NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 412

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF

4,4°-IDIAMINO-2,2°-STILIBIENIEIDISULFONIC ACIID,

DISODIUM SALT

(CAS NO. 7336-20-1)

IN F344/N RATS AND B6C3F, MICE

(FEED STUDIES)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

FOREWORD

The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation.

The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease.

The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. The prechronic and chronic studies were conducted in compliance with Food and Drug Administration (FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjected to retrospective quality assurance audits before being presented for public review.

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection *per se* is not an indicator of a chemical's carcinogenic potential.

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge while supplies last from the NTP Central Data Management, NIEHS, P.O. Box 12233, MD A0-01, Research Triangle Park, NC 27709 (919-541-1371).

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF

4,4'-DIAMINO-2,2'-STILBENEDISULFONIC ACID,

DISODIUM SALT (CAS NO. 7336-20-1)

IN F344/N RATS AND B6C3F1 MICE

(FEED STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

August 1992

NTP TR 412

NIH Publication No. 92-3143

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt, NTP TR 412

CONTRIBUTORS

National Toxicology Program

Evaluated and interpreted results and reported findings

C.J. Alden, Ph.D.
G.A. Boorman, D.V.M., Ph.D.
D.A. Bridge, B.S.
S.L. Eustis, D.V.M., Ph.D.
T.J. Goehl, Ph.D.
R.A. Griesemer, D.V.M., Ph.D.
J.R. Hailey, D.V.M.
J.K. Haseman, Ph.D.
G.N. Rao, D.V.M., Ph.D.
D.B. Walters, Ph.D.
K.L. Witt, M.S., Oak Ridge Associated Universities

International Research and Development Corporation

Conducted studies, evaluated pathology findings

B.M. Phillips, Ph.D., Principal Investigator
R.G. Geil, D.V.M.
K.P.C. Nair, D.V.M.
D. Rajasekaran, D.V.M.
J.H. Thorstenson, Ph.D.

Experimental Pathology Laboratories, Inc.

Provided pathology quality assurance

J.F. Hardisty, D.V.M., Principal Investigator W.F. MacKenzie, D.V.M. K. Yoshitomi, D.V.M., Ph.D.

Integrated Laboratory Systems

Prepared quality assurance audits

S.L. Smith, J.D., Principal Investigator

NTP Pathology Working Group

Evaluated slides, prepared pathology report on rats and mice (29 March 1990)

R.M. Sauer, V.M.D., Chair Pathco, Inc.
R. Cattley, V.M.D., Ph.D. North Carolina State University
M.P. Jokinen, D.V.M. National Toxicology Program
W.F. MacKenzie, D.V.M. Experimental Pathology Laboratories
M.M. McDonald, D.V.M., Ph.D. National Toxicology Program
K. Yoshitomi, D.V.M., Ph.D. Experimental Pathology Laboratories

Biotechnical Services, Inc. Prepared Technical Report

L.G. Cockerham, Ph.D., Principal Investigator G.F. Corley, D.V.M. T.A. King-Hunter, B.S. D.D. Lambright, Ph.D. W.D. Sharp, B.A., B.S.

CONTENTS

ABSTRACT	· · · · · · · · · · · · · · · · · · ·	5
EXPLANATION	OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	\$
TECHNICAL R	EPORTS REVIEW SUBCOMMITTEE	Ŷ
SUMMARY OF	TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS	10
INTRODUCTIO	 DN	11
MATERIALS A	ND METHODS	15
RESULTS	• • • • • • • • • • • • • • • • • • • •	25
DISCUSSION A	AND CONCLUSIONS	ଏ୭
REFERENCES	\sim	53
Appendix A	Summary of Lesions in Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	57
Appendix B	Summary of Lesions in Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	93
Appendix C	Summary of Lesions in Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	127
Appendix D	Summary of Lesions in Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	1 59
Appendix E	Genetic Toxicology	191
Appendix F	Organ Weights and Organ-Weight-to-Body-Weight Ratios	1 99
Appendix G	Hematology and Clinical Chemistry Results	207
Appendix H	Chemical Characterization and Dose Formulation Studies	213
Appendix I	Feed and Compound Consumption in the 2-Year Feed Studies	225
Appendix J	Ingredients, Nutrient Composition, and Contaminant Levels in NIH-07 Rat and Mouse Ration	231
Appendix K	Sentinel Animal Program	237

3

ABSTRACT

4,4'-DIAMINO-2,2'-STILBENEDISULFONIC ACID, DISODIUM SALT

CAS No. 7336-20-1

Chemical Formula: C₁₄H₁₂N₂O₆S₂·2Na Molecular Weight: 414.42

Symonyms: Amsonic acid; diaminostilbene disulphonate (DASD); 2,2'-(1,2-ethenediyl)bis[5-amino-benzenesulfonic acid]; 2,2'- disulfo-4,4'-stilbenediamine; 2,2'-stilbenedisulfonic acid; 4,4'-diamino-2,2'-benzenesulfonic acid; 2,2'-(1,2-ethenediyl)bis(5-amino-) diaminostilbenedisulfonic acid; p,p'-diaminostilbene-o,o'-disulfonic acid; 4,4'-diaminostilbene-2,2'-disulfonic acid

4,4'-Diamino-2,2'-stilbenedisulfonic acid, disodium salt, is used in the synthesis of dyes and optical brighteners or fluorescent whitening agents. Toxicology and carcinogenesis studies were conducted by administering the chemical (approximately 14% water, 6% sodium chloride, 4% impurities, and 76% 4,4'-diamino-2,2'-stilbenedisulfonic acid) in feed to groups of F344/N rats and B6C3F₁ mice of each sex for 14 days, 13 weeks, and 2 years. Genetic toxicology studies were conducted in *Salmonella typhimurium* and Chinese hamster ovary cells.

14-Day Studies: Groups of five rats and five mice of each sex were given 0, 6,250, 12,500, 25,000, 50,000, or 100,000 ppm 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, in feed for 14 days. All rats and mice survived to the end of the studies. The mean body weight gain of male rats receiving 50,000 or 100,000 ppm and of female rats and male and female mice receiving 100,000 ppm was significantly lower than those of the respective controls. Clinical findings included diarrhea in the rats and mice receiving 100,000 ppm. There were no chemicalrelated changes in absolute or relative organ weights in rats or mice. There were no gross or microscopic lesions related to chemical administration in rats or mice.

13-Week Studies: Groups of 10 rats and 10 mice of each sex were given 0, 6,250, 12,500, 25,000, 50,000, or 100,000 ppm 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, in feed for 13 weeks. One female rat, six male mice, and one female mouse in the 100,000 ppm dose groups died during the studies. Mean body weight gain was significantly decreased in male rats and female mice receiving 50,000 or 100,000 ppm, in male mice receiving 25,000, 50,000, or 100,000 ppm, and in female rats receiving 100,000 ppm. Clinical findings in rats that received 50,000 or 100,000 ppm and in mice that received 100,000 ppm included diarrhea, emaciation, and hyperemia of the perineum. There were no biologically significant changes in absolute or relative organ weights or clinical pathology results in rats or mice. Histopathologic lesions present in rats receiving 100,000 ppm were bone marrow hypercellularity and chronic inflammation of the anus and rectum. Ulcerative inflammation of the anus and rectum was observed in mice receiving 25,000 ppm Female mice in the 6,250, 12,500, and above.

5

25,000, and 50,000 ppm dose groups had increased incidences of cystic endometrial hyperplasia.

2-Year Studies: Doses selected for the 2-year studies were based on mortality, decreased body weight gains, and the presence of diarrhea and chronic inflammation of the anus/rectum in rats and mice during the 13-week studies. Groups of 60 rats of each sex were given 0, 12,500 or 25,000 ppm and groups of 60 mice of each sex were given 0, 6,250, or 12,500 ppm 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, in feed for up to 103 weeks. Interim evaluations were performed on 10 rats and 10 mice from each dose group at 15 months. There were no biologically significant absolute or relative organ weight, clinical pathology, or histopathology findings in rats or mice administered 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, in feed for 15 months.

Body Weight, Feed Consumption, Survival, and Clinical Findings in the 2-Year Studies: Mean body weights were marginally decreased for high-dose male and female rats and female mice. Feed consumption by dosed rats and mice was similar to feed consumption by the controls throughout the studies. Survival was similar among control and treated groups of rats and mice. No clinical findings related to chemical administration were observed in rats or mice. Nonneoplastic and Neoplastic Effects in the 2-Year Studies: There were no chemical-related increased incidences of neoplasms at any site in rats. Ulcers of the forestomach or glandular stomach occurred in dosed rats (males: 1/50, 5/50, 4/50; females: 0/50, 1/50, 4/50), and may have been related to the administration of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt. There were no chemical-related incidences of neoplasms, nonneoplastic lesions, or other toxic effects in mice in the 2-year studies. Although the animals might have been able to tolerate slightly higher doses, results of the 13-week studies indicate that a doubling of the highest doses could not have been tolerated.

Genetic Toxicology: 4,4'-Diamino-2,2'-stilbenedisulfonic acid was not mutagenic in Salmonella typhimurium strains TA100, TA1535, TA1537, or TA98 with or without S9 metabolic activation. 4,4'-Diamino-2,2'-stilbenedisulfonic acid did not induce sister chromatid exchanges or chromosomal aberrations in Chinese hamster ovary cells in the presence or absence of S9.

Conclusions: Under the conditions of these 2-year feed studies, there was no evidence of carcinogenic activity* of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, in male or female F344/N rats receiving 12,500 or 25,000 ppm. There was no evidence of carcinogenic activity of 4,4'-diamino-2,2' -stilbene-disulfonic acid, disodium salt, in male or female B6C3F₁ mice receiving 6,250 or 12,500 ppm.

Explanation of Levels of Evidence of Carcinogenic Activity is on page 8. A summary of the Technical Report Review Subcommittee comments and public discussion on this Technical Report appears on page 10.

Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female B6C3F ₁ Mic		
Doses	· · · · · · · · · · · · · · · · · · ·	-			
0, 12,500, or 25,000 ppm in feed	0, 12,500, or 25,000 ppm in feed	0, 6,250, or 12,500 ppm in feed	0, 6,250, or 12,500 ppm in feed		
Body weights					
High-dose group marginally lower than controls	High-dose group marginally lower than controls	Dosed groups similar to controls	High-dose group marginally lower than controls		
2-Year survival rates 22/50, 20/50, 24/50	30/50, 33/50, 33/50	43/50, 40/49, 42/50	43/50, 43/50, 38/49		
Nonneoplastic effects None	None	None	None		
Neoplastic effects					
None	None	None	None		
Level of evidence of carcin					
No evidence	No evidence	No evidence	No evidence		
Genetic toxicology					
Salmonella typhimurium gene Sister chromatid exchanges	mutation: Negative with	and without S9 in strains TA100, T	A1535, TA1537, and TA98		
Chinese hamster ovary cells	in vitro: Negative with	Negative with and without S9			
Chromosomal aberrations Chinese hamster ovary cells	in vitro: Negative with	Negative with and without S9			

Summary of the 2-Year Carcinogenicity and Genetic Toxicology Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence, including animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results (clear evidence and some evidence); one category for uncertain findings (equivocal evidence); one category for no observable effects (no evidence); and one category for experiments that cannot be evaluated because of major flaws (inadequate study). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Report series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following five categories is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to potency or mechanism.

- Clear evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a chemicalrelated increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemical related.
- No evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing no chemical-related increases in malignant or benign neoplasms.
- Inadequate study of carcinogenic activity is demonstrated by studies that, because of major qualitative or quantitative limitations, cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. Such consideration should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- · adequacy of the experimental design and conduct;
- · occurrence of common versus uncommon neoplasia;
- progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At
 present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the
 most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- combining benign and malignant tumor incidence known or thought to represent stages of progression in the same organ or tissue;
- latency in tumor induction;
- multiplicity in site-specific neoplasia;
- metastases;
- supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- presence or absence of dose relationships;
- · statistical significance of the observed tumor increase;
- · concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- · survival-adjusted analyses and false positive or false negative concerns;
- · structure-activity correlations; and
- in some cases, genetic toxicology.

4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt, NTP TR 412

NATIONAL TOXICOLOGY PROGRAM BOARD OF SCIENTIFIC COUNSELORS TECHNICAL REPORTS REVIEW SUBCOMMITTEE

The members of the Technical Report Review Subcommittee who evaluated the draft NTP Technical Report on 4,4'-diamino-2,2'stilbenedisulfonic acid, disodium salt, on July 9, 1991, are listed below. Subcommittee members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, subcommittee members have five major responsibilities in reviewing NTP studies:

- o to ascertain that all relevant literature data have been adequately cited and interpreted,
- to determine if the design and conditions of the NTP studies were appropriate,
- · to ensure that the Technical Report presents the experimental results and conclusions fully and clearly,
- o to judge the significance of the experimental results by scientific criteria, and
- · to assess the evaluation of the evidence of carcinogenic activity and other observed toxic responses.

Daniel S. Longnecker, M.D., Chair Department of Pathology Dartmouth Medical School Hanover, NH

Paul T. Bailey, Ph.D. Toxicology Division Mobil Oil Corporation Princeton, NJ

Louis S. Beliczky, M.S., M.P.H., Principal Reviewer Department of Industrial Hygiene United Rubber Workers International Union Akron, OH

Gary P. Carlson, Ph.D. Department of Pharmacology and Toxicology Purdue University West Lafayette, IN

Harold Davis, D.V.M., Ph.D. School of Aerospace Medicine Brooks Air Force Base, TX

Robert H. Garman, D.V.M. Consultants in Veterinary Pathology Murrysville, PA Jay I. Goodman, Ph.D. Department of Pharmacology and Toxicology Michigan State University East Lansing, MI

David W. Hayden, D.V.M., Ph.D., Principal Reviewer Department of Veterinary Pathobiology College of Veterinary Medicine University of Minnesota St. Paul, MN

Curtis D. Klaassen, Ph.D. Department of Pharmacology and Toxicology University of Kansas Medical Center Kansas City, KS

Barbara McKnight, Ph.D. Department of Biostatistics University of Washington Seattle, WA

Ellen K. Silbergeld, Ph.D.* University of Maryland Medical School Baltimore, MD

Lauren Zeise, Ph.D., Principal Reviewer California Department of Health Services/RCHAS Berkeley, CA

*Did not attend

9

SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS

On July 9, 1991, the draft Technical Report on the toxicology and carcinogenesis studies of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, received public review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, NC.

Dr. J.R. Hailey, NIEHS, introduced the toxicology and carcinogenesis studies of 4,4'-diamino-2,2'stilbenedisulfonic acid, disodium salt (amsonic acid), by discussing the uses of the chemical and the rationale for study, describing the experimental design, reporting on the survival and body weight effects, and commenting on compound-related nonneoplastic lesions in rats. The proposed conclusions were no evidence of carcinogenic activity of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, in male or female F344/N rats or in male or female B6C3F, mice.

Dr. Hayden, a principal reviewer, agreed with the proposed conclusions. To emphasize the lack of toxicity, especially in mice, he thought a statement might be added to the conclusion indicating there was no evidence of toxic or nonneoplastic activity in male or female mice. Dr. Hailey said such a statement would be added to the Abstract. Dr. Zeise, the second principal reviewer, agreed in principle with the proposed conclusions. She said that it should be noted that male and female rats may have been able to tolerate higher doses. Dr. Hailey said he agreed that females could have tolerated higher doses but considered the doses in males to be adequate. Dr. Zeise commented that the summary tables provided combined incidence data for mammary tumors (adenomas, fibroadenomas, and adenocarcinomas) indicating significantly increased levels for female rats, and that this finding should be addressed in the report. Dr. Hailey said this combination would be eliminated because the morphological continuum seen with many neoplastic processes is not seen with fibroadenomas.

Mr. Beliczky, the third principal reviewer, agreed with the proposed conclusions. He thought it would be of value for NIOSH to evaluate the facility that manufactured the amsonic acid in view of sexual dysfunction reported by workers and uterotrophic effects observed during animal studies.

Dr. Hayden moved that the Technical Report on 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, be accepted with the revisions discussed and with the conclusions as written for male and female rats and mice, *no evidence of carcinogenic activity*. Mr. Beliczky seconded the motion, which was accepted unanimously with ten votes.

INTRODUCTION

4,4°-DIAMINO-2,2°-STILBENEDISULFONIC ACID, DISODIUM SALT

CAS No. 7336-20-1

Chemical Formula: C₁₄H₁₂N₂O₆S₂·2Na Molecular Weight: 414.42

Synonyms: Amsonic acid; diaminostilbene disulphonate (DASD); 2,2'-(1,2-ethenediyl)bis[5-amino-benzenesulfonic acid]; 2,2'- disulfo-4,4'-stilbenediamine; 2,2'-stilbenedisulfonic acid; 4,4'-diamino-2,2'-benzenesulfonic acid; 2,2'-(1,2-ethenediyl)bis(5-amino-) diaminostilbenedisulfonic acid; p,p'-diaminostilbene-o,o'-disulfonic acid; 4,4'-diaminostilbene-2,2'-disulfonic acid

Chemical and Physical Properties, Production, and Use

4,4'-Diamino-2,2'-stilbenedisulfonic acid, disodium salt, is a yellow, microcrystalline powder. It is soluble in alcohol and ether, poorly soluble in water, and forms crystalline salts with many bisquaternary ammonium bases. 4,4'-Diamino-2,2'stilbenedisulfonic acid, disodium salt, may be prepared from boiling the sodium salt of *p*-nitrotoluene-o-sulfonate in water with caustic soda followed by a reduction with zinc dust (Condensed Chemical Dictionary, 1977) or by catalytic reduction of 4,4'-dinitro-2,2'-stilbenedisulfonic acid.

The United States production of 4,4'-diamino-2,2'stilbenedisulfonic acid was 7,623,000 pounds in 1975 (USITC, 1975). It is used primarily in the synthesis of dyes, such as Chrysophenine (Direct Yellow 12) or the nonethylated dye Brilliant Yellow (Direct Yellow 4), and in the synthesis of optical brighteners or fluorescent whitening agents (FWAs). In 1979, the National Institute for Occupational Safety and Health (NIOSH) estimated that 15,000 tons of fluorescent whitening agents were produced in the United States annually by 11 manufacturers. Many of these fluorescent whitening agents are synthesized from 4,4'-diamino-2,2'-stilbenedisulfonic acid and other materials. Fluorescent whitening agents are added to paper, leather, fabrics, plastics, and detergents to enhance colors and whiteness. These whitening agents have the property of absorbing ultraviolet light and reemitting high levels of blue-green light (*Kirk-Othmer*, 1983a,b).

Human Exposure

From a survey conducted from 1981 to 1983, NIOSH estimated that 948 workers may be exposed to the parent compound (4,4'-diamino-2,2'stilbenedisulfonic acid) and intermediates in production facilities (NIOSH, 1991). However, there appears to be little, if any, direct use of the parent compound by consumers. Consumer exposure would probably be to the dyes or fluorescent whitening agents. Potential sources are clothing, especially when moistened by perspiration; packaging materials; some foods, such as fish; and insufficiently rinsed dishes. Daily human exposure to fluorescent whitening agents in Scotland was estimated at $4 \mu g/kg$, but dermal and alimentary uptake is probably very low (Kilbey, 1977). A review of the results of medical surveys and studies on the safety of the fluorescent whitening agents (especially those derived from diaminostilbene disulfonate) in Japan indicated very low potential toxicity to humans (Yamauchi and Shimizu, 1973). The increasing use of these agents, however, suggests that human exposures may increase as well (Kilbey, 1977).

Workers at a chemical plant where 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, was produced from *p*-nitrotoluene complained of sexual dysfunctions. Hammond et al. (1987) concluded that the workers were exposed to low, airborne concentrations of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt; 4,4'-dinitrostilbene-2,2'-disulfonic acid, disodium salt (DNS); and p-nitrotoluene sulfonic acid, sodium salt (PNTSA). Airborne concentrations were under 100 μ g/m³ in all cases; 4.4'-diamino-2.2'-stilbenedisulfonic acid, disodium salt, concentrations were the lowest. These ionic salts have negligible vapor pressure, and therefore airborne exposure would only be in the form of aerosols. 4,4'-Diamino-2,2'-stilbenedisulfonic acid, disodium salt, and DNS are related structurally to the synthetic hormone diethylstilbestrol (DES) (Hammond et al., 1987), and in some studies 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, has been shown to have estrogenic activity (Smith and Quinn, 1992).

METABOLISM AND CHEMICAL DISPOSITION

Studies were conducted by NTP (unpublished, 1986) to determine the disposition of [14C] 4,4'-diamino-2,2'-stilbenedisulfonic acid in rats after intravenous administration and after ad libitum administration in feed. Radiochemical purity of [14C] 4,4'-diamino-2,2'-stilbenedisulfonic acid was 97.5% in the undiluted intravenous dosing solution and was 92.7% in the feed. Urinary excretion accounted for 96% to 97% of the dose at 24, 48, and 72 hours after intravenous dosing. Among organs evaluated in the intravenous study, alimentary tract tissue the highest concentration contained $(14.7 \pm 7.1 \text{ nCi/g})$ of chemical after 24 hours, and the kidneys contained the highest concentration of 4,4'-diamino-2,2'-stilbenedisulfonic acid (8.78 \pm 0.97 nCi/g) after 72 hours. Seventy-two hours after the diet containing $[{}^{14}C]$ 4,4'-diamino-2,2'stilbenedisulfonic acid was removed, recovery of the radiolabel in the feces was 80% to 92%; recovery of the radiolabel in urine was minimal (less than 6%). Muscle tissue contained the greatest total amounts of radioactivity (0.55% to 0.77%) at 72 hours, while other tissues had only trace amounts.

TOXICITY

The oral LD_{50} for the guinea pig is 47 g/kg. Other effects noted in guinea pigs were impaired liver function and depressed renal function (RTECS, 1990). In one study, two of six weanling female CD Sprague-Dawley rats administered intraperitoneal doses of 3,000 mg/kg 4,4'-diamino-2,2'stilbenedisulfonic acid died within 24 hours; oral administration of 3,000 mg/kg was not toxic (Smith and Quinn, 1992).

CARCINOGENICITY

In an investigation of the anti-tumor activities of stilbene derivatives used as brighteners, 4,4'-bis-(4-anilino-6-*p*-sulfonanilino-1,3,5-triazinyl-2-amino)stilbene 2,2'-disulfonate showed a marked tumorinhibiting activity on solid forms of Ehrlich carcinoma, sarcoma 180, and carcinoma 63. Stilbene derivatives showed no effect on Ehrlich ascites carcinoma (Saito, 1970).

GENETIC TOXICITY

The two arylamine groupings in the structure of 4,4'-diamino-2,2'-stilbenedisulfonic acid classify the compound as one with potential for genotoxic activity (Ashby et al., 1989). However, the mutagenicity test data for 4,4'-diamino-2,2'stilbenedisulfonic acid, although limited, are all negative. The compound (maximum concentration 5 mg/plate) showed no mutagenic activity in Salmonella typhimurium strains TA100, TA1535, TA1537, or TA98, with or without S9 (Table E1; Zeiger et al., 1987), and it did not induce sister chromatid exchanges or chromosomal aberrations in Chinese hamster ovary cells, with or without S9 (Tables E2 and E3; Loveday et al., 1990). There are no genotoxicity data on metabolites of 4,4'-diamino-2.2'-stilbenedisulfonic acid.

STUDY RATIONALE

4,4'-Diamino-2,2'-stilbenedisulfonic acid, disodium salt, was selected for study by the Consumer Product Safety Commission because of its high production volume and its use in the synthesis of dyes and bleaching agents widely used in the paper, leather, and textile industries. Also, no toxicologic or carcinogenesis information was available for 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, which is structurally similar to other azo dyes that demonstrate toxicologic or carcinogenic potential.

MATERIALS AND METHODS

Procurement and Characterization

4,4'-Diamino-2,2'-stilbenedisulfonic acid, disodium salt, was obtained from Ciba-Geigy Corporation in one lot (SW-81605), which was used throughout the studies. Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory, Midwest Research Institute (Kansas City, MO), and are discussed in Appendix H. The study chemical, a yellow, microcrystalline powder, was identified as 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy.

The lot was approximately 76% pure, as determined by weight loss on drying, thin-layer chromatography, high-performance liquid chromatography, and elemental analysis. Weight loss on drying indicated the presence of approximately 14% water in the bulk chemical; elemental analysis indicated the presence of approximately 6% sodium chloride. Up to three organic impurities, constituting a total impurity level of approximately 4%, were observed by high-performance liquid chromatography. Using high-performance liquid chromatographic separation and direct inlet mass spectrometric analysis, one of the three organic impurities was tentatively identi-4,4'-ethylene-dianiline-2-sulfonic fied as acid. Stability studies performed by high-performance liquid chromatography indicated that 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, was stable as a bulk chemical for 2 weeks at temperatures up to 60° C when protected from light. Based on the stability study results, the bulk chemical was stored in the dark at room temperature at the testing laboratory throughout the study period. The stability of the bulk chemical was monitored periodically by high-performance liquid chromatography and ultraviolet spectroscopy during all phases of the studies. No change in the study material was detected.

Preparation and Analysis of Dose Formulations

The dose formulations were prepared by mixing 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, with feed (Table H1). Homogeneity and stability studies were conducted by the analytical chemistry laboratory using ultraviolet spectroscopy high-performance liquid chromatography, and respectively. The homogeneity of the dose formulations was confirmed, and the stability of dose formulations stored for at least 14 days in the dark at temperatures to 5° C was established. The study laboratory conducted additional stability studies and confirmed the stability of the dose formulations for up to 3 weeks when stored at room temperature. During the 14-day and 13-week studies, the dose formulations were refrigerated in the dark for no longer than 2 weeks. During the 2-year studies, the dose formulations were initially stored in plastic bags protected from light at 1° C for no longer than 2 weeks; 8 months after study initiation the dose formulations were stored at 22° C.

The study laboratory conducted periodic analyses of 4,4'-diamino-2,2'-stilbenedisulfonic acid, the disodium salt, dose formulations using ultraviolet spectroscopy as described in Appendix H. The dose formulations for the 14-day studies were analyzed once and all were within 10% of the target concentrations (Table H2). During the 13-week studies, the dose formulations were analyzed twice and all of the dose formulations for rats and mice were within 10% of the target concentrations (Table H3). During the 2-year studies, the dose formulations were analyzed at approximately 8-week intervals and 96% (27/28) of the dose formulations for rats and all of the dose formulations for mice were within 10% of the target concentrations (Table H4). Results of periodic referee analyses of the dose formulations performed by the analytical chemistry laboratory were in agreement with the results from the study laboratory (Table H5).

Male and female F344/N rats and B6C3F, mice were obtained from Charles River Breeding Laboratories (Portage, MI) and observed for 15 days (rats) or 16 days (mice) before the studies began. Rats were 6 to 7 weeks old and mice were 7 to 8 weeks old at study initiation. Groups of five rats and five mice of each sex received feed containing 0, 6,250, 12,500, 25,000, 50,000, or 100,000 ppm 4,4'-diamino-2,2'stilbenedisulfonic acid, disodium salt, (Table 1). All groups received dosed feed for 14 days, followed by a 1-day observation period. Animals were housed five per cage; water and feed were available ad libitum. Clinical observations were conducted twice daily and recorded daily. Animals were weighed at the start of the study, on day 8, and day 16. Feed consumption was determined weekly. Complete necropsies were performed on all animals. The brain, heart, right kidney, liver, lungs, and thymus of survivors were weighed at necropsy. All animals in the 0 and 100,000 ppm dose groups received complete histopathologic examinations. Histopathology of the liver was performed on mice that received 6,250, 12,500, 25,000 or 50,000 ppm. Further details are presented in Table 1.

13-WEEK STUDIES

The 13-week studies were conducted to determine the cumulative toxic effects of repeated exposure to 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, and to determine appropriate chemical concentrations to be used in the 2-year studies. The experimental design of the 13-week studies is summarized in Table 1.

Male and female F344/N rats and B6C3F₁ mice were obtained from Charles River Breeding Laboratories and were observed for 13 to 15 days before the studies began. Rats were 6 to 7 weeks old and mice were 7 to 8 weeks old at the beginning of the studies. Groups of 10 rats or 10 mice of each sex were given 0, 6,250, 12,500, 25,000, 50,000, or 100,000 ppm 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, in feed for 13 weeks. Animals were housed five per cage; water and feed were available *ad libitum*. Animals were observed twice each day and clinical observations were recorded weekly. The health of the animals was monitored during the studies according to the protocols of the NTP Sentinel Animal Program (Appendix K). Animals were weighed at the start of the study and weekly thereafter. Feed consumption was measured weekly. Further experimental details are presented in Table 1.

At the end of the 13-week studies, blood was collected from the orbital sinus plexus of all surviving animals for clinical pathology analyses. The animals were then killed and necropsies were performed on all study animals. The brain, heart, right kidney, liver, lungs, right testis, and thymus of survivors were weighed at necropsy. All animals that died or were killed prior to the end of the studies, all control animals, and all animals that received 100,000 ppm received complete histopathologic examinations. Liver sections from the 0, 25,000, and 100,000 ppm rat groups and all mice groups were stained with Oil Red O and periodic acid-Schiff (with and without diastase). The rectum/ anus from all rat dose groups was examined microscopically. Tissues examined for mice in the 6,250, 12,500, 25,000, and 50,000 ppm dose groups were the anus, ovary, rectum, uterus, and liver (Oil Red O and periodic acid-Schiff stains were used on the liver). Additional information about histologic examination is provided in Table 1.

2-YEAR STUDIES

Study Design

Groups of 60 rats and 60 mice of each sex were administered 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, in feed for 7 days a week for up to 103 weeks. Rats received doses of 0, 12,500, or 25,000 ppm and mice received doses of 0, 6,250, or 12,500 ppm. After 15 months of chemical administration, 10 rats and 10 mice of each sex were randomly selected from each group for interim evaluations.

Source and Specification of Animals

Male and female F344/N rats and $B6C3F_1$ mice were obtained from Frederick Cancer Research Facility (Frederick, MD) for use in the 2-year studies. Rats were quarantined 16 days and mice were quarantined 13 days. Five rats and five mice per sex were randomly selected and killed for parasite evaluation and gross observation of disease. Serology samples were collected for viral screens. Rats and mice were approximately 6 weeks old at the beginning of the studies. The health of the animals was monitored during the studies according to the protocols of the NTP Sentinel Animal Program.

Animal Maintenance

Rats and mice were initially housed five per cage. Beginning in week 39, male mice were housed individually. Feed and water were available *ad libitum*. Cages were rotated weekly. Further details of animal maintenance are given in Table 1. Information on feed composition is provided in Appendix J.

Clinical Examinations and Pathology

All animals were observed twice daily and clinical findings were recorded weekly for 13 weeks, then monthly or as necessary. Animals were weighed at study initiation, weekly for 13 weeks, monthly through week 90, and every 2 weeks thereafter. Feed consumption was measured once a month (Appendix I).

Ten rats and 10 mice from each group were randomly selected and killed for interim evaluations after 15 months of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, administration. Blood was drawn from the orbital sinus plexus of rats and mice to determine the following hematology and clinical chemistry parameters: hemoglobin, hematocrit, erythrocyte count, mean cell volume, mean cell hemoglobin, mean cell hemoglobin concentration, total leukocyte count, leukocyte differential count, blood urea nitrogen, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, and sorbitol dehydrogenase. The brain, liver, and right kidney of each animal were weighed at necropsy. Further details of the interim evaluations are presented in Table 1.

Animals found in a moribund state, selected for the 15-month interim evaluations, or surviving to the end of the 2-year studies were killed. Necropsies were performed on all animals. At necropsy, all organs and tissues were examined for gross lesions, and all major tissues were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned, and stained with hematoxylin and eosin for microscopic examination. Histopathologic examinations were performed on all 15-month interim evaluation animals, all tissues with grossly visible lesions, all animals that died or were killed moribund prior to 21 months, and all control and high-dose animals killed at study termination. Tissues examined from all low-dose animals that died or were killed moribund after 21 months on study or were killed at the end of the studies are listed in Table 1.

Upon completion of the microscopic evaluation by the laboratory study pathologist, the pathology data were entered into the Toxicology Data Management System. The microscope slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet-tissue audit. The slides, individual animal data records, and pathology tables were sent to an independent pathology quality assessment laboratory. The individual animal records and pathology tables were compared for accuracy, slide and tissue counts were verified, and histotechnique was evaluated by the quality assessment laboratory. The adrenal gland and mammary gland of male and female rats, the pancreas and liver of male rats, the kidney of female rats, the lung of male and female mice, and the liver of male mice were evaluated microscopically by the quality assessment pathologist for both neoplastic and nonneoplastic lesions. All neoplastic diagnoses in all tissues in all rats and mice and all tissues from a randomly selected 10% of the control and high-dose rats and mice were reevaluated microscopically by a quality assessment pathologist.

The quality assessment report and slides were submitted to the NTP Pathology Working Group (PWG) chair, who reviewed the selected tissues and any other tissues for which there was a disagreement in diagnosis between the laboratory and quality assessment pathologists. Representative histopathology slides containing examples of lesions related to chemical administration, examples of disagreements in diagnosis between the laboratory and quality assessment pathologists, or lesions of general interest were presented by the chair to the P₩G for review. The P₩G consisted of the quality assessment pathologist and other pathologists experienced in rodent toxicologic pathology. This group examined the tissues without knowledge of dose groups or previously rendered diagnoses. When the consensus opinion of the PWG differed from that of the laboratory pathologist, the diagnosis was changed. Thus, the final diagnoses represent a consensus of contractor pathologists and the PWG. Details of these review procedures have been described by Maronpot and Boorman (1982) and Boorman *et al.* (1985). For subsequent analysis of pathology data, the diagnosed lesions for each tissue type are evaluated separately or combined according to the guidelines of McConnell *et al.* (1986).

Statistical Methods

Survival Analyses

The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found dead of other than natural causes or were found to be missing; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test to identify dose-related trends. All reported P values for the survival analyses are two sided.

Calculation of Incidence

The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions had multiple potential sites of occurrence (e.g., mononuclear cell leukemia), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence

The majority of tumors in these studies were considered to be incidental to the cause of death or not rapidly lethal. Thus, the primary statistical method used was a logistic regression analysis, which assumed that the diagnosed tumors were discovered as the result of death from an unrelated cause and thus did not affect the risk of death. In this approach, tumor prevalence was modeled as a logistic function of chemical exposure and time. Both linear and quadratic terms in time were incorporated initially, and the quadratic term was eliminated if it did not significantly enhance the fit of the model. The dosed and control groups were compared on the basis of the likelihood score test for the regression coefficient of dose. This method of adjusting for intercurrent mortality is the prevalence analysis of Dinse and Lagakos (1983), further described and illustrated by Dinse and Haseman (1986).

In addition to logistic regression, alternative methods of statistical analysis were used, and the results of these tests are summarized in the appendixes. These include the life table test (Cox, 1972; Tarone, 1975), appropriate for rapidly lethal tumors, and the Fisher exact test and the Cochran-Armitage trend test (Armitage, 1971; Gart *et al.*, 1979), procedures based on the overall proportion of tumor-bearing animals.

Tests of significance included pairwise comparisons of each dosed group with controls and a test for an overall dose-response trend. Continuity-corrected tests were used in the analysis of tumor incidence, and reported P values are one sided. The procedures described above also were used to evaluate selected nonneoplastic lesions. For further discussion of these statistical methods, see Haseman, 1984.

Historical Control Data

Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control database (Haseman *et al.*, 1984, 1985) are included in the NTP reports for tumors appearing to show compound-related effects.

Analysis of Continuous Variables

Two approaches were employed to assess the significance of pairwise comparisons between dosed and control groups in the analysis of continuous variables. Organ and body weight data, which have approximately normal distributions, were analyzed using the multiple comparison procedures of Williams (1971, 1972) and Dunnett (1955). Clinical chemistry and hematology data, which have typically skewed distributions, were analyzed using the multiple comparison methods of Shirley (1977) and Dunn (1964). Jonckheere's test (Jonckheere, 1954) was used to assess the significance of dose-response trends and to determine whether a trend-sensitive test (Williams' or Shirley's test) was more appropriate for pairwise comparisons than a test that does not assume a monotonic dose-response (Dunnett's or Dunn's test).

QUALITY ASSURANCE METHODS

The 13-week and 2-year studies were conducted in compliance with FDA Good Laboratory Practice

Regulations (21 CFR, Part 58). In addition, as study records were submitted to the NTP Archives, they were audited retrospectively by an independent quality assurance contractor. Separate audits covering completeness and accuracy of the pathology data, pathology specimens, final pathology tables, and preliminary review draft of the NTP Technical Report were conducted. Audit procedures and findings are presented in the reports, which are on file at the NIEHS. The audit findings were reviewed and assessed by NTP staff so that all had been resolved or were otherwise addressed during the preparation of this Technical Report.

GENETIC TOXICITY

The genetic toxicity of 4,4'-diamino-2,2'stilbenedisulfonic acid was assessed by testing the ability of the chemical to induce mutations in various strains of *Salmonella typhimurium* and sister chromatid exchanges and chromosomal aberrations in Chinese hamster ovary cells. The protocols for these studies and tabular presentations of the findings are in Appendix E.

14-Day Studies	13-Week Studies	2-Year Studies
Study Laboratory		
International Research and	International Research and	International Research and
Development Corporation	Development Corporation	Development Corporation
(Mattawan, MI)	(Mattawan, MI)	(Mattawan, MI)
Strain and Species		
Rats: F344/N	Rats: F344/N	Rats: F344/N
Mice: B6C3F ₁	Mice: B6C3F ₁	Mice: B6C3F ₁
Animal Source		
Charles River Breeding Laboratories	Charles River Breeding Laboratories	Frederick Cancer Research Facility
(Portage, MI)	(Portage, MI)	(Frederick, MD)
Size of Study Groups	· · · · · · · · · · · · · · · · · · ·	
5 males and 5 females	10 males and 10 females	60 males and 60 females
Doses	· .	
0, 6,250, 12,500, 25,000, 50,000, or	Same as 14-day studies	Rats: 0, 12,500, or 25,000 ppm 4,4'-
100,000 ppm 4,4'-diamino-2,2'-		diamino-2,2'-stilbenedisulfonic
stilbenedisulfonic acid, disodium salt, in		acid, disodium salt, in feed
leed		Mice: 0, 6,250, or 12,500 ppm 4,4 -
		diamino-2,2'-stilbenedisulfonic acid, disodium salt, in feed
Time Held Before Study Rats: 15 days	Rats: 13-14 days	Rats: 16 days
Mice: 16 days	Mice: 15 days	Mice: 13 days
Average Age When Placed on Study	·····	
Rats: 44-51 days	Rats: 42-49 days	Rats: 45 days
Mice: 52-59 days	Mice: 50-58 days	Mice: 42 days
Date of First Dose		
Rats: 3 June 1981	Rats: 21-22 September 1981	Rats: 25 February 1983
Mice: 11 June 1981	Mice: 23 September 1981	Mice: 15 February 1983
Duration of Dosing		· .
14 days	13 weeks (7 days/week)	103 weeks (7 days/week)
Necropsy Dates		
Rats: 19 June 1981	Rats: 22-23 December 1981	15-month interim - Rats: 25 May 1984
Mice: 27 June 1981	Mice: 24 December 1981	Mice: 15 May 1984
· · · · · ·		2-year studies – Rats: 22-27 February 1985; Mice: 12-15 February 1985
A		
Average Age at Necropsy	B. to: 10.20	Date: 110 111 work-
Rats: 8-9 weeks	Rats: 19-20 weeks	Rats: 110-111 weeks
Mice: 9-10 weeks	Mice: 20-21 weeks	Mice: 111 weeks

TABLE 1 Experimental Design and Materials and Methods in the Feed Studies of 4.4'-Diamino-2.2'-stilbenedisulfonic Acid. Disodium Salt

TABLE 1

Experimental Design and Materials and Methods in the Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

14-Day Studies	13-Week Studies	2-Year Studies		
Animals per Cage 5	5	5 (male mice housed individually beginning 8 November 1983)		
Method of Animal Distribution Animals assigned random numbers, grouped into blocks by body weight, and each block assigned to groups by random numbers.	Same as 14-day studies	Same as 14-day studies		
Method of Animal Identification Rats: Ear tag Mice: Toe clip	Same as 14-day studies	Same as 14-day studies		
Diet NIH-07 Rat and Mouse Ration, Open formula, mash (Zeigler Bros., Inc., Gardners, PA); available <i>ad libitum</i>	Same as 14-day studies	Same as 14-day studies		
Water IRDC well water via automatic watering system (Edstrom Industries, Inc., Waterford, WI); available ad libitum	Same as 14-day studies	Village of Mattawan or IRDC well water via outside-the-cage automatic watering system (Edstrom Industries, Inc., Waterford, WI); available ad libitum		
Cages Polycarbonate cages with Edstrom grommets (Hazelton System Inc., Aberdeen, MD)	Same as 14-day studies	Same as 14-day studies		
Bedding BetaChips [®] hardwood laboratory bedding (Northeastern Products Corp., Warrensburg, NY); changed twice weekly	Same as 14-day studies	Same as 14-day studies		
Cage Filters Reemay spun-bonded polyester filters (Snow Filtration, Cincinnati, OH)	Same as 14-day studies	Same as 14-day studies		
Animal Room Environment Rats: Average temperature - 75° F; Average humidity - 55.7% Mice: Average temperature -75.6° F; Average humidity - 57.9% Fluorescent light: 12 hours/day Room air changes: 6-12 changes/hour	 Rats: Average temperature - 70.4° F; Average humidity - 43% Mice: Average temperature - 70.6° F; Average humidity - 43.1% Fluorescent light: 12 hours/day Room air changes: 6-12 changes/hour 	Average temperature: $74^\circ \pm 2.5^\circ$ F Average humidity: $50\% \pm 15.2\%$ Fluorescent light: 12 hours/day Room air changes: 6-12 changes/hour		

Tissues examined from low-dose rats

gross lesions, adrenal gland, liver

(males), kidney (females), mammary gland (females), pituitary gland (males),

and spleen (males). Tissues examined from low-dose mice that died or were

killed moribund after 21 months or at study termination were gross lesions,

liver (males) and lung.

that died or were killed moribund after

21 months or at study termination were

14-Day Studies	13-Week Studies	2-Year Studies		
Type and Frequency of Observation Observed twice/day; weighed initially and once/week; clinical observations recorded daily; feed consumption once/week by cage	Observed twice/day; weighed initially and once/week; clinical observations recorded once/week; feed consumption once/week by cage	Observed twice/day; weighed initially, once/week for 13 weeks, once/month through week 90, every 2 weeks thereafter; clinical observations recorded once/week for 13 weeks, once/month thereafter; feed consumption measured once/month		
Necropsy Necropsy performed on all animals. The following organs were weighed: brain, heart, right kidney, liver, lungs, and thymus.	Necropsy performed on all animals. Organs weighed for all animals surviving to study termination: brain, heart, right kidney, liver, lungs, right testis, and thymus.	Necropsy performed on all animals. Organs weighed for all animals at 15-month interim evaluations: brain, right kidney, and liver.		
Histopathology Complete histopathology performed on all control and 100,000 ppm animals. Tissues examined included: adrenal gland, bone and marrow (sternum), brain, clitoral or preputial gland (rats), colon, esophagus, gallbladder (mice), heart, jejunum, kidney, liver, lung, mammary gland, madibular lymph node (rats), mesenteric lymph node, nasal cavity, ovary, pancreas, parathyroid gland, pituitary gland, prostate gland, salivary gland, spleen, stomach, testis, thymus, thyroid gland, trachea, urinary bladder, and uterus. Livers were examined from mice in the 6,250, 12,500, 25,000 and 50,000 ppm dose groups.	Complete histopathology on all animals that died or were killed moribund during the study, all controls, and all 100,000 ppm rats and mice. Tissues examined included: adrenal gland, anus (mice), bone and marrow (sternum), brain, cecum, clitoral or preputial gland (rats), colon, duodenum, esophagus, gallbladder (mice), heart, ileum, jejunum, kidney, liver, lung, mammary gland, mesenteric lymph node, nasal cavity, ovary, pancreas, parathyroid gland, pituitary gland, prostate gland, rectum, salivary gland, spleen, stomach, testis, thymus, thyroid gland, trachea, urinary bladder, and uterus. In addition, the anus/rectum was examined from rats in the 6,250, 12,500, 25,000, and 50,000 ppm groups; tissues	Complete histopathology performed on all animals killed at the 15-month interim evaluations, all animals that died or were killed moribund prior to 21 months on study, and control or high-dose animals killed at study termination. Tissues examined: adrenal gland, bone (costochondral junction), bone marrow (femur), brain, clitoral or preputial gland (rats), esophagus, gallbladder (mice), heart, kidney, large intestine, liver, lung, mammary gland, mesenteric lymph nodes, nasal cavity, ovary, pancreas, parathyroid gland, pituitary gland, prostate gland, salivary gland, seminal vesicle, skin, small intestine, spleen, stomach, testis (with epididymis), thymus, thyroid gland, trachea, urinary bladder, and uterus.		

examined from mice in the 6,250,

12,500, 25,000, and 50,000 ppm groups

were anus, ovary, rectum, and uterus.

Oil Red O and periodic acid-Schiff stains were used on liver tissues from

rats in the control, 25,000, and 100,000 ppm groups and from all mice

groups.

TABLE 1 Experimental Design and Materials and Methods in the Feed Studies of 4.4'-Diamino-2.2'-stilbenedisulfonic Acid. Disodium Salt (continued)

TABLE 1 Experimental Design and Materials and Methods in the Feed Studies of 4,4"-Diamino-2,2"-stilbenedisulfonic Acid, Disodium Salt (continued)

÷.,

14-Day Studies	13-Week Studies	2-Year Studies	
Clinical Pathology		and the second	
None	Clinical pathology studies were conducted at 13 weeks on all rats and mice surviving to study termination. <i>Hematology</i> : None <i>Clinical chemistry</i> : glucose, total protein, albumin, albumin/globulin ratio, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase	Clinical pathology studies on rats and mice of each sex from each dose group were conducted at 15 months. <i>Hematology:</i> hematocrit, hemoglobin, erythrocyte count, mean cell volume, mean cell hemoglobin, mean cell hemoglobin concentration, leukocyte count and differential <i>Clinical chemistry:</i> blood urea nitrogen, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, and sorbitol dehydrogenase	

-

.....

24

RESULTS

Rats

14-Day Studies

All rats survived to the end of the studies. The mean body weight gains of males and females in the 100,000 ppm dose group and of males in the 50,000 ppm dose group were significantly lower than those of the controls (Table 2). The mean body weight gains of other dosed groups were similar to those of the controls. Feed consumption by the 50,000 and 100,000 ppm dose groups was lower than that of the controls during the first week; during the second week feed consumption by dosed and control

males was similar and feed consumption by dosed females was higher than that of the controls.

Diarrhea was observed among rats that received 50,000 or 100,000 ppm 4,4'-diamino-2,2'stilbenedisulfonic acid, disodium salt. Decreases in absolute or relative organ weights of males that received 100,000 ppm were considered secondary to the decrease in final mean body weight (Table F1). Absolute and relative liver weights were increased in females in the 100,000 ppm dose group. There were no gross or microscopic lesions related to chemical administration in dosed rats.

TABLE 2

Survival, Mean Body Weights, and Feed Consumption of Rats in the 14-Day Feed Studies of 4.4'-Diamino-2.2'-stilbenedisulfonic Acid, Disodium Salt

Concentration	Survival ^a		Mean Body Weight ^b (g)		Final Weight Relative to Controls	Fe Consu	ed nption ^c
(ppm)		Initial	Final	Change	(%)	Week 1	Week 2
Male							
0	5/5	134 ± 4	211 ± 5	77 ± 3		22	18
6,250	5/5	137 ± 5	217 ± 6	81 ± 2	103	22	18
12,500	5/5	136 ± 5	211 ± 7	75 ± 3	100	21	18
25,000	5/5	138 ± 4	216 ± 4	79 ± 2	103	21	19
50,000	5/5	136 ± 3	199 ± 3	63 ± 2°°	94	19	18
100,000	5/5	134 ± 4	$185 \pm 4^{\circ \circ}$	$51 \pm 2^{\circ \circ}$	88	15	18
Female							
0	5/5	112 ± 3	149 ± 3	37 ± 0		18	15
6,250	5/5	113 ± 4	149 ± 5	36 ± 2	100	19	18
12,500	5/5	111 ± 4	147 ± 5	36 ± 2	99	19	18
25,000	5/5	114 ± 3	153 ± 5	38 ± 3	103	20	17
50,000	5/5	111 ± 3	145 ± 2	34 ± 2	97	16	16
100,000	5/5	113 ± 3	145 ± 3	31 ± 2°	97	16	17

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Number of animals surviving at 14 days/number initially in group

^b Weights and weight changes are given as mean \pm standard error.

^c Grams of feed per animal per day

13-Week Studies

One female in the 100,000 ppm dose group died in the fourth week of the study; there were no other deaths. The final mean body weights and mean body weight gains of male rats in the 50,000 and 100,000 ppm dose groups and females in the 100,000 ppm dose group were significantly lower than those of the controls (Table 3). Feed consumption by males that received 100,000 ppm was 35% lower than that of the controls during the first week, and feed consumption remained lower than controls through week 8 (Table 4). Feed consumption by females in the 100,000 ppm dose group was 27% lower than that of the controls during the first week. By week 4, feed consumption by females that received 100,000 ppm exceeded that of the controls. The lower final mean body weights of dosed rats may have resulted from a combination of decreased palatability and the replacement of a significant portion of the diet by nonnutritive chemical, with possible impairment of absorptive or digestive processes.

TABLE 3

Survival and Mean Body Weights of Rats in the 13-Week Feed St	udies
of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	

Concentration	Survival ^a	Mea	n Body Weight) (g)	Final Weight Relative to Controls	
(ppm)		Initial	Final	Change	(%)	
Male				<u> </u>		
0	10/10	141 ± 5	381 ± 5	240 ± 3		
6,250	10/10	141 ± 5	382 ± 3	240 ± 5	100	
12,500	10/10	138 ± 4	370 ± 4	232 ± 3	97	
25,000	10/10	137 ± 4	377 ± 5	241 ± 3	99	
50,000	10/10	140 ± 5	351 ± 7**	$211 \pm 4^{**}$	92	
100,000	10/10	137 ± 5	289 ± 4**	152 ± 5**	76	
Female		,				
0	10/10	111 ± 2	211 ± 3	101 ± 2		
6,250	10/10	110 ± 3	208 ± 4	97 ± 4	98	
12,500	10/10	110 ± 3	211 ± 3	101 ± 2	100	
25,000	10/10	110 ± 2	206 ± 3	96 ± 3	97	
50,000	10/10	108 ± 4	203 ± 4	96 ± 3	96	
100,000	9/10 ^c	112 ± 3	197 ± 6*	85 ± 4**	94	

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Number of animals surviving at 13 weeks/number initially in group

^b Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the studies.

^c Week of death: 4

Week						
of Study	0 ppm	6,250 ppm	12,500 ppm	25,000 ppm	50,000 ppm	100,000 ppm
Male						
1	15.6	16.2	16.1	15.7	14.4	10.2
2	16.9	16.8	16.9	17.5	16.4	11.3
3	17.8	18.4	14.5	18.4	18.2	14.2
4	18.1	17.7	16.2	15.1	17.2	14.8
5 6	17.9	18.6	20.2	21.6	19.6	15.6
	16.9	17.8	18.3	18.7	17.5	15.9
7	19.5	17.1	18.1	18.0	17.9	15.9
8	17.9	18.2	18.3	18.6	16.6	17.7
9	18.1	18.6	17.9	19.0	19.6	19.3
10	16.9	17.9	17.7	18.1	17.9	18.6
11	17.8	17.8	17.9	18.3	17.5	19.6
12	17.6	17.4	17.7	18.4	17.9	19.3
13	18.8	18.0	17.7	19.7	20.4	21.3
Mean ± SD	17.7 ± 1.0	17.7 ± 0.7	17.5 ± 1.4	18.2 ± 1.6	17.8 ± 1.6	16.4 ± 3.3
Female						
1	11.4	11.8	12.4	11.9	11.1	8.3
2	11.3	11.0	11.6	12.1	11.2	9.1
3	11.5	11.1	11.5	10.9	11.5	9.8
4	11.2	11.4	11.8	11.6	12.0	11.4
5 6	11.3	11.7	12.1	11.9	13.2	12.7
6	11.4	12.2	11.5	11.5	11.5	12.3
7	11.4	11.6	12.3	11.4	11.2	12.8
8	12.2	11.8	12.1	11.7	12.2	13.3
9	11.5	11.9	12.1	12.5	12.5	14.5
10	11.2	11.4	12.0	12.2	11.9	13.9
11	11.0	11.3	11.5	12.3	11.5	14.5
12	11.3	10.7	11.8	11.7	11.2	14.0
13	12.2	12.1	12.0	12.3	12.6	15.6
Mean ± SD	11.5 ± 0.4	11.5 ± 0.4	11.9 ± 0.3	11.8 ± 0.4	11.8 ± 0.7	12.5 ± 2.2

TABLE 4 Feed Consumption by Rats in the 13-Week Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt^a

^a Feed consumption given in grams per animal per day

Clinical findings in rats administered 100,000 ppm included redness around the anus and emaciation in males and females. Soft stools and diarrhea were noted in the 50,000 and 100,000 ppm dose groups.

Statistically significant changes in absolute or relative organ weights reflected the decreased final mean body weights and were not considered to be directly related to chemical administration (Table F2).

Statistically significant decreases in serum albumin and total protein levels occurred in most males and females receiving 100,000 ppm and may have been caused by the diarrhea, decreased feed consumption, or both. Other changes in clinical pathology values were not considered biologically significant (Table G1).

Chronic suppurative inflammation of the terminal portion of the rectum and anus occurred in most male and female rats that received 100,000 ppm 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt (Table 5). The lesions were characterized by infiltrates of neutrophils and macrophages in the mucosa and submucosa. In some of these animals, the regional lymph node was enlarged with dilated sinuses containing inflammatory cells. The rectal/anal inflammation may be related to the irritative effects of diarrhea, pruritus resulting from the diarrhea, or direct irritation of mucous membranes by unabsorbed chemical. The hypercellularity of the bone marrow represents an increase in the production of granulocytes and is a typical response to inflammation.

TABLE 5

Incidences of Selected Treatment-Related Lesions in Rats in the 13-Week Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

	0 ppm	6,250 ppm	12,500 ppm	25,000 ppm	50,000 ppm	100,000 ppm
Male						
Rectum/anus Inflammation (chronic, suppurative) ^a	0/10	0/9	0/10	0/9	0/8	9/10**
Bone marrow, sternum Hypercellularity	0/10	_b	-	-	-	6/10**
Female						
Rectum/anus Inflammation (chronic, suppurative)	0/10	0/10	0/10	0/10	0/10	6/9**
Bone marrow, sternum Hypercellularity	0/10	-	-	-	-	9/9**

** Significantly different (P≤0.01) from the control group by the Fisher exact test

Incidences given as number of animals with lesion/number of animals with tissues examined

^b Not examined

Dose Selection Rationale: Dose levels of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, selected for rats in the 2-year studies were 12,500 and 25,000 ppm. In the 13-week study, the mean body weight gain relative to the controls was 37% lower in males receiving 100,000 ppm and 12% lower in males receiving 50,000 ppm. The decreased mean body weight gains, combined with the possible physiological and nutritional effects of the soft stool or diarrhea, precluded selecting higher doses. In female rats, mean body weight gain relative to the controls was 16% lower in the 100,000 ppm dose group and 5% lower in the 50,000 ppm dose group in the 13-week study. Lower body weight gains relative to the controls and the variable occurrence of diarrhea precluded the use of 50,000 ppm as a high dose in the 2-year study in females.

2-Year Studies

15-Month Interim Evaluation

There were no biologically significant changes in relative or absolute organ weights, clinical pathology

parameters, or histopathology observations that were related to administration of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, at 15 months (Tables F3 and G2).

Body Weights, Feed Consumption, and Clinical Findings

Mean body weights of dosed groups were not markedly different from those of the controls throughout the studies (Tables 6 and 7 and Figure 1). However, the mean body weight of highdose male rats was marginally lower than that of the controls (3%-7%) from week 4 to week 90. A similar marginal depression of mean body weight relative to controls was seen in high-dose females from week 26 to week 102. Feed consumption by males and females was generally within 5% of controls (Tables I1 and I2). No clinical findings to the administration of attributed were 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt.

TABLE 6	
Mean Body Weights and Survival of Male Rats in the 2-Y	ear Feed Study
of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Sal	t

Weeks on Study	0 ppm		12,500 ppm			25,000 ppm			
		Number of	Av. Wt. (g)	Wt. (% of controls)	Number of	Av. Wt. (g)	Wt. (% of controls)	Number of Survivors	
	(g)	Survivors			Survivors				
1	143	60	141	99	60	141	99	60	
2	175	60	175	100	60	175	100	60	
. 3	209	60	207	99	60	205	98	60	
4	239	60	238	100	60	231	97	60	
5	260	60	257	99	60	251	96	60	
6	280	60	275	98	60	274	98	60	
ž	290	60	283	98	60	279	96	60	
8	307	60	302	98	60	299	97	60	
9	319	60	317	99	60	313	98	60	
10	330	60	326	99	60	321	98	60	
11	345	59	336	98	60	330	96	60	
12	355	59	352	99	60	337	95	60	
13	358	59	351	98	60	345	96	60	
14	366	59	360	98	60	349	95	60	
18	382	59	377	99	60	364	95	60	
22	381	59	379	100	59	356	93	60	
26	409	59	407	99	59	393	96	60	
30	426	59	423	99	59	403	95	60	
34	434	59	428	<u>99</u> -	59	412	95	60	
38	440	59	439	100	59	424	97	60	
42	450	59	450	100	59	432	96	60	
46	460	59	459	100	59	441	96	60	
50	463	59	460	99	58	447	97	60	
54	472	59	471	100	58	458	97	60	
58	486	58	475	98	58	459	95	60	
62	478	58	475	99	58	459	96	60	
66 ^a	479	46	473	99	48	461	96	50	
70	486	46	471	97	48	454	93	50	
74	485	46	468	96	47	456	94	48	
78	473	45	466	98	45	455	96	46	
82	473	43	464	98	45	454	96	41	
86	478	40	464	97	41	448	94	39	
90	469	36	468	100	36	454	97	37	
92	455	34	461	101	36	447	98	36	
94	458	31	457	100	35	455	99	34	
96	455	30	457	101	30	456	100	32	
98	446	30	446	100	29	450	101	30	
100	439	27	440	100	26	449	102	29	
102	429	24	441	103	24	437	102	26	
104	434	22	435	100	23	437	101	24	
erminal sacrifice		22			20			24	
ean for w									
1-13	278		274	99		269	97		
14-52	421		418	99		402	95		
3-104	464		461	99		452	97		

^a Interim evaluation occurred during this week.

...

Results

TABLE 7

Mean Body Weights and Survival of Female Rats in the 2-Y	ear Feed Study
of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	

Weeks	0 ppm		12,500 ppm			25,000 ppm		
Om	Av. Wt.	Number of	Av. Wt.	Wt. (% of	Number of	Av. Wt.	₩£. (% of	Number of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	111	60	111	99	60	111	100	60
2	128	60	129	100	60	129	101	60
3	143	60	143	100	60	144	101	60
4	157	60	158	101	60	155	99	60
5	165	60	164	100	60	163	99	60
6	175	60	171	98	60	168	96	60
7	179	60	177	99	60	173	97	60
8	187	60	185	99	60	180	96	60
9	188	60	190	101	60	186	99	60
10	194	60	194	100	60	191	99	60
11	200	60	199	99	60	194	97	60
12	204	60	203	100	60	200	98	60
13	205	60	204	100	60	202	99	60
14	209	60	207	99	60	203	98	60
18	210	59	213	102	59	208	99	60
22	219	59	217	100	59	215	98	60
26	227	59	226	99	59	221	97	60
30	235	59	232	99	59	226	96	60
34	239	59	234	98	59	230	96	60
38	247	59	245	99	59	239	97	60
42	256	59	248	97	59	243	95	60
46	261	59	257	98	59	251	96	60
50	269	59	262	97	59	259	96	60
54	286	59	276	. 97	59	272	95	59
58	297	59	286	96	59	280	94	59
62	306	59	294	96	59	291	95	59
66 ^a	311	49	304	98	49	297	95	49
70	323	49	312	97	49	304	94	49
74	333	49	322	97	49	314	94	49
78	336	48	331	99	49	326	97	49
82	342	47	334	98	47	326	96	49
86	344	45	336	98	44	328	95	49
90	348	44	339	98	43	334	96	49
92	345	43	340	99	42	331	96	47
94	346	42	343	99	40	334	97	47
96	347	39	344	99	39	336	97	46
98	341	39	341	100	38	331	97	44
100	349	34	337	96	38	334	96	41
102	346	33	339	98	35	328	95	38
104	340	31	340	100	34	337	99	34
Terminal se	crifice	30			33			33
Mean for we								
1-13	172		171	99		169	98	
14-52	237		234	99		230	97	
53-104	332		325	98		318	96	

^a Interim evaluation occurred during this week.

FIGURE 1 Growth Curves for Rats Administered 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt in Feed for 2 Years

Results

Survival

The survival of dosed groups was similar to that of the controls, and the survival of all groups was 90% or greater through week 78 of the study (Table 8 and Figure 2).

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplastic or nonneoplastic lesions of the adrenal gland, mammary gland, stomach, and kidney in rats.

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary tumors that occurred with an incidence of at least 5% in at least one animal group, and historical incidences for the neoplasms mentioned in this section are presented in Appendixes A for male rats and B for female rats.

TABLE 8

Survival of Rats in the 2-Year Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

	0 ppm	12,500 ppm	25,000 ppm	
Male		,	<u></u>	
Animals initially in study	60	60	60	
15-month interim evaluation ^a	10	10	10	
Natural deaths	7	6	6	
Moribund kills	21	24	20	
Animals surviving to study termination	22	20	24 ^b	
Percent survival at end of study ^c	45	40	48	
Mean survival (days) ^d	621	626	636	
Survival analyses ^e	P=0.729N	P=0.945	P=0.785N	
Female				
Animals initially in study	60	60	60	
15-month interim evaluation ^a	10	10	10	
Natural deaths	5	3	1	
Moribund kills	15	14	16	
Animals surviving to study termination	30	33 ^b	33	
Percent survival at end of study ^c	60	66	66	
Mean survival (days) ^d	649	651	667	
Survival analyses ^e	P=0.440N	P=0.701N	P=0.480N	

^a Censored from survival analyses

^b Includes one animal that died during the last week of study

^c Kaplan-Meier determinations. Survival rates adjusted for interim evaluations

^d Mean of all deaths (uncensored, censored, terminal sacrifice)

^e The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the dosed columns. A negative trend or lower mortality in a dose group is indicated by N.

FIGURE 2 Kaplan-Meier Survival Curves for Rats Administered 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt in Feed for 2 Years
Results

Adrenal Gland: There was a marginal, statistically significant positive trend for malignant pheochromocytoma of the adrenal medulla in dosed males (Table 9). However, a positive trend was not seen for benign pheochromocytomas or for benign or malignant pheochromocytomas combined. Also, there was no corresponding dose-related increased incidence of adrenal medullary hyperplasia (17/48, 21/50, 13/50). Hyperplasia, benign pheochromocytoma, and malignant pheochromocytoma constitute a morphological and biological continuum, and there are no morphological criteria which clearly distinguish between these categories. Typically, cytological atypia, cellular pleomorphism, and heterogeneity of growth pattern increase as the size of the lesions increase. As an arbitrary standard, medullary neoplasms which extend through the adrenal capsule are diagnosed as malignant. In general, few malignant pheochromocytomas metastasize to distant organs in 2-year studies. In this study, one malignant pheochromocytoma in the high-dose males metastasized.

The marginally increased incidence of malignant pheochromocytomas in high-dose male rats was not considered to be related to the administration of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, because a) there was no concomitant increase in the incidence of adrenal medullary hyperplasia, benign pheochromocytomas, or benign or malignant pheochromocytomas combined; b) the incidences of malignant pheochromocytomas in low- and highdose males are within the NTP historical control group range of 0% to 20% (Table A4); and c) there is no clear biological distinction between adrenal medullary neoplasms diagnosed as benign and those diagnosed as malignant with which to justify a conclusion based on malignant neoplasms alone.

Mammary Gland: The incidences of fibroadenomas in the low- and high-dose female rats were signif-

icantly increased relative to controls (11/50, 21/50, 21/50; Table B3). However, the incidence of fibroadenomas in the concurrent controls is well below the mean for NTP historical controls (39.3%), and the incidences in the dosed groups are only slightly above that of the overall historical controls and are well within the range of 8% to 58% (Table B4). Thus, the increased incidences of fibroadenomas were not considered to be chemical related.

Stomach: Ulcers of the forestomach or glandular stomach occurred in nine dosed male and five dosed female rats; a single control male had an ulcer of the glandular stomach (Table 10). Although the incidences in dosed groups are low and are not statistically significant compared with control groups, the spontaneous occurrence of erosions or ulcers of the stomach in control animals is uncommon. In addition, these ulcers were relatively large (1-5 mm in diameter) and were noted at gross observation. Thus, ulcers of the forestomach and glandular stomach may have been related to the administration of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt.

Kidney: Many dosed female rats and a few control females had intracellular crystals of undetermined origin in the pelvic epithelium which were diagnosed as mineralization (8/50, 30/50, 37/50). This lesion consisted of a minuscule amount of crystalline material within the cytoplasm of one or a few pelvic epithelial cells. The increased incidence is statistically significant and dose related, and thus was considered associated with chemical administration. However, this lesion was considered to be of little or no biological significance because a) quantitatively, the crystalline material was extremely minimal and b) an associated cellular degeneration or necrosis was not apparent.

	0 ppm	12,500 ppm	25,000 ppm
Hyperplasia			
Overall rates ^a	17/48 (35%)	21/50 (42%)	13/50 (26%)
Benign Pheochromocytoma			
Overall rates	16/48 (33%)	18/50 (36%)	19/50 (38%)
Adjusted rates ^b	50.5%	56.0%	59.6%
Terminal rates ^c	7/21 (33%)	7/20 (35%)	12/24 (50%)
First incidence (days)	540	583	520
Logistic regression tests ^d	P=0.396	P=0.491	P=0.438
Malignant Pheochromocytoma			
Overall rates	2/48 (4%)	4/50 (8%)	8/50 (16%)
Adjusted rates	8.9%	16.1%	27.6%
Terminal rates	1/21 (5%)	2/20 (10%)	4/24 (17%)
First incidence (days)	713	663	658
Logistic regression tests	P=0.037	P=0.358	P=0.059
Pheochromocytoma (Benign, Complex,	or Malignant) ^e		
Overall rates	17/48 (35%)	21/50 (42%)	26/50 (52%)
Adjusted rates	52.7%	63.9%	73.6%
Terminal rates	7/21 (33%)	9/20 (45%)	15/24 (63%)
First incidence (days)	540	583	520
Logistic regression tests	P=0.067	P=0.334	P=0.084

TABLE 9

Adrenal Medulla Pheochromocytomas in Male Rats in the 2-Year Feed Study
of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

^a Number of lesion-bearing animals/number of animals examined at site

^b Kaplan-Meier estimated tumor incidence at the end of the study after adjustment for intercurrent mortality

c Observed incidence at terminal kill d Beneath the control incidence are t

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The logistic regression tests regard tumors in animals dying prior to terminal kill as nonfatal.

e Historical incidence from 2-year NTP feed studies of untreated control groups (mean ± standard deviation): 306/788 (38.8% ± 8.4%), range 22%-48%

TABLE 10

Stomach Ulcers in Rats in the 2-Year Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

	0 ppm	12,500 ppm	25,010 ppm
Male			
Forestomach: Ulcer Overall rates ^a	0/50 (0%)	4/50 (8%)	1/50 (2%)
Glandular Stomach: Ulcer Overall rates	1/50 (2%)	1/50 (2%)	4/50 (8%)
Forestomach or Glandular Stomach: Ulcer Overall rates	1/50 (2%)	5/50 (10%)	4/50 (8%)
Female			
Forestomach: Ulcer Overall rates	0/50 (0%)°	1/50 (2%)	4/50 (8%)
Glandular Stomach: Ulcer Overall rates	0/50 (0%)	0/50 (0%)	2/50 (4%)
Forestomach or Glandular Stomach: Ulcer Overall rates	0/50 (0%)°	1/50 (2%)	4/50 (8%)

----- A _____

 $^{\circ}$ Trend was significant (P \leq 0.05) by logistic regression; no pairwise differences were significant. Number of lesion-bearing animals/number of animals necropsied

MICE

14-Day Studies

All mice survived to the end of the studies. The mean body weight gains of males and females that received 100,000 ppm were significantly lower than those of the controls (Table 11). The values for feed consumption by males and females in the 100,000 ppm dose groups were higher than those of the controls throughout the studies. These values, however, represent both feed consumed and feed spilled. The apparent increase in these values is

likely due to reduced palatability and excess feed loss.

Clinical findings in females that received 50,000 or 100,000 ppm and in males that received 100,000 ppm included soft stools. Diarrhea and swelling or hyperemia of the perineum were observed less frequently in mice that received 100,000 ppm. Decreases in absolute and relative organ weights were considered secondary to the decreased mean body weights (Table F4).

TABLE 11

Survival, Mean Body Weights, and Feed Consumption of Mice in the 14-Day Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

Concentration	centration Survival ^a Mean Body Weight ^b (g)			Final Weight Relative to Controls	Feed <u>Consumption</u> ^c		
(ppm)		Initial	Final	Change	(%)	Week 1	Week 2
Male				-			
0	5/5	21.0 ± 0.6	24.2 ± 0.7	3.2 ± 0.9		3.0	2.6
6,250	5/5	21.2 ± 0.6	24.2 ± 0.7	3.0 ± 0.5	100	2.6	2.4
12,500	5/5	20.6 ± 0.6	24.4 ± 0.5	3.8 ± 0.4	101	2.9	2.8
25,000	5/5	21.0 ± 0.3	23.4 ± 0.2	2.4 ± 0.2	97	2.6	2.3
50,000	5/5	20.8 ± 0.7	23.8 ± 0.7	3.0 ± 0.3	98	3.0	2.7
100,000	5/5	20.8 ± 0.6	$22.2 \pm 0.9^*$	$1.4 \pm 0.4^{\circ}$	92	4.7	3.4
Female					1		
0	5/5	18.4 ± 0.7	21.0 ± 0.6	2.6 ± 0.5		2.3	2.7
6,250	5/5	18.0 ± 0.3	20.2 ± 0.6	2.2 ± 0.4	96	3.1	3.2
12,500	5/5	18.2 ± 0.7	20.0 ± 0.8	1.8 ± 0.4	95	3.8	2.3
25,000	5/5	18.4 ± 0.7	20.8 ± 0.6	2.4 ± 0.9	99	3.0	2.6
50,000	5/5	18.4 ± 0.8	20.0 ± 0.7	1.6 ± 0.2	95	2.8	3.2
100,000	5/5	18.4 ± 0.7	19.4 ± 0.6	$1.0 \pm 0.3^*$	92	3.5	3.5

* Significantly different ($P \le 0.05$) from the control group by Williams' or Dunnett's test

^a Number of animals surviving at 14 days/number initially in group

^b Weights and weight changes are given as mean \pm standard error.

^c Grams of feed per animal per day

Results

13-Week Studies

Six males in the 100,000 ppm dose group died; three of these deaths occurred during week 4 and the remainder occurred during weeks 6, 8, and 11 (Table 12). One female receiving 100,000 ppm died during week 10. This mortality suggests cumulative effects, as there were no deaths in the 14-day studies. For the 13-week period, there was an actual mean body weight loss in males and females in the 100,000 ppm dose groups. Mean body weight gains of males and females that received 50,000 ppm were 31% less than those of the respective controls, and in the 25,000 ppm dose groups, the weight gains were 18% lower in males and 8% lower in females than those in the respective control groups. Values for feed consumption (plus spillage) by the 100,000 ppm dose groups exceeded the control values by 250% for males and 150% for females at 13 weeks (Table 13). Increases in feed consumption

and spillage relative to the controls were less marked in the lower dose groups. These increases were attributed to reduced palatability and excess feed loss rather than to increased feed consumption.

Significant clinical findings in the 100,000 ppm dose group included body tremors (probably caused by weakness, rather than neurological impairments), lethargy, emaciation, and diarrhea. Statistically significant changes in absolute or relative organ weights were considered to reflect the decreased final mean body weights (Table F5). Statistically significant decreases in serum albumin and total protein levels in the 100,000 ppm groups (Table G3) were likely due to diarrhea, reduced feed intake, emaciation, or a combination of these factors. Other changes in clinical pathology values were not considered biologically significant.

Table 12

Survival and Mean	n Body Weights	of Mice in the	13-Week Feed Studies
of 4,4'-Diamino-2,	2'-stilbenedisul	fonic Acid, Disc	rdium Salt

Concentration	Survivala	Man	n Body Weight ^b		Final Weight Relative to Controls
(ppm)	201 41491	Initial	Final	Change	(%)
lale				- -	
0	10/10	20.8 ± 0.5	30.1 ± 0.6	9.3 ± 0.3	
6,250	10/10	20.9 ± 0.5	29.0 ± 0.8	8.1 ± 0.4	96
12,500	10/10	20.5 ± 0.4	29.0 ± 0.7	8.5 ± 0.7	96
25,000	10/10	20.5 ± 0.5	28.1 ± 0.8	$7.6 \pm 0.5^{\circ}$	93
50,000	10/10	20.3 ± 0.6	$26.7 \pm 0.7^{\circ \circ}$	$6.4 \pm 0.5^{\circ \circ}$	89
100,000	4/10 ^c	20.5 ± 0.5	$20.0 \pm 0.8^{\circ \circ}$	$-0.5 \pm 0.3^{\circ\circ}$	66
emale					
0	10/10	18.0 ± 0.3	24.0 ± 0.4	6.0 ± 0.3	
6,250	10/10	18.0 ± 0.5	23.3 ± 0.6	5.3 ± 0.2	97
12,500	10/10	17.4 ± 0.4	23.3 ± 0.4	5.9 ± 0.4	97
25,000	10/10	17.9 ± 0.3	23.4 ± 0.6	5.5 ± 0.4	97
50,000	10/10	17.3 ± 0.4	$21.4 \pm 0.4^{\circ \circ}$	$4.1 \pm 0.2^{\circ \circ}$	89
100,000	9/10 ^d	17.7 ± 0.2	$16.6 \pm 0.6^{\circ \circ}$	$-1.2 \pm 0.5^{\circ \circ}$	69

^o Significantly different ($P \le 0.05$) from the control group by Williams' or Dunnett's test

°° P≤0.01

Number of animals surviving at 13 weeks/number initially in group

^b Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the studies.

^c Week of death: 4, 4, 4, 6, 8, 11

Week of death: 10

Week of Study	0 ppm	6,250 ppm	12,500 ppm	25,000 ppm	50,000 ppm	100,000 ppm
Male						
1	3.2	3.0	3.2	3.0	2.9	3.2
2	3.3	3.6	3.6	4.2	4.0	5.5
3	3.4	3.3	3.3	3.9	3.9	5.1
4	3.2	3.2	3.4	3.8	2.7	3.6
5	3.9	3.7	4.1	4.6	4.9	4.5
5 6	3.6	3.6	3.8	4.2	4.3	5.8
7	3.9	3.8	4.3	4.8	4.2	7.2
8	3.6	3.7	4.2	4.6	4.2	7.9
9	4.0	3.7	4.2	4.1	4.3	6.9
10	3.7	3.9	4.2	4.5	4.6	8.5
11	4.1	3.8	4.3	4.8	4.7	10.1
12	3.9	3.7	4.0	4.6	4.0	9.3
12	4.2	4.1	4.3	5.1	5.0	10.6
Mean ± SD	3.7 ± 0.3	3.6 ± 0.3	3.9 ± 0.4	4.3 ± 0.5	4.1 ± 0.7	6.8 ± 2.4
Female						
1	3.1	2.5	2.9	2.8	3.2	2.8
2	3.2	3.0	3.1	3.4	4.7	Ь
3	3.1	2.9	3.1	3.1	4.3	4.6
3 4	2.8	2.6	2.6	2.9	3.4	3.1
5 6	3.4	3.1	3.2	3.6	4.5	4.5
6	3.1	3.0	2.9	3.3	4.4	3.9
7	3.3	3.3	3.3	3.7	3.7	4.4
7 8	3.3	3.3	3.1	3.6	4.2	4.2
9	3.3	2.9	3.2	3.3	-3.9	4.0
10	3.2	3.2	3.3	3.9	5.4	4.8
11	3.7	3.6	3.4	3.6	3.9	5.0
12	3.4	3.3	3.2	3.5	3.9	4.3
13	3.6	3.1	3.6	4.0	4.7	5.4
Mean ± SD	3.3 ± 0.2	3.1 ± 0.3	3.1 ± 0.3	3.4 ± 0.4	4.2 ± 0.6	4.3 ± 0.7

 TABLE 13

 Feed Consumption by Mice in the 13-Week Feed Studies

 of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt^a

^a Feed consumption given in grams per animal per day, based on average consumption data per week

^b No data available

Chronic inflammation with occasional ulceration was observed in the rectal or anal mucosa of mice receiving 25,000 ppm or more 4,4'-diamino-2,2'stilbenedisulfonic acid, disodium salt (Table 14). As with the rats, this may be related to the irritative effects of diarrhea, direct irritation of mucous membranes by unabsorbed chemical, or scratching due to pruritus. Atrophy of the ovaries and uterus occurred in the 100,000 ppm dose group, and some females that received 6,250 to 50,000 ppm showed cystic endometrial hyperplasia (Table 14). Uterine and ovarian atrophy were considered to be related to body weight loss and inanition. The cystic endometrial hyperplasia was mild in all cases, and while the etiology is undetermined, the hyperplasia was

TABLE 14

Incidences of Selected Treatment-Related Lesions in Mice in the 13-Week Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt

0 ppm	6,250 ppm	12,500 ppm	25,000 ppm	50,010 ppm	100,000 ppm
0/10	0/9	0/10	2/10	0/10	4/9°
0/8	1/8	0/10	2/6	4/6°	9/9°°
	Ь				
0/10	-	-	-	-	5/8°°
0/10	0/10	0/9	2/10	0/10	3/10
0/9	0/9	0/10	3/10	5/10°	9/9**
					10/1000
0/10	0/10	1/10	0/10	1/8	10/10**
0/10	1/10	1/10	5/109	2/10	0/10
0/10	0/10	0/10	0/10	0/10	10/10**
	0/10 0/8 0/10 0/10 0/9 0/10 0/10	0/10 0/9 0/8 1/8 0/10 _b 0/10 0/10 0/9 0/9 0/10 0/10 0/10 1/10	0/10 0/9 0/10 0/8 1/8 0/10 0/10 - ^b - 0/10 0/10 0/9 0/9 0/9 0/10 0/10 0/10 1/10	$0/10$ $0/9$ $0/10$ $2/10$ $0/8$ $1/8$ $0/10$ $2/6$ $0/10$ $-^b$ $ 0/10$ $0/10$ $0/9$ $2/10$ $0/10$ $0/10$ $0/9$ $2/10$ $0/9$ $0/9$ $0/10$ $3/10$ $0/10$ $0/10$ $1/10$ $0/10$	$0/10$ $0/9$ $0/10$ $2/10$ $0/10$ $0/8$ $1/8$ $0/10$ $2/6$ $4/6^{\circ}$ $0/10$ $-^{b}$ $ 0/10$ $0/10$ $0/9$ $2/10$ $0/10$ $0/10$ $0/10$ $0/9$ $2/10$ $0/10$ $0/9$ $0/9$ $0/10$ $3/10$ $5/10^{\circ}$ $0/10$ $0/10$ $1/10$ $0/10$ $1/8$ $0/10$ $1/10$ $1/10$ $5/10^{\circ}$ $2/10$

* Significantly different (P≤0.05) from the control group by the Fisher exact test

°° P≤0.01

^a Incidences given as number animals with lesion/number of animals with tissues examined

^b Not examined

possibly the result of estrogenic effects of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt. A positive dose-related response may have been obscured by the decreased final mean body weights in the 50,000 and 100,000 ppm dose groups.

Dose Selection Rationale: The observation of deaths, decreased mean body weight gain relative to that of the controls, and ulcerative anal and rectal mucosal inflammatory lesions precluded the selection of doses of 25,000 ppm or above. Therefore, doses of 0, 6,250, and 12,500 ppm were selected for the 2-year studies in mice.

2-Year Studies

15-Month Interim Evaluation

There were no biologically significant changes in absolute or relative organ weights, clinical pathology

parameters, or histology observations that were related to the administration of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, at 15 months (Tables F6 and G4).

Body Weights, Feed Consumption, and Clinical Findings

Mean body weights of all dosed groups were generally similar to those of the controls throughout the study (Tables 15 and 16 and Figure 3). However, the mean body weight of female mice receiving 12,500 ppm was consistently 4% to 5% lower than that of the controls after week 22. Feed consumption was similar between control and dosed groups (Tables I3 and I4). No clinical findings were attributed to the administration of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt.

 $V_{i} = 1$

-1 -.. .t

TABLE 1	5
---------	---

Mean Body Weights and Survival of Male Mice in the 2-Year	Feed Study
of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	

Weeks	0	ppm		6,250 ppm	·····		12,500 ppm	· · · ·
01		Number of	Av. Wt.	Wt. (% of	Number of	Av. Wt.	Wt. (% of	Number of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
							100	
1	21.3	60	20.9	. 98	60 ()	21.2	100	60
2.	22.7	60	22.7	100	60 ()	22.8	100	60
3.	24.1	60	24.3	101	· 60	24.2	100	60
4	25.4	60	25.2	99	60	24.8	98	58
5	26.5	60	26.3	99	60	26.4	100	58
6	27.4	60	27.1	99	60	27.0	99	58
7	28.0	. 60 ·	28.0	100	60	27.0	96	58
8	29.1	59	29.0	100	60 ()	28.6	98	- 58
9	29.5	58	29.3	99	60	29.4	100	58
10	30.0	58	29.4	98	60	29.3	98	58
11	30.1	57	30.2	100	60	29.8	99	. 57
12	30.9	57	30.5	99	60	30.3	98	57
13	31.0	57	30.8	[,] 99	60	30.8	99	57
14	31.5	57	30.8	98	60	31.4	100	57
18	32.0	57	32.3	101	60	32.5	102	57
22	33.0	56	32.3	98	60	31.9	97	. 55
26	33.3	56	33.0	. 99	60	32.5	98	55
30	33.7	56	33.4	99	59	33.3	99	55
34	34.6	56	34.7	100	58	. 34.2	99	55
38	35.7	56	34.9	98	58	34.7	97	55
42	35.7	56	35.1	98	57	35.2	99	55
46	35.9	56	35.5	99	57	35.2	98	55
50 、	37.4	54	36.3	97	57	36.1	97	55
54	40.1	54	38.8	97	57	38.0	95	55
58	37.2	54	37.9	102	57	37.7	101	55
62	40.3	. 54	40.3	100	57	38.3	95	55
66 ^a	40.3	44	39.8	99	46	39.5	98	44
70	41.8	44	41.5	99	46	41.6	100	44
74	42.8	44	42.1	98	46	41.8	98	44
78	42.6	44	42.3	99	46	42.4	100	44.
82	42.2	44	41.7	99	46	41.4	98	44
86	41.7	43	40.9	′ 98	46	40.7	98	43
90 1	41.0	43	40.3	98	44	39.5	96	43
92	40.7	43	39.8	98	43	39.4	97	43
94 .	39.5	43	39.7	101	43	38.7	98	42
96	39.9	43	39.5	. 99	43	38.8	97	42
98	39.8	43	39.3	99	43	38.7	97	42
100	39.8	43	39.3	. 99	43	38.6	97	42
102	38.4	43	37.8	. 98	42	37.3	97	42
104	38.3	43	37.8	99	40	37.1	97	42
rminal sa	crifice	43		• •	40			42
ean for w								· · · · ·
1-13	27.4		27.2	99		27.0	99	•
14-52	34.3		33.8	99		33.7	98	
3-104	40.4		39.9	99		39.4	98	

^a Interim evaluation occurred during this week.

. . . .

Results

TABLE 16

Mean Body Weigl	its and Survival	l of Female Mic	e in the 2-Ye	ar Feed Study
of 4,4'-Diamino-2	,2'-stilbenedisul	lfonic Acid, Disc	≍dium Salt	

Weeks	0	ppm		6,250 ppm			12,500 ppm	
on	Av. Wt.	Number of	Av. Wt.	Wt. (95 of	Number of	Av. Wt.	Wt. (95 of	Number of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	16.7	60	17.1	102	60	17.3	104	60
2	17.8	60	17.9	101	60	17.6	99	60
3	19.0	60	18.7	98	60	18.9	100	60
4	19.3	60	19.3	100	60	19.4	101	60
5	20.3	60	20.3	100	60	20.2	100	60
6	21.0	60	20.5	98	60	20.6	98	60
7	21.6	60	21.0	97	60	21.3	99	60
8	22.3	60	22.0	9 9	60	22.2	100	60
9	22.8	60	22.9	100	60	22.7	100	60
10	22.8	60	22.9	100	60	23.0	101	60
11	23.1	60	23.3	101	60	23.1	100	60
12	23.7	60	23.7	100	60	23.4	9 9	60
13	23.9	60	23.9	100	60	23.3	98	60
14	24.3	60	24.1	9 9	60	24.3	100	60
18	25.6	60	26.3	103	60	25.1	98	60
22	26.7	60	26.7	100	60	25.4	95	60
26	27.2	60	27.3	100	59	25.9	95	60
30	27.5	60	27.6	100	59	26.3	96	60
34	29.3	60	29.9	102	59	28.1	96	60
38	30.9	60	31.4	102	59	29.0	94	60
42	31.5	60	32.0	102	59	30.1	96	60
46	29.8	60	31.7	106	59	30.4	102	60
50	32.1	60	32.6	102	59	31.2	97	60
54	34.5	60	34.9	101	59	32.6	95	60
58	33.9	60	34.2	101	59	32.8	97	59
62	35.4	59	34.7	98	59	32.7	92	59
66 ^a	35.4	49	34.9	99	48	33.2	94	49
70	37.3	49	37.7	101	48	34.4	92	49
74	37.8	49	37.6	100	48	35.7	94	49
78	37.7	49	38.0	101	48	35.5	94	48
82	37.3	49	38.8	104	47	36.0	97	48
86	37.5	48	38.3	102	47	35.9	96	48
90	37.9	46	38.0	100	46	35.7	94	47
92	38.0	46	38.1	100	46	36.1	95	47
94	37.8	46	38.0	101	. 45	35.4	94	45
96	37.9	46	38.1	101	44	35.7	94	44
98	37.5	46	37.8	101	43	35.7	95	41
100	37.1	46	38.0	102	43	36.0	97	40
102	37.0	45	36.8	100	43	34.8	94	40
104	37.5	43	37.3	100	43	35.6	95	38
erminal sa	ocrifice	43			43			38
ean for w								
1-13	21.1		21.0	100		21.0	100	
14-52	28.5		29.0	102		27.6	97	
53-104	36.9		37.1	101		34.9	95	

^a Interim evaluation occurred during this week.

Results

Survival

Survival was similar between control and dosed groups of male and female mice (Table 17 and Figure 4).

Pathology and Statistical Analyses of Results This section describes the biologically noteworthy changes in the incidences of neoplastic or nonneoplastic lesions of the lung in mice. Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, and statistical analyses of primary tumors that occurred with an incidence of at least 5% in at least one animal group are presented in Appendixes C for male mice and D for female mice.

Hypertrophy of the wall of the small arteries and arterioles of the lung was present in female mice in the 2-year study. The highest incidence of this

TABLE 17

Survival of Mice in the 2-Year Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

	0 ppm	6,250 ppm	12,500 ppm
Male			
Animals initially in study	60	60	60
15-month interim evaluation ^a	10	10	10
Natural deaths	4	6	2
Moribund kills	3	3	6
Missing ^a	0	1	0
Animals surviving to study termination	43	40	42
Percent survival at end of study ^b	88	83	86
Mean survival (days) ^c	624	647	620
Survival analyses ^d	P=0.888	P=0.842	P=0.992
Female			
Animals initially in study	60	60	60
15-month interim evaluation ^a	10	10	10
Natural deaths	5	5	6
Moribund kills	2	2	5
Missing ^a	0	0	1
Animals surviving to study termination	43	43	38
Percent survival at end of study ^b	86	87	78
Mean survival (days) ^c	671	661	664
Survival analyses ^d	P=0.348	P=0.827	P=0.417

^a Censored from survival analyses

^b Kaplan-Meier determinations. Survival rates adjusted for missing animals and interim evaluations.

^c Mean of all deaths (uncensored, censored, terminal sacrifice)

^d The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the dosed columns.

FIGURE 4

Kaplan-Meier Survival Curves for Mice Administered 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt in Feed for 2 Years

Results

lesion occurred in females that received 12,500 ppm, but hypertrophy also occurred in control females (0 ppm, 10/50; 6,250 ppm, 8/49; 12,500 ppm, 21/49; Table D4).

Affected vessels were distributed randomly and had minimal to mild circumferential thickening of mural smooth muscle; it was not determined if this thickening was due to myocyte hypertrophy, hyperplasia, or both. While there are no historical data for this lesion, it appears to occur spontaneously. The response was not dose related and the incidence in the control group was relatively high; thus the biological significance of the marginal increase in the 12,500 ppm dose group was not determined.

Incidences of alveolar/bronchiolar adenomas were decreased in dosed mice (males: 12/50, 3/48, 7/50; females: 12/50, 3/49, 5/49; Tables C3 and D3). These decreased incidences are not dose-related and the incidences in the control groups are at the high end of the historical control range of 4% to 24% for males and 0% to 24% for females. Therefore, the decreased incidences were not considered related to administration of 4,4'-diamino-2,2'-stilbene-disulfonic acid, disodium salt.

4,4'-Diamino-2,2'-stilbenedisulfonic acid was not mutagenic in Salmonella typhimurium strains TA100, TA1535, TA1537, or TA98 when tested in a preincubation protocol at concentrations of 100 to 5,000 μ g/plate in the presence and the absence of Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9 (Table E1; Zeiger et al., 1987). 4,4'-Diamino-2,2'-stilbenedisulfonic acid was tested for induction of sister chromatid exchanges (Table E2) and chromosomal aberrations (Table E3) in Chinese hamster ovary cells in two laboratories; results in both laboratories were negative for each In the first laboratory, 4,4'-diaminoendpoint. 2,2'-stilbenedisulfonic acid was tested for induction of sister chromatid exchanges and chromosomal aberrations using standard harvest times, with and without Aroclor 1254-induced male Sprague-Dawley rat liver S9, at concentrations up to 1,020 μ g/mL (Loveday et al., 1990). In the second laboratory, higher doses, up to 5,000 μ g/mL 4,4'-diamino-2,2'stilbenedisulfonic acid were tested with and without S9; a delayed harvest protocol was used to obtain sufficient cells for analysis at the highest dose in the sister chromatid exchanges trials and the chromosomal aberrations trial conducted in the absence of **S9**.

i e e State

DISCUSSION AND CONCLUSIONS

4,4'-Diamino-2,2'-stilbenedisulfonic acid, disodium salt, is used primarily in the synthesis of dyes, such as Chrysophenine (Direct Yellow 12) or the nonethylated dye Brilliant Yellow (Direct Yellow 4), and in the synthesis of optical brighteners or fluorescent whitening agents (FWAs). FWAs are added to paper, leather, fabrics, plastics, and laundry detergents to enhance colors and whiteness (Kirk-Othmer, 1983a,b). 4,4'-Diamino-2,2'-stilbenedisulfonic acid, disodium salt, was nominated by the Consumer Product Safety Commission for study because of the high production volume, its use in the synthesis of dyes and bleaching agents, the lack of toxicologic and carcinogenesis data, and its structural similarity to other azo dyes with toxicologic or carcinogenic potential.

During the 14-day rat and mouse studies, toxic effects were generally mild and included diarrhea and reduced body weight gains in animals administered 100,000 ppm 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, in feed. These effects were more pronounced in the 13-week studies. Some mice receiving 100,000 ppm died, and the mean body weight gains of males and females receiving 50,000 or 100,000 ppm as well as males receiving 25,000 ppm were significantly lower than those of the controls. Poor palatability of feed was considered to have contributed to the decreased body weight gain. Most of the measured increase in feed consumption was probably due to wasting by animals searching for unadulterated feed. Inflammatory lesions of the rectum/anus occurred in rats receiving 100,000 ppm and in mice receiving 25,000 ppm or more; these lesions were frequently ulcerative in mice. It was not determined to what extent these lesions may have been caused by a direct caustic or irritative effect of unabsorbed 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, or by irritation associated with diarrhea or soft stools. The inflammatory lesions, decreased body weight gains, and increased feed consumption were limiting factors in dose selection for the 2-year studies.

In the 2-year studies, the high dose selected was 25,000 ppm for rats and 12,500 ppm for mice; survival was not decreased and toxic effects in rats were limited to slightly lower body weights and a marginal increased incidence of gastric ulceration. There were no significant nonneoplastic effects in mice and no neoplastic effects in rats or mice in the 2-year studies. Although the animals may have tolerated slightly higher doses, results of the 13-week studies indicate that the doses could not have been doubled.

Information on the toxicity of 4,4'-diamino-2,2'stilbenedisulfonic acid is scant; however, available information suggests the chemical is only mildly toxic in humans (Yamauchi and Shimizu, 1973) and other animals (Kilbey, 1977). This is consistent with the findings in these NTP toxicity and carcinogenicity studies. Kilbey indicated that dermal and alimentary uptake is probably very low, and NTP studies (1986) conducted to determine the disposition of $[^{14}C]$ 4,4'-diamino-2,2'-stilbenedisulfonic acid in rats after ad libitum administration in the feed revealed very low absorption rates. Seventy-two hours after the diet containing [¹⁴C] 4,4'-diamino-2,2'-stilbenedisulfonic acid was removed, recovery of radiolabel in the feces was 80% to 92%; less than 6% of the radiolabel was recovered in the urine. Muscle tissue contained 0.55% to 0.77% radioactivity at 72 hours, while other tissues had only trace amounts. An earlier (1983) NTP disposition study revealed negligible absorption via the alimentary route. Thus, low systemic availability of 4,4'-diamino-2,2'stilbenedisulfonic acid via the common exposure routes may minimize its potential toxic effects.

In a report of sexual dysfunction among male chemical workers manufacturing the stilbene derivative, 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, clinical symptoms included impotence and decreased libido (Hammond *et al.*, 1987). In this report, less than 350 ng/dL serum testosterone (normal range 350-1,050 ng/dL) was reported in 37% of all exposed men; however, there was no significant difference between the testosterone levels of men who reported impotence and of those who did not. These effects are similar to those that might occur with estrogenic compounds such as diethylstilbestrol (DES); however, other effects of DES, such as gynecomastia (Zaebst *et al.*, 1980), did not occur in workers exposed to 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt. Airborne concentrations of 4,4'-diamino-2,2'-stilbenedisulfonic acid, were low; however, a fine yellowish film of the chemical on surfaces throughout the work area made dermal or oral exposure possible (Quinn *et al.*, 1990).

4,4'-Diamino-2,2'-stilbenedisulfonic acid, disodium salt, and 4,4'-dinitrostilbene-2,2'-disulfonic acid, disodium salt (DNS), are structurally related to the synthetic hormone DES. Animal assays were used to determine the estrogenic activity, shown by increased uterine weight in sexually immature female rats, of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, and three of its synthetic precursors: DNS, 2-methyl-5-nitrobenzenesulfonic acid (MNBSA), and 4-nitrotoluene (Smith and Quinn, 1992). Estrogens have been implicated as a possible etiologic factor in the development of endometrial carcinoma, breast carcinoma, ovarian cancer, vaginal adenosis, and vaginal clear-cell carcinoma in humans. In the animal assays, 4,4'-diamino-2,2'stilbenedisulfonic acid and 4-nitrotoluene exhibited uterotrophic effects, but both were much weaker than DES. 4-Nitrotoluene is not structurally similar to any estrogenic chemical; however, chemicals with quite diverse structures have been found to possess estrogenic activity (Mueller and Kim, 1978; Katzenellenbogan, 1980). Estrogenic activity of 4,4'-diamino-2,2'-stilbenedisulfonic acid and 4-nitrotoluene has been substantiated in preliminary in vitro experiments which showed that they bind, albeit weakly, to estrogen receptors isolated from rabbit uteri. The responses to oral doses of 4,4'-diamino-2,2'-stilbenedisulfonic acid were not appreciably different from the responses to the same doses given intraperitoneally. Also, a sample of 4,4'-diamino-2,2'-stilbenedisulfonic acid taken from the above-mentioned manufacturing plant was found to have uterotrophic activity. The estrogenic activity may be lost if aqueous solutions are exposed to ultraviolet light (Smith and Quinn, 1992); this loss of activity is supported by results of previous NTP studies (unpublished, 1986) which indicate that dilutions of 4,4'-diamino-2,2'-stilbenedisulfonic acid exposed to light were unstable. Dilutions were stable for at least 3 hours if protected from light.

An effect which may have been associated with of 4,4'-diamino-2,2'estrogenic activity stilbenedisulfonic acid, disodium salt, did occur in the current NTP studies. Cystic endometrial hyperplasia occurred in female mice in the 13-week study; this hyperplasia was most common in the 25,000 ppm dose group (although it also occurred in lower dose groups), was less common in the 50,000 ppm dose group, and was not observed in the 100,000 ppm dose group. However, final mean body weights were significantly lower in the two highest female dose groups than in the control group; ovarian atrophy occurred in all females in the 100,000 ppm dose group and may have been secondary to the marked decrease in body weights. This atrophy may have concealed any cystic endometrial hyperplasia in the 100,000 ppm dose It is uncertain whether any estrogenic group. activity would have been retained in the premixed feed or if the above effect is indeed related to estrogenic activity of 4,4'-diamino-2,2'stilbenedisulfonic acid, disodium salt. Also, there were no apparent estrogenic effects in the NTP 2-year studies. While cystic endometrial hyperplasia occurred in 80% to 91% of all female mice in the 2-year study, it is an extremely common spontaneous lesion of aged female mice and is probably not an appropriate endpoint for determination of an estrogenic effect.

The risk of exposure for the general population is much greater for the derivative dyes and FWAs than 4,4'-diamino-2,2'-stilbenedisulfonic acid, for disodium salt. A review of the available information indicates low toxicity for stilbene derivative FWAs as well. Most stilbene derivative FWAs are water soluble (Gold, 1975). Photochemical and biological degradation occurred in representative water-soluble FWAs: however, the importance of stilbene derivative FWAs in the food chain remains largely undetermined (Zinkernagel, 1975). The highest estimate of total intake of FWAs from contaminated food and from contact with the skin by consumers is 4.4 micrograms/kg per day (Buxtorf, 1975).

Two-year feed studies were conducted in albino rats with the following four FWAs to determine toxic and carcinogenic effects: sodium 2-(4-styryl-3sulfophenyl)-2H-naphtho[1,2-d]triazole; disodium 4,4'-bis[(4-anilino-6-morpholino-1,3,5-triazin-2-yl)amino]stilbene-2,2'-disulfonate; disodium 4,4'-bis{[4-anilino-6-(N-methyl-N-2-hydroxyethyl)amino-1,3,5-triazin-2-yl]amino}stilbene-2,2[°]-disulfonate; and disodium 4.4'bis(2-sulfostyryl)biphenyl. Each study had a control group and three treatment groups (0 ppm, 40 ppm, 200 ppm, and 1,000 ppm) of 50 male and 50 female rats. There were no significant toxic or carcinogenic effects in these rat studies (Keplinger et al., 1975a). Daily oral administration of FWAs of the bis(triazinylamino or triazolyl)stilbenedisulfonic acid type at doses up to 1,000 mg/kg to rats from the sixth to the fifteenth day of pregnancy and to rabbits from the sixth to eighteenth day of pregnancy caused no embryotoxic or teratogenic effects (Lorke and Machemer, 1975). No significant adverse effects occurred in three-generation reproductive studies in albino rats with the four FWAs mentioned above at doses of 40, 200, and 1,000 ppm (Keplinger *et al.*, 1975b).

CONCLUSIONS

Under the conditions of these 2-year feed studies, there was no evidence of carcinogenic activity^{*} of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, in male or female F344/N rats receiving 12,500 or 25,000 ppm. There was no evidence of carcinogenic activity of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt in male or female B6C3F₁ mice receiving 6,250 or 12,500 ppm.

^o Explanation of Levels of Evidence of Carcinogenic Activity is on page 8. A summary of the Technical Reports Review Subcommittee comments and public discussion on this Technical Report appears on page 10.

4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt, NTP TR 412

REFERENCES

Armitage, P. (1971). Statistical Methods in Medical Research, pp. 362-365. John Wiley and Sons, New York.

Ashby, J., Tennant, R.W., Zeiger, E., and Stasiewicz, S. (1989). Classification according to chemical structure, mutagenicity to *Salmonella* and level of carcinogenicity of a further 42 chemicals tested for carcinogenicity by the U.S. National Toxicology Program. *Mutat. Res.* 223, 73-103.

Boorman, G.A., Montgomery, C.A., Jr., Eustis, S.L., Wolfe, M.J., McConnell, E.E., and Hardisty, J.F. (1985). Quality assurance in pathology for rodent carcinogenicity studies. In *Handbook of Carcinogen Testing* (H.A. Milman and E.K. Weisburger, Eds.), pp. 345-357. Noyes Publications, Park Ridge, NJ.

Buxtorf, A. (1975). Toxicological investigations with fluorescent whitening agents. In *Environmental Quality and Safety. Suppl. Vol. IV. Fluorescent Whitening Agents* (F. Coulston and F. Korte, Eds.), p. 192. George Thieme Publishers, Stuttgart.

The Condensed Chemical Dictionary (1977). (9th ed.) (G.G. Hawley, Ed.) p. 266. Van Nostrand Reinhold Company, New York.

Cox, D.R. (1972). Regression models and life tables. J. R. Stat. Soc. B34, 187-220.

Dinse, G.E., and Haseman, J.K. (1986). Logistic regression analysis of incidental-tumor data from animal carcinogenicity experiments. *Fundam. Appl. Toxicol.* 6, 44-52.

Dinse, G.E., and Lagakos, S.W. (1983). Regression analysis of tumor prevalence data. *Appl. Statist.* 32, 236-248.

Dunn, O.J. (1964). Multiple comparisons using rank sums. *Technometrics* 6, 241-252.

Dunnett, W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50, 1095-1121.

Galloway, S.M., Bloom, A.D., Resnick, M., Margolin, B.H., Nakamura, F., Archer, P., and Zeiger, E. (1985). Development of a standard protocol for *in vitro* cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. *Environ. Mutagen.* 7, 1-51.

Galloway, S.M., Armstrong, M.J., Reuben, C., Colman, S., Brown, B., Cannon, C., Bloom, A.D., Nakamura, F., Ahmed, M., Duk, S., Rimpo, J., Margolin, B.H., Resnick, M.A., Anderson, B., and Zeiger, E. (1987). Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. *Environ. Mol. Mutagen.* 10 (Suppl. 10), 1-175.

Gart, J.J., Chu, K.C., and Tarone, R.E. (1979). Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62, 957-974.

Gold, H. (1975). The chemistry of fluorescent whitening agents. Major structural types. In *Environmental Quality and Safety. Suppl. Vol. IV. Fluorescent Whitening Agents* (F. Coulston and F. Korte, Eds.), p. 28. George Thieme Publishers, Stuttgart.

Hammond, S.K., Smith, T.J., and Ellenbecker, M.J. (1987). Determination of occupational exposure to fabric brightener chemicals by HPLC. *Amer. Ind. Hyg. Assoc. J.* 48, 117-121.

Haseman, J.K. (1984). Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. *Environ. Health Perspect.* 58, 385-392.

Haseman, J.K., Huff, J., and Boorman, G.A. (1984). Use of historical control data in carcinogenicity studies in rodents. *Toxicol. Pathol.* 12, 126-135.

Haseman, J.K., Huff, J.E., Rao, G.N., Arnold, J.E., Boorman, G.A., and McConnell, E.E. (1985). Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N x C3H/HeN) F_1 (B6C3F₁) mice. JNCI 75, 975-984.

Haworth, S., Lawlor, T., Mortelmans, K., Speck, W., and Zeiger, E. (1983). Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. 5 (Suppl. 1), 3-142.

Jonckheere, A. (1954). A distribution-free k-sample test against ordered alternatives. *Biometrika* 41, 133-145.

Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457-481.

Katzenellenbogan, J.A., Katzenellenbogan, B.S., Tatee, T., Robertson, D.W., and Landvatter, S.W. (1980). The chemistry of estrogens and antiestrogens: relationship between structure, receptor binding and biological activity. In *Estrogens in the Environment* (J.A. McLachlan, Ed.), pp. 33-50. Elsevier, New York.

Keplinger, M.L., Lyman, F.L., and Calandra, J.C. (1975a). Chronic toxicity and carcinogenicity studies with FWAs. In *Environmental Quality and Safety.* Suppl. Vol. IV. Fluorescent Whitening Agents (F. Coulston and F. Korte, Eds.), pp. 205-211. George Thieme Publishers, Stuttgart.

Keplinger, M.L., Lyman, F.L., and Calandra, J.C. (1975b). Three-generation reproduction studies with FWAs. In *Environmental Quality and Safety. Suppl.* Vol. IV. Fluorescent Whitening Agents (F. Coulston and F. Korte, Eds.), pp. 230-235. George Thieme Publishers, Stuttgart.

Kilbey, B.J. (1977). A review of genetic studies with fluorescent whitening agents using bacteria, fungi and mammals. *Mutat. Res.* **39**, 177-188.

Kirk-Othmer (1983a). Kirk-Othmer Encyclopedia of Chemical Technology (1983). 3rd Ed., Vol. 4, p. 214. John Wiley and Sons, Inc., New York.

Kirk-Othmer (1983b). Kirk-Othmer Encyclopedia of Chemical Technology (1983). 3rd Ed., Vol. 21, pp. 740-745. John Wiley and Sons, Inc., New York.

Lorke, D. and Machemer, L. (1975). Studies of embryo toxicity in rats and rabbits. In Environmental Quality and Safety. Suppl. Vol. IV. Fluorescent Whitening Agents (F. Coulston and F. Korte, Eds.), pp. 223-230. George Thieme Publishers, Stuttgart.

Loveday, K.S., Anderson, B.E., Resnick, M.A., and Zeiger, E. (1990). Chromosome aberration and sister chromatid exchange tests in Chinese hamster ovary cells *in vitro*. V. Results with 46 chemicals. *Environ. Mol. Mutagen.* 16, 272-303.

Maronpot, R.R., and Boorman, G.A. (1982). Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. *Toxicol. Pathol.* **10**, 71-80.

McConnell, E.E., Solleveld, H.A., Swenberg, J.A., and Boorman, G.A. (1986). Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. JNCI 76, 283-289.

The Merck Index (1983). 10th ed. (M. Windholz, Ed.), p. 87. Merck and Company, Rahway, NJ.

Mueller, G.C., and Kim, U.-H. (1978). Displacement of estradiol from estrogen receptors by simple alkyl phenols. *Endocrinology* **102**, 1429-1435.

National Cancer Institute (NCI). (1976). Guidelines for Carcinogen Bioassay in Small Rodents. Technical Report Series No. 1. NIH Publication No. 76-801. U.S. Department of Health, Education, and Welfare; Public Health Service; National Institutes of Health; Bethesda, MD.

National Institutes of Health (NIH). (1978). Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. NIH, Bethesda, MD.

References

National Institute of Occupational Safety and Health (NIOSH) (1991). National Occupational Exposure Survey (NOES). (1981-1983). Unpublished provisional data as of 16 May 1991.

Quinn, M.M., Wegman, D.H., Greaves, I.A., Hammond, S.K., Ellenbecker, M.J., Spark, R.F., and Smith, E.R. (1990). Investigation of reports of sexual dysfunction among male chemical workers manufacturing stilbene derivatives. *Am. J. Ind. Med.* 18, 55-68.

RTECS [database online] (1990). Bethesda, MD. National Institute for Occupational Safety and Health; 1971-. Updated quarterly. Available from National Library of Medicine, Bethesda, MD.

Sadtler Standard Spectra. IR No. 25183 and NMR No. 27547M. Sadtler Research Laboratories, Philadelphia, PA.

Saito, C. (1970). Antitumor activities of fluorescent whitening agents of the stilbene class. *Oyo Yakuri* 4, 521-524.

Shirley, E. (1977). A non-parametric equivalent of Williams' test for contrasting increasing dose levels of a treatment. *Biometrics* 33, 386-389.

Smith, E.R., and Quinn, M.M. (1992). Uterotrophic action in rats of amsonic acid and three of its synthetic precursors. J. Toxicol. Environ. Health 36, 13-25.

Tarone, R.E. (1975). Tests for trend in life table analysis. *Biometrika* 62, 679-682.

U.S. International Trade Commission (USITC) (1975). Synthetic Organic Chemicals, U.S. Production and Sales. USITC Publication No. 804. USITC, Washington, DC.

Williams, D.A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose control. *Biometrics* 27, 103-117.

Williams, D.A. (1972). The comparison of several dose levels with a zero dose control. *Biometrics* 28, 519-531.

Yamauchi, Y., and Shimizu, Y. (1973). Safety of fluorescent whitening agents to human bodies. *Kami Pa Gikyoshi* 27, 517-524.

Zaebst, D.D., Tanaka, S., and Haring, M. (1980). Occupational exposure to estrogens - problems and approaches. In *Estrogens in the Environment* (J.A. McLachlan, Ed.), pp. 377-388. Elsevier, New York.

Zeiger, E., Anderson, B., Haworth, S., Lawlor, T., Mortelmans, K., and Speck, W. (1987). Salmonella mutagenicity tests. III. Results from the testing of 255 chemicals. Environ. Mutagen. 9 (Suppl. 9), 1-109.

Zinkernagel, R. (1975). Fluorescent whitening agents in the environment. In *Environmental Quality* and Safety. Suppl. Vol. IV. Fluorescent Whitening Agents (F. Coulston and F. Korte, Eds.), pp. 129-142. George Thieme Publishers, Stuttgart.

APPENDIX A

SUMMARY OF LESIONS IN MALE RATS IN THE 2-YEAR FEED STUDY OF 4,4'-DIAMINO-2,2'-STILBENEDISULFONIC ACID, DISODIUM SALT

Table A1	Summary of the Incidence of Neoplasms in Male Rats in the 2-Year	
	Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	58
Table A2	Individual Animal Tumor Pathology of Male Rats in the 2-Year	
	Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	62
Table A3	Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year	
	Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	82
Table A4	Historical Incidence of Pheochromocytomas of the Adrenal Medulla	
	in Untreated Male F344/N Rats	87
Table A5	Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year	
	Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt	88

	0	ppm	12,50	0 ppm	2	5,00	0 ррт
Discrition Summon "		- • • • • • • •			· · · · · ·		
Disposition Summary	60		60			60	
Animals initially in study 15-month interim evaluation	10		10			10	
	10		10			10	
Early deaths Natural deaths	7		6			6	
Moribund kills	21	•	24			20	
	21		24			20	
Survivors	22		20			23	
Terminal sacrifice	22		20			23 1	
Died last week of study	•					T	
Animals examined microscopically	50		50			50	
Alimentary System							
Intestine large, colon	(47)		(14)			19)	
Intestine large, rectum	(47)		(14)			18)	
Intestine small, duodenum	(48)		(12)			19)	
Intestine small, ileum	(48)		(12)		(4	18)	
Adenoma, papillary	1	(2%)					
Intestine small, jejunum	(47)	· •	(11)		(4	18)	
Liver	(50)		(49)		(50)	
Neoplastic nodule	ì	(2%)	. ì	(2%)	•	4	(8%)
Neoplastic nodule, multiple						1	(2%)
Pheochromocytoma malignant, metastatic, adrenal							• •
gland						-1	(2%)
Mesentery	(5)		(2)			(5)	
Fibrous histiocytoma	~ /		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				(20%)
Pancreas	(49)		(16)		(4	19)	. ,
Sarcoma, metastatic, tissue NOS	. ,	• •	ì	(6%)	•	•	
Salivary glands	(50)		(14)	```	(50)	
Stomach, forestomach	(49)		(21)			19)	
Papilloma squamous	()		()		`		(2%)
Sarcoma, metastatic, tissue NOS	· .		1	(5%)			` '
Stomach, glandular	(48)		(21)	(277)	C	50)	
Tongue	(10)		()			(3)	
Papilloma squamous						1	(33%)
Cardiovascular System							
Heart	(50)		(20)		(50)	
Sarcoma, metastatic, skin	. ,		ì	(5%)		i	(2%)
Endocrine System							
Adrenal gland, cortex	(50)		(49)			50)	
Adrenal gland, medulla	(48)		(50)		· (50)	
Pheochromocytoma malignant	Ì Ź	(4%)	3	(6%)	-	4	(8%)
Pheochromocytoma malignant, multiple			1	(2%)		4	(8%)
Pheochromocytoma complex						1	(2%)
Pheochromocytoma benign	12	(25%)	14	(28%)		14	(28%)
Pheochromocytoma benign, multiple	4	(8%)	4	(8%)		5	(10%)
Islets, pancreatic	(49)		(16)		(49)	. ,
Adenoma			. ,		```	ź	(4%)
Carcinoma	1	(2%)			· · ·	2	(4%)

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt^a

IA 3	LIHA T
------	--------

.

ı.

		bioA oinolluzibonodlitz-'2.2-onimaid-'8.8 lo
in the 2-Year Feed Study	eten sleM	ni amaalqosM do sonsbionI sdf Neoplaams

udd M	x0'sz	udd G	15'21	undd	0	
	(\$7)		(51)	(%)	(67)	ndocrine System (continued) rathyroid gland
(%0Z)	01 (05)	(%91)	(6 1) 8	(%7E) (%7)	91 (05) I	Adenoma tuitary gland Pars distalis, adenoma
				(%7)	I	Pars distalis, adenoma, multiple
(769)	e (05)	(29)	1 (81)	(%7)	C (67)	iyroid gland C-cell, adenoma
(%9)	ç	(%9)		(%†)	τ	C-cell, carcinoma
			(I)			sneral Body System
		(%001)	I			Загсота
	(05)		(21)		(03)	mətsy Sistem
	(6 7) (05)		(0Z) (EI)		(05) (05)	simybibi Dafig Isings
(%7) (%8)	1	(%01) (%07)	7 7	(%7) (%91)	נ 8	smonsbA
(%Z)	I	(440)	-	(are)		Carcinoma Fibrosarcoma
(%9) (%7)	Е I	(%s)	I .	(%)	C	suomenps smollige¶
(010)	(67)	(α, α)	(14)	(%†)	(0S)	Bilateral, carcinoma Detate
	(74)		(LE)		(81)	sicie vesicle
(%9)	E (05)	(%81)	6 (05)	(%8)	† (6†)	sies Interstitial cell, adenoma
(%98)	43	(%79)	16	(%9L)	LE	Interstitial cell, adenoma, multiple
				(%001)	I (I)	stes, glandular Interstitial cell, adenoma, multiple
						mətəpoietic System
	(05)		(14)		(67)	опе плагтоw Рессћготосугота плаlignant, metastatic, аdrenal
(%z)	(05) T		(55)		(05)	bnalg
	(10)		(cc)		(00)	mph node Deep cervical, carcinoma, metastatic, thyroid
				(%z)	I	- bnalg
(%Z)	I					Inguinal, renal, iliac, bronchial, mediastinal, sarcoma, metastatic, skin
						Mediastinal, alveolar/bronchiolar carcinoma,
	(05)	(%E)	(8I) (8I)		(05)	merastatic, lung mph node, mesenteric
	(05)		(67)		(05) (02)	icen
		(%Z)	ι			Histiocytic sarcoma
	I.					Pheochromocytoma malignant, metastatic, adrenal gland
(%Z)	(97)		(14)		(05)	snuki

	0	ррт	12,5	00 ppm	25,0	00 ppm
Integumentary System					<u></u>	
Mammary gland	(48)		(18)		(50)	
Adenocarcinoma			ì	(6%)	. ,	
Fibroadenoma	3	(6%)	2	(11%)	4	(8%)
Skin	(49)	. ,	(21)		(50)	
Keratoacanthoma	Ì ź	(4%)	2	(10%)	Ì Ź	(4%)
Papilloma squamous	1	(2%)			1	(2%)
Squamous cell carcinoma	1	(2%)	1	(5%)		
Trichoepithelioma		()			2	(4%)
Sebaceous gland, adenoma			1	(5%)		()
Subcutaneous tissue, fibroma			1	(5%)	1	(2%)
Subcutaneous tissue, fibrosarcoma	1	(2%)	•	(0,0)	2	(4%)
Subcutaneous tissue, lipoma	-	(_/-)			- 1	· ·
Subcutaneous tissue, sarcoma			2	(10%)		(2%)
Subcutaneous tissue, schwannoma benign	· 1	(2%)	-	(10/0)	-	(270)
		(=/~)				
Musculoskeletal System						
Skeletal muscle	•		(1)	(1 0 0 0 1)	(1)	
Diaphragm, sarcoma, metastatic, tissue NOS			1	(100%)		·
Nervous System				General Contents of		
Brain	(50)		(13)		(50)	
Astrocytoma malignant	• • •		. ,			(2%)
Sarcoma	1	(2%)				
Respiratory System			<u> </u>			
Larynx	(26)				(27)	
Carcinoma, metastatic, thyroid gland	ì	(4%)			. ,	
Lung	(50)		(30)		(50)	
Alveolar/bronchiolar adenoma	1	(2%)	1	(3%)	2	(4%)
Alveolar/bronchiolar carcinoma	1	(2%)	1	(3%)		()
Alveolar/bronchiolar carcinoma, multiple		(-		1	(2%)
Carcinoma, metastatic, preputial gland			1	(3%)	•	(2/0)
Carcinoma, metastatic, thyroid gland	1	(2%)	•	(272)		
Pheochromocytoma malignant, metastatic, adrenal	1	(=/0)			4	(70)
gland Semana matastatia akin			-	(201)	1	(2%)
Sarcoma, metastatic, skin			1	(3%)	1	(2%)
Squamous cell carcinoma, metastatic, Zymbal's				(20)		
gland			1	(3%)		(0.01)
Mediastinum, alveolar/bronchiolar carcinoma				(20)	1	(2%)
Mediastinum, hemangiosarcoma				(3%)		
Nose	(49)		(14)		(50)	
Trachea	(50)		(14)		(50)	
Carcinoma, metastatic, thyroid gland	1	(2%)				
Sarcoma, metastatic, skin			1	(7%)	1	(2%)

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilleenedisulfonic Acid, Discdium Salt (continued)

	maga. O	12,50	M ppm	2 5, 0%	co ppm
Special Senses System					
Ear	(1)				
External ear, squamous cell carcinoma	1 (100%				
Zymbal's gland		(1)		(1)	
Adenoma				1	(100%)
Squamous cell carcinoma		1	(100%)		
Urinary System					
Kidney	(50)	(45)		(50)	
Renal tubule, adenoma	~ /			ì	(2%)
Urinary bladder	(50)	(14)		(49)	• •
Transitional epithelium, papilloma	1 (2%)				
Systemic Lesions		um -			
Multiple organs ^b	(50)	(50)		(50)	
Histiocytic sarcoma	()	1	(2%)		
Leukemia mononuclear	23 (46%)	29	• •	28	(56%)
Mesothelioma benign	~ /	1	(2%)		` '
Mesothelioma malignant	3 (6%)	1	(2%)	3	(6%)
Tumor Summary					
Total animals with primary neoplasms ^c	50	50		50	
Total primary neoplasms	136	127		161	
Total animals with benign neoplasms	47	44		48	
Total benign neoplasms	97	80		104	
Total animals with malignant neoplasms	32	38		42	
Total malignant neoplasms	39	47		57	
Total animals with secondary neoplasms	1	4		2	
Total secondary neoplasms	4	9		9	

a Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site. b

Number of animals with any tissue examined microscopically

c Primary tumors: all tumors except secondary tumors

of 4,4'-Diamino-2,2'-stilbenedisulfon	ic Acid	, I	Dise	odi	um	ı Ş	alt:	: 0) p	pm	· ·							•										
	0	3	4	4	5	5	5	5	5	5	6	6	6.	6	66	56	5 6	6	6	6	; e	5 6	. 6	5 3	7			
Number of Days on Study															2 3													
															8 (
	0	0	0	0	0	0	0	0	ò	0	0	0	0	0	0 () () ()) O	0	0) () () () (0			-
Carcass ID Number	· 1	0	0	0	0	0	0	0	0.	0	1	0	0	0	0 1	1	. 1	0	0	C) () () () (0			
															4 (
															3 4													
Mimentary System																												
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+ +	, F 4	⊢ -	- +	· -	+ -	+ -	+ -	+ •	+			
Intestine large	+	+	Ā	Å	À	+	+	+	+			÷			+ •	+ +			- +		+ -	+ -	+ -	÷	÷		. •	
Intestine large, cecum	+	+										•	•		+ •							, +			+			·
Intestine large, colon														+					+		+ .	÷ .		÷ .	+			
Intestine large, rectum	+											+				+ +							, + .	÷	÷			
Intestine small	, -													÷							' L.	·		т L	÷			
Intestine small, duodenum	т 							+				+					 				 	 	 L -	r L				
Intestine small, ileum	+							++				+			•	-	► ٩ ► ┥		⊢ ╼ ⊢ ╼╋		г L	г . Г	r •		T			
	+	+	A	+	A	. +	+	+	+	+	+	Ŧ	Ŧ	Ŧ	- - ·	- 1	r 1		+					+	Ŧ			
Adenoma, papillary										,	,			L								K.						
Intestine small, jejunum	+											+		+	+ -	+ -	+ +		- +									
Liver	+	+	+	+	+	+	+	+	+,	+	+	+	+	+	+ •	+ -	+ +	+ +	- +		+ •	+ •	+ -	+	+			
Neoplastic nodule																												
Mesentery														+		ł						+						
Pancreas	+	+	+					+			+	+			+ •						+ -	+ •	+ -	+ ·	+			
Salivary glands	+	+	+	+				+			+				+ •	+ +	+ +	+ +	- +		+ •	+ -	+ -	+ ·	+			
Stomach	+	+	+	÷	Α	+	+	+	+	+	+	+	+	+	•	+ +	+ +	+ +	- +		+ -	+ -	+ -	+ ·	+			
Stomach, forestomach	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+ -	+ -	+ +	+ +	- +		+ •	+ •	+ •	+ -	+			
Stomach, glandular	+	+	+	+	Α	+	Ŧ	+	+	+	+	+	+	+	+ -	+ /	\ -	+ +	- +		+ •	+ •	+ •	+ ·	+			•
Tooth										•												-	ŧ.					
Cardiovascular System																												
Blood vessel	+					•			~		• •			,														
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+ -	+ +	⊢ ⊣	⊦ +		+ •	+ :	+ -	+	+			
Endocrine System														_														
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ +	⊢ ⊣	- +		+ -	+ -	+ •	+ -	+			
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ .	+ -			+		÷ -	+ -	+ •	+ -	+			
Adrenal gland, medulla	, +	+	+	+	+	+		+	•	•	-	÷		•		∔ ⊣					+ -	+ -	+ .	+ .	+			
Pheochromocytoma malignant			•	•	•	•			•	•	•	·	·	•	•	•					•	•	•	•	•			
Pheochromocytoma benign					x										x	x v	ĸ	2	7				x		x			
Pheochromocytoma benign, multiple					<u>^</u>												*	1	•			-	•	-				
	L.	ъ	<u>н</u>	Ŧ	Δ	ᆂ	Т	⊥	⊥	+	+	+	+	+	+ •	+ -	- -	ь	L .4		ب	÷.	. .	+	+			
Islets, pancreatic Carcinoma	+	Ŧ	T	Ŧ	л	т	т	Т	г	Г	r	1.	Υ.	Т.		•	• 7	, 1	, т		ĸ	•	•	1				
	.1	Г	-	L	д	ᅭ	ъ	ъ		J.	Ъ	Ŧ	ъ	т	+ •	. .	L J	L	L .1			. .	<u>.</u>	_	÷	•		
Parathyroid gland	+	+	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	₹.	Ŧ	Ŧ	т	Τ.	Τ'	Τ '	т -	T. 1	r 1	- 1		Γ.	τ.	r ·	T	Ŧ			
Adenoma Bituitana aland											,													L				
Pituitary gland	+	+						+			+	+	+	+	+ ·	+ -			- 1		+ ·	•			t			
Pars distalis, adenoma			Х		х		Х	х		х							2	Ľ					2	x				
Pars distalis, adenoma, multiple																												
Linumoid alond	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+ ·	+ -	+ +				+ -	+ •		+	+			
Thyroid gland																												
C-cell, adenoma C-cell, carcinoma																							•2	X				

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4.4'-Diamino-2.2'-stilbenedisulfonic Acid. Disodium Salt: 0 ppm

+: Tissue examined microscopically

,

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

													_													
Number of Days on Study	7 0 4	0	7 1 3	2	7 2 9	7 2 9	3	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	3		3	3		7 3 3		7 3 4			7 3 4		
Carcass ID Number	0 1 1	0 0 2	0 0 6	0 0 4	0 0 7	0 0 9	0 0 1	0 0 1	0 0 6	0 0 7	0 0 8	0 0 8	0 1 2	0 0 1	0 0 2	0 0 6	0 0 6	0 0 8	0 1 2	0 0 1	0 0 1	0 0 4	0 0 7	0 1 0	0 1 0	Total Tissues/
Alimentary System		1	3	2	4	3	1	5	1		4				4	4		2		4	4			3		Tumors
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	+	÷	+	+	+	÷	+	+	+	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	47
Intestine large, cecum	+	+	+	÷	÷	÷	÷	÷	+	÷	+	÷	÷	÷	+	÷	÷	+	+	÷	÷	+	+	÷	÷	47
Intestine large, colon	ب		, ,	Ļ		+	Ţ	÷	+	÷	+	÷	÷	÷	, L	+	÷		÷	÷			÷	÷	÷	47
Intestine large, rectum		1		T A	-	1		т 	1	-	, i	1	, ,	1			, ,	1	- -	1	4	-	1	+	, ,	47
Intestine small	+ 	т 	т 	т 	т 	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	т 	++	т -	47 48
Intestine small, duodenum	+	- T	T	T	T	т 	т	T	T L	т ,	T	Ţ	т	Ţ	Ţ	+	+	Ţ	т ,	т	T L	Ţ	T	т ,	т 1	48 48
		Ţ		- T	-	.	.	Ţ	Ţ	. T			Ţ	T	T	+	+	Ţ	.	+	.	T	- <u>-</u>	Ţ	+	
Intestine small, ileum	Ŧ	т	т	Ŧ	Ŧ	т	T	т	T	T	т	T	т	т	Ŧ	т	т	T	T	т	т	т	T	T	т	48
Adenoma, papillary																										1
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Neoplastic nodule																									х	1
Mesentery								.+																+		5
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Tooth																										1
Cardiovascular System																										
Blood vessel Heart	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	2 50
Endocrine System													_					-								.
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+		+	48
Pheochromocytoma malignant	•	•	x	-		•	·	•	·		•		·		•	•		•	•		•	x		•	•	2
Pheochromocytoma benign			-											х		х			х				x			12
Pheochromocytoma benign, multiple	X	x						х																х		4
Islets, pancreatic			+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	49
Carcinoma			•		'	•	•	,		•	•	•	•	•	•	•			•	•	•		•	•	•	1
Parathyroid gland	بد			-	Ł	+	ъ	Ŧ	+	+	Ŧ	Ŧ	Ŧ	+	+	Ŧ	М	+	Ŧ	Ŧ	+	+	+	Ŧ	+	49
Adenoma	т	T	T	Ŧ	ч.	1	т	Ŧ	ч.	X		Ŧ	1.	r	T.	F	141	r	1	Ŧ	1-	1.	ч.	T	1	49
Pituitary gland	بد			1	Ŧ	Ŧ	Ŧ	ъ	+	+		+	+	+	+	+	Ŧ	Ŧ	+	+	+	Ŧ	+	+	+	50
Pars distalis, adenoma	Ŧ	T	X	Ť	Τ.	т	X	Ŧ	Ŧ	x			x	т	x	т	т	т	т	-	v	x	v		r	30 16
Pars distalis, adenoma, multiple	х		Λ				Λ			л		~	л		Λ						Λ	л	Λ			10
Thyroid gland					. L	L.	л.		.1	4	-	д	д	J.	L.	J.	L.		д	4	Т	д	Т	.1	L.	49
	+	-+	+	+	Ŧ	т	Ŧ	+	Ŧ	Ŧ	T	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	x	Ŧ	Ŧ	Ŧ	т	Ŧ	+	
C-cell, adenoma C-cell, carcinoma	×							х											А							2 2
C-CEIL CALCHOMA	·							A																		

Number of Days on Study	6	7	4	4	4	6	6	7	7	8	0	2	2	2	6 2 8	3	4	4	4	6	8	9	9	9	0		
Carcass ID Number	1 0	0 8	0 9	0 3	0 3	0 3	0 7	0 4	0 5	0 4	1 2	0 5	0 5	0 5	0 0 4 3	1 0	1 1	1 2	0 3	0 2	0 6	0 7	0 9	0 9	0 8		
General Body System None																										 	
Genital System																											
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adenoma					х					х											х						
Carcinoma																											
Bilateral, carcinoma																								x			
Prostate	+	+	+	•	•	+	•	•	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Seminal vesicle	+	+				+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	-		
Testes	+	+	+	• +		+			+	+	+	+	+	+		+	+	+	+	+	+	+	+		+		
Interstitial cell, adenoma					X			х	••															X			
Interstitial cell, adenoma, multiple				x	•	x			х			х		х		х	х			х	x	X	X		х		
Testes, glandular Interstitial cell, adenoma, multiple															* x												
Hematopoietic System																				-							
Blood																						+					
Bone marrow	+	+	+	. +	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node	+	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Deep cervical, carcinoma, metastatic, thyroid gland																											
Lymph node, mesenteric	+	+	· +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Spleen	+					+						+	+	+		+		+	+	+	+	+	+	+	+		
Thymus .	+	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•+		
Integumentary System																						_					
Mammary gland			- +	- +	• +	+	+	+	+	+	+	+	+	+		Μ	+	+	+	+	Μ	[+	+	+	+		
Fibroadenoma	X											-	_		x		_		_		-	_			-		
Skin	+	+	• +	- +	• +	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	M	ι +	+		
Keratoacanthoma																х											
Papilloma squamous																											
Squamous cell carcinoma																v											
Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, schwannoma benign				х	5											x											
Musculoskeletal System								L	+	L.	+	+	т	L.	Ŧ	Ŧ	+		+				L	<u>ـ</u>	+		
Bone	+	• +		- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

									•	-	`															
Number of Days on Study	7 0 4	7 0 8	7 1 3	7 2 9	7 2 9	7 2 9		7 3 2		7 3 2		7 3 2	7 3 2	7 3 3	7 3 3	7 3 3			7 3 3				7 3 4			
Carcass ID Number	1 1	0 2	0 6	0 4	0 7	0 9	0 1	0 1	0 6	0 7	0 8	0 8	1 2	0 1	0 2	0 6	0 6	0 8	1 2	0 1	0 1	0 4	0 0 7 2	1 0	1 0	Total Tissues/ Tumors
General Body System None																										
Genital System																										
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4-	+	+	+	+	50
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma								Х				Х	:			Х			Х		Х					8
Carcinoma							х																			1
Bilateral, carcinoma														Х												2
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Seminal vesicle	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+		+	48
Testes	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Interstitial cell, adenoma																										4
Interstitial cell, adenoma, multiple Testes, glandular Interstitial cell, adenoma, multiple	х	X	X	X	X	x	х	x	X	X	X		х	X	X	х	х	х	х	x	X	X	х	X	X	37 1 1
Hematopoietic System																										
Blood																										1
Bone marrow	+	• +	• +	• +	+	+	+	+	+	+	+	• +	+ +	+	+	+	+	+	+	+	+	+	+	+	• +	49
Lymph node	+	• +	- +	• +	+	+	+	+	+	+	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	• +	50
Deep cervical, carcinoma, metastatic, thyroid gland	х																									1
Lymph node, mesenteric	+	• +	- +	- +	+	+	+	+	+	+	+	• +	• +	+	+	+	+		+					+	• +	50
Spleen	+	- +	- +	- +	+	+	+	+	+	+	+	• +	- +	+	+	+	+	+	-	-	+			+	• +	49
Thymus	+	• +	- +	- +	• +	+	+	+	+	+	• +	• +	• +	• +	+	+	+	+	+	+	+	+	• +	+	• +	50
Integumentary System																										
Mammary gland	+	- +	- +	- +	• +	+	+	+	• +	+	• +	- +	- +	• +	+	+	+			+	+	+	• +	+	• +	48
Fibroadenoma																		X								3
Skin Keratoacanthoma	+	- +	+	- +	• +	+	+	+	• +	+	· + X	, +	- +	• +	+	+	+	+	+	+	• +	+	+	+	• +	49 2
Reratoacanthoma Papilloma squamous												•													x	
Squamous cell carcinoma												X	c												А	1
Subcutaneous tissue, fibrosarcoma												41	-				-									1
Subcutaneous tissue, schwannoma benign																										1
Musculoskeletal System																										
Bone	+	- +		- +	- +	• +	+	+	• +	+	- +	- +	- +	- +	+	+	+	+	+	+	• +	• +	· +	• +	• +	50
																						_				

•

υ

Number of Days on Study	0 6 7	7	4	4		6	6	5 7 1			0		2	2		3	4	4	4	6				9		
Carcass ID Number	1 0	0 8	0 9) 0) 3	0) 0 3 3	0 7	0 0 4 5	0 5	0 4	1 2	0 5	0 5	0 5	0 4	1 0	1 1	1 2	0 3	0 2	0 6	0 7	0 9	0 9	0 8	
Nervous System Brain Sarcoma	+	- + X		+ +	+ -	, + +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Respiratory System Larynx Carcinoma, metastatic, thyroid gland Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	- 4	+ -	+ 4	-	+ .+	- +	• +	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	
Carcinoma, metastatic, thyroid gland Nose Trachea Carcinoma, metastatic, thyroid gland								· + · +							+ +		-								+ +	
Special Senses System Ear External ear, squamous cell carcinoma Eye																										
Jrinary System Kidney Urinary bladder Transitional epithelium, papilloma	+ +	• •	+ -	+ + + +	+ -	+ + + -1	- +	· + · +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+++							
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant	+	- 4	+ -	+ +	+ -		- + X X	- + :	÷	+			+ X		+	+	+ x			+ x					+ X	

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

.

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stillbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

 \mathbf{v}

Number of Days on Study	7 0 4	7 0 8	7 1 3	7 2 9	7 2 9	7 2 9	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2				7 3 3	7 3 3	7 3 3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	
Carcass ID Number	0 1 1 1	0	0 6	0	0 7	0 0 9 3	0 0 1 1	0 0 1 5	0 6	7	0	8	1 2	0 1	0 2			0 0 8 2			0 0 1 4	4	0 0 7 2		1 0	Total Tissues Tumors
Nervous System Brain Sarcoma	+	+	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Respiratory System Larynx	+							-	<u>т</u>	Ŧ	+	+				+	+	+	+				+	+	+	26
Carcinoma, metastatic, thyroid gland	x		'	'	ſ		'	•	•		•	•	•	•	•	•	•	•	•	'	•	•	•		•	1
Lung	+	• -	- +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Aiveolar/bronchiolar adenoma														х					х							1 1
Alveolar/bronchiolar carcinoma Carcinoma, metastatic, thyroid gland	х																		л							1
Nose	+		+	- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Trachea Carcinoma, metastatic, thyroid gland	+ x		+	- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Special Senses System Ear External ear, squamous cell carcinoma Eye		•												+ X					+				+			1 1 2
Lyc																										
Urinary System																										
Kidney	+			+ +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	50 50
Urinary bladder Transitional epithelium, papilloma	+				- 1	- +	+	+	+	Ŧ	+	+ X	+	+	+	+	+	+	+	+	+	+	• +	+	+	50 1
Systemic Lesions																					,					50
Multiple organs Leukemia mononuclear Mesothelioma malignant	+	,	+ + < >	⊦ + ≮	⊦ ⊣	- + X	• +	+ x	+	+ x	+	+ X	+ X X	+	+	+	+	+ X	+	+	+ X	+	· + X X	X	+	50 23 3

															6												
umber of Days on Study	3 4		1 0			7 1	8 0								4									8 7			
		0					0												0					0			
Carcass ID Number	9	8	2	1	4	1	3 1 4	5	1	3	9	0	6	7	5	5	6	9	4	6	7	0	4	3	6		
limentary System										·			<u></u> ,														
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+													
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+										+			
Intestine large, cecum	+	+	+	+	÷	+	+			÷	÷	+	+	÷										+			
Intestine large, colon	+	+	÷	÷	÷	+		+		+	<u>_</u>	÷	÷	+										•			
Intestine large, rectum	т 	т 	т 1	т 1.		+		+			T	+	+	+													
•	- T	Ţ	Ţ	Ť	Ţ					+																	
Intestine small	. T	Ţ	+				+																				
Intestine small, duodenum	+	+	+				+						+														
Intestine small, ileum	+						+																				
Intestine small, jejunum	+						+																				
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Neoplastic nodule																											
Mesentery																											
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+													
Sarcoma, metastatic, tissue NOS																											
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+													
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				+		+		+			
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				+		+		+			
Sarcoma, metastatic, tissue NOS																											
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				+		+		+		•	
Cardiovascular System						·		_																			
Blood vessel														+													
Heart	+	+	+	+	+	+	+	+	+	+	·+	+	+	+	+										+		
Sarcoma, metastatic, skin											x																
Cndocrine System																											
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pheochromocytoma malignant																			х								
Pheochromocytoma malignant, multiple																											
Pheochromocytoma benign								х						х			х			х	х			х	х		
Pheochromocytoma benign, multiple																							х				
Islets, pancreatic	+	Ŧ	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	+	÷	Ŧ	+	+	Ŧ													
Parathyroid gland	т 	T M	т 	T L	т 	т 	т М	т 	т Т	т Д	T L	т 	1	י ב													
	- T	۲ v 1	.	+	Ţ.	T	M	T	T	T	T	т	т.	T	,												
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ		
Pars distalis, adenoma		X		X										X										х			
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+													
C-cell, adenoma																											
C-cell, carcinoma																											
General Body System																											
Tissue NOS																											

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4.4'-Diamino-2.2'-stilbenedisulfonic Acid. Disodium Salt: 12.500 ppm

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

lumber of Days on Study	6 9 7	7 1 9	7 2 5	2	7 2 5	7 2 9	7 2 9	7 2 9	7 3 2	7 3 2	7 3 2	7 3 2	3	3	7 3 3	3	3	3	7 3 3	3	7 3 4	7 3 4	7 3 4	3	7 3 4	
Carcass ID Number	2 8	2 7	0 2 8 4	0 3 5	0 3	0 2 7 2	3 0	0 3 3 5	5	2 6	2 6		3 2	3 6		2 8		3 2	3 2	3 4		5	0 2 9 2	3 5		Total Tissue Tumor
limentary System							_				_															
Esophagus		+																								15
Intestine large		•																								15
Intestine large, cecum																										15
Intestine large, colon																										14
Intestine large, rectum																										14
Intestine small																										12
Intestine small, duodenum																										12
Intestine small, ileum																										12
Intestine small, jejunum																										11
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	49
Neoplastic nodule							•			x							-			-	-					1
Mesentery				+										+												2
Pancreas		+		•		+																				16
Sarcoma, metastatic, tissue NOS		x				•																				1
Salivary glands																										14
Stomach	+	+																								21
Stomach, forestomach		+																								21
Sarcoma, metastatic, tissue NOS		x																								1
Stomach, glandular	+	+																								21
Cardiovascular System							_			_	-															
Blood vessel																										1
Heart				+							+										+			+		20
Sarcoma, metastatic, skin																										1
Endocrine System			_																					_		<u> </u>
Adrenal gland	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	• +	+	50
Adrenal gland, cortex	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	• +	· +	49
Adrenal gland, medulla	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	• +	• +	- +	· +	50
Pheochromocytoma malignant	X																						X	2		3
Pheochromocytoma malignant, multiple																			Х							1
Pheochromocytoma benign	X		X						X					Х		Х				Х				Х	2	14
Pheochromocytoma benign, multiple					X										Х							Х	2			4
Islets, pancreatic		+				+																				16
Parathyroid gland				+															+			+	-			15
Pituitary gland	+	- 4	•	+	• +	+	+	+	• +	+	+	• +	+	+	+	+	+	+	+	• +	- 4	- +	- +	- +	• +	49
Pars distalis, adenoma		Х	2							Х	X															8
Thyroid gland				+	-			+	•							+						+	-			18
C-cell, adenoma																						Х	2			1
C-cell, carcinoma								Х																		1
General Body System																										
Tissue NOS		H	-																							1
Sarcoma		X	,																							1

Epididymis+ + + + + + + + + + + + + + + + + + +	33 46	3 6		0							
Preputial gland $+ + + + + + + + + + + + + + + + + + + $			7	3 0	3 4	3	3 3	2 6		-	-
Preputial gland $+ + + + + + + + + + + + + + + + + + + $		<u></u> .									
AdenomaXXXCarcinomaBilateral, carcinomaProstate <td></td>											
Carcinoma Bilateral, carcinoma ProstateProstate $+ + + + + + + + + + + + + + + + + + + $			+					+			
Bilateral, carcinoma Prostate $+ + + + + + + + + + + + + + + + + + + $											
Prostate $+ + + + + + + + + + + + + + + + + + + $			Х					х			
Seminal vesicle $+ + + A + + + + + + + + + + + + + A +$											
Testes $+ + + + + + + + + + + + + + + + + + + $											
Interstitial cell, adenomaXX <td>+ +</td> <td>+</td> <td>+</td> <td>+</td> <td>•</td> <td>+</td> <td>+</td> <td></td> <td></td> <td></td> <td></td>	+ +	+	+	+	•	+	+				
Interstitial cell, adenoma, multipleX XX XX XX XHematopoietic SystemBone marrowLymph nodeLymph nodenetastatic, lungLymph node, mesentericSpleenHistiocytic sarcomaThymusHet + + + + + + + + + + + + + + + + + + +	+ +	+	-			+ +	ł	+			
Hematopoietic SystemBone marrow $+ + + + + + + + + + + + + + + + + + + $		х		х							
Bone marrow $+ + + + + + + + + + + + + + + + + + + $			х		Х	K X	ĸ	x			
Bone marrow $+ + + + + + + + + + + + + + + + + + + $											
Lymph node $+ + + + + + + + + + + + + + + + + + + $											
Mediastinal, alveolar/bronchiolar carcinoma, metastatic, lungLymph node, mesenteric $+ + + + + + + + + + + + + + + + + + + $			+			4	+	+			
carcinoma, metastatic, lungLymph node, mesenteric $+ + + + + + + + + + + + + + + + + + + $			•			•	•				
Lymph node, mesenteric $+ + + + + + + + + + + + + + + + + + + $								х			
Spleen $+ + + + + + + + + + + + + + + + + + + $						4	+				
Histiocytic sarcoma Thymus $+ + + + + + + + + + + + + + + + + + + $	+ +	+	+	+	• +		+	+			
Thymus $+ + + + M + + + M + + + + + + + + + + +$						X	х				
Mammary gland+ + + + + + + + + + + + + + + + + + +											
Mammary gland+ + + + + + + + + + + + + + + + + + +							_		- 1		
Adenocarcinoma Fibroadenoma Skin + + + + + + + + + + + + + + + + + + +											
Fibroadenoma Skin + + + + + + + + + + + + + + + + + + +											
Keratoacanthoma X Squamous cell carcinoma Sebaceous gland, adenoma Subcutaneous tissue, fibroma X Subcutaneous tissue, sarcoma X Musculoskeletal System Bone + + + + + + + + + + + + + + + + + + +											
Squamous cell carcinoma Sebaceous gland, adenoma Subcutaneous tissue, fibroma X Subcutaneous tissue, sarcoma X Musculoskeletal System Bone + + + + + + + + + + + + + + + + + + +								+			
Sebaceous gland, adenoma Subcutaneous tissue, fibroma Subcutaneous tissue, sarcoma Musculoskeletal System Bone ++++++++++++++++++++++++++++++++++++											
Sebaceous gland, adenoma Subcutaneous tissue, fibroma Subcutaneous tissue, sarcoma Musculoskeletal System Bone ++++++++++++++++++++++++++++++++++++											
Subcutaneous tissue, fibroma X Subcutaneous tissue, sarcoma X Musculoskeletal System Bone											
Musculoskeletal System Bone + + + + + + + + + + + + + + + + + + +											
Bone $+ + + + + + + + + + + + + + + + + + +$											
Bone $+ + + + + + + + + + + + + + + + + + +$											
Skeletal muscle											
Diaphragm, sarcoma, metastatic, tissue NOS											
Nervous System Brain + + + + + + + + + + + + + + + + + + +											

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)
Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

																						_			
6	7	7	.7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
9	1	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
-	_	_	5	5	_	_	9	2	2											-	4	4	_	-	
																	_	^	_						
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	2	-		-	Total
		_	-		_	-									_	-									
			-																		-		-	-	Tissue Tumor
																									13
										+												+	+		20
										•															4
																									2
										x															1
										••															14
+	+				+	+			+	+	+	+	+	+	+		+	+	+	+			+	+	37
+			+	+	+	+	+	÷	+			+	+	+	+	+	+	+	+	+	+	+	+	+	50
	·			·	•	•	•		x																9
х	X			х	х	х	х	X			х	х	х	х	Х	x	x	х	х	x	х		х	х	31
																									. <u></u>
																									14
		+	+	+	+	+			+	+	+		+	+	+		+	+	+	+				+	33
																									1
			+								+							+							18
+				+	+	+	·+	+	+	+	+	+	+	+	+	+	+	'	+	+	+	+	. +	+	49
•	'	'	'	ſ	'	1			'	'	•	•	•	•	•	,	'		•	•	•	'	'	•	1
			+	+																					14
						+			+	+															18
			Х																						1
						Х																			2
				+				+	+								+								21
																									2
																	X								1
								X																	1
																									1
																									2
																									14
	-+	-																							1
	Х	ζ.																							1
	9 7 0 2 8 2 ++ + + +	9 1 7 9 0 0 2 2 8 7 2 3 	9 1 2 7 9 5 0 0 0 2 2 2 8 7 8 2 3 4 + + + + + + + + X X + + + +	$\begin{array}{c} 9 & 1 & 2 & 2 \\ 7 & 9 & 5 & 5 \\ \hline 0 & 0 & 0 & 0 \\ 2 & 2 & 2 & 3 \\ 8 & 7 & 8 & 5 \\ 2 & 3 & 4 & 3 \\ \end{array}$ $\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$	9 1 2 2 2 7 9 5 5 5 $0 0 0 0 0 0 0 2 2 2 3 3 8 7 8 5 6 2 3 4 3 4$ $+ + + + + + + + + + + + + + + + + + +$	9 1 2 2 2 2 7 9 5 5 5 9 $0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 2 8 7 8 5 6 7 2 3 4 3 4 2$ $+ + + + + + + + + + + + + + + + + + +$	9 1 2 2 2 2 2 2 2 7 9 5 5 5 9 9 $0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 2 3 8 7 8 5 6 7 0 2 3 4 3 4 2 4$ $+ + + + + + + + + + + + + + + + + + +$	9 1 2 2 2 2 2 2 2 2 2 7 9 5 5 5 9 9 9 9 $0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 2 3 3 8 7 8 5 6 7 0 3 2 3 4 3 4 2 4 5$ $+ + + + + + + + + + + + + + + + + + +$	9 1 2 2 2 2 2 2 2 3 7 9 5 5 5 9 9 9 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 2 3 3 2 8 7 8 5 6 7 0 3 5 2 3 4 3 4 2 4 5 3 + + + + + + + + + + + + + + + + + + +	9 1 2 2 2 2 2 2 3 3 7 9 5 5 5 9 9 9 2 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 2 3 3 2 2 8 7 8 5 6 7 0 3 5 6 2 3 4 3 4 2 4 5 3 2 + + + + + + + + + + + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 9 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 3 \ 3 \ 3 \ 3$	9 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 7 9 5 5 5 9 9 9 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 2 2 3 3 2 2 2 3 3 3 8 7 8 5 6 7 0 3 5 6 6 0 2 6 2 3 4 3 4 2 4 5 3 2 4 1 4 5 + + + + + + + + + + + + + + + + + +	$\begin{array}{c} 9 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 3 \ 3 \ 3 \ 3$	$\begin{array}{c} 9 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 3 \ 3 \ 3 \ 3$	$\begin{array}{c} 9 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 3 \ 3 \ 3 \ 3$	9 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	9 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	9 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	9 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	9 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3	9 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	9 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	9 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

Number of Days on Study	1 3 4	3 2 7	5 1 0	5 2 1	2	5 7 1	5 8 0	5 8 3			6 1 5		2	6 2 3	4		5	6 6 3	6 6 3	-	6 7 6	6 8 3	6 8 3	6 8 7	9		
Carcass ID Number	0 2 9 1	0 2	0 3 2	0 3 1	0 3 4	0 3 1	0 3 1	0 3.	0 3 1	0 3 3	0 2 9	0 3 0	0 2	0 2 7	0 2 5	0 3	0 3	0 2	0 3 4 3	0.3		0 3	0	0 3 3	0 2 6 3		
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Carcinoma, metastatic, preputial gland Sarcoma, metastatic, skin	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+		+		+	÷	<u> </u>		+			+ X X		
Squamous cell carcinoma, metastatic, Zymbal's gland Mediastinum, hemangiosarcoma Nose Trachea Sarcoma, metastatic, skin	X + +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	X + +	+ + X	+ +	+ +	+ +													
Special Senses System Eye Zymbal's gland Squamous cell carcinoma	<u></u> .		+							+ x																	
Urina ry System Kidney Urinary bladder	++	+ +	+++++++++++++++++++++++++++++++++++++++	+ +	+ +	+++	+++	+++	++	+++	+++	+++	+ +	+ +	+	+	,	+	+	+		+	+	+		<u> </u>	ţ
Systemic Lesions Multiple organs Histiocytic sarcoma Leukemia mononuclear Mesothelioma benign Mesothelioma malignant	Ŧ	+	+ x	÷	+ x	+ X	+	+ X	+ X X X	+	+	+ X	+ x	+	+ x	+ x	+	+ x	+ x	+ x	+ x	+ x	+ x	+ x	+ x		

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

of 4,4'-Diamino-2,2'-stilbenedisulfonic	Acid	, I	Dise	odi	um	ı S	alt	:	12,	50X	D p	pn	1 (0	on	tinu	ed)											
Number of Days on Study	6 9 7	7 1 9	7 2 5	7 2 5	7 2 5	7 2 9	7 2 9	7 2 9	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3		7 3 4			_	7 3 4	-	
Carcass ID Number	0 2 8 2	0 2 7 3	0 2 8 4	0 3 5 3	0 3 6 4	0 2 7 2	0 3 0 4	0 3 3 5	0 2 5 3	0 2 6 2	0 2 6 4	0 3 0 1	0 3 2 4	0 3 6 5	0 2 5 2	0 2 8 5	0 3 0 5	0 3 2 1	0 3 2 5	0 3 4 1	2 5	2 5	2 9) 3 5 1	5	Total Tissues Tumor
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Carcinoma, metastatic, preputial gland Sarcoma, metastatic, skin Squamous cell carcinoma, metastatic, Zymbal's gland Mediastinum, hemangiosarcoma Nose Trachea Sarcoma, metastatic, skin					+	÷		+		+	Ŧ			+		+	+ x	+		+						+	30 1 1 1 1 1 1 14 14 14 1
Special Senses System Eye Zymbal's gland Squamous cell carcinoma																											1 1 1
Urinary System Kidney Urinary bladder	+	+	• +	+		+		+	• +	+	+	+	+	+	+	+	+	+	+	+	• +	• +		+ ·	+	+	45 14
Systemic Lesions Multiple organs Histiocytic sarcoma Leukemia mononuclear Mesothelioma benign Mesothelioma malignant	+ x	+	· + x	+ : x	+ x	+	+	+ x	+	+ x	+	+	+ x	+ : x			+ x	+ x	+	+ x	- -				+ x	+	50 1 29 1 1

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued

Individual Animal Tumor Pathology of Male Rats in the 2-Yes	ar Feed Study
of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 2	25,000 ppm

	- 4	2	2	2	5	2	5	3	2	2	2	0	0	0	0	0	0	0	0	0	0	0	1	7	7	
Number of Days on Study	9	0	2	3		5							2													
	1	8	0	8	1	5	1	3	5	8	8	3	4	5	4	4	8	3	6	6	3	7	0	4	8	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	5	5	5	6									5								5	5	5	5	5	
	7	2	8	0	1	5	8	9	9	1	7	3	2	7	4	4.	7	9	2	9	3	6	9	4	9	
	1	2	5	3			2						3													
Nimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, cecum	+	+	+	+	+	+	+	Α	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, colon	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, rectum	+	+	+	+	+	+	+	Α	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, duodenum	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, ileum	+	Α	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, jejunum	+	Α	+	+		+	+						+						+		+		+	+	+	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Neoplastic nodule																										
Neoplastic nodule, multiple																										
Pheochromocytoma malignant, metastatic,																										
adrenal gland																										
Mesentery																						+	+			
Fibrous histiocytoma																						x				
Pancreas	<u>т</u>	+	+	Ŧ	+	Ŧ	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		(+	÷	
Salivary glands		÷	÷		÷	÷	÷	÷	+	÷	÷	+	+	+	+	+	+	+	÷	+	+			. +	+	
Stomach		_	<u>_</u>	, ,	÷	÷	÷						+						+	+	÷	+	+	+	+	
Stomach, forestomach		Ť	Ť		Ť	- -	+	•	+	-	•				+			+		+	+	÷	_		, +	
	т	т	т	т	Ŧ	T	Ŧ	т	Ŧ	т	т	Ŧ	x	7	ſ	,	'	'	'			•	'	'		
Papilloma squamous Stomach, glandular		+	-	Ŧ	`+	+	Т	ъ	ъ	Ŧ	т	+	+	Ъ	Ŧ	Ŧ	т	ъ	Ъ	+	+	+	+	+	+	
· •	Ŧ	т	т	т	т	т	T	T	Т		,	•	'	'	•		•	•	'		•	•		•	•	
Tongue Barillama aguamaur																						•				
Papilloma squamous										_														_		
Cardiovascular System																										
Heart		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	
Sarcoma, metastatic, skin	x																									
Endocrine System						_								_												
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, medulla	·+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pheochromocytoma malignant																	х								Х	
Pheochromocytoma malignant, multiple																					х			Х		
Pheochromocytoma complex			х																							
Pheochromocytoma benign			x										х					х	х							
Pheochromocytoma benign, multiple																х		_		х						
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+			+	Μ	[+]	+	
Adenoma	•	•			·	•	•	•	·	•	•	•	•	•		•										
Carcinoma													х													
Parathyroid gland	+	+	4	÷	м	+	+	+	+	+	м	+	+	+	м	+	+	+	м	+	+	+	М	(+	+	
Parathyroid gland Pituitary gland	،	1	-	- -	+	+							+													
Pars distalis, adenoma	Ŧ	т	T	ч.			•	'	'	1	'	•	x	'	x	•	•	x		•	•	x		•	x	
Thyroid gland	L	Ŧ	1	Ŧ	+	Т	Ŧ	Ŧ	÷	÷	+	+	+	+		4	+			+	+			+	+	
C-cell, carcinoma	Ŧ	Ŧ	Ŧ	т.	T	т	F		т		T.		,	1	•	•	•	•		•	•				•	

r

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 25,000 ppm (continued)

	-											_	•													
			7												7				7		7			7		
Number of Days on Study	2	2	2	2	3	3		3		3	3	3	3	3						3	3	3	3		3	
	0	9	9	9	2	2	2	2	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	5	4	5	5	4	5	5	5	5	5	6	5	5	5	5	5	5	6	5	5	5	5	5	6	6	Total
	3	9	0	9	9	0	0	0	0	5	0	2	3	4	4	6	8	0	3	5	6	8	9	0	0	Tissues
	2	1	1	4	3	2									4									-	-	Tumors
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	+	+	+	÷	+	÷	÷	÷	÷	+	+	+			+	÷	÷	÷	÷	÷	+	+	+	49
Intestine large, cecum	+	+	+	+	÷	÷	+	+	+	+	+	-						+	+	÷	+	÷	+	+	+ +	48
Intestine large, colon		÷	÷	+	+	÷	+	÷	÷	÷	÷	+	+	÷	÷	+	+	÷	÷	+	+	+	÷	+	+	49
Intestine large, rectum	÷	1	÷	+	÷	÷	+	÷	+	÷	+	+		+	+	-	+	+	+	1	+	- -	÷	т Т	т _	48
Intestine small				+ +	- -	т -	т _	т Т	т Т	- -	±	Ť	+	+ +		+	т -	+ +	т -	т _	т Т	Ť	Ť	т -	т -	40
Intestine small, duodenum	- T	т Т	т Т	Ť	т Т	+ +	+	+	+	т Т	+	+	+	+			+	+	т -	Ŧ	т _	т Т	т Т	+	Ŧ	49
Intestine small, ileum	- T	т 	+ +	т _	т Т	+	1			т _	+							-	T	Ŧ	Ŧ	т Т	т 	Ŧ	T	49
Intestine small, jejunum	+	+	+ +	+ +	+ +	-	+	+	+	+		+++			+	++		-	+	Ť	-	-	+	+	Ŧ	48 48
Liver	+	+	-	+	+	+	++	++	++	++	++	•	+	++		•		+	++	Ţ	÷	++	+	+	+	48 50
	+	+	Ŧ	Ŧ	Ŧ	+	+	Ŧ	+	Ŧ	Ŧ	+	+	Ŧ		x		+	+	+	+	+	+	+	+	
Neoplastic nodule	v											х			Λ	^	Λ									4
Neoplastic nodule, multiple Pheochromocytoma malignant, metastatic,	x																									1
adrenal gland																					Х					1
Mesentery						+													+				+			5
Fibrous histiocytoma																										1
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	-	+	+	+	+	+	+	+	49
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	49
Papilloma squamous																										1
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Tongue	+			+															+							3
Papilloma squamous				х																						1
Cardiovascular System																								_		
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Sarcoma, metastatic, skin																										1
Endocrine System																										
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma malignant		-			X	-		-	-	-	-	-	-	-	x	-	-	-	-	-	-	-	-	-	-	4
Pheochromocytoma malignant, multiple																	х				х					4
Pheochromocytoma complex																										1
Pheochromocytoma benign		х					x	х	х	х	х			х	х							х	x			14
Pheochromocytoma benign, multiple	х												х												х	5
Islets, pancreatic		+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	49
Adenoma			•	•	-	•	Ĩ	•	•		•	•	•					x	-		•		•	•	x	2
Carcinoma												х														2
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	45
Pituitary gland	+	+	+	+	+	÷	+	+	÷	÷	+	+	+	+	÷	÷	+	+	÷	+	÷	÷	+	+	+	50
Pars distalis, adenoma		x	•	•	•		x	•	•	x		'	'	•	'	·	x	×	•	'					ſ	10
Thyroid gland	+	+	+	+	+	+		+	+	+	+	+	+	+	+		+		+	+	+	+	+	+	+	50
C-cell, carcinoma	1		x	'			x	,	,			F				x	,	1.	r	r	r	T	т	T	r	3
			**																							5

Number of Days on Study	9	0	2	5 3 8	5	5	6	6	6	8	8	1	2	3	4	4	5	6	7	7	8	9	0	0	1		
Carcass ID Number	5 7		5 8	6	5 1	5 5	5 8	4 9	4 9	5 1	5 7	5 3	5 2	5 7	5 4	5 4	0 5 7 4	4 9	5 2	5 9	5 3	5 6	5 9	5 4	5 9		
General Body System None																											 •.
Genital System Epididymis Preputial gland Adenoma Carcinoma	+ M	+	+ +	+ +			+ + X					+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +		
Fibrosarcoma Papilloma squamous Bilateral, carcinoma Prostate Seminal vesicle Testes Interstitial cell, adenoma Interstitial cell, adenoma, multiple	+	Α	+ + X	+ + +	+ +	+	М +	+ +	+ +	+	+ +	A +	+ +	+ +	+ +	+ +	+ + + X	+ +	+ +	+ +	+ +	+ +	+ + +	+ + X	+ +	. •	
Iematopoietic System Bone marrow Pheochromocytoma malignant, metastatic, adrenal gland Lymph node	+	+	+	+	+	+	+										+										
Lymph node Inguinal, renal, iliac, bronchial, mediastinal, sarcoma, metastatic, skin Lymph node, mesenteric Spleen Pheochromocytoma malignant, metastatic,	+ + +	+	+ +	+ +	++	+ +	+ +	+	+	+	+	+	+	+	+	+	+	++	+ +	+	+	+	+	+	+ + +		
adrenal gland Thymus Sarcoma, metastatic, skin	+ x		+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	М		

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 25,000 ppm (continued)

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 25,000 ppm (continued)

Number of Days on Study	7 2 0	7 2 9	7 2 9	7 2 9	7 3 2	7 3 2	7 3 2	7 3 2			7 3 2	7 3 3	7 3 3	7 3. 3	7 3 3	7 3 3		7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	-	
Carcass ID Number	0 5 3 2	4 9	0 5 0 1	5 9	4 9	5 0	5 0	5 0	5 0	5 5	6 0	5 2	5 3	5 4	0 5 4 4	5 6	5 8	6 0	5 3	5 5	5 6	5 8	5 9	6 0	6 0	Total Tissues, Tumors
General Body System None						·																				#_4.
Genital System Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Preputial gland	+	+	+	+	+										+											49
Adenoma						Х					х												х			4
Carcinoma	X																									1
Fibrosarcoma													х													1
Papilloma squamous														х			v									1 3
Bilateral, carcinoma Prostate						1	,								+		X +								м	
Seminal vesicle	+	+	+	+	+	+	+	+	++							+	+	+	+	+		+			M +	49 47
Testes	т —	- -	 -	- -	- -	+	+	+	+		-		+			+	+	+	+	+	+			+		50
Interstitial cell, adenoma		•	•	•	•	•	x	'	•	•	•	·	•	•	•	•	•	•	•	·	•	•	•	•	•	3
Interstitial cell, adenoma, multiple	х	X	X	х	х	x		х	х	х	х	х	х	х	х	х	х	x	x	х	х	х	х	х	х	43
Hematopoietic System																										
Bone marrow Pheochromocytoma malignant, metastatic, adrenal gland	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x		+	+	+	50 1
Lymph node Inguinal, renal, iliac, bronchial, mediastinal, sarcoma, metastatic, skin	÷	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Lymph node, mesenteric	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Spleen Pheochromocytoma malignant, metastatic, adrenal gland	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x		+	+	+	50 1
Thymus Sarcoma, metastatic, skin	+	• +	• +	+	+	+	Ŧ	+	+	+	М	M	: +	+	+	+	+	+	М	+			+	+	+	46 1

Number of Days on Study	9	0	2	2	3	5	5	6	6	6	8	8	1	2	3	4	4	5	6	7	7	8	9	0	7 0 4	1	
Carcass ID Number	0 5 7 1	5 2	5	; ; ; ;	0	5 1	5 5	5 8	4 9	4 9	5 1	5 7	5 3	5 2	5 7	5 4	5 4	5 7	4 9	5 2	5 9	5 3	5 6	5 9	0 5 4 2	5 9	
ntegumentary System Mammary gland				L.		<u>т</u>	+	+			•		+	+			+		<u>т</u>		+	<u>т</u>	<u>т</u>	_ _	+		
Fibroadenoma	т	ר		Г	.1	т	т	т		Т	т	т	· •	. т		т		T	-		•			x			
Skin	+	4		۲	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	
Keratoacanthoma															х												
Papilloma squamous																											
Trichoepithelioma												Х								х							
Subcutaneous tissue, fibroma											x												х				
Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, lipoma											Λ					•											
Subcutaneous tissue, sarcoma	х																										
lusculoskeletal System																											
Bone	+	4		ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Skeletal muscle																											
ervous System														,							_						
Brain Astrocytoma malignant	+	-		÷	+	+	+	+	+	+	+	+	+	+	+	+	+	x x		+	+	+	+	+	+	+	
espiratory System			-		-			-																			
Larynx																										+	
Lung	+	-	+ •	ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X		+	+	+	+	+	
Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma, multiple																				^							
Pheochromocytoma malignant, metastatic, adrenal gland																											
Sarcoma, metastatic, skin Mediastinum, alveolar/bronchiolar carcinoma	х																										
Nose	+		μ.	ŧ	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	+			÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Trachea																											

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 25,000 ppm (continued)

Adenoma

.

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 25,000 ppm (continued)

												•	`													
Number of Days on Study	7 2 0	7 2 9	7 2 9	7 2 9	7 3 2	7 3 2				7 3 2		3		3	7 3 3	3		3			7 3 4			7 3 4		
Carcass ID Number	5 3	4 9	0 5 0 1	5 9	4 9	5 0	0 5 0 3	5 0	5 0	5 5	6 0	5 2	5 3	5 4	5 4	5 6	5 8	6 0	5 3	5 5	5 6	5 8	5 9	6 0	6 0	Total Tissues Tumors
Integumentary System Mammary gland Fibroadenoma Skin Keratoacanthoma Papilloma squamous Trichoepithelioma Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, lipoma Subcutaneous tissue, sarcoma	+ X +			+ + x	+	+	++			Х			+ +		х								+			50 4 50 2 1 2 1 2 1 2 1 1
Musculoskeletal System Bone Skeletal muscle	+	· +	· +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++		+	50 1
Nervous System Brain Astrocytoma malignant	+	• +	· +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Respiratory System Larynx Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma, multiple Pheochromocutoma malignant metastatic	+++	·	- +	- +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ + x	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	27 50 2 1
Pheochromocytoma malignant, metastatic, adrenal gland Sarcoma, metastatic, skin Mediastinum, alveolar/bronchiolar carcinoma Nose Trachea Sarcoma, metastatic, skin	+ +	- +	- +	- +	+++	++	+ +	+ +	+++	+++	+++	X + +	++	+++	++	+++	+++	+++	+ +	+++	X + +	++	+++	+++	+ +	1 1 50 50 1
Special Senses System Eye Zymbal's gland Adenoma	+	_					+ + X																			2 1 1

Number of Days on Study	9	0	2		5	5	6	6	6	-	8	1	2	3	4	4	5	6	7	7	8	9	0	0	1
	1	8	0	8	1	5	1	3	5	8	8	3	4	5	4	4	8	3	6	6	3	7	0	4	8
	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carcass ID Number	5	5 2	5 8	6	5 1	5 5	5 8	4 9	4 9	5 1	5 7	5 3	5 2	5 7	5 4	5 4	5 7	4 9	5 2	5 9	5 3	5 6	5 9	5 4	5 9
		-	5	•	4	5	2	-	2	2	•	-	-	•	•	5					4	1	1	2	5
Urinary System														,											
Kidney Renal tubule, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+
Systemic Lesions																									
Multiple organs Leukemia mononuclear Mesothelioma malignant	+	-	-	+ X						+	+	+ X				* x		+ x			+ X		+ x	х	+ x

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 25,000 ppm (continued)

Individual Animal Tumor Pathology of Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 25,000 ppm (continued)

•

Number of Days on Study	7 2 0	_	7 2 9	7 2 9	7 3 2	7 3 3	7 3 4																			
	-	0			. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	5 3	4 9	5 0	5 9	4 9	5 0	5 0	5 0	5 0	5 5	6 0	5 2	5 3	5 4	5 4	5 6	5 8	6 0	5 3	5 5	5 6	5 8	5 9	6 0	6 0	Total Tissues/
	2	1	1	4	3	2	3	4	5	2	4	5	5	3	4	4	3	1	1	4	3	1	2	2	5	Tumors
Urinary System																										
Kidney Renal tubule, adenoma	+	+	• +	• •	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X		+	+	+	50 1
Urinary bladder	+	+	- +		- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Systemic Lesions																										
Multiple organs	+		• +	- 1	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 29
Leukemia mononuclear Mesothelioma malignant	х	•	Х	•		Х	X		х				х				А	х	x		х	А	х			28 3

	0 ppm	12,500 ppm	25,000 ppm	
Adrenal Medulla: Benign Pheochromocyto		<u> </u>		
Overall rates ^a	16/48 (33%)	18/50 (36%)	19/50 (38%)	
Adjusted rates ^b	50.5%	56.0%	59.6%	
Terminal rates ^c	7/21 (33%)	7/20 (35%)	12/24 (50%)	
First incidence (days)	540	583	520	
Life table tests ^d	P=0.441	P=0.405	P = 0.477	
Logistic regression testș ^d	P=0.396	P=0.491	P=0.438	
Cochran-Armitage test ^d	P=0.354			
Fisher exact test ^d		P=0.474	P=0.393	
Adrenal Medulla: Malignant Pheochromo	cytoma			
Overall rates	2/48 (4%)	4/50 (8%)	8/50 (16%)	
Adjusted rates	8.9%	16.1%	27.6%	
Terminal rates	1/21 (5%)	2/20 (10%)	4/24 (17%)	
First incidence (days)	713	663	658	
Life table tests	P=0.049	P=0.339	P=0.074	
Logistic regression tests	P=0.037	P=0.358	P=0.059	
Cochran-Armitage test	P=0.033		·	
Fisher exact test		P=0.359	P=0.053	
Adrenal Medulla: Pheochromocytoma (Be	nign, Complex, or Malignant	;)		
Overall rates	17/48 (35%)	21/50 (42%)	26/50 (52%)	
Adjusted rates	52.7%	63.9%	73.6%	
Terminal rates	7/21 (33%)	9/20 (45%)	15/24 (63%)	
First incidence (days)	540	583	520	
Life table tests	P=0.134	P=0.280	P=0.150	
Logistic regression tests	P = 0.067	P=0.334	P=0.084	
Cochran-Armitage test	P=0.060			
Fisher exact test		P=0.323	P=0.073	
Liver: Neoplastic Nodule				
Overall rates	1/50 (2%)	1/49 (2%)	5/50 (10%)	
Adjusted rates	4.5%	5.3%	20.0%	
Terminal rates	1/22 (5%)	1/19 (5%)	4/24 (17%)	
First incidence (days)	729 (T)	729 (T)	720	
Life table tests	P=0.063	P=0.730	P=0.124	
Logistic regression tests	P=0.058	P=0.730	P=0.118	
Cochran-Armitage test	P=0.049			
Fisher exact test		P=0.747	P=0.102	
Lung: Alveolar/bronchiolar Adenoma or C				
Overall rates	2/50 (4%)	2/30 (7%)	3/50 (6%)	
Adjusted rates	9.1%	13.6%	11.2%	
Terminal rates	2/22 (9%)	1/10 (10%)	2/24 (8%)	
First incidence (days)	729 (T)	697	676	
Life table tests	P=0.454	P=0.469	P=0.538	
Logistic regression tests	P=0.441	P=0.399	P=0.527	
Cochran-Armitage test	P=0.412			
Fisher exact test		P=0.483	P=0.500	

TABLE A3 Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	0 ppm	12,500 ppm	25,000 ррп	
Mammary Gland: Fibroadenoma				
Overall rates	3/50 (6%)	2/50 (4%)	4/50 (8%)	
Adjusted rates	9.1%	10.0%	15.1%	
Terminal rates	1/22 (5%)	2/20 (10%)	2/24 (8%)	
First incidence (days)	67	729 (T)	700	
Life table tests	P=0.456	P=0.526N	P=0.537	
	P = 0.395	P = 0.528N	P = 0.437	
ogistic regression tests		1-0.51814	1 -0.437	
Cochran-Armitage test Fisher exact test	P=0.417	P=0.500N	P=0.500	
Mammary Gland: Fibroadenoma or Adeno	carcinoma			
Overall rates	3/50 (6%)	3/50 (6%)	4/50 (8%)	
Adjusted rates	9.1%	13.9%	15.1%	
Ferminal rates	1/22 (5%)	2/20 (10%)	2/24 (8%)	
First incidence (days)	1722 (3%) 67	725	700	
Life table tests	P=0.463	P=0.642	P=0.537	
	P = 0.403 P = 0.407	P = 0.653	P = 0.437	
Logistic regression tests	P = 0.407 P = 0.421	1 -0.055	1 -0.457	
Cochran-Armitage test Fisher exact test	1 -0.421	P=0.661N	P=0.500	
ISHCI WALL ICSI		1 -0.60119	1 -0.500	
Pancreatic Islets: Adenoma or Carcinoma	1/40 (20%)	0/16 (00%) ^e	4/40 (8%)	
Overall rates	1/49 (2%)	0/16 (0%) ^e	4/49 (8%) 14.8%	
Adjusted rates	3.3%		14.8%	
Terminal rates	0/22 (0%)		3/24 (13%)	
First incidence (days)	687		624	
Life table tests			P=0.196	
Logistic regression tests			P=0.186	
Fisher exact test			P=0.181	
Pituitary Gland (Pars Distalis): Adenoma				
Overall rates	17/50 (34%)	8/49 (16%)	10/50 (20%)	
Adjusted rates	51.2%	24.6%	32.5%	
Terminal rates	8/22 (36%)	2/20 (10%)	5/24 (21%)	
First incidence (days)	443	327	624	
Life table tests	P=0.059N	P=0.056N	P=0.076N	
Logistic regression tests	P = 0.061 N	P=0.037N	P=0.077N	
Cochran-Armitage test	P=0.063N			
Fisher exact test		P=0.036N	P=0.088N	
Preputial Gland: Adenoma				
Overall rates	8/50 (16%)	4/20 (20%) ^e	4/49 (8%)	
Adjusted rates	28.7%		14.5%	
Terminal rates	5/22 (23%)		3/24 (13%)	
First incidence (days)	540		561	
Life table tests			P=0.156N	
Logistic regression tests			P=0.169N	
Fisher exact test			P=0.188N	

3/50 (6%)

0/20 (0%)

P=0.326

P=0.299

P=0.309

7.6%

595

4/50 (8%)

1/24 (4%) 491

P=0.208

P = 0.151

P=0.181

11.5%

	0 ppm	12,500 ppm	25,000 pp	
Preputial Gland: Carcinoma				
Overall rates	3/50 (6%)	3/20 (15%) ^e	4/49 (8%)	
Adjusted rates	12.5%		13.9%	
Terminal rates	2/22 (9%)		1/24 (4%)	
First incidence (days)	696		676	
Life table tests			P=0.548	
Logistic regression tests			P=0.526	
Fisher exact test			P=0.489	
Preputial Gland: Adenoma or Carcinom	18			
Overall rates	11/50 (22%)	7/20 (35%) ^e	8/49 (16%)	
Adjusted rates	39.4%		26.9%	
Terminal rates	7/22 (32%)		4/24 (17%)	
First incidence (days)	540		561 🤇	
Life table tests			P=0.258N	
Logistic regression tests			P=0.279N	
Fisher exact test			P=0.323N	
Skin (Subcutaneous Tissue): Fibroma o	r Fibrosarcoma			
Overall rates	1/50 (2%)	1/50 (2%)	3/50 (6%)	
Adjusted rates	2.9%	2.4%	9.7%	
Terminal rates	0/22 (0%)	0/20 (0%)	1/24 (4%)	
First incidence (days)	630	595	588	
Life table tests	P=0.220	P = 0.752N	P=0.333	
Logistic regression tests	P=0.194	P=0.758	P=0.303	
Cochran-Armitage test	P=0.202			
Fisher exact test		P = 0.753N	P=0.309	
Skin (Subcutaneous Tissue): Fibrosarco	oma or Sarcoma			
Overall rates	1/50 (2%)	2/50 (4%)	3/50 (6%)	
Adjusted rates	2.9%	5.4%	8.4%	
Terminal rates	0/22 (0%)	0/20 (0%)	1/24 (4%)	
First incidence (days)	630	615	491	
Life table tests	P=0.243	P=0.517	P=0.331	
Logistic regression tests	P=0.191	P=0.497	P=0.253	
Cochran-Armitage test	P=0.222			
Fisher exact test		P=0.500	P=0.309	

1/50 (2%)

0/22 (0%)

P=0.153

P = 0.111

P = 0.133

2.9%

630

TABLE A3

Overall rates

Adjusted rates

Terminal rates

Life table tests

Fisher exact test

First incidence (days)

Logistic regression tests

Cochran-Armitage test

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of 4.4'-Diamino-2.2'-stilbenedisulfonic Acid, Disodium Salt (continued)

Skin (Subcutaneous Tissue): Fibroma, Fibrosarcoma, or Sarcoma

ar e

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	0 ppm	12,500 ppm	25,000 ppm	
lestes: Adenoma				
Overall rates	42/50 (84%)	40/50 (80%)	46/50 (92%)	
Adjusted rates	97.6%	97.5%	100.0%	
Ferminal rates	21/22 (95%)	19/20 (95%)	24/24 (100%)	
First incidence (days)	446	510	508	
ife table tests	P=0.466	P=0.538N	P=0.491	
ogistic regression tests	P = 0.252	P = 0.293N	P = 0.307	
Cochran-Armitage test	P = 0.161	1 -0.29514	1 -0.307	
isher exact test	1 -0.101	P=0.398N	P=0.178	
hyroid Gland (C-cell): Carcinoma				
Overall rates	2/49 (4%)	1/18 (6%) ^e	3/50 (6%)	
Adjusted rates	8.2%		12.5%	
erminal rates	1/22 (5%)		3/24 (13%)	
irst incidence (days)	704		729 (T)	
ife table tests	• •		P = 0.535	
ogistic regression tests			P = 0.534	
isher exact test			P = 0.510	
hyroid Gland (C-cell): Adenoma or Carc	inoma			
verall rates	4/49 (8%)	2/18 (11%) ^e	3/50 (6%)	
djusted rates	15.8%		12.5%	
erminal rates	2/22 (9%)		3/24 (13%)	
ïrst incidence (days)	696		729 (T)	
ife table tests			P=0.458N	
ogistic regression tests			P=0.464N	
isher exact test			P=0.489N	
ll Organs: Mononuclear Cell Leukemia				
Overall rates	23/50 (46%)	29/50 (58%)	28/50 (56%)	
djusted rates	60.6%	71.1%	64.7%	
erminal rates	8/22 (36%)	9/20 (45%)	10/24 (42%)	
irst incidence (days)	561	510	508	
ife table tests	P=0.335	P=0.207	P=0.350	
ogistic regression tests	P=0.197	P=0.165	P=0.218	
ochran-Armitage test	P=0.184			
isher exact test		P=0.158	P=0.212	
ll Organs: Benign or Malignant Mesothe	lioma			
verall rates	3/50 (6%)	1/50 (2%)	3/50 (6%)	
djusted rates	13.6%	2.4%	11.6%	
erminal rates	3/22 (14%)	0/20 (0%) 2/24 (8%		
irst incidence (days)	729 (T)	595 700		
ife table tests	P = 0.561N	P=0.327N P=0.62		
ogistic regression tests	P=0.575N	P=0.299N	P=0.631N	
ochran-Armitage test	P=0.594			
isher exact test		P=0.309N	P=0.661N	

	0 ppm	12,500 ppm	25,000 ppm
All Organs: Benign Tumors		· · · ·	
Overall rates	47/50 (94%)	44/50 (88%)	48/50 (96%)
Adjusted rates	100.0%	97.7%	100.0%
erminal rates 22/22 (100%)		19/20 (95%)	24/24 (100%)
First incidence (days)	67	327	508
fe table tests $P=0.416N$		P=0.474N	P=0.446N
Logistic regression tests	P=0.572N	P=0.205N	P = 0.682
Cochran-Armitage test	P=0.424		
Fisher exact test		P=0.243N	P=0.500
All Organs: Malignant Tumors			
Overall rates	32/50 (64%)	38/50 (76%)	42/50 (84%)
Adjusted rates	77.6%	82.4%	85.6%
Terminal rates	13/22 (59%)	12/20 (60%)	17/24 (71%)
First incidence (days)	379	134	491
Life table tests	P=0.170	P=0.214	P=0.179
Logistic regression tests	P=0.017	P=0.143	P=0.025
Cochran-Armitage test	P=0.014		
Fisher exact test		P=0.138	P=0.020
All Organs: Benign or Malignant Tumors			
Overall rates	50/50 (100%)	50/50 (100%)	50/50 (100%)
Adjusted rates	100.0%	100.0%	100.0%
Terminal rates	22/22 (100%)	20/20 (100%)	24/24 (100%)
First incidence (days)	67	134	491
Life table tests	P=0.364N	P=0.473	P=0.392N
Logistic regression tests	_f	-	-
Cochran-Armitage test	-		
Fisher exact test		P=1.000N	P=1.000N

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

(T)Terminal sacrifice

Number of tumor-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, epididymis, gallbladder (mouse), heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated tumor incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

e Tissue was examined microscopically only when it was observed to be abnormal at necropsy; thus, statistical comparisons with the controls are not appropriate.

f Value of statistic cannot be computed

Historical Incidence of Pheochromocytomas of the Adrenal Medulla in Untreated Male F344/N Rats^a

Study		Incidence in Controls					
	Benign Pheochromocytoma	Malignant Pheochromocytoma	Benign or Malignant Pheochromocytoma				
verall Historical Incidence	e						
verall Historical Incidence	284/788 (36.0%)	39/788 (4.9%)	306/788 ^b (38.8%)				
	-	39/788 (4.9%) 5.8%	306/788 ^b (38.8%) 8.4%				

a b

Data as of 29 March 1991 Includes one complex pheochromocytoma

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	0 ppm		12,500 ppm		25,000 ppm		
Endocrine System		<u> </u>			· · · · · · · · · · · · · · · · · · ·		
Adrenal gland, cortex	(50)		(49)		(50)		
Angiectasis	1	(2%)			()		
Hematopoietic cell proliferation	1	(2%)					
Hyperplasia	1	(2%)	1	(2%)			
Inflammation, subacute			1	(2%)		,	
Necrosis, focal			_		1	(2%)	
Thrombus	. 1	(2%)			-	(2/2)	
Vacuolization cytoplasmic, focal	2	(4%)	2	(4%)	1	(2%)	
Adrenal gland, medulla	(48)	()	(50)	(1,2)	(50)	(-//)	
Hyperplasia	17	(35%)	21	(42%)	13	(26%)	
Islets, pancreatic	(49)	(00/0)	(16)	(12/0)	(49)	(2070)	
Hyperplasia	(45)	(8%)	(10)	(6%)	3	(6%)	
Parathyroid gland	(49)	(370)	(15)	(0,0)	(45)	(070)	
Hyperplasia	(45)	(6%)	(13)	(7%)	(43)	(20%)	
Pituitary gland	(50)	(0%)		(170)		(2%)	
	(30)	(601)	(49) 3	(601)	(50)	(107)	
Pars distalis, angiectasis		(6%)		(6%)	2	(4%)	
Pars distalis, cyst	1	(2%)	2	(4%)	. 7	(14%)	
Pars distalis, hyperplasia	3	(6%)	9	(18%)	8	(16%)	
Pars nervosa, ectopic tissue	(40)		1	(2%)	1	(2%)	
Thyroid gland	(49)	(10)	(18)		(50)		
Cyst	2	(4%)					
C-cell, hyperplasia	5	(10%)			2	(4%)	
General Body System							
None				. *	· ·	÷	
Genital System				- <u></u>		4	
Preputial gland	(50)		(20)	,	(49)		
Cyst	1	(2%)				*	
Hyperplasia	1	(2%)			2	(4%)	
Inflammation, acute	11	(22%)	2	(10%)	8	(16%)	
Inflammation, chronic	1	(2%)	. ~	(-0/0)	, U	(10/0)	
Prostate	(50)	(2/0)	(14)		(49)		
Hyperplasia, focal	(30)	(12%)	(14)		(49)	(10%)	
Inflammation, acute	17	(12%)	1	(7%)	8	(10%) (16%)	
Inflammation, chronic	2	(34%) (4%)	1	(170)	0	(10%)	
Seminal vesicle	(48)	(4/0)	· (27)		(17)		
		(520%)	(37)	(11%)	(47)	(5201)	
Atrophy	25	(52%)	13	(41%)	25	(53%)	
Inflammation, acute	110		180		1	(2%)	
Testes	(49)	(04.04)	(50)	(000)	(50)		
Atrophy	15	(31%)	14	(28%)	24	(48%)	
Interstitial cell, hyperplasia	2	(4%)	5	(10%)	2	(4%)	

90

, t

,

TABLE AS

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilleenedisulfonic Acid, Discdium Salt (continued)

	0	bbm	12,500 ppm		25,600 ppm	
Hematopoietic System					<u></u>	
Bone marrow	(49)		(14)		(50)	
Fibrosis	1	(2%)			• •	
Hyperplasia	2	(4%)	5	(36%)	2	(4%)
Lymph node	(50)	. ,	(33)		(50)	
Axillary, hyperplasia, lymphoid			1	(3%)		
Iliac, cyst			1	(3%)		
Inguinal, cyst	1	(2%)			1	(2%)
Inguinal, hyperplasia, lymphoid	2	(4%)	1	(3%)	2	(4%)
Mandibular, cyst	7	(14%)			3	(6%)
Mandibular, hemorrhage		()			1	(2%)
Mandibular, hyperplasia, lymphoid			1	(3%)	2	(4%)
Mediastinal, cyst	1	(2%)	_	(-,-)	-	()
Mediastinal, hemorrhage	9	(18%)	8	(24%)	10	(20%)
Mediastinal, rigmentation	,	(10/0)	0	()	3	(6%)
Pancreatic, hemorrhage					1	(2%)
Renal, hemorrhage			1	(3%)	-	(2/0)
Renal, inflammation, chronic			1	(5,0)	1	(2%)
Lymph node, mesenteric	(50)		(18)		(50)	(=/0)
Cyst	(50)	(2%)	(13)	(11%)	(50)	(2%)
Edema	1	(2%)	~	(11,%)	1	(2%)
Hemorrhage	3	(6%)	4	(22%)	1	
		(0%)		(22%)	(50)	(2%)
Spleen	(49)		(49)			(201)
Amyloid deposition	2	(601)	1	(20%)	1	(2%)
Congestion Depletion transfer	3	(6%)	1	(2%)	2	(4%)
Depletion lymphoid	0	(1(0))		(1001)	1	(2%)
Fibrosis, focal	8	(16%)	5	(10%)	7	(14%)
Hematopoietic cell proliferation	2	(4%)	5	(10%)	5	(10%)
Hyperplasia, lymphoid	1	(2%)		(8.54)		
Infarct			1	(2%)		
Infiltration cellular, histiocyte	1	(2%)			1	(2%)
Inflammation, granulomatous, focal	1	(2%)				
Necrosis	2	(4%)	1	(2%)		
Pigmentation			1	(2%)		
Capsule, fibrosis, focal			1	(2%)		
Integumentary System						
Mammary gland	(48)	(2.24)	(18)		(50)	
Dilatation	1	(2%)	2	(11%)	2	(4%)
Hyperplasia					1	(2%)
Skin	(49)		(21)		(50)	
Cyst				(5%)		
Edema	1	(2%)	1	(5%)		
Hyperkeratosis		-		-	1	(2%)
Inflammation, acute	2	(4%)				
Inflammation, chronic			1	(5%)		
Epithelium, lip, hyperplasia					1	(2%)
Musculoskeletal System						
Bone	(50)		(14)		(50)	
Hyperostosis	ì	(2%)				
Osteomalacia	1	(2%)	1	(7%)		
Tarsal, inflammation, chronic active	1	(2%)		· •		

Nervous System Brain Hemorrhage Thrombus Thrombus, multiple Respiratory System Aarynx Inflammation, subacute Ulcer Jung Congestion Fibrosis Foreign body Hemorrhage Hyperplasia, hymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	(26) 1 (50) 1 2 4	(2%) (4%) (4%) (2%)	(13) (30) 1	(3%)	(50) 1 6 (27) (50)	(2%) (12%)
Brain Hemorrhage Thrombus Thrombus, multiple Respiratory System .arynx Inflammation, subacute Ulcer .ung Congestion Fibrosis Foreign body Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	(26) 1 (50) 1 2 4	(4%) (2%) (4%) (4%) (2%)	(30) 1	(3%)	1 6 (27) (50)	
Hemorrhage Thrombus Thrombus, multiple Acespiratory System .arynx Inflammation, subacute Ulcer .ung Congestion Fibrosis Foreign body Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	(26) 1 (50) 1 2 4	(4%) (2%) (4%) (4%) (2%)	(30) 1	(3%)	1 6 (27) (50)	
Thrombus Thrombus, multiple Acespiratory System .arynx Inflammation, subacute Ulcer .ung Congestion Fibrosis Foreign body Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	2 1 (26) 1 1 (50) 1 2 2 4	(4%) (2%) (4%) (4%) (2%)	1	(3%)	6 (27) (50)	
Thrombus, multiple Respiratory System .arynx Inflammation, subacute Ulcer .ung Congestion Fibrosis Foreign body Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	1 (26) 1 (50) 1 2 4	(2%) (4%) (4%) (2%)	1	(3%)	(27) (50)	
arynx Inflammation, subacute Ulcer ung Congestion Fibrosis Foreign body Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	1 1 (50) 1 2 4	(4%) (2%)	1	(3%)	(50)	
arynx Inflammation, subacute Ulcer ung Congestion Fibrosis Foreign body Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	1 (50) 1 2 4	(4%) (2%)	1	(3%)	(50)	
Inflammation, subacute Ulcer ung Congestion Fibrosis Foreign body Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Vose	1 (50) 1 2 4	(4%) (2%)	1	(3%)	(50)	
Ulcer Lung Congestion Fibrosis Foreign body Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	1 (50) 1 2 4	(4%) (2%)	1	(3%)		
Congestion Fibrosis Foreign body Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	(50) 1 2 4	(2%)	1	(3%)		
Congestion Fibrosis Foreign body Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	1 2 4		1	(3%)		
Fibrosis Foreign body Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	2				•	
Foreign body Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	4	(4%)	1		1	(2%)
Hemorrhage Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	4	(4%)	1		1	(2%)
Hyperplasia, lymphoid Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose	4	()		(3%)	1	(2%)
Hyperplasia, adenomatous Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose			-	(5/0)	· 1	(2%)
Infiltration cellular, histiocyte Pigmentation Interstitium, inflammation, chronic Nose		(8%)	4	(13%)	2	(4%)
Pigmentation Interstitium, inflammation, chronic Jose	-	· ·	1	(3%)	1	(2%)
Interstitium, inflammation, chronic Jose		(0,0)	1	(5/0)	1	(2%)
lose	1	(2%)	2	(7%)	5	(10%)
	(49)	(270)	(14)	(170)	(50)	(10%)
	1	(2%)	(14)		(50)	
Inflammation, acute Nasolacrimal duct, inflammation, acute	1	(2%)			2	(4%)
Sinus, foreign body	•	(270)	1	(7%)	. 2	(4%)
Sinus, fungus	4	(8%)	2	(1%)	3	· · · ·
Sinus, inflammation, acute		(16%)	4	(14%)	9	(6%)
	8 5	· ·	4	(29%)	9	(18%)
Turbinate, inflammation, chronic		(10%)				
Turbinate, inflammation, subacute Turbinate, thrombus	1	(2%)	1	(7%)		
Special Senses System		<u></u>			<u></u>	
Eye	(2)		(1)		(2)	
Lens capsule, cataract	2	(100%)				
Retina, atrophy	2	· · ·				
Sclera, metaplasia, osseous					1	(50%)
Jrinary System			···=			
Kidney	(50)		(45)		(50)	
Cyst		(6%)	2	(4%)		(6%)
Developmental malformation					1	
Fibrosis, focal			、 1	(2%)	1	· · · · ·
Hematopoietic cell proliferation	1	(2%)	·	. ,		
Nephropathy	48		42	(93%)	46	(92%)
Pigmentation				(2%)		. ,
Pelvis, dilatation			_		1	(2%)
Pelvis, mineralization	1	(2%)			3	(6%)
Renal tubule, degeneration	1				1	(2%)
Jrinary bladder	(50)	<u> </u>	(14)		(49)	()
Hemorrhage	1	(2%)	(-)		()	

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

^a Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site.

APPENDIX B

SUMMARY OF LESIONS IN FEMALE RATS IN THE 2-YEAR FEED STUDY OF 4,4'-DIAMINO-2,2'-STILBENEDISULFONIC ACID,

DISODIUM SALT

TABLE B	81	Summary of the Incidence of Neoplasms in Female Rats in the 2-Year	
		Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	95
Table B	32	Individual Animal Tumor Pathology of Female Rats in the 2-Year	
		Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	98
Table B	33	Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year	
		Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt	116
Table B	84	Historical Incidence of Fibroadenomas of the Mammary Gland	
		in Untreated Female F344/N Rats	120
Table B	85	Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year	
		Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	121

.

٠,

ı

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt^a

	0 j	mala	12,50	∞ ppm	25,01	10 ppm
Disposition Summary					·	
Animals initially in study	60		60		60	
15-month interim evaluation	10		10		10	
Early deaths						
Natural deaths	5		3		1	
Moribund kills	15		14		16	
Survivors						
Terminal sacrifice	30		32		33	
Died last week of study			1			
Animals examined microscopically	50		50		50	
Alimentary System						
Intestine large, cecum	(49)		(8)		(50)	
Intestine large, colon	(49)		(8)		(50)	
Intestine large, rectum	(49)		(8)		(50)	
Intestine small, ileum	(49)		(8)		(50)	
Intestine small, jejunum	(49)		(8)		(50)	
Liver	(50)		(42)		(50)	
Neoplastic nodule	3	(6%)			í	(2%)
Mesentery	(2)	· · ·	(2)		(3)	. ,
Pancreas	(49)		(8)		(30)	
Salivary glands	(49)		(8)		(50)	
Stomach, forestomach	(50)		(10)		(50)	
Stomach, glandular	(49)		(10)		(50)	
Leiomyosarcoma	ì	(2%)				
Cardiovascular System					<u> </u>	
Heart	(50)		(8)		(50)	
Endocrine System						
Adrenal gland, cortex	(49)		(50)		(49)	
Adenoma					2	(4%)
Adrenal gland, medulla	(49)		(50)		(49)	
Pheochromocytoma malignant			2	(4%)		
Pheochromocytoma benign	2	(4%)	4	(8%)	5	(10%)
Islets, pancreatic	(49)		(8)		(50)	
Adenoma	• •				1	(2%)
Pituitary gland	(50)		(37)		(49)	
Pars distalis, adenoma	15	(30%)	20	(54%)	13	(27%)
Pars distalis, adenoma, multiple				-	1	(2%)
Thyroid gland	(49)		(10)		(49)	
C-cell, adenoma	2	(4%)			3	
C-cell, carcinoma	2	(4%)	2	(20%)	5	(10%)
Follicular cell, adenoma			1	(10%)		

None

	0 ppm		12,500 ppm		25,000 ppn	
Genital System						
Clitoral gland	(47)		(13)		(46)	
Adenoma	3	(6%)		(38%)	4	(9%)
Bilateral, adenoma	1	(2%)	-	()	-	()
Ovary	(50)		(8)		(50)	
Granulosa cell tumor benign			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		2	(4%)
Uterus	(50)		(22)		(50)	
Leiomyosarcoma	~ /		ì	(5%)	~ /	
Cervix, carcinoma	1	(2%)				
Cervix, leiomyosarcoma	1	(2%)				
Cervix, squamous cell carcinoma	-		1	(5%)		
Endometrium, polyp stromal	9	(18%)	- 8	(36%)	11	(22%)
Endometrium, sarcoma stromal		()		(5%)		()
Hematopoietic System						
Bone marrow	(49)		(8)		(50)	
Lymph node	(50)		(27)		(49)	
Deep cervical, carcinoma, metastatic, thyroid	(50)		(27)			
gland	1	(2%)				
Lymph node, mesenteric	(50)	(-//)	(8)		(49)	
Axillary, mediastinal, adenocarcinoma,	(55)					
metastatic, skin	1	(2%)				
Spleen	(49)	((22)		(50)	
Thymus	(49)		(8)		(49)	
Thymoma benign	(40)	(2%)	(0)		(4)	(2%)
Integumentary System						
Mammary gland	(50)		(47)		(50)	
Adenocarcinoma	(30)	(2%)	(47)	(4%)	(30)	(6%)
Adenoma	2	(4%)	1	(4%)	2	(0%)
Fibroadenoma	29	· ·	17	(36%)		` '
	2	(18%) (4%)		` '	19	(38%)
Fibroadenoma, multiple Skin		(4%)	4	(9%)	, (50)	(4%)
	(50)	(2%)	(8)		, (50)	
Sebaceous gland, adenocarcinoma	1	(2%) (2%)			1	(20%)
Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma	1	(2%)			1	(2%) (4%)
						(4%) (2%)
Subcutaneous tissue, lipoma		(204)			1	(2%)
Subcutaneous tissue, schwannoma benign	. I	(2%)				
Musculoskeletal System None						
Nervous System						
Brain	(50)		(8)	(13%)	(50)	
	()		(5)	(100)	<u>v</u> 7	
Astrocytoma benign			1	(13%)		

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt (continued)

	0	bbu	12,50	19 ppm	2 5 ,0%	CO ppm
Respiratory System Larynx Lung Adenocarcinoma, metastatic, skin	(33) (50) 1	(2%)	(29)		(38) (50)	
Alveolar/bronchiolar adenoma Nose	(49)		1 (8)	(3%)	1 (50)	(2%)
Special Senses System						
Eye	(3)		(5)		(2)	
Zymbal's gland	(2)	(1000)	(1)			
Squamous cell carcinoma	2	(100%)				
Urinary System						
Kidney	(50)		(50)		(50)	
Renal tubule, adenoma				(00)	1	(2%)
Renal tubule, carcinoma	(50)		1	(2%)	(50)	
Urinary bladder	(50)		(9)		(50)	
Systemic Lesions						
Multiple organs ^b	(50)		(50)		(50)	
Leukemia mononuclear	16	(32%)	14	(28%)	15	(30%)
Tumor Summary						
Total animals with primary neoplasms ^c	45		44		50	
Total primary neoplasms	77		86		97	
Total animals with benign neoplasms	32 52		36 62		44 72	
Total benign neoplasms Total animals with malignant neoplasms	52 23		62 21		22	
Total malignant neoplasms	23 25		21		22	
Total animals with secondary neoplasms	2		24		<i>w</i>	
Total secondary neoplasms	3					

Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site. Number of animals with any tissue examined microscopically Primary tumors: all tumors except secondary tumors а

b

с

Carcass ID Number Alimentary System Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum	1 6	2 2	2 4	1 8	2 0	1 7	1 9	2 0	1 7	1	2						0 0					0	0	0	0	
Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum	+++++++	+++	+						2				3	5	2 4	1 8	1 1 8 6 5 4	2	2 4	1 8	8	1	4		4	
Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum	+++++++++++++++++++++++++++++++++++++++	+ +	+																							
Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum	+++++++++++++++++++++++++++++++++++++++	+		-+	+	+	+	+	+	+	+	+	+	+	+ •	+ -	+ +	ہ ۔	+ •	÷.	+	+	+	+	+	
Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum	+++++++++++++++++++++++++++++++++++++++		+	+													+ +			+ .	÷	+	+	+	+	
Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum	+	+	+	+				+				+				+ •	+ +		+ .	+ .	+	+	+	+	÷	
Intestine large, rectum Intestine small Intestine small, duodenum	, 	+	+	•				+				+					+ +	+ -	+ ·	+ ·	+	+	+	+	+	
Intestine small Intestine small, duodenum	–	+	+					+			+	+	+		+ .	+ -	+ +		+ •	+ .	+	+	+	+	+	
Intestine small, duodenum	+	+	+					+			+	+	+	-		, + ·	+ +		+ •	÷ .	+	+	+	+	+	
	+	+	+					+				+	+		-		+ +		+ .	, + ·	+	+	+	+.	+	
Intestine small, ileum	+	+	+					+				+			+ ·		+ +							+	-	
Intestine small, jejunum	+	+	+					+				+					+ +							+		
Liver	+	+	+	+				+						÷			+ +							+		
Neoplastic nodule				•	-										•		-				•					
Mesentery																				+						
Pancreas	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+ •	+ -	+ +	۴.	+ •	-	+	÷	+	+	+	
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+	+ +					+		+	+	
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+ •	+ +		+ •	+ -	+	+	+	+	+	
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+	+ +		+ •	+ •	+	+	+	+	+	
Stomach, glandular	+	+	+	+	Å				+	+							+ +									
Leiomyosarcoma															x											-
Tongue																										
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+	+ +	+ •	+ •	+ ·	+	+	+	+	+	
Endocrine System																										
Adrenal gland	+	+	+	+				+	-	-	+	+	+	+	+ ·	+	+ +	+ •	+ •	+	+	+	+	+	+	
Adrenal gland, cortex	· +	+	+	+	Α	+	+	+	+	+	+	+	+	+	+ ·	+	+ +	+ •	+ •	+	+	+	+	+	+	
Adrenal gland, medulla	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+ ·	+	+ +	⊦ -	+ ·	+ ·	+	+	+	+	+	
Pheochromocytoma benign																										
Islets, pancreatic	+	+	+		Α				+	+	+	+	+	+	+ ·	+	+ -	+ •	+ ·	+ ·	+	+	+	+	+	
Parathyroid gland	+	+	+	+	+	+	Μ	+	÷	+	+	+	+	Μ	+	+ 1	М-	+ •	+ •	+	+	+	+	+	+	
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+ -	+ •	+ ·	+	+	+	+	+	+	
Pars distalis, adenoma		Х			х		Х		х		х	х				2	Х					Х				
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ 1	м -		+ ·	+	+	+	+	+	+	
C-cell, adenoma																	2	K.								
C-cell, carcinoma																										

TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm

+: Tissue examined microscopically A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue

X: Lesion present Blank: Not examined

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

· . .

Jumber of Days on Study	·.	7 3 2	3	7 3 2	7 3 2	7 3 2	7 3 2	7 3 3	3	7 3 3	7 3 4																
<u></u>																											,
		0	-		0		0							0				0				0	0	0	-	0	
Carcass ID Number		1	-	1	1	1			1					1				1			2	2	2	2	-	2	Total
		5 1	6 5	8 2	9 2	9 5	0 4		4 1	4 5	5 2	7 5										1 5		3 4	4 1		Tissue Tumo
limentary System																											
Esophagus		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, cecum		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, colon		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, rectum		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, duodenum		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, ileum		+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, jejunum		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Liver		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Neoplastic nodule																	х		х				Х				3
Mesentery							+																				2
Pancreas		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Salivary glands		+	+	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, glandular		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Leiomyosarcoma																											1
Tongue			+																	+							2
ardiovascular System							- <u></u>																				
Heart		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	50
ndocrine System																											
Adrenal gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, cortex		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, medulla		+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pheochromocytoma benign							Х		Х																		2
Islets, pancreatic		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Parathyroid gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Pituitary gland		+	+					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	50
Pars distalis, adenoma				Х			Х								х			х						X			15
Thyroid gland		+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	49
C-cell, adenoma																					Х						2
C-cell, carcinoma					Х						Х																2

General Body System

None

9	2	5	7	7	0	3	4	5	6	6	8	8	8	8	8	0	1	1	2			2	3	3	
1 6	2 2	2 4	1 8	2 0	1 7	1 9	2 0	1 7	1 5	2 4	2 0	1 3	1 5	2 2	1 4	1 8	1 6	2 2	1 4	1 8	2 1	2 4	1 3	1 4	
+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	М	+		+	+	+	+	
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	
+	+	+	+	+	+	+	+	+	÷	+	÷	+	+												
•	·	•	·	•	•				•			-		•			•	•	•	•	•	•	•	·	
		Х																							
			Х																	х			+	x	
Т	ъ	1	<u>т</u>	•	ъ	т	Т	Ŧ	Т	Т	Ŧ	Ъ	т	т.	т	т	÷	-	Ŧ	+	т		<u>т</u>	<u>т</u>	
- +	+	+	· +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	
•	•	,	,		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	·	
. +	+	+	+	+	÷	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	
+	+	+	+	А	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	
+	+	+																			+	+			
		_							_		_				_										
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	х		х						x				•			x	X		x				x		
+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	
								v				х													
								X																	
	9 9 0 1 6 1	9 29 80 01 26 21 4+ ++ ++ ++ ++ ++ ++ ++ ++ ++	9 2 5 9 8 9 0 0 0 1 2 2 6 2 4 1 4 5 +	9 2 5 7 9 8 9 8 0 0 0 0 1 2 2 1 6 2 4 8 1 4 5 3 + + + + + + + + + + + + X X +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 2 5 7 7 0 9 8 9 8 8 3 0 0 0 0 0 0 0 1 2 2 1 2 1 6 2 4 8 0 7 1 4 5 3 5 3 + + + + + + + + + + + + + + X X X + + + + + + + + + + + + + + + + + + +	9 2 5 7 7 0 3 9 8 9 8 8 3 8 0 0 0 0 0 0 0 0 1 2 2 1 2 1 1 6 2 4 8 0 7 9 1 4 5 3 5 3 1 + + + + + + + + + + + + + + + + X X X +	9 2 5 7 7 0 3 4 9 8 9 8 8 3 8 4 0 0 0 0 0 0 0 0 0 0 1 2 2 1 2 1 1 2 6 2 4 8 0 7 9 0 1 4 5 3 5 3 1 1 + + + + + + + + + + + + + + + + + + X X X + + + + + + + + + + + + + + + + + + +	9 2 5 7 7 0 3 4 5 9 8 9 8 8 3 8 4 3 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 2 1 1 2 1 6 2 4 8 0 7 9 0 7 1 4 5 3 5 3 1 1 2 + + + + + + + + + + + + + + + + + + +	9 2 5 7 7 0 3 4 5 6 9 8 9 8 8 3 8 4 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 2 1 1 2 1 1 6 2 4 8 0 7 9 0 7 5 1 4 5 3 5 3 1 1 2 3 + + + + + + + + + + + M + + + + + + + + + + + + + + + + + + +	9 2 5 7 7 0 3 4 5 6 6 9 8 9 8 8 3 8 4 3 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 2 1 1 2 1 1 2 6 2 4 8 0 7 9 0 7 5 4 1 4 5 3 5 3 1 1 2 3 2 + + + + + + + + + + + + + + + + + + +	9 2 5 7 7 0 3 4 5 6 6 8 9 8 9 8 8 3 8 4 3 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 2 1 1 2 1 1 2 2 6 2 4 8 0 7 9 0 7 5 4 0 1 4 5 3 5 3 1 1 2 3 2 2 + + + + + + + + + + + + + + + + + + +	9 2 5 7 7 0 3 4 5 6 6 8 8 8 9 8 9 8 8 3 8 3 8 4 3 4 4 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 2 1 1 2 1 1 2 2 1 6 2 4 8 0 7 9 0 7 5 4 0 3 1 4 5 3 5 3 1 1 2 3 2 2 3 + + + + + + + + + + + + + + + + + + +	9 2 5 7 7 0 3 4 5 6 6 8 8 8 8 8 9 8 9 8 8 3 8 4 3 4 4 2 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 2 1 1 2 1 1 2 2 1 1 6 2 4 8 0 7 9 0 7 5 4 0 3 5 1 4 5 3 5 3 1 1 2 3 2 2 3 4 + + + + + + + + + + + + + + + + + + +	9 2 5 7 7 0 3 4 5 6 6 8 8 8 8 8 9 8 9 8 8 3 8 4 3 4 4 2 4 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 2 5 7 7 0 0 3 4 5 6 6 8 8 8 8 8 8 8 8 9 8 9 8 8 3 8 4 3 4 4 2 4 6 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 2 5 7 7 7 0 3 4 5 6 6 8 8 8 8 8 8 8 8 0 9 8 9 8 8 3 8 4 3 4 4 2 4 6 6 7 0 1 2 2 1 2 1 1 2 1 1 2 1 1 2 1 1 6 2 4 8 0 7 9 0 7 5 4 0 3 5 2 4 8 1 4 5 3 5 3 1 1 2 3 2 2 3 4 5 3 5 + + + + + + + + + + + + + + + + + + +	9 2 5 7 7 7 0 3 4 5 6 6 8 8 8 8 8 8 8 0 1 9 8 9 8 8 3 8 4 3 4 4 2 4 6 6 7 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 2 5 7 7 0 3 4 5 6 6 8 8 8 8 8 8 0 1 1 9 8 9 8 8 3 8 4 3 4 4 2 4 6 6 7 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 2 5 7 7 0 3 4 5 6 6 8 8 8 8 8 8 0 1 1 1 2 9 8 9 8 8 3 8 4 3 4 4 2 4 6 6 7 0 3 3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 2 5 7 7 0 3 4 5 6 6 8 8 8 8 8 8 0 1 1 2 2 9 8 9 8 8 3 8 4 3 4 4 2 4 6 6 7 0 3 3 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 2 5 7 7 0 3 4 5 6 6 8 8 8 8 8 8 0 1 1 2 2 2 9 8 9 8 8 3 8 4 3 4 4 2 4 6 6 7 0 3 3 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 2 5 7 7 0 3 4 5 6 6 8 8 8 8 8 8 0 1 1 2 2 2 2 2 9 8 9 8 8 3 8 4 3 4 4 2 4 6 6 7 0 3 3 8 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 2 5 7 7 0 3 4 5 6 6 8 8 8 8 8 8 0 1 1 2 2 2 2 3 3 9 8 9 8 8 3 8 4 3 4 4 2 4 6 6 7 0 3 3 8 9 9 9 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

Number of Days on Study	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 3	7 3 3	7 3 3	7 3 3		7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	-	
Carcass ID Number	0 1 5 1	1 6	0 1 8 2	0 1 9 2	0 1 9 5	0 2 0 4	-	1 4	1 4	1 5	1 7			1 9	2 1	0 2 2 2	1 3	1 5		2 1	0 2 1 5		-	0 2 4 1	2 4	Total Tissues Tumors
Genital System																										
Clitoral gland Adenoma	М	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+ X			+	+	+	+	+	+	+	+	47 3
Bilateral, adenoma Ovary Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50 50
Cervix, carcinoma Cervix, leiomyosarcoma	+ X		+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	Ť	-1-	-r	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	-	Ŧ	50 1 1
Endometrium, polyp stromal Vagina		х				х		Х									х		х	х						9 1
Hematopoietic System																										
Blood																										1
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node Deep cervical, carcinoma, metastatic,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
thyroid gland Lymph node, mesenteric Axillary, mediastinal, adenocarcinoma,	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50
metastatic, skin Spleen	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	1 49
Thymus Thymoma benign	+	+	+	+	+	+							+						+		+		+	+	+	48 1
Integumentary System																							-			
Mammary gland Adenocarcinoma	+	+	+	+	+ x		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Adenoma Fibroadenoma Fibroadenoma, multiple			х			x			х										x		х			x		2 9 2
Skin Sebaceous gland, adenocarcinoma	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Subcutaneous tissue, fibroma Subcutaneous tissue, schwannoma benign																				x						1 1
Musculoskeletal System																										
Bone	-																									49

- -

Number of Days on Study	0 9 9	2	5	5 7 8	7	0	3	4	6 5 3	6	6	6 8 2	8	8	8	8		7 1 3	1	2	2	7 2 9	2	3	3	
Carcass ID Number	0 1 6 1	0 2 2 4	0 2 4 5	0 1 8 3		0 1 7 3			1 7	1 5	2 4	-		1 5	2 2	1 4	1 8	1 6	2 2	1 4	8	2 1	4	1 3	1 4	
Nervous System Brain Glioma benign	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	
Respiratory System Larynx Lung Adenocarcinoma, metastatic, skin Nose Trachea	+ + +	++++++	+ + +	· +	+ A +	+ + +	+ + +	+ + +	+++++	+ + +	+ + +	+++++	х	+ + +			++++	++++++	++++++	++++++	++++++	+++++	+++++	++++++	+ + +	
Special Senses System Eye Zymbal's gland Squamous cell carcinoma							+ x												-	+					+	
Urinary System Kidney Urinary bladder	++++	· +	+	- +	++++	+++	+++	+++	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	+++	+++	+ +	++	+ +	+	+ +	+ +	
Systemic Lesions Multiple organs Leukemia mononuclear	4	• +	+	- +	+	+	+	+ x	+	+	+	+	+	+ x	+		+ x		+	+ x	+ x		+ x		+	

TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

.

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

		·																									
Number of Days on Study	7 3	7 3	73	7 3	73	7 3	7 3	1 - 1 -	,																		
	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	
	0	0	0	•	•	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	•	`		
Carcass ID Number	1	1	1	1	1	2		1	1	1	1	1			2	2	1	1	1	2	2	2			_	-	Total
	5 1	6 5	8 2		9 5	0 4		4 1		5 2	7 5	8 4	9 3	9 4	1 2	2 2	3 2	5 5	7 1	1 1	-	3 1	-		4		Tissues/ Tumors
Nervous System																											
Brain Glioma benign	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	• •	+	50 1
Respiratory System																											
Larynx	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• •	+	33
Lung Adenocarcinoma, metastatic, skin	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+	50
Nose	+	+	+	. +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				+	1 49
Trachea	+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	• +	- +		+	50
Special Senses System																			-								
Eye																	+										3
Zymbal's gland Squamous cell carcinoma																											2 2
Urinary System	 																										
Kidney	+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +		+	50
Urinary bladder	+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	- +		+	50
Systemic Lesions																											
Multiple organs		+		- +	+	: +	-		+	+			+	+	+	+	+	+	+	+			+	- +		+	50
Leukemia mononuclear	X	X	•		Х		Х				Х				х		Х				Х						16

Number of Days on Study	1	5	6	8	8	8	2	3	4	4	6	7	9	0	7 0 8	1	2	2	2	3	3	3	7 3 2	3	3	
Carcass ID Number	0 3 9 1	3 9	7	4	4 6	4 3	1	4 4	3 7	4 2	4 5	4 4	4 3	7	0 4 0 3	39	4 3	8	4 1	4	0	4	4	4 5	4 5	
		·														<u></u>		_								
limentary System																										
Esophagus	+	+	+	+	+	+	÷	+																		
Intestine large	+	+	+		+		+																			
Intestine large, cecum	+	+	+	+	+	+	+	+																		
Intestine large, colon	+	+	+	+		+	+																			
Intestine large, rectum	+	+	+	+	+	+	+						•													
Intestine small	+	+	+	+	+	+	+	+																		
Intestine small, duodenum	+	+	+	+	+	+	+																			
Intestine small, ileum	+	+	+	+	+	+	+																			
Intestine small, jejunum	+	+	+			+																				•
Liver	+	+	+	+		+		+	+			+	+	+	+	+	+	÷	÷		+	+	÷		+	
Mesentery	•	•	•		•	•	<i>.</i>								+											
Pancreas	+	+	+	+	+	+	+	+							•											
Salivary glands	+	+	+	+	+	+	+																			
Stomach	+	+	+	+	+	+	÷				+	+														
Stomach, forestomach	+	+	+	+	+	+	+				+															
Stomach, glandular	+	+	+	+	+	÷	+				÷															
Cardiovascular System																_										
Blood vessel	+																									
Heart	+	+	+	+	+	+	+	+																		
			<u> </u>				<u> </u>		.:							<u>.</u>			·					<u>.</u>		·
Endőcrine System												1	î.			i.					Ľ.					
Adrenal gland	+	+	+	+	+	+	÷	Ť	+	+	+	Ť	++	++	Ť	7 1	Т.	5	+	Ť	- T	-	T	Ť	- -	
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	÷.	÷	Ť	•	•	Ţ	τ L	++	++	++	- r 	T		- T	+	Ţ	
Adrenal gland, medulla	+	+	+	Ŧ	Ŧ	+	+	Ŧ	+	Ŧ	+	+		x ⁺	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т	т	Ŧ	Ŧ	
Pheochromocytoma malignant														Λ					$\dot{\mathbf{x}}$							
Pheochromocytoma benign																			Λ							
Islets, pancreatic	+	+	+	+	+	+	+	+																		
Parathyroid gland				+				+									,					•				
Pituitary gland	+			+			+	+		+		+		+		+	+	+			+		+		+	
Pars distalis, adenoma		. X			X							х				А	Х			Å	х		X			
Thyroid gland	+	+	+	+	+	+	+	.+																		
C-cell, carcinoma					v																•					
Follicular cell, adenoma					х																			•		

TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

lumber of Days on Study	7 3 2	7 3 2	7 3 2	7 3 2	7 3 3	7 3 3	7 3 3	7 3 3	3		7 3 3	3	7 3 3	3	7 3 4	3										
	0	0	-	0	0	0	0	0	0	0	0	0	0		0	0	0	0	-	0	0	0	0	0	-	
Carcass ID Number	4	4	4	4	3	3	3	4	4	4	4	4	4	4	3 7	3 8	3	4	4 0	4 2	4 3	4	4 5	4 5		Total Tissue
	7 3	7 4	8 2	8 4	-	9 3				6 3	7 5		8 3			° 3		0 1		4		4				Tumor
Mimentary System																						_				
Esophagus																										8
Intestine large																										8
Intestine large, cecum																										8
Intestine large, colon																										8
Intestine large, rectum																										8
Intestine small																										8
Intestine small, duodenum																										8
Intestine small, ileum																										8
Intestine small, jejunum																										8
Liver		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+		+	+		+	+	42
Mesentery		+																								2
Pancreas																										8
Salivary-glands																										8
Stomach																										10
Stomach, forestomach																										10
Stomach, glandular																										10
Cardiovascular System															-											
Blood vessel																										1
Heart																										8
Endocrine System																										
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, medulla	. +	• +	• +	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma malignant																					Х					2
Pheochromocytoma benign											х							x					х			4
Islets, pancreatic																										8
Parathyroid gland																										7
Pituitary gland		+	-	+	+	+	+	+		+	+		+	+	+	+	+	+		+		+	+	+	+	37
Pars distalis, adenoma		X		X			х			х				x	X	X				х			х	х	х	20
Thyroid gland								+				+														10
C-cell, carcinoma								х				Х														2
Follicular cell, adenoma																										1

- -

-16

None

Number of Days on Study		5	5 (6	8	8	8	2	3	4	4	6	7	9	7 0 6	0	1	2	2	2	3	3	3	3	3	3	
Carcass ID Number	0 3 9 1	3	3 ·	4 7	0 4 4 5	4 6	0 4 3 1	1	4 4	3 7	0 4 2 1	4 5	4 4	4 3	0 3 7 1	4 0	3 9	4 3	3 8		4 0	4 0	4 3	4	0 4 5 1	4 5	
Genital System Clitoral gland			+		-				+					·			-	+									
Adenoma	т		1	ł	T		141	'	1			+ x			+ x			x									
Ovary	· +		+ -	+	+	+	+	+	+																		
Uterus	+		÷	+	+	+	+	+		+				+	+			+			+	+					
Leiomyosarcoma								х																			
Cervix, squamous cell carcinoma																											
Endometrium, polyp stromal															х			Х				Х					
Endometrium, sarcoma stromal										х																	
Hematopoietic System																											
Bone marrow	+		+	+	+	+	+	+	+																		
Lymph node	+		F	+	+	+	+	+	+	+		+		+	+	+	+	+		+		+		+		+	
Lymph node, mesenteric	+		ł	+		+	+	+	+																	+	
Spleen	+		ŧ.	+	+	+	+	+	+	+			+	+	+			+				+	+				
Thymus	+		ł	+	+	+	+	+	+																		
Integumentary System			_						-										·	-		·					
Mammary gland	+		ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	
Adenocarcinoma				x																							
Adenoma																											
Fibroadenoma							Х			Х		Х			Х			Х				Х					
Fibroadenoma, multiple					х														Х		Х						
Skin	+		ł	ł	+	+	+	+	+																		
Musculoskeletal System Bone	+		+	+	+	+	+	+	+																		
N 6 4																											 <u> </u>
Nervous System Brain		_	1.	1	L			.1	+																		•
	+		+ K	+	Τ.	т	Ŧ	т	Ŧ																		
Astrocytoma benign		_	<u>`</u>																					_			
Respiratory System																											
Lung	+		t	+	+	+	+	+	+							+		+			+		+			+	
Alveolar/bronchiolar adenoma																											
Nose	+		t	+	+	+	+	+	+																		
Trachea																											

TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

Number of Days on Study	7 3 2		3	3	7 3 3	7 3 3		7 3 3		3		3	3	3	7 3 4	3	3	7 3 4	7 3 4	3	7 3 4	7 3 4	7 3 4	7 3 4	3	
Carcass ID Number	0 4 7 3	7	0 4 8 2	0 4 8 4		3 9	3 9		4 2					4 8		3 8								0 4 5 4	4 6	Total Tissues/ Tumors
Genital System Clitoral gland Adenoma Ovary Uterus Leiomyosarcoma Cervix, squamous cell carcinoma Endometrium, polyp stromal Endometrium, sarcoma stromal			+ x					+	+ X				+	+							x		+ x	+ x		13 5 8 22 1 1 8 1
Hematopoietic System Bone marrow Lymph node Lymph node, mesenteric Spleen Thymus			+	+	+	+		+ +	+ +							+	+	++		+	+		+			8 27 8 22 8
Integumentary System Mammary gland Adenocarcinoma Adenoma Fibroadenoma Fibroadenoma, multiple Skin	+	- +			+ x	+ x	+ X		+ x	+ x x			+	+ x		+	+	+ x	+ x		+	+		+ x	+	47 2 1 17 4 8
Musculoskeletal System Bone																										8
Nervous System Brain Astrocytoma benign																										8 1
Respiratory System Lung Alveolar/bronchiolar adenoma Nose Trachea	4	- +	+			+ x	+		+	+	+				+			+	+		+	+	+	+	+	29 1 8 8

		_																									
Number of Days on Study	1 1 8	5	i 5 i 6	58	-	5 8 8	6 2 1	6 3 0	6 4 3	6 4 3	6 6 3	6 7 1	6 9 8	7 0 6	7 0 8	7 1 8	7 2 2	7 2 9	7 2 9	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	;	
Carcass ID Number	0 3 9 1	3) 0 4 4 7 4 1 5	•	0 4 3 1	0 4 1 4	0 4 4 4	0 3 7 2	0 4 2 1	0 4 5 5	0 4 4 2	0 4 3 3	0 3 7 1	0 4 0 3	0 3 9 2	0 4 3 2	0 3 8 5	0 4 1 1	0 4 0 4	0 4 0 5	0 4 3 4	0 4 4 3	0 4 5 1	0 4 5 2	•	
Special Senses System Eye Zymbal's gland			-	+	+				+							+			+	-							
Urinary System Kidn ey Renal tubule, carcinoma Urinary bladder				+ +						++	•	+	+	+	+	+	+	+	+	+	+	+	• •	+ + X		F	
Systemic Lesions Multiple organs Leukemia mononuclear	-		+ -	+ +	+ +	- +	+		+ x		+	+ x	+ x	+	+ x	+	+ x	+	+	+		+ x			+ +	ł	

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)
Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Sumber of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	4	4	4	4	3	3	3	4	4	4	4	4	4	4	3	3	3	4	4	4	4	4	4	4	4	Total
	7	7	8	8	8	9	9	1	2	6	7	8	8	8	7	8	8	0	0	2	3	4	5	5	6	Tissues
	3	4	2	4	2	3	5	5	2	3	5	1	3	5	4	3	4	1	2	4	5	1	3	4	1	Tumors
Special Senses System																										
Eye Zymbal's gland												+														5 1
Jrinary System																									<u></u>	
Kidney	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Renal tubule, carcinoma Urinary bladder																										1 9
Systemic Lesions	<u>_</u>												<u>,.</u>													
Multiple organs	+	• +	+		+	+	+	+	+	+	+	+	+	+	+	+	+				+	+	+		+	50
Leukemia mononuclear				х				х		Х								Y	Х					X		14

Number of Days on Study	5	3	3	6	7	7	8	8	6 9 2	0	0	0	1	1	1	1	2	2								
Carcass ID Number	7 0	6 5	7 1	6 9	6 4	6 7	6 9	6 3	0 6 1 4	6 3	6 9	6 4	6 2	6 3	6 5	6 8	6 7	6 2.	6 6	6 2	6 3	6 5	6 6	7 0	7 0	
Alimentary System												-														
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Neoplastic nodule																		Х								
Mesentery																										
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pharynx					+																	,				
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•
Tooth																										
Cardiovascular System																										
Blood vessel																										
Heart	+	+	+	+	·+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System						<u> </u>											Ĭ	<u></u>								
Adrenal gland	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex Adenoma				+			•		+								+ X									
Adrenal gland, medulla	Μ	[+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pheochromocytoma benign					х						•													Х		
Islets, pancreatic Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Parathyroid gland	+	• +	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pituitary gland	М	[+	+	+	+	+	+					+	+	Ŧ	+	+	+	+			+	+			+	
Pars distalis, adenoma								х		х									х				Х			
Pars distalis, adenoma, multiple									v													,		,		
Thyroid gland	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· •
C-cell, adenoma															x			x				x			x	
C-cell, carcinoma															л			~~				_ ^				

TABLE B2Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Studyof 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 25,000 ppm

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
lumber of Days on Study	3	3	3	2	2	2	3	3	3	3	3	3	3	3	-	3	3	3	3	3	3	3	3	3		
number of mays on Study	2	2	2	2	3	3									4								4			
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	7	7	7	7	6	6	6	6	6	6	7	7	7	7	6	6	6	6	6	6		6	6	7	7	Total
	1	1	1	2	1	2	4	5	5	9	1	2	2	2	1	2	3	6	7		8		9	0	2	Tissues
	1	3	4	3	3	3	4	2	3	5	5	1	2	4	2	5	1	2	1			5	3	5	5	Tumor
limentary System								_						_												
Esophagus	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Neoplastic nodule																										1
Mesentery							+	+										+								3
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pharynx																										1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	•	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Stomach, glandular Tooth	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Cardiovascular System												_								-						
Blood vessel Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	1 50
Endocrine System																										
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	49
Adrenal gland, cortex	, +	+	+	+	+	+	+	+	+	+			+			+	+	+	+	+	. <u>+</u>	4		+	+	49
Adenoma		•	'		'		•					x			•		•		,	ſ			r		•	2
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pheochromocytoma benign		-		x	-	-			x		•		•	•	•	x	-	-		-	-		•	•		5
Islets, pancreatic	+	+	+			+	+	+			+	+	+	+	+			+	+	+	+	+	• +	+	+	50
Adenoma								-	-					-		x			-		5			-		1
Parathyroid gland	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Pituitary gland	+			+				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	49
Pars distalis, adenoma	X										Х		х	х	Х		х			Х		Х			х	13
Pars distalis, adenoma, multiple		Х																								1
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	49
C-cell, adenoma														х				Х								3

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4.4'-Diamino-2.2'-stilbenedisulfonic Acid. Disodium Salt: 25.000 ppm (continue

5	3	3	6	7	7	8	8	9	0	0	0	1	1	1	1	2	2	7 2 9	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	
7 0	6 5	7 1	6 9	6 4	6 7	6 9	6 3	6 1	6 3	6 9	6 4	6 2	6 3	6 5	6 8	6 7	6 2	6 6	6 2	6 3	6 5	6 6	7 0	7 0	
													-												
			_													_					_				
N	[+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	Μ	+	+	+	+	+	
												х													
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
+		+	+			+			+	+	+	+	+						+			+	+	+	
х				х				x							х		х			x					
																			_						
							+										+								
+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	
							+	+	+	+	+	+	+	+	•	•	•	+	+		+	+	+	+	
N	(+	+	+				+	+	+	+	+	+	-	•		•	•	-	+		+	+	+	+	
+	+	+	+				+	+	+		+										+	+	+	+	
+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	\mathbf{x}^{+}	+	+	+	+	+	+	+	
		_									_									_				<u> </u>	
+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	
																		х				Х			
	X	X	X				х	х				х		х			х		х					х	
									х																
+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	X																								
												х													
					_				_			_				_									
	5 1 0 7 0 1 1 	5 3 1 8 0 0 7 6 0 5 1 1 M + + + X + + + M + + + + + X + + + X + X + + +	5 3 3 1 8 8 0 0 0 7 6 7 0 5 1 1 1 2	5 3 3 6 1 8 8 4 $0 0 0 0 0 0 0 0 0 7 6 7 6 0 5 1 9 1 1 2 4$ $M + + + + + + + + + + + + + + + + + + +$	5 3 3 6 7 1 8 8 4 1 0 0 0 0 0 7 6 7 6 6 0 5 1 9 4 1 1 2 4 5 M + + + + + + + + + X X X + + + + + M + + + + M + + + + + + + + + X X X + + + + + + X X X + + + + + +	5 3 3 6 7 7 $1 8 8 4 1 2$ $0 0 0 0 0 0 0$ $7 6 7 6 6 6$ $0 5 1 9 4 7$ $1 1 2 4 5 4$ $M + + + + +$ $+ + + + + +$ $+ + + + + +$ $X X$ $+ + + + + +$ $+ + + + + +$ $+ + + + + +$ $+ + + + + +$ $+ + + + + +$ $+ + + + + +$ $+ + + + + + +$	5 3 3 6 7 7 8 1 8 8 4 1 2 1 $0 0 0 0 0 0 0 0 7 6 7 6 6 6 6 6 0 5 1 9 4 7 9 1 1 2 4 5 4 2$ $M + + + + + + + + + + + + + + + + + + +$	5 3 3 6 7 7 8 8 1 8 8 4 1 2 1 6 0 0 0 0 0 0 0 0 0 7 6 7 6 6 6 6 6 0 5 1 9 4 7 9 3 1 1 2 4 5 4 2 2 M + + + + + + + + + + + + + + + + + + + X X X X X + + + + + + + + + + + X X X X X + + + + + + + + + + + + + + + + + + +	5 3 3 6 7 7 8 8 9 1 8 8 4 1 2 1 6 2 0 0 0 0 0 0 0 0 0 0 0 7 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 3 3 6 7 7 8 8 9 0 1 8 8 4 1 2 1 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 3 3 6 7 7 8 8 9 0 0 1 8 8 4 1 2 1 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 6 7 6 6 6 6 6 6 6 6 6 0 5 1 9 4 7 9 3 1 3 9 1 1 2 4 5 4 2 2 4 3 1 M + + + + + + + + + + + + + + + + + + +	5 3 3 6 7 7 8 8 9 0 0 0 0 1 8 8 4 1 2 1 6 2 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 6 7 6 6 6 6 6 6 6 6 6 6 6 0 5 1 9 4 7 9 3 1 3 9 4 1 1 2 4 5 4 2 2 4 3 1 2 M + + + + + + + + + + + + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 3 3 6 7 7 8 8 9 0 0 0 1 1 1 1 1 8 8 4 1 2 1 6 2 0 0 6 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 5 1 9 4 7 9 3 1 3 9 4 2 3 5 1 1 2 4 5 4 2 2 4 3 1 2 2 4 5 M +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 3 3 6 7 7 8 8 9 0 0 1 1 1 1 2 2 2 9 0	5 3 3 6 7 7 8 8 9 0 0 1 1 1 1 2 2 2 3 1 8 8 4 1 2 1 6 2 0 0 6 8 9 9 2 9 2 3 1 1 1 1 1 1 1 1	5 3 6 7 7 8 8 9 0 0 1 1 1 1 2 2 3 3 1 8 8 4 1 2 1 6 2 0 0 8 9 9 9 2 9 9 2 2 3 3 0 <td>5 3 3 6 7 7 8 8 9 0 0 1 1 1 2 2 2 3 3 3 1 8 8 4 1 2 1 6 2 0 0 8 9 9 9 2 9 9 2 2 2 0<td>5 3 3 6 7 7 8 8 9 0 0 1 1 1 1 2 2 2 3 3 3 3 1</td><td>5 3 3 6 7 7 8 8 9 0 0 1 1 1 1 2 2 2 3</td><td>5 3 3 6 7 7 8 8 9 0 0 1 1 1 1 2 2 2 3</td></td>	5 3 3 6 7 7 8 8 9 0 0 1 1 1 2 2 2 3 3 3 1 8 8 4 1 2 1 6 2 0 0 8 9 9 9 2 9 9 2 2 2 0 <td>5 3 3 6 7 7 8 8 9 0 0 1 1 1 1 2 2 2 3 3 3 3 1</td> <td>5 3 3 6 7 7 8 8 9 0 0 1 1 1 1 2 2 2 3</td> <td>5 3 3 6 7 7 8 8 9 0 0 1 1 1 1 2 2 2 3</td>	5 3 3 6 7 7 8 8 9 0 0 1 1 1 1 2 2 2 3 3 3 3 1	5 3 3 6 7 7 8 8 9 0 0 1 1 1 1 2 2 2 3	5 3 3 6 7 7 8 8 9 0 0 1 1 1 1 2 2 2 3

TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 25,000 ppm (continued)

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 25,000 ppm (continued) 3 3 3 3 3 3 3 Number of Days on Study 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 0 0 6 6 6 7 7 7 7 6 6 6 6 6 6 6 6 6 7 7 Total Carcass ID Number 7777666 Tissues/ 1 1 1 2 1 2 4 5 5 9 1 2 2 2 1 2 3 6 7 7 8 8 9 0 2 1 3 4 3 3 3 4 2 3 5 5 1 2 4 2 5 1 2 1 3 2 5 3 5 5 Tumors General Body System None **Genital System** Clitoral gland 46 + + + M + + + м + Adenoma 4 х х 50 Ovary + + Granulosa cell tumor benign 2 х х Uterus + + + 50 + + х х Endometrium, polyp stromal x хх 11 Hematopoietic System Blood 2 Bone marrow 50 + + Lymph node + 49 + + + + + + Lymph node, mesenteric 49 + + + + + + + + + + + + + + + + ÷ + + + + + + Spleen 50 + + + + Thymus 49 Thymoma benign 1 Integumentary System Mammary gland 50 + + + + + + Adenocarcinoma 3 Adenoma х 2 x Fibroadenoma х х х Х х ххх 19 х Fibroadenoma, multiple X 2 Skin + + + + + + + + + + + + + 50 Subcutaneous tissue, fibroma 1 Subcutaneous tissue, fibrosarcoma х 2 Subcutaneous tissue, lipoma х 1 Musculoskeletal System Bone + + 50 + + + + + + +

	3	6	6	6	6	6	6	6	6	7	7	7	7.	7	7	7	7	7	7	7	7	7	7	7	~	
Number of Days on Study	5					7			-	•	•	•		•	-		2	2	2	2	2	2	2	2	2	
fumber of Days on Study	_														1 9									3 2	_	
															<u></u>											
Carcass ID Number										-		-	0 6				-	-	-	-	-			0	·	
carcass in Number																								7 0	•	
•																								3		
Nervous System		_										_							_	_				<u> </u>		
Brain	+	-	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Glioma benign																										
Respiratory System		_												_			_									
Larynx												+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lung	+	4	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Alveolar/bronchiolar adenoma																										
Nose	+	+	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Trachea	+	-	- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Special Senses System																										
Eye																		+								
Urinary System															,											
Kidney	+	-	+	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	
Renal tubule, adenoma																					х					
Urinary bladder	+	-	1	⊦ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Systemic Lesions																										
Multiple organs	+	-		⊦ +	• +	+	+	+	+	+							+	+	+	+	+	+		+	+	
Leukemia mononuclear		2	ζ.			Х	Х		х		х	х	х	х	х	х							Х			

Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid. Disodium Salt: 25,000 ppm (continued)

TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Feed Study

of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 25,000 ppm (continued) Number of Days on Study 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 **Carcass ID** Number 77776666667777666666666677 Total Tissues/ 1 1 1 2 1 2 4 5 5 9 1 2 2 2 1 2 3 6 7 7 8 8 9 0 2 1 3 4 3 3 3 4 2 3 5 5 1 2 4 2 5 1 2 1 3 2 5 3 5 5 Tumors Nervous System 50 Brain + + + Glioma benign Х 1 **Respiratory** System 38 Larynx Lung 50 + + Alveolar/bronchiolar adenoma 1 х Nose 50 + ++ + + Trachea 50 + Special Senses System 2 Eye + Urinary System Kidney 50 Renal tubule, adenoma 1 Urinary bladder 50 Systemic Lesions Multiple organs 50 + + + + + + + + + + + + + + + + х х Leukemia mononuclear х х 15

115

	0 ррт	12,500 ppm	25,000 ppm
Adrenal Medulla: Benign Pheochromoc	ytoma		
Overall rates ^a	2/49 (4%)	4/50 (8%)	5/49 (10%)
Adjusted rates ^b	6.7%	12.1%	14.0%
Terminal rates ^c	2/30 (7%)	4/33 (12%)	4/33 (12%)
First incidence (days)	729 (T)	729 (T)	671
Life table tests ^d	P=0.204	P=0.380	P=0.261
Logistic regression tests ^d	P=0.219	P=0.380	P=0.265
Cochran-Armitage test ^d	P=0.168		
Fisher exact test ^d		P=0.349	P=0.218
Adrenal Medulla: Benign or Malignant	Pheochromocytoma	'	
Overall rates	2/49 (4%)	6/50 (12%)	5/49 (10%)
Adjusted rates	6.7%	17.4%	14.0%
Terminal rates	2/30 (7%)	5/33 (15%)	4/33 (12%)
First incidence (days)	729 (T)	706	671
Life table tests	P=0.232	P=0.167	P=0.261
Logistic regression tests	P=0.244	P=0.151	P=0.265
Cochran-Armitage test	P=0.186		
Fisher exact test		P=0.141	P=0.218
Clitoral Gland: Adenoma			
Overall rates	4/47 (9%)	5/13 (38%) ^e	4/46 (9%)
Adjusted rates	13.8%		11.1%
Terminal rates	4/29 (14%)		2/30 (7%)
First incidence (days)	729 (T)		671
Life table tests			P=0.603N
Logistic regression tests			P=0.587N
Fisher exact test			P=0.631
Liver: Neoplastic Nodule			
Overall rates	3/50 (6%)	0/42 (0%)	1/50 (2%)
Adjusted rates	10.0%	0.0%	3.0%
Terminal rates	3/30 (10%)	0/27 (0%)	1/33 (3%)
First incidence (days)	729 (T)	_1	729 (T)
Life table tests	P = 0.160N	P=0.139N	P = 0.271N
Logistic regression tests	P=0.160N	P=0.139N	P=0.271N
Cochran-Armitage test	P=0.182N		
Fisher exact test		P=0.156N	P=0.309N
Mammary Gland: Fibroadenoma			
Overall rates	11/50 (22%)	21/50 (42%)	21/50 (42%)
Adjusted rates	29.0%	53.1%	49.9%
Terminal rates	5/30 (17%)	15/33 (45%)	13/33 (39%)
First incidence (days)	528	583	638
Life table tests	P=0.074	P=0.061	P=0.082
Logistic regression tests	P=0.029	P=0.027	P=0.029
Cochran-Armitage test	P=0.023		
Fisher exact test		P=0.026	P=0.026

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt (continued)

	0 ppm	12,500 ppm	25,000 ppm
Mammary Gland: Adenocarcinoma	<u></u>		
Overall rates	1/50 (2%)	2/50 (4%)	3/50 (6%)
Adjusted rates	3.3%	5.1%	7.9%
•		1/33 (3%)	2/33 (6%)
Terminal rates	1/30 (3%) 730 (TD	565	351
First incidence (days)	729 (T) P=0.246	P=0.524	P=0.334
Life table tests		P=0.499	P = 0.334 P = 0.235
Logistic regression tests	P=0.175	P=0.499	r=0.235
Cochran-Armitage test	P=0.222	D 0 500	B 0 200
Fisher exact test		P=0.500	P=0.309
Pituitary Gland (Pars Distalis): Adenon			
Overall rates	15/50 (30%)	20/37 (54%)	14/49 (29%)
Adjusted rates	38.1%	64.1%	39.4%
Terminal rates	8/30 (27%)	14/24 (58%)	12/33 (36%)
First incidence (days)	528	558	686
Life table tests	P=0.329N	P = 0.107	P=0.380N
Logistic regression tests	P=0.446N	P=0.019	P=0.511N
Cochran-Armitage test	P=0.488N		
Fisher exact test		P=0.021	P=0.526N
Skin (Subcutaneous Tissue): Fibroma o	r Fibrosarcoma		
Overall rates	1/50 (2%)	0/50 (0%)	3/50 (6%)
Adjusted rates	2.4%	0.0%	7.5%
Terminal rates	0/30 (0%)	0/33 (0%)	1/33 (3%)
First incidence (days)	653	-	638
Life table tests	P=0.209	P=0.510N	P=0.355
Logistic regression tests	P = 0.168	P = 0.501N	P=0.287
Cochran-Armitage test	P = 0.176	1 0.50110	1 0.207
Fisher exact test	1	P = 0.500N	P≈0.309
Lisher Chart (List		1 -0.5001	1 -0.509
Thyroid Gland (C-cell): Adenoma	040 (40)	040 (000) ^e	040 ((7))
Overall rates	2/49 (4%)	0/10 (0%) ^e	3/49 (6%)
Adjusted rates	6.3%		9.1%
Terminal rates	1/30 (3%)		3/33 (9%)
First incidence (days)	713		729 (T)
Life table tests			P=0.547
Logistic regression tests			P=0.565
Fisher exact test			P=0.500
Thyroid Gland (C-cell): Carcinoma			
Overall rates	2/49 (4%)	2/10 (20%) ^e	5/49 (10%)
Adjusted rates	6.7%	· · ·	14.5%
Terminal rates	2/30 (7%)		4/33 (12%)
First incidence (days)	729 (T)		719
Life table tests			P = 0.262
Logistic regression tests			P=0.271
Fisher exact test			P=0.218

TABLE	B3

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	0 ppm	12,500 ppm	25,000 ppm
Thyroid Gland (C-cell): Adenoma or Car		<u> </u>	
Overall rates	4/49 (8%)	2/10 (20%) ^e	8/49 (16%)
Adjusted rates	12.7%	410 (2070)	23.3%
Terminal rates	3/30 (10%)		7/33 (21%)
First incidence (days)	713		719
Life table tests			P=0.233
Logistic regression tests			P = 0.248
Fisher exact test			P=0.178
Uterus: Stromal Polyp			
Overall rates	9/50 (18%)	8/50 (16%)	11/50 (22%)
Adjusted rates	28.2%	22.7%	28.3%
Ferminal rates	8/30 (27%)	6/33 (18%)	7/33 (21%)
First incidence (days)	578	706	351
Life table tests	P=0.444	P=0.419N	P=0.502
ogistic regression tests	P=0.379	P=0.479N	P=0.398
Cochran-Armitage test	P=0.350		
Fisher exact test		P=0.500N	P=0.402
Uterus: Stromal Polyp or Stromal Sarco	ma		
Overall rates	9/50 (18%)	9/50 (18%)	11/50 (22%)
Adjusted rates	28.2%	24.6%	28.3%
Ferminal rates	8/30 (27%)	6/33 (18%)	7/33 (21%)
First incidence (days)	578	643	351
Life table tests	P=0.448	P=0.525N	P=0.502
ogistic regression tests	P=0.375	P=0.591N	P=0.398
Cochran-Armitage test	P=0.352		
Fisher exact test		P=0.602N	P=0.402
All Organs: Mononuclear Cell Leukemia			
Overall rates	16/50 (32%)	14/50 (28%)	15/50 (30%)
Adjusted rates	43.9%	35.3%	34.1%
Ferminal rates	10/30 (33%)	8/33 (24%)	5/33 (15%)
First incidence (days)	644	630	638
life table tests	P = 0.326N	P=0.337N	P=0.354N
Logistic regression tests	P=0.387N	P=0.399N	P=0.427N
Cochran-Armitage test	P=0.457N		_ ,
Fisher exact test		P=0.414N	P=0.500N
All Organs: Benign Tumors			
Overall rates	32/50 (64%)	36/50 (72%)	44/50 (88%)
Adjusted rates	77.3%	81.5%	97.7%
Ferminal rates	21/30 (70%)	25/33 (76%)	32/33 (97%)
First incidence (days)	528	558	351
Life table tests	P=0.087	P=0.458	P=0.103
ogistic regression tests	P=0.007	P=0.263	P=0.008
Cochran-Armitage test	P=0.004		
Fisher exact test		P=0.260	P=0.005

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	0 ppm	12,500 ppm	25,010 ppm
All Organs: Malignant Tumors			<u> </u>
Overall rates	23/50 (46%)	21/50 (42%)	22/50 (44%)
Adjusted rates	55.3%	49.4%	49.2%
Terminal rates	12/30 (40%)	12/33 (36%)	11/33 (33%)
First incidence (days)	559	565	351
Life table tests	P=0.309N	P=0.341N	P=0.334N
Logistic regression tests	P=0.441N	P=0.414N	P=0.501N
Cochran-Armitage test	P=0.460N		
Fisher exact test		P=0.420N	P=0.500N
All Organs: Benign or Malignant Tumors			
Overall rates	45/50 (90%)	44/50 (88%)	50/50 (100%)
Adjusted rates	93.7%	91.6%	100.0%
Terminal rates	27/30 (90%)	29/33 (88%)	33/33 (100%)
First incidence (days)	528	558	351
Life table tests	P=0.522	P=0.318N	P=0.562N
Logistic regression tests	P=0.063	P=0.491N	P=0.051
Cochran-Armitage test	P=0.042		
Fisher exact test		P=0.500N	P = 0.028

(T)Terminal sacrifice

^a Number of tumor-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, epididymis, gallbladder (mouse), heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated tumor incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

^e Tissue was examined microscopically only when it was observed to be abnormal at necropsy; thus, statistical comparisons with the controls are not appropriate.

¹ Not applicable; no tumors in animal group

Study	Incidence in Controls	
Overall Historical Incidence		
Total	314/800 (39.3%)	
Standard deviation	15.1%	
Range	8%-58%	

(

TABLE B4

Historical Incidence of Fibroadenomas of the Mammary Gland in Untreated Female F344/N Rats^a

^a Data as of 29 March 1991

120

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt^a

	0	bbw	12,54	10 ppm	25,0	CO ppm
Disposition Summary		· · · · · · · · · · · · · · · · · · ·				
Animals initially in study	60		60		60	
15-month interim evaluation	10		10		10	
Early deaths						
Natural deaths	5		3		1	
Moribund kills	15		14		16	
Survivors						
Terminal sacrifice	30		32		33	
Died last week of study			1			
Animals examined microscopically	50		50		50	
Alimentary System					<u> </u>	
Intestine large, cecum	(49)		(8)		(50)	
Parasite metazoan	1	(2%)			. ,	
Intestine large, colon	(49)		(8)		(50)	
Mineralization			1	(13%)		
Parasite metazoan	4	(8%)				
Intestine large, rectum	(49)		(8)		(50)	
Mineralization			1	(13%)		
Parasite metazoan	1	(2%)				
Liver	(50)	(8.64)	(42)		(50)	
Angiectasis	1	(2%)	1	(2%)	7	(14%)
Congestion	2	(4%)	3	(7%)	_	
Cytologic alterations	1	(2%)	3	(7%)	3	(6%)
Cytologic alterations, multiple	23	(46%)		(29%)	22	(44%)
Fibrosis, focal Hematopoietic cell proliferation			1	(2%)		(AP)
Hemorrhage	-	(20%)			1	(2%)
Hepatodiaphragmatic nodule	1	· · ·	10	(7492)	1	· /
Hyperplasia, focal	16 5	(32%) (10%)	10	(24%) (10%)	8	(16%)
Hyperplasia, nultifocal	2	(10/0)	4	(10%) (5%)	4	(8%)
Inflammation, chronic	13	(26%)		(3%) (29 %)	12	(7601)
Mitotic alteration		(20%)	12	(2570)	13	(26%)
Necrosis, multifocal		(2%)				
Pigmentation	-	(-~)			1	(2%)
Thrombus					1	(2%)
Vacuolization cytoplasmic			1	(2%)	1	(2%) (2%)
Bile duct, hyperplasia	19	(38%)		(33%)	16	(32%)
Centrilobular, necrosis		(2%)	2	(5%)	10	
Centrilobular, vacuolization cytoplasmic		(10%)	1	(2%)	4	(8%)
Mesentery	(2)		(2)	<u></u>	(3)	(~~)
Hyperplasia, lymphoid			(-)		1	(33%)
Fat, necrosis	2	(100%)	2	(100%)		(67%)
Pancreas	(49)	. /	(8)	. /	(50)	· ···)
Inflammation, chronic			. /		1	(2%)
Acinus, atrophy, diffuse	1	(2%)				• •
Acinus, atrophy, focal	13	(27%)	1	(13%)	23	(46%)
Acinus, hyperplasia, focal				-		(2%)
Artery, inflammation, chronic					2	(4%)
Artery, inflammation, subacute					1	(2%)

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	0	ppm	12,50	0 ppm	25,0	00 ppm
Mimentary System (continued)					· .	
Pharynx					(1)	
Palate, inflammation, acute					1	(100%)
Salivary glands	(49)		(8)		(50)	(=,
Atrophy, focal	ì	(2%)			~ /	
Cyst					1	(2%)
Stomach, forestomach	(50)		(10)		(50)	
Inflammation, acute	2	(4%)			ì	(2%)
Inflammation, chronic			1	(10%)		
Ulcer			1	(10%)	4	(8%)
Epithelium, hyperplasia	2	(4%)			· 1	(2%)
Stomach, glandular	(49)		(10)		(50)	
Edema	í	(2%)	. /			
Erosion	1	(2%)	2	(20%)	• 1	(2%)
Inflammation, acute	1	(2%)			1	
Mineralization	. 1	(2%)	1	(10%)		
Pigmentation	2	(4%)				
Ulcer					2	(4%)
Fongue	(2)					
Epithelium, hyperplasia	(2)	(100%)				
Footh					· (1)	
Inflammation, chronic active					1	(100%)
	<u></u>		<u> </u>			
Cardiovascular System						
Blood vessel			(1)	(*****	(1)	
Aorta, mineralization			1	(100%)		(1000)
Artery, inflammation, chronic						(100%)
Heart	(50)		(8)	(500)	(50)	(ECOL)
Cardiomyopathy	25		4	(50%)	28	(56%)
Mineralization	1	· ·	1	(13%)	. 4	(90%)
Atrium, thrombus	2	(4%)				(8%) (2%)
Myocardium, necrosis					1	(270)
Endocrine System						
Adrenal gland, cortex	(49)		(50)		(49)	
Amyloid deposition			1	(2%)	1	(2%)
Congestion	2	(4%)		دنقص		
Hemorrhage			1	(2%)		
Hyperplasia, focal			-		1	(2%)
Hypertrophy, focal			1			-
Necrosis, focal				(4%)	. 1	``
Vacuolization cytoplasmic, focal	6			(16%)	9	(18%)
Adrenal gland, medulla	(49)		(50)		(49)	,
Hyperplasia	9		5	(10%)	7	(14%)
Infiltration cellular, lymphocyte	1	(2%)				

. ..

Table BS

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

. . . .

Hyperplasia Parathyroid gland Hyperplasia Pituitary gland Hemorrhage Pars distalis, angiectasis Pars distalis, angiectasis Pars distalis, oyst Pars distalis, cyst Pars distalis, pigmentation Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Gemital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	9 1 (49) 1 8 	(2%) (30%) (14%) (18%) (2%) (2%) (16%)	(8) (7) 1 (37) 9 2 6 1 1 (10)	(14%) (24%) (5%) (16%) (3%) (3%)	(48) (49) 15 3 1 9 1 1 (49)	(4%) (31%) (6%) (2%) (18%) (2%) (2%) (2%)
Islets, pancreatic Hyperplasia Parathyroid gland Hyperplasia Pituitary gland Hemorrhage Pars distalis, angiectasis Pars distalis, angiectasis Pars distalis, ingiectasis Pars distalis, cyst Pars distalis, infarct Pars distalis, pigmentation Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Gemital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	(47) (50) 1 15 7 9 1 (49) 1 8	(39%) (14%) (18%) (2%) (2%)	(7) 1 (37) 9 2 6 1 1	(24%) (5%) (16%) (3%)	2 (48) (49) 15 3 1 9 1 (49)	(31%) (6%) (2%) (18%) (2%) (2%)
Hyperplasia Parathyroid gland Hyperplasia Pituitary gland Hemorrhage Pars distalis, angiectasis Pars distalis, angiectasis Pars distalis, oyst Pars distalis, cyst Pars distalis, pigmentation Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Gemital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	(47) (50) 1 15 7 9 1 (49) 1 8	(39%) (14%) (18%) (2%) (2%)	(7) 1 (37) 9 2 6 1 1	(24%) (5%) (16%) (3%)	(48) (49) 15 3 1 9 1 1 (49)	(31%) (6%) (2%) (18%) (2%) (2%)
Parathyroid gland Hyperplasia Pituitary gland Hemorrhage Pars distalis, angiectasis Pars distalis, cyst Pars distalis, cyst, multiple Pars distalis, hyperplasia Pars distalis, infarct Pars distalis, pigmentation Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Gemital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	(47)	(39%) (14%) (18%) (2%) (2%)	1 (37) 9 2 6 1	(24%) (5%) (16%) (3%)	(48) (49) 15 3 1 9 1 1 (49)	(31%) (6%) (2%) (18%) (2%) (2%)
Hyperplasia Pituitary gland Hemorrhage Pars distalis, angiectasis Pars distalis, cyst Pars distalis, cyst, multiple Pars distalis, hyperplasia Pars distalis, infarct Pars distalis, pigmentation Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Genital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	1 15 7 9 1 (49) 1 8	(39%) (14%) (18%) (2%) (2%)	(37) 9 2 6 1	(24%) (5%) (16%) (3%)	(49) 15 3 1 9 1 1 (49)	(6%) (2%) (18%) (2%) (2%)
Pituitary gland Hemorrhage Pars distalis, angiectasis Pars distalis, cyst Pars distalis, cyst, multiple Pars distalis, hyperplasia Pars distalis, infarct Pars distalis, pigmentation Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Gemital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	1 15 7 9 1 (49) 1 8	(39%) (14%) (18%) (2%) (2%)	9 2 6 1	(24%) (5%) (16%) (3%)	15 3 1 9 1 1 (49)	(6%) (2%) (18%) (2%) (2%)
Hemorrhage Pars distalis, angiectasis Pars distalis, cyst Pars distalis, cyst, multiple Pars distalis, hyperplasia Pars distalis, infarct Pars distalis, pigmentation Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Gemital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	1 15 7 9 1 (49) 1 8	(39%) (14%) (18%) (2%) (2%)	9 2 6 1	(5%) (16%) (3%)	3 1 9 1 (49)	(6%) (2%) (18%) (2%) (2%)
Pars distalis, cyst Pars distalis, cyst, multiple Pars distalis, hyperplasia Pars distalis, infarct Pars distalis, pigmentation Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Gemital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	7 9 1 (49) 1 8 	(14%) (18%) (2%) (2%)	2 6 1 1	(5%) (16%) (3%)	3 1 9 1 (49)	(6%) (2%) (18%) (2%) (2%)
Pars distalis, cyst, multiple Pars distalis, hyperplasia Pars distalis, infarct Pars distalis, pigmentation Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Gemital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	9 1 (49) 1 8 	(18%) (2%) (2%)	6 1 1	(16%) (3%)	1 9 1 (49)	(2%) (18%) (2%) (2%)
Pars distalis, hyperplasia Pars distalis, infarct Pars distalis, pigmentation Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Gemital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	1 (49) 1 8 (47)	(2%) (2%)	1	(3%)	9 1 (49)	(18%) (2%)
Pars distalis, hyperplasia Pars distalis, infarct Pars distalis, pigmentation Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Gemital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	1 (49) 1 8 (47)	(2%) (2%)	1	(3%)	1 (49)	(2%) (2%)
Pars distalis, pigmentation Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Gemital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	(49) 1 8 	(2%)	1		1 (49)	(2%)
Pars nervosa, cyst Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Gemital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	(49) 1 8 	(2%)	1		(49)	
Pars nervosa, ectopic tissue Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Genital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	(49) 1 8 	(2%)		(3%)	(49)	
Thyroid gland Cyst C-cell, hyperplasia Gemeral Body System None Genital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	(47)	` '		(3%)	(49)	
Cyst C-cell, hyperplasia General Body System None Genital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	(47)	` '	(10)		• •	(10%)
C-cell, hyperplasia General Body System None Genital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	8	` '			5	(10%)
General Body System None Genital System Clitoral gland Dilatation Hyperplasia Inflammation, acute	(47)	(16%)			5	(10%)
None Genital System Clitoral gland Dilatation Hyperplasia Inflammation, acute						
Dilatation Hyperplasia Inflammation, acute						
Hyperplasia Inflammation, acute			(13)		(46)	
Inflammation, acute	1	(2%)				
					1	(2%)
Ovary	6	(13%)	1	(8%)	2	(4%)
	(50)		(8)		(50)	
Cyst		(20%)			3	(6%)
Inflammation, chronic	1	(2%)				
Mineralization				(13%)		
	(50)		(22)		(50)	
Angiectasis					1	· · ·
Fibrosis					1	(2%)
Hemorrhage		(2%)				
Inflammation, chronic	1	(2%)	-	(601)		
Cervix, inflammation, acute	-	(100)	1			1000
Endometrium, hyperplasia, cystic	5	(10%)	3	(14%)	4	(8%)
Vagina	(1)	(1000)				
Inflammation, acute	1	(100%)				
Hematopoietic System						
	(49)		(8)		(50)	
Fibrosis		(2%)	(9)		(50)	(2%)
Hyperplasia	•	()	-	(25%)		(2%)

25,000 ppm

Summary of the Incidence of Nonneop of 4,4'-Diamino-2,2'-stilbenedisulfonic		
	0 ppm	12,500 ppm
Hematopoietic System (continued)		<u></u>
Lymph node Axillary, hemorrhage Axillary, hyperplasia, lymphoid	(50)	(27)
Bronchial, hemorrhage	1 (2%)	1 (4%)

TABLE B5

Summary of the Incidence of Nonneoplastic	Lesions in Female Rats in the 2-Year Feed Study
of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid,	Disodium Salt (continued)

dematopoietic System (continued)						
ymph node	(50)		(27)		(49)	
Axillary, hemorrhage					1	(2%)
Axillary, hyperplasia, lymphoid					2	(4%)
Bronchial, hemorrhage		(2%)				
Iliac, cyst	1	(2%)	1			
Iliac, hemorrhage			1	(4%)		
Iliac, hyperplasia, lymphoid			2	(7%)		
Inguinal, hyperplasia, lymphoid			1	(4%)		
Lymphocyte, mandibular, necrosis				-	1	(2%)
Mandibular, cyst	4	(8%)			· 1	(2%)
Mandibular, hemorrhage	. 5	(10%)			4	(8%)
Mediastinal, hemorrhage	7	· ·	7	(26%)	14	(29%)
Mediastinal, pigmentation	1	(2%)		. ,	1	(2%)
Mediastinal, lymphocyte, necrosis	-					(2%)
Prefemoral, hyperplasia, lymphoid			1	(4%)	_	. /
Lymph node, mesenteric	(50)		(8)		(49)	
Hemorrhage	4	(8%)	1	(13%)	4	(8%)
Hyperplasia, lymphoid	1	(2%)	•	()	•	
Spleen	(49)	(_/~)	(22)		(50)	
Congestion	(4)	(2%)	()		()	
Fibrosis, focal	1	(2%)	1	(5%)	2	(4%)
Hematopoietic cell proliferation	2	(4%)	3	(14%)		(4%)
Hemorrhage	2	(170)	1	(5%)	2	(1/2)
Inflammation, granulomatous, focal			1	(370)	1	(2%)
	1	(2%)	1	(5%)	1	(270)
Necrosis, focal	1	(2%) (4%)	2	(3%)	1	(2%)
Pigmentation	-	(470)	(8)	(370)	(49)	(270)
Thymus	(48)	(2%)	(0)			(2%)
Cyst	L	(270)				(270)
Integumentary System				``		
Mammary gland	(50)		(47)		(50)	
Dilatation	6	(12%)	4	(9%)	. 1	(2%)
Hyperplasia	. 4	(8%)	1	(2%)	3	(6%)
Skin	(50)		(8)		(50)	
Cyst	1	(2%)				
Subcutaneous tissue, abscess	1	(2%)			1	(2%)
Subcutaneous tissue, edema	1	(2%)				
Subcutaneous tissue, thrombus, multiple	1	(2%)				
Musculoskalatal System						
Musculoskeletal System	(40)		(8)		(50)	
Bone	(49)		(0)	(13%)	(30)	
Osteoporosis			1	(13%)		
Nervous System						
Nervous System Brain	(50)		(8)		(50)	

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	0	bhu	12,54	10 ppm	25,¢	CO ppm
Respiratory System				.		<u></u>
arynx	(33)				(38)	
Inflammation, chronic	ì	(3%)				
ung	(50)		(29)		(50)	
Foreign body	1	(2%)				
Hemorrhage	12	(24%)	13	(45%)	4	(8%)
Hyperplasia, adenomatous	2	(4%)	3	(10%)	1	(2%)
Infiltration cellular, histiocyte	7	(14%)	2	(7%)	• 1	(2%)
Thrombus	1	(2%)				
Interstitium, inflammation, chronic	3	(6%)			10	(20%)
Nose	(49)	. ,	(8)		(50)	
Metaplasia, squamous	. ,		ì	(13%)		
Nasolacrimal duct, fungus	1	(2%)				
Nasolacrimal duct, inflammation, acute	1	(2%)	1	(13%)	1	(2%)
Sinus, foreign body		(2%)				
Sinus, fungus	1	(2%)	1	(13%)	1	(2%)
Sinus, inflammation, acute	3	(6%)	2	(25%)	1	(2%)
Turbinate, inflammation, chronic					1	(2%)
Special Senses System	<u> </u>	<u></u>				
Eye	(3)		(5)		(2)	
Cornea, inflammation, chronic	(5)		1	(20%)	(2)	
Iris, inflammation, chronic	1	(33%)	•	(2070)		
Lens capsule, cataract		(33%)	5	(100%)	2	(100%)
Retina, atrophy		(33%)		(100%)	2	(100%)
Sciera, metaplasia, osseous		(33%)		(20%)	2	(10070)
Urinary System						···
Kidney	(50)		(50)		(50)	
Cyst	(50)	(2%)	(50)		(50)	
Fibrosis, focal	+	(270)	1	(2%)		
Inflammation, acute			1		3	(6%)
Nephropathy	46	(92%)	47	(94%)		(94%)
Pigmentation	40	(2%)	3	(6%)		(6%)
Artery, inflammation, chronic	1	(270)	1	(0%)	3	(0/0)
Pelvis, dilatation	1	(2%)	T	(270)		
Pelvis, inflammation, acute		· ·	1	(20%)		
• •	1		1	(2%)		
Pelvis, inflammation, subacute	1		20	(6001)		(
Pelvis, mineralization	8	(16%)	30	(60%) (2%)	37	(74%)
Pelvis, epithelium, hyperplasia	180			(2%)	180	
Urinary bladder	(50)		(9)	(110)	(50)	
Hemorrhage			1	(11%)		
Inflammation, acute	1	(2%)				

^a Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site.

4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt, NTP TR 412

.

.

·

.

.

APPENDIX C SUMMARY OF LESIONS IN MALE MICE IN THE 2-YEAR FEED STUDY OF 4,4'-DIAMINO-2,2'-STILBENEDISULFONIC ACID, DISODIUM SALT

Table C1	Summary of the Incidence of Neoplasms in Male Mice in the 2-Year	
	Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Discdium Salt	129
Table C2	Individual Animal Tumor Pathology of Male Mice in the 2-Year	
	Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Discdium Salt	132
TABLE C3	Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year	
	Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Discdium Salt	150
Table C4	Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year	
	Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt	153

127

Lesions in Male Mice

TABLE C1

.

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt^a

	0 I	ppm	6,25	0 bbm	12,50	10 ppm
Disposition Summary		···· ··· ···				
Animals initially in study	60		60		60	
15-month interim evaluation	10		10		10	
Early deaths						
Natural deaths	4		6		2	
Moribund kills	3		3		6	
Survivors						
Terminal sacrifice	43		40		42	
Missing			1			
Animals examined microscopically	50		49		50	
Alimentary System						
Intestine large, cecum	(48)		(4)		(48)	
Intestine small, duodenum	(47)		(4)		(46)	
Intestine small, ileum	(48)		(5)		(48)	
Intestine small, jejunum	(47)		(14)		(48)	
Liver	(50)		(49)		(50)	
Hemangiosarcoma	1	(2%)	í	(2%)		
Hepatocellular carcinoma	2	(4%)	3	(6%)	3	(6%)
Hepatocellular carcinoma, multiple	1	(2%)	_		_	(
Hepatocellular adenoma	2	(4%)	9	(18%)	5	(10%)
Hepatocellular adenoma, multiple	-	()	-	()	1	(2%)
Hepatocholangiocarcinoma	1	(2%)			-	(-//)
Pancreas	(49)	(=/-)	(7)		(50)	
Hemangioma	1	(2%)	(1)		()	
Stomach, forestomach	(49)	()	(6)		(50)	
Stomach, glandular	(49)		(6)		(50)	
Cardiovascular System						-
Heart	(50)		(8)		(50)	
Endocrine System						
Adrenal gland	(50)		(7)		(50)	
Capsule, adenoma					1	(2%)
Adrenal gland, cortex	(50)		(7)		(50)	
Adrenal gland, medulla	(50)		(6)		(48)	
Pheochromocytoma benign					2	(4%)
Thyroid gland	(50)		(7)		(49)	
Follicular cell, adenoma	1	(2%)				
General Body System None						
Genital System			· ·	<u>-</u> , <u>-</u> ,		
Epididymis	(50)		(9)		(50)	
			(7)		(30) (48)	
Prostate	(50)		(7)		14001	

130

TABLE C1

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	0	ppm	6,25	0 ppm	12,5)0 ppm
Hematopoietic System			<u></u>	· · · · · · · · · · · · · · · · · · ·	<u></u>	
Bone marrow	(50)		(8)		(50)	
Lymph node	(48)		(13)		(47)	
Sarcoma, metastatic, skin	(+0)		1	(8%)	(47)	
Lymph node, mesenteric	(45)		(10)	(0,0)	(45)	
Spleen	(50)		(39)		(50)	
Hemangiosarcoma	(50)		1	(3%)	(50)	
Hemangiosarcoma, metastatic, liver			1	(3%)		
Sarcoma	1	(2%)	*	(570)		
Thymus	(44)	(=,0)	(4)		(45)	
Integumentary System						
Skin	(50)		(20)		(50)	
Carcinoma	(50)		(20)	(10%)	(50)	
Subcutaneous tissue, fibroma	2	(4%)	2	(5%)	1	(2%)
Subcutaneous tissue, fibrosarcoma	2	(4%)	1	1	2	(4%)
Subcutaneous tissue, hemangioma	2	(+/0)	1	(370)	1	(4%)
Subcutaneous tissue, aercoma	1	(2%)	1	(5%)	2	(4%)
Subcutaneous tissue, sarconia Subcutaneous tissue, schwannoma NOS	1	(270)	1	(370)	1	
Sweat gland, adenocarcinoma	1	(2%)				(270)
Swart Bland, Besitoritomome		(270)				
Musculoskeletal System						
Skeletal muscle	(1)		(2)	(500)	(1)	
Fibrosarcoma, metastatic			1	(50%)		
Nervous System						
Brain	(50)	·	(40)		(49)	
Respiratory System						
Lung	(50)		(48)		(50)	
Alveolar/bronchiolar adenoma	10	(20%)	3	(6%)	7	(14%)
Alveolar/bronchiolar adenoma, multiple	2	(4%)		~ /		
Alveolar/bronchiolar carcinoma	3	(6%)	1	(2%)	4	(8%)
Hepatocellular carcinoma, metastatic, liver	1	(2%)	1	(2%)		. ,
Nose	(50)	~ /	(8)	. /	(49)	
						·····
Special Senses System						
Harderian gland	(1)		(1)			
Adenoma	1	(100%)	1	(100%)		
Urinary System		·······		·····		
Kidney	(50)		(14)		(50)	
	(~~)		()		(49)	

Table C1

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt (continued)

en e	Φ	b lynn	6,25	0 ppm	12,5	CO ppm
Systemic Lesions	_					
Multiple organs ^b	(50)		(49)		(50)	
Lymphoma malignant histiocytic			ì	(2%)	ì	(2%)
Lymphoma malignant lymphocytic	1	(2%)	3	(6%)	1	(2%)
Lymphoma malignant mixed			2	(4%)	2	(4%)
Lymphoma malignant undifferentiated cell	1	(2%)		. ,	2	(4%)
Tumor Summary Total animals with primary neoplasms ^c Total primary neoplasms Total animals with benign neoplasms Total benign neoplasms Total animals with malignant neoplasms Total malignant neoplasms Total animals with secondary neoplasms Total secondary neoplasms Total animals with neoplasms uncertain-	23 34 15 19 11 15 1 1		24 30 10 14 15 16 4		25 36 15 18 16 17	
benign or malignant					1	
Total uncertain neoplasms					1	

а Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site. b

Number of animals with tissue examined microscopically

c Primary tumors: all tumors except secondary tumors

)	0	0	1	3	3	5	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
lumber of Days on Study	4	ŧ	5	7	3	2	3	6	2	2	2	2	2	2	2		2	2		3	3	3	3	3	3	3	
<u></u>	()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u> </u>
Carcass ID Number	1		1 0						0 1							0 8											
	I				1											5											
limentary System		_												_				_									
Esophagus]	M	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	М	+	Μ	+	+	+	+	+	+	
Gallbladder		+	+	A	Α	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	
Intestine large		ł	+	A	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, cecum		+	+	Α	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, colon	. 1	М	+	Α	Α	+	.+	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, rectum		ŧ-	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small		+	+	A	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, duodenum		+	A	A	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, ileum	•	+	+	A	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, jejunum																+							+	+	+	+	
Liver		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Hemangiosarcoma		•																									
Hepatocellular carcinoma											х						х										
Hepatocellular carcinoma, multiple																						х					
Hepatocellular adenoma																Х											
Hepatocholangiocarcinoma																											
Mesentery						Ň																					
Pancreas		+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Hemangioma																											
Salivary glands		ł	+	+			+				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach		+	÷	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, forestomach		+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, glandular		ł	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Cardiovascular System			·	_																				_			
Heart		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System															•												
Adrenal gland		Ŧ	+	+	+	+	+	+				+			+		+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex		+	+	+	+	+	+									+									+	+	
Adrenal gland, medulla		+					+									+											
Islets, pancreatic		+	+	+	Α	+	+	+	+	+	+	+	+	+	4	+	+	+	+	+	+	+	+	+	+	+	
Parathyroid gland		М	М	+	Μ	-+	+	+	+	+	М	+	+	+	Μ	+	+	+	Μ	M	+	+	+	+	+	+	
Pituitary gland																										+	
Thyroid gland		+														+											

TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt: 0 ppm (continued)

					_		_		_			_								_			_		_		
Number of Days on Study	7 3 0	1	3	7 3 0	7 3 0	7 3 1	7 3 1	7 3 1	7 3 2	7 3 2	3																
Carcass ID Number	0 0 9 2	(0 9	0 1 1 3	1 2	0 0 2 4	0 0 3 3	0 0 4 4	0 0 5 4	0 0 6 1	0 0 7 2	0 0 7 4	0 0 7 5	0 0 8 3	0	1 2	0 0 1 5	0 0 2 1	0 0 3 4	0 0 5 1	0 0 5 2	0 0 5 5	0 0 6 2	0 1 1 2		1 2	Total Tissues Tumors
Alimentary System					_			_																			<u></u>
Esophagus	۰.		+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	Ŧ	Ŧ	+	+	+	+	4	+	+	46
Gallbladder	, +		+	÷	÷	+	+	+	÷	+	÷	+	+	+	+	+	÷	+	÷	+	÷	+	÷	+	M	+	45
Intestine large	т 4	-	÷	+	+	÷	+	+	÷	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	48
Intestine large, cecum		-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	÷	+	+	+	+	+	+	48
Intestine large, colon		_	+	+	+	+	+	+	+	+	+	+	+	, +	+	+	÷	+	+	+	+	+	+	+	+	, M	46
Intestine large, rectum	, +	-	+	÷	÷	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small		-	÷	÷	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	÷	÷	+	+	+	+	+	48
Intestine small, duodenum	. +	-	÷	÷	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	÷	÷	+	+	47
Intestine small, ileum	ب	-	+	+	÷	+	÷	+	+	+	+	+	+	+	+	+	+	+		+	+	÷	÷	÷.	+	+	48
Intestine small, jejunum		-	÷	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	+	+	+	+	+	÷	÷	+	+	47
Liver		-	÷	+	+	+	+	+	+	+	÷	÷	+	+	+	÷	÷	+	+	+	+	+	+	+		+	50
Hemangiosarcoma	•		•	•	·	•	•	•	·	·	•	•	•	·			•	•	•					x	-		1
Hepatocellular carcinoma																											2
Hepatocellular carcinoma, multiple																											1
Hepatocellular adenoma													х														2
Hepatocholangiocarcinoma					х																						1
Mesentery					+																						1
Pancreas	-	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Hemangioma			•	•	•	•		•		•	•	•	•	•	·	·	·	•	•	•	•	•	x		•	•	1
Salivary glands	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	50
Stomach	-	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach, forestomach	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	49
Stomach, glandular	4	F	+	+	÷	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	÷	+	+	+	+	+	49
Cardiovascular System Heart			+		+	+	+	+	- <u></u>	+	 	+	+	+	 +	 _	+	+		+				+	 +	+	50
			<u> </u>	_																							
Endocrine System																											
Adrenal gland	-	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	-	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, medulla	-	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Autonal gianu, meuuna		∟	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Islets, pancreatic	-														⊥	+	1	M		M	<u> </u>		+		<u> </u>	+	38
Islets, pancreatic Parathyroid gland		А	+	+	+	М	+	+	+	M	+	+	+	+	Ŧ	· ·	Ŧ	TAT		141	т	+	T	. т	-		
Islets, pancreatic Parathyroid gland Pituitary gland	И Н	Aî ⊦	+ +	+ +	+	M +	++	+ +	++	M +	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	48
Islets, pancreatic Parathyroid gland	R	Aî ⊦	+ + +	+ + +	+ + +	M + +	+	+ + +	+ + +	M + +	+		+			+		+					+ +		+		

									_			_								_		_				 	
	0	0	0	1	3	3	5	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
lumber of Days on Study	4	5	7		2		6	2				2		2		2	2	2	3	3	3	3	3		3		
	5	3	0	1							9	9				9	9	9	0	0	0	0	0		0		
- <u></u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	 	
Carcass ID Number	1	1	1	Ō	0	0	0		0								0	1	0	0	0	0	0	0	Ō		
	0	0	1	7	3	6			1									0	2	3	4	4	4				
· · · · · · · · ·	1	2	1	1	2	4	4	1	3	2	5	2	3	1	5	1	3	5	3	5	1	3	5	5	3		
Seneral Body System None																											
enital System																	_	-									
Epididymis	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Penis	+	+		+																							
Preputial gland				+				+													+						
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Seminal vesicle	+	+	+	M	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		_
Iematopoietic System					-												-										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	• +		
Lymph node	+	+		M		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		
Lymph node, mesenteric	+	+		M	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+				M		
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	• +	• +		
Sarcoma												•									X				м		
Thymus	+	+	+	+	+	м 	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	· +	м <u>м</u>	 	
ntegumentary System														_						_							
Mammary gland	M	[M			M	Μ																			1 M		
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	· +	• +		
Subcutaneous tissue, fibroma																			х		v						
Subcutaneous tissue, fibrosarcoma												v									X						
Subcutaneous tissue, sarcoma Sweat gland, adenocarcinoma												х	x														
Ausculoskeletal System																											
Bone	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	• +	• +		
Skeletal muscle									=			+			_												
lervous System			-																								
Brain	ب	. .		. н	<u> </u>	-	1	-	1					4	1	Т	<u>ь</u>			-					- +		

TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

Number of Days on Study	7 3 0	3	7 3 0	7 3 0	7 3 1	7 3 1	7 3 1	7 3 1	3	3	7 3 1	7 3 1	7 3 1	7 3 1	3	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	3	
Carcass ID Number	0 9	0 9	0 1 1 3	1 2	0 0 2 4	0 0 3 3	0 0 4 4	0 0 5 4	6	0 7	0 7	7	0 8	0	1	0 1	0 0 2 1	0 0 3 4		0 5	0 5		0 1 1 2	2	1 2	Total Tissues, Tumors
General Body System None								_																		
Genital System																										
Epididymis	+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Penis																										3
Preputial gland							+	.1					,			л.			+	+				.4	L	6 50
Prostate Seminal vesicle	+	+	+	+++		++		+++	++		+++	+++	++	+++	+++	+		++	++		++	+	+	++	++	50 49
Testes	+	+	+	+				+				-			+				+			+	+		+	50
Hematopoietic System	<u> </u>																					_				
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lymph node, mesenteric	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	45
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Sarcoma																										1
Thymus	М	[+	+	+	+	+	+	+	+	+	+	М	+	М	+	+	+	+	+	+	+	+	+	+	+	44
Integumentary System																								_		
Mammary gland																									M	1
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	50
Subcutaneous tissue, fibroma							47										х									2
Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, sarcoma							Х																			2 1
Sweat gland, adenocarcinoma																										1
Musculoskeletal System		_																								
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Skeletal muscle																										1
Nervous System																										<u>,</u>

TABLE C	2
---------	---

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

									-	•				-												
Number of Days on Study	0 4 5	0 5 3	0 7 0	3	2	3 3 7	6		7 2 9		7 2 9	7 2 9	7 2 9		7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0				7 3 0		<u></u>
Carcass ID Number																								0		· · · · · · · · · · · · · · · · · · ·
	0	Ó	1	7	3	6	8	1	1	2	2	4	6	8	8	9	9	0	2	3	4	4	4	6 5	7	
Respiratory System																								-		
Larynx Lung	+	+	+	+	+	+	+	+++	+	+++	++	+++	++++	+++						+++		· + · +	++	· + · +	+++	
Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple										x					X	X						x				
Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic, liver																					x				х	
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	- +	+	
Trachea	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	
Special Senses System		_						<u> </u>		·							<u> </u>									<u> </u>
Ear Eye									+																	
Harderian gland Adenoma												·														
Urinary System								_	_										<u>.</u>							<u></u>
Kidney	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	• +	• +	- +	+	
Urethra Urinary bladder	+	+ +		A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	- +	+	
Systemic Lesions																		<u>,</u>							_	
Multiple organs Lymphoma malignant lymphocytic	+	+	+	- + [:]	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	· +	- +	+	
Lymphoma malignant undifferentiated cell type																x										

And Street, St

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stillbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

Number of Days on Study	7 3 0	7 3 0	7 3 0	7 3 0	7 3	7 3 1	7 3				7 3	7 3			7 3	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2		732	3	
		_											;					<u>.</u> 7									``
Carcass ID Number	0	0	-	0 1	-	0	0 0	0	0	0 0	0 0	0 0	0 0	0	-	0 0	0 0	0	0	0	0 0	0	0	0	(-	Total
Carcass III in uninger	9	9	1			3	-	-	-	7	•	7	8	0	-	1	-	3	-	-	5			2			Tissue
	2	-		5		3	4			2	4	5	-	4	-	-	1				5	2	2	_	_	_	Tumor
Respiratory System																											
Larynx	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	• •	+	41
Lung	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	- +	• •	+	50
Alveolar/bronchiolar adenoma	Х			х							х						х					Х		Х		ĸ	10
Alveolar/bronchiolar adenoma, multiple																					Х						2
Alveolar/bronchiolar carcinoma							Х		Х																		3
Hepatocellular carcinoma, metastatic,																											
liver Nose						-1										i.											1 50
Trachea	+ +	т 4	- T	- -	- -	- -	+	+	- +	+ +	- +	+	+ +	+	- +	т +	- +	т +	т Т	+ +	+	т +	· -	· -		+ +	50 50
																											1
Special Senses System Ear Eye Harderian gland Adenoma						+ X																	4	-			1 1 1
Ear Eye Harderian gland Adenoma		-																•					+	-			1
Ear Eye Harderian gland Adenoma Urinary System								<u></u> +		+						+							+	4			1 1
Ear Eye Harderian gland Adenoma	+			• +	+			+	+	+	+	+	+	+	+	+	+++	+	+	+	+		+ 	4		+	1
Ear Eye Harderian gland Adenoma Urinary System Kidney	 + +	• +	· +	· +	++			+ +	++	+++	+ +	+	+++	+++	+++	+++	++++	++	+++	++	+ +	+	+ + ·	- 4	 	 + +	1 1
Eye Harderian gland Adenoma Urinary System Kidney Urethra Urinary bladder	+	· +	· +	· +	++			++	++	++	+ +	+ +	++	++	++	++	+++	++	++	+	+ +	++	+ 	- - + 		 + 	1 1 50 2
Ear Eye Harderian gland Adenoma Urinary System Kidney Urethra Urinary bladder Systemic Lesions Multiple organs	+++++++	· +	· +	· +	+++++++++++++++++++++++++++++++++++++++			+ + + +	+ + +	+ + +	+ + + +	+ + +	++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++ +	++++++	+++++	+ + +	+ + + + +	++	+ + + · + ·	- + - + 	 	 + 	1 1 50 2
Ear Eye Harderian gland Adenoma Urinary System Kidney Urethra Urinary bladder Systemic Lesions Multiple organs Lymphoma malignant lymphocytic	+ + +	· + · +	· +	· + · +	+ + +	× + + + +		++++	+ + +	+++	+ + + +	+ + +	++++	++++++	+++++	+ + +	+++++++++++++++++++++++++++++++++++++++	++++	++++	+ + +	+ + +	++++++	+ 	- +		 + 	1 1 50 2 48
Ear Eye Harderian gland Adenoma Urinary System Kidney Urethra Urinary bladder Systemic Lesions Multiple organs	+ + +	· +	· + · +	· + · +	+ + + x	× + + + +		+ + +	+ + +	+++	+ + +	+ + +	++++	++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	+ + +	++++	+ + +	++++++	+++++	+ 	- 4	 	+++++++	1 1 50 2 48 50

Number of Days on Study		0	7	4 3 9	0	0	2	9	7 1 1	1	2	2	7 2 9	2	2	2	2	2		7 2 9	3	7 3 0	7 3 0	•	3	
Carcass ID Number		35	1	3 6	3 3	2 8	2 5	3 1	2 7	2 9	2 5	2 6	2 6	2 8	0	3 1	0 3 3 1	3 4	5	3 5	2 5	7		3 0	3 0	
limentary System			_		_	_										_			_							
Esophagus		+	+	A	+	+	+	+	+																	
Gallbladder		A	A	Α	A	+	+	+	+																	
Intestine large	•	+	+	+	Α	+	+	+	+																	
Intestine large, cecum		Α	A	A	Α	+	+	+	+		•															
Intestine large, colon		Α	+	Α	Α	+	+	+	+																	
Intestine large, rectum		+	+	+	Α	+	+	+	+																	
Intestine small		Α	+	A	Α	+	+	+	+													+		+		
Intestine small, duodenum		Α	A	A	Α	+	+	+	+																	
Intestine small, ileum		Α	A	A	Α	+	+	+	+															+		
Intestine small, jejunum		Α	A	Α	Α	+	+	+	+													+				
Liver		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Hemangiosarcoma									х																	
Hepatocellular carcinoma																										
Hepatocellular adenoma											х	Х	Х				Х				х					
Pancreas		+	+	A	+	+	+	+	+																	
Salivary glands		+	+			+	+	+	+																	
Stomach	Y		+			+	+	+	+																	
Stomach, forestomach				A		+	+	+	+																	
Stomach, glandular		А	+	A	+	+	+	+	+																	
ardiovascular System	······																									
Heart		+	+	+	+	+	+	+	+																	
adocrine System								、																		
Adrenal gland		+	+	Α	+	+	+	+	+																	
Adrenal gland, cortex		+	+	Α	+	+	+	+	+																	
Adrenal gland, medulla		+	+		+	+		+																		
Islets, pancreatic		+			+			+																		
Parathyroid gland		M		A																						
Pituitary gland		+	+					+																		
Thyroid gland		+	+	A	+	+	+	+	+																	

TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 6,250 ppm

٠

- CELEVISION CONTRACTOR

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 6,250 ppm (continued)

Number of Days on Study	3	3	3		3	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	3	3	7 3 1	3	7 3 2	3	3	3	7 3 2	3	7 3 2	3	3	
Carcass ID Number	3	3		3	3 4	0 2 5 3	2 6	2 7	2 9	2 9		3 4	3 4	3 4	3 5		2 7		3 1	3 3		3 5	0 3 6 2	6	3 6	Total Tissues Tumors
Alimentary System Esophagus Gallbladder Intestine large Intestine large, cecum Intestine large, colon Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Hemangiosarcoma Hepatocellular carcinoma Hepatocellular adenoma Pancreas Salivary glands Stomach Stomach, forestomach Stomach, glandular			+ + K		+	· · · +	+ ++	+ x x		+ ++	+ x	+ x	+ ++	+ ++	+ x	+ ++	+ ++	+ ++	+	+	+	+ x	+	+	++++	7 4 7 4 5 7 16 4 5 14 49 1 3 9 7 7 6 6 6
Cardiovascular System Heart													à		_											8
Endocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Islets, pancreatic Parathyroid gland Pituitary gland Thyroid gland																										7 7 6 7 4 7 7

None

			_	_		_	_								<u>_</u>			_			_				 	
	2	2	4	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
Number of Days on Study	0	_	3	Õ	Õ	2		1	1	2	2	2	2	2	2	2	2	2	2	3	3	3	3	•		
		9		5		8	6	1	4		9			9	9		9	9	9		Õ	0	õ	-		
· · · · · ·	-	-	-	•		Ū	·	-	•	í	-	-	-	-	-	-	-	-	-		Ū	Ū	Č	·		
	0	0	0	0	0	0	0	0	0	0		0	^	0	_	0	0	0	0	0	0	0	0	<u> </u>	 	
Carcass ID Number	3	3	-	-			-		2			2				3	-	-	3		2	-	3	-		
	5	1		3			1			5						3		5			7		0			
																1		3	4							
		•												·						_						
Genital System Epididymis																										
Penis	+	++++		+	Ŧ	Ŧ	Ŧ	т								+										
		+																								
Preputial gland										+														+		
Prostate	+	A	+	+	+	+	+	+																		
Seminal vesicle	+	+	+		+	M	•	+																		
Testes	+	+	+	+	+	+	+	+																		
Hematopoietic System													··													
Bone marrow	+	+	+	+	+	+	+	+																		
Lymph node	÷	+	Å	+	+	+	+	+																		
Sarcoma, metastatic, skin	•	•	•••	x		·	•	•																,		
Lymph node, mesenteric	+	+	Α		+	+	+	+																		
Spleen	+				+		+		+					+	+	+	+	+	+	+	+		+			
Hemangiosarcoma	•	•	••	•	•	•	•	•	•					•	•	•	•	x	•	•			•			
Hemangiosarcoma, metastatic, liver								х																		
Thymus	+	Μ	[M	[M	[M	+	+	_																		
	· .			_									<u> </u>				_					`			 	
Integumentary System	•																									
Mammary gland					[M																۰.					
Skin	+	+	+	+	+	+	+	+			+	+	+	+							+	+	+			
Carcinoma				•							••												х			
Subcutaneous tissue, fibroma											Х															
Subcutaneous tissue, fibrosarcoma					Х																					
Subcutaneous tissue, sarcoma				Х																						
Musculoskeletal System																										
Bone	Ŧ	+	+	+	+	+	+	+								+										
Skeletal muscle	r	,	'		+	•	•																			
Fibrosarcoma, metastatic					x																					
										_		_													 	
Nervous System																										
Brain	+	+	· +	+	+	+	+	+	+	+	+	+		+		+	≁		+	+	•	+	+	+		

TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 6,250 ppm (continued)

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 6,250 ppm (continued)

				_																_	_						
Number of Days on Study	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	3	7 3 2		
Carcass ID Number	0 3 1 3	3 2	0 3 2 5	3 3	0 3 4 1	0 2 5 3	0 2 6 2	0 2 7 3		0 2 9 3	0 3 2 1	3 4	0 3 4 4	3 4	0 3 5 2	0 2 5 5	0 2 7 2	0 3 0 1	0 3 1 5		3	0 3 5 5	6	3			Total Tissues/ Tumors
Genital System Epididymis Penis Preputial gland Prostate Seminal vesicle Testes								+	÷						+	+	++			+		+	+				9 1 7 7 9 9
Hematopoietic System Bone marrow Lymph node Sarcoma, metastatic, skin Lymph node, mesenteric Spleen Hemangiosarcoma Hemangiosarcoma, metastatic, liver Thymus	+ + +	-	+	-	+	• +		+	+	+	+	+	+	+	+	+	+	+	+	++++	+	• +	+++++		+++++		8 13 1 10 39 1 1 4
Integumentary System Mammary gland Skin Carcinoma Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, sarcoma	4	+					+ X							- <u></u> .		+			+								1 20 2 1 1 1
Musculoskeletal System Bone Skeletal muscle Fibrosarcoma, metastatic														<u></u>													9 2 1
Nervous System Brain		 +			• +	- +		+		+	+		+	+	+	+	+	· +	+	+	+	• +	- 4	-	+	-	40

		_					_				_	_	_		_		_	_	_	_	_		-			 _
	2	2	4	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
lumber of Days on Study	0	7	3	0	0	2	9	1	1	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3		
	9	9	9	5	7	8	6	1	4	9	9	9		9	9	9	9	9	9	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. <u></u>	 _
Carcass ID Number	3	3	3	3	2	2	3	2	2	2	2	2	2	3	3	3	3	3	3	2	2	2	3	3		
	5	1	6	3	8	5								0												
	1	2	1	4	1	4	4	4	1	2	3	5	5	2	1	1 :	3	3	4	1	1	4	4	5		
Respiratory System																										_
Lung	+	+	Α	+	+	+	+	+	+	+	+		+	+	+				+			+	+	+		
Alveolar/bronchiolar adenoma												х					х			х						
Alveolar/bronchiolar carcinoma																										
Hepatocellular carcinoma, metastatic, liver																										
Nose	+	+				+																				
Trachea	+	+	A	+	+	+	+	+																		
Special Senses System		_														_										
Eye																+										
Harderian gland																+										
Adenoma																x										
Jrinary System																		_	_							
Kidney	+	+	· A	+	+	+	+	+							+	+		+								
Urinary bladder	+	A	+	+	+	+	+	+																		
Systemic Lesions			_				-																			
Multiple organs	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymphoma malignant histiocytic																										
Lymphoma malignant lymphocytic							х																Х			•
Lymphoma malignant mixed						х			х																	

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 6,250 ppm (continued)

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 6,250 ppm (continued)

							_	_		_						-	_	_									
Number of Dava on Study	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7 3	7	7	7	7	7	7	7	7		
Number of Days on Study	0	3 0	3 0		0	3 1	3 1	5 1	5 1	-	3 1	-	-	1	-	2	2	2	2	2	2	2	2	2	2		
	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Carcass ID Number	3	3	3	-	3	2	2	2	2	2	3	3	3	3	3	2	2 7	3	3	3	3	3	3	3	-	Tota Tiss	
	1 3	4	2 5	-	4 1	5 3	6 2	7 3	9 2	9 3	2 1	4	4 4	4 5	5 2	5 5	2	0 1	1 5	3 2	3 5	5 5	6 2	6 3		Tum	
Respiratory System																											
Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	.+	+ x	+	+	+	+	+	+	. +	+	48 3 1	
Hepatocellular carcinoma, metastatic,																	^			•						1	
liver		Х																								1	
Nose Trachea																										8 7	
Special Senses System Eye Harderian gland Adenoma							-			· · · · · · ·																1, 1 1	
Urinary System																											
Kidney Urinary bladder									+		+						+						+			14 7	
Systemic Lesions	<u> </u>																									<u></u>	
Multiple organs	+	• +	• +	- +	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	49	
Lymphoma malignant histiocytic																Х										1	
Lymphoma malignant lymphocytic Lymphoma malignant mixed																									Х	3 2	
Lymphoma manghant mixed																										4	

· · · · · · · · · · · · · · · · · · ·		· .								,																	
Number of Days on Study	2	2	6	5 3	3 3	3	3	7	4	2	2	2	2	2	2	7 2 9	2	2					3	3		3	
Carcass ID Number		5 1	0		5 3	5 3	5 4	6 0	5 1	4 9	4 9	5 0	5 1	5 2	5 2	0 5 3 5	5 5	5 7	5 8	5 9	4 9	4 9	5 2	5 4	5 4	5 4	
Alimentary System	<u> </u>														_								_				
Esophagus	+	4		ب ا	+	+	+	+	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	
Gallbladder																'n				+			+	÷	+	÷	
Intestine large														+		+			+	+			+	+	+	+	
Intestine large, cecum							+					+				+	-			+	•	+	+	÷	+	+	
Intestine large, colon			_	-			+					+		+			÷		+	+	÷	÷	+	÷	+	+	
Intestine large, rectum							+				+			+		+		+	+	+	+	÷	+	+	+	+	
Intestine small							+							+		+			+	+	÷	+	+		+	÷	
Intestine small, duodenum				-			+ +									+								т -	•	т Т	
Intestine small, ileum																+										т Т	
Intestine small, jejunum							+ +							+		+											
Liver	A															+											
Hepatocellular carcinoma	т	T		г ·	T	т	т	Ŧ	т	т	Ŧ	т	т	т	т	т	т	Ŧ		x		т	т	T	т	т	
Hepatocellular adenoma												х							Λ	Λ	Λ	х					
Hepatocellular adenoma, multiple												Λ							х			Λ					
Mesentery																			Λ								
Pancreas									+	+	+	+	Т.	+	+	л	+	+	L	+	-	-		Т	Т	+	
Salivary glands	T M	רי ויי		r ·	τ : + :	Ţ	+ +	-			•		Ţ	Ţ		+							Ť	Ţ	Ť	Ţ	
Stomach	IVI		r 7 - 4									+		+		+				+			+	Ť	т 	т 	
		7			T '	T		+ +				+		+		+				т 	Ţ	т 	T	Ţ		т 	
Stomach, forestomach	· •	7	r 4		+ ·	T	+ +									+				+	T	T	T	Ŧ	+	т -	
Stomach, glandular	+	-			+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т	Ŧ	+	т	т	Ŧ	т	т	T	
Tongue Tooth										+	+																
Cardiovascular System																											
Blood vessel																											
Heart	+	4		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System																				_						_	
Adrenal gland	+	H	⊦ -	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Capsule, adenoma																						х					
Adrenal gland, cortex	· +	H	ہ -	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Autoliai gialio, colica				с.	÷	+	+	+	+	+	+	+	+	+	+	+	Μ	+	÷	+	+	+	+	+	+	+	
	+	- 1	- -	г :																							
Adrenal gland, medulla	+	-		F	•																						
Adrenal gland, medulla Pheochromocytoma benign	+	•		•	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, medulla Pheochromocytoma benign Islets, pancreatic		-	⊢ -	+ ·	+		+ +																				
Adrenal gland, medulla Pheochromocytoma benign	Μ	-+ []N	⊦ - ڒ -	+ ·	+	+	+	+	+	Μ		+		М	M	+ M +	+	+	М		+	Μ	М	+	+		

TABLE C2Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Studyof 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm
Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

		<u></u>												_													
Number of Days on Study	7 3 0							7 3 1	7 3 1	3	7 3 1	3	7 3 1	3	3		7 3 2	7 3 2	7 3 2		7 3 2	7 3 2	7 3 2	7 3 2			
Carcass ID Number	0 5 5 4	4	5 (5 6	5	5 9	5 0	5 2	5 2	5	5 6	5	5 8		5	6 0	5 0	5	5 3	5 6	5 6		5 7	0 5 8 3	5 8	6 0	Total Tissues Tumors
Mimentary System					-															-							
Esophagus	<u>ـ</u>		ъ	-	ъ	Ъ	+	+	Ŧ	1	ъ	+	Ъ	-	Ъ	+	ъ	Ъ	+	+	+	ъ	+	ъ	ъ	Ŧ	49
Gallbladder	т Т		T L	т _	т _	т _	+		+	+		. +	+			+				+					т Т	т Т	49
Intestine large	т 1		г -	т —	т Т		т Т	- -	- -	T T	т Т	+	+	Ť	+		+	+	+	+	- 171 	+	+	- -	+		50
Intestine large, cecum	т 			+	+	+	+	+	+	+	+	+	+	+		+		+	+		+		+	+		+	48
Intestine large, colon	-			+	+	÷	÷	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	ц. Т	+	50
Intestine large, rectum			÷	÷	+ +	+	т +	+	т +	+	- -	+	+	+	+	т +	+	+	+	т Т	+	- -	- 	- -	т Т	+ +	30 47
Intestine small			т +		т +	- -	- -	÷.	т +	+	т +	+	+	+	+		+	т +	+	т +	+	- -		т +	+	т +	48
Intestine small, duodenum			+	+	+	÷	+	÷	+	+	÷	+	+	+	+		+	+	+	+	+	+	- +		+	+	46
Intestine small, ileum	, 		Ļ	÷	÷	÷		+		+	÷	+	+	•		+			+	+	÷	+			т Т		48
Intestine small, jejunum	1		1	т -	т 	- -	т Т	т Т		+		+	+			+		+	+		- -	+	т - т	т 	т -	+	48
Liver	+		+	_	Ť.	+	т Т	÷								+							т —		+		40 50
Hepatocellular carcinoma	•				•	'	ľ	•			'	'	,	,	'	'	'	'		,	•	1	T	'		•	3
Hepatocellular adenoma			х															х							х		5
Hepatocellular adenoma, multiple		1	Λ															Λ							Λ		1
Mesentery																											1
Pancreas	<u>ـ</u> ـ		т	<u>т</u>	т	т	т	Т	Т	Т	ъ	.1.	Т	т	Ŧ	т	ъ	-	ъ	. т	Т	л.	+	-	+	-	50
Salivary glands	т 1		T L	- -	т _	т -	т 	т 	т 	Ŧ	Ť	т 	т 	- -	т _	т 	Ŧ	T	т 	· T	т 	Ť		т	Ţ	Ţ	
Stomach	т Ц		т ⊥	т -	т 1	т _	T L	т Т	т 	Ŧ	т Т	т Т	т Т	т _	т _	Ť	+	+	+	Ť		Ť	т 	т 	т -	т Т	50
Stomach, forestomach	т 		т ⊥	т 	Ť	т 	т т	Ť	Ť	Ť	Ť	т -	т 	+	Ť	+		+	+	т 	т Т	+		- T - T		т 1	50
Stomach, glandular	т 1		т ⊥	T L	т _	+	+	+	+	+	т Т	+	+			+			+	+++		+	т 	- T	Ŧ	T	50
Tongue	т		т	т	т	т	т	т	т	т	т	Ŧ	+	т	Ŧ	т	Ŧ	Ŧ	т	т	т	т	т	т	т	т	1
Tooth													т							+							3
Cardiovascular System		_			<u> </u>																		_				
Blood vessel															+												1
Heart	+	•	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																					_		_				
Adrenal gland	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Capsule, adenoma	-							-											-		-				•		1
Adrenal gland, cortex	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, medulla			+							+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Pheochromocytoma benign							х																			x	2
Islets, pancreatic	+		+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Parathyroid gland																										М	27
Pituitary gland																										+	44
Thyroid gland																											

		_	_	_	-		_	_			_		_	-		_				_				-	_	_	
	0	0	0	1	1	4	5	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
umber of Days on Study	2	2	6	3	3	3	7	4	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3		
	2	2	5	0	1	8	6	5	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0		
	0	0			0	0		^	0	0		0	0	0	0		0	0	0		0	0	0	0			
arcass ID Number	5		6		5				4		5				5			5		-	4		5		5		
arcass in Number	-	-				4												-	-			-	-		-		
	1			1			4		3						5												
General Body System None																							-				
Genital System			_	_	-	_		_)	
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Penis	7 1	Ŧ	- -	+	+	т	г	r	F	ſ	r				1	'		,	'	1		1			,		
Preputial gland	+		Ŧ	+	т _							ъ			⊥				+				+				
		-	+			м	т	+	Т	т	+	Ť	+	+	+	м	т	+	+	Ť	+	-		+	-		
Prostate	+	+	+	+	+	MI.	+	+	+	-	+	+	+	+	Ŧ	M	T	+	+	+	-	T	Ţ	Ŧ	Ŧ		
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	-	+	Ţ	+	-	-	-	-	Ţ	–	Ţ	Ţ	Ŧ		
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	Ŧ	+	+		
Iematopoietic System																											
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	+	+	+	+		
Lymph node	Μ	(+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node, mesenteric	М	[+]	Α	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Thymus						M				+	M	+	+	+	+	+	+	+	+	+	+	+	+	M	[+		
Integumentary System																		•	<u>.</u>								
Mammary gland	M	ГМ		۱ M	I M	гм	м	м	м	М	м	М	М	М	М	М	М	М	Μ	Μ	M	I M	[M	I M	M		
Skin																									+		
Subcutaneous tissue, fibroma	•		•		•		•		x		•		•														
Subcutaneous tissue, fibrosarcoma									~														Х	x			
Subcutaneous tissue, hemangioma																											
Subcutaneous tissue, sarcoma											х														х		
Subcutaneous tissue, schwannoma NOS																				x							
				_					_	_																-	
Musculoskeletal System Bone						ب	-	+	L.	+	+	+	L.	+	+	+	+	+	+	+	+	<u>ь</u>					
Skeletal muscle	. •	· •	т	· •	· •	· т	T	т	т	T	+	-	т	'	1	,	•	'			•	•			•		
Nervous System											_														_		
Brain	N	1+	+	• +	· +	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	- +	- +	• +		

TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

.

ţ

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

7 3 0	7 3 0	3	3	3	3 3	3 :	3	3	3	3			7 3 1	7 3 1	7 3 1	7 3 2		3	3							
0 5 5 4	5 5	5 6	5 9	5	5 5	5 :	5 2	5 2	5 5	5 6	5 7	5 8	5 9	5 9	6 0	5 0	5 3	5 3	5 6	5 6	7	7	5 8	5 8	6 0	Total Tissues/ Tumors
+	+	• •		+ -	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
																										4
								,															,			11 48
+	+			•	•		+	+	+	+	+	+	+			-			+	+	+	+	• +			48 50
+							+	+	+	+	+	+	+	+				+	+	+			+			50
						<u> </u>				_																
+	+		- -	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. 4	+	+	50
		-		+ .	+ ·	+	÷	+	÷	+	÷	+	+		+		+	+		+	+	+	· +	+	+	47
				+ -	+	+	+	+	+	+	+	+	+		+		+	M		+	+	+	• +	+	+	
+				+ •			+	+	+	+	+	+	+	+	+					+						
+	+	• •	+ -	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	ŀ	[+	+	45
																		_								
M	IN	1 R	AP	N	M	М	Μ	М	+	Μ	Μ	Μ	Μ	Μ	Μ	Μ	M	М	M	M	IM	I₽	1 N	[₽	I M	1
+	+		⊦ -	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
																										1
																										2
													Х													1
																										2 1
	-	-																								
			L.					L										,	,	,						50
т , .	• •	- 1	r •	т [.] .	T	Ŧ	Ŧ	т	Ŧ	т	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	+	- +	+	+	50 1
																									- <u></u>	·
	3 0 0 5 5 4 + + + + + + + + + + + + + + + + +	3 3 0 0 5 5 5 5 4 5 + + + + + + + + + + + + + + + + + + +	3 3 3 0 0 0 0 0 0 5 5 5 5 5 6 4 5 5 4 5 5 5 6 4 5 5 5 6 4 5 5 5 7 6 4 5 5 7 6 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3 3 3 3 0 0 0 0 0 0 0 0 5 5 5 5 5 5 6 9 4 5 5 1 + + + - + + + - + + + - + + + - + + + - M M M M + + + - M M M M	$\begin{array}{c} 3 & 3 & 3 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 5 & 5 & 5 & 5 & 5 \\ 5 & 5 & 6 & 9 & 9 \\ 4 & 5 & 5 & 1 & 2 \\ \end{array}$ $\begin{array}{c} + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ \end{array}$	$\begin{array}{c} 3 & 3 & 3 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ 5 & 5 & 5 & 5 & 5 \\ 5 & 5 & 6 & 9 & 9 \\ 4 & 5 & 5 & 1 & 2 \\ \end{array}$ $\begin{array}{c} + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ \end{array}$ $\begin{array}{c} + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

١

. ,											-	-	`															
Number of Days on Study	2	2	6	3	3	3	7	4	7 2 9	2	2	2	2	2	2	2	2	2		3	3	7 3 0		7 3 0				
Carcass ID Number	5 1	5 1	6 0	5 3	5 3	5 4	6 0	5 1	0 4 9 3	4 9	5 0	5 1	5 2	5 2	5 3	5 5	5 7	5 8	5 9	4 9	4 9	2	5 4	5 4	5 4			
Respiratory System Larynx Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Nose Trachea					· +		+ + +	+ + +	++++++	+ + + + + +		++++++	++	+		++	+	++	+ X +	++	+ x +	+	++	+ x +	++		 	
Special Senses System None																											 	
Urinary System Kidney Ureter Urethra Urinary bladder	+	+	+ + + +	· +	 + +				+		-																 	
Systemic Lesions Multiple organs Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated	+	. +	- +	- - +	 - +	+ X		+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	•	 	<u></u> **
cell type								х														x						

TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

Number of Days on Study	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1		7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1		7 3 2		7 3 2		7 3 2		7 3 2		7 3 2		
Carcass ID Number	0 5 5 4	0 5 5 5	0 5 6 5	0 5 9 1		0 5 0 2	0 5 2 2	_	0 5 5 1	_	0 5 7 2	-	5 9	9	6	0	5 3	3	-	5 6	0 5 7 1	7	0 5 8 3	0 5 8 5	0 6 0 2	Total Tissues Tumors
Respiratory System																						_				
Larynx	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	÷	+	+	+	+	39
Lung	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma	Х				Х			_		Х			Х	Х												7
Alveolar/bronchiolar carcinoma								х						Х			х									. 4
Nose Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 50
Special Senses System None				<u> </u>													<u> </u>				<u></u>					- <u></u>
Urinary System						<u></u>					<u>-</u>															
Kidney	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Ureter			+																							1
Urethra Urinary bladder	+	4	+	+	<u>ـ</u>	+	Ŧ	Ŧ	+	м	г⊥	ъ	ъ	т	1	+	+	т	<u>т</u>	Ŧ	Ŧ	Т	Т	ъ	т	2 49
					·		<u> </u>	<u> </u>								т 					т 	т 		т 	т	47
Systemic Lesions	+	4	L	-	ж	-	+	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	–	т	т	т	Ŧ	Ŧ	т	т	Ŧ	<u>т</u>		т	50
						ŗ	'	т	F		т		т	т	Ŧ	T	т	-	т	т	т	т	Ŧ	т	т	· 1
Multiple organs																										
Multiple organs Lymphoma malignant histiocytic					x																					_
Multiple organs Lymphoma malignant histiocytic Lymphoma malignant hymphocytic			x		x																					1
Multiple organs Lymphoma malignant histiocytic	·		х		x																					_

Individual Animal Tumor Pathology of Male Mice in the 2-Year Feed Study

	0 ррт	6,250 ррт	12,500 ppm
Liver: Hepatocellular Adenoma			
Overall rates ²	2/50 (4%)	9/49 (18%)	6/50 (12%)
Adjusted rates ^b	4.7%	22.5%	14.3%
Terminal rates ^c	2/43 (5%)	9/40 (23%)	6/42 (14%)
First incidence (days)	729 (T)	729 (T)	729 (T)
Life table tests ^d	P = 0.126	P = 0.020	P = 0.127
Logistic regression tests ^d	P = 0.126	P = 0.020	P = 0.127
Cochran-Armitage test ^d	P=0.135		
Fisher exact test ^d		P=0.023	P=0.134
Liver: Hepatocellular Carcinoma			
Overall rates	3/50 (6%)	3/49 (6%)	3/50 (6%)
Adjusted rates	7.0%	7.5%	7.1%
Terminal rates	3/43 (7%)	3/40 (8%)	3/42 (7%)
First incidence (days)	729 (T)	729 (T)	729 (T)
Life table tests	P=0.571	P = 0.629	P = 0.652
Logistic regression tests	P=0.571	P = 0.629	P = 0.652
Cochran-Armitage test	P=0.583N		
Fisher exact test	-	P=0.651	P=0.661N
Liver: Hepatocellular Adenoma or Carcinoma			
Overall rates	5/50 (10%)	11/49 (22%)	8/50 (16%)
Adjusted rates	11.6%	27.5%	19.0%
Terminal rates	5/43 (12%)	11/40 (28%)	8/42 (19%)
First incidence (days)	729 (T)	729 (T)	729 (T)
Life table tests	P = 0.230	P = 0.061	P=0.259
Logistic regression tests	P=0.230	P = 0.061	P=0.259
Cochran-Armitage test	P=0.248		
Fisher exact test		P=0.079	P=0.277
Lung: Alveolar/bronchiolar Adenoma			
Overall rates	12/50 (24%)	3/48 (6%)	7/50 (14%)
Adjusted rates	27.9%	7.5%	16.7%
Terminal rates	12/43 (28%)	3/40 (8%)	7/42 (17%)
First incidence (days)	729 (T)	729 (T)	729 (T)
Life table tests	P=0.110N	P=0.017N	P=0.164N
Logistic regression tests	P=0.110N	P=0.017N	P=0.164N
Cochran-Armitage test	P=0.103N		
Fisher exact test		P=0.014N	P=0.154N
Lung: Alveolar/bronchiolar Carcinoma			
Overall rates	3/50 (6%)	1/48 (2%)	4/50 (8%)
Adjusted rates	7.0%	2.5%	9.5%
Terminal rates	3/43 (7%)	1/40 (3%)	4/42 (10%)
First incidence (days)	729 (T)	729 (T)	729 (T)
Life table tests	P = 0.402	P=0.331N	P=0.487
Logistic regression tests	P=0.402	P=0.331N	P=0.487
Cochran-Armitage test	P=0.413		
Fisher exact test		P=0.324N	P=0.500

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt (continued)

	unaial O	6,250 ppm	12,500 ppm
Lung: Alveolar/bronchiolar Adenoma or	Carcinoma		
Overall rates	15/50 (30%)	4/48 (8%)	10/50 (20%)
Adjusted rates	34.9%	10.0%	23.8%
Terminal rates	15/43 (35%)	4/40 (10%)	10/42 (24%)
First incidence (days)	729 (T)	729 (T)	729 (T)
Life table tests	P=0.137N	P=0.008N	P=0.190N
ogistic regression tests	P=0.137N	P=0.008N	P=0.190N
Cochran-Armitage test	P=0.128N	• •••••••	
Fisher exact test		P=0.006N	P=0.178N
Skin (Subcutaneous Tissue): Fibroma o	r Fibrosarcoma		
Overall rates	4/50 (8%)	2/49 (4%)	3/50 (6%)
Adjusted rates	9.3%	4.7%	7.1%
Ferminal rates	4/43 (9%)	1/40 (3%)	3/42 (7%)
First incidence (days)	729 (T)	607	729 (T)
Life table tests	P=0.428N	P=0.363N	P=0.513N
ogistic regression tests	P = 0.419N	P=0.327N	P=0.513N
Cochran-Armitage test	P=0.417N		
Fisher exact test		P=0.349N	P=0.500N
Skin (Subcutaneous Tissue): Fibrosarco	oma or Sarcoma		
Overall rates	3/50 (6%)	2/49 (4%)	4/50 (8%)
Adjusted rates	7.0%	4.3%	9.5%
Cerminal rates	3/43 (7%)	0/40 (0%)	4/42 (10%)
First incidence (days)	729 (T)	605	729 (T)
life table tests	P=0.409	P=0.509N	P=0.487
ogistic regression tests	P=0.414	P=0.507N	P=0.487
Cochran-Armitage test	P=0.417		
Fisher exact test		P=0.510N	P=0.500
Skin (Subcutaneous Tissue): Fibroma, I	Fibrosarcoma, or Sarcoma		
Overall rates	5/50 (10%)	3/49 (6%)	5/50 (10%)
Adjusted rates	11.6%	6.7%	11.9%
Ferminal rates	5/43 (12%)	1/40 (3%)	5/42 (12%)
First incidence (days)	729 (T)	605	729 (Ť)
Life table tests	P=0.557	P=0.381N	P=0.616
ogistic regression tests	P=0.568	P=0.350N	P=0.616
Cochran-Armitage test	P=0.570N		
Fisher exact test		P=0.369N	P=0.630N
All Organs: Malignant Lymphoma (His	tiocytic, Lymphocytic, Mixed, o	or Undifferentiated Cell	Туре)
Overall rates	2/50 (4%)	6/49 (12%)	6/50 (12%)
Adjusted rates	4.7%	13.9%	13.6%
ferminal rates	2/43 (5%)	3/40 (8%)	4/42 (10%)
First incidence (days)	729 (T)	628	438
Life table tests	P = 0.117	P=0.126	P=0.134
ogistic regression tests	P=0.113	P = 0.141	P=0.133
Cochran-Armitage test	P = 0.115		_ 01200

TABLE	C3
-------	-----------

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Feed Study
of 4.4'-Diamino-2.2'-stilbenedisulfonic Acid. Disodium Salt (continued)

	0 ppm	6,250 ppm	12,500 ppm
All Organs: Benign Tumors		·····	
Overall rates	15/50 (30%)	10/49 (20%)	15/50 (30%)
Adjusted rates	34.9%	25.0%	35.7%
Ferminal rates	15/43 (35%)	10/40 (25%)	15/42 (36%)
First incidence (days)	729 (T)	729 (T)	729 (T)
life table tests	P=0.517	P=0.231N	P=0.558
ogistic regression tests	P=0.517	P=0.231N	P=0.558
Cochran-Armitage test	P=0.545		
Fisher exact test		P=0.193N	P=0.586N
All Organs: Malignant Tumors			
Overall rates	11/50 (22%)	15/49 (31%)	16/50 (32%)
Adjusted rates	25.6%	32.6%	36.3%
Cerminal rates	11/43 (26%)	9/40 (23%)	14/42 (33%)
First incidence (days)	729 (T)	605	438
life table tests	P=0.155	P=0.212	P=0.168
ogistic regression tests	P=0.150	P=0.268	P=0.175
Cochran-Armitage test	P=0.159		
Fisher exact test		P=0.228	P=0.184
All Organs: Benign or Malignant Tumors			
Overall rates	23/50 (46%)	24/49 (49%)	25/50 (50%)
Adjusted rates	53.5%	52.2%	56.8%
Terminal rates	23/43 (53%)	18/40 (45%)	23/42 (55%)
First incidence (days)	729 (T)	605	438
life table tests	P=0.347	P=0.390	P=0.376
Logistic regression tests	P=0.367	P=0.556	P=0.407
Cochran-Armitage test	P=0.382		
Fisher exact test		P=0.462	P=0.421

(T)Terminal sacrifice

Number of tumor-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, epididymis, gallbladder (mouse), heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated tumor incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt^a

	0	bbuu	6,25	0 ppm	12,5	CO ppm
Disposition Summary						
Animals initially in study	60		60		60	
15-month interim evaluation	10		10		10	
Early deaths						
Natural deaths	4		6		2	
Moribund kills	3		3		6	
Survivors						
Terminal sacrifice	43		40		42	
Missing			1	· .		
Animals examined microscopically	50		49		50	
Alimentary System						
Intestine large, cecum	(48)		(4)		(48)	
Peyer's patch, hyperplasia, lymphoid	7	(15%)			11	(23%)
Intestine large, rectum	(48)		(7)		(47)	. ,
Serosa, inflammation, suppurative	ì	(2%)	. /			
Intestine small, ileum	(48)		(5)		(48)	
Peyer's patch, hyperplasia, lymphoid	. ,		ì	(20%)	ì	(2%)
Intestine small, jejunum	(47)		(14)		(48)	-
Hyperplasia, neutrophil			1	(7%)		
Ulcer					1	(2%).
Peyer's patch, hyperplasia, lymphoid	6	(13%)	3	(21%)	8	(17%)
Serosa, inflammation, chronic active					1	(2%)
Liver	(50)		(49)		(50)	
Amyloid deposition		-	1	(2%)		
Cyst	1	(2%)			1	(2%)
Cytomegaly, focal	4	(8%)			2	(4%)
Fatty change, diffuse	1	· /			2	(10)
Fatty change, focal	2	(4%)			2	(4%)
Granuloma, multifocal Hematopoietic cell proliferation	1	(2%)	1	(20%)	2	(4%)
Infarct	1	(2%)	1	(2%) (2%)	1	(4%)
Infiltration cellular, lymphocyte	3		1	(2%)	1	(270)
Infiltration cellular, mixed cell	3	(0,0)	1		1	(2%)
Mitotic alteration	1	(2%)	1	(2/0)	1	• •
Mixed cell focus	1	(2%)			L	(2/0)
Necrosis, focal	1	(2%)	3	(6%)	1	(2%)
Syncytial alteration	1	1	5	(0,0)	•	(=/0)
Bile duct, hyperplasia	-	()			1	(2%)
Centrilobular, cytomegaly, diffuse	1	(2%)			-	(-//)
Centrilobular, necrosis, diffuse	1	(2%)				
Hepatocyte, hyperplasia, focal	-		1	(2%)		
Portal, fibrosis					1	(2%)
Portal, inflammation, chronic	1	(2%)			-	
Serosa, infiltration cellular, histiocyte			1	(2%)		
Mesentery	(1)				(1)	
Infiltration cellular, lymphocyte	1	(100%)			.,	
Pancreas	(49)	· •	(7)		(50)	
Infiltration cellular, lymphocyte, multifocal	4	(8%)	.,		ì	(2%)
Inflammation, chronic active		· •			1	(2%)
Acinus, atrophy					1	(2%)

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	0	ppm	6,25	0 ppm	12,5	00 ppm
Alimentary System (continued)						
Salivary glands	(50)		(7)		(49)	
Infiltration cellular, lymphocyte, multifocal		(26%)	()		10	(20%)
Stomach, forestomach	(49)	()	(6)		(50)	()
Abscess	1	(2%)	(-)		()	
Serosa, inflammation, chronic active	_				1	(2%)
Stomach, glandular	(49)		(6)		(50)	()
Inflammation, chronic active			í	(17%)	()	
Epithelium, hyperplasia, focal			1	(17%)		
Mucosa, vacuolization cytoplasmic	1	(2%)	_			
Footh					(3)	
Abscess					1	(33%)
Dysplasia					2	(67%)
Cardiovascular System						
Blood vessel					(1)	
Aorta, inflammation, chronic active					1	(100%)
Heart	(50)		(8)		(50)	
Atrium, thrombus	1	(2%)				
Myocardium, fibrosis		•	1	(13%)		
Myocardium, mineralization, multifocal					1	(2%)
Endocrine System				······································	<u></u>	
Adrenal gland	(50)		(7)		(50)	
Capsule, ectopic tissue	(30)		(7)			(2%)
Capsule, hyperplasia	1	(2%)			•	(270)
Capsule, hyperplasia, multifocal	30	(60%)	2	(29%)	38	(76%)
Adrenal gland, cortex	(50)	(00/0)	(7)	(4370)	(50)	(10/0)
Hyperplasia, focal	(30)	(4%)	(7)		3	(6%)
	6	(12%)				(070) (24%)
Hypertrophy, focal Administration and moduling		(12/0)	(6)			(27.10)
Adrenal gland, medulla	(50)		(6)		(48)	(20%)
Hyperplasia, focal	(40)		(7)			(2%)
Islets, pancreatic	(49)	(1 407)	(7)	(1 401)	(50)	(10)
Hyperplasia Districtory closed	7	(14%)	1	(14%)		(4%)
Pituitary gland	(48)		(7)		(44)	(2011)
Pars distalis, cyst			4	(1 406)	1	(2%)
Pars distalis, hyperplasia, focal				(14%)	//05	
Thyroid gland	(50)	(00)	(7)	(1 407)	(49)	
Infiltration cellular, lymphocyte	1	(2%)	1	(14%)		
Follicle, cyst, multiple	1	(2%)				(00)
Follicular cell, hyperplasia, focal					1	(2%)

None

Table C4

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt (continued)

	0	bbu	6,25	andd 6	12,5	60 ppm
Genital System	<u> </u>					
Epididymis	(50)		(9)		(50)	
Granuloma sperm	ì	(2%)				
Serosa, necrosis, focal					1	(2%)
Penis	(3)		(1)		(4)	
Congestion					1	(25%)
Inflammation, acute			1	(100%)	1	(25%)
Necrosis	2	(67%)			1	(25%)
Preputial gland	(6)	. ,	(7)		(11)	. ,
Abscess					4	(36%)
Cyst			1	(14%)	4	(36%)
Dilatation	4	(67%)	3	(43%)	2	(18%)
Hyperplasia	1	(17%)				
Inflammation, chronic	1	(17%)	5	(71%)	3	(27%)
Prostate	(50)		(7)		(48)	. ,
Inflammation, acute	3	(6%)			í	(2%)
Inflammation, chronic active	_				1	(2%)
Seminal vesicle	(49)		(9)		(50)	
Fibrosis	3	(6%)	ì	(11%)		
Inflammation, acute	1	(2%)		()		
Inflammation, chronic	2	(4%)	1	(11%)	2	(4%)
Testes	(50)	()	(9)	()	(50)	()
Mineralization, focal	(00)		(-)		1	(2%)
Spermatocele	1	(2%)			-	(_//)
Seminiferous tubule, atrophy	-	()	1	(11%)		
Seminiferous tubule, dilatation	1	(2%)		()		
Hematopoietic System						
Bone marrow	(50)		(8)		(50)	
Hyperplasia	(50)		(0)		(30)	(2%)
Hyperplasia, neutrophil	2	(4%)	2	(25%)	5	(10%)
Erythroid cell, depletion	2	(470)	2	(2570)	1	(2%)
Lymph node	(49)		(13)		(47)	(270)
Hyperplasia, lymphoid	(48) 2	(4%)	(13)		(4/)	
Hyperplasia, plasma cell	2	(470)			2	(4%)
		(20)			2	(4%)
Axillary, hemorrhage	1	(2%)				
Axillary, hyperplasia, hymphoid	1	(2%)				
Iliac, hyperplasia, lymphoid	1	(2%)				(00)
Inguinal, hyperplasia, lymphoid	1	(2%)	-	(00)	4	(9%)
Inguinal, hyperplasia, plasma cell	-	(10)	1	(8%)	1	(2%)
Inguinal, pigmentation, hemosiderin	2	(4%)				(00)
Lumbar, hyperplasia, plasma cell						(2%)
Mandibular, hemorrhage	-	((()			1	(2%)
Mandibular, hyperplasia, lymphoid	3	(6%)				
Mandibular, pigmentation, hemosiderin	1	(2%)				
Renal, hyperplasia, plasma cell					1	(2%)
Lymph node, mesenteric	(45)		(10)		(45)	
Hematopoietic cell proliferation					1	
Hemorrhage		(29%)	3	(30%)	10	` '
Hyperplasia, lymphoid	8	(18%)	2	(20%)	9	(20%)

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	0	ррт	6,25	0 ррт	12,50	00 ppm
Hematopoietic System (continued)	·					<u> </u>
Spleen	(50)		(39)		(50)	
Congestion	ì	(2%)	. ,		. ,	
Depletion lymphoid					2	(4%)
Dysplasia					1	(2%)
Hematopoietic cell proliferation	11	(22%)	4	(10%)		(24%)
Hyperplasia, lymphoid	2	(4%)	3	(8%)		(2%)
Pigmentation, hemosiderin	1	(2%)	U	(0,0)		(2%)
Thymus	(44)	(2/0)	(4)		(45)	(=/0)
Depletion lymphoid	3	(7%)	2	(50%)	(13)	(16%)
Epithelial cell, hyperplasia	5	(170)	-	(5070)	, 1	(2%)
Thymocyte, necrosis	4	(9%)				(270)
ntegumentary System					··· · · · · · · · · · · · · · · · · ·	
Skin	(50)		(20)		(50)	
Inflammation, acute					2	(4%)
Inflammation, chronic	6	(12%)	1	(5%)	3	(6%)
Inflammation, chronic active	2	(4%)	1	(5%)		
Ulcer	5	(10%)	1	(5%)	2	(4%)
Epithelium, hyperplasia	1	(2%)		(5%)		. /
Hair follicle, atrophy	1	(2%)		. ,		
Prepuce, inflammation, acute		()			1	(2%)
Prepuce, ulcer						(2%)
Subcutaneous tissue, abscess	1	(2%)			-	()
Subcutaneous tissue, edema		(2%)	1	(5%)		
Musculoskeletal System						
Musculoskeletal System None Nervous System	(50)				(49)	
None Nervous System Brain	(50)		(40)	(20%)	(49)	
None Nervous System Brain Hemorrhage		(7.01)	1	(3%)		(2704)
None Nervous System Brain		(76%)	1	(3%) (93%)		(37%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System	38	(76%)	1 37		18	(37%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung	38 (50)		1			(37%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell	38	(76%) (4%)	(48)	(93%)	18	(37%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis	38 (50)	(4%)	(48) 2	(93%)	18 (50)	
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal	38 (50)	(4%) (6%)	(48)	(93%) (4%) (4%)	18 (50)	(37%) (4%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte	38 (50) 2	(4%) (6%)	(48) 2	(93%) (4%) (4%) (2%)	18 (50)	
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal	38 (50) 2 3	(4%) (6%) (4%)	(48) 2 2	(93%) (4%) (4%)	18 (50)	
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte	38 (50) 2 3	(4%) (6%) (4%)	(48) 2 2 1	(93%) (4%) (4%) (2%)	18 (50) 2	(4%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic	38 (50) 2 3 2	(4%) (6%) (4%)	(48) 2 2 1	(93%) (4%) (4%) (2%)	18 (50) 2	
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic Interstitium, fibrosis	38 (50) 2 3 2	(4%) (6%) (4%)	(48) 2 2 1	(93%) (4%) (4%) (2%)	18 (50) 2	(4%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic Interstitium, fibrosis Peribronchial, infiltration cellular,	38 (50) 2 3 2	(4%) (6%) (4%) (4%)	(48) 2 2 1	(93%) (4%) (4%) (2%)	18 (50) 2	(4%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic Interstitium, fibrosis Peribronchial, infiltration cellular, lymphocyte	38 (50) 2 3 2 2	(4%) (6%) (4%) (4%)	(48) 2 2 1	(93%) (4%) (4%) (2%)	18 (50) 2	(4%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic Interstitium, fibrosis Peribronchial, infiltration cellular, lymphocyte Peribronchiolar, infiltration cellular,	38 (50) 2 3 2 2 2	(4%) (6%) (4%) (4%) (4%)	(48) 2 2 1 1	(93%) (4%) (4%) (2%) (2%)	18 (50) 2	(4%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic Interstitium, fibrosis Peribronchial, infiltration cellular, lymphocyte Peribronchiolar, infiltration cellular, hymphocyte	38 (50) 2 3 2 2	(4%) (6%) (4%) (4%) (4%)	1 37 (48) 2 2 1 1 1	(93%) (4%) (4%) (2%) (2%)	18 (50) 2 1	(4%) (2%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic Interstitium, fibrosis Peribronchial, infiltration cellular, lymphocyte Perivoscular, infiltration cellular, hymphocyte Perivascular, infiltration cellular, lymphocyte	38 (50) 2 3 2 2 2 2 1	(4%) (6%) (4%) (4%) (4%)	1 37 (48) 2 2 1 1 1	(93%) (4%) (4%) (2%) (2%)	18 (50) 2 1	(4%) (2%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic Interstitium, fibrosis Peribronchial, infiltration cellular, lymphocyte Perivonchiolar, infiltration cellular, lymphocyte Perivascular, infiltration cellular, lymphocyte Nose	38 (50) 2 3 2 2 2 2 1 (50)	(4%) (6%) (4%) (4%) (4%) (2%)	1 37 (48) 2 2 1 1 1	(93%) (4%) (4%) (2%) (2%)	18 (50) 2 1 (49)	(4%) (2%) (2%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic Interstitium, fibrosis Peribronchial, infiltration cellular, lymphocyte Peribronchiolar, infiltration cellular, lymphocyte Perivascular, infiltration cellular, lymphocyte Nose Mucosa, degeneration, hyaline	38 (50) 2 3 2 2 2 2 1	(4%) (6%) (4%) (4%) (4%) (2%)	1 37 (48) 2 2 1 1 1	(93%) (4%) (4%) (2%) (2%)	18 (50) 2 1 (49) 4	(4%) (2%) (2%) (8%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic Interstitium, fibrosis Peribronchial, infiltration cellular, lymphocyte Peribronchiolar, infiltration cellular, lymphocyte Perivascular, infiltration cellular, lymphocyte Nose Mucosa, degeneration, hyaline Mucosa, inflammation, acute	38 (50) 2 3 2 2 2 2 1 (50) 3	(4%) (6%) (4%) (4%) (4%) (2%) (6%)	1 37 (48) 2 2 1 1 1	(93%) (4%) (4%) (2%) (2%)	18 (50) 2 1 (49)	(4%) (2%) (2%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic Interstitium, fibrosis Peribronchial, infiltration cellular, lymphocyte Peribronchiolar, infiltration cellular, lymphocyte Perivascular, infiltration cellular, lymphocyte Nose Mucosa, degeneration, hyaline Mucosa, inflammation, acute Mucosa, inflammation, acute Mucosa, inflammation, chronic active	38 (50) 2 3 2 2 2 1 (50) 3 3 3	 (4%) (6%) (4%) (4%) (2%) (6%) (6%) 	1 37 (48) 2 2 1 1 1 1 (8)	(93%) (4%) (4%) (2%) (2%) (2%) (2%)	18 (50) 2 1 (49) 4 1	(4%) (2%) (2%) (8%) (2%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic Interstitium, fibrosis Peribronchial, infiltration cellular, hymphocyte Peribronchiolar, infiltration cellular, hymphocyte Perivascular, infiltration cellular, hymphocyte Perivascular, infiltration cellular, hymphocyte Nose Mucosa, degeneration, hyaline Mucosa, inflammation, acute Mucosa, inflammation, chronic active Respiratory epithelium, hyperplasia	38 (50) 2 3 2 2 2 1 (50) 3 3 6	 (4%) (6%) (4%) (4%) (2%) (6%) (6%) 	1 37 (48) 2 2 1 1 1 (8) 1	(93%) (4%) (4%) (2%) (2%) (2%) (2%)	18 (50) 2 1 (49) 4 1 5	(4%) (2%) (2%) (8%)
None Nervous System Brain Hemorrhage Mineralization, multifocal Respiratory System Lung Giant cell Leukocytosis Alveolar epithelium, hyperplasia, focal Alveolus, infiltration cellular, histiocyte Artery, hypertrophy, multifocal Bronchiole, inflammation, chronic Interstitium, fibrosis Peribronchial, infiltration cellular, lymphocyte Peribronchiolar, infiltration cellular, lymphocyte Perivascular, infiltration cellular, lymphocyte Nose Mucosa, degeneration, hyaline Mucosa, inflammation, acute Mucosa, inflammation, acute Mucosa, inflammation, chronic active	38 (50) 2 3 2 2 2 1 (50) 3 3 3	 (4%) (6%) (4%) (4%) (2%) (6%) (6%) 	1 37 (48) 2 2 2 1 1 1 (8) (8) 1 (7)	(93%) (4%) (4%) (2%) (2%) (2%) (2%)	18 (50) 2 1 (49) 4 1	(4%) (2%) (2%) (8%) (2%)

調整

11. 2010 Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Discdium Salt (continued)

	Φ	bbm	6,25	D lolouu	12,5	CO ppm
Special Senses System						
Eye	(1)		(1)			
Conjunctiva, inflammation, chronic	ĺ	(100%)				
Lens, cataract			1	(100%)		
Jrinary System			- <u></u>			
Kidney	(50)		(14)		(50)	
Hydronephrosis				x	1	(2%)
Hyperplasia, atypical, focal					1	(2%)
Infarct			• 1	(7%)		-
Infiltration cellular, lymphocyte	18	(36%)	1	(7%)	13	(26%)
Infiltration cellular, mixed cell	1	(2%)			1	(2%)
Nephropathy, chronic	8	(16%)			7	(14%)
Cortex, cyst	1	(2%)	2	(14%)	2	(4%)
Cortex, mineralization, multifocal	5	(10%)	2	(14%)	1	(2%)
Glomerulus, amyloid deposition	1	(2%)		· ·		
Pelvis, fibrosis		. ,			1	(2%)
Pelvis, inflammation, acute	1	(2%)			3	(6%)
Pelvis, inflammation, chronic active	1	(2%)				. ,
Renal tubule, degeneration, focal	2	(4%)			3	(6%)
Renal tubule, dilatation					2	(4%)
Ureter					(1)	. ,
Hyperplasia					ì	(100%)
Urethra	(2)				(2)	
Inflammation, acute	ì	(50%)			ì	(50%)
Bulbourethral gland, ectasia	1	(50%)				
Bulbourethral gland, inflammation, acute		· ·			1	(50%)
Urinary bladder	(48)		(7)		(49)	
Dilatation			. ,		2 ź	(4%)
Infiltration cellular, lymphocyte	5	(10%)	1	(14%)	6	(12%)
Inflammation, acute	1	(2%)		. ,	1	(2%)

^a Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site.

4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt, NTP TR 412

APPENDIX D

the man and a second

SUMMARY OF LESIONS IN FEMALE MICE IN THE 2-YEAR FEED STUDY OF 4,4'-DIAMINO-2,2'-STILBENEDISULFONIC ACID, DISODIUM SALT

TABLE	$\mathbb{D}1$	Summary of the Incidence of Neoplasms in Female Mice in the 2-Year	
		Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	161
TABLE	\mathbb{D}^2	Individual Animal Tumor Pathology of Female Mice in the 2-Year	
		Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	164
Table	$\mathbb{D}3$	Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year	
		Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt	182
TABLE	D4	Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year	
		Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	185

· .

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Discdium Salt^a

Disposition Summary Animals initially in study 5-month interim evaluation			
Animals initially in study 5-month interim evaluation			
5-month interim evaluation	60	60	60
Zanky deaths	10	10	10
Early deaths			
Natural deaths	5	5	6
Moribund kills	2	2	5
Survivors			
Terminal sacrifice	43	43	38
Missing			1
Animals examined microscopically	50	50	49
Alimentary System			
Esophagus	(47)	(6)	(46)
Gallbladder	(45)	(3)	(43)
intestine large, cecum	(48)	(4)	(45)
ntestine large, rectum	(46)	(4)	(47)
ntestine small, duodenum	(47)	(2)	(38)
intestine small, ileum	(46)	(2)	(44)
ntestine small, jejunum	(49)	(28)	(43)
liver	(50)	(17)	(49)
Hepatocellular carcinoma	2 (4%)		
Hepatocellular adenoma	3 (6%)		2 (4%)
Mesentery	(5)	(1)	(1)
Pancreas	(50)	હિં	(48)
Salivary glands	(50)	(6)	(47)
Stomach, forestomach	(49)	(7)	(49)
Papilloma squamous	1 (2%)		
Stomach, glandular	(50)	(6)	(48)
Cardiovascular System	<u> </u>		<u></u>
Heart	(50)	(6)	(49)
Endocrine System			
Adrenal gland	(50)	(7)	(48)
Adrenal gland, cortex	(49)	(6)	(48)
Adrenal gland, medulla	(49)	(6)	(47)
Pheochromocytoma benign	1 (2%)		
Islets, pancreatic	(50)	(5)	(48)
Adenoma		1 (20%)	-
Pituitary gland	(50)	(7)	(48)
Pars distalis, adenoma	7 (14%)	2 (29%)	6 (13%)
Pars distalis, carcinoma	1 (2%)		1 (2%)
Thyroid gland	(50)	(7)	(46)
Follicular cell, adenoma		(7) 1 (14%)	
Follicular cell, carcinoma			1 (2%)
General Body System	· · · · · · · · · · · · · · · · · · ·		
Tissue NOS	(1)		

• :

- 1	63	
	.04	

TABLE D1

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	.0	ppm	6,25	0 ррш	12,5)0 ppm
Genital System		·		· · · ·		
Ovary	(50)		(15)		(49)	
Cystadenoma			ì	(7%)		(2%)
Uterus	(50)		(45)		(48)	
Hemangioma					1	(2%)
Mixed tumor malignant					1	(2%)
Endometrium, polyp stromal	. 1	(2%)	, •	• •	- 1	(2%)
Hematopoletic System						
Bone marrow	(50)		(7)		. (48)	•
Lymph node	(48)		(17)	·	(46)	
Lymph node, mesenteric	(48)		(5)	• •	(46)	•
Spleen	(50)		(29)		(49)	1
Hemangiosarcoma			1	(3%)	1	(2%)
Hemangiosarcoma, metastatic, skin	•• 1	(2%)				•
Thymus	(46)		(7)		(46)	· · ·
Integumentary System	u n/ n/			· · · · ·		
Mammary gland	(45)		(6)		(43)	
Adenocarcinoma	ì	(2%)	.,		ì	(2%)
Skin	(50)		(27)		(49)	
Subcutaneous tissue, fibrosarcoma	. /		. ,	цы. 1	í	(2%)
Subcutaneous tissue, hemangiosarcoma	1	(2%)				· ·
Subcutaneous tissue, schwannoma malignant			1	(4%)	- .	. ·
Musculoskeletal System	·	· · · ·		na Na Nada		
Skeletal muscle		• .			(2)	
Nervous System						
Brain	(50)		(6)		(49)	
Oligodendroglioma benign		(2%)				
Respiratory System						
Larynx	(36)				(39)	
Lung	(50)		(49)		(49)	
Alveolar/bronchiolar adenoma	10	(20%)	3	(6%)	4	(8%)
Alveolar/bronchiolar adenoma, multiple	2	(4%)			1	(2%)
Alveolar/bronchiolar carcinoma	2	(4%)				
Nose	(50)		(6)		(48)	
Trachea	(50)		6		(49)	
Special Senses System	<u> </u>	<u> </u>				
Harderian gland			(1)	(100%)	(2)	(100%)

Table D1

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	5 <u>7</u> 7 -	0	mada) ساطا	6,25	. madal 0	12,5	10 ppm
Urimary System		····	<u></u>	<u>-</u>		···-,,	
Kidney		(50)		(14)		(49)	
Renal tubule, carcinom	a	1	(2%)				
Renal tubule, carcinom	a, metastatic, kidney	1	(2%)				
Urinary bladder		(49)		(6)		(47)	
Systemic Lesions							
Multiple organs ^b		(50)		(50)		(49)	
Leukemia						ì	(2%)
Lymphoma malignant l	istiocytic	2	(4%)	1	(2%)	1	(2%)
Lymphoma malignant l		8	(16%)	4	(8%)	5	(10%)
Lymphoma malignant i	nixed	7	(14%)	5	(10%)	4	(8%)
Lymphoma malignant u	indifferentiated cell	2	(4%)			1	(2%)
Tumor Summary			,				
Total animals with primary	neoplasms ^c	34		17		24	
Total primary neoplash		53		21		37	
Total animals with benign		21		. 9		12	
Total benign neoplasm		26		9		18	
Total animals with maligna		24		12		15	
Total malignant neopla		27		12		19	
Total animals with seconda	ry neoplasms	2					
Total secondary neopla	sms	2					

а Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site.

b Number of animals with tissues examined microscopically Primary tumors: all tumors except secondary tumors

С

		_		_						-				_									_					
	4	ł	5	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
Number of Days on Study	1						1				2	2	2									3		3	3			
	0)	7	2	4	5	0	4	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0		
	0		-	0	0					0				0			-	-	0					0				
Carcass ID Number	. 1		1	2	1	2	2	2	1	1	1	1	1	2	2	2	2	2	2	1	1	1	1	1	1	1		
	8 1															2 1												
Alimentary System								_	_											,				,				
Esophagus	-	F	+	+	+	+	+	÷	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Gallbladder			A											+				+				+		+	+	+		
Intestine large	4	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, cecum	. - -	F	Α	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+		
Intestine large, colon	્રત	۲	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, rectum		F	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+:	+	+	÷	+	М	+	+	+	+		
Intestine small	ં ન	۲	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	4	+	+	+	+	+	+	+	+	,	
Intestine small, duodenum										+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, ileum	A						+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, jejunum	4						+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Liver	-	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Hepatocellular carcinoma																												
Hepatocellular adenoma														Х														
Mesentery							+						-		_				_			+				+		
Pancreas	-	ŀ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.		
Salivary glands	4	ŀ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach		ŀ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach, forestomach	4	۲	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Papilloma squamous											,															x		
Stomach, glandular Tooth	-	r	Ŧ	Ŧ	-	Ŧ	Ŧ	Ŧ	Ŧ	+	.	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	Τ.	+	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ		
																				- -								
Cardiovascular System																												
Blood vessel				+														. `										
Heart		۲	+	+	+	+	+	+	+	+	+	+	+	+ .	·+·`	·+	+	+	+	+	+.	+	+	+	+	+		
Endocrine System																				_								
Adrenal gland	-	۲	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex	4	ł	+	+	+		+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, medulla	-	۲	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+		
Pheochromocytoma benign																			Х									
Islets, pancreatic	4	۲	+	+	+	+	+	+	+	+	+	+	+	+	+	+	t	+	+	+	+	+	+	+	+	+		
Parathyroid gland	-	۲	+	M	М	+	Μ	+	+	+	+	Μ	+	+	+	+	М	+	+	+	+	+	+	+	+	Μ		
Pituitary gland	-1	۲	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+		+	+	+	+		
Pars distalis, adenoma			•																			х				_		
Pars distalis, carcinoma																										Х		
Thyroid gland	4	ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt: 0 ppm (continued) Number of Days on Study **Carcass** ID Number 1 1 1 1 1 2 2 1 2 22 2 2 2 2 2 2 2 1 1 1 1 1 1 1 Total 8 1 4 4 3 4 5 5 7 8 9 1 1 2 3 4 5 6 9 9 0 0 1 2 3 Tissues/ 3 2 3 4 5 5 4 5 4 5 2 1 4 5 1 4 3 1 1 5 1 3 5 3 3 Tumors Alimentary System Esophagus 47 + м М + + + + Gallbladder + + + + + 45 Intestine large + 50 + + + + + + + + + + + 4 + + + + + + + + + + + Intestine large, cecum + + + 4 + + 48 Intestine large, colon + 50 + Intestine large, rectum + + + + + + + + + + + + M + + + M + + + 46 + + + + + Intestine small + + + + 49 + + + + + + + + + + + + + + + Intestine small, duodenum + + + + + + + + + + + + 47 + + + + + + + + Intestine small, ileum + 46 Intestine small, jejunum + + + + + + + + + + + + + + + 49 + + + + + + + + Liver + + + 50 + + + + + + + + + + + + Hepatocellular carcinoma хх 2 Hepatocellular adenoma х 3 х Mesentery 5 Pancreas + + + + + + + + + + + + + + + + + + + 50 Salivary glands + + + + + + + + + + + + 50 + + + + + + + + + + + + + Stomach + 50 + + + + Stomach, forestomach + 49 + + + + + + Papilloma squamous 1 Stomach, glandular + + + + + + + ++ + + + + +50 + + + +Tooth 1 Cardiovascular System Blood vessel 1 Heart 50 **Endocrine** System Adrenal gland 50 + Adrenal gland, cortex + + + + + + + + + 49 Adrenal gland, medulla 49 Pheochromocytoma benign 1 Islets, pancreatic + 50 + + + + + Parathyroid gland + + + M M M ++ M + + M + + + M + + M + + M + + M35 Pituitary gland + + + + + + + + + + + + 50 + + + + + + + + + + + + + Pars distalis, adenoma х хх хх 7 Pars distalis, carcinoma 1 Thyroid gland 50

Number of Days on Study	4 1 0	5 8 7	0	6 1 4		7 1 0		7 2 9	2	7 2 9		-	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 .3 0	7 3 0	7 3 0	7 3 0		
Carcass ID Number	0 1 8 1	0 1 7 3	2	-	0 2 4 1	0 2 2 4	2	1	1 4	0 1 5 1	1 9	1 9	2 0	2 0	2 2	2 2	-	4	3	3	0 1 4 1	1 6	1 6		1 8	 	
General Body System Tissue NOS				·		+							-														
enital System											_						_			_							
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+		
Uterus Endometrium, polyp stromal	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		* x		
ematopoietic System														_													
Bone marrow	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node	+	A	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node, mesenteric Spleen	· +		. + 	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Hemangiosarcoma, metastatic, skin						•			•	'		•	•		•	'	•	÷		'	•		•	•			
Thymus	+	+	M	[+]	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+		
ntegumentary System																											
Mammary gland	+			+	+	Μ	÷	÷	+	М	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	. + ,		
Adenocarcinoma		X						•																۰.			
Skin Subcutaneous tissue, hemangiosarcoma	· +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ :-	+	+	+		
fusculoskeletal System	. • •••				_									-							P.C					 · ···	
Bone	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
ervous System																											
Brain Oligodendroglioma benign	· + X	. +	• +	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	• .	
espiratory System																			·,					/	. ,	 . •	
Larynx						÷,	+	+	Μ	+	Μ	+	Μ	+	+	+	+	+		+	+	M	:+	M	+		
Lung	+	• +	• +	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+ X		
Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma						• •	х			л			x				x				134 1			• .	• • • • • • • • • • • • • • • • • • •		
Nose	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+		.*
Trachea	· +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		

--

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilleenedisulfonic Acid, Disedium Salt: 0 ppm (continued)

, ,		,							4 1		`															
Number of Days on Study	7 3 0	7 3 0	7 3 0			3			3	3	3	3	3	3		3	3	3			7 3 2					
Carcass ID Number	1 8	2 1	2 4	0 2 4 4	1 3	1 4	1 5	1 5	1 7	1 8	1 9	2 1	2 1	2 2	2 3	1 4	1 5	1 6	1 9	1 9	2 0	2 0	2 1	2 2	2 3	Total Tissue: Tumor
General Body System Tissue NOS											<u></u>		_													1
Genital System																				_						
Ovary	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endometrium, polyp stromal																										1
lematopoietic System																				_						
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	48
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	48
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma, metastatic, skin	Х																									1
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	М	+	+	46
integumentary System									-															_		
Mammary gland	+	M	+	М	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Adenocarcinoma																										1
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Subcutaneous tissue, hemangiosarcoma	x																									• 1
Musculoskeletal System													-													
Bone	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Nervous System																										
Brain Oligodendroglioma benign	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Respiratory System																										
Larynx	+	M	+	+	4	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	36
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma	•	•	•	•	•	•	·	x	•	•	•	•	•	·	•	•	•	·	x	X		X	•	•	x	10
Alveolar/bronchiolar adenoma, multiple									х																	2
Alveolar/bronchiolar carcinoma																					х					2
Masa	<u>ــ</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Nose	– –						•																			50

			_								_	_			_		_									
Number of Days on Study	4 1 0	5 8 7	6 0 2		6 9 5	7 1 0	7 1 4	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9		7 2 9		7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	
Carcass ID Number	0 1 8 1	0 1 7 3	2	0 1 6 3	0 2 4 1	0 2 2 4	0 2 3 5	0 1 4 2	0 1 4 3	0 1 5 1	0 1 9 3	0 1 9 4	2 0	2 0	2 2	2 2		2 4	0 1 3 1	1 3	0 1 4 1	1 6	-	0 1 7 2	1 8	
Special Senses System None																										
Urinary System Kidney Renal tubule, carcinoma Renal tubule, carcinoma, metastatic,	+	• +	+ + X	- + (+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	 +	+	+	+	+	+	· ·
kidney Urinary bladder	+	• +	X +	- +	M	ſ +	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	
Systemic Lesions Multiple organs Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	+	+ X	- + (- + x	· +	+ X	+ x	+	+	+	+ x	+	+ x	+	+	+ x	·	+	+	-	+ x		+ x	+	+	
Lymphoma malignant undifferentiated cell type					х									x												

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued) Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 0 ppm (continued)

	-				-	7 7 3 3 1 1	77 33 11	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2							
1 8	2	2 2	2 :	2 4	-	• •	-	•	0 1 8 5	0 1 9 2	0 2 1 1	0 2 1 4	0 2 2 5	0 2 3 1	0 1 4 4	0 1 5 3	0 1 6 1	0 1 9 1	0 1 9 5	0 2 0 1		_	2	3	Total Tissues, Tumors
								-																	, · · • · · · · · · · · · · · · · · · ·
+		+ -	+	+	+	+ -	+ +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
+	+ -	+ -	Ŧ	+	+	+ ·	+ +	⊦ +	+	+	÷	+	÷	+	+	+	+	+	÷	+	+	+	+	+	1 49
+		+ ·	+	+	+	+ •	+ +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 2
				X	х			ζ									х			x		х			8 7 2
	0 11 8 3 	0 0 0 1 2 8 1 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 2 \\ 8 & 1 & 4 \\ 3 & 2 & 3 \end{array}$ $+ + + +$ $+ + + +$ $+ + + +$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2	0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2											

,

Number of Days on Study	1 6	4	_	6 0	6 3	-		7 2	7 2	7 2	-	7 2	77 22	7 2	7 2	7 2	7 2	7 3	7 3	7 3	7 3	7 3	7 3	7 3	
	3	8	8	1			6	9			9		99	9		9	9	0	0	0	0	0	0	0	
	0		0	-	0	0	0	0					0 0	0	0	0	0	0	0	0	0	0	0	-	
Carcass ID Number				3		6	2	7	8	9	4 0 2	1	4 4 1 1 2 5	4 2 3	3	4 3 2	8	3 9 1	0	0	4 1 4		4 4 1	4	
Alimentary System			_											<u>.</u>											
Esophagus	Μ	[+]	+	+	+	+	+																		
Gallbladder				+		Å																			
Intestine large				À		+			+																
Intestine large, cecum				A		+	Α		+																
Intestine large, colon				A																					
Intestine large, rectum				[A																					
Intestine small				A														+						+	
Intestine small, duodenum	A	A	+	A	+	Α	A																		
Intestine small, ileum				A																					
Intestine small, jejunum				A														+						+	
Liver				+								+						·			+			•	
Mesentery			+		•	•	•					•									•				
Pancreas	А	A		A	+	+	+												+						
Salivary glands				• +															•						
Stomach				+									+												
Stomach, forestomach				. i									+												
Stomach, glandular				• +											•										
Tongue		••		•		•																			
Cardiovascular System		_	<u>·</u> ·	<u>.</u>			_						_							_					
Heart	M	[+	+	• +	+	+	+																		
Endocrine System																	•								
Adrenal gland	+	• +	+	• +	+	+	+																		
Adrenal gland, cortex		·A			+		+																		
Adrenal gland, medulla				- +																					
Islets, pancreatic	Ą	A	. +	• A	+														+						•
Adenoma	-					X																			
Parathyroid gland				1 M																					
Pituitary gland	N	1 +	+	- +	+	+	Α																+		
Pars distalis, adenoma	-																						X		
Thyroid gland	N	í A	. +		+	+	+																+		
Follicular cell, adenoma				X																					

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 6,250 ppm

170

171

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 6,250 ppm (continued)

Number of Days on Study	3		3	3	3	3	3		3	3	3	3	3	3	7 3 1	7 3 2	7 3 2	7 3 2		3		3	3		3	
Carcass ID Number	0 4 4 5	0 4 5 4	4	0 4 7 3		0 3 8 5	3 9	4 0	4 0	-	0 4 2 2	0 4 3 4	0 4 4 2	4 4	4 8		0 3 7 4		0 3 8 2	-	0 3 9 4	0 4 5 2	0 4 6 5	0 4 8 3	4 8	Total Tissues Tumor
limentary System Esophagus	<u></u>					·														_						6
Gallbladder																										3
Intestine large																										6
Intestine large, cecum																										4 4
Intestine large, colon Intestine large, rectum																										4
Intestine small	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	28
Intestine small, duodenum			•		•		•	•	,	•	•	•	•	•	•		•	•	•	•	•	·	•	•	•	2
Intestine small, ileum																										2
Intestine small, jejunum	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	28
Liver						+	+		+			+	+				+				+			+	+	17
Mesentery																										1
Pancreas							+																			6
Salivary glands																										6
Stomach																										7
Stomach, forestomach Stomach, glandular								•																		6
Tongue							+																			1
Cardiovascular System Heart																	 .									6
Endocrine System					_																					
Adrenal gland																										7
Adrenal gland, cortex																										6
Adrenal gland, medulla																										6
Islets, pancreatic																										5
Adenoma Parathyroid gland																										1
Pituitary gland	+	-				•																				7
Pars distalis, adenoma	X																									2
Thyroid gland	-						+																			7
Follicular cell, adenoma																										1

None

· · · · · · · · · · · · · · · · · · ·	1			6												7	7	7	7	7	7	7	7	7	-	
Number of Days on Study	6			0								2	2	2	2	2	2	2	3	3	3			3		
	3	8	8	1	9	2	6	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	
	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	4	4	4	-	-		-								4		-	-		-	-	-	-	•	-	
	7	5	-												2											
•		1	5	3	3	3	1	1	4	5	2	1	2	5	3	1	2	2	1	3	4	4	5	1	3	
Genital System			_																		_					
Ovary	+	A	. +	+	+	+	+				+	+		+			+		+	+						
Cystadenoma	•	•••	•••	·	•	•	•				·	•		•			•		\mathbf{x}							
Uterus	+	A	+	+	+	+	+	+	+	+	+	+	+	+	÷		+	+	+		+	+	+		+	
Hematopoietic System																										
Bone marrow	+	+	+	+	+	+	+																			
Lymph node	M	[A	. +	+	+	+	+				+							+					+	+		
Lymph node, mesenteric	M	[A	N	(+	+	+	+																			
Spleen	M	[A	. +	• +	+	+	+	+	+	+					+		+					+		+		
Hemangiosarcoma																										
Thymus	M	[] M	1+	+	+	+	+								+											
integumentary System							_														_	-				
Mammary gland	+	N	(4	+	+	+	+																			
Skin				• +				+	+		+		+						+	+	+	+	+			
Subcutaneous tissue, schwannoma		1		-	т		141		'		•		•						•	•	•	•	•			
					x																					
malignant					^																					
Musculoskeletal System																										:
Bone	+	• +	- +	• +	+	+	+																			
Nervous System																										
Brain		1 +	- +	· +	+	+	+												_							
Respiratory System																										
Lung	N	1 +	1	- +	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	
Alveolar/bronchiolar adenoma																	х									
Nose	N	1 +	+	- +	+	+	+																			
Trachea	N	1 +		- +	• +	+	+																			
Special Senses System										_		_														
Eye																									+	
Harderian gland																									+	
Adenoma																									x	
Adenoma																										

TABLE D2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 6,250 ppm (continued)

Table D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilleenedisulfonic Acid, Disodium Salt: 6,250 ppm (continued)

						_										÷					_					
Number of Days on Study	7 3 0	3	7 3 0	7 3 0	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	3		7 3 1	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2			3		
Carcass IID Number	0 4 4 5	0 4 5 4	0 4 5 5	4 7	3 7	0 3 8 5	3 9	4 0	4 0	4 1	4 2	4 3	4 4	4 4	0 4 8 4	3 7	3 7	3 7	3 8	3 9	3	4 5	4 6	0 4 8 3	4 8	Total Tissues Tumors
Genital System Ovary Cystadenoma Uterus		++	+	+	+		++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	15 1 45
Hematopoietic System Bone marrow Lymph node Lymph node, mesenteric Spleen Hemangiosarcoma Thymus	+		+			+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+ X	-	+ +		+	++	+	+	+	+	+	+	+	+	+	7 17 5 29 1 7
ntegumentary System Mammary gland Skin Subcutaneous tissue, schwannoma malignant	÷		+	· +	+	+	+	+	+					+			+			+				+		6 27 1
Musculoskeletal System Bone													-													7
Nervous System Brain			-				<u> </u>									•										6
Respiratory System Lung Alveolar/bronchiolar adenoma Nose Trachea	+	- +	• +	- + X		- +	+	+	+	+	+	+	+	+	+	+	+ X		+	+	+	+	+	· +	+	49 3 6 6
Special Senses System Eye Harderian gland Adenoma														<u> </u>											-	1 1 1

÷ .

.

.

of 4,4'-Diamino-2,2'-stilbenedisulfoni	c Acid	, I)is	odi	um	I S	alt	: (6,2	50	pp	m	(00	ntir	ue	d)				•	e			· ·	•	· .	•	
	1	4	5	. 6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7			
Number of Days on Study	6	3	5	0	3	6	7	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3			
	3	8	8	1	9	2	6	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		•	
Carcass ID Number	4	4	`4	4	4	4	4	3	3	3	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4.			
	7	5	3	3	5	6	2	7	8	9	0	1	1	1	2	3	3	8	9	0	0	1	2	4	4			
	1	1	5	3	3	3	1	1	4	5	2	1	2	5	3	1	2	2	1	3	4	4	5	1	3			
Urinary System									-								,											
Kidney	+	Α		+	+	+	+		+																·			·
Urinary bladder	÷	+	+	+	+	+	Α																			<i>.</i> •		
Systemic Lesions						_						,				,								• •				
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		•	
Lymphoma malignant histiocytic											•															i Č		
Lymphoma malignant lymphocytic						Х									Х													
Lymphoma malignant mixed				X																		Х		х		*		

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4.4'-Diamino-2.2'-stilbenedisulfonic Acid. Disodium Salt: 6.250 npm (continued

174

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stillenedisulfonic Acid, Discilium Salt: 6,250 ppm (continued)

Number of Days on Study		-	7 3 0	7 3 0	7 3 0	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2									
Carcass ID Number	.	4 4	•	0 4 5 5	0 4 7 3	0 3 7 2	0 3 8 5			0 4 0 5	0 4 1 3	0 4 2 2	0 4 3 4	0 4 4 2	0` 4 4 4	0 4 8 4	0 3 7 3	0 3 7 4	0 3 7 5	0 3 8 2	0 3 9 2	0 3 9 4	0 4 5 2	0 4 6 5	8	0 4 8 5		Total Tissues/ Tumors
Urinary System Kidney Urinary bladder							+	+				+	-			. +			+	+		+		·,	+			14 6
Systemic Lesions Multiple organs Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed		+	+	+	+	+	+ X	+ x	х		+	+	+	+ x	+	+	+	+ X	+	+	+	+	+ :	+	+	+	* .	50 1 4 5

Number of Days on Study	2	0	6 3 9	4	6	6	7	8	8	1	2	2	2	7 / 2 : 9 9	2 3		2 :		2		2	7 3 0	7 3 0	3	
Carcass ID Number	3	6 8	2	6 3	6 1	7 0	7 0	6 5	6 4	6 8	6 3	6 1	6 2	0 6 4 3	6 (4 :	6 (5 (5 5	6 7	6 8	6 8	7 2	1	6 2	6 3	
limentary System																					<u></u>				
Esophagus	+	м	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	
Galibladder														+		+ -	+	+	+	+	÷	+	+	+	
Intestine large	+	, +	+	+		+								+			+	+	+	÷	+	+	+	+	
Intestine large, cecum	Å	Å	÷	÷		Å								+	•	+ .	÷	+	+	÷	÷	÷	÷	÷	
Intestine large, colon						+								+					÷		+	+	+	+	
Intestine large, rectum	+					+								+		+	+		+		+	+	+	+	
Intestine small	A													+			+			+	+	+	+	+	
Intestine small, duodenum														+						Ň	+	+	+	+	
Intestine small, ileum														+					+		+	+	+	+	
Intestine small, jejunum														+					÷		+	+	+	+	
Liver														+					+		+		+		
Hepatocellular adenoma	•		•	•		•	•	•	·		•	•	•		•	•		•	•	•		•	•	•	
Mesentery							+																		
Pancreas	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	
Salivary glands	+	м				Ń		+			+	÷	+			÷	÷	÷	÷	÷	÷.	÷	÷		
Stomach	, +		÷.	÷	÷			÷			+	•	÷	÷			÷	÷	÷	÷	÷	÷	+	÷	
Stomach, forestomach	+	÷	÷	+	+	+	-	+		-	-			+	+	÷ .	+	+	÷	÷	+	÷	÷	+	
Stomach, glandular	+	+	+											+			-	-	+		+	+	+	+	
Cardiovascular System Heart											<u> </u>									_					
неап	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ 	+	+	+	+	+	+	+	+	+	
Endocrine System																									
Adrenal gland	+	+	+			+								+		+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex	+	+	+			+								+		+	+	+	+	+	+	+	+	+	
Adrenal gland, medulla	+	+												+				+	+	+	+	+	+	+	
Islets, pancreatic	+	+				+								+				+	+	+	+	+	+	+	
Parathyroid gland						Μ								+ :					М		+	+	+	+	
Pituitary gland	+	+	Μ	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+		
Pars distalis, adenoma					х																х			х	
Pars distalis, carcinoma															Х										
Thyroid gland	+	M	+	+	` +	Μ	+	М	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	
Follicular cell, carcinoma															х										

. ,

TABLE D2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4.4'-Diamino-2.2'-stilbenedisulfonic Acid. Disodium Salt: 12.500 ppm

None

176

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

		_		-					_									_	_		_			_			
	7	7	7	7 7	, <i>'</i>	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	-	33)0			3	-			3	3		3	3 1	3		3	3	3	3 2	3 2	3 2	3 2	3 2	3		
	U	U	/ U	, ,		0	U	U	Ŧ	1	T	1	1	T	Ŧ	1	1	2	4	2	2	2	2	2	2	2	
	0	0) () () (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	6	6	56						6			7				7				6				7			Total
	5				7 '									1						6							Tissue
	2	-					5										3			5							Tumor
limentary System					-														_								
Esophagus	+	ہ ج	+ -	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	+	+	46
Gallbladder	-+	د ع	+ •	+	+	+	÷	+	+	+	+	+		M						+	+	+	+	+	+	+	43
Intestine large	-+	ر ل م	• •	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	49
Intestine large, cecum	-	ب ۲	+ -	+ •	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Intestine large, colon	-+	د ۲	+ -	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine large, rectum	-4	- ۲	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	÷	47
Intestine small	+	د ا	+ -	÷	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Intestine small, duodenum	-+	4	Mr -	+ ·	+ :	M	+	+	+	+	+	+	+	+	+	Ň		+	+	+	+	+	+	+	+	+	38
Intestine small, ileum	-		+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	÷	44
Intestine small, jejunum		- ۲		+ .	+	÷	+	-	÷	+	÷	+	•	+		•	+	÷	+	+	+	+	+	+	+	+	43
Liver	-	+ -	+ ·	÷					+	+				+				+	+	÷	+	+	+	+	•	+	49
Hepatocellular adenoma			•	•	•	•	•		x	•	•	x	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
Mesentery																											1
Pancreas	-	+ -	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Salivary glands	-	+ -		÷	÷			+			+	+	+	+	+	+	+	+	÷	÷	+	÷.	+	+	+	÷	47
Stomach		- ا	÷ .	+ ·	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	+	÷	49
Stomach, forestomach		- ا			+	÷		+	+	÷	+	+	÷	+	+	÷	÷	+	+	÷	÷	+	+	÷	÷	+	49
Stomach, glandular	-	+ -	+ -	+	+	+	+	÷	+	+	+	+	÷	÷	+	÷	÷	+	+	÷	+	+	+	+	÷	+	48
Cardiovascular System																											
Heart	+	<u>н</u>	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Endocrine System		P.,							_		-	_										_					
Adrenal gland	+	⊢ -	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Adrenal gland, cortex	4	+ -	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Adrenal gland, medulla	-	⊢ -	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Islets, pancreatic	-1	+ -	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	48
Parathyroid gland	4	F ₽	м -	+ 1	М	+	+	+	М	М	+	+	+	+	+	+	М	+	+	М	+	+	+	+	+	М	32
Pituitary gland	-	+ -	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	48
Pars distalis, adenoma												х			х				х								6
Pars distalis, carcinoma																											1
Thyroid gland	-	+ -	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Follicular cell, carcinoma																											1

General Body System

None

· · · · · · · · ·	•	•		_					_		· .	1	_	_		_	-	_			_		_			_				
						6			6	-	-		-	7	7	7	7	7	7	7	1	7	7	7	7	7	7			
Number of Days on Study	·. `			2: 9	2	3 9	4	0	7	2	8.	8.	1	2	2	2	2	29	29	29	29	29	29	29	3	3 0	3			
					2	,	v	U.	'	2	V 3	4	0	1	,	,	,	,	,	,	,	,	,	,	U	U	v			
a a a a a a a a a a a a a a a a a a a				0	_	_	~	^	0	0		0	0	^	^	^	^	^	•	~	•	^	^	~	~	~	~			
Carcass ID Number				6	· •	: 6	0	0, 6	- ·	-	0		-	6	6	6	6	6	6	6	6	6	6	7	6	6	6			
	*			3				ĩ																	1	2				
				3	3	1		3																	4	2	4			
······································			• •																				_							
Genital System															•			-					•							
Ovary				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Cystadenoma																														
Uterus				+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Hemangioma																														
Mixed tumor malignant																													•	
Endometrium, polyp stroma	1												х																	
																									·					
· · ·						,														_									-	
Hematopoietic System																														
Bone marrow				+	+	• +	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		:	
Lymph node				. M	I M	1 +	+	+	+	+	+	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Lymph node, mesenteric		• •		M	[M	(+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+			
Spleen				+	+	• +	+	÷	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+			
Hemangiosarcoma																										•				
Thymus				· +	N	(+	+	+	+	Α	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+		,	
	·																							_						
Integumentary System						• •	•																							
Mammary gland				+	• +	• +	+	+	+	м	÷	+	+	М	+	+	+	+	+	+	+	+	+	+	÷	+	М	-		
Adenocarcinoma		1	~	•.	•		x	1	•	•••		•		- ;-	·	·	•	•			·		•					· ·		
Skin				+		· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Subcutaneous tissue, fibrosa	rcoma			•	•	•	•	•	:	•	•	•	x	•	•	•	·	•	•	•	•		•			•				
																		_				•								
Musculoskeletal System	2		· · •						·			•					œ													
Bone				+	• +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Skeletal muscle	• •			· ·		•		•	•	•	•	•	•	+	•	•	·		•		•			+						
ORCIOLAI INDUCC														•														;		
				. 14													·		<u>.</u>		· .					•				
Nervous System																														
Brain		·		+	• •	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		•	
Spinal cord								+																						
							_	_	• •									<u>.</u>		_									-	
Respiratory System																										. "	_	,		
Larynx			۰.			,							+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Lung				+	• +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Alveolar/bronchiolar adenoi													х	х								ч,					:	· .		
Alveolar/bronchiolar adenor	na, mul	tiple								•	,																			
Nose				+	+ +	- +	+	+	+	Μ	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			٠.
Trachea				+	- 4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	-+	+	+	+	-+	+	-+	+			

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study

Table D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

			_		_		_		_		_	_		_			<u>.</u>							_		
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	-	Õ	Õ	Õ		-	Õ	-		-	_		1	-				-	-	2	2	2	2	2	-	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	-	0	0	0	0	0	
Carcass ID Number	6	6	6	6	6	6	7	6	6	6	7		7	7	7	7	6	6	6	6	6	7	7	7	7	Total
	5	5	6	7	7	9	2	3	6	9	0	0	1	1	2	2	1	2	6	7	8	0	1	1	1	Tissue
	2	3	3	1	4	5	5	1	2	2	2			5	2	3	5	3	5	5	1	1	1	2	4	Tumor
Genital System															_											
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	Ŧ	+	+	+	+	Ŧ	+	+	+	+	49
Cystadenoma	т	Ŧ	т	т	Ŧ	x	т	т	т	т	т	Ŧ	т	Ŧ	т	Ŧ	Ŧ	т	т	Ŧ	т	т	Ŧ	Ŧ	т	1
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	48
Hemangioma	•	•		•	•	'	'	•	'	'	'	•		•	•	•	'	x	•	•	'	•	•	'		1
Mixed tumor malignant																								х		1
Endometrium, polyp stromal				•																				~		1
																					_					·
lematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lymph node	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Lymph node, mesenteric	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Hemangiosarcoma														Х												1
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	46
Integumentary System					_				_																	
Mammary gland				÷		+	, i			ъø			+	,	n đ						n <i>4</i>					42
Adenocarcinoma	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	т	т	Ŧ	IAT	Ŧ	т	Ŧ	Ŧ	M	т	Ŧ	Ŧ	Ŧ	Ŧ	IAI	Ŧ	Ŧ	Ŧ	Ŧ	43
Skin																										1 49
	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Subcutaneous tissue, fibrosarcoma					, .																					1
Musculoskeletal System																										
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Skeletal muscle																										2
Nervous System					_				_																	
Brain				L.				д.			J.	J.				L.										40
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	49 1
Spinal cord																										1
Respiratory System																										
Larynx	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	39
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Alveolar/bronchiolar adenoma		•		•	•	•	x	x	•	•		-	•			-	2	-		•	•	•			•	4
Alveolar/bronchiolar adenoma, multiple						х																				1
Automational automational multiple																										
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48

5 6 6 6 6 7 3 3 3 3 3 3 3 3 3 3
0 0
+
+ + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +
x x x x x x x x x

TABLE D2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

.
TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt: 12,500 ppm (continued)

	-	_																								
Number of Days on Study	7	7 3	-	7 ' 3 :	7 7	7	7	7	7	7	7	7 3	7 3	7 3												
	0	0	0	0	0	0	0	1	1	1	1	1	1	1 :	1 1	2	2	2	2	2	2	2	2	2		
Carcass ID Number	0	0	0 6	0 6	0 6	0 6	0	0	0	0	0	0	0	0	0 () ()	0	0 6	0 6	0	0	07	0 7		Total
Carcass III Number	5	6 5	6	7	7	9	2	3	6	9	ó	'n	1	, 1 ·	22	• •	, u ,	6	7	8	-	1	'	1		Tissues
	2	3	3	1	4	5	5	1	2	2	2	3	3		2 3		3	5	5	-	-	1	-	4		Tumors
Special Senses System														<u> </u>												
Ear																						+	•			1
Eye Harderian gland								+																+++		2 2
Adenoma								x																x		2
Urinary System Kidney Urinary bladder	+	++++	++	+ +	+++	+++	++++	+ +	++++	++	+ +	+ +	+ +	+ +	+ ·	+ +		- + - R	- + ⁄[+	- +	- 4	- +	· +	- +	-	49 47
Systemic Lesions																										
Multiple organs	+	+	+	+	+	+	+	+	+	+.	+	+	+	+	+	+ +	+ +			- +		- +	- +	- +	-	49
Leukemia									x																	1 1
Lymphoma malignant histiocytic Lymphoma malignant lymphocytic									Λ							x					3	сх				5
Lymphoma malignant mixed															-	-					1		•			4
Lymphoma malignant undifferentiated																										
cell type																										1

.

· · · · · · · · · · · · · · · · · · ·	0 ppm	6,250 ppm	12,500 ррт
iver: Hepatocellular Adenoma			
Dverall rates ^a	3/50 (6%)	0/17 (0%) ^e	2/49 (4%)
Adjusted rates ^b	7.0%		5.3%
Cerminal rates ^c	3/43 (7%)		2/38 (5%)
First incidence (days)	729 (T)		729 (T)
life table tests ^d			P=0.556N
ogistic regression tests ^d			P=0.556N
isher exact test ^d			P=0.510N
iver: Hepatocellular Adenoma or Ca	rcinoma	and the second second	· .
Dverall rates	5/50 (10%)	0/17 (0%) ^e	2/49 (4%)
Adjusted rates	11.6%	•	5.3%
Cerminal rates	5/43 (12%)		2/38 (5%)
First incidence (days)	729 (Ť)		729 (Ť)
Life table tests	· · ·		P=0.269N
ogistic regression tests			P=0.269N
Fisher exact test			P=0.226N
ung: Alveolar/bronchiolar Adenoma			
Overall rates	12/50 (24%)	3/49 (6%)	5/49 (10%)
Adjusted rates	27.3%	7.0%	12.5%
Ferminal rates	11/43 (26%)	3/43 (7%)	3/38 (8%)
First incidence (days)	714	729 (T)	718
Life table tests	P=0.046N	P=0.013N	P=0.096N
Logistic regression tests	P=0.038N	P=0.014N	P = 0.077N
Cochran-Armitage test ^d	P=0.031N		
Fisher exact test		P=0.013N	P=0.059N
Lung: Alveolar/bronchiolar Adenoma	or Carcinoma		
Overall rates	13/50 (26%)	3/49 (6%)	5/49 (10%)
Adjusted rates	29.5%	7.0%	12.5%
Terminal rates	12/43 (28%)	3/43 (7%)	3/38 (8%)
First incidence (days)	714	729 (T)	718
life table tests	P = 0.027N	P=0.007N	P = 0.065N
ogistic regression tests	P = 0.022N	P=0.008N	P=0.050N
Cochran-Armitage test Fisher exact test	P=0.017N	P=0.007N	P=0.037N
Pituitary Gland (Pars Distalis): Aden Overall rates	ioma 7/50 (14%)	2/7 (29%) ^e	6/48 (13%)
Adjusted rates	16.3%	_ , (_ ,))	15.1%
Ferminal rates	7/43 (16%)		5/38 (13%)
	729 (T)		660
First incidence (days) Life table tests	125 (1)		P=0.588N
			P = 0.546N
Logistic regression tests Fisher exact test			P = 0.532N
IBHCI CAACI ICBI			1 -0.5521

TABLE D3

.

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

TABLE D3

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stillzenedisulfonic Acid, Discdium Salt (continued)

	O ppm	6,250 ppm	12,500 ppm
Pituitary Gland (Pars Distalis): Adeno	ma or Carcinoma		
Overall rates	8/50 (16%)	2/7 (29%) ^e	7/48 (15%)
Adjusted rates	18.6%	4. (2000)	17.7%
Ferminal rates	8/43 (19%)		6/38 (16%)
First incidence (days)	729 (T)		660
Life table tests	(1)		P=0.597N
Logistic regression tests			P = 0.553N
Fisher exact test			P = 0.535N
			1-0.55514
Al Organs: Malignant Lymphoma (Hi			
Overall rates	19/50 (38%)	10/50 (20%)	11/49 (22%)
Adjusted rates	39.6%	22.1%	25.3%
Terminal rates	14/43 (33%)	8/43 (19%)	6/38 (16%)
First incidence (days)	587	601	639
Life table tests	P=0.097N	P = 0.052N	P = 0.140N
ogistic regression tests	P=0.051N	P=0.040N	P=0.071N
Cochran-Armitage test	P=0.050N		
Fisher exact test		P=0.038N	P=0.071N
All Organs: Benign Tumors			
Overall rates	21/50 (42%)	9/50 (18%)	12/49 (24%)
Adjusted rates	46.5%	19.9%	29.1%
Cerminal rates	19/43 (44%)	7/43 (16%)	9/38 (24%)
First incidence (days)	410	601	660
Life table tests	P=0.065N	P = 0.010N	P=0.103N
Logistic regression tests	P = 0.034N	P = 0.009N	P = 0.052N
Cochran-Armitage test	P = 0.033N	1 -0.00510	1-0.0521
Fisher exact test	1 -0.05514	P=0.008N	P=0.051N
All Organs: Malignant Tumors			
Overall rates	24/50 (49%)	12/50 (2404)	15/40 (210)
Adjusted rates	24/50 (48%) 49.0%	12/50 (24%) 26.0%	15/49 (31%) 22.0%
5	49.0%	26.0%	33.0%
Ferminal rates	18/43 (42%)	9/43 (21%)	8/38 (21%)
First incidence (days)	587 B - 0.004N	601 B 0 020N	602 D 0 127N
Life table tests	P=0.094N	P = 0.020N	P=0.137N
Logistic regression tests	P=0.042N	P=0.011N	P=0.056N
Cochran-Armitage test	P=0.042N		
Fisher exact test		P=0.011N	P=0.059N
All Organs: Benign or Malignant Tum	ors		
Overall rates	34/50 (68%)	17/50 (34%)	24/49 (49%)
Adjusted rates	68.0%	36.9%	51.9%
Terminal rates	27/43 (63%)	14/43 (33%)	16/38 (42%)
First incidence (days)	410	601	602
Life table tests	P=0.110N	P=0.002N	P=0.157N
Logistic regression tests	P=0.035N	P<0.001N	P=0.035N
Cochran-Armitage test	P=0.035N		

TABLE D3 Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

(T)Terminal sacrifice

¹ Number of tumor-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, epididymis, gallbladder (mouse), heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated tumor incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

- ^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.
- ^e Tissue was examined microscopically only when it was observed to be abnormal at necropsy; thus, statistical comparisons with the control are not appropriate.

Table D4

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilleenedisulfonic Acid, Disedium Salt^a

	0	ppm	6,25	0 ppm	12,5:	CO ppm
Disposition Summary						
Animals initially in study	60		60		60	
15-month interim evaluation	10		10		10	
Early deaths						
Natural deaths	5		5		6	
Moribund kills	2		2		5	
Survivors						
Terminal sacrifice	43		43		38	
Missing		*			1	
Animals examined microscopically	50		50		49	
Alimentary System						
Gallbladder	(45)		(3)		(43)	
Infiltration cellular, lymphocyte	ì	(2%)				
Intestine large, cecum	(48)		(4)		(45)	
Peyer's patch, hyperplasia, lymphoid	5	(10%)			Ś	(11%)
Intestine small, jejunum	(49)	-	(28)		(43)	- /
Hemorrhage					1	(2%)
Peyer's patch, angiectasis			1	(4%)		
Peyer's patch, hyperplasia, lymphoid	5	(10%)		(11%)	4	(9%)
Liver	(50)		(17)		(49)	
Basophilic focus, multiple	1	(2%)				
Cytoplasmic alteration, focal			、 1	(6%)	1	(2%)
Fatty change, diffuse	1	(2%)	1	(6%)	2	(4%)
Fatty change, focal	1	(2%)				
Granuloma	1	(2%)	1	(6%)		
Hematocyst				1000	1	(2%)
Hematopoietic cell proliferation Infarct	1	(2%)	1	(6%)	1	(2%)
	10	(2001)	1	(6%)		1001
Infiltration cellular, lymphocyte Mitotic alteration	10	(20%)	2	(12%)	4	(8%)
Necrosis, focal	1 3	(2%)	2	(120%)		(00)
Pigmentation, lipofuscin	3	(6%)	2	(12%) (6%)	4	(8%)
Bile duct, hyperplasia, multifocal	1	(2%)	1	(6%)		
Centrilobular, fatty change, diffuse	1	(2%)				
Periportal, fatty change, diffuse	2	(4%)				
Mesentery	(5)	(470)	(1)		(1)	
Amyloid deposition	(5)	(20%)	(1)		(1)	
Fat, necrosis, focal	2	(40%)	1	(100%)		
Pancreas	(50)	(10,0)	(6)	(10070)	(48)	
Amyloid deposition	(30)		1	(17%)	(-0)	
Infiltration cellular, lymphocyte, multifocal	12	(24%)	•	()	8	(17%)
Acinus, atrophy			1	(17%)	1	(2%)
Artery, inflammation, chronic	1	(2%)	-		-	(1)
Duct, cyst			1	(17%)		
Salivary glands	(50)		(6)		(47)	
Infiltration cellular, lymphocyte, multifocal	21	(42%)	í	(17%)		(43%)
Stomach, forestomach	(49)		(7)		(49)	
Diverticulum			ì	(14%)		
Epithelium, hyperplasia, focal	2	(4%)				

•

TABLE D4

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	0	ppm	6,250 ppm	12,5	00 ppm
Alimentary System (continued)	(50)			(40)	
Stomach, glandular	(50)		(6)	(48)	
Hemorrhage	• •		1 (17%)	-	(2011)
Infiltration cellular, lymphocyte		(201)		1	(2%)
Mineralization, focal	1	(2%)	·		(00)
Necrosis, multifocal				1	(2%)
Cardiovascular System	- · ·		·····		
Blood vessel	(1)				
Artery, inflammation, chronic active		(100%)		1 A A	,
Heart		(10070)	(6)	(49)	
Bacterium	(50)		(9)	1	(2%)
Infiltration cellular, lymphocyte				1	(2%)
Aortic valve, thrombus				1	(2%) (2%)
Arteriole, thrombus, multifocal	1	(2%)		+	(270)
Artery, hypertrophy, multifocal	I	(200)		1	(2%)
Mitral valve, inflammation, acute					(2%) (2%)
Myocardium, degeneration	1	(2%)		1	(270)
Ventricle, thrombus		(2%)			
	۲	(270)			
Endocrine System	· · · · ·	_			
Adrenal gland	(50)		(7)	(48)	
Capsule, ectopic tissue	4	(8%)		ì	(2%)
Capsule, hyperplasia, multifocal	50	(100%)	5 (71%)	48	(100%)
Adrenal gland, cortex	(49)	()	(6)	(48)	` .
Atrophy	ì	(2%)		·	
Degeneration, fatty, multifocal	1	(2%)			
Hematopoietic cell proliferation	2	(4%)	1 (17%)		
Hemorrhage		()	- ()	1	(2%)
Hyperplasia, focal	3	(6%)		3	(6%)
Hypertrophy, focal	.1	(2%)		1	(2%)
Adrenal gland, medulla	(49)	(-//)	(6)	(47)	(-/-)
Hyperplasia, focal	(*)	(2%)	(-)	()	
Islets, pancreatic	(50)	(-//)	(5)	(48)	
Hyperplasia, multifocal		(4%)	(5)	1	(2%)
Parathyroid gland	(35)	()	•	(32)	(=/-)
Hyperplasia	(55)			1	(3%)
Infiltration cellular, lymphocyte	1	(3%)		1	(0,0)
	(50)	(570)	(7)	(48)	
Pituitary gland		(6%)	(7)	1	(2%)
Pars distalis, angiectasis		(6%) (2%)		3	(2%) (6%)
Pars distalis, hyperplasia, focal	• • 🛓	(2%)		1	(2%)
Pars distalis, hypertrophy, focal	(50)	• •	(7)	(46)	(270)
Thyroid gland	(50)	(196)	(7)	(40)	(2%)
Infiltration cellular, lymphocyte	2	(4%)			(2%) (2%)
Inflammation, acute				1	
Follicle, cyst, multiple	•	1601		1	(2%)
Follicular cell, hyperplasia, focal	3	(6%)		2	(4%)

General Body System

None

Table D4

b.s

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt (continued)

	0]	ppm ·	6,25	0 ppm	12,500 ppm		
Genital System							
Dvary	(50)		(15)		(49)		
Abscess			_		1	(2%)	
Cyst	16	(32%)	7	(47%)		(41%)	
Hemorrhage					1	(2%)	
Infiltration cellular, lymphocyte	3	(6%)			1	(2%)	
Pigmentation, hemosiderin			1	(7%)			
Uterus	(50)		(45)		(48)		
Angiectasis	2	(4%)	-		•	((M))	
Dilatation	7	(14%)	5	(11%)	3	(6%)	
Hyperplasia, cystic	44	(88%)	41	(91%)	39	(81%)	
Infiltration cellular, lymphocyte	1	(2%)					
Hematopoietic System							
Bone marrow	(50)		(7)		(48)		
Atrophy, focal	2	(4%)			2	(4%)	
Hyperplasia, neutrophil			1	(14%)	2	(4%)	
Lymph node	(48)		(17)		(46)		
Hyperplasia, lymphoid	1	(2%)					
Iliac, hemorrhage					1	(2%)	
Iliac, hyperplasia, histiocytic					1	(2%)	
Iliac, hyperplasia, lymphoid	1	(2%)	2	(12%)	1	(2%)	
Inguinal, hyperplasia, lymphoid	1	(2%)			1	(2%)	
Mandibular, hyperplasia, lymphoid	2	(4%)	1	(6%)	2	(4%)	
Mandibular, pigmentation, hemosiderin	1	(2%)			_		
Mediastinal, hyperplasia, lymphoid	1	(2%)	1	(6%)	2	(4%)	
Mediastinal, mineralization			1	(6%)			
Renal, hemorrhage					1	(2%)	
Renal, hyperplasia, lymphoid			1	(6%)	1	(2%)	
Lymph node, mesenteric	(48)		(5)		(46)		
Abscess					1	(2%)	
Amyloid deposition	1	(2%)	_				
Hemorrhage			2	(40%)	1	(2%)	
Hyperplasia, lymphoid	5	(10%)			1	(2%)	
Spleen	(50)		(29)		(49)		
Ectopic tissue			. 1	(3%)			
Hematopoietic cell proliferation	4	(8%)	3	(10%)	4	(8%)	
Hyperplasia, lymphoid	4	(8%)	1	(3%)	1	(2%)	
Capsule, inflammation, chronic					1	(2%)	
Thymus	(46)		(7)		(46)		
Amyloid deposition	1	(2%)			_		
Depletion lymphoid	4	(9%)	3	(43%)	4	(9%)	
Ectopic parathyroid gland	-	(A A)			2		
Hyperplasia, lymphoid	4	(9%)			6	(13%)	
Integumentary System							
Mammary gland	(45)		(6)		(43)		
Hyperplasia	2	(4%)			2	(5%)	
Inflammation, chronic			1	(17%)		-	

TABLE D4

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

	ppm	,	0 _. ppm	12,500 ppn		
				<u> </u>		
(50)		(27)		(49)		
				ì	(2%)	
21	(42%)	13	(48%)	13	(27%)	
1	(2%)			1	(2%)	
2	(4%)	2				
	(20)	1	(4%)			
1	(2%)		(10)			
		1	(4%)			
(50)		(7)		(49)		
		ì	(14%)	ý	(18%)	
1	(2%)					
				1	(2%)	
				(2)		
				1	(50%)	
,,,	<u></u>					
(50)		(6)		(49)		
		ĺ	(17%)	. ,		
34	(68%)	1	(17%)	31	· · ·	
				1		
				1	(2%)	
				1	(2%)	
(50)		(49)		(49)		
1	(2%)	ъ. ́.				
1	(2%)			2	(4%)	
1	(2%)					
3	(6%)	5	(10%)			
-					(2%)	
	· ·	0	(1601)		(2%)	
10	(20%)			21	(43%)	
1	(2%)	-				
1	(270)	Ţ	(270)	1	(2%)	
					(2%)	
				•	()	
1	(2%)	2	(4%)			
_						
4	(8%)	1	(2%)	3	(6%)	
16	(32%)			22	(45%)	
1	(2%)		(2%)	1	(2%)	
(50)	(0 .	(6)		(48)		
4	· ·				10100	
		4	(67%)	27	(56%)	
2 1	(4%) (2%)					
	1 2 1 (50) 6 1 (50) 34 (50) 1 1 1 3 3 10 1 1 1 3 3 10 1 1 1 3 3 10 1 1 1 3 2 8 2 2	$\begin{array}{c} 21 & (42\%) \\ 1 & (2\%) \\ 2 & (4\%) \\ 1 & (2\%) \\ 1 & (2\%) \\ \end{array}$ $\begin{array}{c} (50) \\ 6 & (12\%) \\ 1 & (2\%) \\ 1 & (2\%) \\ 1 & (2\%) \\ 34 & (68\%) \\ \end{array}$ $\begin{array}{c} (50) \\ 1 & (2\%) \\ 1 & (2\%) \\ 1 & (2\%) \\ 1 & (2\%) \\ 1 & (2\%) \\ 3 & (6\%) \\ 10 & (20\%) \\ 1 & (2\%) $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table D4

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Feed Study of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt (continued)

	0	bbm	6,25	a bbm	12,5	CO ppm
Respiratory System (continued)						
Nose (continued)						
Nasolacrimal duct, inflammation, chronic active	1	(2%)				
Respiratory epithelium, hyperplasia	11	(22%)	1	(17%)	9	(19%)
Lumen, foreign body	4	(8%)				(
Mucosa, degeneration, hyaline	28	(56%)	4	(67%)	27	(56%)
Mucosa, inflammation, chronic	2	(4%)				()
Mucosa, inflammation, chronic active	1	(2%)				
Nasolacrimal duct, inflammation, chronic					1	(2%)
Nasolacrimal duct, inflammation, chronic active	1	(2%)				
Respiratory epithelium, hyperplasia	11	(22%)	1	(17%)	9	(19%)
Special Senses System			ï			
Eye			(1)		(2)	
Cornea, inflammation, chronic			1	(100%)	(-)	
Cornea, inflammation, chronic active			-	()	1	(50%)
Urinary System Kidney						
	(50)	(2.04)	(14)		(49)	
Cyst Embolus bacterial	1	(2%)				
	-	(20)			1	(2%)
Hydronephrosis	1	(2%)			1	(2%)
Infiltration cellular, lymphocyte	14	(28%)	5	(36%)	9	(18%)
Inflammation, acute, multifocal	-				1	(2%)
Inflammation, chronic, multifocal	1	(2%)	-	(3 ~)		
Metaplasia, osseous	-	((())	1	(7%)		
Glomerulus, amyloid deposition	3	(6%)				
Glomerulus, inflammation, chronic		(00)	-		1	(2%)
Renal tubule, degeneration, focal	4	(8%)	1	(7%)		
Urinary bladder	(49)		(6)		(47)	
Hemorrhage Infiltration cellular, lymphocyte	_	(41%)			1	(2%)
				(33%)	21	(45%)

^a Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site.

APPENDIX E GENETIC TOXICOLOGY

SALMONELLA	Protocol	192
CHINESE HAR	ASTER OVARY CELL CYTOGENETICS ASSAYS	192
RESULTS		193
Table E1	Mutagenicity of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid	
	in Salmonella typhimurium	194
Table E2	Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells	
	by 4,4'-Diamino-2,2'-stilbenedisulfonic Acid	195
Table E3	Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells	
	by 4,4'-Diamino-2,2'-stilbenedisulfonic Acid	198

GENETIC TOXICOLOGY

SALMONELLA PROTOCOL

Testing was performed as reported by Haworth *et al.* (1983) and Zeiger *et al.* (1987). 4,4'-Diamino-2,2'-stilbenedisulfonic acid was sent to the laboratory as a coded aliquot from Radian Corporation (Austin, TX). It was incubated with the *Salmonella typhimurium* tester strains (TA100, TA1535, TA1537, or TA98) either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver) for 20 minutes at 37° C prior to the addition of soft agar supplemented with *l*-histidine and *d*-biotin, and subsequent plating on minimal glucose agar plates. Incubation continued for an additional 48 hours.

Each trial consisted of triplicate plates of concurrent positive and negative controls and of at least five doses of 4,4'-diamino-2,2'-stilbenedisulfonic acid. High dose was limited to 5,000 μ g/mL. All assays were repeated.

In this assay, a positive response is defined as a reproducible, dose-related increase in histidineindependent (revertant) colonies in any one strain/activation combination. An equivocal response is defined as an increase in revertants which was not dose-related, not reproducible, or of insufficient magnitude to support a determination of mutagenicity. A negative response is obtained when no increase in revertant colonies is observed following chemical treatment.

CHINESE HAMSTER OVARY CELL CYTOGENETICS ASSAYS

Testing was performed as reported by Galloway *et al.* (1985, 1987) and Loveday *et al.* (1990). 4,4'-Diamino-2,2'-stilbenedisulfonic acid was sent to the laboratory as a coded aliquot from Radian Corporation (Austin, TX). It was tested in cultured Chinese hamster ovary (CHO) cells for induction of sister chromatid exchanges (SCE) and chromosomal aberrations (Abs), both in the presence and absence of Aroclor 1254-induced male Sprague-Dawley rat liver S9 and cofactor mix. Cultures were handled under gold lights to prevent photolysis of bromodeoxyuridine-substituted DNA. Each trial consisted of concurrent solvent and positive controls and of at least three doses of 4,4'-diamino-2,2'stilbenedisulfonic acid; the high dose was limited by toxicity or solubility, but did not exceed 5,000 μ g per mL.

In the SCE test without S9, CHO cells were incubated for 26 hours with 4,4'-diamino-2,2'stilbenedisulfonic acid in McCoy's 5A medium supplemented with 10% fetal bovine serum, *l*-glutamine (2mM), and antibiotics. Bromodeoxyuridine (BrdU) was added 2 hours after culture initiation. After 26 hours, the medium containing the 4,4'-diamino-2,2'-stilbenedisulfonic acid was removed and replaced with fresh medium plus BrdU and Colcemid, and incubation was continued for 2 to 3 hours. Cells were then harvested by mitotic shake-off, fixed, and stained with Hoechst 33258 and Giemsa. In the SCE test with S9, cells were incubated with the chemical, serum-free medium, and S9 for 2 hours. The medium was then removed and replaced with medium containing BrdU and no 4,4'-diamino-2,2'stilbenedisulfonic acid and incubation proceeded for an additional 26 hours, with Colcemid present for the final 2 to 3 hours. Harvesting and staining procedures were the same as for cells treated without S9.

In the Abs test without S9, cells were incubated in McCoy's 5A medium with 4,4'-diamino-2,2'stilbenedisulfonic acid for 8 to 10 hours; Colcemid was added and incubation continued for 2 to 3 hours. The cells were then harvested by mitotic shake-off, fixed, and stained with Giemsa. For the Abs test with S9, cells were treated with 4,4'-diamino-2,2'-stilbenedisulfonic acid and S9 for 2 hours, after which

Genetic Toxicology

the treatment medium was removed and the cells incubated for 10 hours in fresh medium, with Colcemid present for the final 2 to 3 hours. Cells were harvested in the the same manner as for the treatment without S9.

For the SCE test, if significant chemical-induced cell cycle delay was seen, incubation time was lengthened by five hours to ensure a sufficient number of scorable cells. The harvest time for the Abs test was based on the cell cycle information obtained in the SCE test: if cell cycle delay was anticipated, the incubation period was extended.

Cells were selected for scoring on the basis of good morphology and completeness of karyotype $(21 \pm 2 \text{ chromosomes})$. All slides were scored blind and those from a single test were read by the same person. For the SCE test, 50 second-division metaphase cells were scored for frequency of SCE per cell from each dose level; 200 first-division metaphase cells were scored at each dose level for the Abs test. Classes of aberrations included simple (breaks and terminal deletions), complex (rearrangements and translocations), and other (pulverized cells, despiralized chromosomes, and cells containing 10 or more aberrations).

Statistical analyses were conducted on both the slopes of the dose-response curves and the individual dose points. An SCE frequency 20% above the concurrent solvent control value was chosen as a statistically conservative positive response. The probability of this level of difference occurring by chance at one dose point is less than 0.01; the probability for such a chance occurrence at two dose points is less than 0.001. Abs data are presented as percentage of cells with aberrations. As with SCE data, both the dose-response curve and individual dose points were statistically analyzed. For a single trial, a statistically significant ($P \le 0.05$) difference for one dose point and a significant trend ($P \le 0.015$) was considered weak evidence for a positive response (+w); significant differences for two or more doses indicated the trial was positive (+) (Galloway *et al.*, 1987).

RESULTS

4,4'-Diamino-2,2'-stilbenedisulfonic acid was not mutagenic in Salmonella typhimurium strains TA100, TA1535, TA1537, or TA98 when tested in a preincubation protocol at concentrations of 100 to 5,000- μ g/plate in the presence and the absence of Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9 (Table E1; Zeiger *et al.*, 1987). 4,4'-Diamino-2,2'-stilbenedisulfonic acid was tested for induction of sister chromatid exchanges (Table E2) and chromosomal aberrations (Table E3) in Chinese hamster ovary cells in two laboratories; results in both laboratories were negative for each endpoint. In the first laboratory, 4,4'-diamino-2,2'-stilbenedisulfonic acid was tested for induction of SCE and Abs using standard harvest times, with and without Aroclor 1254-induced male Sprague-Dawley rat liver S9, at concentrations up to 1,020 μ g/mL (Loveday *et al.*, 1990). In the second laboratory, higher doses, up to 5,000 μ g/mL 4,4'-diamino-2,2'-stilbenedisulfonic acid were tested with and without S9; a delayed harvest protocol was used to obtain sufficient cells for analysis at the highest dose in the SCE trials and in the Abs trial conducted in the absence of S9.

			Reverta	nnts/plate ^b				
Strain Dose	in Dose			amster S9	+10% rat S9			
(µg/plate)	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2		
FA100 0	130 ± 12.8	126 ± 9.4	146 ± 3.3	143 ± 1.7	136 ± 5.6	132 ± 11.9		
100	124 ± 4.5	120 ± 6.9	142 ± 1.9	136 ± 1.5	128 ± 3.7	126 ± 11.6		
333	138 ± 3.5	163 ± 30.4	151 ± 6.7	146 ± 6.7	132 ± 5.5	142 ± 4.4		
1,000	137 ± 9.0	134 ± 1.2	150 ± 12.1	141 ± 5.8	148 ± 7.8	143 ± 5.6		
3,333	120 ± 0.7	138 ± 3.8	140 ± 5.9	147 ± 8.0	125 ± 3.8	144 ± 7.1		
5,000	138 ± 11.4	150 ± 4.9	152 ± 6.7	126 ± 8.0	148 ± 8.2	156 ± 8.9		
Frial summary	Negative	Negative	Negative	Negative	Negative	Negative		
Positive control ^c	864 ± 0.9	$1,053 \pm 36.7$	949 ± 23.2	1,014 ± 18.6	888 ± 17.0	775 ± 44.7		
FA1535 0	22 ± 3.7	34 ± 1.8	14 ± 2.3	19 ± 0.9	16 ± 1.5	16 ± 1.5		
100	24 ± 3.5	25 ± 1.7	15 ± 2.3	26 ± 2.8	19 ± 3.0	19 ± 3.2		
333	22 ± 4.1	24 ± 2.5	19 ± 1.8	17 ± 3.4	21 ± 1.5	18 ± 5.2		
1,000	22 ± 2.0	27 ± 3.1	17 ± 2.7	19 ± 2.0	22 ± 2.8	17 ± 2.9		
3,333	22 ± 2.7	27 ± 4.6	18 ± 4.1	21 ± 1.8	22 ± 2.3	16 ± 2.5		
5,000	24 ± 2.9	24 ± 2.6	16 ± 3.8	15 ± 1.5	20 ± 1.9	26 ± 2.9		
Frial summary	Negative	Negative	Negative	Negative	Negative	Negative		
Positive control	719 ± 6.4	847 ± 15.0	49 ± 7.9	89 ± 12.7	50 ± 3.2	99 ± 16.0		
FA1537 0	7 ± 1.2	6 ± 1.5	7 ± 2.0	7 ± 0.6	8 ± 1.0	5 ± 0.3		
100	4 ± 0.9	4 ± 1.7	5 ± 1.2	5 ± 2.0	7 ± 2.1	3 ± 0.3		
333	6 ± 1.5	3 ± 0.9	4 ± 0.6	6 ± 2.8	6 ± 1.3	8 ± 1.7		
1,000	8 ± 0.7	8 ± 0.7	5 ± 1.9	4 ± 1.5	7 ± 2.5	6 ± 1.2		
3,333	3 ± 0.6	5 ± 0.3	6 ± 1.2	8 ± 1.8	4 ± 1.2	8 ± 0.9		
5,000	6 ± 2.7	4 ± 1.2	8 ± 2.8	6 ± 1.3	7 ± 0.7	7 ± 0.3		
Frial summary	Negative	Negative	Negative	Negative	Negative	Negative		
Positive control	255 ± 3.2	312 ± 69.5	59 ± 7.8	95 ± 18.3	54 ± 2.3	41 ± 5.7		

TABLE E1	
Mutagenicity of 4,4'-Diamino-2,2'	-stilbenedisulfonic Acid in Salmonella typhimurium ^a

Genetic Toxicology

195

- -----

Table	E1
-------	----

le Ditter mitter telle i emitter

Mutagenicity of 4,4'-Diamino-2,2'-stilleenedisulfonic Acid in Salmonella typhimurium (continued)

		Revertants/plate											
Strain	Dose			-59						∻10% ha r	nster S	S 9	
	(µg/plate)	Tria	11	Trial 2	2	Trial	3	Trie	1	Tria		Tria	13
TA 9 8	0	17 ±	1.5	20 ± (0.3	18 ±	2.3	32 ±	4.0	28 ±	3.5	31 ±	4.3
	100	21 ±	2.0					28 ±	2.4				
	333	19 ±	1.9			18 ±	3.8	24 ±	1.2			25 ±	0.7
	1,000	22 ±	1.5			21 ±	0.9	32 ±	2.1			30 ±	2.3
	3,000			19 ± 1	1.5					41 ±	5.2		
	3,333	18 ±	1.2	,		21 ±	2.6	37 ±	0.9			29 ±	2.9
	3,500				1.5					36 ±	1.9		
	4,000			19 ±	1.9	25 ±	0.9			40 ±	2.7	34 ±	3.8
	4,500			17 ±	1.5	· 27 ±	3.0			33 ±	2.3	36 ±	5.3
	5,000	20 ±	1.9	18 ± 1	1.9	24 ±	2.4	61 ±	2.6	35 ±	2.0	38 ±	0.9
Trial su	mmary	Nega	tive	Negativ	/e	Nega	tive	Equiv	/ocal	Nega	tive	Nega	tive
Positive	control	1,236 ±	24.8	$1,430 \pm 72$	2.1	1,221 ±	5.0	875 ±	14.5	1,241 ±	88.1	$1,023 \pm$	26.4
TA 98 (continued)											·	
				+ 10% ra	it S9								
		Tria	11	Trial	2	Tria	13						
	_												
	0	26 ±	3.5	30 ±	2.2	29 ±	1.2						
	100	25 ±	1.7										
	333	27 ±	0.3	· .		30 ±	7.2						
	1,000	28 ±	3.2			23 ±	2.5						
	3,000			29 ±	2.1	~ ~ ~							
	3,333	30 ±	0.6	•••		34 ±	1.5						
	3,500				1.9								
	4,000				2.4	40 ±	4.0						
	4,500				2.3	33 ±	3.3						
	5,000	34 ±	1.9	40 ±	4.1	32 ±	5.9						
Trial su	Immary	Nega	tive	Negativ	ve	Nega	tive						
	control	911 ±		831 ± 2		411 ±							

^a Study performed at EG&G Mason Research Institute. The detailed protocol and these data are presented in Zeiger *et al.* (1987).

^b Revertants are presented as mean \pm standard error from three plates.

^c 2-aminoanthracene was used on all strains in the presence of S9. In the absence of metabolic activation, 4-nitro-o-phenylenediamine was tested on TA98, sodium azide was tested on TA100 and TA1535, and 9-aminoacridine was tested on TA1537.

Compound	Dose (µg/mL)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hrs in BrdU	Relative SCEs/Chromo some (%) ^b
Study performed at Bioa S9	ssay Systems	Corpora	ation				<u> </u>	
Trial 1 Summary: Negative							•	
Medium		50	1,044	340	0.32	6.8	26.5	
Mitomycin-C	0.0015 0.0100	50 10	1,044 210	448 210	0.42 0.95	9.0 20.1	26.5 26.5	31.76 193.90
4,4'-Diamino-2,2'-stil	benedisulfonic	acid						
	102	50	1,047	344	0.32	6.9	26.5	0.88
	306	50	1,037	328	0.31	6.6	26.5	-2.88
	1,020	50	1,044	306	0.29	6.1	26.5	-10.00
								$P = 0.922^{c}$
-89								
Trial 1 Summary: Negative								
Medium		50	1,041	346	0.33	6.9	26.0	
Cyclophosphamide	0.5	50	1,047	561	0.53	11.2	26.0	61.21
<i>7</i> 1 1	2.5	10	208	324	1.55	32.4	26.0	368.66
4,4'-Diamino-2,2'-stil	benedisulfonic	acid						
,	102	50	1,040	305	0.29	6.1	26.0	-11.77
	306	50	1,041	359	0.34	7.2	26.0	3.76
	1,020	50	1,041	318	0.30	6.4	26.0	-8.09
		•						P=0.657

TABLE E2	
Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells	
by 4,4'-Diamino-2,2'-stilbenedisulfonic Acid ^a	

ø

•

TABLE E2

Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells by 4,4'-Diamino-2,2'-stilbenedisulfonic Acid (continued)

Compound	Dose (µg/mL)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hrs in BrdV	Relative SCEs/Chrom some (%)
udy performed at Siteb 9	K Research L	aborator	ies					
Trial 1 Summary: Negative				·				
Distilled water		50	1,051	400	0.38	8.0	26.0	
		50	1,050	410	0.39	8.2	31.0 ^d	
Mitomycin-C	0.0010	50	1,050	643	0.61	12.9	26.0	56.83
	0.0040	10	209	232	1.11	23.2	26.0	184.28
4,4'-Diamino-2,2'-stil	benedisulfonic	acid						
	500	50	1,051	427	0.40	8.5	26.0	4.05
	1,667	50	1,048	391	0.37	7.8	26.0	-4.45
	5,000	50	1,051	475	0.45	9.5	31.0 ^d	15.75
								P=0.046
S9								
Trial 1 Summary: Negative								
Distilled water		50	1,050	431	0.41	8.6	26.0	
		50	1,044	421	0.40	8.4	31.0 ^d	
Cyclophosphamide	0.1250	50	1,047	540	0.51	10.8	26.0	27.90
- • •	0.5000	10	211	200	0.94	20.0	26.0	135.06
4,4'-Diamino-2,2'-stil	benedisulfonic	acid						
	500	50	1,049	405	0.38	8.1	26.0	-4.26
	1,667	50	1,049	448	0.42	9.0	26.0	5.91
· ·	5,000	50	1,050	457	0.43	9.1	31.0 ^d	7.93
								P=0.060

^a SCE = sister chromatid exchange; BrdU = bromodeoxyuridine. The data from the study performed at Bioassay Systems Corporation is published in Loveday *et al.* (1990).

^b Percent increase in SCEs/chromosome of culture exposed to 4,4'-diamino-2,2'-stilbenedisulfonic acid relative to those of culture exposed to solvent.

c Significance of relative SCEs/chromosome tested by the linear regression trend test vs. log of the dose

d Because a chemical-induced cell cycle delay was seen, incubation time was lengthened five hours to ensure a sufficient number of scorable cells.

			-S9					+ 59		
	Dose (µg/mL)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs	Dose (µg/mL)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Ab
Study j	performed	at Bioa	ssay System	ns Corpo	ration					
	– Harvest y: Negativ		0 hours			Trial 1 – Harvest Summary: Negative		.0 hours		
Mediur	n					Medium				
		200	1	0.01	0.5		,200	5	0.03	2.0
						Qualantaanhamida				
Mitomy	ycin-C 1.0	200	48	0.24	19.0	Cyclophosphamide 50.0	50	43	0.86	36.0
	5.0	200 50	40	0.24	28.0	50.0	30	-13	0.00	30.0
					20.0					
4,4 ' -Di	iamino-2,2'		isulfonic aci			4,4'-Diamino-2,2'-s				
	101	200	6	0.03	3.0	101	200	5	0.03	1.5
	303	200	4	0.02	1.5	303	200	3	0.02	1.5
	1,010	200	4	0.02	2.0	1,010	200	0	0.00	0.0
					$P = 0.232^{b}$					P=0.957
Study j	performed	at Sitek	Research	Laborato	ories					
	– Harvest y: Negativ		0 hours ^c			Trial 1 – Harvest Summary: Negative		.5 hours		
Distille	d water					Distilled water				
Distinc		200	0	0.00	0.0	Distinct water	200	2	0.01	1.0
Mitom	vcin-C					Cyclophosphamide	•			
	0.4	25	25	1.00	64.0	20.0	25	23	0.92	56.0
4,4'-D			lisulfonic aci			4,4'-Diamino-2,2'-				
	1,081	200	1	0.01	0.5	1,081	200	13	0.07 0.02	2.0 1.5
	2,325 5,000	200 200	0 · 1	0.00 0.01	0.0 0.5	2,325 5,000	200 200	3 1	0.02	1.5 0.5
		200	1	0.01	0.5	5,000	200	•	V.VI	0.5
	3,000									

TABLE E3 Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells by 4,4'-Diamino-2,2'-stilbenedisulfonic Acida

Abs = aberrations. The data from the study performed at Bioassay Systems Corporation is published in Loveday et al. (1990). a b

Significance of percent cells with aberrations tested by the linear regression trend test vs. log of the dose

c Because of chemical-induced cell cycle delay, incubation time prior to additon of Colcemid was lengthened to provide sufficient metaphases at harvest.

APPENDIX F ORGAN WEIGHTS

AND ORGAN-WEIGHT-TO-BODY-WEIGHT RATIOS

201
202
203
204
205

	0 ppm	6,250 ррш	12,500 ppm	25,000 ppm	50,000 ppm	100,000 ppm
n	5	5	5	5	5	5
Necropsy body wt	211 ± 5	217 ± 6	211 ± 7	216 ± 4	199 ± 3	$185 \pm 4^{**}$
Brain						
Absolute	1.67 ± 0.02	1.69 ± 0.04	1.73 ± 0.05	1.73 ± 0.02	1.69 ± 0.04	1.69 ± 0.06
Relative	7.92 ± 0.16	7.82 ± 0.26	8.20 ± 0.10	8.01 ± 0.19	8.50 ± 0.24	9.15 ± 0.26**
Heart						
Absolute	0.78 ± 0.01	1.06 ± 0.17	0.87 ± 0.03	0.83 ± 0.03	0.77 ± 0.02	0.68 ± 0.01
Relative	3.72 ± 0.09	4.95 ± 0.97	4.13 ± 0.13	3.82 ± 0.09	3.90 ± 0.13	3.66 ± 0.07
R. Kidney						
Absolute	1.02 ± 0.03	1.08 ± 0.03	1.02 ± 0.07	1.05 ± 0.03	1.02 ± 0.02	0.95 ± 0.03
Relative	4.82 ± 0.11	4.96 ± 0.06	4.82 ± 0.24	4.87 ± 0.15	5.15 ± 0.10	5.14 ± 0.11
Liver						
Absolute	11.01 ± 0.51	10.82 ± 0.40	11.65 ± 0.66	11.62 ± 0.26	11.67 ± 0.10	11.16 ± 0.43
Relative	52.2 ± 1.5	49.7 ± 1.1	55.2 ± 2.4	53.7 ± 1.2	$58.8 \pm 0.9^{**}$	$60.4 \pm 1.4^{**}$
Lungs						
Absolute	1.19 ± 0.08	1.40 ± 0.17	1.54 ± 0.19	1.50 ± 0.12	1.11 ± 0.04	1.09 ± 0.06
Relative	5.67 ± 0.44	6.45 ± 0.81	7.41 ± 1.11	6.93 ± 0.56	5.59 ± 0.23	5.90 ± 0.31
Thymus						
Absolute	0.45 ± 0.01	0.49 ± 0.03	0.42 ± 0.03	0.45 ± 0.03	0.42 ± 0.02	0.39 ± 0.03
Relative	2.14 ± 0.09	2.26 ± 0.16	1.99 ± 0.08	2.08 ± 0.14	2.13 ± 0.13	2.13 ± 0.14
Female						
n	5	5	5	5	5	5
Necropsy body wt	149 ± 3	149 ± 5	147 ± 5	153 ± 5	145 ± 2	145 ± 3
Brain						
Absolute	1.58 ± 0.03	1.60 ± 0.05	1.61 ± 0.02	1.65 ± 0.02	1.61 ± 0.03	1.62 ± 0.03
Relative	10.6 ± 0.3	10.8 ± 0.2	11.0 ± 0.3	10.8 ± 0.2	11.1 ± 0.2	11.2 ± 0.2
Heart						
Absolute	0.62 ± 0.02	0.63 ± 0.04	0.62 ± 0.02	0.64 ± 0.03	0.60 ± 0.02	0.57 ± 0.01
Relative	4.18 ± 0.13	4.22 ± 0.22	4.23 ± 0.11	4.17 ± 0.11	4.13 ± 0.10	3.97 ± 0.14
R. Kidney						
Absolute	0.74 ± 0.01	0.75 ± 0.03	0.71 ± 0.02	0.77 ± 0.05	0.74 ± 0.04	0.77 ± 0.03
Relative	4.98 ± 0.09	5.05 ± 0.15	4.83 ± 0.15	5.02 ± 0.16	5.11 ± 0.23	5.31 ± 0.11
Liver						
Absolute	7.21 ± 0.15	7.20 ± 0.24	7.30 ± 0.31	7.73 ± 0.24	7.18 ± 0.18	$8.02 \pm 0.34^*$
Relative	48.6 ± 1.6	48.5 ± 0.8	49.7 ± 1.1	50.7 ± 1.4	49.6 ± 1.0	55.3 ± 1.4**
Lungs		—				
Absolute	0.89 ± 0.03	0.99 ± 0.07	0.96 ± 0.05	1.28 ± 0.23	1.02 ± 0.04	0.89 ± 0.03
Relative	6.01 ± 0.21	6.68 ± 0.38	6.53 ± 0.17	8.42 ± 1.56	7.05 ± 0.33	6.13 ± 0.14
Thymus						
•	0.36 ± 0.02	0.36 ± 0.02	0.37 ± 0.01	0.36 ± 0.02	0.36 ± 0.01	0.36 ± 0.03
Absolute	0.30 ± 0.02	0.00 1 0.02	0.37 ± 0.01	0.00 - 0.00		0.50 ± 0.05

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 14-Day Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt^a

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error).

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 13-Week Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salta

	0 ppm	6,250 ppm	12,500 ppm	25,010 ppm	50,000 ppm	10 0,000 pp m
Male	<u> </u>					
n	10	10	10	10	10	10
Necropsy body wt	361 ± 5	359 ± 3	347 ± 3	353 ± 4	326 ± 7°°	$255 \pm 4^{\circ \circ}$
Brain						
Absolute	1.87 ± 0.03	1.88 ± 0.02	1.83 ± 0.03	1.81 ± 0.04	1.88 ± 0.04	1.83 ± 0.02
Relative	5.18 ± 0.10	5.25 ± 0.09	5.29 ± 0.09	5.13 ± 0.10	$5.80 \pm 0.10^{\circ \circ}$	$7.20 \pm 0.11^{\circ\circ}$
Heart						
Absolute	1.21 ± 0.02	1.16 ± 0.02	1.15 ± 0.02	1.19 ± 0.02	$1.13 \pm 0.02^{\circ}$	$1.02 \pm 0.02^{\circ\circ}$
Relative	3.35 ± 0.06	3.25 ± 0.06	3.32 ± 0.05	3.37 ± 0.06	3.48 ± 0.05	3.99 ± 0.06°°
R. Kidney						
Absolute	1.38 ± 0.03	1.36 ± 0.03	1.31 ± 0.02	1.40 ± 0.03	1.35 ± 0.04	$1.24 \pm 0.02^{\circ \circ}$
Relative	3.82 ± 0.09	3.80 ± 0.07	3.79 ± 0.05	3.96 ± 0.07	$4.15 \pm 0.09^{\circ \circ}$	$4.86 \pm 0.05^{\circ\circ}$
Liver						
Absolute	12.67 ± 0.32	12.31 ± 0.30	11.68 ± 0.29	13.00 ± 0.27	12.24 ± 0.30	9.94 ± 0.29**
Relative	35.1 ± 0.6	34.3 ± 0.6	33.7 ± 0.8	36.8 ± 0.4	$37.6 \pm 0.5^{\circ\circ}$	$38.9 \pm 0.9^{\circ \circ}$
Lungs						
Absolute	1.57 ± 0.02	1.56 ± 0.02	1.71 ± 0.12	1.65 ± 0.06	1.50 ± 0.04	$1.33 \pm 0.03^{\circ\circ}$
Relative	4.37 ± 0.02	4.34 ± 0.06	4.92 ± 0.33	4.68 ± 0.17	4.60 ± 0.10	$5.20 \pm 0.11^{\circ\circ}$
R. Testis	4.57 ± 0.00	4.51 ± 0.00	102 2 0.00	1.00 2 0.17	4.00 2 0.10	5.20 ± 0.11
Absolute	1.53 ± 0.02	1.54 ± 0.03	1.52 ± 0.02	1.56 ± 0.03	1.50 ± 0.02	$1.42 \pm 0.03^{\circ\circ}$
Relative	4.25 ± 0.02	4.29 ± 0.07	4.39 ± 0.06	4.44 ± 0.09	$4.63 \pm 0.09^{\circ \circ}$	$5.56 \pm 0.13^{\circ\circ}$
Thymus	4.25 - 0.07	4.49 ± 0.07	4.57 ± 0.00	4.44 ± 0.09	4.05 ± 0.07	J.JO ± 0.15
Absolute	0.31 ± 0.02	0.32 ± 0.01	0.28 ± 0.01	0.30 ± 0.01	0.29 ± 0.01^{b}	$0.22 \pm 0.01^{\circ\circ}$
Relative	0.85 ± 0.04	0.88 ± 0.03	0.20 ± 0.01 0.81 ± 0.04	0.85 ± 0.03	0.90 ± 0.04^{b}	0.22 ± 0.01 0.87 ± 0.02
	0.05 ± 0.04	0.00 ± 0.05	0.01 ± 0.04	0.05 2 0.05	0.90 ± 0.04	0.07 ± 0.02
Female						
n	10	10	10	10	10	9
Necropsy body wt	196 ± 3	194 ± 3	194 ± 3	189 ± 2	187 ± 4	$174 \pm 6^{\circ \circ}$
Brain						
Absolute	1.68 ± 0.02	1.73 ± 0.02	1.75 ± 0.02	1.75 ± 0.01	1.76 ± 0.03	1.67 ± 0.03
Relative	8.61 ± 0.13	8.93 ± 0.19	9.04 ± 0.13	9.28 ± 0.12°°	$9.43 \pm 0.22^{\circ \circ}$	$9.66 \pm 0.23^{\circ\circ}$
Heart						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Absolute	0.77 ± 0.02	0.75 ± 0.02	0.78 ± 0.01	0.76 ± 0.02	0.76 ± 0.02	0.74 ± 0.02
Relative	3.93 ± 0.05	3.87 ± 0.07	4.00 ± 0.06	4.00 ± 0.10	4.06 ± 0.09	$4.25 \pm 0.06^{\circ\circ}$
R. Kidney						
Absolute	0.77 ± 0.02	0.77 ± 0.01	0.78 ± 0.01	0.78 ± 0.02	0.82 ± 0.02	0.80 ± 0.02
Relative	3.93 ± 0.09	3.97 ± 0.05	4.03 ± 0.07	4.14 ± 0.08	$4.38 \pm 0.07^{\circ \circ}$	$4.59 \pm 0.12^{\circ\circ}$
Liver		0.07 - 0.00		774 Y 🛶 V.VU	1.50 2 0.07	7.37 ± 0.14
Absolute	6.45 ± 0.19	6.44 ± 0.11	6.63 ± 0.08	6.50 ± 0.21	6.09 ± 0.14	6.58 ± 0.21
Relative	33.0 ± 0.9	33.2 ± 0.5	34.2 ± 0.4	34.3 ± 0.9	32.7 ± 0.7	$37.9 \pm 0.8^{\circ\circ}$
Lungs		00.2 ± 0.0	J	57.5 ± 0.7	Jan 1 - 0.1	57.7 ± 0.0
Absolute	1.13 ± 0.03	1.14 ± 0.02	1.14 ± 0.02	1.16 ± 0.04	1.15 ± 0.03	1.05 ± 0.03
Relative	5.76 ± 0.14	5.88 ± 0.13	1.14 ± 0.02 5.85 ± 0.11	6.11 ± 0.14	6.17 ± 0.03	1.03 ± 0.03 6.06 ± 0.13
Thymus	5.70 ± 0.14	2.00 ± 0.12	5.05 ± 0.11	0.11 ± 0.14	0.17 1 0.10	0.00 ± 0.13
Absolute	0.27 ± 0.01	0.26 ± 0.01	0.25 ± 0.01	0.25 ± 0.01	0.24 ± 0.01	$0.23 \pm 0.01^{\circ\circ}$
Relative	1.38 ± 0.03	0.26 ± 0.01 1.35 ± 0.04	0.23 ± 0.01 1.31 ± 0.04	0.25 ± 0.01 1.35 ± 0.05	0.24 ± 0.01 1.30 ± 0.05	$0.23 \pm 0.01^{\circ\circ}$ 1.30 ± 0.05
INCIGING	1.30 ± 0.03	1.55 ± 0.04	1.31 ± 0.04	1.33 X 0.03	1.50 ± 0.03	1.50 ± 0.05

 $^{\circ}~$ Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

°° P≤0.01

Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight b (mean \pm standard error). n=9

Same and a state of the second se

	0 ppm	12,500 ppm	25,000 ррт
Male			
1	10	10	10
Necropsy body wt	473 ± 14	459 ± 9	$436 \pm 9^*$
Brain			
Absolute	2.07 ± 0.03	2.01 ± 0.02	2.03 ± 0.03
Relative	4.40 ± 0.13	4.39 ± 0.11	4.68 ± 0.09
R. Kidney			
Absolute	1.85 ± 0.04	1.90 ± 0.06	1.81 ± 0.05
Relative	3.92 ± 0.11	4.15 ± 0.10	4.17 ± 0.14
liver			
Absolute	14.01 ± 0.53	15.00 ± 0.53	13.62 ± 0.31
Relative	29.7 ± 0.8	32.7 ± 1.2	31.4 ± 0.9
Female			
n	10	10	10
Necropsy body wt	300 ± 6	283 ± 4	283 ± 6
Brain	х		
Absolute	1.86 ± 0.03	1.81 ± 0.03	1.85 ± 0.03
Relative	6.22 ± 0.09	6.39 ± 0.09	6.57 ± 0.15
R. Kidney	_		
Absolute	1.21 ± 0.05	1.16 ± 0.05	1.16 ± 0.05
Relative	4.02 ± 0.12	4.09 ± 0.17	4.10 ± 0.16
Liver			
Absolute	8.72 ± 0.26	8.31 ± 0.27	8.37 ± 0.24
Relative	29.1 ± 0.8	29.4 ± 1.0	29.6 ± 0.6

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 15-Month Interim Evaluations in the 2-Year Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt^a

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error).

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 14-Day Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salta

	0 ppm	6,250 ppm	12,500 ppm	25,000 ppm	50,000 ppm	100,000 ppm
Male	<u>.</u>	<u></u>		<u>,</u> * <u>_</u> _:		
n	5	5	5	5	5	5
 Necropsy body wt	24.2 ± 0.7	24.2 ± 0.7	24.4 ± 0.5	23.4 ± 0.2	23.8 ± 0.7	$22.2 \pm 0.9^{\circ}$
Brain						
Absolute	0.43 ± 0.01	0.43 ± 0.01	0.43 ± 0.00	0.43 ± 0.01	0.41 ± 0.02	0.44 ± 0.04
Relative	17.8 ± 0.8	18.0 ± 0.8	17.6 ± 0.4	18.4 ± 0.3	17.3 ± 1.2	19.7 ± 1.8
Heart						
Absolute	0.13 ± 0.01	0.13 ± 0.01	0.15 ± 0.01	0.13 ± 0.01	0.13 ± 0.01	0.11 ± 0.01
Relative	5.49 ± 0.36	5.52 ± 0.28	6.02 ± 0.34	5.39 ± 0.33	5.37 ± 0.13	5.10 ± 0.15
R. Kidney						
Absolute	0.23 ± 0.01	0.24 ± 0.01	0.22 ± 0.01	0.22 ± 0.01	0.24 ± 0.02	$0.20 \pm 0.01^{\circ}$
Relative	9.64 ± 0.19	9.97 ± 0.17	9.19 ± 0.44	9.42 ± 0.29	9.92 ± 0.48	8.87 ± 0.18
Liver						
Absolute	1.40 ± 0.06	1.37 ± 0.04	1.36 ± 0.03	1.32 ± 0.02	1.43 ± 0.05	1.49 ± 0.04
Relative	57.9 ± 1.4	56.7 ± 2.2	55.6 ± 0.7	56.6 ± 1.0	60.1 ± 1.0	$67.6 \pm 3.7^{\circ\circ}$
Lungs						
Absolute	0.18 ± 0.01	0.20 ± 0.01	$0.25 \pm 0.02^{\circ \circ}$	0.18 ± 0.01	0.18 ± 0.01	0.17 ± 0.01
Relative	7.43 ± 0.36	8.14 ± 0.43	$10.32 \pm 0.93^{\circ\circ}$	7.64 ± 0.36	7.43 ± 0.41	7.92 ± 0.59
Thymus ^b						
Absolute	47.60 ± 4.13	51.75 ± 2.29^{c}	57.20 ± 6.26	45.60 ± 4.06	47.20 ± 2.85	$27.09 \pm 4.64^{\circ\circ}$
Relative	1.96 ± 0.14	2.14 ± 0.12	2.35 ± 0.27	1.95 ± 0.17	1.99 ± 0.14	$1.24 \pm 0.24^{\circ}$
Female						
n	5	5	5	5	5	5
Necropsy body wt	21.0 ± 0.6	20.2 ± 0.6	20.0 ± 0.8	20.8 ± 0.6	20.0 ± 0.7	19.4 ± 0.6
Brain						
Absolute	0.46 ± 0.01	0.44 ± 0.00	0.45 ± 0.01	0.44 ± 0.01	0.43 ± 0.01	0.44 ± 0.02
Relative	21.9 ± 1.0	21.6 ± 0.6	22.4 ± 0.8	21.1 ± 0.7	21.9 ± 1.2	22.5 ± 0.8
Heart						
Absolute	0.12 ± 0.01	0.12 ± 0.01	0.15 ± 0.03	0.12 ± 0.01	0.12 ± 0.01	0.11 ± 0.01
Relative	5.62 ± 0.18	5.96 ± 0.24	7.58 ± 1.58	5.65 ± 0.29	5.87 ± 0.54	5.61 ± 0.29
R. Kidney						
Absolute	0.18 ± 0.00	0.17 ± 0.00	0.17 ± 0.01	0.17 ± 0.01	0.17 ± 0.01	0.16 ± 0.01
Relative	8.36 ± 0.14	8.42 ± 0.15	8.45 ± 0.22	8.30 ± 0.54	8.44 ± 0.25	8.33 ± 0.26
Liver						
Absolute	1.12 ± 0.06	1.07 ± 0.03	1.09 ± 0.03	1.10 ± 0.05	1.11 ± 0.04	1.18 ± 0.04
Relative	53.5 ± 2.8	53.3 ± 1.2	54.6 ± 1.7	52.8 ± 2.2	55.3 ± 0.6	60.9 ± 1.8°
Lungs						
Absolute	0.17 ± 0.01	0.18 ± 0.01	0.18 ± 0.01	0.17 ± 0.01	0.18 ± 0.01	0.16 ± 0.02
Relative	8.09 ± 0.59	8.99 ± 0.19	8.82 ± 0.48	8.07 ± 0.19	8.82 ± 0.28	8.17 ± 0.77
Thymus ^b						
Absolute	56.00 ± 1.05	53.40 ± 4.23	56.20 ± 3.43	56.20 ± 2.13	54.20 ± 4.35	23.80 ± 3.32**
Relative	2.68 ± 0.13	2.64 ± 0.19	2.81 ± 0.10	2.70 ± 0.08	2.73 ± 0.26	$1.22 \pm 0.14^{\circ \circ}$

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

°° P≤0.01

а Organ weights and body weights are given in grams unless otherwise noted; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error). Thymus weights are given in milligrams. b

c

n=4

	0 ppm	6,250 ppm	12,500 ppm	25,000 ppm	50,000 ppm	100,000 ppm
Male	<u> </u>					
n	10	10	10	10	10	4
Necropsy body wt	26.0 ± 0.6	26.2 ± 0.8	25.7 ± 0.6	25.0 ± 0.5	$23.6 \pm 0.5^{**}$	17.0 ± 0.9**
Brain						
Absolute	0.41 ± 0.01	0.42 ± 0.01	0.44 ± 0.01	0.43 ± 0.01	0.42 ± 0.01	0.39 ± 0.01
Relative	16.0 ± 0.3	16.0 ± 0.4	17.1 ± 0.5	17.1 ± 0.4	$17.9 \pm 0.3^{**}$	$23.0 \pm 1.0^{**}$
Heart						
Absolute	0.157 ± 0.006	0.159 ± 0.007	0.158 ± 0.007	0.151 ± 0.007	0.139 ± 0.006	0.128 ± 0.005
Relative	6.05 ± 0.14	6.06 ± 0.17	6.16 ± 0.23	6.04 ± 0.20	5.89 ± 0.17	7.61 ± 0.52**
R. Kidney						
Absolute	0.23 ± 0.00	0.24 ± 0.01	0.23 ± 0.01	0.23 ± 0.01	$0.21 \pm 0.01^*$	$0.16 \pm 0.01^{**}$
Relative	8.95 ± 0.17	9.10 ± 0.22	9.12 ± 0.14	9.24 ± 0.19	8.89 ± 0.18	9.45 ± 0.23
Liver						
Absolute	1.09 ± 0.04	1.07 ± 0.04	1.02 ± 0.03	$0.99 \pm 0.03^*$	$0.91 \pm 0.03^{**}$	$0.83 \pm 0.04^{*3}$
Relative	41.8 ± 1.2	40.8 ± 1.1	39.8 ± 0.7	39.3 ± 0.5	$38.4 \pm 0.5^*$	$49.1 \pm 2.5^{**}$
Lungs						
Absolute	0.21 ± 0.01	0.21 ± 0.01	0.20 ± 0.01	0.20 ± 0.01	0.19 ± 0.01	0.15 ± 0.01 **
Relative	7.95 ± 0.30	7.91 ± 0.27	7.80 ± 0.24	8.10 ± 0.20	7.96 ± 0.25	8.94 ± 0.56
R. Testis						
Absolute	0.12 ± 0.00	0.12 ± 0.00	0.12 ± 0.01	0.12 ± 0.01	0.11 ± 0.00	$0.07 \pm 0.01^{*1}$
Relative	4.49 ± 0.11	4.42 ± 0.12	4.49 ± 0.18	4.63 ± 0.21	4.54 ± 0.05	4.29 ± 0.42
Thymus ^b						
Absolute	28.40 ± 3.10	31.80 ± 2.64	31.44 ± 2.94 ^c	28.00 ± 1.88	35.90 ± 3.26	16.50 ± 3.86
Relative	1.09 ± 0.11	1.21 ± 0.09	1.24 ± 0.12^{c}	1.12 ± 0.06	$1.51 \pm 0.12^*$	0.95 ± 0.18
Female						
n	10	10	10	10	10	.9
Necropsy body wt	21.4 ± 0.4	20.4 ± 0.3	20.5 ± 0.3	20.6 ± 0.7	$19.9 \pm 0.4^{\circ}$	15.7 ± 0.3**
Brain						
Absolute	0.45 ± 0.01	0.47 ± 0.01	0.44 ± 0.01	0.43 ± 0.01	0.44 ± 0.01	0.39 ± 0.01 **
Relative	20.9 ± 0.3	22.9 ± 0.5	21.6 ± 0.4	21.2 ± 0.6	21.9 ± 0.4	$24.8 \pm 0.7^{**}$
Heart						···· <u> </u>
Absolute	0.132 ± 0.004	0.130 ± 0.004	0.122 ± 0.002	0.125 ± 0.004	$0.116 \pm 0.004^{**}$	0.118 ± 0.005
Relative	6.17 ± 0.15	6.38 ± 0.20	5.95 ± 0.09	6.12 ± 0.24	5.83 ± 0.14	$7.53 \pm 0.24^{*3}$
R. Kidney						
Absolute	0.16 ± 0.01	0.17 ± 0.01	0.16 ± 0.01	0.17 ± 0.01	0.16 ± 0.01	0.15 ± 0.00
Relative	7.58 ± 0.29	8.48 ± 0.19	7.81 ± 0.17	8.20 ± 0.18	8.06 ± 0.20	$9.27 \pm 0.13^{**}$
Liver						
Absolute	0.87 ± 0.02	0.84 ± 0.02	0.86 ± 0.02	0.85 ± 0.04	0.83 ± 0.03	$0.76 \pm 0.02^*$
Relative	40.9 ± 0.5	41.0 ± 0.6	42.0 ± 0.8	41.0 ± 1.3	41.7 ± 1.2	$48.8 \pm 0.9^{**}$
Lungs						
Absolute	0.18 ± 0.01	0.21 ± 0.01	0.19 ± 0.01^{c}	0.18 ± 0.01	0.18 ± 0.01	$0.14 \pm 0.01^*$
Relative	8.64 ± 0.22	10.13 ± 0.50	$9.48 \pm 0.38^{\circ}$	9.00 ± 0.44	9.04 ± 0.44	9.03 ± 0.55
Thymus ^b						
				00.00 . 0.54		15.20 ± 4.19*
Absolute	37.20 ± 1.85	38.70 ± 2.02	39.60 ± 3.20	39.30 ± 2.56	44.10 ± 2.06	15.21 + 4 10*

TABLE F5
Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 13-Week Feed Studies
of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt ^a

* Significantly different (P ≤ 0.05) from the control group by Williams' or Dunnett's test ** P ≤ 0.01

^a Organ weights and body weights are given in grams unless otherwise noted; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error).
 ^b Thymus weights are given in milligrams.

с n=9

d n=5

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice at the 15-Month Interim Evaluations in the 2-Year Feed Studies of 4,4'-Diamino-2,2'-stillbenedisulfonic Acid, Disodium Salt^a

	0 ppm	6,250 рр ш	12,500 ppm
Male			
n	10	10	10
Necropsy body wt	34.2 ± 2.0	36.4 ± 1.0	33.7 ± 1.1
Brain			
Absolute	0.46 ± 0.01	0.49 ± 0.02	0.47 ± 0.02
Relative	13.8 ± 0.9	13.7 ± 0.7	14.1 ± 0.9
R. Kidney			
Absolute	0.37 ± 0.05	0.42 ± 0.04	0.36 ± 0.02
Relative	11.1 ± 1.6	11.6 ± 1.4	10.6 ± 0.3
Liver			
Absolute	1.24 ± 0.08	1.46 ± 0.05	1.36 ± 0.05
Relative	36.2 ± 1.0	40.2 ± 1.4	40.8 ± 2.1
Female			
n	10	10	10
Necropsy body wt	31.6 ± 1.6	30.0 ± 2.0	28.9 ± 1.1
Brain			
Absolute	0.49 ± 0.01	0.47 ± 0.01	0.48 ± 0.02
Relative	15.7 ± 0.7	16.3 ± 1.1	17.2 ± 1.3
R. Kidney			-
Absolute	0.22 ± 0.01	0.25 ± 0.04	0.23 ± 0.03
Relative	6.99 ± 0.38	8.50 ± 1.45	8.14 ± 1.12
Liver			
Absolute	1.25 ± 0.07	1.22 ± 0.09	1.15 ± 0.04
Relative	39.7 ± 2.1	41.9 ± 3.6	40.2 ± 0.9

Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error). Differences from the control group are not significant by Williams' or Dunnett's test.

APPENIDIX G HEMATOLOGY AND CLINICAL CHEMISTRY RESULTS

Table G1	Clinical Chemistry Data for Rats in the 13-Week Feed Studies	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	205
Table G2	Hematology and Clinical Chemistry Data for Rats	
	at the 15-Month Interim Evaluations of the 2-Year Feed Studies	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	209
Table G3	Clinical Chemistry Data for Mice in the 13-Week Feed Studies	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	210
Table G4	Hematology and Clinical Chemistry Data for Mice	
	at the 15-Month Interim Evaluations of the 2-Year Feed Studies	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	211

Analysis	0 ppm	6,250 ppm	12,500 ppm	25,000 ppm	50,000 ppm	100,000 ppm
Male	<u> </u>					
n	10	10	10	10	10	10
Serum glucose						
(mg/dL)	106 ± 4	104 ± 2	109 ± 4	106 ± 3	101 ± 3	99 ± 1
Total protein (g/dL)	7.0 ± 0.1	$6.7 \pm 0.1^*$	$6.7 \pm 0.1^*$	$6.8 \pm 0.1^{*}$	6.9 ± 0.1	$6.6 \pm 0.1^{**}$
Albumin (g/dL)	3.7 ± 0.0	$3.6 \pm 0.0^*$	$3.6 \pm 0.0^*$	$3.6 \pm 0.0^{*}$	3.6 ± 0.0	$3.4 \pm 0.0^{**}$
A/G ratio	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.1 ± 0.0	$1.1 \pm 0.0^{**}$
Alkaline phosphatase						
(IU/L)	75 ± 2	70 ± 3	71 ± 3	69 ± 1	71 ± 1	81 ± 2
ALT (IÚ/L)	44 ± 1	41 ± 1	43 ± 1	$39 \pm 1^*$	$33 \pm 1^{**}$	$33 \pm 1^{**}$
AST (IU/L)	72 ± 3	70 ± 2	75 ± 3	74 ± 5	73 ± 4	$82 \pm 3^*$
LDH (IU/L)	523 ± 57	512 ± 29	489 ± 37	479 ± 36	569 ± 48	613 ± 50
Female						
n	10	10	10	10	10	9
Serum glucose						
(mg/dL)	95 ± 3	96 ± 4	101 ± 4	98 ± 3	93 ± 3	93 ± 5
Total protein (g/dL)	6.8 ± 0.2	6.7 ± 0.1	6.7 ± 0.1	6.7 ± 0.1	6.5 ± 0.1	$5.9 \pm 0.1^{**}$
Albumin (g/dL)	3.7 ± 0.1	3.7 ± 0.1	3.8 ± 0.0	3.7 ± 0.1	3.7 ± 0.1	$3.2 \pm 0.1^{**}$
A/G ratio	1.2 ± 0.0	1.3 ± 0.0	1.3 ± 0.0	1.3 ± 0.0	1.3 ± 0.0	1.1 ± 0.0
Alkaline phosphatase						
(IU/L)	55 ± 2	55 ± 2	54 ± 2	52 ± 2	58 ± 2	$62 \pm 3^*$
ALT (IU/L)	36 ± 1	38 ± 2	36 ± 1	39 ± 1	34 ± 1	33 ± 1
AST (IU/L)	68 ± 2	73 ± 4	72 ± 4	74 ± 3	71 ± 3	76 ± 3
LDH (IU/L)	363 ± 30	398 ± 38	372 ± 39	386 ± 42	402 ± 46	458 ± 41

TABLE G1	
Clinical Chemistry Data for	Rats in the 13-Week Feed Studies
of 4,4'-Diamino-2,2'-stilbene	edisulfonic Acid, Disodium Salt ^a

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01 ^a Mean ± standard error. A/G ratio=albumin/giobulin ratio; ALT=alanine aminotransferase; AST=aspartate aminotransferase; LDH=lactate dehydrogenase

TABLE G2

Hematology and Clinical Chemistry Data for Rats at the 15-Month Interim Evaluations in the 2-Year Feed Studies of 4,4'-Diamino-2,2'-stillbenedisulfonic Acid, Disodium Salt^a

Analysis	0 ppm	12,500 ppm	25,000 ppm
Male	· · · · · · · · · · · · · · · · · · ·	······································	
n	10	10	10
Hematology			
Hematocrit (%)	52.5 ± 1.0	53.4 ± 0.5	53.8 ± 0.6
Hemoglobin (g/dL)	15.3 ± 0.3	15.4 ± 0.2	15.5 ± 0.2
Erythrocytes $(10^6/\mu L)$	8.06 ± 0.11	8.11 ± 0.07	8.16 ± 0.09
Mean cell volume (μ^3)	65.2 ± 1.0	65.7 ± 0.2	66.0 ± 0.3
Mean cell hemoglobin (pg)	19.0 ± 0.3	19.1 ± 0.1	19.0 ± 0.1
Mean cell hemoglobin concentration (g/dL)	29.1 ± 0.1	28.9 ± 0.1	28.9 ± 0.1
Leukocytes $(10^3/\mu L)$	9.10 ± 1.07	7.86 ± 0.27	7.62 ± 0.53
Segmented neutrophils $(10^3/\mu L)$	4.10 ± 0.72	3.24 ± 0.22	3.26 ± 0.34
Lymphocytes $(10^{3}/\mu L)$	4.63 ± 0.39	4.38 ± 0.30	4.10 ± 0.26
Monocytes $(10^3/\mu L)$	0.09 ± 0.02	0.07 ± 0.02	0.08 ± 0.02
Eosinophils $(10^3/\mu L)$	0.25 ± 0.06	0.20 ± 0.04	0.18 ± 0.04
Clinical Chemistry			
Blood urea nitrogen (mg/dL)	13.7 ± 0.5	14.8 ± 0.3	14.0 ± 0.4
Alkaline phosphatase (IU/L)	56 ± 5	56 ± 2	54 ± 1
ALT (IU/L)	49 ± 4	51 ± 3	42 ± 2
AST (IU/L)	73 ± 9	74 ± 4	64 ± 3
SDH (IU/L)	11 ± 0	11 ± 1	10 ± 0
Female			
1	10	10	10
Hematology			
Hematocrit (%)	53.0 ± 0.5	52.7 ± 0.5	48.7 ± 3.9
Hemoglobin (g/dL)	15.6 ± 0.2	15.5 ± 0.1	40.7 ± 5.9 14.4 ± 1.1
Erythrocytes (10 ⁶ /µL)	7.55 ± 0.08	7.50 ± 0.08	6.91 ± 0.56
Mean cell volume (μ^3)	70.1 ± 0.2	70.1 ± 0.1	70.5 ± 0.2
Mean cell hemoglobin (pg)	20.7 ± 0.1	20.6 ± 0.1	21.0 ± 0.2
Mean cell hemoglobin concentration (g/dL)	29.5 ± 0.1	29.4 ± 0.1	29.7 ± 0.2
Leukocytes $(10^3/\mu L)$	4.07 ± 0.20	3.54 ± 0.20	4.95 ± 0.71
Segmented neutrophils $(10^3/\mu L)$	1.49 ± 0.22	1.18 ± 0.09	2.27 ± 0.51
Lymphocytes $(10^3/\mu L)$	2.40 ± 0.15	2.26 ± 0.16	2.57 ± 0.24
Monocytes $(10^3/\mu L)$	0.03 ± 0.02	0.02 ± 0.01	0.03 ± 0.02
Eosinophils $(10^3/\mu L)$	0.11 ± 0.02	0.07 ± 0.02	0.09 ± 0.02
Clinical Chemistry			
Blood urea nitrogen (mg/dL)	12.5 ± 0.3	13.5 ± 0.6	14.7 ± 1.0
Alkaline phosphatase (IU/L)	38 ± 1	34 ± 2	35 ± 4
ALT (IU/L)	29 ± 1	28 ± 1	27 ± 1
AST (IU/L)	50 ± 2	50 ± 2	49 ± 2
SDH (IU/L)	8 ± 0	8 ± 0	8 ± 0

^a Mean ± standard error. Differences from the control group are not significant by Dunn's or Shirley's test. ALT=alanine aminotransferase; AST=aspartate aminotransferase; SDH=sorbitol dehydrogenase

Analysis	0 ppm	6,250 ppm	12,500 ppm	25,000 ppm	50,000 ppm	100,000 ppm
Male				· · · · · · · · · · · · · · · · · · ·	·····	
n	10	10	10	10	10	4
Serum glucose						
(mg/dL)	99 ± 4	102 ± 6	111 ± 9	113 ± 4	116 ± 7	95 ± 8
Total protein (g/dL)	5.9 ± 0.1	6.0 ± 0.1	5.9 ± 0.1	5.9 ± 0.1	5.9 ± 0.1	$5.1 \pm 0.1^{**}$
Albumin (g/dL)	3.2 ± 0.1	3.3 ± 0.1	3.2 ± 0.0	3.2 ± 0.1	3.2 ± 0.1	$2.7 \pm 0.1^{**}$
A/G ratio	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.3 ± 0.1	1.2 ± 0.1
Alkaline phosphatase		· ·				
(IU/L)	40 ± 2	45 ± 2	42 ± 1	45 ± 2	49 ± 1**	22 ± 1
ALT (IU/L)	148 ± 21	156 ± 22	141 ± 30	143 ± 23	120 ± 12	68 ± 5*
AST (IU/L)	129 ± 7	145 ± 12	142 ± 12	126 ± 15	132 ± 11	103 ± 11
LDH (IU/L)	592 ± 30	588 ± 48	543 ± 50	550 ± 51	530 ± 29	573 ± 56
Female						
n	10	10	10	10	10	9
Serum glucose						
(mg/dL)	85 ± 7	78 ± 7	94 ± 10	78 ± 5	$112 \pm 8^*$	99 ± 9
Total protein (g/dL)	5.9 ± 0.1	5.9 ± 0.1	5.9 ± 0.1	5.8 ± 0.1	6.0 ± 0.2	$4.7 \pm 0.1^{**}$
Albumin (g/dL)	3.5 ± 0.1	3.5 ± 0.1	3.6 ± 0.1	3.4 ± 0.1	3.5 ± 0.1	$2.6 \pm 0.1^{**}$
A/G ratio	1.5 ± 0.0	1.5 ± 0.1	1.5 ± 0.0	1.4 ± 0.0	1.4 ± 0.1	$1.2 \pm 0.1^{**}$
Alkaline phosphatase						
(IU/L)	77 ± 2	75 ± 3	$69 \pm 2^*$	76 ± 3	78 ± 3	$21 \pm 1^{**}$
ALT (IU/L)	81 ± 12	87 ± 32	77 ± 16	85 ± 13	97 ± 13	121 ± 20
AST (IU/L)	115 ± 10	141 ± 37	94 ± 7	118 ± 7	130 ± 14	119 ± 10
LDH (IU/L)	418 ± 27	436 ± 27	396 ± 33	431 ± 23	472 ± 38	551 ± 54

Clinical Chemistry Data for Mice in the 13-Week Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt^a

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

and the second

** P≤0.01

.

 ^a Mean ± standard error. A/G ratio=albumin/globulin ratio; ALT=alanine aminotransferase; AST=aspartate aminotransferase; LDH=lactate dehydrogenase

Hematology and Clinical Chemistry

TABLE G4

Hematology and Clinical Chemistry Data for Mice at the 15-Month Interim Evaluations in the 2-Year Feed Studies of 4,4'-Diamino-2,2'-Stilbenesulfonic Acid, Disodium Salt^a

Amalysis	0 ppm	6,250 ppm	12,500 ppm
Male			
1	10	10	10
Hematology			
Hematocrit (%)	38.8 ± 1.5	39.7 ± 0.5	39.6 ± 0.9
Hemoglobin (g/dL)	15.9 ± 0.3	15.7 ± 0.3	15.7 ± 0.4
Erythrocytes $(10^6/\mu L)$	7.91 ± 0.29	8.08 ± 0.12	8.16 ± 0.23
Mean cell volume (μ^3)	49.1 ± 0.2	49.1 ± 0.2	48.4 ± 0.3
Mean cell hemoglobin (pg)	20.3 ± 0.7	19.5 ± 0.2	$19.2 \pm 0.1^{\circ \circ}$
Mean cell hemoglobin concentration (g/dL)	41.4 ± 1.4	39.6 ± 0.3	39.7 ± 0.3
Leukocytes $(10^3/\mu L)$	4.18 ± 0.46	5.84 ± 0.69	5.01 ± 0.41
Segmented neutrophils $(10^3/\mu L)$	0.73 ± 0.07	1.07 ± 0.14	0.85 ± 0.11
Lymphocytes $(10^3/\mu L)$	3.36 ± 0.41	4.51 ± 0.56	4.01 ± 0.37
Monocytes $(10^3/\mu L)$	0.05 ± 0.02	0.12 ± 0.04	0.04 ± 0.02
Eosinophils $(10^3/\mu L)$	0.06 ± 0.02	0.12 ± 0.03	0.10 ± 0.03
Clinical Chemistry			
Blood urea nitrogen (mg/dL)	22.9 ± 2.2^{b}	23.3 ± 1.5	22.1 ± 1.1^{b}
Alkaline phosphatase (IU/L)	38 ± 2	39 ± 1	39 ± 1^{b}
ALT (IU/L)	50 ± 5	46 ± 5	49 ± 10^{b}
AST (IU/L)	75 ± 11	90 ± 14	71 ± 7^{b}
SDH (IU/L)	$43 \pm 6^{\rm b}$	36 ± 2	37 ± 1^{b}
Female			
n	10	10	10
Hematology			
Hematocrit (%)	39.8 ± 0.6	39.3 ± 0.8	39.7 ± 0.7
Hemoglobin (g/dL)	15.6 ± 0.2	15.6 ± 0.3	15.8 ± 0.3
Erythrocytes $(10^6/\mu L)$	8.09 ± 0.11	8.05 ± 0.14	8.02 ± 0.14
Mean cell volume (μ^3)	49.0 ± 0.3	48.9 ± 0.3	49.4 ± 0.2
Mean cell hemoglobin (pg)	19.3 ± 0.1	19.3 ± 0.1	19.7 ± 0.2
Mean cell hemoglobin concentration (g/dL)	39.3 ± 0.2	39.6 ± 0.2	39.7 ± 0.4
Leukocytes $(10^3/\mu L)$	4.49 ± 0.40	4.51 ± 0.61	4.50 ± 0.25
Segmented neutrophils (10 ³ /µL)	0.59 ± 0.07	0.64 ± 0.08	0.71 ± 0.08
Lymphocytes $(10^3/\mu L)$	3.76 ± 0.34	3.69 ± 0.49	3.66 ± 0.23
Monocytes $(10^3/\mu L)$	0.08 ± 0.02	0.07 ± 0.03	0.09 ± 0.02
Eosinophils $(10^3/\mu L)$	0.03 ± 0.02	0.08 ± 0.03	0.04 ± 0.02
Clinical Chemistry			
Blood urea nitrogen (mg/dL)	15.2 ± 0.5	$17.5 \pm 1.0^{\circ}$	$17.2 \pm 0.7^{\circ}$
Alkaline phosphatase (IU/L)	70 ± 5	74 ± 5	64 ± 3
ALT (IU/L)	44 ± 6	45 ± 5	41 ± 3
AST (IU/L)	90 ± 7	94 ± 9	90 ± 9
SDH (IU/L)	29 ± 1	31 ± 2	29 ± 1

° Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

^a Mean ± standard error. ALT=alanine aminotransferase; AST=aspartate aminotransferase; SDH=sorbitol dehydrogenase

^b n=9

in der i bit with a

APPENDIX H CHIEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES

Procuremen	IT AND CHARACTERIZATION	214
Preparation	AND ANALYSIS OF DOSE FORMULATIONS	215
Figure H1	Infrared Absorption Spectrum	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	216
Figure H2	Nuclear Magnetic Resonance Spectrum	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	217
Table H1	Preparation and Storage of Dose Formulations in the Feed Studies	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	218
Table H2	Results of Analysis of Dose Formulations Administered to Rats and Mice	
	in the 14-Day Feed Studies	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	219
Table H3	Results of Analysis of Dose Formulations Administered to Rats and Mice	
	in the 13-Week Feed Studies	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt	220
Table H4	Results of Analysis of Dose Formulations Administered to Rats and Mice	
	in the 2-Year Feed Studies	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt	221
Table HS	Results of Referee Analysis of Dose Formulations in the 2-Year Feed Studies	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt	224

مىيىغ بىيەر بۇردىچى بىلەر بىلەر

CHEMICAL CHARACTERIZATION AND **DOSE FORMULATION STUDIES**

PROCUREMENT AND CHARACTERIZATION

4,4'-Diamino-2,2'-stilbenedisulfonic acid, disodium salt, was obtained from Ciba-Geigy Corporation in one lot (SW-81605), which was used throughout the studies. Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory, Midwest Research Institute (MRI; Kansas City, MO). MRI reports on analyses performed in support of the 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, studies are on file at the National Institute of Environmental Health Sciences.

The chemical, a yellow microcrystalline powder, was identified as 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, by infrared, ultraviolet/visible, and nuclear magnetic resonance (NMR) spectroscopy. All spectra were consistent with those expected for the structure and with the literature spectra of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, as shown in Figures H1 and H2 (Sadtler Standard Spectra). 14 July 14 4

Initially, the bulk chemical was divided into three subbatches. The relative purity of the three subbatches was determined by high-performance liquid chromatography (HPLC) with a μ Bondapak C₁₈ column in a mixture of two solvents: A) 0.005 M tetrabutylammonium hydroxide in water, with pH adjusted to 7.4 with 2% phosphoric acid, and B) 0.005 M tetrabutylammonium hydroxide in methanol, with an equal volume of phosphoric acid as added in solvent A. The solvent ratio was 65:35 (A:B), premixed, and the flow rate was 2.0 mL/minute. Ultraviolet detection was at 254 nm. The three subbatches were determined to have the same purity.

The purity of the bulk chemical was determined by elemental analysis, weight loss on drying, thin-layer chromatography (TLC), and HPLC. TLC was performed on silica gel 60 F-254 plates with two solvent systems: A) phenol:water:acetic acid (75 g:20 mL:10 mL), and B) n-butanol:pyridine:water (33:33:33). Visualization was accomplished with visible light, long-wave (366 nm) ultraviolet light, and a spray of 4-dimethylaminobenzaldehyde (1 g in 25 mL concentrated HCl:75 mL methanol). HPLC was performed with a μ Bondapak C₁₈ column in a mixture of two solvents: A) 0.005 M tetrabutylammonium hydroxide in water, with pH adjusted to 7.4 with 2% phosphoric acid, and B) 0.005 M tetrabutylammonium hydroxide in methanol, with an equal volume of phosphoric acid as added in solvent A, with a ratio of 90:10 (A:B), at a flow rate of 1 mL/minute. Ultraviolet detection was at 340 nm.

Elemental analyses for carbon, hydrogen, nitrogen, sulfur, and chlorine were in agreement with theoretical values for a mixture containing approximately 80% 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, 14% water, and 6% sodium chloride; the analysis for sodium was slightly low. Weight loss on drying indicated $13.6\% \pm 0.02\%$ water. TLC indicated one major spot, one minor spot, and one trace impurity. HPLC indicated one major peak and two unresolved impurities. An additional impurity was observed at a detection wavelength of 254 nm. The combined peak area of the impurities varied with wavelength from 1% to 4% relative to the major peak area. HPLC analysis of another lot which was not used in the studies, K021980, obtained from ICN Pharmaceuticals, Incorporated, K&K Labs Division, indicated the presence of three impurities at a detection wavelength of 254 nm. The third impurity of lot K021980 had a peak area of approximately 40% of the major peak area, and was estimated to be present at 16%, based on cumulative analytical data. The impurity was tentatively identified by mass spectrometry as 4,4'-ethylene-2-dianiline sulfonic acid. In lot SW-81605, the third impurity as found by HPLC had the same retention time as the impurity in lot K021980. The overall purity of lot SW-81605 was determined to be approximately 76%.

Stability studies were performed by HPLC with the system described for the purity analysis but with solvent pH adjusted with 1% phosphoric acid and a ratio of 64:36 (A:B), with acetanilide added as an Chemical Characterization and Dose Formulation

internal standard and ultraviolet detection at 254 nm. The stability studies indicated that 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, when stored protected from light, was stable as a bulk chemical for 2 weeks at temperatures up to 60° C. During the 2-year studies, the stability of the bulk chemical was monitored by the study laboratory using HPLC, with the system above, and with infrared spectrometry. No degradation of the study material was seen throughout the studies.

Preparation and Analysis of Dose Formulations

The dose formulations were prepared by mixing appropriate quantities of 4,4'-diamino-2,2'stilbenedisulfonic acid, disodium salt, with feed in a Patterson-Kelly twin-shell blender (Table H1). Dose formulations were prepared every two weeks during the 2-year studies.

Homogeneity and stability analyses of the dosed feed preparations were conducted by the analytical chemistry laboratory. For the homogeneity analyses, the formulations were extracted with a solution of methanol in a buffer solution of pH 10.0 \pm 0.1, and centrifuged, then further diluted with methanol. The absorbance of the samples was measured versus methanol by ultraviolet spectroscopy at 342 nm. For the stability studies, feed samples were extracted with the same solution used in the homogeneity analyses; the extracts were then mixed with methanol and centrifuged, and were injected into an HPLC system equipped with a μ Bondapak C₁₈ column and a 340 nm detector. The mobile phase was a mixture of two solvents: A) 0.005 M tetrabutylammonium hydroxide in methanol, with pH adjusted to 7.4 with 1% phosphoric acid and B) 0.005 M tetrabutylammonium hydroxide in water, with an equal volume of phosphoric acid added as solvent A, with a ratio of 14:86 A:B, at a flow rate of 1.5 mL/minute. Homogeneity of these formulations was confirmed; stability of the formulation was established for at least 2 weeks when stored in the dark at temperatures up to 5° C. Two 3-week stability studies conducted by the study laboratory using ultraviolet spectroscopy at 342 nm confirmed stability for up to 3 weeks at room temperature.

Periodic analyses of the dose formulations of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, were conducted at the study laboratory and at the analytical chemistry laboratory using spectroscopy at 342 nm. Dose formulations were analyzed once during the 14-day studies and twice during the 13-week studies. During the 14-day and 13-week studies, all dose formulations for rats and mice were within the acceptable range of $\pm 10\%$ of target concentrations (Tables H2 and H3). During the 2-year studies, the dose formulations were analyzed at least once every 8 weeks; 27 of 28 dose formulations for rats and all dose formulations for mice were within the specified 10% of the target concentrations. Results of the dose formulation analyses for the 2-year studies are presented in Table H4. Results of periodic referee analysis performed by the analytical chemistry laboratory indicated good agreement with the results obtained by the study laboratory (Table H5).

Infrared Absorption Spectrum of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt FIGURE H1

4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt, NTP TR 412

ł

217

Chemical Characterization and Dose Formulation

4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt, NTP TR 412

1.1

ألورهوا كالراجع

a Sameral

4 1 3 4 4

S. 61.

TABLE H1

Preparation and Storage of Dose Formulations in the Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

13-Week Studies 14-Day Studies 2-Year Studies Sec. Para 1 · . 1,20 1.1.1.1.1.1 Preparation A premix with 4,4'-diamino-2,2'-Same as 14-day studies, but mixed Same as 14-day studies, but mixed stilbenedisulfonic acid, disodium salt, for 20 minutes with an intensifier for 10 minutes without an intensifier and feed was prepared using a bar. Dose formulations were bar. Dose formulations were mortar and pestle; premix and prepared every 2 weeks. prepared every 2 weeks. remainder of feed were layered into a blender and mixed for 5 minutes with and 10 minutes without an Sec. 1 intensifier bar. Dose formulations Sec. Pres. were prepared weekly. · • : . • **Chemical Lot Number** SW-81605 Same as 14-day studies Same as 14-day studies $\{r \in \xi\}$ **Maximum Storage Time** ... 14 days from date of preparation Same as 14-day studies Same as 14-day studies ber t. **Storage Conditions** In plastic bags in the dark at 1° C In the dark, refrigerated Same as 14-day studies initially; then in plastic bags stored in plastic barrels at approximately 22° C after October 13, 1983 **Study Laboratory** International Research & Same as 14-day studies Same as 14-day studies Development Corporation, Mattawan, MI **Referee Laboratory** Midwest Research Institute, Same as 14-day studies Same as 14-day studies Kansas City, MO

Table H2

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 14-Day Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt

5,930 12,750	-5
	· _5
12 750	-5
12,130	+2
26,050	+4
52,750	+5
98,700	-1
^b 97,200	-3
c 101,500	+2
6.005	-4
	-2
	+1
	+4
52.250	0
00 00	50 6,005 60 12,300 60 25,200 60 52,250 60 99,650

a Ь

in Anti i - Sterati i

H Thinks

Results of duplicate analyses Samples stored in occupied cage until 10 June 1981 Samples stored in animal room until 10 June 1981 с

Date Prepared	Date Analyzed	Target Concentration ^a (ppm)	Determined Concentration ^b (ppm)	% Difference from Target
15 September 1981	17 September 1981	6,250	5,800	
		12,500	11,800	6
		25,000	24,400	-2
		50,000	49,900	0
	· · ·	100,000	97,900	-2
27 October 1981	29 October 1981	6,250	6,130	-2
		12,500	12,300	-2
		25,000	25,300	+1
1		50,000	51,600	+3
		100,000	104,000	+4

TABLE H3 Results of Analysis of Dose Formulations Administered to Rats and Mice

in the 13-Week Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

a Target concentrations: 6.25 mg/g = 6,250 ppm; 12.5 mg/g = 12,500 ppm; 25.0 mg/g = 25,000 ppm; 50.0 mg/g = 50,000 ppm; 100 mg/g = 100,000 ppm. Results of duplicate analyses b

Chemical Characterization and Dose Formulation

Table H4

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

Date Prepared	Date Analyzed	Target Concentration ^a (ppm)	Determined Concentration ^b (ppm)	% Difference from Target
Rats	······································			
24 February 1983	25 February 1983	12,500 25,000	11,800 24,100	6 4
21 April 1983	21 April 1983	12,500 25,000	11,900 23,800	-5 -5
16 June 1983	21 June 1983	12,500 25,000	12,000 23,000	-4 -9
11 August 1983	18 August 1983	12,500 25,000	12,300 23,400	-2 -7
29 September 1983	30 September 1983	12,500 25,000	12,400 23,900	-1 -4
25 November 1983	28 November 1983	12,500 25,000	12,000 25,800	-4 +3
19 January 1984	24 January 1984	12,500 25,000	12,400 25,000	1 0
15 March 1984	15 March 1984	12,500 25,000	12,400 25,000	0
10 May 1984	11 May 1984	12,500 25,000	12,800 24,700	+2 -1
21 June 1984	26 June 1984	12,500 25,000	13,600 25,400	+8 ^c +2
16 August 1984	17 August 1984	12,500 25,000	12,600 25,900	+1 +3
11 October 1984	16 October 1984	12,500 25,000	12,000 25,000	-4 0
6 December 1984	6 December 1984	12,500 25,000	11,100 23,600	-13 ^d -6
10 December 1984 ^e	11 December 1984	12,500	12,200	-2
31 January 1985	31 January 1985	12,500 25,000	12,200 24,000	-2 -4

TABLE H4

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt (continued)

Date Prepared	Date Analyzed	Target Concentration (ppm)	Determined Concentration (ppm)	% Difference from Target
Mice				
14 February 1983	15 February 1983	6,250	6,000 ^f	-4
1110010ally 1900	10 1 001 2019 1900	6,250	6,000 ^g	-4
		6,250	6,100 ^h	-2
		12,500	12,300 ^f	-2
		12,500	12,300 ^g	-2
		12,500	12,200 ^h	-2
28 February 1983	2 March 1983	6,250	6,200	0
-				
11 April 1983	13 April 1983	6,250	6,500	+4
		12,500	11,500	-8
6 June 1983	8 June 1983	6,250	5,900	-6
		12,500	12,300	-2
1 August 1983	2 August 1983	6,250	5,900	-6
1 August 1983	2 August 1965	12,500	12,000	-4
0/ Cantanaban 1092	27 Contorchon 1002	6 260	5,900	-6
26 September 1983	27 September 1983	6,250 12,500	12,200	-2
				· · ·
31 October 1983	2 November 1983	6,250	6,400 ^f	+2
	· · · ·	6,250	6,200 ^g	-2
		6,250	6,300 ^h	0
		12,500	12,700 ^f	+2
		12,500	12,200 ^g	-2
		12,500	12,600 ^h	+1
14 November 1983	16 November 1983	6,250	6,000	-3
		12,500	12,200	-2
9 January 1984	11 January 1984	6,250	6,300	+1
5 January 1904	11 January 1904	12,500	12,800	+2
				:
5 March 1984	8 March 1984	6,250	6,000	-3
5 Marca 1964	o match 1904	12,500	12,000	-4
20 4	1 May 1094	6,250	6,300	+1
30 April 1984	1 May 1984	12,500	12,500	0
		< 05 0	6 200	
25 June 1984	26 June 1984	6,250	6,200	-1
		12,500	13,000	+4
20 August 1984	21 August 1984	6,250	6,000	-4
		12,500	12,000	-4
16 October 1004	16 October 1004	L 750	6,400	+3
15 October 1984	16 October 1984	6,250		+3
		12,500	12,100	-3
11 December 1984	11 December 1984	6,250	6,500	+4
		12,500	12,800	+2

Chemical Characterization and Dose Formulation

Table H4

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Discdium Salt (continued)

^a Target concentrations for rats: 12.5 mg/g = 12,500 ppm; 25.0 mg/g = 25,000 ppm. Target concentrations for mice: 6.25 mg/g = 6,250 ppm; 12.5 mg/g = 12,500 ppm b Double of duplicate products

- ^b Results of duplicate analyses
- ^c Mean of two duplicate analyses conducted on 26 and 27 June 1984

^d Sample remixed

- e Analysis results of remix
- f Sample selection from top of twin-shell blender
- ^g Sample selection from middle of twin-shell blender
- h Sample selection from bottom of twin-shell blender

i		Determined Con	centration (ppm)
Date Mixed	Target Concentration (ppm)	Study Laboratory ^a	Referee Laboratory ^b
28 February 1983	6,250	6,200	6,350 ± 350
1 August 1983	12,500	12,000	$11,500 \pm 100$
5 March 1984	12,500	12,000	$12,700 \pm 200$
15 October 1984	6,250	6,400	$6,160 \pm 70$

TABLE H5 Results of Referee Analysis of Dose Formulations in the 2-Year Feed Studies

of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

а

Results of duplicate analysis Results of triplicate analysis. Mean \pm standard deviation ь.

APPENDIX I FEED AND COMPOUND CONSUMPTION

Table I1	Feed and Compound Consumption by Male Rats in the 2-Year Feed Study	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt	226
Table 12	Feed and Compound Consumption by Female Rats in the 2-Year Feed Study	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt	227
Table I3	Feed and Compound Consumption by Male Mice in the 2-Year Feed Study	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt	228
Table I4	Feed and Compound Consumption by Female Mice in the 2-Year Feed Study	
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt	229

17.2

17.5

15.9

15.6

17.0

16.9

17.1

16.5

15.5

17.5

17.0

17.4

16.6

18.4

16.1

16.1

16.0

15.6

15.6

16.0

15.9

15.9

15.7

15.9

15.7

15.8

15.2

15.6

16.8

1.4

8.3

16.6

0.7

4.4

16.0

0.7

4.4

321

330

349

364

356

393

403

412

424

432

441

447

458

459

459

461

454

456

455

454

448

454

447

455

456

449

437

437

282

402

453

1,342

1,329

1,136

1,073

1,195

1,076

1,058

1,000

1,010

912

967

974

908

880

874

882

855

856

881

887

878

878

876

859

879

872

889

1.529

1,040

85

885

34

. 3.8

8.1

328

21.5

1.001

d Compound Consumption by Male Rats in the 2-Year Feed Study Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt							
0 p	pm		12,500 ppm	·····		25,000 ppm	
Feed (g/day) ^a	Body Weight (g)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day) ^b	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day)
16.5	209	17.1	207	1,031	16.9	205	2,065
16.2	280	16.6	275	753	17.8	274	1,625
16.4	290	17.0	283	753	14.4	279	1,286

326

336

360

377

379

407

423

428

439

450

459

460

471

475

475

473

471

468

466

464

464

468

461

457

457

440

441

435

285

418

462

648

640

538

546

571

483

487

463

423

468

435

457

465

460

416

397

413

414

425

405

428

416

428

422

385

392

458

422

765

158

487

49

422

23

5.5

10.1

20.7

TABLE I1 Feed and of 4,4'-D

16.9

17.2

15.5

16.5

17.3

15.7

16.4

15.8

14.8

16.9

16.0

16.8

17.5

17.5

15.8

15.0

15.6

15.5

15.8

15.1

15.9

15.6

15.8

15.5

14.1

13.8

16.1

14.7

17.0

0.2

1.4

16.2

0.7

4.6

15.6

1.0

6.4

а Grams of feed consumed per animal per day

b Milligrams of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, consumed per day per kilogram body weight

с Standard deviation of weekly means

d Coefficient of variation = (standard deviation/mean) x 100

Week

3

6

7

10

11

14

18

22

26

30

34

38

42

46

50

54

58

62

66

70

74

78

82

86

90

92

94

96

100

102

104

SD^c

 $\mathbf{CV}^{\mathbf{d}}$

Mean

SD

CV

Mean

SD

CV

Weeks 1-13: Mean

Weeks 14-52;

Weeks 53-104:

16.8

18.5

15.6

15.9

16.9

15.0

16.6

16.3

14.9

16.5

16.1

16.5

16.7

16.7

15.4

15.9

15.0

14.0

14.8

15.0

14.5

15.1

14.3

14.4

14.3

12.9

13.6

16.2

16.9

0.9

5.6

16.0

0.7

4.4

14.9

1.1

7.1

330

345

366

382

381

409

426

434

440

450

460

463

472

486

478

479

486

485

473

473

478

469

455

458

455

439

429

434

291

421

Feed and Compound Consumption

TABLE I2

Feed and Compound Consumption by Female Rats in	the 2-Year Feed Study
of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium	Salt

	0 p	pm		12,500 ppm			25,000 ppm		
Week	Feed (g/day) ^a	Body Weight (g)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day) ^b	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day)	
3	11.4	143	11.3	143	989	11.8	144	2,043	
7	11.3	179	11.5	177	816	11.5	173	1,663	
11	11.6	200	11.4	199	718	11.2	194	1,439	
14	10.0	209	10.6	207	644	10.6	203	1,307	
18	10.2	210	10.3	213	605	9.9	208	1,188	
22	11.4	219	10.7	217	617	10.7	215	1,242	
30	11.1	235	11.1	232	597	10.9	226	1,208	
34	10.5	239	10.6	234	565	11.0	230	1,196	
38	10.4	247	10.6	245	540	10.8	239	1,136	
42	11.3	256	11.6	248	584	11.4	243	1,172	
46	11.4	261	11.0	257	537	11.4	251	1,136	
50	11.9	269	11.3	262	540	11.3	259	1,088	
54	12.8	286	12.6	276	573	12.8	272	1,177	
58	12.2	297	12.2	286	534	13.0	280	1,159	
62	12.7	306	12.4	294	528	12.7	291	1,094	
66	11.9	311	11.5	304	473	12.1	297	1,018	
70	10.4	323	11.7	312	470	11.9	304	975	
74	11.6	333	12.0	322	466	12.2	314	974	
78	11.8	336	11.6	331	439	11.7	326	897	
82	11.3	342	11.8	334	442	12.3	326	941	
86	11.5	344	12.0	336	447	12.2	328	930	
92	. 11.9	345	12.8	340	472	12.9	331	971	
96	11.9	347	12.4	344	450	12.8	336	955	
100	11.4	349	12.1	337	451	12.3	334	916	
104	11.6	340	11.8	340	433	10.8	337	804	
Veeks 1	-13:	:							
lean	11.4	174	11.4	173	841	11.5	171	1,715	
D ^c	0.2	•	0.1		137	0.3	•	305	
:V ^d	1.3		0.8		16.3	2.6		17.8	
Veeks 1	4-52:								
lean	10.9	238	10.9	235	581	10.9	230	1,186	
D	0.7		0.4	•	38	0.5		64	
^v	6.0		3.7		6.6	4.3		5.4	
Veeks 5	3-104:								
/lean	11.8	328	12.1	320	475	12.3	314	985	
D	0.6		0.4		43	0.6		105	
V	5.2		3.3		9.0	4.8		10.6	

. 15

a Grams of feed consumed per animal per day
Milligrams of 4,4'-diamino-2,2'-stilbenedisulfonic acid consumed per day per kilogram body weight
c Standard deviation of weekly means
d Coefficient of variation = (standard deviation/mean) x 100

2 21:32

an of Post Spinis

	0 p	Dm		6,250 ppm			12,500 ppm		
Week	Feed (g/day) ^a	Body Weight (g)	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day) ^b	Feed (g/day)	Body Weight (g)	Dose/ Day (mg/kg/day)	
3	3.6	24.1	3.4	24.3	880	3.5	24.2	1,799	
7	3.9	28.0	4.0	28.0	883	3.9	27.0	1,810	
11	3.8	30.1	3.6	30.2	747	3.8	29.8	1,603	
14	3.7	31.5	3.8	30.8	778	4.2	31.4	1,658	
18	3.9	32.0	3.8	32.3	735	3.8	32.5	1,452	
26	3.7	33.3	3.8	33.0	713	3.7	32.5	1,425	
30	3.6	33.7	3.6	33.4	683	3.7	33.3	1,389	'
34	3.6	34.6	3.3	34.7	589	3.8	34.2	1,372	
38	3.6	35.7	3.6	34.9	653	3.8	34.7	1,381	
42	4.7	35.7	4.9	35.1	877	4.8	35.2	1,702	
46	5.5	35.9	5.3	35.5	925	5.0	35.2	1,784	
50	5.1	37.4	5.1	36.3	884	5.3	36.1	1,827	
54	5.2	40.1	5.4	38.8	871	5.5	38.0	1,796	
58	5.7	37.2	5.5	37.9	913	5.7	37.7	1,880	
62	5.0	40.3	5.6	40.3	862	4.9	38.3	1,592	
66	4.3	40.3	4.4	39.8	690	4.5	39.5	1,412	
70	4.5	41.8	4.5	41.5	678	4.5	41.6	1,352	
74	4.1	42.8	4.4	42.1	647	4.5	41.8	1,358	
78	3.7	42.6	4.2	42.3	616	4.2	42.4	1,226	
86	4.7	41.7	4.5	40.9	690	4.6	40.7	1,413	
92	5.3	40.7	5.3	39.8	833	5.8	39.4	1,835	
96	4.7	39.9	4.6	39.5	728	4.8	38.8	1,531	
100	4.8	39.8	4.8	39.3	760	5.0	38.6	1,622	
104	5.5	38.3	5.5	37.8	907	5.6	37.1	1,891	
Weeks 1-	-13:								
Mean	3.8	27.4	3.7	27.5	836	3.7	27.0	1,738	
SD ^c	0.2		0.3		78	0.2		116	
CV ^d	4.6		7.4	~	9.3	6.0		6.7	
Weeks 14							a à a		<i></i>
Mean	4.2	34.4	4.1	34.0	760	4.2	33.9	1,554	
SD	0.7		0.7		115	0.6		186	
CV	17.7		18.0		15.2	14.9		12.0	
Weeks 5				10.0		5.0	20.5	1676	
Mean	4.8	40.5	4.9	40.0	766	5.0	39.5	1576	
SD	0.6		0.5		106	0.5		231	
CV	12.4		10.9		13.8	11.1	۰,	14.6	

TABLE I3
Feed and Compound Consumption by Male Mice in the 2-Year Feed Study
of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

a

Grams of feed consumed per animal per day Milligrams of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, consumed per day per kilogram body weight b

c Standard deviation of weekly means

đ Coefficient of variation = (standard deviation/mean) x 100 Feed and Compound Consumption

Table I4

Feed and Compound Consumption by	Female Mice in the	2-Year Feed Study
of 4,4'-Diamino-2,2'-stillzenedisulfonic	Acid, Discelium Salt	£ The second sec

	ιση Ο	0 ppm 6,250 ppm		12,500 pppm				
Week	Feed (g/day) ²	Body Weight (g)	Feed (g/day)	Body Weight (B)	Dosa/ Day (mg/kg/day) ^b	Feed (g/day)	Body Weight (B)	Dose/ Day (mg/kg/day)
3	3.2	19.0	3.2	18.7	1,080	3.4	18.9	2,276
7	3.4	21.6	3.5	21.0	1,045	3.7	21.3	2,160
11	3.2	23.1	3.2	23.3	867	3.3	23.1	1,808
14	3.5	24.3	3.4	24.1	882	3.4	24.3	1,774
18	3.2	25.6	3.3	26.3	794	3.5	25.1	1,766
22	3.0	26.7	3.1	26.7	715	3.4	25.4	1,661
26	3.2	27.2	3.3	27.3	745	3.3	25.9	1,572
30	3.3	27.5	3.5	27.6	794	3.4	26.3	1,629
34	3.0	29.3	3.2	29.9	673	3.5	28.1	1,537
38	3.3	30.9	3.2	31.4	635	3.4	29.0	1,486
42	2.9	31.5	3.2	32.0	635	3.3	30.1	1,376
46	3.6	29.8	3.6	31.7	710	3.7	30.4	1,508
50	3.4	32.1	3.5	32.6	667	3.5	31.2	1,401
54	3.3	34.5	3.4	34.9	615	3.6	32.6	1,371
58	3.3	33.9	3.4	34.2	618	3.4	32.8	1,286
58 62	3.3 3.4	35.4	3.4	34.2 34.7	690	3.7	32.7	1,412
66	3.5	35.4	3.6	34.7 34.9	639	3.5	33.2	1,315
	3.5					3.4		
70		37.3	3.4	37.7	571		34.4	1,250
74	3.3	37.8	3.5	37.6	582	3.4	35.7	1,195
78	2.9	37.7	2.8	38.0	460	3.3	35.5	1,162
82	3.9	37.3	3.4	38.8	548	3.4	36.0	1,163
86	3.6	37.5	3.5	38.3	567	3.5	35.9	1,221
92	4.1	38.0	4.1	38.1	666	4.6	36.1	1,607
96	3.6	37.9	3.6	38.1	583	3.6	35.7	1,272
100	3.8	37.1	3.9	38.0	641	4.0	36.0	1,382
104	4.1	37.5	4.2	37.3	711	4.2	35.6	1,492
Veeks 1								
/lean	3.2	21.2	3.3	21.0	997	3.5	21.1	2,081
D	0.1		0.2		114	0.2		244
∑V ^d	4.0		4.9		11.5	5.0		11.7
Veeks 1								
Aean	3.2	28.5	3.3	29.0	725	3.4	27.6	1,571
D	0.2		0.2		80	0.1		138
ZV.	7.3		5.0		11.0	3.4		8.8
Veeks 5								
<i>A</i> ean	3.6	36.7	3.6	37.0	607	3.7	34.8	1,317
D	0.3		0.4		66	0.4		132
V	9.4		10.1		10.9	10.8		10.0

8 b

Grams of feed consumed per animal per day Milligrams of 4,4'-diamino-2,2'-stilbenedisulfonic acid, disulfonic salt, consumed per day per kilogram body weight Standard deviation of weekly means Coefficient of variation = (standard deviation/mean) x 100

c

đ

...

APPENDIX J INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH-07 RAT AND MOUSE RATION

2.5 (b) 1

Table J1	Ingredients of NIH-07 Rat and Mouse Ration	232
TABLE J2	Vitamins and Minerals in NIH-07 Rat and Mouse Ration	232
TABLE J3	Nutrient Composition of NIH-07 Rat and Mouse Ration	233
Table J4	Contaminant Levels in NIH-07 Rat and Mouse Ration	234

٦.

Ingredients ^b	Percent by Weight		
Ground #2 yellow shelled corn	24.50	· · · · · · · · · · · · · · · · · · ·	
Ground hard winter wheat	23.00		
Soybean meal (49% protein)	12.00		
Fish meal (60% protein)	10.00		
Wheat middlings	10.00		
Dried skim milk	5.00		
Alfalfa meal (dehydrated, 17% protein)	4.00		
Corn gluten meal (60% protein)	3.00		
Soy oil	2.50		
Dried brewer's yeast	2.00		
Dry molasses	1.50		
Dicalcium phosphate	1.25		
Ground limestone	0.50		
Salt	0.50		
Premixes (vitamin and mineral)	0.25		

TABLE J1 Ingredients of NIH-07 Rat and Mouse Ration^a

a

NCI, 1976; NIH, 1978 Ingredients ground to pass through a U.S. Standard Screen No. 16 before being mixed b

TABLE J2 Vitamins and Minerals in NIH-07 Rat and Mouse Ration^a

	Amount	Source
Vitamins		<u> </u>
Α	5,500,000 IU	Stabilized vitamin A palmitate or acetate
D ₃	4,600,000 IU	D-activated animal sterol
K ₃	2.8 g	Menadione
$d - \alpha$ -Tocopheryl acetate	20,000 IŬ	
Choline	560.0 g	Choline chloride
Folic acid	2.2 g	
Niacin	30.0 g	
d-Pantothenic acid	18.0 g	d-Calcium pantothenate
Riboflavin	3.4 g	•
Thiamine	10.0 g	Thiamine mononitrate
B ₁₂	4,000 µg	
Pyridoxine	1.7 g	Pyridoxine hydrochloride
Biotin	140.0 mg	d-Biotin
Minerals		
Iron	120.0 g	Iron sulfate
Manganese	60.0 g	Manganous oxide
Zinc	16.0 g	Zinc oxide
Copper	4.0 g	Copper sulfate
Iodine	1.4 g	Calcium iodate
Cobalt	0.4 g	Cobalt carbonate

Per ton (2,000 lb) of finished product a

Feed Analyses

TABLE J3

Nutrient Composition of NIH-07 Rat and Mouse Ration

	Mean 🛨 Standard		
Nutrients	IDeviation	Range	Number of Samples
Protein (% by weight)	22.43 ± 0.94	21.0-24.5	25
Crude fat (% by weight)	5.28 ± 0.66	4.2-6.4	25
Crude fiber (% by weight)	3.59 ± 0.32	2.9-4.5	25
sh (% by weight)	6.65 ± 0.28	6.0-7.3	25
mino Acids (% of total diet)			
Arginine	1.308 ± 0.606	1.210-1.390	8
Cystine	0.306 ± 0.084	0.181-0.400	8
Glycine	1.150 ± 0.047	1.060-1.210	8
Histidine	0.576 ± 0.024	0.531-0.607	8
Isoleucine	0.917 ± 0.029	0.8810.944	8
Leucine	1.946 ± 0.055	1.850-2.040	8
Lysine	1.270 ± 0.058	1.200-1.370	8
Methionine	0.448 ± 0.128	0.306-0.699	8
Phenylalanine	0.987 ± 0.140	0.665-1.110	8
Threonine	0.877 ± 0.042	0.824-0.940	8
Tryptophan	0.236 ± 0.176	0.107-0.671	8
Tyrosine	0.676 ± 0.105	0.564-0.794	8
Valine	1.103 ± 0.040	1.050-1.170	8
Essential Fatty Acids (% of total d Linoleic	2.393 ± 0.258	1.830-2.570	7
Linolenic	0.280 ± 0.040	0.210-0.320	7
liamins	0.200 - 0.010	0.210 0.520	,
Vitamin A (IU/kg)	$11,488 \pm 4,665$	4,200-22,000	25
Vitamin D (IU/kg)	$4,450 \pm 1,382$	3,000-6,300	4
α -Tocopherol (ppm)	37.95 ± 9.41	22.50-48.90	8
Thiamine (ppm)	20.12 ± 5.09	12.0-37.0	25
Riboflavin (ppm)	7.92 ± 0.87	6.10-9.00	8
Niacin (ppm)	103.38 ± 26.59	65.0-150.0	8
Pantothenic acid (ppm)	29.54 ± 3.60	23.0-34.0	8
Pyridoxine (ppm)	9.55 ± 3.48	5.60-14.0	8
Folic acid (ppm)	2.25 ± 0.73	1.80-3.70	8
Biotin (ppm)	0.254 ± 0.042	0.19-0.32	8
Vitamin B ₁₂ (ppb)	38.45 ± 22.01	10.6-65.0	8
Choline (ppm)	$3,089 \pm 329$	2,400-3,430	8
Minerals			
Calcium (%) ^a	1.21 ± 0.15	0.87-1.43	24
Phosphorus (%)	0.95 ± 0.06	0.84-1.10	25
Potassium (%)	0.883 ± 0.078	0.772-0.971	6
Chloride (%)	0.526 ± 0.092	0.380-0.635	8
Sodium (%)	0.313 ± 0.390	0.258-0.371	8
Magnesium (%)	0.168 ± 0.010	0.151-0.181	8
Sulfur (%)	0.280 ± 0.064	0.208-0.420	8
Iron (ppm)	361 ± 100	255.0-523.0	8
Manganese (ppm)	91.97 ± 6.01	81.70-99.40	8
Zinc (ppm)	54.72 ± 5.67	46.10-64.50	8
Copper (ppm)	11.06 ± 2.50	8.09-15.39	8
Icdine (ppm)	3.37 ± 0.92	1.52-4.13	6
			8 4
Chromium (ppm) Cobalt (ppm)	1.79 ± 0.36 0.68 ± 0.14	1.04-2.09 0.490-0.780	

^a No measurement was taken for calcium in the lot milled 14 August 1984

Contaminant Levels in NIH-0	7 Kat and Mouse Ration			
Contaminants	Mean ± Standard Deviation ^a	Range	Number of Samples	
······				
Arsenic (ppm)	0.55 ± 0.17	0.18-0.78	25	
Cadmium (ppm) ^b	0.12 ± 0.04	<0.10-0.20	25	
Lead (ppm)	0.54 ± 0.21	0.24-1.00	25	
Mercury (ppm)	< 0.05		25	, .
Selenium (ppm)	0.32 ± 0.06	0.210.46	25	•
Aflatoxins (ppb)	<5.00		25	
Nitrate nitrogen (ppm)	9.86 ± 4.84	2.50-22.0	25	
Nitrite nitrogen (ppm)	0.89 ± 1.40	<0.10-6.10	25	
BHA (ppm) ^c	<2.00		25	
BHT (ppm) ^c	2.48 ± 1.26	<1.00-5.00	25	
Aerobic plate count (CFU/g) ^d	145,468 ± 148,232	6,600420,000	25	
Coliform (MPN/g) ^e	367 ± 683	<3.00-2,400	25	
E. coli (MPN/g) ^f	8.96 ± 29.39	<3.00-150	25	
E. coli (MPN/g) ^g	3.08 ± 0.28	<3.00-4.0	24	
Total nitrosoamines (ppb) ^h	5.67 ± 5.74	0.8030.30	25	
N-Nitrodimethylamine (ppb) ^h	4.98 ± 5.77	0.5030.00	25	
N-Nitrosopyrrolidine (ppb) ^h	0.69 ± 0.71	0.30-2.70	25	
Pesticides (ppm)				
a-BHC ⁱ	<0.01		25	
β-BHC	<0.02		25	
7-BHC	<0.01		25	
S-BHC	<0.01		25	
Heptachlor	<0.01		25	
Aldrin	<0.01		25	
Heptachlor epoxide	<0.01		25	
DDE	<0.01		25	
DDD	<0.01		25	
DDT	<0.01		25	
HCB	<0.01		25	
Mirex	<0.01		25	
Methoxychlor	<0.05	0.06 (26 July 1983)	25	
Dieldrin	<0.01	0.00 (20 521) 1903)	25	
Endrin	< 0.01		25	
	<0.01		25	
Telodrin	< 0.05		25	
Chlordane			25	
Toxaphene	<0.1			
Estimated PCBs	<0.2		25 25	
Ronnel	<0.01 <0.02		25 25	
Ethion			25 25	
Trithion	< 0.05		25 25	
Diazinon	<0.1		25	
Methyl parathion	<0.02		25	
Ethyl parathion	<0.02		25	
Malathion	0.15 ± 0.18	0.05-0.81	25	
Endosulfan I	<0.01		25	
Endosulfan II	<0.01		25	
Endosulfan sulfate	<0.03		25	

TABLE J4 Contaminant Levels in NIH-07 Rat and Mouse Ration

Feed Analyses

Table J4

Contaminant Levels in NIH-07 Rat and Mouse Ration (continued)

- ^a For values less than the limit of detection, the detection limit is given for the mean.
- ^b Four lots (milled on 22 February 1984, 14 March 1984, 9 May 1984, and 13 June 1984) contained 0.20 ppm.
- ^c Sources of contamination: soy oil and fish meal.
- a CFU = colony-forming unit

MPN = most probable number.

^f Mean, SD, and range exclude one large value of 150 MPN/g obtained in the lot milled on 17 October 1984.

۶.

- ^g Mean, SD, and range include the value of the lot milled on 17 October 1984.
- h All values were corrected for percent recovery.
- ¹ BHC is hexachlorocyclohexane or benzene hexachloride.

^j Fourteen lots contained more than 0.05 ppm.

APPENDIX K SENTINEL ANIMAL PROGRAM

Methods Table K1	Murine Virus Antibody Determinations for Rats and Mice	238
	in the 13-Week and 2-Year Feed Studies	o 40
	of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disedium Salt	2490

11

м., ⁴

. .

SENTINEL ANIMAL PROGRAM

METHODS

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via serology on sera from (sentinel) animals in the study rooms. These animals and the study animals are subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds. 「小小小小小小小小小小小 「小小小小小小小小小小小小小小

and the second second

白白云 法教室 有限的现在分词

Rats

During the 13-week studies, samples for viral screening were collected from five diet control animals of each sex. At the termination of the 13-week studies, the animals were bled. Blood collected from each animal was allowed to clot, and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates, Incorporated (Bethesda, MD) for determination of the antibody titers. The following tests were performed:

Tono wing toolo while performed.	• *	for a contra
Method of Analysis	Time of Analysis	
Hemagglutination Inhibition		2 1
PVM (pneumonia virus of mice)	Study termination	na z lini
Sendai	Study termination	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 1
KRV (Kilham rat virus)	Study termination	
H-1 (Toolan's H-1 virus)	Study termination	
		•
Complement Fixation		• • • • • •
RCV (rat corona virus)	Study termination	
SDA (sialodacryoadenitis virus)	Study termination	•

During the 2-year studies, 15 F344/N rate of each sex were selected at the time of randomization and allocation of the animals to the various study groups. Five animals from each designated sentinel group were killed at 6, 12, and 18 months. Samples for viral screening at 24 months were collected from five diet control animals of each sex. Blood collected from each animal was allowed to clot, and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates, Incorporated (Bethesda, MD) for determination of the antibody titers. The following tests were performed:

Method of Analysis	Time of Analysis
Hemagglutination Inhibition	
PVM	6, 12, and 18 months
Sendai	6, 12, and 18 months
KRV	6, 12, 18, and 24 months
H-1	6, 12, 18, and 24 months
ELISA	
RCV/SDA	6, 12, 18, and 24 months
Mycoplasma pulmonis	24 months
Mycoplasma arthritidis	24 months
PVM	24 months

24 months

Test results are presented in Table K1.

Sendai

Mice

During the 2-year studies, 15 $B6C3F_1$ mice of each sex were selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group were killed at 6 and 12 months; three males and four females were killed at 18 months, due to early deaths. Samples for viral screening at 24 months were collected from five diet control animals of each sex. Blood collected from each animal was allowed to clot, and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates, Inc. (Bethesda, MD) for determination of the antibody titers. The following tests were performed:

Hemagglutination Inhibition PVM Reovirus 3 GDVII (mouse encephalomyelitis virus) Polyoma virus Sendai MVM (minute virus of mice) Ectromelia virus (mouse pox) K (papovavirus)

Complement Fixation Mouse adenoma virus LCM (lymphocytic choriomeningitis virus)

ELISA

PVM Reovirus 3 GDVII Sendai Ectromelia virus Mouse adenoma virus Mycoplasma pulmonis Mycoplasma arthritidis MHV (mouse hepatitis virus)

Immunofluorescent Antibody EDIM (epizootic diarrhea of infant mice) MHV

Test results are presented in Table K1.

Time of Analysis

6, 12, and 18 months 6, 12, and 18 months 6 and 12 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, and 18 months 24 months

6, 12, and 18 months 6, 12, 18, and 24 months 24 months

24 months 18 and 24 months 6, 12, 18, and 24 months

24 months 24 months

	Interval	Incidence of Antibody in Sentinel Animals	Positive Serologic Reaction for
13-Week			
Rats	13 weeks	0/10	None positive
2-Year St Rats	tudies 6 months	0/10	None positive
PM163	12 months	0/10	None positive
	18 months	0/10	None positive
	24 months	2/10	KRV
Mice	6 months	2/10	MHV
	12 months	10/10	MHV
	18 months	6/7	MHV
	24 months	2/10 3/10 8/10	MHV <i>M. arthritidis^a</i> EDIM

TABLE K1 Murine Virus Antibody Determinations for Rats and Mice in the 13-Week and 2-Year Feed Studies of 4,4'-Diamino-2,2'-stilbenedisulfonic Acid, Disodium Salt

^a Possible Mycoplasma arthritidis

,

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS PRINTED AS OF AUGUST 1992

TR No.

CHEMICAL

201	2,3,7,8-Tetrachlorodibenzo-p-dioxin (Dermal)
206	1,2-Dibromo-3-chloropropane
207	Cytembena
208	FD & C Yellow No. 6
209	2,3,7,8-Tetrachlorodibenzo-p-dioxin (Gavage)
210	1,2-Dibromoethane
211	C.I. Acid Orange 10
212	Di(2-ethylhexyl)adipate
213	Butyl Benzyl Phthalate
214	Caprolactam
215	Bisphenol A
216	11-Aminoundecanoic Acid
217	Di(2-ethylhexyl)phthalate
219	2,6-Dichloro-p-phenylenediamine
220	C.I. Acid Red 14
221	Locust Bean Gum
222	C.I. Disperse Yellow 3
223	Eugenol
224	Tara Gum
225	D & C Red No. 9
	C.I. Solvent Yellow 14
226	
227	Gum Arabic
228	Vinylidene Chloride
229	Guar Gum
230	Agar
231	Stannous Chloride
232	Pentachloroethane
233	2-Biphenylamine Hydrochloride
234	Allyl Isothiocyanate
235	Zearalenone
236	D-Mannitol
237	1,1,1,2-Tetrachloroethane
238	Ziram
239	Bis(2-chloro-1-methylethyl)ether
240	Propyl Gallate
242	Diallyl Phthalate (Mice)
243	Trichloroethylene (Rats and Mice)
244	Polybrominated Biphenyl Mixture
245	Melamine
246	Chrysotile Asbestos (Hamsters)
247	L-Ascorbic Acid
248	4,4'-Methylenedianiline Dihydrochloride
249	Amosite Asbestos (Hamsters)
250	Benzyl Acetate
251	2,4- & 2,6-Toluene Diisocyanate
252	Geranyl Acetate
253	Allyl Isovalerate
253	•
255	Dichloromethane (Methylene Chloride)
	1,2-Dichlorobenzene Districtul Responsibili Ether
257 259	Diglycidyl Resorcinol Ether
	Ethyl Acrylate
261	Chlorobenzene
263	1,2-Dichloropropane
266	Monuron
267	1,2-Propylene Oxide
269	Telone II [®] (1,3-Dichloropropene)
271	HC Blue No. 1
272	Propylene
273	Trichloroethylene (Four Rat Strains)

TR	No.	CHEMICAL

274	Tris(2-ethylhexyl)phosphate
275	2-Chloroethanol
276	8-Hydroxyquinoline
277	Tremolite
278	2,6-Xylidine
279	Amosite Asbestos
280	Crocidolite Asbestos
281	HC Red No. 3
282	Chlorodibromomethane
284	Diallylphthalate (Rats)
285	C.I. Basic Red 9 Monohydrochloride
287	Dimethyl Hydrogen Phosphite
288	1,3-Butadiene
289	Benzene
291	Isophorone
293	HC Blue No. 2
294	Chlorinated Trisodium Phosphate
295	Chrysotile Asbestos (Rats)
296	Tetrakis(hydroxymethyl) phosphonium Sulfate &
	Tetrakis(hydroxymethyl) phosphonium Chloride
298	Dimethyl Morpholinophosphoramidate
299	C.I. Disperse Blue 1
300	3-Chloro-2-methylpropene
301	o-Phenylphenol
303	4-Vinylcyclohexene
304	Chlorendic Acid
305	Chlorinated Paraffins (C_{23} , 43% chlorine)
306	Dichloromethane (Methylene Chloride)
307	Ephedrine Sulfate
308	Chlorinated Paraffins (C ₁₂ , 60% chlorine)
309	Decabromodiphenyl Oxide
310	Marine Diesel Fuel and JP-5 Navy Fuel
311	Tetrachloroethylene (Inhalation)
312	n-Butyl Chloride
313	Mirex
314	Methyl Methacrylate
315	Oxytetracycline Hydrochloride
316	1-Chloro-2-methylpropene
317	Chlorpheniramine Maleate
318	Ampicillin Trihydrate
319	1,4-Dichlorobenzene
320	Rotenone
321	Bromodichloromethane Bhomulanhuing, Hudrochlorida
322	Phenylephrine Hydrochloride Dimethyl Methylphosphonate
323 324	
	Boric Acid
325	Pentachloronitrobenzene Ethylang Orido
326 327	Ethylene Oxide
328	Xylenes (Mixed) Methyl Carbamate
328 329	Methyl Carbamate 1,2-Epoxybutane
329 330	4-Hexylresorcinol
330 331	Malonaldehyde, Sodium Salt
332	2-Mercaptobenzothiazole
333	N-Phenyl-2-naphthylamine
333 334	2-Amino-5-nitrophenol
335	C.I. Acid Orange 3
335	C.I. Actu Olange 5 Denicillin VK

Penicillin VK Nitrofurazone 336 337 ·

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS PRINTED AS OF AUGUST 1992

TR No.	CHIEMICAL	TIR No.	CHIEMIICAL
338	Erythromycin Stearate	371	Tolvene
339	2-Amino-4-nitrophenol	372	3,3'-Dimethonybenzidine Dihydrochloride
340	Indinated Glycerol	373	Succinic Anhydride
341	Nitrofurantoin	374	Glycidol
342	Dichlorvos	375	Vinyl Toluene
343	Benzyl Alcohol	376	Allyl Glycidyl Ether
344	Tetracycline Hydrochloride	377	o-Chlorobenzalmalononitrile
345	Rotarsone	378	Benzaldehyde
346	Chloroethane	379	2-Chloroacetophenone
347	D-Limonene	380	Epinephrine Hydrochloride
348	a-Methyldopa Sesquihydrate	381	d-Carvone .
349	Pentachlorophenol	382	Furfural
350	Tribromomethane	385	Methyl Bromide
351	p-Chloroaniline Hydrochloride	386	Tetranitromethane
352	N-Methylolacrylamide	387	Amphetamine Sulfate
353	2,4-Dichlorophenol	388	Ethylene Thiourea
354	Dimethoxane	389	Sodium Azide
355	Diphenhydramine Hydrochloride	390	3,3'-Dimethylbenzidine Dihydrochloride
356	Furcaemide	391	Tris(2-chloroethyl) Phosphate
357	Hydrochlorothiazide	392	Chlorinated Water and Chloraminated Water
358	Ochratoxin A	393	Sodium Fluoride
359	8-Methoxyp3oralen	395	Probenecid
360	N,N-Dimethylaniline	395	Monechloreacetic Acid
361	Hexachlorcethane	399	Titanocene Dichloride
362	4-Vinyl-1-Cyclohexene Diepoxide	401	2,4-Diaminophenol Dihydrochloride
363	Bromcethane (Ethyl Bromide)	403	Resorcinol
364	Rhodamine 6G (C.I. Basic Red 1)	405	C.I. Acid Red 114
365	Pentaerythritol Tetranitrate	405	γ-Butyrolactone
366	Hydroquinone	407	C.I. Pigment Red 3
367	Phenylbutazone	410	Naphthalene
368	Nalidizic Acid	415	Polysorbate 80
369	Alpha-Methylbenzyl Alcohol	419	HC Yellow 4
370	Benzofuran		

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the Public Health Service, National Toxicology Program, Central Data Management, P.O. Box 12233, MD A0-01, Research Triangle Park, NC 27709

DEPARTMENT OF HEALTH & HUMAN SERVICES

Public Health Service National Toxicology Program Central Data Management P.O. Box 12233, MD A0-01 Research Triangle Park, NC 27709

> Official Business Penalty for Private Use - \$300

SPECIAL FOURTH-CLASS RATE POSTAGE AND FEES PAID DHHS/NIH Permit No. G-763

NIH Publication No. 92-3143 August 1992