NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 358

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF OCHRATOXIN A

(CAS NO. 303-47-9)

IN F344/N RATS

(GAVAGE STUDIES)

Gary A. Boorman, D.V.M., Ph.D., Study Scientist

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

May 1989

NTP TR 358

NIH Publication No. 89-2813

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

CONTENTS

PAGE

ABST	`RACT	3
EXPL	ANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	7
CONT	TRIBUTORS	8
PEER	REVIEW PANEL	9
SUMN	MARY OF PEER REVIEW COMMENTS	10
I.	INTRODUCTION	11
п.	MATERIALS AND METHODS	17
Ш.	RESULTS	
	RATS	
	GENETIC TOXICOLOGY	55
IV.	DISCUSSION AND CONCLUSIONS	59
v.	REFERENCES	65

APPENDIXES

APPENDIX A	SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A	71
APPENDIX B	SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A	103
APPENDIX C	SENTINEL ANIMAL PROGRAM	135
APPENDIX D	INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION	137
APPENDIX E	AUDIT SUMMARY	141

OCHRATOXIN A

CAS No. 303-47-9

C₂₀H₁₈ClNO₆

Molecular weight 403.8

 $\label{eq:synonyms: (R)-N[(5-chloro-3,4-dihydro-8-hydroxy-3-methyl-1-oxo-1H-2-benzopyran-7-yl)-carbonyl](-L-)phenylalanine$

ABSTRACT

Ochratoxin A is a naturally occurring fungal toxin that is a contaminant in corn, peanuts, storage grains, cottonseed, meats, dried fish, and nuts. Toxicology and carcinogenesis studies were conducted by administering ochratoxin A (98% pure) in corn oil by gavage to groups of F344/N rats of each sex for 16 days, 13 weeks, 9 months, 15 months, or 2 years. Only rats were studied because ochratoxin A has been shown to be carcinogenic in mice. Genetic toxicology tests were performed with bacterial and mammalian cells. Urinalysis, hematologic and serum chemical analyses, and bone marrow cellularity determinations were conducted at 9, 15, and 24 months in the 2-year studies.

Sixteen-Day and Thirteen-Week Studies: Rats were administered 0, 1, 4, or 16 mg/kg ochratoxin A in corn oil by gavage 5 days per week for a total of 12 doses over 16 days. All rats that received 16 mg/kg ochratoxin A died within 6 days. Rats that received 4 mg/kg lost weight. Compound-related lesions in rats included bone marrow hypoplasia, thymic atrophy, necrosis and hyperplasia of the forestom-ach epithelium, renal tubular cell degenerative and regenerative changes (nephropathy), and adrenal gland hemorrhage. Renal tubular changes were most severe in animals that received 4 mg/kg. Rats that received 16 mg/kg had less severe renal lesions than those at 4 mg/kg, perhaps because the acute toxicity and early death did not allow sufficient time for full development of lesions.

No compound-related deaths occurred in the 13-week studies (doses were 0 and 0.0625 to 1 mg/kg). The final mean body weight of rats that received 0.25, 0.5, or 1 mg/kg was 7%, 11%, or 19% lower than that of vehicle controls for males and 3%, 4%, or 9% lower for females. Compound-related lesions in the kidney were characterized as degeneration and regeneration of the epithelium of the proximal convoluted tubules with individual cell necrosis of moderate severity (see following table).

NUMBERS OF RATS WITH RENAL CORTICAL LESIONS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF OCHRATOXIN A (a)

Lesion	<u>Vehicle</u> Male	e Control Female	<u>0.062</u> Male	5 mg/kg Female	0,12 Male	25 mg/kg Female	0.2 Male	5 mg/kg Female	$\frac{0.3}{Male}$	<u>5 mg/kg</u> Female	<u>1</u> m Male	remale
Degeneration/necrosis	0	0	0	0	6	6	3	5	0	2	10	10
Karyomegaly	0	0	10	9	10	9	10	10	10	10	10	10
Atrophy	0	0	10	9	7	8	9	8	8	8	0	0

(a) 10 animals per group

Karyomegaly of tubular epithelial cells was widespread but most pronounced in the straight portion of the tubules just above the corticomedullary junction. Karyomegaly was present in all dosed groups, and the severity increased as the dose increased. At lower doses, atrophy of the straight portions of the tubules at the corticomedullary junction and in the medulla was observed.

Based on mortality and on the presence and severity of renal lesions, groups of 80 rats per sex and dose group were administered 0, 21, 70, or 210 μ g/kg ochratoxin A in corn oil by gavage 5 days per week for up to 2 years. Groups of 15 rats per sex and dose were killed at 9 or at 15 months and the remaining animals at 2 years.

Nine-Month and Fifteen-Month Studies: Administration of ochratoxin A by gavage for 9 months or 15 months to F344/N rats was associated with increased incidences of renal tubular cell neoplasms in males and hyperplasia, degeneration, and karyomegaly of renal tubular epithelial cells in both males and females (see following table).

Body Weight and Survival in the Two-Year Studies: Mean body weights of high dose rats were generally 4%-7% lower than those of vehicle controls. No significant differences in survival were observed between any groups of female rats (vehicle control, 32/50; low dose, 23/51; mid dose, 35/50; high dose, 34/50). Survival was decreased after 77 weeks in high dose male rats and after 96 weeks in low and mid dose male rats (39/50; 26/51; 26/51; 23/50).

Clinical Pathology: Minor differences were observed for hematologic values between dosed and vehicle control animals, but these were not considered to be of biologic significance. Results of serum chemistry analysis were not clearly compound related. Ochratoxin A-dosed animals had slight increases compared with vehicle controls in urine volume and decreases in urine specific gravity in concentration tests, suggesting that exposure resulted in mild to moderate decreases in the ability to concentrate urine.

		Male				Female				
Age/Lesion	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg		
Nine months										
Karyomegaly	0	0	15	15	0	0	15	15		
Hyperplasia	0	0	3	6	0	0	0	3		
Adenoma	0	0	0	1	0	0	0	0		
Fifteen months										
Degeneration	0	0	0	15	0	0	0	15		
Karyomegaly	0	0	14	15	0	0	15	15		
Hyperplasia	0	0	6	0	0	0	1	0		
Adenoma	0	0	1	1	0	0	0	0		
Carcinoma	0	0	1	2	0	0	0	0		

NUMBERS OF RATS WITH SELECTED RENAL TUBULE LESIONS IN THE NINE- AND FIFTEEN-MONTH GAVAGE STUDIES OF OCHRATOXIN A (a)

(a) 15 animals per group

Nonneoplastic and Neoplastic Effects in the Two-Year Studies: A spectrum of degenerative and proliferative changes occurred in the kidney of male and female rats given ochratoxin A for 2 years. Degeneration of the renal tubular epithelium with formation of tubular cysts, proliferation of the tubular epithelium, and karyomegaly of the nuclei of tubular epithelial cells occurred at increased incidences in dosed rats (see following table). Hyperplasia of the renal tubular epithelium and renal tubular adenomas and carcinomas also occurred at increased incidences in the dosed rats; the tumors were frequently multiple within a single kidney or were bilateral, and many metastasized to other organs.

The incidence of fibroadenomas of the mammary gland in high dose female rats was significantly greater than that in vehicle controls (vehicle control, 17/50; low dose, 23/51; mid dose, 22/50; high dose, 28/50). Multiple fibroadenomas of the mammary gland were observed at an increased incidence in high dose female rats (4/50; 4/51; 5/50; 14/50). One mammary gland adenoma was seen in a mid dose female, and two mammary gland adenocarcinomas were seen in each dosed group; one adenocarcinoma was seen in the vehicle control group.

An adenoma of the pars intermedia of the pituitary gland was observed in one mid dose female rat, and a carcinoma was observed in a second mid dose female rat. Squamous cell papillomas of the tongue were seen in two low dose and two mid dose male rats. Neither the pituitary neoplasms nor the papillomas of the tongue were considered related to ochratoxin A exposure.

Genetic Toxicology: Ochratoxin A was not mutagenic in four strains of Salmonella typhimurium (TA97, TA98, TA100, or TA1535) when tested both with and without exogenous metabolic activation. In cultured Chinese hamster ovary (CHO) cells, ochratoxin A induced sister chromatid exchanges (SCEs) in the presence, but not the absence, of metabolic activation; it did not significantly increase the number of chromosomal aberrations in these cells.

Audit: The data, documents, and pathology materials from the 2-year studies of ochratoxin A have been audited. The audit findings show that the conduct of the studies is documented adequately and support the data and results given in this Technical Report.

	Male				Female			
Site/Lesion	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg
Number examined	50	51	51	50	50	51	50	50
Kidney								
Cyst	0	1	0	10	0	0	1	31
Kidney tubule epithelium								
Cytoplasmic alteration	1	0	3	8	0	0	1	2
Degeneration	0	0	50	4 9	0	0	49	49
Hyperplasia	1	1	16	24	0	0	12	13
Karyomegaly	0	1	51	50	0	8	50	50
Proliferation	0	0	10	26	0	0	3	16
Kidney tubule								
Adenoma	1	1	6	10	0	0	1	5
Carcinoma	Ō	Ō	16	30	0	0	1	5 3
Metastatic renal carcinoma								
(all sites)	0	0	4	13	0	0	1	0

NUMBERS OF RATS WITH SELECTED RENAL LESIONS IN THE TWO-YEAR GAVAGE STUDIES OF OCHRATOXIN A

Conclusions: Under the conditions of these 2-year gavage studies, there was *clear evidence of carcinogenic activity*^{*} of ochratoxin A for male F344/N rats as shown by substantially increased incidences of uncommon tubular cell adenomas and of tubular cell carcinomas of the kidney. There was *clear evidence of carcinogenic activity* for female F344/N rats as shown by increased incidences of uncommon tubular cell adenomas and of tubular cell carcinomas of the kidney and by increased incidences and multiplicity of fibroadenomas of the mammary gland.

Ochratoxin A administration also caused nonneoplastic renal changes including tubular cell hyperplasia, tubular cell proliferation, cytoplasmic alteration, karyomegaly, and degeneration of the renal tubular epithelium.

SUMMARY OF THE TWO-YEAR GAVAGE AND GENETIC TOXICOLOGY STUDIES OF OCHRATOXIN A

Male F344/N Rats	Female F344/N Rats
Doses 0, 21, 70, or 210 µg/kg ochratoxin A in corn oil, 5 d/wk	0, 21, 70, or 210 µg/kg ochratoxin A in corn oil, 5 d/wk
Survival rates in the 2-year study 39/50; 26/51; 26/51; 23/50	32/50; 23/51; 35/50; 34/50
Body weights in the 2-year study High dose slightly lower than vehicle controls	High dose slightly lower than vehicle controls
Nonneoplastic effects Degeneration, karyomegaly, proliferation, cytoplasmic alteration, and hyperplasia of the renal tubular epithelium	Degeneration, karyomegaly, proliferation, and hyperplasia of the renal tubular epithelium
Neoplastic effects Renal tubular cell adenomas (1/50; 1/51; 6/51; 10/50) and carcinomas (0/50; 0/51; 16/51; 30/50); metastatic renal carcinomas, all sites (0/50; 0/51; 4/51; 13/50)	Renal tubular cell adenomas (0/50; 0/51; 1/50; 5/50) and carcinomas (0/50; 0/51; 1/50; 3/50); fibroadenomas of the mammary gland (17/50; 23/51; 22/50; 28/50); metastatic renal carcinomas, all sites (0/50; 0/51; 1/50; 0/50)
Level of evidence of carcinogenic activity Clear evidence	Clear evidence
Genetic toxicology Salmonella	CHO cells in vitro
(gene mutation) Negative with and without S9	SCEA berrationNegative without S9;Negative with and without S9positive with S9

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 7.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on page 10.

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence including: animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals tory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results ("Clear Evidence" and "Some Evidence"); one category for uncertain findings ("Equivocal Evidence"); one category for no observable effects ("No Evidence"); and one category for experiments that because of major flaws cannot be evaluated ("Inadequate Study"). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Reports series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following quintet is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemically related.
- No Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenic Activity is demonstrated by studies that because of major qualitative or quantitative limitations cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. This should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- The adequacy of the experimental design and conduct;
- Occurrence of common versus uncommon neoplasia;
- Progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- Some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- Combining benign and malignant tumor incidences known or thought to represent stages of progression in the same organ or tissue;
- Latency in tumor induction;
- Multiplicity in site-specific neoplasia;
- Metastases;
- Supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- The presence or absence of dose relationships;
- The statistical significance of the observed tumor increase;
- The concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- Survival-adjusted analyses and false positive or false negative concerns;
- Structure-activity correlations; and
- In some cases, genetic toxicology.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of Ochratoxin A is based on 13-week studies that began in November 1981 and ended in February 1982 and on 2-year studies that began in September 1982 and ended in September 1984 at Battelle Columbus Laboratories (Columbus, Ohio).

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

Gary Boorman, D.V.M., Ph.D., Study Scientist

John Bucher, Ph.D. Scot L. Eustis, D.V.M., Ph.D. Joseph K. Haseman, Ph.D. James Huff, Ph.D.

(Discipline Leaders and Principal Contributors)

Jack Bishop, Ph.D. Douglas W. Bristol, Ph.D. R. Chhabra, Ph.D. C.W. Jameson, Ph.D. E.E. McConnell, D.V.M. G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D. M. Vernon, Ph.D. Douglas Walters, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report on 3/26/87)

Gary Boorman, D.V.M., Ph.D. (Chair) (NTP) Michael Elwell, D.V.M., Ph.D. (NTP) Scot L. Eustis, D.V.M., Ph.D. (NTP) Kunitoshi Mitsumori, D.V.M., Ph.D. (NTP) Suzanne Neuenschwander, D.V.M. Experimental Pathology Laboratories, Inc. Ronald Persing, D.V.M. (Battelle Columbus Laboratories) Brian Short, D.V.M. (Chemical Industry Institute of Toxicology) Henk Solleveld, D.V.M., Ph.D. (Smith Kline and French)

Principal Contributors at Battelle Columbus Laboratories (Conducted Studies and Evaluated Tissues)

Arthur Peters, D.V.M. Ronald Persing, D.V.M. Ming Chang, Ph.D.

Principal Contributors at Experimental Pathology Laboratories, Inc. (Provided Pathology Quality Assurance)

J. Gauchat

S. Neuenschwander, D.V.M.

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D. Abigail C. Jacobs, Ph.D. John Warner, M.S.

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on Ochratoxin A on April 18, 1988, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Robert A. Scala, Ph.D. (Chair) Senior Scientific Advisor, Medicine and Environmental Health Department Research and Environmental Health Division, Exxon Corporation East Millstone, New Jersey

Michael A. Gallo, Ph.D.

Associate Professor, Director of Toxicology Department of Environmental and Community Medicine, UMDNJ - Rutgers Medical School Piscate way, New Jersey Frederica Perera, Dr. P.H. Division of Environmental Sciences School of Public Health Columbia University New York, New York

Ad Hoc Subcommittee Panel of Experts

John Ashby, Ph.D. Imperial Chemical Industries, PLC Central Toxicology Laboratory Alderley Park, England

Charles C. Capen, D.V.M., Ph.D. (Principal Reviewer) Department of Veterinary Pathobiology, Ohio State University Columbus, Ohio

Vernon M. Chinchilli, Ph.D. Department of Biostatistics Medical College of Virginia Virginia Commonwealth University Richmond, Virginia

Kim Hooper, Ph.D. Hazard Evaluation System and Information Services Department of Health Services State of California Berkeley, California

Donald H. Hughes, Ph.D. (Principal Reviewer) Scientific Coordinator, Regulatory Services Division, The Procter and Gamble Company Cincinnati, Ohio William Lijinsky, Ph.D. Director, Chemical Carcinogenesis Frederick Cancer Research Facility Frederick, Maryland

Franklin E. Mirer, Ph.D.* Director, Health and Safety Department International Union, United Auto Workers, Detroit, Michigan

James A. Popp, D.V.M., Ph.D. (Principal Reviewer) Head, Department of Experimental Pathology and Toxicology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

Andrew Sivak, Ph.D. Vice President, Biomedical Science Arthur D. Little, Inc. Cambridge, Massachusetts

^{*}Unable to attend

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF OCHRATOXIN A

On April 18, 1988, the draft Technical Report on the toxicology and carcinogenesis studies of ochratoxin A received peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting was held at the National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina.

Dr. G.A. Boorman, NIEHS, began the discussion by reviewing the experimental design, results, and proposed conclusions (clear evidence of carcinogenic activity for male and female rats). Ochratoxin A administration also caused nonneoplastic renal changes, including tubular cell hyperplasia, tubular cell proliferation, cytoplasmic alteration, karyomegaly, and degeneration of the renal tubular epithelium.

Dr. Capen, Dr. Popp, and Dr. Hughes, the principal reviewers, agreed with the conclusions. All three reviewers indicated that the inclusion of photomicrographs was most useful. In view of the over-whelming carcinogenic response, Dr. Hughes thought it curious that the genetic toxicity assays did not indicate any strong evidence of interaction for the chemical with DNA or adduct formation. Dr. Boorman said that DNA adduct studies had not been done.

Dr. Capen moved that the Technical Report on ochratoxin A be accepted with the conclusions as written for male and female rats, clear evidence of carcinogenic activity. Dr. Popp seconded the motion, which was approved unanimously with 10 votes.

I. INTRODUCTION

Occurrence and Human Exposure Toxicity Carcinogenicity Studies Reproductive and Teratogenic Effects Absorption, Distribution, and Metabolism Genetic Toxicology Study Rationale

OCHRATOXIN A

CAS No. 303-47-9

C₂₀H₁₈ClNO₆

Molecular weight 403.8

 $\label{eq:synonyms: (R)-N[(5-chloro-3,4-dihydro-8-hydroxy-3-methyl-1-oxo-1H-2-benzopyran-7-yl)-carbonyl](-L-)phenylalanine$

Occurrence and Human Exposure

Ochratoxin A is a fungal toxin produced by Aspergillus ochraceus, A. sulphureus, Penicillium viridicatum, P. cyclopium, and other species and is present as a contaminant in plant products, especially cereals, beans, and peanuts (Scott et al., 1972; Krogh et al., 1973). Ochratoxin A is also found in meats, dried fish, and nuts (Ueno, 1985). In plant products, concentrations up to 27.5 ppm have been observed, whereas the highest observed concentration of residues in animal products (bacon from pigs) is 0.067 ppm (Krogh, 1977). Human exposure occurs through consumption of contaminated cereals or meat from animals that retain ochratoxin A in their tissues after being fed contaminated feed. Balkan endemic nephropathy and porcine nephropathy occurred in areas where home-grown cereals were contaminated with ochratoxin A (Krogh, 1974; Petkova-Bocharova and Castegnaro, 1985). Balkan endemic nephropathy is seen in areas of Bulgaria, Yugoslavia, and Romania and is associated with a high frequency of carcinomas of the renal pelvis, ureter, and urinary bladder (Castegnaro et al., 1987). The risk of developing tumors is ninetyfold greater in affected villages than in nonaffected villages. Although a number of explanations have been considered, most support is given to the hypothesis involving mycotoxins. Ochratoxin A was found in the blood of people living in areas of endemic nephropathy in Yugoslavia (7% of samples positive, generally containing 2-5 ng ochratoxin A per gram of serum, with the highest concentration being 40 ng/g serum) (Hult et al., 1982). Ochratoxin A

was demonstrated to be the cause of porcine nephropathy in Denmark (Castegnaro et al., 1987). In Poland, where a recent increase in porcine nephropathy was found, 148/388 (38%) porcine serum samples were positive for ochratoxin A with concentrations ranging from 1 to 520 ng/ml (Golinski et al., 1985). Galtier et al. (1981) have shown that ochratoxin A persists longer in pigs than in other species, which suggests that problems of ochratoxin A residues in the human food chain may be greater in pork than in other meats.

Toxicity

The nephrotoxic properties of ochratoxin A have been demonstrated in several animal studies. The chemical at concentrations of 3 ppm in feed caused significant depression of weight gain and feed efficiency in chicks (Kubena et al., 1983). Wistar rats dosed with ochratoxin A at 10, 15, 25, or 40 mg/kg body weight by gavage had renal lesions varying from mild dilatation of collecting ducts to severe tubular necrosis (Purchase and Theron, 1968). The LD_{50} values appeared to be 22 mg/kg for males and 20 mg/kg for females. When ochratoxin A was administered for 2 weeks in feed to Wistar rats at concentrations of 0, 2.4, 4.8, 9.6, or 24 ppm, renal effects were seen (Munro et al., 1974). These effects included increased kidney weight relative to body weight, an increase in urinary volume, increased urine pH, increased urine specific gravity, increased blood urea nitrogen, and depressed body weight gain and feed consumption. Other groups of rats fed ochratoxin A at 0, 0.2, 1, or 5 ppm for 90 days showed renal changes in all dosed groups. A second study showed that ochratoxin A given in feed at concentrations as low as 2 ppm for as little as 1 week caused renal tubular cell injury in rats (Kane et al., 1986a,b).

The initial toxic effect of ochratoxin A is found in the nephron at the level of the proximal convoluted tubule (Ueno, 1985). It appears that the specific effect is on the anion transport mechanism located on the brush border (Endo, 1983). Rats lose the ability to concentrate urine, and excretion of glucose is increased (Krogh, 1977). Biochemically, renal gluconeogenesis and renal phosphoenolpyruvate carboxykinase activity are decreased (Meisner and Selanik, 1979; Meisner et al., 1983). The decreased level of cytosolic phosphoenolpyruvate carboxykinase, involved in gluconeogenesis, is a result of ochratoxin Ainduced depression of multiple species of mRNA in renal proximal tubular cells (Meisner and Cimbala, 1986). Ochratoxin A also appears to inhibit protein synthesis by competition with phenylalanine in the phenylalanyl-tRNA synthetase-catalyzed reactions (Bunge et al., 1978; Creppy et al., 1979; Mayura et al., 1984a). Ochratoxin A toxicity in mice can be reduced by administration of phenylalanine (Creppy et al., 1980). As would be expected, ochratoxin A nephrotoxicity is enhanced in rats subjected to a partial nephrectomy (Stein et al., 1984).

Ochratoxin A also affects the hematopoietic system. Female $B6C3F_1$ mice given a total dose of 0, 20, 40, or 80 mg/kg ochratoxin A by intraperitoneal injection every other day for 8 days had atrophy of the thymus at the two highest doses, decreased bone marrow cellularity, and a decreased number of bone marrow progenitor cells in all dosed groups (Boorman et al., 1984). Six weekly injections of ochratoxin A at 5 mg/kg also were reported to cause decreased bone marrow counts in Swiss mice (Gupta et al., 1983). Oneday-old chicks given 0.1, 1, 10, or 100 µg ochratoxin A per chick per day for up to 10 days had nephrosis, decreased spleen size, and suppressed hematopoiesis (Peckham et al., 1971).

Depression of the immunologic response by ochratoxin A was reported for BALB/c mice (Roschenthaler et al., 1983). These immunologic and hematologic effects may result from competition between ochratoxin A and phenylalanine, since the immunologic effects in mice can be negated by giving supplemental phenylalnine to ochratoxin A-dosed mice (Haubeck et al., 1981; Roschenthaler et al., 1983). An interesting finding is suppression of natural killer cell activity and enhanced growth of transplanted tumor cells in $B6C3F_1$ mice given 6.7 or 13.4 mg/kg ochratoxin A either orally or systemically (Luster et al., 1987). Nonspecific immunologic effects such as impaired phagocytosis by heterophils has also been reported in chickens (Chang and Hamilton, 1980). At oral doses of 25 or 40 mg/kg in Wistar rats, some evidence of hepatotoxicity was reported (Purchase and Theron, 1968; Peckham et al., 1971). This effect tended to be single-cell necrosis of periportal hepatocytes (Purchase and Theron, 1968). This hepatotoxic effect appears to be less specific, since it occurred only after exposure at higher concentrations of ochratoxin A and the decreased amount of mRNA seen in proximal renal tubular epithelial cells after ochratoxin A exposure was not seen in hepatocytes (Meisner and Cimbala, 1986). Ochratoxin A has a much less pronounced effect on drug-metabolizing systems of the rat liver than does aflatoxin B_1 (Galtier et al., 1984).

Carcinogenicity Studies

When Wistar-derived rats were given 2.5 mg/kg ochratoxin A in sunflower oil or sunflower oil alone as a vehicle control (10 rats per group) by subcutaneous injection for 35 doses (given twice per week) and held to week 87, 2 dosed and 2 vehicle control animals had subcutaneous fibrosarcomas at the injection site (Purchase and van der Watt, 1971). In a dermal study in white mice, ochratoxin A used as a promoter following 7,12dimethylbenz[a]anthracene initiation did not affect the incidence of papillomas (Lindenfelser et al., 1973). One-year feed studies in male DDY mice showed that exposure at 40 ppm for 50 weeks caused renal and hepatic tumors (Kanisawa and Suzuki, 1978; Kanisawa, 1984). Nine of 9 mice fed diets containing 40 ppm ochratoxin A had cystic renal adenomas compared with none in 10 control mice. These carcinogenic effects of ochratoxin A in mice were confirmed in a 24-month feed study in male and female $B6C3F_1$ mice (50 per each sex and dose group) exposed to

ochratoxin A at 0, 1, or 40 ppm (Bendele et al., 1983, 1985). Twenty-six of 50 male mice receiving 40 ppm ochratoxin A had renal tumors. No renal tumors were observed in female mice, although there was a slight but significant increase in hepatocellular carcinomas. In males, the incidences of liver tumors were not significantly increased.

Reproductive and Teratogenic Effects

Ochratoxin A given on gestation days 6-15 to pregnant Sprague Dawley-derived rats was found to be embryocidal at doses of 0.75 mg/kg or higher and teratogenic at 0.25 and 0.50 mg/kg (Brown et al., 1976). Deformities included wavy ribs, agenesis of vertebrae, and alterations in the nasal cavity. A single dose of 5 mg/kg ochratoxin A given by intraperitoneal injection to mice on any one of the gestation days between days 7 and 12 resulted in fetal deaths and severe malformations including exencephaly and anomalies of eyes, digits, tail, ribs, vertebrae, and skull (Hayes et al., 1974). The highest incidence of lesions was observed after mice were dosed on day 11 of gestation. Brain necrosis was reported in mice transplacentally exposed to ochratoxin A (Szczech and Hood, 1981), and prenatal exposure caused malformations in hamsters (Hood et al., 1975). With impaired maternal renal function, the teratogenicity of ochratoxin A in rats was increased (Mayura et al., 1984b). Partial protection against ochratoxin A-induced teratogenesis in rats was seen after coadministration of phenylalanine (Mayura et al., 1984a).

Absorption, Distribution, and Metabolism

The primary site of absorption of ochratoxin A appears to be in the small intestine. When ochratoxin A was injected into the lumen of the stomach, small intestine, cecum, or colon of male Wistar rats, the highest absorption was in the proximal jejunum (Kumagai and Aibara, 1982). In mice, when the ochratoxin A was given by oral intubation, the site of highest absorption was the duodenum. In this study, immunohistochemical staining revealed that the highest concentrations of ochratoxin A were in the intestine with decreasing levels in the kidney and liver (Kumagai and Aibara, 1982; Lee et al., 1984). When ochratoxin A was given orally or by intraperitoneal injection to two strains of rats, 6% of the dose was excreted as ochratoxin A, 1%-1.5% as (4R)-4-hydroxyochratoxin A, and 25%-27% as ochratoxin A a in the urine, independent of the route (Storen et al., 1982). The rats were kept in metabolism cages, and 24-hour urine and fecal samples were analyzed for 6 days after the rats were dosed. Only traces of ochratoxin A and ochratoxin A a were found in the feces, as determined by high-performance liquid chromatography and mass spectroscopy.

When ochratoxin A was given orally or intravenously to pigs, rabbits, and chickens at doses of 0.5-2 mg/kg, the biologic half-lives were 88.8, 8.2, and 4.1 hours, respectively, with 65.7%, 55.6%, and 40% of the oral dose being absorbed (Galtier et al., 1981). There are clear pharmacokinetic differences between these three species.

Patients in Bulgaria with Balkan endemic nephropathy and/or renal neoplasms were found to metabolize debrisoquine (a cytochrome P450dependent reaction) more extensively than did unaffected persons (Castegnaro et al., 1987). Rats with an extensive capacity to metabolize debrisoquine also metabolize ochratoxin A more extensively to its 4-hydroxy metabolite (Storen et al., 1982). Whether this pathway is related to the ability of ochratoxin A to cause renal neoplasms is not known.

Genetic Toxicology

Ochratoxin A has been tested in numerous laboratories for induction of gene mutation in a variety of Salmonella typhimurium strains with and without exogenous metabolic activation, and results were uniformly negative (Engel and von Milczewski, 1976; Wehner et al., 1978; Kuczuk et al., 1978; Bartsch et al., 1980; Zeiger et al., 1988). In addition, no growth inhibition due to DNA damage was observed in Bacillus subtilis strain M15/H17 (Ueno and Kubota, 1976), and no induction of mitotic recombination was reported in Saccharomyces cerevisiae D3 after treatment with ochratoxin A (Kuczuk et al., 1978).

Tests with mammalian cells have indicated some genotoxic activity by ochratoxin A.

Unscheduled DNA synthesis was reported in ACI rat and C3H mouse hepatocyte cultures treated with ochratoxin A (Mori et al., 1984). DNA damage in the form of single strand breaks was observed in the kidney, liver, and spleen of male BALB/c mice injected intraperitoneally with 2.5 mg/kg ochratoxin A in dimethyl sulfoxide-phosphate buffered saline; the DNA damage to splenic cells was confirmed by an in vitro procedure using phytohemagglutininstimulated cultured spleen cells incubated for 48 hours with 10 μ g/ml ochratoxin A in dimethyl sulfoxide (Creppy et al., 1985). Kane et al. (1986c) reported induction of DNA single strand breaks in renal and hepatic cells of rats administered 288.8 µg/kg ochratoxin A by gavage every 48 hours for 12 weeks (doses were selected to correspond to 4 ppm in feed). Although this observed DNA damage in mammalian cells provides limited evidence of mutagenic potential, no induction of gene mutation was detected in cultured mouse FM3A cells exposed to ochratoxin A at 10 μ g/ml in the absence of metabolic activation (Umeda et al., 1977).

Study Rationale

Ochratoxin A was selected for study because it is found in animal products and because a potential for human exposure exists. Although ochratoxin A was found to be carcinogenic for male and female $B6C3F_1$ mice in a Food and Drug Administration study that appeared to be adequate (Bendele et al., 1985), previous studies in rats were considered inadequate by International Agency for Research on Cancer standards (IARC, 1976), and thus, these current studies were conducted in F344/N rats.

Ochratoxin A, NTP TR 358

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF OCHRATOXIN A
PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES
SIXTEEN-DAY STUDIES
THIRTEEN-WEEK STUDIES
NINE-MONTH, FIFTEEN-MONTH, AND TWO-YEAR STUDIES
Study Design
Source and Specifications of Animals
Animal Maintenance
Clinical Examinations and Pathology
Statistical Methods

GENETIC TOXICOLOGY

PROCUREMENT AND CHARACTERIZATION OF OCHRATOXIN A

Ochratoxin A (extracted from rice cultures of Aspergillus ochraceus, isolated by liquid chromatography, and recrystallized from chloroform:hexane:acetic acid) was obtained in three lots from the Food and Drug Administration (Table 1). Purity and identity analyses were conducted at Midwest Research Institute (MRI) (Kansas City, Missouri). MRI reports on the analyses performed in support of the ochratoxin A studies are on file at NIEHS.

All lots of the study chemical were a white crystalline powder and were identified as ochratoxin A by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. Infrared, ultraviolet/visible, and nuclear magnetic resonance spectra (representative spectra presented in Figures 1 and 2) were consistent with the structure and with literature spectra (Steyn and Holzapfel, 1967; Van Der Merwe et al., 1965).

Cumulative data indicated that the purity of lot no. 0459-8100 was approximately 94%. This purity was determined by thin-layer chromatography, high-performance liquid chromatography, and gas chromatography. Thin-layer chromatography with a Supelco Aflasil® plate and two different solvent systems--toluene:ethyl acetate:acetic acid (85:5:10) and hexanes: acetone:acetic acid (55:35:10)--and visualization at 366 nm indicated a major spot and a trace impurity (solvent system 1 only). Highperformance liquid chromatography with an Altex Ultrasphere ODS column, detection at 254 nm, and a solvent system of 1% aqueous acetic acid:1% acetic acid in methanol (36:64) detected an impurity with an area 0.4% that of the major peak. Quantitation of residual chloroform from the recrystallization of the study material was performed by gas chromatography with flame ionization detection and a 1.8 m \times 4 mm 10% SP2100 glass column. Chloroform was determined to be present at a level of 4% in the study material. The nuclear magnetic resonance analvsis also indicated the presence of acetic acid in the study material, estimated to be present at approximately 1.4%.

Cumulative data indicated that lot no. 8-29-2 was approximately 98% pure. Results of elemental analyses were in agreement with theoretical values for carbon, hydrogen, nitrogen, and chlorine after correction for the chloroform content. Thin-layer chromatography by the two systems described above indicated a major spot and a trace impurity by both systems. High-performance liquid chromatography with the same system described above indicated two impurities with a combined area of 1.7% relative to the major peak area. Gas chromatographic analysis with the system described above except for the use of a 20% SP2100/0.1% Carbowax column indicated the presence of chloroform, which was quantitated to be present at a level of 0.4%; benzene, quantitated to be present at a level of 0.018%; o-xylene, guantitated to be present at a level of 0.001%; and p-xylene, guantitated to be present at a level of 0.005%.

TABLE 1. IDENTITY AND SOURCE OF OCHRATOXIN A USED IN THE GAVAGE STUDIES

Sixteen-Day Studies	Thirteen-Week Studies	Nine-Month Studies	Fifteen-Month Studies	Two-Year Studies
Lot Numbers 0459-8100	8-29-2	9-31-1	Same as 9-mo studies	Same as 9-mo studies
Date of Initial Use 4/14/81	11/12/81	09/20/82	09/20/82	09/20/82
Supplier Food and Drug Administration Washington, DC)	Same as 16-d studies	Same as 16-d studies	Same as 16-d studies	Same as 16-d studies

Cumulative data indicated that lot no. 9-31-1 was approximately 98% pure. Results of elemental analyses were in agreement with theoretical values for carbon, hydrogen, nitrogen, and chlorine after correction for the chloroform content. Thin-layer chromatography with the two systems previously described indicated a major spot and a trace impurity. High-performance liquid chromatography with a µBondapak C18 column and solvent system previously described indicated two impurities, with a combined area of 1.4% relative to the major peak area. Gas chromatographic analysis was performed with flame ionization detection and three different systems: system 1--10% SP2100, system 2--20% SP2100/0.1% Carbowax 1500, and system 3--80/100 Carbopack C/0.1% SP1000. Chloroform content was quantitated as 0.93% (w/w) by system 1. Since the highest dose of ochratoxin A in the 2-year studies was 210 µg/kg, the exposure levels to this contaminant were 2 µg/kg or less. Benzene, o-xylene, and pxylene were not present at the detection limits of 100 ppm for benzene or 70 ppm for o- or p-xylene by system 2. n-Hexane was not present at a concentration of greater than 70 ppm, as determined by system 3.

Confirmation of the stability of the chemical during the 2-year studies was obtained by high-

performance liquid chromatography and ultraviolet spectroscopy. These methods for analysis were performed by the study laboratory after month 7 of the studies. Results of reanalysis suggested that no degradation of the bulk chemical occurred during the studies.

PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES

Appropriate amounts of ochratoxin A and corn oil were mixed (w/v) to give a stock suspension (Table 2). The stability of ochratoxin A in corn oil (350 µg/ml) was determined by high-performance liquid chromatography. The corn oil solution was first diluted with an equal amount of hexanes and then extracted with methanol:water (80:20). The extract was analyzed by high-performance liquid chromatography with a µBondapak C₁₈ column, a 1% aqueous acetic acid:1% acetic acid in methanol (30:70) mobile phase, and detection at 333 nm. The study chemical in corn oil was found to be stable for at least 21 days at room temperature in the dark and for at least 3 hours when exposed to air and light at room temperature. Mixtures were stored at 4° C for up to 2 weeks for the 16-day and 13-week studies. During the 9-month,15month, and 2-year studies, mixtures were kept at room temperature for up to 2 weeks.

TABLE 2. PREPARATION AND STORAGE OF DOSE MIXTURES IN THE GAVAGE STUDIES OF
OCHRATOXIN A

Sixteen-Day Studies	Thirteen-Week Studies	Nine-Month Studies	Fifteen-Month Studies	Two-Year Studies
Preparation Appropriate amounts of ochratoxin A mixed with corn oil; lower doses prepared by dilution	Appropriate amounts of ochratoxin A dilut- ed to volume in gradu- ated cylinder with corn oil; lower doses prepared by dilution	Appropriate amounts of ochratoxin A mixed with corn oil in Brink- man PT10-35 [®] homoge- nizer for 30 sec, diluted to volume in a cylinder, and mixed by inversion lower doses prepared by dilution		Same as 9-mo studies
Maximum Storage T 2 wk	ime 2 wk	2 wk	2 wk	2 wk
Storage Conditions 4°C in foil-wrapped bottles	4°C in amber glass bottles	Room temperature in amber glass bottles	Same as 9-mo studies	Same as 9-mo studies

Periodic analysis of ochratoxin A/corn oil mixtures was conducted at the study laboratory and the analytical chemistry laboratory by the highperformance liquid chromatography method described above. During the 2-year studies, the dose preparations were analyzed at the study laboratory at approximately 8-week intervals. Because 38/40 of the dose mixtures were formulated within $\pm 10\%$ of the target concentrations, it is estimated that dose mixtures were prepared within specifications approximately 95% of the time throughout the studies (Table 3). Results of referee analyses performed by the analytical chemistry laboratory were generally in agreement with those of the study laboratory (Table 4).

TABLE 3.	RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF
	OCHRATOXIN A

	Concentration of Ochratoxin A in Corn Oil for Target Concentration (µg/ml) (a)					
Date Mixed	4.2	14	42			
09/16/82	4.14	13.65	(b) 37.25			
		13.35				
09/21/82			(c) 41.80			
11/04/82	3.98	15.24	41.69			
12/14/82	4.18	14.86	39.46			
02/23/83	4.13	14.02	(b) 36.18			
02/24/83			(c) 42.90			
04/12/83	4.33	13.88	41.79			
06/15/83	3.83	12.62	38.39			
08/03/83	4.28	(d) 13.15	(d) 39.96			
10/04/83	4.35	12.61	39.50			
12/07/83	4.23	14.16	44.51			
01/24/84	4.20	14.39	40.92			
03/27/84	4.18	14.99	41.02			
05/22/84	4.39	14.73	43.61			
07/17/84	4.07	14.35	41.97			
ean (µg/ml)	4.18	14.00	40.48			
andard deviation	0.155	0.842	2.371			
pefficient of variation (percent)	3.7	6.0	5.9			
ange (µg/ml)	3.83-4.39	12.61-15.24	36.18-44.51			
umber of samples	13	14	13			

(a) Results of duplicate analysis unless otherwise specified

(b) Out of specifications; not used in studies.

(c) Remix; not included in the mean.

(d) Analyzed in quadruplicate

TABLE 4. RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGESTUDIES OF OCHRATOXIN A

		Determined Concentration (µg/ml)			
Date Mixed	Target Concentration (µg/ml)	Study Laboratory (a)	Referee Laboratory (b)		
09/16/82	4.2	4.14	4.11		
04/12/83	14	13.88	12.6		
10/04/83	42	39.50	40.2		
05/22/84	14	14.73	13.7		

a) Results of duplicate analysis

b) Results of triplicate analysis

SIXTEEN-DAY STUDIES

Male and female F344/N rats were obtained from Harlan Industries and held for 20 days before the studies began. The rats were approximately 7 weeks old when placed on study. Groups of five rats of each sex were administered 0, 1, 4, or 16 mg/kg ochratoxin A in corn oil by gavage, 5 days a week for a total of 12 doses over 16 days.

Animals were housed five per cage. Water and feed were available ad libitum. The rats were observed twice per day and were weighed on days 1 and 7 and at necropsy. Liver, thymus, right kidney, heart, brain, and lungs were weighed. A necropsy was performed on all surviving animals. Histologic examinations were performed on all animals. Details of animal maintenance are presented in Table 5.

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxic effects of repeated administration of ochratoxin A and to determine the doses to be used in the 2-year studies.

Four- to six-week-old male and female F344/N rats were obtained from Frederick Cancer Research Facility, observed for 15 days (males) or 16 days (females), distributed to weight classes, and assigned to cages and then to dose groups according to two tables of random numbers. Rats were 7-9 weeks old when placed on study.

Groups of 10 rats of each sex were administered 0, 0.0625, 0.125, 0.25, 0.5, or 1 mg/kg ochratoxin A in corn oil by gavage, 5 days per week for 13 weeks.

Rats were housed five per cage. Feed and water were available ad libitum. Animals were checked twice per day; moribund animals were killed. Individual animal weights were recorded once per week.

At the end of the 13-week studies, survivors were killed. The liver, thymus, right kidney, heart, brain, right testis, and lungs were weighed. A necropsy was performed on all animals except those excessively autolyzed or cannibalized. Tissues and groups examined are listed in Table 5.

NINE-MONTH, FIFTEEN-MONTH, AND TWO-YEAR STUDIES

Study Design

Groups of 80 rats of each sex were administered 0, 21, 70, or 210 µg/kg ochratoxin A in corn oil by gavage, 5 days per week for 9 months, 15 months, or 103 weeks. At 9 months and at 15 months, 15 animals of each sex were scheduled to be killed; animals scheduled to be killed at 15 months but which died before the 15-month kill became part of the 2-year studies. All tissues of vehicle control and high dose rats were examined microscopically. The kidneys and pituitary glands of all animals were examined microscopically.

Sixteen-hour samples of urine were collected from 15 rats of each sex from each dose group on days designated for the interim kill--3, 10, and 45--and at months 3, 6, 9, 12, and 15 of the studies. The animals were placed in metabolism cages (Maryland Plastics, New York, New York), and urine was collected overnight. Rats were fasted during urine collection, but water was available ad libitum. Thymol was placed in urine-collecting bottles as a preservative. Urinary creatinine, urea nitrogen, glucose, and total protein were measured on a Gemsaec Centrifugal Analyzer. Urinary pH was measured on a pH meter (Radiometer Copenhagen, Copenhagen, Denmark). Specific gravity was measured directly with a refractometer (American Optical, Buffalo, New York). Total urine volume was measured, and urinary sediment was examined microscopically.

At days 7 and 47 and at months 6 and 12 of the studies, urine was checked for urine-concentrating ability. Rats were deprived of water for 16 hours, their urinary bladders were evacuated, and they were placed in metabolism cages for 4 hours with no feed or water available. Urine was collected, and the specific gravity of the urine was measured with a refractometer.

Sixteen-Day Studies	Thirteen-Week Studies	Nine-Month Studies	Fifteen-Month Studies	Two-Year Studies
EXPERIMENTAL D	ESIGN			
Size of Study Groups 5 males and 5 females	s 10 males and 10 females	15 males and 15 females	15 males and 15 females	50 males and 50 females
Doses 0, 1, 4, or 16 mg/kg ochratoxin A in corn oil by gavage; dose vol10 ml/kg	0, 0.0625, 0.125, 0.25, 0.5, or 1 mg/kg ochra- toxin A in corn oil by gavage; dose vol10 ml/kg	0, 21, 70, or 210 µg/kg ochratoxin A in corn oil by gavage; dose vol5 ml/kg	Same as 9-mo studies	Same as 9-mo studies
Date of First Dose 4/14/81	Male11/12/81; female11/13/81	Male9/21/82; female9/26/82	Male9/20/82; female9/25/82	Male9/20/82; female9/21/82
Date of Last Dose 4/29/81	Male2/10/82; female2/11/82	Male6/23/83; female6/28/83	Male12/20/83; female12/21/83	Male9/7/84; female9/10/84
Duration of Dosing 5 d/wk for 12 doses over 16 d	5 d/wk for 13 wk	5 d/wk for 9 mo	5 d/wk for 15 mo	5 d/wk for 103 wk
Type and Frequency Observed $2 \times d$; weighed initially and $1 \times$ wk thereafter	of Observation Observed $2 \times d$; weighed initially and $1 \times$ wk thereafter	Observed 2 \times d; weighed initially, 1 \times wk for 13 wk, and then 1 \times mo	Same as 9-mo studies	Same as 9-mo studies
Necropsy, Histologic Necropsy performed on all surviving ani- mals; histologic ex- ams performed on all animals. Brain, heart, right kidney, liver, lungs, and thymus weighed at necropsy		upplemental Studies Necropsy performed on all animals; the follow- ing tissues examined histologically for ve- hicle control and high dose groups and un- scheduled deaths be- fore month 21: adrenal glands, brain, colon, esophagus, eyes, femur including marrow, gross lesions and tis- sue masses with re- gional lymph nodes, heart, kidneys, liver, lungs and mainstem bronchi, mammary gland, mesenteric lymph nodes, pan- creas, parathyroid glands, pituitary gland, prostate/testes or ovaries/uterus, salivary glands, skin, small intestine, spleen, stomach, thy- mus, thyroid gland, trachea, and urinary bladder. Kidneys and gross lesions examined	all animals; the same tissues and groups ex- amined as in the 9-mo studies. Only kidney and pituitary gland ex- amined in low dose groups. Urinalysis and serum chemical analyses performed at 12 and 15 mo. Urine-concentrating ability determined at 12 mo and hematologic anal yses at 15 mo	

TABLE 5. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF OCHRATOXIN A

Sixteen-Day Studies	Thirteen-Week Studies	Nine-Month Studies	Fifteen-Month Studies	Two-Year Studies
Necropsy and Histo	logic Examination (Co	ontinued) in lower dose groups. Urinalysis performed on d 3, 10, and 45 and mo 3, 6, and 9; urine- concentrating ability determined at d 7 and and mo 6; hematologic analyses performed at d 45 and mo 3 and 9;	2	<u></u>
		serum chemical analy ses performed at d 3, 10, and 45 and mo 3, 6 and 9		
	IMAL MAINTENANO			
Strain and Species F344/N rats	F344/N rats	F344/N rats	F344/N rats	F344/N rats
Animal Source Harlan Industries Indianapolis, IN)	Frederick Cancer Research Facility (Frederick, MD)	Frederick Cancer Research Facility (Frederick, MD)	Frederick Cancer Research Facility (Frederick, MD)	Frederick Cancer Research Facility (Frederick, MD)
Study Laboratory Battelle Columbus Laboratories	Battelle Columbus Laboratories	Battelle Columbus Laboratories	Battelle Columbus Laboratories	. Battelle Columbus Laboratories
Method of Animal I				
loe clip	Toe clip	Toe clip	Toe clip	Toe clip
Time Held Before S 0 d	tudy Male15 d; female16 d	19-26 d	19-26 d	19-26 d
Age When Placed of ?wk	n Study 7-9 wk	Male8-9 wk; female8-10 wk	Same as 9-mo studies	Same as 9-mo studies
Age When Killed 0 wk	22 wk	Male47-48 wk; female48-50 wk	Male73-74 wk; female73-75 wk	113-115 wk
vecropsy Dates 1/30/81	2/11/82; female2/12/82	Male6/24/83; female6/29/83	Male12/21/83; female12/22/83	9/17/84-9/20/84
Method of Animal I Assigned to weight classes; distributed to cages and then to dose groups according to 2 tables of random numbers	Distribution Same as 16-d studies	Same as 16-d studies	Same as 16-d studies	Same as 16-d studies

TABLE 5. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF OCHRATOXIN A (Continued)

Sixteen-Day Studies	Thirteen-Week Studies	Nine-Month Studies	Fifteen-Month Studies	Two-Year Studies	
ANIMALS AND AN	IMAL MAINTENANC	CE (Continued)			
Feed NIH 07 Rat and Mouse Ration (Zeig- ler Bros., Inc., Gardners, PA); avail- able ad libitum	Same as 16-d studies	Same as 16-d studies	Same as 16-d studies	Same as 16-d studies	
Bedding Absorb-Dri (Absorb- Dri, Inc., Garfield, NJ)	Absorb-Dri (Weisheimers, Columbus, OH)	Same as 16-d studies	Same as 16-d studies	Same as 16-d studies	
Water Automatic watering system (Edstrom In- dustries, Waterford, WI); available ad libitum	Same as 16-d studies	Same as 16-d studies	Same as 16-d studies	Same as 16-d studies	
Cages Polycarbonate (Lab Products, Inc Rochelle Park, NJ)	Same as 16-d studies	Same as 16-d studies	Same as 16-d studies	Same as 16-d studies	
Cage Filters Spun-bonded poly- ester, Dupont 2024 [*] (Snow Filtration, Cincinnati, OH)	Same as 16-d studies	Same as 16-d studies	Same as 16-d studies	Same as 16-d studies	
Animals per Cage 5	5	5	5	5	
Other Chemicals on None	Study in the Same R None	loom None	None	None	
Animal Room EnvironmentTemp22°.24° C;hum40%-60%;hum40%-60%;fluorescent lightfluorescent light12 h/d; 15 room airchanges/hchanges/h		Temp17°-23° C; hum24%-68%; fluorescent light 12 h/d; 15 room air changes/h	Temp16°-25° C; hum24%-68%; fluorescent light 12 h/d; 16-24 room air changes/h	Same as 15-mo studies	

TABLE 5. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF
OCHRATOXIN A (Continued)

At day 45 and at months 3, 9, and 15, blood samples were collected from 15 rats of each sex from each dose group by puncture of the orbital sinus. Erythrocyte, leukocyte, and platelet counts were determined with an Ortho ELT-8 laser hematology counter. Hemoglobin was determined spectrophotometrically at 540 nm after reaction of lysed cells with cyanide ferricyanide. Mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration were calculated. The number of nonsegmented neutrophils, segmented neutrophils, eosinophils, basophils, lymphocytes, monocytes, nucleated erythrocytes, and reticulocyte counts was determined microscopically.

At days 3, 10, and 45 and at months 3, 6, 9, 12, and 15, blood was obtained from 15 rats of each sex from each dose group from the orbital sinus. Glucose, urea nitrogen, and creatinine levels were measured on a Gemsaec IV Centrifugal Analyzer.

A femur was taken at necropsy at months 9 and 15; bone marrow cellularity was determined with an Ortho ETL-8 hematology counter, and differential counts were determined from bone marrow smears. A necropsy was performed on all animals including those found dead, unless they were excessively autolyzed or cannibalized, missexed, or found missing.

Source and Specifications of Animals

The male and female F344/N rats used in these studies were produced under strict barrier conditions at Frederick Cancer Research Facility under a contract to the Carcinogenesis Program. Breeding stock for the foundation colony at the production facility originated at the National Institutes of Health Repository. Animals shipped for study were progeny of defined microflora-associated parents that were transferred from isolators to barrier-maintained rooms. Animals were shipped to the study laboratory in two shipments at 5 weeks of age for each shipment of males and at 5 and 6 weeks of age for females. The animals were guarantined at the study laboratory for approximately 3-4 weeks. Thereafter, a complete necropsy was performed on five animals of each sex to assess their health status. Male rats were placed on study at 8-9 weeks of age and female rats, at 8-10 weeks of age. The health of the animals was monitored during the course of the studies according to the protocols of the NTP Sentinel Animal Program (Appendix C).

Animal Maintenance

Animals were housed five per cage. Males and females were housed in separate rooms. Feed and water were available ad libitum. Cages were rotated. Further details of animal maintenance are given in Table 5.

Clinical Examinations and Pathology

All animals were observed two times per day, and clinical signs were recorded at least once per month. Body weights were recorded once per week for the first 13 weeks of the study and once per month thereafter. Mean body weights were calculated for each group. Animals found moribund and those surviving to the end of the studies were humanely killed. A necropsy was performed on all animals including those found dead, unless they were excessively autolyzed or cannibalized, missexed, or missing. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study.

During necropsy, all organs and tissues were examined for grossly visible lesions. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Histopathologic examination of tissues was performed according to an "inverse pyramid" design (McConnell, 1983a,b). That is, complete histopathologic examinations (Table 5) were performed on all high dose and vehicle control animals and on lower dose animals dying through month 21 of the study. In addition, histopathologic examinations were performed on all grossly visible lesions in all dose groups. Potential target organs for chemically related neoplastic and nonneoplastic effects were identified from the short-term studies or the literature and were determined by examination of the pathology data; these target organs/tissues in the lower dose groups were examined histopathologically. If mortality in the highest dose group exceeded that in the vehicle control group by 15%, complete histopathologic examinations were performed on all animals in the second highest dose group in addition to those in the high dose group.

A femur taken from rats after killing was flushed with Hank's balanced solution. Suspended cells were counted and reported as cellularity. Differential counts were made from the cell suspensions. Since marrow cellularity was not consistent, these values are not included in this report.

When the pathology evaluation was completed, the slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were sent to an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10% of the animals were evaluated by a quality assessment pathologist. The quality assessment report and slides were submitted to the Pathology Working Group (PWG) Chairperson, who reviewed all target tissues and those about which there was a disagreement between the laboratory and quality assessment pathologists.

Representative slides selected by the Chairperson were reviewed by the PWG without knowledge of previously rendered diagnoses. When the consensus diagnosis of the PWG differed from that of the laboratory pathologist, the laboratory pathologist was asked to reconsider the original diagnosis. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnoses represent a consensus of contractor pathologists and the NTP Pathology Working Group. For subsequent analysis of pathology data, the diagnosed lesions for each tissue type are combined according to the guidelines of McConnell et al. (1986).

Slides/tissues are generally not evaluated in a blind fashion (i.e., without knowledge of dose

group) unless the lesions in question are subtle or unless there is an inconsistent diagnosis of lesions by the laboratory pathologist. Nonneoplastic lesions are not examined routinely by the quality assessment pathologist or PWG unless they are considered part of the toxic effect of the chemical.

Statistical Methods

Data Recording: Data on this experiment were recorded in the Toxicology Data Management System. The data elements include descriptive information on the chemicals, animals, experimental design, survival, body weight, and individual pathology results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found to be missing or dead from other than natural causes; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a dose-related trend. When significant survival differences were detected, additional analyses using these procedures were carried out to determine the time point at which significant differences in the survival curves were first detected. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed. Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data: life table tests, logistic regression, and Fisher exact/Cochran-Armitage trend analyses. Tests of significance include pairwise comparisons of low dose, mid dose, and high dose groups with vehicle controls and tests for overall dose-response trends. For studies in which administration of the study compound has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death. Continuity-corrected tests are used in the analysis of tumor incidence, and reported P values are one-sided. The procedures described below also were used to evaluate selected nonneoplastic lesions.

Life Table Analyses--This method of analysis assumes that all tumors of a given type observed in animals dying before the end of the study were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumor-bearing animals in the dosed and vehicle control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the study, were then combined by the Mantel-Haenszel method (1959) to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of Cox (1972) and of Tarone (1975). The underlying variable considered by this analysis is time to death due to tumor. If the tumor is rapidly lethal, then time to death due to tumor closely approximates time to tumor onset. In this case, the life table test also provides a comparison of the time-specific tumor incidences.

Logistic Regression Analyses--This method of analysis assumes that all tumors of a given type observed in animals that died before the end of the study were "incidental"; i.e., they did not alter the risk of death and were discovered merely as the result of death from an unrelated cause. According to this approach, tumor prevalence was modeled as a logistic function of dose and time. Both linear and quadratic terms in time were incorporated initially, and the quadratic term was eliminated if it did not significantly enhance the fit of the model. The dosed and vehicle control groups were compared on the basis of the likelihood score test for the regression coefficient of dose. This method of adjusting for intercurrent mortality is the prevalence analysis of Dinse and Lagakos (1983), further described and illustrated by Dinse and Haseman (1986). If the tumor type is nonlethal, this comparison of the time-specific tumor also provides a prevalence comparison of the time-specific tumor incidences (McKnight and Crowley, 1984).

Fisher Exact/Cochran-Armitage Trend Analyses--In addition to survival-adjusted methods, the results of the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) are given in the appendixes containing the analyses of tumor incidence. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences.

Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984, 1985) are included for those tumors appearing to show compound-related effects.

GENETIC TOXICOLOGY

Salmonella Protocol: Testing was performed as reported by Ames et al. (1975) with modifications listed below and described in greater detail by Zeiger et al. (1988) and Mortelmans et al. (1986). Chemicals were sent to the laboratories as coded aliquots from Radian Corporation (Austin, Texas). The study chemical was incubated with the Salmonella typhimurium tester strains (TA97, TA98, TA100, and TA1535) either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague Dawley rat or Syrian hamster liver) for 20 minutes at 37° C before the addition of soft agar supplemented with L-histidine and D-biotin and subsequent plating on minimal glucose agar plates. Incubation was continued for an additional 48 hours.

Chemicals were tested in a series (four strains used) or in a hierarchy (initial testing in TA98 and TA100; if results were negative, then the chemical was tested further in additional strains). If all results were negative, the chemical was retested in all strains with a different concentration of S9.

Each test consisted of triplicate plates of concurrent positive and negative controls and of at least five doses of the study chemical. The high dose was limited by toxicity or solubility but did not exceed 10 mg/plate. All negative assays were repeated and all positive assays were repeated under the conditions that elicited the positive response.

A positive response was defined as a reproducible, dose-related increase in histidine-independent (revertant) colonies in any one strain/ activation combination. An equivocal response was defined as an increase in revertants which was not dose related, not reproducible, or of insufficient magnitude to support a determination of mutagenicity. A response was considered negative when no increase in revertant colonies was observed after chemical treatment.

Chinese Hamster Ovary Cytogenetics Assay: Testing was performed as reported by Galloway et al. (1985, 1987) and is described briefly below. Chemicals were sent to the laboratories as coded aliquots from Radian Corporation (Austin, Texas). Chemicals were tested in cultured Chinese hamster ovary (CHO) cells for induction of sister chromatid exchanges (SCEs) and chromosomal aberrations both in the presence and absence of Aroclor 1254-induced male Sprague Dawley rat liver S9 and cofactor mix. Cultures were handled under gold lights to prevent photolysis of bromodeoxyuridine (BrdU)-substituted DNA. Each test consisted of concurrent solvent and positive controls and of at least three doses of the study chemical; the high dose was limited by toxicity or solubility but did not exceed 5 mg/ml.

In the SCE test without S9, CHO cells were incubated for 26 hours with the study chemical in McCoy's 5A medium supplemented with 10% fetal bovine serum, L-glutamine (2 mM), and antibiotics. BrdU was added 2 hours after culture initiation. After 26 hours, the medium containing the study chemical was removed and replaced with fresh medium plus BrdU and colcemid, and incubation was continued for 2 more hours. Cells were then harvested by mitotic shake-off, fixed, and stained with Hoechst 33258 and Giemsa. In the SCE test with S9, cells were incubated with the chemical, serum-free medium, and S9 for 2 hours. The medium was then removed and replaced with medium containing BrdU and no study chemical; incubation proceeded for an additional 26 hours, with colcemid present for the final 2 hours. Harvesting and staining were the same as for cells treated without S9.

In the chromosomal aberration test without S9, cells were incubated in McCoy's 5A medium with the study chemical for 8 hours; colcemid was added, and incubation was continued for 2 hours. The cells were then harvested by mitotic shake-off, fixed, and stained with Giemsa. For the chromosomal aberration test with S9, cells were treated with the study chemical and S9 for 2 hours, after which the treatment medium was removed and the cells were incubated for 10 hours in fresh medium, with colcemid present for the final 2 hours. Cells were harvested in the same manner as for the treatment without S9.

For the SCE test, if significant chemical-induced cell cycle delay was seen, incubation time was lengthened to ensure a sufficient number of scorable cells. The harvest time for the chromosomal aberration test was based on the cell cycle information obtained in the SCE test; if cell cycle delay was anticipated, the incubation period was extended approximately 5 hours.

Cells were selected for scoring on the basis of good morphology and completeness of karyotype $(21 \pm 2 \text{ chromosomes})$. All slides were scored blind, and those from a single test were read by the same person. For the SCE test, 50 second-division metaphase cells were usually scored for frequency of SCEs per cell from each dose; 100 first-division metaphase cells were scored at each dose for the chromosomal aberration test. Classes of aberrations included simple (breaks and terminal deletions), complex (rearrangements and translocations), and other (pulverized cells, despiralized chromosomes, and cells containing 10 or more aberrations).

Statistical analyses were conducted on both the slopes of the dose-response curves and the individual dose points. An SCE frequency 20% above the concurrent solvent control value was

chosen as a statistically conservative positive response. The probability of this level of difference occurring by chance at one dose point is less than 0.01; the probability for such a chance occurrence at two dose points is less than 0.001. Chromosomal aberration data are presented as percentage of cells with aberrations. As with SCE, both the dose-response curve and individual dose points were statistically analyzed. A statistically significant (P<0.003) effect on the slope of the curve or on a dose point (P<0.05) was sufficient for a conclusion of positive for a test.

Ochratoxin A, NTP TR 358

III. RESULTS

RATS

SIXTEEN-DAY STUDIES THIRTEEN-WEEK STUDIES NINE-MONTH STUDIES FIFTEEN-MONTH STUDIES TWO-YEAR STUDIES Body Weights and Clinical Signs Survival Hematologic and Clinical Chemical Analysis and Urinalysis

Pathology and Statistical Analyses of Results

GENETIC TOXICOLOGY

SIXTEEN-DAY STUDIES

All rats that received 16 mg/kg ochratoxin A and 1/5 female rats that received 4 mg/kg died before the end of the studies (Table 6). A vehicle control male rat died as a result of gavage error. Diarrhea and nasal discharge were observed for male and female rats that received 16 mg/kg. Rats that received 4 mg/kg lost weight. The relative kidney, heart, and brain weights of rats that received 4 mg/kg were significantly greater

than those of vehicle controls (Table 7). Compound-related lesions included bone marrow hypoplasia, thymic atrophy, necrosis and/or hyperplasia of the forestomach, renal tubular degenerative and regenerative changes, and adrenal gland hemorrhage (Table 8). The lesions were most severe at 4 mg/kg (moderate to marked). The lesions were less severe at 16 mg/kg (moderate) because of the shorter survival and reduced period of chemical exposure.

 TABLE 6. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE SIXTEEN-DAY GAVAGE

 STUDIES OF OCHRATOXIN A

Dose (mg/kg)		Mean Body Weights (grams)			Final Weight Relative
	Survival (a)	Initial	Final	Change (b)	to Vehicle Controls (percent)
MALE					
0	(c) 4/5	153	214	+61	
1	5/5	153	202	+ 49	94.4
4	5/5	150	124	-26	57.9
16	(d) 0/5	147	(e)	(e)	(e)
FEMALE					
0	5/5	121	148	+27	
1	5/5	122	147	+ 25	99.3
4	(f) 4/5	121	107	-14	72.3
16	(g) 0/5	118	(e)	(e)	(e)

(a) Number surviving/number initially in group

(b) Mean body weight change of the group

(c) Death due to gavage error

(d) Day of death: 4,5,5,5,6

(e) No data are reported due to 100% mortality in this group.

(f) One death occurred on the day of scheduled necropsy.

(g) Day of death: 3,4,4,4,5
Organ	Vehicle Control	1 mg/kg	4 mg/kg
MALE		•	
Number weighed (b)	4	5	5
Body weight (grams)	214.2	202.0	124.0
Liver	53.2 ± 2.13	49.0 ± 1.19	(c) 47.3 ± 0.53
Thymus	2.0 ± 0.09	1.9 ± 0.07	$(d) 0.4 \pm 0.05$
Kidney	5.2 ± 0.17	4.6 ± 0.09	$(c,e) 6.4 \pm 0.48$
Heart	3.7 ± 0.11	3.7 ± 0.07	$(d) 4.8 \pm 0.27$
Brain	8.5 ± 0.36	8.8 ± 0.25	(d) 13.6 ± 0.39
Lungs	7.2 ± 0.38	(e) 7.0 ± 0.17	7.4 ± 0.15
FEMALE			
Number weighed	5	5	4
Body weight (grams)	148.4	146.8	107.0
Liver	45.5 ± 1.03	46.8 ± 1.27	45.2 ± 1.29
Thymus	2.3 ± 0.04	2.2 ± 0.10	$(d) 0.9 \pm 0.21$
Kidney	5.1 ± 0.12	5.1 ± 0.15	$(d) 6.2 \pm 0.25$
Heart	4.2 ± 0.08	3.9 ± 0.13	$(c) 5.2 \pm 0.52$
Brain	11.3 ± 0.20	11.5 ± 0.31	(d) 15.3 ± 0.69
Lungs	9.0 ± 0.54	7.9 ± 0.14	7.9 ± 0.22

TABLE 7. ORGAN WEIGHT TO BODY WEIGHT RATIOS FOR RATS IN THE SIXTEEN-DAY GAVAGESTUDIES OF OCHRATOXIN A (a)

(a) Mean \pm standard error in milligrams per gram unless otherwise specified; P values vs. the vehicle controls by Dunnett's test (Dunnett, 1955).

(b) Unless otherwise specified

(c) P<0.05

(d) P < 0.01

(e) Four weighed

TABLE 8. NUMBERS OF RATS WITH SELECTED LESIONS IN THE SIXTEEN-DAY GAVAGE STUDIES OF OCHRATOXIN A (a)

			Male			F	emale	
	Vehicle Control	1 mg/kg	4 mg/kg	16 mg/kg (b)	Vehicle Control			16 mg/kg (c)
Bone marrow Hypoplasia	0	1	5	5	0	3	5	5
Thymus Atrophy	0	0	3	5	0	0	2	4
Forestomach Necrosis and/or hyperplasia	a 0	0	5	5	0	0	5	5
Kidney Nephropathy	0	5	5	3	0	5	5	3
Adrenal gland Hemorrhage	0	0	3	4	0	0	4	4

(a) Five rats examined in each group

(b) All male rats at 16 mg/kg were dead by day 6.

(c) All female rats at 16 mg/kg were dead by day 5.

THIRTEEN-WEEK STUDIES

All deaths were attributed to errors in gavage technique (Table 9). The final mean body weight of rats that received 0.25, 0.5, or 1 mg/kg was 7%, 11%, or 19% lower than that of vehicle controls for males and 3%, 4%, or 9% lower for females (Figures 3 and 4). The relative kidney weights of male rats at 0.125 mg/kg or more were significantly lower than that of vehicle controls (Table 10). Compound-related lesions in the kidney were characterized as degeneration and regeneration of the proximal convoluted tubules with individual tubular cell necrosis of moderate severity (10/10 males and 10/10 females at 1 mg/kg). Karyomegaly (enlargement of the nuclei in the tubular epithelium) was widespread but most pronounced in the straight portion of the tubules in the juxtamedullary cortex. Karyomegaly was present in all dose groups, and the severity was dose related (minimal at 0.0625 mg/kg and moderate at 0.5 mg/kg). Less severe renal lesions, consisting primarily of atrophy of the straight portions of the tubules at the corticomedullary junction and in the medulla, were seen at lower doses (Table 11). Renal lesions were not seen in the vehicle control rats.

TABLE 9. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF OCHRATOXIN A

		Mean	Body Weight	Final Weight Relative	
Dose (mg/kg)	Survival (a)	Initial	Final	Change (b)	to Vehicle Controls (percent)
IALE	······	- <u></u>	****	<u> </u>	
0	9/10	136	334	+198	
0.0625	9/10	138	334	+196	100.0
0.125	7/10	138	323	+185	96.7
0.25	9/10	135	311	+176	93.1
0.5	10/10	133	297	+164	88.9
1	10/10	136	272	+136	81.4
EMALE					
0	10/10	126	192	+66	
0.0625	9/10	126	193	+67	100.5
0.125	8/10	129	195	+66	101.6
0.25	8/10	127	186	+ 59	96.9
0.5	8/10	124	184	+60	95.8
1	9/10	128	174	+46	90.6

(a) Number surviving/number initially in group; all deaths due to gavage error.

(b) Mean body weight change of the group

Organ	Vehicle Control	0.0625 mg/kg	0.125 mg/kg	0.25 mg/kg	0.5 mg/kg	1 mg/kg
MALE				<u> </u>	<u></u>	
Body weight (grams)	337 ± 8.6	335 ± 7.8	324 ± 5.1	313 ± 5.0	(b) 300 ± 7.5	(b) 274 ± 7.3
Brain	5.8 ± 0.15	5.8 ± 0.15	5.9 ± 0.07	6.1 ± 0.10	6.3 ± 0.15	(b) 7.1 ± 0.14
Heart	2.9 ± 0.04	2.9 ± 0.05	3.0 ± 0.09	3.0 ± 0.07	3.0 ± 0.06	(b) 3.3 ± 0.08
Right kidney	3.4 ± 0.12	3.5 ± 0.08	3.1 ± 0.07	(b) 2.9 ± 0.06	(b) 2.9 ± 0.06	(b) 3.1 ± 0.08
Liver	39.1 ± 1.29	40.3 ± 0.96	40.2 ± 1.72	39.9 ± 1.65	39.5 ± 0.78	39.0 ± 0.56
Lung	5.4 ± 0.16	5.1 ± 0.19	5.9 ± 0.78	5.0 ± 0.17	5.6 ± 0.24	5.7 ± 0.21
Right testis	4.4 ± 0.05	4.4 ± 0.10	4.5 ± 0.10	4.5 ± 0.09	4.6 ± 0.07	(b) 4.9 ± 0.09
Thymus	0.90 ± 0.037	0.91 ± 0.042	0.95 ± 0.042	0.91 ± 0.073	0.88 ± 0.054	0.82 ± 0.050
FEMALE						
Body weight (grams)	194 ± 3.8	196 ± 4.6	199 ± 6.0	190 ± 4.0	188 ± 2.6	(b) 176 \pm 3.9
Brain	9.4 ± 0.19	9.5 ± 0.21	9.2 ± 0.35	9.7 ± 0.27	9.8 ± 0.16	10.3 ± 0.35
Heart	3.2 ± 0.09	3.4 ± 0.06	3.3 ± 0.12	3.6 ± 0.15	3.4 ± 0.07	3.6 ± 0.18
Right kidney	3.4 ± 0.14	3.4 ± 0.08	3.2 ± 0.12	3.2 ± 0.12	3.3 ± 0.09	3.6 ± 0.15
Liver	35.4 ± 1.09	35.6 ± 0.86	34.9 ± 0.69	35.9 ± 0.80	37.0 ± 0.92	34.4 ± 0.91
Lung	6.4 ± 0.50	6.2 ± 0.16	7.0 ± 0.55	6.5 ± 0.24	7.0 ± 0.51	(b) 7.6 \pm 0.43
Thymus	1.17 ± 0.039	1.14 ± 0.033	1.13 ± 0.063	1.16 ± 0.031	1.17 ± 0.050	1.11 ± 0.056

TABLE 10. ORGAN WEIGHT TO BODY WEIGHT RATIOS FOR RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF OCHRATOXIN A (a)

(a) Mean ± standard error in milligrams per gram unless otherwise specified. P values vs. the vehicle controls as determined by Dunn's test or Shirley's test (Dunn, 1964; Shirley, 1977).

(b) P<0.01

TABLE 11. NUMBERS OF RATS WITH RENAL CORTICAL LESIONS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF OCHRATOXIN A (a)

Lesion		<u>Control</u> Female				i mg/kg Female		mg/kg Female		mg/kg Female		ng/kg Female
Degeneration/necrosis	0	0	0	0	6	6	3	5	0	2	10	10
Karyomegaly	0	0	10	9	10	9	10	10	10	10	10	10
Atrophy	0	0	10	9	7	8	9	8	8	8	0	0

(a) Ten animals per group

FIGURE 3. AVERAGE BODY WEIGHTS OF MALE RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF OCHRATOXIN A

TIME ON STUDY (weeks)

FIGURE 4. AVERAGE BODY WEIGHTS OF FEMALE RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF OCHRATOXIN A

Dose Selection Rationale: Dose selection was based largely on body weight data and on changes in the kidney. Rats exposed at 0.25 mg/kg (250 µg/kg) gained approximately 10% less weight than did vehicle controls, whereas the weight difference between the 1 mg/kg (1,000 µg/kg) groups and vehicle controls was nearly 30%. A second factor in dose selection was the presence of karyomegaly and renal tubular atrophy in nearly 100% of the rats in the lowest exposure groups (0.0625 mg/kg [62.5 $\mu g/kg$) in the 13-week studies. Therefore, doses of 21, 70, and 210 µg/kg ochratoxin A were selected for administration in corn oil by gavage 5 days per week for 2 years, with interim kills scheduled for 9 and 15 months. The purpose of the interim-kill examination was to characterize toxic lesions at a time when age-related renal changes would be expected to be minimal and less of a confounding factor, and secondly, to define more clearly time-to-tumor should the study prove to be positive, as was expected, since ochratoxin A exposure in mice had already been reported to cause kidney tumors (Kanisawa and Suzuki, 1978).

NINE-MONTH STUDIES

Administration of ochratoxin A for 9 months was associated with renal tubular epithelial karyomegalic changes in 100% of the rats in the 70 or 210 μ g/kg groups (Table 12). This change was found in the inner cortex and was characterized by renal tubular epithelial cells having nuclei that were hyperchromatic, irregularly shaped, and often up to 10 times normal size. A single renal tubular cell adenoma was present in

one high dose male rat. Renal tubular cell hyperplasia was present in both males and females. The hyperplasia was a small circumscribed lesion, often involving only one tubule. The hyperplasia did not cause compression of the adjacent parenchyma and was characterized by small, usually basophilic cells filling the renal tubule. A solitary pituitary gland carcinoma was found in a high dose female. This was not considered remarkable; however, it was felt it would be prudent to examine the pituitary gland as a target tissue for animals killed at 15 months.

FIFTEEN-MONTH STUDIES

Administration of ochratoxin A for 15 months was again associated with karyomegalic changes in 100% of the rats in the 70 and 210 µg/kg exposure groups (Table 13). Five additional renal tubular neoplasms were found, including two carcinomas in high dose males, a carcinoma in a mid dose male, and an adenoma in a mid dose and in a high dose male. An additional change found at 15 months in all high dose males and females was degeneration of the renal tubular epithelium. This lesion was characterized by reduction of the inner cortex, which contained disorganized tubules that were lined by cells containing scant cytoplasm. When the kidney was examined in a blind fashion, a subtle form of this change could be discerned in some rats killed at 9 months and some mid dose animals killed at 15 months. No difference in incidences of pituitary gland lesions between dosed and vehicle control animals was seen for either sex.

TABLE 12. NUMBERS OF RATS WITH SELECTED LESIONS IN THE NINE-MONTH GAVAGE STUDIESOF OCHRATOXIN A (a)

		Ma	ale		Female				
Site/Lesion	Vehicle Control			210 µg/kg	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg	
Renal tubule									
Cytoplasmic vacuolization	n 0	0	1	4	0	0	0	2	
Karyomegaly	0	0	15	15	0	0	15	15	
Epithelial hyperplasia	Ó	0	3	6	0	0	0	3	
Adenoma	0	0	0	1	0	0	0	0	
Pituitary gland/pars distalis									
Hyperplasia	0	0	1	1	0	3	0	2	
Carcinoma	Ō	0	0	0	0	0	0	1	

(a) Fifteen rats examined in each group

			ale		Female				
	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg	
Number examined	15	14	14	15	15	14	15	15	
Kidney tubule epithelium									
Degeneration	0	0	0	15	0	0	0	15	
Cytoplasmic vacuolization	n 0	0	1	5	0	0	0	0	
Karyomegaly	0	0	14	15	0	0	15	15	
Hyperplasia	0	0	6	0	0	0	1	0	
Kidney tubule									
Adenoma	0	0	1	1	0	0	0	0	
Carcinoma	0	0	1	2	0	0	0	0	

TABLE 13. NUMBERS OF RATS WITH SELECTED RENAL LESIONS IN THE FIFTEEN-MONTH GAVAGE STUDIES OF OCHRATOXIN A

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of high dose rats were 4%-7% lower than those of vehicle controls between week 18 and week 77 for males and between week 6 and week 89 for females (Table 14 and Figure 5). Mean body weights of rats in the lower dose groups were similar to those of vehicle controls throughout the studies. No compound-related clinical signs were observed.

Survival

Estimates of the probabilities of survival for male and female rats administered ochratoxin A at the doses used in these studies and for vehicle controls are shown in the Kaplan and Meier curves in Figure 6 and in Table 15. The survival of the low (after day 674), mid (after day 674), and high (after day 540) dosed groups of male rats was significantly lower than that of vehicle controls. No significant differences in survival were observed between any groups of female rats.

Weeks	Vehicle	Control		21 micrograms/kg	£		70 micrograms	/kg	2	10 micrograms/kg	
on Study	Av. Wt. (grams)	No. Weighed	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. Weighed	Av. Wt. (grams)	Wt. (percent of veh. controls)		Av. Wt. (grams)	Wt. (percent of veh. controls)	No. Weighed
MALE]		·	· · · · · · · · · · · · · · · · · · ·		<u></u>					
0 1 2 3 4 5 6 7 8 9 10 11 2 2 9 3 3 7 4 1 2 1 3 3 7 4 5 6 7 8 9 10 11 12 2 13 8 2 1 2 13 8 2 1 2 1 3 3 7 4 5 6 7 8 9 10 11 12 2 13 8 3 7 7 18 8 17 18 18 18 18 18 18 18 18 18 18	$\begin{array}{c} 172\\ 194\\ 213\\ 234\\ 249\\ 289\\ 289\\ 295\\ 303\\ 326\\ 3350\\ 352\\ 402\\ 434\\ 459\\ 468\\ 459\\ 468\\ 478\\ 490\\ 493\\ 494\\ 496\\ 493\\ 494\\ 496\\ 493\\ 496\\ 493\\ 496\\ 493\\ 496\\ 485\\ 485\\ 485\\ 485\\ 485\\ 485\\ 485\\ 485$	80 80 78 78 78 78 78 78 78 78 78 78 78 78 78	$\begin{array}{c} 174\\ 196\\ 239\\ 2796\\ 295\\ 296\\ 312\\ 336\\ 356\\ 369\\ 2412\\ 4406\\ 4668\\ 478\\ 997\\ 506\\ 2908\\ 4994\\ 495\\ 4994\\ 495\\ 4994\\ 495\\ 484\\ 477\\ \end{array}$	101 101 100 102 104 104 104 103 103 103 103 102 102 103 103 103 102 102 103 103 102 103 103 102 102 101 101 102 102 101 101	80 80 80 80 80 80 80 80 80 80	$\begin{array}{c} 171\\ 195\\ 215\\ 236\\ 255\\ 274\\ 301\\ 311\\ 322\\ 331\\ 343\\ 355\\ 361\\ 406\\ 412\\ 446\\ 457\\ 463\\ 457\\ 463\\ 491\\ 494\\ 491\\ 494\\ 491\\ 492\\ 491\\ 492\\ 491\\ 488\\ 481\\ 462\\ 460\\ \end{array}$	99 101 101 102 102 102 102 102 103 101 101 101 101 101 101 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 101 102 102	80 80 80 80 80 80 80 80 80 80	$\begin{array}{c} 173\\ 194\\ 223\\ 248\\ 285\\ 298\\ 309\\ 315\\ 326\\ 335\\ 342\\ 367\\ 413\\ 425\\ 430\\ 448\\ 461\\ 476\\ 478\\ 478\\ 478\\ 478\\ 477\\ 478\\ 477\\ 465\\ 449\\ \end{array}$	$\begin{array}{c} 101\\ 100\\ 100\\ 100\\ 100\\ 100\\ 99\\ 98\\ 97\\ 97\\ 95\\ 96\\ 97\\ 96\\ 96\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95\\ 95\\ 94\\ 93\\ 94\\ 94\\ 94\\ 94\\ 94\\ 95\\ 96\\ 96\\ 96\\ 96\\ 96\\ 97\\ 98\\ 98\\ 97\\ 98\\ 97\\ 98\\ 98\\ 97\\ 98\\ 98\\ 97\\ 98\\ 97\\ 98\\ 98\\ 97\\ 98\\ 98\\ 97\\ 98\\ 98\\ 97\\ 98\\ 98\\ 97\\ 98\\ 98\\ 97\\ 98\\ 98\\ 97\\ 98\\ 98\\ 97\\ 98\\ 98\\ 97\\ 98\\ 97\\ 98\\ 97\\ 98\\ 9$	80 80 80 80 80 80 80 80 80 80
FEMA	LE										
0 1 2 3 4 5 6 7 8 9 10 11 12 33 4 12 12 12 12 12 12 12 12 12 12	$\begin{array}{c} 137\\ 150\\ 158\\ 167\\ 179\\ 184\\ 187\\ 191\\ 195\\ 197\\ 200\\ 203\\ 204\\ 205\\ 215\\ 225\\ 231\\ 240\\ 237\\ 242\\ 251\\ 262\\ 270\\ 288\\ 296\\ 304\\ 314\\ 312\\ 318\\ 321\\ 325\\ 326\\ 326\\ 326\\ \end{array}$	80 80 80 80 80 80 80 80 80 80 80 80 80 8	136 146 153 162 170 177 181 183 193 193 201 201 201 201 201 204 219 229 234 239 240 246 255 265 265 272 281 293 301 314 318 319 321 326 331	99 97 97 97 98 98 98 98 98 98 98 98 99 99 99 99 100 100 100 100 100 100 100	80 879 779 779 779 779 779 779 779 779 779	$\begin{array}{c} 139\\ 147\\ 156\\ 165\\ 173\\ 180\\ 185\\ 187\\ 192\\ 195\\ 198\\ 202\\ 203\\ 205\\ 212\\ 203\\ 205\\ 212\\ 226\\ 239\\ 239\\ 239\\ 239\\ 242\\ 250\\ 263\\ 271\\ 279\\ 297\\ 306\\ 308\\ 313\\ 317\\ 316\\ 320\\ 324\\ 323\\ 325\\ 322\\ 325\\ 322\\ \end{array}$	101 98 99 99 101 101 100 99 98 99 99 99 100 100 100 100 100 1	80 80 80 80 80 80 80 80 80 80 80 80 80 8	$137\\149\\149\\162\\169\\173\\178\\181\\184\\188\\195\\195\\202\\208\\216\\2225\\224\\229\\225\\224\\229\\225\\2249\\225\\226\\271\\280\\271\\280\\271\\289\\289\\289\\289\\289\\289\\289\\300\\305\\313\\314\\318\\315$	$\begin{array}{c} 100\\ 999\\ 98\\ 97\\ 97\\ 97\\ 96\\ 95\\ 95\\ 96\\ 96\\ 96\\ 96\\ 96\\ 96\\ 96\\ 96\\ 96\\ 94\\ 95\\ 96\\ 94\\ 95\\ 94\\ 95\\ 94\\ 95\\ 94\\ 95\\ 94\\ 95\\ 94\\ 95\\ 94\\ 95\\ 94\\ 95\\ 94\\ 96\\ 98\\ 97\\ 98\\ 97\\ 98\\ 97\end{array}$	80 80 80 80 80 80 80 80 80 80 80 80 80 8

TABLE 14. MEAN BODY WEIGHTS OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF OCHRATOXIN A

(a) The number of animals weighed was lower than the number of animals surviving.
(b) Interim kill occurred.
(c) Animals designated for interim kills were weighed separately after week 13.

FIGURE 5. GROWTH CURVES FOR RATS ADMINISTERED OCHRATOXIN A IN CORN OIL BY GAVAGE FOR TWO YEARS

FIGURE 6. KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED OCHRATOXIN A IN CORN OIL BY GAVAGE FOR TWO YEARS

Ochratoxin A, NTP TR 358

	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg
MALE (a)	<u></u>			<u></u>
Animals initially in study	80	80	80	80
Nonaccidental deaths before termination (b)	7	19	23	26
Accidentally killed	4	6	2	1
Killed at 9 months	15	15	15	15
Cilled at 15 months	15	(c) 14	(c) 14	15
Gilled at termination	39	26	26	23
Survival P values (d)	0.001	0.011	0.002	< 0.001
FEMALE (a)				
Animals initially in study	80	80	80	80
Ionaccidental deaths before termination (b)	17	25	15	15
Accidentally killed	1	3	0	0
Cilled at 9 months	15	15	15	15
Killed at 15 months	15	(c) 14	15	15
Died during termination period	0	0	0	1
Cilled at termination	32	23	35	34
Survival P values (d)	0.623	0.833	0.788	0.825

TABLE 15. SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF OCHRATOXIN A

(a) First day of terminal-kill period: male--729, female--726

(b) Includes animals killed in a moribund condition

(c) Animals scheduled to be killed at 15 months but which died before the 15-month kill became part of the 2-year studies. This resulted in 51 rats per group for three groups. See also Table 21.

(d) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

Hematologic and Clinical Chemical Analysis and Urinalysis

Minor differences were observed for hematologic values between dosed and vehicle control animals, but none was considered to be of biologic significance (Tables 16 and 17). Results of serum chemical analyses were not clearly compound related (Table 18). The urinalysis suggests that there may have been mild to moderate decreases in ability to concentrate urine. This was reflected by slight increases in urine volume and decreases in specific gravity in concentration tests in dosed animals as compared with vehicle controls (Tables 19 and 20).

Analysis	Interval	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg
Eosinophils (percent)	45 d		1.2 ± 0.20	1.2 ± 0.18	1.2 ± 0.19
• • • •	3 mo	1.1 ± 0.18	1.2 ± 0.18	1.4 ± 0.26	1.3 ± 0.29
	9 mo	1.5 ± 0.21	2.0 ± 0.29	1.8 ± 0.21	1.7 ± 0.23
	15 mo	1.6 ± 0.41	2.0 ± 0.31	2.3 ± 0.54	2.4 ± 0.53
lematocrit (percent)	45 d	52.1 ± 0.42	51.3 ± 0.43	(b) 50.1 ± 0.23	(b) 50.8 ± 0.39
······	3 mo	50.0 ± 0.50	49.8 ± 0.45	49.2 ± 0.28	49.2 ± 0.26
	9 mo	46.7 ± 0.56	47.1 ± 0.33	47.5 ± 0.31	45.6 ± 0.39
	15 mo	46.7 ± 0.55	46.4 ± 0.70	46.9 ± 0.72	44.9 ± 0.46
lemoglobin (g/dl)	45 d	17.0 ± 0.10	16.9 ± 0.11	(b) 16.5 ± 0.07	16.7 ± 0.11
······································	3 mo	16.4 ± 0.15	16.1 ± 0.12	(b) 15.9 ± 0.08	(b) 15.7 ± 0.09
	9 mo	15.8 ± 0.17	15.7 ± 0.14	15.7 ± 0.10	15.5 ± 0.15
	15 mo	15.9 ± 0.19	15.8 ± 0.25	15.9 ± 0.19	15.4 ± 0.13
ymphocytes (percent)	45 d	74.2 ± 0.87	75.4 ± 1.12	74.0 ± 1.52	76.3 ± 0.79
· · · · · · · · · · · · · · · · · · ·	3 mo	77.9 ± 1.61	79.7 ± 1.32	72.9 ± 1.32	76.9 ± 1.63
	9 mo	59.2 ± 2.33	62.6 ± 1.78	65.9 ± 1.60	66 1.14
	15 mo	52.0 ± 2.77	54.9 ± 2.80	55.2 ± 3.71	57 2.55
Mean corpuscular hemoglobin (pg)	15 mo	16.6 ± 0.14	16.6 ± 0.11	16.5 ± 0.15	16.6 ± 0.05
Mean corpuscular hemoglobin					
concentration (g/dl)	15 mo	34.0 ± 0.20	34.0 ± 0.19	33.9 ± 0.22	34.2 ± 0.19
dean corpuscular volume (µ ³)	45 d	51.6 ± 0.17	51.9 ± 0.12	51.8 ± 0.09	51.9 ± 0.11
	3 mo	49.6 ± 0.18	50.1 ± 0.15	$(b) 50.5 \pm 0.13$	(b) 50.7 ± 0.15
	9 mo	(d) 46.9 ± 0.36	(d) 47.9 ± 0.27	(d) 48.1 ± 0.21	$(d) 47.3 \pm 0.25$
	15 mo	48.9 ± 0.43	48.1 ± 0.64	48.7 ± 0.40	48.6 ± 0.25
(onocytes (percent)	45 d	1.03 ± 0.277	0.47 ± 0.164	$(b) 0.13 \pm 0.063$	$(b) 0.07 \pm 0.046$
nonocy as (percent)	3 mo	0.53 ± 0.217	0.30 ± 0.128	0.23 ± 0.092	$(b) 0.03 \pm 0.033$
	9 mo	0.03 ± 0.013 0.23 ± 0.079	0.30 ± 0.128 0.10 ± 0.056	0.03 ± 0.032	0.03 ± 0.033
	15 mo	0.23 ± 0.079 0.00 ± 0.000	0.10 ± 0.030 0.21 ± 0.114	0.03 ± 0.033 0.07 ± 0.071	0.03 ± 0.033 0.07 ± 0.067
ucleated erythrocytes (10 ³ /mm ³)	45 d	0.67 ± 0.161	0.21 ± 0.114 0.77 ± 0.184	0.60 ± 0.149	0.37 ± 0.176
acheated erythrocytes (10-711111-)	3 mo	0.07 ± 0.101 0.13 ± 0.079	$(e) 0.38 \pm 0.115$	0.37 ± 0.143	0.37 ± 0.178 0.23 ± 0.149
	9 mo	0.13 ± 0.079 0.73 ± 0.197	1.30 ± 0.226	0.37 ± 0.102 0.77 ± 0.157	0.23 ± 0.149 0.90 ± 0.188
	15 mo	1.20 ± 0.296	1.07 ± 0.355	0.79 ± 0.137	1.33 ± 0.319
latelets (10 ³ /mm ³)	45 d	513 ± 11.4	511 ± 13.0	(b) 457 ± 12.0	(b) 442 ± 9.9
atelets (10-/mm)	3 mo	491 ± 11.7	499 ± 12.6	$(5)437 \pm 12.0$ 512 ± 13.9	(b) 442 ± 9.9 (b) 441 ± 10.8
	9 mo	545 ± 15.0	(b) 474 ± 14.7	(b) 434 ± 10.6	(b) 338 ± 8.6
	15 mo	402 ± 18.8	435 ± 32.3	474 ± 10.6	462 ± 32.7
rythrocytes (10 ⁶ /mm ³)	45 d	402 ± 10.07 10.08 ± 0.07	9.87 ± 0.07	(b) 9.68 \pm 0.05	$(b) 9.76 \pm 0.07$
(yundeytes (10 /mm ⁻)	3 mo	10.03 ± 0.07 10.07 ± 0.09	9.89 ± 0.08	$(b) 9.74 \pm 0.05$	$(b) 9.67 \pm 0.04$
	9 ino	9.95 ± 0.097	9.82 ± 0.067	9.83 ± 0.058	$(b) 9.59 \pm 0.079$
	15 mo	9.58 ± 0.143	9.53 ± 0.142	9.53 ± 0.139	9.25 ± 0.072
leticulocytes (10 ⁶ /mm ³)	45 d	1.85 ± 0.109	1.91 ± 0.079	2.09 ± 0.099	1.84 ± 0.075
se treation y tes (10 mining)	3 mo	1.89 ± 0.087	2.09 ± 0.109	1.96 ± 0.106	2.08 ± 0.102
	9 mo	1.68 ± 0.120	$(b) 1.19 \pm 0.077$	1.35 ± 0.088	$(b) 1.19 \pm 0.083$
	15 mo	1.43 ± 0.072	1.69 ± 0.142	1.30 ± 0.000 1.75 ± 0.127	1.40 ± 0.104
egmented neutrophils (percent)	45 d	24.0 ± 0.86	23.0 ± 1.03	25.0 ± 1.44	22.1 ± 0.97
	3 mo	19.9 ± 1.70	18.8 ± 1.34	(b) 25.4 ± 1.23	21.7 ± 0.57 21.7 ± 1.67
	9 mo	38.4 ± 2.41	34.6 ± 1.61	31.7 ± 1.59	31.4 ± 1.06
	15 mo	41.6 ± 1.93	42.9 ± 2.70	42.4 ± 3.46	40.5 ± 2.49
eukocytes (10 ³ /mm ³)	45 d	6.27 ± 0.380	5.33 ± 0.241	5.72 ± 0.275	5.48 ± 0.276
sundeyveb (to (milli)	3 mo	6.58 ± 0.271	6.80 ± 0.322	(b) 5.57 ± 0.230	6.25 ± 0.274
	9 mo	6.05 ± 0.174	$(b)5.19 \pm 0.156$	(b) 5.14 ± 0.136	$(b) 4.84 \pm 0.166$

TABLE 16. ANALYSIS OF HEMATOLOGIC DATA FOR MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF OCHRATOXIN A (a)

(a) Mean \pm standard error, P values vs. the vehicle controls by Dunn's test (Dunn, 1964) or by Shirley's test (Shirley, 1977); number of animals examined except as noted: 45-d, 3-mo, and 9-mo studies, 30; 15-mo studies, 15 for 0 and 210 µg/kg, 14 for 21 and 70 µg/kg.

(h) P<0.01

(c) Fourteen examined

(d) Fifteen examined

(e) Twenty-nine examined

Analysis	Interval	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg
Eosinophils (percent)	45 d	0.9 ± 0.20	1.2 ± 0.18	1.4 ± 0.31	1.4 ± 0.35
•	3 mo	1.5 ± 0.26	1.4 ± 0.29	1.1 ± 0.20	1.2 ± 0.25
	9 mo	1.6 ± 0.31	1.8 ± 0.35	1.3 ± 0.27	1.7 ± 0.34
	15 mo	2.1 ± 0.30	2.0 ± 0.31	2.5 ± 0.49	1.4 ± 0.34
lematocrit (percent)	45 d	49.8 ± 0.32	50.1 ± 0.40	50.2 ± 0.36	(b) 51.5 ± 0.40
	3 mo	47.6 ± 0.43	47.5 ± 0.33	48.2 ± 0.30	48.0 ± 0.37
	9 mo	51.7 ± 0.40	50.8 ± 0.39	51.0 ± 0.42	50.8 ± 0.33
	15 mo	47.7 ± 0.57	46.9 ± 0.63	46.8 ± 0.34	45.6 ± 0.59
lemoglobin (g/dl)	45 d	16.0 ± 0.54	16.6 ± 0.15	16.5 ± 0.11	16.8 ± 0.12
	3 mo	15.6 ± 0.13	15.5 ± 0.13	15.7 ± 0.09	15.6 ± 0.12
	9 mo	16.1 ± 0.13	15.9 ± 0.12	15.8 ± 0.13	15.8 ± 0.09
	15 mo	15.8 ± 0.17	15.7 ± 0.16	15.7 ± 0.12	15.3 ± 0.19
_ymphocytes (percent)	45 d	81.4 ± 1.15	82.3 ± 1.09	82.0 ± 1.30	83.2 ± 0.96
	3 mo	79.4 ± 1.03	76.0 ± 1.31	78.1 ± 1.35	80.7 ± 1.16
	9 mo	77.0 ± 1.79	76.8 ± 1.77	80.8 ± 1.61	77.6 ± 2.01
	15 mo	67.7 ± 1.18	62.4 ± 1.52	61.7 ± 2.07	66.5 ± 1.87
Mean corpuscular hemoglobin (pg) Mean corpuscular hemoglobin	15 mo	18.4 ± 0.09	18.6 ± 0.13	18.4 ± 0.06	18.4 ± 0.09
concentration (g/dl)	15 mo	33.1 ± 0.15	33.5 ± 0.24	33.5 ± 0.17	33.4 ± 0.22
fean corpuscular volume (µ ³)	45 d	53.6 ± 0.10	53.7 ± 0.13	53.9 ± 0.14	(b) 54.4 \pm 0.12
	3 mo	52.4 ± 0.12	52.8 ± 0.14	(b) 52.9 ± 0.10	(b) 53.3 ± 0.18
	9 mo	57.2 ± 0.11	56.8 ± 0.14	57.0 ± 0.23	57.3 ± 0.15
	15 mo	55.6 ± 0.32	55.6 ± 0.20	55.0 ± 0.22	54.9 ± 0.21
fonocytes (percent)	45 d	0.20 ± 0.088	0.17 ± 0.069	0.07 ± 0.046	0.10 ± 0.074
	3 mo	0.03 ± 0.034	0.03 ± 0.034	0.03 ± 0.033	0.07 ± 0.037
	9 mo	0.07 ± 0.067	0.03 ± 0.033	0.03 ± 0.033	0.00 ± 0.000
	15 mo	0.07 ± 0.067	0.29 ± 0.163	0.20 ± 0.107	0.13 ± 0.091
lucleated erythrocytes (10 ³ /mm ³)	45 d	0.60 ± 0.163	0.77 ± 0.157	0.37 ± 0.112	0.87 ± 0.213
· · · ·	3 mo	0.40 ± 0.123	0.72 ± 0.148	0.53 ± 0.184	0.97 ± 0.195
	9 mo	1.07 ± 0.253	1.00 ± 0.238	2.13 ± 0.377	1.27 ± 0.291
	15 mo	1.53 ± 0.307	2.29 ± 0.474	2.80 ± 0.757	3.93 ± 0.746
latelets (10 ³ /mm ³)	45 d	543 ± 15.8	(b) 493 ± 11.9	$(e) 504 \pm 13.8$	(e) 531 ± 12.0
	3 m o	455 ± 21.5	427 ± 20.4	475 ± 13.2	442 ± 20.8
	9 mo	319 ± 14.1	(b) 374 ± 16.0	(b) 381 ± 11.5	(b) 372 ± 15.2
	15 mo	399 ± 24.0	345 ± 16.1	382 ± 11.7	409 ± 9.8
rythrocytes (10 ⁶ /mm ³)	45 d	9.30 ± 0.057	9.33 ± 0.072	9.32 ± 0.056	9.44 ± 0.066
	3 mo	9.06 ± 0.073	8.98 ± 0.066	9.13 ± 0.052	8.99 ± 0.067
	9 mo	9.02 ± 0.062	8.94 ± 0.063	8.94 ± 0.066	8.87 ± 0.057
	15 mo	8.59 ± 0.114	8.43 ± 0.113	8.49 ± 0.062	8.29 ± 0.103
eticulocytes (10 ⁶ /mm ³)	45 d	1.98 ± 0.057	1.88 ± 0.072	2.37 ± 0.546	1.89 ± 0.085
	3 mo	2.14 ± 0.108	1.82 ± 0.111	1.75 ± 0.107	1.77 ± 0.093
	9 mo	1.95 ± 0.524	1.67 ± 0.095	1.77 ± 0.087	1.62 ± 0.104
	15 mo	1.99 ± 0.150	2.17 ± 0.116	1.64 ± 0.082	1.75 ± 0.154
egmented neutrophils (percent)	45 d	17.2 ± 1.24	16.5 ± 1.09	16.5 ± 1.25	14.9 ± 0.96
	3 mo	19.1 ± 0.95	22.5 ± 1.27	20.8 ± 1.33	18.0 ± 1.11
	9 mo	21.2 ± 1.67	21.3 ± 1.57	17.8 ± 1.56	20.5 ± 1.86
	15 mo	30.1 ± 1.17	34.4 ± 1.47	35.5 ± 1.83	31.6 ± 1.90
eukocytes (10 ³ /mm ³)	45 d	5.76 ± 0.269	5.47 ± 0.215	5.07 ± 0.235	5.51 ± 0.25
	3 mo	5.40 ± 0.189	5.38 ± 0.236	5.29 ± 0.137	5.38 ± 0.21
	9 mo	4.41 ± 0.207	(b) 3.78 ± 0.169	(b) 3.30 ± 0.078	(b) 3.16 ± 0.089
	15 mo	(c) 3.80 ± 0.265	3.63 ± 0.317	(b) 2.73 ± 0.172	3.45 ± 0.197

TABLE 17. ANALYSIS OF HEMATOLOGIC DATA FOR FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (a)

(a) Mean \pm standard error, P values vs. the vehicle controls by Dunn's test (Dunn, 1964) or by Shirley's test (Shirley, 1977); number of animals examined except as noted: 45-d and 3-mo studies, 30; 3-mo and 9-mo studies, 30 except for 29 in the 21 µg/kg group; 15-mo studies, 15 except for 14 in the 21 µg/kg group.

(b) P<0.01

(c) Fourteen examined (d) Thirteen examined

te) Twenty-nine examined

Analysis	Interval	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg
MALE	- <u></u>	<u> </u>			
Blood urea nitrogen (mg/dl)	3 d	19.9 ± 0.47	19.6 ± 0.86	18.4 ± 0.45	18.8 ± 0.40
	10 d	17.0 ± 0.61	17.4 ± 0.72	(b) 19.0 ± 0.40	(b) 18.9 ± 0.56
	45 d	15.4 ± 0.32	16.1 ± 0.32	15.2 ± 0.32	15.5 ± 0.31
	3 mo	13.5 ± 0.48	13.0 ± 0.36	14.1 ± 0.51	13.2 ± 0.28
	6 mo	13.0 ± 0.35	13.5 ± 0.32	12.9 ± 0.27	12.1 ± 0.18
	9 mo	12.8 ± 0.33	13.4 ± 0.54	12.8 ± 0.30	12.7 ± 0.29
	12 mo	14.1 ± 0.25	14.8 ± 1.44	13.4 ± 0.24	(b) 12.7 ± 0.25
	15 mo	12.1 ± 0.36	11.5 ± 0.34	12.0 ± 0.50	11.3 ± 0.25
Creatinine (mg/dl)	3 d	0.64 ± 0.022	0.66 ± 0.049	0.64 ± 0.036	0.61 ± 0.042
	10 d	0.69 ± 0.033	0.62 ± 0.037	0.62 ± 0.024	0.63 ± 0.033
	45 d	0.67 ± 0.036	0.77 ± 0.059	0.79 ± 0.026	0.74 ± 0.028
	3 mo	0.81 ± 0.072	0.64 ± 0.038	0.69 ± 0.047	0.73 ± 0.027
	6 mo	0.60 ± 0.012	0.67 ± 0.024	$(b) 0.71 \pm 0.011$	(b) 0.75 ± 0.012
	9 mo	0.73 ± 0.023	0.71 ± 0.037	0.68 ± 0.028	0.73 ± 0.024
	12 mo	0.69 ± 0.045	0.67 ± 0.027	0.68 ± 0.040	0.73 ± 0.025
	15 mo	0.80 ± 0.106	0.84 ± 0.060	0.78 ± 0.053	0.77 ± 0.055
Glucose (mg/dl)	3 d	111 ± 5.0	115 ± 6.4	109 ± 3.8	113 ± 4.4
Jideose (ing/ui)	10 d	121 ± 4.5	115 ± 5.9	100 ± 5.0 130 ± 5.2	129 ± 4.9
	45 d	121 ± 4.5 102 ± 3.8	113 ± 3.3 111 ± 3.2	102 ± 4.6	123 ± 4.3 101 ± 4.6
	3 mo	113 ± 3.5	108 ± 2.6	111 ± 4.3	110 ± 3.1
	6 mo	102 ± 2.0	108 ± 3.3	107 ± 2.7	106 ± 1.8
	9 mo	92 ± 3.0	87 ± 2.0	84 ± 2.2	$(b) 81 \pm 2.7$
	12 mo	121 ± 3.4	116 ± 3.9	113 ± 2.0	116 ± 3.0
	15 mo	115 ± 3.4	137 ± 8.0	122 ± 4.2	116 ± 2.2
FEMALE					
Blood urea nitrogen (mg/dl)	3 d	15.2 ± 0.29	(b) 17.0 ± 0.35	16.6 ± 0.51	15.6 ± 0.32
	10 d	17.8 ± 0.86	18.3 ± 0.63	18.5 ± 0.54	17.7 ± 0.38
	45 d	13.4 ± 0.49	13.4 ± 0.40	13.7 ± 0.35	13.8 ± 0.26
	3 mo	17.9 ± 0.62	17.2 ± 0.55	18.8 ± 0.90	17.3 ± 0.57
	6 mo	13.8 ± 0.29	14.7 ± 0.34	13.8 ± 0.45	14.6 ± 0.35
	9 mo	17.0 ± 1.53	14.6 ± 0.36	14.9 ± 0.40	14.9 ± 0.24
	12 mo	14.2 ± 0.64	14.6 ± 0.43	13.3 ± 0.46	12.7 ± 0.36
	15 mo	12.3 ± 0.28	12.5 ± 0.27	12.6 ± 0.42	11.0 ± 0.28
Creatinine (mg/dl)	3 d	0.61 ± 0.032	0.58 ± 0.019	0.59 ± 0.019	0.59 ± 0.016
(ing u)	10 d	0.66 ± 0.041	(b) 0.80 ± 0.034	0.67 ± 0.027	0.73 ± 0.033
	45 d	0.60 ± 0.049	0.62 ± 0.021	0.56 ± 0.019	0.61 ± 0.022
	3 mo	0.74 ± 0.029	0.71 ± 0.028	0.75 ± 0.053	0.77 ± 0.038
	6 mo	0.63 ± 0.018	0.57 ± 0.019	0.67 ± 0.027	0.68 ± 0.013
	9 mo	0.91 ± 0.137	(b) 0.65 ± 0.023	(b) 0.64 ± 0.026	0.74 ± 0.023
	12 mo	0.65 ± 0.017	0.59 ± 0.013	0.68 ± 0.031	0.74 ± 0.02
	15 mo	0.05 ± 0.017 0.75 ± 0.038	0.35 ± 0.013 0.76 ± 0.039	0.03 ± 0.031 0.75 ± 0.029	0.81 ± 0.02
Glucose (mg/dl)	3 d	85 ± 2.8	88 ± 4.2	92 ± 3.2	89 ± 3.1
aracose (mg/ar)	10 d	35 ± 2.8 119 ± 5.4	126 ± 5.8	$\frac{52 \pm 5.2}{128 \pm 5.4}$	128 ± 6.4
	45 d	119 ± 3.4 83 ± 2.7	86 ± 4.9	128 ± 3.4 79 ± 2.5	76 ± 3.6
	45 a 3 mo	104 ± 4.0	103 ± 3.5	79 ± 2.3 99 ± 3.2	109 ± 4.4
	5 mo 6 mo	104 ± 4.0 102 ± 1.7	103 ± 3.3 104 ± 2.3	33 ± 3.2 102 ± 2.2	103 ± 4.4 104 ± 2.3
	9 mo	102 ± 1.7 110 ± 4.4	104 ± 2.3 106 ± 2.8	102 ± 2.2 105 ± 2.8	$(b) 94 \pm 2.0$
	3 110	110 1 4.4	100 - 4.0		
	12 mo	110 ± 2.3	103 ± 2.7	108 ± 3.7	115 ± 4.6

TABLE 18. ANALYSIS OF SERUM CHEMICAL DATA FOR RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (a)

(a) Mean \pm standard error, P values vs. the vehicle controls by Dunn's test (Dunn, 1964) or by Shirley's test (Shirley, 1977); number of animals examined except as noted: 6 mo or less, 30; 9 mo, 30 except for 29 in the female 21 µg/kg group; 12 and 15 mo, 15 except for 14 in the 21 µg/kg groups and 14 in the male 70 µg/kg group at 15 mo. (b) P<0.01

Specific gravity Specific gravity (concentration studies) Urea nitrogen (mg/dl)	3 d 10 d 45 d 3 mo 6 mo 9 mo 12 mo 15 mo 7 d 47 d 6 mo 12 mo 3 d 10 d 45 d	$\begin{array}{c} 1.031 \pm 0.003 \\ (b) 1.026 \pm 0.003 \\ 1.022 \pm 0.001 \\ 1.041 \pm 0.002 \\ 1.033 \pm 0.002 \\ 1.033 \pm 0.002 \\ 1.034 \pm 0.002 \\ 1.045 \pm 0.004 \\ 1.035 \pm 0.004 \\ 1.087 \pm 0.002 \\ (d) 1.086 \pm 0.001 \\ (e) 1.070 \pm 0.002 \\ (g) 1.065 \pm 0.005 \\ 1.288 \pm 118 \\ 1.417 \pm 213 \end{array}$	$\begin{array}{c} 1.027 \pm 0.002 \\ 1.023 \pm 0.003 \\ 1.024 \pm 0.002 \\ 1.042 \pm 0.005 \\ 1.034 \pm 0.002 \\ 1.032 \pm 0.002 \\ 1.037 \pm 0.004 \\ 1.037 \pm 0.004 \\ (d) 1.088 \pm 0.001 \\ 1.088 \pm 0.001 \\ 1.075 \pm 0.001 \\ (f) 1.075 \pm 0.001 \\ (h) 1.071 \pm 0.003 \end{array}$	(d) 1.071 ± 0.001	$\begin{array}{c} 1.036 \pm 0.003 \\ 1.033 \pm 0.004 \\ 1.028 \pm 0.002 \\ 1.037 \pm 0.002 \\ 1.028 \pm 0.002 \\ (c) 1.025 \pm 0.001 \\ 1.033 \pm 0.003 \\ 1.027 \pm 0.002 \\ \end{array}$
Specific gravity (concentration studies)	45 d 3 mo 6 mo 9 mo 12 mo 15 mo 7 d 47 d 6 mo 12 mo 3 d 10 d 45 d	$\begin{array}{c} 1.022 \pm 0.001 \\ 1.041 \pm 0.002 \\ 1.033 \pm 0.002 \\ 1.034 \pm 0.002 \\ 1.045 \pm 0.004 \\ 1.035 \pm 0.004 \\ \end{array}$	$1.024 \pm 0.002 \\ 1.042 \pm 0.005 \\ 1.034 \pm 0.002 \\ 1.032 \pm 0.002 \\ 1.037 \pm 0.004 \\ 1.037 \pm 0.004 \\ (d) 1.088 \pm 0.001 \\ 1.088 \pm 0.001 \\ (f) 1.075 \pm 0.001 \\ (h) 1.071 \pm 0.003 \\ \end{cases}$	$\begin{array}{c} 1.021 \pm 0.002 \\ 1.039 \pm 0.003 \\ 1.029 \pm 0.002 \\ 1.029 \pm 0.001 \\ 1.034 \pm 0.002 \\ 1.031 \pm 0.002 \end{array}$ (d) 1.088 \pm 0.002 \\ 1.086 \pm 0.001 \\ (d) 1.071 \pm 0.001 \end{array}	$1.028 \pm 0.002 \\ 1.037 \pm 0.002 \\ 1.028 \pm 0.002 \\ (c) 1.025 \pm 0.001 \\ 1.033 \pm 0.003 \\ 1.027 \pm 0.002 \\ (b) 1.089 \pm 0.002 \\ (c,d) 1.081 \pm 0.001 \\ \end{cases}$
(concentration studies)	3 mo 6 mo 9 mo 12 mo 15 mo 7 d 47 d 6 mo 12 mo 3 d 10 d 45 d	$\begin{array}{c} 1.041 \pm 0.002 \\ 1.033 \pm 0.002 \\ 1.034 \pm 0.002 \\ 1.045 \pm 0.004 \\ 1.035 \pm 0.004 \\ \end{array}$ $\begin{array}{c} 1.087 \pm 0.002 \\ (d) \ 1.086 \pm 0.001 \\ (e) \ 1.070 \pm 0.002 \\ (g) \ 1.065 \pm 0.005 \\ 1.288 \pm 118 \end{array}$	1.042 ± 0.005 1.034 ± 0.002 1.032 ± 0.002 1.047 ± 0.004 1.037 ± 0.004 (d) 1.088 ± 0.001 1.088 ± 0.001 (f) 1.075 ± 0.001 (h) 1.071 ± 0.003	$\begin{array}{c} 1.039 \pm 0.003 \\ 1.029 \pm 0.002 \\ 1.029 \pm 0.001 \\ 1.034 \pm 0.002 \\ 1.031 \pm 0.002 \end{array}$ (d) 1.088 \pm 0.002 \\ 1.086 \pm 0.001 \\ (d) 1.071 \pm 0.001 \end{array}	$\begin{array}{c} 1.037 \pm 0.002 \\ 1.028 \pm 0.002 \\ (c) 1.025 \pm 0.001 \\ 1.033 \pm 0.003 \\ 1.027 \pm 0.002 \end{array}$ (b) 1.089 \pm 0.002 (c,d) 1.081 \pm 0.001
(concentration studies)	6 mo 9 mo 12 mo 15 mo 7 d 47 d 6 mo 12 mo 3 d 10 d 45 d	$\begin{array}{c} 1.033 \pm 0.002 \\ 1.034 \pm 0.002 \\ 1.045 \pm 0.004 \\ 1.035 \pm 0.004 \\ \end{array}$ $\begin{array}{c} 1.087 \pm 0.002 \\ (d) 1.086 \pm 0.001 \\ (e) 1.070 \pm 0.002 \\ (g) 1.065 \pm 0.005 \\ 1.288 \pm 118 \end{array}$	$1.034 \pm 0.002 \\ 1.032 \pm 0.002 \\ 1.047 \pm 0.004 \\ 1.037 \pm 0.004 \\ (d) 1.088 \pm 0.001 \\ 1.088 \pm 0.001 \\ (f) 1.075 \pm 0.001 \\ (h) 1.071 \pm 0.003 \\ \end{cases}$	$1.029 \pm 0.002 \\ 1.029 \pm 0.001 \\ 1.034 \pm 0.002 \\ 1.031 \pm 0.002 \\ (d) 1.088 \pm 0.002 \\ 1.086 \pm 0.001 \\ (d) 1.071 \pm 0.001 \\ \end{cases}$	1.028 ± 0.002 (c) 1.025 ± 0.001 1.033 ± 0.003 1.027 ± 0.002 (b) 1.089 ± 0.002 (c,d) 1.081 ± 0.001
(concentration studies)	9 mo 12 mo 15 mo 7 d 47 d 6 mo 12 mo 3 d 10 d 45 d	$\begin{array}{c} 1.034 \pm 0.002 \\ 1.045 \pm 0.004 \\ 1.035 \pm 0.004 \end{array}$ $\begin{array}{c} 1.087 \pm 0.002 \\ (d) 1.086 \pm 0.001 \\ (e) 1.070 \pm 0.002 \\ (g) 1.065 \pm 0.005 \\ 1.288 \pm 118 \end{array}$	$1.032 \pm 0.002 \\ 1.047 \pm 0.004 \\ 1.037 \pm 0.004 \\ (d) 1.088 \pm 0.001 \\ 1.088 \pm 0.001 \\ (f) 1.075 \pm 0.001 \\ (h) 1.071 \pm 0.003 \\ \end{cases}$	1.029 ± 0.001 1.034 ± 0.002 1.031 ± 0.002 (d) 1.088 \pm 0.002 1.086 \pm 0.001 (d) 1.071 \pm 0.001	(c) 1.025 ± 0.001 1.033 ± 0.003 1.027 ± 0.002 (b) 1.089 ± 0.002 (c,d) 1.081 ± 0.001
(concentration studies)	12 mo 15 mo 7 d 47 d 6 mo 12 mo 3 d 10 d 45 d	$\begin{array}{c} 1.045 \pm 0.004 \\ 1.035 \pm 0.004 \\ \end{array}$ $\begin{array}{c} 1.087 \pm 0.002 \\ (d) 1.086 \pm 0.001 \\ (e) 1.070 \pm 0.002 \\ (g) 1.065 \pm 0.005 \\ 1.288 \pm 118 \end{array}$	$\begin{array}{c} 1.047 \pm 0.004 \\ 1.037 \pm 0.004 \end{array}$ (d) 1.088 \pm 0.001 1.088 \pm 0.001 (f) 1.075 \pm 0.001 (h) 1.071 \pm 0.003 \end{array}	$\begin{array}{c} 1.034 \pm 0.002 \\ 1.031 \pm 0.002 \end{array}$ (d) 1.088 \pm 0.002 1.086 \pm 0.001 (d) 1.071 \pm 0.001	$\begin{array}{c} 1.033 \pm 0.003 \\ 1.027 \pm 0.002 \end{array}$ (b) 1.089 \pm 0.002 (c,d) 1.081 \pm 0.001
(concentration studies)	15 mo 7 d 47 d 6 mo 12 mo 3 d 10 d 45 d	1.035 ± 0.004 1.087 ± 0.002 (d) 1.086 \pm 0.001 (e) 1.070 \pm 0.002 (g) 1.065 \pm 0.005 1.288 \pm 118	$\begin{array}{c} 1.037 \pm 0.004 \\ (d) \ 1.088 \pm 0.001 \\ 1.088 \pm 0.001 \\ (f) \ 1.075 \pm 0.001 \\ (h) \ 1.071 \pm 0.003 \end{array}$	$\begin{array}{c} 1.031 \pm 0.002 \\ (d) 1.088 \pm 0.002 \\ 1.086 \pm 0.001 \\ (d) 1.071 \pm 0.001 \end{array}$	1.027 ± 0.002 (b) 1.089 ± 0.002 (c,d) 1.081 ± 0.001
(concentration studies)	7 d 47 d 6 mo 12 mo 3 d 10 d 45 d	$\begin{array}{c} 1.087 \pm 0.002 \\ (d) \ 1.086 \pm 0.001 \\ (e) \ 1.070 \pm 0.002 \\ (g) \ 1.065 \pm 0.005 \\ 1.288 \pm 118 \end{array}$	(d) 1.088 ± 0.001 1.088 ± 0.001 (f) 1.075 ± 0.001 (h) 1.071 ± 0.003	(d) 1.088 ± 0.002 1.086 ± 0.001 (d) 1.071 ± 0.001	(b) 1.089 ± 0.002 (c,d) 1.081 ± 0.001
(concentration studies)	47 d 6 mo 12 mo 3 d 10 d 45 d	(d) 1.086 ± 0.001 (e) 1.070 ± 0.002 (g) 1.065 ± 0.005 1.288 ± 118	$\begin{array}{c} 1.088 \pm 0.001 \\ (f) 1.075 \pm 0.001 \\ (h) 1.071 \pm 0.003 \end{array}$	$\begin{array}{c} 1.086 \pm 0.001 \\ \text{(d)} 1.071 \pm 0.001 \end{array}$	$(c,d) 1.081 \pm 0.001$
	47 d 6 mo 12 mo 3 d 10 d 45 d	(d) 1.086 ± 0.001 (e) 1.070 ± 0.002 (g) 1.065 ± 0.005 1.288 ± 118	$\begin{array}{c} 1.088 \pm 0.001 \\ (f) 1.075 \pm 0.001 \\ (h) 1.071 \pm 0.003 \end{array}$	$\begin{array}{c} 1.086 \pm 0.001 \\ \text{(d)} 1.071 \pm 0.001 \end{array}$	$(c,d) 1.081 \pm 0.001$
Urea nitrogen (mg/dl)	6 mo 12 mo 3 d 10 d 45 d	(e) 1.070 ± 0.002 (g) 1.065 ± 0.005 1.288 ± 118	(f) 1.075 ± 0.001 (h) 1.071 ± 0.003	(d) 1.071 ± 0.001	
Urea nitrogen (mg/dl)	12 mo 3 d 10 d 45 d	(g) 1.065 ± 0.005 $1,288 \pm 118$	(h) 1.071 ± 0.003		$(c) 1.046 \pm 0.001$
Urea nitrogen (mg/dl)	3 d 10 d 45 d	$1,288 \pm 118$		(1) 1 0 6 9 + 0 009	
Urea nitrogen (mg/dl)	10 d 45 d			(i) 1.058 ± 0.002	(c) 1.042 ± 0.001
	45 d	1 417 + 919	$1,007 \pm 110$	$1,217 \pm 128$	$1,622 \pm 155$
		1,711 - 410	$1,132 \pm 173$	$1,077 \pm 157$	$1,679 \pm 212$
	•	$1,406 \pm 133$	$1,393 \pm 156$	$1,312 \pm 130$	$1,614 \pm 131$
	3 mo	$2,105 \pm 163$	$2,283 \pm 290$	$2,197 \pm 201$	$1,710 \pm 149$
	6 mo	$1,720 \pm 148$	$1,787 \pm 129$	$1,588 \pm 116$	$1,272 \pm 120$
	9 mo	$1,804 \pm 101$	$1,612 \pm 94$	(c) $1,363 \pm 83$	(c) 1,184 \pm 61
	12 mo	$2,683 \pm 211$	$2,814 \pm 255$	(c) 1,787 \pm 124	(c) 1,817 ± 164
	15 mo	$1,965 \pm 227$	$2,048 \pm 213$	$1,669 \pm 107$	$1,364 \pm 81$
Creatinine (mg/dl)	3 d	54.6 ± 5.82	51.6 ± 5.68	57.1 ± 6.44	75.1 ± 7.02
	10 d	64.9 ± 10.07	54.8 ± 8.33	50.0 ± 7.40	80.8 ± 9.76
	45 d	70.0 ± 6.90	77.3 ± 9.75	75.8 ± 7.19	92.8 ± 8.26
	3 mo	137.4 ± 10.83	155.3 ± 20.02	152.0 ± 14.64	123.9 ± 10.11
	6 mo	140.0 ± 9.84	142.8 ± 10.02	131.5 ± 9.43	110.8 ± 8.66
	9 mo	170.3 ± 8.58	157.3 ± 9.62	(c) 126.9 ± 9.41	(c) 103.8 ± 5.81
	12 mo	257.5 ± 19.20	334.0 ± 36.10	207.1 ± 13.48	(c) 159.6 ± 12.71
	15 mo	202.3 ± 16.19	232.7 ± 28.91	174.8 ± 11.58	149.4 ± 8.97
Glucose (mg/dl)	3 mo	27.3 ± 1.56	28.0 ± 2.95	26.4 ± 2.44	31.9 ± 2.02
	6 mo	22.3 ± 1.98	20.4 ± 1.65	20.0 ± 1.46	22.5 ± 1.50
	9 mo	45.3 ± 2.05	43.4 ± 2.23	38.8 ± 2.24	(c) 37.1 ± 1.94
	12 mo	59.3 ± 5.45	59.6 ± 6.51	(c) 45.1 ± 1.92	(c) 43.5 ± 2.95
	15 mo	54.0 ± 6.76	53.8 ± 6.47	45.5 ± 3.44	47.1 ± 3.36
Protein (mg/dl)	3 mo	607 ± 33.9	645 ± 63.2	551 ± 48.5	653 ± 40.9
	6 mo	495 ± 34.1	500 ± 33.3	470 ± 31.1	536 ± 30.3
	9 mo	521 ± 27.4	504 ± 26.1	505 ± 24.0	504 ± 25.5
	12 mo	812 ± 87.0	759 ± 71.1	607 ± 54.3	558 ± 34.6
	15 mo	747 ± 95.1	694 ± 86.0	576 ± 62.7	541 ± 41.3
Volume (ml/16 h)	3 d	7.3 ± 0.72	8.3 ± 0.99	8.1 ± 1.06	6.0 ± 0.71
	10 d	7.6 ± 0.83	10.6 ± 1.13	9.3 ± 1.00	6.9 ± 0.90
	45 d	9.2 ± 0.72	9.4 ± 0.83	9.7 ± 0.82	6.9 ± 0.56
	3 mo	4.7 ± 0.39	5.4 ± 0.52	5.3 ± 0.69	5.4 ± 0.52
	6 mo	5.8 ± 0.32	5.9 ± 0.36	6.8 ± 0.41	7.2 ± 0.46
	9 mo	5.3 ± 0.22	5.0 ± 0.30	6.2 ± 0.43	6.9 ± 0.50
	12 mo	3.9 ± 0.40	3.5 ± 0.33	(c) 5.3 ± 0.31	(c) 5.8 ± 0.45
	15 mo	4.7 ± 0.41	4.5 ± 0.46	5.0 ± 0.41	5.7 ± 0.43

TABLE 19. RESULTS OF URINALYSIS FOR MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (a)

(a) Mean \pm standard error, P values vs. the vehicle controls by Dunn's test (Dunn, 1964) or by Shirley's test (Shirley, 1977); number of animals examined except as noted: 9 mo or less, 30; 12 mo, 15 except for 14 in the 21 µg/kg group; 15 mo, 15 vehicle controls, 14 in the 21 μg/kg and 210 μg/kg groups; and 13 in the 70 μg/kg group.
(b) Twenty-nine examined
(c) P<0.01

(d) Twenty-eight examined

(e) Twenty-three examined (f) Twenty-five examined

(g) Ten examined (h) Twelve examined

(i) Thirteen examined

Analysis	Interval	Vehicle Contro	ol 21 µg/kg	70 μg/kg	210 µg/kg
Specific gravity		(b) 1.014 ± 0.002	1.020 ± 0.003	1.017 ± 0.002	1.017 ± 0.003
	10 d	1.014 ± 0.001	1.016 ± 0.002	1.016 ± 0.002	1.018 ± 0.002
	45 d	1.018 ± 0.002	1.023 ± 0.002	1.018 ± 0.002	1.014 ± 0.001
	3 mo	1.023 ± 0.001	1.027 ± 0.003	1.022 ± 0.002	(c) 1.017 ± 0.001
	6 mo	1.024 ± 0.002	1.025 ± 0.003	1.024 ± 0.003	(c) 1.017 ± 0.001
	9 mo	1.027 ± 0.002	1.029 ± 0.002	1.022 ± 0.001	1.023 ± 0.002
	12 mo	1.041 ± 0.005	1.036 ± 0.003	1.029 ± 0.002	(c) 1.025 ± 0.003
	15 mo	1.022 ± 0.001	1.026 ± 0.002	1.024 ± 0.001	1.019 ± 0.001
Specific gravity					
(concentration studies)	7 d	(d) 1.080 ± 0.001	(e) 1.079 ± 0.001	(c) 1.053 ± 0.004	(c) 1.047 ± 0.032
	4 7 d	1.071 ± 0.002	(b) 1.078 ± 0.002	(b) 1.071 ± 0.001	(c) 1.065 ± 0.002
	6 mo	1.081 ± 0.001	1.079 ± 0.001	(c) 1.062 ± 0.002	(c) 1.052 ± 0.001
	12 mo	1.075 ± 0.002	(f) 1.079 ± 0.002	(c) 1.060 ± 0.002	$(c,g) 1.050 \pm 0.002$
rea nitrogen (mg/dl)	3 d	(h) 773 \pm 145	(i) 960 \pm 224	(i) 824 ± 170	(j) 1,081 \pm 293
	10 d	801 ± 89	788 ± 111	798 ± 86	829 ± 120
	45 d	$1,003 \pm 94$	$1,244 \pm 136$	933 ± 114	740 ± 59
	3 mo	$1,644 \pm 116$	$1,776 \pm 184$	$1,337 \pm 169$	(c) $1,043 \pm 83$
	6 mo	$1,448 \pm 139$	$1,582 \pm 187$	$1,403 \pm 148$	$(c) 914 \pm 71$
	9 mo	$1,698 \pm 117$	$1,851 \pm 145$	$1,344 \pm 82$	$1,323 \pm 103$
	12 mo	$2,603 \pm 292$	$2,308 \pm 180$	(c) 1,730 \pm 124	(c) $1,375 \pm 143$
	15 mo	1.423 ± 115	$1,688 \pm 112$	$1,390 \pm 69$	(c) 963 \pm 75
Creatinine (mg/dl)	3 d	(h) 28.9 ± 5.01	(i) 36.0 ± 8.97	(i) 32.1 ± 6.80	(j) 37.8 ± 12.35
······································	10 d	31.4 ± 3.01	32.1 ± 5.04	31.9 ± 3.85	33.2 ± 3.82
	45 d	55.1 ± 5.33	66.0 ± 8.30	50.3 ± 6.38	38.7 ± 3.24
	3 mo	89.9 ± 6.26	101.5 ± 10.96	78.9 ± 7.30	(c) 55.9 ± 4.26
	6 mo	103.9 ± 9.17	107.1 ± 14.62	95.8 ± 11.13	$(c) 60.2 \pm 4.36$
	9 mo	106.4 ± 6.94	122.8 ± 10.67	85.8 ± 5.68	(c) 76.3 ± 5.82
	12 mo	169 ± 20.9	170 ± 16.1	113 ± 8.4	$(c) 97 \pm 10.7$
	15 mo	100 ± 10.0 107 ± 9.0	122 ± 9.5	98 ± 4.7	78 ± 7.1
Glucose (mg/dl)	45 d	14.1 ± 1.61	16.2 ± 2.05	11.8 ± 1.77	11.9 ± 1.60
	3 mo	10.3 ± 0.84	12.9 ± 1.61	12.5 ± 1.32	10.2 ± 0.71
	6 mo	14.5 ± 2.05	12.8 ± 1.81	12.0 ± 1.02 13.9 ± 1.44	9.7 ± 0.81
	9 mo	28.2 ± 1.88	31.2 ± 2.27	24.0 ± 1.44	26.4 ± 1.72
	12 mo	42.8 ± 3.70	50.4 ± 4.07	39.1 ± 2.46	34.3 ± 3.49
	15 mo	31.5 ± 2.79	37.4 ± 2.18	33.1 ± 1.69	28.9 ± 2.26
rotein (mg/dl)	45 d	175 ± 18.6	205 ± 16.3	158 ± 13.0	158 ± 11.3
() term (mg/ui)	3 mo	230 ± 14.1	267 ± 23.7	228 ± 14.9	204 ± 11.1
	6 mo	260 ± 14.1 262 ± 18.2	284 ± 27.2	283 ± 21.1	204 ± 11.1 228 ± 14.4
	9 mo	202 ± 10.2 297 ± 16.7	327 ± 16.7	274 ± 11.4	307 ± 17.2
	12 mo	358 ± 23.2	369 ± 22.6	326 ± 18.2	348 ± 30.3
	12 mo	247 ± 23.1	265 ± 14.2		
/olume (ml/16 h)	3 d	12.7 ± 1.30	10.0 ± 1.18	265 ± 18.9	283 ± 23.3
or and (mp to m)	10 d	12.7 ± 1.30 10.2 ± 0.85	8.7 ± 0.67	10.2 ± 1.00 9.3 ± 0.84	10.8 ± 0.98
	45 d	6.9 ± 0.75	5.7 ± 0.43	$\frac{9.3 \pm 0.84}{7.5 \pm 0.52}$	8.0 ± 0.61 8.6 ± 0.69
	43 u 3 mo	4.5 ± 0.40	4.4 ± 0.63	7.5 ± 0.52 5.6 ± 0.54	$(c) 6.2 \pm 0.49$
	6 mo	4.5 ± 0.40 5.8 ± 0.48	4.4 ± 0.63 6.3 ± 0.63		
	9 mo			6.3 ± 0.55	7.8 ± 0.53
	9 mo 12 mo	5.2 ± 0.51 3.2 ± 0.27	4.4 ± 0.30 3.0 ± 0.26	6.4 ± 0.49	$(c) 7.1 \pm 0.66$
	12 mo 15 mo			4.3 ± 0.26	$(c) 5.2 \pm 0.52$
	10 m0	4.7 ± 0.47	4.0 ± 0.33	4.4 ± 0.21	$(c) 6.6 \pm 0.61$

TABLE 20. RESULTS OF URINALYSIS FOR FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (a)

(a) Mean \pm standard error, P values vs. the vehicle controls by Dunn's test (Dunn, 1964) or by Shirley's test (Shirley, 1977); number of animals examined except as noted: 9 mo or less, 30 except for 29 in the 21 µg/kg group at 9 mo; 12 and 15 mo, 15 except for 14 in the 21 µg/kg groups.

(b) Twenty-nine examined

(c) P<0.01

(d) Twenty-seven examined

(e) Twenty-eight examined

(f) Thirteen examined

(g) Twelve examined

(h) Twenty-four examined

(i) Eighteen examined

(j) Twenty-one examined

Figure 7. A dilated tubule lined by plump epithelial cells (arrow) was diagnosed as proliferation to distinguish the lesion from typical cysts, which are lined by flattened epithelial cells. Cells lining the proliferations were often 1 to 2 cell layers thick, suggesting that some cell proliferation had occurred. (H&E stain, magnification $40 \times$)

Figure 8. A focal area of hyperplasia involving one tubule. Cells within these lesions often appeared similar to those found within adenomas. (H&E stain, magnification $40 \times$)

Figure 9. A large tubular cell carcinoma (arrow heads) replacing most of the kidney cortex and bulging above the renal capsule. The pale area in the center of the tumor represents necrosis, where the tumor apparently outgrew its blood supply. A portion of normal renal cortex and medulla can be recognized. (H&E stain, magnification $3.5\times$)

Figure 10. Much of the lung has been replaced by numerous metastases from a renal cell carcinoma. The lung was the most frequent site of metastases, being involved in 16 of 17 cases. (H&E stain, magnification $7.5 \times$)

.

Pathology and Statistical Analyses of Results

This section describes the significant or noteworthy changes in the incidences of rats with neoplastic or nonneoplastic lesions of the kidney, mammary gland, tongue, and hematopoietic system.

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary tumors that occurred with an incidence of at least 5% in at least one animal group, and historical control incidences for the neoplasms mentioned in this section are presented in Appendixes A and B for male and female rats, respectively.

Kidney: The administration of ochratoxin A to male and female rats caused a spectrum of degenerative and proliferative changes in the kidney (Tables 21 and 22). The predominant non-neoplastic lesion in dosed rats was degeneration of the renal tubular epithelium in the inner cortex and the outer stripe of the outer medulla. Karyomegaly (the enlargement of nuclei in the tubular epithelium) and cytoplasmic alteration

consisting of individual tubules lined by enlarged cells containing granular eosinophilic cytoplasm (onocytes) were also frequent findings. Cysts were characterized by markedly dilated tubules with a single layer of epithelium in the cortex of the kidney. Similarly dilated tubules containing multiple layers of enlarged epithelial cells were diagnosed as proliferation (Figure 7). Foci of hyperplasia consisted of focally enlarged tubules in the cortex filled with epithelial cells (Figure 8). Similar but larger lesions in which all tubular structure was obliterated by the proliferating mass of cells were diagnosed as adenomas. Adenomas were relatively well circumscribed and showed minimal cellular atypia. Carcinomas were generally larger (up to 3 cm in diameter, Figure 9) and were less well circumscribed than adenomas; those that metastasized were at least 1 cm in diameter. Many of the carcinomas had areas of necrosis within the tumor. The neoplastic cells of the carcinomas showed marked cellular atypia, and numerous cells were in mitosis. These neoplasms had a propensity to metastasize, as shown by distant metastases in 17 males and in 1 female with renal tubular cell carcinomas (Figure 10).

TABLE 21. NUMBERS OF RATS WITH RENAL LESIONS IN THE TWO-YEAR GAVAGE STUDIES OF
OCHRATOXIN A

	Male				Female				
	ehicle Control	21 µg/kg	70 µg/kg	210 µg/kg	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg	
Number examined	50	51	51	50	50	51	50	50	
Kidney									
Cyst	0	1	0	10	0	0	1	31	
Kidney tubule epithelium									
Cytoplasmic alteration	1	0	3	8	0	0	1	2	
Degeneration	0	0	50	49	0	0	49	49	
Hyperplasia	1	1	16	24	0	0	12	13	
Karyomegaly	0	1	51	50	0	8	50	50	
Proliferation	0	0	10	26	0	0	3	16	
Kidney tubule									
Adenoma, solitary	1	1	5	10	0	0	1	3	
Adenoma, multiple	0	0	1	0	0	0	0	2	
Carcinoma, solitary	0	0	12	20	0	0	1	3	
Carcinoma, bilateral/multip	le O	0	4	10	0	0	0	0	
Metastatic renal carcinoma									
(all sites)	0	0	4	13	0	0	1	0	

	Vehicle Control	21 µg/kg	70 μg/kg	210 µg/kg	
MALE					
Adenoma					
Overall Rates	1/50(2%)	1/51(2%)	6/51 (12%)	10/50 (20%)	
Adjusted Rates	2.6%	3.8%	19.7%	33.1%	
Terminal Rates	1/39 (3%)	1/26 (4%)	4/26 (15%)	5/23 (22%)	
Day of First Observation	729	729	524	513	
Life Table Tests	P<0.001	P = 0.669	P = 0.023	P<0.001	
Logistic Regression Tests	P<0.001	P = 0.669	P = 0.053	P = 0.004	
Carcinoma					
Overall Rates	0/50 (0%)	0/51 (0%)	16/51 (31%)	30/50 (60%)	
Adjusted Rates	0.0%	0.0%	43.4%	77.2%	
Terminal Rates	0/39(0%)	0/26(0%)	7/26 (27%)	15/23 (65%)	
Day of First Observation		0,40,000	507	390	
Life Table Tests	P<0.001	(b)	P<0.001	P<0.001	
Logistic Regression Tests	P<0.001	(b)	P<0.001	P<0.001	
Adenoma or Carcinoma (c)					
Overall Rates	1/50 (2%)	1/51 (2%)	20/51 (39%)	36/50 (72%)	
Adjusted Rates	2.6%	3.8%	53.4%	87.2%	
Terminal Rates	1/39 (3%)	1/26 (4%)	10/26 (38%)	18/23 (78%)	
Day of First Observation	729	729	507	390	
Life Table Tests	P<0.001	P = 0.669	P<0.001	P<0.001	
Logistic Regression Tests	P<0.001	P = 0.669	P<0.001	P<0.001	
FEMALE					
Adenoma					
Overall Rates	0/50 (0%)	0/51 (0%)	1/50 (2%)	5/50(10%)	
Adjusted Rates	0.0%	0.0%	2.4%	14.3%	
Terminal Rates	0/32 (0%)	0/23 (0%)	0/35 (0%)	5/35 (14%)	
Day of First Observation			637	728	
Life Table Tests	P = 0.003	(b)	P = 0.505	P = 0.041	
Logistic Regression Tests	P = 0.002	(b)	P = 0.493	P = 0.041	
Carcinoma					
Overall Rates	0/50 (0%)	0/51 (0%)	1/50 (2%)	3/50 (6%)	
Adjusted Rates	0.0%	0.0%	2.0%	8.6%	
Terminal Rates	0/32 (0%)	0/23 (0%)	0/35 (0%)	3/35 (9%)	
Day of First Observation			319	728	
Life Table Tests	P = 0.031	(b)	P = 0.504	P = 0.137	
Logistic Regression Tests	P = 0.017	(b)	P = 0.500	P = 0.137	
Adenoma or Carcinoma (d)					
Overall Rates	0/50 (0%)	0/51 (0%)	2/50 (4%)	8/50 (16%)	
Adjusted Rates	0.0%	0.0%	4.3%	22.9%	
Terminal Rates	0/32 (0%)	0/23 (0%)	0/35 (0%)	8/35 (23%)	
Day of First Observation			319	728	
	D (0.001	(1)	P = 0.245	P = 0.006	
Life Table Tests	P<0.001	(b)	P=0.240	F = 0.000	

TABLE 22. ANALYSIS OF RENAL TUBULAR CELL TUMORS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF OCHRATOXIN A (a)

(a) The statistical analyses used are discussed in Section II (Statistical Methods) and Table A3 (footnotes).

(b) No P value is reported because no tumors were observed in the 21 μ g/kg and the vehicle control groups. (c) Historical incidence of adenomas or adenocarcinomas (combined) at study laboratory (mean \pm SD): 3/248 (1% \pm 1%); historical incidence in NTP studies: $10/1,943(0.5\% \pm 0.9\%)$

(d) Historical incidence of adenomas at study laboratory: 0/248; historical incidence in NTP studies (mean \pm SD): 2/1,944 ($0.1\% \pm 0.5\%$); no malignant tumors have been observed.

Mammary Gland: The incidence of fibroadenomas in high dose female rats was significantly greater than that in vehicle controls (Table 23). The neoplasms were usually seen grossly, and histologically they were typical mammary gland fibroadenomas with a mixture of glandular and stromal elements. Multiple fibroadenomas (two per animal) were observed at an increased incidence in high dose female rats (vehicle control, 4/50; low dose, 4/51; mid dose, 5/50; high dose, 14/50). 2/51 low dose and 2/51 mid dose male rats. One low dose and two high dose males also had epithelial hyperplasia of the tongue. Tongues were only examined microscopically if a lesion was seen grossly at necropsy; no tongues of vehicle control male rats were examined microscopically. The mean historical incidence of neoplasms of the oral cavity in corn oil vehicle control male F344/N rats is 0.3% (6/1,949), and the highest observed incidence is 2/50. Oral cavity tumors were not found in female rats; one mid dose female had epithelial hyperplasia of the tongue.

Tongue: Squamous papillomas were seen in

	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg
Fibroadenoma		······································		
Overall Rates	17/50 (34%)	23/51 (45%)	22/50 (44%)	28/50 (56%)
Adjusted Rates	46.6%	70.5%	56.3%	69.9%
Terminal Rates	13/32 (41%)	14/23 (61%)	18/35 (51%)	23/35 (66%)
Day of First Observation	525	436	659	630
Life Table Tests	P = 0.205	P = 0.021	P = 0.313	P = 0.052
Logistic Regression Tests	P = 0.046	P=0.096	P = 0.234	P = 0.020
Adenoma				
Overall Rates	0/50 (0%)	0/51 (0%)	1/50 (2%)	0/50 (0%)
Adenocarcinoma				
Overall Rates	1/50 (2%)	2/51 (4%)	2/50 (4%)	2/50 (4%)
Adenoma, Fibroadenoma, or Ad	enocarcinoma (a)			
Overall Rates	17/50 (34%)	24/51 (47%)	22/50 (44%)	30/50 (60%)
Adjusted Rates	46.6%	73.8%	56.3%	73.1%
Terminal Rates	13/32 (41%)	15/23 (65%)	18/35 (51%)	24/35 (69%)
Day of First Observation	525	436	659	626
Life Table Tests	P = 0.127	P = 0.012	P = 0.313	P = 0.024
Logistic Regression Tests	P = 0.019	P = 0.063	P = 0.234	P = 0.007

TABLE 23. ANALYSIS OF MAMMARY GLAND TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A

(a) Historical incidence at study laboratory (mean \pm SD): 55/250 (22% \pm 5%); historical incidence in NTP studies: 588/1,950 (30% \pm 10%)

III. RESULTS: RATS

Hematopoietic System: The incidence of mononuclear cell leukemia in high dose female rats was significantly lower than that in vehicle controls (Table 24). Leukemia was seen in 12/50 vehicle control, 7/51 low dose, 7/51 mid dose, and 7/50 high dose male rats.

TABLE 24. ANALYSIS OF MONONUCLEAR CELL LEUKEMIA IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (a)

	Vehicle Control	21 μg/kg	70 µg/kg	210 µg/kg
Overall Rates Adjusted Rates Terminal Rates Day of First Observation Life Table Test Logistic Regression Test	10/50 (20%) 23.8% 3/32 (9%) 495	(b,c) 8/51 (16%)	(b,d) 2/50 (4%)	3/50 (6%) 7.9% 2/35 (6%) 568 P=0.039N P=0.037N

(a) Historical incidence of leukemia at study laboratory (mean \pm SD): 49/250 (20% \pm 8%); historical incidence in NTP studies: 364/1,950 (19% \pm 8%)

(b) Incomplete sampling of tissues and thus not statistically analyzed

(c) Twenty-nine livers and 29 spleens were examined microscopically.

 $\rm (d)$ Nineteen livers and 16 spleens were examined microscopically.

Ochratoxin A was not mutagenic in S. typhimurium strains TA97, TA98, TA100, or TA1535 when tested with a preincubation protocol at doses up to 100 μ g/plate in the presence or absence of Aroclor 1254-induced male Sprague Dawley rat or Syrian hamster liver S9 (Table 25; Zeiger et al., 1988). In cytogenic tests with cultured Chinese hamster ovary (CHO) cells, a small but significant and reproducible dose-related increase in sister chromatid exchanges was observed after treatment of CHO cells with ochratoxin A in the presence of S9 (Table 26); ochratoxin A did not induce chromosomal aberrations either with or without Aroclor 1254induced male Sprague Dawley rat liver S9 (Table 27).

TABLE 25.	MUTAGENICITY	OF OCHRATOXIN	A IN SALMONELLA	TYPHIMURIUM (a)
-----------	--------------	----------------------	-----------------	-----------------

					ts/Plate (b)			
Strain	Dose			<u>+ S9 (ha</u>		+ S9 (rat)		
	(µg/plate)	Trial 1	Trial 2	10%	30%	10%	30%	
TA100	0	107 ± 9.5	113 ± 6.7	86 ± 6.9	102 ± 9.8	89 ± 7.8	115 ± 14.2	
	1	91 ± 1.0	102 ± 4.7	80 ± 4.9	105 ± 5.2	99 ± 8.7	117 ± 4.7	
	3.3	90 ± 4.4	121 ± 5.8	95 ± 0.9	108 ± 2.9	$.93 \pm 7.2$	117 ± 5.5	
	10	98 ± 4.6	104 ± 2.4	86 ± 2.0	110 ± 5.9	95 ± 5.0	131 ± 8.2	
	33	85 ± 6.2	110 ± 6.4	91 ± 5.5	119 ± 8.5	84 ± 2.5	114 ± 3.2	
	100	88 ± 6.1	113 ± 3.1	85 ± 5.9	103 ± 7.3	96 ± 5.5	116 ± 5.5	
Trial su	mmary	Negative	Negative	Negative	Negative	Negative	Negative	
	control (c)	$1,001 \pm 29.6$	569 ± 15.2	$1,543 \pm 67.0$	$1,150 \pm 34.1$	$1,681 \pm 32.7$	873 ± 11.3	
TA1535	i 0	32 ± 1.2	27 ± 0.9	9 ± 2.4	13 ± 3.6	10 ± 1.7	13 ± 2.8	
	1	28 ± 2.0	25 ± 0.6	8 ± 2.2	14 ± 3.5	8± 0.9	11 ± 1.9	
	3.3	28 ± 2.0	32 ± 2.1	8 ± 1.2	11 ± 2.1	9 ± 1.7	13 ± 2.5	
	10	21 ± 3.2	29 ± 3.7	8± 0.9	12 ± 1.2	10 ± 1.5	13 ± 3.0	
	33	26 ± 3.2	30 ± 1.9	9± 1.5	12 ± 0.6	7 ± 2.5	9 ± 2.3	
	100	25 ± 0.3	36 ± 3.9	10 ± 0.6	15 ± 2.1	12 ± 0.3	9 ± 1.8	
Trial su		Negative	Negative	Negative	Negative	Negative	Negative	
Positive	control (c)	$1,080 \pm 31.5$	757 ± 6.1	186 ± 13.0	204 ± 7.4	198 ± 5.5	168 ± 4.6	
TA97	0	89 ± 1.5	114 ± 4.1	131 ± 9.7	156 ± 9.1	129 ± 6.5	120 ± 0.0	
	1	92 ± 3.8	107 ± 9.2	125 ± 10.3	169 ± 7.1	113 ± 5.4	117 ± 9.3	
	3.3	100 ± 7.0	111 ± 7.4	121 ± 4.8	161 ± 13.0	114 ± 5.9	124 ± 1.5	
	10	92 ± 3.1	89 ± 8.0	115 ± 10.5	161 ± 2.9	125 ± 4.6	122 ± 11.4	
	33	94 ± 8.7	111 ± 11.9	121 ± 4.0	182 ± 7.8	116 ± 8.1	149 ± 12.0	
	100	90 ± 4.2	102 ± 2.3	131 ± 5.8	181 ± 11.9	115 ± 4.1	171 ± 5.7	
Trial su	mmary	Negative	Negative	Negative	Negative	Negative	Equivocal	
Positive	control (c)	$1,161 \pm 65.5$	748 ± 11.2	$1,156 \pm 15.3$	928 ± 18.2	$1,371 \pm 22.8$	655 ± 1.7	
TA98	0	15 ± 4.2	16 ± 2.9	21 ± 3.9	31 ± 6.2	22 ± 1.0	34 ± 2.6	
	1	12 ± 0.3	19 ± 3.8	26 ± 1.2	25 ± 4.1	22 ± 3.5	32 ± 4.6	
	3.3	8 ± 1.7	19 ± 1.7	24 ± 2.6	36 ± 2.6	24 ± 2.6	27 ± 4.1	
	10	12 ± 2.9	18 ± 2.1	26 ± 2.9	31 ± 0.3	22 ± 2.1	32 ± 3.8	
	33	12 ± 0.3	13 ± 3.8	18 ± 0.3	26 ± 2.1	21 ± 1.5	34 ± 2.3	
	100	12 ± 0.7	16 ± 4.3	20 ± 3.6	24 ± 3.2	21 ± 0.9	30 ± 2.2	
Trial sur	mmary	Negative	Negative	Negative	Negative	Negative	Negative	
Positive	control (c)	$1,589 \pm 106.7$	1.785 ± 51.7	1.621 ± 96.9	994 ± 15.4	$1,791 \pm 12.1$	482 ± 21.1	

(a) Study performed at Microbiological Associates. The detailed protocol is presented by Zeiger et al. (1988). Cells and study compound or solvent (dimethyl sulfoxide) were incubated in the absence of exogenous metabolic activation (-S9) or with Aroclor 1254-induced S9 from male Syrian hamster liver or male Sprague Dawley rat liver. High dose was limited by toxicity or solubility but did not exceed 10 mg/plate; 0 µg/plate dose is the solvent control.

(b) Revertants are presented as mean \pm standard error from three plates.

(c) Positive control; 2-aminoanthracene was used on all strains in the presence of S9. In the absence of metabolic activation, 4-nitro-o-phenylenediamine was used with TA98, sodium azide was used with TA100 and TA1535, and 9-aminoacridine was used with TA97.

Compound	Dose (µg/ml)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hours in BrdU	Relative SCEs/Cell (percent) (b)
- S9 (c) Summary: Negative						- <u></u>		
Dimethyl sulfoxide		50	1,048	427	0.41	8.5	26.0	
Ochratoxin A	0.5 1.6 5	50 50 35	1,0 49 1,050 73 3	444 448 297	0.42 0.43 0.41	8.9 9.0 8.5	26.0 26.0 26.0	104.7 105.9 100.0
Mitomycin C	0.0005 0.005	50 10	1,050 209	569 329	0.54 1.57	11. 4 32.9	26.0 26.0	$\begin{array}{c} 134.1\\ 387.1 \end{array}$
+ S9 (d)								
Trial 1Summary: Weakly	positive							
Dimethyl sulfoxide		50	1,051	424	0.4	8.5	26.0	
Ochratoxin A	5 16 50 160 500	50 50 50 50 0	1,050 1,050 1,0 49 1,050	470 514 558 564	0.45 0.49 0.53 0.54	9.4 10.3 11.2 11.3	26.0 26.0 26.0 26.0 26.0	110.6 121.2 131.8 132.9
Cyclophosphamide	0.1 0.6	50 10	1,0 49 210	604 246	0.58 1.17	12.1 24.6	26.0 26.0	142.4 289.4
Trial 2Summary: Weakly	positive							
Dimethyl sulfoxide		50	1,049	437	0.42	8.7	26.0	
Ochratoxin A	30 50 100 160 300	50 50 50 50 0	1,0 49 1,0 49 1,050 1,0 49	462 504 525 597	0.44 0.48 0.50 0.57	9.2 10.1 10.5 11.9	26.0 26.0 26.0 26.0 26.0	105.7 116.1 120.7 136.8
Cyclophosphamide	0.1 0.6	50 10	1,051 210	547 265	0. 52 1.26	10.9 26.5	26.0 26.0	125.3 304.6

TABLE 26. INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY OCHRATOXIN A (a)

(a) Study performed at Environmental Health Research and Testing. SCE = sister chromatid exchange; BrdU = bromodeoxyuridine. A detailed description of the SCE protocol is presented by Galloway et al. (1985). Briefly, Chinese hamster ovarycells were incubated with study compound or solvent (dimethyl sulfoxide) as described in (c) or (d) below and cultured forsufficient time to reach second metaphase division. Cells were then collected by mitotic shake-off, fixed, air-dried, and stained.(b) SCEs/cell in treated culture expressed as a percent of the SCEs/cell in the control culture

(c) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent for 2 hours at 37° C. Then BrdU was added, and incubation was continued for 24 hours. Cells were washed, fresh medium containing BrdU and colcemid was added, and incubation was continued for 2-3 hours.

(d) In the presence of **S9**, cells were incubated with study compound or solvent for 2 hours at 37° C. Then cells were washed, and medium containing BrdU was added. Cells were incubated for a further 26 hours, with colcemid present for the final 2-3 hours. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

TABLE 27.	INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS
	BY OCHRATOXIN A (a)

		- S9 (b)					+ S9 (c)		
Dose (µg/ml)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs	Dose (µg/ml)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs
Harvest time	12.5 h			<u></u> ,	Harvest ti	me 13.0 h			
Dimethyl sulfa	oxide				Dimethyls	ulfoxide			
	200	2	0.01	1.0		200	2	0.01	1.0
Ochratoxin A					Ochratoxii	n A			
30	200	0	0.00	0.0	100	200	2	0.01	1.0
50	42	0	0.00	0.0	160	200	1	0.01	0.5
100	200	4	0.02	1.5	300	200	3	0.02	1.5
160	186	5	0.03	2.7					
Su	mmary: N	egative				Summary	: Negative		
Mitomycin C					Cyclophos	phamide			
0.062	5 200	52	0.26	22.0	2.5	200	34	0.17	16.5
0.25	50	21	0.42	34.0	7.5	50	49	0.98	56.0

(a) Study performed at Environmental Health Research and Testing. Abs = aberrations. A detailed presentation of the technique for detecting chromosomal aberrations is presented by Galloway et al. (1985). Briefly, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) as indicated in (b) or (c). Cells were arrested in first metaphase by addition of colcemid and harvested by mitotic shake-off, fixed, and stained in 6% Giemsa.

(b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) for 8-10 hours at 37° C. Cells were then washed, and fresh medium containing colcemid was added for an additional 2-3 hours followed by harvest.

(c) In the presence of S9, cells were incubated with study compound or solvent (dimethyl sulfoxide) for 2 hours at 37°C. Cells were then washed, medium was added, and incubation was continued for 8-10 hours. Colcemid was added for the last 2-3 hours of incubation before harvest. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

Ochratoxin A, NTP TR 358

IV. DISCUSSION AND CONCLUSIONS

Ochratoxin A is a fungal toxin found in cereals, grains, nuts, and meat products, with the potential for widespread exposure for both animals and humans. At the time that ochratoxin A was selected for evaluation, epidemiologic data to determine whether ochratoxin A was carcinogenic for humans and studies in animals were considered inadequate. The only data available for ochratoxin A were studies for mice (IARC, 1983). Rats only were selected for the NCI/NTP ochratoxin A studies because the Food and Drug Administration had already contracted for studies to be conducted in $B6C3F_1$ mice. These studies showed that ochratoxin A causes kidney neoplasms in $B6C3F_1$ mice (Bendele et al., 1985). The oral route of exposure was chosen for these studies because this is the typical route of exposure for both animals and humans. Administration by gavage in corn oil as opposed to feed studies was selected because more accurate doses could be administered and because procurement of the fungal toxin is both difficult and expensive.

In NTP genetic toxicology studies, ochratoxin A was not mutagenic in Salmonella assays or in tests for chromosomal aberrations in Chinese hamster ovary (CHO) cells. A small but significant increase in sister chromatid exchanges (SCEs) was observed following treatment of CHO cells with ochratoxin A in the presence of S9. Unscheduled DNA synthesis has been reported in ACI rat and C3H mouse hepatocyte cultures exposed to ochratoxin A (Mori et al., 1984). Since exposure of mammalian cells to ochratoxin A induces unscheduled DNA synthesis and SCEs in vitro and single strand DNA breaks in vivo, one can conclude that ochratoxin A is a genotoxin for mammalian cells. The requirement of S9 for induction of SCEs in mammalian cells suggests that ochratoxin A requires metabolism to some proximate genotoxic form. However, ochratoxin A with or without S9 does not induce gene mutations in bacteria, recombination in fungi, or gene mutations or chromosomal aberrations in cultured mammalian cells. It has not been tested for mutagenicity in vivo.

Sixteen-day and 13-week studies were used to select doses for the 2-year studies. In the 2-year studies, 15 animals were killed at 9 and 15 months for clinical chemical and hematologic analyses, urinalysis, and histologic examinations to determine the incidence and type of toxic lesions occurring early in the studies.

In 16-day studies, ochratoxin A was found to be toxic to F344/N rats; all animals in the 16 mg/kg groups died, and at 4 mg/kg, mean body weight loss exceeded 10% of initial weights. The kidney was shown to be the target organ with necrosis and degenerative changes in the renal tubular epithelial cells. For the 13-week studies, the highest dose selected was 1 mg/kg (the lowest dose in the 16-day studies), and the lowest dose was 0.0625 mg/kg (62.5 µg/kg). Weight gain was clearly lower for both male and female rats receiving 0.25 mg/kg (250 µg/kg) or more. The kidney was the principal tissue affected, with degenerative changes seen in the renal tubular epithelial cells. Since lower weight gain was seen at 250 µg/kg and above and since renal changes, especially karyomegaly, were seen at all doses in the 13-week studies (62.5 μ g/kg was the lowest dose), 210 μ g/kg was selected as the high dose for the 2-year studies, with mid and low doses of 70 and 21 μ g/kg.

All lots of ochratoxin A were greater than 98% pure; chloroform (0.9%) was the major contaminant. Since the doses of ochratoxin A were in the microgram range, the chloroform contamination was not considered to be important for the 2-year studies.

The urinalyses performed after 3, 10, and 45 days and after 3, 6, 9, 12, and 15 months of ochratoxin A exposure suggest a functional defect in renal capacity to concentrate urine. This was reflected in several parameters in both males and females. There was a marginal increase in urine volume in dosed animals for several time periods. The specific gravity of the urine in the 210 µg/kg group was lower at several time points for females and at one time point for males. The most consistent finding was a marginal loss in the ability to concentrate urine during tests conducted after 7 days, 47 days, 6 months, and 12 months of ochratoxin A exposure. Female rats showed lower urine specific gravity in the 210 µg/kg group at all time periods in the concentration studies, whereas males dosed at 210 µg/kg showed lower specific gravity for all but the 7-day exposure period.

Rats were still able to concentrate urine to 1.040 specific gravity or higher, indicating that the functional loss was only moderate. The loss of the concentrating ability of the kidney after ochratoxin A exposure has been shown to be a specific toxic effect on the anion transport mechanism located on the brush border of the proximal convoluted tubules cells (Endo, 1983; Ueno, 1985).

The hematologic changes were not striking except in the 16-day studies in which bone marrow hypocellularity was found histologically in all dosed groups. In the 13-week studies, bone marrow was not originally diagnosed as hypocellular, but when the slides from the high dose and vehicle control groups were reexamined, this time in a blind fashion, a minimal hypocellularity was recognized in the dosed animals (Boorman et al., 1984). When the peripheral blood values were measured 45 days and 3, 9, and 15 months after ochratoxin A exposure, no significant difference in circulating leukocyte values was observed between vehicle control and dosed rats except at 9 and 15 months. At 9 months, values for all dosed animals were marginally below control values for both sexes. A similar decrease was seen at 15 months for mid dose females only. In the differential blood counts, the percentage of monocytes was sometimes lower in dosed males, but the values were variable, and the significance of this finding is unclear. None of the hematologic findings appeared to be biologically significant. Absence of an effect may have been a consequence of the exposure level. In the 16-day studies in which animals were exposed to milligram quantities of ochratoxin A, marrow hypocellularity was obvious. Similarly, mice dosed with up to 80 mg/kg of ochratoxin A showed bone marrow hypocellularity and a marked decrease in macrophagegranulocyte progenitor cells (Boorman et al., 1984). In these same studies, it was shown that following a brief exposure to ochratoxin A, bone marrow cellularity and peripheral blood counts returned to normal in mice by 3 weeks after exposure. However, these ochratoxin A-exposed mice had a residual damage that could be demonstrated by an irradiation stress (Hong et al., 1988). Ochratoxin A inhibits protein synthesis (Haubeck et al., 1981), and the bone marrow effects seen at higher doses may reflect the

sensitivity of a rapidly proliferating cell population to this protein inhibition rather than a specific predilection of ochratoxin A for bone marrow progenitor cells.

In the 13-week studies, the kidney clearly had toxic changes, with karyomegaly observed in nearly 100% of all dosed animals. Atrophy of the renal tubular epithelium was present in all dosed animals except at the high doses where necrosis and degeneration were present. The atrophy occurred in the inner cortex and outer medulla, which would be the straight portion of the renal tubules. This finding is in contrast to that from studies on isolated renal segments where the initial effect is on the renal proximal tubule (Ueno, 1985). Morphologic changes in the proximal convoluted tubule would be expected more in the outer cortex of the kidney. Karyomegaly was also a prominent finding, especially in the cells of the inner cortex. This change was characterized by renal tubule nuclei that were often 3-10 times the size of adjacent nuclei. The nuclei were more basophilic, irregular in shape, and often contained prominent nucleoli.

The ochratoxin A doses for the 2-year studies were 0, 21, 70, and 210 μ g/kg per day, with 15 animals per dose killed at 9 and 15 months. Again, the kidney was the primary tissue affected. At 9 months, a single renal tubular cell adenoma was present in a high dose male rat. Three high dose females, six high dose males, and three mid dose males also had renal tubular cell hyperplasia, a change where renal tubular cells appear to fill one or more tubules. The lesion is smaller than, but morphologically similar to, a tubular cell adenoma. All of the mid and high dose males and females had karyomegaly of renal tubular epithelial cells; no vehicle controls or low dose animals had this lesion. A renal tubular degenerative change similar to that seen in the 13-week studies was recognized in all high dose animals with subtle changes at lower doses.

At 15 months, one mid dose and one high dose male rat had renal tubular cell adenomas, and one mid dose and two high dose males had carcinomas of the renal tubular epithelium. One hyperplastic lesion was present in a mid dose female, but no neoplasms were observed in females. Renal neoplasms are uncommon in F344/N rats in 2-year studies, so the presence of adenomas and carcinomas at 9 and 15 months indicated the carcinogenic potential of ochratoxin A for the male rats. At 15 months, the carcinogenic potential for females was unknown, but the presence of hyperplasia suggested that neoplasms of the kidney might be present in the 2-year studies, since these lesions are recognized as part of a biologic continuum. The nonneoplastic lesions in the kidney at 15 months were similar to those seen at 9 months.

In the 2-year studies, the incidences of renal tubular cell adenomas and carcinomas observed in the male rats are the highest seen in any of the NCI/NTP studies to date. The neoplasms were often multiple and bilateral. In 4 mid dose and 13 high dose male rats, metastases, often to multiple sites, were observed. The lung was the most common metastatic site; renal carcinoma cells were present in the lung in 16 of the 17 animals with metastases. Renal tubular neoplasms also were present in females; of the 10 neoplasms, 6 were benign and 4 were malignant, and distant metastases were present in only one animal. Renal tubular cell hyperplasia, renal tubular cell adenomas, and renal tubular cell carcinomas often have similar cytologic features. The size of the lesion and compression of adjacent parenchyma differentiate the lesions. In these studies, the metastases of many neoplasms clearly indicate the malignant potential of neoplasms induced in male rats by ochratoxin A. Several proliferative lesions of the kidney were observed in addition to the neoplasms. Small focal lesions usually involving a single tubule and appearing similar to the adenomas were diagnosed as hyperplasia. This type of lesion is not uncommon in studies in which renal neoplasms are induced, and small focal hyperplasia is considered part of the spectrum of lesions progressing to neoplasms. In the ochratoxin A studies, a second type of proliferative lesion was found and diagnosed as renal tubule proliferation to separate it from the more typical hyperplasia. This lesion consisted of cysts lined by hyperplastic epithelium which appeared to consist of renal tubular epithelial cells. The lesion was both focal and multifocal. Since cystic tumors were not seen, it is not known whether this lesion may progress. In a few animals, renal

cysts lined by flattened epithelium were found. These were simply diagnosed as cysts.

In female rats, an increased incidence of mammary gland fibroadenomas was also observed. Although the increase in the number of rats with either fibroadenomas or adenomas (combined) was not striking (vehicle control, 17/50; low dose, 23/51; mid dose, 22/50; high dose, 28/50), there was an increase in multiplicity of tumors: 4 vehicle controls had multiple fibroadenomas compared with 14 high dose animals. No rat had more than two fibroadenomas. The incidence of fibroadenomas in historical corn oil vehicle control female F344/N rats at this laboratory for recent studies is 53/250 (21% \pm 5%), and the incidence in the historical corn oil vehicle controls for the NTP is 558/1,950 (29% \pm 9%). Thus, the incidence in vehicle controls in this study was greater than normal, and the incidences in all dosed groups exceeded the historical control rates. These high incidences, coupled with the increase in multiplicity of tumors, lead to the conclusion that the mammary gland tumors were associated with ochratoxin A exposure. Adenocarcinomas of the mammary gland, one in the vehicle control and two in each of the dosed groups, did not add or detract from the evidence of carcinogenicity.

Squamous papillomas of the tongue were found in two low dose males and two mid dose males. In addition, epithelial hyperplasia of the tongue was found in one low dose male and two high dose males. The tongue was not included for routine histologic examination. This effect on the tongue was not considered to be compound related, and no other tumors of the oral cavity were seen in dosed males. One squamous papilloma of the palate was found in a vehicle control male. No tumors of the oral cavity were seen in dosed females, but a squamous cell carcinoma of the pharynx was present in a vehicle control female rat.

There appears to be increasing evidence that ochratoxin A may be a carcinogen for humans. In the 1983 International Agency for Research on Cancer (IARC) monograph on food additives, feed additives, and naturally occurring substances, it was concluded that because of a limited positive study in mice and inadequate

epidemiologic data in humans, no evaluation of the carcinogenicity of ochratoxin A to humans could be made (IARC, 1983). Since then, another positive study in mice has been reported (Bendele et al., 1985), and there is increasing evidence that Balkan endemic nephropathy is associated with a dramatic increase in urinary tract tumors (Castegnaro et al., 1987). Balkan endemic nephropathy may be related to ochratoxin A (Hult et al., 1982); ochratoxin A residues are found in pork products and are associated with the presence of nephropathy in swine (Golinski et al., 1985). The current NTP studies show that ochratoxin A is a potent carcinogen for the kidney of F344 rats. From the results of all these studies and because ochratoxin A can be quite widespread in products for human consumption, it would seem that this compound presents a true potential hazard for humans.

The experimental and tabulated data for the NTP Technical Report on ochratoxin A were examined for accuracy, consistency, completeness, and compliance with Good Laboratory Practice regulations. As summarized in Appendix E, the audit revealed no major problems with the conduct of the studies or with collection and documentation of the experimental data. No discrepancies were found that influenced the final interpretation of the results of these studies.

Under the conditions of these 2-year gavage studies, there was *clear evidence of carcinogenic activity*^{*} of ochratoxin A for male F344/N rats as shown by substantially increased incidences of uncommon tubular cell adenomas and of tubular cell carcinomas of the kidney. There was *clear evidence of carcinogenic activity* for female F344/N rats as shown by increased incidences of uncommon tubular cell adenomas and of tubular cell carcinomas of the kidney increased incidences of uncommon tubular cell adenomas and of tubular cell carcinomas of the kidney and by increased incidences and multiplicity of fibroadenomas of the mammary gland.

Ochratoxin A administration also caused nonneoplastic renal changes including tubular cell hyperplasia, tubular cell proliferation, cytoplasmic alteration, karyomegaly, and degeneration of the renal tubular epithelium.

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 7.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on page 10.

Ochratoxin A, NTP TR 358

V. REFERENCES

1. Ames, B.N.; McCann, J.; Yamasaki, E. (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 31:347-364.

2. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.

3. Bartsch, H.; Malaveille, C.; Camus, A.-M.; Martel-Planche, G.; Brun, G.; Hautefeuille, A.; Sabadie, N.; Barbin, A.; Kuroki, T.; Drevon, C.; Piccoli, C.; Montesano, R. (1980) Validation and comparative studies on 180 chemicals with *S. typhimurium* strains and V79 Chinese hamster cells in the presence of various metabolizing systems. Mutat. Res. 76:1-50.

4. Bendele, A.M.; Carlton, W.W.; Krogh, P.; Lillehoj, E.B. (1983) Ochratoxin A carcinogenesis in the mouse (abstract). 3rd Mycological Congress, Tokyo, p. 21.

5. Bendele, A.M.; Carlton, W.W.; Krogh, P.; Lillehoj, E.B. (1985) Ochratoxin A carcinogenesis in the (C57BL/6J \times C3H)F1 mouse. J. Natl. Cancer Inst. 75:733-742.

6. Berenblum, I., Ed. (1969) Carcinogenicity Testing: A Report of the Panel on Carcinogenicity of the Cancer Research Commission of UICC, Vol. 2. Geneva: International Union Against Cancer.

7. Boorman, G.A.; Hong, H.L.; Dieter, M.P.; Hayes, H.T.; Pohland, A.E.; Stack, M.; Luster, M.I. (1984) Myelotoxicity and macrophage alteration in mice exposed to ochratoxin A. Toxicol. Appl. Pharmacol. 72:304-312.

8. Boorman, G.A.; Montgomery, C.A., Jr.; Eustis, S.L.; Wolfe, M.J.; McConnell, E.E.; Hardisty, J.F. (1985) Quality assurance in pathology for rodent carcinogenicity studies. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications, pp. 345-357.

9. Brown, M.H.; Szczech, G.M.; Purmalis, B.P. (1976) Teratogenic and toxic effects of ochratoxin A in rats. Toxicol. Appl. Pharmacol. 37:331-338. 10. Bunge, I.; Dirheimer, G.; Roschenthaler, R. (1978) *In vivo* and *in vitro* inhibition of protein synthesis in *Bacillus stearothermophilus* by ochratoxin A. Biochem. Biophys. Res. Commun. 83:398-405.

11. Castegnaro, M.; Bartsch, H.; Chernozemsky, I. (1987) Endemic nephropathy and urinary tract tumors in the Balkans. Cancer Res. 47:3608-3609.

12. Chang, C.-F.; Hamilton, P.B. (1980) Impairment of phagocytosis by heterophils from chickens during ochratoxicosis. Appl. Environ. Microbiol. 39:572-575.

13. Cox, D.R. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

14. Creppy, E.-E.; Lugnier, A.A.J.; Fasiolo, F.; Heller, K.; Roschenthaler, R.; Dirheimer, G. (1979) In vitro inhibition of yeast phenylalanyltRNA synthetase by ochratoxin A. Chem. Biol. Interact. 24:257-261.

15. Creppy, E.E.; Schlegel, M.; Roschenthaler, R.; Dirheimer, G. (1980) Phenylalanine prevents acute poisoning by ochratoxin-A in mice. Toxicol. Lett. 6:77-80.

16. Creppy, E.E.; Kane, A.; Dirheimer, G.; Lafarge-Frayssinet, C.; Mousset, S.; Frayssinet, C. (1985) Genotoxicity of ochratoxin A in mice: DNA single-strand break evaluation in spleen, liver and kidney. Toxicol. Lett. 28:29-35.

17. Dinse, G.E.; Haseman, J.K. (1986) Logistic regression analysis of incidental-tumor data from animal carcinogenicity experiments. Fundam. Appl. Toxicol. 6:44-52.

18. Dinse, G.E.; Lagakos, S.W. (1983) Regression analysis of tumour prevalence data. J. R. Stat. Soc. C32:236-248.

19. Dunn, O.J. (1964) Multiple comparisons using rank sums. Technometrics 6:241-252.

20. Dunnett, C.W. (1955) A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50:1096-1122.

21. Endo, H. (1983) Effect of ochratoxin A on enzyme release from isolated nephron segments in rats. Proc. Jpn. Assoc. Mycotoxicol. 18:21.

22. Engel, G.; von Milczewski, K.E. (1976) Zum Nachweis von Mykotoxinen nach Aktivierung mit Rattenleberhomogenaten mittels Histidinmangelmutanten von Salmonella typhimurium. Kiel. Milchwirtsch. Forschungsber. 28:359-366.

23. Galloway, S.M.; Bloom, A.D.; Resnick, M.; Margolin, B.H.; Nakamura, F.; Archer, P.; Zeiger, E. (1985) Development of a standard protocol for in vitro cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. Environ. Mutagen. 7:1-51.

24. Galloway, S.M.; Armstrong, M.J.; Reuben, C.; Colman, S.; Brown, B.; Cannon, C.; Bloom, A.D.; Nakamura, F.; Ahmed, M.; Duk, S.; Rimpo, J.; Margolin, B.H.; Resnick, M.A.; Anderson, B.; Zeiger, E. (1987) Chromosome aberration and sister chromatid exchange tests in vitro in Chinese hamster ovary cells: Evaluations of 108 chemicals. Environ. Molec. Mutagen. 10(Suppl. 10):1-175.

25. Galtier, P.; Alvinerie, M.; Charpenteau, J.L. (1981) The pharmacokinetic profiles of ochratoxin A in pigs, rabbits and chickens. Food Cosmet. Toxicol. 19:735-738.

26. Galtier, P.; Larrieu, G.; Le Bars, J. (1984) Comparative incidence of oral ochratoxicosis and aflatoxicosis on the activity of drug-metabolizing enzymes in rat liver. Toxicol. Lett. 23:341-347.

27. Gart, J.J.; Chu, K.C.; Tarone, R.E. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62:957-974.

28. Golinski, P.; Hult, K.; Grabarkiewicz-Szczesna, J.; Chelkowski, J.; Szebiotko, K. (1985) Spontaneous occurrence of ochratoxin A residues in porcine kidney and serum samples in Poland. Appl. Environ. Microbiol. 49:1014-1015. 29. Gupta, M.; Sasmal, D.; Bandyopadhyay, S.; Bagchi, G.; Chatterjee, T.; Dey, S. (1983) Hematological changes produced in mice by ochratoxin A and citrinin. Toxicology 26:55-62.

30. Haseman, J.K.; Huff, J.; Boorman, G.A. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12:126-135.

31. Haseman, J.K.; Huff, J.; Rao, G.N.; Arnold, J.; Boorman, G.A.; McConnell, E.E. (1985) Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. J. Natl. Cancer Inst. 75:975-984.

32. Haubeck, H.-D.; Lorkowski, G.; Kolsch, E.; Roschenthaler, R. (1981) Immunosuppression by ochratoxin A and its prevention by phenylalanine. Appl. Environ. Microbiol. 41:1040-1042.

33. Hayes, A.W.; Hood, R.D.; Lee, H.L. (1974) Teratogenic effects of ochratoxin A in mice. Teratology 9:93-97.

34. Hong, H.H.L.; Jameson, C.W.; Boorman, G.A. (1988) Residual hematopoietic effect in mice exposed to ochratoxin A prior to irradiation. Toxicology 53:57-67.

35. Hood, R.D.; Naughton, M.J.; Hayes, A.W. (1975) Prenatal effects of ochratoxin A in hamsters. Teratology 13:11-14.

36. Hult, K.; Plestina, R.; Habazin-Novak, V.; Radic, B.; Crovic, S. (1982) Ochratoxin A in human blood and Balkan endemic nephropathy. Arch. Toxicol. 51:313-321.

37. International Agency for Research on Cancer (IARC) (1976) Ochratoxin A. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Some Naturally Occurring Substances, Vol. 10. Lyon, France: IARC, pp. 191-197. 38. International Agency for Research on Cancer (IARC) (1983) Ochratoxin A. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Some Food Additives, Feed Additives and Naturally Occurring Substances, Vol. 31. Lyon, France: IARC, pp. 191-208.

39. Kane, A.; Creppy, E.E.; Roschenthaler, R.; Dirheimer, G. (1986a) Biological changes in kidney of rats fed subchronically with low doses of ochratoxin A. Dev. Toxicol. Environ. Sci. 14:241-250.

40. Kane, A.; Creppy, E.E.; Roschenthaler, R.; Dirheimer, G. (1986b) Changes in urinary and renal tubular enzymes cause by subchronic administration of ochratoxin A in rats. Toxicology 42:233-243.

41. Kane, A.; Creppy, E.E.; Roth, A.; Roschenthaler, R.; Dirheimer, G. (1986c) Distribution of the $[^{3}H]$ -label from low doses of radioactive ochratoxin A ingested by rats, and evidence for DNA single-strand breaks caused in liver and kidneys. Arch. Toxicol. 58:219-224.

42. Kanisawa, M. (1984) Synergistic effect of citrinin on hepatorenal carcinogenesis of ochratoxin A in mice. Kurata, H.; Ueno, Y., Eds.: Toxigenic Fungi, Their Toxins and Health Hazard. Amsterdam: Elsevier/North Holland, pp. 245-254.

43. Kanisawa, M.; Suzuki, S. (1978) Induction of renal and hepatic tumors in mice by ochratoxin A, a mycotoxin. Gann 69:599-600.

44. Kaplan, E.L.; Meier, P. (1958) Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53:457-481.

45. Krogh, P. (1974) Mycotoxic porcine nephropathy: A possible model for Balkan endemic nephropathy. Puchlev, A.; Dinev, I.V.; Milev, B.; Doichinov, D., Eds.: Endemic Nephropathy. Sofia: Bulgarian Academy of Sciences, pp. 266-270.

46. Krogh, P. (1977) Ochratoxins. Rodricks, J.V.; Hesseltine, C.W.; Mehlman, M.A., Eds.: Mycotoxins in Human and Animal Health. Park Forest South, IL: Pathtox, pp. 489-498. 47. Krogh, P.; Hald, B.; Pedersen, E.J. (1973) Occurrence of ochratoxin A and citrinin in cereals associated with mycotoxic porcine nephropathy. Acta Pathol. Microbiol. Scand. [B]81:689-695.

48. Kubena, L.F.; Phillips, T.D.; Creger, C.R.; Witzel, D.A.; Heidelbaugh, N.D. (1983) Toxicity of ochratoxin A and tannic acid to growing chicks. Poult. Sci. 62:1786-1792.

49. Kuczuk, M.H.; Benson, P.M.; Heath, H.; Hayes, A.W. (1978) Evaluation of the mutagenic potential of mycotoxins using Salmonella typhimurium and Saccharomyces cerevisiae. Mutat. Res. 53:11-20.

50. Kumagai, S.; Aibara, K. (1982) Intestinal absorption and secretion of ochratoxin A in the rat. Toxicol. Appl. Pharmacol. 64:94-102.

51. Lee, S.C.; Beery, J.T.; Chu, F.S. (1984) Immunohistochemical fate of ochratoxin A in mice. Toxicol. Appl. Pharmacol. 72:218-227.

52. Lindenfelser, L.A.; Lillehoj, E.B.; Milburn, M.S. (1973) Ochratoxin and penicillic acid in tumorigenic and acute toxicity tests with white mice. Dev. Ind. Microbiol. 14:331-336.

53. Luster, M.I.; Germolec, D.R.; Burleson, G.R.; Jameson, C.W.; Ackermann, M.F.; Lamm, K.R.; Hayes, H.T. (1987) Selective immunosuppression in mice of natural killer cell activity by ochratoxin A. Cancer Res. 47:2259-2263.

54. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.

55. Maronpot, R.R.; Boorman, G.A. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80.

56. Mayura, K.; Parker, R.; Berndt, W.O.; Phillips, T.D. (1984a) Ochratoxin A-induced teratogenesis in rats: Partial protection by phenylalanine. Appl. Environ. Microbiol. 48:1186-1188.
57. Mayura, K.; Stein, A.F.; Berndt, W.O.; Phillips, T.D. (1984b) Teratogenic effects of ochratoxin A in rats with impaired renal function. Toxicology 32:277-285.

58. McConnell, E.E. (1983a) Pathology requirements for rodent two-year studies. I. A review of current procedures. Toxicol. Pathol. 11:60-64.

59. McConnell, E.E. (1983b) Pathology requirements for rodent two-year studies. II. Alternative approaches. Toxicol. Pathol. 11:65-76.

60. McConnell, E.E.; Solleveld, H.A.; Swenberg, J.A.; Boorman, G.A. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. 76:283-289.

61. McKnight, B.; Crowley, J. (1984) Tests for differences in tumor incidence based on animal carcinogenesis experiments. J. Am. Stat. Assoc. 79:639-648.

62. Meisner, H.; Cimbala, M. (1986) Effect of ochratoxin A on gene expression in rat kidneys. Dev. Toxicol. Environ. Sci. 12:261-271.

63. Meisner, H.; Selanik, P. (1979) Inhibition of renal gluconeogenesis in rats by ochratoxin. Biochem. J. 180:681-684.

64. Meisner, H.; Cimbala, M.A.; Hanson, R.W. (1983) Decrease of renal phosphoenolpyruvate carboxykinase RNA and poly(A)+ RNA level by ochratoxin A. Arch. Biochem. Biophys. 223:264.

65. Mori, H.; Kawai, K.; Ohbayashi, F.; Kuniyasu, T.; Yamazaki, M.; Hamasaki, T.; Williams, G.M. (1984) Genotoxicity of a variety of mycotoxins in the hepatocyte primary culture/DNA repair test using rat and mouse hepatocytes. Cancer Res. 44:2918-2923.

66. Mortelmans, K.; Haworth, S.; Lawlor, T.; Speck, W.; Tainer, B.; Zeiger, E. (1986) Salmonella mutagenicity tests. II. Results from the testing of 270 chemicals. Environ. Mutagen. 8(Suppl. 7):1-119. 67. Munro, I.C.; Moodie, C.A.; Kuiper-Goodman, T.; Scot, P.M.; Grice, H.C. (1974) Toxicologic changes in rats fed graded dietary levels of ochratoxin A. Toxicol. Appl. Pharmacol. 28:180-188.

68. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassay in Small Rodents. NCI Technical Report No. 1. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 65 p.

69. National Institutes of Health (NIH) (1978) Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

70. Peckham, J.C.; Doupnik, B., Jr.; Jones, O.H., Jr. (1971) Acute toxicity of ochratoxins A and B in chicks. Appl. Microbiol. 21:492-494.

71. Petkova-Bocharova, T.; Castegnaro, M. (1985) Ochratoxin A contamination of cereals in an area of high incidence of Balkan endemic nephropathy in Bulgaria. Food Addit. Contam. 2:267-270.

72. Purchase, I.F.H.; Theron, J.J. (1968) The acute toxicity of ochratoxin A to rats. Food Cosmet. Toxicol. 6:479-483.

73. Purchase, I.F.H.; van der Watt, J.J. (1971) The long-term toxicity of ochratoxin A to rats. Food Cosmet. Toxicol. 9:681-682.

74. Roschenthaler, R.; Creppy, E.E.; Driesmann, H.; Dirheimer, G. (1983) Effect of ochratoxin A on protein synthesis and immunoresponse. Proc. Jpn. Assoc Mycotoxicol. 18:24.

75. Scott, P.M.; van Walbeek, W.; Kennedy, B.; Anyeti, D. (1972) Mycotoxins (ochratoxin A, citrinin and sterigmatocystin) and toxigenic fungi in grains and other agricultural products. J. Agric. Food Chem. 20:1103-1109. 76. Shirley, E. (1977) A non-parametric equivalent of Williams' test for contrasting increasing dose levels of a treatment. Biometrics 33:386-389.

77. Stein, A.F.; Geerling, S.; Mollenhauer, H.H.; Kubena, L.F.; Heidelbaugh, N.D.; Phillips, T.D. (1984) Effects of ochratoxin A in the partially nephrectomized rat. J. Toxicol. Environ. Health 14:535-550.

78. Steyn, P.S.; Holzapfel, C.W. (1967) Synthesis of ochratoxins A and B. Metabolites of Aspergillus ochraceus. Tetrahedron 23:4449-4461.

79. Storen, O.; Holm, H.; Stormer, F.C. (1982) Metabolism of ochratoxin A by rats. Appl. Environ. Microbiol. 44:785-789.

80. Szczech, G.M.; Hood, R.D. (1981) Brain necrosis in mouse fetuses transplacentally exposed to the mycotoxin ochratoxin A. Toxicol. Appl. Pharmacol. 57:127-137.

81. Tarone, R.E. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

82. Ueno, Y. (1985) The toxicology of mycotoxins. CRC Crit. Rev. Toxicol. 14:99-132. 83. Ueno, Y; Kubota, K. (1976) DNA-attacking ability of carcinogenic mycotoxins in recombination-deficient mutant cells of *Bacillus subtilis*. Cancer Res. 36:445-451.

84. Umeda, M.; Tsutsui, T.; Saito, M. (1977) Mutagenicity and inducibility of DNA singlestrand breaks and chromosome aberrations by various mycotoxins. Gann 68:619-625.

85. Van Der Merwe, K.J.; Steyn, P.S.; Fourie, L. (1965) Mycotoxins II. The constitution of ochratoxins A, B, and C, metabolites of *Aspergillus* ochraceus. J. Chem. Soc.:7083-7088.

86. Wehner, F.C.; Thiel, P.G.; Van Rensburg, S.J.; Demasius, I.P.C. (1978) Mutagenicity to Salmonella typhimurium of some Aspergillus and Penicillium mycotoxins. Mutat. Res. 58:193-203.

87. Zeiger, E.; Anderson, B.; Haworth, S.; Lawlor, T.; Mortelmans, K. (1988) Salmonella mutagenicity tests. IV. Results from the testing of 300 chemicals. Environ. Molec. Mutagen. 11(Suppl. 12):1-158.

APPENDIX A

SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A

		PAGE
TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A	72
TABLE A2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A	76
TABLE A3	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A	92
TABLE A4a	HISTORICAL INCIDENCE OF RENAL TUBULAR CELL TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	97
TABLE A4b	HISTORICAL INCIDENCE OF ORAL CAVITY TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE	98
TABLE A5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A	99

.

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
Animals initially in study		<u> </u>	80		80		80	
Animals removed	80		80		80		80	
Animals examined histopathologically	50		51		51		50	
LIMENTARY SYSTEM								
Intestine small, ileum	(50)		*(51)		*(51)		(50)	
Adenocarcinoma	(50)		47 P 4 3				-	(2%)
Liver Carcinoma, metastatic, kidney	(50)		*(51)		*(51)		(50)	(4%)
Hepatocellular carcinoma							-	(2%)
Hepatocellular carcinoma, multiple	1	(2%)					1	(270)
Leukemia mononuclear	12	(24%)	6	(12%)	6	(12%)	7	(14%)
Neoplastic nodule							1	(2%)
Mesentery	*(50)		*(51)		*(51)		*(50)	
Carcinoma, metastatic, kidney					1	(2%)	8	(16%)
Mesothelioma malignant				(6%)				
Sarcoma, metastatic, uncertain prima: Pancreas				(2%)	****		(=0)	
Carcinoma, metastatic, kidney	(50)		*(51)		*(51)	(8%)	(50)	(601)
Leukemia mononuclear	2	(4%)	9	(4%)		(8%) (2%)		(6%) (4 %)
Sarcoma, metastatic, uncertain prima				(4%)	1	(270)	Z	(+2-70)
Acinus, adenoma	•	(6%)		(6%)			3	(6%)
Acinus, adenoma, multiple		(2%)	Ŭ	(0,0)			0	(0.07
Pharynx	*(50)		*(51)		*(51)		*(50)	
Palate, papilloma squamous		(2%)						
Salivary glands	(50)		*(51)		*(51)		(49)	
Acinus, adenoma		(2%)						
Stomach, forestomach Papilloma squamous	(50)		*(51)		*(51)		(50)	(00)
Stomach, glandular	(50)		*(51)		*(51)		(49)	(2%)
Adenocarcinoma	(00)		(31)		(01)			(2%)
Tongue	*(50)		*(51)		*(51)		*(50)	(2,0)
Papilloma squamous			2	(4%)	2	(4%)		
ARDIOVASCULAR SYSTEM	<u> </u>	- <u>.</u>						
Heart	(50)		*(51)		*(51)		(50)	
Carcinoma, metastatic, kidney							2	(4%)
Leukemia mononuclear			1	(2%)				
Atrium, sarcoma, metastatic, uncertai	n				_			
primary site Epicardium, carcinoma, metastatic, ki	dney				1	(2%)	1	(2%)
NDOCRINE SYSTEM								
Adrenal gland, cortex	(50)		*(51)		*(51)		(50)	
Adenoma		(4%)						
Leukemia mononuclear		(10%)			1	(2%)		(2%)
Medulla, carcinoma, metastatic, kidne	•							(2%)
Adrenal gland, medulla	(50)		*(51)		*(51)	(9.0%)	(49)	
Leukemia mononuclear Pheochromocytoma malignant						(8%) (4 %)	1	(2%)
Pheochromocytoma mangnant Pheochromocytoma complex	1	(2%)				(4%) (2%)		(2%)
Pheochromocytoma benign		(2%)	4	(8%)		(6%)		(18%)
Bilateral, pheochromocytoma benign		(8%)	Ŧ			(4%)		(4%)
Islets, pancreatic	(50)	· - · · ·	*(51)		*(51)		(50)	
Adenoma	4	(8%)	2	(4%)	3	(6%)	1	(2%)
Adenoma, multiple		(2%)						
	1	(2%)			1	(2%)	1	(2%)
Carcinoma		(2101				(
Carcinoma Parathyroid gland Adenoma	(41)	(5%)	*(51)		*(51)	((47)	

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A

Ve	ehicle	Control	Low	Dose	Mid	Dose	High	Dose
ENDOCRINE SYSTEM (Continued)								
Pituitary gland	(50)		*(51)		*(51)		(49)	
Leukemia mononuclear	(00)			(2%)				
Pars distalis, adenoma	14	(28%)	16	(31%)	7	(14%)	11	(22%)
Pars distalis, carcinoma				(4%)		(4%)		/.
Pars intermedia, adenoma	1	(2%)	-	(- / • /	-	(
Thyroid gland	(50)	(2)0)	*(51)		*(51)		(50)	
Carcinoma, metastatic, kidney	(00)						· · · · ·	(4%)
Bilateral, C-cell, adenoma	1	(2%)					-	
C-cell, adenoma	8	(16%)	5	(10%)	6	(12%)	5	(10%)
C-cell, carcinoma			1	(2%)	1	(2%)	1	(2%)
Follicular cell, adenoma	1	(2%)			1	(2%)	1	(2%)
Follicular cell, carcinoma		(4%)	1	(2%)				
ENERAL BODY SYSTEM								
Tissue, NOS	*(50)		*(51)		*(51)		*(50)	
Sarcoma					1	(2%)	1	(2%)
Sarcoma, metastatic, uncertain primary si	te		1	(2%)				
GENITAL SYSTEM				<u> </u>	·····	<u>-</u>	<u> </u>	
Epididymis	(49)		*(51)		*(51)		(50)	
Carcinoma, metastatic, kidney	(-10)		(01)		(01)		,	(2%)
Leukemia mononuclear	1	(2%)					1	(2/0)
Mesothelioma malignant	+	(270)	9	(4%)				
Preputial gland	(50)		*(51)	1 - 1 - 1	*(51)		(48)	
Adenoma	((12%)	· • = /	(6%)		(2%)	(= =)	(6%)
		(1270)	*(51)		*(51)	(270)	(50)	(070)
Testes	(50)		. = - ,		(31)		(50)	
Mesothelioma benign			-	(2%)				
Mesothelioma malignant			-	(6%)		(00~)		(
Bilateral, interstitial cell, adenoma		(78%)		(67%)		(63%)		(54%)
Interstitial cell, adenoma	5	(10%)	5	(10%)	10	(20%)		(26%)
Tunic, carcinoma, metastatic, kidney Tunic, mesothelioma malignant	1	(2%)					1	(2%)
							<u> </u>	
Blood	*(50)		*(51)		*(51)		*(50)	
Leukemia mononuclear		(2%)	(01)		.01)			(8%)
Bone marrow	(50)	(2,0)	*(51)		*(51)		(50)	(0,0)
Femoral, leukemia mononuclear		(10%)		(6%)		(6%)		(2%)
Lymph node	(50)	(10,0)	*(51)		*(51)	(0,0)	(50)	(2/0)
Deep cervical, leukemia mononuclear	/	(4%)					(/	
Inguinal, leukemia mononuclear	-	= .					1	(2%)
Lumbar, leukemia mononuclear								(2%)
Mediastinal, carcinoma, metastatic, kidney	v.				2	(4%)		(14%)
Mediastinal, leukemia mononuclear		(16%)	3	(6%)		(8%)		(10%)
Mediastinal, sarcoma, metastatic, uncerta			0				5	
primary site			1	(2%)				
Mediastinal, squamous cell carcinoma,			-	(— . •)				
metastatic, lung					1	(2%)		
Mesenteric, leukemia mononuclear	1	(2%)	9	(4%)		(2%)		
Pancreatic, adenocarcinoma, metastatic,	1		-	(= (=)	•			
stomach							1	(2%)
	1	(2%)			9	(4%)	-	
	1	(2/0)			-	,	1	(2%)
Pancreatic, leukemia mononuclear							1	(
Pancreatic, leukemia mononuclear Renal, leukemia mononuclear								
Pancreatic, leukemia mononuclear Renal, leukemia mononuclear Renal, mediastinal, pancreatic, carcinoma	,				1	(2.%)	1	(2.96)
Pancreatic, leukemia mononuclear Renal, leukemia mononuclear Renal, mediastinal, pancreatic, carcinoma metastatic, kidney	,		*/2•>			(2%)		(2%)
Pancreatic, leukemia mononuclear Renal, leukemia mononuclear Renal, mediastinal, pancreatic, carcinoma metastatic, kidney Lymph node, mandibular	, (49)		*(51)		1 *(51)	(2%)	(50)	
Pancreatic, leukemia mononuclear Renal, leukemia mononuclear Renal, mediastinal, pancreatic, carcinoma metastatic, kidney Lymph node, mandibular Carcinoma, metastatic, kidney	,		*(51)			(2%)	(50) 1	(2%)
Pancreatic, leukemia mononuclear Renal, leukemia mononuclear Renal, mediastinal, pancreatic, carcinoma metastatic, kidney Lymph node, mandibular	(49)	(20%)		(12%)	*(51)	(2%) (10%)	(50) 1 1	

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (Continued)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (Continued)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
HEMATOPOIETIC SYSTEM (Continued)								
Spleen	(50)		*(51)		*(51)		(50)	
Carcinoma, metastatic, kidney					1	(2%)	2	(4%)
Fibrosarcoma	1	(2%)			1	(2%)		
Leukemia mononuclear	12	(24%)	7	(14%)	6	(12%)	7	(14%)
Thymus	(41)		*(51)		*(51)		(38)	
Carcinoma, metastatic, kidney								(3%)
Leukemia mononuclear	1	(2%)	1	(2%)			1	(3%)
NTEGUMENTARY SYSTEM								
Mammary gland	(39)		*(51)		*(51)		(40)	
Adenoma					1	(2%)		
Fibroadenoma	3	(8%)	2	(4%)	1	(2%)	3	(8%)
Skin	(49)		*(51)		*(51)		(49)	
Basosquamous tumor benign			1	(2%)	1	(2%)		
Keratoacanthoma	1	(2%)	1	(2%)	4	(8%)	2	(4%)
Papilloma squamous		(4%)	1	(2%)	4	(8%)	1	(2%)
Trichoepithelioma		(2%)						
Sebaceous gland, adenoma		(2%)		(2%)		(2%)	1	(2%)
Subcutaneous tissue, fibroma		(8%)	4	(8%)	1	(2%)	2	(4%)
Subcutaneous tissue, fibrosarcoma	1	(2%)			2	(4%)		
Subcutaneous tissue, lipoma							1	(2%)
Subcutaneous tissue, sarcoma	1	(2%)			1	(2%)		
MUSCULOSKELETAL SYSTEM								
Bone	(50)		*(51)		*(51)		(50)	
Cranium, osteosarcoma					(0-)			(2%)
Skeletal muscle	*(50)		*(51)		*(51)		*(50)	(2,0)
Diaphragm, sarcoma, metastatic, uncerta							(00)	
primary site			1	(2%)				
NERVOUS SYSTEM	(50)		*(51)		** (7 1)		(50)	
Brain	(50)	(07)	*(51)		*(51)	(0.7.)	(50)	
Astrocytoma malignant	1	(2%)			1	(2%)		
Leukemia mononuclear			1	(2%)			1	(2%)
Osteosarcoma, metastatic, uncertain						(90)		
primary site					1	(2%)		
RESPIRATORY SYSTEM								
Lung	(50)		*(51)		*(51)		(50)	
Alveolar/bronchiolar adenoma				(6%)				
Alveolar/bronchiolar carcinoma			1	(2%)				
Carcinoma, metastatic, kidney					3	(6%)	13	(26%)
Carcinoma, metastatic, uncertain primar	У							00
site	-	(100)	~	(107)		(00)		(2%)
Leukemia mononuclear		(10%)	6	(12%)	4	(8%)	6	(12%)
Pheocheromocytoma malignant, metastat	ıc,				~			
adre al gland						(4%)		
Squamous cell carcinoma					1	(2%)		
Mediastinum, alveolar/bronchiolar carcir metastatic, lung	10ma,		1	(2%)				
SPECIAL SENSES SYSTEM				· •				
Zymbal gland	50)		*(51)		*(51)		*(50)	
Carcinoma	30)			(4%)	(01)			(6%)

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
JRINARY SYSTEM	· · · · ·							
Kidney	(50)		(51)		(51)		(50)	
Leukemia mononuclear	1	(2%)	3	(6%)	4	(8%)	2	(4%)
Mixed tumor malignant	1	(2%)						
Sarcoma, metastatic, uncertain primary	v site		1	(2%)				
Bilateral, renal tubule, carcinoma					1	(2%)	3	(6%)
Bilateral, renal tubule, carcinoma, mult	iple						1	(2%)
Capsule, carcinoma, metastatic, kidney							1	(2%)
Lymphatic, carcinoma, metastatic, kidn	ey						1	(2%)
Renal tubule, adenoma	1	(2%)	1	(2%)	3	(6%)	10	(20%)
Renal tubule, carcinoma						(24%)	20	(40%)
Renal tubule, carcinoma, multiple					3	(6%)	6	(12%)
Renal tubule, epithelium, adenoma					2	(4%)		
Renal tubule, epithelium, adenoma, mu	ltiple				1	(2%)		
Urinary bladder	(50)		*(51)		*(51)	(,	(50)	
Leukemia mononuclear					(= = /		((2%)
Serosa, mesothelioma malignant	1	(2%)					_	
SYSTEMIC LESIONS Multiple organs	*(50)		*(51)		*(51)		*(50)	
Leukemia mononuclear		(24%)		(14%)		(14%)		(14%)
Mesothelioma malignant		(24%)		(14%)	((1470)	4	(1470)
Mesothelioma benign	1	(2.07	-	(2%)				
NIMAL DISPOSITION SUMMARY	<u> </u>		<u></u>					
Animals initially in study	80		80		80		80	
Terminal sacrifice	39		26		26		23	
Gavage death	4		6		2		1	
Moribund	7		13		14		23	
Scheduled sacrifice	30		29		29		30	
Dead			6		9		3	
'UMOR SUMMARY								
			4.00		FO		50	
Total animals with primary neoplasms **	47		47		50		50	
Total primary neoplasms	143		107		123		146	
Total animals with benign neoplasms	47		46		48		44	
Total benign neoplasms	120		89		86		97	
Total animals with malignant neoplasms	22		17		28		39	
Total malignant neoplasms	23		18		37		49	
			2		9		16	
Total animals with secondary neoplasms **								
Total secondary neoplasms			7		17		51	
			7		17 2		51	

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. ** Primary tumors: all tumors except secondary tumors *** Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A: VEHICLE CONTROL

WEEKS ON STUDY	$\begin{vmatrix} 0\\0\\2 \end{vmatrix}$	${0 \\ 0 \\ 2}$	0 5 4	0 7 0	0 7 1	0 7 4	0 7 6	0 7 8	0 9 9	$ \begin{array}{c} 1 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 0 \\ 2 \end{array} $	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	$ \begin{array}{c} 1 \\ 0 \\ 5 \end{array} $	1 0 5	1 0 5	1 0 5	1 0 5	$\frac{1}{5}$		1 0 5
C ARCASS ID	0 2 1	0 4 1	0 2 4	0 1 3	0 9 5	0 8 5	0 6 5	0 7 4	0 8 1	${0 \\ 8 \\ 2}$	0 5 3	0 1 1	0 1 2	0 1 4	0 1 5	$ \begin{array}{c} 0 \\ 2 \\ 2 \end{array} $	0 2 3	0 2 5	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 4 2	0 4 3
ALIMENTARY SYSTEM																									
Esophagus	+	`+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large Intestine large, cecum	+++++	+	+	+	+	+	+	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	+	+	÷	+	+
Intestine large, colon	+	+	+	+	+	+	Ť	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+++
latestine large, rectum	+	+	+	+	÷	÷	÷	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	÷	+	+	M
ntestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
utestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+
ntestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Litestine small, jejunum Liver	+++++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++
Hepatocellular carcinoma, multiple	-	+	+	+	+	-	+	+	÷	+	Ŧ	+	Ŧ	+	-	Ŧ	+	Ť	v	+	٣		+	÷	+
Leukemia mononuclear						х							X					х	`						х
Mesentery	l				+																				
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuciear																									
Acinus, adenoma														X											
Acinus, adenoma, multiple Pharvn x																									
Palate, papilloma squamous																									
Sa.ivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Acinus, adenoma			X																						
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach, giandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ARDIOVASCULAR SYSTEM																									
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
																-									
ENDÖCRINE SYSTEM																									+
Adrenal gland, cortex	- I I	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	- 1	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	÷		Ŧ	Ŧ	+	+	- +	+	+
Adenoma		,	'	1			·		'	'		,		,	,	•	'								
Leukemia mononuclear						X							х												
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pheochromocytoma complex																							х		
Pheochromocytoma benign Bilateral, pheochromocytoma benign					X							v			X			X		v		v			х
slets, pancreatic	1 ±	+	+	+	+	+	+	+	ىد	ъ	+	X	+	+	+	+	+	+	+	X +	+	X	+	+	+
Adenoma		Ŧ	т	Ŧ		Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	x	-	Ŧ	x	Ŧ	+	т		r
Adenoma, multiple																									
Carcinoma																									
Parathyroid gland	M	M	+	М	+	+	М	М	+	+	+	М	+	+	+	+	M	+	+	+	+	+	+	+	+
Adenoma																									
Pituitary gland Pars distalis, adenoma	+	+	+	+	+	+	+	+	+	x +	x x	x x	+	+	×	+	Ť	+	+	*	+	+	+	+	+
Pars intermedia, adenoma										A	4	л			A		A			A					х
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	۰	+	+	+	+	+	+	+
Bilateral, C-cell, adenoma										_											х				
C cell, adenoma										X		Х			Х										
Follicular cell, adenoma Follicular cell, carcinoma																	х								
romeniai cen, caremonia																	л								
ENERAL BODY SYSTEM						-																			
None																									

Tissue examined microscopically Not examined
 Present but not examined microscopically I' Insufficient tissue

M. Missing A: Autolysis precludes examination X: Incidence of listed morphology

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: VEHICLE CONTROL (Continued)

WEEKS ON STUDY	0 5	1 0 5	1 0 5	i 0 5	1 0 5	l 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	$ \begin{array}{c} 1 \\ 0 \\ 5 \end{array} $	1 0 5	1 0 5	$ \begin{array}{c} 1 \\ 0 \\ 5 \end{array} $	1 0 5	
CARCASS ID	0 4 4	0 4 5	0 5 1	0 5 2	0 5 4	0 5 5	0 6 1	0 6 2	0 6 3	0 6 4	0 7 1	0 7 2	0 7 3	0 7 5	0 8 3	0 8 4	0 9	0 9 2	0 9 3	0 9 4	1 0 1	1 0 2	1 0 3	1 0 4	1 0 5	TOTAL TISSUE TUMOR
LIMENTARY SYSTEM				-		•	-					-														
sophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
itestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50
testine large, cecum	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	+	+	+	+	+	+++	+++	50
itestine large, colon itestine large, rectum	+	+	+	+	1	+	+	+	÷	+	+	+	++	, M	+	+	+	+	+	+	+	-	÷.	Ť	+	48
itestine small	+	÷	+	+	+	+	+	+	+	+	+	+	+	+ 	+	÷	÷	÷	+	+	+	+	÷	+	+	50
testine small, duodenum	1 +	÷	÷	+	+	÷	+	÷	÷	÷	÷	÷	+	÷	+	+	÷	÷	÷	+	+	+	+	÷	4	50
testine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
testine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatocellular carcinoma, multiple Leukemia mononuclear esentery	x						x	x	x	x						x			x						x	1 12 1
asencery	1 +	+	<u>ـ</u> ـ	-	+	-	+	<u>ـ</u> ـ		4	-	<u>ـ</u> ـ	<u>بد</u>	+	т	т.		-	-	-	+	-	4	-	т.	50
Leukemia mononuclear	1.	,					x	x		,			,				,	,			•			,		2
Acinus, adenoma									х			X														3
Acinus, adenoma, multiple														Х												1
harynx		+																								1
Palate, papilloma squamous		х																								1
livary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Acnus, adenoma omach	1.																									1 50
omach, forestomach	1 I	Ŧ	Ť	Ť	-	+	÷	+	+	Ť	+	+	+	+	÷	+	+	+	+	+	-	+	+	+	++	50
omach, glandular	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ARDIOVASCULAR SYSTEM eart	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
NDOCRINE SYSTEM	1																									
drenal gland		+																								50
drenal gland, cortex	1 ÷	÷	÷	÷	- -	- -	÷	- 1	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	Ţ	Ŧ	- 1	Ŧ	÷	-	÷		-	Ŧ	- <u>-</u>	50
Adenoma		<i>i</i> .			-	x		Ŧ	Ŧ		Ŧ	Ŧ	т	x	Ŧ	T.	Ŧ			+		F			Ŧ	2
Leukemia mononuclear							х	Х								X										5
drenal gland, medulla	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma complex																										1
Pheochromocytoma benign	X				X					X		X					Х		Х		х		Х		Х	13
Bilateral, pheochromocytoma benign														X												4
lets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma					х												х					••				4
Adenoma, multiple																						х		v		1
Carcinoma arathyroid gland	1 +	+											М											X		41
Adenoma	1	7	Ŧ	Ŧ	*	x	Ŧ	+	TWI	Ŧ	+	Ŧ	TAT	+	Ŧ	Ŧ	+	Ŧ	x	Ŧ	Ŧ	+	+	٣	+	41
tuitary gland	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pars distalis, adenoma	1		x	·	,	*	x			x		x					x		x			x				14
Pars intermedia, adenoma																										1
avroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Bilateral, C cell, adenoma	(1
C cell, adenoma		х								X									X	х	х					8
Follicular cell, adenoma										X																1
Follicular cell, carcinoma			X																							2
ENERAL BODY SYSTEM																										-

					(0	on	tin	uec	0																
WEEKS ON STUDY	0 0 2	0 0 2	0 5 4	0 7 0	0 7 1	0 7 4	0 7 6	0 7 8	0 9 9	1 0 1	$1 \\ 0 \\ 2$	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5						
CARCASS ID	0 2 1	0 4 1	0 2 4	0 1 3	0 9 5	0 8 5	0 6 5	0 7 4	0 8 1	0 8 2	0 5 3	0 1 1	0 1 2	0 1 4	0 1 5	0 2 2	0 2 3	0 2 5	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 4 2	0 4 3
GENITAL SYSTEM Epiddymis Leukemia mononuclear Preputial gland Adenoma Prostate Testes Bilateral, interstal cell, adenoma Interstitual cell, adenoma Tunic, mesothelioma malignant	++++++	+ + + +	+ + +	+ + + +	+ + + +	+ X + + X	+ + + X	+ + + X	+ + X + X	+ + + *	+ + X + X	+ + + X	+ + + X	+ + + X	+ + + X	+ + + X	+ + + X	+ + + ¥	+ + + X	+ + X + X	+ + + X	+ + + X	+ + + X	+ + + X	+ + + X
HEMATOPOIETIC SYSTEM Blood Leukemia mononuclear Bone marrow Femoral, leukemia mononuclear Lymph node Deep cervical, leukemia mononuclear Mesenteric, leukemia mononuclear Pancreatic, leukemia mononuclear	++	+	+ +	+ +	++	+ + + X	+ +	+ +	+ +	++	+++	+ +	+ x + +	+ +	+ +	++	+ +	+ + X	+	++	+ +	++	++	+ +	+
Lvmph node, mandibular Leukemia mononuclear Spieen Fibrosarcoma Leukemia mononuclear Tivmus Leukemia mononuclear	+	+ + +	+ + +	+ + +	+ + +	+ + + X + X +	+ + +	+ + +	+ + I	+ + M	+ + M	+ + +	M + X +	+ + +	+ + X +	+++	+ + +	+ X + X M	- - +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + X M
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma Sain Keratoacanthoma Papilloma squamous Tachoepithelioma Sebaceous gland, adenoma Subcutaneous tissue, fibroma	+	M +	+	M +	+ +	+ X +	+ +	+ + X	++	+++	M + X	++	M + X	M +	+ +	+	+ +	+ +	м + х	++	+ +	++	+ +	++	+++
Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, sarcoma MUSCULOSKELETAL SYSTEM							X									X									
NERVOUS SYSTEM Brain Astrocytoma malignant	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Ling Leukemia mononuclear Nuse Trachea	+	+ + +	+ + +	+ + +	+++++	+ X + +	+++++	+ + +	+ + +	+ + +	+++++	+ + +	+ X + +	++++	+ + +	++++	++++++	+ + +	++++	+ + +	+++++	+ + +	++++++	+++++	+ + +
SPECIAL SENSES SYSTEM Eve Hardeman gland		+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+
URINARY SYSTEM Kidney Leukemia mononuclear Mixed tumor malignant Renal tubule, adenoma		+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Unnary bladder Serosa, mesothelioma malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: VEHICLE CONTROL (Continued)

TABLE A2.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF MA	LE RATS:	VEHICLE	CONTROL
				(Continued	0			

WEEKS ON STUDY	1 0 5	TOTAL																								
CARCASS ID	0 4 4	0 4 5	0 5 1	0 5 2	0 5 4	0 5 5	0 6 1	0 6 2	0 6 3	0 6 4	0 7 1	0 7 2	0 7 3	0 7 5	0 8 3	0 8 4	0 9 1	0 9 2	0 9 3	0 9 4	1 0 1		1 0 3	1 0 4	1 0 5	TOTAL TISSUES TUMORS
ENITAL SYSTEM	-			+		+	-	 -	+			+	+		+	+	+	+	+	+	+	+	+	+	+	49
Leukemia mononuciear reputial gland	+	+	+	+	+	+	±	+	+	+	+	±	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50
Adenoma rostate	+	+	+	+	+	+	Х +	+	+	+	+	X +	+	+	+	+	+	х +	+	+	+	+	+	+	+	6 50
estes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma Tunic, mesothelioma malignant	x x	* X	* X	*	*	* X	*	* X	* X	*	* X	+	*	* X	*	*	*	* X	* x	* X	× x	+ X	* X	*	+ X	50 39 5 1
EMATOPOIETIC SYSTEM																										1
Leukemia mononuclear one marrow	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50
Femoral, leukemia mononuclear ymph node	+	+	+	+	+	+	+	X +	+	X +	+	+	+	+	+	X +	+	+	X +	+	+	+	+	+	+	5 50
Deep cervical, leukemia mononuclear Mediastinal, leukemia mononuclear Mesenteric, leukemia mononuclear Pancreatic, leukemia mononuclear	x						X X	X X	x	x	,					x	•	,	X							2 8 1 1
ymph node, mandibular Leukemia mononuclear	×	+	+	+	+	+	* X	* X	*	*	+	÷	+	+	+	*	+	+	* X	+	+	+	+	+	*	49 10
pleen	+	+	+	+	+	+	÷	÷	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Fibrosarcoma Leukemia mononuclear	x						x	x	x	x						х			х						x	12
hymus Leukemia mononuclear	+	+	+	+	М	+	м	М	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	41 1
TEGUMENTARY SYSTEM ammary gland Fibroadenoma	+	м	+	+	+	*	+	+	+	+	м	+	+	м	М	+	+	+	М	+	+	* x	+	+	+	39 3
cin Keratoacanthoma	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	*	+	+	+	+	+	+	+	+	+	49 1
Papilloma squamous Trichoepithelioma									x						x										X	
Sebaceous gland, adenoma Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, sarcoma									л							x										1 4 1 1
USCULOSKELETAL SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ERVOUS SYSTEM rain Astrocytoma malignant	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
ESPIRATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear ose	+	+	+	+	+	+	X +	X +	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	5 50
rachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
PECIAL SENSES SYSTEM	+	+	+	+	++++	+	+	+	+	+	++++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	3 49
RINARY SYSTEM			+	 +		+	+			 +	~	+	+	 +	+	+	+	+	+		+	+	+	+	+	50
Leukema mononuclear Muxed tumor malignant Renal tubule, adenoma		т	Ŧ	Ŧ	Ŧ	Ŧ	7	x	т	Ŧ	Ŧ	7	7	Ŧ	Ŧ	r	Ŧ	Ŧ	7'	٣	+	x	۴	r	*	
rinary bladder Serosa, mesothelioma malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X	+	+	+	+	50 L

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF OCHRATOXIN A: LOW DOSE

																				<u>.</u>						
WEEKS ON STUDY	0 3 8	0 4 0	0 4 1	0 5 9	0 6 0	0 6 0	0 6 2	0 7 0	0 7 0	0 8 0	0 8 0	0 9 0	0 9 0	0 9 0	0 9 1	0 9 7	0 9 7	0 9 7	0 9 7	0 9 8			$ \begin{array}{c} 1 \\ 0 \\ 3 \end{array} $	$ \begin{array}{c} 1 \\ 0 \\ 4 \end{array} $	1 0 4	1 0 5
CARCASS ID	2 4 5	1 7 5	2 8 5	2 5 4	$\frac{2}{2}{3}$	$\frac{2}{4}$	1 9 5	2 0 3	2 6 3	2 1 4	$\frac{2}{3}{3}$	2 5 2	1 8 4	$ \frac{2}{3} 2 $	2 4 4	1 7 4	$\frac{2}{3}$ 5	$\frac{1}{7}$	$\frac{2}{1}{2}$	2 5 5	2 6 5	$ \begin{array}{c} 2 \\ 0 \\ 1 \end{array} $	2 5 1	2 0 4	1 9 4	$\frac{1}{7}$
ALIMENTARY SYSTEM Esophagus Intestine large, cecum Intestine large, colon Intestine large, colon Intestine large, rectum Intestine small, duodenum Intestine small, uleum Intestine small, leum Intestine small, jejunum Liver	+ + + + + + + + + + + + + + + + + + + +	+ + A + + A + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++	++++++++++	+ + A + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	++++++++++	+++++++++++++++++++++++++++++++++++++++	
Leukemia mononuclear Mesentery Mesothehoma malignant Sarcoma, metastatic, uncertain primary site Pancreas	+	+	+	+	+	x +	x +	* *	+	+	X +	+	+	+ X	+	+	+	+	* *	¥ +	х +	x +	+	+	+	
Leukemia mononuclear Sarcoma, metastatic, uncertain primary site					,					,				x						X		x				
Acnus, adenoma Salvary glands Stomach Stomach, forestomach Stomach, glandular Tongue Papilloma squamous	++++	+ + +	+++++	+ + + +	+ + + +	+ + +	+ + + +	++++	+ + + +	+ + +	+++++	+ + +	X + + + +	+ + +	+ + +	+ + +	+ + +	++++	X + + + +	+ + +	+ +	+ + + + +	+ + + +	+ + + +	+ + + +	
CARDIOVASCULAR SYSTEM Heart Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X	+	+	+	+	+	
ENDOCRINE SYSTEM Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Islets, pancreatic Adenoma Parathyroid gland Pitulary gland Leukamia mononuclear Pars distalis, adenoma Pars distalis, acrcinoma Thyroid gland C cell, adenoma C cell, adenoma Follicular cell, carcinoma	+++++++++++++++++++++++++++++++++++++++	++++++++	+++ + + + +	++++++++++++++++++++++++++++++++++++++	++++++++++	* + + + + + +	+++ + ++ +	+++++++++++++++++++++++++++++++++++++++	+ M + X +	+ + + + + M + X +	+ + + + + + X +	+ + + + + A + A	+ + + + X + + + X + + + X + +	+ + + + +	+ + + + + X + + + +	+ + + + + + + + + + + + + + +	+ + + + X + + + + X	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + X + + X	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++X+XM+ + X +	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	
GENERAL BODY SYSTEM Tissue, NOS Sarcoma, metastatic, uncertain primary site														+ X												
GENITAL SYSTEM Epididymis Mesothelioma malignant Preputial gland Adenoma Prostate Seminal vesicle Testes Mesothelioma banign Mesothelioma malignant Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+ + +	+ + +	+ + +	+++++	+ + +	+ + +	+ + + X	+ + + + + X X	+ + +	+ + + + x	+ + +	+ + + + + + x	++++++	+ + + x	+ + + x	+ X + + X	+ + + x	+ + + +	+ + + X X	+ + + + x	+ + + + x	+ + + + x	+ + + x	+ + + x	+ + + x	+ X
HEMATOPOIETIC SYSTEM Bone marrow Femoral, laukamia mononuclear Lymph node Mediastinal, laukamia mononuclear Mediastinal, sarcoma, metastatic,	+	+ +	+ +	+ +	+ +	A +	+ x + x	+ +	+ +	+ +	* * +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ x +	+ + X	+ +	+ +	+ +	
uncertain primary site Mesenteric, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear Spleen Leukemia mononuclear Thymus Leukemia mononuclear	+++++	+ + +	+ + +	+ + +	+ + +	+ x + x +	x + x + x + x +	+ + M	+ + +	+ + M	+ X + X + X +	+ + +	+ + +	X + + +	+ + +	+ + +	+ + +	+ + +	+ + +	X + X + X + X + X + X	+ X + X +	+ X + X +	+ + +	+ + M	+ + M	

								(C	ou	tinu	ueu	.,														
WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5		1 0 5	1 0 5		1 0 5		1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	
CARCASS ID	1 7 3	1 8 1	1 8 2	1 8 3	1 8 5	1 9 1	1 9 2	1 9 3	$\frac{2}{0}{2}$	2 0 5	2	$\frac{2}{1}{3}$	2 1 5	$\frac{2}{2}$	$\frac{2}{2}{2}$	$\frac{2}{2}{4}$	$\frac{2}{2}{5}$	2 3 1	2 3 4	2 4 1	2 4 3	2 5 3	2 6 1	2 6 2	2 6 4	TOTAL. TISSUES TUMORS
ALIMENTARY SYSTEM Esophagus	+	1				1																				26
Intestine large, cecum Intestine large, colon Intestine large, colon Intestine small Intestine small, duodenum	+++++++++++++++++++++++++++++++++++++++																									26 23 25 23 26 26
Intestine small, jejunum Intestine small, jejunum Liver Leukemia mononuciear Mesentery	++++++						L																			25 24 25 26 6 7
Mesothelioma malignant Sarroma, metastatic, uncertain primary site Pancreas	+						* X																			$\begin{array}{c} 1\\ 26\\ 2\end{array}$
Leukemia mononuclear Sarcoma, metastatic, uncertain primary site Acinus, adenoma Salivary glands	X +																									1 3 26
Stomach Stomach, forestomach Stomach, glandular Tongue Papilloma squamous	+++++													+ X		* x										26 25 25 3 2
CARDIOVASCULAR SYSTEM Heart Leukemia mononuciear	+																									26 1
ENDOCRINE SYSTEM Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign	+ + +																									25 25 25 4
Islets, pancreatic Adenoma Parathyroid gland Pituitary gland Leukemia mononuclear	+++++	+			+	+			+			+		+					+							26 2 21 33 1
Pars distalis, adenoma Pars distalis, carcinoma Thyroid gland C-ceil, adenoma C-ceil, carcinoma	x + x	x + x			X	X	+		X			x		x		* X			X					+ X		$ \begin{array}{c} 16 \\ 29 \\ 5 \\ 1 \end{array} $
Follicular cell, carcinoma GENERAL BODY SYSTEM Tissue, NOS Sarcoma, metastatic, uncertain primary							X										_									
site GENITAL SYSTEM Epididymis Mesothelioma malignant	+																									1 26 2
Preputal gland Adenoma Prostate Seminal vesicle Testes	++++++	+	* *	+	+		+	+	+	+	+	+	+	+ X +	+ x +	+	+	.+	+	+	+		• +	+	+	28 3 26 1 50
Mesothelioma benign Mesothelioma malignant Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	x	x	x	x	x		X X	x	x	x	x	x	x	x	x	x	x	x	X	x	x	X	X	X	x	1 3 34 5
HEMATOPOIETIC SYSTEM Bone marrow Femoral, leukemia mononuclear Lymph node Mediastinal, leukemia mononuclear	++								+					+	_											25 3 28 3
Mediastinal, sarcoma metastatic, uncertain primary site Messentenc, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear	+								+					+												1 2 28 6
Leukamia mononuclear Spieen Leukamia mononuclear Thymus Leukamia mononuclear	+++			+				+		*																29 7 22 1

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

WEEKS ON STUDY	0 3 8	0 4 0	0 4 1	0 5 9	0 6 0	0 6 0	0 6 2	0 7 0	0 7 0	0 8 0	0 8 0	0 9 0	0 9 0	0 9 0	0 9 1	0 9 7	0 9 7	0 9 7	0 9 7	0 9 8	1 0 1	1 0 3	1 0 3	1 0 4	1 0 4	1 0 5
CARCASS ID	2 4 5	1 7 5	2 8 5	2 5 4	2 2 3	2 4 2	1 9 5	2 0 3	2 6 3	2 L 4	2 .3 3	2 5 2	1 8 4	2 3 2	2 4 4	1 7 4	2 3 5	$\frac{1}{7}$	$egin{array}{c} 2 \\ 1 \\ 2 \end{array}$	2 5 5	2 6 5	2 0 1		2 0 4	1 9 4	1 7 1
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma Sk.n Basosquamous tumor bemgn Keratoacanthoma	M +	+	++	+ +	++	+ +	+ +	++	M +	+ +	VÍ +	++	++	+ +	M +	+ +	++	+	M +	+	+	+	+ +	+ +	+ +	+
Papilloma squamous Sebaceous gland, adenoma Subcutaneous tissue, fibroma																							x		x	x
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle Diaphragm, sarcoma, metastatic, uncertain primary site	+	+	+	+	+	+	+	+	+	+	+	+	+	+ + X	+	+	÷	+	+	+	+	+	+	+	+	
NERVOUS SYSTEM Brain Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	+	×	+	+	+	+	+	
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carciaoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	* X	÷	+	+	<u> </u>
Leukemia mononuclear Mediastinum, alveolar/bronchiolar carcinoma, metastatic, lung						X	x				x									X	x	x				
Nose Tracnea	+++	+ +	+ +	+ +	+ +	++	+ +	+ +	A +	++	+	+ +	++	+ +	+ +	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	+ +	+++++	+ +	+ +	+ +	++	++	
SPECIAL SENSES SYSTEM Eye Harderian gland Zymoal gland Carcin oma	м	+	+	M + X	+	+	+	+	м	+ + X	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	
URINARY SYSTEM Kidrey Leukemia mononuclear Sarcoma, metastatic, uncertain primary	+	+	+	+	+	+	+	+	+	+	ť	+	+	+	+	+	+	+	+	+	* X	* X	+	+	+	+
site R∢nal tubule, adenoma Urethra Urnary bladder	+ A	A	+	м	+	+	+	+	+	+	+	÷	+	Х +	+	+	÷	+	+	+	+	+	+	+	+	

WEEKS ON STUDY CARCASS	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5 2	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5 2	1 0 5	1 0 5 2	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5 2	1 0 5 2	1 0 5 2	1 0 5	TOTAL TISSUES
ID	7 3	8	8 2	8 3	8 5	9 1	9 2	9 3	0 2	0 5	1 1	ī 3	ĩ 5	2 2 1	22	2 2 4	2 2 5	3 1	3 4	4 1	4 3	5 3	6 1	6 2	6 4	TUMORS
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma Skin Basosquamous tumor benign Keratoscanthoma Papilloma squamous Sebaceous gland, adenoma Subcutaneous tissue, fibroma	M + X							+ X			* x	* X	*				+		+ X X		+					22 2 32 1 1 1 4
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle Diaphragm, sarcoma, metastatic, incertain primary site	+																									26 1 1
NERVOUS SYSTEM Brain Leukemia mononuclear	+																									25 1
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar caronoma Leukemia mononuclear Mediastinum, alveolar/bronchiolar "arcinoma, metastatic, lung Nose Trachea	+ X X + +						+	+							+					* X						30 3 1 6 1 25 26
SPECIAL SENSES SYSTEM Eye Hardenan gland Zymbal gland Carcinoma	+			+																						$\begin{array}{c}1\\2\\2\\2\\2\end{array}$
URINARY SYSTEM Kidney Leuksmia mononuclear Sarcoma, metastatic, uncertain primary site Renal tubule, adenoma Urethra	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51 3 1 1 1
Unnary bladder	+																									23

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF OCHRATOXIN A: MID DOSE

WEEKS ON STUDY	0 4 2	0 4 3	0 5 5	0 6 6	0 7 3	0 7 4	0 7 5	0 7 8	0 7 8	0 7 8	0 8 0	0 8 1		0 8 5	0 9 6	0 9 7	0 9 8	0 9 9	1 0 1	$\begin{array}{c}1\\0\\2\end{array}$	$\begin{array}{c}1\\0\\2\end{array}$	1 0 2		$\begin{array}{c}1\\0\\3\end{array}$	1 0 3	1 0 5
CARCASS ID	4 1 5	4 0 5	4 4 4	3 3 5	3 6 5	3 6 4	3 3 3	4 0 4	3 9 2	3 5 3	3 5 2	3 8 1	3 9 3	4 2 5	4 0 2	4 1 3	3 5 4	4 1 1	3 4 1	3 8 4	3 7 3	4 2 4	4 1 2	3 7 4	3 4 2	3 3 1
ALIMENTARY SYSTEM Esophagus Intestine iarge Contestine iarge, cecum Intestine iarge, cecum Intestine iarge, rectum Intestine smail, duodenum Intestine smail, iejunum Intestine smail, jejunum Liver Leukemia mononuclear Mesentery Carcinoma, metastatic, kidney Pancreas Carcinoma, metastatic, kidney Leukemia mononuclear Salivary glands Stomach, forestomach Stomach, glandujar Tongue	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + A + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + A + + + + + + + + + + + + + + + + +	++ + + + + + + + + + + + + + + + + + + +	++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	++++++++ X + +++++	+++++++++++++++++++++++++++++++++++++++	++++++++X + +++++	+++++++++++++++++++++++++++++++++++++++	+++++++X + X++++	++++ + ++++++++++++++++++++++++++++++++	+ + A + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + A + + + + + + + + + + + + + + + + +	
Papiloma squamous CARDIOVASCULAR SYSTEM Heart Atrum, sarcoma, metastatic, uncertain primary site	+	+	+	+	+	+	+	+	+	+	+	+	+	× +	+	+	+	+	+	+	+	+	¥ +	+	+ X	
ENDOCRINE SYSTEM Adrenal gland, cortex Leukemia mononuclear Adrenal gland, medulla Leukemia mononuclear Pheochromocytoma malignant Pheochromocytoma complex	+ + +	+ + +	+ + +	+ + + X	+++++	+ + +	++++++	++++++	+ + X	+ + +		+ + +	+ + X	+ + +	+++++	+ + X + X	+ + +	+ + X	+ + +	+ + +	++++	+ + +	+++++	+++	+ + +	+ M + X
Pheochromocytoma benign Bilatarai, pheochromocytoma benign Islets, pancreatic Adenoma	+	÷	+	+	+	+	+	+	+ *	+	+	+	+	+	Х +	+	÷	+	+	Х +	+	+	+	+	X A	+ ¥
Autonoma Carcinoma Parathyroid gland Ptuntary gland Pars distalis, adenoma Pars distalis, carcinoma Thyroid gland C cell, adenoma C cell, carcinoma Folicular cell, adenoma	+++++++++++++++++++++++++++++++++++++++	+ I +	+ + +	+ + +	+++++	+ + X	+ +	M + X + X	x + + +	+ M +	+ +	M + +	++++	+ + +	+++++	+ +	++++	+ + X	+ + + X	+ + X +	+ + X +	M + + X	+ + X +	+ + X + X	M + A	x x
GENERAL BODY SYSTEM Tissue, NOS Sarcoma																							,		+ x	
CENITAL SYSTEM Epididymis Preputal gland Adenoma Frostate Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+++++	+ + + +	+ + + +	+ + + +	+ + + + X	+ + X + + X	+ + + X	+++++	+ + + X	+ + + + X	+ + + + X	+ + + + X	+ + + + X	+ + + + X	+ + + + x	+ + + + + X	+ + + + X	+ + + + X	+ + + + X	+ + + + X	+ + +	+ + + + X	+ + + X	+ + + + X	+ + + + X	+ X

								(C	on		ueu	.,														
WEEKS ON STUDY	1 0 5	1 0 5	TOTAL																							
C ARCASS ID	3 3 2	3 3 4	3 4 3	3 4 4	3 4 5	3 5 1	3 5 5	3 6 1	3 6 2	3 6 3	3 7 1	3 7 2	3 7 5	3 8 2	3 8 3	3 8 5	3 9 1	3 9 4	3 9 5	4 0 1	4 0 3	4 1 4	4 2 1	$\frac{4}{2}$	4 2 3	TISSUES
ALIMENTARY SYSTEM Esophagus Intestine large Intestine large, cocum Intestine large, cocum Intestine small, cocum Intestine small, duodenum Intestine small, loudenum Intestine									* x																	25 25 20 24 24 25 23 21 25 26 6 5 1 22 6 6 5 1 24 4 1 25 25 25 25 25 25 22 22
CARDIOVASCULAR SYSTEM Heart Atrum, sarcoma, metastatic, uncertain primary site																										25
ENDOCRINE SYSTEM Adrenal gland Adrenal gland, cortex Leukemia mononuclear Adranal gland medulla		+				+														+++++				-		28 25 1
Adrenai gland, medulla Leukemia mononuclear Pheochromocytoma malignant Pheochromocytoma benign Bilaterai, pheochromocytoma benign Islets, pancreatic Adenoma Carcinoma Parathyroid gland Pituitary gland Pars distais, adenoma Pars distais, carcinoma Thyroid gland C cell, adenoma C cell, adenoma C cell, adenoma C cell, carcinoma Follicular cell, adenoma		+ x *			+ X	+ x + x								+ X					* X	+ x					* * *	26 4 2 1 3 2 26 3 1 21 27 7 2 26 6 1 1
Tissue, NOS Sarcoma																										1 1
GENITAL SYSTEM Epididymis Preputial gland Adenoma Prostate Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+ x	*	* x	+ X	+ X	*	*			* x	+ X	* *	*	* *	*	*	+ X	* *	+ X		*	*	* X	*	+ X	25 25 1 25 48 32 10

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: MID DOSE (Continued)

WEEKS ON STUDY	0 4 2	0 4 3	0 5 5	0 6 6	0 7 3	0 7 4	0 7 5	0 7 8	0 7 8	0 7 8	0 8 0	0 8 1	${0 \\ 8 \\ 2}$	0 8 5	0 9 6	0 9 7	0 9 8	0 9 9	1 0 1	$1 \\ 0 \\ 2$	$ \begin{array}{c} 1 \\ 0 \\ 2 \end{array} $	$1 \\ 0 \\ 2$	$ \begin{array}{c} 1 \\ 0 \\ 3 \end{array} $	1 0 3	$ \begin{array}{c} 1 \\ 0 \\ 3 \end{array} $	1 0 5
C ARCASS ID	4 1 5	4 0 5	4 4 4	3 3 5	3 6 5	3 6 4	3 3 3	4 0 4	3 9 2	3 5 3	3 5 2	3 8 1	3 9 3	4 2 5	4 0 2	4 1 3	3 5 4	4 1 1	3 4 1	3 8 4	3 7 3	4 2 4	4 1 2	3 7 4	3 4 2	3 3 1
HEMATOPOIETIC SYSTEM Bone marrow		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Femoral, leukemia mononuclear Lymph node Mediastinal, carcinoma, metastatic,	+	+	+	+	+	+	+	+	Х +	+	+	+	+	х +	+	+	+	Х +	+	+	+	+	+	+	+	
kidney Mediastinal, leukemia mononuclear Mediastinal, squamous cell carcinoma.					X				x			X	x	x				x								
metastatic, lung Mesenteric, leukemia mononuclear Pancreatic, leukemia mononuclear Renal, mediastinal, pancreatic,				X										x				X X								
rarcinoma, metastatic, kidney Lymph node, mandibular Leukemia mononuclear	+	+	+	+	+	+	+	+	* X	+	X M		* X	* x	+	*	÷	* X	+	÷	+	+	+	+	+	
Spieen Carcinoma, metastatic, kidney Fibrosarcoma	+	+	+	+	*	+	+	+	+	+	۰	+	+	+	A	+	+	+	+	+	+	+	+	+	+	
Leukemia mononuclear Thymus	+	+	+	м	+	+	+	+	X +	м	٠	+	X +	Х М	+	¥ +	+	X M	+	+	+	+	÷	+	М	
INTEGUMENTARY SYSTEM Mammary gland Adenoma Fibroadenoma	+	+	+	+	+	+	+	+	+	+	М	+	+	+	М	+	+	+	+	М	+	+	+	*	+	
Skin Basosquamous tumor benign	+	+	+	+	+	+	+	I	+	+	٠	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Keratoacanthoma Papilloma squamous Sebaceous gland, adenoma Subcutaneous tissue, fibroma				X										X X			x			x			X			
Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, sarcoma	x											x														
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Astrocytoma malignant Osteosarcoma, metastatic, uncertain primary site		х																					x			
RESPIRATORY SYSTEM	 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma, metastatic, kidney Leukemia mononuclear Pheochromocytoma mahgnant, metastatic, adrenal giand	i t				X				x		X	X		X		x		x								x
Squamous cell carcinoma Nose Trachea	++	+ +	+ +	X + +	+ +	+++++	+ +	+ +	+ +	+ +	++	+++	+ +	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +	+ +	+ +	+	+ +	
SPECIAL SENSES SYSTEM							+																+			
Hardeman gland URINARY SYSTEM		+	м	+	+	+	+	M.	+	+	+	+	+	+	+	+	м 	M	+	+	м	M	+	+	+	
Kidney Leukemia mononuclear Bilateral, renai tubule, carcinoma	+	+	+	+	+	+	+	+	*	+	+	+	* X	* X	+	+	+	*	+	+	+	+	+	+	+	+
Renal tubule, adenoma Renal tubule, carcinoma Renal tubule, carcinoma, multiple Renal tubule, epithelium, adenoma Renal tubule, epithelium, adenoma,					Y		х				x	x	X				x	X X	x			X	X			х
multiple Urinary bladder	+	+	+	+	+	+	+	+	+	+	٠	+	+	+	+	+	+	+	+	+	+	+	+	+	A	

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: MID DOSE (Continued)

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: MID DOSE (Continued)

NTEGUMENTARY SYSTEM Mammary gland Adanoma Fibroadeanoma Sun Barroscantiona Subcutaseous tissue, fibrosa Subcutaseous ti										•	••••		-/														
CARCASS 3 </th <th></th> <th>0</th> <th>Ō</th> <th></th> <th></th> <th>õ</th> <th>Ō</th> <th></th> <th>$\begin{array}{c} 1 \\ 0 \\ 5 \end{array}$</th> <th>1 0 5</th> <th>0</th> <th></th> <th>0</th> <th>0</th> <th></th>		0	0	0	0	0	0	0	0	0	0	0	0	0	Ō			õ	Ō		$ \begin{array}{c} 1 \\ 0 \\ 5 \end{array} $	1 0 5	0		0	0	
Bees entrove Francel, leadents mononuclear Francel, leadents and correspond, metastatic, kdray Mediatinal, correspond, metastatic, kdray Mediatinal, correspond, and anonouclear Francel, leadents mononuclear Solution and bulk for the second		3	3		4	4	5	5		6	6		7		8		8	9		9	ō	ō				2	TISSUES
kidary i kidary	Bone marrow Femoral, leukemia mononuclear Lymph node																										3
Mesenter, jeukäma mononulear Pancreati, jeukäma mononulear Real, mediatinai, pancreati, eukama mononulear Soleen 1 1 1 1 23 23 23 23 23 23 23 23 23 24 23 25 20 26 20 27 20 28 20 29 20 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 21 30 22 30 31 30 22 30 31 30 32 30 32 30 33 30 34 30 35 30 36 30 37 30 30 30 30 30 30 30	kidney Mediastinal, leukemia mononuclear Mediastinal, squamous cell carcinoma,																										4
L'mph nois, mandibilar Leukem anonouulear Thymus X Shaan Leukema mononuulear Thymus X Thymus X	Mesenteric, leukemia mononuclear Pancreatic, leukemia mononuclear Renal, mediastinal, pancreatic,																										$\frac{1}{2}$
Thymus 20 NTEGUMENTARY SYSTEM Admonds	Lymph node, mandibular Leukemia mononuclear Spleen Carcinoma, metastatic, kidney Fibrosarcoma			+	+ X															,							23 5 27 1 1
Adscordia Fibroadscordia Sun Sun Sun Sun Sassequanous tumor benign Restolocationa Papillona subanous Subcutaneous tissue, broad roma Subcutaneous tissue, broad roma Subcutan	Thymus INTEGUMENTARY SYSTEM																										20
Subcutaneous tissue, fibrosarooma X 2 MUSCULOSKELETAL SYSTEM 25 Brain 25 VERVOUS SYSTEM 25 Brain 25 Astrocytoma maignant 26 Osteosarooma, metastatic, uncertain 1 primary site 1 RESPIRATORY SYSTEM 1 Ling + Carrinoma, metastatic, kidney 24 Leukema mononuclear 24 Phochromocytoma malignant, 24 Nose 24 Trachea 24 SPECIAL SENSES SYSTEM 24 Eve + Hardenan gland 1 URINARY SYSTEM 24 Syse - String and the carnoma mononuclear 24 Balateral, renait tubule, carnoma malignant, metastatic, direnai gland 1 Widewina mononuclear 24 Stype + + Stype - + Yatabaa 1 Image: Stype and the carnoma malignant, malignant, malignant 1 Stype - - Stype - + Stype - - Stype - - Stype <	Adenoma Fibroadenoma Skin Basosquamous tumor benign Keratoacanthoma Papilloma squamous Sebaceous gland, adenoma																+ X	+ X		+			+				1 30 1 4 4 1
Bone 25 VERVOUS SYSTEM Brain 25 Astrocytoma maingnant Osteosarcoma, metastatic, uncertain primary site 25 RESPIRATORY SYSTEM Lung Carenoma, metastatic, kidney Leukemia mononuclear Pheochromocytoma malignant, metastatic, adrenal gland Squamous cell careinoma 27 System + 27 Squamous cell careinoma 2 System + System 24 Trachea 25 SPECTAL SENSES SYSTEM Read trubule, careinoma Renal tubule, careinoma	Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, sarcoma																						X				2
Brain Astrocytoma maignant Osteosarcoma, metastatic, uncertain primary site 25 1 1 1 1 RESPIRATORY SYSTEM Ling Carinoma, metastatic, kidney Leukemia mononuclear Pheochromocytoma malignant, metastatic, adrenal gland 4 4 4 4 4 2 5 2 5 Symmous cell carcinoma Nose x Specifal SENSES SYSTEM Eye Trachea 2 4 2 5 2 5 Specifal SENSES SYSTEM Eye Eye Barteral, renal tubule, adenoma Renal tubule, actrinoma, multiple Real tubule, carcinoma, multiple Renal tubule, carcinoma, multiple Renal tubule, epithelium, adenoma Renal tubule, epithelium, adeno	Bone																										25
Lung + 27 Carcinoma, metastatic, kidney 4 Leukemia mononuclear 3 Pheochromocytoma malignant, 4 metastatic, adrenal gland X Squamous cell carcinoma X Nose 24 Trachea 24 SPECIAL SENSES SYSTEM 24 Eve + + Harderian gland 19 URINARY SYSTEM X X Kidney + + Leukemia mononuclear X X Bilateral, renal tubule, carcinoma X X Renal tubule, carcinoma, multiple X X Renal tubule, carcinoma, multiple X X Renal tubule, epithelium, adenoma X X Ronal tubule, epithelium, adenoma X 2 Ronal tubule, epithelium, adenoma, multiple X X	Brain Astrocytoma malignant Osteosarcoma, metastatic, uncertain																										1
Pheochromocytoma malignant, metastatic, adrenal gland X 2 Squamous cell carcinoma X 24 Nose 25 25 SPECIAL SENSES SYSTEM 24 Eye + + Harderian gland 19 URINARY SYSTEM 1 Kidney + + Leukemia mononuclear X X Bilateral, renal tubule, carcinoma X X Renal tubule, epithelium, adenoma X 2 Renal tubule, epithelium, adenoma X 2 Ronal tubule, epithelium, adenoma X 1							+								-												3
Eye + + + 4 Harderan gland 19 URINARY SYSTEM + + + + + + + + + + 19 URINARY SYSTEM +	Pheochromocytoma malignant, metastatic, adrenal giand						x																				2 1 24
Kidney + + + + + + + + + + + + + + + + + + +	SPECIAL SENSES SYSTEM Eye Hardeman gland										+				+												
multiple X 1	Bilateral, renai tubule carcinoma Renal tubule, adenoma Renal tubule, carcinoma Renal tubule, carcinoma, multiple Renal tubule, epithelium, adenoma	+	+	+ X	+ X	+ x	+	+	+		+	+	+ X	+	+	+ X	+	+	+	+	+	+	+	+ X	+ X	+	$ \begin{array}{c} 4 \\ 1 \\ 3 \\ 12 \\ 3 \end{array} $
											X						_										

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGESTUDY OF OCHRATOXIN A: HIGH DOSE

WEEKS ON STUDY	0 5 6	0 5 8	0 5 9	0 6 0	0 6 1	0 6 3	$\begin{array}{c} 0\\7\\3\end{array}$	0 7 4	0 7 4	0 8	0 7 8	0 7 8	0 7 8	0 7 8	0 8 1	$\begin{array}{c} 0 \\ 8 \\ 2 \end{array}$	0 8 5	0 9 2	0 9 3	0 9 3	0 9 3	0 9 3	0 9 6	0 9 8	0 9 9
CARCASS ID	5 3 4	5 1 3	5 5 1	5 0 1	4 9 4	5 3 5	5 5 4	4 9 3	4 9 5	5 L 4	5 2 5	5 4 5	5 8 4	5 4 1	5 6 1	$\frac{5}{6}$	5 2 2	5 0 3	5 0 4	5 5 3	5 5 5	5 1 5	5 8 1	5 2 1	5 1 2
ALIMENTARY SYSTEM Esophagus	+																								+
Intestine large	+	+	÷	÷	+	÷	+	+	+	÷	÷	÷	+	÷	+	÷	+	÷	+	÷	÷	÷	÷	÷	+
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, colon Intestine large, rectum	+++	+++++++++++++++++++++++++++++++++++++++	+	+++++++++++++++++++++++++++++++++++++++	++	+++++++++++++++++++++++++++++++++++++++	+	++	+++++	++	+++++++++++++++++++++++++++++++++++++++	++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+	+	++	++	++	+	, M	+	+++++++++++++++++++++++++++++++++++++++	+++
Intestine small	+	+	+	+	+	+	÷	+	+	+	÷	+	+	÷	+	÷	+	+	+	+	+	+	÷	+	+
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+
Intestine small, ileum Adenocarcinoma	+	+	+	+	+	+	x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, jejunum	(+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma, metastatic, kidney Hepatocellular carcinoma				х		X											x								
Leukemia mononuclear	[X						х								л		х						x
Neoplastic nodule	i -																								
Mesentery	x ⁺	* X		x x		x+		+		x X		x +								x x	+			x+	
Carcinoma, metastatic, kidney Pancreas		+	+	+	+	^ +	+	+	+	^ +	+	- A- +	+	+	+	+	+	+	+	^ +	+	+	+	4 +	+
Carcinoma, metastatic, kidney	x + x			x	,					·						·	·			-				X	
Leukemia mononuclear			х																х						
Acinus, adenoma Salivary glands	1	+	+	+	+	+	-	+	+	-	+	+	-	+		+	-	+	-	*	+	-	+		+
Stomach	+	+	+	+	+	+	+	+	+	+	+	÷	+	÷	+	+	+	÷	+	+	+	+	+	+	+
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Papilloma squamous Stomach, glandular	+			L																	4				
Adenocarcinoma	-	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	A	x	Ŧ	-	Ŧ	-	Ŧ	-	Ŧ	Ŧ	T	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ
Tongue												+													
CARDIOVASCULAR SYSTEM																									
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma, metastatic, kidney Epicardium, carcinoma, metastatic,		х				Х																			
kidney															X										
ENDOCRINE SYSTEM												_													
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adrenal gland, cortex Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*
Medulla, carcinoma, metastatic, kidney	1	х																							A
Adrenal gland, medulla	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pheochromocytoma malignant Pheochromocytoma complex																									
Pheochromocytoma benign			х																	х			х		
Bilateral, pheochromocytoma benign																								х	
Islets, pancreatic Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x ⁺	+	+	+
Carcinoma	1																					л			
Parathyroid gland	+	+	М	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+
Pars distalis, adenoma Thyroid gland	1 +	÷	+	+	+	÷	+	+	+	+	X	+	+	+	+	+	X	+	+	+	+	X	+	+	+
Carcinoma, metastatic, kidney	1		1.			,	'	r.	1.	,	1				x	12	4.	x	·.		,	4	'		,
C cell, adenoma									X						-			-							
C cell, carcinoma Follicular cell, adenoma																									X
GENERAL BODY SYSTEM																									
GENERAL BODY SYSTEM Tissue, NOS Sarcoma																+									*

TABLE A2.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE	RATS:	HIGH	DOSE
				(Continued	I)				
					1				

WEEKS ON	11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
STUDY	0	Ó	ò	0	0	0	0	ò	<u>ě</u>	0	õ	õ	õ	05	0	õ	0	õ	0	õ	0	0 5	0	0 5	0 5	í
	1	4	5	5	5	5	5	5	5	5	5	5	5	2	5	5	5	5	5	5	5	э	э	ъ	э	TOTAL.
CARCASS	5	5	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 7	5	5	5	TISSUES
ID	6	$\frac{5}{2}$	9 1	9 2	$\frac{0}{2}$	0 5	1	2	$\frac{2}{4}$	3 1	3	3 3	4	4	4	6 4	6 5	7 1	$\frac{7}{2}$	7 3	7	7 5	8 2	8 3	8 5	TUMORS
	<u> </u>							<u> </u>																-		
LIMENTARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ntestine large	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	50
ntestine large, cecum	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ntestine large, colon	+	+	+	+	+	+	, M	+	+	+	+	+	+	+	, M	+	+	+	+	+	+	+	+	+	+	50 47
ntestine large, rectum ntestine small	1	+	+	- T	÷	+	+	+	+	+	+	+	+	+	.91	+	+	+	Ŧ	÷	+	+	+	+	+	50
itestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
itestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	~	+	+	+	+	+	+	+	+	50
Adenocarcinoma																										1 50
itestine small, jejunum iver		+	+	+	+	±	+	÷.	+	÷	- <u>+</u>	+	+	+	+	+	÷	+	-	+	+	+	÷	+	+	50
Carcinoma, metastatic, kidney	1	•			•				'	•	•		·	•			·									2
Hepatocellular carcinoma																										1
Leukemia mononuclear											х								X	X						7
Neoplastic nodule fesentery	₊																		X							
Carcinoma, metastatic, kidney	1																									18
ancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Carcinoma, metastatic, kidney	1																									3
Leukemia mononuclear				v						v						v										2
Acınus, adenoma alıvary glands	1	+	+	х +	+	+	+	1	+	X	Ŧ	+	+	+	÷	X	+	+		+	-	+	1	+	-	3 49
tomach	+ +	+	+	÷	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	÷	÷	+	+	+	÷	50
tomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	50
Papilloma squamous					х																					1
tomach, glandular Adenocarcinoma	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	÷	+	+	49
ongue																+										1 2
•																										-
ARDIOVASCULAR SYSTEM	-																									
feart	1 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Carcinoma, metastatic, kidney Epicardium, carcinoma, metastatic,																										2
kidney																										1
NDOCRINE SYSTEM				_																						
drenal giand	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
drenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear																										1
Medulla, carcinoma, metastatic, kidney drenal gland, medulla	L .	+	-	1	+	+								1	L.		1					1		4	-	1 49
Pheochromocytoma malignant	1	P		F	T		ŕ	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	x		-	Ŧ	Ŧ	7	Ŧ	Ŧ	Ŧ	Ŧ	T.	1
Pheochromocytoma complex	1											х														1 1
Pheochromocytoma benign		Х						х	Х				х					х			х					9
Bilateral, pheochromocytoma benign							1													X						2
Adenoma	+	Ŧ	÷	+	+	Ŧ	Ŧ	+	÷	+	÷	+	+	+	÷	+	+	+	÷	Ť	+	+	+	+	+	50
Carcinoma					х																					1
arathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	47
ituitary gland	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pars distalis, adenoma				X	x		X			X					X			x			X			X		11
hyroid gland Carcinoma, metastatic, kidney	1 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 2
C cell, adenoma								х			х							х		х						5
C-cell, carcinoma																										1
Follicular cell, adenoma												X														1
ENERAL BODY SYSTEM																										·
issue, NOS																										2
Sarcoma																										1

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

WEEKS ON STUDY	0 5 6	0 5 8	0 5 9	0 6 0	0 6 1	0 6 3	0 7 3	0 7 4	0 7 4	0 8	078	0 7 8	0 7 8	0 7 8	0 8 1	0 8 2	0 8 5	0 9 2	0 9 3	0 9 3	0 9 3	1) 9 3	0 9 6		0 9 9
CARCASS ID	5	5 1 3	5 5 1	5 0 1	4 9 4	5 3 5	5 5 4	4 9 3	4 9 5	5 L 4	525	5 4 5	5 8 4	5 4 1	5 6 1	5 6 2	5 2 2	5 0 3	5 0 4	5 5 3	5 5 5	5 1 5	5 8 1	5 2 1	5 1 2
GENITAL SYSTEM			. <u>.</u>										• 		•				•						
Epididymis	+	٠	+	<u>+</u>	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+
Carcinoma, metastatic, kidnev Preputial gland		+	+	х +	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	*	+		+	+
Adenoma Prostate	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+
Testes Testes		÷		÷		÷			÷											+		÷			,
Bilateral, interstitial ceil, adenoma	+	+	+	+		+	+	+	x	x		x	+	x	+	+	+	+	x	x	Ť	+	x	x	x
Interstitiai cell, adenoma Tunic, carcinoma, metastatic, kidnev				X	X			X			X		X		X			х			X				
HEMATOPOIETIC SYSTEM	·			<u> </u>						-															
Blood Leukemia mononuclear									x		+					+	+		x,	+				+	
Bone marrow Femorai, leukemia mononuclear	+	+	x+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+
Inguinal, leukemia mononuclear 1 umbar, ieukemia mononuclear Mediastinal, carcinoma, metastatic,			х																л						
kidney Mediastinal, leukemia mononuclear	X		x			X			x	X				х	х				x					х	
Pancreatic, adenocarcinoma, metastatic, stomach								x																	
Renal, leukemia mononuclear Renal, mediastinal, pancreatic,			x																						
carcinoma, metastatic, kidney Lymph node, mandibular	+	<u>т</u>	Ŧ	X	÷	+	+	+	L.	ъ	-	1	+	-	-	÷	÷-		-	+	ъ	<u>ـ</u>	+	+	+
(arcinoma, metastatic, kidney	- T	x	Ŧ	Ŧ	Ŧ	T	Ŧ	Ŧ	Ŧ	Ŧ	Ť	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	-	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+
Carcinoma, metastatic, Zymbal gland 1 eukemia mononuclear			X						х		х								x						x
Spieen Carcinoma, metastatic, kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	x+	÷
Leukemia mononuclear			X						X										X						X
Thymus Carcinoma, metastatic, kidney eukemia mononuclear	+	x	М	М	+	+	+	+	+	+	+	+		+	+	+	+	+	+ X	+	+	+	+	М	+
INTEGUMENTARY SYSTEM																									
Mammary gland Foroadenoma	+	+	+	+	+	М	М	*	+	+	+	М	М	+	+	+	+	+	+	+	+	+	+	+	+
Sk.n Keratoacanthoma	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+-	+	+	*	+	+	+	+	+
Fapilloma squamous																									
Sebaceous gland, adenoma Subcutaneous tissue, fibroma					х																				
Subcutaneous tissue, lipoma																									
MUSCULOSKELETAL SYSTEM Bone																									
l'ranium, osteosarcoma	1	+	Ŧ	+	+	+	+	7	÷	-	+	Ŧ	+	+	Ŧ	Ŧ	7	Ŧ	Ŧ	7	+	7	Ŧ	7	Ŧ
NERVOUS SYSTEM	·												•••••												
Brain Leukemia mononuclear	+	+	*	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM	·																								
Lung Carcinoma, metastatic, kidney Carcinoma, metastatic, uncertain	x	x x	+	x	+	x,	+	+	+	x	+	+	۲	*	+	+	+	x,	+	+	+	+	+	*	+
primary site												v			v					v					
('arcinoma, metastatic, kidney Leukemia mononuclear			x						х			х			X				х	X					х
Nose Trachea	+++	+++++++++++++++++++++++++++++++++++++++	++	++	+ +	+++	+ +	+ +	+ +	++	++	+++	++	+++	++++	++	+++++++++++++++++++++++++++++++++++++++	+++	++	++	+++	+++++++++++++++++++++++++++++++++++++++	+ +	+++	+ +
SPECIAL SENSES SYSTEM	.			·																					
Hardeman gland		м	M		N .4	N#	M	يلد		м		. ا			4	×		L	Ŧ	-±-	*	<u>ـ</u>	<u>ــــــــــــــــــــــــــــــــــــ</u>	-	4
Zymbai gland Carcinoma		IVI	IV1	+	LVL	М	:94	+	+	М	+ * X	Ŧ	+ X	Ŧ	Ŧ	+	Ŧ	F	+	7	+	+ X	Ŧ	*	+
URINARY SYSTEM	-																								
Kidney Leukemia mononuclear	+	+	x x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷
Bilateral, renal tubule, carcinoma															x					X					
Bilaterai, renal tubule, carcinoma, multiple																									
Capsule, carcinoma, metastatic, kidney Lymphatic, carcinoma, metastatic, kidney	x			X																					
								х				X		X										v	х
Renal tubule, adenoma		v		47		17				v		v				v									
Renal tubule, adenoma Renal tubule, carcinoma Renal tubule, carcinoma, multiple	x	X		X		x				x		X X		x		X	X	x			x			x	
Renal tubule, adenoma Renal tubule, carcinoma	X +	Х +	+ v	х +	+	Х +	+	+	+	х +	+	X +	+		+	Х +	х +	х +	+	+	x +	+	+	х +	+

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

WEEKS ON STUDY	1 0 1	1 0 4	1 0 5	-1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	I 0 5	1 0 5	1 0 5	1 0 5	1 0 5	05	1 () 5	1 0 5	0 5	1 0 5	1 0 5	ů 5	0 5	1 0 5	1) 5	-	0 5	
CARCASS ID	5 6 3	5 5 2	4 9 1	4 9 2	5 0 2	5 0 5	51	5 2 3	524	53	5 3 2	5	5 4 2	5 4 3	5 4 4	5 6 4	5 6 5	57	5 7 2	573	574	5 7 5	582		5 8 5	TOTAL TISSUES TUMORS
ENITAL SYSTEM		-																								
Carcinoma, metastatic, kidney reputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Adenoma rostate eminal vesicle	+	Х +	+	+	+	+	÷	-	¥ +	+	+	+	+	+	+	٠	+	+	X T	+	+	+	+	+	٠	50 1
estes Bilateral, interstitial cell, adenoma	x +	$\stackrel{+}{x}$	*	* *	+ X	*	+ X	$\stackrel{+}{\mathbf{x}}$	ř,	+	, x	x+	+ X	*	x+	*	+	* X	*	ř,	+	*	x+	+ X	ř,	50 27
Interstitial cell, adenoma Tunic, carcinoma, metastatic, kidney							~			X							X									. 3 1
EMATOPOIETIC SYSTEM lood Leukemia mononuclear																			*	* X) 4
one marrow Femoral, ieukemia mononuclear	+	+	+	+	+	+	+	+	+	+	٠	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 '
ymph node Inguinal, leukemia mononuclear Lumbar, leukemia mononuclear Mediastinal, carcinoma, metastatic	+	+	+	+	+	+	-	+	+	+	+	۲	+	٠	+	+	+	+	+	٠	٢	+	+	+	٠) 1 1
kidney Mediastinal, leukemia mononuclear Pancreatic, adenocarcinoma, metastatic, , stomach														Y					¥	x						7 5
Renal, leukemia mononuclear Renal, mediastinal, pancreatic, carcinoma, metastatic, kidney	I I																									1
ymph node, mandibular Carcinoma, metastatic, kidney Carcinoma, metastatic, Zymbal gland Leukemia mononuclear	+ 	+	+	+	+	+	•	+	+	+	÷ v	+	Ŧ	+	+	+	+	+	÷ ¥	+ x	+	+	÷	+	+	50 1 7
bleen Carcinoma, metastatic, kidney	+	+	+	+	+	+	+	٠	٠	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	٠	50 _2
Leukemia mononuclear 1ymus - Carcinoma, metastatic, kidney Leukemia mononuclear	М	м	+	+	+	+	м	÷		+	х +	+	÷	+	÷	м	+	+	¥ +	X M	м	М	+	+	÷	
TEGUMENTARY SYSTEM	+	+	м	+	+	+	+	M	+	+	м	+	+	+	+	+	+	М	м	м	+	+	+	+	+	40
Fibroadenoma un Keratoacanthoma	+	+	+	+	+	X +	+	+	+	+	*	+	+	+	+	+	+	+	м	+	+	+	¥ +	+	+	$\frac{3}{49}$
Papilloma squamous Sebaceous gland, adenoma Subcutaneous tissue, fibroma	x						x				A									x					v	
Subcutaneous tissue, lipoma IUSCULOSKELETAL SYSTEM one	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	× +	50
Cranium, osteosarcoma	X									<u>-</u>																1
rain Leukemia mononuclear	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
ESPIRATORY SYSTEM ung Carcinoma, metastatic, kidney Carcinoma, metastatic, uncertain	+	+	+	+	+	+	+	+	+	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+	+	50 9
Carcinoma, metastatic, uncertain primary site Carcinoma, metastatic, kidney															x			x								1 4
Leukemia mononuclear ose rachea	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	X + +	X + +	+ +	+ +	+ +	+ +	+ +	50 50
PECIAL SENSES SYSTEM ye ardeman gland	+	+	+	+	+	+	+	+	+	+	+-	+	+		+	+	+	+	+	+	+	+	+++	+	+	2 43
ymbal gland Carcinoma																	_									3
RINARY SYSTEM idney Leukemia mononuclear Bilateral, renal tubule, carcinoma	+	÷	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	, X	+	+	+	+	+	50 2 3
																								x		1
multiple Capsule, carcinoma, metastatic, kidney																										
Bilateral, renal tubule, carcinoma, multiple Capsule, carcinoma, metastatic, kidney Lymphatic, carcinoma, metastat, kidney Renal tubule, adenoma Renai tubule, carcinoma, multiple	x	x	x		x					x	x	X X		x	x	x	X X	x	x	x	x	x	x		x	1 10 20 6

Adrenal Gland Medulla: Pheochromocytoma 17/50 (34%) (b) 4/25 (16%) 10/50 (22%) Overall Rates (c) 42,3% (b) 4/25 (16%) (b) 5/26 (19%) 11/50 (22%) Adjusted Rates (c) 42,3% 6/23 (26%) 6/23 (26%) 6/23 (26%) Day of First Observation 495 9 <t< th=""><th></th><th>Vehicle Control</th><th>21 µg/kg</th><th>70 µg/kg</th><th>210 µg/kg</th></t<>		Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Adrenal Gland Medulla: Pheochron	nocytoma	<u></u>		
Adjusted Rates (c) 42.3% 37.6% Day of First Observation 496 4032 Life Table Test (e) $P=0.547$ Partial Rates (d) $18/50/36\%$ $(b) 4/25/16\%$ Adrenal Gland Medulla: Pheochromocytoma, Benign, Complex, or Malignant Overail Rates (a) $13/50/26\%$ Adjusted Rates (c) 44.8% 44.9% $43/50/26\%$ Adjusted Rates (c) 44.8% 49.6% $23/3(35\%)$ Day of First Observation 495 40^{2} 41.8% Life Table Test (e) $P=0.330$ $P=0.330$ $P=0.330$ Preputial Gland: Adenoma $0/50(12\%)$ (b) $3/28(11\%)$ (b) $1/25(4\%)$ $3/48(6\%)$ Overail Rates (a) $6/50(12\%)$ (b) $3/28(11\%)$ $P=0.3273$ 723 Partial Gland: Adenoma 723 723 723 723 723 Day of First Observation 691 723 723 $723/23(9\%)$ $723/23(9\%)$ $723/23(9\%)$ $723/23(9\%)$ $723/23(9\%)$ $723/23(9\%)$ $723/23(9\%)$ $723/23(9\%)$ $723/23(9\%)$ $723/23(9\%)$ $723/23(9\%)$ $723/23(9\%)$ $723/23(9\%)$			(b) 4/25 (16%)	(b) 5/26 (19%)	11/50(22%)
$\begin{array}{llllllllllllllllllllllllllllllllllll$					37.6%
Day of First Observation 495 408 Life Table Test (e) P=0.547 Pagistic Regression Test (e) P=0.279N Fisher Exact Test (e) P=0.219N Adrenal Gland Medulla: Pheochromocytoma, Benign, Complex, or Malignant 0verail Rates (a) 13/50 (26%) Overail Rates (a) 17/39 (4%) 8/23 (35%) 9/26 (31%) Day of First Observation 495 9/26 (31%) 9/26 (31%) Life Table Test (e) P=0.330 9/26 (31%) 9/26 (31%) Preputial Gland: Adenoma 0/26 (12%) (b) 3/28 (11%) (b) 1/25 (4%) 3/48 (6%) Oyerail Rates (c) 14.6 % 12.5 % 7/23 9/26 (31%) 9/26 (31%) Preputial Gland: Adenoma 0/27 (12%) (b) 3/28 (11%) (b) 1/25 (4%) 3/44 (6%) Overail Rates (a) 6/50 (12%) (b) 3/28 (11%) (b) 1/25 (4%) 2/2 6 (%) Paustic Regression Test (e) P=0.550 (10%) (b) 2/26 (8%) (b) 3/26 (12%) 1/50 (2%) Paustes Rates (a) 5/50 (10%) (b) 2/26 (8%) (b) 3/26 (12%) 3/4% Overail Rates (a)		16/39 (41%)			6/23 (26%)
					408
					P = 0.547
Fisher Exact Test (e) $P = 0.133N$ Adrenal Gland Medulla: Pheochromocytoma, Benign, Complex, or Malignant 13/50 (26%) Overail Rates (a) 13/50 (36%) Adjusted Rates (c) 44.8% Terminal Rates (a) 17/39 (44%) Day of First Observation 495 Logistic Regression Test (e) $P = 0.134N$ Prisher Exact Test (e) $P = 0.134N$ Overail Rates (a) 6/50 (12%) (b) 3/28 (11%) (b) 1/25 (4%) Jadjusted Rates (c) 14.6% 12.5% Terminal Rates (a) 6/50 (12%) (b) 3/28 (11%) (b) 1/25 (4%) 3/48 (6%) Day of First Observation 691 723 723 (9%) 723 (9%) Day of First Observation 691 723 723 (9%) 723 (9%) Panceatic Isles: Adenoma 0/23 (0%) 0/23 (0%) 3/4% 723 Overail Rates (a) 5/50 (10%) (b) 2/26 (8%) (b) 3/26 (12%) 1/50 (2%) Adjusted Rates (c) 12.8% 3/4% 729 649 P=0.254N Pacteratic Isles: Adenoma 0/23 (0%) 0/23 (0%) 0/23 (0%) 0/23 (0%) 0/23 (0%)					
$\begin{array}{llllllllllllllllllllllllllllllllllll$					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Adrenal Gland Medulla: Pheochron	iocytoma, Benign, Co	ompiex, or Malign	ant	
Terminal Rates (d) $17.39 (44\%)$ $8/23 (35\%)$ Day of First Observation 495 408 Life Table Test (e) $P = 0.390$ Logistic Regression Test (e) $P = 0.194N$ Preputial Gland: Adenoma $0/50 (12\%)$ (b) $3/28 (11\%)$ (b) $1/25 (4\%)$ $3/48 (6\%)$ Adjusted Rates (c) 14.6% $2/23 (9\%)$ $3/28 (11\%)$ $2/23 (9\%)$ Day of First Observation 691 723 $2/23 (9\%)$ 723 Life Table Test (e) $P = 0.541N$ $P = 0.264N$ $P = 0.264N$ Pareratic Islets: Adenoma 729 $P = 0.264N$ $P = 0.264N$ Adjusted Rates (c) 12.8% $3/4\%$ $1/50 (2\%)$ $3/50 (10\%)$ $0/23 (0\%)$ Adjusted Rates (c) 12.8% $0/23 (0\%)$ $0/23 (0\%)$ $0/23 (0\%)$ $0/23 (0\%)$ Day of First Observation 729 $P = 0.225N$ $P = 0.225N$ $P = 0.225N$ Life Table Test (e) $P = 0.023$ $P < 0.001$ $P = 0.023$ $P < 0.021$ Coverall Rates (a) $1/50 (2\%)$ $1/51 (2\%)$ $6/51 (12\%)$ $0/50 (20\%$ $0/52 (20\%)$ $2/3 (22\%)$ </td <td></td> <td></td> <td></td> <td></td> <td>13/50 (26%)</td>					13/50 (26%)
Terminal Rates (d) 17:39 (44%) $8/23 (35\%)$ Day of First Observation 495 408 Life Table Test (e) P=0.390 Pay of First Observation 95 Verail Rates (a) $6/50 (12\%)$ (b) $3/28 (11\%)$ (b) $1/25 (4\%)$ Adjusted Rates (c) 14.6% 223 (9\%) Day of First Observation 691 723 Day of First Observation 691 723 (9\%) Day of First Observation 691 723 (9\%) Panceatic Islets: Adenoma 723 (9\%) 1/50 (2%) Adjusted Rates (c) 12.8% 3/48 (6%) Adjusted Rates (c) 12.8% 3/48 Coverall Rates (a) 5/50 (10%) (b) 2/26 (8%) (b) 3/26 (12%) 1/50 (2%) Adjusted Rates (c) 12.8% 3/48 0/23 (0%) 0/23 (0%) Day of First Observation 729 P=0.254N P=0.128N P=0.102N Kidney Tubule: Adenoma 0/23 (0%) 1/26 (4%) 4/26 (15%) 5/30 (2%) Overall Rates (a) 1/50 (2%) 1/51 (2%) 6/51 (12%) 0/50 (20% Adjusted Rates (c) 2.6%	Adjusted Rates (c)	44.8%			44.9%
Day of First Observation 495 408 Life Table Test (e) $P = 0.390$ $P = 0.390$ Logistic Regression Test (e) $P = 0.194N$ $P = 0.194N$ Streputal Gland: Adenoma $Overall Rates (a)$ $6/50 (12\%)$ $(b) 3/28 (11\%)$ $(b) 1/25 (4\%)$ $3/48 (6\%)$ Adjusted Rates (c) 14.6% 12.5% 12.5% 12.5% Terminal Rates (a) $6/50 (12\%)$ $(b) 3/28 (11\%)$ $(b) 1/25 (4\%)$ $3/48 (6\%)$ Day of First Observation 691 12.5% 12.5% 12.6% Logistic Regression Test (e) $P = 0.541N$ $P = 0.541N$ $P = 0.541N$ Day of First Observation 691 $P = 0.541N$ $P = 0.541N$ Adjusted Rates (c) 12.8% $P = 0.541N$ $P = 0.541N$ Day of First Observation 729 $0/23 (0\%)$ $0/23 (0\%)$ $0/23 (0\%)$ Day of First Observation 729 $P = 0.254N$ $P = 0.176N$ $P = 0.254N$ Fisher Exact Test (e) $P < 0.01 P = 0.669$ $P = 0.023$ $P < 0.001$ Overall Rates (a) 1/50 (2%) <td></td> <td></td> <td></td> <td></td> <td></td>					
Life Table Test (e) $P = 0.390$ Logistic Regression Test (e) $P = 0.194N$ Preputial Gland: Adenoma $0/50 (12\%)$ $(b) 3/28 (11\%)$ $(b) 1/25 (4\%)$ $3/48 (6\%)$ Adjusted Rates (c) 14.6% 12.5% 12.5% 12.5% Terminal Rates (d) $4/39 (10\%)$ $2/23 (9\%)$ $2/23 (9\%)$ $2/23 (9\%)$ Day of First Observation 691 723 $P = 0.541N$ $P = 0.264N$ Life Table Test (e) $P = 0.539N$ $P = 0.264N$ $P = 0.26N$ Panceatic Islets: Adenoma 723 $P = 0.26N$ $P = 0.26N$ Overail Rates (a) $5/50 (10\%)$ $(b) 2/26 (8\%)$ $(b) 3/26 (12\%)$ $1/50 (2\%)$ Adjusted Rates (c) 12.8% 3.4% $9/23 (0\%)$ Day of First Observation 729 649 $9/23 (0\%)$ Logistic Regression Test (e) $P = 0.725N$ $P = 0.176N$ $P = 0.102N$ Kidney Tubule: Adenoma $1/50 (2\%)$ $1/51 (2\%)$ $6/51 (12\%)$ $5/23 (22\%)$ Day of First Observation 729 729 524 513 116 Table Test (e) $P = 0.023$ $P = 0.001$					
Logistic Regression Test (e) $P = 0.414N$ Fisher Exact Test (e) $P = 0.194N$ Overall Rates (a) $6/50 (12\%)$ $(b) 3/28 (11\%)$ $(b) 1/25 (4\%)$ $3/48 (6\%)$ Adjusted Rates (c) 14.6% 12.5% 12.5% Terminal Rates (d) $4/39 (10\%)$ 2/23 (9%) 2/23 (9%) Day of First Observation 691 P = 0.541N P = 0.541N Life Table Test (e) P = 0.54 P = 0.54N P = 0.54N Particle Struct Test (e) P = 0.54 N = 0.456N P = 0.264N Particle Struct Test (e) P = 0.73(10\%) (b) 2/26 (8%) (b) 3/26 (12%) 1/50 (2%) Adjusted Rates (c) 12.8% 34.4% P = 0.264N P = 0.264N Particle Struct Test (e) P = 0.254N P = 0.254N P = 0.254N Life Table Test (e) P = 0.254N P = 0.176N P = 0.176N Fisher Exact Test (e) P = 0.26% S.8% 19.7% 33.1% Coverall Rates (a) 1/50 (2%) 1/51 (2%) 6/51 (12%) 10/50 (20% Adjusted Rates (c) 2.6% 3.8% 19.7% 33.1% Terminal					
Fisher Exact Test (e) $P = 0.194N$ Preputial Gland: Adenoma 0verall Rates (a) $6/50$ (12%) (b) 3/28 (11%) (b) 1/25 (4%) $3/48$ (6%) Adjusted Rates (c) 14.6% 12.5% 2/23 (9%) $2/23$ (9%) Day of First Observation 691 723 2/23 (9%) $2/23$ (9%) Life Table Test (e) $P = 0.541N$ $P = 0.541N$ $P = 0.541N$ Parceatic Islets: Adenoma Overall Rates (a) $5/50$ (10%) (b) 2/26 (8%) (b) 3/26 (12%) $1/50$ (2%) Adjusted Rates (c) 12.8% 3.4% 3.4% $0/23$ (0%) Day of First Observation 729 649 $9 = 0.254N$ $P = 0.254N$ Ligit Table Test (e) $P = 0.254N$ $P = 0.254N$ $P = 0.254N$ $P = 0.176N$ Fisher Exact Test (e) $P = 0.748M$ $P = 0.023$ $P < 0.02N$ $P = 0.176N$ Nearall Rates (a) $1/50$ (2%) $1/51$ (2%) $6/51$ (12%) $10/50$ (20% Adjusted Rates (c) 2.6% 3.8% 19.7% 33.1% Day of First Observation 729 729 524 513 Life T					
Overall Rates (a) $6/50 (12\%)$ (b) $3/28 (11\%)$ (b) $1/25 (4\%)$ $3/48 (6\%)$ Adjusted Rates (c) 14.6% 12.5% 12.5% 12.5% Day of First Observation 691 723 723 723 Life Table Test (e) P=0.541N $P=0.541N$ $P=0.541N$ $P=0.545N$ Pancreatic Islets: Adenoma $723 (13\%)$ $P=0.545N$ $P=0.264N$ Overall Rates (a) $5/50 (10\%)$ (b) $2/26 (8\%)$ (b) $3/26 (12\%)$ $1/50 (2\%)$ Adjusted Rates (c) 12.8% $0/23 (0\%)$ $0/23 (0\%)$ Day of First Observation 729 644 $P=0.254N$ Life Table Test (e) $P=0.164N$ $P=0.126N$ $P=0.125N$ Day of First Observation 729 644 $P=0.102N$ Logistic Regression Test (e) $P=0.138N$ $P=0.102N$ $P=0.102N$ Kidney Tubule: Adenoma $1/50 (2\%)$ $1/51 (2\%)$ $6/51 (12\%)$ $10/50 (20\%$ Overall Rates (a) $1/50 (2\%)$ $1/51 (2\%)$ $6/51 (12\%)$ $5/23 (22\%)$ Day of First Observation 729 729 524 $523 (22\%$					
Overall Rates (a) $6/50 (12\%)$ (b) $3/28 (11\%)$ (b) $1/25 (4\%)$ $3/48 (6\%)$ Adjusted Rates (c) 14.6% 12.5% $2/23 (9\%)$ $2/23 (9\%)$ Day of First Observation 691 723 723 723 Life Table Test (e) P=0.541N $P=0.541N$ $P=0.541N$ $P=0.545N$ Panceatic Islets: Adenoma $723 (13\%)$ $P=0.545N$ $P=0.264N$ Overall Rates (a) $5/50 (10\%)$ (b) $2/26 (8\%)$ (b) $3/26 (12\%)$ $1/50 (2\%)$ Adjusted Rates (c) 12.8% $0/23 (0\%)$ $0/23 (0\%)$ Day of First Observation 729 649 $P=0.1254N$ Life Table Test (e) $P=0.164N$ $P=0.176N$ $P=0.102N$ Day of First Observation 729 6449 $P=0.102N$ Life Table Test (e) $P=0.634N$ $P=0.102N$ $P=0.102N$ Cidney Tubule: Adenoma $0/23 (0\%)$ $1/51 (2\%)$ $6/51 (12\%)$ $1/50 (20\%$ Adjusted Rates (c) 2.6% 3.3% 9.7% 33.1% $723 (22\%)$ Day of First Observation 729 729 524 <	Preputial Gland: Adenoma				
Terminal Rates (d) $4/39 (10\%)$ $2/23 (9\%)$ Day of First Observation 691 723 Life Table Test (e) $P=0.541N$ $P=0.264N$ Logistic Regression Test (e) $P=0.264N$ $P=0.264N$ Pancreatic Islets: Adenoma 0 verail Rates (a) $5/50 (10\%)$ $(b) 2/26 (8\%)$ $(b) 3/26 (12\%)$ $1/50 (2\%)$ Adjusted Rates (c) 12.8% 3.4% 3.4% $0/23 (0\%)$ $0/23 (0\%)$ Day of First Observation 729 649 $P=0.254N$ $P=0.254N$ Life Table Test (e) $P=0.254N$ $P=0.254N$ $P=0.23 (0\%)$ $0/23 (0\%)$ Life Table Test (e) $P=0.254N$ $P=0.254N$ $P=0.254N$ Logistic Regression Test (e) $P=0.26\%$ $P=0.254N$ $P=0.176N$ Fisher Exact Test (e) 2.6% 3.8% 19.7% 33.1% Overall Rates (a) $1/50 (2\%)$ $1/51 (2\%)$ $6/51 (12\%)$ $5/23 (22\%)$ Day of First Observation 729 729 524 513 Life Table Tests (e) $P < 0.001$ $P=0.669$ $P=0.023$ $P < 0.001$ Cochran-Ar		6/50 (12%)	(b) 3/28 (11%)	(b) 1/25 (4%)	3/48 (6%)
Day of First Observation 691 723 Life Table Test (e) P=0.541N P=0.541N Logistic Regression Test (e) Fisher Exact Test (e) P=0.264N Pancreatic Islets: Adenoma $5/50 (10\%)$ (b) $2/26 (8\%)$ (b) $3/26 (12\%)$ $1/50 (2\%)$ Adjusted Rates (a) $5/50 (10\%)$ (b) $2/26 (8\%)$ (b) $3/26 (12\%)$ $1/50 (2\%)$ Adjusted Rates (a) $5/39 (13\%)$ $0/23 (0\%)$ 3.4% Terminal Rates (d) $5/39 (13\%)$ $0/23 (0\%)$ 649 Life Table Test (e) P=0.254N P=0.254N P=0.276N Fisher Exact Test (e) $P=0.26\%$ $P=0.254N$ P=0.02176N Kidney Tubule: Adenoma $Verail Rates (a)$ $1/50 (2\%)$ $1/51 (2\%)$ $6/51 (12\%)$ $1/050 (20\%$ Adjusted Rates (c) 2.6% 3.8% 19.7% 33.1% Terminal Rates (a) $1/50 (2\%)$ $1/26 (4\%)$ $4/26 (15\%)$ $5/23 (22\%)$ Day of First Observation 729 729 524 513 Life Table Tests(e) P<0.001		14.6%			12.5%
Day of First Observation 691 723 Life Table Test (e) P=0.541N P=0.541N Logistic Regression Test (e) Fisher Exact Test (e) P=0.264N Pancreatic Islets: Adenoma $5/50 (10\%)$ (b) $2/26 (8\%)$ (b) $3/26 (12\%)$ $1/50 (2\%)$ Adjusted Rates (a) $5/50 (10\%)$ (b) $2/26 (8\%)$ (b) $3/26 (12\%)$ $1/50 (2\%)$ Adjusted Rates (a) $5/39 (13\%)$ $0/23 (0\%)$ 3.4% Terminal Rates (d) $5/39 (13\%)$ $0/23 (0\%)$ 649 Life Table Test (e) P=0.254N P=0.254N P=0.2176N Fisher Exact Test (e) $P=0.669$ P=0.021 $P=0.022$ Kidney Tubule: Adenoma $1/50 (2\%)$ $1/51 (2\%)$ $6/51 (12\%)$ $1/50 (2\%)$ Adjusted Rates (a) $1/50 (2\%)$ $1/51 (2\%)$ $6/51 (12\%)$ $5/23 (22\%)$ Day of First Observation 729 729 524 513 Life Table Tests (e) P<0.001	Terminal Rates (d)	4/39(10%)			2/23 (9%)
Life Table Test (e) $P = 0.541N$ Logistic Regression Test (e) $P = 0.456N$ Fisher Exact Test (e) $P = 0.264N$ Pancreatic Islets: Adenoma 0 verall Rates (a) $5/50(10\%)$ $(b) 2/26(8\%)$ $(b) 3/26(12\%)$ $1/50(2\%)$ Adjusted Rates (c) 12.8% $0/23(0\%)$ $0/23(0\%)$ $0/23(0\%)$ Day of First Observation 729 649 $0/23(0\%)$ $P = 0.254N$ Life Table Test (e) $P = 0.264N$ $P = 0.254N$ $P = 0.254N$ Logistic Regression Test (e) $P = 0.176N$ $P = 0.176N$ Fisher Exact Test (e) $P = 0.646$ $P = 0.102N$ Kidney Tubule: Adenoma $0/50(2\%)$ $1/51(2\%)$ $6/51(12\%)$ $0/50(20\%)$ Adjusted Rates (c) 2.6% 3.8% 19.7% 33.1% Day of First Observation 729 524 513 Life Table Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ Day of First Observation 729 524 513 $1.50(2\%)$ $1/26(4\%)$ $4/26(15\%)$ $5/23(22\%)$ $5/23(22\%)$ $5/23(22\%)$ $5/23(22\%)$		691			
Logistic Regression Test (e) $P = 0.456N$ Fisher Exact Test (e) $P = 0.264N$ Pancreatic Islets: Adenoma 0 Overail Rates (a) $5/50 (10\%)$ (b) $2/26 (8\%)$ (b) $3/26 (12\%)$ $1/50 (2\%)$ Adjusted Rates (c) 12.8% 3.4% 3.4% $0/23 (0\%)$ Day of First Observation 729 649 $P = 0.254N$ Logistic Regression Test (e) $P = 0.176N$ $P = 0.176N$ Fisher Exact Test (e) $P = 0.176N$ $P = 0.176N$ Kidney Tubule: Adenoma $0/23 (0\%)$ $1/51 (2\%)$ $6/51 (12\%)$ $10/50 (20\%$ Adjusted Rates (a) $1/50 (2\%)$ $1/51 (2\%)$ $6/51 (12\%)$ $10/50 (20\%$ Adjusted Rates (c) 2.6% 3.8% 19.7% 33.1% Terminal Rates (d) $1/39 (3\%)$ $1/26 (4\%)$ $4/26 (15\%)$ $5/23 (22\%)$ Day of First Observation 729 729 524 513 Life Table Test (e) $P < 0.001$ $P = 0.669$ $P = 0.053$ $P = 0.004$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ <		-			
Fisher Exact Test (e) $P = 0.264N$ Pancreatic Islets: Adenoma $Overall Rates (a)$ $5/50 (10\%)$ $(b) 2/26 (8\%)$ $(b) 3/26 (12\%)$ $1/50 (2\%)$ Adjusted Rates (c) 12.8% 3.4% 3.4% $0/23 (0\%)$ $0/25 (0\%)$ $0/23 (0\%)$ $0/25 (0\%)$ $0/26 (0\%)$ $0/26 (0\%)$ $0/26 (0\%)$ $0/26 (0\%)$ $0/26 (0\%)$ $0/26 (0\%)$ $0/26 (0\%)$ $0/26 (0\%)$ $0/22 (0\%)$ $0/22 (0\%)$ $0/22 (0\%)$ $0/22 (0\%)$ $0/22 (0\%)$ $0/23 (0\%)$					
Overall Rates (a) $5/50 (10\%)$ (b) $2/26 (8\%)$ (b) $3/26 (12\%)$ $1/50 (2\%)$ Adjusted Rates (c) 12.8% 3.4% Terminal Rates (d) $5/39 (13\%)$ $0/23 (0\%)$ Day of First Observation 729 649 Life Table Test (e) $P = 0.254N$ Fisher Exact Test (e) $P = 0.176N$ Fisher Exact Test (e) $P = 0.102N$ Kidney Tubule: Adenoma $0/cs (2\%)$ Overall Rates (a) $1/50 (2\%)$ Adjusted Rates (c) 2.6% Adjusted Rates (c) 2.6% Adjusted Rates (c) 2.6% Day of First Observation 729 Pay of First Observation 729 Pay of First Observation 729 Day of First Observation 729 Day of First Observation 729 Cochran-Armitage Trend Test (e) $P < 0.001$ P = 0.669 $P = 0.023$ P < 0.001					
Adjusted Rates (c) 12.8% 3.4% Terminal Rates (d) 5/39 (13%) 0/23 (0%) Day of First Observation 729 649 Life Table Test (e) P= 0.254N P= 0.176N Logistic Regression Test (e) P= 0.102N P= 0.102N Kidney Tubule: Adenoma 1/50 (2%) 1/51 (2%) 6/51 (12%) 10/50 (20%) Adjusted Rates (a) 1/39 (3%) 1/26 (4%) 4/26 (15%) 5/23 (22%) Day of First Observation 729 729 524 513 Life Table Tests (e) P<0.001	Pancreatic Islets: Adenoma				
Terminal Rates (d) $5/39 (13\%)$ $0/23 (0\%)$ Day of First Observation729649Life Table Test (e) $P = 0.254N$ Logistic Regression Test (e) $P = 0.176N$ Fisher Exact Test (e) $P = 0.176N$ Widney Tubule: Adenoma $1/50 (2\%)$ Overall Rates (a) $1/50 (2\%)$ Adjusted Rates (c) 2.6% 3.8% 19.7% 33.1% Terminal Rates (d) $1/39 (3\%)$ $1/26 (4\%)$ $4/26 (15\%)$ $5/23 (22\%)$ Day of First Observation 729 729 524 513 Life Table Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ $P = 0.669$ $P = 0.053$ $P = 0.004$ Cochran-Armitage Trend Test (e) $P < 0.001$ Fisher Exact Test (e) $P < 0.001$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ $0/39 (0\%)$ $0/50 (0\%)$ $0/51 (0\%)$ $16/51 (31\%)$ $30/50 (60\%)$ $Adjusted Rates (c)$ 0.0% 0.0% 0.0% $Adjusted Rates (c)$ 0.0% 0.0% 0.0% $Adjusted Rates (c)$ 0.0% $0.76 (27\%)$ $15/23 (65\%)$ $0.76 (27\%)$ $15/23 (65\%)$ 507 390 Life Table Tests (e) $P < 0.001$ $0.76 (27\%)$ $5/23 (65\%)$ $0.77 390$ 507 Life Table Tests (e) $P < 0.001$ $0.76 (27\%)$ $5/23 (65\%)$ $0.76 (27\%)$ $5/23 (65\%)$ <tr< td=""><td>Overall Rates (a)</td><td>5/50 (10%)</td><td>(b)2/26(8%)</td><td>(b) 3/26 (12%)</td><td>1/50 (2%)</td></tr<>	Overall Rates (a)	5/50 (10%)	(b)2/26(8%)	(b) 3/26 (12%)	1/50 (2%)
Day of First Observation729649Life Table Test (e) $P = 0.254N$ Logistic Regression Test (e) $P = 0.176N$ Fisher Exact Test (e) $P = 0.102N$ Kidney Tubule: Adenoma 0 verall Rates (a)Overall Rates (a) $1/50 (2\%)$ Adjusted Rates (c) 2.6% Day of First Observation 729 Terminal Rates (d) $1/39 (3\%)$ Life Table Tests (e) $P < 0.001$ Day of First Observation 729 Cochran-Armitage Trend Test (e) $P < 0.001$ P = 0.669 $P = 0.023$ P < 0.001	Adjusted Rates (c)	12.8%			3.4%
Life Table Test (e) $P = 0.254N$ Logistic Regression Test (e) $P = 0.176N$ Fisher Exact Test (e) $P = 0.176N$ Widney Tubule: Adenoma $P = 0.12\%$ Overall Rates (a) $1/50(2\%)$ Adjusted Rates (c) 2.6% 3.8% 19.7% 33.1% Terminal Rates (d) $1/39(3\%)$ $1/26(4\%)$ $4/26(15\%)$ $5/23(22\%)$ $Day of First Observation$ 729 729 524 513 Life Table Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ $Cochran-Armitage Trend Test (e)$ $P < 0.001$ $Fisher Exact Test (e)$ $P < 0.001$ $Fisher Exact Test (e)$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ Kidney Tubule: Carcinoma $0/50(0\%)$ $Overall Rates (a)$ $0/50(0\%)$ 0.0% 0.0% $Adjusted Rates (c)$ 0.0% 0.0% 0.0% $Adjusted Rates (c)$ 0.0% 0.0% $0.26(0\%)$ $7/26(27\%)$ $15/23(65\%)$ $Day of First Observation$ 507 390 507 $1ife Table Tests (e)$ $P < 0.001$	Terminal Rates (d)	5/39(13%)			0/23 (0%)
Life Table Test (e) $P = 0.254N$ Logistic Regression Test (e) $P = 0.176N$ Fisher Exact Test (e) $P = 0.176N$ Widney Tubule: Adenoma $P = 0.12\%$ Overall Rates (a) $1/50(2\%)$ Adjusted Rates (c) 2.6% Adjusted Rates (c) 2.6% 3.8% 19.7% 33.1% Terminal Rates (d) $1/39(3\%)$ $1/26(4\%)$ $4/26(15\%)$ $5/23(22\%)$ Day of First Observation 729 729 524 513 Life Table Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ $P = 0.669$ $P = 0.053$ $P = 0.004$ Cochran-Armitage Trend Test (e) $P < 0.001$ Fisher Exact Test (e) $P < 0.001$ Fisher Exact Test (a) $0/50(0\%)$ $0/50(0\%)$ $0/51(0\%)$ $16/51(31\%)$ $30/50(60\%)$ Adjusted Rates (a) $0/39(0\%)$ $0.26(0\%)$ $7/26(27\%)$ $5/23(65\%)$ 507 20 of First Observation 507 390 507 20 of First Ce) $P < 0.001$ 16 Tests (e) $P < 0.001$ 16 Tests	Day of First Observation	729			649
Logistic Regression Test (e) Fisher Exact Test (e) $P = 0.176N$ $P = 0.102N$ Kidney Tubule: Adenoma Overall Rates (a)1/50 (2%)1/51 (2%)6/51 (12%)10/50 (20%)Adjusted Rates (c)2.6%3.8%19.7%33.1%Terminal Rates (d)1/39 (3%)1/26 (4%)4/26 (15%)5/23 (22%)Day of First Observation729729524513Life Table Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.053$ $P = 0.004$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ Kidney Tubule: Carcinoma Overail Rates (a)0/50 (0%)0/51 (0%)16/51 (31%)30/50 (60%)Adjusted Rates (c)0.0%0.0%43.4%77.2%Terminal Rates (d)0/39 (0%)0/26 (0%)7/26 (27%)15/23 (65%)Day of First Observation507390116 Table Tests (e) $P < 0.001$ $P < 0.001$ Life Table Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ Day of First Observation10 $P < 0.001$ $P < 0.001$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P < 0.001$ $P < 0.001$					P = 0.254N
Fisher Exact Test (e) $P = 0.102N$ Kidney Tubule: AdenomaOverall Rates (a)1/50 (2%)1/51 (2%)6/51 (12%)10/50 (20%)Adjusted Rates (c)2.6%3.8%19.7%33.1%Terminal Rates (d)1/39 (3%)1/26 (4%)4/26 (15%)5/23 (22%)Day of First Observation729729524513Life Table Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.053$ $P = 0.004$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ Kidney Tubule: CarcinomaOverall Rates (a)0/50 (0%)0/51 (0%)16/51 (31%)30/50 (60%)Adjusted Rates (c)0.0%0.0%43.4%77.2%Terminal Rates (d)0/39 (0%)0/26 (0%)7/26 (27%)15/23 (65%)Day of First Observation507390Life Table Tests (e) $P < 0.001$ (f) $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ P < 0.001					
Overall Rates (a) $1/50 (2\%)$ $1/51 (2\%)$ $6/51 (12\%)$ $10/50 (20\%)$ Adjusted Rates (c) 2.6% 3.8% 19.7% 33.1% Terminal Rates (d) $1/39 (3\%)$ $1/26 (4\%)$ $4/26 (15\%)$ $5/23 (22\%)$ Day of First Observation 729 729 524 513 Life Table Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.053$ $P = 0.004$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ Kidney Tubule: Carcinoma $0/50 (0\%)$ $0/51 (0\%)$ $16/51 (31\%)$ $30/50 (60\%)$ Adjusted Rates (a) $0/50 (0\%)$ $0/26 (0\%)$ $7/26 (27\%)$ $15/23 (65\%)$ Day of First Observation 507 390 $11/26 (27\%)$ $15/23 (65\%)$ Life Table Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ $6/20 (10\%)$ $9 < 0.001$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ Cochran-Armitage Trend Test (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$					
Adjusted Rates (c) 2.6% 3.8% 19.7% 33.1% Terminal Rates (d) $1/39 (3\%)$ $1/26 (4\%)$ $4/26 (15\%)$ $5/23 (22\%)$ Day of First Observation 729 729 524 513 Life Table Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.053$ $P = 0.004$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ Kidney Tubule: Carcinoma $0/50 (0\%)$ $0/51 (0\%)$ $16/51 (31\%)$ $30/50 (60\%)$ Adjusted Rates (a) $0/50 (0\%)$ 0.0% 0.0% 43.4% 77.2% Terminal Rates (d) $0/39 (0\%)$ $0/26 (0\%)$ $7/26 (27\%)$ $15/23 (65\%)$ Day of First Observation 507 390 507 390 Life Table Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$	Kidney Tubule: Adenoma				
Terminal Rates (d) $1/39 (3\%)$ $1/26 (4\%)$ $4/26 (15\%)$ $5/23 (22\%)$ Day of First Observation729729524513Life Table Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.053$ $P = 0.004$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ Kidney Tubule: Carcinoma $0/50 (0\%)$ $0/51 (0\%)$ $16/51 (31\%)$ $30/50 (60\%)$ Adjusted Rates (a) $0/50 (0\%)$ $0/0\%$ 0.0% 43.4% 77.2% Terminal Rates (d) $0/39 (0\%)$ $0/26 (0\%)$ $7/26 (27\%)$ $15/23 (65\%)$ Day of First Observation 507 390 Life Table Tests (e) $P < 0.001$ (f) $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ P < 0.001		1/50 (2%)	1/51 (2%)		
Day of First Observation729729524513Life Table Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P = 0.669$ $P = 0.053$ $P = 0.004$ Fisher Exact Test (e) $P < 0.001$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ Kidney Tubule: Carcinoma $0/50 (0\%)$ $0/51 (0\%)$ $16/51 (31\%)$ $30/50 (60\%)$ Adjusted Rates (a) $0/50 (0\%)$ 0.0% 0.0% 43.4% 77.2% Terminal Rates (d) $0/39 (0\%)$ $0/26 (0\%)$ $7/26 (27\%)$ $15/23 (65\%)$ Day of First Observation 507 390 Life Table Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P < 0.001$ $P < 0.001$ $P < 0.001$	Adjusted Rates (c)	2.6%	3.8%	19.7%	33.1%
Life Table Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.053$ $P = 0.004$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ Fisher Exact Test (e) $P = 0.748N$ $P = 0.059$ $P = 0.004$ Kidney Tubule: Carcinoma $0/50 (0\%)$ $0/51 (0\%)$ $16/51 (31\%)$ $30/50 (60\%)$ Adjusted Rates (a) $0/50 (0\%)$ $0/50 (0\%)$ $0/26 (0\%)$ $7/26 (27\%)$ $15/23 (65\%)$ Terminal Rates (d) $0/39 (0\%)$ $0/26 (0\%)$ $7/26 (27\%)$ $15/23 (65\%)$ Day of First Observation 507 390 Life Table Tests (e) $P < 0.001$ (f) $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P < 0.001$ $P < 0.001$		1/39 (3%)	1/26 (4%)	4/26 (15%)	5/23 (22%)
Life Table Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.023$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.053$ $P = 0.004$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ Fisher Exact Test (e) $P = 0.748N$ $P = 0.059$ $P = 0.004$ Kidney Tubule: Carcinoma $0/50 (0\%)$ $0/51 (0\%)$ $16/51 (31\%)$ $30/50 (60\%)$ Adjusted Rates (a) $0/50 (0\%)$ $0/0\%$ 0.0% 43.4% 77.2% Terminal Rates (d) $0/39 (0\%)$ $0/26 (0\%)$ $7/26 (27\%)$ $15/23 (65\%)$ Day of First Observation 507 390 Life Table Tests (e) $P < 0.001$ (f) $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P < 0.001$ $P < 0.001$	Day of First Observation	72 9	729	524	513
Logistic Regression Tests (e) $P < 0.001$ $P = 0.669$ $P = 0.053$ $P = 0.004$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ Fisher Exact Test (e) $P = 0.748N$ $P = 0.059$ $P = 0.004$ Kidney Tubule: Carcinoma $0/50 (0\%)$ $0/51 (0\%)$ $16/51 (31\%)$ $30/50 (60\%)$ Adjusted Rates (a) $0/50 (0\%)$ 0.0% 43.4% 77.2% Terminal Rates (d) 0.0% 0.0% $7/26 (27\%)$ $15/23 (65\%)$ Day of First Observation 507 390 Life Table Tests (e) $P < 0.001$ (f) $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P < 0.001$		P<0.001	P = 0.669	P = 0.023	P<0.001
Cochran-Armitage Trend Test (e) $P < 0.001$ $P = 0.748N$ $P = 0.059$ $P = 0.004$ Kidney Tubule: Carcinoma0/50 (0%)0/51 (0%)16/51 (31%)30/50 (60%)Overall Rates (a)0/50 (0%)0/0%43.4%77.2%Adjusted Rates (c)0.0%0.0%43.4%77.2%Terminal Rates (d)0/39 (0%)0/26 (0%)7/26 (27%)15/23 (65%)Day of First Observation507390Life Table Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$					
Fisher Exact Test (e) $P=0.748N$ $P=0.059$ $P=0.004$ Kidney Tubule: Carcinoma $0/50 (0\%)$ $0/51 (0\%)$ $16/51 (31\%)$ $30/50 (60\%)$ Overall Rates (a) $0/50 (0\%)$ $0/51 (0\%)$ $16/51 (31\%)$ $30/50 (60\%)$ Adjusted Rates (c) 0.0% 0.0% 43.4% 77.2% Terminal Rates (d) $0/39 (0\%)$ $0/26 (0\%)$ $7/26 (27\%)$ $15/23 (65\%)$ Day of First Observation 507 390 507 390 20.001 $P < 0.001$					
Overall Rates (a) $0/50 (0\%)$ $0/51 (0\%)$ $16/51 (31\%)$ $30/50 (60\%)$ Adjusted Rates (c) 0.0% 0.0% 0.0% 43.4% 77.2% Terminal Rates (d) $0/39 (0\%)$ $0/26 (0\%)$ $7/26 (27\%)$ $15/23 (65\%)$ Day of First Observation 507 390 Life Table Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ Logistic Regression Tests (e) $P < 0.001$ (f) $P < 0.001$ $P < 0.001$ Cochran-Armitage Trend Test (e) $P < 0.001$ $P < 0.001$ $P < 0.001$			P = 0.748N	P=0.059	P = 0.004
Overall Rates (a) 0/50 (0%) 0/51 (0%) 16/51 (31%) 30/50 (60%) Adjusted Rates (c) 0.0% 0.0% 43.4% 77.2% Terminal Rates (d) 0/39 (0%) 0/26 (0%) 7/26 (27%) 15/23 (65%) Day of First Observation 507 390 Life Table Tests (e) P<0.001	Kidney Tubule: Carcinoma				
Terminal Rates (d) 0/39 (0%) 0/26 (0%) 7/26 (27%) 15/23 (65%) Day of First Observation 507 390 Life Table Tests (e) P<0.001		0/50 (0%)	0/51 (0%)	16/51 (31%)	30/50 (60%
Terminal Rates (d) 0/39 (0%) 0/26 (0%) 7/26 (27%) 15/23 (65%) Day of First Observation 507 390 Life Table Tests (e) P<0.001	Adjusted Rates (c)	0.0%	0.0%	43.4%	77.2%
Day of First Observation 507 390 Life Table Tests (e) P<0.001	•				15/23 (65%
Life Table Tests (e) P<0.001 (f) P<0.001 P<0.001 Logistic Regression Tests (e) P<0.001					
Logistic Regression Tests (e)P<0.001(f)P<0.001P<0.001Cochran-Armitage Trend Test (e)P<0.001	•	P<0.001	(f)		
Cochran-Armitage Trend Test (e) P<0.001					
			(1)	1 -0.001	1 20.001
	Fisher Exact Test (e)	F < 0.001	(f)	P<0.001	P<0.001

	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg
Kidney Tubule: Adenoma or Carci	noma	<u> </u>		
Overall Rates (a)	1/50 (2%)	1/51 (2%)	20/51 (39%)	36/50 (72%)
Adjusted Rates (c)	2.6%	3.8%	53.4%	87.2%
Terminal Rates (d)	1/39 (3%)	1/26 (4%)	10/26 (38%)	18/23 (78%)
Day of First Observation	729	729	507	390
Life Table Tests (e)	P<0.001	P = 0.669	P<0.001	P<0.001
Logistic Regression Tests (e)	P<0.001	P=0.669	P<0.001	P<0.001
Cochran-Armitage Trend Test (e)	P<0.001			
Fisher Exact Test (e)		P = 0.748N	P<0.001	P<0.001
lammary Gland: Fibroadenoma				
Overall Rates (a)	3/50 (6%)	2/51 (4%)	1/51 (2%)	3/50 (6%)
Adjusted Rates (c)	7.2%	7.7%	3.8%	10.8%
Terminal Rates (d)	2/39 (5%)	2/26 (8%)	1/26 (4%)	2/23 (9%)
Day of First Observation	516	729	729	513
Life Table Tests (e)	P = 0.361	P = 0.650N	P = 0.416N	P = 0.483
Logistic Regression Tests (e)	P = 0.473	P = 0.512N	P = 0.301N	P = 0.661
Cochran-Armitage Trend Test (e)	P = 0.504			- 0.001
Fisher Exact Test (e)		P = 0.491 N	P = 0.301 N	P = 0.661
fammary Gland: Adenoma or Fib	roadenoma			
Overall Rates (a)	3/50 (6%)	2/51 (4%)	2/51 (4%)	3/50 (6%)
Adjusted Rates (c)	7.2%	7.7%	7.3%	10.8%
Terminal Rates (d)	2/39 (5%)	2/26 (8%)	1/26 (4%)	2/23 (9%)
Day of First Observation	516	729	717	513
Life Table Tests (e)	P = 0.358	P = 0.650N	P = 0.635N	P = 0.483
Logistic Regression Tests (e)	P = 0.473	P = 0.512N	P = 0.502N	P = 0.661
Cochran-Armitage Trend Test (e)	P = 0.512	* = 0.01411	1 - 0.00211	1 -0.001
Fisher Exact Test (e)	1 - 0.012	P = 0.491 N	P = 0.491 N	P=0.661
Pancreas: Adenoma				
Overall Rates (a)	4/50 (8%)	(b) 3/26 (12%)	(b) 0/24 (0%)	3/50 (6%)
Adjusted Rates (c)	10.3%	(0) 0/20 (12/0)		13.0%
Terminal Rates (d)	4/39 (10%)			3/23 (13%)
Day of First Observation	4/39 (10%) 729			729
Life Table Test (e)	140			P = 0.532
Logistic Regression Test (e)				P = 0.532
Fisher Exact Test (e)				P = 0.500 N
Vituitary Gland/Pars Distalis: Ade		(h -) 16/00 (400)	(h) 7/97 (960)	11/40 (990)
Overall Rates (a)	14/50 (28%)	(b,g) 16/33 (48%)	(b,g) 7/27 (26%)	11/49 (22%
Adjusted Rates (c)	34.1%			40.4%
Terminal Rates (d)	12/39 (31%)			8/23 (35%)
Day of First Observation	704			540 R-0.218
Life Table Test (e)				P = 0.318
Logistic Regression Test (e) Fisher Exact Test (e)				P = 0.560 P = 0.343 N
				T 0.04014
kin: Keratoacantoma	1/50 (2%)	1/51 (904)	A/51 (90L)	2/50 (4%)
Overall Rates (a)		1/51 (2%)	4/51 (8%)	
Adjusted Rates (c)	2.6%	3.8%	13.2%	7.3%
Terminal Rates (d)	1/39 (3%)	1/26 (4%)	2/26 (8%)	1/23 (4%)
Day of First Observation	729	729	589	647
Life Table Tests (e)	P = 0.268	P = 0.669	P = 0.100	P = 0.349
Logistic Regression Tests (e)	P = 0.345	P = 0.669	P = 0.165	P = 0.433
Cochran-Armitage Trend Test (e)	P = 0.409		n	B
Fisher Exact Test (e)		P = 0.748N	P = 0.187	P = 0.500

	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg
			<u></u>	
Skin: Squamous Papilloma				1/50/000
Overall Rates (a)	2/50 (4%)	1/51 (2%)	4/51 (8%)	1/50 (2%)
Adjusted Rates (c)	5.1%	3.8%	11.2%	4.3%
Terminal Rates (d)	2/39 (5%)	1/26 (4%)	1/26 (4%)	1/23 (4%)
Day of First Observation	729 D. 0 008 M	72 9	459 D	729
Life Table Tests (e)	P = 0.608N	P = 0.640N	P = 0.233	P = 0.681N
Logistic Regression Tests (e)	P = 0.489N	P = 0.640N	P = 0.348	P = 0.681 N
Cochran-Armitage Trend Test (e) P=0.469N Fisher Exact Test (e)		P = 0.492N	P = 0.348	P = 0.500 N
		1 - 0.40211	1 - 0.040	1 = 0.00011
Subcutaneous Tissue: Fibroma				
Overall Rates (a)	4/50 (8%)	4/51 (8%)	1/51 (2%)	2/50 (4%)
Adjusted Rates (c)	9.7%	14.2%	3.8%	6.1%
Terminal Rates (d)	2/3 9 (5%)	2/26 (8%)	1/26 (4%)	0/23(0%)
Day of First Observation	540	717	72 9	425
Life Table Tests (e)	P = 0.387 N	P = 0.459	P = 0.278N	P = 0.507 N
Logistic Regression Tests (e)	P = 0.265 N	P = 0.607	P = 0.181 N	P = 0.328N
Cochran-Armitage Trend Test (e)	P = 0.245N			
Fisher Exact Test (e)		P = 0.631 N	P = 0.175N	P = 0.339 N
Subcutaneous Tissue: Fibroma or F	ibrosarcoma			
Overall Rates (a)	5/50 (10%)	4/51 (8%)	3/51 (6%)	2/50(4%)
Adjusted Rates (c)	12.1%	14.2%	9.5%	6.1%
Terminal Rates (d)	3/39 (8%)	2/26 (8%)	2/26 (8%)	0/23(0%)
Day of First Observation	540	717	290	425
Life Table Tests (e)	P = 0.320N		P = 0.512N	P = 0.393N
		P = 0.571	P = 0.312N P = 0.342N	P = 0.393 N P = 0.214 N
Logistic Regression Tests (e)	P = 0.186N	P = 0.550N	P=0.3421	P = 0.214 N
Cochran-Armitage Trend Test (e) Fisher Exact Test (e)	P = 0.184N	P = 0.487 N	P = 0.346N	P=0.218N
Subcutaneous Tissue: Sarcoma or H				
Overall Rates (a)	2/50 (4%)	0/51 (0%)	3/51 (6%)	0/50(0%)
Adjusted Rates (c)	4.8%	0.0%	8.1%	0.0%
Terminal Rates (d)	1/39 (3%)	0/26(0%)	1/26 (4%)	0/23 (0%)
Day of First Observation	52 6		290	
Life Table Tests (e)	P = 0.356N	P = 0.289N	P = 0.429	P = 0.306N
Logistic Regression Tests (e)	P = 0.306 N	P = 0.229N	P = 0.487	P = 0.232N
Cochran-Armitage Trend Test (e)	P = 0.302 N			
Fisher Exact Test (e)		P = 0.243 N	P = 0.509	P = 0.247 N
Subcutaneous Tissue: Fibroma, Sar	coma or Fibrosonoom	2		
Overall Rates (a)	6/50 (12%)	a 4/51 (8%)	4/51 (8%)	2/50(4%)
Adjusted Rates (c)	14.1%	14.2%	11.8%	6.1%
Terminal Rates (d)	3/39 (8%)	2/26(8%)	2/26(8%)	0/23(0%)
Day of First Observation	526	2/26 (8%) 717	290	425
	P = 0.251 N		P = 0.514N	P = 0.273N
Life Table Tests (e)		P = 0.566N		
Logistic Regression Tests (e)	P = 0.132N	P = 0.385 N	P = 0.354N	P = 0.127 N
Cochran-Armitage Trend Test (e)	P = 0.135N	D-0 0FON	D-0 9FON	D_0 194N
Fisher Exact Test (e)		P = 0.358N	P = 0.358N	P = 0.134N
'estis: Adenoma				
Overall Rates (a)	44/50 (88%)	39/50 (78%)	42/48 (88%)	40/50 (80%
Adjusted Rates (c)	97.8%	100.0%	100.0%	97.5%
Terminal Rates (d)	38/39 (97%)	25/25 (100%)	23/23 (100%)	22/23 (96%
Day of First Observation	516	428	507	425
Life Table Tests (e)	P = 0.019	P = 0.018	P = 0.002	P = 0.004
Logistic Regression Test (e)	P=	P=	P=	P = 0.573N
Cochran-Armitage Trend Test (e)	P = 0.224N	•	-	- 0.0.010
Coman-minage rienu rest(e)	1 - 0.22711			

	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg
Thyroid Gland: C-Cell Adenoma	,, 18			<u></u>
Overall Rates (a)	9/50 (18%)	(b) 5/29 (17%)	(b) 6/26 (23%)	5/50(10%)
Adjusted Rates (c)	22.5%			19.3%
Terminal Rates (d)	8/39 (21%)			4/23 (17%)
Day of First Observation	704			513
Life Table Test (e)	104			P = 0.546N
				P = 0.358N
Logistic Regression Test (e) Fisher Exact Test (e)				P = 0.336 N P = 0.194 N
hyroid Gland: C-Cell Adenoma or	Carcinoma			
Overall Rates (a)	9/50 (18%)	(b) 6/29 (21%)	(b) 7/26 (27%)	6/50 (12%)
Adjusted Rates (c)	22.5%			22.4%
Terminal Rates (d)	8/39 (21%)			4/23 (17%)
Day of First Observation	704			513
Life Table Test (e)	704			P = 0.544
				P = 0.344 P = 0.481 N
Logistic Regression Test (e) Fisher Exact Test (e)				P = 0.481 N P = 0.288 N
				1 = 0.2001
hyroid Gland: Follicular Cell Ader Overall Rates (a)	noma or Carcinoma 3/50 (6%)	(b) 1/29 (3%)	(b) 1/26 (4%)	1/50 (2%)
Adjusted Rates (c)	7.7%		(1) (1)	4.3%
Terminal Rates (d)	3/39 (8%)			1/23(4%)
Day of First Observation	729			729
Life Table Test (e)	125			P = 0.507 N
Logistic Regression Test (e)				P = 0.507 N
Fisher Exact Test (e)				P = 0.309N
ymbal Gland: Carcinoma	0.00	0/51 / 4/7	0/51 (00)	
Overall Rates (a)	0/50 (0%)	2/51 (4%)	0/51 (0%)	3/50 (6%)
Adjusted Rates (c)	0.0%	4.4%	0.0%	8.2%
Terminal Rates (d)	0/39 (0%)	0/26(0%)	0/26(0%)	0/23 (0%)
Day of First Observation		409		540
Life Table Tests (e)	P = 0.088	P = 0.242	(f)	P = 0.097
Logistic Regression Tests (e)	P = 0.092	P = 0.215	(f)	P = 0.120
Cochran-Armitage Trend Test (e)	P = 0.105			
Fisher Exact Test (e)		P = 0.252	(f)	P = 0.121
fematopoietic System: Mononuclea				
Overall Rates (a)	12/50 (24%)	(b,h) 7/51 (14%)	(b,i)7/51(14%)	7/50 (14%)
Adjusted Rates (c)	29.8%			22.5%
Terminal Rates (d)	11/39(28%)			3/23 (13%)
Day of First Observation	516			408
Life Table Test (e)				P = 0.504N
Logistic Regression Test (e)				P = 0.198N
Fisher Exact Test (e)				P = 0.154N
All Sites: Mesothelioma				
Overall Rates (a)	1/50 (2%)	4/51 (8%)	0/51 (0%)	0/50 (0%)
Adjusted Rates (c)	2.6%	11.4%	0.0%	0.0%
Terminal Rates (d)	1/39(3%)	1/26 (4%)	0/26(0%)	0/23(0%)
	729	487		
Day of First Observation				
Day of First Observation Life Table Tests (e)	P = 0.155N	P = 0.118	P = 0.581 N	P = 0.6051
Life Table Tests (e)	P = 0.155N P = 0.108N		P = 0.581 N P = 0.581 N	
•	P = 0.155N P = 0.108N P = 0.108N	P = 0.118 P = 0.184	P = 0.581 N P = 0.581 N	P=0.605N P=0.605N

(f) No P value is reported because no tumors were observed in the dosed and vehicle control groups.

(g) Two carcinomas were also observed.

⁽a) Number of tumor-bearing animals/number of animals examined at the site

⁽b) Incomplete sampling of tissues

⁽c) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

⁽d) Observed tumor incidence at terminal kill

⁽e) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

⁽h) Twenty-six livers and 29 spleens were examined microscopically.

⁽i) Twenty-six livers and 27 spleens were examined microscopically.

TABLE A4a. HISTORICAL INCIDENCE OF RENAL TUBULAR CELL TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Incidence of Adenomas or Adenocarcinomas in Vehicle Controls					
Historical Incidence at Battelle C	olumbus Laboratories					
Chlorobenzene	0/50					
1,2-Dichlorobenzene	0/50					
1,4-Dichlorobenzene	(b) 1/50					
Benzene	(b) 1/ 50					
Xylenes	(b) 1/48					
TOTAL	3/248 (1.2%)					
SD(c)	1.11%					
Range (d)						
High	1/48					
Low	0/50					
Overall Historical Incidence						
TOTAL	(e) 10/1,943 (0.5%)					
SD (c)	0.89%					
Range (d)						
High	1/48					
Low	0/50					

(a) Data as of April 29, 1987, for studies of at least 104 weeks

(b) Tubular cell adenocarcinoma
(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.
(e) Includes three tubular cell adenomas, two adenocarcinomas, NOS, and five tubular cell adenocarcinomas

TABLE A4b. HISTORICAL INCIDENCE OF ORAL CAVITY TUMORS IN MALE F344/N RATSADMINISTERED CORN OIL BY GAVAGE (a)

Study	Incidence of Squamous Cell Papillomas in Vehicle Controis							
Historical Incidence at Battelle Columbus Laboratories								
Chlorobenzene	0/50							
1,2-Dichlorobenzene	0/50							
1,4-Dichlorobenzene	1/50							
Benzene	1/50							
Xylenes	0/50							
TOTAL	2/250 (0.8%)							
SD(b)	1.10%							
Range (c)								
High	1/50							
Low	0/50							
Overall Historical Incidence								
TOTAL	6/1,949 (0.3%)							
SD(b)	0.86%							
Range (c)								
High	2/50							
Low	2/30 0/50							
LUW	0/50							

(a) Data as of April 29, 1987, for studies of at least 104 weeks; no malignant tumors have been observed.

(b) Standard deviation (c) Range and SD are presented for groups of 35 or more animals.

v	ehicle	Control	Low	Dose	Mid 1	Dose	High	Dose
nimals initially in study	80		80		80		80	
nimals removed	80		80		80		80	
nimals examined histopathologically	50		51		51		50	
LIMENTARY SYSTEM								
Intestine large, cecum Inflammation, chronic active, diffuse	(50)		(23)		(20) 1	(5%)	(50)	
Intestine large, colon	(50)		(25)		(24)		(50)	
Parasite metazoan	1	(2%)					2	(4%)
Intestine large, rectum	(48)		(23)		(24)		(47)	
Parasite metazoan		(13%)		(9%)			+	(6%)
Intestine small, duodenum Necrosis, acute, focal	(50)		(25)		(23)			(2%)
Liver	(50)		(26)		(26)		(50)	
Angiectasis, multifocal		(00~)			-	(01~)	-	(2%)
Basophilic focus, multiple Clear cell focus		(80%) (18%)	13	(50%)	8	(31%)	6	(66%) (12%)
Clear cell focus, multiple		(90)		(401)			1	(2%)
Congestion Cytoplasmic alteration, focal	1	(2%)	1	(4%)	•	(10)		(10)
Degeneration, cystic, focal	0	(4%)	1	(4%)		(4%) (4%)	-	(4%) (2%)
Eosinophilic focus	2	(+1-70)	1	(4,70)	1	(470)		(2%)
Hematopoietic cell proliferation, multifoca	1 2	(4%)					-	(2%)
Inflammation, chronic active, multifocal		(16%)	1	(4%)			-	(6%)
Mixed cell focus	Ŭ	(10,0)		(4%)			U	(0,0)
Necrosis, acute	1	(2%)	-	(19%)	1	(4%)	1	(2%)
Thrombus	•	(=,,,,	Ũ		•			(2%)
Bile duct, hyperplasia, multifocal	38	(76%)	16	(62%)	14	(54%)		(60%)
Centrilobular, vacuolization cytoplasmic,					••		00	(00,0)
diffuse		(46%)	5	(19%)	2	(8%)	13	(26%)
Periportal, vacuolization cytoplasmic, diffu	ıse		1	(4%)	1	(4%)	1	(2%)
Mesentery	(1)		(7)		(5)		(11)	
Inflammation, chronic active			3	(43%)	4	(80%)	3	(27%)
Pancreas	(50)		(26)		(24)		(50)	
Inflammation, acute, multifocal							1	(2%)
Inflammation, chronic, diffuse	1	(2%)					1	(2%)
Acinus, atrophy		(34%)	8	(31%)	1	(4%)		(28%)
Acinus, focal cellular change		(12%)						(10%)
Acinus, hyperplasia, focal		(12%)			2	(8%)	8	(16%)
Duct, ectasia, multifocal		(2%)						
Perivascular, inflammation, chronic active	э,			(40)			~	
multifocal Salivary glands	(50)		(26)	(4%)	(25)		(49)	(6%)
Acinus, atrophy, multifocal	(30)		(20)		(20)			(4%)
Stomach, forestomach	(50)		(25)		(25)		(50)	101
Acanthosis	(00)			(4%)	(20)			(16%)
Acanthosis, focal	1	(2%)	٠					(2%)
Acanthosis, multifocal	•	. =						(2%)
Cyst epithelial inclusion								(2%)
Erosion								(2%)
Inflammation, chronic active	1	(2%)	2	(8%)	2	(8%)		(12%)
Ulcer		(2%)		(8%)		(8%)		(4%)
Stomach, glandular	(50)		(25)		(25)		(49)	
Hyperplasia, multifocal							1	(2%)
Inflammation, acute			1	(4%)				
Ulcer								(8%)
Tongue			(3)		(2)		(2)	
Epithelium, hyperkeratosis, focal								(50%)
Epithelium, hyperplasia			1	(33%)			2	(100%

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A

(50)		(26)		(25)		(50)	
	(94%)		(100%)		(88%)		(94%)
		20	(100.0)				
Ĩ	(2,0)					1	(2%)
. <u> </u>							
(50)		(25)		(25)		(50)	
		(20)			(4%)		(2%)
				-			(4%)
6	(12%)	2	(8%)	3	(12%)		(24%)
		_					(26%)
	(00/0)	v	(-	(0,0)		(2%)
5	(10%)			1	(196)		(4%)
Ũ	(10,0)					2	(4,0)
(50)		(25)				(19)	
	(1496)		(8%)		(15%)		(20%)
1		2		+	(1070)		(20%)
(50)		1961		(96)			(4/0)
	(27)	(20)		(20)		(00)	
	(4/0)	1221		(97)		(10)	
	(90)		(20-)		(701)		(6%)
		-					(29%)
		4	(12%)	ა	(11%)		(29%) (2%)
T	(2%)						(2%)
							(2%)
(50)		(90)		(96)			(270)
	(4901)		(910)		(0.907)		(32%)
		0	(21%)	10	(38%)		
							(4%)
1	(2%)					ა ა	(6%)
		(1)		(1)			
						1	(50%)
				-			
(49)		(26)		(25)		(50)	
				1	(4%)		
(50)		(28)		(25)		(48)	
			(4%)	1	(4%)		
al 44	(88%)	11	(39%)			38	(79%)
	(16%)					3	(6%)
				(25)		(50)	
()		/				/	
				-	/	1	(2%)
							(2%)
		1	(4%)			-	
al 15	(30%)					12	(24%)
		4		1	(4%)		/ / /
		(1)		1	(=/0)	(1)	
			(100%)			(1)	
(50)				(49)		(50)	
		(50)		(480)			(90-)
40	1900		(90)	40	(9901)		(2%)
43	(86%)	1	(2%)	40	(83%)	33	(66%)
	(44%)		(26%)		(29%)	<u> </u>	(48%)
	$ \begin{array}{c} 1 \\ (50) \\ 6 \\ 18 \\ 5 \\ (50) \\ 7 \\ (50) \\ 1 \\ (50) \\ 1 \\ (50) \\ 24 \\ 1 \\ (50) \\ 24 \\ 1 \\ (50) \\ 24 \\ 1 \\ 1 \\ (50) \\ 24 \\ (50) \\ 24 \\ (50) \\ 24 \\ (50) \\ 24 \\ (50) \\ 24 \\ (50) \\ 24 \\ (50) \\ 24 \\ (50) \\ 24 \\ (50) \\ 24 \\ (50) \\ 24 \\ (50) \\ 24 \\ (50) \\ 24 \\ (50) \\ (50) \\ 24 \\ (50) $	$ \begin{array}{c} 47 & (94\%) \\ 1 & (2\%) \\ \end{array} $ (50) $ \begin{array}{c} 6 & (12\%) \\ 18 & (36\%) \\ 5 & (10\%) \\ (50) \\ 7 & (14\%) \\ (50) \\ 1 & (2\%) \\ (50) \\ 24 & (48\%) \\ 1 & (2\%) \\ \end{array} $ (50) $ \begin{array}{c} 24 & (48\%) \\ 1 & (2\%) \\ 1 & (2\%) \\ \end{array} $ (49) (50) $ \begin{array}{c} (49) \\ (50) \\ 24 & (48\%) \\ 1 & (2\%) \\ \end{array} $ (49) (50) $ \begin{array}{c} (49) \\ (50) \\ 3 & (16\%) \\ (50) \\ \end{array} $ (51) $ \begin{array}{c} (49) \\ (50) \\ \end{array} $ (49) (50) $ \begin{array}{c} (49) \\ (50) \\ \end{array} $ (50) $ \begin{array}{c} (50) \\ \end{array} $ (50) $ \begin{array}{c} (50) \\ \end{array} $	$\begin{array}{c} 47 & (94\%) \\ 1 & (2\%) \end{array} 26 \\ 1 & (2\%) \end{array} 26 \\ (50) & (25) \\ 6 & (12\%) & 2 \\ 18 & (36\%) & 3 \\ 5 & (10\%) \end{array} \\ (50) & (26) \\ 1 & (2\%) & (26) \\ 1 & (2\%) & (26) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (33) \\ 1 & (2\%) & (1) \\ (50) & (26) \\ (50) & (28) \\ 1 & (2\%) & (1) \\ (49) & (26) \\ (50) & (28) \\ 1 & (2\%) & (1) \\ 1 & (50) & (26) \\ (51) & (26) \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 47 & (94\%) \\ 1 & (2\%) \end{array} \qquad 26 & (100\%) \qquad 22 \\ \hline \\ (50) & (25) & (25) \\ & & 1 \\ \hline \\ 6 & (12\%) & 2 & (8\%) & 3 \\ 18 & (36\%) & 3 & (12\%) & 2 \\ \hline \\ 5 & (10\%) & & 1 \\ (50) & (25) & (26) \\ 7 & (14\%) & 2 & (8\%) & 4 \\ \hline \\ (50) & (26) & (26) & (26) \\ 1 & (2\%) & (33) & (27) \\ 1 & (2\%) & 1 & (3\%) & 2 \\ \hline \\ (50) & (2\%) & 1 & (3\%) & 2 \\ \hline \\ (50) & (2\%) & 4 & (12\%) & 3 \\ 1 & (2\%) & 6 & (21\%) & 10 \\ \hline \\ (1) & (1) & (1) \\ \hline \\ (49) & (26) & (25) \\ 1 & (2\%) & 1 & (4\%) & 1 \\ \hline \\ (49) & (26) & (25) \\ 1 & (2\%) & 1 & (4\%) & 1 \\ \hline \\ (49) & (26) & (25) \\ 1 & (4\%) & 1 & (1) \\ \hline \\ (49) & (26) & (25) \\ 1 & (4\%) & 1 & 1 \\ (49) & (26) & (25) \\ 1 & (4\%) & 1 & 1 \\ (4\%) & 1 & (4\%) & 1 \\ \hline \\ (49) & (26) & (25) & 1 \\ \hline \\ (49) & (26) & (25) \\ 1 & (4\%) & 1 \\ (1) & (1) \\ \hline \\ (50) & (20) & (2\%) \\ (50) & (50) & (48) \\ \end{array}$	$\begin{array}{c} 47 & (94\%) \\ 1 & (2\%) \end{array} \qquad 26 & (100\%) \qquad 22 & (88\%) \\ 1 & (2\%) \end{array} \qquad $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (Continued)

v	ehicle	Control	Low	Dose	Mid I	Dose	High	Dose
HEMATOPOIETIC SYSTEM								
Blood	(1)						(9)	
Neutrophilia	(-)						5	(56%)
Bone marrow	(50)		(25)		(25)		(50)	
Femoral, hyperplasia, neutrophil, diffuse			1	(4%)			1	(2%)
Lymph node	(50)		(28)		(25)		(50)	
Inguinal, sinus, ectasia	(00)			(4%)				
Lumbar, sinus, ectasia			1	(4%)				
Mediastinal, congestion			1	(4%)				
Mediastinal, hemorrhage, multifocal							1	(2%)
Mesenteric, cyst							1	(2%)
Mesenteric, inflammation, chronic active,								
multifocal							1	(2%)
Mesenteric, sinus, ectasia			1	(4%)				
Lymph node, mandibular	(49)		(28)		(23)		(50)	
Hemorrhage, multifocal							2	(4%)
Infiltration cellular, plasma cell			3	(11%)			1	(2%)
Necrosis, acute, multifocal	1	(2%)						
Spleen	(50)		(29)		(27)		(50)	
Angiectasis			1	(3%)				
Depletion lymphoid	3	(6%)	5	(17%)				
Infiltration cellular, lipocyte, multifocal	1	(2%)						
Red pulp, fibrosis	2	(4%)	2	(7%)	1	(4%)	2	(4%)
Red pulp, hematopoietic cell proliferation,								
diffuse		(6%)	1	(3%)	1	(4%)	8	(16%)
Red pulp, infiltration cellular, lipocyte,								
multifocal							1	(2%)
Hyperplasia, cystic, multifocal Skin Cyst epithelial inclusion Hyperkeratosis Subcutaneous tissue, fibrosis Subcutaneous tissue, inflammation, chron active, diffuse	(49) 1	(95%) (2%) (2%)	(32)	(82%) (3%) (3%)	(30)	(78%) (3%)	(49)	(95%)
AUSCULOSKELETAL SYSTEM None			<u></u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
NERVOUS SYSTEM	(50)		(95)		(95)	<u></u>	(50)	
Brain	(50)		(25)	(4%)	(25)	(4%)	(50)	(2%)
Compression Ventricle hydrocenhalus		(2%) (2%)		(4%) (8%)		(4%) (4%)	1	(270)
Ventricle, hydrocephalus	1	(470)	2	(0/0)	I	(
RESPIRATORY SYSTEM				<u></u>	<u></u>			
Lung	(50)		(30)		(27)		(50)	
		(4%)	(30)			(7%)		
		(4%) (6%)			4	(1707		
Congestion Edema acute diffuse		(22%)	۵	(30%)	5	(19%)	6	(12%)
Edema, acute, diffuse		(44/0)	9		J		0	
Edema, acute, diffuse Foreign body, multifocal		(2.%)						
Edema, acute, diffuse Foreign body, multifocal Mineralization, focal		(2%)	9	(796)				
Edema, acute, diffuse Foreign body, multifocal Mineralization, focal Pigmentation	1			(7%) (3%)	9	(7%)	1	(2%)
Edema, acute, diffuse Foreign body, multifocal Mineralization, focal Pigmentation Alveolar epithelium, hyperplasia	1 3	(2%) (6%)	1	(3%)		(7%) (4 %)	1	(2%)
Edema, acute, diffuse Foreign body, multifocal Mineralization, focal Pigmentation Alveolar epithelium, hyperplasia Interstitium, inflammation, acute, multife	1 3 ocal		1			(7%) (4 %)	1	(2%)
Edema, acute, diffuse Foreign body, multifocal Mineralization, focal Pigmentation Alveolar epithelium, hyperplasia	1 3 ocal e,		1 2	(3%)	1			(2%) (28%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (Continued)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (Continued)

Ve	hicle	Control	Low	Dose	Mid	Dose	High	Dose
RESPIRATORY SYSTEM (Continued)		<u></u>	(07)		(0.4)		(50)	<u> </u>
Nose	(50)		(25)		(24)			(4%)
Lumen, foreign body Nasolacrimal duct, hyperplasia					1	(4%)	-	
PECIAL SENSES SYSTEM								
Eye	(3)	(1000)	(1)		(4)		(2)	(1000)
Lens, cataract Retina, atrophy, diffuse	-	(100%) (100%)		(100%) (100%)		(50%) (50%)		(100%) (100%)
JRINARY SYSTEM Kidney	(50)		(51)		(51)		(50)	
Cyst	(00)		(01)		(01)			(12%)
Cyst, multiple			1	(2%)				(12.0)
Fibrosis, focal			1	(21/07	1	(2%)		
Hydronephrosis			1	(2%)	•	. = / . /	1	(2%)
Nephropathy, chronic, diffuse	48	(96%)	-	(100%)	51	(100%)	-	(96%)
Pelvis, epithelium, hyperplasia, multifocal	-		••	. = • • /• /				(2%)
Pelvis, epithelium, hyperplasia, papillary,							-	
multifocal							1	(2%)
Renal tubule, hyperplasia	1	(2%)					-	
Renal tubule, epithelium, cytoplasmic	•	(1)0)						
alteration, focal	1	(2%)			2	(4%)	7	(14%)
Renal tubule, epithelium, cytoplasmic	•				-		•	
alteration, multifocal					1	(2%)	1	(2%)
Renal tubule, epithelium, degeneration,					-			
multifocal					50	(98%)	49	(98%)
Renal tubule, epithelium, hyperplasia, foca	1 1	(2%)				(22%)	15	(30%)
Renal tubule, epithelium, hyperplasia,								
multifocal			1	(2%)	5	(10%)	9	(18%)
Renal tubule, epithelium, karyomegaly,								
multifocal			1	(2%)	51	(100%)	50	(100%)
Renal tubule, epithelium, proliferation, foc	al				4	(8%)	13	(26%)
Renal tubule, epithelium, proliferation, multifocal					R	(12%)	13	(26%)
Vein, dilatation, focal	1	(2%)			0	12/01	10	(20/0)
Urethra	1	(1/0)	(1)					
Calculus micro observation only				(100%)				
Urinary bladder	(50)		(23)		(24)		(50)	
Calculus micro observation only		(4%)						(2%)
Ectasia	-		1	(4%)			-	
Inflammation, acute			1	(4%)				
Mucosa, hyperplasia, diffuse							1	(2%)
Serosa, necrosis, chronic active, multifocal							1	(2%)
Submucosa, inflammation, chronic active, multifocal								(2%)

APPENDIX B

SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A

PAGE TABLE B1 SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A 105 INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR TABLE B2 GAVAGE STUDY OF OCHRATOXIN A 108 ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE TABLE B3 STUDY OF OCHRATOXIN A 124 HISTORICAL INCIDENCE OF RENAL TUBULAR CELL TUMORS IN FEMALE TABLE B4a F344/N RATS ADMINISTERED CORN OIL BY GAVAGE 127 HISTORICAL INCIDENCE OF MAMMARY GLAND TUMORS IN FEMALE F344/N TABLE B4b RATS ADMINISTERED CORN OIL BY GAVAGE 128 TABLE B4c HISTORICAL INCIDENCE OF LEUKEMIA IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE 129 TABLE B5 SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A 130

Ochratoxin A, NTP TR 358

Ochratoxin A, NTP TR 358
TABLE B1.	SUMMARY	OF	THE	INCIDENC	E OF	' NEOP	LASMS	IN	FEMALE	RATS	IN	THE	TWO-Y	YEAR
				GAVAGE	STU	DY OF	OCHR	ATC	XIN A					

	Vehicle	Control	Low	Dose	Mid 1	Dose	High	Dose
Animals initially in study	80		80		80		80	
Animals removed	80		80		80		80	
Animals examined histopathologically	50		51		50		50	
ALIMENTARY SYSTEM						···		
Liver	(50)		*(51)		*(50)		(50)	
Carcinoma, metastatic, kidney					1	(2%)		
Leukemia mononuclear		(20%)		(16%)	2	(4%)	2	(4%)
Mesentery	*(50)		*(51)		*(50)		*(50)	
Carcinoma, metastatic, kidney						(2%)		
Pancreas	(50)		*(51)		*(50)		(50)	
Carcinoma, metastatic, kidney					1	(2%)		
Leukemia mononuclear	1	(2%)	1	(2%)				
Acinus, adenoma	. م. هد . بل							(2%)
Pharynx	*(50)	(0.77)	*(51)		*(50)		*(50)	
Squamous cell carcinoma	1	(2%)						
CARDIOVASCULAR SYSTEM					·			
Heart	(50)		*(51)		*(50)		(50)	
Leukemia mononuclear			1	(2%)				
Sarcoma			1	(2%)				
ENDOCRINE SYSTEM								
Adrenal gland, cortex	(50)		*(51)		*(50)		(50)	
Adenoma		(4%)	(0/					
Carcinoma		(= / = /					1	(2%)
Leukemia mononuclear	5	(10%)	1	(2%)			-	
Medulla, carcinoma, metastatic, kidney					1	(2%)		
Adrenal gland, medulla	(50)		*(51)		*(50)		(50)	
Leukemia mononuclear	5	(10%)	2	(4%)	1	(2%)		
Pheochromocytoma complex				(2%)				
Pheochromocytoma benign	3	(6%)	1	(2%)	2	(4%)	4	(8%)
Islets, pancreatic	(50)		*(51)		*(50)		(50)	
Adenoma						(2%)		
Carcinoma, multiple	1	(2%)						
Parathyroid gland	(39)		*(51)		*(50)		(42)	
Adenoma							1	(2%)
Pituitary gland	(49)		*(51)		*(50)		(49)	
Leukemia mononuclear			1	(2%)				
Pars distalis, adenoma		(33%)		(37%)		(30%)	22	(45%)
Pars distalis, carcinoma	1	(2%)	2	(4%)		(2%)		
Pars intermedia, adenoma						(2%)		
Pars intermedia, carcinoma						(2%)		
Thyroid gland	(50)		*(51)		*(50)		(50)	
Bilateral, C-cell, adenoma	_	11.100	-	(1.407)		(2%)		(2%)
C-cell, adenoma		(14%)	7	(14%)	4	(8%)	2	(4%)
C-cell, carcinoma	1	(2%)	-	(0.00)				
Follicular cell, adenoma				(2%)		(00)		
Follicular cell, carcinoma			1	(2%)	1	(2%)		

None

	Vehicle	Control	Low	Dose	Mid	Dose	High	Dose
GENITAL SYSTEM								
Clitoral gland	(49)		*(51)		*(50)		(47)	
Adenoma		(14%)		(8%)		(4%)		(6%)
Carcinoma				(,	1	(2%)		(2%)
Bilateral, adenoma						(2%)	-	
Ovary	(49)		*(51)		*(50)	(_,,,,,	(50)	
Carcinoma, metastatic, kidney	(10)		(01)			(2%)	(00)	
Leukemia mononuclear			1	(2%)	-	(_,,,,		
Uterus	(49)		*(51)	(=,0)	*(50)		(50)	
Leiomyosarcoma	,		(0-)			(2%)	(00)	
Leukemia mononuclear			1	(2%)	-	(=,		
Polyp stromal	2	(4%)		(14%)	2	(4%)	6	(12%)
Polyp stromal, multiple					-	(= , = ,		(2%)
Sarcoma stromal					1	(2%)	-	(2.0)
HEMATOPOIETIC SYSTEM	<u> </u>				<u></u>			
Blood	*(50)		*(51)		*(50)		*(50)	
Leukemia mononuclear	x	(4%)	(9.17		(00)		(00)	
Bone marrow	(49)	. =	*(51)		*(50)		(50)	
Femoral, leukemia mononuclear		(2%)		(8%)		(2%)	(007	
Lymph node	(50)	(2,0)	*(51)	(0,0)	*(50)	(2,0)	(50)	
Mediastinal, basosquamous tumor mal metastatic, thymus			(01)		(007			(2%)
Mediastinal, leukemia mononuclear	7	(14%)	3	(6%)				(2%)
Mesenteric, leukemia mononuclear		(14%)	-	(4%)			1	(470)
Lymph node, mandibular		(+±-70)		(4270)	*(50)		/ E A >	
Lymph node, mandibular Leukemia mononuclear	(50)	(1000)	*(51)	(190)		(40)	(50)	(00)
		(18%)	-	(12%)		(4%)		(6%)
Spleen	(50)	(000)	*(51)	(100)	*(50)	(100)	(50)	.00
Leukemia mononuclear		(20%)		(16%)	-	(4%)	-	(6%)
Thymus	(43)		*(51)		*(50)		(44)	
Basosquamous tumor malignant							1	(2%)
Leukemia mononuclear	1	(2%)						
Thymoma benign		_					1	(2%)
NTEGUMENTARY SYSTEM								
Mammary gland	(47)		*(51)		*(50)		(49)	
Adenocarcinoma	1	(2%)	2	(4%)		(4%)	2	(4%)
Adenoma						(2%)		
Fibroadenoma		(28%)	19	(37%)		(34%)	-	(29%)
Fibroadenoma, multiple		(9%)		(8%)		(10%)	14	(29%)
Skin	(49)		*(51)		*(50)		(50)	
Basosquamous tumor benign			1	(2%)				
Papilloma squamous			2	(4%)			1	(2%)
Subcutaneous tissue, fibroma			1	(2%)	1	(2%)		
Subcutaneous tissue, fibrosarcoma	1	(2%)		(4%)			2	(4%)
Subcutaneous tissue, lipoma			1	(2%)				
MUSCULOSKELETAL SYSTEM None							.	
NERVOUS SYSTEM								
Brain	(50)		*(51)		*(50)		(50)	
Astrocytoma malignant	(00)			(4%)	(00)			
Carcinoma, metastatic, pituitary gland	4 1	(2%)	4	. = /0/				
Oligodendroglioma malignant	. I	. 2 /0/			1	(2%)		
ongouonarognoma mangnant					1			

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (Continued)

·	ehicle	Control	Low	Dose	Mid 1	Dose	High	Dose
RESPIRATORY SYSTEM								
Lung	(50)		*(51)	(*(50)		(50)	
Alveolar/bronchiolar adenoma	. •		1	(2%)			1	(2%)
Basosquamous tumor malignant, metasta	tic,						,	(2%)
thymus Cominente meteototic bidness					1	(99)	1	(2%)
Carcinoma, metastatic, kidney Leukemia mononuclear	0	(18%)	z	(10%)		(2%) (2%)	2	(4%)
	3	(16%)	5	(10%)	1	(270)	4	(4270)
SPECIAL SENSES SYSTEM								
Zymbal gland	50)		*(51)		*(50)		*(50)	
Carcinoma			1	(2%)	2	(4%)		
URINARY SYSTEM		·····						
Kidney	(50)		(51)		(50)		(50)	
Leukemia mononuclear		(10%)		(8%)	(00)		(00)	
Renal tubule, adenoma	0		-		1	(2%)	3	(6%)
Renal tubule, adenoma, multiple								(4%)
Renal tubule, carcinoma					1	(2%)		(6%)
SYSTEMIC LESIONS						<u></u>	- <u></u>	
Multiple organs	*(50)		*(51)		*(50)		*(50)	
Leukemia mononuclear		(20%)		(16%)		(4%)		(6%)
ANIMAL DISPOSITION SUMMARY								
ANIMAL DISPOSITION SUMMARY Animals initially in study	30		80		80		80	
Animals initially in study	30 32		80 23		80 35			
	30 32 10		80 23 22		80 35 11		80 34 11	
Animals initially in study Terminal sacrifice	32		23		35		34	
Animals initially in study Terminal sacrifice Moribund	32 10		23 22		35 11		34 11	
Animals initially in study Terminal sacrifice Moribund Dead	32 10 7		23 22 3		35 11		34 11	
Animals initially in study Terminal sacrifice Moribund Dead Gavage death Scheduled sacrifice	32 10 7 1		23 22 3 3		35 11 4		34 11 5	
Animals initially in study Terminal sacrifice Moribund Dead Gavage death Scheduled sacrifice	32 10 7 1 30		23 22 3 3 29		35 11 4 30		34 11 5 30	
Animals initially in study Terminal sacrifice Moribund Dead Gavage death Scheduled sacrifice TUMOR SUMMARY Total animals with primary neoplasms **	32 10 7 1 30 39		23 22 3 3 29 44		35 11 4 30 		34 11 5 30 45	
Animals initially in study Terminal sacrifice Moribund Dead Gavage death Scheduled sacrifice TUMOR SUMMARY Total animals with primary neoplasms ** Total primary neoplasms	32 10 7 1 30 39 70		23 22 3 29 		35 11 4 30 40 68		34 11 5 30 45 90	
Animals initially in study Terminal sacrifice Moribund Dead Gavage death Scheduled sacrifice TUMOR SUMMARY Total animals with primary neoplasms ** Total primary neoplasms Total animals with benign neoplasms	32 10 7 1 30 39 70 34		23 22 3 29 44 88 38	<u></u>	35 11 4 30 40 68 34		34 11 5 30 45 90 42	
Animals initially in study Terminal sacrifice Moribund Dead Gavage death Scheduled sacrifice TUMOR SUMMARY Total animals with primary neoplasms ** Total primary neoplasms Total animals with benign neoplasms Total benign neoplasms	32 10 7 1 30 39 70 34 54		23 22 3 29 44 88 38 68		35 111 4 30 		34 11 5 30 45 90 42 77	
Animals initially in study Terminal sacrifice Moribund Dead Gavage death Scheduled sacrifice TUMOR SUMMARY Total animals with primary neoplasms ** Total primary neoplasms Total animals with benign neoplasms Total animals with benign neoplasms Total animals with malignant neoplasms	32 10 7 1 30 39 70 34 54 14		23 22 3 29 44 88 38 68 19		35 111 4 30 40 68 34 54 13		34 11 5 30 45 90 42 77 10	
Animals initially in study Terminal sacrifice Moribund Dead Gavage death Scheduled sacrifice TUMOR SUMMARY Total animals with primary neoplasms ** Total primary neoplasms Total animals with benign neoplasms Total benign neoplasms	32 10 7 1 30 39 70 34 54		23 22 3 29 44 88 38 68		35 111 4 30 		34 11 5 30 45 90 42 77	

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR
GAVAGE STUDY OF OCHRATOXIN A (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. ** Primary tumors: all tumors except secondary tumors *** Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF OCHRATOXIN A: VEHICLE CONTROL

STUDY	3	6 1	6 7	0 7 1	0 7 1	$\frac{0}{7}$ 5	$\frac{8}{2}$	8 4	8 6	9 3	0 9 4	0 9 4	0 9 5	0 9 7	0 9 7	9 9	0	03	0 4	0 4	0 4	0 4	0 4	0 4	1 0 4
C ARCASS ID	7 0 5	7 3 3	7 1 1	7 6 5	$\frac{7}{3}$	7 1 5	7 5 5	7 1 2	7 3 5	6 8 5	7 0 1	$7 \\ 2 \\ 5$	$\begin{array}{c} 7\\ 0\\ 2\end{array}$	$\frac{7}{2}$	7 6 4	6 9 2	6 8 2	7 5 3	6 8 1	6 8 3	6 8 4	6 9 1	6 9 3	6 9 4	6 9 5
ALIMENTARY SYSTEM																									
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	A	+	+	*	-	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+ +
Intestine large, cecum Intestine large, colon		+	÷	Ŧ	+	+	÷	+	÷	+	+	÷	Â	+	+	+	-	+	+	+	+	+	+	+	+
Intestine large, rectum	+	+	÷	+	+	+	+	M	+	+	+	÷	Ă	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	++	+	+	+	+	+	+	+	+ + +
Intestine small, ileum	+	+	+++	++	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	A A	++	+	++	++	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+
Intestine small, jejunum Liver	+	+	+	+	+	+	+	+	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear				x	x		X	X		Х						X	Х								
Mesentery																	+								
Pincreas	(+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	x	+	+	+	+	+	+	+	+
Leukema mononuclear Pha rynx												+					л								
Squamous cell carcinoma												x													
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	++++	+	+	+	+	+	+	+	+	+
Stomach, glandular Tongue	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ť	+	+	Ŧ	+	÷	Ŧ	Ŧ
rongua												•													
CARDIOVASCULAR SYSTEM					-																				
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM																				-					
Adrenal giand	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adrenal gland, cortex	+	+-	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma																	v								
Leukemia mononuclear Adrenal gland, medulla	1	+		А. 	-		X +	X +		+	4		4			X	X +	+	4	-	+	+		±.	+
Leukemia mononuclear	1	+	Ŧ	x	Ŧ	Ŧ	x	x	т	Ŧ	+	т	Ŧ	Ŧ	Ŧ	* X	x	+	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ
Pheochromocytoma benign															х						х				
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma, multiple	1.									+											м				
Parathyroid gland Pituitary gland	I Ŧ	ī	+	+	+	÷	м +	+	M +	+	M +	+	м +	+	+++++++++++++++++++++++++++++++++++++++	M +	+	+	+	+	+	M +	+	+	+
Pars distalis, adenoma	1	•	x						x		x	x	x	x				x	x	·	x		x		
Pars distalis, carcinoma																									
Thyroid gland	+	+	+	+	+	+	* X	+	x+	+	+	+	+	+	+	* X	+	+	+	+	x +	+	+	*	+
C cell, adenoma C cell, carcinoma							Δ		х							х					л			л	
GENERAL BODY SYSTEM																							~		
	1																								
GENITAL SYSTEM																									
Clitoral gland Adenoma	! +	+	+	+	x x	x+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	×	+	+ v	+	+
Ndenoma (Vvary	1 +	+	+	+	А +	А +	+	÷	+	X +	+-	+	+	+	+	+	М	X +	+	+	А +	+	X	+	+
	1 '		1	÷	÷	÷	÷.	÷	÷	÷		÷	÷	+	1	+	M	+	+	÷	+	÷	÷	÷.	÷
l terus	+	+																							

Tissue examined microscopically Not examined
 Present but not examined microscopically I insufficient tissue

M Missing A Autolysis precludes examination X Incidence of listed morphology

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

WEEKS ON STUDY	1 0 4	1 0 5	1 0 5	1 0 5		1 0 5	1 0 5	1 0 5	$ \begin{array}{c} 1 \\ 0 \\ 5 \end{array} $		1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5		1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL
CARCASS ID	7 0 3	7 0 4	7 1 3	7 1 4	$\frac{7}{2}$	7 2 2	7 2 4	7 3 1	7 3 4	7 4 1	7 4 2	7 4 3	7 4 4	7 4 5	7 5 1	7 5 2	7 5 4	7 6 1	7 6 2	7 6 3	7 7 1	7 7 2	7 7 3	7 7 4	7 7 5	TISSUES TUMORS
ALIMENTARY SYSTEM																										
Esophagus	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, colon	+	+	+	Ť	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+++	49
intestine large, rectum	+	÷	÷	+	+	+	+	+	+	÷	+	÷	+	+	+	+	÷	+	+	+	+	+	+	+	÷	48
intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	50
intestine smail, duodenum	(+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
'ntestine small, ileum 'ntestine small, jejunum	+++	+	+	+	+	+	+	+	+	+	+	+	+	+	+++	+++++++++++++++++++++++++++++++++++++++	+	+++	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+++++++++++++++++++++++++++++++++++++++	+++	49 49
Siver	+	÷	- -	+	+	+	- -	+	+	- +	Ŧ	+	Ŧ	+	+	+	÷	- -	- I	+	+	Ŧ	+	÷	÷	50
Leukemia mononuclear					-													X		x					x	10
Mesentery																										1
Pancreas			+-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear Pharynx																										
Squamous cell carcinoma																										i
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50
Tongue	- T	Ŧ	Ŧ	Ŧ	-	-	+	-	-	Ŧ	Ŧ	Ŧ	-	+		Ŧ	+	÷	Ŧ	+	÷	Ŧ	Ŧ	Ŧ	+	1
5																										
CARDIOVASCULAR SYSTEM						-																				
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
FNDOCRINE SYSTEM		~~~~~																								
Adrenal giand	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma	[х																		X			2
Leukemia mononuclear																										5
Adrenal gland, medulla Leukemia mononuciear	1 -	+	+	Ŧ	Ŧ	+	+	+	+	+	+	Ŧ	÷	+	+	+	+	+	+	+	+	÷	÷	+	÷	50 5
Pheochromocytoma benign															X											3
Islets, pancreatic	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Carcinoma, multiple								х																		1
Parathyroid gland	+	+	+	+	+	+	M	+	+	+	+	+	+	M	+	+	+	+	M	+	+	+	+	+	М	39
Pituitary gland Pars distalis, adenoma	+	+	+	+	+	×	x x	+	+	+	+	+	+	+	+	+	+ X	* X	+	+	+	+	+	+	*	49 16
Pars distalis, adenoma						Λ.	л						х				~	л			л				л	10
Phyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	50
C cell, adenoma		Х									х															7
C cell, carcinoma																		х								1
SENERAL BODY SYSTEM																										-
GENITAL SYSTEM																										
Chtoral gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	49
Adenoma	1											•					X									7
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
			+	- L	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	4	+	+	+	+	49
Uterus Polyp stromal	+	+	-	<i>p</i> .	T					•			,		x	1			,			'				2

TABLE B2.	INDIVIDUAL ANIMAL	TUMOR P	PATHOLOGY	OF	FEMALE	RATS:	VEHICLE CONTR	lOL
			(Continued)				

WEEKS ON STUDY	0 3 1	0 6 1	0 6 7	0 7 1	0 7 1	0 7 5	0 8 2	0 8 4	0 8 6	0 9 3	0 9 4	0 9 4	0 9 5	0 9 7	0 9 7	0 9 9	1 0 0	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
CARCASS ID	7 0 5	7 3 3	7 1 1	7 6 5	7 3 2	7 1 5	7 5 5	$\frac{7}{1}$	7 3 5	6 8 5	7 0 1	7 2 5	7 0 2	7 2 3	7 6 4	6 9 2	6 8 2	7 5 3	-6 8 1	6 8 3	6 8 4	6 9 1	6 9 3	6 9 4	6 9 5
HEMATOPOIETIC SYSTEM Blood Leukemia mononuclear Bone marrow Femoral, leukemia mononuclear Lymph node		+	+	+ X +	++	+	* * +	+++	+	++	+	+	+	++++	+	+	* * +	+	+	+++	+	+	++	I +	+++
Mediastinal, leukemia mononuclear Messentenc, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear Spleen Leukemia mononuclear Thymus Leukemia mononuclear	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	X X + X + X +	X + X + X + X + X + X	+ + +	X + X + X + X + X +	+ X + X + +	+ + +	+ + X +	+ + +	+ + +	+ + +	+ + M	+ + +	X + X + X + X + X +	X + X + X + X +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + M
INTEGUMENTARY SYSTEM Mammary giand Adenocarcinoma F broadenoma F broadenoma, multiple Skin Subcutaneous tissue, fibrosarcoma	+	M	+	+	+	+ X +	+	+	++	+ M	+ X +	+	+	M +	+ X +	+	++	+ X +	+ X +	+ X +	+ X +	++	+ X +	+	+
MUSCULOSKELETAL SYSTEM Bone		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Bra.n Carcinoma, metastatic, pituitary gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Lauxemia mononuclear Nose Trairea	+++++	• • •	+ + +	+ X + +	+ X + +	+++++	+ X + +	+ X + +	+ + +	+ X +	+++++	+++++	+++++	+++++	++++	+ X + +	* * * +	++++	+++++	+++++	++++	++++++	+++++	+++++	+++++
SPFCIAL SENSES SYSTEM Eai Eye Hardeman gland		+	+	+	+	+	+	++++	+++	+	+	+	+	+		м	+	+	+	+	+	+	 +	+++	+
CRINARY SYSTEM Kidney Leukemia mononuclear Umuary pladder		+	+++	+++	x +	++	++	+ X +	+++	+ * +	+ +	+	+	++	++	+ X +	+ X +	+++	++	++	+ +	+ +	+++	+	+++

WEEKS ON STUDY	$\begin{array}{c}1\\0\\4\end{array}$	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL
C ARCASS ID	7 0 3	7 0 4	7 1 3	7 1 4	7 2 1	$\frac{7}{2}$	7 2 4	7 3 1	7 3 4	7 4 1	7 4 2	7 4 3	7 4 4	7 4 5	7 5 1	7 5 2	7 5 4	7 6 1	7 6 2	7 6 3	7 7 1	7 7 2	7 7 3	7 7 4	7 7 5	TISSUES TUMORS
HEMATOPOIETIC SYSTEM Blood Leukemia mononuclear Bone marrow Femoral, leukemia mononuclear Lymph node Mediastinal, leukemia mononuclear	++++	+++	+++	+++	+++	+++	+	++++	+++	+++	+++	+	+++	++	+	+ +	+++	+ + X	+++	+++	+++	+++	+++	+++	+ + x	2 2 49 1 50 7
Mesateria industria monobucter I ymph node, mandibular Leukemia mononuclear Spleen Leukemia mononuclear Thymus Leukemia mononuclear	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+ + M	+ + M	+ + MI	+ + M	+ + +	+ + +	+ + +	+ + +	+ + M	+ + +	+ + +	+ + +	+ + +	x + x + x + x +	+ + +	+ X + X + X +	+ + +	+ + +	+ + +	+ + +	+ + + + + + +	2 50 9 50 10 43 1
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma Fibroadenoma Fibroadenoma, multiple Skin Subcutaneous tissue, fibrosarcoma	+	++	+ + X	++	+	+ X +	+	+	+	+	+ X +	++	+ X +	++	M +	+ X +	+	+ X X +	+ X +	+ X +	+	+	+	+ X +	+ X +	47 1 13 4 49 1
MUSCULOSKELETAL SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
NERVOUS SYSTEM Brain Carcinoma, metastatic, pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	, x	+	+	+	+	+	+	+	+	+	+	+	+	50 1
RESPIRATORY SYSTEM Lung Leukemia mononuclear Nose Trachea	++++++	+++++	+++++	+++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	++++	+ + +	+ + + +	+ + +	+ + +	+ + +	+++++	+ + +	+ + +	* X + +	+ + +	+ + +	+ + +	+++++	* * +	50 9 50 50
SPECIAL SENSES SYSTEM Far Eve Hardeman gland	++++	+	+	+	++++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 4 49
('RINARY SYSTEM Kidney Leukemia mononuclear Urnary bladder	+++	+ +	+++	+++	+	+ +	+++	+ +	+ +	+ +	+++	+ + +	+++	++	+	+	+++	+++	++++	++	+ +	+	+	+ +	+++	50 5 50

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF OCHRATOXIN A: LOW DOSE

WEEKS ON STUDY	0 0 1	0 2 9	0 6 0	0 6 3	0 6 5	0 6 5	0 7 5	0 7 7	0 8 3	0 8 4	0 8 9	0 9 0	0 9 0	0 9 1	0 9 1	0 9 2	0 9 3	0 9 3	0 9 4	0 9 4	0 9 5	0 9 5	0 9 7	1 0 1		1 0 3
C ARCASS ID	8 6 4	9 5 1	8 5 3	9 2 5	8 5 4	8 8 4	9 0 5	9 2 3	9 3 1	8 4 1	9 2 1	9 3 2	8 7 4	8 7 1	9 1 4	8 4 4	9 3 4	8 9 4	8 7 2	8 9 3	8 8 3	9 3 5	8 5 5	9 0 1	8 7 3	8 9 2
ALIMENTARY SYSTEM Esophagus Intestune large, Cocum Intestune large, cocum Intestune large, cocum Intestune small, duodenum Intestune small, duodenum Intestune small, jejunum Liver Leukemia mononuclear Mesentery Pancreas Leukemia mononuclear Salvary glands Stomach, forestomach Stomach, glandular	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++X + ++++	++++ + ++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + X + X + + + + + + +	++++++++++X + +++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	++++++++ X + ++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	++++++++X + ++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
CARDIOVASCULAR SYSTEM Heart Leukemia mononuclear Sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+
ENDOCRINE SYSTEM Adrenal gland, cortex Leukemia mononuclear Adrenal gland, medulla Leukemia mononuclear Pheochromocytoma complex	+++++	++++	+++++	+ + +	+++++	++++	+++++	++++++	+ + +	+++++	+ + +	++++++	+ + X	+ + X + X + X	+++++	+ + +	+++++	+++++	+ + +	+++++	+ + +	++++	+ + +	+ + +	+++	+++++
Pheochromocytoma benign Islets, pancreatic Parathyroid gland Pituitary gland Laukemia mononuclear Pars distalis, adenoma Pars distalis, carcinoma Thyroid gland C cell, adenoma Follicuiar cell, adenoma	+ + +	+ M +	+ M + +	+ + +	+++++++	+ M + +	+ + +	+ M +	+ M +	+ + + X +	+ M + X +	+ + +	+ M +	+ M +	+ + + X X X	+ + + X	+++++++	+ + + X +	+ + + X +	+ M + X +	+ + X + X + X	+ + + + X +	+ + + + X +	+ + + X +	+ + + + X +	+ + + X +
Foliicular cell, carcinoma GENERAL BODY SYSTEM None																-										
GENITAL SYSTEM Genoma Adenoma Ovary Leukemia mononuclear Uterus Leukemia mononuclear Polyp stromal	+ + +	++++	+ + +	+ + +	+ X + +	+ + + X	+ + X + X X	+ + + X	++++	+++++	++++	+ + +	+ X + +	+ + +	+ + +	M + +	+ + +	++++	+ X + +	+ + + +						
HEMATOPOIETIC SYSTEM Blood Bone marrow Femoral, leukemia mononuclear I ymph node Mediastinal, leukemia mononuclear Mesenteric, leukemia mononuclear Leukemia mononuclear	+++	+++++	+ + +	++++++	+++++++	+ + + +	+++++++	+ M M	++++++	+ + *	+ + +	+++++	+ x + x + x + + + + + + + + + + + + + +	+ x + + + + + + + + + + + + + + + + + +	++ + + +	+ X + + X +	+ + + X + X +	+++++++	+++++++	+ + + +	+++++++	++++++	+ + + + X X +	+ X + X + X + X +	++++++	+ + + + + + + + + + + + + + + + + + + +

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

WEEKS ON STUDY	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5		1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL
C ARCASS ID	8 4 2	9 2 2	8 4 3	8 4 5	8 5 1	8 5 2	8 6 1	8 6 2	8 6 3	8 6 5	8 7 5	8 8 1	8 8 2	8 8 5	8 9 1	8 9 5	9 0 2	9 0 3	9 0 4	9 1 1	9 1 2	9 1 3	9 1 5	9 2 4	9 3 3	TISSUES TUMORS
ALIMENTARY SYSTEM Esophagus Intestine large, cecum Intestine large, cecum Intestine small, duodenum Intestine small, leum Intestine small, leum Intestine small, jejunum Liver Leukemia mononuclear Mesentery Pancreas Leukemia mononuclear Salivary glands Stomach, forestomach Stomach, glandular CARDIOVASCULAR SYSTEM	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++							+										++							28 28 28 28 28 28 28 28 28 28 29 8 1 1 29 1 1 28 29 29 28 28 28 28 28
Heart Leukemia mononuclear Sarcoma	+	+ X																								28 1 1
ENDOCRINE SYSTEM Adrenal gland Adrenal gland, cortex Leukemia mononuclear Adrenal gland, medulla Leukemia mononuclear Pheochromocytoma complex Pheochromocytoma benign Isiets, pancreatic Parathyroid gland Pututary gland Leukemia mononuclear Pars distalis, adenoma Pars distalis, carcinoma Thyroid gland C-cell, adenoma Folincular cell, adenoma Folincular cell, carcinoma	+ + + + + + + + + + + + + + + + + + +	+ + + + +		+		+	+	+		+ X	+ + + X + X				+ X	+ x + x	+ X	+ X + X X				+ X	+ X	+ X + X		29 29 1 22 1 1 28 17 41 19 2 32 7 1 1
None GENITAL SYSTEM Chitorai gland Adenoma Ovary Leukemia mononuclear Uterus Leukemia mononuclear Polyp stromai HEMATOPOIETIC SYSTEM Blood Bone marrow Femoral, leukemia mononuclear	++++++	+ + +	* X	+ X	+ X	+	+				+ X							+ X								29 4 29 1 32 1 7 2 28 4 27
Lymph node Mediastinal, leukemia mononuclear Mesenteric, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear Spleen Leukemia mononuclear Fhymus	+++++	+ + + +						+																		27 3 26 6 29 8 27

						(0			uçu	.,																
WEEKS ON STUDY	0 0 1	0 2 9	0 6 0	0 6 3	0 6 5	0 6 5	0 7 5	0 7 7	0 8 3	0 8 4	0 8 9	0 9 0	0 9 0	0 9 1	0 9 1	0 9 2	0 9 3	0 9 3	0 9 4	0 9 4	0 9 5	0 9 5	0 9 7	1 0 1	1 0 3	$1 \\ 0 \\ 3$
C ARCASS ID	8 6 4	9 5 1	8 5 3	9 2 5	8 5 4	8 8 4	9 0 5	9 2 3	9 3 1	8 4 1	9 2 1	9 3 2	8 7 4	8 7 1	9 1 4	8 4 4	9 3 4	9 4	8 7 2	8 9 3	8 8 3	9 3 5	8 5 5	9 0 1	8 7 3	8 9 2
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma Fibroadenoma Fibroadenoma, multiple Skin Basosquamous tumor benign Papilloma squamous	+	+	+	+ X +	+	+ X +	+	+	+	+	M +	+ +	+	+ X +	+	+	+	+	+ X +	+	+	+ X +	+ X +	+ X +	+ X +	+
Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, lipoma MUSCULOSKELETAL SYSTEM							x					X														
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Astrocytoma malignant	+	+	+	+	+	+	+	*	+	+	F	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma	+	+	÷	+	÷	+	+	+	+	+	۲	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear Nose Trachea	+++++++++++++++++++++++++++++++++++++++	+ +	X + +	x + +	+ +	+ +																				
SPECIAL SENSES SYSTEM Eye Hardeman gland Zymoal gland Careinoma	+	+	+	+	+	+	+	+	M + X	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+
URINARY SYSTEM Kidaey Leukemia mononuclear Urinary bladder	 + +	+++	+ +	+ M	+	++	++	+ +	++	++	++	+	* *	+ +	++	* *	* *	+	+++	+ +	+	+++	++	* X +	+++	++

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

											acu	·,														
WEEKS ON STUDY	1 0 3	1 0 4	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL														
CARCASS ID	8 4 2	9 2 2	8 4 3	8 4 5	8 5 1	8 5 2	8 6 1	8 6 2	8 6 3	8 6 5	8 7 5	8 8 1	8 8 2	8 8 5	8 9 1	8 9 5	9 0 2	9 0 3	9 0 4	9 1 1	9 1 2	9 1 3	9 1 5	9 2 4	9 3 3	TISSUES
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma Fibroadenoma Fibroadenoma, multiple Skin Basosquamous tumor benign Papilloma squamous Subcutaneous tissue, fibroara Subcutaneous tissue, fibroarcoma Subcutaneous tissue, fibroarcoma Subcutaneous tissue, fibroarcoma	+ X +	M		+ X		+ X	+ X	+ X	+ X	+ X			+ X X	* X	+ X	+ X	+ X + X			+ X		+ x + x x	+ X	+ X	+ X	40 2 19 4 31 2 1 2 1
MUSCULOSKELETAL SYSTEM Bone	+	+											_			-										28
NERVOUS SYSTEM Brain Astrocytoma malignant	+ X	+																								28 2
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Leukemia mononuclear Nose Trachea	+++++	++++				+									+					+		· · · - ·		+		$ \begin{array}{r} 32 \\ 1 \\ 5 \\ 28 \\ 28 \end{array} $
SPECIAL SENSES SYSTEM Eye Harderian gland Zymbal gland Carcinoma	+	+											+													$\begin{array}{c}2\\27\\1\\1\end{array}$
URINARY SYSTEM Kidney Leukemia mononuclear Urnary bladder	++	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51 4 27

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF OCHRATOXIN A: MID DOSE

WEEKS ON STUDY	0 4 6	0 5 3	0 6 7	0 7 3	0 7 3	0 8 1	0 8 5	0 8 9	0 9 1	0 9 5	0 9 5	0 9 6	0 9 6	1 0 0	1 0 0	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	$ \begin{array}{c} 1 \\ 0 \\ 4 \end{array} $	1 0 5	1 0 5
CARCASS ID	1 0 5 5	1 0 7 4	1 0 6 4	1 0 0 5	1 0 9 5	1 0 9 3	1 0 4 3	1 0 7 1	$ \begin{array}{c} 1 \\ 0 \\ 5 \\ 2 \end{array} $	1 0 2 4	$ \begin{array}{c} 1 \\ 0 \\ 2 \\ 2 \end{array} $	1 0 1 5	1 0 4 1	1 0 8 1	1 0 4 4	1 0 0 1	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 2 \end{array} $	1 0 0 3	1 0 0 4	1 0 1 1	1 0 1 2	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 3 \end{array} $	1 0 1 4		$\frac{1}{2}$
ALIMENTARY SYSTEM																									
Esophagus Intestine large	++++	++	+	+	+	+	+	+	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++										
Intestine large, cecum	1 +	Ă	+	+	+	+	+	+	+	+	+	+	+	+	+										
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+										
Intestine large, rectum Intestine small	+	A +	+	+	+	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+++	++++	+										
Intestine small, duodenum	+	A	+	÷	+	+	+	+	+	+	÷	÷	÷	÷	÷										
Intestine small, ileum	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+										
Intestine small, jejunum Liver	+++	+++	+	+ +	+++++++++++++++++++++++++++++++++++++++	++	+++++++++++++++++++++++++++++++++++++++	++	++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+	++++	++	+++++++++++++++++++++++++++++++++++++++				+	+	+				
Carcinoma, metastatic, kidney	X																								
Leukemia mononuclear Mesentery	1.											X	X												
Carcinoma, metastatic, kidney	x +																								
Pancreas	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+										
Carcinoma, metastatic, kidney Salivary glands	X +	т	ъ	ъ	<u>ـ</u>	Ŧ	L.	Ŧ	۰	ـ	ъ	ъ	۰	1	ъ										
Stomach	+	+	+	+	+	+	+	÷	+	+	÷	+	+	÷	+										
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+										
Stomach, glandular Tongue	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+										
CARDIOVASCULAR SYSTEM															_										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+										
ENDOCRINE SYSTEM																									
Adrenal gland Adrenal gland, cortex	+++++	+	+	+	+	+	+	+	+	+	+	+	+	+	+										
Medulla, carcinoma, metastatic, kidney	X	*	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	т	т	Ŧ	Ŧ	т	Ŧ	т										
Adrenal gland, medulla		+	+	+	+	+	+	+	+	+	+	+	#	+	+										
Leukemia mononuclear Pheochromocytoma benign													x		x										
Islets, pancreatic	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+										
Adenoma Parathyroid gland	1	-	т		-	1	+	L.	X	ъ	м	<u>ـ</u>	-	м	т.										
Pituitary gland	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	÷	+			+	+	+	+		+	+
Pars distalis, adenoma							X							x					X	X	х	Х			
Pars distalis, carcinoma Pars intermedia, adenoma												x													
Pars intermedia, carcinoma									X																
Thyroid gland Bilateral, C-cell, adenoma	1 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+					+					
C cell, adenoma	ì												x		X					х					
Follicular cell, carcinoma											X														
GENERAL BODY SYSTEM None										·															
GENITAL SYSTEM																									
Clitoral gland	+	+	+	+	+	+	+	+	М	+	+	+	М	М	+			+							
Adenoma Carcinoma	1																								
Bilateral, adenoma	1																								
Ovary	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+							
Carcinoma, metastatic, kidney Uterus	X +	+	÷	+	+	+	+	+	+	+	+	+	+	+	+								+		
Leiomyosarcoma	1	,			1.			'		,	,	•	'										x		
Polyp stromal	ĺ			v									X												
Sarcoma stromal				х																					

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: MID DOSE ((

Con	itinu	1ed)	
-----	-------	------	--

WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	$\frac{1}{0}$ 5	1 0 5	1 0 5	TOTAL
CARCASS ID	1 0 2 5	1 0 3 1	$ \begin{array}{c} 1 \\ 0 \\ 3 \\ 2 \end{array} $	1 0 3 3	1 0 3 4	1 0 3 5	1 0 4 2	1 0 4 5	1 0 5 1	1 0 5 3	1 0 5 4	1 0 6 1	$ \begin{array}{c} 1 \\ 0 \\ 6 \\ 2 \end{array} $	1 0 6 3	1 0 6 5	1 0 7 2	1 0 7 3	1 0 7 5	1 0 8 2	1 0 8 3	1 0 8 4	1 0 8 5	1 0 9 1	1 0 9 2	1 0 9 4	TISSUES TUMORS
ALIMENTARY SYSTEM Esophagus Intestine large, cecum Intestine large, colon Intestine large, colon Intestine large, cecum Intestine small, duodenum Intestine small, lieum Intestine small, jejunum Liver Carcinoma, metastatic, kidney Leukemia mononuclear Mesentery Carcinoma, metastatic, kidney Pancreas Carcinoma, metastatic, kidney Salivary glands Stomach, forestomach Stomach, glandular Tongue								+												+						15 15 14 15 14 14 15 14 14 15 19 1 1 2 1 1 1 2 1 1 1 5 15 15 15 1 5 1
CARDIOVASCULAR SYSTEM Heart															<u> </u>											15
ENDOCRINE SYSTEM Adrenai gland, cortex Medulia, carennoma, metastatic, kidney Adrenai gland, medulla Leukemia mononuclear Pheochromocytonia bengn Islets, pancreatic Adenoma Parathyroid gland Pitutary gland Pars distalis, adenoma Pars intermedia, carennoma Pars intermedia, carennoma Thyroid gland Bilaterai, C ceil, adenoma C cell, adenoma Follicular cell, carennoma	+		+ X			+ X	+ x + x	* X						+ X		+	+ X	+	+ X	+ X		* x	+ + X + X + X			16 15 1 15 1 2 14 1 13 35 15 1 1 1 18 1 1 4 1
GENERAL BODY SYSTEM None GENITAL SYSTEM Chtoraigland Adenoma Bilateral, adenoma Ovary Carcinoma, metastatic, kidney Uterus Leiomyosarcoma Polyp stromai Sarcoma stromai	* X	-	+		+ X				+					+				+			+ X +	+ X	* x			17 2 1 1 19 1 19 1 2 1 2 1

TABLE B2.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	FEMALE	RATS:	MID D	OSE
				(Continued	d)				

WEEKS ON STUDY	0 4 6	0 5 3	0 6 7	0 7 3	0 7 3	0 8 1	0 8 5	0 8 9	0 9 1	0 9 5	0 9 5	0 9 6	0 9 6	1 0 0	1 0 0	1 0 4	1 0 5	1 0 5							
CARCASS ID	1 0 5 5	1 0 7 4	1 0 6 4	1 0 0 5	-1 0 9 5	1 0 9 3	1 0 4 3	1 0 7 1	1 0 5 2	1 0 2 4	1 0 2 2	1 0 1 5	1 0 4 1	1 0 8 1	1 0 4 4	1 0 0 1	1 0 0 2	1 0 0 3	1 0 0 4	1 0 1 1	1 0 1 2	1 0 1 3	1 0 1 4	1 0 2 1	1 0 2 3
HEMATOPOIETIC SYSTEM Bone marrow Femoral, leukemia mononuclear Lymph node Lymph node, mandibular Leukemia mononuclear Spleen Leukemia mononuclear Thymus	+ + + + + M	+ + + + M	+ ++ +	+ ++ ++	+ ++ + +	+ ++ +	+++++++	+ + + +	+ + + + M	+ + + +	+ + + + +	+ + + X + X +	+ X + + X + X +	+ + + + M	+ + + +										+
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma Adenoma Fibroadenoma Fibroadenoma, multiple	+	+	M	+	+	+	+	+	+	x x x	+	+ x	+ X	+ X	+			+	+ X	+ ¥			+ X	+ X	
Sk.n Sibcutaneous tissue, fibroma MYISCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	* +	+	+	+	+	+	+	+										
NERVOUS SYSTEM Brain Oligodendroghoma malignant	+	+	+	+	+	* x	+	+	+	٠	+	+	+	+	+										
RESPIRATORY SYSTEM Lung Carcinoma, metastatic, kidney Leukemia mononuclear Nose Trachea	+ X + +	+++++	+++++	+++++	++++	+ + +	+++++	+++++	++++	+ + +	++++++	++++	+ X + +	+++++	+++++							. <u> </u>		•	+
SPECIAL SENSES SYSTEM Eye Harcenan gland Zymbal gland Carcinoma	+	м	+ + + X	+	+ + X	+	+	+	+	+	+	+	+ +	+	+								+		
URINARY SYSTEM Kudney Renai tubule adenoma Renai tubule, carcunoma Ur nary bladder	+ ¥ +	++	+	+	++	++	+	+ +	* * +	++	+	+	++	+	++	+	+	+	+	+	+	+	*	+	+

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: MID DOSE (Continued)

WEEKS ON STUDY CARCASS ID	$ \begin{array}{c} 1 \\ 0 \\ 5 \\ 1 \\ 0 \\ 2 \\ 5 \\ 5 \end{array} $	1 0 5 1 0 3 1	1 0 5 1 0 3 2	1 5 1 0 3 3	1 0 5 1 0 3 4	1 5 1 0 3 5	1 0 5 1 0 4 2	1 0 5 1 0 4 5	1 0 5 1 0 5 1	1 0 5 1 0 5 3	1 0 5 1 0 5 4	1 0 5 1 0 6 1	1 0 5 1 0 6 2	1 0 5 1 0 6 3	1 0 5 1 0 6 5	1 0 5 1 0 7 2	1 0 5 1 0 7 3	1 5 1 0 7 5	1 0 5 1 0 8 2	1 0 5 1 0 8 3	1 0 5 1 0 8 4	1 0 5 1 0 8 5	1 0 5 1 0 9 1	1 5 1 9 2	1 0 5 1 0 9 4	TOTAL TISSUES TUMORS
HEMATOPOIETIC SYSTEM Bone marrow Femoral, leukemia mononuclear Lymph node Lymph node, mandibular Leukemia mononuclear Spleen Leukemia mononuclear Thymus																						+				15 1 16 15 2 16 2 11
INTEGUMENTARY SYSTEM Mammary giand Adenocarcinoma Fibroadenoma Fibroadenoma Fibroadenoma, multiple Skin Subcutaneous tissue, fibroma	+ X		* x x	+ X X	_	+ X		+ X			+ X	+ X	+ X		+ X		+			+ X	+ X	+ X		+ X	+ X	34 2 1 17 5 16 1
MUSCULOSKELETAL SYSTEM Bone																	_									15
NERVOUS SYSTEM Brain Oligodendroglioma malignant																										15 1
RESPIRATORY SYSTEM Lung Carrinoma, metastatic, kidney Leukemia mononuclear Nose Trachea										+							+									18 1 1 15 15
SPECIAL SENSES SYSTEM Eye Harderian gland Zvmbal gland Carrinoma			+												-	+										5 14 2 2
URINARY SYSTEM Kidney Renal tubule, adenoma Renal tubule, carcinoma Unnary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	50 1 1 15

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARGAVAGE STUDY OF OCHRATOXIN A: HIGH DOSE

WEEKS ON STUDY	0 4 4	0 5 8	0 6 0	0 6 3	0 7 5	0 7 5	0 8 0	0 8 2	0 9 0	0 9 0	0 9 3	0 9 5	1 0 0		1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4		1 0 5
C ARCASS ID		1 1 8 4	1 2 5 3	$\frac{1}{2}$ $\frac{2}{1}$	1 1 6 5	1 2 2 5	1 2 5 2	1 7 1	$\frac{1}{2}$ $\frac{2}{3}$	$\frac{1}{2}$ $\frac{1}{2}$	1 2 4 2	$\frac{1}{2}$ $\frac{3}{2}$	$\frac{1}{2}$ $\frac{1}{3}$	1 1 7 4	1 1 7 3	1 6 1	1 1 6 2	1 6 3	1 1 6 4	$\frac{1}{7}$	1 1 7 5	1 1 8 1	$\frac{1}{8}$	1 1 8 3	1 1 8 5
ALIMENTARY SYSTEM Fsophagus Intestine large Intestine large, cecum Intestine large, cecum Intestine small, codenum Intestine small, diodenum Intestine small, diodenum Intestine small, lejunum Liver Leukemia mononuclear Mesentery Pancreas Acinus, adenoma Salivary glands Stomach Stomach, forestomach Stomach giandular	+++++++++++++++++++++++++++++++++++++++	+ + + + A A + + A + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ M M + + M	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Adrenal gland, cortex Carcinoma Adrenal gland, cortex Pheochromocytoma bengn Islets, pancreatic Parathyroid gland Adenoma Pituitary gland Pars distails, adenoma	+ + + + M. +	++++++	+ + + X + + + +	+ + + + +	+ + + + + X	+ + + + M +	+ + + + + + X	+ + + M I	++ ++ ++++	+ + + + + X	+ + + + M +	+ + + + + +	+ + X + + + + X + + X	+ + + + + + X	+ + + X + + + X + + X	+ + + + + +	+ + + + + +	+ + + + M + X	+ + + + + + X	* + + + + +	+ + + X + + X + + X	+ + + + + + X	++ ++ ++ + X	++ + + + + X	+ + + + + + X
Thyroid gland Bilateral, C cell, adenoma C cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+ X	+	+	+	+	+	+	+	+	+	+
GENERAL BODY SYSTEM None																									
GENITAL SYSTEM Clitoral gland Adenoma Carcinoma Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+ X + +	M. +	+	+	+	M +	+	* x +	+	+	+	+	++
l'terus Polyp stromal Polyp stromal, multiple	x x	+	÷	+	+	÷	+	+	+ +	+ +	+ +	+ + X	+	+	* x	+	* x	+	+	+	+	+	+	+	+

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

WEEKS ON STUDY	1	1	1	1	1	1	1	1	1	1	1	1	1	1	10	1	1	1	1	1	1	1 0	1	1	1	
31001	0	5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	0 5	1
		9	9	0	0		0	0		5	5	5	5	5	3	5	9	J	э	J	3	5	э	5	5	TOTAL
	T	- T	1	1	T	1	T	T	1	1	1	-1	T	- I	1	1	1	1	1	1	1	1	- <u>1</u> -	1	<u> </u>	Iome
CARCASS	Ĩ	ī	ī	ī	1	$\bar{2}$	2	$\overline{2}$	2	$\overline{2}$	2	$\overline{2}$	2	2	2	2	2	2	2	2	2	2	2	2	2	TISSUES
ID	9	9	9	9	9	0	0	0	0	1	1	1 5	2	2	3	3 3	3	3	4	4	4	4	5	5	5	TUMORS
	1	2	3	4	5	2	3	1	4	ı	4	5	2	4	1	3	4	5	1	3	4	5	1	4	5	
LIMENTARY SYSTEM																							···			
Sophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ntestine large	+	+	÷	+	÷	+	÷	+	+	÷	+	+	+	÷	+	+	÷	+	+	+	+	+	+	+	+	49
ntestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ntestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
ntestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	M +	47
ntestine small ntestine small, duodenum	+	+	+	+	÷.	+	+	+	+	+	+	+	Ĩ	. <u>+</u>	1	+	÷	÷.	÷.	Ŧ	-	Ŧ	÷	+	+	49
ntestine small, ileum	1 7	÷	+	÷	+	+	÷	+	÷	÷	+	+	÷	÷	+	÷	÷	+	÷	+	÷	+	÷	+	+	48
ntestine small, jejunum	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	÷	+	+	+	+	+	+	49
lver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear	ł																		х							2
lesentery	[50
ancreas Acinus, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	Ŧ	+	+	Ŧ	Ŧ	+	1
alivary glands	1 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
tomach	+	÷	+	÷	÷	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
tomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-49
tomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ARDIOVASCULAR SYSTEM																										
JARDIOVASCULAR SISTEM	+	L			+	+	Ŧ	+	+	-	-	Ŧ	+	Ŧ	+	<u>ь</u>	1	-	_	L.	-	+	+	+	+	50
lean	-	-	-	-	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	-	Ŧ	÷	T	Ŧ					r						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
INDOCRINE SYSTEM										-											~					
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
drenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Carcinoma	1																									1 50
idrenai giand, medulla Pheochromocytoma benign	+	+	+	+	+	x x	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	÷	
slets, pancreatic	+	+	+	+	+	<u>^</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
arathyroid gland	+	÷	+	+	÷	÷	÷	Ń	м́	÷	+	+	÷	+	M	+	÷	+	+	÷	+	+	+	+	+	42
Adenoma	1			X																						1
ntuitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pars distalis, adenoma					х			X			X	X							Х	х	х	х		X		22
hyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Bilateral, C cell, adenoma C cell, adenoma																								`		2
U ten, auellulla																										~
ENERAL BODY SYSTEM		~~~~															·									-
None																										
																		_								.
ENITAL SYSTEM							. –		. –		. –															17
htoral giand Adenoma	x ⁺	+	+	+	+	+	+	+	+	x x	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	47
Adenoma Carcinoma	X									х																3
	+	+	+	.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
	1 +	+	+	+	+	Ŧ	+	+	+	÷	+	+	+	÷	+	+	+	+	+	÷	+	+	+	+	+	
	1				x		•	·		•	x						,									6
Polyp stromai, multiple	ļ													х												1
Ovary Uterus Polyp stromal Polyp stromai, multiple	+++	+ +	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	+ +	+ + X	+ +	+ +	+ +	++	+ +	+ +	+ +	+	+	+ +	+	50 6

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

WEEKS ON STUDY	0 4 4	0 5 8	0 6 0	0 6 3	0 7 5	0 7 5	0 8 0	0 8 2	0 9 0	0 9 0	0 9 3	0 9 5	1 0 0	$\begin{array}{c}1\\0\\2\end{array}$	1 0 3	1 0 4	$1 \\ 0 \\ 4$	1 0 4	1 0 4	1 0 4	$ \begin{array}{c} 1 \\ 0 \\ 4 \end{array} $	1 0 4	1 0 4	1 0 4	1 0 5
CARCASS ID	1 2 0 5	1 1 8 4	1 2 5 3	$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 1 \end{array} $	1 1 6 5	1 2 2 5	$\frac{1}{2}$ 5 2	1 1 7 1	$\frac{1}{2}$ $\frac{2}{3}$	$\frac{1}{2}$ $\frac{1}{2}$	$ \frac{1}{2} \frac{4}{2} $	$ \frac{1}{2} 3 2 $	1 2 1 3	1 1 7 4	1 1 7 3	1 1 6 1	$1 \\ 1 \\ 6 \\ 2$	1 1 6 3	1 6 4	1 1 7 2	1 1 7 5	1 1 8 1	1 1 8 2	1 1 8 3	1 1 8 5
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Mediastinal, basosquamous tumor	- + +	+ +	+ +	+++	+ +	+ +	+ +	+ +	+ +	+	+++	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+++	+ +	++++	+++	+++++
mahgnant, metastatic thymus Mediastinal, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear	X +	+	+	+	+	+	+	x + x	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+
Spieen Leukemia mononuclear Thymus Basosquamous tumor malignant	+ + X	+ +	+	+ +	+ +	+ M	+ +	+ * +	+ +	+ I	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +	+ +	+ +	+	+ +	+ М	+	+ +
Thymoma benign INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma	+	м	+	+	+	+	+	+	+ X	 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenocarchoma Fibroadenoma Fibroadenoma, multiple Skin Papilloma squamous	+	+	+	+	+	+	+	+	л +	X. +	X +	X +	+	Y +	х +	X +	+	x +	X +	X +	۲ +	х +	+	X +	х +
Subcutaneous tissue, fibrosarcoma MUSCULOSKELETAL SYSTEM	-										X				-										
Bone NERVOUS SYSTEM Brain	+	+ +	+	+ +	+	+	+	+	+ +	+	+	+	+	+	+	+ +	+	+	+	+ +	+ +	+	+	+	+
RESPIRATORY SYSTEM Lang Alveolar/bronchiolar agenoma	-	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Basosquamous tumor malignant, inetastatic, thymus L+ ikemia mononuclear Nose	x	+	+	+	+	+	+	X	+		+	+	+	+	÷	+	+	+	÷		٠	+-	+	+	+
Teirnea SPFCIAL SENSES SYSTEM Eve	- +	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+		•	*	+	+	+	+
Harderian gland URINARY SYSTEM	- +	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+
K dney Renaltubue adenoma Renaltubue, adenoma multiple Renaltubue, carcinoma	+	+	+	+	+	+	+	+	+	F	+	+	+	+	+	+	+	+ X	+ Y	+	+	+	, X	+	× Y
Urinary bladder	+	+	+	+	+	+	+	+	+	۲	+	+	+	+	+	+	+	٠	+	+	+	+	+	+	÷

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

WEEKS ON STUDY	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5		1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	TOTAL
CARCASS ID	1 1 9 1	1 1 9 2	1 1 9 3	1 1 9 4	1 1 9 5	$ \begin{array}{c} 1 \\ 2 \\ 0 \\ 2 \end{array} $	1 2 0 3	1 2 0 1	1 2 0 4	1 2 1 1	1 2 1 4	1 2 1 5	$\frac{1}{2}$	1 2 2 4	$\frac{1}{2}$ 3 1	1 2 3 3	1 2 3 4	$\frac{1}{2}$ 3 5	$\frac{1}{2}$ 4 1	1 2 4 3	1 2 4 4	1 2 4 5	$\frac{1}{2}$ 5 1	1 2 5 4	1 2 5 5	TISSUES TUMORS
HEMATOPOIETIC SYSTEM Rone marrow Lymph node Mediastinal, basosquamous tumor	++++	+++	+ +	+++++	+ +	+++	+ +	++++	+ +	++++	++++	+ +	+++	+ +	+++	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	50 50
malgnaat, metastatic, thymus Mediastinal, leukemia mononuclear Lymph node, mandibular Leukemia mononuclear Spieen Leukemia mononuclear	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ X + x	+ +	+ +	+ +	+ +	+ +	+ X + X	1 50 3 50 3
Jasosquamous tumor malignant Thymus	+	+	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+ X	+	+	I	+	М	+	44 1 1
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma Fibroadenoma, multiple Skin Papilloma squamous Subcutaneous tissue, fibrosarcoma	+ X +	+ X +	+ X +	+ + X	+ X +	+	+	+ X +	+ X +	+ X +	+ X + X	+ X +	+	+	+ X +	+	+ X +	+ X +	* X	+	+	+ X +	+ X +	+ X +	+	49 2 14 14 50 1 2
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
RESPIRATORY SYSTEM Lung Alveolar/bronchiolar adenoma Basosquamous tumor malignant,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	+	50 1
metastatic, thymus Leukemia mononuciear Nose Trachea	++++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	X + +	1 2 50 50
SPECIAL SENSES SYSTEM Eve Hardeman gland	+	+	+	+	+	+	+	+	+	+	+	+++++	+	+	+	+	+	+		+	+	+	+	+	+	4 50
URINARY SYSTEM Kidney Renal tubule, adenoma Benal tubule, adenoma, multiple	* X	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	-	+	+	+	+	50 3 2
Renal tubule, carcinoma Unnary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	¥ +	+	+	X +	+	+	۴	3 50

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A

	Vehicle Control	21 μg/kg	70 µg/kg	210 µg/kg
Adrenal Gland Medulla: Pheochrom	locytoma			
Overall Rates (a)	3/50 (6%)	(b,c) 1/27 (4%)	(b) 2/15 (13%)	4/50 (8%)
Adjusted Rates (d)	8.9%			10 2%
Terminal Rates (e)	2/32 (6%)			2/35 (6%)
Day of First Observation	675			415
Life Table Test (f)				P = 0.537
Logistic Regression Test (f)				P = 0.500
Fisher Exact Test (f)				P = 0.500
Clitoral Gland: Adenoma				
Overall Rates (a)	7/49 (14%)	(b) 4/29 (14%)	(b) 3/17 (18%)	3/47 (6%)
Adjusted Rates (d)	18.3%			91%
Terminal Rates (e)	3/31 (10%)			3/33 (9%)
Day of First Observation	497			728
Life Table Test (f)				P = 0.150N
Logistic Regression Test (f)				P = 0.175N
Fisher Exact Test (f)				P = 0.176N
Clitoral Gland: Adenoma or Carcino	oma			
Overall Rates (a)	7/49 (14%)	(b) 4/29 (14%)	(b) 4/17 (24%)	4/47 (9%)
Adjusted Rates (d)	18.3%			11.5%
Terminal Rates (e)	3/31 (10%)			3/33 (9%)
Day of First Observation	497			699
Life Table Test (f)				P=0.242N
Logistic Regression Test (f)				P = 0.285N
Fisher Exact Test (f)				P = 0.287 N
Kidney Tubule: Adenoma				
Overall Rates (a)	0/50 (0%)	0/51 (0%)	1/50 (2%)	5/50(10%)
Adjusted Rates (d)	0.0%	0.0%	2 4%	14.3%
Terminal Rates (e)	0/32 (0%)	0/23 (0%)	0/35(0%)	5/35(14%)
Day of First Observation			637	728
Life Table Tests (f)	P = 0.003	(g	P = 0.505	P = 0.041
Logistic Regression Tests (f)	P = 0.002	(g)	P = 0.493	P = 0.041
Cochran-Armitage Trend Test (f)	P = 0.001	.0		
Fisher Exact Test (f)		(g)	P = 0.500	P = 0.028
Kidney Tubule: Carcinoma				
Overall Rates (a)	0/50 (0%)	0/51 (0%)	1/50 (2%)	3/50 (6%)
Adjusted Rates (d)	0.0%	0.0%	2.0%	8.6%
Terminal Rates (e)	0/32 (0%)	0/23(0%)	0/35 (0%)	3/35 (9%)
Day of First Observation			319	728
Life Table Tests (f)	P = 0.031	(g)	P = 0.504	P = 0.137
Logistic Regression Tests (f)	P = 0.017	(g)	P = 0.500	P = 0.137
Cochran-Armitage Trend Test (f)	P = 0.021	` 0'	- 0.000	
Fisher Exact Test (f)		(g)	P = 0.500	P = 0.121
Kidney Tubule: Adenoma or Carcin	oma			
Overall Rates (a)	0/50 (0%)	0/51 (0%)	2/50 (4%)	8/50 (16%)
Adjusted Rates (d)	0.0%	0 0%	43%	22 9%
Terminal Rates (e)	0/32(0%)	0/23 (0%)	0/35(0%)	8/35 (23%)
Day of First Observation	0.02 (0.0)	0/20(0/0)	319	728
Life Table Tests (f)	P<0.001	(a)	P = 0.245	P = 0.006
		(g) (g)	P = 0.245 P = 0.180	P = 0.006 P = 0.006
Logistic Regression Tests (f) Cochran-Armitage Trend Test (f)	P<0.001	(g)	r = 0.180	r =0.006
Cocoran-Armitage trend lest (f)	P<0.001			
Fisher Exact Test (f)		(g)	P = 0.247	P = 0.003

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (Continued)

	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg
Mammary Gland: Fibroadenoma	<u> </u>			
Overall Rates (a)	17/50 (34%)	23/51 (45%)	22/50(44%)	28/50 (56%)
Adjusted Rates (d)	46.6%	70.5%	56.3%	69.9%
Terminal Rates (e)	13/32 (41%)	14/23 (61%)	18/35(51%)	23/35 (66%
Day of First Observation	525	436	659	630
Life Table Tests (f)	P = 0.205	P = 0.021	P = 0.313	P = 0.052
Logistic Regression Tests (f)	P = 0.046	P = 0.096	P = 0.234	P = 0.020
Cochran-Armitage Trend Test (f)	P = 0.030			
Fisher Exact Test (f)		P = 0.174	P = 0.206	P = 0.022
Mammary Gland: Adenoma, Fibroa	denoma, or Adenoca	rcinoma		
Overall Rates (a)	17/50 (34%)	24/51(47%)	22/50(44%)	30/50 (60%
Adjusted Rates (d)	46.6%	73.8%	56.3%	73.1%
Terminal Rates (e)	13/32 (41%)	15/23 (65%)	18/35(51%)	24/35 (69%
Day of First Observation	525	436	659	626
Life Table Tests (f)	P = 0.127	P = 0.012	P = 0.313	P = 0.024
Logistic Regression Tests (f)	P = 0.019	P = 0.063	P = 0.234	P = 0.007
Cochran-Armitage Trend Test (f)	P = 0.012			
Fisher Exact Test (f)		P = 0.128	P = 0.206	P = 0.008
Pituitary Gland/Pars Distalis: Ader	ioma			
Overall Rates (a)	16/49 (33%)	(b) 19/41 (46%)	(b) 15/35 (43%)	22/49 (45%
Adjusted Rates (d)	40.0%	54.3%		53.4%
Terminal Rates (e)	9/32 (28%)			16/35 (46%
Day of First Observation	466			520
Life Table Test (f)				P = 0.246
Logistic Regression Test (f)				P = 0.149
Fisher Exact Test (f)				P = 0.150
Pituitary Gland/Pars Distalis: Ader	ioma or Carcinoma			
Overall Rates (a)	17/49 (35%)	(b) 20/41 (49%)	(b) 16/35 (46%)	22/49 (45%
Adjusted Rates (d)	42.6%			53.4%
Terminal Rates (e)	10/32 (31%)			16/35 (46%
Day of First Observation	466			520
Life Table Test (f)	400			P = 0.312
Logistic Regression Test (f)				P = 0.204
Fisher Exact Test (f)				P = 0.205
Subcutaneous Tissue: Fibroma or 1	Fibrosarcoma			
Overall Rates (a)	1/50 (2%)	3/51 (6%)	1/50 (2%)	2/50 (4%)
Adjusted Rates (d)	3.1%	8.8%	2.3%	5.3%
Terminal Rates (e)	1/32 (3%)	1/23 (4%)	0/35 (0%)	1/35 (3%)
Day of First Observation	728	525	622	645
Life Table Tests (f)	P = 0.623	P = 0.249	P = 0.745N	P = 0.518
Logistic Regression Tests (f)	P = 0.574	P = 0.243 P = 0.317	P = 0.762	P = 0.504
Cochran-Armitage Trend Test (f)	P = 0.574 P = 0.580	1 -0.011	1 - 0.104	0.004
Fisher Exact Test (f)	1 -0.000	P=0.316	P = 0.753 N	P=0.500
Thyroid Gland: C-Cell Adenoma				
Overall Rates (a)	7/50 (14%)	(b) 7/32 (22%)	(b) 5/18 (28%)	3/50 (6%)
Adjusted Rates (d)	18.9%		(0)010(20/0)	8.0%
Terminal Rates (e)	$\frac{18.9\%}{4/32(13\%)}$			1/35(3%)
Day of First Observation				659
	568			P = 0.144N
				E = 0.144D
Life Table Test (f) Logistic Regression Test (f)				P = 0.157 N

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (Continued)

	Vehicle Control	21 µg/kg	70 µg/kg	210 µg/kg
Thyroid Gland: C-Cell Adenoma	or Carcinoma			
Overall Rates (a)	8/50 (16%)	(b) 7/32 (22%)	(b) 5/18 (28%)	3/50 (6%)
Adjusted Rates (d)	21.8%			8.0%
Terminal Rates (e)	5/32 (16%)			1/35 (3%)
Day of First Observation	568			65 9
Life Table Test (f)				P = 0.090N
Logistic Regression Test (f)				P = 0.099 N
Fisher Exact Test (f)				P = 0.100 N
Uterus: Stromal Polyp				
Overall Rates (a)	2/49 (4%)	(b) 7/32 (22%)	(b) 2/19 (11%)	7/50 (14%)
Adjusted Rates (d)	5.7%			17.8%
Terminal Rates (e)	1/32 (3%)			4/35(11%)
Day of First Observation	673			305
Life Table Test (f)				P = 0.105
Logistic Regression Test (f)				P = 0.085
Fisher Exact Test (f)				P = 0.085
Hematopoietic System: Mononucl	ear Leukemia			
Overall Rates (a)	10/50 (20%)	(b,h) 8/51 (16%)	(b,i) 2/50 (4%)	3/50(6%)
Adjusted Rates (d)	23.8%			7.9%
Terminal Rates (e)	3/32 (9%)			2/35(6%)
Day of First Observation	495			568
Life Table Test (f)				P = 0.039N
Logistic Regression Test (f)				P = 0.037 N
Fisher Exact Test (f)				P = 0.036N

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Incomplete sampling of tissues

(c) A complex pheochromocytoma was also observed.

(d) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(e) Observed tumor incidence at terminal kill

(g) No P value is reported because no tumors were observed in the dosed and vehicle control groups.

(h) Twenty-nine livers and 29 spleens were examined microscopically.

(i) Nineteen livers and 16 spleens were examined microscopically.

⁽f) Beneath the vehicle control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the vehicle controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these issions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

TABLE B4a. HISTORICAL INCIDENCE OF RENAL TUBULAR CELL TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Incidence of Adenomas in Vehicle Controls				
Historical Incidence at Battelle Columbus Laboratories					
Chlorobenzene	0/50				
1,2-Dichlorobenzene	0/49				
1,4-Dichlorobenzene	0/49				
Benzene	0/50				
Xylenes	0/50				
TOTAL	0/248 (0.0%)				
SD(c)	0.00%				
Range (d)					
High	0/50				
Low	0/50				
Overall Historical Incidence					
TOTAL	(d) 2/1,944 (0.1%)				
SD(c)	0.45%				
Range (d)					
High	1/50				
Low	0/50				

(a) Data as of April 29, 1987, for studies of at least 104 weeks

(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.
(d) Includes one adenoma, NOS, and one tubular cell adenoma; no malignant tumors have been observed.

	Inci	Incidence in Vehicle Controls					
Study	Fibroadenoma	Adenocarcinoma	Fibroadenoma or Adenocarcinoma				
Historical Incidence at Batte	lle Columbus Laboratories						
Chlorobenzene	9/50	0/50	9/50				
2-Dichlorobenzene	8/50	1/50	9/50				
4-Dichlorobenzene	12/50	0/50	12/50				
Benzene	10/50	2/50	10/50				
Kylenes	14/50	1/50	15/50				
TOTAL	(b) 53/250 (21.2%)	(c) 4/250 (1.6%)	(b,c) 55/250 (22.0%)				
SD(d)	4.82%	1.67%	5.10%				
Range (e)							
High	14/50	2/50	15/50				
Low	8/50	0/50	9/50				
)verall Historical Incidence							
TOTAL SD(d)	(f) 558/1,950 (28.6%) 9.09%	(g) 44/1,950 (2.3%) 2.01%	(f.g) 588/1,950 (30.2%) 9.76%				
lange(e)							
High	26/50	5/50	28/50				
Low	7/50	0/50	7/50				

TABLE B4b. HISTORICAL INCIDENCE OF MAMMARY GLAND TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

(a) Data as of April 29, 1987, for studies of at least 104 weeks

(b) Includes one papillary adenoma, one cystadenoma, NOS, one adenoma, NOS, and one papillary cystadenoma, NOS (c) Includes one papillary cystadenoma, NOS

(d) Standard deviation

(e) Range and SD are presented for groups of 35 or more animals. (f) Includes 16 adenomas, NOS, 1 papillary adenoma, 5 cystadenomas, NOS, and 1 papillary cystadenoma, NOS (g) Includes two carcinomas, NOS, and one papillary cystadenocarcinoma, NOS

TABLE B4c. HISTORICAL INCIDENCE OF LEUKEMIA IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Incidence in Vehicle Controls				
Historical Incidence at Battelle Columbus Laboratories					
Chlorobenzene	8/50				
1,2-Dichlorobenzene	13/50				
1,4-Dichlorobenzene	15/50				
Benzene	6/50				
Xylenes	7/50				
TOTAL	49/250 (19.6%)				
SD (c)	7.92%				
Range (d)					
High	15/50				
Low	6/50				
Overall Historical Incidence					
TOTAL	364/1,950 (18.7%)				
SD (c)	7.93%				
Range (d)					
High	21/50				
Low	2/50				

(a) Data as of April 29, 1987, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

v	ehicle	Control	Low	Dose	Mid	Dose	High	Dose
Animals initially in study	80		80		80		80	
Animals removed	80		80		80		80	
Animals examined histopathologically	50		51		50		50	
ALIMENTARY SYSTEM								
Intestine large, colon	(49)		(28)		(15)		(48)	
Parasite metazoan		(2%)						(2%)
Intestine large, rectum	(48)		(28)		(14)		(47)	
Parasite metazoan		(2%)					-	(4%)
Liver Recording from any local	(50)	(0.000)	(29)	(200)	(19)	(500)	(50)	
Basophilic focus, multiple Clear cell focus		(82%)	15	(52%)	11	(58%)	45	(90%)
Cytoplasmic alteration, focal	4	(8%)	9	(7%)	0	(110)	4	(901)
Cytoplasmic alteration, nultifocal			2	(1%)	Z	(11%)		(8%) (2%)
Eosinophilic focus	1	(2%)						(2%)
Inflammation, chronic active, multifocal		(30%)	3	(10%)	2	(11%)		(16%)
Necrosis, acute		(•	(10.07)	-			(2%)
Regeneration, focal								(2%)
Bile duct, hyperplasia, multifocal	13	(26%)	3	(10%)	2	(11%)		(36%)
Centrilobular, degeneration	2	(4%)						
Centrilobular, vacuolization cytoplasmic,								
diffuse	1	(2%)	3	(10%)	1	(5%)		
Periportal, fibrosis, chronic, multifocal							1	(2%)
Periportal, vacuolization cytoplasmic, diffu		(6%)	2	(7%)			1	(2%)
Mesentery	(1)		(1)		(1)		(1)	
Inflammation, chronic active		(100%)					1	(100%)
Perivascular, inflammation, chronic active				(100%)				
Pancreas	(50)		(29)		(14)		(50)	
Acinus, atrophy		(24%)	2	(7%)	2	(14%)	14	(28%)
Acinus, degeneration, multifocal	Ţ	(2%)						.07
Acinus, focal cellular change Duct, ectasia								(2%)
Perivascular, inflammation, chronic active							3	(6%)
multifocal	,		1	(3%)				
Salivary glands	(50)		(28)	(070)	(15)		(50)	
Inflammation, chronic active, multifocal		(2%)	(20)		(107		(00)	
Acinus, atrophy, focal	-	(2,0)					1	(2%)
Stomach, forestomach	(50)		(28)		(15)		(49)	
Cyst epithelial inclusion		(2%)						
Inflammation, chronic active			1	(4%)			1	(2%)
Ulcer							1	(2%)
Stomach, glandular	(50)		(28)		(15)		(49)	
Ulcer		(2%)						
Tongue	(1)				(1)			
Epithelium, hyperkeratosis, focal Epithelium, hyperplasia						(100%) (100%)		
ARDIOVASCULAR SYSTEM				· · · · · · · · · · · · · · · · ·				
Heart	(50)		(28)		(15)		(50)	
Degeneration, chronic, multifocal		(68%)		(36%)		(60%)		(82%)
Epicardium, inflammation, chronic, multif			10	(00%)	Ũ			(2%)
NDOCRINE SYSTEM	,	- <u></u>						
Adrenal gland	(50)		(29)		(16)		(50)	
Accessory adrenal cortical nodule						(6%)		
Adrenal gland, cortex	(50)		(29)		(15)		(50)	
Atrophy, diffuse							1	(2%)
Degeneration	2	(4%)						
Degeneration, fatty	13	(26%)	3	(10%)		(33%)	13	(26%)
Degeneration, fatty, focal						(7%)		

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THETWO-YEAR GAVAGE STUDY OF OCHRATOXIN A

Ochratoxin A, NTP TR 358

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (Continued)

Ve	hicle	Control	Low	Dose	Mid 1	Dose	High	Dose
ENDOCRINE SYSTEM								···
Adrenal gland, cortex (Continued)	(50)		(29)		(15)		(50)	
Hematopoietic cell proliferation, multifocal		(2%)	(10)					
Hyperplasia		(28%)	6	(21%)			13	(26%)
Hypertrophy	2	(4%)	2	(7%)			3	(6%)
Necrosis, acute			1	(3%)	2	(13%)	3	(6%)
Adrenal gland, medulla	(50)		(27)		(15)		(50)	
Hyperplasia	1	(2%)	1	(4%)	1	(7%)	7	(14%)
Pituitary gland	(49)		(41)		(35)		(49)	
Pars distalis, cyst	21	(43%)	9	(22%)		(26%)	17	(35%)
Pars distalis, hyperplasia	15	(31%)	9	(22%)	8	(23%)	16	(33%)
Pars nervosa, hyperplasia, glandular			1	(2%)				
Rathke's cleft, cyst			3	(7%)				
Thyroid gland	(50)		(32)		(18)		(50)	
C-cell, hyperplasia	24	(48%)	14	(44%)	9	(50%)	27	(54%)
Follicle, cyst	1	(2%)						
Follicular cell, hyperplasia	1	(2%)	1	(3%)				
GENERAL BODY SYSTEM None								
GENITAL SYSTEM								
Clitoral gland	(49)		(29)		(17)		(47)	
Hyperplasia	3	(6%)					8	(17%)
Infiltration cellular, lipocyte, focal		(2%)					-	
Inflammation, chronic active		v = · · · v	1	(3%)	2	(12%)	6	(13%)
Duct, cyst	1	(2%)		(3%)	_		1	(2%)
Duct, hyperplasia, squamous, multifocal					1	(6%)	1	(2%)
Ovary	(49)		(29)		(19)		(50)	
Edema, diffuse							1	(2%)
Follicle, cyst			2	(7%)			2	(4%)
Periovarian tissue, cyst	1	(2%)		(10%)	4	(21%)		(2%)
Uterus	(49)		(32)		(19)		(50)	
Dilatation	1	(2%)		(3%)				
Inflammation, chronic active	_			(3%)				
Endometrium, hyperplasia, cystic, glandula	ar.		-					
multifocal		(6%)	4	(13%)	2	(11%)	3	(6%)
EMATOPOIETIC SYSTEM							, <u> </u>	
Bone marrow	(49)		(28)		(15)		(50)	
Femoral, hyperplasia, reticulum cell	,				(,			(4%)
Lymph node	(50)		(27)		(16)		(50)	. = /0/
Lumbar, cyst			(41)			(6%)	(00)	
Lumbar, inflammation, chronic active, mul	tifocal					1	(6%)	
Mesenteric, hyperplasia, lymphoid, multifo						•		(2%)
Mesenteric, sinus, ectasia	car		1	(4%)			1	. 2 /01
Pancreatic, inflammation, chronic active,			1					
multifocal	1	(90-)						
		(2%)	(00)		(1 E)		150	
Lymph node, mandibular	(50)	(99)	(26)		(15)		(50)	
Hemorrhage, multifocal	1	(2%)				(70)		
Hyperplasia, lymphoid, multifocal					1	(7%)		
Hyperplasia, reticulum cell, multifocal	•	(2%)						

	Vehicle	Control	Low	Dose	Mid I	Dose	High	Dose
HEMATOPOIETIC SYSTEM (Continued)		<u> </u>						
Spleen	(50)		(29)		(16)		(50)	
Degeneration, fatty, focal	(00)		(20)			(6%)	,	
Depletion lymphoid			1	(3%)				
Edema, diffuse							1	(2%)
Red pulp, fibrosis			1	(3%)				
Red pulp, hematopoietic cell proliferation	ı.							
diffuse		(4%)	3	(10%)	2	(13%)	5	(10%)
Thymus	(43)		(27)		(11)		(44)	
Depletion lymphoid, multifocal	1	(2%)						
NTECTIVENTA DV GVGTEN	·							
INTEGUMENTARY SYSTEM	(477)		(40)		(0.4)		(40)	
Mammary gland	(47)	(0.9α)	(40)		(34)	(500)	(49)	(0,0,m)
Hyperplasia, cystic, multifocal	-	(98%)		(55%)		(50%)		(98%)
Skin	(49)		(31)		(16)	(00)	(50)	
Acanthosis, multifocal					1	(6%)		
Subcutaneous tissue, inflammation, chro active, diffuse	nic				1	(6%)		
·								
MUSCULOSKELETAL SYSTEM	(50)		(00)		(1 =)		(50)	
Bone	(50)	(00)	(28)		(15)		(50)	
Femur, hyperostosis	1	(2%)						(00)
Femur, osteopetrosis							1	(2%)
NERVOUS SYSTEM			<u> </u>					
Brain	(50)		(28)		(15)		(50)	
Compression	5	(10%)	7	(25%)	2	(13%)	3	(6%)
Cyst	1	(2%)						
Hemorrhage, multifocal	1	(2%)						
Inflammation, chronic, multifocal	1	(2%)						
Ventricle, hydrocephalus	5	(10%)	7	(25%)	2	(13%)	2	(4%)
RESPIRATORY SYSTEM								
Lung	(50)		(32)		(18)		(50)	
Foreign body, multifocal		(8%)		(16%)		(6%)		(4%)
Alveolar epithelium, hyperplasia	-	0101	3			(6%)		(8%)
Interstitium, inflammation, chronic activ			5	(0.0)	1	(0,0)	-	
multifocal		(60%)	19	(38%)	9	(44%)	94	(48%)
Perivascular, edema, acute	50		_	(13%)	0	(==/0)		(2%)
Nose	(50)		(28)		(15)		(50)	(4,70)
Lumen, foreign body		(14%)	(20)		(10)			(12%)
Mucosa, inflammation, acute, multifocal		(10%)					5	(12%)
Mucosa, inflammation, acute, multilocar Mucosa, inflammation, chronic active, m		10/01					5	2(4%)
Nasolacrimal duct, inflammation, acute,								4 (- 10)
multifocal							1	(2%)
						······		
SPECIAL SENSES SYSTEM			(0)		(5)		(4)	
SPECIAL SENSES SYSTEM Eye	(4)		(2)		(0)			
Eye	(4)			(50%)	(0)			
SPECIAL SENSES SYSTEM Eye Cornea, hyperplasia Lens, cataract		(50%)		(50%)		(100%)	4	(100%

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (Continued)

Ve	hicle	Control	Low	Dose	Mid 1	Dose	High	Dose
URINARY SYSTEM								
Kidney	(50)		(51)		(50)		(50)	
Cyst					1	(2%)		(50%)
Cyst, multiple							6	(12%)
Hydronephrosis					-	(2%)		
Mineralization, multifocal					1	(2%)		
Nephropathy, chronic, diffuse	35	(70%)	40	(78%)	44	(88%)	46	(92%)
Cortex, hemorrhage, focal					1	(2%)		
Pelvis, epithelium, hyperplasia, multifocal							2	(4%)
Renal tubule, epithelium, cytoplasmic								
alteration, focal					1	(2%)	2	(4%)
Renal tubule, epithelium, degeneration,								
multifocal					49	(98%)	49	(98%)
Renal tubule, epithelium, hyperplasia, foca	1				6	(12%)	12	(24%)
Renal tubule, epithelium, hyperplasia,								
multifocal					6	(12%)	1	(2%)
Renal tubule, epithelium, karyomegaly,								
multifocal			8	(16%)	50	(100%)	50	(100%)
Renal tubule, epithelium, pigmentation,			-					
diffuse	1	(2%)						
Renal tubule, epithelium, proliferation, foc	-	(2,0)			1	(2%)	7	(14%)
Renal tubule, epithelium, proliferation,					-	(=,=,		(
multifocal					2	(4%)	9	(18%)
Urinary bladder	(50)		(27)		(15)	(1/0)	(50)	(20,0)
	(30)		(27)			(7%)	(00)	
Calculus gross observation Ectasia					_	(13%)		
			1	(4%)	2	(10%)		
Hemorrhage				(4%)				
Inflammation, acute			1	(470)			•	(904)
Mucosa, hyperplasia, diffuse					1	(7%)	1	(2%)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE
TWO-YEAR GAVAGE STUDY OF OCHRATOXIN A (Continued)

Ochratoxin A, NTP TR 358

APPENDIX C

SENTINEL ANIMAL PROGRAM

I. Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via viral serology on sera from extra (sentinel) animals in the study rooms. These animals are untreated, and these animals and the study animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen F344/N rats of each sex were selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group were killed at 6, 12, and 18 months on study. Data from animals surviving 24 months were collected from 5/50 randomly selected vehicle control animals of each sex. The blood from each animal was collected and clotted, and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. The following tests were performed:

Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	ELISA
PVM (pneumonia virus of mice) KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Sendai	RCV (rat coronavirus) (6 mo)	RCV/SDA (sialodacryoadenitis virus) (12,18,24 mo)

II. Results

No positive titers were seen at 6, 12, 18, or 24 months.

APPENDIX D

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Pellet Diet: July 1982 to July 1984

(Manufactured by Zeigler Bros., Inc., Gardners, PA)

		PAGE
TABLE D1	INGREDIENTS OF NIH 07 RAT AND MOUSE RATION	138
TABLE D2	VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION	138
TABLE D3	NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION	139
TABLE D4	CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION	140

٠

TABLE D1. INGREDIENTS OF NIH 07 RAT AND MOUSE RATION (a)

Ingredients (b)	Percent by Weight	
Ground #2 yellow shelled corn	24.50	
Ground hard winter wheat	23.00	
Sovbean meal (49% protein)	12.00	
Fish meal (60% protein)	10.00	
Wheat middlings	10.00	
Dried skim milk	5.00	
Alfalfa meal (dehydrated, 17% protein)	4.00	
Corn gluten meal (60% protein)	3.00	
Soy oil	2.50	
Dried brewer's yeast	2.00	
Dry molasses	1.50	
Dicalcium phosphate	1.25	
Ground limestone	0.50	
Salt	0.50	
Premixes (vitamin and mineral)	0.25	

(a) NCI, 1976; NIH, 1978

(b) Ingredients ground to pass through a U.S. Standard Screen No. 16 before being mixed

	Amount	Source		
Vitamins				
A	5,500,000 IU	Stabilized vitamin A palmitate or acetate		
D ₃	4,600,000 IU	D-activated animal sterol		
K ₃	2.8 g	Menadione		
d-a-Tocopheryl acetate	20,000 IŬ			
Choline	560.0 g	Choline chloride		
Folic acid	$2.2 \overline{g}$			
Niacin	30.0 g			
d-Pantothenic acid	18.0 g	d-Calcium pantothenate		
Riboflavin	3.4 g			
Thiamine	10.0 g	Thiamine mononitrate		
B_{12}	4,000 µg			
Pyridoxine	1.7 g	Pyridoxine hydrochloride		
Biotin	140.0 mg	d-Biotin		
Minerals				
Iron	120.0 g	Iron sulfate		
Manganese	60.0 g	Manganous oxide		
Zinc	16.0 g	Zinc oxide		
Copper	4.0 g	Copper sulfate		
Iodine	1.4 g	Calcium iodate		
Cobalt	0.4 g	Cobalt carbonate		

TABLE D2. VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION (a)

(a) Per ton (2,000 lb) of finished product

TABLE D3. NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION

Nutrients	Mean ± Standard Deviation	Range	Number of Samples
Crude protein (percent by weight)	23.13 ± 1.08	21.3-26.3	25
Crude fat (percent by weight)	5.13 ± 0.59	3.3-6.3	25
rude fiber (percent by weight)	3.47 ± 0.53	2.8-5.6	25
sh (percent by weight)	6.63 ± 0.38	5.7-7.3	25
nino Acids (percent of total diet	;)		
Arginine	1.32 ± 0.072	1.310-1.390	5
Cystine	0.319 ± 0.088	0.218-0.400	5
Glycine	1.146 ± 0.063	1.060-1.210	5
Histidine	0.571 ± 0.026	0.531-0.603	5
Isoleucine	0.914 ± 0.030	0.881-0.944	5
Leucine	1.946 ± 0.056	1.850-1.990	5
Lysine	1.280 ± 0.067	1,200-1.370	5
Methionine	0.436 ± 0.165	0.306-0.699	5
Phenylalanine	0.938 ± 0.158	0.665-1.05	5
Threonine	0.855 ± 0.035	0.824-0.898	5
Tryptophan	0.277 ± 0.221	0.156-0.671	5
Tyrosine	0.618 ± 0.086	0.564-0.769	5
Valine	1.108 ± 0.043	1.050-1.170	5
ssential Fatty Acids (percent of	total diet)		
Linoleic	2.290 ± 0.313	1.83-2.52	5
Linolenic	0.258 ± 0.040	0.210-0.308	5
tamins			
Vitamin A (IU/kg)	12,584 ± 4,612	4,100-24,000	25
Vitamin D (IU/kg)	4,450 ± 1,382	3,000-6,300	4
a-Tocopherol (ppm)	43.58 ± 6.92	31.1-48.0	5
Thiamine (ppm)	17.6 ± 3.8	12.0-27.0	25
Riboflavin (ppm)	7.6 ± 0.85	7.58-8.2	5
Niacin (ppm)	97.8 ± 31.68	65.0-150.0	5
Pantothenic acid (ppm)	30.06 ± 4.31	23.0-34.0	5
Pyridoxine (ppm)	7.68 ± 1.31	5.60-8.8	5
Folic acid (ppm)	2.62 ± 0.89	1.80-3.7	5
Biotin (ppm)	0.254 ± 0.053	0.19-0.32	5
Vitamin B ₁₂ (ppb)	24.21 ± 12.66	10.6-38.0	5
Choline (ppm)	$3,122 \pm 416.8$	2,400-3,430	5
inerals			
Calcium (percent)	1.30 ± 0.13	1.11-1.63	25
Phosphorus (percent)	0.97 ± 0.06	0.87-1.10	25
Potassium (percent)	0.900 ± 0.098	0.772-0.971	3
Chloride (percent)	0.513 ± 0.114	0.380-0.635	5
Sodium (percent)	0.323 ± 0.043	0.258-0.371	5
Magnesium (percent)	0.167 ± 0.012	0.151-0.181	5
Sulfur (percent)	0.304 ± 0.064	0.268-0.420	5
Iron (ppm)	410.3 ± 94.04	262.0-523.0	5
Manganese (ppm)	90.29 ± 7.15	81.7-99.4	5
Zinc (ppm)	50.25 ± 7.15 52.78 ± 4.94	46.1-58.2	5
Copper (ppm)	10.72 ± 2.76	8.09-15.39	5
Iodine (ppm)	2.95 ± 1.05	1.52-3.82	5 4
Chromium (ppm)	1.85 ± 0.25	1.44-2.09	4 5
Cobalt (ppm)	0.681 ± 0.14	0.490-0.780	5 4
	U.001 1 U.14	11.421-11.(01)	4

TABLE D4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Contaminants	Mean ± Standard Deviation	Range	Number of Samples
Arsenic (ppm)	0.53 ± 0.15	0.17-0.77	25
Cadmium (ppm) (a)	<0.10		25
Lead (ppm)	0.74 ± 0.62	0.33-3.37	25
Mercury (ppm) (a)	< 0.05		25
Selenium (ppm)	0.32 ± 0.07	0.13-0.42	25
Aflatoxins(ppb)(a)	< 5.0		25
Nitrate nitrogen (ppm) (b)	9.20 ± 4.64	0.10-22.0	25
Nitrite nitrogen (ppm) (b)	1.37 ± 1.69	0.10-7.20	25
BHA (ppm) (c)	4.08 ± 4.76	2.0-17.0	25
3HT (ppm) (c)	2.80 ± 2.57	1.0-12.0	25
Aerobic plate count (CFU/g) (d)	$46,112 \pm 34,525$	6,600-130,000	25
Coliform (MPN/g) (e)	49.2 ± 125	3.0-460	25
E. coli (MPN/g) (a,e)	<3.0		25
lotal nitrosamines (ppb) (f)	5.67 ± 5.81	1.8-30.9	25
V-Nitrosodimethylamine (ppb) (f)	4.61 ± 5.81	0.8-30.0	25
V-Nitrosopyrrolidine (ppb) (f)	1.06 ± 0.26	0.81-1.70	25
esticides (ppm)			
a-BHC (a,g)	< 0.01		25
β -BHC (a)	< 0.02		25
γ-BHC-Lindane (a)	< 0.01		25
δ -BHC (a)	< 0.01		25
Heptachlor (a)	< 0.01		25
Aldrin (a)	< 0.01		25
Hep tach lor epoxide (a)	< 0.01		25
DDE (a)	< 0.01		25
DDD(a)	< 0.01		25
DDT(a)	< 0.01		25
HCB(a)	< 0.01		25
Mirex (a)	< 0.01		25
Methoxychlor (a)	< 0.05		25
Dieldrin (a)	< 0.01		25
Endrin (a)	< 0.01		25
Telodrin (a)	< 0.01		25
Chlordane (a)	< 0.05		25
Toxaphene (a)	< 0.1		25
Estimated PCBs (a)	< 0.2		25
Ronnel (a)	< 0.01		25
Ethion (a)	< 0.02		25
Trithion (a)	< 0.05		25
Diazinon (a)	<0.1		25
Methyl parathion (a)	<0.02		25
Ethyl parathion (a)	< 0.02		25
Malathion (h)	0.12 ± 0.09	< 0.05-0.45	25
Endosulfan I (a)	< 0.01		25
Endosulfan II (a)	< 0.01		25
Endosulfan sulfate (a)	< 0.03		25

(a) All values were less than the detection limit, given in the table as the mean.(b) Source of contamination: alfalfa, grains, and fish meal

(c) Source of contamination: soy oil and fish meal

(d) CFU = colony-forming unit (e) MPN = most probable number

(f) All values were corrected for percent recovery.
(g) BHC = hexachlorocyclohexane or benzene hexachloride

(h) Fifteen batches contained more than 0.05 ppm.

APPENDIX E

•

.

.

AUDIT SUMMARY

APPENDIX E. AUDIT SUMMARY

The experimental data, documents, draft Technical Report, and pathology specimens for the 9-month, 15-month, and 2-year studies of ochratoxin A in rats were audited for accuracy, consistency, completeness, and compliance with Good Laboratory Practice regulations of the Food and Drug Administration (fully implemented by the NTP beginning October 1, 1981). The laboratory studies were conducted for the NTP by the Battelle Columbus Laboratories, Columbus, Ohio. Exposure of animals to the chemical in corn oil by gavage began in September 1982. The retrospective audit was conducted for the NIEHS at the NTP Archives during December 1987 by Dynamac Corporation. The full audit report is on file at the NIEHS. The audit included a review of the following:

- (1) All records concerning animal receipt, quarantine, randomization, and disposition prior to study start.
- (2) All inlife records, including protocol, correspondence, dosing, environmental conditions, animal husbandry, mortality, inlife animal identification, serology, and correlation between clinical and necropsy observations of masses recorded during the last 3 months of life.
- (3) Body weight and clinical observation data for a random 10% sample of the study animals in each dose group.
- (4) All chemistry records.
- (5) All postmortem records for individual animals concerning disposition codes, condition codes, correlations between necropsy observations, and microscopic diagnoses.
- (6) Individual Animal Necropsy Record forms from a random 10% sample of animals for data entry errors, and the quality assessment report and Individual Animal Tumor Pathology Tables for tissue accountability (100%).
- (7) All wet tissue bags for inventory and wet tissues from a random 20% sample of the study animals, plus other relevant cases, to verify animal identity and to examine for untrimmed potential lesions.
- (8) Blocks and slides of tissues from a random 20% sample of animals to examine for proper match and inventory.
- (9) All red-lined diagnoses on the pathology table (PEIRPT14) to verify update changes on the final PEIRPT14.

Procedures and events generally were adequately documented in the archival records. Of the 228 external masses observed inlife, 218 had a corresponding observation at necropsy.

Inspection of wet tissues for individual animal identifiers showed that 123/145 rats examined were identified correctly by their residual tissues. The other 22 animals were evaluated by further review of toxicology and pathology study records. The apparent identification discrepancies for 16/22 rats were not a result of misidentification during life or subsequent tissue mixup but appeared to be related to inconsistent saving of the identifiers. For the remaining six rats, there were not sufficient pathology or toxicology records to resolve the issue. Review of the wet tissues identified 32 untrimmed potential lesions in 26/145 rats examined. NTP staff considered that these findings did not affect the interpretation of the study. Full details about these and other audit findings are presented in the audit report. In conclusion, the data and results presented in the Technical Report for the 2-year studies of ochratoxin A are supported by the records at the NTP Archives.