Test (d)	P = 0.431		
Fisher Exact Test		P = 0.631 N	P = 0.512
drenal: Cortical Adenoma or Carcinoma			
Overall Rates (a)	3/47 (6%)	4/50 (8%)	4/48 (8%)
Adjusted Rates (b)	8.1%	9.9%	13.7%
Terminal Rates (c)	3/37 (8%)	3/38 (8%)	3/28 (11%)
Week of First Observation	106	85	105
Life Table Tests (d)	P = 0.291	P = 0.511	P = 0.356
Incidental Tumor Tests (d)	P = 0.337	P = 0.512	P = 0.429
Cochran-Armitage Trend Test (d)	P=0.435		
Fisher Exact Test		P=0.535	P = 0.512
drenal: Pheochromocytoma			
Overall Rates (a)	4/47 (9%)	4/50 (8%)	3/48 (6%)
Adjusted Rates (b)	10.8%	10.0%	10.7%
Terminal Rates (c)	4/37 (11%)	2/38 (5%)	3/28 (11%)
Week of First Observation	106	102	106
Life Table Tests (d)	P = 0.562N	P = 0.625N	P = 0.651N
Incidental Tumor Tests (d)	P = 0.458N	P = 0.602N	P = 0.651N
Cochran-Armitage Trend Test (d)	P = 0.412N		
Fisher Exact Test		P = 0.607 N	P = 0.488N
drenal: Pheochromocytoma or Pheochromo	cytoma, Malignant		
Overall Rates (a)	4/47 (9%)	6/50 (12%)	3/48 (6%)
Adjusted Rates (b)	10.8%	14.3%	10.7%
Terminal Rates (c)	4/37 (11%)	3/38 (8%)	3/28 (11%)
Week of First Observation	106	84	106
Life Table Tests (d)	P=0.568	P = 0.389	P=0.651N
Incidental Tumor Tests (d)	P=0.482N	P = 0.411	P = 0.651N
Cochran-Armitage Trend Test (d)	P = 0.416N		
Fisher Exact Test	·	P=0.410	P=0.488N
hyroid: C-Cell Carcinoma			
Overall Rates (a)	3/49 (6%)	2/50 (4%)	0/47 (0%)
Adjusted Rates (b)	7.5%	4.8%	0.0%
Terminal Rates (c)	2/37 (5%)	1/38 (3%)	0/29 (0%)
Week of First Observation	106	94	••
Life Table Tests (d)	P = 0.109N	P = 0.501 N	P = 0.161N
Incidental Tumor Tests (d)	P = 0.122N	P = 0.521 N	P = 0.176N
Cochran-Armitage Trend Test (d)	P = 0.086N		
Fisher Exact Test		P = 0.490N	P = 0.129 N
hyroid: C-Cell Adenoma or Carcinoma			
Overall Rates (a)	5/49 (10%)	4/50 (8%)	0/47 (0%)
Adjusted Rates (b)	12.8%	9.6%	0.0%
Terminal Rates (c)	4/37 (11%)	2/38 (5%)	0/29 (0%)
Week of First Observation	91	87	••
Life Table Tests (d)	P = 0.048N	P = 0.497N	P = 0.056N
Incidental Tumor Tests (d)	P = 0.043N	P = 0.510N	P = 0.062N
Cochran-Armitage Trend Test (d)	P = 0.032N		
Fisher Exact Test		P = 0.487N	P=0.031N

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle Control	5 mg/kg	10 mg/kg
Mammary Gland: Fibroadenoma			
Overall Rates (a)	21/49 (43%)	12/50 (24%)	8/50 (16%)
Adjusted Rates (b)	48.1%	30.6%	26.2%
Terminal Rates (c)	15/37 (41%)	11/38 (29%)	7/29 (24%)
Week of First Observation	81	93	100
Life Table Tests (d)	P = 0.014N	P = 0.046N	P = 0.026N
Incidental Tumor Tests (d)	P = 0.008N	P = 0.045N	P = 0.015N
Cochran-Armitage Trend Test (d)	P = 0.002N	1 -0.04010	1 -0.01014
Fisher Exact Test	1 = 0.0021	P = 0.037 N	P = 0.003 N
lammary Gland: Fibroadenoma or Papillary (Cystadenoma		
Overall Rates (a)	(e) 21/49 (43%)	13/50 (26%)	9/50 (18%)
Adjusted Rates (b)	48.1%	33.2%	29.5%
Terminal Rates (c)	15/37 (41%)	12/38 (32%)	8/29 (28%)
Week of First Observation			
Life Table Tests (d)	81 B-0.028N	93	100
	P = 0.028N	P = 0.070N	P = 0.046N
Incidental Tumor Tests (d)	P = 0.016N	P = 0.070 N	P = 0.028N
Cochran-Armitage Trend Test (d)	P = 0.004 N	D 0 00035	B • • • • • • •
Fisher Exact Test (d)		P = 0.060 N	P = 0.006N
fammary Gland: Adenocarcinoma	0/40 (072)	0/50 / 6 ~ >	1 (50 (00))
Overall Rates (a)	0/49 (0%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	0.0%	7.3%	3.4%
Terminal Rates (c)	0/37 (0%)	2/38 (5%)	1/29 (3%)
Week of First Observation	<u> </u>	85	106
Life Table Tests (d)	P = 0.312	P = 0.125	P = 0.451
Incidental Tumor Tests (d)	P = 0.297	P = 0.117	P = 0.451
Cochran-Armitage Trend Test (d)	P=0.384		
Fisher Exact Test		P = 0.125	P = 0.505
Mammary Gland: Fibroadenoma, Papillary C	ystadenoma, or Adenocard	inoma	
Overall Rates (a)	(e) 21/49 (43%)	15/50 (30%)	10/50 (20%)
Adjusted Rates (b)	48.1%	37.1%	32.9%
Terminal Rates (c)	15/37 (41%)	13/38 (34%)	9/29 (31%)
Week of First Observation	81	85	100
Life Table Tests (d)	P = 0.054 N	P = 0.148N	P = 0.076N
Incidental Tumor Tests (d)	P = 0.035N	P = 0.151N	P = 0.050 N
Cochran-Armitage Trend Test (d)	P = 0.009 N		
Fisher Exact Test (d)		P = 0.131 N	P = 0.012N
litoral Gland: Adenoma			
Overall Rates (a)	4/49 (8%)	5/50 (10%)	4/50 (8%)
Adjusted Rates (b)	10.8%	13.2%	13.8%
Terminal Rates (c)	4/37 (11%)	5/38 (13%)	4/29 (14%)
Week of First Observation	106	106	106
Life Table Tests (d)			
	P = 0.426	P = 0.517	P = 0.505
Incidental Tumor Tests (d)	P = 0.426	P = 0.517	P = 0.505
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.558N	P = 0.513	P = 0.631 N
litoral Gland: Adenoma or Cystadenoma Overall Rates (a)	4/49 (8%)	6/50 (12%)	4/50 (8%)
Adjusted Rates (b)	10.8%	15.8%	13.8%
Terminal Rates (c)			
	4/37 (11%)	6/38(16%)	4/29 (14%)
Week of First Observation	106	106 R = 0.285	106
Life Table Tests (d)	P = 0.418	P = 0.385	P = 0.505
Incidental Tumor Tests (d)	P = 0.418	P = 0.385	P = 0.505
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.556N		P = 0.631 N
		P = 0.383	

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle Control	5 mg/kg	10 mg/kg
Clitoral Gland: Carcinoma	·····	······································	
Overall Rates (a)	4/49 (8%)	1/50 (2%)	5/50 (10%)
Adjusted Rates (b)	10.3%	2.6%	17.2%
Terminal Rates (c)	3/37 (8%)	1/38 (3%)	5/29 (17%)
Week of First Observation	94	106	106
Life Table Tests (d)	P = 0.308	P = 0.177 N	P = 0.361
Incidental Tumor Tests (d)	P = 0.349	P = 0.175N	P = 0.411
Cochran-Armitage Trend Test (d)	P = 0.431		
Fisher Exact Test		P = 0.175N	P = 0.513
Clitoral Gland: Carcinoma or Adenocarcin	oma		
Overall Rates (a)	4/49 (8%)	2/50 (4%)	6/50 (12%)
Adjusted Rates (b)	10.3%	5.3%	20.7%
Terminal Rates (c)	3/37 (8%)	2/38 (5%)	6/29 (21%)
Week of First Observation	94	106	106
Life Table Tests (d)	P = 0.184	P = 0.330N	P = 0.236
Incidental Tumor Tests (d)	P = 0.213	P = 0.328N	P = 0.275
Cochran-Armitage Trend Test (d)	P = 0.300		D 0.000
Fisher Exact Test		P = 0.329N	P = 0.383
Clitoral Gland: Adenoma, Cystadenoma, A			
Overall Rates (a)	8/49 (16%)	8/50 (16%)	10/50 (20%)
Adjusted Rates (b)	20.8%	21.1%	34.5%
Terminal Rates (c)	7/37 (19%)	8/38 (21%)	10/29 (34%)
Week of First Observation	94	106	106
Life Table Tests (d)	P = 0.167	P = 0.589N	P = 0.201
Incidental Tumor Tests (d)	P = 0.187	P = 0.587N	P = 0.229
Cochran-Armitage Trend Test (d)	P = 0.363		D 0.410
Fisher Exact Test		P = 0.590N	P = 0.416
Jterus: Endometrial Stromal Polyp			10110 /01-1-1
Overall Rates (a)	6/49 (12%)	9/50 (18%)	12/49 (24%)
Adjusted Rates (b)	16.2%	23.0%	36.2%
Terminal Rates (c)	6/37 (16%)	8/38 (21%)	9/29 (31%)
Week of First Observation	106	102	82
Life Table Tests (d)	P = 0.024	P = 0.307	P = 0.035
Incidental Tumor Tests (d)	P = 0.035	P = 0.304	P = 0.045
	P = 0.075		
Cochran-Armitage Trend Test (d) Fisher Exact Test	P=0.075	P = 0.303	P = 0.096

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) An adenoma, NOS, was also observed in an animal with a fibroadenoma.

		Incidence in Controls	
Study	Polyp	Sarcoma	Polyp or Sarcoma
fistorical Incidence in All Water	Vehicle Controls		
CHPS (b)	6/49	0/49	6/49
THPC (b)	10/50	0/50	10/50
Chlorpheniramine maleate (b)	11/49	0/49	11/49
TOTAL	27/148 (18.2%)	0/148 (0.0%)	27/148 (18.2%)
SD (c)	5.33%	0.0%	5.33%
lange (d)			
High	11/49	0/50	11/49
Low	6/49	0/50	6/49
overall Historical Incidence in U	ntreated Controls		
TOTAL	383/1,750 (21.9%)	15/1/750 (0.9%)	396/1,750 (22.6%)
SD (c)	7.57%	1.58%	7.61%
lange (d)			
High	18/49	3/48	18/49
Low	4/50	0/87	4/50

TABLE B4. HISTORICAL INCIDENCE OF UTERINE ENDOMETRIAL STROMAL TUMORS IN FEMALEF344/N RATS (a)

(a) Data as of August 3, 1984, for studies of at least 104 weeks
(b) Battelle Columbus Laboratories
(c) Standard deviation
(d) Range and SD are presented for groups of 35 or more animals.

	Vehicle	Control	Low D	ose	High I	Dose
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED	49		50		50	
ANIMALS REAMINED HISTOPATHOLOGICALLY			50		50	
NTEGUMENTARY SYSTEM		<u></u>				
*Skin	(49)		(50)		(50)	
Wound, NOS			. 1	(2%)		(4%)
Epidermal inclusion cyst		(07)			-	(2%)
Ulcer, NOS	1	(2%)	1	(2%)	. L	(2%)
Ulcer, acute	(49)		(50)	(270)	(50)	
*Subcutaneous tissue	(47)			(2%)	(00)	
Inflammation, active chronic Inflammation, chronic focal			-		1	(2%)
Necrosis, ischemic			1	(2%)	•	(2,0)
RESPIRATORY SYSTEM	·· <u>·</u> ·· [_]		<u></u>		<u></u>	
#Lung	(49)		(50)		(49)	
Aspiration, foreign body			2	(4%)	-	
Ectopia						(2%)
Emphysema, alveolar						(2%)
Congestion, NOS		(0.0)		(0.0)		(2%)
Congestion, acute	4	(8%)		(8%)	. 2	(4%)
Edema, NOS		(0~)	L	(2%)		
Hemorrhage	-	(2%)				
Lymphocytic inflammatory infiltrate		(2%)	1	(2%)		
Inflammation, interstitial	1	(2%)	1	(270)	1	(2%)
Inflammation, acute/chronic	0	(60)			•	(2,0)
Pneumonía, interstitial chronic		(6%) (2%)	3	(6%)		
Inflammation, granulomatous focal		(2%)	-	(2%)	1	(2%)
Alveolar macrophages		(2%)		(4%)		(2%)
Hyperplasia, alveolar epithelium #Lung/alveoli	(49)	(270)	(50)	(4,2)	(49)	
Lymphocytic inflammatory infiltrate	(40)			(2%)	(,	
HEMATOPOIETIC SYSTEM			<u></u>			
#Bone marrow	(49)		(50)		(48)	
Necrosis, ischemic			_			(2%)
Myelofibrosis		(4%)	7	(14%)	4	(8%)
Hyperplasia, hematopoietic	1	(2%)		(97)	9	(4%)
Hyperplasia, granulocytic	•	(10)	4	(8%)	4	(4970)
Hyperplasia, reticulum cell	2	(4%)			1	(2%)
Aplasia, hematopoietic	(40)		(50)		(49)	
#Spleen Hemorrhage.chronic	(49)	(2%)	(50)		(43)	
nemorrnage, chronic Inflammation, granulomatous focal		(4%)				
Depletion, lymphoid	4	\ = /¥/			1	(2%)
#Splenic capsule	(49)		(50)		(49)	
Rupture		(2%)				
#Splenic follicles	(49)		(50)		(49)	
Depletion, lymphoid		(4%)				
#Splenic red pulp	(49)		(50)		(49)	
Inflammation, granulomatous focal			2	(4%)	-	
Fibrosis, multifocal						(2%)
Pigmentation, NOS						(2%)
#Perisplenic region	(49)		(50)		(49)	
Hemorrhage, chronic		(2%) (2%)				
Inflammation, chronic focal						

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS INTHE TWO-YEAR GAVAGE STUDY OF THPS

	Vehicle	Control	Low I	lose	High	Dose
HEMATOPOIETIC SYSTEM (Continued)						
#Lymph node	(46)		(50)		(47)	
Plasmacytosis	(,			(2%)	(/	
#Mandibular lymph node	(46)		(50)	(=)	(47)	
Cyst, NOS		(4%)	,		()	
Multiple cysts			1	(2%)		
Congestion, NOS	1	(2%)				
Hemorrhage	5	(11%)	5	(10%)	8	(17%)
Inflammation, active chronic	1	(2%)			1	(2%)
Inflammation, granulomatous focal			1	(2%)	1	(2%)
Plasmacytosis	38	(83%)	37	(74%)	37	(7 9%)
#Pancreatic lymph node	(46)		(50)		(47)	
Congestion, NOS		(2%)				
Inflammation, granulomatous focal	1	(2%)				
#Mesenteric lymph node	(46)		(50)		(47)	
Inflammation, granulomatous focal		(2%)			1	(2%)
Plasmacytosis	1	(2%)				
Hematopoiesis			1	(2%)		
#Renal lymph node	(46)		(50)		(47)	
Inflammation, granulomatous focal			1	(2%)		
#Inguinal lymph node	(46)		(50)		(47)	
Cyst, NOS		(2%)				
#Thymic lymph node	(46)		(50)		(47)	
Hemorrhage				(6%)	1	(2%)
Inflammation, chronic focal				(2%)		
Inflammation, granulomatous focal	2	(4%)	3	(6%)		(4%)
Plasmacytosis						(4%)
#Thymus	(48)		(45)		(43)	
Necrosis, diffuse					1	(2%)
Depletion, lymphoid	1		2	(4%)		
Hyperplasia, epithelial		(2%)				
#Thymic cortex	(48)		(45)		(43)	
Necrosis, diffuse						(2%)
Depletion, lymphoid	(10)					(5%)
#Thymic medulla	(48)	(07)	(45)	(0.5.)	(43)	
Hyperplasia, epithelial	1	(2%)	1	(2%)		
IRCULATORY SYSTEM						
#Right atrium	(49)		(50)		(49)	
Dilatation, NOS	,	(4%)		(4%)		
#Left ventricle	(49)		(50)		(49)	
Thrombus, mural	1	(2%)				
#Myocardium	(49)		(50)		(49)	
Degeneration, NOS		(90%)		(84%)		(76%)
#Myocardium of right atrium	(49)		(50)		(49)	
Degeneration, NOS	2	(4%)				
*Coronary artery	(49)		(50)		(50)	
Perivasculitis				(2%)		
*Mesenteric artery	(49)		(50)		(50)	
Aneurysm						(2%)
#Uterus	(49)		(50)		(49)	
Thrombosis, NOS				(2%)		
#Uterine serosa	(49)		(50)		(49)	
Aneurysm		(2%)				
Thrombus, organized	1	(2%)				

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle	Control	Low [lose	High l	Dose
IGESTIVE SYSTEM						
*Mucosa of tongue	(49)		(50)		(50)	
Hyperkeratosis						(2%)
Acanthosis						(2%)
#Salivary gland	(49)		(50)		(46)	
Dilatation/ducts			_		1	(2%)
Atrophy, focal				(2%)		
#Liver	(49)		(50)		(49)	
Inflammation, granulomatous focal	26	(53%)	17	(34%)		(39%)
Necrosis, focal						(2%)
Basophilic cyto change	37	(76%)		(78%)	20	(41%)
Eosinophilic cyto change				(2%)		(00)
Clear cell change		(2%)	1	(2%)	4	(8%)
Hyperplasia, focal		(2%)	(50)		(40)	
#Periportal bile duct	(49)	(00)	(50)		(49)	
Inflammation, acute/chronic		(2%)	(EA)		(40)	
#Liver/centrilobular	(49)	(2%)	(50)		(49)	
Congestion, chronic passive Necrosis, focal	1	(470)	1	(2%)		
#Liver/periportal	(49)		(50)	(270)	(49)	
Lymphocytic inflammatory infiltrate	(48)		(00)			(2%)
Cytoplasmic vacuolization			1	(2%)		(2%) (12%)
#Liver/hepatocytes	(49)		(50)	(470)	(49)	(1470)
* Liver/nepatocytes Necrosis, focal	(49)	(2%)	, - ,	(2%)		(2%)
Cytoplasmic vacuolization		(2%)		(4%)		(4%)
#Bile duct	(49)	(270)	(50)	(470)	(49)	(470)
Inflammation, chronic focal	(43)		x = - <i>y</i>	(2%)		(2%)
Hyperplasia, focal	27	(55%)		(64%)	-	(51%)
Hyperplasia, cystic	21	(3070)	52	(0470)		(2%)
#Pancreas	(48)		(50)		(48)	
Inflammation, chronic focal		(2%)	(00)		(40)	
Atrophy, focal		(4%)				
#Pancreatic duct	(48)		(50)		(48)	
Inflammation, acute/chronic	((00)			(2%)
#Pancreatic acinus	(48)		(50)		(48)	
Atrophy, focal	,	(23%)		(34%)		(23%)
#Stomach	(46)	((48)	,	(44)	(,
Inflammation, acute focal		(2%)	(·/	
#Gastric fundal gland	(46)		(48)		(44)	
Hyperplasia, focal		(2%)	(·/	
#Gastric submucosa	(46)		(48)		(44)	
Inflammation, active chronic		(2%)				
#Cardiac stomach	(46)		(48)		(44)	
Hyperkeratosis			1	(2%)		(2%)
Acanthosis			1	(2%)	1	(2%)
#Gastric fundus	(46)		(48)		(44)	
Ulcer, acute						(2%)
Inflammation, chronic focal	1	(2%)				
#Colon	(46)		(48)		(45)	
Parasitism	3	(7%)				
#Cecum	(46)		(48)		(45)	
Inflammation, active chronic					1	(2%)
	<u></u>			~ ~		
RINARY SYSTEM #Kidney	(48)		(49)		(48)	
Hydronephrosis	(10)			(4%)	(10)	
Inflammation, active chronic			-	、 <i>/</i>	1	(2%)
Nephropathy	41	(85%)	36	(73%)		(77%)
Nephrosis, NOS		(2%)			2.	
Infarct, focal	-				1	(2%)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

$(1, \dots, 2^{k})$	Vehicle	Control	Low I	lose	High 1	Dose
URINARY SYSTEM (Continued)		· · · · · · · · · · · · · · · · · · ·	· .			
#Kidney/cortex	(48)		(49)		(48)	
Cyst, NOS			, ,			(2%)
Multiple cysts			1	(2%)		
#Kidney/medulla	(48)		(49)		(48)	
Mineralization	(10)			(2%)	(10)	
#Kidney/tubule	(48)		(49)	(=,,,,	(48)	
Pigmentation, NOS	(((2%)
*Ureter	(49)		(50)		(50)	
Dilatation, NOS			1	(2%)		
Hyperplasia, epithelial			1	(2%)		
NDOCRINE SYSTEM						
#Anterior pituitary	(46)		(50)		(46)	
Embryonal duct cyst	1	(2%)				
Cyst, NOS			3	(6%)	4	(9%)
Multiple cysts	7	(15%)	11	(22%)	3	(7%)
Hemorrhage				(2%)		
Hemorrhagic cyst	4	(9%)	2	(4%)	4	(9%)
Necrosis, focal				(2%)		
Hyperplasia, focal		(17%)		(30%)	14	(30%)
Angiectasis		(2%)		(2%)		
#Adrenal/capsule	(47)		(50)		(48)	
Ectopia	-	(0~)	2	(4%)		
Cytoplasmic vacuolization		(2%)			(40)	
#Adrenal cortex	(47)		(50)	(994)	(48)	
Congestion, NOS Hemorrhage		(201)	1	(2%)		
Hemorrhage Necrosis, focal	1	(2%)		(404)	· À	(8%)
Necrosis, local Necrosis, diffuse				(4%) (2%)	4	(070)
Cytoplasmic vacuolization	10	(21%)		(276)	19	(25%)
Basophilic cyto change		(21%) (2%)	11	(4470)	12	(4070)
Focal cellular change		(2%)	0	(4%)	3	(6%)
Eosinophilic cyto change	2	(470)		(470) (2%)	3	(070)
Cytologic alteration, NOS			1	(270)	1	(2%)
Cell size alteration	1	(2%)	1	(2%)	1	(470)
Hyperplasia, focal		(26%)		(18%)	7	(15%)
#Adrenal medulla	(47)	(20 %)	(50)		(48)	(1070)
Hyperplasia, focal		(4%)		(2%)	• ·· = ·	(10%)
#Thyroid	(49)	(2 / 4 /	(50)		(47)	
Hyperplasia, C-cell	, .,	(55%)		(46%)		(51%)
EPRODUCTIVE SYSTEM						
*Mammary gland	(49)		(50)		(50)	
Dilatation/ducts			2	(4%)	1	(2%)
Galactocele		(4%)	2	(4%)		(4%)
Hyperplasia, cystic		(55%)		(44%)		(54%)
*Mammary acinus	(49)		(50)		(50)	
Hyperplasia, stromal				(2%)		
*Clitoral gland	(49)		(50)	(0~)	(50)	
Cyst, NOS				(2%)		
Multiple cysts	4	(994)		(2%) (8%)	· 1	(94)
Cystic ducts		(2%) (2%)	4	(8%)	1	(2%)
Ulcer, NOS Inflammation, active chronic		(2%) (8%)	9	(4%)	2	(6%)
Inflammation, active chronic Inflammation, chronic focal		(6%)		(2%)		(2%)
LOUMININGLIOU, CHEORIC IOCMI	3		1	(470)	. 1	(470)
Hyperplasia, NOS	1	(2%)				

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

· · · · · · · · · · · · · · · · · · ·	Vehicle	Control	Low I	Dose	High 1	Dose
REPRODUCTIVE SYSTEM (Continued)			<u></u>			
#Uterus	(49)		(50)		(49)	
Dilatation, NOS	• •	(14%)		(16%)	•	(29%)
Hemorrhage		- ,		(2%)		
Hyperplasia, epithelial				(2%)		
Angiectasis				(2%)	1	(2%)
#Cervix uteri	(49)		(50)		(49)	
Diverticulum	(/					(4%)
Fibrosis, multifocal					1	(2%)
#Endometrial gland	(49)		(50)		(49)	
Dilatation, NOS	3	(6%)				
Cyst, NOS			2	(4%)		
Multiple cysts			3	(6%)	1	(2%)
Hyperplasia, cystic	17	(35%)	29	(58%)	23	(47%)
#Endometrial stroma	(49)		(50)		(49)	
Inflammation, active chronic		(2%)				
#Fallopian tube	(49)		(50)		(49)	
Dilatation, NOS			1	(2%)		
#Ovary	(49)		(50)		(49)	
Follicular cyst, NOS	2	(4%)	1	(2%)	1	(2%)
Parovarian cyst			2	(4%)	2	(4%)
Congestion, NOS	1	(2%)			1	(2%)
Inflammation, granulomatous focal					1	(2%)
Pigmentation, NOS			1	(2%)		
#Ovary/follicle	(49)		(50)		(49)	
Multiple cysts					1	(2%)
NERVOUS SYSTEM					······	
#Cerebral ventricle	(49)		(50)		(47)	
Hydrocephalus, NOS	(43)			(2%)		(2%)
#Cerebrum	(49)		(50)	(2,10)	(47)	(2,0)
Hydrocephalus, NOS	(43)		,	(2%)	(41)	
Atrophy, pressure	9	(4%)		(8%)	4	(9%)
#Corpus callosum	(49)	((50)	(0,0)	(47)	(310)
Hemorrhage	(43)		(00)		• •	(2%)
Malacia						(2%)
#Medulla oblongata	(49)		(50)		(47)	
Hemorrhage	(10)		(00)			(2%)
PECIAL SENSE ORGANS	<u></u>			<u> </u>		
*Eye/retina	(49)		(50)		(50)	
Atrophy, focal	1	(2%)		(2%)		(6%)
Atrophy, diffuse	3	(6%)	•			(2%)
*Eye/crystalline lens	(49)	(2.0)	(50)		(50)	
Cataract		(6%)		(4%)	2	(4%)
Harderian gland	(49)		(50)	(/ V)	(50)	(= /¥)
Hyperplasia, epithelial	(=3)			(8%)	(00)	
IUSCULOSKELETAL SYSTEM	- ,		<u> </u>			
*Femur	(49)		(50)		(50)	
Osteosclerosis		(27%)		(40%)		(12%)
~ 3VEV 8VIET V 818	10		40		0	(1470)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

TABLE B5.	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN
	THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle Control	Low Dose	High Dose
BODY CAVITIES	· · · · · · · · · · · · · · · · · · ·		
*Mediastinum Inflammation, acute/chronic	(49)	(50)	(50) 1 (2%)
*Epicardium Inflammation, acute/chronic	(49)	(50)	(50) 1 (2%)
*Mesentery Inflammation, granulomatous focal	(49) 1 (2%)	(50)	(50) 1 (2%)
ALL OTHER SYSTEMS Orbital region			
Hemorrhage	1		
SPECIAL MORPHOLOGY SUMMARY Accidental death	1		
Auto/necropsy/histo perf			1

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

APPENDIX C

SUMMARY OF LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS

		PAGE
TABLE C1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE	
	TWO-YEAR GAVAGE STUDY OF THPS	119
TABLE C2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE	
	TWO-YEAR GAVAGE STUDY OF THPS	122
TABLE C3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR	
	GAVAGE STUDY OF THPS	128
TABLE C4	HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN	
	MALE B6C3F ₁ MICE	132
TABLE C5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN	
	MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS	133

THPS and THPC, NTP TR 296

118

TABLE C1.	SUMMARY OF THE	INCIDENCE O)F NEOPL	ASMS IN MAL	E MICE I	N THE TWO-YEAR
		GAVAG	GE STUDY	OF THPS		

Ve	ehicle	Control	Low I	Dose	High 1	Dose
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
INTEGUMENTARY SYSTEM			··· ··································	- <u></u>		
*Skin	(50)		(50)		(50)	
Squamous cell papilloma	2	(4%)			. 1	(2%)
Squamous cell carcinoma			1	(2%)		
Fibrosarcoma			1	(2%)		
*Subcutaneous tissue	(50)		(50)		(50)	
Sarcoma, NOS	3	(6%)	4	(8%)	_	(8%)
Fibroma	2	(4%)	3	(6%)		(4%)
Fibrosarcoma	-	(16%)	3	(6%)	13	(26%)
Fibrosarcoma, invasive		(2%)				
Fibrosarcoma, unclear primary or metastatic	1	(2%)				
RESPIRATORY SYSTEM						
#Lung	(50)		(50)		(49)	
Hepatocellular carcinoma, metastatic		(6%)		(4%)		(4%)
Alveolar/bronchiolar adenoma		(10%)		(8%)		(12%)
Alveolar/bronchiolar carcinoma	2	(4%)		(12%)	3	(6%)
Papillary adenocarcinoma, metastatic			1	(2%)		
Fibrosarcoma, metastatic	3	(6%)				
HEMATOPOIETIC SYSTEM						
*Multiple organs	(50)		(50)		(50)	
Malignant lymphoma, undiffer type			1	(2%)		
Malignant lymphoma, lymphocytic type	2	(4%)				
Malignant lymphoma, histiocytic type				(6%)		
Malignant lymphoma, mixed type				(10%)		
Undifferentiated leukemia				(2%)		(2%)
#Mandibular lymph node	(36)		(47)		(45)	
Papillary adenocarcinoma, metastatic			1	(2%)		
CIRCULATORY SYSTEM						
*Subcutaneous tissue	(50)		(50)		(50)	
Hemangiosarcoma						(2%)
#Bone marrow	(49)		(49)	(0~)	(50)	
Hemangiosarcoma	(10)			(2%)	(10)	
#Spleen	(48)		(49)		(49)	(2%)
Hemangiosarcoma	(20)		(47)			(270)
#Renal lymph node	(36)	(3%)	(4)		(45)	
Hemangiosarcoma #Heart	(50)	(070)	(49)		(50)	
Fibrosarcoma, metastatic		(2%)	(*27)		(00)	
# Myocardium	(50)	(470)	(49)		(50)	
Hemangiosarcoma		(2%)	(43)		(00)	
Hemangiosarcoma #Liver	(48)	(470)	(49)		(50)	
#Liver Hemangiosarcoma		(6%)	((2%)
				<u> </u>	<u>,,</u> ,	<u></u>
	(49)		(49)		(ቼበ)	
DIGESTIVE SYSTEM #Liver Hepatocellular adenoma	(48) 9	(19%)	(49) 6	(12%)	(50) 4	(8%)

	Vehicle Control	Low Dose	High Dose
DIGESTIVE SYSTEM (Continued)	<u></u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
#Forestomach	(41)	(48)	(46)
Squamous cell papilloma		1 (2%)	
#Cardiac stomach	(41)	(48)	(46)
Squamous cell papilloma			1 (2%)
URINARY SYSTEM		·/····································	· · · · · · · · · · · · · · · · · · ·
#Kidney	(50)	(48)	(49)
Fibrosarcoma, metastatic	1 (2%)		
#Kidney/cortex	(50)	(48)	(49)
Sarcoma, NOS, metastatic		1 (2%)	
ENDOCRINE SYSTEM			
#Adrenal	(49)	(48)	(49)
Cortical adenoma		2 (4%)	,
#Adrenal/capsule	(49)	(48)	(49)
Adenoma, NOS	2 (4%)	3 (6%)	
#Adrenal medulla	(49)	(48)	(49)
Pheochromocytoma	4 (8%)	1 (2%)	7 (14%)
#Thyroid	(50)	(50)	(49)
Follicular cell adenoma	1 (2%)	2 (4%)	1 (2%)
Papillary cystadenoma, NOS	1 (2%)		
REPRODUCTIVE SYSTEM			
#Testis	(47)	(50)	(50)
Interstitial cell tumor			1 (2%)
Neurilemoma		1 (2%)	
NERVOUS SYSTEM None			<u></u>
SPECIAL SENSE ORGANS			
*Harderian gland	(50)	(50)	(50)
Adenoma, NOS	1 (2%)	1 (2%)	
Papillary adenocarcinoma	1 (2%)	1 (2%)	1 (2%)
*Zymbal gland	(50) 1 (2%)	(50)	(50)
Squamous cell carcinoma	I (2%)		
MUSCULOSKELETAL SYSTEM	(70)	(70)	(50)
*Carpometacarpal joint	(50)	(50)	(50)
Giant cell tumor/tendon sheath	1 (2%)		
BODY CAVITIES None			
ALL OTHER SYSTEMS	·		
*Multiple organs	(50)	(50)	(50)
Sarcoma, NOS	1 (2%)		1 (2%)
Sarcoma, NOS, metastatic		1 (2%)	

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle Control	Low Dose	High Dose
ANIMAL DISPOSITION SUMMARY	·····		
Animals initially in study	50	50	50
Natural death	19	10	14
Moribund sacrifice	8	9	13
Terminal sacrifice	23	31	23
TUMOR SUMMARY	,	<u> </u>	
Total animals with primary tumors**	33	38	38
Total primary tumors	62	60	62
Total animals with benign tumors	21	18	19
Total benign tumors	27	24	23
Total animals with malignant tumors	27	29	31
Total malignant tumors	33	36	39
Total animals with secondary tumors##	6	4	2
Total secondary tumors	9	6	2
Total animals with tumors uncertain			
benign or malignant	1		
Total uncertain tumors	1		
Total animals with tumors uncertain			
primary or metastatic	1		
Total uncertain tumors	1		

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 Primary tumors: all tumors except secondary tumors
 Wumber of animals examined microscopically at this site

Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS: VEHICLE CONTROL

ANIMAL NUMBER	0 0 1	0 0 2	0 0 3	0 0 4	0 0 5	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
WEEKS ON STUDY	1 0 5	0 9 9	0 8 9	1 0 5	0 3 7	1 0 5	1 0 5	1 0 5	0 2 3	1 0 1	0 9 0	0 8 5	1 0 5	0 8 6	0 6 6	1 0 5	0 7 4	1 0 5	1 0 2	0 3 6	1 0 5	0 2 2	0 9 0	0 7 2	0 8 8
INTEGUMENTARY SYSTEM	-											·						N							······
Skin Squamous cell papilloma Subcutaneous tissue Sarcoma, NOS	++	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	N N	+ + X	+	+	+	+	+	+ +
Fibroma Fibrosarcoma Fibrosarcoma, invasive Fibrosarcoma, unclear primary or metastatic				x							x	x x		X X											x
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+ x	+	+ x	+	+	+	+	+	+	+	+ X	+	+	+	+	+ X	+	+	+	*	+	+
Fibrosarcoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	X +	х +	+	X +	+	+	+	+	+	+	+	+	+	-	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes	++++++	+++	+++	+ +	+++	+++	+++++	+ + +	+++	+++	+++-	 + +	++++	++++	 + + +	++++	++++	+++++	+++++	+++	+++++	+++++	+++++	+++-	+++++
Hemangiosarcoma Thymus	-	-	-		-	_	_	+	+	+	+	-	_	~	+	+	_	_	+	+	+	_	+	-	_
CIRCULATORY SYSTEM Heart Fibrosarcoma, metastatic Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	*	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	+ + X	+++	++++	++++	+ -	++++	+ + X	+++	++++	+ + X	++++	+ +	+ + X	+++	++++	+++	+++	+ + X	++++	+ + X	+++	+++	+ + x	++++	++++
Hemangiosarcoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine	+ Z + + + +	++++++	+ z + + 1 +	+ + + + +	- N + + I - I	+++++	+ z + + + +	+++++	+ z + + + +	+ z + + + 1	+++++	+ X + + + +	+++++	+ z + + + +	+ 2 + + 1	+++++	++++	+++++	++++	++++	++++++	+ z + + 1 +	+ Z + + + +	+ 2 + + 1	+++++
Large intestine URINARY SYSTEM Kidney Fibrosarcoma, metastatic	- + +	+	+	+	+	+	+	+	+ +	+	+ + +	+ *	+	+	+	+	+	+	+	+ +	+	+	+	+	+
Urinary bladder ENDOCRINE SYSTEM	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pituitary Adrenal Adenoma, NOS Pheochromocytoma	+++	+ +	+ +	+ +	- +	+	+	+ +	+	+	+ +	++	+	++++	+ +	+	+ +	+ + X X	+	+ +	+ +	+ +	+ +	++	+ +
Thyroid Follicular cell adenoma Papillary cystadenoma, NOS Parathyroid	++	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+
REPRODUCTIVE SYSTEM Mammary gland Testis		N +	N +	N +	N +	N +	N	N +	N +	м +	+++	N +	N	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +
Prostate NERVOUS SYSTEM	- +	+	+	+	_	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS Papillary adenocarcinoma Zymbal gland Squamous cell carcinoma			N N																		N X N		N N		X
Squamous cell carcinoma MUSCULIOSKELETAL SYSTEM Joint Giant cell tumor/tendon sheath	-	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Sarcoma, NOS Malignant lymphoma, lymphocytic type	N	N	N	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N

Tissue examined microscopically
 Required tissue not examined microscopically
 Tumor incidence
 Necropsy, no autolysis, no microscopic examination
 Animal missexed

No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

									.011		uec	•/														
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL
WEEKS ON STUDY	0 6 2	1 0 5	1 0 5	1 0 5	0 3 0	0 9 0	1 0 5	1 0 5	1 0 5	1 0 5	0 5 4	1 0 5	0 4 5	0 9 5	0 8 3	1 0 5	1 0 5	0 9 1	1 0 5	1 0 5	1 0 2	1 0 5	1 0 3	1 0 5	0 9 1	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM																					<u> </u>					·
Skin Squamous cell papilloma Subcutaneous tissue Sarcoma, NOS Fibrona Fibrosarcoma Fibrosarcoma, invasive Fibrosarcoma, unclear primary or meta	++	+ X +	+ +	+ +	+ +	+ + X	+ +	+ + X	+	+ +	+ +	+ +	+	+ + X	+ +	+ + X	+ + X	+ + X	+ + + X	+ +	+ +	+	+	+ +	+ +	*50 2 *50 3 2 8 1 1
RESPIRATORY SYSTEM Lungs and bronchi	+															 		~ <u> </u>						 :4		50
Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic		Ŧ	•	X	Ŧ	T	Ŧ	Ŧ	Ŧ	x	+	Ŧ	Ŧ	Ŧ	Ŧ	* X	x	T	Ŧ	Ŧ	Ŧ	Ŧ	*	ľ	3	5 2 3
Trachea	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
HEMATOPOIETIC SYSTEM Bone marrow Spiesen Lymph nodes Hemangiosarcoma Thymus	++~ +	· + + + +	++++	++++-	++	+++++++++	++++-	++++ +++++	+++++++++	+++ +	++++++++	+ + + + +	++	++ 	+ + + + X +	++++++++	+ + + +	++++	++ ++ +	++++++++	+ +	+++++++++++++++++++++++++++++++++++++++	++++	+ - + +	+ + + +	49 48 36 1 27
CIRCULATORY SYSTEM Heart Fibrosarcoma, metastatic Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangiosarcoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	++ ++++++	++ ++++++	++ ++++++++	++ +Z+++++	++ ++++++	++x +x+++++	++ X +++++++	++XX +X+++++	++X +++++-	++ ++++++	++ +++++++	++ X+++++++	++ +Z+++1	++ +++++++	++	++ x +x++++++	++ x + z +++++	++ x +z+++++	++X X+++++++++++++++++++++++++++++++++	++ X +++++++	++ + + Z + + + + + + + + + + + Z + + + + Z + + + + + + + - + + + +	+1 1++++++	++ x +2++++++++++++++++++++++++++++++++	++ +Z+++++	++ x +x+++1	50 48 9 10 3 48 *50 49 50 41 37 42
URINARY SYSTEM Kidney Fibrosarcoma, metastatic Urinary bladder	++++	+++	+++	+++	+	+++	+++	+ +	++	+ +	++	++	+++	+++	+	+++	+++	++	++	++	+++	+	++	+++	+	50 1 47
ENDOCRINE SYSTEM Pituitary Adrenal Adeaoma, NOS Pheochromocytoma Thyroid Follicular cell adeaoma Papillary cystadenoma, NOS Parathyroid	 + + +	++++++		+ + + +	+++++	+ + + +	+ + X + +	-+ + +	+ +	+ + x + x + + + + +	++ ++ ++	+ + + + X +	+ + + +	-+ * * +	++++-	++++++	++ + +	- + +	-+ + +	+ + + +	++ ++ +	+ + +	++ + ×+ -	++ ++ +	++++	35 49 2 4 50 1 1 27
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + -	N + +	N + +	× + +	N + +	N ++	N + +	N - +	N + +	N + +	++++	N + +	N + +	N + +	N + +	х + +	N + +	N + -	*50 47 46
NERVOUS SYSTEM Brain		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Hardsrian gland Adenoma, NOS Papillary adenocarcinoma Zymbel gland Squamous cell carcinoma	N N		N N			N N		N N			N N					N N	N + X	N N	N N	N N		N N	N N	N N		*50 1 1 •50 1
MUSCULOSKELETAL SYSTEM Joint Giant cell tumor/tendon sheath	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N		N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Sarcoma, NOS Malignant lymphoma, lymphocytic type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 2

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: VEHICLE CONTROL (Continued)

* Animals necropsied

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS: LOW DOSE

ANIMAL NUMBER	0 0 1	002	0 0 3	0 0 4	0 0 5	006	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
WEEKS ON STUDY	1 0 5	0 0 1	1 0 5	0 7 6	1 0 5	1 0 5	0 5 4	1 0 5	1 0 5	1 0 5	0 8 3	1 0 5	1 0 2	1 0 5	0 9 7	1 0 5	1 0 5	1 0 3	1 0 2	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 3
INTEGUMENTARY SYSTEM Skin								·																	
Squamous cell carcinoma Fibrosarcoma	+	Ŧ	Ŧ	Ŧ	Ŧ	+	+	+	+	+ v	+	+	+	+	+	+	+	Ŧ	+	+	x	+	+	+	+
Subcutaneous tissue Sarcoma, NOS	+	+	+	+	+	+	+	+	+	÷	*	+	+	* X	÷	+	+	+	+	+	+	.+	+	+	+
Fibroma Fibrosarcoma								X@	X		Λ			л	X			X							
RESPIRATORY SYSTEM Lungs and bronchi	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma												x	x						x					x	
Papillary adenocarcinoma, metastatic Trachea	+	+	+	+	-	+	-	-	+	+	+	+	+	+	+	+	+	+	-	+	+	х +	+	+	-
HEMATOPOIETIC SYSTEM Bone marrow	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+
Hemangiosarcoma Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	X +	+	+	+	+
Lymph nodes Papillary adenocarcinoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	*	+	+	+
Thymus	+	-	+	+	+	-	-	. –	+	+	+	+	+	+	+	+	+	+	-	+	+	-	+	+	+
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+
Liver Hepatocellular adenoma Hepatocellular carcinoma	+	+	* X	+	+ X	+	+	+	+	+	+	+	+	+	+	* X	+	×	-	+	+	+	+	+ X X	+
Bile duct Gallbladder & common bile duct	+++	+++	++	+ N	++++	++	+++	+ N	+++	+++	+++	+++	+++	+++	+ N	+ N	+++	+ N	Ň	· + +	++	++	+++	++	+ N
Pancreas Esophagus	++	+ +	+++	+++	++	+++	+++	+++	++++	++++	+++	++++	+++	+++	+++++++++++++++++++++++++++++++++++++++	+++++	+++	++	-+	+++	+++	++	++++	++	++++
Stomach Squamous cell papilloma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+`	-
Small intestine Large intestine	++	+ +	+ +	+ +	+ +	<u>+</u>	+ +	+ -	+ +	+ +	+ +	+	+	+	+ +	+ -	+ +	+	_	+ +	+ +	+ +	+ +	+ +	2
URINARY SYSTEM Kidney	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+
Sarcoma, NOS, metastatic Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary	-	+	+	+	+	+	+	-	+		+	+	+	+	-	+	+	+	-	+	+	+	+	+	+
Adrenal Adenoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+
Cortical adenoma Pheochromocytoma													х					X						•	
Thyroid Follicular cell adenoma	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+
Parathyroid	+	-	+	-	+	+	+	-	+	+	+	+	+	+	_	+	+	+	+	+	-	+	+	-	-
REPRODUCTIVE SYSTEM Mammary gland Testis	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +														
Neurilemoma Prostate	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	-	+	+	+	+	+	+
NERVOUS SYSTEM Brain	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland	-	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Adenoma, NOS Papillary adenocarcinoma		•••	•••	•	•	•••	•••	•••	x	• ·	•		•	•••								x		-	•
ALL OTHER SYSTEMS Multiple organs, NOS	- N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	 N
Sarcoma, NOS, metastatic Malignant lymphoma, undiffer type															X										
Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type Undifferentiated leukemia				x	x		X					X						x							

@: Multiple occurrence of morphology

Sin and solid periodicing + + + + + + + + + + + + + + + + + + +											ÇI I I	uec	•/														
STUDY 0 <th></th> <th>0 2 6</th> <th>0 2 7</th> <th>0 2 8</th> <th>0 2 9</th> <th>0 3 0</th> <th>0 3 1</th> <th>0 3 2</th> <th>0 3 3</th> <th>0 3 4</th> <th>3</th> <th>0 3 6</th> <th>0 3 7</th> <th>0 3 8</th> <th>0 3 9</th> <th>0 4 0</th> <th>0 4 1</th> <th>0 4 2</th> <th>0 4 3</th> <th>0 4 4</th> <th>0 4 5</th> <th></th> <th>0 4 7</th> <th>0 4 8</th> <th>0 4 9</th> <th>5</th> <th>TOTAL</th>		0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	3	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5		0 4 7	0 4 8	0 4 9	5	TOTAL
State x <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0 6 8</td> <td></td> <td></td> <td></td> <td>0 8 1</td> <td>0 8 3</td> <td></td> <td>TISSUES</td>										0 6 8				0 8 1	0 8 3												TISSUES
Squamou sell carcinoma	INTEGUMENTARY SYSTEM																										·
Fibrearcona Section of large and Drough States Fibrear CONS A STREAM RESPIRATION STREAM RESPIRATION A STREAM RESPIRATION A STREAM RESPIRATION A STREAM RESPIRATION A STREAM Respinal and the section and the s	Squamous cell carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	
Strong NOS X X X X 3 Phorea X X X X X 3 Strong Nos X X X X X 3 Strong Nos X X X X X X X X X Alwelarboracholar cationa Take Alwelarboracholar cationa X		1	Ŧ	-	+	-	-	+		Ŧ	т	Ŧ	-	-	N	Ŧ	1	+	-	1	1	+	L.	ـ	+	1	
Fibrearona X 3 Enspire ATOPORT SYSTEM X <t< td=""><td>Sarcoma, NOS</td><td></td><td></td><td>'</td><td>Ŧ</td><td></td><td>x</td><td></td><td>,</td><td>1</td><td>т</td><td>Ŧ</td><td>1</td><td></td><td></td><td>,</td><td>т</td><td>1</td><td></td><td></td><td>,</td><td></td><td>T</td><td></td><td>'</td><td>,</td><td>4</td></t<>	Sarcoma, NOS			'	Ŧ		x		,	1	т	Ŧ	1			,	т	1			,		T		'	,	4
Lungs and byonch i Hepstone Linge and byonch i Hepstone Li	Fibrosarcoma		x			х		х																			
Lungs and byonch i Heat Angeler ange	RESPIRATORY SYSTEM																										. <u> </u>
Alvelarbroncholar addiaona X X X 4 Alvelarbroncholar addiaona X X X 4 Avelarbroncholar addiaona X X X 4 Havelarbroncholar addiaona X X 4 HEMATOPOPTOTE SYSTEM Havelarbroncholar addiaona X X 4 Havelarbroncholar addiaona + + + + + + + + + + + + + + + + + + +	Lungs and bronchi Henstorallular cargingma, matastatia	+	+	+	+	+	+	+	+	+ v	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Papillary adenocarcinoma, metastatic + + + + + + + + + + + + + + + + + + +	Alveolar/bronchiolar adenoma						A			~				X								X					4
Trebas + + + + + + + + + + + + + + + + + + +	Papillary adenocarcinoma, metastatic					X			X									x							X		i
Bose merow + + + + + + + + + + + + + + + + + + +	Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	-	+	+	+	-	+	+	+	+	+	42
Hemaagioaarooma +	HEMATOPOIETIC SYSTEM									 															 		49
Lymph nodes + + + + + + + + + + + + + + + + + + +	Hemangiosarcoma			т		Ŧ	т	T		т	-	- T	т	т	т	т		T	т	τ	T	-		т	т	т	1
Papillary adenocarrinoma, metastatic + + + + + + + + + + + + + + + + + + +	Lymph nodes	+	+++	+++	++	+++	++	++	+++	++	++	+++	+++	+++	+	++++	+++	++	++	+++	+	++	+++	+++	+++	++	47
TRCULATORY SYSTEM +	Papillary adenocarcinoma, metastatic	+	+	+	+	+	-	+	+	_	+	+	+	+	_	+	_	+	-	_	+	+	+	+	+	+	1
Heart + + + + + + + + + + + + + + + + + + +												·											·				
Salivary gland + + + + + + + + + + + + + + + + + + +	Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	49
Liver + + + + + + + + + + + + + + + +	DIGESTIVE SYSTEM																				.						-
Hepstcoellular adenoma X X X X K K X X K K K X X K K K X X K <td>Salivary gland Liver</td> <td>1 ‡</td> <td>++++</td> <td>+++++++++++++++++++++++++++++++++++++++</td> <td>++++</td> <td>++</td> <td>+++</td> <td>+++</td> <td>++++</td> <td>++++</td> <td>++++</td> <td>+++</td> <td>++++</td> <td>+++++++++++++++++++++++++++++++++++++++</td> <td></td> <td>++</td> <td>+++</td> <td>++</td> <td>++</td> <td>++</td> <td>++++</td> <td>+++</td> <td>+++</td> <td>++</td> <td>+++</td> <td>+++</td> <td></td>	Salivary gland Liver	1 ‡	++++	+++++++++++++++++++++++++++++++++++++++	++++	++	+++	+++	++++	++++	++++	+++	++++	+++++++++++++++++++++++++++++++++++++++		++	+++	++	++	++	++++	+++	+++	++	+++	+++	
Bill alut i i i i i i i i i i i i i i i i i i i	Hepatocellular adenoma						v			v													v	¥	X	X	6
Pancress Esophagus Stomach	Bile duct	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		49
Esophagus + + + + + + + + + + + + + + + + + + +		‡	++++	+++	++++									++++								++++	+	+++++	+++		
Squamous cell papilloma X 1 1 Sublituestine + + + + + + + + + + + + + + + + + + +	Esophagus	+		÷	÷									÷					+					÷	+	+	50
Large intestine - + + + - + + + + + + + + + + + + + + +	Squamous cell papilloma	x	Ŧ	Ŧ	+	+	+	+	+	+	+	+	+	+	~	+	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	+	+	Ŧ	+	1
Kidagy + + + + + + + + + + + + + + + + + + +	Small intestine Large intestine	+ +	+++	+++	+++	+	++	+++	+++	++	+++	_	+	++	=	+++	++	+	+++	+++	+++	++	+++	+++	+	++	45
Kidagy + + + + + + + + + + + + + + + + + + +	URINARY SYSTEM																										·
Urinary bladder + + + + + + + + + + + + + + + + + + +	Kidney	+	+	+	+	+	÷	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	
Pituitary + + + + - + + + + + + + + + + + + + + +	Urinary bladder	+	+	+	+	+	÷	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	
Adrenal Protota Beathyroid + + + + + + + + + + + + + + + + + + +	ENDOCRINE SYSTEM				<u> </u>																						
Adenoma, NOS Cortical adenoma Pheochromocytoma X X X 3 Pheochromocytoma Phochromocytoma X X 1 Pheochromocytoma Parathyroid + <td>Pituitary Adrenal</td> <td>+</td> <td>+++++++++++++++++++++++++++++++++++++++</td> <td>++</td> <td>+</td> <td>-</td> <td>+</td> <td>+</td> <td>++++</td> <td>+++</td> <td>Ŧ</td> <td>++++</td> <td>+++</td> <td>++++</td> <td>+</td> <td>+</td> <td>++++</td> <td>+++</td> <td>-+</td> <td>-+</td> <td>++++</td> <td>++++</td> <td>+++</td> <td>++++</td> <td>+++++++++++++++++++++++++++++++++++++++</td> <td>+++</td> <td></td>	Pituitary Adrenal	+	+++++++++++++++++++++++++++++++++++++++	++	+	-	+	+	++++	+++	Ŧ	++++	+++	++++	+	+	++++	+++	-+	-+	++++	++++	+++	++++	+++++++++++++++++++++++++++++++++++++++	+++	
Pheochromocytoma 1 Chyroid Folicular cell adenoma Parathyroid + + + + + + + + + + + + + + + + + +	Adenoma, NOS		,		•					•	,			•		•				•					·		3
Follicular cell adenoma + + + + + + + + + + + + + + + + +	Pheochromocytoma					X																					1
Parathyroid + + + + + + + + + + + + + + 29 REPRODUCTIVE SYSTEM Mammary gland Mammary gland + + + + + + + + + + + + +	Thyroid Folligular cell adenome	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	2 50
Mammary gland N N N N N N N N N N N N N N N N N N N	Parathyroid	-	-	+	+	+	+	+	+	~	-	+	-	-	-	-	-	+	~	-		+	+	+	-	-	
Testis + + + + + + + + + + + + + + + + + + +	REPRODUCTIVE SYSTEM																										+=0
Neurilemoma X 1 Prostate + + + + + + + + + + + + + + + + + + +	Testis		N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +		+	50
NERVOUS SYSTEM Brain + + + + + + + + + + + + + + + + + + +	Neurilemoma Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Х	
Brain + + + + + + + + + + + + + + + + + + +																						, .					·
Harderian gland Adenoma, NOS Papillary adenocarcinoma ALL OTHER SYSTEMS Multiple organs, NOS, metastatic Malignant lymphoma, histocytic type Malignant lymphoma, mixed type X Malignant lymphoma, mixed type X X Malignant lymphoma, mixed type X Malignant lymphoma, mixed type X X Malignant lymphoma, mixed type X X Malignant lymphoma, mixed type X X X X X X X X X X X X X	Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma, NOS 1 Papillary adenocarcinoma 1 ALL OTHER SYSTEMS 1 Multiple organs, NOS N N N N N N N N N N N N N N N N N N N	SPECIAL SENSE ORGANS				 	 					<u>,.</u>							••									***
Papillary adenocarcinoma 1 ALL OTHER SYSTEMS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	1
Multiple organs, NOS NNNNNNNNNNNNNNNNNNNNNNNNNNNNN Sarcoma, NOS, metastatic 1 Malignant lymphoma, undiffer type X 1 Malignant lymphoma, mixed type X 3 Malignant lymphoma, mixed type X 5	Papillary adenocarcinoma	1																									1
Sarcoma, NOS, metastatic 1 Malignant lymphoma, undiffer type X Malignant lymphoma, histiccytic type X Malignant lymphoma, mixed type X	ALL OTHER SYSTEMS	N	N	N	N		N	N	N	M	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
Malignant lymphoma, histiocytic type X 3 Malignant lymphoma, mixed type X X X 5	Sarcoma, NOS, metastatic		14	TA	14	14	14	n	74	14	14	14	74		14	14	14		14	11	14	**	.,	**	11	14	1
Malignant lymphoma, mixed type X X 5	Malignant lymphoma, undiffer type Malignant lymphoma, histiocytic type													X	x												
	Malignant lymphoma, mixed type										X	x			-			x									5
																				-							<u> </u>

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: LOW DOSE (Continued)

* Animals necropsied

	002 077 + + x + + + + + + + + + + + + + + + + +	0 0 3 0 9 0 + + + + + + + + + + + X	004 092 + + x + x + x + + + + + + + + + + x	0 0 7 8 + + + + + + + + + + + + +	0 0 6 1 0 5 + + + + + + + + + + + + + +	0 0 7 1 0 5 + + + + + + + + + + + +	0 8 1 0 5 + + + + + + + + + + +	0 0 9 1 0 2 + + + X + + + + + + + + +	0 1 0 5 + + + + + + + + + +	0 1 1 1 0 0 0 8 N N + + + + + + + + +	0 1 2 1 0 5 + + + + + + + + + +	0 1 3 9 3 1 + + + + + + + +	0 1 4 1 0 5 5 + + + + + + + + + + + +	0 1 5 1 0 2 + + + + + + + + + +	0 1 6 1 0 5 + + + + x + + + + +	0 17 10 5 + + + + + + + +	0 1 8 0 9 9 9 + + + + + + +	0 1 9 0 7 9 + + + + + + + +	0 2 0 1 0 5 + + X + X + + X + + + + +	0 2 1 0 4 5 N N + + + + + +	0 2 2 1 0 5 + + + + + + + + +	0 2 3 1 0 5 + + + + + + +	0 2 4 1 0 5 + + + + + + + + + +
	7 + + x + + + + + + + + + + + + + + + +	i i i i i i <t< th=""><th>2 + + + x + + + + + + + + + + + + + + +</th><th>8 + +</th><th></th><th></th><th></th><th>2 + +</th><th>105 + + + + + + + + + +</th><th>0 N</th><th>•</th><th>3 + +</th><th>5 + +</th><th>1 0 2 + + + + + + + + + + +</th><th>5 + +</th><th>v1</th><th></th><th>0 7 9 + + + + + + + + +</th><th>5 + X +</th><th>5 N</th><th></th><th></th><th>105 + + + + + + + + + + + + + + + + + + +</th></t<>	2 + + + x + + + + + + + + + + + + + + +	8 + +				2 + +	105 + + + + + + + + + +	0 N	•	3 + +	5 + +	1 0 2 + + + + + + + + + + +	5 + +	v 1		0 7 9 + + + + + + + + +	5 + X +	5 N			105 + + + + + + + + + + + + + + + + + + +
	x + + + + + + + + + + + + + + + + + + +	+ ++ +- + ++	+x + ++ ++ ++	+ +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + X + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	•	+ + + + + + + + + + + + + + + + + + + +	+ + + X + + + + + - + - + - + - + - + - + - +	+ + + * * * + + + +	+ + + + + + + + -	+ + + X + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + -	+ + + + + + + + + + - + + + - + + - + + - + + - + + - + + - + + - + + + + + + + + +	x +	•	+ + + ++	+ + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
	+ + + + + + + + + + + + + + + + + + + +	+ ++ +- + ++	+ ++ ++ ++	+ + + + + + + + + + + + + + + + + + + +	+ + ++ ++ ++	+ + ++ ++	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + -	+ x + + + + +	+ + + + + -	+ + ++ +-	+ + + + + + + + + + + + + + + + + + + +	+ + + + + -	+ + + + + -	+ x + + + + + + + + + + + + + + + + + +	+ + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + -	+ + ++ ++
	++ +- ++ ++ ++		•	++ ++ ++	++ ++ ++ ++	++ ++ ++	++ ++ ++ ++	++ ++ ++	+++++++++++++++++++++++++++++++++++++++	+ + + +	++++++	+ + + -	+++++	+++-	+++	++++++	++++-	++++-	++ ++ ++	++	+ + + +	++++-	+++++
	+ + + +		•	+ + +	+ + + +	+	+	+	+	+			,			•			F			-	
	+++++		•	+++	++++	+ +	+++++	+				+	+	+	+	+	+	+	+	+	+	+	+.
	+							+ X	+	+ +	+++++++++++++++++++++++++++++++++++++++	+ +	+++	+ + x	++++	+++	+ + x	+ + x	+ +	++++	+++	+ +	+ + X
	+-++	+++++	+ z + + !	++++	++++	+++++	++++	+ 2 + + +	++++	++++	++++	++++	+++++	+ 2 + + +	+ + + + +	+++++	++++	+ 2 + + +	++++	+ 2 + + +	+++++	++++	++++
	+++	+ +	=	+	++	++	++	+	++	-	++	+++	++	++	++	++	++	++	++	Ŧ	+ +	+ +	+
	++	+++	-	++	++	+	++	++	++	++	+	++	++++	++	++	+ +	++	+++	+++	+++	+++	++++	+
	-+ + +	+++ + -	+++++++++++++++++++++++++++++++++++++++	++++-	-+ + +	++++++	+ + + -	 + + +	- + x +	++++-		+++	++ + -	+ + x + +	++ + +	++++++	++ + +	++ + +	+ + + +	- - + -	++ + +	++ + + -	-+ + + + +
1	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + -	N + +	N + +	N + +	N + +	N + +
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
]	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N
1	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		+ + + + + + N N N	+ + + + + + N N N N	+ + + + + + + + + N N N N N N	+ + + + + + + + + + N N N N N N N N	+ + + + + + + + + + + + + + + N N N N N	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS: HIGH DOSE

										•		~/														
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	
WEEKS ON STUDY	105	1 0 5	0 9 8	05	0 9 1	1 0 2	1 0 5	1 0 5	1 0 5	1 0 5	0 9 6	1 0 0	0 8 8	0 9 9	1 0 5	0 8 2	1 0 5	1 0 4	1 0 5	0 5 2	0 7 9	1 0 5	0 8 1	1 0 5	0 2 5	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Subcutaneous tissue Sarcoma, NOS Fibroma Fibrosarcoma Hemangiosarcoma	+ + X	+ +	+ + X	+ +	+ +	+ x + x	+ +	+ + X	+ + x	+ + X	+ + X X	+ + X	+ + X	+ +	+ + X	++	+ +	+++	+ +	+ +	++	+ +	++	+ + X	N N	*50 1 *50 4 2 13 1
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	+	+ X +	+	+ X	+	+ X +	+	+ X +	+	+	+	+	+	+	++	-	+ x +	* *	+ X +	++	49 2 6 3 49
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangiosarcoma Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	·++ ++	+++++	+++++	+ + x - +	++ ++	++ ++	++ +1	++ ++ ++	++ ++	++++++	+++-	++ ++	++ ++ ++	++ +-	++ ++ ++	++++	++++-	++ ++ ++	++ +1	+ + +	+++++	+++++	+ + + +	+++++	50 49 1 45 32
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangiosarcoma Bile duct	+++++	+ + x	++	++	+ + x	++	+ * X	++	+ + x	++	+++	++	++	+++	+++	+ + x	+ + X	+ + X	+ +	+++	+ + x	+ + X	+ * x	++	+++	50 50 4 13 1
Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Small intestine Large intestine	++++++	++++ ++	+z++1 11	+++++ ++	+2+++ ++	++++ ++	+++++ ++	+++++ ++	++++ +	++++ -+	+++++ +4	+ - + + + - +	++++ ++	+Z+++ I+	+++++ ++	+++++ ++	+++++ ++	++++ ++	++++++++	+++++ ++	+z++1 +	+ + + + + + + + + + + + + - + + + + + - + - + +	+ Z + + + X	++++ ++	+++++ ++	50 *50 49 50 46 1 38 44
URINARY SYSTEM Kidney Urinary bladder	++++	++++	+	+ + +	+ +	+++	+ +	++	+ + +	++++	+ + +	+++	+++	++++	+++	+++	+++	+ + +	+ + +	+++		+++	+++	+++	+++	49 47
ENDOCRINE SYSTEM Pituitary Adrensi Pheochromocytoma Thyroid Follicular cell adenoma Parathyroid	++++++	+ + + -	++++-	++x++	++ ++ +	++ ++ +	++ ++ ++	++ ++ +	+ + + +	++ + +	++++-	+ + X + -	++ ++ +	+ + + +	+ + + +	+ + + -	++ ++ +	++ + + *	-+ + +	++ + -	- + +	 + + -	+++++++	+ + X + +	++	40 49 7 49 1 29
REPRODUCTIVE SYSTEM Mammary gland Testis Interstitial cell tumor Prostate	++++++	N + +	N + +	N + +	N + +	N + +	N + X +	N + +	N + +	N + +	N + +	N + +	+++++	N + +	N + +	N + +	N + +	N + + +	N + +	N + +	N + +	N + +	N + +	N + +	N + + +	*50 50 1 49
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	49
SPECIAL SENSE ORGANS Harderian gland Papillary adenocarcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	+50 1
ALL OTHER SYSTEMS Multiple organs, NOS Sarcoma, NOS Undifferentiated leukemia	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	*50 1 1

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

* Animals necropsied

.

	Vehicle Control	5 mg/kg	10 mg/kg
Subcutaneous Tissue: Fibroma			· · · · · · · · · · · · · · · · · · ·
Overall Rates (a)	2/50 (4%)	3/50 (6%)	2/50 (4%)
Adjusted Rates (b)	8.7%	9.3%	5.5%
Terminal Rates (c)	2/23 (9%)	2/31 (6%)	0/24 (0%)
Week of First Observation	105	103	92
Life Table Tests (d)	P = 0.554N	P = 0.636	P = 0.643N
Incidental Tumor Tests (d)	P = 0.498N	P = 0.608	P = 0.635N
Cochran-Armitage Trend Test (d)	P=0.594		
Fisher Exact Test		P = 0.500	P = 0.691
Subcutaneous Tissue: Sarcoma			
Overall Rates (a)	3/50 (6%)	4/50 (8%)	4/50 (8%)
Adjusted Rates (b)	9.9%	11.3%	12.9%
Terminal Rates (c)	0/23 (0%)	2/31 (6%)	2/24 (8%)
Week of First Observation	90	83	70
Life Table Tests (d)	P=0.485	P = 0.612	P = 0.570
Incidental Tumor Tests (d)	P=0.536	P = 0.440	P = 0.590
Cochran-Armitage Trend Test (d)	P = 0.424		
Fisher Exact Test		P = 0.500	P = 0.500
Subcutaneous Tissue: Fibrosarcoma			
Overall Rates (a)	8/50 (16%)	3/50 (6%)	13/50 (26%)
Adjusted Rates (b)	24.8%	9.0%	37.3%
Terminal Rates (c)	3/23 (13%)	2/31 (6%)	5/24 (21%)
Week of First Observation	85	96	78
Life Table Tests (d)	P = 0.166	P = 0.061N	P = 0.259
Incidental Tumor Tests (d)	P=0.174	P = 0.149N	P = 0.227
Cochran-Armitage Trend Test (d)	P = 0.110		
Fisher Exact Test		P = 0.100N	P = 0.163
Subcutaneous Tissue: Fibroma or Fibrosarcoma			
Overall Rates (a)	10/50 (20%)	6/50 (12%)	14/50 (28%)
Adjusted Rates (b)	32.3%	17.8%	39.0%
Terminal Rates (c)	5/23 (22%)	4/31 (13%)	5/24 (21%)
Week of First Observation	85	96	78
Life Table Tests (d)	P = 0.272	P = 0.105N	P = 0.358
Incidental Tumor Tests (d)	P = 0.294	P = 0.225 N	P = 0.317
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.191	D-0.007N	D 0.941
Fisher Exact lest		P = 0.207 N	P = 0.241
ntegumentary System: Fibrosarcoma Overall Rates (a)	8/50 (16%)	4/50 (8%)	13/50 (26%)
Adjusted Rates (b)	24.8%	12.1%	37.3%
Terminal Rates (c)	24.070 3/23 (13%)	3/31 (10%)	37.3% 5/24(21%)
Week of First Observation	3/23 (1370) 85	96	5/24 (21%) 78
Life Table Tests (d)	P = 0.170	P = 0.108N	P = 0.259
Incidental Tumor Tests (d)	P = 0.170 P = 0.179	P = 0.108 N P = 0.235 N	P = 0.259 P = 0.227
Cochran-Armitage Trend Test (d)	P = 0.114	r - 0.20014	F V.44(
Fisher Exact Test	1 - V.117	P = 0.178N	P = 0.163
	_		- 31200
ntegumentary System: Fibroma or Fibrosarcoma Overall Rates (a)	a 10/50 (20%)	7/50 (14%)	14/50 (28%)
Adjusted Rates (b)	32.3%	20.9%	39.0%
Terminal Rates (c)	5/23 (22%)	5/31 (16%)	5/24 (21%)
Week of First Observation	85	96	78
Life Table Tests (d)	P = 0.275	P = 0.157N	P = 0.358
Incidental Tumor Tests (d)	P = 0.297	P = 0.308N	P = 0.317
Cochran-Armitage Trend Test (d)	P=0.194		

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS

	Vehicle Control	5 mg/kg	10 mg/kg
Integumentary System: Sarcoma or Fibrosa	rcoma		
Overall Rates (a)	11/50 (22%)	8/50 (16%)	17/50 (34%)
Adjusted Rates (b)	32.3%	22.6%	46.7%
Terminal Rates (c)	3/23 (13%)	5/31 (16%)	7/24 (29%)
Week of First Observation	85	83	77
Life Table Tests (d)	P = 0.175	P=0.177N	P = 0.251
Incidental Tumor Tests (d)	P=0.189	P = 0.408N	P = 0.214
Cochran-Armitage Trend Test (d)	P=0.099		
Fisher Exact Test (d)		P = 0.306N	P = 0.133
ntegumentary System: Fibroma, Sarcoma, o	or Fibrosarcoma		
Overall Rates (a)	13/50 (26%)	11/50 (22%)	18/50 (36%)
Adjusted Rates (b)	39.0%	30.8%	48.2%
Terminal Rates (c)	5/23 (22%)	7/31 (23%)	7/24 (29%)
Week of First Observation	85	83	77
Life Table Tests (d)	P = 0.260	P = 0.214N	P = 0.335
Incidental Tumor Tests (d)	P=0.291	P=0.456N	P = 0.293
Cochran-Armitage Trend Test (d)	P=0.158		
Fisher Exact Test (d)		P=0.408N	P = 0.194
ung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	5/50 (10%)	4/50 (8%)	6/49 (12%)
Adjusted Rates (b)	18.6%	11.3%	21.8%
Terminal Rates (c)	3/23 (13%)	2/31 (6%)	4/24 (17%)
Week of First Observation	86	81	88
Life Table Tests (d)	P=0.475	P=0.356N	P = 0.545
Incidental Tumor Tests (d)	P = 0.514	P=0.490N	P = 0.576
Cochran-Armitage Trend Test (d)	P = 0.420		
Fisher Exact Test		P = 0.500 N	P = 0.486
ung: Alveolar/Bronchiolar Carcinoma			
Overall Rates (a)	2/50 (4%)	6/50 (12%)	3/49 (6%)
Adjusted Rates (b)	8.7%	18.5%	11.0%
Terminal Rates (c)	2/23 (9%)	5/31 (16%)	2/24 (8%)
Week of First Observation	105	102	96
Life Table Tests (d)	P=0.455	P=0.247	P = 0.536
Incidental Tumor Tests (d)	P = 0.519	P=0.230	P = 0.577
Cochran-Armitage Trend Test (d)	P = 0.413		
Fisher Exact Test		P = 0.134	P = 0.490
ung: Alveolar/Bronchiolar Adenoma or Car	cinoma		
Overall Rates (a)	7/50 (14%)	10/50 (20%)	9/49 (18%)
Adjusted Rates (b)	26.8%	28.7%	31.7%
Terminal Rates (c)	5/23 (22%)	7/31 (23%)	6/24 (25%)
Week of First Observation	86	81	88
Life Table Tests (d)	P=0.396	P=0.527	P = 0.452
Incidental Tumor Tests (d)	P = 0.470	P=0.404	P = 0.501
Cochran-Armitage Trend Test (d)	P=0.329		
Fisher Exact Test		P=0.298	P = 0.376
ematopoietic System: Malignant Lymphoms			
Overall Rates (a)	0/50 (0%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	0.0%	7.6%	0.0%
Terminal Rates (c)	0/23 (0%)	1/31 (3%)	0/24 (0%)
Week of First Observation		54	•-
Life Table Tests (d)	P = 0.627 N	P = 0.149	(e)
Incidental Tumor Tests (d)	P = 0.570	P = 0.108	(e)
Cochran-Armitage Trend Test (d)	P=0.640		

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle Control	5 mg/kg	10 mg/kg
Iematopoietic System: Malignant Lymphoma, Mix	ed Type		
Overall Rates (a)	0/50 (0%)	5/50 (10%)	0/50 (0%)
Adjusted Rates (b)	0.0%	14.4%	0.0%
Terminal Rates (c)	0/23 (0%)	3/31 (10%)	0/24 (0%)
Week of First Observation	••	76	••
Life Table Tests (d)	P = 0.586N	P = 0.064	(e)
Incidental Tumor Tests (d)	P = 0.602N	P = 0.057	(e)
Cochran-Armitage Trend Test (d)	P = 0.610		
Fisher Exact Test		P = 0.028	(e)
lematopoietic Lymphoma: Lymphoma, All Malign	ant		
Overall Rates (a)	2/50 (4%)	9/50 (18%)	0/50(0%)
Adjusted Rates (b)	6.3%	23.1%	0.0%
Terminal Rates (c)	1/23 (4%)	4/31 (13%)	0/24 (0%)
Week of First Observation	23	54	
Life Table Tests (d)	P = 0.253N	P = 0.063	P = 0.233N
Incidental Tumor Tests (d)	P = 0.350N	P = 0.023	P = 0.308N
Cochran-Armitage Trend Test (d)	P = 0.283N		
Fisher Exact Test		P = 0.026	P = 0.248N
lematopoietic System: Lymphoma or Leukemia			
Overall Rates (a)	2/50 (4%)	10/50 (20%)	1/50 (2%)
Adjusted Rates (b)	6.3%	25.1%	2.5%
Terminal Rates (c)	1/23 (4%)	4/31 (13%)	0/24 (0%)
Week of First Observation	23	54	90
Life Table Tests (d)	P=0.390N	P = 0.040	P = 0.474N
Incidental Tumor Tests (d)	P = 0.512N	P = 0.009	P = 0.585N
Cochran-Armitage Trend Test (d)	P = 0.429N	0.000	1 - 0.00011
Fisher Exact Test	1 - 0.42511	P = 0.014	P = 0.500 N
irculatory System: Hemangiosarcoma			
Overall Rates (a)	4/50 (8%)	1/50 (2%)	3/50 (6%)
Adjusted Rates (b)	15.3%	3.2%	10.7%
Terminal Rates (c)	3/23 (13%)	1/31 (3%)	2/24 (8%)
Week of First Observation	83	105	91
Life Table Tests (d)	P=0.380N	P = 0.115N	P = 0.464N
Incidental Tumor Tests (d)	P = 0.412N	P = 0.146N	P = 0.500N
Cochran-Armitage Trend Test (d)	P = 0.412N	1 -0.14014	1 - 0.00010
Fisher Exact Test	1 -0.71211	P = 0.181 N	P = 0.500 N
		1 = 0.10114	r = 0.0001
iver: Hepatocellular Adenoma Overall Rates (a)	9/48 (19%)	6/49 (12%)	4/50 (8%)
Adjusted Rates (b)	38.2%	19.4%	16.0%
Terminal Rates (c)	8/22 (36%)	6/31 (19%)	3/24 (13%)
Week of First Observation	90	105	104
Life Table Tests (d)	P = 0.050N	P = 0.093N	P = 0.078N
Incidental Tumor Tests (d)	P = 0.047N	P = 0.112N	P = 0.070N
Cochran-Armitage Trend Test (d)	P = 0.076N	0.11211	I -0.01014
Fisher Exact Test	·	P = 0.273N	P = 0.102N
ver: Hepatocellular Carcinoma Overall Rates (a)	10/48 (21%)	8/49 (16%)	13/50 (26%)
Adjusted Rates (b)	32.9%	22.2%	33.0%
•••••••••••••••••••••••••••••••••••••••			
Terminal Rates (c) Week of First Observation	4/22 (18%)	5/31 (16%)	2/24 (8%) 79
WEER OF FILST OUSEFVALUUT	36 P=0.376	68 P = 0.204N	79 P=0,450
Life Table Tests (d)		r = 0.204 in	r ≃ 0.400
Life Table Tests (d) Insidental Tumor Tests (d)			
Life Table Tests (d) Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.376 P = 0.356 P = 0.303	P = 0.396N	P = 0.447

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

.

	Vehicle Control	5 mg/kg	10 mg/kg
Liver: Hepatocellular Adenoma or Carcinoma			······································
Overall Rates (a)	18/48 (38%)	12/49 (24%)	17/50 (34%)
Adjusted Rates (b)	60.2%	34.2%	44.5%
Terminal Rates (c)	11/22 (50%)	9/31 (29%)	5/24 (21%)
Week of First Observation	36	68	179
Life Table Tests (d)	P = 0.335N	P = 0.025N	P=0.358N
Incidental Tumor Tests (d)	P = 0.321 N	P = 0.072N	P = 0.313N
Cochran-Armitage Trend Test (d)	P = 0.403N		
Fisher Exact Test		P = 0.122N	P = 0.440N
Adrenal Capsule: Adenoma			
Overall Rates (a)	2/49 (4%)	3/48 (6%)	0/49 (0%)
Adjusted Rates (b)	8.2%	9.7%	0.0%
Terminal Rates (c)	1/22 (5%)	3/31 (10%)	0/24 (0%)
Week of First Observation	102	105	
Life Table Tests (d)	P = 0.169N	P = 0.647	P = 0.218N
Incidental Tumor Tests (d)	P = 0.141 N	P = 0.607	P = 0.158N
Cochran-Armitage Trend Test (d)	P = 0.202N		
Fisher Exact Test		P = 0.490	P = 0.247 N
Adrenal: All Adenoma			
Overall Rates (a)	2/49 (4%)	5/48 (10%)	0/49 (0%)
Adjusted Rates (b)	8.2%	15.5%	0.0%
Terminal Rates (c)	1/22 (5%)	4/31 (13%)	0/24 (0%)
Week of First Observation	102	103	
Life Table Tests (d)	P = 0.201 N	P=0.367	P = 0.218N
Incidental Tumor Tests (d)	P=0.147N	P=0.297	P = 0.158N
Cochran-Armitage Trend Test (d)	P=0.239N		
Fisher Exact Test		P = 0.209	P = 0.247 N
drenal: Pheochromocytoma			
Overall Rates (a)	4/49 (8%)	1/48 (2%)	7/49 (14%)
Adjusted Rates (b)	15.9%	2.9%	26.0%
Terminal Rates (c)	2/22 (9%)	0/31 (0%)	5/24 (21%)
Week of First Observation	95	102	100
Life Table Tests (d)	P=0.210	P = 0.106N	P = 0.325
Incidental Tumor Tests (d)	P=0.348	P = 0.159N	P = 0.452
Cochran-Armitage Trend Test (d)	P = 0.179		
Fisher Exact Test		P = 0.187 N	P = 0.262

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is reported because no tumors were observed in the 10 mg/kg and vehicle control groups.

.

Incidence in Controls							
Study	Lymphoma	Leukemia	Lymphoma or Leukem				
Historical Incidence in All	Water Vehicle Conti	cols					
THPS(b)	2/50	0/50	2/50				
Chlorinated trisodium phospha	ate (c) 4/50	0/50	4/50				
THPC (b)	9/50	0/50	9/50				
Chlorpheniramine maleate (b)	9/50	0/50	9/50				
TOTAL	24/200 (12.0%)	0/200 (0.0%)	24/200 (12.0%)				
SD (d)	7.12%	0.00%	7.12%				
Range (e)							
High	9/50	0/50	9/50				
Low	2/50	0/50	2/50				
Overall Historical Incidenc	e in Untreated Cont	rols					
TOTAL	217/1,791 (12.1%)	(f) 6/1,791 (0.3%)	(f) 223/1,791 (12.5%)				
SD (d)	7.35%	0.76%	7.55%				
Range (e)							
High	16/50	1/49	16/50				
Low	1/50	0/50	1/50				

TABLE C4. HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM TUMORS IN MALE $B6C3F_1$ MICE (a)

(a) Data as of August 3, 1984, for studies of at least 104 weeks
(b) Battelle Columbus Laboratories
(c) EG&G Mason Research Institute

(d) Standard deviation (e) Range and SD are presented for groups of 35 or more animals. (f) Excludes one mast cell leukemia

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS

	Vehicle	Control	Low I	Dose	High	Dose
ANIMALS INITIALLY IN STUDY		<u></u>	50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICAL			50		50	
NTEGUMENTARY SYSTEM			<u> </u>			
*Skin	(50)		(50)		(50)	
Ulcer, NOS			2	(4%)	1	(2%)
Ulceration, diffuse	1	(2%)				
Inflammation, acute focal				(2%)	1	(2%)
Inflammation, active chronic Inflammation, acute/chronic	1	(2%)		(2%) (4%)	F	(10%)
Ulcer, chronic		(4%)	2	(4170)	5	(10%)
Inflammation, chronic focal	2	(470)	9	(4%)		
Inflammation, granulomatous focal				(2%)		
Fibrosis, focal	1	(2%)		(2%) (2%)		
Fibrosis, nultifocal	T	(2.10)	-	(12%)	1	(2%)
Hyperplasia, focal	1	(2%)	Ŭ		1	
Hyperkeratosis	•	(=)	† 9	(18%)	3	(6%)
Acanthosis	1	(2%)		(24%)		(6%)
*Subcutaneous tissue	(50)		(50)		(50)	
Cyst, NOS			4 <i>F</i>	(2%)		
Inflammation, acute diffuse	1	(2%)				
Inflammation, active chronic	1	(2%)				
Inflammation, granulomatous			2	(4%)		
Inflammation, granulomatous focal	1	(2%)				
Fibrosis, multifocal	1	(2%)				
RESPIRATORY SYSTEM						
#Tracheal gland	(48)		(42)		(49)	
Inflammation, acute focal	()		· ,	(7%)	• • • •	(2%)
#Lung	(50)		(50)		(49)	
Congestion, NOS			1	(2%)		
Congestion, acute	5	(10%)	11	(22%)	10	(20%)
Edema, NOS			1	(2%)		
Edema, interstitial			1	(2%)		
Hemorrhage						(2%)
Lymphocytic inflammatory infiltrate		(2%)		(4%)		(2%)
Inflammation, interstitial	1	(2%)		(6%)		(2%)
Alveolar macrophages	-	(90)		(14%)		(8%)
Hyperplasia, alveolar epithelium		(2%)	-	(6%)		(2%)
#Lung/alveoli	(50)		(50)	(90)	(49)	
Edema, NOS Hemorrhage	1	(2%)	1	(2%)		
#Alveolar wall	(50)	(270)	(50)		(49)	
Mineralization	(00)			(2%)	(43)	
HEMATOPOIETIC SYSTEM						
#Bone marrow	(49)		(49)		(50)	
Atrophy, focal		(2%)	(43)		(00)	
Hyperplasia, granulocytic		(12%)	4	(8%)	9	(18%)
Aplasia, erythroid	J	()		(2%)	5	
#Spleen	(48)		(49)	<u></u>	(49)	
Necrosis, focal	()			(2%)	()	
Depletion, lymphoid	2	(4%)		(2%)		
#Splenic follicles	(48)		(49)	- · · · -	(49)	
Necrosis, focal		(4%)				
	•	(a m)		(401)	1	(2%)
Depletion, lymphoid Hyperplasia, lymphoid	2	(4%)	2	(4%)	1	(270)

	Vehicle	Control	Low I	Dose	High	Dose
HEMATOPOIETIC SYSTEM (Continued)						
#Splenic red pulp	(48)		(49)		(49)	
Hematopoiesis		(29%)		(20%)		(49%)
#Mandibular lymph node	(36)	(23%)	(47)	(20%)	(45)	
Hemorrhage	(30)		(417)			(2%)
Necrosis, focal			1	(2%)	1	(470)
Pigmentation, NOS				(2%)		
Depletion, lymphoid				(4%)		
Histiocytosis				(2%)		
Hyperplasia, lymphoid	1	(3%)	•	(2N)	3	(6%)
Hematopoiesis		(3%)			0	(0,0)
#Tracheal lymph node	(36)	(0,0)	(47)		(45)	
Hyperplasia, lymphoid	(00)			(6%)		(2%)
#Pancreatic lymph node	(36)		(47)	(0.07)	(45)	
Hemorrhage						(2%)
Angiectasis	1	(3%)			2	
Hyperplasia, lymphoid			1	(2%)	-	
Hematopoiesis					2	(4%)
#Mesenteric lymph node	(36)		(47)		(45)	
Congestion, acute				(2%)		
Hemorrhage			2	(4%)	2	(4%)
Inflammation, acute focal			1	(2%)	2	(4%)
Inflammation, acute/chronic			1	(2%)		,
Hyperplasia, diffuse	1	(3%)				
Angiectasis	8	(22%)		(9%)	3	(7%)
Histiocytosis			1	(2%)		
Hyperplasia, lymphoid			4	(9%)		
Hematopoiesis						(4%)
#Renal lymph node	(36)		(47)		(45)	
Angiectasis						(2%)
Hematopoiesis						(2%)
#Thymic lymph node	(36)		(47)		(45)	
Hyperplasia, lymphoid	•			(2%)		(2%)
#Liver	(48)		(49)	_	(50)	
Hematopoiesis		(2%)		(8%)		(12%)
#Peyer's patch	(37)		(45)		(38)	
Hyperplasia, lymphoid				(7%)		(3%)
#Thymus	(27)	(11 c c c c c c c c c c	(38)		(32)	
Ultimobranchial cyst	2	(7%)		(18%)		
Inflammation, chronic diffuse		(19)		(3%)		(000)
Depletion, lymphoid	1	(4%)		(21%)	9	(28%)
Hyperplasia, reticulum cell Hyperplasia, lymphoid				(11%) (3%)		
#Thymic lymphocytes	(27)			(370)	(22)	
		(150)	(38)	(201)	(32)	(0α)
Necrosis, diffuse	4	(15%)	2	(5%)	3	(9%)
IRCULATORY SYSTEM	(a a)		2 A 100 S		(4 -)	
# Mesenteric lymph node	(36)		(47)	(07)	(45)	
Thrombosis, NOS				(2%)	. حول ر	
#Lung	(50)		(50)	(90)	(49)	
Perivasculitis #Heart	(20)			(2%)	(20)	
# neart Angiectasis	(50)		(49)	(90)	(50)	
#Right atrium	(50)		(49)	(2%)	(50)	
	(00)			(2%)	(00)	
Thrombus fibrin						
Thrombus, fibrin #Left atrium	(50)		(49)	(2,0)	(50)	

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle	Control	Low I	Dose	High	Dose
CIRCULATORY SYSTEM (Continued)	<u></u>	<u> </u>	····-			
#Myocardium	(50)		(49)		(50)	
Mineralization	(00)			(2%)	(00)	
Inflammation, acute focal	1	(2%)	_	(=,		
Inflammation, acute/chronic		(2%)				
Degeneration, NOS		(4%)	8	(16%)	3	(6%)
Necrosis, focal		(2%)		(2%)		(2),
Nuclear size alteration		(2%)				
#Myocardium of right atrium	(50)		(49)		(50)	
Degeneration, NOS			1	(2%)		
*Aorta	(50)		(50)		(50)	
Inflammation, acute/chronic					1	(2%)
*Coronary artery	(50)		(50)		(50)	
Inflammation, fibrinoid			1	(2%)		
*Pulmonary artery	(50)		(50)		(50)	
Inflammation, acute/chronic	1	(2%)				
*Renal artery	(50)		(50)		(50)	
Inflammation, granulomatous focal				(2%)	/	
#Thymus	(27)		(38)		(32)	
Thrombosis, NOS					1	(3%)
IGESTIVE SYSTEM						·····
*Tongue	(50)		(50)		(50)	
Inflammation, acute/chronic	(00)		(50)			(2%)
Hyperkeratosis						(2%)
Acanthosis						(2%)
#Salivary gland	(50)		(48)		(50)	(2,70)
Necrosis, focal		(2%)	(40)		(50)	
Atrophy, focal	1	(270)	1	(997)		
#Liver	(48)		(49)	(2%)	(50)	
Cyst, NOS	(40)		(49)			(90%)
Congestion, acute			1	(2%)	1	(2%)
Hemorrhage				(2%) (2%)		
Inflammation, acute focal			1	(470)	1	(2%)
Inflammation, acute/chronic			1	(2%)	1	(270)
Necrosis, focal				(2%) (4%)		
Necrosis, tocal Necrosis, coagulative					1	(904)
Infarct, acute				(4%) (4%)	1	(2%)
Cell size alteration		(2%)	2	(4%)		
Angiectasis	-	x = · · · ·			1	(90)
#Liver/centrilobular		(2%)	(40)			(2%)
Inflammation, acute/chronic	(48)	(2%)	(49)		(50)	
Regeneration, NOS		(2%) (2%)				
#Liver/periportal	(48)	(470)	(49)		(50)	
Degeneration, NOS		(2%)	(43)		(00)	
Necrosis, focal		(2%)				
#Liver/hepatocytes	(48)	(270)	(49)		(50)	
Inflammation, acute focal		(2%)	(43)		(00)	
Degeneration, cystic		(2%)				
Necrosis, focal		(4%)	t	(2%)	9	(4%)
Necrosis, coagulative		(4%)	1		2	
Metamorphosis, fatty		(4%)	1	(2%)		
Cytoplasmic vacuolization	4			(2%)		
*Gallbladder	(50)		(50)	(470)	(50)	
Cyst, NOS	(00)		(00)			(2%)
Necrosis, focal			,	(906)	1	(270)
	•	(904)		(2%)		
Hyperplasia, epithelial #Pancreas		(2%)		(2%)	(40)	
	(49)		(49)		(49)	(90)
Inflammation, acute hemorrhagic Inflammation, acute/chronic						(2%)
Inflammation, acute/chronic Inflammation, chronic diffuse			1	(90)	z	(4%)
			1	(2%)		
Atrophy, focal				(2%)	-	(6%)

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle	Control	Low I)ose	High	Dose
DIGESTIVE SYSTEM (Continued)						
#Pancreatic acinus	(49)		(49)		(49)	
Necrosis, focal		(2%)	(()	
Focal cellular change	-	(=/	1	(2%)		
Atrophy, focal				(6%)		
Atrophy, diffuse				(2%)		
Hypertrophy, focal				(6%)	1	(2%)
#Esophagus	(50)		(50)	(0,0)	(50)	
Mineralization	(80)			(2%)	(50)	
			1	(270)		(0~)
Inflammation, acute diffuse						(2%)
#Gastric mucosa	(41)		(48)		(46)	
Erosion		(2%)				
Necrosis, focal		(2%)				
#Gastric fundal gland	(41)		(48)		(46)	
Ectopia					1	(2%)
Mineralization			1	(2%)		
Dilatation, NOS					2	(4%)
Cyst, NOS			1	(2%)		
Inflammation, acute focal			1	(2%)		
#Glandular stomach	(41)		(48)		(46)	
Mineralization					1	(2%)
Dilatation, NOS	2	(5%)			-	(=,
Hyperplasia, focal	-	(0,0)			1	(2%)
Metaplasia, squamous	1	(2%)			1	(2 n)
#Forestomach		(270)	(48)		(46)	
	(41)		•	(00)		
Hyperkeratosis	1	(2%)		(2%)		(4%)
Acanthosis				(2%)		(4%)
#Gastric fundus	(41)		(48)		(46)	
Inflammation, acute focal					1	(2%)
Metaplasia, squamous		(2%)				
#Jejunum	(37)		(45)		(38)	
Ulcer, NOS			1	(2%)		
Inflammation, active chronic			1	(2%)		
#Colon	(42)		(35)		(44)	
Parasitism	7	(17%)	2	(6%)	5	(11%)
#Cecum	(42)		(35)		(44)	•
Parasitism	(,	(2%)		(3%)	()	
*Rectum	(50)	(2,10)	(50)	(0,0)	(50)	
Parasitism		(2%)	(00)		· - + /	(2%)
		(270)				(270)
RINARY SYSTEM	(50)		(49)		(40)	
#Kidney	(50)	(90)	(48)		(49)	(
Hydronephrosis	1	(2%)				(4%)
Cyst, NOS						(2%)
Inflammation, interstitial	-	(1 ~)			1	(2%)
Pyelonephritis, acute		(4%)				
Inflammation, acute focal	1	(2%)		(2%)		
Pyelonephritis, chronic				(2%)		
Nephropathy	1	(2%)		(2%)		(10%)
#Kidney/capsule	(50)		(48)		(49)	
Inflammation, acute focal						(2%)
Fibrosis, multifocal			1	(2%)	_	
#Kidney/cortex	(50)		(48)		(49)	
Mineralization		(2%)	()		(-0)	
Inflammation, acute/chronic	•				1	(2%)
Fibrosis, focal			9	(4%)	1	(470)
Fibrosis, multifocal				(2%)		
Degeneration, NOS				(2%)		
Deposit, NOS	100			(2%)	(10)	
#Renal cortical interstitial tissue	(50)	(19)	(48)	(150)	(49)	(10~)
Lymphocytic inflammatory infiltrate	2	(4%)	7	(15%)	6	(12%)
Inflammation, acute diffuse		(2%)				

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle	Control	Low I	Dose	High]	Dose
RINARY SYSTEM (Continued)					······	
#Kidney/tubule	(50)		(48)		(49)	
Mineralization		(6%)		(6%)		(12%)
Dilatation, NOS		(4%)		(4%)		(8%)
Cyst, NOS	-			(2%)	-	(0,0)
Degeneration, NOS	1	(2%)		(2%)	1	(2%)
Necrosis, focal		(2%)		(270)		(2%)
Cytoplasmic aggregate, NOS	-		9	(4%)	1	(270)
Atrophy, focal			2	(+ /0)	1	(2%)
Regeneration, NOS	20	(40%)	21	(65%)		(35%)
#Kidney/pelvis	(50)		(48)		(49)	(00%)
Mineralization	(00)			(2%)	(43)	
Dilatation, NOS	1	(2%)	1	(2,10)		
Inflammation, acute focal		(4%)				
Necrosis, focal		(2%)				
#Urinary bladder	(47)		(48)		(47)	
Inflammation, acute focal		(2%)	(40)		(
Inflammation, acute/chronic		(2%)	1	(2%)	1	(2%)
Hyperplasia, epithelial		(2%)		(2%)	1	
#Urinary bladder/mucosa	(47)		(48)	(210)	(47)	
Inflammation, multifocal	(++()		(40)			(2%)
Necrosis, focal	1	(2%)			1	(4/0)
#Urinary bladder/submucosa	(47)	(2 10)	(48)		(47)	
Inflammation, acute/chronic	(++7)			(2%)	(47)	
#Urinary bladder/serosa	(47)		(48)	(2/0)	(47)	
Inflammation, chronic focal		(2%)	(40)		(41)	
DOCRINE SYSTEM						
#Anterior pituitary	(35)		(42)		(40)	
Embryonal duct cyst				(2%)	/	
Cyst, NOS				(2%)		
Hyperplasia, focal	1	(3%)	-			
#Adrenal/capsule	(49)		(48)		(49)	
Hyperplasia, focal		(37%)		(54%)		(53%)
#Adrenal cortex	(49)		(48)	. = = /	(49)	
Cyst, NOS	(20)		(10)			(2%)
Degeneration, NOS	2	(4%)			2	(4%)
Degeneration, lipoid	_	(2%)	4	(8%)	2	(= /0)
Focal cellular change		(10%)		(10%)	4	(8%)
Hypertrophy, focal		(2%)		(2%)		(2%)
Hyperplasia, focal		(4%)		(10%)		(10%)
#Adrenal medulla	(49)		(48)		(49)	/
Inflammation, acute focal		(2%)				
Basophilic cyto change	-		3	(6%)		
Hyperplasia, focal	3	(6%)		(10%)	10	(20%)
#Periadrenal tissue	(49)	\ \ / \ /	(48)		(49)	(20/0)
Inflammation, acute/chronic	(30)		(****)			(2%)
#Thyroid	(50)		(50)		(49)	~ ,0 ,
Follicular cyst, NOS		(10%)		(12%)		(16%)
Hyperplasia, follicular cell		(14%)		(12%)		(10%)
#Thyroid follicle	(50)	((50)		(49)	(10/0)
Multiple cysts	(00)		(00)			(2%)
#Parathyroid	(27)		(29)		(29)	(2,0)
Inflammation, acute/chronic	(27)			(3%)	(43)	
······································						
PRODUCTIVE SYSTEM						
PRODUCTIVE SYSTEM	(50)		(50)		(50)	
*Penis	(50)		(50)		(50) 1	(2.9)
	(50) (50)		(50) (50)			(2%)

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle	Control	Low D	ose	High l	Jose
REPRODUCTIVE SYSTEM (Continued)	<u></u>				<u> </u>	
*Preputial gland	(50)		(50)		(50)	
Dilatation/ducts	(+/		4	(8%)	1	(2%)
Multiple cysts	2	(4%)			1	(2%)
Abscess, NOS	_				1	(2%)
Inflammation, acute/chronic	2	(4%)			1	(2%)
Inflammation, granulomatous focal	_	(2%)				
Metaplasia, squamous			1	(2%)		
#Prostate	(46)		(48)		(49)	
Steatitis			1	(2%)		
Inflammation, acute focal	4	(9%)			2	(4%)
Inflammation, acute diffuse		(2%)			1	(2%)
Inflammation, acute/chronic		(4%)	2	(4%)	2	(4%)
Inflammation, chronic focal	-				1	(2%)
*Seminal vesicle	(50)		(50)		(50)	
Dilatation, NOS		(2%)	(00)			
Inflammation, acute diffuse		(2%)			1	(2%)
Inflammation, acute/chronic	1	(270)				(2%)
	(47)		(50)		(50)	(4 /0)
#Testis		(2%)	(00)		(00)	
Mineralization	1	(270)	1	(2%)	1	(2%)
Granuloma, spermatic	(47)		(50)	(270)	(50)	(270)
#Spermatogenic epithelium	(47)	(00)		(140%)		(10%)
Mineralization	-	(6%)		(14%)		(10%)
Degeneration, NOS	6	(13%)		(2%)	2	(4170)
Atrophy, NOS				(2%)	•	(100)
Atrophy, focal			-	(12%)		(18%)
Atrophy, diffuse	1	(2%)	1	(2%)	1	(2%)
Hypospermatogenesis	1	(2%)				
*Epididymis	(50)		(50)		(50)	_
Mineralization						(2%)
Inflammation, acute/chronic			1	(2%)	2	(4%)
Inflammation, granulomatous focal	1	(2%)				
Granuloma, spermatic	3	(6%)			1	(2%)
NERVOUS SYSTEM						
#Brain/meninges	(50)		(50)		(49)	
Perivascular cuffing			1	(2%)		
#Brain/thalamus	(50)		(50)		(49)	
Mineralization	23	(46%)	27	(54%)	23	(47%)
*Accessory nerve	(50)		(50)		(50)	
Lymphocytic inflammatory infiltrate					1	(2%)
SPECIAL SENSE ORGANS						
*Eye	(50)		(50)		(50)	10 m ·
Degeneration, NOS					1	(2%)
MUSCULOSKELETAL SYSTEM			(80)		(50)	
*Skeletal muscle	(50)		(50)	(00)	(50)	
Inflammation, necrotizing granulomatous				(2%)		
Necrosis, focal				(2%)		
*Muscle of leg	(50)		(50)		(50)	(00)
Inflammation, acute focal					1 	(2%)
BODY CAVITIES	(80)		(60)		(50)	
*Mediastinum	(50)		(50)			(2%)
Inflammation, acute diffuse			/EA		(50)	(270)
*Abdominal cavity	(50)		(50)			(2%)
Hemorrhage					1	(270)

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THETWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle Control	Low Dose	High Dose
BODY CAVITIES (Continued)			<u></u>
*Pleura	(50)	(50)	(50)
Inflammation, acute/chronic		1 (2%)	1 (29
Fibrosis, focal		2 (4%)	
*Mesentery	(50)	(50)	(50)
Hemorrhage		1 (2%)	
Inflammation, acute/chronic		1 (2%)	
Inflammation, granulomatous focal		1 (2%)	
Necrosis, focal			1 (29
Necrosis, fat	1 (2%)	1 (2%)	2 (49
ALL OTHER SYSTEMS			
*Multiple organs	(50)	(50)	(50)
Mineralization		1 (2%)	
Lymphocytic inflammatory infiltrate		1 (2%)	

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 † Multiple occurrence of morphology in the same organ; tissue is counted once only.

None

THPS and THPC, NTP TR 296

140

APPENDIX D

SUMMARY OF LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS

		PAGE
TABLE D1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN	
	THE TWO-YEAR GAVAGE STUDY OF THPS	143
TABLE D2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE	
	TWO-YEAR GAVAGE STUDY OF THPS	146
TABLE D3	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR	
	GAVAGE STUDY OF THPS	152
TABLE D4	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN	
	FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS	155

THPS and THPC, NTP TR 296
Vehicle	Control	Low D	lose	High I	Dose
50	······	50	<u></u>	50	
				1	
50		50		49	
Y 50		50		49	
			<u>,</u>		
(50)			(0.0.)	(49)	
		1	(2%)	1	(2%)
(50)		(50)			(270)
	(294)	(50)		(43)	
				1	(2%)
	(2 <i>N</i> /			- 	
				(10)	
(50)			(00)	(49)	
	(90)				(2%)
				_	x = · · y
1	(2%)	1	(270)		(4%) (2%)
					(2%) (2%)
1	(2%)			1	(270)
(50)				(49)	
		-			
1	(2%)			_	
		-	• • • •		(10%)
					(4%)
		8	(16%)	9	(18%)
	(2%)	(20)		(40)	
(50)			(99)	(49)	
(40)			(2%)	(46)	
(49)		(40)			(2%)
(50)		(50)			(2%)
(50)		(00)			(2%)
(50)		(50)		(49)	
/		2	(4%)		
(50)		(50)			
					(2%)
(50)		(50)		(49)	
	(2%)				
(50)		(50)			(2%)
		<u></u>			(470)
				(40)	
(50)		(50)			(9 <i>a</i> -)
		/EA.		1 (49)	(2%)
(50)		(50)			
	(100)	•	(60)	n	(102-)
5	(10%) (6%)	3	(6%)		(4%) (2%)
5	(10%) (6%)	3 (47)	(6%)		(4%) (2%)
	50 Y 50 (50) (50) 1 1 (50) 1 1 (50) 1 1 (50) 9 1 4 1 1 (50)	$\begin{array}{c} 50\\ Y & 50\\ \hline \\ 50\\ \hline \\ (50)\\ 1 & (2\%)\\ \hline \\ (50)\\ 1 & (2\%)\\ \hline \\ (50)\\ 1 & (2\%)\\ \hline \\ (50)\\ 9 & (18\%)\\ 1 & (2\%)\\ \hline \\ (2\%)\\ 1 & (2\%)\\ \hline \\ (50)\\ \hline \\ (2\%)\\ \hline \\ (50)\\ \hline \\ (50)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS

	Vehicle	Control	Low I	Dose	High]	Dose
DIGESTIVE SYSTEM (Continued)						
#Cecum	(49)		(44)		(45)	
Leiomyoma	1	(2%)				
JRINARY SYSTEM		. <u></u>	<u> </u>			
#Kidney/cortex	(50)		(50)		(49)	
Adenocarcinoma, NOS, metastatic			1	(2%)		
NDOCRINE SYSTEM		•				
#Anterior pituitary	(43)		(46)		(45)	
Adenoma, NOS	8	(19%)	8	(17%)	8	(18%)
#Adrenal	(50)		(50)		(49)	
Alveolar/bronchiolar carcinoma, metastatic	1	(2%)				
Cortical adenoma	1	(2%)	_	(4%)		
#Adrenal/capsule	(50)		(50)		(49)	
Adenoma, NOS			-	(2%)		
#Adrenal medulla	(50)		(50)		(49)	
Pheochromocytoma			-	(6%)		(4%)
#Thyroid	(49)		(49)		(48)	
Follicular cell adenoma	1	(2%)	-	(0~)		
Follicular cell carcinoma				(2%)		
#Pancreatic islets	(48)	(07)	(48)	(00)	(49)	
Islet cell adenoma	1	(2%)	1	(2%)	4	(2%)
Islet cell carcinoma					1	(2%)
REPRODUCTIVE SYSTEM						
*Mammary gland	(50)		(50)		(49)	
Squamous cell carcinoma				(2%)		
Adenocarcinoma, NOS			1	(2%)		
Acinar cell carcinoma						(2%)
#Uterus	(50)		(50)	(0~)	(49)	
Adenocarcinoma, NOS		(0~)	1	(2%)		
Leiomyosarcoma		(2%)	0	(4.01)	c	(12%)
Endometrial stromal polyp		(4%)		(4%)		(1270)
#Ovary	(50)		(50)	(90)	(48)	
Papillary cystadenoma, NOS			1	(2%)	1	(2%)
Teratoma, NOS	(50)		(50)		(48)	(270)
#Ovary/cortex Granulosa cell tumor	(50)			(2%)	(40)	
				(210)	· <u></u> _	
NERVOUS SYSTEM None						
SPECIAL SENSE ORGANS					- <u></u>	
*Harderian gland	(50)		(50)		(49)	
Papillary adenocarcinoma	2	(4%)	1	(2%)	1	(2%)
MUSCULOSKELETAL SYSTEM None	<u> </u>		<u> </u>			
BODY CAVITIES None				<u> </u>		

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

	Vehicle Control	Low Dose	High Dose
ALL OTHER SYSTEMS	· · · · · · · · · · · · · · · · · · ·		······
*Multiple organs	(50)	(50)	(49)
Fibrosarcoma, metastatic	1 (2%)		
ANIMAL DISPOSITION SUMMARY			<u> </u>
Animals initially in study	50	50	50
Natural death	7	8	6
Moribund sacrifice	13	12	10
Terminal sacrifice	28	30	33
Dosing accident	1		
Accidentally killed, NOS	1		
Animal missing			1
TUMOR SUMMARY			<u></u>
Total animals with primary tumors**	32	35	35
Total primary tumors	48	51	49
Total animals with benign tumors	17	19	17
Total benign tumors	21	25	20
Total animals with malignant tumors	25	20	23
Total malignant tumors	27	25	28
Total animals with secondary tumors##	3	1	2
Total secondary tumors	3	2	2
Total animals with tumors uncertain			
benign or malignant		1	1
Total uncertain tumors		1	1

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 # Number of animals examined microscopically at this site

Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

GAVAC		91	ψD					9.	V Ei.																
ANIMAL NUMBER	0 0 1	0 0 2	0 0 3	0 0 4	0 0 5	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	0 8 2	0 9 7	0 8 0	9 7	0 8 2	1 0 5	1 0 5	1 0 5	1 0 5	0 9 6	0 5	0 6 5	1 0 5	1 0 5	05	1 0 5	0 7 5	0 6 0	1 0 5	1 0 5	1 0 5
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibrosarcoma	+	+	+	+	+	+	N	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Sarcoma, NOS, metastatic Trachea	+	+	+	+	+	++	+	+	+	+	++	+	+	+ X	++	+	+	+	+	+	+ X +	+	+	+	•+ +
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangioma Lymph nodes Thymus	++ ++ ++	++ ++ ++	++ ++	+++++	++x++	++ + +	++++-	++ ++	++ ++	++ ++	+++++	++ ++	++ ++	+++++	++ ++	++ +	++ ++	++ ++	++ ++	++ -+	++ ++	++ ++	++ ++	++ ++	++ ++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Stomach Large intestine Large intestine Laige untestine	++	++ ++++++X	++ +++++++	++ +z+++++	++ +++++++	++ ++++++	*+ + + + + + + + + + + + + + + + +	++ +++++++	++ ++++++	++x +++++++	++ +++++++	++ +++++++	++ ++++++++	++ ++++++	++ +++1+++	++ ++++++++++++++++++++++++++++++++++++	++ +++++++	++ +++++++	++ ++++++	++ +++++++	++ +++++++	++ +2+++++	++ +++++++	++X ++++++++	++ ++++++
URINARY SYSTEM Kidney Urinary bladder	++++	++++	+ +	+ +	+++	+ +	++	++++	+ +	+ +	+ +	+ +	+++	+ +	+ +	+ +	+++	+ +	+ +	+++	+ +	+++	+++	++	+ +
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Alveolar/bronchiolar carcinoma, metastatic Cortical adenoma Thyroid Follicular cell adenoma	+ + + x	+ + +	+ + +	+ + +	+ + + +	+ + +	+ + +	+ + +	+ + +	+ + + +	+ + +	+ + +	+ + +	- + +	* * +	+ + +	- + +	+x + x + x +	+ + +	+ + +	+ * *	- + +	+++++	+ * + +	+ X + +
Parathyroid Pancreatic islets Islet cell adenoma	+	++	+	+	÷	+ +	- *	+ +	+ +	+ +	+	+ +	++++	÷	+ +	+	+ +	+	+ +	+ +	++	+ +	+ +	+	+
REPRODUCTIVE SYSTEM Mammary gland Uterus Leiomyosarcoma Endometrial stromal polyp Ovary	א + +	N + +	+ + +	N + +	+ + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	+++++	+ + +	N + +	N + +	+ + x +	+ + +	N + +	N + +	+++++	N + X +	N + +	N + +	N + +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Papillary adenocarcinoma	N	N	N	N	N	N	N	N	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Fibrosarcoma, metastatic Malignant lymphoma, NOS Malignant lymphoma, undiffer type Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type Leukemia, NOS Lymphocytic leukemia	N	N X	N	N	N	N X	N	N X	N X	N	N	N X	N	N	N X	N	N X	N	N	N	N	N	N	N	N

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS: VEHICLE CONTROL

+: Tissue examined microscopically
 -: Required tissue not examined microscopically
 X: Tumor incidence
 Necropsy, no autolysis, no microscopic examination
 S: Animal missexed

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

ANIMAL NUMBER	020	0 2 7	0 2 8	29	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	039	040	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL:
WEEKS ON STUDY	105	0 8 0	0 0 1	0 0 1	0 8 8	0 6 0	0 7 5	1 0 1	1 0 5	1 0 5	0 5 9	0 9 8	0 1 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 0	1 0 5	1 0 5	1 0 5	1 0 5	0 3 3	1 0 5	1 0 1	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	N	+	+ x	+	+	+	+	+	+	+	*50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Sarcoma, NOS, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* *	+	+	+	+	+	+	+	+	+	+	50 1 1 47
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangioma	+ +	+++	++++	++	+ +	+	+ +	+++	+ +	+++	+++	+ +	+++	++	+++	+++	++	÷	+ +	++++	+++	+++	++++	+ +	÷	50 50 1
Lymph nodes Thymus	+++	++	+	+	+	++	-	++++	++	+++	=	++	+	++	+	+++	++	<u>+</u>	++	+	++	+++	++	++	+	46 41
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	+ +	++	+ +	+ +	+ +	+ +	+ * X	+ +	+ +	+ + x	+ +	+ +	+ +	++	+ +	+	+ +	+ +	+ +	+ +	+ +	++x	+ +	++	+ +	50 50 5
Hepatoeellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine Leiomyoma	+++++++	+ 2 + + + + + +	++++++	++++++	++++++	+2+++++	++ +++	++++++	++++++	++++++	+2+++++	+2+++++	++++++	++++++	++++++	+2+++++	++++++	++++++	++++++	++++++	++++++	X++++++	+2+++++	X+N+++++	++++++	3 50 48 49 50 49 1
URINARY SYSTEM Kidney Urinary bladder	++	+++	+++	+	*	+++	++++	<u>+</u>	++	+	+	+++	+ +	+++	+ +	++	++++	++++	+++	++	+++	+++	+	+	+ +	50 48
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Alveolar/bronchiolar carcinoma, meta	+ +	++	++	+	++	++	+ +	++	- +	++	++	- +	++	- +	+ +	++	+ X +	+ +	+ +	- +	+ +	+ +	++	+ +	+ +	43 8 50 1
Cortical adenoma Thyroid Follicular cell adenoma	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1
Parathyroid Pancreatic islets Islet cell adenoma	+	+	+	+	÷	+	-	+ +	+	+	+	+	+	+	+	÷	+	+	+	+	+	÷	+	+	÷	28 48 1
REPRODUCTIVE SYSTEM Mammary giand Uterus Leiomyosarcoma Endometrial stromal polyp	N +	N +	++++	+++	+++	N +	+ +	N +	++++	N +	N +	N +	N +	+++	N +	+++	N +	N +	N +	++ + X	N +	++++	++++	N +	N +	*50 50 1 2
Ovary NERVOUS SYSTEM Stain	+	+	+	+	+	+ 	+	+	+	+	+	+	+	+	+	+ 	+	+	+	+	+ 	+ 	+	+ 	+ 	50
SPECIAL SENSE ORGANS Harderian gland Papillary adenocarcinoma	۲ N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Fibrosarcoma, metastatic Malignant lymphoma, NOS Malignant lymphoma, undiffer type Malignant lymphoma, lymphocytic type Malignant lymphoma, histlocytic type Malignant lymphoma, mixed type Leukemia, NOS	N	N X	N	N	N	N X	N X	N X	N	N X	N	N	N	N		N X		N X	N	N	N	N	N	N	N	*50 1 9 1 4 1 1

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

* Animals necropsied

TABLE D2.	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR
	GAVAGE STUDY OF THPS: LOW DOSE

ANIMAL NUMBER	0 0 1	0 0 2	0 0 3	004	0 0 5	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	020	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
WEEKS ON STUDY	0 7 5	1 0 5	0 7 2	0 6 6	0 6 7	1 0 4	0 9 3	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 2	1 0 4	1 0 5	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	0 9 1	1 0 5	0 9 0	1 0 5	1 0 5
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma	-	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoma, NOS, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+ X +	+
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	- + + + + +	++++	+++=	+++++	+ ++ ++ +	+++++	+++++	++++++	++++	++++	+++++	+++++	++++	+++++	++++	++++	++++-	++++	+++++	+++++	++++	++++	++-+	++ + + + + + + + + + + + + + + + + + + +	++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Malignant lymphoma, lymphocytic type	+	+++	+++	+++	+++	+++	+++	++++	+++	+++	+++	+++	+++	+++	+++	+++	+ + X	+ * X	+++	+++	+++	+	++	+++	÷
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma	+++++++++++++++++++++++++++++++++++++++	+++++	+ 1 2 + + +	+++++	++++	+ 2 + + +	++++	+z+++	++++	++++	+ N + + +	++++	+ z + + +	++++	++++	++++	++++	++++	++++	++++	++++	+++++	++++	++++	+ 2 + + +
Small intestine Large intestine	+++	+ +	-	-	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+-	+ +
URINARY SYSTEM Kidney Adenocarcinoma, NOS, metastatic Urinary bladder	+++	+ +	+	+	+++	+++	++	++	++	+++	+++	+++	+++	+++	+++	+++	+ +	+++	++++	++	+++	+++	+++	++	+++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Adenoma, NOS Cortical adenoma	++	+ +	+ +	+ +	++	+ +	+ +	+ +	* *	+ +	+ +	+ +	++	+ +	* *	+ +	+ x + x	+ +	+ +	+ +	+ +	* *	+ +	++	* *
Pheochromocytoma Thyroid Follicular cell carcinoma Parathyroid Pancreatic islets	++++++	+ - +	+ +	+ + +	+ + +	+ - +	+ - +	+ + +	+ + +	+ -+	+ x +	+ + +	+ - +	+ + +	+ + +	+ + +	+ ++	+ -+	+ + +	++	+ + +	+ -+	+ -+	+ -+	+ + +
Isiet cell adenoma REPRODUCTIVE SYSTEM Mammary gland Squamous cell carcinoma	N	N	N	+	+	+	N	N	N	N	+	'n	N	+	+	*	+	N	N	X +	N	+	N	N	N
Adenocarcinoma, NOS Uterus Adenocarcinoma, NOS Endometrial stromal polyp	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+
Ovary Papillary cystadenoma, NOS Granulosa cell tumor	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	*
NERVOUS SYSTEM Brain	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Papillary adenocarcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Hemangiosarcoma Malignant lymphoma, NOS Malignant lymphoma, undiffer type Malignant lymphoma, lymphocytic type	N	N	N			N	N	N	N	N	N X	N	N X	N	N	N	N	N	N X	N	N X	N	N	N	N
Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type				X	X			x			x	X		x		x									

								(C	on	UIII	uet	.,														
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL
WEEKS ON STUDY	1 0 5	1 0 5	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 7 7	0 7 7	0 7 3	0 7 7	0 8 1	0 6 6	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 7 3	0 9 2	1 0 5	1 0 5	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	N	+	+	+	+	+	+	+	+	+	*50 1
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoma, NOS, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	* *	+	+ X	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 2 1 48
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	+++++	++++	+++++	++++	 ++++++++++++++++++++++++++++++++	+++++	++++	++ ++++	++++++	++++++	+ +++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++	++	+++++	+++++	++++	++++	++++++	-+++	+++++	++++	+++++	49 50 46 44
CIRCULATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Malignant lymphoma, lymphocytic type	+++++	+ + X	+ +	+++	++++	+++	+ +	+ + x	+ +	+++	+ +	+++	+++	+ +	+ +	+++	++++	+++	+++	+ +	+++	+	+++	+++	+ +	50 50 3 1
Bile duct Gailbladder & common bile duct Pancreas Esophagus Stomach	++++	+++++	+ 2 + + +	+++++	+++++	+ + + + +	+++++	+ + + + +	++++	+++++	+++++	++++	+ + + + +	++++	++++	+ N + +	+ + + +	+ N + + +	+++++	+ + + + +	+++++	++-++	+ 2 + + 1	++++	++++	50 *50 48 50 47
Squamous cell papilloma Small intestine Large intestine	++++	+ +	+ +	+ +	+ +	+ +	+ +	X + +	+ -	+ +	+ +	 +	+ +	+ +	+ +	-	+ +	+ +	+ +	+ +	+ +	+ +	-	+ +	+ +	1 45 44
URINARY SYSTEM Kidney Adenocarcinoma, NOS, metastatic Urinary bladder	++	++	++	+ X +	+++	+++	+ +	+	+	+ +	+++	+ +	+ +	++	++	+ +	+ +	+ +	++	+ +	++	++	++	++	+++	50 1 47
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Adenoma, NOS	++++	+++	+	- + x	+ X +	++	++	+ X +	++	++	+ +	++	- +	+ +	+ +	 +	+ +	++	+ +	+ +	+ X +	++	+ +	+ +	- +	46 8 50 1
Cortical adenoma Pheochromocytoma Thyroid Follicular cell carcinoma Parathyroid	++	+ +	+	+ +	+	+ +	+	+ -	+ +	+ ~	+ 		x + -	+	+ +	++	+ +	X + +	X + +	X + +	+ -	+	+	++	+	2 3 49 1 30
Pancreatic islets Islet cell adenoma	_+ 	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+		48
REPRODUCTIVE SYSTEM Mammary gland Squamous cell carcinoma Adenocarcinoma, NOS Uterus	++	+	N +	N +	N +	+ +	N +	N +	N +	+	+	N +	N +	+ +	N +	N +	N +	+ +	+	+	N +	N +	+	+ +	N +	*50 1 1 50 1
Adenocarcinoma, NOS Endometrial stromal polyp Ovary Papillary cystadenoma, NOS Granulosa cell tumor	+	+	+	+	+	+	+	÷	+	+	+	+	÷	+	+	+	÷	X +	÷	+	+	+	+	+	+	2 50 1 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	49
SPECIAL SENSE ORGANS Harderian gland Papillary adenocarcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Hemangiosarcoma Malignant lymphoma, NOS Malignant lymphoma, undiffer type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 2 1 1
Malignant lymphoma, lymphocytic type Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type	x		x			X																	x	x	x	1 5 8

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

* Animals necropsied

ANIMAL NUMBER	0 0 1	0 0 2	0 0 3	0 0 4	0 0 5	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
WEEKS ON STUDY	1 0 5	0 0 3	1 0 5	1 0 5	1 0 5	0 8 6	0 7 5	0 7 5	0 7 5	0 7 5	1 0 5	1 0 5	1 0 5	0 9 7	1 0 5	0 7 2	1 0 5	0 1 0	1 0 5						
INTEGUMENTARY SYSTEM Skin Fibrosarcoma Subcutaneous tissue Fibrosarcoma	+++	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	++	+++										
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Papillary adenocarcinoma, metastatic Acinar cell carcinoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Trachea HEMATOPOIETIC SYSTEM Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Spieen Hemangiosarcoma Lymph nodes	+++++++++++++++++++++++++++++++++++++++	+	+	++	++	+ +	+	+	+ +	+	+	+	+ +	+	++	++	++	++	++	++	++	++	+	+ +	+++
CIRCULATORY SYSTEM	÷	+	-	+	+	-	+	+	+	++	++	+	+	++	++	+	++	+	++	++	++	+ -	+	+	++
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Oral cavity Squamous cell carcinoma Salivary gland Liver	N ++	N ++	N +	N ++	N ++	N ++	N + +	N + +	N + +	N +	N +	N +	N +	N +	N + +	N +	N +	N +	N +	N +	N +	N X +	N +	N - +	N +
Hepatocellular adenoma Hepatocellular carcinoma Bile duct Gallbladder & common bile duct	+++	+++	++++	+++	++++	+ N	+ +	+ +	+ +	+ + +	+ N	+++	+++++	++++	+ + +	++++	++++	++++	+++++	++++	++++	+++++	+++++	++++	+++++
Pancreas Esophagus Stomach Small intestine	+ + + +	++++	++++	+++++	++++	+++-	++++	++++	++++	++-+	+++++	++++	++++	++++	++++	+++++	++++	.++++	.++++	·++++	· + + + +	.++++	+++++	+ + + +	++++++
Malignant lymphoma, NOS Large intestine	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+
URINARY SYSTEM Kidney Urinary bladder	+ +	+ +	+ +	+ +	+++	+ -	+ +	+++	+ +	+ +	+ +	+ +	+ +	++++	++++	+ +	+ +	++++	+++	+ +	+++	+++	+++	+ +	+
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal	+++	+	+	+	+++	+++	-+	+	+++	-+	* *	+	-+	+++++	+	*	+	+	* *	+	+	+	+	-	+
Pheochromocytoma Thyroid Parathyroid	+++++	++	+	+++	++++	X + -	++++	++++++	+++++	+++++	++++	+	+ +	+	+	+	++++	+	+ +	+ -	++++	• + +	, + +	+ +	++++
Pancreatic islets Islet cell carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
REPRODUCTIVE SYSTEM Mammary gland Acinar cell carcinoma	N	N	N	N	N	+	N	N	N	N	+	+	+	N	N	+	N	+	+	N	+	+	N	+	+
Uterus Endometrial stromal polyp Hemangioma Maiignant lymphoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	*	*	+	+	+	+	*
Ovary Teratoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+ -
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Papillary adenocarcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS: HIGH DOSE

ALL OFHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type

NNNNNNNNNNNNNNNNNNNNNNNN X X X

X X X

x

x

x

									on			-/														
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL:
WEEKS ON STUDY	105	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0 9 1	1 0 5	1 0 5	1 0 5	0 9 6	1 0 5	1 0 5	0 9 5	1 0 5	0 8 3	0 9 3	1 0 5	0 9 6	1 0 1	1 0 5	1 0 5	0 8 7	1 0 5	1 0 5	TISSUES
INTEGUMENTARY SYSTEM Skin Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	м	+	+	*49
Subcutaneous tissue Fibrosarcoma	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	*49 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Papillar/bronchiolar carcinoma Papillary adenocarcinoma, metastatic	+	+ x	+	+	+	*	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	м	+ X	+	49 1 2 1
Acinar cell carcinoma, metastațic Trachea	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	м	+	+	1 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen	++++	+++	+++	++++	+++	+++	++++	+++	+++	+++	++	++	+++	+++	+++	+++	+++	++	++	+++	+++	+++	M M	+++	+	49 49
Hemangiosarcoma Lymph nodes Thymus	+++++	+ +	+	X + +	+ +	+	+ +	+ -	+ +	- +	+	+ +	+ +	+ +	M M	+ +	+ +	1 44 41								
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	+	+	49
DIGESTIVE SYSTEM Oral cavity Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	м	N	N	*49
Salivary gland Liver Hepatocellular adenoma	++++	+ +	+ +	++	++	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+++	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	+ +	M M	+ + X	+ +	48 49 2 1
Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas	++++++	+ + +	++++	++++	+ + + +	+ + +	+ + +	++++	++++	++++	+ + +	+ + +	+ + +	++++	++++	+ + +	+ + +	+ + +	+ N +	++++	++++	++++	M M M	+ N +	+ + +	49 *49 49
Esophagus Stomach Small intestine Malignant lymphoma, NOS	+ + +	+ + +	++++	++++	++++	+ + +	+ + +	++++	+ + +	++++	+ + +	+ + +	+ + +	++++	+ + + X	++	+ + +	+ + +	+ + -	++++	++++	+ + +	M M M	+ + +	++++	49 48 46 1
Large intestine URINARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	-	+	+	+	M	+	+	45
Kidney Urinary bladder	‡	+ +	+	+ +	+ +	++	++	+ +	++	M M	+ +	+ +	49 47													
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	+	*	*	+	+	+	+	+	+	+	*	*	+	+	+	+	+	+	+	+	м	+ X	+	45
Adrenal Pheochromocytoma Thyroid	++	++	++	++	++	++	++	++	++	+	++	+	* *	++	++	+	+	+	+	++	+	+	M M	+	+ +	49 2 48
Parathyroid Pancreatic islets Islet cell carcinoma	+++++	+ +	+ +	+	+ +	+ +	++	+ +	+	+	÷	+	+	+	+	+	+	+	+ +	+	+ +	÷ x	M M	++	+ +	32 49 1
REPRODUCTIVE SYSTEM Mammary gland Acinar cell carcinoma	N	+	+	N	N	N	N	N	N	+	*	N	N	N	N	N	N	N	N	N	N	+	M M	N	N	*49 1 49
Uterus Endometrial stromal polyp Hemangioma Malignant lymphoma, NOS	+	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	*	Ŧ	Ŧ	+	Ŧ	-	Ŧ	+	Ŧ	T	x	Ŧ	-	т	Ŧ	141	x	X	6 1 1
Ovary Teratoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	М	+	+	48 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	+	+	49
SPECIAL SENSE ORGANS Harderian gland Papillary adenocarcinoma	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	м	N	N	*49
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type	N X	N	N	N X	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N X	N X	N X	м	N	N	*49 5 2 9

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

* Animals necropsied

	Vehicle Control	5 mg/kg	10 mg/kg
Lung: Alveolar/Bronchiolar Adenoma or Car	cinoma		
Overall Rates (a)	2/50 (4%)	3/50 (6%)	3/49 (6%)
Adjusted Rates (b)	5.9%	10.0%	8.6%
Terminal Rates (c)	1/28 (4%)	3/30 (10%)	2/33 (6%)
Week of First Observation	75	105	96
Life Table Tests (d)	P = 0.480	P = 0.529	P = 0.559
Incidental Tumor Tests (d)	P = 0.452	P = 0.571	P = 0.514
Cochran-Armitage Trend Test (d)	P = 0.402		
Fisher Exact Test		P = 0.500	P = 0.490
ematopoietic System: Malignant Lymphoma			
Overall Rates (a)	4/50 (8%)	2/50 (4%)	5/49 (10%)
Adjusted Rates (b)	12.7%	6.7%	14.6%
Terminal Rates (c)	3/28 (11%)	2/30 (7%)	4/33 (12%)
Week of First Observation	60	105	97
Life Table Tests (d)	P = 0.504	P = 0.303 N	P = 0.585
Incidental Tumor Tests (d)	P = 0.484	P = 0.274N	P = 0.556
Cochran-Armitage Trend Test (d)	P = 0.413		
Fisher Exact Test		P = 0.339N	P = 0.487
ematopoietic System: Malignant Lymphoma	, Histiocytic Type		
Overall Rates (a)	1/50 (2%)	5/50 (10%)	2/49 (4%)
Adjusted Rates (b)	2.6%	12.4%	5.9%
Terminal Rates (c)	0/28 (0%)	1/30 (3%)	1/33 (3%)
Week of First Observation	82	66	101
Life Table Tests (d)	P = 0.477	P = 0.137	P = 0.547
Incidental Tumor Tests (d)	P = 0.336	P = 0.119	P = 0.443
Cochran-Armitage Trend Test (d)	P = 0.402		
Fisher Exact Test		P = 0.102	P = 0.492
Iematopoietic System: Malignant Lymphoma	, Mixed Type		
Overall Rates (a)	1/50 (2%)	8/50 (16%)	9/49 (18%)
Adjusted Rates (b)	2.4%	24.7%	27.3%
Terminal Rates (c)	0/28(0%)	6/30 (20%)	9 /33 (27%)
Week of First Observation	75	104	105
Life Table Tests (d)	P = 0.021	P = 0.027	P = 0.018
Incidental Tumor Tests (d)	P = 0.017	P = 0.024	P = 0.016
Cochran-Armitage Trend Test (d)	P=0.009		
Fisher Exact Test		P = 0.015	P=0.007
Iematopoietic System: Lymphoma, All Malig			
Overall Rates (a)	16/50 (32%)	17/50 (34%)	18/49 (37%)
Adjusted Rates (b)	44.1%	43.3%	51.4%
Terminal Rates (c)	9/28 (32%)	9/30 (30%)	16/33 (48%)
Week of First Observation	60	66	97
Life Table Tests (d)	P = 0.504N	P = 0.548N	P = 0.549N
Incidental Tumor Tests (d)	P = 0.418	P = 0.581	P=0.499
Cochran-Armitage Trend Test (d)	P = 0.348		
Fisher Exact Test		P = 0.500	P = 0.388
ematopoietic System: Lymphoma or Leuken			
Overall Rates (a)	18/50 (36%)	17/50 (34%)	18/49 (37%)
Adjusted Rates (b)	47.0%	43.3%	51.4%
Terminal Rates (c)	9/28 (32%)	9/30 (30%)	16/33 (48%)
Week of First Observation	60	66	97
Life Table Tests (d)	P = 0.350N	P = 0.394N	P = 0.386N
Incidental Tumor Tests (d)	P = 0.505 N	P = 0.405 N	P = 0.516N
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.512		P = 0.553

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS

	Vehicle Control	5 mg/kg	10 mg/kg
Liver: Hepatocellular Adenoma		<u></u>	
Overall Rates (a)	5/50 (10%)	3/50 (6%)	2/49 (4%)
Adjusted Rates (b)	16.3%	10.0%	5.9%
Terminal Rates (c)	4/28 (14%)	3/30 (10%)	1/33 (3%)
Week of First Observation	75	105	101
Life Table Tests (d)	P = 0.113N	P = 0.319N	P = 0.163N
Incidental Tumor Tests (d)	P = 0.126N	P = 0.289N	P = 0.192N
Cochran-Armitage Trend Test (d)	P = 0.164N		
Fisher Exact Test	1 - 0.104.1	P = 0.357N	P = 0.226 N
liver: Hepatocellular Carcinoma			
Overall Rates (a)	3/50 (6%)	0/50 (0%)	1/49(2%)
Adjusted Rates (b)	10.7%	0.0%	3.0%
Terminal Rates (c)	3/28 (11%)	0/30 (0%)	1/33 (3%)
Week of First Observation	105	••	105
Life Table Tests (d)	P = 0.142N	P = 0.108N	P = 0.247 N
Incidental Tumor Tests (d)	P = 0.142N	P = 0.108N	P = 0.247 N
Cochran-Armitage Trend Test (d)	P = 0.180N		
Fisher Exact Test		P = 0.121N	P = 0.316N
Liver: Hepatocellular Adenoma or Carcinoma			
Overall Rates (a)	7/50 (14%)	3/50 (6%)	3/49 (6%)
Adjusted Rates (b)	23.3%	10.0%	8.8%
Terminal Rates (c)	6/28 (21%)	3/30 (10%)	2/33 (6%)
Week of First Observation	75	105	101
Life Table Tests (d)	P = 0.068N	P = 0.130N	P = 0.104 N
Incidental Tumor Tests (d)	P = 0.075 N	P = 0.113N	P = 0.123N
Cochran-Armitage Trend Test (d)	P = 0.112N		
Fisher Exact Test		P = 0.159N	P = 0.167 N
Pituitary: Adenoma			
Overall Rates (a)	8/43 (19%)	8/46 (17%)	8/45 (18%)
Adjusted Rates (b)	31.0%	28.6%	23.9%
Terminal Rates (c)	7/24 (29%)	8/28 (29%)	7/32 (22%)
Week of First Observation	82	105	95
Life Table Tests (d)	P = 0.317N	P = 0.481N	P = 0.377N
Incidental Tumor Tests (d)	P = 0.334N	P = 0.495N	P = 0.406N
Cochran-Armitage Trend Test (d)	P = 0.516N		
Fisher Exact Test		P = 0.550N	P = 0.569 N
Adrenal: Pheochromocytoma			
Overall Rates (a)	0/50 (0%)	3/50 (6%)	2/49 (4%)
Adjusted Rates (b)	0.0%	8.7%	5.3%
Terminal Rates (c)	0/28 (0%)	2/30 (7%)	1/33 (3%)
Week of First Observation	••	73	86
Life Table Tests (d)	P = 0.246	P = 0.137	P = 0.275
Incidental Tumor Tests (d)	P = 0.190	P = 0.162	P = 0.200
Cochran-Armitage Trend Test (d)	P = 0.196		
Fisher Exact Test		P = 0.121	P = 0.242
Uterus: Endometrial Stromal Polyp			
Overall Rates (a)	2/50 (4%)	2/50 (4%)	6/49 (12%)
Adjusted Rates (b)	5.7%	6.7%	18.2%
Terminal Rates (c)	1/28 (4%)	2/30 (7%)	6/33 (18%)
Week of First Observation	60	105	105
Life Table Tests (d)	P = 0.114	P = 0.666N	P = 0.187
Incidental Tumor Tests (d)	P = 0.106	P = 0.629N	P = 0.175
Cochran-Armitage Trend Test (d)	P = 0.076		

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPS (Continued)

(b) Kaplan-Meier tumor incidences at the end of the study after adjusting for intercurrent mortality

⁽a) Number of tumor-bearing animals/number of animals examined at the site

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

	Vehicle	Control	Low D	ose	High 1	Dose
ANIMALS INITIALLY IN STUDY			50		50	
ANIMALS MISSING					1	
ANIMALS NECROPSIED	50		50		49	
ANIMALS EXAMINED HISTOPATHOLOGICAL	LY 50		50		49	
NTEGUMENTARY SYSTEM					<u></u>	
*Skin	(50)		(50)		(49)	
Lymphocytic inflammatory infiltrate	1	(2%)	_			
Inflammation, acute/chronic				(2%)		
Inflammation, chronic			1	(2%)	1	(00)
Inflammation, chronic focal *Subcutaneous tissue	(50)		(50)		(49)	(2%)
		(2%)	(80)		(43)	
Inflammation, acute focal	1	(270)				
RESPIRATORY SYSTEM						
#Tracheal gland	(47)		(48)		(49)	
Dilatation, NOS			1	(2%)		10~··
Hyperplasia, focal						(2%)
Hyperplasia, diffuse	(50)		(50)		(49)	(2%)
#Lung Congestion, acute		(4%)		(14%)		(18%)
Hemorrhage		(2%)		(14%) (2%)		(10%)
Lymphocytic inflammatory infiltrate		(8%)		(6%)	1	(2,0)
Inflammation, interstitial	-			(2%)	1	(2%)
Inflammation, acute necrotizing				(2%)	•	(2,0)
Inflammation, active chronic	1	(2%)	-	(2.0)		
Inflammation, chronic suppurative	-	(=,~)	1	(2%)		
Abscess, chronic	1	(2%)	-	(=,		
Alveolar macrophages		(2%)	7	(14%)		
Hyperplasia, alveolar epithelium					1	(2%)
TEMATOPOIETIC SYSTEM						
*Multiple organs	(50)		(50)		(49)	
	(50)		,	(4%)	1	(2%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow	(50) (50)		2 (49)		(<i>-)</i>	(2%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal	(50)		2 (49) 1	(2%)	1 (49)	
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis	(50)	(14%)	2 (49) 1 13	(2%) (27%)	1 (49) 10	(20%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic	(50) 7	(14%)	2 (49) 1 13 6	(2%)	1 (49) 10 6	(20%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen	(50) 7 (50)		2 (49) 1 13	(2%) (27%)	1 (49) 10	(20%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic	(50) 7 (50)	(14%) (2%)	2 (49) 1 13 6 (50)	(2%) (27%) (12%)	1 (49) 10 6 (49)	(20%) (12%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal	(50) 7 (50)		2 (49) 1 13 6 (50)	(2%) (27%)	1 (49) 10 6 (49) 2	(20%) (12%) (4%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid	(50) 7 (50) 1		2 (49) 1 13 6 (50) 1	(2%) (27%) (12%)	1 (49) 10 6 (49) 2 1	(20%) (12%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles	(50) 7 (50)		2 (49) 1 13 6 (50)	(2%) (27%) (12%)	1 (49) 10 6 (49) 2 1 (49)	(20%) (12%) (4%) (2%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles Necrosis, focal	(50) 7 (50) 1 (50)	(2%)	2 (49) 1 13 6 (50) 1	(2%) (27%) (12%)	1 (49) 10 6 (49) 2 1 (49)	(20%) (12%) (4%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles	(50) 7 (50) 1 (50) 2		2 (49) 1 13 6 (50) 1 (50)	(2%) (27%) (12%)	1 (49) 10 6 (49) 2 1 (49) 2	(20%) (12%) (4%) (2%) (4%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles Necrosis, focal Depletion, lymphoid	(50) 7 (50) 1 (50) 2	(2%)	2 (49) 1 13 6 (50) 1 (50)	(2%) (27%) (12%) (2%)	1 (49) 10 6 (49) 2 1 (49) 2	(20%) (12%) (4%) (2%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles Necrosis, focal Depletion, lymphoid Hyperplasia, lymphoid #Splenic red pulp Necrosis, focal	(50) 7 (50) 1 (50) 2 16 (50)	(2%) (4%) (32%)	2 (49) 1 13 6 (50) 1 (50) 21 (50) 1	(2%) (27%) (12%) (2%) (42%) (2%)	1 (49) 10 6 (49) 2 1 (49) 2 16 (49)	(20%) (12%) (4%) (2%) (4%) (33%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles Necrosis, focal Depletion, lymphoid Hyperplasia, lymphoid #Splenic red pulp Necrosis, focal Hematopoiesis	(50) 7 (50) 1 (50) 2 16 (50) 5	(2%)	2 (49) 1 13 6 (50) 1 (50) 21 (50) 1 6	(2%) (27%) (12%) (2%)	1 (49) 10 6 (49) 2 1 (49) 2 16 (49) 9	(20%) (12%) (4%) (2%) (4%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles Necrosis, focal Depletion, lymphoid Hyperplasia, lymphoid #Splenic red pulp Necrosis, focal Hematopoiesis #Lymph node	(50) 7 (50) 1 (50) 2 16 (50) 5 (46)	(2%) (4%) (32%) (10%)	2 (49) 1 13 6 (50) 1 (50) 21 (50) 1	(2%) (27%) (12%) (2%) (42%) (2%)	1 (49) 10 6 (49) 2 1 (49) 2 16 (49)	(20%) (12%) (4%) (2%) (4%) (33%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles Necrosis, focal Depletion, lymphoid Hyperplasia, lymphoid #Splenic red pulp Necrosis, focal Hematopoiesis #Lymph node Inflammation, granulomatous	(50) 7 (50) 1 (50) 2 16 (50) 5 (46) 1	(2%) (4%) (32%)	2 (49) 1 13 6 (50) 1 (50) 21 (50) 1 6 (46)	(2%) (27%) (12%) (2%) (42%) (2%)	1 (49) 10 6 (49) 2 1 (49) 2 16 (49) 9 (44)	(20%) (12%) (4%) (2%) (4%) (33%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles Necrosis, focal Depletion, lymphoid Hyperplasia, lymphoid #Splenic red pulp Necrosis, focal Hematopoiesis #Lymph node Inflammation, granulomatous #Mandibular lymph node	(50) 7 (50) 1 (50) 2 16 (50) 5 (46)	(2%) (4%) (32%) (10%)	2 (49) 1 13 6 (50) 1 (50) 21 (50) 1 6	(2%) (27%) (12%) (2%) (42%) (2%)	1 (49) 10 6 (49) 2 1 (49) 2 16 (49) 9 (44) (44)	(20%) (12%) (4%) (2%) (4%) (33%) (18%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles Necrosis, focal Depletion, lymphoid Hyperplasia, lymphoid #Splenic red pulp Necrosis, focal Hematopoiesis #Lymph node Inflammation, granulomatous #Mandibular lymph node Hemorrhage	(50) 7 (50) 1 (50) 2 16 (50) 5 (46) 1	(2%) (4%) (32%) (10%)	2 (49) (49) (1) (50) (1) (50) (1) (50) (1) (50) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(2%) (27%) (12%) (2%) (42%) (2%) (12%)	1 (49) 10 6 (49) 2 1 (49) 2 16 (49) 9 (44) (44)	(20%) (12%) (4%) (2%) (4%) (33%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles Necrosis, focal Depletion, lymphoid Hyperplasia, lymphoid #Splenic red pulp Necrosis, focal Hematopoiesis #Lymph node Inflammation, granulomatous #Mandibular lymph node Hemorrhage Pigmentation, NOS	(50) 7 (50) 1 (50) 2 16 (50) 5 (46) 1 (46)	(2%) (4%) (32%) (10%) (2%)	2 (49) 1 13 6 (50) 1 (50) 21 (50) 1 6 (46) (46) 1	(2%) (27%) (12%) (2%) (42%) (2%) (12%)	1 (49) 10 6 (49) 2 1 (49) 2 16 (49) 9 (44) (44)	(20%) (12%) (4%) (2%) (4%) (33%) (18%)
*Multiple organs Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles Necrosis, focal Depletion, lymphoid Hyperplasia, lymphoid #Splenic red pulp Necrosis, focal Hematopoiesis #Lymph node Inflammation, granulomatous #Mandibular lymph node Hemorrhage Pigmentation, NOS Histiocytosis	(50) 7 (50) 1 (50) 2 16 (50) 2 16 (50) 5 (46) 1 (46) 2	(2%) (4%) (32%) (10%) (2%) (4%)	2 (49) 1 13 6 (50) 1 (50) 21 (50) 1 6 (46) (46) (46) 1 3	(2%) (27%) (12%) (2%) (42%) (2%) (12%) (12%)	1 (49) 10 6 (49) 2 1 (49) 2 16 (49) 9 (44) (44) 1	(20%) (12%) (4%) (2%) (4%) (33%) (18%) (2%)
Hyperplasia, lymphoid #Bone marrow Necrosis, focal Myelofibrosis Hyperplasia, granulocytic #Spleen Inflammation, acute/chronic Necrosis, focal Hyperplasia, lymphoid #Splenic follicles Necrosis, focal Depletion, lymphoid Hyperplasia, lymphoid #Splenic red pulp Necrosis, focal Hematopoiesis #Lymph node Inflammation, granulomatous #Mandibular lymph node Hemorrhage Pigmentation, NOS	(50) 7 (50) 1 (50) 2 16 (50) 2 16 (50) 5 (46) 1 (46) 2	(2%) (4%) (32%) (10%) (2%)	2 (49) 1 13 6 (50) 1 (50) 21 (50) 1 6 (46) (46) (46) 1 3	(2%) (27%) (12%) (2%) (42%) (2%) (12%)	1 (49) 10 6 (49) 2 1 (49) 2 16 (49) 9 (44) (44) 1	(20%) (12%) (4%) (2%) (4%) (33%) (18%)

	Vehicle	Control	Low I	Dose	High	Dose
EMATOPOIETIC SYSTEM (Continued)		······································			<u></u>	
#Tracheal lymph node	(46)		(46)		(44)	
Hyperplasia, lymphoid	(40)		· - ·	(2%)		(2%)
#Mediastinal lymph node	(46)		(46)		(44)	. ,
Plasmacytosis		(2%)	(40)		(33)	
#Abdominal lymph node	(46)	(2,0)	(46)		(44)	
Hyperplasia, lymphoid	(40)		(40)			(2%)
#Pancreatic lymph node	(46)		(46)		(44)	
Abscess, NOS	(40)		(40)			(2%)
Hyperplasia, lymphoid						(2%)
#Lumbar lymph node	(46)		(46)		(44)	
	(40)		()	(90)	(44)	
Angiectasis	(40)			(2%)		
#Mesenteric lymph node	(46)		(46)		(44)	
Hemorrhage					1	(2%)
Inflammation, acute focal			1	(2%)		
Necrosis, focal						(2%)
Angiectasis						(5%)
Hyperplasia, lymphoid				(4%)		(2%)
#Ileocolic lymph node	(46)		(46)		(44)	
Hemorrhage			1	(2%)		
#Renal lymph node	(46)		(46)		(44)	
Hemorrhage					1	(2%)
Inflammation, chronic focal					1	(2%)
Plasmacytosis					1	(2%)
Hyperplasia, lymphoid			1	(2%)		(2%)
Hematopoiesis				(2%)	-	(= /• /
#Thymic lymph node	(46)		(46)	(2,0)	(44)	
Hyperplasia, lymphoid	(10)			(2%)		(5%)
#Salivary gland	(50)		(50)	(2,10)	(48)	(0%)
Hyperplasia, lymphoid		(2%)	(00)		(40)	
#Liver	(50)	(270)	(50)		(49)	
		(40)		(100)		(1907)
Hematopoiesis		(4%)		(10%)		(12%)
#Peyer's patch	(49)		(45)		(46)	
Hyperplasia, lymphoid				(4%)		
#Urinary bladder/submucosa	(48)		(47)		(47)	
Hyperplasia, lymphoid						(2%)
#Adrenal	(50)		(50)		(49)	
Hematopoiesis					1	(2%)
#Adrenal cortex	(50)		(50)		(49)	
Hematopoiesis			1	(2%)		
#Thymus	(41)		(44)		(41)	
Ultimobranchial cyst	1	(2%)	3	(7%)		
Steatitis			1	(2%)		
Inflammation, acute focal			1	(2%)		
Depletion, lymphoid	2	(5%)		(7%)	2	(5%)
Hyperplasia, lymphoid		(2%)		(5%)	2	(5%)
#Thymic cortex	(41)		(44)		(41)	,
Depletion, lymphoid		(7%)	(,	
#Thymic lymphocytes	(41)	(1,0)	(44)		(41)	
Necrosis, focal	(41)			(2%)		(2%)
Necrosis, diffuse	9	(5%)	1	(2,0)		(10%)
Hyperplasia, diffuse		(2%)			-	(10%)
		(270)				
IRCULATORY SYSTEM						
#Heart	(50)		(50)		(49)	
Myxomatosis, cardiac valve	1	(2%)				
Inflammation, chronic focal			1	(2%)		
#Base of heart	(50)		(50)		(49)	
Inflammation, acute/chronic		(2%)				
#Heart/atrium	(50)		(50)		(49)	
Inflammation, acute/chronic		(2%)			,	

	Vehicle	Control	Low I	lose	High	Dose
CIRCULATORY SYSTEM (Continued)						
#Left ventricle	(50)		(50)		(49)	
Inflammation, granulomatous	(00)		(00)			(2%)
#Outflow tract, left ventricle	(50)		(50)		(49)	
Inflammation, suppurative		(2%)	(00)		(,	
#Myocardium	(50)		(50)		(49)	
Mineralization	(00)			(2%)	(10)	
Inflammation, acute focal			-	(4%)		
Inflammation, acute/chronic			-		1	(2%)
Inflammation, chronic focal			t	(2%)	-	
Degeneration, NOS	1	(2%)		(6%)		
*Aorta	(50)		(50)		(49)	
Thrombosis, NOS		(2%)	(00)		(,	
Inflammation, acute diffuse		(2%)				
Inflammation, granulomatous focal	•				. 1	(2%)
*Pulmonary artery	(50)		(50)		(49)	(- / - /
Mineralization		(2%)	(00)		(40)	
Thrombus, organized	•				1	(2%)
Embolism, NOS			1	(2%)	•	
Inflammation, acute/chronic	1	(2%)	-			
Inflammation, granulomatous focal	-				1	(2%)
Necrosis, fibrinoid	1	(2%)			-	(=,
*Mediastinal artery	(50)	(2/0/	(50)		(49)	
Inflammation, granulomatous		(2%)	(00)			
*Renal artery	(50)	(2,2)	(50)		(49)	
Inflammation, acute/chronic		(2%)		(2%)	(40)	
Inflammation, granulomatous	•	(2,0)	•	(2 /0 /	1	(2%)
IGESTIVE SYSTEM #Salivary gland	(50)		(50)		(48)	
Lymphocytic inflammatory infiltrate				(8%)	(10)	
#Liver	(50)		(50)		(49)	
Congestion, acute			-	(2%)		
Hemorrhage			1	(2%)		
Inflammation, multifocal	1	(2%)		(0.0)		
Inflammation, suppurative		(0.0)	1	(2%)		
Inflammation, acute		(2%)	-		•	<i></i>
Inflammation, acute focal	2	(4%)	7	(14%)		(4%)
Inflammation, acute diffuse	-	(00)	-	(00)		(2%)
Inflammation, acute/chronic	1	(2%)	-	(2%)	2	(4%)
Abscess, chronic Inflammation, granulomatous focal				(2%) (6%)		
Necrosis, focal			-	(6%)		
Necrosis, lical Necrosis, diffuse			J	(070)	1	(2%)
	1	(294)				
Necrosis, coagulative Pigmentation, NOS	I	(2%)	1	(2%)	I	(2%)
Focal cellular change			1		9	(4%)
#Liver/centrilobular	(50)		(50)		(49)	(- 10)
Necrosis, focal		(2%)	(00)		(40)	
Nuclear enlargement		(2%)				
#Liver/hepatocytes	(50)	(470)	(50)		(49)	
Necrosis, focal	(00)			(4%)	(47)	
Cytoplasmic vacuolization	c	(12%)		(4%)	7	(14%)
Hypertrophy, focal	0	(1470)		(20%)	((1470)
*Gallbladder	(50)		(50)	(270)	(49)	
			(00)		(20)	
Inflammation, acute diffuse	(00)			(4%)		

	Vehicle	Control	Low I	Dose	High	Dose
DIGESTIVE SYSTEM (Continued)						
#Pancreas	(48)		(48)		(49)	
Dilatation/ducts	(20)			(496)	(,	
Lymphocytic inflammatory infiltrate			3	(6%)		
Inflammation, acute/chronic				(6%)	1	(2%)
Abscess, chronic			-	(2%)	-	(=,
Necrosis, focal	1	(2%)	-	(=,		
#Pancreatic acinus	(48)		(48)		(49)	
Basophilic cyto change			1	(2%)	(,	
Atrophy, focal			8	(17%)		
Atrophy, diffuse			2	(4%)	1	(2%)
#Esophagus	(49)		(50)		(49)	
Inflammation, acute focal					1	(2%)
#Gastric fundal gland	(50)		(47)		(48)	
Dilatation, NOS	1	(2%)				
#Glandular stomach	(50)		(47)		(48)	
Hemorrhage			1	(2%)		
Inflammation, acute focal					1	(2%)
Degeneration, NOS			1	(2%)		
Hyperplasia, focal			1	(2%)		
#Gastric fundus	(50)		(47)		(48)	
Ulcer, acute	1	(2%)				
Necrosis, focal					1	(2%)
#Jejunum	(49)		(45)		(46)	
Hemorrhage			1	(2%)		
Inflammation, acute focal			1	(2%)		
#Colon	(49)		(44)		(45)	
Inflammation, acute/chronic			1	(2%)		
Inflammation, chronic focal			1	(2%)		
Inflammation, granulomatous			1	(2%)		
Parasitism	3	(6%)	4	(9%)	4	(9%)
#Colonic submucosa	(49)		(44)		(45)	
Inflammation, chronic focal			1	(2%)		
#Cecum	(49)		(44)		(45)	
Inflammation, acute/chronic					1	(2%)
Parasitism					1	(2%)
IRINARY SYSTEM					(10)	·
#Kidney	(50)		(50)	(00)	(49)	
Hydronephrosis Buslanenheitis, soute			_	(2%)		
Pyelonephritis, acute			1	(2%)		(90)
Glomerulonephritis, subacute				(99)	1	(2%)
Glomerulonephritis, chronic	•	(A 04 .)	1	(2%)		
Nephropathy		(4%)	(20)		140	
#Kidney/capsule	(50)		(50)	(00)	(49)	
Lymphocytic inflammatory infiltrate				(2%)		
Inflammation, acute/chronic Inflammation, chronic diffuse				(2%) (2%)		
	(EO)			(270)	(49)	
#Kidney/cortex Inflammation, acute focal	(50)	(2%)	(50)	(2%)	(49)	
Fibrosis, focal	1	(470)				
			1	(2%)	0	(4%)
Nephropathy	•	(9 94)				
Degeneration, NOS		(2%) (2%)	•	(40)	1	(2%)
Metaplasia, osseous #Renal cortical interstitial tissue		(2%)		(4%)	(49)	
	(50)		(50)			
	^	(1906)		(100)		
Lymphocytic inflammatory infiltrate #Kidney/glomerulus	6 (50)	(12%)	5 (50)	(10%)	2 (49)	(4%)

•

	Vehicle	Control	Low I	Dose	High I	Dose
JRINARY SYSTEM (Continued)			· <u>····</u> ····		- <u></u>	
#Kidney/tubule	(50)		(50)		(49)	
Mineralization		(2%)			()	
Dilatation, NOS		(2%)	3	(6%)	1	(2%)
Degeneration, NOS		(2%)	0	(0,0)	-	(= ,0)
Regeneration, NOS		(16%)	7	(14%)	10	(20%)
#Kidney/pelvis	(50)	(,	(50)		(49)	(20,0)
Mineralization			(00)			(2%)
#Urinary bladder	(48)		(47)		(47)	(270)
Hemorrhage	(40)			(2%)	(41)	
Lymphocytic inflammatory infiltrate				(2%)		
#Urinary bladder/submucosa	(48)		(47)	(270)	(47)	
Lymphocytic inflammatory infiltrate	(+0)			(2%)	(=/)	
NDOCRINE SYSTEM				. <u></u>		
#Anterior pituitary	(43)		(46)		(45)	
Cyst, NOS	(- U)			(2%)		
Multiple cysts	1	(2%)	•	,		
Hemorrhage		(2%)	1	(2%)		
Hypertrophy, focal	1	(au / ur /		(2%)		
Hyperplasia, focal	2	(5%)		(11%)	4	(9%)
#Pituitary posterior	(43)		(46)		(45)	(0,0)
Necrosis, focal	(40)		4	(2%)	(40)	
#Adrenal/capsule	(50)		(50)	(2,0)	(49)	
Hyperplasia, focal		(58%)		(86%)		(90%)
#Adrenal cortex	(50)	(00%)	(50)	(80%)	(49)	(30%)
		(2%)	(50)		(43)	
Cyst, NOS	1	(270)	9	(4%)		
Inflammation, acute focal	•	(00)	2	(4170)	0	(67)
Degeneration, NOS		(2%)		(0.4.00)		(6%)
Degeneration, lipoid	4	(8%)		(34%)	Э	(18%)
Necrosis, focal				(2%)	_	
Focal cellular change		(4%)		(4%)		(4%)
#Zona reticularis	(50)		(50)		(49)	
Inflammation, granulomatous focal		(2%)				
#Adrenal medulla	(50)		(50)		(49)	
Hyperplasia, focal		(4%)				(4%)
#Periadrenal tissue	(50)		(50)		(49)	
Inflammation, acute diffuse						(2%)
#Thyroid	(49)		(49)		(48)	
Cyst, NOS	_		_			(2%)
Follicular cyst, NOS		(4%)	5	(10%)	- 3	(6%)
Inflammation, acute/chronic	1	(2%)	-			
Inflammation, granulomatous focal				(2%)	-	
Hyperplasia, follicular cell	6	(12%)	3	(6%)	9	(19%)
#Thyroid follicle	(49)		(49)		(48)	
Multiple cysts		(2%)				
#Parathyroid	(28)		(30)		(32)	
Lymphocytic inflammatory infiltrate					1	(3%)
EPRODUCTIVE SYSTEM	··· <u>·</u> ····	· · · · · · · · · · · · · · · · · · ·				
*Mammary gland	(50)		(50)		(49)	
Dilatation/ducts		(2%)		(2%)		
#Uterus	(50)		(50)		(49)	
Dilatation, NOS	2	(4%)		(12%)		(14%)
Inflammation, suppurative				(2%)		(2%)
Inflammation, acute focal	2	(4%)	3	(6%)		(8%)
Inflammation, acute diffuse					1	(2%)
innammation, acute onluse						
Abscess, NOS			1	(2%)	1	

.

	Vehicle	Control	Low I	Dose	High	Dose
REPRODUCTIVE SYSTEM (Continued)				· · · · · · · · · · · · · · · · · · ·		
#Endometrial gland	(50)		(50)		(49)	
Dilatation, NOS		(8%)		(4%)		(2%)
Multiple cysts		(4%)	-			(4%)
Inflammation, acute focal	-	(-,0)				(4%)
Necrosis, focal						(2%)
Hyperplasia, focal	1	(2%)			-	(= /• /
Hyperplasia, cystic		(68%)	37	(74%)	34	(69%)
Metaplasia, squamous		(10%)		(14%)		(12%)
#Ovary/parovarian region	(50)	. ,	(50)		(48)	
Inflammation, acute			1	(2%)	,	
Abscess, NOS			1	(2%)		
Inflammation, granulomatous focal			1	(2%)		
Inflammation, pyogranulomatous			1	(2%)		
Necrosis, fat			1	(2%)		
#Ovary	(50)		(50)		(48)	
Mineralization	2	(4%)				
Cyst, NOS	7	(14%)	8	(16%)	4	(8%)
Follicular cyst, NOS	1	(2%)				
Multiple cysts					1	(2%)
Congestion, acute						(2%)
Hematocele	1	(2%)				
Inflammation, suppurative					1	(2%)
Inflammation, acute diffuse					1	(2%)
Abscess, NOS					3	(6%)
Inflammation, chronic focal	1	(2%)				
Necrosis, focal					1	(2%)
Infarct, NOS	1	(2%)				
Foreign material, NOS						(2%)
Atrophy, NOS		(38%)		(20%)		(21%)
#Ovary/cortex	(50)		(50)		(48)	
Cyst, NOS		(6%)	9	(18%)	8	(17%)
Hemorrhage		(2%)				
Hemorrhagic cyst		(2%)		(20%)		(6%)
#Mesovarium	(50)		(50)		(48)	
Steatitis			1	(2%)		
IERVOUS SYSTEM						
*Brain/neuropil	(50)		(50)		(49)	
Atrophy, pressure						(2%)
#Brain/meninges	(50)		(49)		(49)	
Perivascular cuffing						(4%)
#Brain	(50)		(49)		(49)	
Hydrocephalus, NOS	-		1	(2%)		
Hemorrhage		(4%)				
Lymphocytic inflammatory infiltrate		(2%)				
#Brain stem	(50)		(49)	.	(49)	
Inflammation, acute focal				(2%)		
#Corpus callosum	(50)	(00)	(49)		(49)	
Malacia		(2%)				
#Brain/thalamus	(50)		(49)		(49)	
Mineralization		(42%)	23	(47%)	24	(49%)
Hemorrhage		(2%)				
*Cauda equina	(50)		(50)	(0.0.)	(49)	
Demyelinization			1	(2%)		

	Vehicle	Control	Low D	ose	High I	Dose
SPECIAL SENSE ORGANS	· · · · · · · · · · · · · · · · · · ·					
*Eve	(50)		(50)		(49)	
Degeneration, NOS	1	(2%)				
*Harderian gland	(50)		(50)		(49)	
Inflammation, granulomatous focal	1	(2%)				
MUSCULOSKELETAL SYSTEM				<u></u>		
*Abdominal muscle	(50)		(50)		(49)	
Inflammation, pyogranulomatous			1	(2%)		
BODY CAVITIES		<u></u>				
*Mediastinum	(50)		(50)		(49)	
Inflammation, acute	2	(4%)				
Inflammation, acute fibrinous	_				1	(2%)
Foreign material, NOS		(4%)			(10)	
*Peritoneal mesothelium	(50)		(50)		(49)	(2%)
Hypertrophy, diffuse			(80)		1 (49)	(2%)
*Parietal peritoneum	(50)		(50)		,	(2%)
Inflammation, acute diffuse	(50)		(50)		(49)	(270)
*Inguinal region	(50)			(2%)	(40)	
Necrosis, fat *Pleura	(50)		(50)	(2,70)	(49)	
Lymphocytic inflammatory infiltrate	(= - /	(4%)		(12%)	(10)	
Inflammation, acute diffuse	-	(4,0)	-	(==)	1	(2%)
Inflammation, acute/chronic			1	(2%)	2	(4%)
Inflammation, chronic focal					1	(2%)
Fibrosis, focal					1	(2%)
Fibrosis, multifocal			2	(4%)		
*Pleural mesothelium	(50)		(50)		(49)	
Hypertrophy, diffuse					1	(2%)
*Pericardium	(50)		(50)		(49)	
Inflammation, acute fibrinous					1	(2%)
Inflammation, acute/chronic	1	(2%)				
*Epicardium	(50)		(50)		(49)	
Inflammation, acute focal	_		1	(2%)		
Inflammation, acute diffuse		(4%)	(50)		(40)	
*Mesentery	(50)		(50)		(49)	(90)
Lymphocytic inflammatory infiltrate						(2%) (2%)
Inflammation, suppurative			4	(906)	1	(270)
Inflammation, acute/chronic			-	(2%) (6%)	3	(6%)
Necrosis, fat			3	(070)		(0 <i>n</i> 0)
ALL OTHER SYSTEMS	/FA\		(50)		(49)	
*Multiple organs	(50)	(90)	(50)		(43)	
Mineralization		(2%) (2%)				
Lymphocytic inflammatory infiltrate Inflammation, acute focal	1	(470)	1	(2%)	3	(6%)
Inflammation, acute local			-			(2%)
Inflammation, active chronic						(2%)
Inflammation, acute/chronic			4	(8%)		(6%)
Inflammation, granulomatous focal				(2%)	•	
Bacterial septicemia				(2%)		
Adipose tissue			-	. = ,		
Inflammation, acute/chronic	1					
***************************************	•					

	Vehicle Control	Low Dose	High Dose
SPECIAL MORPHOLOGY SUMMARY Animal missing/no necropsy			1

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

APPENDIX E

SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC

		PAGE
TABLE EI	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC	165
TABLE E2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC	168
TABLE E3	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC	174
TABLE E4	HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS	177
TABLE E5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC	178

D. 0 D

THPS and THPC, NTP TR 296

164

TABLE E1.	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR
	GAVAGE STUDY OF THPC

X	/ehicle	Control	Low I	Dose	High 1	Dose
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY			50		50	
INTEGUMENTARY SYSTEM				<u></u>		
*Skin	(50)		(50)		(50)	
Papilloma, NOS	1	(2%)				
Basal cell tumor			1	(2%)		
Trichoepithelioma			1	(2%)	1	(2%)
Sebaceous adenoma			1	(2%)		
Keratoacanthoma	1	(2%)	3	(6%)		
*Subcutaneous tissue	(50)		(50)		(50)	
Sarcoma, NOS		(2%)				
Fibroma	-	(=,	3	(6%)	3	(6%)
Fibrosarcoma	1	(2%)	-	(2%)	•	
Fibrous histiocytoma, malignant	•	(1,0)		(2%)		
RESPIRATORY SYSTEM						<u></u>
#Lung	(50)		(50)		(50)	
Transitional cell carcinoma, metastatic	,	(2%)	(00)		(00)	
C-cell carcinoma, metastatic		(2%)			1	(2%)
HEMATOPOIETIC SYSTEM						
*Multiple organs	(50)		(50)		(50)	
Leukemia, mononuclear cell	4	(38%)		(50%)	16	(32%)
#Cervical lymph node	(47)	(00.07)	(48)		(47)	(
C-cell carcinoma, metastatic		(2%)			(
CIRCULATORY SYSTEM None		<u> </u>	<u></u>		·······	
DIGESTIVE SYSTEM		·····				
#Liver	(50)		(50)		(49)	
Neoplastic nodule		(2%)		(8%)		(4%)
#Pancreas	(49)		(50)		(49)	
Acinar cell adenoma	· · ·	(4%)	(
#Jejunum	(48)		(49)		(47)	
Fibrosarcoma					1	(2%)
#Colon	(48)		(50)		(48)	
Fibrosarcoma	()			(2%)		
URINARY SYSTEM			<u></u>			
#Kidney	(50)		(50)		(49)	
Sarcoma, NOS		(2%)	(= 5)			(2%)
#Kidney/pelvis	(50)	<u></u>	(50)		(49)	
Transitional cell carcinoma		(2%)	(00)		~~~/	
ENDOCRINE SYSTEM						
#Pituitary intermedia	(50)		(49)		(49)	
Adenoma, NOS				(2%)		
	(50)		(49)		(49)	
#Anterior pituitary	(00)					
#Anterior pituitary Carcinoma, NOS		(2%)	(10)			

	Vehicle	Control	Low I	Jose	High l	Dose
ENDOCRINE SYSTEM (Continued)				<u> </u>	<u></u>	
#Adrenal medulla	(50)		(50)		(49)	
Pheochromocytoma		(38%)		(42%)		(33%)
#Thyroid	(47)	(86,2)	(50)	(42.0)	(49)	
Follicular cell adenoma	((2%)	(10)	
Follicular cell carcinoma					1	(2%)
C-cell adenoma	5	(11%)	4	(8%)	2	(4%)
C-cell carcinoma	1	(2%)	1	(2%)	2	(4%)
#Parathyroid	(41)		(44)		(43)	
Adenoma, NOS			1	(2%)		
#Pancreatic islets	(49)		(50)		(49)	
Islet cell adenoma	2	(4%)	1	(2%)	1	(2%)
Islet cell carcinoma			1	(2%)		
REPRODUCTIVE SYSTEM				<u> </u>		
*Mammary gland	(50)		(50)		(50)	
Adenoma, NOS						(2%)
Adenocarcinoma, NOS						(2%)
Fibroadenoma	2	(4%)	1	(2%)		
*Preputial gland	(50)		(50)		(50)	
Adenoma, NOS			1	(2%)	1	(2%)
Adenocarcinoma, NOS			1	(2%)	1	(2%)
#Testis	(50)		(50)		(50)	
Interstitial cell tumor	44	(88%)	34	(68%)	38	(76%)
NERVOUS SYSTEM						
#Fourth ventricle	(50)		(50)		(50)	
Ependymoma					1	(2%)
#Brain	(50)		(50)		(50)	
Astrocytoma	1	(2%)				
SPECIAL SENSE ORGANS						
*Zymbal gland	(50)		(50)		(50)	
Carcinoma, NOS	1	(2%)			1	(2%)
MUSCULOSKELETAL SYSTEM						
*Cranial and facial bones	(50)		(50)		(50)	
Osteoma	1	(2%)				
BODY CAVITIES	·····		<u> </u>		<u> </u>	
*Mediastinum	(50)		(50)		(50)	
Fibrosarcoma, metastatic	•,			(2%)		
*Tunica vaginalis	(50)		(50)		(50)	
Mesothelioma, NOS				(2%)		
ALL OTHER SYSTEMS				<u> </u>		
*Multiple organs	(50)		(50)		(50)	
Fibrous histiocytoma, metastatic				(2%)	()	
Mesothelioma, malignant	1	(2%)	-			
Diaphragm						
Fibrosarcoma, metastatic			1			

TABLE E1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC (Continued)

	Vehicle Control	Low Dose	High Dose
ANIMAL DISPOSITION SUMMARY			<u></u>
Animals initially in study	50	50	50
Natural death	4	7	16
Moribund sacrifice	19	25	16
Terminal sacrifice	26	17	18
Dosing accident	1	1	
rumor summary			
Total animals with primary tumors**	49	44	44
Total primary tumors	123	121	101
Total animals with benign tumors	49	43	43
Total benign tumors	94	85	74
Total animals with malignant tumors	27	27	21
Total malignant tumors	28	31	25
Total animals with secondary tumors##	2	2	1
Total secondary tumors	3	3	1
Total animals with tumors uncertain			
benign or malignant	1	5	2
Total uncertain tumors	•	5	2

TABLE E1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC (Continued) $\mathbb{P} \in \mathcal{A}$

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 # Number of animals examined microscopically at this site
 ## Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE E2.	INDIVIDUAL	ANIMAL TUMOR	PATHOLOGY	OF MALE	RATS IN THE	TWO-YEAR GAVAGE
		STUDY O	F THPC: VEH	ICLE CONT	rrol	

											_				_										
ANIMAL NUMBER	0 2 9	0 1 0	0 1 1	0 4 0	0 1 8	0 0 3	0 0 1	0 2 2	0 2 8	0 4 7	0 1 5	0 3 1	0 3 4	0 3 5	0 3 8	0 0 6	0 1 7	0 2 5	0 4 5	0 4 2	0 1 3	0 0 9	0 1 2	0 2 6	0 0 2
WEEKS ON STUDY	0 4 9	0 6 4	0 6 5	0 6 9	0 7 2	0 7 3	0 7 5	0 8 1	0 8 4	0 8 7	0 8 8	0 8 9	0 9 0	0 9 4	0 9 8	1 0 0	1 0 0	1 0 0	1 0 0	1 0 1	1 0 2	1 0 3	1 0 3	1 0 3	1 0 4
INTEGUMENTARY SYSTEM	-																				·····				
Skin Papilloma, NOS Keratoacanthoma	+	+	+	+	+	+	N	+	+	N	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+
Subcutaneous tissue Sarcoma, NOS Fibrosarcoma	+	+ X	*	+	+	+	N	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Transitional cell carcinoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+
C-cell carcinoma, metastatic Trachea	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow		+	+	+	+		+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+
Spleen Lymph nodes	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	+	÷	+	+	+++++++++++++++++++++++++++++++++++++++	+	+++++	+++++++++++++++++++++++++++++++++++++++	+	++++
C-cell carcinoma, metastatic Thymus	+	+	+	+	-	-	+	+	+	+	-	+	-	+	+	+	+	+	+	-	-	+	-	+	+
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver	+		++	+++	++++	+++	+++	+++++++++++++++++++++++++++++++++++++++	+++	+++	+++	- +	+++	+++	++++	+++	+++	++++	+++	+++	+++	++++	+++	+++	+++++
Neoplastic nodule Bile duct Gallbladder & common bile duct	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N
Pancreas Acinar cell adenoma	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Esophagus Stomach	+	+++	+++	+++	++	++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	++++	+++	+++	+++	+++++	+++	++++
Small intestine Large intestine	-	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	+ +	+ +	+++	++	+ +	+ +	+ +	+ +	+ +	+ +	+++	+ +
URINARY SYSTEM Kidney Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Kidney/pelvis Transitional cell carcinoma Urinary bladder	+	+	++	++	++	++	++	+	++	+	++	+	* *	+	++	+	+	++	++	++	+ +	+ +	++	+ +	+ +
ENDOCRINE SYSTEM																									
Pituitary Carcinoma, NOS Adenoma, NOS	+	+	+ x	+	+	+	+	+	+ X	+	+ X	+ X	+	+	+ X	+	+ X	+	+	+	+ x	+	+	+ X	+
Adrenal Pheochromocytoma	+	+	+	+	+	+	+	*	÷	* x	, x	+	* x	+	+	+	+	* x	+	* X	+ X	+	* X	+	* X
Thyroid C-cell adenoma C-cell carcinoma	-	+	+	+	+	+	+	+	+	+	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+
Parathyroid Pancreatic islets Islet cell adenoma	+	+ + X	+	+ +	+ +	+ +	+	+ +	+ +	+ +	++	-+	+ +	+ +	- +	- + X	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+
REPRODUCTIVE SYSTEM Mammary gland	-	N	N	N	N	N	N	+	+	N	N	N	N	N	+	N	N	N	+	+	+	+	+	+	N
Fibroadenoma Testis Interstitial cell tumor	+	+	*	*	*	*	*	*	*	*	+	*	+	*	*	*	+	*	*	*	*	*	*	*	*
Prostate NERVOUS SYSTEM		+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM Bone Osteoma	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, malignant	N	N	N	N	N		N	N					N				N			N			N X	N	N
Leukemia, mononuclear cell	_					X			X	x	X	X		X	X	X		x			X	x		X	

+: Tissue examined microscopically
 -: Required tissue not examined microscopically
 X: Tumor incidence
 N: Necropsy, no autolysis, no microscopic examination
 S: Animal missexed

[:] No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

								((on	ពោ	uec	D.														
ANIMAL NUMBER	0	0 0 5	0 0 7	0 0 8	0 1 4	0 1 6	0 1 9	0 2 0	0 2 1	0 2 3	0 2 4	0 2 7	0 3 0	0 3 2	0 3 3	0 3 6	0 3 7	0 3 9	0 4 1	0 4 3	0 4 4	0 4 6	0 4 8	0 4 9	0 5 0	TOTAL
WEEKS ON STUDY	104	1 0 4	04	04	1 0 4	1 0 4	1 0 4	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM		·	·····																						·	·
Skin Papilloma, NOS Keratoacanthoma Subcutaneous tissue Sarcoma, NOS Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X +	+	+	+	*50 1 *50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Transitional cell carcinoma, metastatic C-cell carcinoma, metastatic	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes C-cell carcinoma, metastatic Thymus	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+++ +	+++ +++++	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + +	+++ +	+++++++++++++++++++++++++++++++++++++++	+ + + + X -	+++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+++ +	+++++++++++++++++++++++++++++++++++++++	++++++++	+++	+++ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++	+ + + +	48 50 47 1 40
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver	++++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 50
Neoplastic nodule Bile duct Gailbladder & common bile duct Pancreas Acinar cell adenoma Esophagus Stomach	+2+++	+N+ ++	+2+2++++	+ N + N + + +	+x+ ++	X+X+ ++	· +z+ ++	· +z+ ++	+ + + + + + + + + + + + + + + + + + + +	+ X + + +	· + Z + + +	· + z + + +	+ + + + +	· +z+ ++	+ + + + + +	+ + Z + + +	++++	· + X + + +	+ + + + + +	+ + Z + + +	- + z + + +	+ Z + + 1	+ 2 + + +	+ + Z + + +	+ + + + + + + +	1 50 *50 49 2 50 48
Small intestine Large intestine	+++++++++++++++++++++++++++++++++++++++	÷ +	++	++++	+++	+++	+++	+++	++	+++	+++	+ +	++	+ +	+++	++++	+ +	+++	++++	++++	+++	-	+++	+++	+++++	48 48 48
URINARY SYSTEM Kidney Sarcoma, NOS Kidney/pelvis Transitional cell carcinoma	+ +	+ +	+ x +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	50 1 50 1
Urinary bladder	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenai	+	+	+	+	+	+ X	+	+	+	+	+ X	+ X	+	+ X	+ X	+	+	*	+ X	+	+ X	+	+	+ X	+ x	50 1 17
Arenai Pheochromocytoma Thyroid C-cell adenoma C-cell carcinoma	* *	* * * X	* *	+	+	+	+	* +	+	* *	+ + X	* * *	+	+	+ * X	+ +	+ *	+	+	+	+ X +	+ X +	+ X + X	+ +	+ X +	50 19 47 5 1
Parathyroid Pancreatic islets Islet cell adenoma	++	+ +	++	++++	+++	+++	+ +	+ +	+	++++	4 + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+ +	41 49 2
RÉPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Testis Interstitial cell tumor Prostate	+x+x+	N +x+	+x+x+	+ + * *	+ + X +	+ + * *	+ * *	N + X	+ * *	N +X +	N + X +	N + X +	N + X +	N + X +	N + +	+ + x +	+ * *	+ * *	+ + X +	+ + X +	N + X +	+ + X +	N + X +	+ + X +	N + X +	*50 2 50 44 48
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	50 1
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
MUSCULOSKELETAL SYSTEM Bone Osteoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, malignant Leukemia, mononuclear cell	N	N X	N X	N	N	N	N	N X	N	N X	N	N	N	N X	N	N	N	N	N	N	N	N	N	N X	N	*50 1 19

TABLE E2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: VEHICLE CONTROL (Continued)

* Animals necropsied

ANIMAL NUMBER	2 1	032	045	0 4 1	0 1 8	036	0 1 1	005	0 2 7	046	0 4 7	0 1 5	0 3 0	0 3 4	0 1 0	0 2 6	0 1 3	0 0 7	0 2 2	0 0 6	0 1 9	0 3 7	0 0 1	0 4 3	0 1 6
WEEKS ON STUDY	0 1 9	0 2 2	0 3 0	0 3 7	0 6 0	0 6 5	0 7 7	0 7 8	0 8 0	0 8 4	0 8 6	0 8 7	0 9 1	0 9 2	0 9 4	0 9 4	0 9 5	0 9 6	0 9 6	0 9 7	0 9 7	0 9 7	0 9 8	0 9 9	1 0 0
INTEGUMENTARY SYSTEM Skin Basal cell tumor Trichoepithelioma Sebaseous adenoma Keratoacanthoma Subcutaneous tissue		+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+
Fibroma Fibrosarcoma Fibrous histiocytoma, malignant					x											л					x				
RESPIRATORY SYSTEM Lungs and bronchi Trachea	++++	+++	+++++	+ +	+++	+ +	+++	+++	++++	+ +	+++	+++	++++	++++	+ +	++	++++	+++	+++++	++++	++++	+++	++++	++++	++++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	+++-	+++++	+++++	++++	+++++	• + + + + +	++++	++++	++++	++++	++++	++++	++++	++++	+++	+++++	++++	++++	++++	+++++
CIRCULATORY SYSTEM Heart	-	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule	+	+ +	+ +	+ +	++	+ +	+ +	+++	+ +	- +	++++	+++	++++	+ +	+ +	++	+ +	+ +	+ +	+ +	++++	+ +	+++	++++	+ +
Bile duct Gallbladder & common bile duct Pancreas Esophagus	+ N + +	+ 2 + +	+ 2 + +	+ z + +	+ z + +	+ z + +	+ N + +	+ z + +	+ 2 + +	++++	+ z + +	+ 7 + +	+ N + +	+ z + +	+ z + +	+ z + +	+ z + +	+ z + +	+ z + +	+ N + +	+ z + +	+ 2 + +	+ z + +	+ N + +	+ N + +
Stomach Small intestine Large intestine Fibrosarcoma	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	++++	+ + +	++++	++++	+ + +	+ + +	+++	+++	+++	++++	+ + +	+ + +	+++	+ + +	+ + +	++++	+ + +	+++	+ + +	++++	+ + +
URINARY SYSTEM Kidney Urinary bladder	++	++++	+++	++++	+++	+++	+++	+++	+ +	++	+ +	+++	++	+ +	+++	+ +	+ +	++++	+ +	+++	+ +	+++	++++	++	+ +
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adranal Pheochromocytoma Thyroid	++++++	+ + +	+ + +	+ + +	+ + +	+++++	+ x + +	+ x + +	 + +	+ + X +	+ + +	* * + +	+ + * * +	+ + +	+ x + x +	+ + X +	+ + +	* * + +	+ + X +	+ + + + +	+ X + X +	+ X + X +	+ + X +	+ X + +	+ + X +
Follicular cell adenoma C-cell adenoma C-cell carcinoma Parathyroid	+	_	+	_	+	+	_	+	+	+	+	+	+	+	+	+	+	+	-	+	+	х +	X +	+	_
Adenoma, NOS Pancreatic islets Islet cell adenoma Islet cell carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Testis	- +	+	+	N +	+	N +	+	+	N +	+	+	N +	N +	+	N +	+	+	N +	N +	+	+	+++	+	N	N +
Interstitial cell tumor Prostate Preputial/clitoral gland Adenocarcinoma, NOS	+ N	+ N	+ N	+ N	+ N	, N	+ N	+ N	X + N	X + N	+ N	X + N	X + N X	X + N	+ N	+ N	X + N	+ N	X + N	X + N	+ N	+ N	X + N	+ N	X + N
NERVOUS SYSTEM Brain		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SODY CAVITIES Mediastinum Fibrosarcoma, metastatic Funica veginalis Mesothelioma, NOS		N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N + X	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +
ALL OTHER SYSTEMS Multiple organs, NOS Fibrous histiocytoma, metastatic Leukemia, mononuclear cell Disphragm, NOS Fibrosarooma, metastatic	N	N	N	N	N	N	N	N	N X	N	N		N X								N X X	N X	N X	N	N X

TABLE E2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF THPC: LOW DOSE

										****	uec	•/														
ANIMAL NUMBER	0 1 7	0 1 4	0 4 8	0 3 3	0 4 0	0 4 2	0 3 5	0 4 4	0 0 2	0 0 3	0 0 4	0 0 8	0 9	0 1 2	0 2 0	0 2 3	0 2 4	0 2 5	0 2 8	0 2 9	0 3 1	0 3 8	0 3 9	0 4 9	0 5 0	FOTAL:
WEEKS ON STUDY	1 0 0	1 0 1	1 0 1	1 0 2	1 0 2	1 0 2	1 0 3	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	ISSUES IUMORS
INTEGUMENTARY SYSTEM						-				·									·							
Skin Basal cell tumor Trichoepithelioma Sebaceous adenoma Keratoacanthoma Subcutaneous tissue Fibroma Fibrosarcoma Fibrosarcoma Fibrosus histiocytoma, malignant	+	+ *	+	+ X +	+	+	+ +	+	+	+ X +	+	+	* *	+ + X	+	+	+	+	+	+	+ X +	+	+	+ X X +	+	*50 1 1 3 *50 3 1 1
RESPIRATORY SYSTEM Lungs and bronchi Trachea	+++++	+ +	+ +	++++	+++	++++	+ +	+ +	+++	++	+ +	+++	++++	++++	++++	+ +	+ +	+ +	++++	++++	+ +	+ +	+++	+++	+++	50 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	+++++	+++-	+++++	++++	++++	++++	+++-	+++-	+++++	+++++	++++	+++++	+++++	++++	++++	++++	++++	+++++	++++-	++++	++++	++++	++++	++++++	50 50 48 41
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine Fibrosarcoma	++ +2++++++	++ +Z+++++	++ +2+++++	++ +Z+++++	++ +Z+++++	++ +2+++++	++ +2+++++	++ +X++++X	++ +Z+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++ +2+++++	++x+z+++++	++x+z+++++	++ +Z+++++	++x+z+++++	++ +2+++++	++X+Z+++++	++ +2+++++	++ + X +++++	49 50 4 50 *50 50 50 50 50 49 50 1
URINARY SYSTEM Kidney Urinary bladder	+++++	+ +	+++	+ +	++	++	++++	+ +	+ +	+++	++++	+ +	+++	+++	+ +	+++	+++	++++	+++	++++	++++	+++	++++	++++	+ +	50 50
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenai Pheochromocytoma Thyroid Follicular cell adenoma C-cell adenoma C-cell carcinoma Parathyroid Adenoma, NOS Pancreatic islets Islet cell adenoma Islet cell adenoma	+ + + + +	+ + + + + + + +	+ + + + + + + +	+ + + * * + +	* * + - +	+x+x+ + + +	++++++	+ + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + +	+ + + + + + + + + + + + + + + + + + +	+X+ + + +	+ + + +	+ + + +	+ + x + + + +	+ + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + +	+ + + + +	+ + + + + + + + + + + + + + + + + + +	+ + X + +	+ + + +	+ + X + + + +	49 12 50 21 50 1 4 4 1 50 1 1
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Testis Interstitial cell tumor Prostate Preputia/Clitoral gland Adenoma, NOS Adenocarcinoma, NOS	+ + X N	N + X + N	N + X + N	N + X + N	N +x +N	+ + + + N	N + X + N	+ + X + N	+ +x+z	+ + X + N	N + X + N	+ + ** + N	N + X + N	+ +x+n	+ * × N	+X+X+NX	+ +x+n	N + X + N	N + X + N	+ +x+x X+X	+ + + × + N	+ + + X + N	+ + X + N	+ + ** + N	+ +x+N	*50 1 50 34 49 *50 1 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
BODY CAVITIES Mediastinum Fibrosarcoma, metastatic Tunica vaginalis Mesothesiloma, NOS	N +	N +	N +	N +	N +	N +	N +	N X +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	*50 *50 1
ALL OTHER SYSTEMS Multiple organs, NOS Fibrous histiocytoma, metastatic Leukemia, mononuclear cell Diaphragm, NOS Fibrosarcoma, metastatic	N X	N X	N	N	N X	N	N	N X	N X	N	N X	N X	N	N X	N X	N	N X	N	N X	N	N	N X	N	N	N	*50 1 25 1

TABLE E2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

• Animals necropsied

TABLE E2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF THPC: HIGH DOSE

ANIMAL NUMBER	0 1 8	0 3 5	0 0 7	0 3 1	0 3 0	0 2 8	0 4 2	0 1 5	0 3 4	0 1 3	0 2 2	0 2 4	0 2 0	0 3 2	0 4 7	0 4 9	0 1 0	0 4 6	0 2 9	0 3 8	0 1 9	0 4 3	0 0 4	0 2 6	0 3 9
WEEKS ON STUDY	0 0 3	0 0 3	0 0 5	0 2 8	0 4 5	0 6 4	0 6 5	0 8 0	0 8 0	0 8 4	0 8 4	0 8 7	0 8 8	0 8 8	0 9 1	0 9 1	0 9 2	0 9 3	0 9 4	0 9 4	0 9 5	0 9 7	0 9 8	1 0 0	1 0 0
INTEGUMENTARY SYSTEM Skin Trichoepithelioma Subcutaneous tissue Fibroma	N N	+ +	+ +	+	++	+ +	+ +	+ +	+ +	+ +	++	++	+ +	+ +	+ +	++	+ +	+ +	+ +	+ X + X	+ +	+ +	+ +	+ +	+++
RESPIRATORY SYSTEM Lungs and bronchi C-cell corrinoma, metastatic Trachea	+++	+ + +	++	++	++	+ +	+ +	++	++	++	+++	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	++	+ +	+ +	++	* *
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++++	+ +	+++++	++++	+++++	++++++	+++++	+++++	+ + + +	++++-	++++++	+++++	+ + - +	+ + + +	+++++	++++	++++	++++++	+++++	++++	++++	+++++	+ + + +	+++++++++++++++++++++++++++++++++++++++	+ + + +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Fibrosarcoma Large intestine	++ +2++++ +	+ + +	++ +z+++ +	++ +Z+++	++ +Z+++ +	++ +Z++++ +	++ +2++++++	++ +Z++++ +	++ +Z++++ +	++ +X++++ +	++ + Z ++++ +	++ +Z++++ +	++ +Z++++ +	++ +2++++ +	++ +2++++ +	++ +Z++++ +	++ +2++++ +	+++++++++++++++++++++++++++++++++++++++	++ +Z++++ +	++++++++++	++ +2++++ +	++++2+++++++	+++++++++++++++++++++++++++++++++++++++	++ +X++++ +	++ +2++++ +
URINARY SYSTEM Kidney Sarcoma, NOS Urinary bladder	+++	-	++	++	++	+	+	+++	+	+++	++	++	+	+	+	+++	+++	+++	++	+++	+++	+	+++	++	++++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Pheochromocytoma Thyroid Foilicular cell carcinoma C-cell carcinoma C-cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma	+++++++++++++++++++++++++++++++++++++++	+	+ + + ++	+ + + + +	+ + + +	+++++	+ + + +	+ + + -+	+ + + + +	+ + + +	+ + X + +	+x + x + - +	- + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + X + + + + + + + + + + + + + + + + +	+ + + +	+ x + x + + + + + + + + + + + + + + + +	++++++	+ + + + +	+ + + +	+ + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + x + + x +	+ X + X + + + +	+ x + + + + + + + + + + + + + + + + + +
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS	N	+	N	+	N	N	+	N	+	N	N	N	N	+	N	+	N	N	N	N	N	+	+	+	N
Adenocarcinoma, NOS Testis Interstitial cell tumor Prostate Preputal/clitoral gland Adenoma, NOS Adenocarcinoma, NOS	+ + N	+ + N	+ + N	+ + N	+ + N	+ + N	+ + N	+ X + N	+ X + N N	+ + N	+ + N	+ X + N	+ X + N	+ X + N	+ X N	+ X + N	+ X + X N	+ X + N	+ + N	+ X + N	+ X + N	+ X + N	+ + N	+ X + N	+ X + N
NERVOUS SYSTEM Brain Ependymoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	* x	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N X	N X	N	N	N	N X	N	N X	N X	N	N

								(C	.011		ueo	•/														
ANIMAL NUMBER	0 2 3	0 0 8	0 1 2	0 1 6	0 0 5	0 3 6	0 4 5	0 0 1	0 0 2	0 0 3	0 0 6	0 0 9	0 1 1	0 1 4	0 1 7	0 2 1	0 2 5	0 2 7	0 3 3	0 3 7	0 4 0	0 4 1	0 4 4	0 4 8	0 5 0	
WEEKS ON STUDY	1 0 1	$\begin{array}{c}1\\0\\2\end{array}$	1 0 2	1 0 2	1 0 3	1 0 3	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM																									-	
Skin Trichoepithelioma Subcutaneous tissue Fibroma	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	+ +	*50 1 *50 3
RESPIRATORY SYSTEM Lungs and bronchi C-cell carcinoma, metastatic Trachea	+	+++	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 50
HEMATOPOIETIC SYSTEM	<u> </u>	<u> </u>			,	'		· ·								Ŧ			· ·	Τ	т	Ŧ				
Bone marrow Spleen Lymph nodes Thymus	++++	++++	++++	+++1	++++	+ + + +	+++1	++++	++++	++++	+ + + +	+ + + +	++++	++++-	+ + + -	+ + + +	+ + + +	++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	+++++	++++	+ + + +	49 49 47 42
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct	++++++	+++++	+++++	+++++	+++++	++++++	 + + +	++++++	++++++	++++++	+++++	+ + x +	+ + +	+ + +	+ + X +	+++++	+ + +	++++++	+++++	+++++	++++++	+++++	+++++	+ + +	 + + +	50 49 2 49
Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine	N + + + + +	Z++++>	N + + + +	Z + + + +	X + + + +	Z + + + +	X + + + +	N + + + +	N + + + + +	N + + + +	X++++	N++++	N + + + +	N + + + +	N + + + + +	N + + + +	N + + + +	Z + + + +	N + + + +	N + + + + +	N + + + + +	Z + + + +	N++++	Z++++	N + + + +	*50 49 50 49 47
Fibrosarcoma Large intestine	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
URINARY SYSTEM Kidney Sarcoma, NOS Urinary bladder	+ X +	+++	+ +	+++	++	+++	+++	+ +	+++	+++	+++	+	+++	+++	+++	+ +	+ +	+ +	+ +	+++	+++	+++	+++	+++	++++	49 1 47
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Pheochromocytoma Thyroid Foilicular cell carcinoma	+++++	+ + +	+ x + x + x +	+ + X +	+ + +	+ + + +	+ + X +	+ + +	+ + +	+ * *	+ + +	+ + +	+ + X +	+ + +	+ + +	+ + X +	+ + +	+ + +	+ + +	+ + + +	+ + +	+ + X +	+ + *	+ X + X +	+ + +	49 11 49 16 49 1
C-ceil adenoma C-ceil carcinoma Parathyroid Pancreatic islets Islet cell adenoma	+++	 +	- +	+ +	+ +	+ +	+ +	- +	+ +	+ +	+ +	 +	+ +	+ +	X + +	+ +	+ + X	+ +	+ +	X + +	+ +	X + +	+ +	+ +	+ +	2 2 43 49 1
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenocarcinoma, NOS	N	N	+	N	+	+	N	N	+	N	+	+	+ x	+	+	+	+	+	N	N	*	+	N	N	+	*50 1 1
Testis Interstitial cell tumor	x ⁺	* x	+	* X	*	* X	*	*	* X	* x	* X	* X	x	*	* X	*	* X	* X	*	*	* X	* x	*	* x	*	50 38
Prostate Preputial/clitoral gland Adenoma, NOS Adenocarcinoma, NOS	n N	n 1 N	+ N	+ N	+ N	n + N	n N	+ N	+ N X	+ N	+ N	4 + N	+ N	z+z	n N	N N	r + N	+ N	4 N	A + N	a + N	4+N	A + N X	A + N	A + N	49 *50 1 1
NERVOUS SYSTEM Brain Ependymoma	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+	+	+	50 1
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N X	N X	N X	N	N	N	N	N X	N	N X	N X	N	N X	N	N	N	N	N	N	N	N X	N X	N X	*50 16

TABLE E2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

* Animals necropsied

	Vehicle Control	3.75 mg/kg	7.5 mg/kg
Skin: Keratoacanthoma	· · · · · · · · · · · · · · · · · · ·		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	3.8%	17.6%	0.0%
Terminal Rates (c)	1/26 (4%)	3/17 (18%)	0/18(0%)
Week of First Observation	104	104	
Life Table Tests (d)	P = 0.506N	P = 0.165	P = 0.573 N
Incidental Tumor Tests (d)	P = 0.506N	P = 0.165	P = 0.573N
Cochran-Armitage Trend Test (d)	P = 0.378N		
Fisher Exact Test (d)		P = 0.309	P = 0.500 N
ubcutaneous Tissue: Fibroma	0/50 (00)	0/#0 (0%)	0.000
Overall Rates (a)	0/50 (0%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (b)	0.0%	12.3%	13.9%
Terminal Rates (c)	0/26(0%)	1/17 (6%)	2/18 (11%)
Week of First Observation		94	94
Life Table Tests (d)	P = 0.064	P = 0.085	P = 0.076
Incidental Tumor Tests (d)	P = 0.085	P = 0.156	P = 0.096
Cochran-Armitage Trend Test (d)	P = 0.101	D 0 101	D 0 101
Fisher Exact Test (d)		P = 0.121	P=0.121
Subcutaneous Tissue: Fibroma or Fibros		4/50 (00)	D(FD (00))
Overall Rates (a) Adjusted Rates (b)	1/50 (2%) 2.0%	4/50 (8%)	3/50 (6%)
Terminal Rates (c)	2.0% 0/26 (0%)	14.2%	13.9%
Week of First Observation	64	1/17 (6%) 60	2/18 (11%) 94
Life Table Tests (d)	P = 0.180	P = 0.138	P = 0.226
Incidental Tumor Tests (d)	P = 0.145	P = 0.163	P = 0.184
Cochran-Armitage Trend Test (d)	P = 0.252	r =0.105	1 = 0.104
Fisher Exact Test (d)	1 - 0.202	P=0.181	P=0.309
ubcutaneous Tissue: Fibroma, Sarcoma,	or Fibrosomo		ι.
Overall Rates (a)	2/50 (4%)	A/ED (906)	3/50 (6%)
Adjusted Rates (b)	4.1%	4/50 (8%) 14.2%	13.9%
Terminal Rates (c)	0/26 (0%)	1/17 (6%)	2/18 (11%)
Week of First Observation	64	60	94
Life Table Tests (d)	P = 0.320	P≈0.275	P = 0.407
Incidental Tumor Tests (d)	P = 0.234	P = 0.284	P = 0.276
Cochran-Armitage Trend Test (d)	P = 0.417	1 -0.204	1 -0.210
Fisher Exact Test (d)	1 - 0.411	P≈0.339	P=0.500
lematopoietic System: Mononuclear Cell	Loukomia		
Overall Rates (a)	19/50 (38%)	25/50 (50%)	16/50 (32%)
Adjusted Rates (b)	47.0%	69.8%	55.6%
Terminal Rates (c)	6/26 (23%)	8/17 (47%)	7/18 (39%)
Week of First Observation	73	80	80
Life Table Tests (d)	P = 0.398	P≈0.049	P=0.484
Incidental Tumor Tests (d)	P = 0.201 N	P = 0.282	P = 0.250N
Cochran-Armitage Trend Test (d)	P = 0.305N		
Fisher Exact Test (d)	·	P = 0.157	P = 0.338N
iver: Neoplastic Nodule			
Overall Rates (a)	1/50 (2%)	4/50 (8%)	2/49 (4%)
Adjusted Rates (b)	3.8%	23.5%	11.1%
Terminal Rates (c)	1/26 (4%)	4/17 (24%)	2/18 (11%)
Week of First Observation	104	104	104
Life Table Tests (d)	P = 0.250	$P \approx 0.071$	P = 0.371
Incidental Tumor Tests (d)	P = 0.250	P = 0.071	P = 0.371
Cochran-Armitage Trend Test (d)	P = 0.398		
Fisher Exact Test (d)		P = 0.181	P = 0.492

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OFTHPC

	Vehicle Control	3.75 mg/kg	7.5 mg/kg
Pituitary Gland: Adenoma			
Overall Rates (a)	17/50 (34%)	11/49 (22%)	11/49 (22%)
Adjusted Rates (b)	47.7%	32.4%	35.3%
Terminal Rates (c)	9/26 (35%)	1/17 (6%)	2/18 (11%)
Week of First Observation	65	77	84
Life Table Tests (d)	P = 0.318N	P = 0.380N	P = 0.379N
Incidental Tumor Tests (d)	P = 0.097 N	P = 0.133N	P = 0.114 N
Cochran-Armitage Trend Test (d)	P = 0.116N		
Fisher Exact Test (d)		P = 0.146N	P = 0.146N
ituitary Gland: Adenoma or Carcinoma			
Overall Rates (a)	18/50 (36%)	11/49 (22%)	11/49 (22%)
Adjusted Rates (b)	50.7%	32.4%	35.3%
Terminal Rates (c)	10/26 (38%)	1/17 (6%)	2/18 (11%)
Week of First Observation	65	77	84
Life Table Tests (d)	P = 0.260N	P = 0.323N	P = 0.320N
Incidental Tumor Tests (d)	P=0.069N	P = 0.101 N	P = 0.084N
Cochran-Armitage Trend Test (d)	P = 0.079N		-
Fisher Exact Test (d)		P = 0.104N	P = 0.104 N
drenal Gland: Pheochromocytoma			
Overall Rates (a)	19/50 (38%)	21/50 (42%)	16/49 (33%)
Adjusted Rates (b)	54.2%	68.9%	52.7%
Terminal Rates (c)	11/26 (42%)	9/17 (53%)	6/18 (33%)
Week of First Observation	81	84	84
Life Table Tests (d)	P = 0.387	P = 0.107	P = 0.467
Incidental Tumor Tests (d)	P = 0.272N	P = 0.375	P = 0.286N
Cochran-Armitage Trend Test (d)	P = 0.330N		
Fisher Exact Test (d)		P = 0.419	P = 0.365 N
hyroid Gland: C-Cell Adenoma			
Overall Rates (a)	5/47 (11%)	4/50 (8%)	2/49 (4%)
Adjusted Rates (b)	19.2%	17.7%	11.1%
Terminal Rates (c)	5/26 (19%)	2/17 (12%)	2/18 (11%)
Week of First Observation	104	97	104
Life Table Tests (d)	P = 0.329 N	P = 0.548	P = 0.382N
Incidental Tumor Tests (d)	P = 0.280N	P = 0.633N	P = 0.382N
Cochran-Armitage Trend Test (d)	P = 0.153N		
Fisher Exact Test (d)		P = 0.460 N	P = 0.201 N
hyroid Gland: C-Cell Adenoma or Carcinom	B.		
Overall Rates (a)	6/47 (13%)	5/50 (10%)	4/49 (8%)
Adjusted Rates (b)	23.1%	23.1%	19.8%
Terminal Rates (c)	6/26 (23%)	3/17 (18%)	3/18 (17%)
Week of First Observation	104	97	100
Life Table Tests (d)	P = 0.543N	P=0.489	P = 0.606N
Incidental Tumor Tests (d)	P = 0.474N	P = 0.587	P = 0.567 N
Cochran-Armitage Trend Test (d)	P = 0.283N		
Fisher Exact Test (d)		P = 0.456N	P = 0.344N
estis: Interstitial Cell Tumor			
Overall Rates (a)	44/50 (88%)	34/50 (68%)	38/50 (76%)
Adjusted Rates (b)	97.7%	100.0%	100.0%
Terminal Rates (c)	25/26 (96%)	17/17 (100%)	18/18 (100%)
Week of First Observation	65	80	80
Life Table Tests (d)	P = 0.226	P = 0.431	P = 0.265
Incidental Tumor Tests (d)	P = 0.257 N	P = 0.069 N	P = 0.361 N
Cochran-Armitage Trend Test (d)	P=0.094N		
Fisher Exact Test (d)			

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF
THPC (Continued)

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC (Continued)

⁽a) Number of tumor-bearing animals/number of animals examined at the site

⁽b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

Study	Incidence in Controls	
Historical Incidence in All Water Controls		
ГНРS (b)	30/50	
THPC (b)	19/50	
Chlorpheniramine maleate (b)	25/50	
TOTAL	74/150 (49.3%)	
SD	11.02%	
Overall Historical Incidence in Untreated	Controls	
TOTAL	458/1,727 (26.5%)	
SD (c)	8.83%	
Range (d)		
High	23/50	
Low	5/50	

TABLE E4. HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS (a)

(a) Data as of August 3, 1984, for studies of at least 104 weeks
(b) Battelle Columbus Laboratories
(c) Standard deviation
(d) Range and SD are presented for groups of 35 or more animals.

	Vehicle	Control	Low I	Dose	High	Dose
ANIMALS INITIALLY IN STUDY	50	·····	50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		50		50	
NTEGUMENTARY SYSTEM						
*Skin	(50)		(50)		(50)	
Epidermal inclusion cyst	(50)			(2%)		(2%)
*Subcutaneous tissue Hemorrhagic cyst	(50)		(50)		(50)	(2%)
Inflammation, suppurative						(2%)
Inflammation, chronic focal	1	(2%)	1	(2%)	•	(2,0)
RESPIRATORY SYSTEM		<u> </u>				
#Trachea	(49)		(50)		(50)	
Inflammation, acute diffuse		(4%)				
#Peritracheal tissue	(49)		(50)		(50)	
Inflammation, acute			1	(2%)		
Inflammation, acute/chronic		(2%)				
#Lung	(50)		(50)	(0.2)	(50)	
Aspiration, foreign body Congestion, acute	3	(6%)		(2%) (2%)	٥	(18%)
Edema, NOS	1	(2%)		(2%)		(10%)
Hemorrhage	1	(270)		(2%)	0	(1270)
Inflammation, active chronic			•		1	(2%)
Pneumonia, interstitial chronic	9	(18%)	4	(8%)		(20%)
Inflammation, granulomatous focal		(4%)		(8%)	3	(6%)
Fibrosis, diffuse					1	(2%)
Alveolar macrophages					1	(2%)
Hyperplasia, alveolar epithelium		(2%)		(2%)		(10%)
#Lung/alveoli	(50)		(50)		(50)	
Mineralization				(2%)	•	(00)
Hemorrhage		·····	2	(4%)	J	(6%)
HEMATOPOIETIC SYSTEM	(10)					
#Bone marrow Hyperplasia, granulocytic	(48)		(50)		(49)	(4%)
Hypoplasia, hematopoietic						(4.76) (2%)
#Spleen	(50)		(50)		(49)	
Adhesion, NOS	(00)		•••••	(2%)	~~~/	
Depletion, lymphoid				(2%)		
#Splenic red pulp	(50)		(50)		(49)	
Congestion, NOS						(2%)
Fibrosis, focal		(2%)		(6%)	4	(8%)
Fibrosis, multifocal		(2%)	3	(6%)		
Hemosiderosis Hematopoiesis		(2%) (2%)	-	(10%)	•	(6%)
#Lymph node	(47)	(270)	o (48)	(1070)	3 (47)	(070)
Hemorrhage		(2%)	(40)		(=()	
#Mandibular lymph node	(47)		(48)		(47)	
Plasmacytosis		(4%)		(4%)		(11%)
1 lasinacy tosis		(2%)				
Hyperplasia, lymphoid	_		(48)		(47)	
Hyperplasia, lymphoid #Mediastinal lymph node	(47)		(40)		· · ·	
Hyperplasia, lymphoid #Mediastinal lymph node Edema, NOS	(4 7) 1	(2%)	(40)			
Hyperplasia, lymphoid #Mediastinal lymph node Edema, NOS Inflammation, granulomatous	(47) 1 1	(2%)	(40)		, .,	
Hyperplasia, lymphoid #Mediastinal lymph node Edema, NOS	(47) 1 1		(48)		(47)	

TABLE E5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC
	Vehicle	Control	Low I	Dose	High Dose					
HEMATOPOIETIC SYSTEM (Continued)										
#Mesenteric lymph node	(47)		(48)		(47)					
Hemorrhage		(2%)	(40)			(2%)				
Inflammation, chronic focal	1	(270)				(2%)				
Granuloma, NOS	9	(4%)			2	(470)				
Depletion, lymphoid	2	(470)			1	(2%)				
Plasmacytosis			1	(2%)	•	(2,0)				
#Renal lymph node	(47)		(48)	(2,0)	(47)					
Hemorrhage	(11)		(10)			(2%)				
Inflammation, granulomatous focal			1	(2%)	_	,				
#Axillary lymph node	(47)		(48)	v =,	(47)					
Inflammation, acute focal	1	(2%)								
#Thymic lymph node	(47)	,	(48)		(47)					
Hemorrhage	、·,		,,			(4%)				
#Liver	(50)		(50)		(49)					
Hematopoiesis			(-)	(2%)	/					
#Adrenal cortex	(50)		(50)	. = ,	(49)					
Hematopoiesis			(20)			(2%)				
#Thymus	(40)		(41)		(42)					
Embryonal duct cyst	()		()		, ,	(2%)				
Hemorrhage			1	(2%)		(2%)				
Lymphocytic inflammatory infiltrate			-	(= ///		(2%)				
Inflammation, granulomatous focal						(2%)				
Depletion, lymphoid	23	(58%)	23	(56%)		(48%)				
ZIRCULATORY SYSTEM #Mandibular lymph node	(47)		(48)	(477)	(47)	(09)				
Lymphangiectasis				(4%)		(6%)				
#Mesenteric lymph node	(47)	(0~)	(48)	200	(47)					
Lymphangiectasis		(2%)	-	(6%)						
#Renal lymph node	(47)		(48)		(47)	(00)				
Lymphangiectasis				(2%)		(2%)				
#Thymic lymph node	(47)		(48)	(00)	(47)	(00)				
Lymphangiectasis	(50)			(2%)		(2%)				
#Heart/atrium	(50)		(50)		(50)	(97)				
Dilatation, NOS	0	(100)		(00)		(2%)				
Thrombus, mural #Myocardium		(12%)		(8%)		(8%)				
•	(50)	(90)	(50)		(50)					
Inflammation, acute/chronic Inflammation, chronic focal	1	(2%)			1	(2%)				
Degeneration, NOS	40	(86%)	49	(84%)		(2%)				
*Sup. pancreaticoduodenal artery	(50)	(00 /0)	(50)	(0=/0/	(50)					
Hyperplasia, focal	(00)		(00)			(2%)				
*Hepatic vein	(50)		(50)		(50)	(270)				
Thrombus, mural		(2%)	(00)		(00)					
*Central veins/liver	(50)	(2%)	(50)		(50)					
Thrombus, mural	(00)		(00)			(2%)				
#Pancreas	(49)		(50)		(49)	(4,10)				
Periarteritis	(43)			(2%)	(43)					
*Mesentery	(50)		(50)	(4 10)	(50)					
Periarteritis	(00)			(4%)	(00)					
#Testis	(50)		(50)	. 2707	(50)					
Periarteritis		(2%)		(2%)	(00)					
#Adrenal cortex	(50)	(_,_,,	(50)		(49)					
			(00)							
	1	(2%)								
Thrombosis, NOS #Thymus	1 (40)	(2%)	(41)		(42)					

	Vehicle	Control	Low I	Dose	High	Dose
IGESTIVE SYSTEM						
#Salivary gland	(48)		(49)		(50)	
Atrophy, focal	(10)		· · · · ·	(2%)	(00)	
#Salivary seromucous gland	(48)		(49)		(50)	
Necrosis, focal	(10)		(10)			(2%)
#Liver	(50)		(50)		(49)	(2.0)
Inflammation, acute focal		(2%)	(00)		(10)	
Inflammation, chronic focal		(2%)				
Basophilic cyto change		(40%)	18	(36%)	13	(27%)
Eosinophilic cyto change		(,		(4%)		(4%)
Clear cell change	3	(6%)		(12%)	-	(470)
Angiectasis	-	(32%)		(34%)	13	(27%)
#Liver/centrilobular	(50)	(,	(50)		(49)	(=,
Necrosis, focal		(2%)		(2%)		(4%)
Cytoplasmic vacuolization		(,		(2%)	-	(-,•,
#Liver/periportal	(50)		(50)	(,	(49)	
Cytoplasmic vacuolization	(- · ·)			(16%)		(47%)
#Liver/hepatocytes	(50)		(50)	,	(49)	,
Degeneration, cystic	12	(24%)		(52%)		(47%)
#Bile duct	(50)		(50)		(49)	(
Hyperplasia, focal		(54%)		(74%)		(69%)
#Pancreas	(49)	((50)		(49)	(00/07)
Dilatation/ducts		(2%)	((2%)
Hemorrhage		(=,				(2%)
Inflammation, chronic focal			1	(2%)	-	(= /• /
Focal cellular change	1	(2%)	-	(=,		
#Pancreatic acinus	(49)		(50)		(49)	
Atrophy, focal	14	(29%)	13	(26%)	18	(37%)
Atrophy, diffuse	1	(2%)				
Hyperplasia, NOS	1	(2%)				
#Periesophageal tissue	(50)		(50)		(50)	
Inflammation, acute			1	(2%)		
#Glandular stomach	(48)		(50)		(49)	
Mineralization	1	(2%)	5	(10%)	1	(2%)
Ulcer, acute			2	(4%)	1	(2%)
Inflammation, active chronic			1	(2%)	1	(2%)
Necrosis, focal	1	(2%)				
#Gastric submucosa	(48)		(50)		(49)	
Inflammation, active chronic			1	(2%)		
#Forestomach	(48)		(50)		(49)	
Ulcer, acute	1	(2%)	1	(2%)		
Inflammation, acute focal			1	(2%)		
Inflammation, acute diffuse	1	(2%)				
Inflammation, active chronic				(2%)		(4%)
Hyperplasia, epithelial	1	(2%)		(2%)	1	(2%)
#Jejunum	(48)		(49)		(47)	
Ulcer, chronic		(2%)				
#Colon	(48)		(50)		(48)	
Ulcer, NOS			1	(2%)		
Parasitism	1	(2%)			1	(2%)
#Cecum	(48)		(50)		(48)	
Inflammation, acute diffuse	1	(2%)				
RINARY SYSTEM	<u></u>			· · ·		
#Kidney	(50)		(50)		(49)	
Nephropathy		(94%)		(94%)		(94%)
Infarct, acute		(2%)				
Infarct, healed			1	(2%)		

	Vehicle	Control	Low I	Dose	High	Dose
URINARY SYSTEM (Continued)						
#Kidney/cortex	(50)		(50)		(49)	
Cyst, NOS		(2%)		(4%)		(4%)
Multiple cysts				(4%)	-	(= /0 /
Necrosis, focal	2	(4%)	-	(1,0)		
#Renal papilla	(50)		(50)		(49)	
Necrosis, NOS				(2%)	()	
#Kidney/tubule	(50)		(50)		(49)	
Mineralization			1	(2%)		
Pigmentation, NOS			2	(4%)		
#Kidney/pelvis	(50)		(50)		(49)	
Hemorrhage					1	(2%)
Inflammation, acute diffuse	1	(2%)				
#Renal pelvis/mucosa	(50)		(50)		(49)	
Hyperplasia, epithelial		(18%)		(18%)		(12%)
#Urinary bladder	(48)	,	(50)		(47)	(/•/
Retention fluid	(,	(2%)	,	
Hemorrhage					1	(2%)
Ulcer, acute			2	(4%)	•	
Inflammation, acute focal	1	(2%)		(2%)		
Inflammation, acute diffuse		(2%)		(2%)	1	(2%)
Inflammation, active chronic			2	(4%)		
Hyperplasia, epithelial			3	(6%)	2	(4%)
NDOCRINE SYSTEM		<u></u>				
#Anterior pituitary	(50)		(49)		(49)	
Cyst, NOS				(12%)		(8%)
Hemorrhagic cyst			-			(2%)
Necrosis, hemorrhagic	1	(2%)			_	
Focal cellular change	_	()	1	(2%)		
Hyperplasia, focal	5	(10%)		(12%)	10	(20%)
#Adrenal/capsule	(50)		(50)		(49)	(-0.07
Hyperplasia, focal	(/		1	(2%)	,	
#Adrenal cortex	(50)		(50)		(49)	
Hemorrhage					3	(6%)
Necrosis, focal						(2%)
Metamorphosis, fatty	8	(16%)	14	(28%)	9	(18%)
Cytoplasmic vacuolization	•	(10,0)		(20,0)	3	(6%)
Focal cellular change	1	(2%)	3	(6%)	Ŭ	,
Hyperplasia, focal		(12%)		(8%)	4	(8%)
#Adrenal medulla	(50)		(50)		(49)	
Hemorrhagic cyst		(2%)	(00)		(40)	
Hyperplasia, focal		(28%)	16	(32%)	10	(20%)
#Thyroid	(47)		(50)		(49)	
Embryonal duct cyst	(-17)		(00)			(2%)
Follicular cyst, NOS	2	(4%)	4	(8%)		(6%)
Hyperplasia, C-cell		(62%)		(32%)		(39%)
Hyperplasia, follicular cell	20			(2%)		
#Parathyroid	(41)		(44)		(43)	
Hyperplasia, NOS		(24%)		(30%)		(19%)
#Pancreatic islets	(49)		(50)		(49)	•••
Atrophy, focal	(10)			(2%)	()	
Hyperplasia, focal	1	(2%)	•	<u> </u>	1	(2%)
EPRODUCTIVE SYSTEM	<u> </u>					
*Mammary gland	(50)		(50)		(50)	
Hyperplasia, cystic		(48%)		(50%)		(40%)
*Prepuce	(50)	(-10/0)	(50)		(50)	
	(00)		(00)		(00)	

	Vehicle	e Control	Low I	Dose	High	Dose
REPRODUCTIVE SYSTEM (Continued)						
*Preputial gland	(50)		(50)		(50)	•
Dilatation/ducts	(00)		(00)			(2%)
Retention fluid						(2%)
Cyst, NOS						(2%)
Abscess, NOS			1	(2%)		(2%)
Inflammation, active chronic			_			(8%)
#Prostate	(48)		(49)		(49)	
Hemorrhage				(2%)	(,	
Inflammation, acute focal	2	(4%)		(2%)	3	(6%)
Inflammation, active chronic		(23%)		(20%)		(27%)
Inflammation, chronic focal		(6%)		(8%)		(4%)
Hyperplasia, epithelial		(2%)	•	(0,0)		(4%)
*Seminal vesicle	(50)		(50)		(50)	
Retention fluid	(00)		(00)			(2%)
Hemorrhage			1	(2%)	1	(~~~~~)
Inflammation, acute focal			-		1	(2%)
Inflammation, acute diffuse			1	(2%)	-	(270)
Hyperplasia, epithelial				(2%)		
#Testis	(50)		(50)	,	(50)	
Degeneration, NOS	, ,	(2%)	(00)		(00)	
Hyperplasia, interstitial cell	-	(24%)	22	(44%)	9 9	(44%)
#Tunica albuginea	(50)		(50)	((50)	
Inflammation, chronic diffuse		(2%)	(00)		(50)	
#Testis/tubule	(50)	(270)	(50)		(50)	
Mineralization	(50)			(6%)	(00)	
Degeneration, NOS	0	(4%)	-	(0%)	٥	(16%)
Necrosis, focal		(2%)	11	(4470)	•	(10%)
Atrophy, focal	1	(270)		(2%)		(2%)
Atrophy, diffuse			1	(270)		(2%)
ERVOUS SYSTEM			<u> </u>			
#Brain/meninges	(50)		(50)		(50)	
Inflammation, acute focal	(00)			(2%)	(00)	
#Cerebral ventricle	(50)		(50)	(2,0)	(50)	
Hydrocephalus, NOS	(00)			(4%)		(2%)
Hemorrhage				(470) (2%)	I	(470)
#Cerebrum	(50)			(270)	(EA)	
	((40)	(50)	(90)	(50)	
Hemorrhage	2	(4%)		(8%)		
Necrosis, focal		(60)		(2%)	4	(00)
Atrophy, pressure #Cerebellum		(6%)	-	(6%)		(8%)
	(50)		(50)	(97)	(50)	
Hemorrhage			1	(2%)		· · · · · · · · · · · · · · · · · · ·
PECIAL SENSE ORGANS						
*Eye/cornea	(50)	(0~)	(50)		(50)	
Inflammation, chronic diffuse		(2%)				
*Eye/retina	(50)		(50)		(50)	
Atrophy, focal			1	(2%)		(6%)
Atrophy, diffuse		(6%)				(2%)
*Eye/crystalline lens	(50)		(50)		(50)	
Cataract	3	(6%)	1	(2%)	3	(6%)
*Harderian gland	(50)		(50)		(50)	
Inflammation, acute focal	1	(2%)	-			
Hyperplasia, epithelial					1	(2%)

Vehicle	Control	Low E	lose	High l	Dose
		<u> </u>			
(50)		(50)		(50)	
4	(8%)	7	(14%)	1	(2%)
(50)		(50)		(50)	
		1	(2%)		
		<u> </u>		······································	
(50)		(50)		(50)	
1	(2%)				
		1	(2%)		
(50)		(50)		(50)	
1	(2%)				
(50)		(50)		(50)	
1	(2%)				
		2	(4%)		
				2	(4%)
			(2%)		
(50)		(50)		(50)	
		1	(2%)		
				······································	
(50)		(50)		(50)	
	(2%)	·+-/	(4%)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		3	(6%)		
	(50) 4 (50) (50) 1 (50) 1 (50) (50) (50)	(50) (50) 1 (2%) (50) 1 (2%) (50) 1 (2%) (50)	(50) (50) (50) (50) (50) (50) (50) (50)	(50) (50) (50) (50) (50) (50) (50) (50)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site.

THPS and THPC, NTP TR 296

184

APPENDIX F

SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC

		PAGE
TABLE F1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC	187
TABLE F2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC	190
TABLE F3	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC	196
TABLE F4	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC	199

THPS and THPC, NTP TR 296

	Vehicle (Control	Low D	lose	High Dose				
ANIMALS INITIALLY IN STUDY	50		50		50				
NIMALS NECROPSIED	50		50		50				
NIMALS EXAMINED HISTOPATHOLOGICA	LLY 50		50		50				
NTEGUMENTARY SYSTEM									
*Skin	(50)		(50)		(50)				
Squamous cell carcinoma						(2%)			
Basal cell carcinoma					1	(2%)			
Keratoacanthoma		(2%)							
*Subcutaneous tissue	(50)		(50)		(50)				
Sarcoma, NOS		(2%)							
Fibroma	1	(2%)		(2%)					
Fibrosarcoma			1	(2%)		(2%)			
Fibrous histiocytoma, malignant					1	(2%)			
ESPIRATORY SYSTEM				<u></u>					
#Lung	(50)		(50)		(50)				
Squamous cell carcinoma			1	(2%)					
Squamous cell carcinoma, unclear prim/me	eta				1	(2%)			
Alveolar/bronchiolar adenoma			1	(2%)					
C-cell carcinoma, metastatic					1	(2%)			
Pheochromocytoma, metastatic			1	(2%)					
IEMATOPOIETIC SYSTEM									
*Multiple organs	(50)		(50)		(50)				
Leukemia, mononuclear cell		(8%)	8	(16%)	7	(14%)			
CIRCULATORY SYSTEM None									
DIGESTIVE SYSTEM									
*Tongue	(50)		(50)		(50)	(0~)			
Squamous cell papilloma		(2%)				(2%)			
#Liver	(50)		(50)	(90)	(50)				
Neoplastic nodule				(2%)	(50)				
#Pylorus Adenocarcinoma, NOS	(50)		(50) 1	(2%)	(60)				
JRINARY SYSTEM None	. <u></u>			<u>end</u>					
					<u> </u>				
ENDOCRINE SYSTEM #Anterior pituitary	(49)		(50)		(50)				
Carcinoma, NOS	(40)			(2%)	(00)				
Adenoma, NOS	94	(49%)		(56%)	20	(40%)			
#Adrenal	(50)		(50)	,,	(50)				
		(2%)							
Cortical adaptoma	•		(50)		(50)				
Cortical adenoma #Adrenal medulla	(50)		(- ·)		()				
#Adrenal medulla	(50) 2		3	(6%)					
#Adrenal medulla Pheochromocytoma		(4%)		(6%) (2%)					
#Adrenal medulla Pheochromocytoma Pheochromocytoma, malignant					(50)				
#Adrenal medulla Pheochromocytoma Pheochromocytoma, malignant #Thyroid	2 (50)		1			(2%)			
#Adrenal medulla Pheochromocytoma Pheochromocytoma, malignant	2 (50) 3	(4%)	1 (50)		1 4	(2%) (8%) (2%)			

TABLE F1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC

	Vehicle (Control	Low I	Dose	High	Dose
ENDOCRINE SYSTEM (Continued)						
#Pancreatic islets	(50)		(50)		(50)	
Islet cell adenoma				(2%)	(00)	
REPRODUCTIVE SYSTEM						
*Mammary gland	(50)		(50)		(50)	
Adenoma, NOS		(4%)		(2%)		
Adenocarcinoma, NOS		(2%)		(4%)		(2%)
Fibroadenoma		(22%)		(14%)		(12%)
*Clitoral gland	(50)		(50)		(50)	
Adenoma, NOS				(2%)		
Adenocarcinoma, NOS		(6%)		(2%)		(2%)
#Uterus	(50)		(50)		(50)	
Carcinoma, NOS	1	(2%)				
Adenoma, NOS		(0.0.41)				(2%)
Endometrial stromal polyp		(20%)		(26%)		(18%)
#Cervix uteri	(50)		(50)	(0~)	(50)	
Sarcoma, NOS				(2%)		
#Endometrial gland	(50)	(00)	(50)		(50)	
Adenomatous polyp, NOS		(2%)	(50)		(50)	
#Ovary Granulosa cell tumor	(50)	(90)	(50)	(2%)	(50)	
	1	(2%)	1	(270)		
NERVOUS SYSTEM						
#Cerebrum	(50)		(50)		(50)	
Carcinoma, NOS, invasive			1	(2%)		
SPECIAL SENSE ORGANS			<u></u>			
*Zymbal gland	(50)		(50)		(50)	
Carcinoma, NOS	1	(2%)				
MUSCULOSKELETAL SYSTEM None						
BODY CAVITIES						
*Thorax	(50)		(50)		(50)	
Lipoma	(00)			(2%)	(00)	
*Parietal pleura	(50)		(50)		(50)	
Squamous cell carcinoma, invasive	(00)			(2%)	(00)	
ALL OTHER SYSTEMS						
*Multiple organs	(50)		(50)		(50)	
Sarcoma, NOS, unclear primary or metastat	ic				1	(2%)
Fibrous histiocytoma, metastatic					1	(2%)
Broad ligament						
Leiomyosarcoma	1					

.

TABLE F1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC (Continued)

	Vehicle Control	Low Dose	High Dose
ANIMAL DISPOSITION SUMMARY		· · · · · · · · · · · · · · · · · · ·	
Animals initially in study	50	50	50
Natural death	5	4	18
Moribund sacrifice	8	13	9
Terminal sacrifice	36	33	21
Dosing accident	1		2
TUMOR SUMMARY			
Total animals with primary tumors**	40	45	36
Total primary tumors	77	88	58
Total animals with benign tumors	37	40	31
Total benign tumors	63	68	42
Total animals with malignant tumors	12	17	14
Total malignant tumors	13	18	14
Total animals with secondary tumors##		3	2
Total secondary tumors		3	2
Total animals with tumors uncertain			
benign or malignant	1	2	
Total uncertain tumors	1	2	
Total animals with tumors uncertain			
primary or metastatic			2
Total uncertain tumors			2

TABLE F1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF THPC (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 # Number of animals examined microscopically at this site
 # # Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

					-											_									
ANIMAL NUMBER	0 2 7	0 0 2	0 3 9	0 0 8	0 2 1	0 4 7	0 4 6	0 0 7	0 0 9	0 1 3	0 1 9	0 4 2	0 4 8	0 0 1	0 0 3	0 0 4	0 0 5	0 0 6	0 1 0	0 1 1	0 1 2	0 1 4	0 1 5	0 1 6	0 1 7
WEEKS ON STUDY	0 7 4	0 7 6	0 7 7	0 7 8	0 8 5,	0 8 7	0 9 2	0 9 8	0 9 8	0 9 8	1 0 1	1 0 1	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Skin Keratoacanthoma Subcutaneous tissue Sarcoma, NOS Fibroma	++	+	+	+	+	+	+	* * *	++	+ + x	N N	++	++	++	++	++	+ +	+	++	++	++	++	+ +	++	+++
RESPIRATORY SYSTEM Lungs and bronchi Trachea	++++	++++	+++	+ + +	+++	+++	++	+++	++++	++++	+++	+++	+++	+++	++++	+++	+++	++	++	+	+++	+++	+++	++++	++++
HEMATOFOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++	+++++	+++++	++++	+ + + + + +	+ + + +	++++	++++++	++++++	++++	++++-	+++	+++++	++++	+ + + +	+++++	++++	+++++	+++++	+ + + +	+++++	++++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma Salivary gland Liver Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Stomach Small intestine Large intestine	Z +++Z+++++	Z +++Z+++++	Zx+++z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z++++	Z +++Z+++++	Z +++Z+++++	N +++N+++++	N +++N+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	N +++N+++++	Z +++Z+++++	Z +++Z+++++	N +++N+++++	Z +++Z+++++	N +++N+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	X +++X+++++	Z +++Z+++++
URINARY SYSTEM Kidney Urinary bladder	 + +	++++	++++	+	++++	+	++	+++	+++	++++	+++++	+++	+++	+++	++++	+++	+++	+	+	+++	+++	+++	+++	+	++++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma Thyroid	+ + +	+ X + +	+ X + +	* * + +	++++++	+ + +	+ x +	+ + + X +	++++	+ X +	+ + +	+ x +	+ x +	++++	++++++	+++++	++++	+ X +	+ X +	+++++	+++++	+++	+ + +	* * +	++++++
Follicular cell adenoma C-cell adenoma C-cell carcinoma Parathyroid	+	+	+	+	+	+	_	+	+	+	x +	+	+	_	+	+	x	+	x +	+	X +	_	+	+	+
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS	+	+	+	+	+	N	N	+	+	+	+	+	+	+	+	N	+	N	+	N	+	N	+	+	+
Adenocarcinoma, NOS Fibroadenoma Preputial/clitoral gland Adenocarcinoma, NOS Uterus Carcinoma, NOS Adenomatous polyp, NOS	N +	X N +	N +	N X +	N +	N +	N +	N +	N +	N +	X N +	N +	X N +	N +	N +	N +	X N +	N +	N +	N +	N +	א +	X X N +	N +	X N +
Leiomyosarcoma Endometrial stromal polyp Ovary Granulosa cell tumor	+	+	+	+	X +	+	+	+	+	+	+	+	+	X +	+	+	+	X +	+	X X +	+	+	+	X +	x +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

TABLE F2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF THPC: VEHICLE CONTROL

+: Tissue examined microscopically
 -: Required tissue not examined microscopically
 X: Tumor incidence
 N. Necropsy, no autolysis, no microscopic examination
 S: Animal missexed

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

ANIMAL NUMBER	0 1 8	020	022	0 2 3	0 2 4	0 2 5	0 2 6	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	040	0 4 1	0 4 3	0 4 4	0 4 5	0 4 9	0 5 0	TOTAL
WEEKS ON STUDY	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	- TOTAL: FISSUES FUMORS
INTEGUMENTARY SYSTEM Skin Keratoacanthoma Subcutaneous tissue Sarcoma, NOS Fibroma	++	+ +	++	+ +	+ +	+ +	++	++	++	+ + X	++	+ +	++	++	++	+ +	+ +	++	+ +	+	+ +	+	+ +	++	+ +	*50 1 *50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Trachea	‡	+	‡	++	+	++++	++	t	+	++	++	+	+	+++	+	+	‡	++	++	++	++	+++	+++	+++	+++	50 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	+++++	++++	+++++	+++++	++++	++++	+++++	+++++	+++++	+++++	++++	* + + + + +	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	50 50 49 46
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma Salivary gland Liver Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Stomach Small intestine Large intestine	X +++X+++++	N +++X+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	X +++X+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	N +++X+++++	*50 1 50 50 50 *50 50 50 50 50 50 50 50
URINARY SYSTEM Kidney Urinary bladder	‡	+	++	+	+++	++	+++	+	+	+	++	+	+	++	÷	+++	+++	+ +	+++	+ +	+++	+++	+ +	+++	++++	50 49
ENDOCRINE SYSTEM Pituitary Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular cell adenoma C-cell adenoma C-cell acretinoma Parathyroid	+ X + + X +	+x+ + x +	+ + + -	+x+ + +	*X+ + + +	+ + +	+ + + -	+ + + * * * * *	* * + +	++++	++++	+ + + x +	+ + +	*x+ + +	** + x -	* * * *	+ + + +	+ + +	+ + + + +	** + + *	+ X + + +	+ + + +	++++	+ + * + +	- + +	49 24 50 1 2 50 3 6 1 40
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS	+	+	+	+	+	+	+	+	N	*	N	+	+	+	+	+	+	+	*	+	+	+	+	N	+	*50
Adenocarcinoma, NOS Fibroadenoma PreputiaVclitoral gland Adenocarcinoma, NOS Uterus Carcinoma, NOS Adenomatous polyp, NOS Leiomyosarcoma	N + X	X X +	N +	X N +	N +	N +	X N +	N +	N +	X N X +	N +	N +	N +	N +	N + X	X N +	N +	N +	X N +	א +	N +	N +	N +	N +	ч т	1 11 *50 3 50 1 1 1
Endometrial stromal polyp Ovary Granulosa ceil tumor	*	+	× +	+	+	+	+	X +	+	+	+	+	+	x +	+	+	+	+	+	+	+	+	х +	+	+	10 50 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemis, mononuclear cell	ł	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	NX	N	N	N	N	N	N	N	N	*50 4

TABLE F2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

* Animals necropsied

TABLE F2.	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR
	GAVAGE STUDY OF THPC: LOW DOSE

ANIMAL NUMBER	0 0 6	0 2 8	0 4 4	0 3 3	0 0 8	0 3 6	0 3 7	0 2 5	0 2 6	0 1 6	0 2 1	0 4 7	0 0 2	0 3 2	0 1 1	0 4 3	0 0 1	0 0 3	0 0 4	0 0 5	0 0 7	0 0 9	0 1 0	0 1 2	0 1 3
WEEKS ON STUDY	0 3 9	0 6 2	0 7 7	0 7 8	0 8 0	0 8 5	0 8 5	0 9 3	0 9 3	0 9 6	0 9 6	0 9 6	0 9 8	0 9 9	1 0 0	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma Fibrosarcoma	+	+	+	+	+	+	+	· +	+	*	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcinoma Alveolar/bronchiolar adenoma Pheochromocytoma, metastatic Trachea	+	+	+	+	+	+	+	+	+ X +	+	* *	+	+	+	+	+	+	+	· +	+	++	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++	++ ++ +	++++	+++++	+++++++		+++++	+ + + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	+++++	++++++	++++-	+++++	++++	+++-	+++-	- + + + + +		+++++	+++++	+ + ++ +	+++++	+++++	++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule	+++	+ +	+ +	++	++	+++	+++	+++	+++	+ +	+ +	+ +	+ +	+ +	++++	+ +	++++	+	++	++	++++	++++	+ +	+++	++++
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach	+ N + + +	+ z + + -	+ z + + -	+ N + + -	+ N + + -	+ N + + -	+ N + + -	+ x + + -	+ z + + -	+ N + + -	+ N + + -	+ N + + -	+ N + + +	+ N + + +	+ z + + +	+ N + + +	+ N + + +	+ X + +	+ Z + +	+ N + +	+ N + +	+ N + +	+ N + +	+ N + +	+ Z + +
Adenocarcinoma, NOS Small intestine Large intestine	+++++	+ X + +	+ + +	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	++++	+ + +	+ + +	+ + +	+ + +
URINARY SYSTEM Kidney Urinary bladder	++++	+ +	+++	++++	+ +	+++	++	+ +	+ +	+ +	+ +	+ +	++++	++++	+ +	+ +	+ +	+++	+ +	+ +	+ +	++++	++++	++++	+ +
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS	+	+	+	+	+	+	+ x	+ x	+	+ x	+	+	+	+ X	+ x	+ x	+ x	+	+ x	+ x	+ x	+ x	+ x	+ x	+ x
Adrenal Pheochromocytoma Pheochromocytoma, malignant Thyroid	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	x x	+	÷	+	÷	÷	+	+	+	+	+
C-cell adenoma C-cell carcinoma Parathyroid	+	+	+	+	+	-	+	x +	+	+	+	х +	х +	+	+	×	+	+	+	+	+	++	* +	++	++
Pancreatic islets Islet cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenocarcinoma, NOS	+	+	+	+	N	+	+	N	N	+	+	+	N	+	*	+	N	N	N	+	+	+	+	+ x	+
Fibroadenoma Preputial/clitoral gland Adenoma, NOS Adenocarcinoma, NOS	N	N	N	N	N	N	X N	N	N	X N	N	N	N	N		X N	N	N	N	X N	N	N	N X	N	N
Uterus Sarcoma, NOS Endometrial stromal polyp	+	+	+	+	+	+	+	+	+	+	+	*	+	+	Х +	+	+	+ x	+	+	+ X	+	+	+	+ X
Ovary Granulosa cell tumor	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
BODY CANITIES Pleura Squamous cell carcinoma, invasive Lipoma	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N X	N X	N	N X	N	N		N X	N X	N	N	N	N	N	N	N	N	N	N	N	N

ANIMAL NUMBER	0 1 4	0 1 5	0 1 7	0 1 8	0 1 9	0 2 0	0 2 2	0 2 3	0 2 4	0 2 7	0 2 9	0 3 0	0 3 1	0 3 4	0 3 5	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 5	0 4 6	0 4 8	0 4 9	0 5 0	
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma Fibrosarcoma	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcinoma Alveolar/bronchiolar adenoma Pheochromocytoma, metastatic Trachea	+	+	++	+	+	+	+	+	+	++	+	+ X +	+	+	+++	+	+	+	+	+	+	+	+	+	+	50 1 1 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++++	+++++	++++	++++	++++	+ + + +	+ + + + +	+++++	+ + + +	+++++	+++++	+ + + + +	+++++	+++++	+++++	++++	++++	+++++	++++	+++++	+++++	+++++	++++	+++-	++++	50 50 49 46
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Adenocarcinoma, NOS Small intestine Large intestine	++ +N+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +Z+++ ++	++X+X+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +2+++ ++	++ +2+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +Z+++ ++	++ +2+++ ++	++ +2+++ ++	++ +2+++ ++	++ +2+++ ++	50 50 1 50 *50 50 50 50 50 50
URINARY SYSTEM Kidney Urinary bladder	++++	+++	+++	++	++++	+++	+++	+++	+++	++++	++++	++++	+++	+++	++++	+++	+++	++++	+ +	+++	+++	++++	++++	+++	++++	50 50
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adrennal Pheochromocytoma Pheochromocytoma, malignant Thyroid C-cell adenoma C-cell carcinoma	+++++	+ + +	+ X + +	+ X + + X	++++	+ + X	+ * + +	+ + *	+ X + +	+ X + +	+ + x	+ x + x	+ + +	+ X + +	+ X + +	+ x + x	+ X + +	+ x + x	+++++	+ X +	+ X + +	+ X + +	++++	+ X + +	+ + +	50 1 28 50 3 1 50 11 1 40
Parathyroid Pancreatíc íslets Islet cell adenoma	+++	+ +	+ +	+	+ +	+ +	+ +	+ +	+	+ +	+ +	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+	+ +	+	+	42 50 1
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenocarcinoma, NOS Fibroadenoma Preputial/clitoral gland	+ N	+ N	N N	+ X N	+ N	+ N	+ X N	+ N	+ N	+ X N	+ N	+ N	N N	+ N	+ X N	+ N	+ N	+ N	+ N	N N	+ N	N N	+ N	N N	+ N	*50 1 2 7 *50
Adenoma, NOS Adenocarcinoma, NOS Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 1 50
Sarcoma, NOS Endometrial stromal polyp Ovary Granulosa cell tumor	X +	X +	x +	+	X +	X +	X +	+	+	+	+	+	+	+	x +	X +	+	+	+	x +	+	+	x + x	+	+	1 13 50 1
NERVOUS SYSTEM Brain Carcinoma, NOS, invasive	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
BODY CAVITIES Pleura Squamous cell carcinoma, invasive Lipoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	*50 1 1
ALL OTHER SYSTEMS Multípie organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N X	N	N	N	N	N	N	N X	N X	N	N	N	N	N	N	N	N	N	N	N	*50 8

TABLE F2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE
(Continued)

* Animals necropsied

ANIMAL NUMBER	0 0 6	0 3 2	036	0 4 2	0 2 0	0 0 7	0 1 0	0 1 6	0 2 1	0 2 9	0 4 5	0 4 8	050	0 0 3	0 0 2	0 1 9	0 2 6	033	0 0 4	0 1 7	0 1 1	0 3 5	005	0 3 4	0 3 8
WEEKS ON STUDY	0 0 7	0 5 3	0 5 5	0 6 5	0 6 8	0 6 9	0 7 0	0 7 1	0 7 1	0 7 1	0 7 1	0 7 1	0 7 1	0 7 2	0 7 4	0 7 8	0 7 8	0 8 2	0 8 8	0 8 8	0 9 0	0 9 3	0 9 4	0 9 4	9 5
INTEGUMENTARY SYSTEM Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Squamous cell carcinoma Basal cell carcinoma Subcutaneous tissus Fibrosarcoma Fibrosa histiocytoma, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X	+	+	+	+	+	+	+	X +	+
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcinoma, unclear primary/metastatic C-cell carcinoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+
	T	Ŧ		Ť	-	Ŧ	Ŧ	Ŧ	+	- T		-		Ŧ	τ.	т	+		т	Ŧ	· ·	Ŧ	Ŧ	Ŧ	
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++	++++	++++	++++	+++-	++-+	++++	++++	++++	+++-	++++	++++	++++	++++	++++	++++	++++	+ + + +	++++	++++	++++	++++	++++	++++	- + + + +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Salivary gland Liver	++	++	+++	++	+	+++	+++	+	+	+++	+++	+++	+++	+++	+	++	++++	++++	+++	++	++	++++	+	++	+++++
Bile duct Gallbladder & common bile duct	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N														
Pancreas Esophagus	++++	++++	++++	+	+++	++	+++	++	++	+	++++	+	++	+	+	++	+	++	++	+	++	+++	++++	++	+
Stomach Small intestine	+++	++++	+++	++	+++	+	+++	+++	+ +	+	++	++++	+++	+++	+++++++++++++++++++++++++++++++++++++++	+ +	++	++++	+	+ +	+++	+++	+++	+ +	++
Large intestine	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
URINARY SYSTEM Kidney Urinary bladder	+	++	+++	+	+	+++	+++	++	+++	+++	+++	+++	+++	++	+++	+++	+++	+	+	+	++	+	+	+++++	+
ENDOCRINE SYSTEM							Ŧ			т	т	+	Ŧ	+				T							
Adenoma, NOS Adrenal	+	+	÷	+	+	+	+	*	+	÷	+	+	+	+	+	*	+	*	+	* *	+	+	*	*	+
Thyroid Follicular cell adenoma C-cell adenoma	Ŧ	++	++	+ +	+ +	+	+	+++	+	+ +	+ +	+ +	+ +	+	+	+ +	+	+ +	+ +	+	+ +	+	+ +	++	+ +
C-cell carcinoma Parathyroid	+	+	+	+	+	÷	+	-	+	-	-	-	+	+	-	+	+	+	+	Х +	+	+	+	-	+
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	+	N	+	+	N	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+
Fibroadenoma Preputial/clitoral gland	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	X N
Adenocarcinoma, NOS Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+
Adenoma, NOS Endometrial stromal polyp Ovary	+	+	+	+	+	+	X +	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	X +	X +	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	
Sarcoma, NOS, unclear primary or metastatic Fibrous histiocytoma, metastatic Leukemia, mononuclear cell		X	14	14	14	14			14	14	14	14	14	t4	14	14	**	x	14		x			14	x

TABLE F2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF THPC: HIGH DOSE

								a	on	un	uec	.,														
ANIMAL NUMBER	0 2 5	0 0 1	0 2 2	0 3 9	0 0 8	0 0 9	0 1 2	0 1 3	0 1 4	0 1 5	0 1 8	0 2 3	0 2 4	0 2 7	0 2 8	0 3 0	0 3 1	0 3 7	0 4 0	0 4 1	0 4 3	0 4 4	0 4 6	0 4 7	0 4 9	TOTAL
WEEKS ON STUDY	0 9 7	0 9 9	1 0 1	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Squamous cell carcinoma Basal cell carcinoma Subcutaneous tissue Fibrosarcoma Fibrosa histiocytoma, malignant	+	+	+ + X	++	+	++	+	++	++	+	+	+	+	++	+	* * +	+	+ +	+ +	++	++	+ +	++	+ +	++	*50 1 *50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcin, unclear prim/meta C-cell carcinoma, metastatic Trachea	+	+	++	+	+	+	+	+	+	++	+	+	+	+	+	++	+	+	+ X +	+ +	+	+	+	+	+ +	50 1 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	++++	++++	+++++	+++++	++++	+++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++	++++++	- + + +	+ + + +	+ + + +	+++++	++++++	+ + + + +	+ + + +	48 50 49 46
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Oral cavity Squamous cell papilloma Salivary gland Liver Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Stomach Small intestine Large intestine	X +++X+++++	N +++N+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	Z +++Z+++++	N +++X+++++	X +++ X +++++	N +++N+++++	N +++N+++++	Z +++Z+++++	Z +++Z+++++	X +++X+++++	Z +++Z+++++	N +++X+++++	N +++X+++++	N +++X+++++	N +++X+++++	Z +++Z+++++	Z +++Z+++++	N +++X+++++	Z +++Z+++++	N +++X+++++	N +++N+++++	*50 1 50 50 50 *50 50 50 50 48 50
URINARY SYSTEM Kidney Urinary bladder	+++	+++	++++	++++	++++	+++	+++	+ +	+++	+++	++++	++	+ +	+++	+++	+ +	++++	+++	++++	++++	+++	+ +	+++	+++	+ +	50 50
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Thyroid Follicular cell adenoma C-cell adenoma C-cell carcinoma Parathyroid	+++++++++++++++++++++++++++++++++++++++	++++++	+ ++	+ + + + + + + +	+ + + +	+ X + +	++++++++	+ + + + +	+ + + X +	+ + +	+ X + +	+ x + + x x +	+ + + +	+ + +	+ x + +	++++++	+ + +	+ + + +	+ + + + x	+ X + + -	+ X + +	+ X + + +	* * * + +	+ x + + +	+x ++ +	50 20 50 50 1 4 1 34
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	+	+	N	+	N	+	+	+	+	+	* x	+	+	+	+	+	+ x	+ *	+	+	+	+	N	N	+	*50 1 6
Fibroadenoma Preputal/clitoral gland Adenocarcinoma, NOS Uterus Adenoma, NOS	N +	N +	N +	N +	N +	N +	N +	N +	^ N +	N +	N +	X N +	^N +	N +	N +	N +	N +	NX +	N + X	N +	N +	N +	N +	N +	N +	*50 1 50 1 9
Endometrial stromal polyp Ovary	× +	+	+	+	+	+	* +	+	*	× +	+	+	+	+	+	+	× +	+	+	+	+	+	+	+	+	50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ALL OTHER SYSTEMS Multiple organs, NOS Sarcoma, NOS, unclear prim or meta Fibrous histiocytoma, metastatic Leukemia, mononuclear cell	N X	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	*50 1 1 7

TABLE F2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

* Animals necropsied

	Vehicle Control	3.75 mg/kg	7.5 mg/kg
Hematopoietic System: Mononuclear Cell Le	eukemia		
Overall Rates (a)	4/50 (8%)	8/50 (16%)	7/50 (14%)
Adjusted Rates (b)	9.7%	19.1%	22.9%
Terminal Rates (c)	2/37 (5%)	3/34 (9%)	1/21 (5%)
Week of First Observation	87	80	82
Life Table Tests (d)	P = 0.058	P = 0.160	P = 0.081
Incidental Tumor Tests (d)	P = 0.209	P = 0.217	P = 0.271
Cochran-Armitage Trend Test (d)	P = 0.226	1 - 0.211	
Fisher Exact Test (d)	1 -0.220	P = 0.178	P = 0.262
Pituitary Gland: Adenoma			
Overall Rates (a)	24/49 (49%)	28/50 (56%)	20/50 (40%)
Adjusted Rates (b)	53.9%	69.8%	64.0%
Terminal Rates (c)	16/36 (44%)	22/34 (65%)	11/21 (52%)
Week of First Observation	76	85	55
Life Table Tests (d)	P = 0.111	P = 0.211	P = 0.170
Incidental Tumor Tests (d)	P = 0.456N	P = 0.293	P = 0.373N
Cochran-Armitage Trend Test (d)	P = 0.212N		
Fisher Exact Test (d)	1-0.2121	P=0.309	P = 0.243N
Pituitary Gland: Adenoma or Carcinoma			
Overall Rates (a)	24/49 (49%)	29/50 (58%)	20/50 (40%)
Adjusted Rates (b)	53.9%	72.3%	64.0%
Terminal Rates (c)	16/36 (44%)	23/34 (68%)	11/21 (52%)
Week of First Observation	76	85	55
Life Table Tests (d)	P = 0.105	P = 0.162	P = 0.170
Incidental Tumor Tests (d)	P = 0.470N	P = 0.226	P = 0.373N
Cochran-Armitage Trend Test (d)	P = 0.211N		
Fisher Exact Test (d)		P=0.243	P = 0.243N
Adrenal Gland: Pheochromocytoma			
Overall Rates (a)	2/50 (4%)	(e) 3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	5.0%	7.8%	0.0%
Terminal Rates (c)	1/37 (3%)	1/34 (3%)	0/21 (0%)
Week of First Observation	98	93	
Life Table Tests (d)	P = 0.348N	P = 0.464	P = 0.373N
Incidental Tumor Tests (d)	P = 0.200N	P = 0.597	P = 0.265N
Cochran-Armitage Trend Test (d)	P = 0.202N		
Fisher Exact Test (d)	1 - 0.20211	P=0.500	P = 0.247N
Fhyroid Gland: Follicular Cell Adenoma			
Overall Rates (a)	3/50 (6%)	0/50 (0%)	1/50 (2%)
Adjusted Rates (b)	8.1%	0.0%	4.8%
Terminal Rates (c)	3/37 (8%)	0/34 (0%)	1/21 (5%)
Week of First Observation	104		104
Life Table Tests (d)	P = 0.299N	P = 0.136N	P = 0.522N
Incidental Tumor Tests (d)	P = 0.299N	P = 0.136N	P = 0.522N
Cochran-Armitage Trend Test (d)	P = 0.176N		
Fisher Exact Test (d)		P=0.121N	P=0.309N
Fhyroid Gland: C-Cell Adenoma			
Overall Rates (a)	6/50 (12%)	11/50 (22%)	4/50 (8%)
Adjusted Rates (b)	15.7%	29.0%	16.3%
Terminal Rates (c)	5/37 (14%)	8/34 (24%)	2/21 (10%)
Week of First Observation	101	93	88
Life Table Tests (d)	P = 0.382	P=0.110	P = 0.552
		P = 0.156	P = 0.568N
Incidental Tumor Tests (d)	P = 0.552	1 -0.100	1 0.00011
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.333N	1 -0.100	1 - 0.00011

TABLE F3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC

	Vehicle Control	3.75 mg/kg	7.5 mg/kg
Thyroid Gland: C-Cell Adenoma or Carcinom	a		
Overall Rates (a)	7/50 (14%)	12/50 (24%)	5/50 (10%)
Adjusted Rates (b)	18.3%	31.1%	20.7%
Terminal Rates (c)	6/37 (16%)	8/34 (24%)	3/21 (14%)
Week of First Observation	101	93	88
Life Table Tests (d)	P=0.334	P = 0.118	P = 0.479
Incidental Tumor Tests (d)	P=0.519	P = 0.175	P = 0.618
Cochran-Armitage Trend Test (d)	P = 0.341 N		
Fisher Exact Test (d)		P = 0.154	P = 0.380N
lammary Gland: Fibroadenoma			
Overall Rates (a)	11/50 (22%)	7/50 (14%)	6/50 (12%)
Adjusted Rates (b)	27.1%	18.2%	26.7%
Terminal Rates (c)	8/37 (22%)	4/34 (12%)	5/21 (24%)
Week of First Observation	76	85	95
Life Table Tests (d)	P = 0.445N	P = 0.283N	P = 0.559N
Incidental Tumor Tests (d)	P = 0.228N	P = 0.209N	P = 0.342N
Cochran-Armitage Trend Test (d)	P = 0.110N	D 001031	D 014037
Fisher Exact Test (d)		P = 0.218N	P = 0.143N
fammary Gland: Adenoma or Fibroadenoma			0.00 (107)
Overall Rates (a)	11/50 (22%)	8/50 (16%)	6/50 (12%)
Adjusted Rates (b)	27.1%	20.5%	26.7%
Terminal Rates (c)	8/37 (22%)	4/34 (12%)	5/21 (24%)
Week of First Observation	76	85	95
Life Table Tests (d)	P = 0.465N	P = 0.381N	P = 0.559N
Incidental Tumor Tests (d)	P = 0.223N	P = 0.275N	P = 0.342N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.114N	P=0.306N	P = 0.143N
Aammary Gland: Adenoma or Adenocarcino	na		
Overall Rates (a)	3/50 (6%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	8.1%	8.5%	4.8%
Terminal Rates (c)	3/37 (8%)	2/34 (6%)	1/21 (5%)
Week of First Observation	104	100	104
Life Table Tests (d)	P = 0.443N	P = 0.621	P = 0.522N
Incidental Tumor Tests (d)	P = 0.393N	P = 0.661	P = 0.522N
Cochran-Armitage Trend Test (d)	P = 0.238N		
Fisher Exact Test (d)		P = 0.661	P=0.309N
lammary Gland: Adenoma, Fibroadenoma, o	r Adenocarcinoma		
Overall Rates (a)	11/50 (22%)	10/50 (20%)	7/50 (14%)
Adjusted Rates (b)	27.1%	25.8%	31.3%
Terminal Rates (c)	8/37 (22%)	6/34 (18%)	6/21 (29%)
Week of First Observation	76	85	95
Life Table Tests (d)	P = 0.479	P = 0.578N	P = 0.520
Incidental Tumor Tests (d)	P = 0.376N	P = 0.474N	P = 0.482N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.185N	P = 0.500N	P=0.218N
risher DABUL LESU(U)		r - 0.0001	1 - 0.21011
litoral Gland: Adenocarcinoma	0(50(00)	1/50 (90)	1/50 (90)
Overall Rates (a)	3/50 (6%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (b)	7.4%	2.8%	4.8%
	2/37 (5%)	0/34 (0%) 100	1/21 (5%) 104
Terminal Rates (c)			104
Week of First Observation	78 D-0 940N		
Week of First Observation Life Table Tests (d)	P = 0.340N	P = 0.332N	P = 0.495N
Week of First Observation			

TABLE F3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC (Continued)

	Vehicle Control	3.75 mg/kg	7.5 mg/kg
Clitoral Gland: Adenoma or Adenocarcin	oma	··· ····	
Overall Rates (a)	3/50 (6%)	2/50 (4%)	1/50 (2%)
Adjusted Rates (b)	7.4%	5.6%	4.8%
Terminal Rates (c)	2/37 (5%)	1/34 (3%)	1/21 (5%)
Week of First Observation	78	100	104
Life Table Tests (d)	P = 0.387N	P = 0.532N	P=0.495N
Incidental Tumor Tests (d)	P = 0.226 N	P=0.513N	P = 0.336N
Cochran-Armitage Trend Test (d)	P = 0.222N		
Fisher Exact Test (d)		P = 0.500N	P = 0.309 N
Jterus: Endometrial Stromal Polyp			
Overall Rates (a)	10/50 (20%)	13/50 (26%)	9/50 (18%)
Adjusted Rates (b)	26.0%	38.2%	32.9%
Terminal Rates (c)	9/37 (24%)	13/34 (38%)	5/21 (24%)
Week of First Observation	85	104	70
Life Table Tests (d)	P = 0.164	P = 0.234	P = 0.239
Incidental Tumor Tests (d)	P = 0.311	P = 0.235	P = 0.475
Cochran-Armitage Trend Test (d)	P = 0.451N		
Fisher Exact Test (d)		P = 0.317	P = 0.500 N

TABLE F3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) A malignant pheochromocytoma was also present in one of these animals.

N N	ehicle (Control	Low I)ose	High	Dose
ANIMALS INITIALLY IN STUDY	50		50		50	57
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		50		50	
NTEGUMENTARY SYSTEM			<u> </u>	<u></u>	<u></u>	
ESPIRATORY SYSTEM						
#Trachea	(49)		(50)	(0~)	(50)	(0~)
Inflammation, acute focal #Lung	(50)			(2%)		(2%)
Aspiration, foreign body		(2%)	(50)		(50)	(2%)
Congestion, acute		(6%)	9	(4%)		(24%)
Edema, NOS	0	(0.0)		(4%)		(22%)
Hemorrhage				(2%)		(2%)
Lymphocytic inflammatory infiltrate	1	(2%)	1	(— , — ,	-	
Inflammation, interstitial		(6%)	3	(6%)	6	(12%)
Abscess, NOS		(2%)	0		v	
Inflammation, active chronic	-	,			2	(4%)
Inflammation, granulomatous focal	8	(16%)	2	(4%)		(2%)
Necrosis, focal	-		-			(2%)
Alveolar macrophages	4	(8%)	1	(2%)		(4%)
Hyperplasia, alveolar epithelium	3	(6%)	3	(6%)	2	(4%)
Metaplasia, squamous					1	(2%)
IEMATOPOIETIC SYSTEM	* <u>*****</u> ******			<u> </u>		
#Brain/meninges	(50)		(50)		(50)	
Hematopoiesis		(2%)	(00)		(00)	
#Bone marrow	(50)	(2,0)	(50)		(48)	
Hyperplasia, granulocytic	(007			(2%)	(10)	
Hyperplasia, reticulum cell	2	(4%)	-	(=,		
#Spleen	(50)	(,	(50)		(50)	
Depletion, lymphoid		(2%)				
Hyperplasia, lymphoid					1	(2%)
#Splenic red pulp	(50)		(50)		(50)	
Inflammation, granulomatous focal					1	(2%)
Fibrosis, multifocal				(2%)	1	(2%)
Pigmentation, NOS				(2%)		
Hemosiderosis		(2%)		(2%)		(8%)
Hematopoiesis	-	(6%)		(18%)		(30%)
#Mandibular lymph node	(49)	(60)	(49)	(69)	(49)	
Hemorrhage	3	(6%)	3	(6%)		
Inflammation, chronic focal Angiectasis		(2%)				
Anglectasis Plasmacytosis		(6%) (31%)	19	(24%)	a	(16%)
Hyperplasia, lymphoid	10	(3170)	12	(4470)		(10%)
#Mesenteric lymph node	(49)		(49)		(49)	\ - <i>N</i> /
Inflammation, granulomatous focal	(47)		(43)			(2%)
Plasmacytosis	1	(2%)			1	(2,20)
#Thymic lymph node	(49)		(49)		(49)	
Hemorrhage						(2%)
Inflammation, chronic focal			2	(4%)	-	
Inflammation, granulomatous focal	2	(4%)		(2%)		
Hemosiderosis					1	(2%)
Plasmacytosis	1	(2%)				
#Liver	(50)		(50)		(50)	
Hematopoiesis	1	(2%)		(2%)		(6%)
#Hepatic sinusoid	(50)		(50)		(50)	
Leukocytosis, NOS					-	(2%)

TABLE F4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF THPC

	Vehicle (Control	Low D	Dose	High	Dose
HEMATOPOIETIC SYSTEM (Continued)						
#Jejunum	(50)		(50)		(48)	
Hyperplasia, lymphoid	(,		()	(4%)	(
#Colon	(50)		(50)		(50)	
Hyperplasia, lymphoid			1	(2%)	••••	
#Thymus	(46)		(46)		(46)	
Dilatation/ducts			2	(4%)		
Inflammation, acute/chronic					1	(2%)
Depletion, lymphoid	30	(65%)	37	(80%)	21	(46%)
CIRCULATORY SYSTEM				<u> </u>		
#Mandibular lymph node	(49)		(49)		(49)	
Lymphangiectasis			2	(4%)	2	(4%)
#Pancreatic lymph node	(49)		(49)		(49)	
Lymphangiectasis	1	(2%)				
#Heart	(50)		(50)		(50)	
Periarteritis				(2%)		
#Heart/atrium	(50)		(50)	. =	(50)	
Thrombus, mural		(2%)		(2%)		
#Left atrium	(50)		(50)		(50)	
Inflammation, chronic focal	(2.27)		••••	(2%)	(,	
#Myocardium	(50)		(50)		(50)	
Lymphocytic inflammatory infiltrate					1	(2%)
Inflammation, acute/chronic	1	(2%)	2	(4%)	-	
Degeneration, NOS	41	(82%)	34	(68%)	34	(68%)
#Mitral valve	(50)		(50)		(50)	
Endocarditis, bacterial			1	(2%)		
*Aortic tunica adventitia	(50)		(50)		(50)	
Hemorrhage			1	(2%)		
*Pulmonary artery	(50)		(50)		(50)	
Foreign body, NOS			1	(2%)		
Mineralization			1	(2%)		
Inflammation, acute focal					1	(2%)
*Ovarian vein	(50)		(50)		(50)	
Dilatation, NOS	1	(2%)				
*Splenic vein	(50)		(50)		(50)	
Thrombus, mural						(2%)
#Pancreas	(50)		(50)		(50)	
Periarteritis			1	(2%)		
DIGESTIVE SYSTEM						
#Submaxillary gland	(50)		(50)		(50)	
Necrosis, focal						(2%)
#Liver	(50)		(50)		(50)	
Inflammation, granulomatous		(2%)	• -	(0.0.0)		(0.1~
Inflammation, granulomatous focal		(52%)		(36%)		(24%)
Basophilic cyto change		(82%)	31	(62%)	24	(48%)
Eosinophilic cyto change		(2%)	-	(07)		
Clear cell change		(8%)	1	(2%)	-	(00)
Hyperplasia, nodular	2	(4%)	•	(00)	1	(2%)
Angiectasis				(2%)	1845	
#Liver/centrilobular	(50)	(10)	(50)	(00)	(50)	(100)
Necrosis, focal		(4%)		(8%)		(12%)
#Liver/periportal	(50)		(50)		(50)	(10)
Necrosis, focal	•			(007)		(4%)
Cytoplasmic vacuolization		(6%)		(22%)		(50%)
#Bile duct Hyperplasia, focal	(50)		(50)	(42%)	(50)	(54%)
		(50%)				

	Vehicle	Control	Low I	Dose	High	Dose
DIGESTIVE SYSTEM (Continued)						
#Pancreas	(50))	(50)		(50)	
Ectopia			(00)			(2%)
Dilatation/ducts	3	(6%)	1	(2%)		(2%)
Inflammation, active chronic	•			(2%)	-	
Inflammation, chronic focal				(8%)		
Focal cellular change	1	(2%)		(0,0)		
#Pancreatic acinus	(50)		(50)		(50)	
Atrophy, focal		(28%)		(40%)		(18%)
#Esophagus	(50)	•	(50)	(40,0)	(50)	
Inflammation, acute necrotizing	(00)			(2%)	(00)	
Inflammation, active chronic			1	(2.70)	1	(2%)
Necrosis, focal	1	(2%)			1	(270)
#Esophagus/muscularis	(50)		(50)		(50)	
Hemorrhage	(50)		(50)	(00)	(50)	
0	(FO)			(2%)	(50)	
#Glandular stomach	(50)		(50)		(50)	
Inflammation, active chronic		(2%)				
Necrosis, focal		(2%)				
#Forestomach	(50)		(50)		(50)	
Edema, NOS	1	(2%)		(00)		(0.01)
Ulcer, acute		(0.07)		(2%)		(2%)
Inflammation, acute/chronic	1	(2%)		(2%)		(4%)
Ulcer, chronic				(2%)	1	(2%)
Hyperplasia, epithelial	(50)			(4%)	(= 0)	
#Colon	(50)		(50)		(50)	
Parasitism	2	(4%)	1	(2%)		
JRINARY SYSTEM						
#Kidney	(50)		(50)		(50)	
Pyelonephritis, acute						(4%)
Nephropathy		(78%)		(84%)		(66%)
#Kidney/cortex	(50)		(50)		(50)	
Cyst, NOS	1	(2%)	2	(4%)		
Metamorphosis, fatty						(2%)
#Kidney/medulla	(50)		(50)		(50)	
Mineralization	1	(2%)				
Granuloma, NOS					1	(2%)
#Kidney/tubule	(50)		(50)		(50)	
Degeneration, NOS	1	(2%)	2	(4%)		
Necrosis, focal		(4%)				
#Kidney/pelvis	(50)		(50)		(50)	
Mineralization	,				· · · ·	(4%)
#Renal pelvis/mucosa	(50)		(50)		(50)	
Hyperplasia, epithelial				(2%)		
#Urinary bladder	(49)		(50)		(50)	
Calculus, gross observation only	(20)		(/			(2%)
Inflammation, acute focal			1	(2%)	-	
Inflammation, active chronic	1	(2%)		(2%)		
Hyperplasia, epithelial		(8%)	-		3	(6%)
Metaplasia, squamous	•					(2%)
NDOCRINE SYSTEM						
#Pituitary intermedia	(49)		(50)		(50)	
Hyperplasia, epithelial	(40)			(2%)	(00)	
#Anterior pituitary	(49)		(50)		(50)	
Cyst. NOS		(6%)		(6%)		(6%)
Multiple cysts		(35%)		(28%)		(0%) (24%)
Hemorrhage		(35%)		(28%) (2%)	12	(4+ 70)
Hemorrhagic cyst	1	(2/70)		(2%) (6%)	A	(8%)
	14	(290)				
Hyperplasia, focal	14	(29%)	15	(30%)	8	(16%)

	Vehicle (Control	Low I	Dose	High	Dose
ENDOCRINE SYSTEM (Continued)						
#Adrenal/capsule	(50)		(50)		(50)	
Hyperplasia, focal		(2%)	(00)		(00)	
#Adrenal cortex	(50)		(50)		(50)	
Hemorrhage	(00)			(2%)	/	(4%)
Hemorrhagic cyst				(2%)	-	(470)
Degeneration, NOS	1	(2%)	•	(2,2)		
Necrosis, focal		(2%)	1	(2%)	3	(6%)
Metamorphosis, fatty		(10%)		(30%)		(12%)
Focal cellular change		(10%)	-	(6%)	-	(8%)
Hypertrophy, NOS				(2%)		
Hyperplasia, focal	9	(18%)	7	(14%)	6	(12%)
Angiectasis	1	(2%)	2	(4%)	2	(4%)
#Adrenal medulla	(50)		(50)		(50)	
Hyperplasia, focal	5	(10%)	5	(10%)	4	(8%)
#Thyroid	(50)		(50)		(50)	
Embryonal duct cyst			1	(2%)		
Follicular cyst, NOS	1	(2%)				
Hyperplasia, C-cell		(46%)	22	(44%)	16	(32%)
#Parathyroid	(40)		(42)		(34)	
Inflammation, active chronic			,			(3%)
Hyperplasia, focal	1	(3%)				
#Pancreatic islets	(50)		(50)		(50)	
Hyperplasia, focal			1	(2%)		
EPRODUCTIVE SYSTEM	<u> </u>	<u></u>				
*Mammary gland	(50)		(50)		(50)	
Galactocele		(2%)	(00)		(00)	
Hyperplasia, cystic		(38%)	99	(44%)	. 20	(40%)
*Clitoral gland	(50)		(50)	(44/0)	(50)	(40 %)
Inflammation, active chronic	(00)		(00)			(2%)
Inflammation, chronic focal	1	(2%)				(2,0)
Abscess, chronic		(2%)				
#Uterus	(50)	(2,0)	(50)		(50)	
Dilatation, NOS		(8%)		(16%)		(2%)
Hemorrhage, chronic		(2%)		(4%)	-	(270)
Inflammation, acute focal	•		-	(4,0)	1	(2%)
Inflammation, chronic focal	1	(2%)				(2%)
Fibrosis, multifocal	-	((2%)
#Cervix uteri	(50)		(50)		(50)	(=,0)
Dilatation, NOS		(2%)	(00)		(00)	
Diverticulum	•		1	(2%)		
Inflammation, active chronic	1	(2%)	-			
Hyperkeratosis		(2%)				
Acanthosis		(2%)				
#Endometrial gland	(50)		(50)		(50)	
Hyperplasia, cystic		(22%)		(12%)		(24%)
#Ovary	(50)		(50)		(50)	(4470)
Follicular cyst, NOS		(2%)		(6%)		(8%)
Parovarian cyst		(4%)		(10%)		(8%)
Congestion, NOS		(2%)	Ű	(-	
Fibrosis, multifocal	•				1	(2%)
Atrophy, NOS			3	(6%)	*	,
IERVOUS SYSTEM		- <u></u>	······································			
	(50)		(50)		(50)	
#Brain/meninges						
#Brain/meninges Hemorrhage		(4%)	(00)		(00)	

	Vehicle	Control	Low I	Dose	High	Dose
NERVOUS SYSTEM (Continued)						<u> </u>
#Cerebral ventricle	(50)	I	(50)		(50)	
Hydrocephalus, NOS		(4%)		(4%)		(2%)
#Cerebrum	(50)		(50)		(50)	
Inflammation, acute necrotizing		(2%)	(007)		(+-)	
Necrosis, hemorrhagic		(2%)				
Atrophy, pressure		(12%)	11	(22%)	9	(18%)
#Cerebellum	(50)		(50)	•	(50)	
Hemorrhage			1	(2%)		
#Medulla oblongata	(50)		(50)		(50)	
Hemorrhage	1	(2%)				
SPECIAL SENSE ORGANS					<u> </u>	
*Eye/cornea	(50)		(50)		(50)	
Ulcer, NOS					1	(2%)
Inflammation, acute focal			1	(2%)		
Inflammation, active chronic					1	(2%)
Inflammation, chronic focal	1	(2%)				
*Eye/iris	(50)		(50)		(50)	
Inflammation, acute focal				(2%)		
*Eye/retina	(50)		(50)		(50)	
Atrophy, focal		(2%)		(6%)		(8%)
*Eye/crystalline lens	(50)		(50)		(50)	
Cataract		(2%)		(6%)		(4%)
*Eye/lacrimal gland	(50)		(50)		(50)	
Atrophy, focal				(2%)		
Hyperplasia, focal				(2%)	(- •)	
*Harderian gland	(50)	(4 m)	(50)		(50)	
Inflammation, chronic focal Hyperplasia, epithelial	2	(4%)				(2%) (2%)
MUSCULOSKELETAL SYSTEM		·····				
*Cortex of bone	(50)		(50)		(50)	
Cyst, NOS	(00)			(2%)	(00)	
*Femur	(50)		(50)	(210)	(50)	
Osteosclerosis		(22%)		(18%)		(14%)
· · · · · · · · · · · · · · · · · · ·						
BODY CAVITIES *Mediastinum	(50)		(50)		(50)	
Hemorrhage	(00)			(2%)	(00)	
Inflammation, acute focal				(2%)		
Inflammation, acute fibrinous				(2%)	1	(2%)
Inflammation, chronic focal				(2%)	-	
Inflammation chronic suppurative	2	(4%)				
Inflammation, granulomatous focal		(2%)				
*Pleura	(50)		(50)		(50)	
Inflammation, acute fibrinous					1	(2%)
Inflammation, acute necrotizing		(2%)				
Inflammation, acute/chronic	1	(2%)		(2%)		
Fibrosis, multifocal				(2%)		
*Epicardium	(50)		(50)		(50)	
Inflammation, acute fibrinous					1	(2%)
Inflammation, acute/chronic	-	(1m)	1	(2%)		
Inflammation chronic suppurative		(4%)				
*Mesentery	(50)		(50)	(40)	(50)	
Inflammation, granulomatous focal			2	(4%)		

	Vehicle Control	Low Dose	High Dose
ALL OTHER SYSTEMS *Multiple organs Hyperplasia, focal	(50)	(50)	(50) 1 (2%)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

•

APPENDIX G

SUMMARY OF LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC

		PAGE
TABLE G1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC	207
TABLE G2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC	210
TABLE G3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC	216
TABLE G4	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC	219

THPS and THPC, NTP TR 296

206

Ve	ahicle (Control	Low E	lose	High l	Dose
ANIMALS INITIALLY IN STUDY	50	- <u></u>	50		50	
ANIMALS NECROPSIED	50		49		50	
NIMALS EXAMINED HISTOPATHOLOGICALLY			49		50	
NTEGUMENTARY SYSTEM			· · · · · · · · · · · · · · · ·	···		
*Skin	(50)		(49)		(50)	
Squamous cell papilloma					-	(2%)
*Subcutaneous tissue	(50)		(49)		(50)	
Sarcoma, NOS		(8%)		(2%)		(2%)
Fibrosarcoma	3	(6%)	8	(16%)		(4%)
Lipoma					1	(2%)
ESPIRATORY SYSTEM						
#Lung	(50)		(49)		(50)	
Carcinoma, NOS, metastatic						(2%)
Adenocarcinoma, NOS, metastatic	-	(100)	-			(2%)
Hepatocellular carcinoma, metastatic		(12%)		(4%)		(2%)
Alveolar/bronchiolar adenoma		(2%)	-	(6%)		(8%)
Alveolar/bronchiolar carcinoma	-	(6%)		(6%)	4	(8%)
Sarcoma, NOS, metastatic Fibrosarcoma, metastatic		(2%) (2%)	1	(2%)	1	(2%)
Fibrosarcoma, metastatic	1	(2%)			1	(2%)
HEMATOPOIETIC SYSTEM						
*Multiple organs	(50)		(49)		(50)	
Malignant lymphoma, lymphocytic type		(2%)	2	(4%)	2	(4%)
Malignant lymphoma, histiocytic type		(2%)		(
Malignant lymphoma, mixed type		(8%)		(4%)		(8%)
#Spleen Malignant lymphoma, lymphocytic type	(48)	(4%)	(49)		(48)	
Malignant lymphoma, nixed type		(2%)			9	(4%)
#Axillary lymph node	(46)	(2 N)	(46)		(47)	(4/0)
Sarcoma, NOS, metastatic		(2%)	(40)		()	
CIRCULATORY SYSTEM	<u> </u>				- <u></u>	
*Subcutaneous tissue	(50)		(49)		(50)	
Hemangiosarcoma				(2%)	(
#Liver	(49)		(49)		(50)	
Hemangiosarcoma						(2%)
#Jejunum	(45)		(44)		(47)	
Hemangiosarcoma					1	(2%)
DIGESTIVE SYSTEM				2		
*Tongue	(50)		(49)		(50)	
Squamous cell carcinoma		(2%)				
#Liver	(49)		(49)	(00.01)	(50)	(10~)
Hepatocellular adenoma		(16%)		(20%)		(12%)
Hepatocellular carcinoma		(20%)		(12%)		(16%)
#Forestomach	(47)		(47)	(90)	(47)	
Squamous cell papilloma Squamous cell carcinoma	1	(2%)	1	(2%)		
JRINARY SYSTEM			<u> </u>			
#Kidney	(49)		(49)		(50)	
Tubular cell adenoma		(2%)	(
#Perirenal tissue	(49)		(49)		(50)	
Paraganglioma, NOS		(2%)				

TABLE G1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEARGAVAGE STUDY OF THPC

	Vehicle Control	Low Dose	High Dose
ENDOCRINE SYSTEM		<u></u>	
#Anterior pituitary	(45)	(43)	(45)
Adenoma, NOS	1 (2%)		
#Adrenal/capsule	(50)	(48)	(50)
Adenoma, NOS	2 (4%)	2 (4%)	4 (8%)
#Adrenal medulla	(50)	(48)	(50)
Pheochromocytoma	1 (2%)	1 (2%)	3 (6%)
#Thyroid	(48)	(49)	(50)
Follicular cell adenoma	2 (4%)	1 (2%)	3 (6%)
REPRODUCTIVE SYSTEM		······································	
*Preputial gland	(50)	(49)	(50)
Carcinoma, NOS	1 (2%)		
#Testis	(49)	(49)	(50)
Interstitial cell tumor		1 (2%)	
NERVOUS SYSTEM None			
SPECIAL SENSE ORGANS *Nasolacrimal duct Carcinoma, NOS *Harderian gland Adenoma, NOS Adenocarcinoma, NOS	(50) (50) 1 (2%)	(49) (49) 1 (2%)	(50) 1 (2%) (50) 3 (6%) 1 (2%)
MUSCULOSKELETAL SYSTEM None			
BODY CAVITIES			
*Mediastinum	(50)	(49)	(50)
Hepatocellular carcinoma, metastatic		1 (2%)	
Alveolar/bronchiolar carcinoma, metastatio			1 (2%)
*Mesentery	(50)	(49)	(50)
Squamous cell carcinoma, metastatic	1 (2%)		
ALL OTHER SYSTEMS	·		
*Multiple organs	(50)	(49)	(50)
Sarcoma, NOS, metastatic	2 (4%)		

TABLE G1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR
GAVAGE STUDY OF THPC (Continued)

	Vehicle Control	Low Dose	High Dose
ANIMAL DISPOSITION SUMMARY		<u></u> <u>_</u>	
Animals initially in study	50	50	50
Natural death	14	8	15
Moribund sacrifice	11	10	1
Terminal sacrifice	23	30	34
Dosing accident	2	1	
Animal missexed		1	
Total animals with primary tumors** Total primary tumors Total animals with benign tumors Total benign tumors Total animals with malignant tumors Total malignant tumors Total animals with secondary tumors## Total secondary tumors Total animals with tumors uncertain	33 50 15 17 25 32 11 12	31 43 16 20 21 23 3 4	33 52 20 25 22 27 4 5
benign or malignant	1		
Total uncertain tumors	L		

TABLE G1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEARGAVAGE STUDY OF THPC (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
** Primary tumors: all tumors except secondary tumors
Number of animals examined microscopically at this site
Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

	510		U			C:	¥ I	5111	IUI	E	υ	1.4	RC												
ANIMAL NUMBER	019		024	0 2 7	0 4 5	0 1 7	0 3 4	0 2 3	0 1 5	0 2 6	0 4 1	0 1 6	0 2 1	0 3 7	0 3 1	0 4 9	0 1 1	0 0 9	0 2 0	0 2 8	0 1 4	0 4 0	0 4 8	0 0 1	0 2 9
WEEKS ON STUDY	0 6 4	0 6 5	0 7 0	0 7 0	0 7 1	0 7 2	0 7 4	0 7 5	0 7 9	0 7 9	0 7 9	0 8 0	0 8 0	0 8 0	0 8 6	0 8 6	0 9 1	0 9 2	0 9 3	0 9 3	0 9 4	0 9 7	0 9 9	1 0 1	1 0 1
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibrosarcoma	-	• •	+ +	• +	• +	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+ X	+	*	*	÷	+	*
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolarforonchiolar adenoma Alveolarforonchiolar carcinoma Sarcoma, NOS, metastatic Fibrosarcoma, metastatic		, ,	+ +	• +	• +	+	+	+	+	+	+	*	*	*	+	*	+	+ x	+	+	+	+	+	+	+
Trachea	-	• •	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type		• •	• +	++	++	++	+ +	+-	++	++	+ +	+++	+ +	+++	+ +	+++	+ +	+ +	+++	+ +	+ +	+ +	+++	+ +	+ +
Lymph nodes Sarcoma, NOS, metastatic Thymus	-	· -	· + · +	+	+	+	+	+ -	+	+	-	+	+	+ -	+ +	+ -	+	-	++	+ 	+ -	+ +	+ -	+ -	+
CIRCULATORY SYSTEM Heart	- -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM	- N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
	=	+ +		+ + x	+ +	+ +	+ + X	+ +	+ +	+ +	++	+ + X X	+++	++	+ +	++	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ + X
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell carcinoma Small intestine Large intestine		+2+++ +	• +	+z++1 11	++++ ++	+++++ ++	+2+++++++	+2++1	++ ++	+++++ ++	×+++++ ++	X+++++ ++	X++++ ++	X+N+++ ++	+z+++ ++	X+N+++ ++	×+×++++++	+2+++++++	+++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++ ++	+++++ ++	+++++ ++	+++++ ++
URINARY SYSTEM Kidney Tubular cell adenoma Paragangliona, NOS Urinary bladder		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary		+	+	+ +	_		+	- -	+	+		+	+				- -					<u> </u>	- -	- -	-
Adenoma, NOS Adrenal Adenoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x	+	+
Pheochromocytoma Thyroid Follicular cell adenoma Parathyroid	-	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
REPRODUCTIVE SYSTEM	- N	N	N	N	N	 N	T N	+	N	N N	N	N	N	, N	N	T N	- N	N	N		- N	T N	- N	• N	+
Testis Prostate Preputa/clitorai gland Carcinoma, NOS	+ + N	+ + N	+ + N	- + N	+ + 7 +	+ + N	+ + N X	+ + N	+ + N	+ + X	+ + N	+ + N	+ + N	+ + + N	+ + + N	++ N	+ + N	++x	+ + N	+ + N	+ + N	+ + N	+ + N	+ + N	++ + N
NERVOUS SYSTEM Brain	- -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	м	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Mesentery Squamous cell carcinoma, metastatic	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Sarcoma, NOS, metastatic Malignant lymphoma, lymphocytic type Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N X	N X	N	N X

TABLE G2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC: VEHICLE CONTROL

+: Tissue examined microscopically

 Required tissue not examined microscopically
 X: Tumor incidence
 Necropsy, no autolysis, no microscopic examination
 S: Animal missexed

- : No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

ANIMAL NUMBER	0 0 8	0 4 7	0 0 2	0 0 3	0 0 4	0 0 5	0 0 6	0 0 7	0 1 0	0 1 2	0 1 3	0 1 8	0 2 2	25	0 3 0	3 2	3	3	36	38	39	4	4	4	5 0	TOTAL:
WEEKS ON STUDY	1 0 3	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	104	1 0 4	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibrosarcoma	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	*50 4 3
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+ x x	+ x	+	+	+	+	+	+	+	50 6 1 3
Sarcoma, NOS, metastatic Fibrosarcoma, metastatic Trachea	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	÷	+	X +	1 1 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen	++++	++++	+++	+++	++++	+++	++++	++++	++++	+ +	++++	+++	++++	++++	++++	+++	+ + X	++++	+	+ +	+ +	+++	++	++	++++	49 48 2
Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type Lymph nodes Sarcoma, NOS, metastatic	+	* X	+	x +	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 46 1
Thymus CIRCULATORY SYSTEM Heart		++	+	-+	+	- +	+ +	+	+	+	+	- +	- +	- +	+ +	+	+	+ +	+	+	+	+	+	- +	+	24 49
DIGESTIVE SYSTEM Oral cavity Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
Salivary gland Liver Hepatocellular adenoma	+++	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	+ +	+ + *	+ + X	+ +	+ + X	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	49 49 8 10
Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Esophagus	X + N + +	+++++	+ ++ +	X + + + + +	+ + + +	++++	+++++	+ + + +	++++	++++	+++++	++++	X + + + + +	+++++	++++	++++	X + + + +	+ + + +	++++	++++	++++	++++	++++	++++	++++	49 *50 48 50
Stomach Squamous cell carcinoma Small intestine Large intestine	+++++++++++++++++++++++++++++++++++++++	+++++	++++	++++	++++	++++	+++++	++++	+++++	++++	++++	++++	++++	+++++	+++	++++	++++	+ ++	+ ++	+++++	++++	+++++	+ + + +	+ + +	+++++	47 1 45 46
URINARY SYSTEM Kidney Tubular cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	49
Paraganglioma, NOS Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal	- +	+ +	+ +	* *	+ +	+ +	- +	+ +	+ +	- +	+ +	+ +	+ +	+ +	+	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	45 1 50
Adenoma, NOS Pheochromocytoma Thyroid Follicular cell adenoma Parathyroid	X + +	+ -	+ +	+ X +	+ +	+ -	+ -	+ +	+ +	+	+ 	+ +	+ 	+ +	x + +	+ +	+ +	+ +	+ +	+ -	* -	+ +	+ +	+ -	+ 	2 1 48 2 31
REPRODUCTIVE SYSTEM Mammary gland Testis	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	*50 49 50
Prostate Preputial/clitoral gland Carcinoma, NOS	ň	+ N	n N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	'n	ň	+ N	ň	n N	n N	n N	н М	+ N	N N	n N	*50 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	*50 1
BODY CAVITIES Mesentery Squamous cell carcinoma, metastatic	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Sarcoma, NOS, metastatic Malignant lymphocytic type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 2 1
Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type	x						x							_		x							X			4

TABLE G2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: VEHICLE CONTROL (Continued)

* Animals necropsied

.

TABLE G2.	INDIVIDUAL ANIMAI	J TUMOR PATHOLOGY	OF MALE MICE	IN THE TWO-YEAR GAVAGE
		STUDY OF THPC:	LOW DOSE	

ANIMAL NUMBER	0 0 7	0 0 8	0 0 6	0 4 8	0 2 9	0 3 3	0 1 2	0 2 8	0 3 5	0 4 2	0 1 4	0 2 6	0 1 5	0 2 7	0 2 3	0 4 9	0 3 9	0 4 5	0 1 3	0 0 1	0 0 2	0 0 3	0 0 4	0 0 5	0 0 9
WEEKS ON STUDY	0 0 0	0 1 1	0 1 5	0 4 5	0 6 4	0 6 6	0 7 0	0 7 1	0 7 1	0 7 2	0 7 4	0 8 0	0 8 6	0 8 7	0 9 1	0 9 1	0 9 4	0 9 7	1 0 0	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibrosarcoma Hemangiosarcoma	s	+	+	+	+	+	+	+ x	+ X	+	+	+ X	+ x	+	+	+	+ X	+	+ X	+ x	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Sarooma, NOS, metastatic	s	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+ x	+	+ X	+	+	*	+ X
Trachea	s	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	5 5 5 5 5	+ + - +	+ + + + +	++++	++-+	++++	++++-	+++ -	++++	++++	+++-	+++	+++++	+++-	++++	+++++	+++-	++++-	++++-	++++-	+++++	+ + + +	+++-	++++	+ + + +
CIRCULATORY SYSTEM Heart	s	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	S S	+ +	+ +	++	++++	+ +	+ + X	+ +	++	+++	++++	+ +	+ +	+ +	+ +	+ + X	+ +	++	++	+ + x	+++	+++	+ +	+ +	+++++
Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	+ N + + +	+ + + + +	+ 1 + + + + + + + + + + + + + + + + + +	+++++	+ N + +	++++	++++	+ z + + +	++++-	+ z + + +	+ + + + +	+++++	X + + + + + +	+++++	+++++	+++++	X + + + + + +	+++++	+++++	+++++	X + + + + +	+++++	X + + + + + +	+ + + +
Small intestine Large intestine	S S	+ +	+ +	+	+ +	Ξ	+ +	+ +	-	_	+ +	+ +	+ +	+ +	<u>+</u>	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
URINARY SYSTEM Kidney Urinary bladder	s s	++	+++	+++	+++	+	+++	++++	<u>+</u>	++++	++++	++++	+++	++++	++++	++	++	+++++	+++	+++	+ +	++++	+++	+ + +	+++
ENDOCRINE SYSTEM Pituitary Adrenal Adenoma, NOS Pheochromocytoma	s s		+	+ +	+ +	- +	++++	+++	+ +	- +	++++	+++	+++	+ +	+ +	++++	+ +	- +	+ +	+ +	+ +	+++	+ +	+++	+ + x
Thyroid Folicular cell adenoma Parathyroid	s s	+ -	+ +	+	+ 	+ _	+ +	+ -	+ +	+ +	+ +	+ +	+ +	+ _	+ +	+ +	+ +	+ +	+ +	+ -	+ _	+ +	+ +	+	+ +
REPRODUCTIVE SYSTEM Mammary gland Testis Interstitial cell tumor	s s	N +	N +	N +	N +	N +	+ +	N +	+ +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N + X	N +	N +	N +	N +	N +
Prostate	s	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	s	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	s	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Mediastinum Hepatocellular carcinoma, metastatic	s	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	s	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N

	T. 01									-																
ANIMAL NUMBER	1	1	1 6	1 7	1	1 9	0 2 0	2	0 2 2	24	0 2 5	3	3 1	32	3 4	36	37	38	4	4	4 3	4	46	4	5 0	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibrosarcoma Hemangiosarcoma	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	*	+	+	+ X	+	*49 1 8 1
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+ x	+	49 2 3 3
Sarcoma, NOS, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	х +	+	+	+	+	1 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++	++++	+++-	++++	++++	+++-	+ + + +	+++++	++++	+++-	++++	+++	++++	+++1.	+++++	++++	+ + + + +	+ + + +	++++	+ + + +	+++-	++++	+++1	+++++++++++++++++++++++++++++++++++++++	+ + + +	49 49 46 29
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	++++	+ + X	+ +	+ +	++	+++	+++	+++	+ + X	++	+++	+ + X	+++	+ +	+ +	+ + X	+ +	+ + X	+ + X	+++	+ +	++++	+ +	+ + X	+ + X X	49 49 10 6
Bile duct Gallbladder & common bile duct Pancreas Esophagus	+ + + +	+ + + +	+++++	+ + +	++++	++++	+ + + +	+++++	++++	++++	++++	4++++	+ + + +	++++	++++	+ + + +	++++	+ N + +	++++	++++	+++++	++++	++++	++++	+ + + +	49 *49 49 49
Stomach Squamous cell papilloma Small intestine Large intestine	+++++	+ + +	+ + +	+ + +	+ X + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ - +	+ + +	+ + +	47 1 44 45												
URINARY SYSTEM Kidney Urinary bladder	++++	++++	+++	++++	+++	+	+++	+++	+++	+++	+++	+++	++	+++	+ +	++++	+++++	+++++	++++	+++	++++	+++++	++++	++++	+++	49 46
ENDOCRINE SYSTEM Pituitary Adrenal Adrenan, NOS	+++	+ +	+ +	+ +	+ +	++++	++++	+ +	++++	+ +	+ +	++++	+++	+ +	+ + X	+ +	+++		++	++	+++	+++	+ -	+++	+ + X	43 48 2 1
Pheochromocytoma Thyroid Follicular cell adenoma Parathyroid	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +	+ -	* -	+ +	+ +	+	+ -	+ +	+ 	+ +	+ +	+ +	+ +	+ +	+ -	+ +	+	++	49 1 33
REPRODUCTIVE SYSTEM Mammary gland Testis Interstitial cell tumor Prostate	N + +	N +	N + +	N +	N +	N +	N +	N +	N +	N + +	N +	N +	N + +	N + +	N + +	N + +	N + +	*49 49 1 49								
NERVOUS SYSTEM Brain	+	+ +	+	+	+		+	+	+	+	 +	 +	+	+		+		, +	 +	+	, 		+	+	, 	49
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	*49 1
BODY CAVITIES Mediastinum Hepatocellular carcinoma, metastatic	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*49 1
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N X	N X	N	N	N	N	N	N	N	N	N	*49 2 2

TABLE G2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: LOW DOSE (Continued)

* Animals necropsied

					_			•				-													
ANIMAL NUMBER	0 1 7	0 4 5	0 1 9	0 0 5	0 1 6	0 3 3	0 4 2	0 3 6	0 3 7	0 4 1	0 3 8	0 3 0	0 1 8	0 1 2	0 2 3	0 0 1	0 0 2	0 0 3	0 0 4	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1
WEEKS ON STUDY	0 5 1	0 6 0	0 6 4	0 6 8	0 6 8	0 6 9	0 7 0	0 7 4	0 8 3	0 8 6	0 9 0	0 9 4	0 9 5	0 9 7	1 0 0	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM																									
Skin Squamous cell papilloma Subcutaneous tissue Sarcoma, NOS Fibrosarcoma Lipoma	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* *	+	+	+ + X	+ + X	+	+ +
RESPIRATORY SYSTEM Lungs and bronchi Carcinoma, NOS, metastatic Adenocarcinoma, NOS, metastatic Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Fibrosarcoma, metastatic	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+ x x	+	+ X	+	+	+	+	+	+
Trachea	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malignant lymphoma, mixed type Lymph nodes Thymus	++++-	+ + + + -	+++++	-+-+	++++-	++++-	++ ++	+ - + + +	++	++++	++++-	+++++	++ ++	++++-	+++++	+++++	++	++++	+++++	+++++	+++++	++++	++++++	+++++	++ ++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+		+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangiosarcoma	+ +	+ +	++++	++++	+ + x	++++	+++	++++	++++	+ + x	++++	+ + X	+ + x	+ + X X	+++	++++	+ + x	++++	++++	++++	++++	+ * x	+ * X	++++	+ + X
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Hemangiosarcoma Large intestine	+z++11	+z + +	+++++++++++++++++++++++++++++++++++++++	++++++ +	++++++ +	++++++ +	+++++++++++++++++++++++++++++++++++++++	+ 2 + 1 +	++++++ +	++++++ +	+++++ +	++++++ +	+2++++ +	++++++ +	++++++ +	+ + + + + + X +	+2++++ +	+++++ +	++++++ +	++++++ +	+++++++++++++++++++++++++++++++++++++++	+++++ +	++++++ +	++++++ +	+++++++++++++++++++++++++++++++++++++++
URINARY SYSTEM Kidney Urinary bladder	+ + +	+	+++	++++	+++	+++	+++	+	+++	+ +	+++	++	+++	++++	++++	+++	++++	++++	++++	++++	++++	+++	+++	+++	++++
ENDOCRINE SYSTEM Pituitary Adrenal Adrenal Pheochromocytoma Thyroid Follicular cell adenoma Parathyroid	++++	++++-	++++-	+ + + +	++++++	++++-	++ + + +	-+ + +	++++-	-+ + -+	++++++++++++++++++++++++++++++++++++++	+ + +	+++ +X+	+ + x + -	-+ + +	++ + +	++ + x+ +	++++++	++++	+ + + +	+++ + x-	++++++	+ + +	++++	+ + + +
REPRODUCTIVE SYSTEM Mammary gland Testia Prostate	N + +	N + +	N +++	N + +	N +++	N + +	N ++ +	N +++	N + +	N +++	N + +	N + +	N + +	N + + +	N ++ +	N + +	N + +	N + +	N + +	N + +	N +++	N + +	N + +	N + + +	N + +
NERVOUS SYSTEM Brain	+	-	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Lacrimal gland Carcinoma, NOS Harderian gland Adenoma, NOS Adenocarcinoma, NOS	N N	N N	N N	N N	N N					N N X	N N	N N	N N	N N						N N	N N	N N	N N	N N	N N
BODY CAVITIES Mediastinum Alveolar/bronchiolar carcinoma, metastatic	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N X	N	N X	N	N	N	N

TABLE G2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC: HIGH DOSE
										****	ueo	~														
ANIMAL NUMBER	0 1 3	0 1 4	0 1 5	0 2 0	0 2 1	0 2 2	0 2 4	0 2 5	0 2 6	0 2 7	0 2 8	0 2 9	0 3 1	0 3 2	0 3 4	0 3 5	0 3 9	0 4 0	0 4 3	0 4 4	0 4 6	0 4 7	0 4 8	0 4 9	0 5 0	TOTAL:
WEEKS ON STUDY	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
INTEGUMENTARY SYSTEM																										
Skin Squamous cell papillo ma Subcutaneous tissue Sarcoma, NOS Fibrosarcoma Lipoma	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ * X	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+ + X	+ +	+ +	+ +	*50 1 *50 1 2 1
RESPIRATORY SYSTEM Lungs and bronchi Carcinoma, NOS, metastatic Adenocarcinoma, NOS, metastatic Hepatocellular carcinoma, metastatic Alveojar/bronchiojar adenoma	+	+	+	+	+	+ x	+	+ x	+	+	+	+	+ x	+	+	+	+	+	+ X	+	+	+ X	+	*	+	50 1 1 4
Alveolar/bronchiolar carci noma Fibrosarcoma, met <u>astatic</u> Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Х +	+	+	+	+	+	+	X +	+	+	+	4 1 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malignant lymphoma, mixed type Lymph nodes	++++++	+++++	+ + +	+ + +	+++++	+++++	+ + +	+++++	+++++	+++++	+ + X +	+ + +	+ + +	+++++	+ + +	+ + x +	+ + +	+ + +	+ + +	+++++	+++++	+++++	++++++	+++++	+++++	49 48 2 47
Thymus CIRCULATORY SYSTEM	+ 	+	+	+	+	+	+	+	+	+	-	+	+	+	-	+	+	+	+	+	+		+	+	+	36 50
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.	Ť	Ť.,		.					
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangiosarooma	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ * x	+ +	+ + X	+ +	+ + x	+ + X	+ +	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	50 50 6 8 1
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach	+++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	+ N + + +	++++	++++	++++	++++	+++++	++++	++++	+++++	++++	++++	++++	++++	50 *50 48 50 47
Small intestine Hemangiosarcoma Large intestine	++	+	+	+++	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +	+	+	+	+ +	+ +	47 1 49
URINARY SYSTEM Kidney Urinary bladder	+ +	++	+++	+ +	+ +	+ +	+++	+ +	+ +	+++	++++	+ +	+++	++++	+ +	+ +	++++	++++	+ +	+++	++	+ +	+ +	++++	++++	50 48
ENDOCRINE SYSTEM Pituitary Adrenal Adrenal Pheochromocytoma Thyroid Follicular cell adenoma Parathyroid	++x + -	++xx++	++++-	+ + + + +	-+ + *	+ + + +	++++	++++-	++++++++++++++++++++++++++++++++++++++	+++	+++-	+ + + +	++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ * * * *	+++++++++++++++++++++++++++++++++++++++	+ + + +	++	++++++	+ + + +	+ + + +	+ + + + +	++++	+ + + +	45 50 4 3 50 3 30
REPRODUCTIVE SYSTEM Mammary gland Testis Frostate	N + +	N + +	N + +	N + +	+++++	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + + +	N + +	N + +	N + +	N + +	N + +	N + + +	N + +	*50 50 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
SPECIAL SENSE ORGANS Lacrimal gland Carcinoma, NOS Harderian gland Adenoma, NOS	N N	N N		N N	N N X	N N					N N		N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	NXN	N N	*50 1 *50 3
Adenocarcinoma, NOS BODY CAVITIES Mediastinum	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	X N	N	N	N	1 *50 1
Alveolar/bronchiolar carcinoma, meta ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	*50 2 4

TABLE G2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

* Animals necropsied

	Vehicle Control	7.5 mg/kg	15 mg/kg
Subcutaneous Tissue: Sarcoma			
Overall Rates (a)	4/50 (8%)	1/49 (2%)	1/50 (2%)
Adjusted Rates (b)	13.7%	3.2%	2.9%
Terminal Rates (c)	0/23 (0%)	1/31 (3%)	1/35 (3%)
Week of First Observation	94	104	104
Life Table Tests (d)	P = 0.056N	P = 0.135N	P = 0.106N
Incidental Tumor Tests (d)	P = 0.210N	P = 0.467N	P = 0.361 N
Cochran-Armitage Trend Test (d)	P = 0.102N		
Fisher Exact Test (d)		P = 0.187N	P = 0.181N
Subcutaneous Tissue: Fibrosarcoma			
Overall Rates (a)	3/50 (6%)	8/49 (16%)	2/50 (4%)
Adjusted Rates (b)	9.5%	21.1%	5.7%
Terminal Rates (c)	1/23 (4%)	3/31 (10%)	2/35 (6%)
Week of First Observation	79	71	104
Life Table Tests (d)	P = 0.296 N	P = 0.153	P = 0.371 N
Incidental Tumor Tests (d)	P = 0.571 N	P = 0.029	P = 0.558N
Cochran-Armitage Trend Test (d)	P = 0.430N		
Fisher Exact Test (d)		P = 0.094	P = 0.500 N
Subcutaneous Tissue: Sarcoma or Fibrosa			
Overall Rates (a)	7/50 (14%)	9/49 (18%)	3/50 (6%)
Adjusted Rates (b)	22.0%	23.9%	8.6%
Terminal Rates (c)	1/23 (4%)	4/31 (13%)	3/35 (9%)
Week of First Observation	79	71	104
Life Table Tests (d)	P = 0.067 N	P = 0.512	P = 0.074N
Incidental Tumor Tests (d)	P = 0.315N	P=0.079	P = 0.305 N
Cochran-Armitage Trend Test (d)	P = 0.147 N		
Fisher Exact Test (d)		P = 0.376	P = 0.159N
Lung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	1/50 (2%)	3/49 (6%)	4/50 (8%)
Adjusted Rates (b)	2.0%	9.7%	11.4%
Terminal Rates (c)	0/23 (0%)	3/31 (10%)	4/35 (11%)
Week of First Observation	65	104	104
Life Table Tests (d)	P = 0.237	P = 0.380	P = 0.290
Incidental Tumor Tests (d)	P = 0.233	P = 0.375	P = 0.282
Cochran-Armitage Trend Test (d)	P = 0.134		
Fisher Exact Test (d)		P = 0.301	P = 0.181
Lung: Alveolar/Bronchiolar Carcinoma			
Overall Rates (a)	3/50 (6%)	3/49 (6%)	4/50 (8%)
Adjusted Rates (b)	11.5%	9.4%	10.6%
Terminal Rates (c)	2/23 (9%)	2/31 (6%)	3/35 (9%)
Week of First Observation	92 D. 0.500M	100	69 D
Life Table Tests (d)	P = 0.568N	P = 0.551N	P = 0.641N
Incidental Tumor Tests (d)	P = 0.451	P = 0.629	P=0.569
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.421	P = 0.651	P=0.500
ung: Alveolar/Bronchiolar Adenoma or C Overall Rates (a)	arcinoma 4/50 (8%)	6/49 (12%)	8/50 (16%)
Adjusted Rates (b)	13.3%	18.8%	21.8%
Terminal Rates (c)	2/23 (9%)	5/31 (16%)	7/35 (20%)
Week of First Observation	65	100	69
Life Table Tests (d)	P = 0.320	P = 0.512	P = 0.366
Incidental Tumor Tests (d)	P = 0.225	P = 0.385	P = 0.283
Cochran-Armitage Trend Test (d)	P = 0.141	P=0.357	

TABLE G3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC

	Vehicle Control	7.5 mg/kg	15 mg/kg
Hematopoietic System: Malignant Lympho	oma, Lymphocytic Type		
Overall Rates (a)	3/50 (6%)	2/49 (4%)	2/50 (4%)
Adjusted Rates (b)	11.8%	6.5%	5.6%
Terminal Rates (c)	2/23 (9%)	2/31 (6%)	1/35 (3%)
Week of First Observation	97	104	100
Life Table Tests (d)	P = 0.258N	P = 0.381N	P = 0.342N
Incidental Tumor Tests (d)	P = 0.396N	P = 0.482N	P = 0.528N
Cochran-Armitage Trend Test (d)	P = 0.407 N	1 -0.40211	1 - 0.02011
Fisher Exact Test (d)	1 - 0.40/11	P = 0.510N	P = 0.500 N
Tematopoietic System: Malignant Lympho	ma. Mixed Type		
Overall Rates (a)	5/50 (10%)	2/49 (4%)	6/50 (12%)
Adjusted Rates (b)	20.3%	5.8%	17.1%
Terminal Rates (c)	4/23 (17%)		6/35 (17%)
		1/31 (3%)	
Week of First Observation	99	86	104
Life Table Tests (d)	P = 0.484N	P = 0.133N	P = 0.474N
Incidental Tumor Tests (d)	P = 0.541	P = 0.221 N	P = 0.542N
Cochran-Armitage Trend Test (d)	P = 0.430		
Fisher Exact Test (d)		P = 0.227 N	P = 0.500
Hematopoietic System: Lymphoma, All Ma			0/80/1000
Overall Rates (a)	9/50 (18%)	4/49 (8%)	8/50 (16%)
Adjusted Rates (b)	33.9%	12.1%	22.2%
Terminal Rates (c)	6/23 (26%)	3/31 (10%)	7/35 (20%)
Week of First Observation	97	86	100
Life Table Tests (d)	P = 0.185N	P = 0.049N	P = 0.191N
Incidental Tumor Tests (d)	P = 0.381N	P = 0.137N	P = 0.372N
Cochran-Armitage Trend Test (d)	P = 0.443N		
Fisher Exact Test (d)	1 -0.44011	P = 0.125N	P = 0.500N
Liver: Hepatocellular Adenoma			
Overall Rates (a)	8/49 (16%)	10/49 (20%)	6/50 (12%)
Adjusted Rates (b)	25.8%	29.5%	16.6%
Terminal Rates (c)	4/23 (17%)	8/31 (26%)	5/35 (14%)
Week of First Observation	70	70	97
		P = 0.575	P = 0.189N
Life Table Tests (d)	P = 0.140N		
Incidental Tumor Tests (d)	P = 0.254N	P = 0.459	P = 0.324N
Cochran-Armitage Trend Test (d)	P = 0.325N		
Fisher Exact Test (d)		P = 0.397	P = 0.371N
Liver: Hepatocellular Carcinoma			0 10 0 / 1 0
Overall Rates (a)	10/49 (20%)	6/49 (12%)	8/50 (16%)
Adjusted Rates (b)	29.0%	17.8%	20.0%
Terminal Rates (c)	3/23 (13%)	4/31 (13%)	4/35 (11%)
Week of First Observation	79	87	68
Life Table Tests (d)	P = 0.172N	P = 0.135N	P = 0.215N
Incidental Tumor Tests (d)	P = 0.465	P = 0.416N	P = 0.463
Cochran-Armitage Trend Test (d)	P = 0.325N		
Fisher Exact Test (d)	,	P = 0.207 N	P = 0.380N
Liver: Hepatocellular Adenoma or Carcin	oma		
Overall Rates (a)	17/49 (35%)	15/49 (31%)	13/50 (26%)
Adjusted Rates (b)	47.7%	42.2%	32.9%
Terminal Rates (c)	7/23 (30%)	11/31 (35%)	9/35 (26%)
Week of First Observation	70	70	68 D. 0.070)
Life Table Tests (d)	P = 0.054N	P = 0.224N	P = 0.076N
Incidental Tumor Tests (d)	P = 0.314N	P = 0.545N	P = 0.396N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.203 N		
		P = 0.415N	P = 0.235N

TABLE G3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC (Continued)

	·						
	Vehicle Control	7.5 mg/kg	15 mg/kg				
Adrenal Gland Capsule: Adenoma							
Overall Rates (a)	2/50 (4%)	2/48 (4%)	4/50 (8%)				
Adjusted Rates (b)	7.8%	6.7%	11.4%				
Terminal Rates (c)	1/23 (4%)	2/30 (7%)	4/35 (11%)				
Week of First Observation	99	104	104				
Life Table Tests (d)	P = 0.417	P = 0.608N	P = 0.527				
Incidental Tumor Tests (d)	P = 0.349	P = 0.682	P = 0.440				
Cochran-Armitage Trend Test (d)	P = 0.254						
Fisher Exact Test (d)		P = 0.676	P=0.339				
drenal Gland: Pheochromocytoma							
Overall Rates (a)	1/50 (2%)	1/48 (2%)	3/50 (6%)				
Adjusted Rates (b)	4.0%	3.3%	8.3%				
Terminal Rates (c)	0/23 (0%)	1/30 (3%)	2/35 (6%)				
Week of First Observation	103	104	97				
Life Table Tests (d)	P=0.307	P = 0.706N	P = 0.439				
Incidental Tumor Tests (d)	P = 0.169	P=0.684	P = 0.233				
Cochran-Armitage Trend Test (d)	P=0.203						
Fisher Exact Test (d)		P = 0.742	P = 0.309				
hyroid Gland: Follicular Cell Adenoma							
Overall Rates (a)	2/48 (4%)	1/49 (2%)	3/50 (6%)				
Adjusted Rates (b)	8.7%	3.2%	8.2%				
Terminal Rates (c)	2/23 (9%)	1/31 (3%)	2/35 (6%)				
Week of First Observation	104	104	95				
Life Table Tests (d)	P = 0.555	P = 0.396N	P = 0.673				
Incidental Tumor Tests (d)	P = 0.471	P=0.396N	P = 0.583				
Cochran-Armitage Trend Test (d)	P = 0.415	-	5				
Fisher Exact Test (d)		P=0.492N	P = 0.520				
arderian Gland: Adenoma	1/50 (00)	1 (10 (07))	0/50 (00)				
Overall Rates (a)	1/50 (2%)	1/49 (2%)	3/50 (6%)				
Adjusted Rates (b)	4.3%	3.2%	8.0%				
Terminal Rates (c)	1/23 (4%)	1/31 (3%)	2/35 (6%)				
Week of First Observation	104	104	86				
Life Table Tests (d)	P = 0.302	P = 0.694N	P = 0.436				
Incidental Tumor Tests (d)	P = 0.219	P = 0.694N	P = 0.311				
Cochran-Armitage Trend Test (d)	P = 0.202	D 0 5 4 5	D 0 000				
Fisher Exact Test (d)		P = 0.747	P = 0.309				
arderian Gland: Adenoma or Adenocard Overall Rates (a)	cinoma 1/50 (2%)	1/40 (90%)	4/50 (8%)				
Adjusted Rates (b)	4.3%	1/49 (2%) 3.2%	4/30 (8%)				
Terminal Rates (c)	4.3% 1/23 (4%)	3.2% 1/31 (3%)					
Week of First Observation	1/23 (4%)	1/31 (3%)	3/35 (9%) 86				
Life Table Tests (d)	P=0.177		P = 0.303				
Incidental Tumor Tests (d)	P = 0.177 P = 0.121	P=0.694N P=0.694N	P = 0.303 P = 0.206				
Cochran-Armitage Trend Test (d)	P = 0.121 P = 0.102	r = 0.0341	r - 0.200				
	r - 0.102						
Fisher Exact Test (d)		P = 0.747	P = 0.181				

TABLE G3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OFTHPC (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

⁽d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

N N	ehicle C	Control	Low D	lose	High Dose		
ANIMALS INITIALLY IN STUDY	50		50	<u></u>	50		
ANIMALS INTIALLY IN STODY	50		49		50		
ANIMALS EXAMINED HISTOPATHOLOGICALI			49		50		
NTEGUMENTARY SYSTEM							
*Skin	(50)		(49)		(50)		
Epidermal inclusion cyst	1						
Inflammation, acute/chronic		(8%)		(4%)		(2%)	
*Subcutaneous tissue	(50)		(49)	(00)	(50)		
Inflammation, acute Inflammation, chronic				(2%) (2%)	1	(2%)	
Infection, fungal				(2%) (2%)		(270)	
RESPIRATORY SYSTEM			······································				
#Lung	(50)		(49)		(50)		
Vegetable foreign body		(2%)			-	(.	
Hemorrhage		(2%)				(4%)	
Inflammation, acute	4	(8%)	-	(0.2)		(4%)	
Inflammation, chronic			1	(2%)		(4%)	
Hemosiderosis	~	(40)	~	(190)		(2%)	
Alveolar macrophages		(4%)		(12%) (10%)		(10%) (10%)	
Hyperplasia, alveolar epithelium	3	(6%)		(10%)	ə	(10%)	
HEMATOPOIETIC SYSTEM							
#Bone marrow	(49)	(0~)	(49)		(49)		
Inflammation, pyogranulomatous		(2%)		(100)	-	(100)	
Hyperplasia, granulocytic		(16%)		(16%)		(10%)	
#Spleen	(48)	(40)	(49)	(90)	(48)	(2%)	
Necrosis, diffuse	2	(4%)		(2%) (2%)		(2%)	
Depletion, lymphoid			1	(270)		(2%)	
Hyperplasia, lymphoid Hematopoiesis	13	(27%)	7	(14%)		(25%)	
#Mandibular lymph node	(46)	(2170)	(46)	(14%)	(47)	(20 %)	
Angiectasis		(2%)	(44)		(41)		
#Pancreatic lymph node	(46)	(2,0)	(46)		(47)		
Angiectasis		(4%)		(2%)	()		
#Lumbar lymph node	(46)	(,	(46)		(47)		
Angiectasis					1	(2%)	
#Mesenteric lymph node	(46)		(46)		(47)		
Angiectasis		(15%)		(15%)		(6%)	
#Inguinal lymph node	(46)	(07)	(46)		(47)		
Inflammation, acute		(2%)	(40)		(ED)		
#Lung	(50)	(60)	(49)	(994)	(50)	(94)	
Leukocytosis, NOS		(6%)		(2%)		(2%)	
#Liver Homotopoiesis	(49)	(194)	(49)	(296)	(50)	(2%)	
Hematopoiesis #Thymus	(24)	(4%)	(29)	(2%)	(36)	(470)	
Wecrosis, diffuse		(8%)		(7%)		(6%)	
CIRCULATORY SYSTEM	<u></u>	<u> </u>					
#Pancreatic lymph node	(46)		(46)		(47)		
Thrombosis, NOS	· /			(2%)	,		
#Heart	(49)		(49)		(50)		
Necrosis, focal	3	(6%)		(2%)			
#Heart/atrium	(49)		(49)	_	(50)		
Thrombosis, NOS				(2%)		(2%)	
#Liver	(49)		(49)		(50)		
Thrombus, organized			1	(2%)			

TABLE G4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC

	Vehicle	Control	Low I	Dose	High	Dose
IGESTIVE SYSTEM	ang					
#Salivary gland	(49)		(49)		(50)	
Inflammation, chronic	(10)		(10)		1,	(2%)
Atrophy, NOS			1	(2%)		(2%)
#Liver	(49)		(49)		(50)	
Cyst, NOS	((4%)		(2%)
Inflammation, chronic	2	(4%)	-	(= ,•,		(2%)
Necrosis, focal		(16%)				(4%)
Cytoplasmic vacuolization	0	(10/0)	39	(80%)		(88%)
Atrophy, focal				(2%)	••	(00 /0)
Angiectasis				(2%)		
Nodular regeneration			-	(=,0)	1	(2%)
#Pancreas	(48)		(49)		(48)	~= /• /
Inflammation, acute	(10)			(2%)		(2%)
Inflammation, chronic	1	(2%)		(2%)	•	(2,0)
Atrophy, focal		(8%)		(10%)	2	(4%)
#Pancreatic acinus	(48)		(49)		(48)	///
Focal cellular change	(10)		(-0)			(2%)
#Esophagus	(50)		(49)		(50)	/• /
Inflammation, acute/chronic	(,	(2%)		(2%)	(00)	
#Glandular stomach	(47)	<u>,</u> ,	(47)		(47)	
Mineralization		(2%)	(-1)		(-1)	
Inflammation, acute	-		1	(2%)		
#Forestomach	(47)		(47)	(2,0)	(47)	
Inflammation, acute	(=1)		• • •	(2%)	(*)	
Hyperplasia, epithelial				(2%)		
#Duodenum	(45)		(44)		(47)	
Hemorrhage	(40)		(44)			(2%)
#Jejunum	(45)		(44)		(47)	(2 n)
Hemorrhage	(40)		(44)			(2%)
#Colon	(46)		(45)		(49)	(270)
Parasitism		(4%)	(40)			(4%)
RINARY SYSTEM						<u> </u>
#Kidney	(49)		(49)		(50)	
Mineralization		(8%)	· - /	(4%)	·/	(4%)
Multiple cysts	-	(0.10)	-	(2.00)		(4%)
Pyelonephritis, acute	4	(8%)	3	(6%)		(4%)
Glomerulonephritis, chronic		(16%)		(12%)		(20%)
Pyelonephritis, chronic	0	(10/0/		(12%)		(20%)
Infection, bacterial			-	(2%)	_	(4%)
Infarct, NOS	4	(8%)		(6%)		(4%)
Hyperplasia, tubular cell		(2%)	U	,		(2%)
Metaplasia, osseous	•		1	(2%)	-	(6%)
#Kidney/tubule	(49)		(49)		(50)	
Dilatation, NOS		(2%)		(2%)	(00)	
#Urinary bladder	(48)		(46)		(48)	
Inflammation, acute/chronic		(6%)		(13%)		(2%)
*Urethra	(50)		(49)		(50)	
Dilatation, NOS	(24)					(2%)
Inflammation, acute necrotizing			3	(6%)		(4%)
	<u>.</u>				_	
NDOCRINE SYSTEM	(45)		(43)		(42)	
#Anterior pituitary Hyperplasia, focal		(2%)		(2%)	(45)	
#Adrenal cortex		(270)		(270)	(EA)	
	(50)		(48)		(50)	(2%)
Hypertrophy, NOS Hypertrophy, focal	19	(24%)	10	(21%)		(270) (22%)

TABLE G4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR GAVAGE STUDY OF THPC (Continued)

.

	Vehicle (Control	Low D)ose	High l	Dose
ENDOCRINE SYSTEM (Continued)		·				
#Adrenal medulla	(50)		(48)		(50)	
Hyperplasia, focal		(8%)		(2%)		(8%)
#Thyroid	(48)		(49)	~,	(50)	
Follicular cyst, NOS	((2%)		
Inflammation, acute				(2%)		
Inflammation, chronic				(2%)		
Hyperplasia, follicular cell	6	(13%)	2	(4%)	10	(20%)
REPRODUCTIVE SYSTEM			<u> </u>		······································	
*Penis	(50)		(49)		(50)	
Inflammation, acute	1	(2%)			1	(2%)
*Prepuce	(50)		(49)		(50)	
Dilatation, NOS					1	(2%)
Inflammation, acute necrotizing						(2%)
*Preputial gland	(50)		(49)		(50)	
Dilatation/ducts	,	(2%)		(2%)	1	(2%)
Inflammation, acute/chronic		(10%)		(6%)		(4%)
#Prostate	(50)		(49)		(50)	
Inflammation, acute	4	(8%)	1	(2%)	3	(6%)
Inflammation, acute/chronic	4	(8%)	1	(2%)	1	(2%)
*Seminal vesicle	(50)		(49)		(50)	
Dilatation, NOS	5	(10%)		(6%)		(8%)
Inflammation, acute/chronic	2	(4%)		(4%)		(2%)
#Testis	(49)		(49)		(50)	
Inflammation, chronic						(2%)
Degeneration, NOS	6	(12%)	2	(4%)	4	(8%)
*Epididymis	(50)		(49)		(50)	
Inflammation, chronic	5	(10%)	1	(2%)	2	(4%)
Granuloma, spermatic	1	(2%)			2	(4%)
NERVOUS SYSTEM None						
SPECIAL SENSE ORGANS		<u> </u>				
*Eye/cornea	(50)		(49)		(50)	
Inflammation, chronic					-	(4%)
*Eye/crystalline lens	(50)		(49)		(50)	(10)
Cataract					2	(4%)
MUSCULOSKELETAL SYSTEM						
*Tarsal joint	(50)	(0.1~)	(49)		(50)	
Hyperostosis		(34%)		(37%)		(34%)
Metaplasia, osseous		(34%)		(37%)		(34%)
*Skeletal muscle	(50)	(99)	(49)		(50)	
Mineralization	1	(2%)				
BODY CAVITIES						
*Peritoneum	(50)	(a ~)	(49)		(50)	
Inflammation, acute/chronic	1	(2%)				(0 ~)
Reaction, foreign body				(0.21)	1	(2%)
Necrosis, fat				(2%)		
*Pleura	(50)	(0.22)	(49)	(0))	(50)	(0.00)
Inflammation, acute necrotizing		(2%)	1	(2%)		(2%)
Inflammation, acute/chronic	1	(2%)			2	(4%)

TABLE G4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC (Continued)

TABLE G4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR GAVAGE STUDY OF THPC (Continued)

		Vehicle Control	Low Dose	High Dose		
ALL OTHER SYSTEMS None						
SPECIAL MORPHOLOGY S No lesion reported Animal missexed/no ne		1	i i			

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

APPENDIX H

SUMMARY OF LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC

		PAGE
TABLE H1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC	225
TABLE H2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC	228
TABLE H3	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC	234
TABLE H4	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC	236

THPS and THPC, NTP TR 296

Ve	hicle (Control	Low I	lose	High 1	Dose
ANIMALS INITIALLY IN STUDY			50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
INTEGUMENTARY SYSTEM			<u> </u>	<u> </u>	<u> </u>	
*Subcutaneous tissue	(50)		(50)		(50)	
Sarcoma, NOS	1	(2%)	1	(2%)		
Fibrosarcoma			1	(2%)		
RESPIRATORY SYSTEM					·····	
#Lung	(50)		(50)		(50)	
Hepatocellular carcinoma, metastatic		(2%)				(2%)
Alveolar/bronchiolar adenoma	3	(6%)		(4%)		(2%)
Alveolar/bronchiolar carcinoma			-	(2%) (2%)	1	(2%)
Sarcoma, NOS, metastatic Carcinosarcoma, metastatic			1	(2%)	1	(2%)
Osteosarcoma, metastatic			1	(2%)	1	(470)
		-				
HEMATOPOIETIC SYSTEM					(20)	
*Multiple organs	(50)		(50)	(10)	(50)	
Malignant lymphoma, NOS Malignant lymphoma, undiffer type	1	(2%)	Z	(4%)		
Malignant lymphoma, lymphocytic type	8	(16%)	1	(2%)	6	(12%)
Malignant lymphoma, histiocytic type	-	(4%)		(8%)		(4%)
Malignant lymphoma, mixed type		(18%)		(12%)		(16%)
#Spleen	(49)		(50)		(50)	
Malignant lymphoma, mixed type		(2%)				(2%)
#Jejunum	(47)		(48)		(50)	
Malignant lymphoma, mixed type	(4.55		(10)			(2%)
#Ileum	(47)		(48)	(2%)	(50)	
Malignant lymphoma, mixed type #Thymus	(42)		(45)	(470)	(40)	
Malignant lymphoma, mixed type	(94)		(40)			(3%)
CIRCULATORY SYSTEM	(40)		(48)		(45)	
#Mesenteric lymph node Hemangiosarcoma	(49)		(47)		(47)	(2%)
					-	
DIGESTIVE SYSTEM			((=0)	
#Liver	(49)	(60)	(50)	(40)	(50)	(199)
Hepatocellular adenoma Hepatocellular carcinoma		(6%) (2%)		(4%) (4%)		(12%) (2%)
#Pancreas	(48)	(470)	(50)		(50)	(4.10)
Acinar cell adenoma	(480)			(2%)	(00)	
#Forestomach	(49)		(50)		(50)	
Squamous cell papilloma		(4%)			1	(2%)
	(50)		(50)		(50)	
*Perirectal tissue Osteosarcoma				(2%)		

TABLE H1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC

	Vehicle Co	ntrol	Low D	ose	High 1	Dose
ENDOCRINE SYSTEM						
# Pituitary intermedia	(50)		(49)		(50)	(2%)
Adenoma, NOS #Anterior pituitary Carcinoma, NOS	(50)		(49)		(50)	(2%)
Adenoma, NOS	11 (22%)	12	(24%)		(14%)
#Adrenal/capsule	(50)		(50)		(48)	
Adenoma, NOS	1 (2%)				
#Adrenal medulla	(50)		(50)		(48)	
Pheochromocytoma					1	(2%)
#Thyroid	(48)		(50)		(49)	
Follicular cell adenoma	1 (2%)	1	(2%)		
REPRODUCTIVE SYSTEM						*
*Mammary gland	(50)		(50)		(50)	
Adenocarcinoma, NOS				(2%)		
Carcinosarcoma					1	(2%)
#Uterus	(50)		(50)		(50)	
Carcinoma in situ, NOS					1	(2%)
Carcinoma, NOS	1 (2%)				
Leiomyoma			1	(2%)		
Endometrial stromal polyp	2 (4%)				(2%)
#Ovary	(50)		(48)		(48)	
Papillary adenoma	1 (2%)			1	(2%)
Luteoma	1 (2%)			1	(2%)
Granulosa cell tumor			1	(2%)		
NERVOUS SYSTEM None						
SPECIAL SENSE ORGANS						
*Harderian gland	(50)		(50)		(50)	
Adenoma, NOS			2	(4%)	-	
Adenocarcinoma, NOS					. 2	(4%)
MUSCULOSKELETAL SYSTEM None						-
BODY CAVITIES None						

TABLE H1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC (Continued)

	Vehicle Control	Low Dose	High Dose		
ALL OTHER SYSTEMS *Multiple organs	(50)	(50)	(50)		
Adenocarcinoma, NOS, metastatic	(00)		1 (2%)		
ANIMAL DISPOSITION SUMMARY	· <u> </u>				
Animals initially in study	50	50	50		
Natural death	9	8	5		
Moribund sacrifice	3	2	6		
Terminal sacrifice	37	40	38		
Dosing accident	1		1		
TUMOR SUMMARY	·	<u></u>			
Total animals with primary tumors**	35	32	36		
Total primary tumors	49	43	47		
Total animals with benign tumors	20	17	18		
Total benign tumors	25	21	20		
Total animals with malignant tumors	24	20	25		
Total malignant tumors	24	21	27		
Total animals with secondary tumors##	1	2	3		
Total secondary tumors	1	2	3		
Total animals with tumors uncertain					
benign or malignant		1			
Total uncertain tumors		1			

TABLE H1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEARGAVAGE STUDY OF THPC (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. ** Primary tumors: all tumors except secondary tumors # Number of animals examined microscopically at this site

Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

GAVA			~~		.	••	•• •	0.								-									
ANIMAL NUMBER	0 4 6	0 0 1	0 3 1	0 3 9	0 1 1	0 2 4	0 0 4	0 3 0	0 0 5	0 4 7	0 0 3	0 4 4	0 2 6	0 0 2	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 2	0 1 3	0 1 4	0 1 5	0 1 6	0 1 7
WEEKS ON STUDY	0 5 5	0 6 3	0 6 9	0 7 6	0 8 2	0 8 7	0 9 2	0 9 2	0 9 8	0 9 9	1 0 1	1 0 1	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Trachea	+ X -	+	+	++	++	+	+	+ X +	+	+	+ X +	+	+	+	+	+	+	+	+	+	+	++	+	+	++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malignant lymphoma, mixed type Lymph nodes Thymus	+ + + + -	+++++	+ + + +	++++++	+++++	+++++	+++++	+ + + -	+ + + +	+++++	+++-	+++-	+++-	+++++	+++++++	++ ++	+ + X + +	+++++	++++-	+++++	+++++	++ ++ ++	+++++	+ + + +	+++++
CIRCULATORY SYSTEM Heart	 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	+ -	+ +	+ +	+ +	+ +	++++	+ +	+ +	+ +	+ +	+ +	+ +	- +	+ + X	+	+ +	+ + X	+ +	+ +	+ +	+ + X	+++	+ +	+ +	+ +
Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Small intestine Large intestine	N +	+++++ ++	+++++++++	+ Z + + + + + +	+++++ ++	+++++++++++++++++++++++++++++++++++++++	+++++ ++	++-+++++-	+++++++++++++++++++++++++++++++++++++++	+++++++++	+++++ +	+++++ ++	+++++ +	++++++++	+++++++-	+++++++++	+++++++++++++++++++++++++++++++++++++++	+++++ ++	+++++++++	+++++++++++++++++++++++++++++++++++++++	+++++ ++	+++++ ++	++++++++	+++++++++	+++++++++++++++++++++++++++++++++++++++
URINARY SYSTEM Kidney Urinary bladder		+++	+++	+++	+++	+++	++	+++	+++	++++	+++	+++	++++	+++	+++	+++	+++	+++	+++	+++	+++	 + +	+++	++	+++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adenoma, NOS Thyroid Follicular cell adenoma Parathyroid	+ + + +	+ + +	+ + + +	+ + + +	+ + + +	+ + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + +	+ + + +	+ + -	+ + + +	+ + + +	+ + +	++++++	+ + +	* * 	++++-	+ + + +	* * + +	+ + +	+ + +	+ + + +
REPRODUCTIVE SYSTEM Mammary gland Uterus Carcinoma, NOS	N +	N +	+ +	N +	+++	+ +	N +	N +	++++	N +	+ +	N +	N +	N +	+ +	+++	+++	N +	N +	N +	++++	N +	+++	+ +	N +
Endometrial stromal polyp Ovary Papillary adenoma Luteoma	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X + X	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, undiffer type Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type Malignant lymphoma, mixed type	N	N	N	N X	N X	N X	N	N X	N X	N X	N X	N	N X	N	N X	N	N	N X	N X	N X	N X	N	N	N X	N

TABLE H2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEARGAVAGE STUDY OF THPC: VEHICLE CONTROL

+: Tissue examined microscopically

 Required tissue not examined microscopically
 Tumor incidence
 Necropsy, no autolysis, no microscopic examination
 Animal missexed

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

								•				-,														
ANIMAL NUMBER	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 5	0 2 7	0 2 8	0 2 9	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 4 0	0 4 1	0 4 2	0 4 3	0 4 5	0 4 8	0 4 9	0 5 0	TOTAL:
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	TISSUES																						
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	50 1 3
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
HEMATOPOIETIC SYSTEM Bone marrow Spleen	+++	+++	++	+++	+++	++++	++	++++	++++	++++	++++	++++	+++	++++	+++	++++	++++	++++	+++	++++	+++	+++	++++	+++	++++	50 49
Malignant lymphoma, mixed type Lymph nodes Thymus	++	+ +	- +	+ +	+ +	+	+ +	+ -	+ +	1 49 42																
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	++++	+++	+ +	+++	+ +	+++	+ +	+ +	++++	+ +	++++	+ +	++	++	+ +	+++	+++	+ +	+ +	+++	+++	+ +	+ +	+ +	+ +	49 49 3
Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Esophagus	+++++	++++	++++	++++	+ + + +	++++	+ + + +	+ N + +	++++	++++	++++	++++	++++	+ + + +	+ + + +	++++	++++	++++	+ + + +	+ + + +	X + + + + +	+ + + +	++++	+ + + +	++++	1 49 *50 48 50
Stomach Squamous cell papilloma Small intestine Large intestine	+++++	+ + +	+ + + +	+ + +	+ + +	49 2 47 47																				
URINARY SYSTEM Kidney Urinary bladder	+++	+++	+++	++++	+++	+++	+ +	++++	+++	+++	+++	+++	++++	++++	+ +	++++	++++	++++	+++	+++	+++	++++	+++	+ +	+ +	49 49
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal	+	+	+	+	* *	+	* *	+	+	+	+	* *	+ x +	+	+	+	* *	+	*	+	* *	* *	* *	+	+++	50 11 50
Adenoma, NOS Thyroid Follicular cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	× +	+	+	+	+	+	+	+ X	+	+	1 48 1 34
Parathyroid REPRODUCTIVE SYSTEM Mammary gland	- N	+	+ 	+	+ N	+ N	+ N		+ N		- N	+		- N	+	+	+	+	+ N	+			+	+	+	*50
Uterus Carcinoma, NOS Endometrial stromal polyp	+	÷	+	÷	÷	÷	÷	÷ x	+	÷	+	÷	+	+	÷	÷	÷	÷	+	÷	÷	× x	÷	÷	+	50 1 2
Ovary Papillary adenoma Luteoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	50 1 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, undiffer type Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N X	N	N	N X	N	N	N	N	N	N	N X	N	N X	N X	N	N X	N	N	N	N	N	N	N	N	N	*50 1 8 2 9

TABLE H2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

* Animals necropsied

THPS and THPC, NTP TR 296

ANIMAL NUMBER	0	0	0	02	0	02	0	0	04	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WEEKS ON	2 6	2	4	2 9	5	2	6	0 7	7	2	i	3	4	5	6	8	9	Ó	1	12	13	4	5	6	7
STUDY	6	6 9	7 4	77	8	94	9	0 1	02	0	05	0 5	05	05	05	05	05	0 5	0 5	05	0 5	05	0 5	0 5	0 5
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Sarcoma, NOS, metastatic Osteosarcoma, metastatic	+	+	+	+	+	+	+	+ X	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Trachea		+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spisen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	++++	+ + + +	++++	+ + - +	+ ++ +	++++	+ + +	++	++++	++++	++1+	+ + + +	+ + + +	+ + + +	++++	++++	+ ++ +	++++	+ + + +	++++-	++++	+ + + +	++++	+ + + +
CIRCULATORY SYSTEM Heart	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	+	+++	+++	+ +	+++	+++	+	+++	++	+ +	+++	+++	+++	+++	++	++	++	+ +	+++	+++	+++	+ +	+++	+ +	+ +
Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Acinar cell adenoma	+ N + X	+ + +	+ Z +	++++	+ N +	+ + +	+++	++++	+++	+ + +	+++	+ + +	+ + +	+ + +	+ + + +	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +
Esophagus Stomach Small intestine Malignant lymphoma, mixed type	+++++++++++++++++++++++++++++++++++++++	++++	++	++++	+++	+++++	+++ -	+++	++	+++ -	+++	++++	+++ -	+++ -	+++ -	++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	+++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++
Large intestine Rectum Osteosarcoma	Ň	+	Ň	+	Ň	Ň	Ň	÷ x	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň	Ň
URINARY SYSTEM Kidney Urinary bladder	- +	+++	+++	+++	++	++	+ +	+ +	++	+++	+++	++	++	++	++	+ +	+++	+ +	+++	+++	+++	++++	+ +	+++	++++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	-	* x	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	*	+	*	+	+	*
Adrenal Thyroid Follicular cell adenoma Parathyroid	+	++	+++++	++	++	+ + +	+ + +	+ + -	+ + +	+ + +	+ + +	+++++	+ + +	++	+ + +	+ + -	+ + +	++	+ + +	+ + +	+ + +	+ + X +	+	+ +	+++++
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS		+	N	N	N	+	+	N	N	+	+	+	+	N	+	+	+	N	N	+	+	+ x	+	+	+
Uterus Leiomyoma Ovary	++++	+ +	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	* *	+ :	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +
Granulosa cell tumor NERVOUS SYSTEM	_											X				<u> </u>									
Brain SPECIAL SENSE ORGANS Harderian gland	- + N	+ 	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ 	+ 	+ N	+ N	+ N	+ N	+ N	+ 	+ N X	+ N	+ 	+ N	+ N	+ N
Adenoma, NOS	_				_	_	-						X	-					-	x		-			
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Malignant lymphoma, lymphocytic type	N	N	N	N	N	N X	N X	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N
Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type	x		X	X									x								x				

TABLE H2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC: LOW DOSE

								•			uee	-,														
ANIMAL NUMBER	0 1 8	0 1 9	0 2 0	0 2 2	0 2 3	0 2 4	0 2 5	0 2 7	0 2 8	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 3	0 4 5	0 4 8	0 4 9	TOTAL
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibrosarcoma	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	*50 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Sarcoma, NOS, metastatic Osteosarcoma, metastatic Trachea	+	+	+	++	+++	++	+	+	++	+ X +	++	+ X +	++	+	+	++	+	+	++	+ +	++	+	+	+++	* *	50 2 1 1 1 48
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++	++++	++++	++++	++++	+++++	+++++	++++++	++++++	++++-	++++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++-	+ + + + +	+++++	+++++	++++++	+ + + +	50 50 47 45
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	++++	+++	+ + X	++++	+ +	+ + X	+ + X	+++	++++	+++	+ +	++++	+ +	+ +	+	+ +	+++	++++	+ +	++++	+ +	+++	+ + x	++++	+ +	49 50 2 2
Bile duct Gallbladder & common bile duct Pancreas Acinar cell adenoma Esophagus	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	+++ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	+++++++	++++++	++++++	++++++	+++++	++++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	++++++	+++++++	++++++	+ + +	+ + +	50 *50 50 1 50
Stomach Stomach Malignant lymphoma, mixed type Large intestine Rectum	++ ++ Z	-++ + N	++++	+++ + N	+ + + + N	+++ +N	+++ +N	+ + + N	+ + X + N	+ + + N	+ + + N	+ + + Y	+++	+ + + z	+ + + N	+ + + + N	+ + + + N	+ + + N	+++ +N	++++ +N	+ + + z	+ + + N	+ + + X	-++ +N	·++ +z	50 48 1 50 *50
Ostaosarcoma URINARY SYSTEM															IN		IN									1
Kidney Urinary bladder	+++++	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+++	+ +	+ +	50 50
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Thyroid Follicular cell adenoma Parathyroid	+ * + + -	+ ++	+ + + +	*x + + +	+ + + +	+ + + -	+ + + +	+ + + +	+ + + -	+ + + +	* * + + -	+ ++ -	 + +	+ x + + +	+ + + +	++++	++++	+ + + +	+x + + -	+ ++ -	++++++++	+ ++ -	+ + + -	* * * + +	* * + + +	49 12 50 50 1 28
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus	+	+	+	+	+	N	+	N	+	N	+	+	+	+	+	+	+	+	+	+	N	+	+	N	+	*50 1 50
Leiomyoma Ovary Granulosa cell tumor	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 48 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	49
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 2
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, IVM Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N X	N X	N X	N	N	*50 2 1 4 6

TABLE H2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

* Animals necropsied

ANIMAL NUMBER	0 3 6	0 3 9	0 3 2	0 4 1	0 2 0	0 3 1	0 4 8	0 3 3	0 3 4	0 1 6	0 1 2	0 1 8	0 0 1	0 0 2	0 0 3	0 0 4	0 0 5	0 0 6	0 0 7	0 0 8	0 0 9	0 1 0	0 1 1	0 1 3	0 1 4
WEEKS ON STUDY	0 6 6	0 6 7	0 7 5	0 7 7	0 8 3	0 8 3	0 8 5	0 8 6	0 8 6	0 9 4	0 9 9	1 0 1	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Carcinosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malignant lymphoma, mixed type Lymph nodes Hemangiosarcoma Thymus Malignant lymphoma, mixed type	+ + + +	+ + + +	+++++	+ + - +	+ + + +	+++++++++++++++++++++++++++++++++++++++	++++-	+ + + +	+++-	++++-	+ + + +	+ + + -	+ + + +	+ + + +	++++++	+ + + +	+ + + +	+ + + +	++++	+ + + +	+ + + +	++++++	+++++++	+ + + +	+ + + +
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	+ +	+ +	+++	++++	+ +	+++	+ +	+ +	+++	+ + X	++++	+ +	+ +	++++	+ +	+ +	+ * X	+ +	++	+ +	+ +	+ +	 + +	++++	
Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas	+ + +	+++	+ + +	+++++	+ + +	+ + +	+ + +	+ + +	+++	 + + +	++++	++++	+ + +	++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + + +	++++	+ + +	+++	++++
Esophagus Stomach Squamous cell papilloma Small intestine Malignant lymphoma, mixed type	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + X +	+ + +	+ + +	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++
Large intestine	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
URINARY SYSTEM Kidney Urinary bladder	+ +	+++	+++	+ +	+ +	+++++	+ +	++++	+++	+++	+ -	++++	+++	++++	+++++	++	++++	+++	+ +	+++++	+ +	+++++	+++	+ +	+++
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS	+	+	*	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+ x	+ x	+ x
Adrenal Pheochromocytoma Thyroid	+ +	+ +	- +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	* +	+ +	* *	+ +	+ +	+ +	+ -	+ +	+ +	+ +	+ +	+ +	+ +	+ +
Parathyroid	+	+	+		-	+	-	+		+	+	+	_	+	+	+	+			+	-			+	+
REPRODUCTIVE SYSTEM Mammary gland Carcinosarcoma Uterus	+	++	N +	N +	+	+	N +	+	+ +	N +	+ X +	N +	+	+	+ +	N +	+ +	+ +	+ +	N +	N +	+	+	N +	++++
Carcinoma in situ, NOS Endometrial stromal polyp Ovary Papillary adenoma Luteoma	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Adenocarcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Adenocarcinoms, NOS, metastatic Malignant lymphoms, lymphocytic type Malignant lymphoms, buttering type	N X	N	N	N	N	N X	N	N	N	N	N	N X	N	N	N	N X	N	N	N	N	N X	N	N	N X	N
Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type				x	x			x	л				x		x					x					

TABLE H2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC: HIGH DOSE

									/011		uec	" ,														
ANIMAL NUMBER	0 1 5	0 1 7	0 1 9	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5	0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 5	0 3 7	0 3 8	0 4 0	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 7	0 4 9	0 5 0	TOTAL:
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	+	+	+ x	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+ x	50 1 1 1
Carcinosarcoma, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen	+++	+++	++++	++++	+ +	++++	+ +	+++	+ +	+++	+ +	+++	+ +	++++	++++	+ +	+++	+ +	‡ +	+ +	+ +	+ +	++	+++	+ +	50 50
Malignant lymphoma, mixed type Lymph nodes Hemangiosarcoma Thymus	+	+	+ +	+	- +	+ +	+ +	+ +	+	- +	+	× + -	+	+	* *	+	+	+	+	+	+	+	+	+	+	47 1 40
Malignant lymphoma, mixed type													·				_	•					X			i
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver	++++	+ +	+ +	++++	+++	+ +	+++	+ + * x	+ + x	+ +	+ +	+ +	++++	+ +	+ + x	+ +	++:	+ +	++++	++	++	+ +	+++	+++	+ +	50 50
Hepatocellular adenoma Hepatocellular carcinoma Bile duct Gallbladder & common bile duct	++++	+++	+	+	+	+++	+	× + +	л + N	+++	++++	+ N	X + +	+	× + +	++++	x ++	+	+	+	+	+	+	+	+	6 1 50 *50
Pancreas Esophagus Stomach	++++++	++++	·+++	++++	++++	+ + + +	+ + +	++++	++++++	++++	+++	+ + +	+++	+ + +	·+++	.+ ++ +	.+++	+ + +	++++	+++++	+ + +	++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++	50 50 50
Squamous cell papilloma Small intestine Malignant lymphoma, mixed type Large intestine	+	+	+	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50 1 49
URINARY SYSTEM	$\left - \right $	· ·			+					+				<u> </u>						+					+	50
Kidney Urinary bladder	+++	+	+	+	+	+	+	+	+	÷	+	+	+	÷	+	+	÷	+	÷	+	+	+	÷	÷	÷	49
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 8
Adenoma, NOS Adrenal Pheochromocytoma	+	+	+	+	+	+	+	+	* +	+	+	+	+	* +	+	+	+	+	+	+	+	+	+	+	-+	48 1 49
Thyroid Parathyroid	÷	-	+	÷	+	+	Ŧ	+	-	+	+	+	+	-	+	÷	_ +	-	Ξ.	-	÷	+	+	-	-	32
REPRODUCTIVE SYSTEM Mammary gland Carcinosarcoma	N	+	N	N	N	+	+	+	+	N	+	N	+	+	+	+	+	+	+	+	+	+	+	+	N	*50 1
Uterus Carcinoma in situ, NOS Endometrial stromal polyp	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	50 1 1 48
Ovary Papillary adenoma Luteoma	+	÷	+	+	+	+	+	+	+	*	+	+	+	+	-	+	x	Ŧ	+	+	+	Ŧ	+	Ŧ	Ŧ	40 1 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Adenocarcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	*50 2
ALL OTHER SYSTEMS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
Multiple organs, NOS Adenocarcinoma, NOS, metastatic Malignant lymphoma, lymphocytic type Malignant lymphoma, histicotytic type Malignant lymphoma, mixed type	x						x												x						x	1 6 2 8

TABLE H2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

* Animals necropsied

	Vehicle Control	15 mg/kg	30 mg/kg
Lung: Alveolar/Bronchiolar Adenoma	<u></u>		
Overall Rates (a)	3/50 (6%)	2/50 (4%)	1/50 (2%)
Adjusted Rates (b)	6.6%	5.0%	2.6%
Terminal Rates (c)	0/37 (0%)	2/40 (5%)	1/38 (3%)
Week of First Observation	55	104	104
Life Table Tests (d)	P = 0.224N	P = 0.478N	P = 0.315N
Incidental Tumor Tests (d)	P = 0.233N	P = 0.596N	P = 0.329N
Cochran-Armitage Trend Test (d)	P = 0.222N	1 -0.00011	1 = 0.02511
Fisher Exact Test (d)	F=0.2221	P = 0.500 N	P = 0.309N
Lung: Alveolar/Bronchiolar Adenoma or		6 (F. 6, 6 6 6)	0/20 / 100
Overall Rates (a)	3/50 (6%)	3/50 (6%)	2/50 (4%)
Adjusted Rates (b)	6.6%	7.5%	5.3%
Terminal Rates (c)	0/37 (0%)	3/40 (7%)	2/38 (5%)
Week of First Observation	55	104	104
Life Table Tests (d)	P = 0.410N	P = 0.634N	P = 0.504N
Incidental Tumor Tests (d)	P = 0.416N	P = 0.587	P = 0.520N
Cochran-Armitage Trend Test (d)	P = 0.412N		
Fisher Exact Test (d)		P = 0.661	P = 0.500N
Iematopoietic System: Malignant Lymph	oma. Lymphocytic Type		
Overall Rates (a)	8/50 (16%)	1/50 (2%)	6/50 (12%)
Adjusted Rates (b)	20.0%	2.5%	14.2%
Terminal Rates (c)	6/37 (16%)	1/40 (3%)	4/38 (11%)
Week of First Observation	76	105	66
Life Table Tests (d)	P = 0.298N	P = 0.015N	P = 0.374N
Incidental Tumor Tests (d)	P = 0.296 N P = 0.306 N	$P \approx 0.015 N$ $P \approx 0.015 N$	P = 0.374N P = 0.389N
Cochran-Armitage Trend Test (d)		P=0.015N	P=0.3891
Fisher Exact Test (d)	P = 0.309N	P = 0.016N	P=0.387N
Iematopoietic System: Malignant Lymph			
Overall Rates (a)	2/50 (4%)	4/50 (8%)	2/50 (4%)
Adjusted Rates (b)	4.9%	8.4%	4.7%
Terminal Rates (c)	0/37 (0%)	1/40 (3%)	0/38 (0%)
Week of First Observation	98	68	86
Life Table Tests (d)	P = 0.582	P=0.363	P = 0.680
Incidental Tumor Tests (d)	P = 0.571	P=0.332	P = 0.654
Cochran-Armitage Trend Test (d)	P=0.588		
Fisher Exact Test (d)		P=0.339	P = 0.691 N
Iematopoietic System: Malignant Lymph Overall Rates (a)		7/50 (14%)	11/50 (99%)
Adjusted Rates (b)	10/50 (20%)		11/50 (22%)
	24.4%	17.5% 7/40 (18%)	26.9% 9/38 (24%)
Terminal Rates (c) Weak of First Observation	7/37 (19%)	7/40 (18%)	9/38 (24%) 77
Week of First Observation	82 D-0.468	105 R=0.240N	77 D=0 519
Life Table Tests (d)	P = 0.468	P = 0.249N	P = 0.518
Incidental Tumor Tests (d)	P=0.484	P = 0.357N	P = 0.529
Cochran-Armitage Trend Test (d)	P = 0.449	D-0.0001	
Fisher Exact Test (d)		P=0.298N	P = 0.500
lematopoietic System: Lymphoma, All M	alignant		
Overall Rates (a)	21/50 (42%)	14/50 (28%)	1 9 /50 (38%)
Adjusted Rates (b)	46.3%	30.4%	42.4%
Terminal Rates (c)	13/37 (35%)	9/40 (23%)	13/38 (34%)
		68	66
Week of First Observation	76 P=0.373N		
Week of First Observation Life Table Tests (d)	P = 0.373 N	P = 0.093N	P = 0.413N
Week of First Observation			

TABLE H3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDYOF THPC

	Vehicle Control	15 mg/kg	30 mg/kg
Liver: Hepatocellular Adenoma	<u></u>		
Overall Rates (a)	3/49 (6%)	2/50 (4%)	6/50 (12%)
Adjusted Rates (b)	8.1%	5.0%	15.3%
Terminal Rates (c)	3/37 (8%)	2/40 (5%)	5/38 (13%)
Week of First Observation	104	104	94
Life Table Tests (d)	P = 0.174	P = 0.464N	P = 0.253
Incidental Tumor Tests (d)	P = 0.159	P = 0.464 N	P = 0.227
Cochran-Armitage Trend Test (d)	P = 0.176		
Fisher Exact Test (d)		P = 0.490N	P = 0.254
Liver: Hepatocellular Adenoma or Carci	noma		
Overall Rates (a)	4/49 (8%)	4/50 (8%)	7/50 (14%)
Adjusted Rates (b)	10.8%	10.0%	17.8%
Terminal Rates (c)	4/37 (11%)	4/40 (10%)	6/38 (16%)
Week of First Observation	104	104	94
Life Table Tests (d)	P = 0.210	P = 0.601 N	P = 0.274
Incidental Tumor Tests (d)	P=0.195	P = 0.601 N	P=0.249
Cochran-Armitage Trend Test (d)	P = 0.211		
Fisher Exact Test (d)		P = 0.631 N	P = 0.274
Pituitary Gland: Adenoma			
Overall Rates (a)	11/50 (22%)	12/49 (24%)	7/50 (14%)
Adjusted Rates (b)	29.7%	29.7%	17.9%
Terminal Rates (c)	11/37 (30%)	11/39 (28%)	6/38 (16%)
Week of First Observation	104	69	101
Life Table Tests (d)	P = 0.170N	P = 0.557	P=0.198N
Incidental Tumor Tests (d)	P = 0.179N	P = 0.556	P=0.215N
Cochran-Armitage Trend Test (d)	P = 0.191N		
Fisher Exact Test (d)		P = 0.478	P = 0.218N
Pituitary Gland: Adenoma or Carcinoma			
Overall Rates (a)	11/50 (22%)	12/49 (24%)	8/50 (16%)
Adjusted Rates (b)	29.7%	29.7%	19.7%
Terminal Rates (c)	11/37 (30%)	11/39 (28%)	6/38 (16%)
Week of First Observation	104	69	75
Life Table Tests (d)	P = 0.246N	P = 0.557	P = 0.285N
Incidental Tumor Tests (d)	P = 0.257 N	P = 0.556	P=0.306N
Cochran-Armitage Trend Test (d)	P = 0.269N		
Fisher Exact Test (d)		P = 0.478	P = 0.306N

TABLE H3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY **OF THPC (Continued)**

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

	Vehicle	Control	Low I	Dose	High 1	Dose
ANIMALS INITIALLY IN STUDY	50				50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICAI	LLY 50		50		50	
NTEGUMENTARY SYSTEM					·····	
*Skin	(50)		(50)		(50)	
Inflammation, acute/chronic					2	(4%)
*Subcutaneous tissue	(50)		(50)		(50)	
Necrosis, fat					1	(2%)
RESPIRATORY SYSTEM						
#Lung	(50)		(50)		(50)	
Hemorrhage		(2%)	((2%)
Inflammation, acute		(4%)	2	(4%)		. ,
Inflammation, chronic		(2%)			1	(2%)
Fibrosis, focal	1	(2%)				
Hemosiderosis				(2%)		
Alveolar macrophages		(14%)		(6%)	5	(10%)
Hyperplasia, alveolar epithelium	5	(10%)	4	(8%)		
IEMATOPOIETIC SYSTEM						
#Bone marrow	(50)		(50)		(50)	
Necrosis, focal			2	(4%)		
Myelofibrosis	13	(26%)	16	(32%)	20	(40%)
Hyperplasia, granulocytic	5	(10%)	1	(2%)	4	(8%)
#Spleen	(49)		(50)		(50)	
Inflammation, acute/chronic		_			1	(2%)
Fibrosis, focal	1	(2%)				
Necrosis, focal				(2%)		
Necrosis, diffuse		(00)	1	(2%)		
Angiectasis Hematopoiesis		(2%) (10%)	2	(60)	E	(100)
#Mesenteric lymph node	(49)	(10%)	(47)	(6%)	(47)	(10%)
Necrosis, focal		(4%)	(47)		(47)	
Angiectasis		(4%)	9	(4%)	2	(4%)
Hyperplasia, lymphoid		(2%)	4	(30)	2	(= /0/
#Lung	(50)	(/v)	(50)		(50)	
Leukocytosis, NOS		(2%)	(00)			(4%)
#Liver	(49)		(50)		(50)	• /
Erythrophagocytosis						(2%)
Hematopoiesis	2	(4%)	1	(2%)	3	(6%)
CIRCULATORY SYSTEM			-			
#Heart	(50)		(50)		(50)	
Mineralization	1	(2%)				(4%)
Periarteritis		(2%)				
Degeneration, NOS		(2%)				
#Urinary bladder	(49)		(50)		(49)	
Periarteritis				(2%)		(2%)
#Uterus	(50)		(50)		(50)	
Thrombus, organized				(4%)		
#Ovary	(50)		(48)		(48)	(90)
Thrombasis NOS						
Thrombosis, NOS #Thyroid	(48)		(50)		(49)	(2%)

TABLE H4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THETWO-YEAR GAVAGE STUDY OF THPC

	Vehicle (Control	Low D	ose	High I	Dose
DIGESTIVE SYSTEM		·····		- <u></u>	<u> </u>	
#Salivary gland	(49)		(49)		(50)	
Atrophy, NOS	(40)			(2%)	(00)	
#Liver	(49)		(50)	(2,0)	(50)	
Cyst, NOS		(2%)	(00)		(007	
Inflammation, chronic		(8%)				
Necrosis, focal		(4%)	5	(10%)	3	(6%)
Metamorphosis, fatty		(2%)		(10%)	Ŭ	(0,0)
Hemosiderosis	1	(2,0)	1	(2.10)	1	(2%)
Cytoplasmic vacuolization			49	(84%)		(96%)
Focal cellular change	1	(2%)		(4%)		(2%)
Angiectasis		(2%)	2	(4,0)	-	
#Pancreas	(48)	(270)	(50)		(50)	
Dilatation/ducts		(2%)				(4%)
Inflammation, chronic	1	(470)	1	(2%)		(2%)
Degeneration, NOS			1			(2%)
Atrophy, focal	9	(4%)	9	(4%)		(4%)
#Glandular stomach	(49)	(4/0)	(50)	(4.10)	(50)	(4/0)
Inflammation, acute	· · · /	(2%)	(00)			(4%)
· · · · · · · · · · · · · · · · · · ·		(270)	(50)		(50)	(-170)
#Gastric muscularis	(49)		(30)			(2%)
Hyperplasia, NOS	(40)		(50)		(50)	(270)
#Forestomach	(49)	(90)	(50)		(50)	
Inflammation, acute	1	(2%)			1	(2%)
Hyperplasia, epithelial	(47)		(40)		(50)	(270)
#Jejunum	(47)	(97)	(48)		(50)	
Inflammation, acute/chronic	1	(2%)	1	(90)		
Amyloid, NOS	(45)			(2%)	(50)	
#Ileum	(47)		(48)	(2%)	(50)	
Inflammation, acute necrotizing			1	(270)	1	(2%)
Inflammation, acute/chronic #Colon	(47)		(50)		(49)	(270)
#Colon Parasitism	(47)			(6%)	· · ·	(4%)
				(0 %)		(4,10)
JRINARY SYSTEM						
#Kidney	(49)		(50)		(50)	
Glomerulonephritis, chronic	6	(12%)		(10%)		(20%)
Infarct, NOS	3	(6%)		(4%)	-	(6%)
Metaplasia, osseous	2	(4%)	1	(2%)		(2%)
#Kidney/capsule	(49)		(50)		(50)	
Inflammation, chronic						(2%)
#Kidney/tubule	(49)		(50)		(50)	
Dilatation, NOS	1	(2%)				
ENDOCRINE SYSTEM						
#Anterior pituitary	(50)		(49)		(50)	
Hyperplasia, focal		(24%)		(31%)	10	(20%)
#Adrenal cortex	(50)		(50)		(48)	
Degeneration, lipoid		(6%)		(4%)		
	•				1	(2%)
						(4%)
Necrosis, focal	1	(2%)			4	(4970)
Necrosis, focal Hypertrophy, focal		(2%) (12%)	1	(2%)		(2%)
Necrosis, focal		(2%) (12%)	1 (50)	(2%)		

TABLE H4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THETWO-YEAR GAVAGE STUDY OF THPC (Continued)

,

	Vehicle	Control	Low I	Dose	High	Dose
ENDOCRINE SYSTEM (Continued)						
#Thyroid	(48)		(50)		(49)	
Inflammation, acute/chronic		(2%)	1	(4%)		(8%)
Inflammation, chronic	3	(6%)	5	(10%)	2	
Cytoplasmic vacuolization		()		(2%)		
Hyperplasia, follicular cell	3	(6%)		(10%)	11	(22%)
#Pancreatic islets	(48)	()	(50)	(,	(50)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Hyperplasia, NOS			(1)		1	(2%)
REPRODUCTIVE SYSTEM						
*Mammary gland	(50)		(50)		(50)	
Inflammation, chronic	(30)			(4%)	(00)	
Hyperplasia, cystic	1	(2%)		(4%)	1	(2%)
#Uterus	(50)	~~/~/	(50)	(-/*/	(50)	
Dilatation, NOS	(/	(8%)		(4%)	• •	(6%)
Hyperplasia, stromal	•			(2%)	Ŭ	
Angiectasis	1	(2%)		(4%)		
#Uterus/endometrium	(50)	~~/~/	(50)	- ~ /	(50)	
Inflammation, suppurative	()	(6%)		(4%)		(4%)
Hyperplasia, cystic	-	(62%)		(76%)		(70%)
#Fallopian tube	(50)	(02,0)	(50)	(10,0)	(50)	(10,0)
Inflammation, acute		(2%)	(00)		(00)	
#Ovary	(50)	()	(48)		(48)	
Cyst, NOS		(46%)		(44%)		(31%)
Abscess, NOS	4	(8%)	1	(2%)	1	(2%)
Inflammation, chronic	1	(2%)				
VERVOUS SYSTEM					<u> </u>	
#Brain/meninges	(50)		(49)		(50)	
Inflammation, acute	1	(2%)	,			
#Brain	(50)		(49)		(50)	
Inflammation, chronic	1	(2%)				
Malacia	1	(2%)				
Atrophy, pressure	1	(2%)	3	(6%)	2	(4%)
PECIAL SENSE ORGANS				<u>.</u>		
*Eye	(50)		(50)		(50)	
Congenital malformation, NOS	()			(2%)	(,	
IUSCULOSKELETAL SYSTEM						<u></u>
*Skeletal muscle	(50)		(50)		(50)	
Mineralization			(2.2)		(,	(2%)
Inflammation, acute/chronic						(2%)

TABLE H4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC (Continued)

TABLE H4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF THPC (Continued)

	Vehicle (Control	Low D	lose	High l	Dose
BODY CAVITIES						
*Peritoneum	(50)		(50)		(50)	
Inflammation, acute/chronic	2	(4%)	3	(6%)		
Necrosis, fat					2	(4%)
*Pleura	(50)		(50)		(50)	
Vegetable foreign body	1	(2%)				
Inflammation, acute necrotizing	1	(2%)	1	(2%)	1	(2%)
Inflammation, acute/chronic	1	(2%)			1	(2%)
ALL OTHER SYSTEMS None						

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

THPS and THPC, NTP TR 296

240

APPENDIX I

GENETIC TOXICOLOGY OF THPS

PAGE

TABLE I1MUTAGENICITY OF THPS IN L5178Y MOUSE LYMPHOMA CELLS IN THE
ABSENCE OF S9242

Compound	Dose (µg/ml)	Total Mutant Clones	Relative Cloning Efficiency (percent)	Relative Total Growth (percent)	Mutation Frequency (mutants/10 ⁸ clonable cells)
Dimethyl sulfo	xide	69	132.2	117	17
		53	101.3	100	17
		71	88.5	84	27
		88	96.0	97	31 (23)
Methyl methan	esulfonate				
	5	402	97.7	68.9	137
	-	376	92.8	64.3	135
		439	105.7	88.2	138 (137)
THPS	2	87	83.3	52.2	35
	-	67	85.5	58.4	26
		59	78.8	85.8	25 (29)
	3	64	88.0	72.5	24
	Ŭ	62	78.0	80.5	26
		94	103.7	68.2	30 (27)
	4	74	102.3	45.9	24
	-	121	74.7	45.4	54
		71	84.5	41.0	28 (35)
	5	99	89.2	45.3	37
	v	128	103.8	34.4	41
		112	88.5	42.4	42 (40)
	6	167	96.2	36.4	58
		121	108.5	52.3	37
		156	113.5	41.8	46 (47)
	8	238	71.2	20.5	111
		420	100.7	26.2	139
		368	104.3	28.8	118(123)

TABLE I1. MUTAGENICITY OF THPS IN L5178Y MOUSE LYMPHOMA CELLS IN THE ABSENCE OF S9(a)

(a) Experiments were performed twice; all doses were tested in duplicate or triplicate. Because the results were similar, data from only one experiment are shown. The protocol was basically that of Clive et al. (1979). Cells (6×10^{5} /ml) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^{6} cells were plated in medium supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in nonselective medium to determine the percentage of viable cells.

APPENDIX J

GENETIC TOXICOLOGY OF THPC

TABLE J1	MUTAGENICITY OF THPC IN SALMONELLA TYPHIMURIUM	244
TABLE J2	MUTAGENICITY OF THPC IN L5178Y MOUSE LYMPHOMA CELLS IN THE ABSENCE OF S9	245
TABLE J3	INDUCTION OF SISTER-CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY THPC	246
TABLE J4	INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY THPC	246

PAGE

			Revertants/plate (a,b)				
Strain	Dose (µg/plate)	- 59		+ S 9 (r	at)	+ S9 (ha	mster)
ГА100	0.00	111 ±	9.8	170 ±	14.7	135 ±	5.5
	0.33	$102 \pm$	5.6		10.4	133 ±	6.8
	1.00	114 ±	7.5	142 ±	7.8	130 ±	14.3
	3.30	92 ±	9.1	152 ±	4.3	128 ±	
	10.00		13.3	176 ±	14.5	130 ±	
	33.00	104 ±	5.0	154 ±	6.3	135 ±	10.6
TA1535	0.00	4 ±	0.6	7 ±	1.5	6 ±	1.3
	0.33	4 ±	1.0	6 ±	1.5	7 ±	0.6
	1.00	5 ±	2.0	5 ±	0.6	8 ±	0.3
	3.30	5 ±	0.9	4 ±	0.6	10 ±	2.3
	10.00	4 ±	0.9	6 ±	1.2	7 ±	
	33.00	5 ±	1.7	5 ±	0.0	7 ±	0.7
TA1537	0.00	5 ±	0.3	5 ±	1.5	7 ±	1.0
	0.33	3 ±	1.2	7 ±	0.7	7 ±	1.2
	1.00	4 ±	1.5	9 ±	1.5	5 ±	0.7
	3.30	3 ±	0.9	5 ±	1.2	5 ± 8 ±	2.5
	10.00	6 ±	0.7	5 ±	0.6	8 ±	1.2
	33.00	8 ±	0.6	5 ±	0.6	7 ±	1.7
TA98	0.00	16 ±	0.9	26 ±	4.2	23 ±	1.2
	0.33	9 ±	0.3	17 ±	2.8	20 ±	2.6
	1.00	11 ±	1.2	19 ±	1.2	18 ±	
	3.30	8 ±	0.9	24 ±	2.4	14 ±	1.7
	10.00	11 ±	1.8	20 ±	2.1	25 ±	
	33.00	12 ±	1.2	21 ±	1.7	25 ±	5.1

TABLE J1. MUTAGENICITY OF THPC IN SALMONELLA TYPHIMURIUM

(a) The S9 fractions were prepared from the liver of Aroclor 1254-induced male Sprague-Dawley rats and male Syrian hamsters. Cells and study compound or solvent (distilled water) were incubated for 20 minutes at 37°C in the presence of either S9 or buffer. After the addition of soft agar, the contents of each tube were poured onto minimal medium, and the plates were incubated at 37°C for 48 hours (Haworth et al., 1983). The experiment was performed twice, each in triplicate; because the results were similar, data from only one experiment are shown.

(b) Mean \pm standard error

Compound	Dose (µg/ml)	Total Mutant Clones	Cloning Efficiency (percent)	Relative Total Growth (percent)	Mutation Frequency (mutants/10 ⁶ clonable cells)
Distilled water		115	84.8	105	45
		111	90.2	107	41
		144	83.5	103	57
		133	65.7	82	68 (53)
Methyl methane	sulfonate				
	5	748	38.0	36.5	656
		701	54.5	34.5	429
		655	37.8	24.8	577 (554)
THPC	3	123	72.3	76.4	57
		89	82.8	81.3	36
		114	86.2	75.6	44 (46)
	4	119	75.2	77.6	53
		134	73.3	73.3	61
		123	67.8	63.8	60 (58)
	5	173	93.8	57.8	61
		198	85.5	58.7	77
		188	69.7	31.6	90 (76)
	6	207	57.3	42.8	120
		209	56.5	34.3	123
		371	73.7	33.9	168 (137)
	8	605	63.7	30.0	317
		582	44.0	11.0	441
		502	75.0	38.9	223 (327)

TABLE J2. MUTAGENICITY OF THPC IN L5178Y MOUSE LYMPHOMA CELLS IN THE ABSENCE OF S9(a)

(a) Experiments were performed twice; all doses were tested in triplicate or quadruplicate. Because the results were similar, data from only one experiment are shown. The protocol was basically that of Clive et al. (1979). Cells (6×10^{5} /ml) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^{6} cells were plated in medium supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in nonselective medium to determine the percentage of viable cells.

ø

TABLE J3. INDUCTION OF SISTER-CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLSBY THPC (a)

	– S9 (b)		+1	59 (c)
	Dose (µg/ml)	SCE/Cell	Dose (µg/ml)	SCE/Cell (d)
Medium	<u> </u>	7.6		6.8
THPC	20.0 30.0 39.9	11.7 16.1 24.4	4.99 15.00 49.90	7.6 8.1 19.9
Mitomycin C	0.0015 0.010	12.2 29.0	Cyclophosphamide 0.50 2.50	7.9 10.7

(a) SCE = sister-chromatid exchange

(b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent (medium) at 37° C; 2 hours after initiation of treatment, 10 μ M BrdU was added, and incubation was continued for an additional 22-24 hours. Cells were washed, fresh medium containing BrdU (10 μ M) and colcemid (0.1 μ g/ml) was added, and incubation was continued for 2-3 hours (Galloway et al., 1985).

(c) In the presence of S9, Chinese hamster ovary cells were incubated with study compound or solvent (medium) for 2 hours at 37° C. Then cells were washed, and medium containing 10 µM BrdU was added. Cells were incubated for a further 26 hours, with colcemid (0.1 µg/ml) present for the final 2-3 hours. S9 was from the liver of Aroclor 1254-induced male Sprague-Dawley rats (Galloway et al., 1985).

(d) Cells were collected by mitotic shake-off, treated for 3 minutes with potassium chloride (75 mM), washed twice with fixative, and dropped onto slides and air-dried (Galloway et al., 1985).

TABLE J4. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY THPC (a)

	– S9 (b)		+ S 9 (c)		
	Dose Abs/100 Cells (µg/ml) (percent cells with ab		Dose (µg/ml)	Abs/100 Cells (percent cells with abs)	
Medium				1 (1)	
THPC	15.0	2(2)	10.0	1(1)	
	30.0	7 (6)	30.0	2 (2)	
	45.0	20(19)	50.0	6 (6)	
			150.0	33 (27)	
Mitomycin C	5.0	96 (56)	Cyclophosphamide 50.0	112 (44)	

(a) Abs = aberrations

(b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent (medium) for 8-10 hours at 37° C. Cells were then washed, and fresh medium containing colcemid (0.1 μ g/ml) was added. After a further 2-3 hours of incubation, cells were harvested by mitotic shake-off, fixed, and stained in 6% Giemsa (Galloway et al., 1985).

(c) In the presence of S9, Chinese hamster ovary cells were incubated with study compound or solvent (medium) for 2 hours at 37° C. Cells were then washed, fresh medium was added, and incubation was continued for 8-10 hours. Colcemid (0.1 µg/ml) was added for the last 2-3 hours of incubation; then cells were harvested by mitotic shake-off, fixed, and stained in 6% Giemsa. S9 was from the liver of Aroclor 1254-induced male Sprague-Dawley rats (Galloway et al., 1985).

APPENDIX K

CHEMICAL CHARACTERIZATION OF THPS

I.	Identity and Purity Determina Sulfate (THPS) Lot No. 7340 Pe	tions of Tetrakis(hydroxymetl erformed by the Analytical Cl	hyl)phosphonium nemistry Laboratory
	A. Physical properties	Determined	<u>Literature Values</u>
	1. Appearance:	Clear, colorless liquid	
	2. Boiling point:	111°C for the 72% water solution (visual micro boiling point)	No literature value found
	B. Spectral data		
	1. Infrared		
	Instrument:	Beckman IR-12	
	Cell:	Thin film between silver chloride plates	
	Results:	See Figure 9	No literature reference found; however, the spectrum is consistent with the literature spectrum for THPC (Sadtler Standard Spectra)
	2. Ultraviolet/visible		
	Instrument:	Cary 118	
	Solvent:	Methanol	

No absorbance between 350 and 800 nm. No maximum between 210 and 350 nm, but a gradual increase in absorbance toward the solvent cutoff.

3.	Nuclear magnetic resonan	<u>Determined</u> ce	<u>Literature values</u>
	Instrument:	Varian EM-360A	
	Solvent:	Dimethyl sulfoxide-d ₆ with tetramethylsilane added	
	Assignments:	See Figure 10	No literature reference found. Consistent with the structure.
	Chemical shift (δ):	a s, δ 4.53 ppm b s, δ 4.99 ppm c δ 3.26-3.33 ppm d δ 3.81-4.02 ppm	
	Integration ratios:	a 8.00 b -OH, H ₂ O c 0.09 (impurity) d 0.17 (impurity)	

- C. Water analysis (Karl Fischer): Reagent appeared to react with some component of the formulation. Therefore, the Karl Fischer values were not considered valid.
- **D.** Iodate-thiosulfate titration (Frank, 1977): Reaction with potassium iodate and back titration with thiosulfate: $71.7\% \pm 0.5(\delta)\%$ (w/w) oxidizable material

Element	С	н	Р	S
Theory (based on 72% THPS and 28% Water) (T)	17.03	7.39	10.98	5.68
Determined (D)	18.42 18.21	7.25 7.26	11.32 11.56	5.51 5.55
Percent D/T	108	98	104	97

E. Elemental analysis

Y

F. Thin-layer chromatography

Plates: Silica Gel 60 F-254 Amount spotted: 200 and 600 µg (20 µg/µl in water) Reference standard: Triethyl phosphate, 100 µg (10 µg/µl in water) Visualization: Iodine vapor; ultraviolet at 254 nm

System 1

Solvent: Methanol:water (80:20)

Results: R_f: 0.79 (major) R_{st}: 0.97

System 2

Solvent: Dioxane:water (80:20)

Results: R_f: 0.89 (major) origin (trace) R_{st}: 1.00, origin

G. Conclusions: The results of the elemental analysis for carbon and phosphorus were high for theoretical values based on 72% THPS and 28% water, whereas the results for hydrogen and sulfur were in agreement. Titration by reaction with iodate indicated a purity of 71.7% $\pm 0.5(\delta)$ %. The manufacturer's nominal specifications were for 75% THPS and 25% water. The titration value is representative of all material in the sample oxidizable by iodate. If any of the THPS was already oxidized, a titration value of less than 75% would be expected. Thin-layer chromatography by one system indicated a major spot only. A second thin-layer chromatographic system indicated a trace impurity at the origin. The infrared, ultraviolet/ visible, and nuclear magnetic resonance spectra were consistent with the structure of THPS.

II. Stability Study of THPS Performed by the Analytical Chemistry Laboratory

- A. Sample storage: Samples containing 71.7% (w/w) of THPS in water were stored for 2 weeks at -20° , 5°, 25°, or 60° C in glass tubes sealed with Teflon®-lined screw caps.
- **B.** Analytical method: Samples were analyzed by the iodate-thiosulfate titration method described in Section I.D. above.

C. Results

Percent of THPS (a)
100.0 ± 1.2
98.6 ± 1.2
99.2 ± 1.2
99.3 ± 1.2

(a) Relative to -20° C samples

D. Conclusion: THPS, as a 72% solution in water, is stable for 2 weeks at temperatures up to 60° C.

III. Chemical Stability Study of THPS Performed by the Study Laboratory

A. Storage conditions

Bulk: Room temperature **Reference:** -20°C

B. Analytical method

1. Infrared spectroscopy

Instrument: Perkin-Elmer 521 or Digilab FTS-14 Cell: Liquid between plates

2. Titration: A 5.00-ml aliquot of 0.2 N samples of THPS was added to 25.00 ml of 0.1 N potassium iodate and 2.0 g of sodium bicarbonate. This mixture was stirred for 1.5 hours. Then 2.0 g of potassium iodide was added with 10.0 ml of 6 N hydrochloric acid. This solution was titrated immediately with 0.1 N sodium thiosulfate to a colorless end point. Starch (2 ml) was added close to the end of the titration to accentuate the color change. The following equation was used to calculate the percent purity.

 $(25.00 \times N_{iodate}) - (Volume_{(milliliters thio)} \times N_{thio}) \times 100$

Percent purity =

 $2(5.00)(N_{sample})$

C. Results

1. Infrared spectroscopy: All bulk spectra were comparable to the reference spectra and to the spectra supplied by the analytical chemistry laboratory.

2. Titration

Perce	ent Purity
Bulk	Reference
74.8	
69.8	69 .0
72.0	73.7
71.5	71.5
74.7	74.7
72.0	72.5
69.7	70.0
70.2	71.3
70.2	71.3
72.2	74.5
71.7	72.1
1.86	1.96
	Bulk 74.8 69.8 72.0 71.5 74.7 72.0 69.7 70.2 70.2 72.2 71.7

D. Conclusion: No notable degradation occurred throughout the studies.

APPENDIX L

CHEMICAL CHARACTERIZATION OF THPC

THPS and THPC, NTP TR 296

I.	Identity and Purity Determina Chloride (THPC) Lot No. ON2		
	A. Physical properties	Determined	<u>Literature Values</u>

	1.	Transition temperature:	118° C (visual, micro boiling point for 75% water solution)	Melting point: 146°- 147° C (nonformulated compound) (Loewengart and Van Duuren, 1977)
	2.	Appearance:	Slightly viscous, clear yellow liquid	
•	Sp	ectral data		
	1.	Infrared		
		Instrument:	Beckman IR-12	
		Cell:	Thin film between silver chloride plates	
		Results:	See Figure 11	Consistent with literature spectrum (Sadtler Standard Spectra)

2. Ultraviolet/visible

B.

Instrument:	Cary 118	
Solvent:	Methanol	
Results:	No absorbance between 350 and 800 nm. No maximum between 210 and 350 nm but a gradual increase in absorbance toward solvent cutoff at	No literature reference found. Spectrum consistent with structure.

210 nm.

APPENDIX L. CHEMICAL CHARACTERIZATION

Nuclear magnet resonance	<u>Determined</u> tic	<u>Literature Values</u>
Instrument:	Varian EM-360A	
Solvent:	Dimethyl sulfoxide w tetramethylsilane ad	
Assignments	s: See Figure 12	Consistent with literature spectrum (Sadtler Standard Spectra)
Chemical sh	ift (δ): a d, 4.52 ppm, JP-a b s, 4.90 ppm	a = 2 Hz
Integration 1	ratios: a 8.00 b – OH, H ₂ O	

- C. Titration (Frank, 1977): Reaction with potassium iodate and titration with thiosulfate: $74.7\% \pm 0.4(\delta)\%$ (w/w) oxidizable material
- **D.** Water analysis (Karl Fischer): Karl Fischer reagent appeared to react with some component of the compound formulation. Karl Fischer values were not considered valid.

E. Elemental analysis

3.

Element	С	Н	Cl	Р
Theory	25.21	6.35	18.61	16.25
Theory (T) (based on 75% THPC and 25% water)	18.91	7.54	13.96	12.19
Determined (D)	19.55 19.75	7.39 7.32	14.85 14.70	13.30 13.09
Percent D/T	103. 91	97.55	105.84	108.24

F. Thin-layer chromatography

Plates: Silica Gel 60 F-254 Amount spotted: 200 and 600 µg (20 µg/µl in water) Reference standard: Triethyl phosphate, 100 µg (10 µg/ml in water) Visualization: Iodine vapor; ultraviolet, 254 nm

G. Conclusions: The results of the elemental analysis for carbon, chlorine, and phosphorous were slightly high when the theoretical values were based on 75% THPC and 25% water, whereas the result for hydrogen was in agreement. Titration by reaction with iodate indicated a purity of 74.7% \pm 0.4(δ)%. Manufacturer specifications for this lot of chemical were 80% THPC and 20% water. The titration value of 74.7% THPC, used to derive the theoretical elemental composition, was representative of material in the sample which was oxidizable by iodate. If any of the THPC had been previously oxidized to the phosphine oxide, a titration value below 80% would be expected. Thin-layer chromatography by two systems indicated major spot only. The infrared, ultraviolet/visible, and nuclear magnetic resonance spectra were consistent with the structure of THPC.

II. Stability Study of THPC Lot No. ON2 Performed by the Analytical Chemistry Laboratory

- A. Sample storage: Samples of THPC (75% solution in water) were stored for 2 weeks at -20°, 5°, 25°, or 60° C in glass tubes with Teflon®-lined lids.
- **B.** Analytical method: Samples were analyzed by the iodate-thiosulfate titration method described in Section I.C. of this appendix. Values were compared with the -20° C sample values.

C. Results

Sample Storage <u>Temperature</u>	Percent THPC	Normalized to <u>– 20° C Sample</u>
– 20° C	74.6 ± 0.6	100.0 ± 0.8
5° C	75.1 ± 0.6	100.6 ± 0.8
25° C	74.6 ± 0.6	100.0 ± 0.8
60° C	74.8 ± 0.6	100.2 ± 0.8

D. Conclusion: Tetrakis(hydroxymethyl)phosphonium chloride is stable as a 75% solution in water when stored for 2 weeks at temperatures of up to 60° C.

III. Stability of THPC at the Study Laboratory

A. Storage conditions

Bulk: Room temperature **Reference:** -20°C

B. Analytical method

1. Infrared spectroscopy

Instrument: Perkin-Elmer 521, Digilab FTS-14, or Digilab FTS-10 Cell: Liquid between silver chloride plates

2. Titration: A 5.00-ml aliquot of 0.2 N samples of THPC was added to 25.00 ml of 0.1 N potassium iodate and 2.0 g of sodium bicarbonate. This mixture was stirred for 1.5 hours. Then 2.0 g of potassium iodide was added with 10.0 ml of 6 N hydrocholoric acid. This solution was titrated immediately with 0.1 N sodium thiosulfate to a colorless end point. Starch solution (2 ml) was added close to the end of the titration to accentuate the color change. The following equation was used to calculate the percent purity.

 $(25.00 \times N_{iodate}) - (Volume_{(milliliters thio)} \times N_{thio}) \times 100$

Percent purity =

 $2(5.00)(N_{sample})$

C. Results

1. Infrared spectroscopy: All bulk spectra were comparable to the reference spectra and to the spectra supplied by the analytical chemistry laboratory.

2. Titration

Date of	Percent Purity	
<u>Analysis</u>	Bulk	Reference
02/05/79	79.0	
05/07/79	75.4	75.3
09/27/79	76.5	79.0
02/07/80	76.4	80.0
06/24/80	78.4	78.6
09/30/80	78.0	78.3
01/27/81	79.3	80.5
05/05/81	80.2	80.8
09/10/81	78.8	78.8
01/05/82	79.2	79.8
05/21/82	80.8	81.5
09/28/82	80.5	81.5

D. Conclusion: No notable degradation occurred throughout the studies.

APPENDIX M

PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES OF THPS

I. Studies Conducted at the Analytical Chemistry Laboratory

A. Preparation procedure and homogeneity: Solutions of THPS in water were prepared by the following procedure. One part (1 ml) of THPS (71.7% w/w THPS in water, specific gravity 1.37) was added to three parts (3 ml) water, producing a solution of 24.6% (w/v); equal parts of THPS (1 ml) and of water (1 ml) were mixed, producing a solution 49.1% (w/v); and three parts (3 ml) of THPS were added to one part (1 ml) water, producing a solution 73.7% (w/v).

These solutions were prepared by vigorous manual agitation for 15 seconds followed by 10 seconds in an ultrasonic vibratory bath in 5-ml graduated reaction vials. The solutions were clear when held up to the light.

B. Stability: THPS was supplied as a 72% aqueous solution and was found to be stable when stored for 2 weeks at temperatures from -20° to 60° C (Appendix K, Section II). Because dose mixtures were prepared by dilution of the study chemical with water, additional stability studies were not needed.

II. Studies Conducted at the Study Laboratory

A. Preparation procedure: In the 13-week studies, an appropriate amount of bulk THPS (containing 71.7% THPS) was diluted with distilled water to give a stock solution containing 12.0 mg of THPS per milliliter of solution. A portion of the stock solution and a portion of each resulting dose mixture were diluted with distilled water to prepare solutions containing 8.00, 4.00, 2.00, or 1.00 mg THPS/ml.

For the first 60 weeks of the 2-year studies, the study laboratory prepared the rat and mouse formulations together. Thus, the high dose (2.00 mg/ml) was prepared by diluting 5.85 g of the bulk chemical (containing 4.19 g of THPS) to a total volume of 2,100 ml. The low dose (1.00 mg/ml) was prepared by diluting a 700-ml portion of the stock solution to a total volume of 1,400 ml with distilled water.

Larger quantities of dose mixtures were required for the remainder of the 2-year studies, so the study laboratory prepared the rat and mouse formulations separately. The high dose mixture (2.00 mg/ml) was prepared by diluting a weighed quantity of the study chemical. The low dose mixture (1.00 mg/ml) was prepared by 2:1 dilution of an aliquot of the high dose mixture. All dilutions were made with distilled water.

B. Dose mixture storage and handling: All dose mixtures were prepared weekly in separate quantities that were large enough to dose each different group of animals for 5 days and to provide samples for analysis. Weekly dose preparations were refrigerated at 4° C for 1 week and at room temperatures during the week of administration. The maximum storage time for any dose mixture was 14 days.

APPENDIX N

PREPARATION AND CHARACTERIZATION

OF DOSE MIXTURES OF THPC

THPC was supplied as a 75% aqueous solution and was found to be stable when stored for 2 weeks at temperatures from -20° C to 60° C (Appendix L, Section II). Because dose mixtures were prepared by dilution of the study material with water, additional stability studies were not needed.

- I. **Preparation procedure:** An appropriate amount of bulk THPC was diluted with a small volume of deionized water. This solution was poured into a graduated mixing column and additional deionized water was added. The solution was mixed by inversion to give a stock solution containing 8.0 mg of THPC per milliliter of solution. A portion of the stock solution was diluted with deionized water to prepare solutions containing 4.00 and 2.00 mg THPC/ml.
- II. Dose mixture storage and handling: All dose mixtures were prepared weekly and stored at 23°C. The maximum storage time for any dose mixture was 14 days.

APPENDIX O

METHODS OF ANALYSIS OF DOSE MIXTURES OF THPS

The same method was used to analyze THPS dose mixtures in water at both the analytical chemistry and the study laboratories. It involved oxidation of the cation of THPS with potassium iodate and back titration with sodium thiosulfate (Frank, 1977).

I. Study Laboratory

Procedure: The concentration of THPS (72% w/v) present in the bulk chemical was used as a correction factor in the preparation of standard solutions of known concentration. Standards were prepared by serial dilution at 4.0 mg, 2.0 mg, and 1.0 mg THPS/ml of deionized water. A 10-ml aliquot of each sample and standard was added to 25.0 ml of 0.1 N potassium iodate followed by the addition of 2.0 g of sodium bicarbonate. Mixtures were sealed and stirred for 1.5 hours. Two grams of potassium iodide was then added followed by a slow addition of 10 ml of 6.0 N hydrochloric acid. Solutions were titrated at once to a clear endpoint with 0.1 N sodium thiosulfate. Concentrations were determined from the linear regression standard curve, and analyses were performed in duplicate.

II. Analytical Chemistry Laboratory

A. Preparation of spiked water standards: Two standard solutions of THPS were prepared independently in deionized water. These solutions were diluted with deionized water to make four additional standards.

For the analysis, 10-ml aliquots of the six standard solutions were pipetted into individual 10-ml septum vials. One 10-ml volume of undosed water from the study laboratory was pipetted into a 100-ml septum vial for use as a blank. The spiked water standards and the blank were used in the analysis procedure described below.

- **B.** Preparation of referee sample: Two portions (10 ml each) of the referee water sample were pipetted into individual 100-ml septum vials and were analyzed.
- C. Analysis procedure: A 5-ml volume of 0.05 N potassium iodate solution was pipetted into each standard, blank, and referee sample vial, followed by the addition of 250 mg of sodium bicarbonate powder. The vials were sealed with Telfon®-lined septa and shaken at maximum stroke for 1.5 hours on a wrist-action shaker. From this point on, the sample vials were processed one at a time as described below.

Individual vials were uncapped and were rinsed down with 10 ml of distilled water. A 3-ml volume of 4 N hydrochloric acid was added, followed by 250 mg of potassium iodide crystals. The vial was swirled briefly to dissolve the crystals; then a small magnetic stirring bar was placed in the vial, and the liberated iodine was titrated with 0.01 N sodium thiosulfate while the solution was stirred.

When most of the iodine had been titrated, 1 ml of starch indicator solution was added, and the titration was continued until the blue color was discharged. The volume of thiosulfate required by each standard and sample was subtracted from the blank titration. The weight of THPS in the referee water sample was determined from the linear regression equation obtained from the standard data, relating the net thiosulfate titration for each spiked water standard to the weight of chemical in the respective spiked water standard. Values determined were expressed as both pure anhydrous THPS present in the referee sample and as the weight of bulk chemical (71.7% purity) used to formulate the referee sample.

D. Quality assurance measures: The referee water sample was analyzed in duplicate, and the undosed water sample was analyzed once. Individually spiked portions of distilled water (six concentrations) bracketing the specified dose range of the referee sample) were prepared from two independently weighed standards and were used for establishing the titer of the 0.01 N sodium thiosulfate across the specified dose range. The standards, blanks, and referee samples were titrated in a random order. The standard data were evaluated for linearity and correlation coefficient.

APPENDIX P

METHODS OF ANALYSIS OF DOSE MIXTURES OF THPC

The same method was used to analyze THPC doses in water at both the analytical chemistry and the study laboratories. It involved oxidation of the cation of THPC with potassium iodate and back-titration with sodium thiosulfate (Frank, 1977).

I. Study Laboratory

Standards were prepared by serial dilution at 36.0 mg, 16.0 mg (13-week studies), 8.0 mg, 4.0 mg, 2.0 mg, and 1.0 mg (13-week and 2-year studies) THPC per milliliter deionized water. No correction was made for the percent of water in THPC. Samples and standards were then treated in the same manner. Sample aliquots of the THPC solutions were added to 25.0 ml of 0.1 N potassium iodate and 2.0 g of sodium bicarbonate. The mixtures were stirred for 1.5 hours before the addition of 2.0 g of potassium iodide and 10.0 ml of 6 N hydrochloric acid. The liberated iodine was then titrated to a clear end point with 0.1 N sodium thiosulfate. Concentrations were determined from the linear regression standard curve, and the analysis was done in duplicate.

II. Analytical Chemistry Laboratory

- A. Preparation of spiked water standards: Two standard solutions of THPC were prepared independently in deionized water. These solutions were diluted with deionized water to make four additional standards. Aliquots (2-10 ml) of the six standard solutions were pipetted into individual 60-ml septum vials to make spiked water standards bracketing the specified concentration range of the referee sample. Undosed water (2-10 ml) was pipetted into a 60-ml septum vial for use as a blank. The spiked water standards and the water blank were analyzed by the procedure described below.
- **B.** Preparation of the referee sample: Three portions (2-10 ml) of the referee water sample were pipetted into individual 60-ml septum vials and were analyzed by the procedure described below.
- C. Analysis procedure: A 5-ml volume of 0.05 N potassium iodate solution was pipetted into each standard blank and referee sample vial; then 250 mg of sodium bicarbonate was added to each vial. The vials were sealed with Teflon®-lined septa and were shaken at maximum stroke for 1.5 hours on a wrist-action shaker. Individual vials were uncapped and rinsed down with 5-10 ml of deionized water. A 3-ml volume of 4 N hydrochloric acid was added, followed by 250 mg of potassium iodide crystals. The vial was swirled briefly to dissolve the crystals, a small magnetic stirring bar was placed in the vial, and the liberated iodine was titrated with 0.01 N sodium thiosulfate solution while the solution was stirred. When most of the iodine had been titrated, 1 ml of starch indicator solution was added, and the titration was continued until the blue color was discharged.

The volume of thiosulfate required by each standard and sample was subtracted from the blank titration volume. The amount of THPC in the samples was determined from the linear regression equation obtained from the standard data, relating the net thiosulfate titration volume for each spiked water standard and water blank to the amount of chemical in that standard.

D. Quality assurance measures: The referee water sample was analyzed in triplicate or duplicate, and the undosed water sample was analyzed once. For calibration, six spiked water standards bracketing the specified concentration range of the referee sample were prepared from two independently weighed standards.

APPENDIX Q

RESULTS OF ANALYSIS OF DOSE MIXTURES OF THPS

		PAGE
TABLE Q1	RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE THIRTEEN-WEEK GAVAGE STUDIES OF THPS	274
TABLE Q2	RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF THPS	274
TABLE Q3	RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF THPS	274

	Concentration of T	HPS in Water (mg/ml) (a)	Determined as a
Date Mixed	Target	Determined	Percent of Target
07/04/79	12.0	12.2	101.3
	8.00	8.00	100.0
	4.00	4.00	100.0
	2.00	2.01	100.5
	1.00	1.00	100.4

TABLE Q1. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE THIRTEEN-WEEK GAVAGE STUDIES OF THPS

(a) Results of duplicate analysis

	Concentration of for Target Concent	
Date Mixed	1.0	2.0
04/02/80	1.1	2.1
08/27/80	0.98	2.0
10/17/80	1.0	1.9
12/09/80	1.0	2.0
01/30/81	0.94	2.1
03/31/81	0.95	2.0
05/14/81	1.0	1.9
07/17/81	1.0	2.0
09/18/81	1.0	2.1
11/20/81	1.0	1.9
01/15/82	1.0	2.1
03/12/82	1.0	2.1
Mean (mg/ml)	1.0	2.0
Standard deviation	0.039	0.083
Coefficient of variation (percent)	3.9	4.3
Range (mg/ml)	0.94-1.1	1.9-2.1
Number of samples	12	12

TABLE Q2. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF THPS

(a) Results of duplicate analysis

TABLE Q3. RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF THPS

		Determined Concentration (mg/ml)	
Date Mixed	Target Concentration (mg/ml)	Study Laboratory (a)	Referee Laboratory (b)
01/30/81	1.00	0.94	0.86
03/31/81	1.00	0.95	0.90
07/17/81	2.00	2.0	1.8
03/12/82	2.00	2.1	1.9

(a) Results of duplicate analysis(b) Results of triplicate analysis

APPENDIX R

RESULTS OF ANALYSIS OF DOSE MIXTURES OF THPC

		PAGE
TABLE RI	RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE THIRTEEN-WEEK GAVAGE STUDIES OF THPC	276
TABLE R2	RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF THPC	277
TABLE R3	RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF THPC	277

ate Mixed	<u>Concentration of THP(</u> Target	<u>C in Water (mg/ml) (a.b)</u> Determined	Determined as a Percent of Target
10/24/79	0.4	0.43	107.5
	1.0	1.08	108.0
	1.2	1.42	(c) 118.3
	2.0	2.12	106.0
	4.0 (mouse)	4.60	(c) 115.0
	4.0 (rat)	4.18	104.5
	8.0	7.88	98.5
	12.0	12.73	106.1
	16.0	16.66	104.1
	36.0	35.70	99.2
0/30/79	0.4	0.41	102.5
	1.2	1.31	(d) 108.8
	4.0 (mouse)	4.25	106.3
	12.0	12.00	(d) 100.0
	36.0	35.57	98.8

TABLE R1. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE THIRTEEN-WEEK GAVAGE STUDIES OF THPC

(a) Results of duplicate analysis
(b) Milligrams of bulk chemical/milliliter of water
(c) Out of specifications. Not used in the studies.
(d) Remix

	Concentration of THPC in Water for Target Concentration (mg/ml) (a,b)				
Date Mixed	1.0			8.0	
09/08/80	(c) 0.83	2.08	<u></u>	•••	
10/27/80	0.94	2.07	3.92	7.72	
12/22/80	0.90	1.93	3.84	7.89	
02/17/81	0.94	(c) 2.22	(c) 4.45	7.80	
04/14/81	(c) 1.20	1.99	4.37	8.53	
06/08/81	1.00	2.21	4.25	8.00	
06/29/81	0.91	2.18	(c) 4.44	7.66	
08/11/81	1.07	2.14	4.28	7.90	
10/12/81	0.95	2.15	4.18	7.98	
12/14/81	1.07	2.18	4.03	7.59	
02/01/82	1.01	2.03	4.24	8.02	
04/05/82	0.99	2.07	4.25	7.83	
06/28/82	0.96	1.93	4.29	7.88	
08/03/82	1.00	2.10	3.70	7.20	
ean (mg/ml)	0.98	2.09	4.17	7.85	
andard deviation	0.090	0.096	0.232	0.300	
oefficient of variation (percent)	9.2	4.6	5.6	3.8	
ange (mg/ml)	0.83-1.20	1.93-2.22	3.70-4.45	7.20-8.53	
umber of samples	14	14	13	13	

TABLE R2. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF THPC

(a) Results of duplicate or triplicate analysis
(b) Milligrams of bulk chemical/milliliter of water
(c) Out of specifications. Not remixed.

TABLE R3. RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF THPC

		Determined Concentration (mg/ml) (
Date Mixed	Target Concentration (mg/ml)	Study Laboratory	Referee Laboratory
09/08/80	1.0	0.83	0.98
10/27/80	8.0	7.72	8.24
04/14/81	4.0	4.37	4.39
10/12/81	1.0	0.95	0.94
04/05/82	2.0	2.07	2.01
08/03/82	8.0	7.20	8.02

(a) Results of duplicate or triplicate analysis

THPS and THPC, NTP TR 296

APPENDIX S

SENTINEL ANIMAL PROGRAM

		PAGE
TABLE S1	MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN	000
	THE TWO-YEAR GAVAGE STUDIES OF THPS	282
TABLE S2	MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN	
	THE TWO-YEAR GAVAGE STUDIES OF THPC	282

I. Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via viral serology on sera from extra (sentinel) animals in the study rooms. These animals are untreated, and these animals and the study animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen $B6C3F_1$ mice and 15 F344/N rats of each sex are selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group are killed at 6, 12, and 18 months on study. Data from animals surviving 24 months are collected from 5/50 randomly selected vehicle control animals of each sex and species. The blood from each animal is collected and clotted, and the serum is separated. The serum is cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. The following tests are performed:

Complement

Fixation

THPS

Hemagglutination <u>Inhibition</u>

Sendai (12, 18, 24 mo)

M.Ad. (mouse adenovirus) Mice PVM (pneumonia virus of mice) LCM (lymphocytic Reo 3 (reovirus type 3) GDVII (Theiler's choriomeningitis virus) encephalomyelitis virus) MHV (mouse Poly (polyoma virus) hepatitis virus) MVM (minute virus of mice) Sendai (6 mo) Ectro (infectious ectromelia) Sendai (12, 18, 24 mo) **PVM** RCV (rat coronavirus) Rats KRV (Kilham rat virus) Sendai (6 mo) H-1 (Toolan's H-1 virus)

APPENDIX S. SENTINEL ANIMAL PROGRAM

THPC

	Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	<u>ELISA</u>
Mice	PVM (pneumonia virus of mice) Reo 3 (reovirus type 3) GDVII (Theiler's encephalomyelitis virus) Poly (polyoma virus) MVM (minute virus of mice) Ectro (infectious ectromelia) Sendai	M.Ad. (mouse adenovirus) LCM (lymphocytic choriomeningitis virus) MHV (mouse hepatitis virus) (6, 12 mo)	MHV (mouse hepatitis virus) (18, 24 mo)
Rats	PVM KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Sendai	RCV (rat coronavirus)	

II. Results

Results are presented in Tables S1 and S2.

Interval (months)	Number of Animals	Positive Serologic Reaction for
ATS		<u></u>
6		None positive
12		None positive
18		None positive
24		None positive
E		
6		None positive
12		None positive
18	4/9	MVM
24	6/10	Reo 3

TABLE S1. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEARGAVAGE STUDIES OF THPS (a)

(a) Blood samples were taken from sentinel animals at 6, 12, and 18 months after the start of dosing and from the vehicle control animals just before they were killed; samples were sent to Microbiological Associates, Inc. (Bethesda, MD) for the Animal Disease Screening Program.

TABLE S2. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEARGAVAGE STUDIES OF THPC (a)

	Interval (months)	Number of Animals	Positive Serologic Reaction for
RATS			<u>,,, (),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
	6		None positive
	12	~~	None positive
	18		None positive
	24		None positive
MICE			
	6	2/10	MHV
	12		None positive
	18		None positive
	24	2/10	MHV

(a) Blood samples were taken from sentinel animals at 6, 12, and 18 months after the start of dosing and from the vehicle control animals just before they were killed; samples were sent to Microbiological Associates, Inc. (Bethesda, MD) for the Animal Disease Screening Program.

APPENDIX T

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Pelleted Diet: February 1980 to August 1982 (Manufactured by Zeigler Bros., Inc., Gardners, PA)

PAGETABLE T1INGREDIENTS OF NIH 07 RAT AND MOUSE RATION284TABLE T2VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION284TABLE T3NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION285TABLE T4CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION286

Ingredients (b)	Percent by Weight	
Ground #2 yellow shelled corn	24.50	
Ground hard winter wheat	23.00	
Soybean meal (49% protein)	12.00	
Fish meal (60% protein)	10.00	
Wheat middlings	10.00	
Dried skim milk	5.00	
Alfalfa meal (dehydrated, 17% protein)	4.00	
Corn gluten meal (60% protein)	3.00	
Soy oil	2.50	
Brewer's dried yeast	2.00	
Dry molasses	1.50	
Dicalcium phosphate	1.25	
Ground limestone	0.50	
Salt	0.50	
Premixes (vitamin and mineral)	0.25	

TABLE T1. INGREDIENTS OF NIH 07 RAT AND MOUSE RATION (a)

(a) NIH, 1978; NCI, 1976

(b) Ingredients ground to pass through a U.S. Standard Screen No. 16 before being mixed

	Amount	Source
Vitamins		
Α	5,500,000 IU	Stabilized vitamin A palmitate or acetate
D_3	4,600,000 IU	D-activated animal sterol
К ₃	2.8 g	Menadione activity
d-a-Tocopheryl acet	ate 20,000 IU	
Choline	560.0 g	Choline chloride
Folic acid	2.2 g	
Niacin	30.0 g	
d-Pantothenic acid	18.0 g	d-Calcium pantothenate
Riboflavin	3.4 g	
Thiamine	10.0 g	Thiamine mononitrate
B ₁₂	4,000 µg	
Pyridoxine	1.7 g	Pyridoxine hydrochloride
Biotin	140.0 mg	d-Biotin
Minerals		
Iron	120.0 g	Iron sulfate
Manganese	60.0 g	Manganous oxide
Zinc	16.0 g	Zincoxide
Copper	4.0 g	Copper sulfate
Iodine	1.4 g	Calcium iodate
Cobalt	0.4 g	Cobalt carbonate

TABLE T2. VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION (a)

(a) Per ton (2,000 lb) of finished product

Nutrient	Mean \pm Standard Deviation	Range	Number of Samples
Crude protein (percent by weight)	24.1 ± 0.85	22.7-26.1	30
Crude fat (percent by weight)	4.92 ± 0.43	4.1-5.7	30
Crude fiber (percent by weight)	3.33 ± 0.45	1.4-4.3	30
Ash (percent by weight)	6.63 ± 0.49	5.7-7.4	30
Ssential Amino Acids (percent of	total diet)		
Arginine	1.323 ± 0.830	1.21-1.39	4
Cystine	0.310 ± 0.099	0.218-0.400	4
Glycine	1.155 ± 0.069	1.06-1.21	4
Histidine	0.572 ± 0.030	0.530-0.603	4
Isoleucine	0.910 ± 0.033	0.881-0.944	4
Leucine	1.949 ± 0.065		
Lysine	1.279 ± 0.075	1.85-1.99	4
		1.20-1.37	4
Methionine Phonylalaning	0.422 ± 0.187	0.306-0.699	4
Phenylalanine	0.909 ± 0.167	0.665-1.04	4
Threonine	0.844 ± 0.029	0.824-0.886	4
Tryptophan	0.187	0.171-0.211	3
Tyrosine	0.631 ± 0.094	0.566-0.769	4
Valine	1.110 ± 0.050	1.05-1.17	4
Essential Fatty Acids (percent of to	otal diet)		
Linoleic	2.44	2.37-2.52	3
Linolenic	0.274	2.56-0.308	3
Arachidonic	0.008		1
litamins			
Vitamin A (IU/kg)	$10,797 \pm 2,684$	6,700-17,000	30
Vitamin D (IU/kg)	3,650	3,000-6,300	2
a-Tocopherol (ppm)	41.53 ± 7.52	31.1-48.9	4
Thiamine (ppm)	16.39 ± 4.12	7.3-27.0	(a) 29
Riboflavin (ppm)	7.50 ± 0.96	6.1-8.2	4
Niacin (ppm)	85.00 ± 14.20	65.0-97.0	4
Pantothenic acid (ppm)	29.3 ± 4.60	23,0-34.0	4
Pyridoxine (ppm)	7.6 ± 1.5	5.6-8.8	4
Folic acid (ppm)	2.80 ± 0.88	1.8-3.7	4
Biotin (ppm) Vitemin B. (nnh)	0.27 ± 0.05	0.21-0.32	4
Vitamin B ₁₂ (ppb) Choline (ppm)	21.0 ± 11.9 $3,302 \pm 120.0$	11.0-38.0 3,200-3,430	4
finerals			
Calcium (percent)	1.30 ± 0.19	0.82-1.1	30
Phosphorus (percent)	1.00 ± 0.08	0.82-1.1	30
Potassium (percent)	0.862 ± 0.100	0.772-0.970	3
Chloride (percent)	0.546 ± 0.100	0.442-0.635	4
Sodium (percent)	0.311 ± 0.038	0.258-0.350	4
Magnesium (percent)			
	0.169 ± 0.133	0.151-0.181	4
Sulfur (percent)	0.316 ± 0.070	0.270-0.420	4
Iron (ppm)	447 ± 57.3	409-523	4
Manganese (ppm)	90.6 ± 8.20	81.7-95.5	4
Zinc (ppm)	53.6 ± 5.27	46.1-58.6	4
Copper (ppm)	10.77 ± 3.19	8.09-15.39	4
Iodine (ppm)	2.95 ± 1.05	1.52-3.82	4
Chromium (ppm)	1.81 ± 0.28	1.44-2.09	4
Cobalt (ppm)	0.68 ± 0.14	0.49-0.80	4

TABLE T3. NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION

(a) One batch (July 22, 1981) was not analyzed for thiamine.

Contaminant	Mean ± Standard Deviation	Range	Number of Samples
Arsenic (ppm)	0.40 ± 0.21	< 0.05-1.06	30
Cadmium (ppm) (a)	0.11 ± 0.06	< 0.05-0.40	30
Lead (ppm)	0.98 ± 0.69	0.42-3.37	30
Mercury (ppm) (b)	< 0.05		30
Selenium (ppm)	0.29 ± 0.09	0.10-0.52	30
Aflatoxins (ppb) (b,c)	<10	<5.0-<10.0	30
Nitrate nitrogen (ppm) (d,e)	7.35 ± 3.89	<0.1-17.0	30
Nitrite nitrogen (ppm) (d,e)	1.98 ± 1.59	< 0.1-6.9	30
BHA (ppm) (f,g)	3.97 ± 3.59	<0.7-13.0	30
BHT (ppm) (f)	2.80 ± 1.71	0.8-5.9	30
Aerobic plate count (CFU/g) (h)	$41,717 \pm 31,536$	4,900-120,000	29
Aerobic plate count (CFU/g) (i)	$50,660 \pm 57,960$	4,900-310,000	30
Coliform (MPN/g) (j)	31.3 ± 51.8	<3-240	26
Coliform (MPN/g) (k)	217.13 ± 527.46	<3-2,400	30
E. coli (MPN/g) (1)	<3		30
Total nitrosamines (ppb) (m,n)	5.67 ± 5.35	0.8-18.8	27
Total nitrosamines (ppb) (m,o)	23.72 ± 59.53	0.8-279.5	30
N-Nitrosodimethylamine (ppb) (m,n)	4.93 ± 5.26	0.8-16.0	27
V-Nitrosodimethylamine (ppb) (m,o)	22.80 ± 59.09	0.8-278	30
V-Nitrosopyrrolidine (ppb) (p)	1.39 ± 0.75	< 0.5-3.5	28
Pesticides (ppm)			
a-BHC (b,q)	< 0.01		30
β-BHC (b)	< 0.02		30
y-BHC-Lindane (b)	< 0.01		30
δ-BHC (b)	< 0.01		30
Heptachlor (b)	< 0.01		30
Aldrin (b)	< 0.01		30
Heptachlor epoxide (b)	< 0.01		30
DDE (b)	< 0.01		30
DDD (b)	< 0.01		30
DDT (b)	< 0.01		30
HCB(b)	< 0.01		30
Mirex(b)	< 0.01		30
Methoxychlor (r)	< 0.05	0.09 (8/26/81)	30
Dieldrin (b)	< 0.01		30
Endrin(b)	< 0.01		30
Telodrin (b)	<0.01		30
Chlordane (b,s)	< 0.05		20
Toxaphene (b)	< 0.1		30
Estimated PCBs (b)	< 0.2		30
Ronnel (b)	< 0.01		30
Ethion (b)	< 0.02		30
Trithion (b)	< 0.05		30
Diazinon (r)	< 0.1	0.02 (4/27/81)	30
Methyl parathion (b)	< 0.02		30
Ethyl parathion (b)	< 0.02		30
Malathion (t)	0.09 ± 0.06	<0.05-0.27	30
Endosulfan I (b,u)	<0.01		9
Endosulfan II (b,u)	< 0.01		9
Endosulfan sulfate (b,u)	< 0.03		9

TABLE T4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

TABLE T4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION (Continued)

(a) Two batches contained more than 0.1 ppm.

(b) All values were less than the detection limit, which is given in the table as the mean.

(c) Detection limit was reduced from 10 ppb to 5 ppb after 7/81.

(d) Source of contamination: Alfalfa, grains, and fish meal

(e) Two batches contained less than 0.1 ppm.

(f) Source of contamination: Soy oil and fish meal

(g) Six batches contained less than 0.5 ppm.

(h) Mean, standard deviation, and range exclude one very high value of 310,000 obtained for the batch produced on 2/26/80. (CFU = colony-forming unit)

(i) Mean, standard deviation, and range include the very high value listed in footnote (h).
(j) Mean, standard deviation, and range exclude the very high value of 1,100 obtained for batches produced on 2/4/80, 5/29/80, and 12/16/80. They also exclude the very high value of 2,400 obtained for the batch produced on 2/26/80. (MPN = most probable number)

 (\mathbf{k}) Mean, standard deviation, and range include the high value listed in footnote (j).

(1) All values were less than 3 MPN/g.

(m) All values were corrected for percent recovery.

(n) Mean, standard deviation, and range exclude three very high values in the range of 115-280 ppb obtained for batches produced on 1/26/81, 2/23/81, and 4/27/81.

(o) Mean, standard deviation, and range include the very high values given in footnote (n).

(p) Not detectable in batches produced on 3/24/82 and 4/24/82.

(q) BHC = hexachlorocyclohexane or benzene hexachloride

(r) One observation was above the detection limit. The value and the date it was obtained are listed under the range. The detection limit is given as the mean.

(s) Ten batches manufactured from 4/1/80 through 12/16/80 were not analyzed for chlordane.

(t) Thirteen batches contained more than 0.05 ppm.

(u) Twenty-one batches were not analyzed for Endosulfan I, Endosulfan II, and Endosulfan sulfate.

THPS and THPC, NTP TR 296

APPENDIX U

DATA AUDIT SUMMARY

The experimental data and tables for the NTP Technical Report on the toxicology and carcinogenesis studies of THPS and THPC in F344/N rats and B6C3F₁ mice were examined for completeness, consistency, and accuracy and for procedures consistent with Good Laboratory Practice requirements. The audit was conducted by Dynamac Corporation. The following persons were involved in the audit of THPS: R. Ramsey, B.S.; F. Garner, D.V.M.; C. Sexsmith, B.S.; E. Zurek; and M. Perreault, B.S. The following persons were involved in the audit of THPC: J. Albert, M.S.; J. Bhandari, D.V.M., Ph.D.; R.L. Bowman, B.S.; D. Copeland, D.V.M., D.A.C.V.P.; J. Kovach, B.A.; S. Shrivastava, Ph.D.; and S. Taulbee. The 2-year studies in rats and mice were conducted between March 1980 and April 1982 for THPS and between September 1980 and September 1982 for THPC at Battelle Columbus Laboratories, Columbus, Ohio.

The full reports of both audits are on file at the National Toxicology Program, NIEHS. The audits included, but were not limited to, a review of the records of the inlife portion of the studies for 10% of the animals (body weight, clinical observations, palpation, dosing records); all records containing environmental data, mortality data, dose preparation data, and chemical inventory and analysis data; a slide/block match for 100% of the high dose and vehicle control animals; all Individual Animal Data Records containing necropsy and histopathologic findings; and a 10% wet tissue review for animal/ carcass identification.

The audit for THPS indicated that the inlife and chemistry portions were complete and without problems that would influence interpretation of study results. Slides and blocks did not match for several rats and mice because tissue samples in blocks had apparently been cut through (5 vehicle control male rats and 6 vehicle control female rats; 22 vehicle control male mice, 15 high dose male mice, 5 vehicle control female mice, and 15 high dose female mice). A number of slides had been marked "deeper" or "recut" indicating resectioning of the blocks. A total of 44 rats and 48 mice had gross observations without corresponding microscopic diagnoses. In nearly all animals, these were determined to be inaccurate observations or to represent minor, age-related, nonneoplastic changes. A single undiagnosed tumor of the anterior pituitary gland was found. Two untrimmed potential lesions were found in the residual wet tissues (one low dose male rat and one vehicle control male mouse); these were not in target organs. A complete review (100%) of residual wet tissues for animal identification revealed two rats and four mice with erroneous toe clips; there was no evidence of misidentified animals.

In the THPC audit the inlife and chemistry portions were complete and without problems that would influence interpretation of study results. The slide and block comparison identified no significant discrepancies. Slides and blocks for several rats and mice did not match (6 vehicle control and 3 high dose male rats, 10 vehicle control and 8 high dose female rats; 5 vehicle control and 11 high dose male mice, 15 vehicle control and 14 high dose female mice). There were 31 rats and 12 mice with gross observations without corresponding diagnoses. Many of these were determined to be inaccurate observations or to represent minor, age-related, nonneoplastic changes. Seven observations in rats and 12 in mice could not be resolved by examination of slides or wet tissues. Eight rats and nine mice had untrimmed potential lesions. Two rats and three mice had erroneous toe clips or ear punches. The identification discrepancy involving one rat could not be resolved and may indicate mislabeling of the wet tissue bag or misidentification of the rat.

Although not every problem identified in the audits was fully resolved, it was concluded that the data reported were adequate to support the conclusions presented in this Technical Report.