NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 414

TOXICOLOGY AND CARCINOGENESIS

STUIDIES OF PENTACHILOROANISOLIE

(CAS NO. 1825-21-4)

IN F344/N RATS AND B6C3F, MICE

(GAVAGE STUDIES)

U.S. IDEPARTMIENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

FOREWORD

The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation.

ŀ

ţ

Į.

The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease.

The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. The prechronic and chronic studies were conducted in compliance with Food and Drug Administration (FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjected to retrospective quality assurance audits before being presented for public review.

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection *per se* is not an indicator of a chemical's carcinogenic potential.

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge while supplies last from the NTP Central Data Management, NIEHS, P.O. Box 12233, MD A0-01, Research Triangle Park, NC 27709 (919-541-1371).

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF PENTACHLOROANISOLE

(CAS NO. 1825-21-4)

IN F344/N RATS AND B6C3F1 MICE

(GAVAGE STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. BOX 12233 Research Triangle Park, NC 27709

April 1993

NTP TR 414

NIH Publication No. 93-3145

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

CONTRIBUTORS

National Toxicology Program Evaluated and interpreted results and reported findings

C.J. Alden, Ph.D.
G.A. Boorman, D.V.M., Ph.D.
D.A. Bridge, B.S.
S.L. Eustis, D.V.M., Ph.D.
T.J. Goehl, Ph.D.
R.A. Griesemer, D.V.M., Ph.D.
J.R. Hailey, D.V.M.
J.K. Haseman, Ph.D.
R.D. Irwin, Ph.D.
M.M. McDonald, D.V.M., Ph.D.
G.N. Rao, D.V.M., Ph.D.
D.B. Walters, Ph.D.
K.L. Witt, M.S., Oak Ridge Associated Universities

Southern Research Institute Conducted studies, evaluated pathology findings

J.D. Prejean, Ph.D., Principal Investigator D.R. Farnell, D.V.M., Ph.D. J.E. Heath, D.V.M. C. Lindamood, III, Ph.D.

Experimental Pathology Laboratories, Inc. Provided pathology quality assurance

J.F. Hardisty, D.V.M., Principal Investigator K. Yoshitomi, D.V.M., Ph.D.

Integrated Laboratory Systems Prepared quality assurance audits

J.C. Bhandari, D.V.M., Ph.D., Principal Investigator

NTP Pathology Working Group Evaluated slides, prepared pathology report on rats (14 June 1990)

W.C. Hall, V.M.D., Ph.D., Chair Pathology Associates, Inc. J. Cullen, V.M.D., Ph.D. North Carolina State University S. Imoto, D.V.M., Ph.D. Shin Nippon Biomedical Laboratories, Japan M.P. Jokinen, D.V.M. National Toxicology Program J. Mahler, D.V.M. (observer) National Toxicology Program M.M. McDonald, D.V.M., Ph.D. National Toxicology Program R.C. Sills, D.V.M., Ph.D. Michigan Sate University K. Yoshitomi, D.V.M., Ph.D. Experimental Pathology Laboratories, Inc.

Evaluated slides, prepared pathology report on mice (12 July 1990)

J.C. Seely, D.V.M., Chair PATHCO, Inc. J. Cullen, V.M.D., Ph.D. North Carolina State University E. Gaillard, D.V.M., M.S. Charles River Laboratories, Inc. M.P. Jokinen, D.V.M. National Toxicology Program M.M. McDonald, D.V.M., Ph.D. National Toxicology Program A. Pinter, M.D., Ph.D National Institute of Hygiene, Hungary J.A. Popp, D.V.M., Ph.D. CIIT K. Yoshitomi, D.V.M., Ph.D. Experimental Pathology Laboratories, Inc.

Biotechnical Services, Inc. Prepared Technical Report

D.D. Lambright, Ph.D., Principal Investigator G.F. Corley, D.V.M. P.A. Fink, D.A. M.C. Hirrel, Ph.D. K.D. Mencer, B.A.

CONTENTS

ABSTRACT		5
EXPLANATION	OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	11
TECHNICAL R	EPORTS REVIEW SUBCOMMITTEE	12
SUMMARY OF	TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS	13
INTRODUCTIO	DN	15
MATERIALS AI	ND METHODS	21
RESULTS		31
DISCUSSION A	ND CONCLUSIONS	61
REFERENCES	•••••	67
Appendix A	Summary of Lesions in Male Rats in the 2-Year Gavage Study of Pentachloroanisole	77
Appendix B	Summary of Lesions in Female Rats in the 2-Year Gavage Study of Pentachloroanisole	119
Appendix C	Summary of Lesions in Male Mice in the 2-Year Gavage Study of Pentachloroanisole	151
Appendix D	Summary of Lesions in Female Mice in the 2-Year Gavage Study of Pentachloroanisole	185
Appendix E	Genetic Toxicology	215
Appendix F	Organ Weights and Organ-Weight-to-Body-Weight Ratios	227
Appendix G	Hematology and Clinical Chemistry	235
Appendix H	Toxicokinetics of Pentachloroanisole in F344 Rats and B6C3F ₁ Mice	247
Appendix I	Chemical Characterization and Dose Formulation Studies	259
Appendix J	Ingredients, Nutrient Composition, and Contaminant Levels in NIH-07 Rat and Mouse Ration	27 1
Appendix K	Sentinel Animal Program	275

ABSTRACT

PENTACHLOROANISOLE

CAS No. 1825-21-4

Chemical Formula: C₇H₃Cl₅O Molecular Weight: 280.5

Synonyms: 2,3,4,5,6-pentachloroanisole; methyl pentachlorophenate; methyl pentachlorophenyl ether; o-methylpentachlorophenol; pentachlorophenyl methyl ether

Pentachloroanisole is a chlorinated aromatic compound which is widely distributed at low levels in the environment and in food products. Formation of pentachloroanisole in the environment may result from the degradation of structurally related, commercially important, ubiquitous chlorinated aromatic compounds such as pentachlorophenol and pentachloronitrobenzene which are known rodent toxins or carcinogens. Toxicology and carcinogenesis studies were conducted by administering pentachloroanisole (>99% pure) in corn oil by gavage to groups of male and female F344/N rats and B6C3F1 mice for 16 days, 13 weeks, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium strains, mouse lymphoma cells, and Chinese hamster ovary cells.

16-DAY STUDIES IN RATS

Groups of five male and five female F344/N rats were administered pentachloroanisole in corn oil by gavage once per day, 5 days per week, for 16 days at doses of 0, 100, 125, 150, 175, or 200 mg/kg body weight. Deaths occurred during days 2 and 3 in rats receiving doses of 125 mg/kg or greater; these deaths were considered directly related to pentachloroanisole administration. No biologically significant changes in mean body weight gains or final body weights were noted in the 100 mg/kg groups of rats. Because of the high early mortality rate, valid comparisons of body weight differences in other dose groups could not be made. Inactivity was noted in all dose groups. Rats administered doses of 125 mg/kg or greater also exhibited dyspnea.

16-DAY STUDIES IN MICE

Groups of five male and five female $B6C3F_1$ mice were administered pentachloroanisole in corn oil by gavage once per day, 5 days per week, for 16 days at doses of 0, 100, 175, 250, 325, or 400 mg/kg. Deaths occurred during days 2 and 3 in mice receiving doses of 175 mg/kg or greater; these deaths were considered directly related to chemical administration. No biologically significant changes in mean body weight gains or final body weights were noted in 100 mg/kg males or 100 or 175 mg/kg females. Because of the high early mortality rate, valid comparisons of body weight differences in other dose groups could not be made. Inactivity was noted in dosed mice.

13-WEEK STUDIES IN RATS

Groups of 10 male and 10 female rats were administered pentachloroanisole in corn oil by gavage once per day, 5 days per week, for 13 weeks at doses of 0, 40, 80, 120, 140, or 180 mg/kg body weight. Most rats receiving doses of 120 mg/kg or greater died during the first week of the study as a direct result of pentachloroanisole administration.

Mean body weight gains of males administered 40 or 80 mg/kg and of females administered 40, 80, or 120 mg/kg pentachloroanisole were significantly lower than those of the controls. Most dosed rats exhibited temporary inactivity for several hours after dosing. Relative liver and kidney weights of males administered 40 or 80 mg/kg and absolute and/or relative liver and kidney weights of females administered 40 to 120 mg/kg were significantly greater than those of the controls.

Lesions observed in males administered 80 mg/kg or more and in females administered 120 mg/kg or more included pulmonary congestion, hemorrhage, and/or edema, meningeal congestion, and hepatocellular necrosis, glycogen depletion, and degeneration of biliary epithelium in the liver.

13-WEEK STUDIES IN MICE

Groups of 10 male and 10 female mice were administered pentachloroanisole in corn oil by gavage once per day, 5 days per week, for 13 weeks at doses of 0, 40, 80, 120, 140, or 180 mg/kg body weight. Most mice administered doses of 120 mg/kg or higher died during the first week of the study as a direct result of pentachloroanisole administration.

Mean body weight gains of females administered 40 to 140 mg/kg were significantly greater than that of the controls, but those of dosed males were similar to that of the controls. Most dosed mice exhibited temporary inactivity for several hours after dosing. Absolute and relative liver weights of males administered 80 mg/kg, absolute and relative liver weights of females administered 40 to 180 mg/kg, and absolute and relative kidney weights of females administered 80 to 180 mg/kg pentachloroanisole were also significantly greater than those of the controls.

Lesions observed in males administered 40 mg/kg or more and in females administered 80 mg/kg or more included pulmonary congestion and/or edema, adrenal congestion, lymphoid depletion of lymph nodes and thymus, hepatocellular cytomegaly and karyomegaly, and pigment accumulation in hepatocytes and Kupffer cells.

2-YEAR STUDIES IN RATS

Based on the chemical-related mortality and liver lesions seen in the 16-day and 13-week studies, doses selected for the 2-year studies were 0, 10, 20, and 40 mg/kg for males and 0, 20, and 40 mg/kg for females. Groups of 70 male and 70 female rats were administered pentachloroanisole in corn oil by gavage 5 days per week for up to 2 years. At 9 and 15 months, up to 10 animals per group were selected for interim evaluations.

Survival, Body Weights, and Clinical Findings The survival of high-dose males was significantly decreased (vehicle control, 24/50; low-dose, 20/50; mid-dose, 24/50; high-dose, 14/50); most deaths in the high-dose group occurred at or before week 16. The majority of deaths in the mid- and high-dose groups may have been due to pentachloroanisole-related hyperthermia. The survival of dosed females was greater than that of the controls (29/50, 35/50, 44/50). Final mean body weights of mid- and high-dose males were 7% and 10% lower than that of the controls; final mean body weight of high-dose females was 11% lower than that of the controls. Final mean body weights of other dose groups were similar to those of the vehicle controls. At the 9-month interim evaluation, mean rectal temperature of males administered 40 mg/kg was significantly greater than that of the controls. Relative liver and kidney weights of males and females administered 20 or 40 mg/kg were significantly greater than those of controls. At the 15-month interim evaluation, relative liver weights of dosed females and absolute liver weights of 40 mg/kg females were significantly greater than those of the controls, as were relative liver and kidney weights of 40 mg/kg males.

Pathology Findings

In the 2-year studies, administration of pentachloroanisole to males was associated with significant increases in the incidences of benign adrenal medulla pheochromocytomas. The incidence of benign adrenal medulla pheochromocytomas was marginally increased in high-dose females and slightly exceeded the range of the historical controls. Incidences of adrenal medulla hyperplasia were increased in dosed female rats, but not in dosed males. The incidences of pancreatic adenomas and focal hyperplasia were decreased in dosed males. The incidences of mammary gland fibroadenomas and uterine stromal polyps and sarcomas (combined) were decreased in highdose females. Treatment-related increased incidences of intracytoplasmic pigmentation occurred in renal tubule epithelium, olfactory epithelium, and hepatocytes of males and females. Congestion and hemorrhage of the lungs, lymph nodes, thymus, adrenal cortex, and meninges, as well as hepatocellular centrilobular necrosis occurred almost exclusively in mid- and high-dose males that died or were killed moribund before the end of the studies.

2-Year Studies in Mice

Based on the chemical-related mortality and liver lesions seen in the 16-day and 13-week studies, doses selected for the 2-year studies were 0, 20, and 40 mg/kg. Groups of 70 male and 70 female mice were administered pentachloroanisole in corn oil by gavage 5 days per week for up to 2 years. At 9 and 15 months, up to 10 animals per group were selected for interim evaluations.

Survival, Body Weights, and Clinical Findings The survival of dosed males was similar to that of the controls; survival of high-dose females was lower than that of the controls (24/50, 25/50, 16/50). The decreased survival of the high-dose females was attributed primarily to ovarian abscesses which were observed after moribund sacrifice. At the 9-month interim evaluation, the mean body weight of males administered 40 mg/kg was significantly lower than that of the vehicle controls. Absolute and relative liver weights of females and the relative liver weight of males administered 409mg/kg were significantly greater than those of the controls. Final mean body weights of low- and high-dose males were 11% and 17% lower than that of the controls. Final mean body weights of dosed females were similar to that of the controls. There were no clinical findings attributed to pentachloroanisole administration.

Pathology Findings

Centrilobular hepatocyte cytomegaly and pigment accumulation in hepatocytes and Kupffer cells were

seen in dosed mice, but not in controls at the 9- and 15-month interim evaluations. In the 2-year studies, the incidence of benign pheochromocytomas was significantly increased in high-dose males. Dosed males also exhibited increased incidences of adrenal medulla hyperplasia and hypertrophy. The incidences of hemangiosarcomas of the liver were significantly increased in dosed males. Increased incidences of hepatocellular cytologic alteration, biliary tract hyperplasia, and Kupffer cell pigmentation occurred in dosed males and females; the incidences of mixed cell foci were also increased in dosed males. Cytologic alteration encompassed hepatocellular cytomegaly, karyomegaly, hepatocyte degeneration and necrosis, and multinucleated giant cell formation, and was considered an advanced stage of the pathologic process observed at 13 weeks.

GENETIC TOXICOLOGY

Pentachloroanisole was mutagenic in Salmonella typhimurium strains TA98 and TA1537 in the absence but not in the presence of exogenous metabolic activation (S9). No clear mutagenic activity was observed in TA100 with hamster S9, without S9, or in TA1535 with or without S9. An equivocal response was observed in TA100 with rat S9. Pentachloroanisole was positive for induction of trifluorothymidine resistance in mouse lymphoma L5178Y cells with S9; the response observed without S9 was weak and inconsistent. In cytogenetic tests with Chinese hamster ovary cells, pentachloroanisole induced sister chromatid exchanges, but not chromosomal aberrations, with and without S9.

TOXICOKINETICS

Male and female F344/N rats and B6C3F₁ mice were administered 10, 20, or 40 mg/kg pentachloroanisole by gavage or 10 mg/kg pentachloroanisole intravenously (Appendix H). A rapid elimination of pentachloroanisole and a rapid formation of its main metabolite, pentachlorophenol, were seen in both species after an intravenous or an oral dose of pentachloroanisole. The area under the concentration-versus-time curve of pentachloroanisole increased with dosage in each species but the dose proportionality was lost above 20 mg/kg. No sex-related differences were found in the rate of absorption of pentachloroanisole from the GI tract, in the area under the concentration-versus-time curve, or in the overall rate elimination of pentachloroanisole. However, in female rats the area

under the concentration-versus-time curve of pentachlorophenol was significantly larger than in male rats. No such difference was observed in mice.

CONCLUSIONS

Under the conditions of these 2-year gavage studies, there was some evidence of carcinogenic activity* of pentachloroanisole in male F344/N rats based on increased incidences of benign pheochromocytomas of the adrenal medulla. There was equivocal evidence of carcinogenic activity of pentachloroanisole in female F344/N rats based on marginally increased incidences of benign pheochromocytomas of the adrenal medulla. There was some evidence of carcinogenic activity of pentachloroanisole in male B6C3F₁ mice based on increased incidences of benign pheochromocytomas of the adrenal medulla and hemangiosarcomas of the liver. There was no evidence of carcinogenic activity of pentachloroanisole in female B6C3F₁ mice given doses of 20 or 40 mg/kg. Pentachloroanisole administration was associated with increased incidences of adrenal medulla hyperplasia in female rats and increased incidences of pigmentation in the renal tubule epithelium, olfactory epithelium, and hepatocytes of male and female rats. In addition, decreased incidences of pancreatic adenomas and focal hyperplasia in male rats and decreased incidences of mammary gland fibroadenomas and uterine stromal polyps and sarcomas (combined) in female rats were observed. Hyperthermia-related lesions in male rats receiving 20 or 40 mg/kg were considered indirectly related to pentachloroanisole administration.

Pentachloroanisole administration was associated with increased incidences of adrenal medulla hyperplasia and hypertrophy and hepatocellular mixed cell foci in male mice. In male and female mice, nonneoplastic liver lesions associated with pentachloroanisole administration included hepatocellular cytologic alteration, Kupffer cell pigmentation, biliary tract hyperplasia, and subacute inflammation.

^{*} Explanation of Levels of Evidence of Carcinogenic Activity is on page 11. A summary of Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appears on page 13.

Variable	Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female B6C3F ₁ Mice
Doses	0, 10, 20, or 40 mg/kg in corn oil by gavage	0, 20, or 40 mg/kg in corn oil by gavage	0, 20, or 40 mg/kg in corn oil by gavage	0, 20, or 40 mg/kg in corn oil by gavage
Body weights	Mid- and high-dose groups lower than vehicle controls	High-dose group lower than vehicle controls	Dosed groups lower than vehicle controls	Dosed groups simi- lar to vehicle con- trols
2-Year survival rates	24/50, 20/50, 24/50, 14/50	29/50, 35/50, 44/50	30/50, 27/50, 28/50	24/50, 25/50, 16/50
Nonneoplastic effects	Pigmentation: renal tubule epithelium (1/50, 23/50, 22/50, 16/50); olfactory epithelium (0/50, 29/50, 40/50, 25/50); hepatocytes (0/50, 0/50, 1/50, 4/50)	Adrenal medulla: hyperplasia (10/50, 18/50, 25/50) Pigmentation: renal tubule epithelium (0/50, 43/50, 45/50); olfactory epithelium (0/49, 46/50, 50/50); hepatocytes (0/50, 18/50, 24/50)	Adrenal medulla: hyperplasia (0/50, 13/50, 29/48); hypertrophy (0/50, 3/50, 36/48) Liver: cytologic alteration (0/50, 50/50, 50/50); Kupf- fer cell pigmentation (1/50, 50/50, 50/50); biliary tract hyper- plasia (0/50, 47/50, 48/50); subacute inflammation (0/50, 49/50, 49/50); mixed cell foci (9/50, 15/50, 27/50)	Liver: cytologic alteration (1/50, 34/50, 39/50); Kupf- fer cell pigmentation (0/50, 37/50, 48/50); biliary tract hyper- plasia (1/50, 16/50, 30/50); subacute inflammation (1/50, 28/50, 32/50)
Neoplastic effects	Adrenal medulla: benign pheochromo- cytoma (12/50, 17/50, 23/50, 15/48)	None	Adrenal medulla: benign pheochromo- cytoma (0/50, 4/50, 7/48) Liver: hemangiosar- coma (2/50, 8/50, 10/50)	None
Uncertain findings	None	Adrenal medulla: benign pheochromo- cytoma (3/50, 7/50, 9/50)	None	None
Decreased incidences	Pancreas: adenoma (12/49, 1/49, 1/49, 0/50); hyperplasia (19/49, 17/49, 8/49, 1/50)	Mammary gland: fibroadenoma (19/50, 10/50, 7/50) Uterus: stromal polyp (13/50, 13/50, 7/50); stromal sarco- ma (2/50, 1/50, 0/50); stromal polyp or sarcoma (15/50, 14/50, 7/50)	None	None

Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of Pentachloroanisole

r'

ς.

Variable	Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female B6C3F ₁ Mice
Level of evidence of carcinogenic activity	Some evidence	Equivocal evidence	Some evidence	No evidence
Genetic toxicology Salmonella typhimurium go	ene mutation:	Positive without S9 in strains TA98 Equivocal with rat S9 in strain TA10 Negative with and without S9 in stra	00	
L5178Y mouse lymphoma	mutations:	Positive with S9		
Sister chromatid exchange Chinese hamster ovar		Positive with and without S9		
Chromosomal aberrations Chinese hamster ovar		Negative with and without S9		· .

Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of Pentachloroanisole (continued)

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence, including animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results (clear evidence and some evidence); one category for uncertain findings (equivocal evidence); one category for no observable effects (no evidence); and one category for experiments that cannot be evaluated because of major flaws (inadequate study). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Report series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following five categories is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to potency or mechanism.

- Clear evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemically related.
- No evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate study of carcinogenic activity is demonstrated by studies that, because of major qualitative or quantitative limitations, cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. Such consideration should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- · adequacy of the experimental design and conduct;
- occurrence of common versus uncommon neoplasia;
- progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- combining benign and malignant tumor incidence known or thought to represent stages of progression in the same organ or tissue;
- latency in tumor induction;
- multiplicity in site-specific neoplasia;
- metastases;
- supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- presence or absence of dose relationships;
- statistical significance of the observed tumor increase;
- · concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- survival-adjusted analyses and false positive or false negative concerns;
- structure-activity correlations; and
- in some cases, genetic toxicology.

NATIONAL TOXICOLOGY PROGRAM BOARD OF SCIENTIFIC COUNSELORS TECHNICAL REPORTS REVIEW SUBCOMMITTEE

The members of the Technical Reports Review Subcommittee who evaluated the draft NTP Technical Report on pentachloroanisole on November 21, 1991, are listed below. Subcommittee members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, subcommittee members have five major responsibilities in reviewing NTP studies:

- · to ascertain that all relevant literature data have been adequately cited and interpreted,
- · to determine if the design and conditions of the NTP studies were appropriate,
- · to ensure that the Technical Report presents the experimental results and conclusions fully and clearly,
- to judge the significance of the experimental results by scientific criteria, and
- to assess the evaluation of the evidence of carcinogenic activity and other observed toxic responses.

Curtis D. Klaassen, Ph.D., Chair Department of Pharmacology and Toxicology University of Kansas Medical Center Kansas City, KS

Paul T. Bailey, Ph.D. Toxicology Division Mobil Oil Corporation Princeton, NJ

- Louis S. Beliczky, M.S., M.P.H. Department of Industrial Hygiene United Rubber Workers International Union Akron, OH
- Gary P. Carlson, Ph.D. Department of Pharmacology and Toxicology Purdue University West Lafayette, IN
- Kowetha A. Davidson, Ph.D Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, TN
- Harold Davis, D.V.M., Ph.D.* School of Aerospace Medicine Brooks Air Force Base, TX
- Robert H. Garman, D.V.M., Principal Reviewer Consultants in Veterinary Pathology Murrysville, PA

*Did not attend

Jay I. Goodman, Ph.D. Department of Pharmacology and Toxicology Michigan State University East Lansing, MI

David W. Hayden, D.V.M., Ph.D. Department of Veterinary Pathobiology College of Veterinary Medicine University of Minnesota St. Paul, MN

Daniel S. Longnecker, M.D.* Department of Pathology Dartmouth Medical School Lebanon, NH

- Barbara McKnight, Ph.D., Principal Reviewer Department of Biostatistics University of Washington Seattle, WA
- Ellen K. Silbergeld, Ph.D.* University of Maryland Medical School Baltimore, MD
- Matthew J. van Zwieten, D.V.M., Ph.D. Department of Safety Assessment Merck, Sharpe, & Dohme Research Laboratories West Point, PA
- Lauren Zeise, Ph.D., Principal Reviewer California Department of Health Services/RCHAS Berkeley, CA

SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS

On November 21, 1991, the draft Technical Report on the toxicology and carcinogenesis studies of pentachloroanisole received public review by the National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, NC.

Dr. R.D. Irwin, NIEHS, introduced the toxicology and carcinogenesis studies of pentachloroanisole by discussing the rationale for study, describing the experimental design, reporting on the survival and body weight effects, and commenting on compound related neoplasms and nonneoplastic lesions in rats and mice. He reported on pharmacokinetic studies in rats with pentachloroanisole and a major metabolite, pentachlorophenol, and concluded from the results that differences between male and female rats in toxic response to the chemical were not due to differences in absorption or bioavailability. The proposed conclusions were some evidence of carcinogenic activity for male F344/N rats, equivocal evidence of carcinogenic activity for female F344/N rats, some evidence of carcinogenic activity for male B6C3F₁ mice and no evidence of carcinogenic activity for female B6C3 F_1 mice.

Dr. R.H. Garman, a principal reviewer, agreed with the proposed conclusions. He asked for clarification of the histomorphologic criteria for diagnostic terminology used in designating malignancy of adrenal medullary lesions.

Dr. L. Zeise, the second principal reviewer, agreed with the proposed conclusions. However, she asked for discussion on whether the level of evidence in female rats should be elevated to *some evidence* based on an incidence of adrenal neoplasms in the 40 mg/kg group. The incidence was above the historical control range and was supported by increased incidences of these neoplasms in male rats and male mice. She suggested that a statement be added to the report indicating that the incidence of pheochromocytomas in 40 mg/kg female rats fell outside that of historical controls. Dr. J. K. Haseman, NIEHS, noted that the increased incidence of adrenal neoplasms in dosed female rats was not significant, reflecting in part that survival in the high-dose groups was increased compared to concurrent and historical control survival rates. Dr. Zeise requested that information on the pharmacokinetic studies be added to the report.

Dr. B. McKnight, the third principal reviewer, agreed with the proposed conclusions for male and female rats and male mice but thought the conclusion for female mice should be changed to equivocal evidence based on the dose-related marginally increased incidence of malignant lymphoma supported by a statistically significant trend test. Dr. Irwin commented that since these are common neoplasms, the historical rates are rather variable. The high dose rate, being slightly higher than average, is well within the historical range and therefore not considered to be chemical related. Dr. McKnight said that because the 13 accidental deaths among male rats were indirectly associated with treatment, they should be counted as deaths rather than censored observations. Dr. Haseman said that a second set of survival curves adjusted for the relatively small number of accidental deaths would likely be almost indistinguishable from the first set.

Dr. Garman moved that the Technical Report on pentachloroanisole be accepted with the revisions discussed and with the conclusions as written, some evidence of carcinogenic activity for male rats and male mice, equivocal evidence of carcinogenic activity for female rats, and no evidence of carcinogenic activity for female mice. Dr. D.W. Hayden seconded the motion. Dr. McKnight offered an amendment that the level of evidence for female mice be changed to equivocal evidence based on the malignant lymphomas. Dr. Zeise seconded the amendment which was defeated by two yes (Drs. McKnight, Zeise) to eight no votes. The original motion by Dr. Garman was then accepted unanimously with ten votes.

ş

INTRODUCTION

PENTACHLOROANISOLE

CAS No. 1825-21-4

Chemical Formula: C₇H₃Cl₅O Molecular Weight: 280.5

Synonyms: 2,3,4,5,6-pentachloroanisole; methyl pentachlorophenate; methyl pentachlorophenyl ether; o-methylpentachlorophenol; pentachloromethoxybenzene; pentachlorophenyl methyl ether

CHEMICAL AND PHYSICAL PROPERTIES

Pentachloroanisole is a colorless, crystalline solid that is stable under normal laboratory conditions; the melting point is 106° to 107° C. It is fairly soluble in ethanol, acetone, and dimethyl sulfoxide, and poorly soluble in water (Keith and Walters, 1985).

Pentachloroanisole differs only by a single methyl substitution from pentachlorophenol, a widely used wood preservative and biocide, and is structurally related to several other commercially important chlorinated aromatic compounds including pentachloronitrobenzene, sodium pentachlorophenate, and hexachlorobenzene (Figure 1).

Environmental Sources and Metabolism

Pentachloroanisole has no industrial or agricultural applications and is not manufactured commercially, but its presence as an environmental contaminant is widespread. Pentachloroanisole in the environment is probably derived from ubiquitous related chlorinated aromatic compounds, especially pentachlorophenol (Ahlborg and Thunberg, 1980; Crosby *et al.*, 1981; Engelhardt *et al.*, 1986; WHO, 1987). Degradation of pentachlorophenol to pentachloroanisole has been simulated in the laboratory in various lentic environments (Boyle *et al.*, 1980) and in aerobic and anaerobic soil environments (Murthy *et al.*, 1979).

Many bacteria and fungi can methylate the hydroxyl oxygen of pentachlorophenol to form pentachloroanisole in vitro (Cserjesi and Johnson, 1972; Curtis et al., 1972; Kaufman, 1978; Suzuki, 1983; Häggblom et al., 1988). The in vitro microbial decomposition of sodium pentachlorophenate to pentachloroanisole has also been reported (Rott et al., 1979). Microbial metabolism has been hypothesized to play a major role in pentachloroanisole production in woodshaving litter from poultry houses (Curtis et al., 1972, 1974; Parr et al., 1974; Dennis et al., 1975). Similar metabolic processes may also occur in packages and containers of tainted processed foods (Whitfield, 1983; Whitfield et al., 1984; Whitfield and Last, 1986; Tindale, 1987). The importance of other biological, chemical, or physical mechanisms in the production of pentachloroanisole from related compounds is undetermined.

PENTACHLOROANISOLÈ

PENTACHLOROPHENOL

PENTACHLORONITROBENZENE

ł

HEXACHLOROBENZENE

FIGURE 1 Chlorinated Aromatic Compounds Structurally Related to Pentachloroanisole

SODIUM PENTACHLOROPHENATE

Introduction

In laboratory settings, soybean and spinach plants can take up pentachlorophenol from soil and biotransform it to pentachloroanisole (Casterline *et al.*, 1985). In field experiments, pentachloroanisole has been identified in onions and rice plants grown in soil treated with pentachloronitrobenzene (Begum *et al.*, 1979) or pentachlorophenol (Weiss *et al.*, 1982), and in goldenrod plants sprayed with sodium pentachlorophenate (Haque *et al.*, 1988). In these cases, it is uncertain if pentachloroanisole was preformed in the soil or was a product of plant metabolism.

Animal and Human Exposure

Although widely distributed in the environment, pentachloroanisole has been detected only at low levels (Schmitt *et al.*, 1985). Pentachloroanisole has been found in fresh and marine waters at concentrations of 1 mg/L, in sediments at concentrations from 0.1 to 0.3 mg/kg, in marine air at concentrations of 2 to 9 pg/m³, and in soils throughout the world (Kopperman *et al.*, 1978; Pierce and Victor, 1978; Giam *et al.*, 1984; Watanabe *et al.*, 1985; Atlas *et al.*, 1986; Finger and Bulak, 1988; Fox *et al.*, 1988; Lee, 1988; Maguire and Tkacz, 1988, 1989; Knuutinen *et al.*, 1990).

Pentachloroanisole has also been identified in mollusks, fish, and earthworms (Kopperman *et al.*, 1978; Miyazaki *et al.*, 1981; Renberg *et al.*, 1983; Jaffe *et al.*, 1985; Jaffe and Hites, 1986; Paasivirta *et al.*, 1986, 1987; DeVault *et al.*, 1988; Herve *et al.*, 1988; Swackhamer and Hites, 1988; Knuutinen *et al.*, 1980). In many instances, the affected organisms came from aquatic or terrestrial environments known to be contaminated with pentachlorophenol or other chlorinated aromatic compounds.

In general, pentachloroanisole has been detected rarely, if at all, in surveys for chlorinated aromatic compounds levels in wild mammals or birds (Mes *et al.*, 1982; Brunn *et al.*, 1985; Ellenton *et al.*, 1985; Paasivirta *et al.*, 1987; Somers *et al.*, 1987) and in human fat and breast milk (Pellizzari *et al.*, 1982; Williams *et al.*, 1984; Mes *et al.*, 1986; Kashimoto *et al.*, 1989). However, because the experimental conditions for many of these studies may not have been optimal for pentachloroanisole detection, the possibility of false negatives cannot be excluded.

"Market basket" surveys by the Food and Drug Administration have shown that low concentrations of pentachloroanisole are present in typical adult and toddler diets (Gartrell *et al.*, 1986a,b; Gunderson, 1988). Pentachloroanisole residues have been detected in foods of plant origin, such as dried fruits, cocoa, flour, and peanut butter (Heikes, 1980; Whitfield, 1983; Whitfield and Last, 1986; Tindale, 1987), and in foods of animal origin, such as broiler chickens and catfish (Curtis *et al.*, 1972, 1974; Dennis *et al.*, 1975; Harper and Balnave, 1975; Frank *et al.*, 1983; Jaffe and Hites, 1986).

Human exposure would most likely result from ingestion of food or water contaminated with pentachloroanisole. Pentachloroanisole has a higher detection threshold than some of the less-substituted chloroanisoles (Frijters and Bemelmans, 1977), and it usually occurs with them in tainted foods (Engel et al., 1966; Curtis et al., 1972, 1974; Harper and Balnave, 1975; Whitfield and Last, 1986). Chloroanisoles produce extremely objectionable musty odors and unusual flavors which are discernible at very low concentrations (Curtis et al., 1972, 1974; Bemelmans and ten Noever de Brauw, 1974; Whitfield et al., 1984; Tindale, 1987). Therefore, human consumption of food or water contaminated by high levels of pentachloroanisole would be unlikely.

Absorption, Distribution, Metabolism, and Excretion

Pentachloroanisole appears to be absorbed and distributed rapidly in fish. Rapid uptake was noted in male guppies (*Poecilia reticulata*) exposed to pentachloroanisole in laboratory tank water (Opperhuizen and Voors, 1987) and in fathead minnows (*Pimphales promelas*) raised in contaminated wastewater (Kopperman *et al.*, 1978). Similarly, in rainbow trout (*Salmo gairdneri*) exposed to 24 μ g/L ¹⁴C-labeled pentachloroanisole in tank water, pentachloroanisole uptake occurred in 1 to 2 hours (Glickman *et al.*, 1977; Lech *et al.*, 1978). In these studies, pentachloroanisole was widely distributed through the fish with the highest levels found in fat with decreasingly lower levels found in the liver, muscle, and blood.

In vivo formation of pentachloroanisole via metabolism of pentachlorophenol and other chlorinated aromatic compounds has been occasionally reported. Pentachloroanisole and unchanged pentachlorophenol were identified in the hepatopancreas of blue crabs, *Callinectes sapidus*, injected with pentachlorophenol (Bose and Fujiwara, 1978). When of either purified or industrial grade pentachlorophenol in the tank water, pentachlorophenol and the pentachlorophenyl- β -glucuronide metabolite were the major residues extracted, and only very small amounts of pentachloroanisole were detected in minnows exposed to purified pentachlorophenol (Huckins and Petty, 1983). In addition to the presence of several other chlorinated aromatic compounds, very low levels of pentachloroanisole (1.0 to 2.0 mg/kg) were found in blood and milk of dairy cows fed pentachlorophenol (Firestone *et al.*, 1979). Along with at least 15 other metabolites, pentachloroanisole has been detected in feces and urine of male and female Sprague-Dawley rats administered pentachloronitrobenzene by gavage (Renner, 1980).

Overall, pentachloroanisole appears to be a very minor or nonexistent metabolite of pentachlorophenol and other related chlorinated aromatic compounds in both vertebrates and invertebrates. Based on a very large body of experimental evidence, the general consensus is that in most species, including rats, mice, and humans, the major or sole metabolic products of pentachlorophenol are the glucuronide and sulfate conjugates, tetrachlorohydroquinone, and other less-substituted chlorophenols (Kobayashi, 1978; Lu *et al.*, 1978; Ahlborg and Thunberg, 1980; Crosby *et al.*, 1981; Renner and Mücke, 1986).

Various species can metabolize pentachloroanisole to pentachlorophenol. Hepatic microsomes of rat and miniature pig converted pentachloroanisole to pentachlorophenol in vitro by a cytochrome P-450 dependent demethylation reaction (Agins et al., 1982; Agins, 1984). Bile from rainbow trout exposed for 24 hours to 50 μ g/L pentachlorophenol in the tank water contained only pentachlorophenol, but bile from trout exposed to pentachloroanisole under similar conditions contained pentachlorophenol β -glucuronide and small amounts of pentachlorophenol, which indicated that in vivo demethylation may have taken place (Glickman et al., 1977; Lech et al., 1978). When female mice were administered a single intraperitoneal injection of 20 mg/kg ¹⁴C-pentachloroanisole, radioactivity was concentrated in liver and fat, and the total carcass half-life (t_{ν}) of ¹⁴C was 10 hours (Vodicnik et al., 1980). Elimination proceeded rapidly, primarily via the urine ($t_{\frac{1}{2}}$, 5.6 hours). Most urine or fecal radioactivity was associated with pentachlorophenol or a pentachlorophenol conjugate,

suggesting to the authors that pentachloroanisole must be demethylated prior to conjugation and excretion.

In fish, pentachloroanisole generally is eliminated more slowly than other chlorinated aromatic compounds. Rainbow trout exposed to pentachloroanisole had elimination half-lives of ¹⁴C radioactivity of 6.3 days in blood and muscle, 6.9 days in liver, and 23.4 days in fat. By comparison, the ¹⁴C radioactivity elimination half-lives for pentachlorophenol for the same tissues in trout were shorter at 6.2, 6.9, 9.8, and 23.7 hours, respectively (Glickman et al., 1977). Detectable levels of pentachloroanisole were found in rainbow trout and in the tank water up to 96 days after exposure (Oliver and Niimi, 1985). However, in other experiments, pentachloroanisole was rapidly cleared (elimination half-life, 1 to 4 days) from the tissues of male guppies (Opperhuizen and Voors, 1987).

TOXICITY

Little information is available on the acute toxicity of pentachloroanisole; however, it is considered to be less toxic than pentachlorophenol or other related chlorinated aromatic compounds (Cserjesi and Johnson, 1972; Engelhardt *et al.*, 1986). When juvenile coho salmon (*Oncorhynchus kisutch*) were exposed to 4 mg/L pentachloroanisole or 2 mg/L pentachlorophenol in the tank water, the toxicity of pentachloroanisole was roughly estimated to be 1,000 times less than that of pentachlorophenol (Cserjesi and Johnson, 1972).

When rats were administered a single gavage dose of 2, 10, 30, or 50 mg/kg body weight pentachloroanisole or pentachlorophenol daily for 3 days, rectal temperature and serum glucose levels were elevated, feed consumption was decreased, and uncoupled succinate respiration occurred in the 30 and 50 mg/kg groups (Garthoff *et al.*, 1982). These changes were more prominent in rats receiving pentachlorophenol than in those receiving pentachloroanisole. In an earlier study, pentachloroanisole administration to male rats increased levels of α -aminolevulinic acid synthetase activity, although urinary and fecal porphyrin excretions were unaffected (Simon *et al.*, 1978).

No acute mortality occurred when female mice were administered single intraperitoneal injections of 12 to

Introduction

250 mg/kg (Vodicnik *et al.*, 1980). In recent reproductive and teratogenicity studies (Welsh *et al.*, 1987), no mortality was observed in male or female rats fed diets containing 60, 200, or 600 ppm pentachloroanisole for 181 days.

Respiration was increased in rat kidney explants exposed to 0.1 mM pentachloroanisole for 18 hours, but was unaffected when slices of rat kidney or liver were exposed to 0.1 or 0.8 mM pentachloroanisole for 1 hour. In contrast, when pentachlorophenol was tested under similar conditions, respiration was reduced in kidney explants and in kidney and liver slices (Braunberg *et al.*, 1981). Oral administration of pentachloroanisole to young miniature pigs increased the activities of several hepatic mixedfunction oxidase system enzymes (P-450 and b_5 , NADPH-cytochrome c_2 reductase, aniline hydroxylase, *p*-nitroanisole demethylase, and pentachloroanisole demethylase; Agins, 1984).

REPRODUCTIVE AND DEVELOPMENTAL TOXICITY

Based on the limited data available, pentachloroanisole does not appear to be highly embryotoxic or teratogenic. Neilson *et al.* (1984) exposed zebra fish (*Brachydanio reiro*) eggs and larvae to 2.8 μ g pentachlorophenol/L culture dish water resulting in increased embryo/larval mortality and deformation (larval curvature). When larval striped bass (*Morone saxatilis*) were placed in river water containing 12.7 to 37.5 ng/L pentachloroanisole, lethargic swimming behavior was observed in all exposed groups, but mortality occurred only in larvae exposed to the highest concentration range of pentachloroanisole, and the water was not comprehensively tested for chlorophenols and other related chlorinated aromatic compounds (Finger and Bulak, 1988).

In recent studies, diets containing 60, 200, or 600 ppm pentachloroanisole or pentachlorophenol were fed to male and female Sprague-Dawley rats for 181 days prior to breeding and through pregnancy (Welsh *et al.*, 1987). Teratogenicity and decreased fertility were not observed following treatment with either compound, although embryo death and reduced fetal body weights were noted. In general, adverse effects were more pronounced in rats exposed to pentachlorophenol than in rats exposed to pentachloroanisole.

CARCINOGENICITY

No information was available concerning chronic toxicity or carcinogenicity of pentachloroanisole in laboratory rodents or other species.

GENETIC TOXICITY

Two studies on the genotoxicity of pentachloroanisole have reported positive results. Pentachloroanisole was mutagenic in *Salmonella typhimurium* strains TA98 and TA1537 without exogenous metabolic activation (S9) only in the presence of precipitated pentachloroanisole, but was not mutagenic with S9 (Mortelmans *et al.*, 1986). In the same study, gene mutations were not induced in *S. typhimurium* strains TA100 and TA1535 treated with up to 10 mg pentachloroanisole per plate. In the mouse lymphoma assay, pentachloroanisole induced trifluorothymidine resistance in mouse L5178Y cells, but only in the presence of S9 (McGregor *et al.*, 1987); the increases in the number of trifluorothymidine-resistant colonies were not dose related.

Pentachlorophenol, a metabolite of pentachloroanisole, is not mutagenic in most strains of S. typhimurium (Simmon et al., 1977; Haworth et al., 1983; Moriya et al., 1983). However, isolated positive responses have been reported in strain TA100 without S9 (Commoner, 1976) and in strain TA98 with S9 (Nishimura et al., 1982). In Saccharomyces cerevisiae, pentachlorophenol induced gene conversion and mutation (Fahrig et al., 1978), but no mitotic recombination was observed (Simmon and Kauhanen, 1978). Pentachlorophenol was also negative for induction of nondisjunction in germ cells of Drosophila melanogaster (Ramel and Magnusson, 1979). In mammalian cells, pentachlorophenol was negative in gene mutation tests with hamster V79 cells (Hattula and Knuutinen, 1985; Jansson and Jansson, 1986), but was weakly positive without S9 activation for induction of sister chromatid exchanges and chromosomal aberrations in Chinese hamster ovary cells (Galloway et al., 1987). In contrast, results from sister chromatid exchange and chromosomal aberrations tests with human lymphocytes exposed in vitro or in vivo to pentachlorophenol were negative (Ziemsen et al., 1987). Tetrachlorohydroquinone, a metabolite of pentachlorophenol, was found to bind covalently to calf thymus DNA and to induce single strand breaks in bacteriophage PM2 DNA, but these effects were not observed with pentachlorophenol (Witte et al., 1985).

Several structural analogues of pentachloroanisole including pentachlorobenzene, 1,3,3,4-tetrachlorobenzene, 1,2,3,5-tetrachlorobenzene, 1,2,4,5tetrachlorobenzene, pentabromomethylbenzene, 2,3,4,5,6-pentabromomethylbenzene, 2,3,4,5-tetrachlorophenol, 2,3,5,6-tetrachlorophenol, and 2,3,4,6-tetrachlorophenol have been tested for induction of gene mutations in S. typhimurium, with and without S9. All results were negative (Räsänen et al., 1977; Haworth et al., 1983; Zeiger et al., 1987; 1988). Paradi and Lovenyak (1981) reported positive results for induction of sex-linked recessive lethal mutations in male Drosophila melanogaster with 1,2,4,5-tetrachlorobenzene (maximum dose, $755.6 \,\mu g/mL$). Induction of gene mutations in hamster V79 lung cells by 2,3,4,6-tetrachlorophenol was observed without S9 activation (Hattula and Knuutinen, 1985). The chlorobenzenes and chlorophenols have also been tested for induction of sister chromatid exchanges and chromosomal aberrations in Chinese hamster ovary cells. The chlorobenzenes are uniformly negative for induction of chromosomal aberrations and only 1,2,3,4-tetrachlorobenzene gave a positive response in the sister chromatid exchange test (Loveday et al., 1990). Positive responses were observed in the chromosomal aberrations test with all three chlorophenol isomers listed above; however, only 2,3,5,6-tetrachlorophenol gave clearly positive results in the sister chromatid exchange test (NTP,

STUDY RATIONALE

unpublished data).

Pentachloroanisole was nominated for toxicity and carcinogenicity testing by the Food and Drug

Administration and NIEHS because its wide distribution in the environment and in human foods presents a potential for low-level human exposure through drinking water and through food.

Pentachloroanisole is almost identical structurally to pentachlorophenol, which has been demonstrated in previous NTP studies to have clear evidence of carcinogenicity in B6C3F₁ mice (NTP, 1989). Pentachloroanisole is also structurally related to other chlorinated aromatic compounds such as pentachloronitrobenzene, sodium pentachlorophenate, and polychlorinated benzenes, biphenyls, dibenzodioxins and dibenzofurans which are known or suspected toxins, carcinogens, or teratogens (IARC, 1979a; Kimbrough, 1981; NTP, 1982, 1991a,b; D'Itri and Kamrin, 1983; Kimbrough and Jensen, 1989; Kutz et al., 1991). No information on the chronic toxicity and carcinogenicity of pentachloroanisole in laboratory rodents or other species is available.

For these reasons, pentachloroanisole was selected by the NTP for chronic toxicity and carcinogenicity testing in F344/N rats and $B6C3F_1$ mice. Oral administration of pentachloroanisole was chosen to most closely approximate the primary route of human exposure. Administration by gavage was employed to avoid decreased consumption of dosed feed or water due to possible poor palatability, and because pentachloroanisole is poorly soluble in water and unstable in feed.

MATERIALS AND METHODS

Procurement and Characterization of Pentachloroanisole

Pentachloroanisole was obtained in three lots. Lot HE052008, which was obtained from the Aldrich Chemical Company (Milwaukee, WI), was used in the 16-day studies. The analytical chemistry laboratory, Midwest Research Institute (MRI) (Kansas City, MO), synthesized lot M012882 for use in the 13-week studies and lot M062783 for use in the 2-year studies. The identity and purity analyses were performed by MRI. Details of these analyses are presented in Appendix I.

The study material, a white crystalline solid, was identified as pentachloroanisole by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy (Figures I1 and I2). The purity of all lots was determined by elemental analyses, Karl Fischer water analyses, thin-layer chromatography, and gas chromatography. The purity of all lots was determined to be 99% or greater. Gas chromatography for all lots indicated a single major peak and no impurities greater than 0.2%. No chlorinated dibenzodioxins, dibenzofurans, or diphenyl ethers were detected in lots M012882 or M062783 by gas chromatography/mass spectroscopy. Less than 0.1% pentachlorophenol was detected in all lots by gas chromatography. Concurrent analysis of lots M012882 and M062783 by gas chromatography/mass spectroscopy detected the following impurities: 192 ppm tetrachloroanisole and 361 ppm tetrachlorobromoanisole in lot M062783; and 1,664 ppm tetrachloroanisole, 165 ppm tetrachlorobromoanisole, and 1 ppm and 389 ppb for two unidentified chlorinated impurities in M012882. Hexachlorobenzene (3 ppm in lot M012882 and 7 ppm in lot M062783) was detected using packed column gas chromatography with electron capture detection.

Stability studies performed using gas chromatography with flame ionization detection indicated that pentachloroanisole was stable as a bulk chemical for 2 weeks at temperatures up to 60° C. To ensure stability, the bulk chemical was stored in amber serum bottles in the dark at 5° C (16-day studies) or at room temperature (13-week and 2-year studies). The stability of the bulk chemical was monitored periodically using ultraviolet/visible spectroscopy and gas chromatography. No degradation of the bulk chemical was detected.

Preparation and Analysis of Dose Formulations

Dose formulation solutions were prepared by mixing the appropriate quantities of pentachloroanisole and corn oil on a weight-to-volume basis for the 16-day studies and on a weight-to-weight basis for the 13-week and 2-year studies. Dose formulations were prepared three times and stored at 5° C during the 16-day studies. For the 13-week and 2-year studies, dose formulations were prepared weekly and stored at room temperature (approximately 22° C); maximum storage time for dose formulations did not exceed 21 days (Table I1). Stability analyses of the dose formulations were performed by the analytical chemistry laboratory. No significant loss in stability was detected when dose formulations were stored for 3 weeks in the dark at room temperature.

Dose formulation solutions of pentachloroanisole were periodically analyzed by the study laboratory and by the analytical chemistry laboratory using flame ionization gas chromatography with octadecane as the internal standard. Dose formulations were within 10% of the theoretical concentrations throughout the studies (Tables I2 and I3). Periodic peroxide analyses of the corn oil vehicle by the study laboratory indicated that peroxide levels were within the acceptable limit of 10 mEq/kg. Results of periodic referee analyses by the analytical chemistry laboratory were in good agreement with the results obtained by the study laboratory (Table I4).

16-DAY STUDIES

Male and female F344/N rats and $B6C3F_1$ mice were obtained from Charles River Breeding Laboratories (Kingston, NY). Animals were quarantined for 18 days before the studies began. The rats were

51 days old and the mice were 57 days old when the studies began.

Groups of five male and five female rats were administered 0, 100, 125, 150, 175, or 200 mg/kg body weight pentachloroanisole in corn oil by gavage daily for 16 days. Groups of five male and five female mice were administered 0, 100, 175, 250, 325, or 400 mg/kg in corn oil by gavage daily for 16 days. Doses were not administered on weekends, and two consecutive days of dosing occurred before necropsy. Animals were housed five per cage. Water and feed were available *ad libitum*. Details of study design and animal maintenance are listed in Table 1.

Animals were weighed at the beginning of the studies, and on days 8 and 15. Animals were observed twice daily for chemical-related toxicity, except on weekends. Complete necropsy was performed on all animals.

13-WEEK STUDIES

These studies were conducted to evaluate the cumulative toxic effects of repeated exposure to pentachloroanisole. Male and female F344/N rats and B6C3F₁ mice were obtained from the Charles River Breeding Laboratories (Kingston, NY). Rats were observed for 17 days and mice were observed for 19 days before being assigned to treatment groups. The rats were 50 days old and the mice were 59 days old when dosing began.

Groups of 10 male and 10 female rats and mice were administered 0, 40, 80, 120, 140, or 180 mg/kg body weight pentachloroanisole in corn oil by gavage, 5 days per week for 13 weeks. Rats and mice were housed five per cage. Feed and water were available *ad libitum*. Blood for hematology and clinical chemistry was collected from the inferior vena cava of rats and from cardiac puncture of mice. Details of study design and animal maintenance are listed in Table 1.

Animals were observed twice daily. Individual animal weights were recorded initially, once weekly, and at the end of the studies. Clinical findings were recorded weekly. Organs weighed at the end of the studies included the brain, heart, right kidney, liver, lung, right testis, and thymus. Complete histopathologic examinations were performed on all animals dying before the end of the studies, on all rats except females in the 40 mg/kg group, on all male mice except those in the 40 mg/kg group, and on female mice in the 0, 140, and 180 mg/kg groups. Tissues routinely examined microscopically are listed in Table 1. The health of the rats and mice was monitored during the studies according to the protocols of the NTP Sentinel Animal Program (Appendix K).

2-YEAR STUDIES Study Design

Groups of 70 male rats were administered 0, 10, 20, or 40 mg/kg body weight pentachloroanisole in corn oil by gavage, 5 days per week, for up to 103 weeks. Dosing was completed 10 days prior to study end. Groups of 70 female rats and 70 male and 70 female mice were given 0, 20, or 40 mg/kg pentachloroanisole in corn oil by gavage, 5 days per week, for up to 103 weeks for rats and 104 weeks for mice. In each dose group, 10 rats and 10 mice were designated for interim evaluation at 9 and 15 months. The organs weighed and the tissues routinely examined microscopically are listed in Table 1. At the 9- and 15-month interim evaluations, liver porphyrin levels were measured using ultraviolet (350 nm) light.

Source and Specification of Animals

Male and female F344/N rats and B6C3F₁ mice were obtained from Frederick Cancer Research Facility (Frederick, MD). Rats were 29 days old when received by the study laboratory and were quarantined for 11 to 12 days; mice were 29 days old and were quarantined for 12 days. During quarantine, the animals were observed daily. To assess the health status of the animals, five male and five female rats and mice were killed and examined for disease and parasite infection. The rats were 40 days old and the mice were 41 days old when the studies began. The health of the animals was monitored during the studies according to the protocols of the NTP Sentinel Animal Program (Appendix K).

Animal Maintenance

Rats were housed five per cage; mice were housed individually. Cages were rotated vertically on the rack within dose groups and racks were rotated within the animal room every 2 weeks. Feed and water were available *ad libitum*. Information on ingredients, nutrient composition, and contaminant levels of the feed is presented in Appendix J. Further details of animal maintenance are listed in Table 1. Temperature and humidity significantly exceeded the normal range on day 185 of the 2-year rat studies due to a failure of the environmental control system.

Clinical Examinations and Pathology

All animals were observed twice daily, 5 days per Body weights and clinical findings were week. recorded weekly for the first 13 weeks and then Rectal monthly until the end of the studies. temperatures in all male rats designated for 9-month interim evaluation were recorded from week 21 to week 39. Temperatures were taken on Monday morning prior to dosing and on Wednesday and Friday afternoons approximately 6 hours after dosing. In addition to the scheduled temperature measurements for 9-month interim male rats, rectal temperatures were measured for any mid- or high-dose male rat designated for 15-month interim evaluation and rats in the 2-year study that exhibited clinical signs of hyperthermia during weeks 17 to 39. Blood for hematology and clinical chemistry was collected from the inferior vena cava of rats and by cardiac puncture for mice at 9 and 15 months. Animals were anesthetized with ether before blood collection.

All animals were necropsied. At necropsy, all organs and tissues were examined for gross lesions, all major tissues were fixed and preserved in phosphatebuffered neutral formalin, processed and trimmed, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Complete histopathology was performed on all rats and low-dose mice killed moribund or that died prior to scheduled evaluation, as well as on all dosed male rats and control and high-dose female rats and male and female mice. Tissues routinely examined microscopically are listed in Table 1.

Pathology evaluations were completed by the study laboratory pathologist and the pathology data were entered into the Toxicology Data Management System. The microscope slides, paraffin blocks, and residual wet-tissues were sent to the NTP Archives for inventory, slide/block match, and wet-tissue audit. The slides, individual animal data records, and pathology tables were evaluated by an independent quality assessment laboratory. The individual animal records and pathology tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. A quality assessment pathologist reviewed the adrenal gland, kidney, liver, and nose of rats of each sex, the pancreas of male rats, and the adrenal medulla, forestomach, and liver of mice for accuracy and consistency of lesion diagnosis.

The quality assessment report and slides were submitted to the Pathology Working Group (PWG) chair, who reviewed selected slides of tissues and any other tissues when there was disagreement in diagnosis between the laboratory and quality assessment pathologist. Representative histopathology slides containing examples of lesions related to chemical administration, examples of disagreements in diagnosis between the laboratory and quality assessment pathologist, or lesions of general interest were presented by the chair to the PWG for review. The PWG included the quality assessment pathologist and other pathologists experienced in rodent toxicologic pathology. This group examined the tissues without knowledge of dose groups or previously rendered diagnoses. When the consensus opinion of the PWG differed from that of the laboratory pathologist, the diagnosis was changed to reflect the PWG consensus. Details of these review procedures have been described by Maronpot and Boorman (1982) and Boorman et al. (1985). For subsequent analyses of pathology data, the diagnosed lesions for each tissue type were evaluated separately or combined in general accordance with the guidelines of McConnell et al. (1986).

Statistical Methods Survival Analyses

The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in this report in the form of graphs. Animals were censored from the survival analyses at the time they were found dead from other than natural causes. Animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used Cox's (1972) method for testing two groups for equality and Tarone's (1975) life table test to identify dose-related trends. All reported P values for the survival analyses are two sided.

Calculation of Incidence

The incidence of neoplasms or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histopathologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary gland neoplasms) prior to histopathology sampling or when neoplasms (e.g., mononuclear cell leukemia) had multiple potential sites of occurrence, the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Neoplasm Incidences

The majority of neoplasms in these studies were considered to be incidental to the cause of death or not rapidly lethal. Thus, the primary statistical method used was a logistic regression analysis, which assumed that the diagnosed neoplasms were discovered as the result of death from an unrelated cause and thus did not affect the risk of death. In this approach, neoplasm prevalence was modeled as a logistic function of chemical exposure and time. Both linear and quadratic terms in time were incorporated initially, and the quadratic term was eliminated if it did not significantly enhance the fit of the model. The control and dosed groups were compared on the basis of the likelihood score test for the regression coefficient of dose. This method of adjusting for intercurrent mortality is the prevalence analysis of Dinse and Lagakos (1983), further described and illustrated by Dinse and Haseman (1986). When neoplasms are incidental, this comparison of the time-specific neoplasm prevalences also provides a comparison of the time-specific neoplasm incidences (McKnight and Crowley, 1984).

In addition to logistic regression, alternative methods of statistical analysis were used, and the results of these tests are summarized in the appendixes. These include the life table test (Cox, 1972; Tarone, 1975), appropriate for rapidly lethal neoplasms, and the Fisher exact test and the Cochran-Armitage trend test (Armitage, 1971; Gart *et al.*, 1979), procedures based on the overall proportion of lesion-bearing animals.

Tests of significance include pairwise comparisons of each dosed group with controls and a test for an overall dose-response trend. Continuity-corrected tests were used in the analysis of neoplasm incidence, and reported P values are one sided. The procedures described above were also used to evaluate selected nonneoplastic lesions. For further discussion of these methods, see Haseman (1984).

Analysis of Nonneoplastic Lesion Incidences

Because all nonneoplastic lesions in these studies were considered to be incidental to the cause of death or not rapidly lethal, the primary statistical analysis used was a logistic regression analysis in which nonneoplastic lesion prevalence was modeled as logistic function of chemical exposure and time. For lesions detected at the interim evaluations, the Fisher exact test was used, a procedure based on the overall proportion of affected animals.

Analysis of Continuous Variables

Two approaches were employed to assess the significance of pairwise comparisons between dosed and control groups in the analysis of continuous variables. Organ and body weight data, which have approximately normal distributions, were analyzed using the parametric multiple comparison procedures of Williams (1971, 1972) and Dunnett (1955), which were also used for pairwise comparisons of rectal temperatures. Hematology and clinical chemistry data, which typically have skewed distributions, were analyzed using the multiple comparison methods of Shirley (1977) or Dunn (1964). Jonckheere's test (Jonckheere, 1954) was used to assess the significance of dose-response trends and to determine whether a trend-sensitive test (Williams' test) was more appropriate for pairwise comparisons than a test that does not assume a monotonic dose-response trend (Dunnett's test).

Historical Control Data

Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of neoplasm incidence. Consequently, neoplasm incidences from the NTP historical control database (Haseman *et al.*, 1984, 1985) are included in the NTP reports for neoplasms appearing to show compound-related effects.

Quality Assurance Methods

The 13-week and 2-year studies were conducted in compliance with Food and Drug Administration Good Laboratory Practice Regulations (21 CFR, Part 58). In addition, as records from the 2-year studies were submitted to the NTP Archives, they

Materials and Methods

were audited retrospectively by an independent quality assurance contractor. Separate audits covering completeness and accuracy of the pathology data, pathology specimens, final pathology tables, and preliminary draft of this NTP Technical Report were conducted. Audit procedures and findings are presented in the reports, which are on file at the NIEHS. The audit findings were reviewed and assessed by NTP staff so that all had been resolved or were otherwise addressed during the preparation of this Technical Report.

GENETIC TOXICOLOGY

The genetic toxicity of pentachloroanisole was assessed by testing the ability of the chemical to induce mutations in *Salmonella typhimurium* (strains TA98, TA100, TA1535, and TA1537), mutations in the mouse lymphoma L5178Y cells, and sister chromatid exchanges and chromosomal aberrations in Chinese hamster ovary cells. The protocols for these studies and tabular presentations of the findings are given in Appendix E.

The genetic toxicity studies of pentachloroanisole conducted by the NTP are part of a larger effort to develop a database that would permit the evaluation of the contribution of these four in vitro short-term genetic toxicity tests to predicting chemical carcinogenicity in experimental animals. These in vitro tests were developed to study mechanisms of chemically induced DNA damage, but their use has been extended to the prediction of carcinogenicity based on the somatic mutation theory and electrophilic theory of chemical carcinogenesis (Miller and Miller, 1977; Straus, 1981; Crawford, 1985). Although Salmonella typhimurium and mouse lymphoma cell assays are capable of detecting mutations, neither of the specific gene loci tested appear to be related to the cellular changes that occur in the induction of neoplasia in humans or animals. Moreover, none of the chromosomal aberrations or sister chromatid exchanges observed in Chinese hamster ovary cells have been clearly related to heritable changes involved in the induction or progression of neoplasia. Thus, a positive response in any of these tests by a chemical that produces increases in tumor incidences in experimental animals does not necessarily implicate a specific mechanism of carcinogenicity involving direct DNA damage. Nevertheless, there is a strong correlation between structural alerts to DNA (electrophilicity), mutagenicity in reactivity S. typhimurium, and carcinogenicity in two rodent species or at multiple tissue sites, which provides support for the electrophilic theory of chemical carcinogenesis in a subset of chemical carcinogens. Details regarding the correlation of structural alerts (or absence thereof), mutagenicity, and carcinogenicity results of 301 chemicals in the NTP database appear in Ashby and Tennant, 1991.

TOXICOKINETICS

Toxicokinetics of pentachloroanisole was studied in male and female F344 rats and B6C3F₁ mice. Fifteen male and 15 female rats were administered 5 mL/kg pentachloroanisole intravenously; 34 male and 34 female mice received 2.5 mg/mL intravenously. Blood samples were collected from rats and mice at 2, 10, 20, and 30 minutes, and at 1, 3, 6, 12, 18, 26, and 32 hours, with blood being taken from the orbital sinus of three animals at each time interval. Twelve male and 12 female rats and 24 male and 24 female mice were administered 10, 20, or 24 mg/kg pentachloroanisole by gavage. Blood samples were collected from rats and mice at 30 minutes, and at 1, 3, 6, 12, 18, 26, and 32 hours. Blood was collected as in the intravenous study. Further details of these studies are outlined in Appendix H.

.

TABLE 1

Experimental Design and Materials and Methods in the Gavage Studies of Pentachloroanisole

16-Day Studies	13-Week Studies	2-Year Studies
Study Laboratory Southern Research Institute (Birmingham, AL)	Same as 16-day studies	Same as 16-day studies
Strain and Species Rats: F344/N Mice: B6C3F ₁	Same as 16-day studies	Same as 16-day studies
Animal Source Charles River Breeding Laboratories (Kingston, NY)	Same as 16-day studies	Frederick Cancer Research Facility (Frederick, MD)
Time Held Before Study Rats: 18 days Mice: 18 days	Rats: 17 days Mice: 19 days	Rats: 11-12 days Mice: 12 days
Average Age When Placed on Study	·	-
Rats: 51 days Mice: 57 days	Rats: 50 days Mice: 59 days	Rats: 40 days Mice: 41 days
Date of First Dose Rats: 4 August 1980 Mice: 4 August 1980	Rats: 19 April 1982 Mice: 6 April 1982	Rats: 26 September 1983 Mice: 30 January 1984
Date of Last Dose Rats: 19 August 1980 Mice: 19 August 1980	Rats: 21 July 1982 Mice: 8 July 1982	Rats: 13 September 1985 Mice: 20 January 1986
Duration of Dosing 5 days/week for 12 dosing days	5 days/week for 13 weeks	5 days/week for 103 weeks (rats) 5 days/week for 104 weeks (mice)
Average Age at Necropsy		
Rats: 9 weeks Mice: 10 weeks	Rats: 20 weeks Mice: 21 weeks	Rats: 9-month evaluation, 45 weeks; 15-month evaluation, 71 weeks; terminal, 110-111 weeks Mice: 9-month evaluation, 45 weeks; 15-month evaluation, 69 weeks; terminal 110-111 weeks
Necropsy Dates Rats: 20-21 August 1980 Mice: 20 August 1980	Rats: 20-22 July 1982 Mice: 6-9 July 1982	Rats: 9-month evaluation, 20-22 June 1984; 15-month evaluation, 19-21 December 1984; terminal, 23 September 1 October 1985 Mice: 9-month evaluation, 31 October-2 November 1984; 15-month evaluation, 17-19 April 1985; terminal, 27-31 January 1986
Size of Study Groups 5 males and 5 females	10 males and 10 females	70 males and 70 females
Animals per Cage Rats: 5 Mice: 5	Same as 16-day studies	Rats: 5 Mice: 1

t

Experimental Design and Materials and Methods in the Gavage Studies of Pentachloroanisole (continued)

16-Day Studies	13-Week Studies	2-Year Studies	
Method of Animal Distribution Distributed by sex and weight classes to cages, then assigned to dose groups using appropriate random number tables.	Same as 16-day studies	Same as 16-day studies. The remaining 15 animals of each sex were assigned to the Sentinel Animal Program.	
Method of Animal Identification Rats: earmark Mice: earmark	Same as 16-day studies	Rats: earmark and toe clip Mice: toe clip	
Diet NIH-07 Rat and Mouse Ration, pellet (Zeigler Bros., Inc., Gardners, PA), available <i>ad libitum</i>	Same as 16-day studies	Same as 16-day studies	
Water Source: tap water, city of Birmingham, Alabama. Available <i>ad libitum</i> using an automatic water system (Edstrom Industries, Inc., Waterford, WI). Checked daily, system flushed every 2 weeks	Same as 16-day studies	Same as 16-day studies. Rats: water bottles for animals designated for 9- and 15-month interim evaluations were Nalgene®, Teflon FEP® wide-mouth bottles (Nalge Company, Rochester, NY with rubber stoppers and fitted with stainless steel sipper tubes. Changed twice weekly.	
Cages Polycarbonate, solid bottoms (Lab Products, Inc., Garfield, NJ), changed wice weekly	Same as 16-day studies; changed biweekly. Cages rotated within dose groups on racks	Same as 13-week studies.	
Racks Stainless steel, (Lab Products, Inc., Garfield, NJ)	Same as 16-day studies, changed every 2 weeks and racks rotated in the animal room every 2 weeks	Same as 13-week studies	
Bedding BetaChips, heat-treated hardwood chips (Northeastern Products Corp., Warrensburg, NY), changed twice weekly	Same as 16-day studies	Same as 16-day studies	
Cage Filters Reemay spun-bonded polyester fiber filters (Snow Filtration, Cincinnati, OH), changed once every 2 weeks	Same as 16-day studies	Same as 16-day studies	
Animal Room Environment Temperature range: 22°-24° C Relative humidity range: 54%-60% Fluorescent light: 12 hours/day Room air flow: minimum 15 changes/hour	Temperature range: 22°-24° C Relative humidity range: 28%-63% Fluorescent light: 12 hours/day Room air flow: minimum of 15 changes/hour	Average temperature: 22° C Relative humidity: 51.7% Fluorescent light: 12 hours/day Room air flow: 10-15 changes/hour	

Experimental Design and Materials and Methods in the Gavage Studies of Pentachloroanisole (continued)

16-Day Studies	13-Week Studies	2-Year Studies	
Doses Rats: 0, 100, 125, 150, 175, and 200 mg/kg body weight in corn oil administered by gavage in a dose volume of 5 mL/kg Mice: 0, 100, 175, 250, 325, and 400 mg/kg in corn oil administered by	Rats: 0, 40, 80, 120, 140, and 180 mg/kg in corn oil administered by gavage in a dose volume of 5 mL/kg Mice: 0, 40, 80, 120, 140, and 180 mg/kg in corn oil administered by gavage in a dose volume of 10 mL/kg	Rats: 0, 10 (males only), 20, and 40 mg/kg in corn oil administered by gavage in a dose volume of 5 mL/kg Mice: 0, 20, and 40 mg/kg in corn oil administered by gavage in a dose volume of 10 mL/kg	
gavage in a dose volume of 10 mL/kg Type and Frequency of Observation Observed twice/day, except on weekends; body weight initially, on day 8, and day 15; clinical findings were noted daily	Observed twice/day; body weight initially, once/week, and at study termination; clinical observations once/week.	Observed twice/day, 5 days/week; body weights once/week for first 13 weeks, then once/month until the end of the study, or scheduled evaluation; clinical findings noted at body weight determinations. Rectal temperatures of male rats were recorded from week 17 to week 39.	
Method of Sacrifice Carbon dioxide asphyxiation	Moribund animals by carbon dioxide asphyxiation; terminal sacrifice by thoracotomy under ether anesthesia	Moribund animals and terminal sacrifice by carbon dioxide asphyxiation; 9- and 15-month interim evaluations by thoracotomy following blood collection under ether anesthesia	
Necropsy Necropsy performed on all animals	Necropsy performed on all animals. Organs weighed at the end of the studies were brain, heart, right kidney, liver, lung, right testis, and thymus.	Necropsy performed on all animals. Organs weighed at each scheduled evaluation were brain, right kidney, liver and thymus.	
Histopathology None	Complete histopathologic examinations were performed on all animals dying before the end of the studies, all male rats, all female rats, and male mice except those in the 40 mg/kg groups, and 0, 140, and 180 mg/kg female mice. In addition to gross lesions and tissue masses, the tissues examined included: adrenal gland, bone (including marrow), brain, clitoral gland, epididymis, esophagus, gallbladder (mice only), heart, kidney, large intestine, liver, lung, mammary gland, mandibular lymph node, mesenteric lymph node, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, skin, small intestine, spleen, stomach, testis, thymus, thyroid gland, trachea, urinary bladder, and uterus.	Complete histopathology was conducted on all rats and low-dose mice killed moribund or that died prior to schedule evaluation, as well as on all male rat dos groups and control and high-dose rats and mice. In addition to gross lesions and tissue masses, the tissues examined included: adrenal gland, bone (includin marrow), brain, clitoral gland, epididymis, esophagus, gallbladder, hear kidney, large intestine, liver, lung, mammary gland, mandibular or mesenteric lymph node, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, seminal vesicles, skin, small intestine, spleen, stomach, testis, thymus, thyroid gland, trachea, urinary bladder, and uterus. Only selected tissues were examined in low-dose mice that survived until the end of the study; these included adrenal gland, liver, mandibular lymph node, (continued on ne page)	

.

Experimental Design and Materials and Methods in the Gavage Studies of Pentachloroanisole (continued)

÷-

16-Day Studies	13-Week Studies	2-Year Studies
Histopathology (continued)		
		mesenteric lymph node, nose, spleen, stomach, and thyroid gland. In the low-
		dose female rats, the following tissues were examined microscopically: adrenal
		gland, gross lesions, kidney, liver, nose, pituitary gland, and uterus. The following organs were examined at the
		9-month interim evaluation in both male and female control and high-dose rats:
		adrenal gland, heart, kidney, large intestine, liver, lung, nose, pancreas, pituitary gland, and stomach. In addition
		tissues from the mesenteric lymph node, preputial gland, prostate gland, testis, and urinary bladder were examined in
		the control and high-dose males. The brain, bone marrow, uterus and clitoral
		gland were examined, as well, in the same female dose groups. In the 9-month interim evaluation of male and female
		control and high-dose mice, a complete histopathology was performed. In the
		low-dose group in male and female mice, only the liver and gross lesions were evaluated. At the 15-month interim
		evaluation, a complete histopathology was performed on all control and high- dose male and female rats, as well as on
		all control and high-dose male and female mice. In the low-dose mice
		groups, only the liver and gross lesions were evaluated.
Clinical Pathology		
None	Clinical pathology studies were performed at 13 weeks from blood collected from all animals (rats, interior	Clinical pathology studies were performed at 9 and 15 months from blood collected from all animals (rats,
	vena cava; mice, cardiac puncture). Hematology: hematocrit, hemoglobin,	interior vena cava; mice, cardiac puncture).
	erythrocyte count, mean cell volume, mean cell hemoglobin, mean cell hemoglobin concentration, total	Hematology: hematocrit, hemoglobin, methemoglobin (at 9 months only),
	leukocyte count Clinical chemistry: alkaline phosphatase,	erythrocyte count, mean cell volume, mean cell hemoglobin, mean cell hemoglobin concentration, total and
·	alanine aminotransferase, aspartate aminotransferase, serum cholinesterase (rats only), sorbitol dehydrogenase (rats	differential leukocyte counts, platelet count, reticulocytes <i>Clinical chemistry:</i> blood urea nitrogen,
	only)	alarine aminotransferase, aspartate aminotransferase, sorbitol dehydrogenase At 9- and 15-month interim evaluation,
		At 9- and 15-month interim evaluation, liver porphyrin was qualitatively evaluated using ultraviolet (350 nm)

1

TABLE	1
-------	---

 TABLE 1

 Experimental Design and Materials and Methods in the Gavage Studies of Pentachloroanisole (continued)

16-Day Studies	13-Week Studies	2-Year Studies
Toxicokinetics None	None	Fifteen male and 15 female rats were
	• • •	administered 2.5 mg/mL pentachloro- anisole intravenously, and 34 male and 34 female mice were administered 5 mg/mL pentachloroanisole intravenously. Blood was collected at 2, 10, 20, and 30 minutes and at 1, 3, 6, 12, 18, 26, and 32 hours. Twelve male and 12 female rats and 24 male and 24 female mice were administered 10, 20 or 24 mg/kg pentachloroanisole by gavage. Blood samples were collected at 30 minutes, and at 1, 3, 6, 12, 18, 26, and 32 hours.

RESULTS

Rats

16-Day Studies

Rats died in all but the control and 100 mg/kg groups (Table 2). Most deaths occurred on days 2 or 3 and all were considered directly related to pentachloroanisole administration. Because of the high early mortality, valid comparisons of body weight gains and mean final body weights could not be made for rats administered doses greater than 100 mg/kg. No biologically significant changes in body weight gain or final mean body weights were noted in male or female rats administered 100 mg/kg. Clinical findings in rats administered 125 mg/kg or greater included inactivity, wet fur around the mouth from excessive salivation, and labored gasping breathing. Rats administered 100 mg/kg displayed inactivity only. Inactivity was characterized by animals lying separated on the cage floor; when disturbed, these animals became temporarily active but soon resumed their prone positions. Treatment-related gross findings observed at necropsy in all but the 100 mg/kg groups included pulmonary edema and subcutaneous muscular congestion. These lesions are consistent with death from acute circulatory collapse and shock subsequent to hyperthermia.

TABLE 2

Survival and mean body verynts of Kats in the 10-Day Gavage Studies of Pentacinoroanisur	Survival and Mean	Body Weights of Rats in the	e 16-Day Gavage Studies of Pentachloroanisole
--	-------------------	-----------------------------	---

			<u>Mean Body Weight^b (</u>	g)	Final Weight
Dose (mg/kg)	Survival ^a	Initial	Final	Change	Relative to Controls (%)
Male	<u> </u>				
0	5/5	130 ± 2	206 ± 4	76 ± 3	
100	5/5	130 ± 1	204 ± 4	73 ± 3	91
125	3/5°	134 ± 2	208 ± 0	74 ± 3	101
150	2/5 ^d	122 ± 1	$170 \pm 17^{**}$	$52 \pm 16^*$	83
175	0/5 ^e	133 ± 1	_	-	_
200	1/5 ^f	126 ± 4	162	35	79
Female					
0	5/5	108 ± 2	143 ± 3	35 ± 2	
100	5/5	110 ± 4	142 ± 4	32 ± 2	99
125	4/5 ⁸	108 ± 2	140 ± 3	33 ± 2	97
150	2/5 ^h	102 ± 1	140 ± 8	36 ± 8	97
175	3/5°	105 ± 2	129 ± 7	$24 \pm 5^{\circ}$	90
200	0/5 ⁱ	105 ± 2	-	-	-
				•	

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Number of animals surviving/number initially in group

^b Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the studies. No data were calculated for groups with 100% mortality.

^c Day of death: 3, 3

^d Day of death: 3, 3, 13

- ^e Day of death: 2, 3, 3, 3, 3
- ^f Day of death: four on day 2. No standard error calculated due to high mortality in this group.

^g Day of death: 3

^h Day of death: 2, 3, 3

ⁱ Day of death: 2, 2, 3, 3, 3

13-Week Studies

All male rats administered 120 mg/kg body weight pentachloroanisole or greater and all female rats administered 140 mg/kg or greater died before the end of the studies (Table 3). Seven males in the 80 mg/kg group and eight females in the 120 mg/kg group also died before the end of the studies. Most deaths occurred during the first week; these deaths were considered directly related to pentachloroanisole administration.

Mean body weight gains were 10% and 16% lower than that of the vehicle controls for male rats in the 40 and 80 mg/kg (based on three animals) groups (Table 3). The final mean body weight of the 80 mg/kg male group was 10% lower than that of the vehicle controls. Body weight gains of dosed females were 10%, 15%, and 21% lower than that of the vehicle controls for females administered 40, 80, and 120 mg/kg (based on two animals). The final mean body weights of dosed females receiving 40 to 120 mg/kg were similar to that of the vehicle controls. Body weight comparisons were not performed in dose groups with high early mortality.

High early mortality also limited comparisons of absolute and relative organ weights. Relative kidney

TABLE 3 Survival and Mean Body Weights of Rats in the 13-Week Gavage Studies of Pentachloroanisole

			Mean Body Weight (g) ^b	Final Weight
Dose (mg/kg)	Survival ^a	Initial	Final	Change	Relative to Controls (%)
Male	•				
0	10/10	150 ± 3	352 ± 6	202 ± 3	
40	10/10	148 ± 4	$328 \pm 4^{**}$	$181 \pm 3^{**}$	93
80	3/10 ^c	148 ± 3	316 ± 7**	$169 \pm 10^{**}$	90
120	0/10 ^d	151 ± 4	_	-	_
140	0/10 ^e	148 ± 4	_	-	_
180	0/10 ^f	150 ± 4	-	-	-
Female					
0	10/10	113 ± 3	201 ± 4	89 ± 3	
40	10/10	114 ± 2	195 ± 3	$80 \pm 3^*$	97
80	10/10	113 ± 2	189 ± 3*	$76 \pm 2^{**}$	94
120	2/10 ^g	114 ± 2	186 ± 10	$70 \pm 1^{**}$	92
140	0/10 ^f	113 ± 2	_	-	_
180	0/10 ^h	114 ± 3	_	_	_

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Number of animals surviving/number initially in group

^b Weights and weight changes are given as mean \pm standard error. Subsequent calculations are based on animals surviving to the end of the studies. No data were calculated for groups with 100% mortality.

^c Week of death: 1, 1, 1, 1, 3, 5, 8

^d Week of death: 9 during week 1, 1 during week 8

e Week of death: 9 during week 1, 1 during week 5

^h Week of death: 9 during week 1, 1 during week 2

Week of death: 10 during week 1

^g Week of death: 7 during week 1, 1 during week 12

Results

and liver weights of males administered 40 or 80 mg/kg were significantly greater than those of the vehicle controls as were the absolute and relative kidney and liver weights of females administered 40, 80 or 120 mg/kg (Table F1). Absolute kidney and liver weights of females administered 80 or 120 mg/kg were also significantly increased. No other biologically significant changes in organ weights or in hematologic or clinical chemistry parameters (Table G1) occurred in dosed rats.

Male rats administered doses of 80 mg/kg or greater and female rats administered doses of 120 mg/kg or greater exhibited a common pattern of clinical findings. For several hours after dosing, animals lay separated in the cage. Respiration was labored and the skin was cyanotic. Rats that survived until the next dosing period appeared normal. Rats that died overnight were often found with wet, reddish-brown stained fur around the mouth and nose. One 120 mg/kg female rat underwent rigor mortis within several minutes after death.

Treatment-associated gross observations in both sexes at necropsy included pulmonary and tracheal edema, cerebral swelling, and meningeal congestion. Doserelated increased incidences of these observations occurred in all male dose groups with the exception of those in the 40 mg/kg group, with virtually all males in the two highest dose groups affected. Increased incidences of these observations in females occurred in the 120 mg/kg and greater groups, with most animals in the 140 and 180 mg/kg groups affected.

Several treatment-related microscopic lesions were attributed to shock with circulatory collapse and subsequent ischemia. These lesions included pulmonary congestion, hemorrhage and edema, and meningeal vascular congestion. These lesions occurred in all dosed male groups and most males administered 120 mg/kg or greater were affected; in females, a similar response occurred at dose levels greater than 80 mg/kg. In general, severity of these lesions increased with dose.

Liver lesions occurred in most males administered 80 mg/kg or greater and females administered 120 mg/kg or greater (Table 4). In general, the severity of these lesions did not vary among dose groups or between sexes. Collectively, the lesions were considered as a hepatotoxic effect directly related to pentachloroanisole administration. Foci of coagulative necrosis consisted of shrunken, eosinophilic hepatocytes still arranged in hepatic cords. Areas of more extensive necrosis had a loss of lobular architecture with individualized, vacuolated, necrotic hepatocytes and mononuclear inflammatory cells scattered in irregularly shaped, clear cavitations. Hepatocytes with glycogen depletion were smaller with condensed cytoplasm in contrast to hepatocytes in the vehicle controls, which had abundant reticulated cytoplasm compatible with the normal glycogen accumulation in well-nourished rodents. Periportal hepatocellular vacuolation in female rats was characterized by numerous small, clear, cytoplasmic vacuoles.

Acute inflammation was characterized by periportal edema and inflammatory infiltrates consisting primarily of neutrophils and a few macrophages. Kupffer cell hypertrophy consisted of enlargement and vacuolation of Kupffer cells primarily in the periportal areas. Bile duct hydropic degeneration was characterized by swollen epithelial cells with abundant, clear cytoplasm and prominent nuclei; mineralized bile ducts had basement membrane deposits of basophilic granular material.

Based on low survival and the occurrence of toxic lesions in the livers of animals in the 16-day and 13-week studies, the dose levels of pentachloroanisole selected for administration by gavage to male and female rats for the 2-year studies were 0, 20, and 40 mg/kg. Because male rats exhibited greater mortality and more severe hepatic lesions than female rats at 80 mg/kg, an additional dose of 10 mg/kg was selected for males to ensure study adequacy.

•	Vehicle Control	40 mg/kg	80 mg/kg	120 mg/kg	140 mg/kg	180 mg/kg
Male	· · ·					· · · ·
n	10	10	10	10	10	10
Hepatocyte						
Coagulative necrosis	0	0	5* (0.7) ^a	4* (0.5)	4* (0.5)	0
Necrosis	0	0	5* (0.9)	10** (1.2)	9** (0.9)	10** (1.1)
Glycogen depletion	Õ	Õ	7** (2.7)	10** (3.9)	10** (3.2)	10** (4.0
Acute inflammation	0	0	7** (1.6)	10** (1.9)	10** (1.6)	10** (1.6)
Bile duct						•
Hydropic degeneratio	n O	0	6** (1.1)	10** (3.0)	10** (2.9)	10** (2.8
Mineralization	0	0	3 (0.3)	9** (1.0)́	10** (1.3)	9** (1.0
Kupffer cell						
Hypertrophy	0	0	7** (1.0)	10** (1.9)	10** (1.7)	10** (2.0
Female						. 1
1	10		10	10	10	10
Hepatocyte						
Coagulative necrosis	0		0	3 (0.6)	2 (0.4)	1 (0.1
Necrosis	0		0	8** (1.0)	10** (1.1)	9** (1.0
Glycogen depletion Periportal cytoplasmi	0		0	8** (3.2)	10** (3.9)	9** (3.6
vacuolation	0		0	8** (0.9)	8** (1.0)	8** (0.9
Acute inflammation	0		0	8** (1.3)	10** (1.5)	9** (1.3
Bile duct						
Hydropic degeneratio	on O		0	8** (2.2)	10** (2.5)	8** (2.4
Mineralization	0		0	2 (0.3)	5* (0.5)	5* (0.5
Kupffer cell						· .
Hypertrophy	0		0	8** (1.4)	10** (1.9)	9** (1.7

Incidences of Liver Lesions in Rats in the 13-Week Gavage Studies of Pentachloroanisole

* Significantly different (P≤0.05) from the control group by Fisher's exact test

** P≤0.01

^a Severity grades: 1=minimal; 2=mild; 3=moderate; 4=marked
2-Year Studies

Survival

Estimates of survival probabilities for male and female rats administered pentachloroanisole by gavage for 2 years are presented in Table 5 and in Kaplan-Meier survival curves (Figure 2). Survival of males in the high-dose group was significantly lower than that of the vehicle controls and was lower than the historical survival rate, 511/820 (62.3%, range 24%-78%), in control male rats from recent NTP corn oil gavage studies. Many deaths in the 40 and 80 mg/kg male groups may have been due to hyperthermia associated with pentachloroanisole administration. Of the 36 deaths in the high-dose

TABLE 5

Survival of Rats in the 2-Year Gavage Studies of Pentachloroanisole

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/k	g
Male			· · · ·	<u> </u>	
Animals initially in study	70	70	70	70	•
P-Month interim evaluation ^a	10	10	10	10	
5-Month interim evaluation ^b	10	10	10	10	
Vatural deaths	3	5	7	27	
Moribund	23	21	14	5	
Accidental deaths ^c	0	4	5	4	
Animals surviving to study termination	24	20	24	14	
ercent probability of survival at end of studyd	48	45	53	36	
Mean survival days ^e	591	569	556	385	
urvival analysis ^f	P=0.004	P=0.442	P=0.709N	P=0.004	· .
emale				. *	
nimals initially in study	70		70	70	,
-Month interim evaluation ^a	10		10	10	
5-Month interim evaluation ^b	10		10	10	
latural deaths	4		2	2	
loribund	17		13	4	
nimals surviving to study termination	29		35	44	
ercent probability of survival at end of study	58		71	88	
lean survival days ^e	579		600	617	
urvival analysis ^f	P<0.001N		P=0.219N	P<0.001N	

^a Censored from survival analyses. Four males in the 10 mg/kg dose group and two males in the 40 mg/kg dose group died as a result of dosing accidents.

^b Censored from survival analysis. One male in the 10 mg/kg group, one in the 20 mg/kg group, and five in the 40 mg/kg group died prior to the 15-month interim evaluation. One female rat in the vehicle control group died prior to the 15-month interim evaluation.

^c Censored from survival analysis

d Kaplan-Meier determinations. Survival rates adjusted for accidental deaths and interim evaluations.

^e Mean of all deaths (uncensored, censored, terminal sacrifice)

f The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the dosed columns. A negative trend or lower mortality in a dose group is indicated by N.

FIGURE 2 Kaplan-Meier Survival Curves for Male and Female Rats Administered Pentachloroanisole by Gavage for 2 Years

male group, 20 occurred before or during week 16. At 18 months (week 81, Table 6), survival of male rats was greater than 80% for all but the high-dose group.

Mortality in high-dose males often exhibited a striking temporal and cage association. In several instances, multiple cagemates (housed five per cage) with gross and histopathologic lesions consistent with hyperthermia were found dead on the same or consecutive days. For example, four cagemates were found dead on day 96. In another episode, three cagemates died on day 66 and the remaining two cagemates died on day 67. Three cagemates died on day 108 and the remaining two cagemates died on days 109 and 110. In males, the cage association in mortality was highly significant (P≤0.01; Kruskal-Wallis test) in the high-dose group. A significant $(P \le 0.05)$, but less pronounced effect was observed in the mid-dose group, in which four cagemates died on day 185 of the 2-year studies. There was no correlation between the tier of the rack where the affected cages were located and the occurrence of these episodes, and no apparent association between mortality and caging protocols was noted in the low-dose group or in the vehicle controls. Cageassociated mortality effects were not observed in dosed or vehicle control female rats.

On day 185 of the 2-year rat studies, a building-wide environmental systems failure resulted in temperatures up to 27° C (81° F) and relative humidities up to 94% in the animal rooms for several hours. All female rats and all mice in the pentachloroanisole studies and all other animals housed in the building survived this incident. However, seven male rats from the mid- and high-dose groups were found dead the next morning and were classified as accidental deaths (Table 5). Of these animals, four mid-dose and two high-dose males were cagemates. All midand high-dose male rats found dead had gross and histopathologic lesions that were consistent with hyperthermia induced or exacerbated by adverse environmental conditions. Because pentachloroanisole administration may have rendered these animals especially susceptible to heat stress, deaths were considered indirectly related to treatment.

Survival of high-dose females (88%) was greater than the vehicle controls and the low-dose females (Table 7 and Figure 3), and exceeded the historical survival rate of 494/820 (60.2%, range 46%-68%) for control female rats in recent NTP corn oil gavage studies. This survival pattern may have been related to the lower incidences of mammary gland fibroadenomas and mononuclear cell leukemia (Table B1) which frequently result in early death or moribund sacrifice. The reason for the decreased incidences of these neoplasms is uncertain but may have been related to decreased mean body weights of high-dose females.

Body Weights, Organ Weights, and Clinical Findings

Final mean body weights of mid- and high-dose (based on 15 animals) male rats were 7% and 10% lower than that of the vehicle control (Table 6 and Figure 3). The final mean body weight of high-dose female rats was 11% lower than that of the vehicle controls (Table 7 and Figure 3).

At the 9-month interim evaluation, relative kidney, brain, and liver weights of rats administered 20 or 40 mg/kg were significantly greater than those of the vehicle controls, apparently due primarily to the lower body weights (Table F2). At the 15-month interim evaluation, relative kidney and liver weights of 40 mg/kg males were significantly greater than those of the vehicle controls. Absolute and relative kidney and liver weights were significantly increased in dosed females, with the exception of the absolute liver weights of the mid-dose females (Table F3).

Clinical findings during the 2-year studies attributed to pentachloroanisole administration in dosed males included reddened scrotal skin and wet fur around the mouth and neck due to gasping and excessive salivation. These findings, consistent with hyperthermia, were often noted several hours after dosing. Affected animals that survived overnight appeared normal the following morning. A few high-dose males that died before the end of the study underwent rigor mortis within 5 to 30 minutes after death.

During the designated observation period (weeks 21 to 39) for the 9-month interim evaluation, the mean rectal temperature of high-dose male rats was significantly greater (P \leq 0.05; Dunnett's test) than that of the vehicle controls (vehicle control, 36.2° C; low-dose, 36.4° C; mid-dose, 36.5° C; high-dose, 36.7° C). During the designated observation period for the 15-month interim evaluation, mean rectal temperatures of males displaying clinical findings consistent with hyperthermia were 37.8° C (based on two

38

TABLE 6

Mean Body Weights and Survival of Male Rats in the 2-Year Gavage Study of Pentachloroanisole

Week	Vehicle	Control		10 mg/kg		1 a 1	20 mg/k	2.		40 mg/	œ
on	Av. Wt.	No. of	Av. Wt.			Av. Wt.			Av. Wt.	WL (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	146	: 70	142	97	70	140	96	70	. 143	· . 97	70
2	167	. 70	188	113	70	184	110	70 ·	163	98	,70
3	219	70	222	101	70	215	98	70	204	93	70
4	246	70	248	101	70	239	97 ·	70	234	95	70
5 :	266	70	268	101	70	259	97 :	70	253	:95	70
6	281	70	283	101	70	272	97	70	267	95	70
7	298	70	299	100	70	290	97	70	278	. 93	70
8	312	70	311	100	70	303	97,	70	. 292	. 94	70
9	323	70	321	100	70	-313	97.	70	302	··. 94	-70
10	335	· 70	/333	99	70	324	97	70	311	. 93	64
11	346	70	342	99	70	332	96	70	318	92	64
12	355	70	348	98	70	339	96	70	320	90	·64
13	362	70	356	98	70	.346	96	70	322	89	.64
17	384	70	379	99	70	363	95	70	339	88	-50
21	406	70	398	98	70	388	96	70	366	90	50
25	430	70	420	98	70	407	95	70	377	88	50
29	443	70	434	98.	70	418	94	65	393	-89	.48
33	459	69	447	97	70	430	94	65	404	88	46
37	474	69	463	98	70	444	94	65	414	87	43
41 ^a	488	59	40,3	97 97	60	457	94	54	426	87	33
45	498	59	483	97	60	459	92	54	428	86	33
49	499	59	480	96	60	464	92 93 ·	54	428	86	33
- 49 - 53	499 509	59	480	90 96	59	468	93 · 92	54	436	86	33
55 57	510	59	500	90 98	59	408	92 93	54 54	430	86	35 33
57 61	•	59	496	98 97	59 59	473	93 93	. 54	440		3,3 32
65 ^a	511	53	496 504	~~	39 48	473	· 93 ·	47	444	86	- 29
	513			98 . 97 .	48 48		93	47	444	-86	26
69 ·	516	49	501			469		43 42		80	20
73 77		48	499	95 0(47	.471	90 90	42 41	450 445	86	23
	519	47	497	96 05	43	467	90 90		445	87	24
81 .	513	47	. 488	95	43	462		41			23 22
85	509	46	486	96 0.1	38	463	91	39	- 453	· 89	
89	508	42	478	94	35	458	90	39	448	88	22
93	494	41	468	95	29	451	91	37	445	- 90	20
97 101	485 468	38 29	464 453	96 97	27 23	439 · 435	91 · 93 ·	36 28	440 421	91 90	20 15
Fermina	l sacrifice	24			20			24		1 ^{- 1} - 1	14
Mean fo										• *a	
1-13	281	. *	282	100		274	98		262	93	1.1
4-52	453		442	98		426	94 -		397	S. 88	
8-101	506		487	96		462	91		442	. 87	. •

^a Interim evaluation occurred during this week.

۰.

· · · ·

TABLE 7

Mean Body Weights and Survival of Female Rats in the 2-Year Gavage Study of Pentachloroanisole

Week	Vehic	le Control		20 mg/kg			40 mg/kg	
on		Number of	Av. Wt.	Wt. (% of	Number of	Av. Wt.	Wt. (% of	Number of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	110	70	111	102		110	100	70
2	131	70	132	101	70	130	100	70
3	146	70	146	100	70	144	99	70
4	157	70	157	100	70	152	97	70
5	167	70	165	99	70	161	96	70
6	173	70	170	98	70	165	96	70
7	181	70	176	98	70	169	93	70
8	185	70	179	97	70	175	95	70
9	188	70	180	96	70	179	95	70
10	194	70	190	98	70	183	95	70
11	198	70	194	98	70	185	94	70
12	203	70	197	97	70	189	93	70
13	205	70	198	97	70	191	93	70
17	213	70	206	97	70	198	93	70
21	220	70	213	97	70	202	92	70
25	228	70	221	97	70	213	93	70
29	234	70	227	97	70	217	93	70
33	239	69	232	97	70	225	94	70
37	247	69	238	96	70	225	91	70
41 ^a	251	59	248	99	60	234	93	60
45	258	59	253	98	60	236	91	60
49	269	59	262	97	59	242	90	60
53	276	58	271	98	58	243	88	60
57	288	58	280	97	58	250	87	60
61	294	57	288	98	58	256	87	60
65 ^a	306	50	297	97	48	261	86	56
69	317	46	306	97	48	268	85	50
73	323	46	309	96	48	276	86	50
77	329	44	316	96	48	276	84	49
81	331	44	318	96	47	286	86	49
85	332	40	320	96	46	290	87	48
89	337	38	322	96	45	295	88	48
93	334	36	325	97	43	300	90	47
97	334	35	330	99	41	302	90	47
101	338	32	331	98	37	301	89	47
rminal sa	crifice	29			35			44
ean for w	eeks							
1-13	172		169	98		164	95	
4-52	240	4	233	97		221	92	
3-101	318		309	97		277	87	

^a Interim evaluation occurred during this week.

FIGURE 3 Growth Curves for Male and Female Rats Administered Pentachloroanisole by Gavage for 2 Years

measurements from two animals) in the mid-dose group and 38.1° C (based on 10 measurements from 7 animals) in the high-dose group. During the observation period in the 2-year studies, mean rectal temperatures of male rats displaying clinical findings of hyperthermia were 36.8° C (based on two measurements from two animals) for the mid-dose group and 38.2° C (based on 22 measurements from 17 animals) for the high-dose group.

Gross observations noted at necropsy in mid- and high-dose males that died before week 65 included congested lymph nodes, meninges, thymus, and lungs. These changes usually corresponded with microscopically observed congestion, hemorrhage, and/or edema. Collectively, these lesions were considered agonal changes consistent with death from hyperthermia. Generalized severe autolysis, possibly exacerbated by hyperthermia, was also noted in most tissues from these animals.

Hematology and Clinical Chemistry

There were no biologically significant differences in hematology or clinical chemistry parameters in dosed rats at the 9- or 15-month interim evaluation (Tables G2 and G3). Qualitative evaluation of liver porphyrin using 350 nm (ultraviolet) light was negative.

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplasms or nonneoplastic lesions of the adrenal gland, brain, kidney, lungs, lymph node, mammary gland, nose, pancreas, testes, thymus, and uterus in rats,

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one animal group, and historical incidences for the neoplasms mentioned in this section are presented in Appendixes A for male and B for female rats.

Adrenal Gland: At the 15-month interim evaluation, one high-dose female had a benign adrenal medulla pheochromocytoma and another high-dose female had adrenal medulla hyperplasia. Benign pheochromocytomas of the adrenal medulla occurred with significant positive trend in dosed male rats in the 2-year studies, and the incidences in the mid- and high-dose groups were significantly greater than that of the controls (Table 8). Malignant pheochromocy-tomas occurred in several control, low-dose, and mid-dose males but not in high-dose male rats. The incidence of pheochromocytomas in the high-dose group was lower than that of the mid-dose group, apparently because of the chemical-related decreased survival of the high-dose group. The historical incidence of benign and malignant pheochromocytomas (combined) in control male rats from recent NTP corn oil gavage studies is 255/804 (31.7%) with a range of 10%-44% (Table A4).

In contrast to the pheochromocytomas, the incidence of focal hyperplasia of the medulla was decreased in dosed male rats. The apparent dose-related decrease was not statistically significant by logistic regression analyses, when survival differences were taken into account (effective hyperplasia rates: vehicle control, 23/48; low-dose, 26/47; mid-dose, 16/41; high-dose, 9/24). In many studies increased incidences of endocrine neoplasms are accompanied by increased incidences of hyperplasia. However, in this study the presence of large pheochromocytomas may have obscured smaller foci of hyperplasia. This is supported by the observations that seven hyperplasias in the high-dose group were seen in rats without adrenal pheochromocytomas, only two of the highdose males had pheochromocytomas, and none of the nine males with multiple pheochromocytomas had focal hyperplasia.

There was a marginal increase in the incidence of benign pheochromocytomas in high-dose females (Table 8). No malignant pheochromocytomas were observed in dosed or control groups. Incidences of adrenal medulla hyperplasia were also increased in dosed female rats.

The increased incidence of benign pheochromocytomas in high-dose females was not significant, reflecting in part that survival in this group (88%) was quite high compared to survival rates for the concurrent vehicle controls (58%) and the historical controls (60.2%; range 46%-74\%). Because of the increased survival, more females in the high-dose group were at risk for neoplasm development compared to other groups with lower survival rates. Therefore, whether the marginal increases in benign

·				· .
	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
Male	affin an ann an a			<u>, , , , , , , , , , , , , , , , , , , </u>
Hyperplasia				
Overall rates ^a	23/50 (46%)	26/50 (52%)	16/50 (32%)	9/48 (19%)
Adrenal Medulla: Benign Pheochromo	cytoma			
Overall rates	12/50 (24%)	17/50 (34%)	23/50 (46%)	15/48 (31%)
Terminal rates ^b	6/24 (25%)	10/20 (50%)	16/24 (67%)	8/14 (57%)
First incidence (days)	527	520	684	548
Logistic regression tests ^c	P=0.001	P = 0.070	P=0.006	P=0.004
Adrenal Medulla: Malignant Pheochro	mocvtoma			
Overall rates	3/50 (6%)	2/50 (4%)	4/50 (8%)	0/48 (0%)
Terminal rates	0/24 (0%)	1/20 (5%)	2/24 (8%)	0/14 (0%)
First incidence (days)	624	626	704	_d
Logistic regression tests	P=0.292N	P=0.509N	P=0.457	P=0.218N
Adrenal Medulla: Benign and Maligna	nt Pheochromocytoma ^e			
Overall rates	15/50 (30%)	18/50 (36%)	25/50 (50%)	15/48 (31%)
Terminal rates	6/24 (25%)	11/20 (55%)	17/24 (71%)	8/14 (57%)
First incidence (days)	527	520	684	548
Logistic regression tests	P=0.005	P=0.156	P=0.010	P=0.021
Female				
Hyperplasia				
Overall rates	10/50 (20%)		18/50 (36%)	25/50 (50%)**
Adrenal Medulla: Benign Pheochromo	cytoma ^f			
Overall rates	3/50 (6%)		7/50 (14%)	9/50 (18%)
Terminal rates	2/29 (7%)		6/35 (17%)	7/44 (16%)
First incidence (days)	718		673	712
Logistic regression tests	P = 0.135		P = 0.232	P = 0.170

TABLE 8 Incidences of Adrenal Medulla Proliferative Lesions in Rats in the 2-Year Gavage Studies of Pentachloroanisole

** P<0.01 by logistic regression test

^a Number of lesion-bearing animals/number of animals with tissues examined microscopically

^b Observed incidence at terminal kill

^c Beneath the "Vehicle Control" column are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The logistic regression tests regard neoplasms in animals dying prior to terminal kill as nonfatal. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

^d Not applicable; no neoplasms in animal group

^e 2-year historical incidence for vehicle control groups in NTP corn oil gavage studies (mean ± standard deviation): 255/804 (31.7% ± 8.9%); range 10%-44%

 f 2-year historical incidence for vehicle control groups in NTP corn oil gavage studies (mean ± standard deviation): 41/802 (5.1% ± 2.7%); range 0%-10%

43

pheochromocytomas in high-dose female rats was directly related to pentachloroanisole administration is uncertain.

Proliferative lesions of the adrenal medulla form a morphologic continuum (Plates 1-4). Focal hyperplasia consisted of aggregates of cells with minimally altered cellular arrangement and cytologic features. The affected cells often blended with the surrounding normal parenchyma with minimal or no compression. The cells were sometimes larger than normal cells with a round vesicular nucleus or smaller than normal cells with a hyperchromatic nucleus. Benign pheochromocytomas were well delineated masses which distorted the medulla or extended into the cortex. They were distinguished from hyperplasia by their size, altered architecture (growth pattern), and/or cytologic appearance. The neoplastic cells were arranged in variably sized aggregates, large solid sheets, or trabecular cords several cell layers thick. As in focal hyperplasia, the cells were often larger or smaller than normal cells; generally, the degree of cytologic anaplasia or atypia increased as the lesions increased in size. Because of the morphologic continuum, pheochromocytomas that extended through the capsule were designated as malignant (Plate 3).

Pigmentation: At the 9-month interim evaluation, three high-dose males and eight high-dose females had olfactory epithelial pigment similar to that observed in animals at the end of the 2-year studies.

Treatment-related increased incidences of minimal to mild pigmentation occurred in the 2-year studies in renal tubule epithelium, olfactory epithelium, and hepatocytes of rats, especially females (Table 9). The pigment was observed in scattered individual cells. In general, the severity increased slightly with dose. The decreased incidences of pigmentation in some organs

TABLE 9

Incidences of Pigmentation in S	Selected Organs of I	Rats in the 2-Year	Gavage Studies
of Pentachloroanisole			

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
Male				
n Kidney	50	50	50	50
Renal tubule	1	23** (1.3) ^a	22** (1.8)	16** (2.1)
Nose				
Olfactory epithelium	0	29** (1.0)	40** (1.2)	25** (1.8)
Liver				
Hepatocyte	0	0	1 (1.0)	4* (1.0)
Female				
n ·	50		50	50
Kidney Renal tubule	0		43** (1.9)	45** (2.2)
Nose				
Olfactory epithelium	0 ^b		46** (1.4)	50** (2.0)
Liver				
Hepatocyte	0		18** (1.3)	24** (1.0)

* Significantly different (P≤0.05) from the control group by the logistic regression test

** P≤0.01

^a Severity grades: 1=minimal; 2=mild; 3=moderate; 4=marked

′n=49

of high-dose males were attributed to increased early mortality. The pigment consisted of coarse, golden brown to dark brown, intracytoplasmic granules. The pigment granules did not contain iron, bile, or PAS-positive material (periodic acid-Schiff), as revealed by appropriate staining methods. The exact identity of the pigment was not determined. Pigmentation was considered related to pentachloroanisole administration in both sexes.

Pancreas: Acinar cell adenomas of the pancreas were observed in 12 control males, one low-dose male, and one mid-dose male; none were observed in the highdose males (Table A3). Acinar cell adenomas occurred with a significant negative trend and the incidence in each of the dose groups was significantly lower than that of controls by pairwise comparisons. The historical incidence of this lesion in control male rats from recent NTP studies is 57/815 (7.0%, range 0%-32%). The chemical-related decrease in incidence of adenomas was accompanied by a similar decrease in the incidence of focal hyperplasia (control, 19/49; low-dose, 17/49; mid-dose, 8/49; high-dose, 1/50).

Mammary gland: The incidences of mammary gland fibroadenomas occurred with a significant negative trend in female rats (Table B3). The incidence of fibroadenomas in the high-dose group (14%) was significantly lower than that of concurrent controls (32%) and below the historical range, 18%-56%, observed in control female rats in recent NTP studies. This finding may be related to the significant decrease in mean body weights of these rats. Reductions in the incidence of mammary gland neoplasms associated with reductions in body weight have been observed in other NTP studies.

Uterus: Uterine stromal polyps and stromal sarcomas (combined) also occurred with a significant negative trend in female rats, and the incidence in the high-dose group (14%) was significantly lower than that of

controls (30%) (Table B3). In contrast to the mammary gland fibroadenomas, the incidence of stromal neoplasms in the high-dose females was not lower than the lowest historical incidence seen in control female rats in recent NTP studies (stromal polyps: 167/820, 20.4%, range 4%-32%; stromal sarcoma: 12/820, 1.5%, range 0%-4%; stromal polyps and sarcomas combined: 177/820, 21.6%, range 4%-36%).

Miscellaneous lesions: The incidences of mild to moderate congestion and/or hemorrhage of lungs, thymus, brain (meninges), scrotal skin, adrenal cortex, and occasionally various lymph nodes increased almost exclusively in mid- and high-dose males that died before the end of the studies (Table A5). Virtually all of these rats had corresponding gross Most cases of liver centrilobular observations. necrosis occurred in these animals and probably resulted from ischemia subsequent to circulatory collapse. These changes may have been related to pentachloroanisole-induced hyperthermia. Although not a lesion, generalized severe autolysis was also noted in tissues of many of these animals. The early onset and extent of autolysis may have been exacerbated by hyperthermia.

Dosed male rats, especially those in the high-dose group, had decreased incidences of several neoplasms commonly seen in aging F344/N rats including mononuclear cell leukemia, testicular interstitial cell adenomas, and neoplasms of the preputial gland, pituitary pars distalis, thyroid C-cell, and mammary gland (Table A1). Incidences of several agingassociated nonneoplastic lesions such as nephropathy were also decreased in dosed males (Table A5). These findings were attributed to the high early mortality which resulted in fewer aged animals at risk for development of such lesions. The decreased incidences were not significant by survival-adjusted analysis and thus were considered only indirectly related to pentachloroanisole administration.

MICE

16-Day Studies

All mice administered 250 mg/kg body weight or greater died; four males and one female receiving 175 mg/kg also died (Table 10), and these deaths were considered directly related to chemical administration. Most of these mice died on day 2 after receiving only one dose; three deaths were attributed to gavage accidents.

Because of the high early mortality, valid comparisons of body weight gain and mean body weight could not be made for males administered greater than 100 mg/kg or for females administered greater than 175 mg/kg. No biologically significant changes in body weight gains and final mean body weights were noted in the 100 mg/kg male group or the 175 mg/kg female group. The only clinical finding related to pentachloroanisole treatment was inactivity similar to that described for rats in the 16-day studies. No treatment-related gross observations were noted at necropsy.

 TABLE 10

 Survival and Mean Body Weights of Mice in the 16-Day Gavage Studies of Pentachloroanisole

			Mean Body Weight ^b	(g)	Final Weight
Dose (mg/kg)	Survival ^a	Initial	Final	Change	Relative to Controls (%)
Male					
0	5/5	23.8 ± 0.6	27.2 ± 0.7	3.4 ± 0.2	
100	4/5 ^c	24.4 ± 0.5	28.3 ± 1.1	3.8 ± 0.5	104
175	0/5 ^d	24.0 ± 0.6	_	-	- .
250	0/5 ^e	23.4 ± 0.4	-	-	_
325	0/5 ^f	23.2 ± 0.4	-	- .	· _ ·
400	0/5 ^e	23.8 ± 0.4	-	-	-
Female					•
0	4/5 ^g	20.0 ± 0.5	23.0 ± 0.0	2.8 ± 0.5	
100	5/5	20.2 ± 0.6	22.6 ± 0.4	2.4 ± 0.2	98
175	4/5 ^e	20.8 ± 0.5	23.5 ± 0.3	2.5 ± 0.7	98
250	0/5 ^h	19.6 ± 0.5	-	-	· · -
325	0/5 ^e	20.4 ± 0.5	-	-	_
400	0/5 ^e	20.2 ± 0.6	-	-	· _

^a Number of animals surviving/number initially in group

^b Weights and weight changes are given as mean ± standard error. Differences from the control group are not significant by Williams' or Dunnett's test. No data were calculated for groups with 100% mortality.

^c Day of death: 4, due to improper gavage technique

^d Day of death: 2, 2, 2, 3, 4; death on day 4 due to improper gavage technique

^e Day of death: all deaths occurred on day 2

f Day of death: 2, 2, 2, 2, 3

^g Day of death: 3, due to improper gavage technique

^h Day of death: 2, 2, 2, 2, 9

13-Week Studies

All males administered 140 and 180 mg/kg pentachloroanisole died, and nine males administered 120 mg/kg died. Six females administered 180 mg/kg died (Table 11). Most deaths occurred during week 1; early deaths and moribund sacrifices were considered directly related to pentachloroanisole administration.

Because of the high early mortality, valid comparisons of final mean body weights and body weight gains could not be made for males administered 120 mg/kg or greater or for females receiving 180 mg/kg. The mean body weights and body weight gains in male mice from the 40 and 80 mg/kg groups were not significantly different from those of the vehicle controls (Table 11). Body weight gains of female mice in the 40 to 120 mg/kg groups were significantly greater than those of the vehicle controls. The mean body weights of all dosed groups were similar to that of the controls. Valid comparisons of absolute and relative organ weights could not be made for males administered 120 mg/kg or greater or for females administered 180 mg/kg (Table F4). Absolute and relative liver weights of males receiving 80 mg/kg were significantly greater than those of the controls; relative kidney weights of males administered 40 or 80 mg/kg were also significantly increased. In females, absolute and relative liver weights were significantly increased in all dosed groups and absolute and relative kidney weights were increased in the 80, 120, and 140 mg/kg groups. No other biologically significant changes in organ weights or in hematology or clinical chemistry parameters occurred in dosed mice (Tables F4 and G4).

All mice except those in the 40 mg/kg groups exhibited a behavioral pattern of temporary inactivity, recumbency, and separation, similar to that described for rats in the 16-day and 13-week studies. Most

TABLE 11	
Survival and Mean Body Weights of Mice in the 1	3-Week Gavage Studies of Pentachloroanisole

			Mean Body Weight (<u>e</u>) ^b ··· ·	Final Weight
Dose (mg/kg)	Survival ^a	Initial	Final	Change	Relative to Controls (%)
Male			· · · · · · · · · · · · · · · · · · ·		·
0	10/10	24.1 ± 0.2	34.8 ± 0.8	10.7 ± 0.6	
40	10/10	23.5 ± 0.5	34.5 ± 0.8	11.0 ± 0.6	99
80	10/10	23.5 ± 0.4	34.6 ± 0.4	11.1 ± 0.3	
120	1/10 ^c	23.8 ± 0.4	32.0	8.0	92
140	0/10 ^d	$23.6' \pm 0.4$	<u> </u>	-	
180	0/10 ^e	23.9 ± 0.5	-	-	
Female					
0	10/10	19.2 ± 0.2	25.1 ± 0.3	5.9 ± 0.3	
40	10/10	18.7 ± 0.3	25.7 ± 0.4	$7.0 \pm 0.4^*$	102
80	10/10	18.9 ± 0.4	26.0 ± 0.3	$7.1 \pm 0.3^*$	104
120	10/10	18.9 ± 0.3	25.9 ± 0.3	$7.0 \pm 0.3^{*}$	103
140	10/10	19.3 ± 0.2	$26.3 \pm 0.3^*$	$7.0 \pm 0.3^*$	105
180	4/10 ^e	19.1 ± 0.3	26.0 ± 0.4	7.0 ± 0.6	104

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

^a Number of animals surviving/number initially in group

^b Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the studies. No data were calculated for groups with 100% mortality.

^c Week of death: 2, 3, 3, 3, 4, 4, 4, 6, 10; no standard error calculated due to high mortality in this group

^d Week of death: 1, 1, 1, 1, 2, 3, 3, 3, 3, 4

^e Week of death: all occurred during week 1

deaths occurred at night, but several males in the 120 and 140 mg/kg groups that survived overnight displayed inactivity, irregular or deep respiration, ataxia, and/or cyanotic skin immediately before being killed moribund. Two males from each of the 120 and 140 mg/kg groups underwent rigor mortis within 5 minutes after being killed moribund. No treatment-related gross observations were noted at necropsy. Several treatment-associated microscopic lesions were attributed to shock or agonal changes including pulmonary congestion and edema in males administered 80 mg/kg or greater and in females administered 140 or 180 mg/kg. Lymph node and thymic lymphoid depletion and adrenal congestion in males receiving 120 mg/kg pentachloroanisole or greater were also noted.

The incidences of several liver lesions were increased in dosed mice, especially males (Table 12). Severity of the liver lesions in the 40 to 120 mg/kg groups ranged from minimal to mild and generally increased with dose. Hepatocellular cytomegaly and karyomegaly occurred primarily in the centrilobular and

midzonal regions. Cytomegaly consisted of enlarged hepatocytes with abundant cytoplasm, while karyomegaly was characterized by large, vesicular nuclei. Pigment in hepatocytes or Kupffer cells of dosed male mice was characterized by cytoplasmic accumulation of yellow-brown granules of undetermined identity; these granules did not contain iron, bile, or PAS-positive material, as revealed by appropriate staining procedures. These liver lesions were considered to be related to pentachloroanisole administration. The decreased incidence or absence of some of these lesions in the 140 and 180 mg/kg groups was attributed to the high early mortality. Decreased severity of some changes in these groups was probably related to the decreased time for lesion progression.

Based on the low survival in the 16-day and 13-week studies and the occurrence of potentially progressive toxic liver lesions in the 13-week studies, the dose levels of pentachloroanisole selected for administration by gavage to male and female mice for the 2-year studies were 0, 20, and 40 mg/kg.

 TABLE 12

 Incidences of Liver Lesions in Mice in the 13-Week Gavage Studies of Pentachloroanisole

	Vehicle Control	40 n	ng/kg	80 n	ng/kg	120 n	ng/kg	140 n	ng/kg	180 r	ng/kg
Male											
n	10	10		10		10		10		10	
Hepatocyte, centrilot	oular/midzonal										
Cytomegaly	0	10**	(1.7) ^a	10**	(3.0)	2	(2.5)	0		0	
Karyomegaly	0	8**		10**	(2.3)	9**	(3.5)	5*	(1.2)	0	
Pigment	0	4°	(1.3)	8**	(1.6)	8**	(1.8)	4*	(1.5)	0	
Kupffer cell											
Pigment	0	2	(1.5)	8	(1.7)	3	(2.3)	0		0	
Female											
n	10	10		10		10		10		10	
Hepatocyte, centrilot	oular/midzonal										
Cytomegaly	0	0		0		0		4*	(2.0)	3	(1.7
Karyomegaly	0	0		6**	(1.0)	9**	(1.1)		(1.6)	4*	(1.8

Significantly different (P≤0.05) from the control group by Fisher's exact test

°° P≤0.01

^a Severity grades: 1=minimal; 2=mild; 3=moderate; 4=marked

2-Year Studies

Survival

Estimates of survival probabilities for male and female mice administered pentachloroanisole by gavage for 2 years are presented in Table 13 and in Kaplan-Meier survival curves (Figure 4). The survival of high-dose female mice was significantly lower than that of the vehicle controls due to ovarian abscesses or morbidity from undetermined causes (Table D5). Females alive at 18 months included 76% of the controls, 68% of the low-dose, and 64% of the high-dose group.

TABLE 13

Survival of Mice in the 2-Year Gavage Studies of Pentachloroanisole

	Vehicle Control	20 mg/kg	40 mg/kg	r
Male				
Animals initially in study	70	70	70	
9-Month interim evaluation ^a	10	10	10	
15-Month interim evaluation ^b	10	10	7	,
Natural deaths	2	2	0	
Moribund	17	20	22	
Accidental deaths ^c	1	1	0	
Animals surviving to study termination	30	27	28 ^d	
Percent probability of survival at end of study ^e	61	55	56	
Mean survival days ^f	591	613	597	
Survival analysis ^g	P=0.607	P=0.936	P=0.682	
Female				
Animals initially in study	70	70	70	
9-Month interim evaluation ^a	10	10	10	
5-Month interim evaluation ^b	10	10	10	
Natural deaths	8	6	8	
Moribund	17	18	29	
Accidental deaths ^c	1	1	0	
Animals surviving to study termination	24	25	16	
Percent probability of survival at end of study ^e	51	52	31	
Mean survival days ^f	552	541	527	
Survival analysis ^g	P=0.035	P=0.966	P=0.042	

^a Censored from survival analyses; one 20 mg/kg female died prior to the 9-month interim evaluation

^b Censored from survival analysis; three 40 mg/kg females died prior to the 15-month interim evaluation

^c Censored from survival analysis

^d Includes one animal that died during the last week of the study

e Kaplan-Meier determinations. Survival rates adjusted for accidental deaths and interim evaluations.

^f Mean of all deaths (uncensored, censored, terminal sacrifice)

^g The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the dosed columns.

49

Body Weights, Organ Weights, and Clinical Findings

At the 9-month interim evaluation, absolute and relative liver weights of the high-dose females and relative liver weights of high-dose males were significantly greater that those of the vehicle controls (Table F5). Body weights of high-dose male mice were lower than the vehicle controls throughout the second year; final mean body weights of low- and high-dose male mice were 11% and 17% lower than the body weights of the vehicle controls (Figure 5 and Table 14). No significant differences in final mean body weights were noted in dosed female mice (Table 15). No treatment-related clinical findings were observed for either sex.

Hematology and Clinical Chemistry

There were no biologically significant differences in hematology and clinical chemistry parameters in dosed mice (Tables F5 and G5) at the 9-month interim evaluation. Qualitative evaluation of liver for porphyrin under 350 nm (ultraviolet) light was negative. At the 15-month interim evaluation, serum levels of alanine aminotransferase, aspartate aminotransferase, and sorbitol dehydrogenase were greater in dosed male mice than in the vehicle controls. No other biologically significant differences in hematology or clinical chemistry parameters occurred in dosed mice (Table G6). Qualitative evaluation of liver porphyrin under 350 nm (ultraviolet) light was negative.

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplasms or nonneoplastic lesions of the adrenal gland, bone, liver, nose, and ovary in mice.

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one animal group, and historical incidences for the neoplasms mentioned in this section are presented in Appendixes C for male and D for female mice.

All Organs: The incidence of malignant neoplasms arising at any site in high-dose male mice was significantly greater than that of the controls (Table C3). The increased incidence of malignant neoplasms was due primarily to a significant increase in the incidence of hemangiosarcoma of the liver. Marginal, nonsignificant increases in malignant lymphomas (all types) and hepatocellular carcinomas also contributed to the overall significant increase in malignant neoplasms in the high-dose males.

FIGURE 5 Growth Curves for Male and Female Mice Administered Pentachloroanisole by Gavage for 2 Years

51

TABLE 14

Mean Rody Weights and Survival	of Male Mice in the 2-Vear (Gavage Study of Pentachloroanisole
mean bouy weights and Survival	of whate whice in the 2-year (savage Study of Fentachioroanisole

Weeks	Vehic	le Control		20 mg/kg			40 mg/kg	
on	Av. Wt.	Number of	Av. Wt.	Wt. (% of	Number of	Av. Wt.	Wt. (% of	Number of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	22.4	70	22.4	100	70	22.1		70
2	24.1	69	24.3	101	70	23.9	99	70
3	25.5	69	25.6	100	70	25.3	99	70
4	26.4	69	26.5	100	70	26.3	100	70
5	27.4	69	27.7	101	70	27.4	100	70
6	28.1	69	28.3	101	70	28.2	100	70
7	29.3	69	29.6	101	70	29.1	99	70
8	29.5	69	29.9	101	70	29.6	100	70
9	30.7	69	31.2	102	70	30.5	99	70
10	31.3	69	31.9	102	70	31.4	100	70
11	32.6	69	33.0	101	70	32.0	98	70
12	32.6	69	33.1	102	70	32.6	100	70
13	34.3	69	34.2	100	70	33.4	97	70
17	37.2	69	37.3	100	70	36.8	99	70
21	39.3	69	39.7	101	70	38.3	98	70
25	41.9	69	41.9	100	70	40.3	96	70
29	43.4	69	43.3	100	70	41.5	96	70
33	45.9	69	45.8	100	70	43.4	95	70
37	46.4	69	46.1	99	70	44.2	95	70
41 ^a	48.2	59	47.2	98	60	45.6	95	60
45	49.6	59	49.1	99	60	46.3	93	60
49	50.0	59	49.2	98	60	46.6	93	60
53	51.0	59	50.7	99	60	46.6	91	60
57	51.1	59	50.3	98	60	45.4	89	60
61	51.6	58	50.4	98	60	45.9	89	60
65 ^a	51.7	48	50.6	98	50	45.1	87	50
69	51.6	48	50.3	98	50	44.6	86	49
73	52.4	47	50.7	97	50	44.8	86	49
77	51.2	46	49.9	98	50	44.6	87	49
. 81	50.4	46	48.4	96	50	43.6	87	47
85	50.0	45	48.3	97	50	42.7	85	47
89	50.0	42	47.2	94	49	43.0	86	40
93	49.8	42	46.2	93	49	41.9	84	40
97	49.7	41	45.1	91	48	41.0	83	40
101	50.4	35	44.9	89	36	42.0	83	33
rminal sa	crifice	30			27			28
an for we	eks							
1-13	28.8		29.1	101		28.6	99	
14-52	44.7		44.4	99		42.6	95	
3-101	50.8		48.7	96		43.9	86	

^a Interim evaluation occurred during this week.

TABLE 15

Mean Body Weights and Survival of Female Mice in the 2-Year Gavage Study of Pentachloroanisole

Weeks	Vehicle Control		20 mg/kg			40 mg/kg		
on	-	Number of	Av. Wt.	Wt. (% of	Number of	Av. Wt.	Wt. (% of	Number o
Study			(g)		Survivors	(g)	controls)	Survivors
1	18.9	70	18.9	100	70	18.7	99	70
2	20.0	70	19.9	100	69	19.9	100	70
3	21.1	70	20.9	99	69	21.0	100	70
4	22.1	70	22.1	100	69	21.9	99	70
5	22.8	70	22.8	100	69	22.6	99	. 70
6	23.0	70	23.5	102	69	23.6	103	70
7	23.9	70	24.1	101	69	24.5	103	70
8	24.5	70	24.7	101	69	25.2	103	70
9	25.3	70	25.5	101	69	25.8	102	70
10	25.8	70	25.9	100	69	26.8	104	70
11	26.6	69	26.6	100	69	27.3	103	70
12	26.7	69	27.1	102	69	27.3	102	70
13	27.5	68	27.9	102	69	28.1	102	70
17	30.2	68	30.3	100	69	30.7	102	70
21	32.1	68	32.6	102	68	32.2	100	70
25	34.4	68	34.1	99	68	34.2	99	70
29	36.1	68	35.5	98	68	34.7	96	70
33	37.7	68	37.6	100	68	37.2	99	70
37	39.4	68	38.5	98	68	38.0	96	70
41 ^a	39.8	58	39.6	100	59	39.3	99	60
45	42.7	58	42.0	98	59	41.9	98	58
49	44.0	58	43.9	100	57	43.5	99	57
53	46.7	58	45.9	98	56	44.8	96	56
57	48.0	58	47.6	99	56	45.9	96	48
61	48.7	55	48.1	99	55	47.5	98	47
65 ^a	49.8	44	49.3	99	41	47.6	96	40
69	52.0	41	50.3	97	40	49.7	96	38
73	53.4	40	51.8	97	39	50.1	94	36
77	51.3	39	51.9	101	37	50.0	98	34
81	48.9	38	49.6	101	34	47.9	98	32
85	49.3	36	49.5	100	32	48.4	98	29
89	48.5	34	50.1	103	30	48.4	100	27
93	49.3	31	49.9	101	29	46.7	95	26
97	49.1	28	50.8	104	27	45.7	93	24
101	49.3	25	49.5	100	25	45.8	93	17
rminal s	acrifice	24			25			16
an for w	eeks							
1-13	23.7		23.8	100		24.1	102	
14-52	37.4		37.1	99		36.9	99	
3-101	49.6		49.6	100		47.6	96	

^a Interim evaluation occurred during this week.

Adrenal gland: Benign pheochromocytomas occurred in four low- and seven high-dose male mice; none was observed in control mice (Tables 16 and C3). Benign pheochromocytomas occurred with a significant positive trend, and the incidence in the highdose males was significantly greater than that of controls. Moreover, the incidence of benign pheochromocytoma in high-dose males exceeded the historical incidence of such neoplasms (17/682, 2.5%; range 0%-4%;) (Table C4a) observed in control male mice in recent NTP studies. No malignant pheochromocytomas were observed in dosed or control groups. Diffuse hypertrophy of medullary cells and focal hyperplasia also occurred at high incidences in dosed male mice, but not in controls (Table 16). Hypertrophy was characterized by diffuse enlargement of medullary cells. Focal hyperplasia and pheochromocytoma formed a morphologic continuum similar to that observed in rats.

In contrast, a pheochromocytoma was seen in only one low-dose female, and none was seen in the highdose or control groups (Table D1). Hypertrophy and hyperplasia were also not observed in females.

TABLE 16

Incidences of Adrenal Medulla Proliferative Lesions in Male Mice in the 2-Year Gavage Study of Pentachloroanisole

	Vehicle Control	20 mg/kg	40 mg/kg	
Hyperplasia	0/50	13/50**	29/48**	
Hypertrophy	0/50	3/50	36/48**	
Benign Pheochromocytoma ^a				
Overall rates ^b	0/50 (0%)	4/50 (8%)	7/48 (15%)	
Terminal rates ^c	0/30 (0%)	1/27 (4%)	5/27 (19%)	
First incidence (days)	_e	691	691	
Logistic regression tests ^d	P=0.004	P = 0.069	P=0.007	

** P<0.01 by logistic regression test

^a 2-year historical incidence for vehicle control groups in NTP corn oil gavage studies (mean ± standard deviation): 17/682 (2.5% ± 1.6%); range 0%-4%

^b Number of lesion-bearing animals/number of animals necropsied or number of animals with tissues examined microscopically

^c Observed incidence at terminal kill

^d Beneath the "Vehicle Control" column are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The logistic regression tests regard tumors in animals dying prior to terminal kill as nonfatal.

^e Not applicable; no neoplasms in dose group

Liver: Treatment-related liver lesions were considered to be the advanced stages of the alterations seen initially in the 13-week studies. Centrilobular hepatocellular cytomegaly with degeneration and/or necrosis of scattered individual hepatocytes, and pigment accumulation in hepatocytes and Kupffer cells occurred in dosed mice of each sex (Table 17). However, the incidences in males were greater than that in females. At the 15-month interim evaluation, absolute and relative liver weights were marginally increased in dosed male mice and were significantly increased in dosed females (Table F6). Treatmentrelated liver lesions were considered to be progressive stages of the pathologic processes as seen in the 13-week studies and 9-month interim evaluations. Centrilobular hepatocellular cytomegaly, degeneration and necrosis, and pigment accumulation in hepatocytes and Kupffer cells occurred in dosed male and female mice. However, incidence and severity were greater in males.

Hemangiosarcomas of the liver (Plate 5) occurred with a significant positive trend in dosed male mice, and the incidence in the high-dose group was significantly greater than that of controls by pairwise comparisons (Tables 17 and C3). Moreover, the incidence of hemangiosarcomas of the liver in highdose males exceeds the historical range, 0%-6% (Table C4d), in control male mice from recent NTP studies. Angiectasis, a possible precursor of vascular neoplasms, was observed in one control and three low-dose males; none was seen in the high-dose group. In contrast to the incidence of hemangioma or hemangiosarcoma in the liver, the incidence of hemangioma or hemangiosarcoma (combined) occurring at any site was also marginally increased, but neither the trend nor the pairwise comparison was significant (Table C3).

Several nonneoplastic liver lesions occurred at higher incidences in dosed male and female mice, especially in males (Table 17). These lesions were similar to those seen in the 13-week study and in the interim evaluations. Several hepatocellular changes diagnosed separately in the 13-week study and in the interim evaluations were defined as cytologic alterations. Cytologic alteration was characterized by centrilobular cytomegaly (enlarged hepatocytes with abundant, finely granular eosinophilic cytoplasm), karyomegaly (enlarged nuclei with prominent chromatin clumping), degeneration and necrosis (cytoplasmic vacuolation or shrinkage, karyorrhexis and karyolysis of individual cells), multinucleated giant cell formation, and rarely erythrophagocytosis (Plates 6, 7, and 8). Hyperplasia of intrahepatic bile ducts and ductules was also observed and consisted of the proliferation of immature epithelial cells arranged in small aggregates, ductular structures, or as individual cells in the portal tracts and periportal hepatic parenchyma. Scattered Kupffer cells and, to a lesser extent hepatocytes, contained fine, yellow-brown granular pigment. Subacute inflammation, characterized by scattered infiltrates of mononuclear inflammatory cells and occasionally neutrophils, was also observed in dosed mice. The severity of these lesions increased slightly with dose, especially in males (Table 17).

Hepatocellular mixed cell foci (single or multiple combined) occurred with a significant, dose-related positive trend in male mice, and the incidence in the high-dose group was significantly greater than that in the controls. Although the incidence of clear cell foci also occurred at a slightly higher incidence in high-dose males, the incidences of basophilic or eosinophilic foci in high-dose male mice were significantly lower than in the controls. The biological significance of these findings is uncertain. Hepatocellular foci (eosinophilic, basophilic, clear cell, or mixed) are distinguished from normal parenchyma primarily on the basis of cytoplasmic staining properties, but they may also exhibit slight alteration in the arrangement of the hepatic plates. Foci are considered preneoplastic lesions and form a morphologic continuum with hepatocellular adenoma and hepatocellular carcinoma. The incidence of hepatocellular neoplasms was not increased in dosed male mice (Tables C1 and C3).

Ovary: The incidence of ovarian abscesses was marginally increased in dosed female mice (control, 12/45; low-dose, 14/36; high-dose, 18/50) (Table D5). Incidences of associated reactive changes, such as bone marrow hypercellularity in low-and high-dose females and splenic hematopoietic cell proliferation in high-dose females, were also increased (Table D5). Ovarian abscesses are usually fatal lesions (Rao *et al.*, 1987), and only a few females with ovarian abscesses survived until the end of the study (1/12; 1/14; 1/18).

۱

	Vehicle	Control	20 m	g/kg	40 mg	y/kg
Male			· · · · · · · · ·			
9-Month Interim Evaluation						
n	10		10		10	
Hepatocyte, centrilobular						
Cytomegaly	0		10**	$(3.0)^{a}$	10**	(3.0)
Degeneration	0		10**	(1.0)	10**	(1.0)
Necrosis	0			(1.0)	10**	(1.0)
Hepatocyte/Kupffer cell, centrilobula	ar					
Pigmentation	0		0		10**	(1.0)
15-Month Interim Evaluation						
n	10		10		10	
Hepatocyte, centrilobular						
Cytomegaly	. 0		. 10**	(3.0)	10**	(3.0)
Degeneration	0		10**	(2.4)	10**	
Necrosis	0			(2.0)		(3.0)
Hepatocyte/Kupffer cell, centrilobul	ar					
Pigmentation	0	,	10**	(1.0)	10**	(1.9)
2-Year Study						
n	50		50		50	
Hepatocyte, centrilobular						
Cytologic alteration	0		50**	(3.1)	50**	(3.1)
Kupffer cell						
Pigmentation	1	(1.0)	50**	(2.9)	50**	(3.0)
Biliary tract hyperplasia	0	-	47**	(1.7)	48**	(2.1)
Inflammation, subacute	0		49**	(2.0)	49**	(2.1)
Mixed cell foci	9		15		27**	
Hemangiosarcoma ^b						
Overall rates ^c	2/50	(4%)	8/50	(16%)	10/50	(20%)
Terminal rates ^d	0/30	(0%)	1/27	(4%)	6/28	(21%)
First incidence (days)	701		682		612	
Logistic regression tests ^e	P = 0.013		P = 0.051		P=0.015	

TABLE 17 Incidences of Neoplasms and Nonneoplastic Lesions of the Liver in Mice in the 2-Year Gavage Studies of Pentachloroanisole

TABLE 17

Incidences of Neoplasms and Nonneoplastic Lesions of the Liver in Mice in the 2-Year Gavage Studies of Pentachloroanisole (continued)

	Vehicle Control	20 mg/kg	40 mg/kg
`emale			
-Month Interim Evaluation			
l .	10	9	10
lepatocyte, centrilobular			
Cytomegaly	0	9** (2.0)	10** (3.0)
Degeneration	0	3 (1.0)	10** (1.0)
Necrosis	0	1 (1.0)	9** (1.0)
lepatocyte/Kupffer cell, centrilobular			
Pigmentation	0	0	7°° (1.0)
5-Month Interim Evaluation			
	10	10	10
lepatocyte, centrilobular			
Cytomegaly	0	10** (1.6)	7** (2.7)
Degeneration	0	0	7** (1.3)
Necrosis	0	0	7** (1.4)
lepatocyte/Kupffer cell, centrilobular			
Pigmentation	0	6** (1.0)	7°° (1.1)
-Year Study			
	50	50	50
lepatocyte, centrilobular			
Cytologic alteration	1 (2.0)	34** (1.9)	39** (2.4)
Lupffer cell			
Pigmentation	0	37** (1.6)	48** (2.4)
Biliary tract hyperplasia	1 (1.0)	16** (1.2)	30** (1.9)
Inflammation, subacute	1 (1.0)	28** (1.5)	32** (2.0)

** Significantly different (P≤0.01) from the control group by the logistic regression test

^a Severity grades: 1=minimal; 2=mild; 3=moderate; 4=marked

^b 2-year historical incidence for vehicle control groups in NTP corn oil gavage studies (mean ± standard deviation): 15/699 (2.1% ± 2.1%); range 0%-6%

^c Number of lesion-bearing animals/number of animals necropsied or number of animals with tissues examined microscopically

^d Observed incidence at terminal kill

e Beneath the "Vehicle Control" column are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The logistic regression test regards tumors in animals dying prior to terminal kill as nonfatal.

Although the increased incidence of ovarian abscesses in the dosed groups was not statistically significant by life table analysis, these lesions tended to occur earlier in dosed animals. For example, 16/17 highdose females dying prior to 80 weeks had ovarian abscesses compared with only 6/12 controls. It is likely that this lesion was primarily responsible for the marginally reduced survival observed in high-dose female mice.

Malignant lymphoma: The incidence of malignant lymphomas (all types) was marginally increased in high-dose female mice (Table 18). Because the incidences of these lesions in the present studies were well within historical ranges of controls and were only marginally significant, they were not considered to be related to pentachloroanisole administration.

Osteosarcoma: Osteosarcoma of the bone occurred in two low-dose male mice (Table C1). The historical incidence of this neoplasm in control male mice

from recent NTP corn oil gavage studies was 1/700 (0.1%, range 0%-2%). The incidence of these two neoplasms was not significant or dose-related, and therefore was not considered related to pentachloro-anisole administration.

Nose: Dose-related increased incidences of nonneoplastic nasal lesions (suppurative inflammation and foreign bodies) were noted in male mice (Table C5) and, to a greater extent, in female mice (Table D5). Foreign bodies were slightly refractile, translucent, pale yellow globules, which may have formed during intranasal instillation from the reflux or regurgitation of corn oil and which caused a secondary suppurative inflammation. The increased incidences in dosed animals may have been due to possible local irritation by pentachloroanisole and/or higher rates of reflux and regurgitation in these dosed animals, thus, a direct relationship to systemic pentachloroanisole toxicity was uncertain.

TABLE 18

Incidences of Malignant Lymphomas in Female Mice in the 2-Year Gavage Study of Pentachloroanisole^a

	Vehicle Control	20 mg/kg	40 mg/kg
Overall rates ^b	7/50 (4%)	9/50 (16%)	12/50 (20%)
Terminal rates ^c	5/24 (0%)	1/27 (4%)	6/28 (21%)
First incidence (days)	674	472	583
First incidence (days) Life table test ^d	P=0.033	P=0.391	P=0.036
Logistic regression test ^d	P=0.057	P=0.360	P=0.049

^a 2-year historical incidence for vehicle control groups in NTP corn oil gavage studies (mean ± standard deviation): 155/698 (22.2% ± 8.3%); range 0%-40%

^b Number of lesion-bearing animals/number of animals necropsied or number of animals with tissues examined microscopically

^c Observed incidence at terminal kill

^a Beneath the "Vehicle Control" column are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards neoplasms in animals dying prior to terminal kill as nonfatal.

PLATE 1

Adrenal Gland: Normal cross-sectional width ratio of cortex (C) to medulla (M) in a vehicle control male rat from the 2-year gavage study of pentachloroanisole. H&E \times 45

BPC

PLATE 2

Adrenal Gland: Compression by expansile benign pheochromocytoma (BP) narrows width of adjacent cortex (C) in a male rat given 10 mg/kg pentachloroanisole in the 2-year gavage study. H&E \times 45

PLATE 3

Adrenal Gland: Malignant pheochromocytoma (MP) obliterates cortex and causes massive enlargement of the adrenal gland. Focal hemorrhage (asterisk) is also present in this male rat given 10 mg/kg pentachloroanisole in the 2-year gavage study. H&E \times 45

Plate 4

Adrenal Gland: Higher magnification of benign pheochromocytoma (BP) in a male rat given 20 mg/kg pentachloroanisole in the 2-year gavage study. Note the increased cellular density compared to the adjacent normal medulla (M). H&E \times 240

PLATE 5

Liver: Hemangiosarcoma in a male mouse given 20 mg/kg pentachloroanisole in the 2-year gavage study. H&E $\times 150$

PLATE 6

Liver: Normal hepatic parenchyma from a vehicle control male mouse from the 2-year gavage study of pentachloroanisole. H&E \times 240

PLATE 7

Liver: Enlarged (cytomegalic) hepatocytes exhibit large (karyomegalic) nuclei (small arrow). Hepatocellular vacuolization (asterisk) and individual cell necrosis (large arrow) are also present in a male mouse given 20 mg/kg pentachloroanisole in the 2-year gavage study. H&E \times 240

PLATE 8

Liver: Hepatocellular multinucleated giant cell (arrow) from a male mouse given 40 mg/kg pentachloroanisole in the 2-year gavage study. H&E \times 240

GENETIC TOXICOLOGY

Pentachloroanisole (10-10,000 μ g/plate) was tested for induction of gene mutations in four strains of Salmonella typhimurium (TA98, TA100, TA1535, and TA1537) using a preincubation protocol with and without Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9 (Table E1; Mortelmans et al., 1986). No mutagenic activity was observed in strain TA100 or TA1535 with or without S9, but positive responses were obtained with strains TA98 and TA1537 without S9; no increase in mutagenic colonies occurred in these strains with S9. Precipitation occurred at 1,000 μ g/plate and higher concentrations. In the mouse lymphoma assay, pentachloroanisole induced trifluorothymidine resistance in L5178Y cells over a concentration range of 18.75 to 500 μ g/mL with Aroclor 1254-induced male F344/N rat liver S9; without S9, the responses were weak, not dose related, and inconsistent (Table E2; McGregor et al., 1987). Precipitation also occurred in this assay at about the 125 μ g/mL dose level, and this may have been a factor in the lack of a clear dose-response relationship for all but one of the positive trials. In cytogenetic tests with Chinese hamster ovary cells, pentachloroanisole induced sister chromatid exchanges (Table E3), but not chromosomal aberrations (Table E4), with and without Aroclor 1254-induced male Sprague-Dawley rat liver S9. A delayed harvest protocol was required in the sister chromatid exchange test to offset pentachloroanisole-induced cell cycle delay and allow detection of the positive responses. Delayed harvest was also used for the chromosomal aberrations test to offset the cytotoxicity induced by pentachloroanisole. Precipitation occurred in the sister chromatid exchange and chromosomal aberration tests at pentachloroanisole concentrations of 35 μ g/mL and higher.

TOXICOKINETICS

After intravenous administration, pentachloroanisole was found to be rapidly eliminated in both male and female rats and mice (Figure H1) with no major differences between sexes. The elimination of pentachloroanisole can be described by a classical two-compartment model with first-order elimination kinetics. The terminal elimination half-lives in rats and mice were about 1.2 and 1.0 hours, respectively. The calculated plasma clearance was 6.07 L/kg-hr for male rats, 5.61 L/kg-hr for female rats, 8.45 L/kg-hr for male mice, and 10.2 L/kg-hr for female mice. The calculated volume of the central compartment was about 2.41 L/kg for male rats, 2.01 L/kg for female rats, 2.05 L/kg for male mice, and 4.5 L/kg for female mice. High concentrations of pentachlorophenol were observed immediately after the administration of pentachloroanisole in each species and sex. The terminal half-life of pentachlorophenol in both rats and mice was estimated at about 8 hours.

After gavage administration, pentachloroanisole concentrations were found to be lower than those of pentachlorophenol by two to three orders of magnitude in both rats (Figure H2) and mice (Figure H3). For male and female rats and mice the area under the concentration-versus-time curve of pentachloroanisole increased with dose but the dose proportionality was lost above 20 mg/kg (Figure H4). Dose proportionality was seen in all dose groups for the maximum concentration of pentachloroanisole achieved after gavage administration for male and female rats and mice. The variation of C_{max} at each dose group was also high (Figure H5). The area under the concentration-versus-time curve of pentachlorophenol and C_{max} values increased with pentachloroanisole dosage and appeared to be proportional to dose for rats and mice. The area under the concentration-versus-time curve was sex dependent in rats only. The terminal half-life of pentachlorophenol in both rats and mice was estimated to be 5 to 9 hours. This terminal half-life showed no sexrelated difference in mice, but was longer for female rats than for male rats.

The bioavailability of pentachloroanisole was found to be low, but it increased with dose. These estimates were based on the dosage normalized area under the concentration-versus-time curve of pentachloroanisole and of pentachlorophenol (H1 and H2).

DISCUSSION AND CONCLUSIONS

Pentachloroanisole is a chlorinated aromatic compound that is widely distributed at low levels in the environment and in foods. Formation of pentachloroanisole may result from degradation of pentachlorophenol, pentachloronitrobenzene, and other structurally related, environmentally ubiquitous, aromatic compounds, many of which are known rodent toxins or carcinogens (NTP, 1982, 1989; Safe, 1984; Silberhorn *et al.*, 1990). For these reasons, and because no information on its toxicity or carcinogenicity in rodents was available, pentachloroanisole was selected for study in F344/N rats and B6C3F₁ mice.

Because human exposure to pentachloroanisole would most likely occur from low-level contamination of drinking water and food, the oral route of administration was chosen for these studies. Corn oil was selected as the vehicle for gavage administration because pentachloroanisole is poorly soluble in water and unstable in rodent feed.

Pentachloroanisole differs from pentachlorophenol by a single methyl substitution. The *o*-methylation of pentachlorophenol by microorganisms is considered a major source of environmental pentachloroanisole (Cserjesi and Johnson, 1972). However, in vertebrates, including rats, mice, and humans, pentachlorophenol is metabolized almost entirely to glucuronide and sulfate conjugates, tetrachloroquinone, or less substituted chlorophenols. Pentachloroanisole, if produced at all, is a minor metabolite (Jakobson and Yllner, 1971; Akitake and Kobayashi, 1975; Bose and Fujiwara, 1978; Kobayashi, 1978; Lu *et al.*, 1978; Firestone *et al.*, 1979; Ahlborg and Thunberg, 1980; Crosby *et al.*, 1981; Renner and Mücke, 1986).

In contrast, pentachloroanisole is readily demethylated to pentachlorophenol *in vitro* by porcine hepatic microsomes (Agins *et al.*, 1982; Agins, 1984) and *in vivo* by rainbow trout (Glickman *et al.*, 1977; Lech *et al.*, 1978). Female mice have also been shown to metabolize pentachloroanisole almost entirely to pentachlorophenol or a pentachlorophenol conjugate (Vodicnik *et al.*, 1980).

Several toxic effects, such as tachypnea, central nervous system depression, rapid onset of rigor mortis, and hyperthermia seen in these studies have been previously associated with pentachlorophenol exposure in laboratory and domestic animals and in humans (Deichmann, 1943; Blevins, 1965; Chapman and Robson, 1965; WHO, 1987). Pentachlorophenolmediated hyperthermia results directly from uncoupling of oxidative phosphorylation (Buffa et al., 1963; Weinbach and Garbus, 1965; WHO, 1987); the other clinical findings are probably secondary. Proliferative lesions of the adrenal medulla have been observed in pentachlorophenol-treated B6C3F1 mice (NTP, 1989) but not in Sprague-Dawley rats (Schwetz et al., 1978). In vivo conversion of pentachloroanisole to pentachlorophenol could have occurred in the present studies and might account for some of the findings, but definitive proof could only be provided by metabolism studies.

In the 16-day studies, high early mortality, clinical toxicity, and treatment-related gross observations were noted in rats and mice administered greater than 100 mg/kg pentachloroanisole. In the 13-week studies, most rats and male mice receiving doses of 80 mg/kg or greater died before the end of the studies; survival of female mice was decreased only in the 180 mg/kg group. Clinical findings of toxicity, such as inactivity and dyspnea, were noted in rats and mice receiving from 80 to 180 mg/kg. Chemical-related liver lesions were also observed in dosed rats and mice in the 13-week studies.

Based on these results, doses selected for the 2-year studies were 0, 20, or 40 mg/kg pentachloroanisole. Male rats exhibited the greatest mortality and highest incidence of toxic lesions in the 16-day studies and 13-week studies, and were thus considered to be more sensitive to pentachloroanisole toxicity. Therefore, an additional male rat dose group of 10 mg/kg was included to ensure study adequacy if the maximum tolerated dose was exceeded.

In fact, survival of high-dose male rats was significantly decreased at the end of the 2-year studies because of numerous early deaths (36/50); most of these deaths (20/36) occurred at or before week 16. Because of high early mortality, incidences of several of the chemical-related neoplasms and nonneoplastic lesions peaked in the mid-dose group and decreased in the high-dose group. High-dose male rats also had decreased incidences of many spontaneous agingrelated neoplasms and nonneoplastic lesions due to the lower survival. These were thus only secondarily related to chemical administration.

The deaths of male rats in the 16-day studies and 13-week studies and many early and accidental deaths of the mid- and high-dose male rats in the 2-year studies may have been related to pentachloroanisoleinduced hyperthermia. The cause of the significant temporal association of cagemate mortality in these groups is unknown but may have also been hyperthermia-related. Individuals susceptible to hyperthermia may have elevated the ambient cage temperatures, which could have precipitated a "chainreaction" of hyperthermia among cagemates. The mice were individually housed in polycarbonate cages fitted with disposable fiber filters which may have restricted heat dissipation. There was no evidence that other factors contributed to the cage-related pattern of mortality. Clinical findings consistent with hyperthermia, such as inactivity, wet fur around the mouth and neck, and reddened scrotal skin, were observed in many rats in these higher dose groups. The gross and microscopic findings of generalized congestion, hemorrhage, and edema seen in most of these rats were also consistent with hyperthermia (Jones and Hunt, 1983); other life-threatening lesions were not present. Several high-dose males in the 2-year study exhibiting clinical findings of hyperthermia also had elevated rectal temperatures. Slight, but significant, elevation of mean rectal temperature was also noted in high-dose male rats from the 9-month interim evaluations, even though these animals seemed otherwise normal.

In contrast, female rats and male and female mice had mortality patterns, clinical toxicity, and lesions similar to those seen in male rats only when given high doses of pentachloroanisole in the 16-day and 13-week studies. Although the comparatively greater sensitivity of male rats to pentachloroanisole is obvious, the underlying mechanisms are unknown.

The onset and duration of clinical findings followed an unusual course in affected rats and mice. Clinical findings became evident shortly after dosing, persisted for several hours, and gradually decreased until the survivors appeared normal at the next dosing period. In previous studies, pentachloroanisole and pentachlorophenol were shown to be rapidly metabolized and excreted by rats and mice (Jakobson and Yllner, 1971; Braun *et al.*, 1979; Vodicnik *et al.*, 1980). Thus, the clinical toxicity in these studies may have temporarily paralleled steep absorption, metabolism, and excretion curves of pentachloroanisole and other metabolites, such as pentachlorophenol.

In the 2-year studies, the incidences of proliferative lesions in the adrenal medulla were significantly greater in dosed male rats and male mice. In both species, proliferative lesions constituted a morphologic continuum ranging from hyperplasia (small, non-compressive foci of increased cellularity), to benign pheochromocytomas (discrete, compressive nodules of well-differentiated cells), to malignant pheochromocytomas (large masses with invasion through the glandular capsule). Hypertrophy, which occurred in dosed male mice, denoted a diffuse hyperplasia in which both the number and size of medullary cells were increased.

In male rats, increased incidences of combined benign and malignant pheochromocytomas were noted; after adjusting for high early mortality and low survival, the pheochromocytoma incidence in the high-dose group was significantly greater than in the vehicle controls. The negative trend in adrenal medullary hyperplasia may have been related to the presence of numerous large pheochromocytomas, which may have obscured small hyperplastic foci in the adrenal glands of mid- and high-dose male rats that died early. In high-dose male mice, the incidences of benign pheochromocytomas were significantly increased and exceeded the historical control range and were accompanied by increases in hyperplasia and hypertrophy. Thus, pheochromocytomas were considered directly related to pentachloroanisole administration in male rats and male mice.

In contrast, dosed female rats clearly exhibited increased incidences of adrenal medullary hyperplasia. The slight increase in benign pheochromocytomas in high-dose female rats exceeded the range of the historical controls, but the survival rate of high-dose females was greater than that of concurrent and historical controls. Therefore, it is uncertain if the increase in benign pheochromocytomas in dosed female rats was entirely related to pentachloroanisole administration. No significant trends in the incidences of adrenal medulla proliferative lesions were noted in dosed female mice.

In other NTP studies, pentachlorophenol administration has also been associated with adrenal medullary neoplasia. Positive trends for benign and malignant pheochromocytomas and medullary hyperplasia were seen in male and female $B6C3F_1$ mice fed purified pentachlorophenol and in male mice fed technical grade pentachlorophenol (NTP, 1989). However, the incidence of adrenal medulla neoplasms was not increased in male or female Sprague-Dawley rats fed 1.0 to 30 mg pentachlorophenol/kg body weight for up to 2 years (Schwetz *et al.*, 1978).

Chemical-related, predominantly site-specific, increases in the incidences of vascular endothelial neoplasms (hemangiosarcomas and hemangiomas) have been previously noted in the hearts of male and female mice exposed to 1,3-butadiene (NTP, 1984; NTP, 1993), the livers and spleens of male mice exposed to *p*-chloroaniline (NCI, 1979), the spleens of male and female rats exposed to cupferron (NCI, 1978), and the livers of humans exposed to vinyl chloride (IARC, 1979b). Thus, analysis of sitespecific incidences of these neoplasms is appropriate.

In these studies, the incidences of liver hemangiosarcomas were significantly increased in dosed male mice and exceeded the recent historical control range for male mice. These neoplasms were considered directly related to pentachloroanisole administration. Increased incidences of liver hemangiosarcomas were also seen in male and female mice given purified and technical grade pentachlorophenol in the diet (NTP, 1989).

Several nonneoplastic hepatocellular lesions in dosed mice were considered features of a progressive pathologic process. Hepatocellular cytomegaly, karyomegaly, and pigmentation first appeared in the 13-week studies and were later noted in the 2-year studies. More advanced stages of the pathologic process in the 2-year studies also featured hepatocellular necrosis and degeneration, multinucleated giant cell formation, and erythrophagocytosis. These hepatocellular changes were considered directly related to pentachloroanisole administration. The elevations in serum aminotransferases and sorbitol dehydrogenase seen in dosed male mice in the 15-month interim evaluations were considered to be compatible with the hepatocellular lesions (Loeb, 1989). Other liver lesions, such as Kupffer cell pigmentation, biliary tract hyperplasia, and subacute inflammation, were seen almost exclusively in the 2-year studies, and may have been reactive changes secondary to the hepatocellular lesions.

Collectively, the nonneoplastic liver lesions in these studies resembled lesions previously reported in rats (Kimbrough and Linder, 1978) and mice (NTP, 1989) administered pentachlorophenol in feed. Similar hepatotoxic lesions are also well-documented effects of exposure to many other chlorinated hydrocarbons in rats, mice, and several other species (Safe, 1984; Kuiper-Goodman and Grant, 1986; Birnbaum et al., 1990; NTP, 1991a,b) and may be related to alteration in nuclear DNA activity and smooth endoplasmic reticulum proliferation in affected hepatocytes (Safe, 1984). Similar pathogenic mechanisms may have resulted in the hepatotoxic lesions in mice in the present studies. Increased incidences of hepatocellular mixed cell foci in dosed male mice may have been chemical related. Similar hepatocellular proliferative lesions have previously been associated with exposure to pentachlorophenol (NTP, 1989) and several other chlorinated hydrocarbons (Safe, 1984; Silberhorn et al., 1990).

In the 13-week studies, the liver lesions noted in dosed rats were morphologically distinct from those occurring in mice. In mice, changes indicative of sublethal, progressive hepatotoxicity, such as cytomegaly and karyomegaly, were predominant; in rats, hepatocellular necrosis was more pronounced. These findings suggest that the rat liver lesions may have been a peracute manifestation of toxicity associated with large doses of pentachloroanisole.

Because many affected rats in the 13-week studies died early due to hyperthermia, peracute hepatic ischemia resulting from terminal circulatory collapse may have also contributed to the development of the liver lesions. In the 2-year studies, a similar pathogenic mechanism in dosed male rats may have accounted for the increased incidences of hepatocellular centrilobular necrosis which occurred almost exclusively in animals that died early due to hyperthermia.

Several other nonneoplastic lesions in rats and mice occurred with positive trends but were considered to

be only secondarily related to pentachloroanisole administration. In addition to the pigmentation seen in livers of dosed mice, golden-brown intracytoplasmic pigment was observed in renal tubule epithelium, olfactory epithelium, and hepatocytes of dosed rats. Intracellular pigments, previously associated with chlorinated hydrocarbon exposure, generally fall into two classes: porphyrins and lipofuscin/ceroid.

Because of their porphyrinogenic properties, hexachlorobenzene and certain other chlorinated hydrocarbons often produce intracellular accumulations of porphyrin material in hepatocytes and other cells of dosed animals (Kimbrough, 1972; Safe, 1984; Kuiper-Goodman and Grant, 1986; NTP, 1991b). Often, female animals are more severely affected (San Martin de Viale *et al.*, 1970; Strik *et al.*, 1980; Kuiper-Goodman and Grant, 1986; NTP, 1991b), and rats may be more sensitive than mice (NTP, 1991b). In the present studies, all tests for hepatic porphyrins were negative, but methodological difficulties may have affected the results. Therefore, it is possible that the pigmented material in rat and mouse cells was composed of one or more porphyrins.

Lipofuscins and ceroid are cellular lipopigments that form due to autoxidation of unsaturated lipids. These pigments are seen in aging control rats and mice and in various pathologic conditions of many other species (Cheville, 1983). Lipofuscin/ceroid has also been noted in hepatocytes and other cells of animals exposed to several chlorinated hydrocarbons (McConnell *et al.*, 1978). Because lipofuscin/ceroid variants are somewhat heterogeneous in chemical composition, reactivity with special stains may vary. The results from using special stains in these studies are therefore inconclusive.

In summary, results from the present studies and the literature do not conclusively support either of the two most likely differential diagnoses for the pigment or even indicate that the same material was present in both rats and mice. Additionally, the possibility that the pigment may have been composed of a third material, such as hemosiderin (Kimbrough, 1972), was not entirely eliminated.

Ovarian abscesses in mice are generally fatal lesions of bacterial etiology (Rao *et al.*, 1987). The incidence of these lesions increased marginally in dosed female mice; most affected animals died or were sacrificed moribund before the end of the studies. Thus, the decreased survival of dosed female mice was attributed to some extent to ovarian abscesses. Although no data are available for pentachloroanisole, the immunotoxic properties of pentachlorophenol (Kerkvliet *et al.*, 1982a,b; Holsapple *et al.*, 1984) and other chlorinated hydrocarbons (Kimbrough, 1972; Vos *et al.*, 1980; Safe, 1984) are well documented. Subtle treatment-related immunosuppression may have thus played a role in the pathogenesis of ovarian abscesses in these studies.

Suppurative inflammation and foreign bodies (compatible with corn oil) occurred with increased incidences in the noses of dosed male and female mice. These changes were probably related to intranasal instillation of corn oil containing pentachloroanisole due to reflux or regurgitation and were thus only secondarily related to pentachloroanisole administration. The changes seen in the present studies are apparently distinct from the olfactory epithelial metaplasia and inflammation observed in male and female mice administered pentachlorophenol in feed (NTP, 1989).

Although pentachloroanisole does not contain any molecular features which provide an alert to DNA reactivity (Ashby and Tennant, 1991), and the metabolites of pentachloroanisole are essentially negative in genotoxicity assays, pentachloroanisole gave positive results in three of the four NTP genetic toxicity studies. Pentachloroanisole was shown to be a directacting mutagen in frameshift strains of S. typhimurium but S9 activation was required for a positive response in the mouse lymphoma assay. Precipitation of pentachloranisole was evident at the effective concentrations in both these assays. Sister chromatid exchanges were induced in Chinese hamster ovary cells with and without S9; these positive responses in the SCE test were obtained only at doses that caused a delay in cell cycling time. The test results are still valid, however, because the mere observation of in vitro cytotoxicity is not sufficient to diminish the potential in vivo genotoxicity of a chemical; some in vivo genotoxins which are active at doses below those which produce observable animal toxicity are detected only at toxic concentrations in vitro (Scott et al., 1991). Thus, the results of the genetic toxicity studies of pentachloroanisole are predictive of the results of the studies in rats and mice where benign neoplasms of the adrenal medulla were observed in male rats and mice and hemangiosarcomas of the liver were observed in male mice.

Gavage and intravenous toxicokinetic studies of pentachloroanisole showed no sex-related differences in either the bioavailability or in the peak plasma concentration of pentachloroanisole in rats or mice. The concentration of the metabolite, pentachlorophenol, was higher in female rats than in male rats after gavage administration and the sex-related difference in toxic and carcinogenic response to pentachloroanisole in rats and mice were observed. These findings cannot be attributed to the sex-related differences in systemic availability of pentachloroanisole or to the rate of metabolism of pentachloroanisole to pentachlorophenol.

CONCLUSIONS

Under the conditions of these 2-year gavage studies, there was some evidence of carcinogenic activity^{*} of pentachloroanisole in male F344/N rats based on increased incidences of benign pheochromocytomas of the adrenal medulla. There was equivocal evidence of carcinogenic activity of pentachloroanisole in female F344/N rats based on marginally increased incidences of benign pheochromocytomas of the adrenal medulla. There was some evidence of carcinogenic activity of pentachloroanisole in male B6C3F₁ mice based on increased incidences of benign pheochromocytomas of the adrenal medulla and hemangiosarcomas of the liver. There was no evidence of carcinogenic activity of pentachloroanisole in female $B6C3F_1$ mice given doses of 20 or 40 mg/kg.

Pentachloroanisole administration was associated with increased incidences of adrenal medulla hyperplasia in female rats and increased incidences of pigmentation in the renal tubule epithelium, olfactory epithelium, and hepatocytes of male and female rats. In addition, decreased incidences of pancreatic adenomas and focal hyperplasia in male rats and decreased incidences of mammary gland fibroadenomas and uterine stromal polyps and sarcomas (combined) in female rats were observed. Hyperthermia-related lesions in male rats receiving 20 or 40 mg/kg were considered indirectly related to pentachloroanisole administration.

Pentachloroanisole administration was associated with increased incidences of adrenal medulla hyperplasia and hypertrophy and hepatocellular mixed cell foci in male mice. In male and female mice, nonneoplastic liver lesions associated with pentachloroanisole administration included hepatocellular cytologic alteration, Kupffer cell pigmentation, biliary tract hyperplasia, and subacute inflammation.

* Explanation of Levels of Evidence of Carcinogenic Activity is on page 11. A summary of Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appears on page 13.

REFERENCES

Agins, A.P. (1984). Age-related changes in the induction of hepatic mixed-function monooxygenase system in miniature pigs: Effects of pentachloroanisole, pentachlorophenol and phenobarbital. *Diss. Abst. B.* 44, 2127-2128.

Agins, A.P., Peggins, J.O., Garthoff, L.H., and Khan, M.A. (1982). Metabolism of pentachloroanisole by hepatic microsomal cytochrome P-450 in rats and miniature swine. *Fed. Proc.* 41, 1054.

Ahlborg, U.G., and Thunberg, T.M. (1980). Chlorinated phenols: Occurrence, toxicity, metabolism, and environmental impact. *Crit. Rev. Toxicol.* 7, 1-35.

Aitio, A. and Marniemi, J. (1980). Extrahepatic glucuronide conjugation, In *Extrahepatic Metabolism* of Drugs and Other Foreign Compounds (T.E. Gram, Ed.). pp. 365-387. Spectrum Publications, New York.

Akitake, H., and Kobayashi, K. (1975). Studies on the metabolism of chlorophenols in fish. III. Isolation and identification of a conjugated PCP excreted by goldfish. *Bull. Jap. Soc. Sci. Fisheries* 41, 321-327.

Armitage, P. (1971). Statistical Methods in Medical Research, pp. 362-365. John Wiley and Sons, New York.

Ashby, J., and Tennant, R.W. (1991). Definitive relationships among chemical structure, carcinogenicity, and mutagenicity for 301 chemicals tested by the U.S. NTP. *Mutat. Res.* 257, 229-306.

Atlas, E., Sullivan, K., and Giam, C.S. (1986). Widespread occurrence of polyhalogenated aromatic ethers in the marine atmosphere. *Atmos. Environ.* 20, 1217-1220. Begum, S., Scheunert, I., Haque, A., Klein, W., and Korte, F. (1979). Conversion of [¹⁴C]pentachloronitrobenzene in onions. *Pestic. Biochem. Physiol.* 11, 189-200.

Bemelmans, J.M.H., and ten Noever de Brauw, M.C. (1974). Chloroanisoles as off-flavor components in eggs and broilers. J. Agric. Food Chem. 22, 1137-1138.

Birnbaum, L.S., McDonald, M.M., Blair, P.C., Clark, A.M., and Harris, M.W. (1990). Differential toxicity of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) in C57BL/6J mice congenic at the Ah locus. *Fundam. Appl. Toxicol.* 15, 186-200.

Blevins, D. (1965). Pentachlorophenol poisoning in swine. Vet. Med. 60, 455.

Boorman, G.A., Montgomery, C.A., Jr., Eustis, S.L., Wolfe, M.J., McConnell, E.E., and Hardisty, J.F. (1985). Quality assurance in pathology for rodent carcinogenicity studies. In *Handbook of Carcinogen Testing* (H.A. Milman and E.K. Weisburger, Eds.), pp. 345-357. Noyes Publications, Park Ridge, NJ.

Bose, A.K., and Fujiwara, H. (1978). Fate of pentachlorophenol in the blue crab, *Callinectes* sapidus. In *Pentachlorophenol: Chemistry*, *Pharmacology, and Environmental Toxicology* (K. Rao, Ed.), pp. 83-88. Plenum Press, New York.

Boyle, T.P., Robinson-Wilson, E.F., Petty, J.D., and Weber, W. (1980). Degradation of pentachlorophenol in simulated lentic environment. *Bull. Environ. Contam. Toxicol.* 24, 177-184.

Braun, W.H., Blau, G.E., and Chenoweth, M.B. (1979). The metabolism/pharmacokinetics of pentachlorophenol in man, and a comparison with the rat and monkey. In *Toxicology and Occupational Medicine* (W.B. Deichmann, Ed.), pp. 289-296. Elsevier, New York.

Brunn, H., Berlich, H.D., and Müller, F.J. (1985). Residues of pesticides and polychlorinated biphenyls in game animals. *Bull. Environ. Contam. Toxicol.* 34, 527-532.

Buffa, P., Carafoli, E., and Muscatello, U. (1963). Mitochondrial biochemical lesion and pyrogenic effect of pentachlorophenol. *Biochem. Pharmacol.* 12, 769-778.

Casterline, J.L., Jr., Barnett, N.M., and Ku, Y. (1985). Uptake, translocation, and transformation of pentachlorophenol in soybean and spinach plants. *Environ. Res.* 37, 101-118.

Chapman, J.B., and Robson, P. (1965). Pentachlorophenol poisoning from bath-water. *Lancet* 12, 1266-1267.

Cheville, N. (1983). *Cell Pathology*, pp. 155-158. Iowa State University Press, Ames, IA.

Code of Federal Regulations (CFR), 21, part 58.

Commoner, B. (1976). Reliability of bacterial mutagenesis techniques to distinguish carcinogenic and noncarcinogenic chemicals. USNTISPB Report EPA-600/1-76-022.

Cox, D.R. (1972). Regression models and life tables. J. R. Stat. Soc. B34, 187-220.

Crawford, B.D. (1985). Perspectives on the somatic mutation model of carcinogenesis. In Advances in Modern Environmental Toxicology (W.G. Flamm and R.J. Lorentzen, Eds.), pp. 13-59. Princeton Scientific, Princeton, NJ.

Crosby, D.G., Beynon, K.I., Greve, P.A., Korte, F., Still, G.G., and Vonk, J.W. (1981). Environmental chemistry of pentachlorophenol. *Pure Appl. Chem.* 53, 1051-1080.

Cserjesi, A.J., and Johnson, E.L. (1972). Methylation of pentachlorophenol by *Trichoderma virgatum*. *Can. J. Microbiol.* **18**, 45-49. Curtis, R.F., Land, D.G., Griffiths, N.M., Gee, M., Robinson, D., Peel, J.L., Dennis, G., and Gee, J.M. (1972). 2,3,4,6-Tetrachloroanisole association with musty taint in chickens and microbiological formation. *Nature* 235, 223-224.

Curtis, R.F., Dennis, C., Gee, J.M., Gee, M.G., Griffiths, N.M., Land, D.G., Peel, J.L., and Robinson, D. (1974). Chloroanisoles as a cause of musty taint in chickens and their microbiological formation from chlorophenols in broiler house litters. J. Sci. Food Agric. 25, 811-828.

Deichmann, W.B. (1943). The toxicity of chlorophenols for rats. *Fed. Proc.* 2, 76-77.

Dennis, C., Mountford, J., Land, D.G., and Robinson, D. (1975). Changes in the microbial flora, chlorophenols and chloroanisoles in broiler house litter during a chicken rearing cycle. J. Sci. Food Agric. 26, 861-867.

DeVault, D.S., Clark, J.M., Lahvis, G., and Weishaar, J. (1988). Contaminants and trends in fall run coho salmon. J. Great Lakes Res. 14, 23-33.

Dinse, G.E., and Haseman, J.K. (1986). Logistic regression analysis of incidental-tumor data from animal carcinogenicity experiments. *Fundam. Appl. Toxicol.* **6**, 44-52.

Dinse, G.E., and Lagakos, S.W. (1983). Regression analysis of tumor prevalence data. *Appl. Statist.* 32, 236-248.

D'Itri, F.M., and Kamrin, M.A. (1983). PCBs: Human and Environmental Hazards. Butterworth Publishers, Boston, MA.

Dunn, O.J. (1964). Multiple comparisons using rank sums. *Technometrics* 6, 241-252.

Dunnett, W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50, 1095-1121.

Ellenton, J.A., Brownlee, L.J., and Hollebone, B.R. (1985). Aryl hydrocarbon hydroxylase levels in herring gull embryos from different locations on the Great Lakes. *Environ. Toxicol. Chem.* 4, 615-622.

References

Engel, C., DeGroot, B.P., and Weurman, C. (1966). Tetrachloroanisoles: A source of musty taint in eggs and broilers. *Science* 154, 270-271.

Engelhardt, G., Wallnöfer, P.R., Mücke, W., and Renner, G. (1986). Transformations of pentachlorophenol. Part II: Transformations under environmental conditions. *Toxicol. Environ. Chem.* 11, 233-252.

Fahrig, R., Nilsson, C., and Rappe, C. (1977). Genetic activity of chlorophenols and chlorophenol impurities. In: *Pentachlorophenol* (K.R. Rao, Ed.) pp. 325-328. Plenum Press, New York.

Finger, S.E., and Bulak, J.S. (1988). Toxicity of water from three South Carolina rivers to larval striped bass. *Trans. Am. Fish. Soc.* 117, 521-528.

Firestone, D., Clower, M., Jr., Borsetti, A.P., Teske, R.H., and Long, P.E. (1979). Polychlorodibenzo-*p*-dioxin and pentachlorophenol residues in milk and blood of cows fed technical pentachlorophenol. *J. Agric. Food Chem.* 27, 1171-1177.

Fox, M.E., Roper, D.S., and Thrush, S.F. (1988). Organochlorine contaminants in surficial sediments of Manukau Harbour, New Zealand. *Marine Pollut. Bull.* 19, 333-336.

Frank, R., Fish, N., Sirons, G.J., Walker, J., Orr, H.L., and Leeson, S. (1983). Residues of polychlorinated phenols and anisoles in broilers raised on contaminated woodshaving litter. *Poult. Sci.* 62, 1559-1565.

Frijters, J.E.R., and Bemelmans, J.M.H. (1977). Flavor sensitivity for chloroanisoles in coagulated egg yolk. J. Food Sci. 42, 1121-1123.

Galloway, S., Bloom, A., Resnick, M., Margolin, B., Nakamura, F., Archer, P., and Zeiger, E. (1985). Development of a standard protocol for *in vitro* cytogenetic testing with CHO cells: Comparison of results for 22 compounds in two laboratories. *Environ. Mutagen.* 7, 1-51. Galloway, S.M., Armstrong, M.J., Reuben, C., Colman, S., Brown, B., Cannon, C., Bloom, A.D., Nakamura, F., Ahmed, M., Duk, S., Rimpo, J., Margolin, B.H., Resnick, M.A., Anderson, B., and Zeiger, E. (1987). Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. *Environ. Mol. Mutagen.* 10, 1-175.

Gart, J.J., Chu, K.C., and Tarone, R.E. (1979). Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62, 957-974.

Garthoff, L., Henderson, G., Braunberg, R., Flynn, T., Peggins, J., Cerra, F., Gaines, D., Gantt, O., and Friedman, L. (1982). Biochemical effects of pentachloroanisole and pentachlorophenol in rats. *Fed. Proc.* 41, 1054.

Gartrell, M.J., Craun, J.C., Podrebarac, D.S., and Gunderson, E.L. (1986a). Pesticides, selected elements, and other chemicals in infant and toddler total diet samples, October 1980-March 1982. J. Assoc. Off. Anal. Chem. 69, 123-145.

Gartrell, M.J., Craun, J.C., Podrebarac, D.S., and Gunderson, E.L. (1986b). Pesticides, selected elements, and other chemicals in adult total diet samples, October 1980-March 1982. J. Assoc. Off. Anal. Chem. 69, 146-161.

Giam, C.S., Atlas, E., and Sullivan, K. (1984). Widespread occurrence of polyhalogenated anisoles and related compounds in the marine atmosphere. *Searex Newsletter* 7, 10-12.

Glickman, A.H., Statham, C.N., Wu, A., and Lech, J.J. (1977). Studies on the uptake, metabolism, and disposition of pentachlorophenol and pentachloroanisole in rainbow trout. *Toxicol. Appl. Pharmacol.* 41, 649-658.

Gunderson, E.L. (1988). FDA total diet study, April 1982-April 1984, dietary intakes of pesticides, selected elements, and other chemicals. J. Assoc. Off. Anal. Chem. 71, 1200-1209.
70

Häggblom, M.M., Nohynek, L.J., and Salkinoja-Salonen, M.S. (1988). Degradation and o-methylation of chlorinated phenolic compounds by *Rhodococcus* and *Mycobacterium* strains. *Appl. Environ. Microbiol.* 54, 3043-3052.

Haque, A., Gruttke, H., Kratz, W., Kielhorn, U., Weigmann, G., Meyer, G., Bornkamm, R., Schuphan, I., and Ebing, W. (1988). Environmental fate and distribution of sodium [¹⁴C] pentachlorophenate in a section of urban wasteland ecosystem. *Sci. Total Environ.* **68**, 127-139.

Harper, D.B., and Balnave, D. (1975). Chloroanisole residues in broiler tissues. *Pestic. Sci.* 6, 159-163.

Haseman, J.K. (1984). Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. *Environ. Health Perspect.* 58, 385-392.

Haseman, J.K., Huff, J., and Boorman, G.A. (1984). Use of historical control data in carcinogenicity studies in rodents. *Toxicol. Pathol.* 12, 126-135.

Haseman, J.K., Huff, J.E., Rao, G.N., Arnold, J.E., Boorman, G.A., and McConnell, E.E. (1985). Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. JNCI **75**, 975-984.

Hattula, M., and Knuutinen, J. (1985). Mutagenesis of mammalian cells in culture by chlorophenols, chlorocatechols and chloroguaiacols. *Chemosphere*, 14, 1617-1625.

Haworth, S., Lawlor, T., Mortelmans, K., Speck, W., and Zeiger, E. (1983). *Salmonella* mutagenicity test results for 250 chemicals. *Environ. Mutagen.* 5 (Suppl. 1), 3-142.

Heikes, D.L. (1980). Residues of pentachloronitrobenzene and related compounds in peanut butter. *Bull. Environ. Contam. Toxicol.* 24, 338-343.

Herve, S., Heinonen, P., Paukku, R., Knuutila, M., Koistinen, J., and Paasivirta, J. (1988). Mussel incubation method for monitoring organochlorine pollutants in watercourses. Four-year application in Finland. *Chemosphere* 17, 1945-1961. Holsapple, M., McNerney, P., Barnes, D., and White, K., Jr. (1984). Suppression of humoral antibody production by exposure to 1,2,3,6,7,8hexachlorodibenzo-*p*-dioxin. *J. Pharmacol. Exp. Ther.* 231, 518-526.

Huckins, J.N., and Petty, J.D. (1983). Dynamics of purified and industrial pentachlorophenol in fathead minnows. *Arch. Environ. Contam. Toxicol.* 12, 667-672.

International Agency for Research on Cancer (IARC) (1979a). IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Some Halogenated Hydrocarbons, Vol. 20. IARC, Lyon, France.

International Agency for Research on Cancer (IARC) (1979b). IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Some Monomers, Plastics and Synthetic Elastomers, and Acrolein. Vinylidene chloride-vinyl chloride copolymers, Vol. 19. World Health Organization, Geneva.

Jaffe, R., and Hites, R.A. (1986). Anthropogenic, polyhalogenated, organic compounds in non-migratory fish from the Niagara River area and tributaries to Lake Ontario. J. Great Lakes Res. 12, 63-71.

Jaffe, R., Stemmler, E.A., Eitzer, B.D., and Hites, R.A. (1985). Anthropogenic, polyhalogenated, organic compounds in sedentary fish from Lake Huron and Lake Superior tributaries and embayments. J. Great Lakes Res. 11, 156-162.

Jakobson, I., and Yllner, S. (1971). Metabolism of ¹⁴C-pentachlorophenol in the mouse. Acta Pharmacol. Toxicol. 29, 513-524.

Jansson, K., and Jansson, V. (1986). Inability of chlorophenols to induce 6-thioguanine-resistant mutants in V79 Chinese hamster cells. *Mutat. Res.*, 171, 165-168.

Jonckheere, A. (1954). A distribution-free k-sample test against ordered alternatives. *Biometrika* 41, 133-145.

.

References

Jones, E.P., Orrenius, S., and Jakobson, S.W. (1980). Cytochrome P-450-linked monooxygenase systems in the kidney, In *Extrahepatic Metabolism of Drugs and Other Foreign Compounds* (T.E. Gram, Ed). pp. 123-158. Spectrum Publications, New York.

Jones, T.C., and Hunt, R.D. (1983). Veterinary Pathology, 5th ed., pp. 214-215. Lea and Febiger, Philadelphia.

Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457-481.

Kashimoto, K., Takayama, K., Mimura, M., Miyata, H., Murakami, Y., and Matsumoto, H. (1989). TCDDS, PCDFS, PCBs, coplanar PCBs and organochlorinated pesticides in human adipose tissue in Japan. *Chemosphere* 19, 921-926.

Kaufman, D.D. (1978). Degradation of pentachlorophenol in soil, and by soil microorganisms. In *Pentachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology* (K. Rao, Ed.), pp. 27-39. Plenum Press, New York.

Keith, L.H., and Walters, D.B., Eds. (1985). Compendium of safety data sheets for research and industrial chemicals. Part III, pp. 1318-1319. VCH Publishers, Inc., Deerfield Beach, FL.

Kerkvliet, N.I., Baecher-Steppan, L., Claycomb, A.T., Craig, A.M., and Sheggeby, G.G. (1982a). Immunotoxicity of technical pentachlorophenol (PCP-T): Depressed humoral immune response to T-dependent and T-independent antigen stimulation in PCP-T exposed mice. *Fundam. Appl. Toxicol.* 2, 90-99.

Kerkvliet, N.I., Baecher-Steppan, L., and Schmitz, J.A. (1982b). Immunotoxicity of pentachlorophenol (PCP): Increased susceptibility to tumor growth in adult mice fed technical PCP-contaminated diets. *Toxicol. Appl. Pharmacol.* 62, 55-64.

Kimbrough, R.D. (1972). The toxicity of polychlorinated polycyclic compounds and related chemicals. *Crit. Rev. Toxicol.*, 2, 445-498.

Kimbrough, R.D. (1981) Chronic toxicity of halogenated biphenyls and related compounds in animals and health effects in humans. In *Toxicology* of Halogenated Hydrocarbons: Health and Ecological Effects (M.A.Q. Khan and R.H. Stanton, Eds.) p. 24. Pergamon Press, New York

Kimbrough, R.D., and Jensen, A.A., Eds. (1989). Halogenated biphenyls, terphenyls, naphthalenes, dibenzodioxins and related products. In *Topics in Environmental Health*, Vol. 4. Elsevier, New York.

Kimbrough, R.D., and Linder, R.E. (1978). The effect of technical and purified pentachlorophenol on the rat liver. *Toxicol. Appl. Pharmacol.* 46, 151-162.

Knuutinen, J., Palm, H., Hakala, H., Haimi, J., Huhta, V., and Salminen, J. (1990). Polychlorinated phenols and their metabolites in soil and earthworms of sawmill environment. *Chemosphere* 20, 609-623.

Kobayashi, K. (1978). Metabolism of pentachlorophenol in fishes. In Pentachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology (K. Rao, Ed.), pp. 89-106. Plenum Press, New York.

Kopperman, H.L., Kuehl, D.W., and Glass, G.E. (1978). Chlorinated compounds found in waste treatment effluents and their capacity to bioaccumulate. In *Water Chlorination* (R. Jolley, Ed.), Vol. 1, pp. 311-327.

Kuiper-Goodman, T., and Grant, D.L. (1986). Subchronic toxicity of hexachlorobenzene in the rat: Clinical, biochemical, morphological and morphometric findings. In *Hexachlorobenzene: Proceedings of an International Symposium* (C. Morris and J. Cabral, Eds.). IARC Scientific Publications No. 77, 343-348. IARC, Lyon, France.

Kutz, F.W., Wood, P.H., and Bottimore, D.P. (1991). Organochlorine pesticides and polychlorinated biphenyls in human adipose tissue. In *Reviews of Environmental Contamination and Toxicology* (G. Ware, Ed.), Vol. 120, pp. 1-82. Springer-Verlag, New York. Lech, J.J., Glickman, A.H., and Statham, C.N. (1978). Studies on the uptake, disposition and metabolism of pentachlorophenol and pentachloroanisole in rainbow trout (Salmo gairdneri). In Pentachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology (K. Rao, Ed.), pp. 107-113. Plenum Press, New York.

Lee, H. (1988). Water: Determination of twenty-one chloroanisoles in water and sediment samples. J. Assoc. Off. Anal. Chem. 71, 803-807.

Loeb, W.F. (1989). Clinical biochemistry of laboratory rodents and rabbits. In *Clinical Biochemistry of Domestic Animals* (J.J. Kaneko, Ed.), pp. 866-875. Academic Press, NY.

Loveday, K.S., Anderson, B.E., Resnick, M.A., and Zeiger, E. (1990). Chromosome aberration and sister chromatid exchange tests in Chinese hamster ovary cells *in vitro*. V: Results with 46 chemicals. *Environ*. *Mol. Mutagen.* **16**, 272-303.

Lu, P., Metcalf, R.L., and Cole, L.K. (1978). The environmental fate of ¹⁴C-pentachlorophenol in laboratory model ecosystems. In *Pentachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology* (K. Rao, Ed.), pp. 53-63. Plenum Press, New York.

Maguire, R.J., and Tkacz, R.J. (1988). Chlorinated hydrocarbons in the surface microlayer and subsurface water of the Niagara River, 1985-86. *Water Poll. Res. J. Canada* 23, 292-300.

Maguire, R.J., and Tkacz, R.J. (1989). Potential underestimation of chlorinated hydrocarbon concentrations in fresh water. *Chemosphere* 19, 1277-1287.

Maronpot, R.R., and Boorman, G.A. (1982). Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. *Toxicol. Pathol.* **10**, 71-80.

McConnell, E.E., Moore, J.A., Haseman, J.K., and Harris, M.W. (1978). The comparative toxicity of chlorinated dibenzo-*p*-dioxins in mice and guinea pigs. *Toxicol. Appl. Pharmacol.* 44, 335-356.

.

McConnell, E.E., Solleveld, H.A., Swenberg, J.A., and Boorman, G.A. (1986). Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. *JNCI* **76**, 283-289.

McGregor, D.B., Martin, R., Cattanach, P., Edwards, I., McBride, D., and Caspary, W.J. (1987). Responses of the L5178Y tk^{+/-} mouse lymphoma cell forward mutation assay to coded chemicals. I. Results for nine compounds. *Environ. Mutagen.* 9, 143-160.

McKnight, B., and Crowley, J. (1984). Tests for differences in tumor incidence based on animal carcinogenesis experiments. J. Am. Stat. Assoc. 79, 639-648.

Mes, J., Davies, D.J., and Turton, D. (1982). Polychlorinated biphenyl and other chlorinated hydrocarbon residues in adipose tissue of Canadians. *Bull. Environ. Contam. Toxicol.* 28, 97-104.

Mes, J., Davies, D.J., Turton, D., and Sun, W. (1986). Levels and trends of chlorinated hydrocarbon contaminants in the breast milk of Canadian women. *Food Addit. Contam.* **3**, 313-322.

Miller, J.A., and Miller, E.C. (1977). Ultimate chemical carcinogens as reactive mutagenic electrophiles. In *Origin of Human Cancer* (H.H. Hiatt, J.D. Watson, and J.A. Winsten, Eds.), pp. 605-628. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Miyazaki, T., Kaneko, S., Horii, S., and Yamagishi, T. (1981). Identification of polyhalogenated anisoles and phenols in oysters collected from Tokyo Bay. *Bull. Environ. Contam. Toxicol.* **26**, 577-584.

Moriya, M., Ohta, T., Watanabe, K., Miyazawa, T., Kato, K., and Shirasu, Y. (1983). Further mutagenicity studies on pesticides in bacterial reversion assay systems. *Mutat. Res.* **116**, 185-216.

Mortelmans, K., Haworth, S., Lawlor, T., Speck, W., Tainer, B., and Zeiger, E. (1986). Salmonella mutagenicity tests. II. Results from the testing of 270 chemicals. Environ. Mutagen. 8 (Suppl. 7), 1-119.

References

Murthy, N.B.K., Kaufman, D.D., and Fries, G.F. (1979). Degradation of pentachlorophenol (PCP) in aerobic and anaerobic soil. J. Environ. Sci. Health B14, 1-14.

Myhr, B., Bower, L., and Caspary, W. (1985). Assays for the induction of gene mutations at the thymine kinase locus in the L1578Y mouse lymphoma cells in culture. *Prog. Mutat. Res.* 5, 555-568.

National Cancer Institute (NCI). (1976). Guidelines for Carcinogen Bioassay in Small Rodents. Technical Report Series No. 1. NIH Publication No. 76-801. National Institutes of Health, Bethesda, MD.

National Cancer Institute (NCI) (1978). Bioassay of Cupferron for Possible Carcinogenicity (Feed Studies) (CAS No. 135-20-6). Technical Report Series No. 100. NIH Publication No. 78-1350. National Institutes of Health, Bethesda, MD.

National Cancer Institute (NCI) (1979). Bioassay of *p*-Chloroaniline for Possible Carcinogenicity (Feed Studies) (CAS No. 106-47-8). Technical Report Series No. 189. NIH Publication No. 79-1745. National Institutes of Health, Bethesda, MD.

National Institutes of Health (NIH) (1978). Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. National Institutes of Health, Bethesda, MD.

National Toxicology Program (NTP) (1982). Carcinogenesis Bioassay of 2,3,7,8-Tetrachlorodibenzo-*p*-dioxin (CAS No. 1746-01-6) in Osborne-Mendel Rats and B6C3F₁ Mice (Gavage Studies). NTP TR No. 209. NIH Publication No. 82-1765. National Institute of Environmental Health Sciences, Research Triangle Park, NC.

National Toxicology Program (NTP) (1984). Toxicology and Carcinogenesis Studies of 1,3-Butadiene (CAS No. 106-99-0) in $B6C3F_1$ Mice (Inhalation Studies). NTP TR No. 288. NIH Publication No. 84-2544. National Institute of Environmental Health Sciences, Research Triangle Park, NC. National Toxicology Program (NTP) (1989). Toxicology and Carcinogenesis Studies of Two Pentachlorophenol Technical-grade Mixtures (CAS No. 87-86-5) in B6C3F₁ Mice (Feed Studies). NTP TR No. 349. NIH Publication No. 89-2804. National Institute of Environmental Health Sciences, Research Triangle Park, NC.

National Toxicology Program (NTP) (1991a). Toxicity Studies of Pentachlorobenzene (CAS No. 608-93-5) in F344/N Rats and $B6C3F_1$ Mice (Feed Studies). NTP TOX No. 6. NIH Publication No. 91-3125. National Institute of Environmental Health Sciences, Research Triangle Park, NC.

National Toxicology Program (NTP) (1991b). Toxicity Studies of 1,2,4,5-Tetrachlorobenzene (CAS No. 95-94-3) in F344/N Rats and B6C3F₁ Mice (Feed Studies). NTP TOX No. 7. NIH Publication No. 91-3126. National Institute of Environmental Health Sciences, Research Triangle Park, NC.

National Toxicology Program (NTP) (1993). Toxicology and Carcinogenesis Studies of 1,3-Butadiene (CAS No. 106-99-0) in B6C3F₁ Mice (Inhalation Studies). NTP TR No. 434. NIH Publication No. 93-3165. National Institute of Environmental Health Sciences, Research Triangle Park, NC. (in press)

Neilson, A.H., Allard, A., Reiland, S., Remberger, M., Tärnholm, A., Viktor, T., and Landner, L. (1984). Tri- and tetra-chloroveratrole, metabolites produced by bacterial *o*-methylation of tri- and tetra-chloroguaiacol: An assessment of their bioconcentration potential and their effects on fish reproduction. *Can. J. Fish Aquat. Sci.* 41, 1502-1512.

Nishimura, N., Nishimura, H., and Oshima, H. (1982). Survey on mutagenicity of pesticides by the *Salmonella*-microsome test. *AIDZA* 10, 305-312.

Oliver, B.G., and Niimi, A.J. (1985). Bioconcentration factors of some halogenated organics for rainbow trout: Limitations in their use for prediction of environmental residues. *Environ. Sci. Technol.* 19, 842-849. Paasivirta, J., Tarhanen, J., and Soikkeli, J. (1986). Occurrence and fate of polychlorinated aromatic ethers (PCDE, PCA, PCV, PCPA, and PCBA) in environment. *Chemosphere* 15, 1429-1433.

Paasivirta, J., Klein, P., Knuutila, M., Knuutinen, J., Lahtiperä, M., Paukku, R., Veijanen, A., Welling, L., Vuorinen, M., and Vuorinen, P.J. (1987). Chlorinated anisoles and veratroles in fish. Model compounds. Instrumental and sensory determinations. *Chemosphere* 16, 1231-1241.

Paradi, E., and Lovenyak, M. (1981). Studies on genetical effect of pesticides in *Drosophila melanogaster*. Acta Biol. Acad. Sci. Hung. 32 (Suppl. 2), 119-122.

Parr, L.J., Gee, M.G., Land, D.G., Robinson, D., and Curtis, R.F. (1974). Chlorophenols from wood preservatives in broiler house litter. J. Sci. Food Agric. 25, 835-841.

Pellizzari, E.D., Hartwell, T.D., Harris, B.S.H. III, Waddell, R.D., Whitaker, D.A., and Erickson, M.D. (1982). Purgeable organic compounds in mother's milk. *Bull. Environ. Contam. Toxicol.* 28, 322-328.

Pierce, R.H., Jr., and Victor, D.M. (1978). The fate of pentachlorophenol in an aquatic ecosystem. In *Pentachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology* (K. Rao, Ed.), pp. 41-52. Plenum Press, New York.

Ramel, C., and Magnusson, J. (1979). Chemical induction of nondisjunction in Drosophila. *Environ. Health Perspect.* **31**, 59-66.

Rao, G.N., Hickman, R.L., Seilkop, S.K., and Boorman, G.A. (1987). Utero-ovarian infection in aged $B6C3F_1$ mice. Lab. Ani. Sci. 37, 153-158.

Räsänen, L., Hattula, M.L., and Arstila, A.U. (1977). The mutagenicity of MCPA and its soil metabolites, chlorinated phenols, catechols and some widely used slimicides in Finland. *BECTA* 18, 565-571. Renberg, L., Marell, E., Sundström, G., and Adolfsson-Erici, M. (1983). Levels of chlorophenols in natural waters and fish after an accidental discharge of a wood-impregnating solution. *AMBIO* 12, 121-123.

Renner, G. (1980). Metabolic studies on pentachloronitrobenzene (PCNB) in rats. *Xenobiotica* **10**, 537-550.

Renner, G., and Mücke, W. (1986). Transformations of pentachlorophenol. Part I: Metabolism in animals and man. *Toxicol. Environ. Chem.* 11, 9-29.

Rott, B., Nitz, S., and Korte, F. (1979). Microbial decomposition of sodium pentachlorophenolate. J. Agric. Food Chem. 27, 306-310.

Safe, S. (1984). Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs): Biochemistry, toxicology, and mechanism of action. *Crit. Rev. Toxicol.* 13, 319-395.

San Martin de Viale, L.C., Viale, A.A., Nacht, S., and Grinstein, M. (1970). Experimental porphyria induced in rats by hexachlorobenzene. A study of the porphyrins excreted by urine. *Clin. Chim. Acta* 28, 13-23.

Schmitt, C.J., Zajicek, J.L., and Ribick, M.A. (1985). National pesticide monitoring program: Residues of organochlorine chemicals in freshwater fish, 1980-81. *Arch. Environ. Contam. Toxicol.* 14, 225-260.

Schwetz, B.A., Quast, J.F., Keeler, P.A., Humiston, C.G., and Kociba, R.J. (1978). Results of two-year toxicity and reproduction studies on pentachlorophenol in rats. In *Pentachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology* (K. Rao, Ed.), pp. 301-309. Plenum Press, New York.

Scott, D., Galloway, S.M., Marshall, R.R., Ishidate, M., Jr., Brusick, D., Ashby, J., and Myhr, B.C. (1991). Genotoxicity under extreme culture conditions. *Mutat. Res.* 257, 147-204.

References

Shirley, E. (1977). A non-parametric equivalent of Williams' test for contrasting increasing dose levels of a treatment. *Biometrics* 33, 386-389.

Silberhorn, E.M., Glauert, H.P., and Robertson, L.W. (1990). Carcinogenicity of polyhalogenated biphenyls: PCBs and PBBs. *Crit. Rev. Toxicol.* 20, 439-496.

Simmon, V.F., and Kauhanen, K. (1978). In vitro microbiological mutagenicity assays of pentachlorophenol. SRI Project LSU-1612. SRI International, Menlo Park, CA.

Simmon, V.F., Kauhanen, K., and Tardiff, R.C. (1977). Mutagenic activity of chemicals identified in drinking water. *Dev. Toxicol. Environ. Sci.* 2, 249-258.

Simon, N., Siklósi, Cs., and Kószó, F. (1978). Influence of environmental factors on porphyrin metabolism. *Int. Symp. Clin. Biochem.*, 145-150.

Somers, J.D., Goski, B.C., and Barrett, M.W. (1987). Organochlorine residues in northeastern Alberta otters. *Bull. Environ. Contam. Toxicol.* 39, 783-790.

Straus, D.S. (1981). Somatic mutation, cellular differentiation, and cancer causation. JNCI 67, 233-241.

Strik, J.J.T.W.A., Debets, F.M.H., and Koss, G. (1980). Chemical porphyria. In *Topics in Environmental Health* (R. Kimbrough, Ed.), Vol. 4, pp. 192-239. Elsevier, Amsterdam.

Suzuki, T. (1983). Methylation and hydroxylation of pentachlorophenol by *Mycobacterium* sp. isolated from soil. J. Pestic. Sci. 8, 419-428.

Swackhamer, D.L., and Hites, R.A. (1988). Occurrence and bioaccumulation of organochlorine compounds in fishes from Siskiwit Lake, Isle Royale, Lake Superior. *Environ. Sci. Technol.* 22, 543-548.

Tarone, R.E. (1975). Tests for trend in life table analysis. *Biometrika* 62, 679-682.

Tennant, R.W., Margolin, B.H., Shelby, M.D., Zeiger, E., Haseman, J.K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R. (1987). Prediction of chemical carcinogenicity in rodents from *in vitro* genetic toxicity assays. *Science* 236, 933-941.

Tindale, C.R. (1987). Shipping container floors: A potential source of chloroanisole contamination in packaged dried fruit. *Chem. Ind.* 13, 458-459.

Vodicnik, M.J., Glickman, A.H., Rickert, D.E., and Lech, J.J. (1980). Studies on the disposition and metabolism of pentachloroanisole in female mice. *Toxicol. Appl. Pharmacol.* 56, 311-316.

Vos, J.G., Faith, R.E., and Luster, M.I. (1980). Immune alterations. In *Topics in Environmental Health* (R. Kimbrough, Ed.), Vol. 4, pp. 241-265. Elsevier, Amsterdam.

Watanabe, I., Kashimoto, T., and Tatsukawa, R. (1985). Brominated phenols and anisoles in river and marine sediments in Japan. *Bull. Environ. Contam. Toxicol.* 35, 272-278.

Weinbach, E.C., and Garbus, J. (1965). The interaction of uncoupling phenols with mitochondria and with mitochondrial protein. J. Biol. Chem. 240, 1811-1819.

Weiss, U.M., Moza, P., Scheunert, I., Haque, A., and Korte, F. (1982). Fate of pentachloro-phenol-¹⁴C in rice plants under controlled conditions. J. Agric. Food Chem. 30, 1186-1190.

Welsh, J.J., Collins, T.F.X., Black, T.N., Graham, S.L., and O'Donnell, M.W., Jr. (1987). Teratogenic potential of purified pentachlorophenol and pentachloroanisole in subchronically exposed Sprague-Dawley rats. *Food Chem. Toxicol.* 25, 163-172.

Whitfield, F.B. (1983). Some flavours which industry could well do without: Case studies of industrial problems. *CSIRO Fd. Res. Q.* 43, 96-106.

Whitfield, F.B., and Last, J.H. (1986). Off-flavours encountered in packaged foods. *Dev. Food Sci.* 121, 485-500.

Whitfield, F.B., Last, J.H., Shaw, K.J., and Mugford, D.C. (1984). 2,4,6-Trichloroanisole and 2,3,4,6-tetrachloroanisole: Important off-odour components in tainted jute sacks. *Chem. Ind.* 20, 744-745.

Williams, D.A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose control. *Biometrics* 27, 103-117.

Williams, D.A. (1972). The comparison of several dose levels with a zero dose control. *Biometrics* 28, 519-531.

Williams, D.T., LeBel, G.L., and Junkins, E. (1984). A comparison of organochlorine residues in human adipose tissue autopsy samples from two Ontario municipalities. J. Toxicol. Environ. Health 13, 19-29.

Witte, I., Juhl, U., and Butte, W. (1985). DNAdamaging properties and cytotoxicity in human fibroblasts of tetrachlorohydroquinone, a pentachlorophenol metabolite. *Mutat. Res.* 145, 71-75. World Health Organization (WHO) (1987). Pentachlorophenol. *Environmental Health Criteria* 71. World Health Organization, Geneva.

Zeiger, E., Anderson, B., Haworth, S., Lawlor, T., Mortelmans, K., and Speck, W. (1987). Salmonella mutagenicity tests. III. Results from the testing of 255 chemicals. Environ. Mutagen. 9 (Suppl. 9), 1-109.

Zeiger, E., Anderson, B., Haworth, S., Lawlor, T., and Mortelmans, K. (1988). *Salmonella* mutagenicity tests: IV. Results from the testing of 300 chemicals. *Environ. Mol. Mutagen.* 11 (Suppl. 12), 1-157.

Zeiger, E., Haseman, J.K., Shelby, M.D., Margolin, B.H., and Tennant, R.W. (1990). Evaluation of four *in vitro* genetic toxicity tests for predicting rodent carcinogenicity: Confirmation of earlier results with 41 additional chemicals. *Environ. Mol. Mutagen.* 16 (Suppl. 18), 1-14.

Ziemsen, B., Angerer, J., and Lehnert, G. (1987). Sister chromatid exchange and chromosomal breakage in pentachlorophenol (PCP) exposed workers. Arch. Occup. Environ. Health 59, 413-417.

APPENDIX A SUMMARY OF LESIONS IN MALE RATS IN THE 2-YEAR GAVAGE STUDY OF PENTACHLOROANISOLE

Table A1	Summary of the Incidence of Neoplasms in Male Rats	
	in the 2-Year Gavage Study of Pentachloroanisole	78
Table A2	Individual Animal Tumor Pathology of Male Rats	
	in the 2-Year Gavage Study of Pentachloroanisole	82
Table A3	Statistical Analysis of Primary Neoplasms in Male Rats	
	in the 2-Year Gavage Study of Pentachloroanisole	106
Table A4	Historical Incidence of Adrenal Medulla Pheochromocytomas	
	in Male F344/N Rats Administered Corn Oil by Gavage	112
Table A5	Summary of the Incidence of Nonneoplastic Lesions in Male Rats	
	in the 2-Year Gavage Study of Pentachloroanisole	113

TABLE All

Carl and the contract of the c

....

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Gavage Study of Pentachloroanisole^a

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
Disposition Summary	······································			
Animals initially in study	70	70	70	70
-Month interim evaluation	10	10	10	10
5-Month interim evaluation	10	10	10	10
Early deaths		10	10	10
Moribund	23	21	14	5
Natural deaths	3	9	14	31
Survivors	3	9	12	31
Terminal sacrifice	24	20	24	14
Animals examined microscopically	70	70	70	70
limentary System	·····	· · · ·	. .	
ntestine large, cecum	(50)	(49)	(48)	(50)
ntestine large, colon	(50)	(50)	(49)	(49)
ntestine large, rectum	(50)	(50)	(49)	(47)
ntestine small, duodenum	(50)	(50)	(49)	(49)
ntestine small, ileum	(50)	(50)	(47)	(50)
ntestine small, jejunum	(50)	(50)	(47)	(50)
Adenoma		1 (2%)		
iver	(50)	(50)	(50)	(50)
Carcinoma, metastatic, stomach	~	1 (2%)		
Hepatocellular adenoma		1 (2%)	1 (2%)	•
lesentery	(11)	(11)	(5)	(9)
Leiomyosarcoma, metastatic, spleen	1 (9%)			
Liposarcoma	1 (9%)			
ancreas	(49)	(49)	(49)	(50)
Carcinoma, metastatic, stomach	10 (040)	1 (20)	1 (2%)	
Acinar cell, adenoma	12 (24%)	1 (2%)	1 (2%)	
harynx Papilloma squamous	(1) 1 (100%)		(2)	(1)
Squamous cell carcinoma	1 (100%)		1 (50%)	1 (100%)
alivary glands	(50)	(50)	1 (50%) (48)	(50)
tomach, forestomach	(50)	(50)	(50)	(50)
Papilloma squamous	1 (2%)	(50)	(50)	(30)
tomach, glandular	(50)	(50)	(50)	(50)
Carcinoma	()	1 (2%)	1 (2%)	(50)
ongue	(1)	(2)	(4)	(2)
Papilloma squamous		1 (50%)		1 (50%)
Squamous cell carcinoma			1 (25%)	
Cardiovascular System		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
leart	(50)	(50)	(49)	(50)
Schwannoma benign	3 (6%)	1 (2%)		
Indocrine System	- · ·		v	
drenal gland, cortex	(49)	(50)	(50)	(50)
drenal gland, medulla	(50)	(50)	(50)	(48)
Pheochromocytoma malignant	3 (6%)	2 (4%)	3 (6%)	
Pheochromocytoma malignant, multiple			1 (2%)	
Pheochromocytoma benign	11 (22%)	12 (24%)	13 (26%)	6 (13%)
Pheochromocytoma benign, multiple	1 (2%)	5 (10%)	10 (20%)	9 (19%)
lets, pancreatic	(49)	(49)	(49)	(50)
Adenoma	8 (16%)	2 (4%)	3 (6%)	6 (12%)
Carcinoma	1 (2%)			
		-		

and a start of the second s Second second

219.M	sis ™	шî	2noi23.I
-------	--------------	----	----------

Subcutaneous tissue, osteosarcoma

Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, myxosarcoma

(α, π) t	3 (6%)	(%Z) I	5 (%)	Subcutaneous tissue, fibrosarcoma
(%z) t		(%Z) I	(%8) 1 (%8)	Sebaceous gland, carcinoma Subcutaneous tissue, fibroma
		(%Z) I		T'richoepithelioma
	(%7) Z (%7) I		(α, σ)	Squamous cell carcinoma
	(%2) [(%Z) I	1 (3%) (%7) 1	Keratoacanthoma Papilloma squamous
			(%Z) I	Carcinosarcoma Vancetinosarcoma
(%†) 7	<i>/ \</i>		(%†) Z	Basal cell carcinoma
(05)	(0s)	(67)	(05)	Skin
(%Z) I	(% 1) Z	(%81) 6	9 (13%) 1 (3%)	Fibroadenoma
(14)	(05)	(67)	(%2) [(87)	Mammary gland Carcinoma
				mətey Training and a set a
(14)	(74)	(74)	(9 7)	Thymus
	(%Z) I		1 (%Z)	Сагсіпота, теізьіаціс, stomach Leiomyosarcoma
(05)	(05)	(67)	(05)	Spleen
(81)	(67)	(05)	(05)	Lymph node, mesenteric
. (a)		(α)	(%7) [Carcinoma, metastatic, thyroid gland
(67)	(46) 1 (5%)	(67)	(05)	Lymph node, mandibular Lymph node, mandibular
	(%Z) [Bronchial, carcinoma, metastatic, stomach
(05)	(%Z) I (0S)	(05)	(05)	rymph node
		(22)	(%7) [Hemangiosarcoma
(05)	(05)	(05)	(05)	Hematopoietic System Bone marrow
				motoria pitoiorotomolu
(%84) 42	(%+8) 7+	(%06) 57	(%76) 97	Interstitial cell, adenoma
(05)	(05)	(05)	(05)	Testes
(05)	(67)	(05)	(05)	Seminal vesicle
(05)	(20) I (20)	(05)	(05)	Prostate Carcinoma, metastatic, stomach
(%Z) I	(%2) [(%) (05)	(%21) 9	Carcinoma
	(%01) \$	(%Z) I	(%t) Z	smonsbA
(05)	(05)	(87)	(05)	Prepueial gland
				mətsyz latinəD
			(E)	SON Suzz
				General Body System
	(%Z) I		(%Z) I	Follicular cell, adenoma
	(%)()	(%Z) I	(%Z) I (%Z) I	C-cell, carcinoma Folliciular cell adenoma
(%01) s	(%†I) L	(%21) 9	15 (24%)	C-cell, adenoma
(05)	(67)	(05)	(05)	Thyroid gland
		(%Z) I		Pars nervosa, neoplasm NOS
<i>·</i> · · ·	(%Z) I	(%Z) I	(%8) \$	Pars distalis, carcinoma
(%07) 01	(%6Z) \$I	(%**) 77	19 (33%) (48)	Pituitary gland Pars distalis, adenoma
(05)	(48) 1 (2%)	(05)	(07)	smonsbA brinitiq
(05)	(%) (67)	(05)	(67)	Parathyroid gland
103/		\\\\ \\ \		Endocrine System (continued)
				· · · · · · · · · · · · · · · · · · ·
21/2m 05	20 mg/kg	24/2m Ol	Vehicle Control	(c) (c)

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Gavage Study of Pentachloroanisole (continued) Table Al

(%z) I

(%7) I (%9) E

(%7) 1 (%7) 1

٠.

TABLE A1

.

•

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
Musculoskeletal System				
Bone	(50)	(50)	(50)	(50)
Squamous cell carcinoma, metastatic, phan	rynx	(1)	1 (2%)	
Skeletal muscle Fibroma .		(1) 1 (100%)		•
Nervous System				
Brain	(50)	(50)	(50)	(50)
Astrocytoma malignant			1 (2%)	
Carcinoma, metastatic, pituitary gland	1 (2%)			
Granular cell tumor benign		1 (2%)		
Respiratory System	<u></u>			
Lung	(50)	(50)	(50)	(50)
Alveolar/bronchiolar adenoma	í (2%)	5 (10%)	2 (4%)	2 (4%)
Alveolar/bronchiolar carcinoma	1 (2%)	. ,		
Carcinoma, metastatic, stomach			1 (2%)	
Carcinoma, metastatic, thyroid gland	1 (2%)			
Fibrosarcoma, metastatic, skin	-		1 (2%)	
Pheochromocytoma malignant, metastatic,				
adrenal gland	1 (2%)			
Mediastinum, hemangiosarcoma	1 (2%)			
Nose	(50)	(50)	(50)	(50)
Osteosarcoma	1 (2%)			
Squamous cell carcinoma	1 (2%)	2 (4%)		
Special Senses System	· · · · · · · · · · · · · · · · · · ·			
Zymbal's gland	(1)		(1)	
Squamous cell carcinoma			1 (100%)	
Urinary System			-	
Kidney	(50)	(50)	(50)	(50)
Urinary bladder	(50)	(50)	(50)	(50)
Systemic Lesions				
Multiple organs ^b	(50)	(50)	(50)	(50)
Leukemia mononuclear	23 (46%)	22 (44%)	15 (30%)	8 (16%)
Mesothelioma benign		(,	1 (2%)	
Mesothelioma malignant	3 (6%)	4 (8%)	N/	1 (2%)

IA JJ8AT

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

84/8m 0>	22/2m 02	Srl/Sm Ol	Vehicle Control	
		· .	······································	Arammus merido
56	42	05	67	sminals with primary neoplasms ^c
6L	961	124	182	Total primary neoplasms
56	54	67	67	amaalqoon nginod diiw alamina la
99	104	<i>L</i> 11	LZI	amashqoon nginod latol
· II	58	33	- 6E	amaalqoon mangilam dhiw alamina la
£I	25	98	55	cual malignant neoplasms
	£	t i se t	, þ	an animals with metastatic neoplasms
	8	ĩ	S	Total metastatic neoplasms
		•	• •	animals with uncritain neoplasms
		I		benign or malignant
		· Ľ		Total uncertain neoplasms

Number of animals examined microscopically at site and number of animals with lesion Number of animals with any tissue examined microscopically 8

.

э q

Primary neoplasms: all neoplasms except metastatic neoplasms

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control

																			_										,	
··· · · · ·		· · ·		2	5	5	5	5	6	6	6	6	6	6	6	6 (56	6	7	7	7	7	7	7	7	7	7			
umber of Days on Study		• .		1	õ	2			•			· ·	,			8 8				Ó	Ó	Ó	ó	Ó	Ó	Ó				
•		0		3	7		8	4	5	1							3 4	9	1	2	3	3	4		5	5	8			1.11
				•															-											
							_	v			_					•												_		,
		1		0	0	0	0	0	0	0	0	0	0	0	•	0 1	10	-	0	0	0	1	0	0	0	0	0			
arcass ID Number				7	5	2 1	7	3	8	3	2 2	6 1	9 1	•	5 2	9 (2 1) 1 1		_	23	8	02	1 2	4	7	7	3			,
				T	1	T	4	1	1 Ç	4	2	1	1	Ţ	2	2 1		4	2	3	3	4	4	2	3	4	3			
			,																											
limentary System Esophagus								•																						
Intestine large				т ч	T	Ţ	Ť	Ţ.	Ţ.	Ţ	Ţ	Ţ	T	Ţ	Ţ.,	T '	т - ,			· T			Ţ	Ţ	Ţ	Ţ.	Τ.	•		
Intestine large, cecum				÷	+	+	Ť	+	+	+	+	+	+	Ť	+	T	+ -		- +	+	+	-	+	+	+	+	+			
Intestine large, cecum	1			Ť	+	+	+	+	+ -	+	+	+	+	+	+	+ •	+ -	r 1	- +	+	+	+	*	+	+	+	+			
Intestine large, colon				+	+	+	+	+	+	+	+	Ţ.	+	+	+	+	+ -	F 1	- +	• +	+	+	+	+	+	+	+		·	
Intestine large, rectum Intestine small				Ť	+	+	+	+	+	+	+	+	+	+	+	+ ·	÷ -	- 1	- +	• +	+	+	+	+	+	+.	+			
Intestine small, duodenum				+	+	+	Ť	Ţ	+	+	+	+	<u>+</u>	+ 	+	т. ч	т - 1	r 1	- +	+	+	+	+	+	+	-+ '	Ţ			
Intestine small, duodenum Intestine small, ileum				+	+	+	+	Ţ	Ť	+	+	+	+	T	+	т · +	т - 1		- +	· +	+	+	+	+	+	+.	+ +			
Intestine small, lieum Intestine small, jejunum				+	+	+	Ť	+	+	+	+	+	+	Ţ.,	+	т ·	т " 1	г 1 с 1	- +	· +	. <u>†</u>	+	+	+	+	+	+ +			
Liver				+	+	+	+	Ţ	+	+	+	÷	+	+	+	τ·		- 1 	- +	+	+	+	+	+	+	+	Ť			
				+	+	+	+	+	+	+	+	+	+	+	+	Ť	* -	r 1	- +	+	+	+	+	+	+	+	Ŧ			•
Mesentery		,								+		+					-	r 1 1	,			+	+			+		•		
Leiomyosarcoma, metastatic	, spieen																	<u>ر</u> کر	•	•								4		
Liposarcoma																.,	-	ζ.	,		• .					`.				
Pancreas				+	+	+	+	+	+	+	+	+	+	+	+	M ·	+ -	+ +	- +	+	+	+	+	+	+	+	+	-		
Acinar cell, adenoma																								х						
Pharynx																														
Papilloma squamous																														
Salivary glands				+	+	+	+	+	+	+	+	+	+	+	+	+ ·	+ -	+ +	- +	+	+	+	+	+	+	+	+.			
Stomach				+	+	+	+	+	+	+	+	+	+	+	+	+ ·	+ -	+ +	- +	• +	+	+	+	+	+	+	+	**	1	
Stomach, forestomach				+	+	+	+	+	· +	+	+	+	+	+	+	+ ·	+ -	F -1	+ +	+	+	+	+	+	+	+	+	•		•
Papilloma squamous	•	· ·		•		•	•				÷						~									•.			•	
Stomach, glandular				+	+	+	+	+	+	+	+	+	+	+	+	+ ·	+ -	+ +	- +	+	+	+	+	+	+	+	+	•		
Tongue						·	•								•	•														
Tooth								+																					1.14	
· · · · · · · · · · · · · · · · · · ·					ú																			_						
Cardiovascular System								·					•	•••••	•	-														
Blood vessel																												. ·		
Heart	÷			+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ +	- +	+	+	+	+	+	+	+	+			
Schwannoma benign				•	•	•			•	·				•		••••			•		•	•	•	•	•	•	,			
······	······				,																		,							
Indocrine System																														
Adrenal gland				+	+	+	+	+.	+	+	+	+	+	+	+	+ -	+ •	+ +	+ +	+	+	+	+	+	+	+	+:			
Adrenal gland, cortex		•		+	+	+	+	Α	+	+	+	+	+	+	+	+ -	+ -	+ +	+ +	• +	+	+	+	+	+	+	+			
Adrenal gland, medulla	•			+	·+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ +	+ +	• +	+	+	+	+	+	+	+			
Pheochromocytoma maligna	nt ·			÷				·			•	х				Х										х				
Pheochromocytoma benign						х							х			2	X							·X						
Pheochromocytoma benign,	multiple	e										1										· X								
Islets, pancreatic	-			+	+	+	+	+	+	+	+	+	+	+	+	M	+ -	+ +	+ +	+	+	+	+	+	+	+	+			
Adenoma								x			:				x					Х				х			۰.			
Carcinoma								_							-															

+: Tissue examined microscopically A: Autolysis precludes examination M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

																										· · · · · · · · · · · · · · · · · · ·
Number of Days on Study	7 2		7 2	7 2	7 2	7 2		7 2		7 2		7 2	7 2													
	6		9		9										9				9					9		
	0	0	0	0	0				0						0											Total
Carcass ID Number	9 3		1 4				3 5		4 4				5 5		6 3									0 4		Tissues Tumors
Alimentary System								_												-						
Esophagus	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	50
Mesentery		+								+						+						+				11
Leiomyosarcoma, metastatic, spleen Liposarcoma																										· 1 1
Pancreas	+	+	+	+	+	+	+	+	+	+			-	+	+	+	+	+	+	+	+	+	+	+	+	49
Acinar cell, adenoma	X				х			х			Х	х	х	х			х		х		х		х			12
Pharynx																	+									1
Papilloma squamous																	х									1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Papilloma squamous													х													1
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Tongue Tooth																				+						1
100in			+																							2
Cardiovascular System																										
Blood vessel Heart										+						+		+				+				4
Schwannoma benign	+	+ X		+	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	50 3
Endocrine System																										· · ·
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	т	Ŧ	+	50
Adrenal gland, cortex	+	+	+	+	÷	÷	÷	÷	+	÷	+	+	÷	+	+	+	÷	÷	+	+	+	+	- -	- -	+	49
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	÷	÷	+	+	+	÷	÷	÷	+	+	+	+	+	+	+	+	50
Pheochromocytoma malignant		•	•	•	·				•	•	•							•	•		•	•		•		3
Pheochromocytoma benign	х					х				х		х				х						х		х		11
Diana in the second second																								~		1
Pheochromocytoma benign, multiple				-	-	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	Ŧ	+		-	+	49
Pheochromocytoma benign, multiple Islets, pancreatic	+	+	-	T	т	-					-	T	Ŧ									T	-	—		
Islets, pancreatic Adenoma	+ x		Ŧ	Ŧ	т	т	•	•		7	Ŧ	Ŧ	Ŧ	•	•	x	•	·	x	'	т	Ŧ	Ŧ	x		8

2 5 5 55 666 666 666 7 7 6 6 7 7 7 7 7 7 7 Number of Days on Study 1 0 26 9 0 1 1 2 4 5 5 8 8 88 0 0 0 0 0 0 0 0 1 3 3 3 3 7 8 4 5 7 4 9 1 4 9 1 2 3 3 4 5 5 5 8 7 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 **Carcass ID Number** 7 5 2 7 3 8 3 2 6 9 4 5 9 0 1 28 2 8 0 1 4 7 7 3 2 4 2 3 3 2 3 1 1 1 2 1 1 2 2 1 1 1 2 1 1 2 2 3 4 Endocrine System (continued) Parathyroid gland + + Pituitary gland x x х x х Pars distalis, adenoma Х Pars distalis, carcinoma Thyroid gland + C-cell, adenoma x х C-cell, carcinoma Follicular cell, adenoma **General Body System** Tissue NOS + **Genital System** Epididymis + Preputial gland + + Adenoma Carcinoma XXXX х + + + + + + + + + Prostate + + + + + + + + + + 4 Seminal vesicle + + + + + + + + + + + + **;**+ Testes + + + + + + + ÷ + + x х х х Interstitial cell, adenoma хх x x x x х х х х х х x x x . . **Hematopoietic System** Bone marrow x Hemangiosarcoma Lymph node Lymph node, mandibular + + + + + + + х Carcinoma, metastatic, thyroid gland Lymph node, mesenteric + + + Spleen + + + + + х Leiomyosarcoma + Μ + Thymus Μ + + м + + **Integumentary System** Mammary gland + Carcinoma Fibroadenoma Skin + + хх Basal cell carcinoma Carcinosarcoma Keratoacanthoma Papilloma squamous Sebaceous gland, carcinoma х Subcutaneous tissue, fibroma dar. X Subcutaneous tissue, fibrosarcoma 1.25

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

|

,

(continued)																				_					
Number of Days on Study	7 2 6	7 2 9	7 2 9	7 2 9	2	2	2	2	2	2	2	2	2 2	7722	2	7 2 9	2								
	v	1	1			1	,	-	<i>.</i>		-	-				1	ĺ		-		ĺ	-	ĺ		
Carcass ID Number	0 9 3		0 1 4	1	2	0 3 4	3	4	•	4	5	5	5 (0 6 6 4	6	0 7 5		8	9		0	1 0 4	0	Total Tissues, Tumors
Endocrine System (continued)							,																		<u> </u>
Parathyroid gland	+	+	+	+	+	+	+	÷	+	+	+	+	+ •	+ +	⊦ +	+	+	+	+	+	+	+	+	+	49
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ +	+ +	+	+	+	+	+	+	+	+		49
Pars distalis, adenoma	Х	•		۰.	Х	х	Х			Х	Х			2	<			Х			Х		Х		16
Pars distalis, carcinoma									Х																4
Thyroid gland	+	+	• +			+	+	+	+	+	+	+	+ ·	+ -	+ +	+	+	+	+	+		+		+	50
C-cell, adenoma C-cell, carcinoma				A	Х	X				Х				2	ζ.		Х				х		х		12
Follicular cell, adenoma																							х		1 1
										_										·					
General Body System Tissue NOS					+		+																		3
Genital System																									
Epididymis	+	• +	• +	+	+	+	+	+	+	+	+	+	+ -	+ +	+ +	+	+	+	+	+	+	+	+	+	50
Preputial gland	+	+	· +	+	+	+	+	+	+	+	+				+ +			+	+	+	+	÷	+	+	50
Adenoma															Х								х		2
Carcinoma																			Х						6
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+ ·	+ +	+ +	+	+				+		+	+	50
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+		•		+ +						+		-	+	50
Testes Interstitial cell, adenoma	+ X		· + : X	+ : X		+ X			+ X	+ X	×	+ X .	+ : X :	+ + X	+ + K X	: + : X	+ X		50 46						
		<u> </u>		. <u> </u>														_							
Hematopoietic System		,																				-			
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+ +	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma												_													1
Lymph node	+	+	• +	+	+	+	+	+	+	+	+	+	+ ·	+ +	+ +	+	+	+	+	+	+	+		+	50
Lymph node, mandibular	+	+	• +	+	+	+	+	+	+	+	+	+	+	+ +	+ +	+	+	+	+	+	+	+	+	+	50
Carcinoma, metastatic, thyroid gland		,																							1
Lymph node, mesenteric	+	• +	· +	+	+	+	+	+	+	+	+	+	+ ·	+ -	+ +	• +	+	+	+	+	+	+	+	+	50
Spleen	+	+	• +	+	+	+	+	+	+	+	+	+	+	+ -	+ +	+	+	+	+	+	+	+	+	+	50
Leiomyosarcoma Thymus	+	• +	• +	+	+	+	+	·+	+	+	+	+	+	+ -	+ +	+	+	+	+	I	+	+	+	+	1 46
Internmenter Suptor		,			<u> </u>																<u></u>				
Integumentary System																. .						× -			40
Mammary gland Carcinoma	+	+	• +	+	+	+	+	+	+	+	+	+	+	+ -	+ 1	1 +	+	+	+	+	+	М	+	÷	48
	.,	,					v		Х																· 1
Fibroadenoma	X				۰.		x												Х						6
Skin	+	+	• +	+	+	+	+	+	+	+	+	+	+	+ -	+ +	+	+	+	+	+	+	+	+	+	50
Basal cell carcinoma																									2
Carcinosarcoma				.,																				х	1
Keratoacanthoma		-		Х																					1
Papilloma squamous		Х	•																			•			1
Sebaceous gland, carcinoma						Х															_				1
Subcutaneous tissue, fibroma										Х						Х					Х			·	4
Subcutaneous tissue, fibrosarcoma													Х												2

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

(continued)																												
Number of Days on Study	1	5 0 7	2	6	5 9 4		6 1 1	1		4		5	8	8	6 8 4	6 8 9	7 0 1	7 0 2	0	0	7 0 4	0	7 0 5	7 0 5	1			
Carcass ID Number	7	0 5 1	2	0 7 2	0 3 1	0 8 1	0 3 2	0 2 2	6	0 9 1	0 4 1	5	9	0	0 1 1	2		2	0 8 3	0	0 1 2	0 4 2	0 7 3	7	0 3 3		-	
Musculoskeletal System Bone	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	+	+	•	•	• • •
Nervous System Brain Carcinoma, metastatic, pituitary gland	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+		•	
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Carcinoma, metastatic, thyroid gland		- +		+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+ x	•		•
Pheochromocytoma malignant, metastatic, adrenal gland Mediastinum, hemangiosarcoma Nose Osteosarcoma Squamous cell carcinoma Trachea	+	• +	+ X	+	+	+	+	+	x + +	+	+	+	+	+ X +	+	+	+	+	+	+	+	+	X +		+	×.,		
Special Senses System Eye Zymbal's gland				+	+																					 		
Urinary System Kidney Urethra Urinary bladder	+	- +	- + - +	+	+ +	+	+	++	+ +	++	+ +	++	+ + +	++	+ +	++	++	+++	++	++	 + +	++	 + +	+	+ + ;		•	• • •
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant	+	- +	• +	· +	+	+		+ x				+ X	+	+	+ x	+	+ x	+	+	+	+ x	+	+	+	+			

Table A2

1

									•																	
Number of Days on Study	2	7 [°] 2 9	2	2	2	7 2 9	2	2	2	2	2	7 2 9	7 2 9	7 2 9	2	7 2 9	7 2 9	7 2 9		7 2 9			7 2 9		7 2 9	
Carcass ID Number		1.		0 1 5	2	0 3 4		4	0 4 4	4		5.	5		6				8	8		9	0	0	0	Total Tissues/ Tumors
Musculoskeletal System Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Nervous System Brain Carcinoma, metastatic, pituitary gland	+	+	+	+	+	+	+	÷	+	+	+	+	÷	+	+	+	+	+	+	+	+.	. +	+	+	+.	50 1
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Carcinoma, metastatic, thyroid gland Bheachment and the metastatic	+	+	+	+	+	+	+	÷	+	+	+	+	+	+ X	+	÷	+	+	+	÷	+	+	. + .		+	50 1 1 1
Pheochromocytoma malignant, metastatic, adrenal gland Mediastinum, hemangiosarcoma Nose Osteosarcoma Squamous cell carcinoma Trachea	+	+	+	+	+	+	+	<u>+</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	1 50 1 1 50
Special Senses System Eye Zymbal's gland	T		-	+				т 	т 	т 	т —	т 	т					т 			-	т 	т :	т 		2
Urinary System Kidney Urethra Urinary bladder	+	++	++	++	+++	+ +	++	+ +	+ +	++	++	+ +	+	++	+	+ +	++	++	+ +	+ +	+++	+++++	++	++	+ +	50 2 50
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant	+		+ X	+		+ X	+	+	+		+ x	+	+ X	+	+ X	+			+ x						+ X	50 23 3

÷

 TABLE A2

 Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Pentachloroanisole: 10 mg/kg

								·							• •														
Number of Days on Study		4 3 5			2	2	5 2 9	5 3 5	6	7	7	5 7 7	7	9	0	1		2	2	3	4	6 4 9	6 4 9	6 6 7	6 7 8	6 8 4			···.
Carcass ID Number	s.	4 6 1	4 9 1	4 6 2	5 2 1				1	5 0 1	-		5	4 5 2	4 6 3		7	5 0 2				5 0 3	5 1 3	4 4 1	-	4 5 3			
<u> </u>														•								<u> </u>	•••						• •
Alimentary System					;																						$\{ e_{i} \}_{i \in \mathbb{N}}$		
Esophagus		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +			
Intestine large		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+	+-		e i e	
Intestine large, cecum		+	+	+	+	+	M		+				+	+		+		+	+	+	+	+	+	+	.+	+		•	
Intestine large, colon		_+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, rectum		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷.	+	+	+	+	+	+			
Intestine small Intestine small, duodenum		+	+	+	+	+	+ 	+	+	+ .+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+	+ •	+			
Intestine small, duodenum Intestine small, ileum	-	+	+	+	+	·+ -	<u>+</u>	т Т	+	- -	T	+	+ +	Ť	+ +	+	+	++	+ +	- -	Ŧ	+ +	т _	- -	· Ŧ.	· +	•		
Intestine small, jejunum		- -	- -	+	+	+	+	+	+	+	+	÷	+	+	÷	+	+	÷	÷	+	÷	+	+	+	+	÷		2 m 1	
Adenoma			•		•		•	•		•	•	•	•	'		•	'	•	•		•	,		•		•			
Liver		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Carcinoma, metastatic, stomach			x	•		,	•	•	•	·	•	•	•	•	·	•	•	·	·	•		•	•			•			
Hepatocellular adenoma																									•				
Mesentery					+				+								+	+	+						+				
Pancreas		+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Acinar cell, adenoma						·																							
Salivary glands		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach, forestomach		+	+	×+	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+			
Stomach, glandular		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		·	
Carcinoma			Х										,														•	10	
Tongue													•										, đ						
Papilloma squamous																													
Tooth	. /				•																								
Cardiovascular System									_															. *	ч.				
Biood vessel																												1	
							٠.		۰.					<i>.</i>															
Heart		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	. † .	. +	Ŧ			
Schwannoma benign									e. 11													,	-						
Endocrine System			_						_					_													<u> </u>	• .	
	•	L	т	л.		<u>ــ</u>	ᆂ	L	ъ	ъ	L.	L.	÷	L	J.	Ŧ	Ŧ	+	-	.ر	т.	д	л.	ъ	Т	.: 	<u>.</u>	,	
Adrenal gland	r		- T	т ,	T	Ŧ	Ţ	· T	- -	- T	Ţ	т 	T	- -	т _	Ť	7	T L	Ţ	Ţ	т	- Τ	т 	्र म	т 	ार प्रा		÷	
Adrenal gland, cortex		+	·+	+	+	+	+	+	+	+ ·	· +	+	Ť	+	+ +	+ _	Ţ	Ť	Ť	Ψ 	+	т 	- T	+ -	т 	Ť			
Adrenal gland, medulla		+	+	Ŧ	+	Ŧ	Ŧ	Ŧ	+	+	+	Ť	+	Ŧ	٣	Ť		τ v	Ŧ	Ţ	Ŧ	т.	T.	т	T	т		•	
Pheochromocytoma malignant																		X				•		•					
Pheochromocytoma benign																		x	-	•				•			·		
Pheochromocytoma benign, multiple					X						•														·X				
Islets, pancreatic		+	Μ	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+			
Adenoma															x										•		r = r		
Parathyroid gland		+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+			
Pituitary gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					+			
Pars distalis, adenoma		Х		х			х	х		Х	х				х				х			х	Х	X	X.	х	,		
Pars distalis, carcinoma																							• •						
Pars nervosa, neoplasm NOS					х																								
		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+.			
Thyroid gland				•	v																	Х							
C-cell, adenoma					х																						· · ·		
					х																		х					•	

1

(continued)																							_			
Number of Days on Study	8	8	7 0 9	2	7 2 6	3	3	7 3 3	3	3	3	3	7 3 6	3	3	7 3 7	3	7 3 7	3							
Carcass ID Number	4 9 3	2	5 0 4	6	1	4		2	4 9 4	9		1	-	3	3	3	4 3 5	4 4 3	4 4 4	4 4 5	4 5 4	-		4 7 4		Total Tissues, Tumors
Alimentary System															-											
Esophagus	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, rectum	+	+	+	+	+	+	+	+		+	+	+			+	+	+	+	+	+	+	+	+	+	+	50 50
Intestine small Intestine small, duodenum	+	+	+	- T	+	+	+	++	+++	+	+	+	+++	+	+	+	+	+++++	+	+	+	+	+	Ŧ	+	50 50
Intestine small, ileum	+	- -	- +	+	- -	- -	+ +	+	+	+ +	+ +	- +	+	Ψ +	+	+	+	+	+	÷	+	+	+	+	+ +	50
Intestine small, jejunum		+	+	+	÷	÷	÷	+	+	÷	+	+	÷	+	÷	÷	÷	÷	÷	÷	+	÷	+	+		50
Adenoma		•	•		•	'	•	•		•	•	•	•	*	•	•	•	•	•	•	•	•	x	•	•	1
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Carcinoma, metastatic, stomach																										1
Hepatocellular adenoma																		Х								1
Mesentery		+									+		+				+			+						11
Pancreas	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Acinar cell, adenoma				X																_						1
Salivary glands	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50
Stomach Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+++++	+	+	+	+	+	+	+	+	+	+		+ +	50 50
Stomach, forestomach Stomach, glandular	· · ·	Ŧ	- -	Ŧ	Ŧ	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+++	+	+	+	Ŧ	+	+		50
Carcinoma			'	'	'	•		•		'	'	r			-	•			•	F		'	7			- 1
Tongue			+				+																			2
Papilloma squamous Tooth			х																							1 1
Cardiovascular System		·						_																		
Blood vessel			+						+		+		+													4
Heart	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Schwannoma benign											Х															1
Endocrine System		-		_																						
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma malignant																			х							2
Pheochromocytoma benign		Х			Х	Х								х						х	х	х	х	х	Х	12
Pheochromocytoma benign, multiple			Х							Х						х										5
Islets, pancreatic	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenoma					х																					2
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pars distalis, adenoma					Х			х				Х				х	Х	•	х			Х	Х	Х		22
Pars distalis, carcinoma																		Х								1
Pars nervosa, neoplasm NOS														,							-					1
Thyroid gland			: +	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
C-cell, adenoma	X	X								Х															Х	6
C-cell, carcinoma																										1

(continued)		_																											·
Number of Days on Study		4 3 5	4 3 7	4 8 8	2	5 2 1	5 2 9	5 3 5	5 6 8	5 7 0	7	5 7 7	7	5 9 8	6 0 4	6 1 3	6 2 5	6 2 6	6 2 7	6 3 4	6 4 0	6 4 9	4	6	6 7 8	8			· · ·
Carcass ID Number		6		6	5 2 1	4 7 1		1	1	0	8	4 9 2	5	4 5 2		4 8 3	4 7 2	5 0 2	4 6 4	4 8 4		5 0 3		4 4 1	4 8 5	5			<u>.</u>
General Body System None		_															-		•••										· · ·
Genital System																													a
Epididymis Preputial gland Adenoma		++	+ +	+ +	· + · +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ M	· · ·										
Carcinoma Prostate Seminal vesicle	,	+	+	+	· +	+	+	+	+ +	+ +	+	X + +	+	X + +	+ +	+	++	+ +	+ +	+	+ +	+	+	+	+	+ +			
Testes Interstitial cell, adenoma		+	+	+	•		+ X		+	+	+		+	÷	÷	+	+	+	+	+	+	+ X			+	+			
II						_	_								_														
Hematopoietic System																													
Bone marrow	i.	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	: †	+	+	+	+			
Lymph node		+	+	+	; +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Lymph node, mandibular Lymph node, mesenteric		+	+	M	1 +	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+			
Spleen		+	+	+	• +	+	+	+	++	+ +	+	+	++	+	+	+	+	+		- T	Ŧ	+		- -	. <u>–</u>	т Т			
Thymus		+	+	+	· +	+	+	+	•	+	+	M		+	÷	+	+	+	+	+	+	+	+	+	+	+			
				_									-																
Integumentary System																					-								
Mammary gland Fibroadenoma		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	` +	••	*	
Skin			+	+	• +	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Keratoacanthoma Trichoepithelioma																x													
Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma							x																						
Musculoskeletal System										_																			
Bone Skeletal muscle		+	+	+	• +	+	+	+	+	+	+	+	. +	+	+	+	+	+	+	+	++	+	+	+	+	+			-
Fibroma													•								x								

1

						_					•			•									•			
				2	7 3	7 3	7 3	7 3	7 3				3	3	3	3	3	3	7 3	7 3	3	3	3			
7	9	9	4	6	3	3	3	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7		
4	5	5	4	5	4	5	5	-		-	5	5	4	4	4	4	4	4	4	4	4	4	4	4		otal
-	- 7.5					2 3	2 4				1 5					3 5		4 4								issues
											_				_			-								
					. ,								i												• .	
												-														• ,
+	+	+	• +	+	+	+	+	+	+	÷	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	5	0
· +	+	+	• +	+	+	+	Ŧ	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	÷	4	8
																									1	1
																									2	2
+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5	0
+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50	0
+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	·+	+	. 5	0
х	Х	X	X	X	X	х	Х	х	х	х	х	х	х	х	Х	X	Х	х	Х	х	X	х	. X	х	4:	5
<u></u>								_																		
ъ	-					ъ	т	н	Ъ	ъ	ᆂ	Ŧ	<u>н</u>	т	ъ	т.	Т	<u>ـ</u> ـ	ъ	Ŧ	-	ъ	ـ له	т	50	A
, +		. т т				т -	т +	т —	+	т Т	т. —	+ +	Ť	т +	Ť	т —	- -	т -	т +	Ŧ	т -	т -	т _	т -		
	÷	_	+	÷	Ŧ	+	+	+	+	+	+	+	÷	÷.	+	+	+			+	- -		
+	+	 +		+	. +	÷	+	+	+	, +		+	÷	+	+		÷	÷	÷	+	+	+		+		
+	+		• +	. .	· +	÷	+	÷	÷	÷	÷	÷	+	÷	÷	-	÷	+	+	÷	+	÷	÷	÷		
+	+	+	• +	+	+	+	÷		+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	4	
																			<u> </u>							
												,												P 4		•
+									+	+	+	+	+		+		+	+	+	+	+	+				
	Ă																									9
+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
																								A		1
v																										1
л																							`			1 1
															_											
																						_				
+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5	0
																									1	1
	8 7 4 9 3 +++ + + * * *	8 8 7 9 4 5 9 2 3 2 4 5 9 2 3 2 4 + + + + + + + + + + + + + + + + + + +	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 9 9 4 6 4 5 5 4 5 9 2 0 6 1 3 2 4 5 4 +	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 8 0 2 2 3	8 8 0 2 2 3	8 8 0 2 2 3	8 8 0 2 2 3	8 8 0 2 2 3	8 8 0 2 2 3	8 8 0 2 2 3	8 8 0 2 2 3	8 8 0 2 2 3 4											

5

TABLE A2

																										 -
Number of Days on Study	4 3 5		-	5 2 0	-	5 2 9	-		7	7	7	7	9		1	2	6 2 6	2	6 3 4	4	6 4 9	6 4 9	6 6 7	6 7 8	8	
Carcass ID Number	4 6 1	9		2		4 8 1	1	1					4 5 2								5 0 3					 • .
Nervous System Brain Granular cell tumor benign	4			+ +	+ X		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<u>.</u>
Respiratory System Lung Alveolar/bronchiolar adenoma Nose Squamous cell carcinoma Trachea	4	 + -+ -+		+ + + +	· + · +	+++++++++++++++++++++++++++++++++++++++	+ + +	++++	++++	+ + +	+ + +	+ + +	+ + +	+ + X +	+ + +	•	+++++	+	+	+	+	x +	+ X	+	+ + +	
Special Senses System Ear Eye	4	-	-	+		+				+				+												
Urinary System Kidney Urinary bladder	· 4	+ +	+ +	+ +	+++++	++	+ +	++	+++	+ +	+++	+++	+ +	+++	++	++	+ +	+++	+ +	++	+ +	++	+ +	+ +	+ +	
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant	+	⊢ →		+ + X X X	x		+	+ x		+	+	+ x					+ x		х			+	+	+	+	

																						_					
Number of Days on Study	6	6	5	7 0	7 2	7	7	7	73	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	73	
dumber on mays on Study	7		-	9	_	6	3 3	3	3 3	5 6	5 6	5 6	3 6	5 6	3 7	3 7	3 7	3 7	3 7		3 7	3 7	3 7	3 7	3 7	3 7	
	4	•		5	4	5	4	5	5	4	4	5	5	5	4	4	4	4	4	4	4	4	4	4	4	4	Total
Carcass IID Number	9 3		-	0 4	6 5	1 4	4 2	2 3	2 4	9 4	9 5	0 5	1 5	2 5	3 2	3 3	3 4	3 5	4 3	4 4	4 5	5 4	5 5	7 3		7 5	Tissu Tumo
Vervous System						_																					
Brain Granular cell tumor benign	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Respiratory System	<u> </u>			<u> </u>		<u> </u>													_								······
Lung Alveolar/bronchiolar adenoma	+		+ X	+	+	+	.+	+	+	+	+ X		+	+	+	+ X		+	+	+	+	+	+	+	+	+	50 5
Nose	+	• •	ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	50
Squamous cell carcinoma Trachea	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	2 49
Special Senses System				-		_											_		<u> </u>			—					
Ear Eye												+							+	+							1 7
Urinary System																											
Kidney Urinary bladder	+		+	+ +	+	+	+	+	+	+	+	+	+ +	+	+	+ +	+ +	+ +	+	+	+	++	+	+	+	+	50 50
Systemic Lesions				 																						<u> </u>	
Multiple organs Leukemia mononuclear Mesothelioma malignant	+ X	_		-	+ x	•	+ X	+ X	+	+		+ X			+ x	+ X	+ X	+	+	+	+ X	-	+	+	+	+	50 22 4

							_				•									_			_					
Number of Days on Study		1 8 5	8	8	1 8 5	8	4 8 6	4 9 3	5 0 7	5 0 9	6	5 7 8	6 2 8		6 5 4		8	6 8 7	6 9 7	7 0 1	7 0 3	7 0 4	7 0 4	7 0 5	7 1 8			
Carcass ID Number		2 9 1		2 9 3		3 8 1	3 5 1	3 0 1	3 8 2	3 2 1	0	5	3 0 3		3								3 6 2			3		
Alimentary System					-					<u>.</u>		_		_									· · ·					
Esophagus		خ	ъ	<u>т</u>	Т	<u>т</u> .	Ŧ	÷		<u>т</u>	т.	+	т	Ŧ	т	Т	<u>т</u>	т	-	_	L.		<u>т</u>	т	Т	-		
Intestine large	1	т 	т -	Ť	т 	Ŧ	Ť	Ť	Ŧ	Ŧ	Ŧ	Ť	Ŧ	Ŧ	Ť	Ŧ	Ť	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ť		Ŧ		
Intestine large, cecum		포	Ŧ	Ŧ	Ť	Ŧ	Ŧ	Ň	Ŧ	Ŧ	т _	Ŧ	Ŧ	Ŧ	Ŧ	Ť	Ŧ	Ţ	Ŧ	Ť	+	Ŧ	T	Ŧ	- T	Ŧ		
Intestine large, colon	•	Ŧ	Ŧ	Ŧ	Ť	Ŧ	Ŧ	T.	+	Ŧ	T	Ŧ	Ţ	Ŧ	Ŧ	A	Ŧ	+ +	Ŧ	T	+		+	Ţ	+ +	T		
Intestine large, rectum	· · · ·	T.	· T	+	Ŧ	Ŧ	Ŧ	T	Ŧ	Ţ	Ť	Ţ	T	Ţ	Ŧ	A.	Ţ	Ţ	Ŧ	-	.	T	Ť	Ţ	Ť	Ţ		
Intestine small	•	T	-	.	Τ.	Ţ	Ţ	7	T	Ţ	7	Ţ	T	Ţ.,	Τ.	-	Ţ	Ţ	.	Ţ	Ţ.	.	Ţ	Ţ	Ţ	Ţ.		
		Ť	Ť	+	Ţ	+	Ţ.	Ţ.	+	Ţ.,	+	Ţ	.	Ţ	Ţ.	A	Ţ.	+	Ť	+	+	Ţ	+	Ţ.	+	+		
Intestine small, duodenum		+	+	+	+	+	+	+	+	+	+	Ť	<u>+</u>	Ŧ		A	+	+	+	+	+	+	+		+	+		
Intestine small, ileum Intestine small, jejunum		+	+	+	+	+	+	+	+	+	+	IVI.	+	+		A	+	+	+	+	A	+	+	+	+	†		
		+	+	+	+	+	+	A	+	+	+	+	+	+		A	+		+	+	A	+	+	+	+	+		
Liver		+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+		
Hepatocellular adenoma																	Х											
Mesentery									+										+									
Pancreas		+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Carcinoma, metastatic, stomach												Х																
Acinar cell, adenoma																												
Pharynx																			+									
Squamous cell carcinoma	••																		X									
Salivary glands Stomach		+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
· · · · · · · · · · · · · · · · · · ·		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	· +	+		
Stomach, forestomach		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach, glandular		, +	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+		
Carcinoma												х										•						
Tongue Squamous cell carcinoma		. •		•	• •				x					. •						+		•						
Cardiovascular System																												
Blood vessel	•	. •																						+				
Heart		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+		
· · · · · · · · · · · · · · · · · · ·								_						<u> </u>	<u> </u>	_		•		<u> </u>		•					 	
Endocrine System	· · ·			•																•								-
Adrenal gland		+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex		+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, medulla	e	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pheochromocytoma malignant				'																					X			
Pheochromocytoma malignant, multiple																							х					
Pheochromocytoma benign																			х		х				Х			
Pheochromocytoma benign, multiple										÷					÷		×	×				X						
Islets, pancreatic		+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+		
Adenoma Parathyroid gland	•	. بې	д	л.	+		÷	м	L.	<u>ـ</u> ـ	س	L.	1	L.	Ŧ	÷	L	ъ	Ł	<u>^</u>	-	Т	+	ᆂ	л	. د		
Adenoma		т	т	т	т	т	Ŧ	141	т	т	т	·r	۳	Ŧ	T	x	Ŧ	т	T	т	т	T	т	T	т	т		
Pituitary gland		+	+	+	+	÷	м	T	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pars distalis, adenoma		•			+		111	•	'	•	,	'		×	•	•	×	•	•	×	•	•	×	x	•	•		
Pars distalis, carcinoma															х													
Thyroid gland		+	+	+	÷	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
																		х						Х				
C-cell, adenoma																								**				

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg

(continued)								_					_							_						
Number of Days on Study	7 1 9	3	7 3 2	7 3 2	3	7 3 2		3		7 3 2	7 3 3	7 3 3	7 3 3	7 3 3	3	7 3 3		3	3	3	7 3 3	3	3	7 3 6	3	
Carcass ID Number	8	0	1		3 1 4	3 1 5	2	2	3 2 5	3 4 2	3 3 5	3 4 3		3 4 5	3 5 4			6	6		3 7 3	7	3 7 5	3 8 4	8	Total Tissues Tumors
Alimentary System						-								,										-		
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, ileum	+	+	+	+	+	+		+	+	+	+	+	+	+		+		+	+	+	+	+	+	+	+	47
Intestine small, jejunum Liver	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+++	++	+++	+++	+	+++	+	+	+++	+	+	+++	+	+	+	47 50
Hepatocellular adenoma	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	Ŧ	+	Ŧ	+	Ŧ	Ŧ	+	+	+	+	+	+	+	+	+	Ŧ	50 1
Mesentery	+			·															+					+		5
Pancreas		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Carcinoma, metastatic, stomach		•	•	'	•	•	•	•	•	•	•	·	•	ſ	•	•	•	•			•	•		'	'	1
Acinar cell, adenoma																	х									ī
Pharynx	+																									2
Squamous cell carcinoma																										1
Salivary glands	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Carcinoma																										1
Tongue Squamous cell carcinoma								+			•	М						+								4 1
Cardiovascular System						_																				
Blood vessel								+					+			+						+				5
Heart	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Endocrine System																										
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	÷	+	÷	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma malignant							х						Х													3
Pheochromocytoma malignant, multiple					••	•																				1
Pheochromocytoma benign			х	Х	Х	х	х	х			х					х	v		17							13
Pheochromocytoma benign, multiple	X					,				X				X			X		X	X	X					10
Islets, pancreatic Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	49
Parathyroid gland	L	-	ъ	+	Т	+	X		<u>ь</u>	L.	<u>ــ</u>	-			L.	L.	L.	J.	L.	.1	_L	1.	X	л.	Т	3 49
Adenoma	-	T	т	Ŧ	т	Ŧ	т	т	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	+	т	Ŧ	49
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Pars distalis, adenoma	•	x		•	x				x		•	•	'	•	x	•	x	1			x		•		x	- 1 6 14
Pars distalis, carcinoma					- •										••							~ 1				1
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
										X		-	X	-			x	x				-		x		7
C-cell, adenoma Follicular cell, adenoma	х									~			•					~						\mathbf{A}		,

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

()																												
Number of Days on Study		8	8	8	8		8	9	0	5 0 9	6	7	2	3	5	8	8	8	9		0	0	0		1			
<u> </u>		2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3		
Carcass ID Number		9 1		9 3						2 1																		÷
General Body System None																									<u> </u>			
Genital System									_																			
Epididymis		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Preputial gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adenoma			•		-	•			-	-										-								
Carcinoma																												
Prostate		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+		
Carcinoma, metastatic, stomach		•		•			•	•	•	•	•	x		•	•	•	•	•		•	•	•	•	•	•	•		
Seminal vesicle		т.	ъ	ـ ـ	ъ	т	-	+	ъ	1	1			+	-	ъ	<u>т</u>	L	т	+	<u>т</u>	<u>т</u>	_					
					Ť	- <u>T</u>	т Т	Ŧ	Ť	+								- T	т 	т 	т 	т 	т 	т 	- T			
Testes Interstitial cell, adenoma		Ŧ	т	т	т	+				x						x						x				x		
·																												
Hematopoietic System																												
Bone marrow		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Bronchial, carcinoma, metastatic,		·	·	•		·	·	•	-	·	-	-	•		•		-			-					-			
stomach												х								,								
Mediastinal, carcinoma, metastatic,												~																
												х																
stomach							,	v	,	+						-		L	+		-	-	L.	-				
Lymph node, mandibular		+	+	Ť	+	Ť	.	IVI.														Ţ		· •	· •	· T		
Lymph node, mesenteric		+	+	+	+	+	+	+	+	+												+	. +	· +	* *	• +		
Spleen		+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	• +		
Carcinoma, metastatic, stomach			•									х															-	
Thymus		+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	M	i	
Internmenter: Suster		_																_				·						
Integumentary System Mammary gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+		• +		
																					X			X				
Fibroadenoma		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +•		
Skin																												-
Skin Papilloma squamous																												
Skin Papilloma squamous Squamous cell carcinoma																	v	37										
Skin Papilloma squamous Squamous cell carcinoma Subcutaneous tissue, fibrosarcoma																	•	Х										
Skin Papilloma squamous Squamous cell carcinoma										x							^	х										
Skin Papilloma squamous Squamous cell carcinoma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, myxosarcoma										x				<u>.</u>				<u>x</u>										
Skin Papilloma squamous Squamous cell carcinoma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, myxosarcoma Musculoskeletal System										x				<u> </u>														
Skin Papilloma squamous Squamous cell carcinoma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, myxosarcoma Musculoskeletal System Bone		+	+		+	+	+	+	+	x 	+	+	+	+	+	+		× +		+	+	+		· +	· +			
Skin Papilloma squamous Squamous cell carcinoma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, myxosarcoma Musculoskeletal System	c,	+	+		+	+	+	+	+	x +	+	+	+	+	+	+				+	+	+	+	· +	• +			

,

	-						_									_	_				_			_		
Number of Days on Study	7 1 9	3	7 3 2	3	7 3 2	7 3 2					7 3 3						7 3 3							3		
Carcass IID Number	8	0	3 1 2	-		1		2	3 2 5	4		4	4		5	5		6	6	7		7	7	3 8 4	8	Total Tissues Tumor
General Body System None																		-								
Genital System																										
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	÷	+	+	+	+	+	+	50
Adenoma	•	,	•	•	•	•	•	x	•	•	x		•	x	•	•	•	x	•	•	•	•	•	•	·	5
Carcinoma								~			~	~		37			х	Δ								1
Prostate	L.	-	ъ	+	ъ	J.	L.		-	ъ	<u>ـ</u> ـ	L.	ъ		+	L.		ъ	л.	<u>т</u>	<u>т</u>	ъ	ᅭ	д	т	50
Carcinoma, metastatic, stomach	+	T	T	Ŧ	+	Ŧ	+	Ŧ	+	Ŧ	+	+	+	Ŧ	Ŧ	*	+	+	+	Ŧ	T	Ŧ	Ŧ	+	т	
																										1
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+			+			+	+	+	+	+	+	+	+	49
Testes	+			+																						50
Interstitial cell, adenoma	X	Х	X	х	х	х	х	х	х	х	х	х	х	х	х	x	Х	х	х	x	х	x	х	х	Х	42
Hematopoietic System Bone marrow Lymph node Bronchial, carcinoma, metastatic,	+	+ +	+ +	+ +	++	+ +			+ +		++		•		+ +		-	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	50 50
stomach Mediastinal, carcinoma, metastatic, stomach																										1 1
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node, mesenteric	_	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷.	÷	÷	÷.	÷	÷	÷	÷	÷	÷	÷	÷	Ĺ	÷	49
Spleen	÷	+	+	÷	+	+	+	÷	÷	÷	+	÷	÷	+	÷	+	+	+	+	÷	+	Å		+	÷	50
Carcinoma, metastatic, stomach			'	•			'		•		т	r		T			т	т	т	т	т		т	т	т	1
Thymus	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Integumentary System			· · · · · ·													<u></u>										
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	50
Fibroadenoma																										2
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Papilloma squamous							Х																			1
Squamous cell carcinoma	X					Х																				2
Subcutaneous tissue, fibrosarcoma															х											3
Subcutaneous tissue, myxosarcoma																										1
Musculoskeletal System																					-					
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Squamous cell carcinoma, metastatic, pharynx	·						-		•		·	·	•	•			•	•	•	·	•	•		•	•	1

							-																					
Number of Days on Study		1 8 8 5 5	-	1 8 5		4 8 6		0	0	6	7		3	5	6 8 3	8	8						7 0 5					
Carcass ID Number	9) 9	9	2 9 4	8	5	0	8	2	0	5	0 '	5	3	3 3 3	6	3	7	4	1	2	6	9	0	3			
Nervous System Brain Astrocytoma malignant		+ +	÷.4	- +	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+			
Respiratory System Lung Alveolar/bronchiolar adenoma Carcinoma, metastatic, stomach Fibrosarcoma, metastatic, skin		+ +	- 4	- +	÷	+	+	+	+	+	+ x	+	+	÷	+	+ x	+	+	+	+	+	+	+ X	÷	+			
Nose Trachea	•	+ + + +	 	- + - +	+ +	+ +	+ +	+ +	+ +	+ +	+. +	+ +	+ +	+ +	+ +	A + +	+ +	+ +	+ +									
pecial Senses System Ear Eye Zymbal's gland Squamous cell carcinoma			*					-		+ x				+			+											
Jrinary System Kidney Urinary bladder	· · · ·	+ + + +	÷ 4	- +	++++	++	+ +	+	+ +	+ +	+ +	+ +	+ +	+,	+++	+++	+ +	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	•	· .	
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma benign		+ 4	· 4	- +	+		+ x		+ x	+	+	+ x	+	+	+ X		+ x	+ x	+	+ x		+	+	+	+		. I.	

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

· ,																										
Number of Days on Study	7 1 9	3	_				7 3 3 2 2	7 3 2	7 3 2	7 3 2	7 3 3		7 3 3	7 3 3	7 3 6	7 3 6										
Carcass ID Number	3 8 3	0) 1	1	1	1	3 3 2 5 3	2		3 4 2	3 3 5	3 4 3	3 4 4		3 5 4	5		6						8		Total Tissues Tumor
Vervous System Brain Astrocytoma malignant	+		⊦ ·	+ ·	+ -	+ -	+ +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Respiratory System Lung Alveolar/bronchiolar adenoma Carcinoma, metastatic, stomach Fibrosarcoma, metastatic, skin	+	- 4		+ •	∳ -	+ •	+ +	- +	+	+	÷	+	+	+	+	+	+	+	+	+	+ x		+	• +	+	50 2 1 1
Nose Trachea	+ +		⊦ ·	+ •	+ -	+ •	+ + + +	- +	· + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+ +	50 50
Special Senses System Ear																		_								1
Eye Zymbal's gland Squamous cell carcinoma						-	÷									•										2 1 1
Urinary System Kidney Urinary bladder	+	- 4 - 4		+ -	+ -	+ +	+ +	- +	· +	++	++	++	+++	+ +	++	++	+ +	++	++	+++	++	++	+ +	· +	++	50 50
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma benign	+ . x			+ · X	.	 + ·	+ +	- +	+	+ x		+	+	+	+	+ x			+ X		+ X		+	+ X	+	50 15 1

~

 TABLE A2

 Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg

Number of Days on Study	6	0 6 6	6	0 6 6	6	6	9 .	9		9	9	9	9	0	0	0	0	0	0	1	8	8	0	0	8			
Carcass ID Number	5	6	6	1 6 3	6	6	8	8	8	8	2	7	0	2 1 1	1			4	2 4 2	1	9	9	3		2			-
Alimentary System													•															
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+			
Intestine large, colon	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	[+	+			
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	Μ	М	+	+	+	+	+	+	+	+			
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine small, duodenum	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	•+	+	+			
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•		
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	`+	+			
Mesentery		+	+	+	+	+																						
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Pharynx																												
Papilloma squamous																												
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach, glandular	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Tongue Papilloma squamous																							• •					
Cardiovascular System			,																									
Blood vessel																												
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Endocrine System	-																			-		-						
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Adrenal gland, medulla	+	+	Μ	[+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+			
Pheochromocytoma benign																												
Pheochromocytoma benign, multiple														.1	л.		д.			.1	4				, i	•		
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	Ŧ	Ŧ	Ŧ	Ŧ	+			
Adenoma Bomthumoid aland														.1														
Parathyroid gland Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +			
Pars distalis, adenoma	+	+	+	+	т	т	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	-	Ŧ	+	Ŧ	+	+	-		•	
Thyroid gland	L.	-	L.	+	ᆂ	т	т.	+	1	т	+	+	ᆂ	⊥	+	+	-	-	+	+	+	+	+	–	+			
C-cell, adenoma	Ŧ	-	-	Ŧ	т	т	т	т	Ŧ	Ţ	т	Ŧ	т	т	Ŧ	T	τ'	T	T	Ŧ	Ŧ	Τ.	Ŧ	- -r	-			

None

5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 Number of Days on Study 1 4 9 3 3 8 9 9900 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 0 0 0 0 0 0 0 0 0 0 0 8 2 6 4 6 77 29 0 0 0 4 Total 2 2 1 1 1 1 1 1 Carcass ID Number 3 7 5 7 5 2 9 4 5 7899 0 0 0 02 2 3 3 4 Tissues/ 5 4 7 2 3 3 2 3 3 4 4 2 3 4 5 5 5 4 5 2 3 4 5 4 5 4 5 5 Tumors Alimentary System Esophagus 50 Intestine large 50 + Intestine large, cecum 50 Intestine large, colon 49 Intestine large, rectum 47 + + + + Intestine small 50 + + Intestine small, duodenum 49 4 Intestine small, ileum 50 4 4 4 4 Intestine small, jejunum 50 Liver 50 Mesenterv 9 Pancreas 50 Pharynx 1 Papilloma squamous х 1 Salivary glands 50 Stomach 50 + Stomach, forestomach 50 + + + + + + + + + Stomach, glandular 50 Tongue 2 + Papilloma squamous х 1 Cardiovascular System Blood vessel 5 Heart 50 **Endocrine** System Adrenal gland 50 Adrenal gland, cortex 50 + Adrenal gland, medulla 48 + + + + + Pheochromocytoma benign х х х х х 6 Pheochromocytoma benign, multiple 9 х х X х X х ¥ х x Islets, pancreatic 50 + + + + + + Adenoma Х х 6 х Х Х х Parathyroid gland + + + + + + + 50 + + Pituitary gland 50 + + + + + + ++ + + + + 4 + + Pars distalis, adenoma Х Х х хх х Х х хх 10 Thyroid gland + + + + + + + + + + 50 C-cell, adenoma 5 х ХХ х х

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

General Body System

None

 TABLE A2

 Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg

Number of Days on Study	6	6	6	6	6	6	9	9	9	9	9	9	9	0	0	0	0	0	0	1	8	8	. 2 0 6	0	8	
Carcass ID Number	5	6	6	6	6	6	8	8	8	8	2	7	0	1	1	1	1	4	4	1	9	9	2 3 1	3	2	
Genital System															,											
Epididymis Preputial gland Carcinoma	+ +	+ +	+ +																							
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Testes Interstitial cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* x	•
Hematopoietic System																										
Bone marrow	+	+	+	÷	+	+	+	+		+				•	+	•	+	+	+	+	+	+	+	+	÷	
Lymph node	+	+	+	+	+	+	+	-	+	-	-	•	+		+	-	+	+	+	+	+	+	+	+	+	
Lymph node, mandibular Lymph node, mesenteric	+	+	+	+	+	+			+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Spleen		+	+	+		+++		м +							+++	++	+	+	÷	+	+	+	+	+	++	
Thymus	+	+	+	÷		+						-		•		•	+	+	+	÷	÷	+	÷	+	-	
ntegumentary System														, .												
Mammary gland	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	
Fibroadenoma Skin																										,
Basal cell carcinoma	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ		Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т	Ŧ	+	Ŧ	Ŧ	
Subcutaneous tissue, fibroma Subcutaneous tissue, osteosarcoma																					•					
Musculoskeletal System		_										-														
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•
Nervous System																										
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Respiratory System											4															-
Lung Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Nose	· +	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Trachea	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	

Eye

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

																					_						
Number of Days on Study	1		4	9	6 3 5	3	6 8 4	9	9	9	0	0	3	3	3	3	3	3	3	3	3	3	3	7 3 0	3	3	
Carcass IID Number	5		4	3	7	7	5	7	5		9	4	5	7	8	9	9	0	0	2 0 4	0	2 2 4	2	2 3 4	3	4	Total Tissue: Tumor
Genital System							• •	•								·	<u></u>										
Epididymis	+	-	+	+	+	+	+	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Preputial gland	+	-	+	+	+	+	+	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Carcinoma											Х																1
Prostate	+	-	+	+	+	+				• +										+	+	+	+	+			50
Seminal vesicle	+	-	+	+	+	+				• +						+			+	+	+	+	+	+	+		50
Testes	+	-																						+			50
Interstitial cell, adenoma	Х	C .	x	х	х	Х	X	(X	X X		Х	х	х	х	х	Х	х	х	х	х	х	х		х	х	х	24
lematopoietic System																											
Bone marrow	+	-	+	+	+	+	+	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node	+	-	+	+	+	+	+	- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node, mandibular	+	-	+	+	+	+	+	+	- +	• +	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	49
Lymph node, mesenteric	+	-	+	М	+	+	+	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Spleen	+	-	+	+	+	+	+	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Thymus	-+	-	+	+	+	+	R	/ +	• +	• +	+	+	+	+	I	+	+	+	+	+	+	+	+	М	+	+	47
ntegumentary System						•																					
Mammary gland	-4	-	+	+	+	+	A	<i>i</i> +		. +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Fibroadenoma	'			•	•				'	'	•	•		•	•		•	•	'	•					'	x	1
Skin	-	-	+	+	+	+	-				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Basal cell carcinoma			x	•	•	•	•				•	•		•	•		•	•	•	x		•		'	'	•	2
Subcutaneous tissue, fibroma									Х																		1
Subcutaneous tissue, osteosarcoma									-	•		х															1
Ausculoskeletal System		,						•								·											
Bone	4	F	+	+	+	÷	+	⊦ -1	- +	• +	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	50
Nervous System																											
Brain	4	F	+	+	. +	+	+	⊦ -1	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
lespiratory System			,																								
Lung	-1	F	+	+	+	+	4	+	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma								X	ζ.				X														2
Nose	-1	F	+	+	+	+	+	+ +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Trachea	4	F	÷	+	+	+	-	⊦ +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
			_								_																
Special Senses System																											

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

(*********																													
Number of Days on Study	0 6 0	6	0 6 6	0 6 6	0 6 7	0 6 7	0 9 6	0 9 6	0 9 6	0 9 6	0 9 6	0 9 7	0 9 7	1 0 8	1 0 8	0	1 0 9	0	0	1	1 8 5	8	0	0	8	, ·	۰ ۲	·	
Carcass ID Number	5		6	1 6 3			1 8 1	1 8 2	-	8	2 2 1	7	2 0 1	1	2 1 2	1	-	4	-	1	9	-	3	-	2 2 3		-		, c
Urinary System Kidney Urinary bladder	 + +	+ +	+ +	++	++	+++	+++	++	+ +	+++	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +		+			· ·- •.	
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	•		•	
Number of Days on Study 4 8 2 5 6 4 6 7 7 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total Carcass ID Number 5 4 3 7 7 5 7 5 2 9 4 5 7 8 9 9 0 0 0 0 2 2 3 3 4 Tissues/ 2 3 3 2 3 3 4 4 2 3 4 5 5 5 4 5 2 3 4 5 4 5 4 5 5 Tumors , Urinary System Kidney 50 + + + ++ + + + + ++ + + + + + + + + + + + + Urinary bladder 50 + . Systemic Lesions Multiple organs 50 + Leukemia mononuclear х Х хх хх хх 8 Mesothelioma malignant х 1

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

TABLE A3 Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Pentachloroanisole

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
Adrenal Medulla: Benign Pheochrom	ocytoma	· · · · ·		
Overall rates ^a	12/50 (24%)	17/50 (34%)	23/50 (46%)	15/48 (31%)
Adjusted rates ^b	37.4%	61.9%	73.6%	70.8%
l'erminal rates ^c	6/24 (25%)	10/20 (50%)	16/24 (67%)	8/14 (57%)
First incidence (days)	527	520	684	548
Life table tests ^d	P=0.010	P=0.077	P = 0.020	P = 0.015
Logistic regression tests ^d	P = 0.001	P = 0.070	P=0.006	P = 0.004
Cochran-Armitage test ^d	P=0.256	1 00070		1 0.001
Fisher exact test		P=0.189	P=0.018	P=0.282
Adrenal Medulla: Malignant Pheoch	romocytoma			
Overall rates	3/50 (6%)	2/50 (4%)	4/50 (8%)	0/48 (0%)
Adjusted rates	8.2%	7.8%	14.7%	0.0%
Terminal rates	0/24 (0%)	1/20 (5%)	2/24 (8%)	0/14 (0%)
First incidence (days)	624	626	704	_e
Life table tests	P = 0.282N	P=0.603N	P=0.491	P=0.260N
Logistic regression tests	P=0.292N	P=0.509N	P=0.457	P=0.218N
Cochran-Armitage test	P=0.147N			
Fisher exact test		P=0.500N	P=0.500	P=0.129N
Adrenal Medulla: Benign or Maligna	int Pheochromocytoma			
Overall rates	15/50 (30%)	18/50 (36%)	25/50 (50%)	15/48 (31%)
Adjusted rates	42.6%	65.7%	77.7%``	70.8%
Terminal rates	6/24 (25%)	11/20 (55%)	17/24 (71%)	8/14 (57%)
First incidence (days)	527	520	684	548
Life table tests	P=0.033	P=0.148	P=0.042	P=0.054
Logistic regression tests	P=0.005	P=0.156	P=0.010	P=0.021
Cochran-Armitage test	P=0.457			
Fisher exact test		P=0.335	P=0.033	P=0.534
Heart: Benign Schwannoma	. ,			
Overall rates	3/50 (6%)	1/50 (2%)	0/49 (0%)	0/50 (0%)
Adjusted rates	12.5%	5.0%	0.0%	0.0%
Terminal rates	3/24 (13%)	1/20 (5%)	0/23 (0%)	0/14 (0%)
First incidence (days)	729 (T)	729 (T)	-	-
Life table tests	P=0.066N	P=0.370N	P=0.126N	P=0.228N
Logistic regression tests	P=0.066N	P=0.370N	P=0.126N	P=0.228N
Cochran-Armitage test	P=0.043N			
Fisher exact test		P=0.309N	P=0.125N	P=0.121N
Lung: Alveolar/bronchiolar Adenoma		. *	•	
Overall rates	1/50 (2%)	5/50 (10%)	2/50 (4%)	2/50 (4%)
Adjusted rates	3.8%	19.5%	7.6%	12.0%
Terminal rates	0/24 (0%)	2/20 (10%)	1/24 (4%)	1/14 (7%)
First incidence (days)	718	649	705	696
Life table tests	P=0.395	P=0.059	P = 0.500	P=0.305
Logistic regression tests	P=0.361	P=0.075	P=0.478	P=0.279
Cochran-Armitage test	P=0.544N			
Fisher exact test		P = 0.102	P = 0.500	P = 0.500

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg	
Lung: Alveolar/bronchiolar Adenoma	or Carcinoma			,	
Overall rates	2/50 (4%)	5/50 (10%)	2/50 (4%)	2/50 (4%)	
Adjusted rates	7.9%	19.5%	7.6%	12.0%	
Terminal rates	1/24 (4%)	2/20 (10%)	1/24 (4%)	1/14 (7%)	
First incidence (days)	718	649	705	696	
Life table tests	P=0.534	P=0.136	P=0.692N	P=0.477	
ogistic regression tests	P=0.499	P=0.157	P=0.679	P=0.448	
Cochran-Armitage test	P=0.396N				
Fisher exact test		P=0.218	P=0.691N	P=0.691N	
Mammary Gland: Fibroadenoma			۰.		
Dverall rates	6/50 (12%)	9/50 (18%)	2/50 (4%)	1/50 (2%)	
Adjusted rates	19.5%	40.5%	6.7%	7.1%	
Cerminal rates	2/24 (8%)	7/20 (35%)	0/24 (0%)	1/14 (7%)	
First incidence (days)	683	689	703	729 (T)	
life table tests	P=0.055N	P=0.157	P=0.153N	P=0.213N	
ogistic regression tests	P=0.057N	P=0.127	P=0.160N	P=0.224N	
Cochran-Armitage test	P=0.012N				
üsher exact test		P=0.288	P=0.134N	P=0.056N	
Aammary Gland: Fibroadenoma or C	arcinoma				
Overall rates	7/50 (14%)	9/50 (18%)	2/50 (4%)	1/50 (2%)	
Adjusted rates	23.2%	40.5%	6.7%	7.1%	
Cerminal rates	3/24 (13%)	7/20 (35%)	0/24 (0%)	1/14 (7%)	
First incidence (days)	683	689	703	729 (T)	
life table tests	P=0.033N	P = 0.230	P=0.096N	P = 0.152N	
ogistic regression tests	P=0.034N	P=0.192	P=0.099N	P=0.161N	
Cochran-Armitage test	P=0.006N				
ïsher exact test		P=0.393	P=0.080N	P=0.030N	
Pancreas: Adenoma					
Overall rates	12/49 (24%)	1/49 (2%)	1/49 (2%)	0/50 (0%)	
Adjusted rates	45.9%	4.5%	4.2%	0.0%	
Cerminal rates	10/24 (42%)	0/20 (0%)	1/24 (4%)	0/14 (0%)	
First incidence (days)	705	724	729 (T)	-	
life table tests	P<0.001N	P = 0.004N	P = 0.001N	P = 0.005N	
ogistic regression tests	P<0.001N	P=0.003N	P<0.001N	P=0.004N	
Cochran-Armitage test	P<0.001N	D	B	n	
Fisher exact test		P<0.001N	P<0.001N	P<0.001N	
Pancreatic Islets: Adenoma					
Overall rates	8/49 (16%)	2/49 (4%)	3/49 (6%)	6/50 (12%)	
Adjusted rates	25.0%	7.3%	11.2%	32.5%	
Cerminal rates	3/24 (13%)	0/20 (0%)	2/24 (8%)	3/14 (21%)	
First incidence (days)	594	604	701	514	
ife table tests	P=0.316	P=0.105N	P=0.122N	P=0.375	
ogistic regression tests	P=0.299	P=0.059N	P=0.122N	P=0.385	
Cochran-Armitage test	P=0.464N		· · · · ·		
Fisher exact test		P=0.046N	P = 0.100N	P=0.371N	

107

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
Pancreatic Islets: Adenoma or Carcinoma				
Overall rates	9/49 (18%)	2/49 (4%)	3/49 (6%)	6/50 (12%)
Adjusted rates	28.6%	7.3%	11.2%	32.5%
Terminal rates	4/24 (17%)	0/20 (0%)	2/24 (8%)	3/14 (21%)
First incidence (days)	594	604	701	514
Life table tests	P=0.416	P=0.069N	P=0.077N	P = 0.459
Logistic regression tests	P=0.396	P = 0.037N	P = 0.078N	P = 0.466
Cochran-Armitage test	P = 0.356N	1	1 0.07010	
Fisher exact test		P=0.025N	P=0.060N	P=0.274N
Pituitary Gland (Pars Distalis): Adenoma				
Overall rates	16/49 (33%)	22/50 (44%)	14/48 (29%)	10/50 (20%)
Adjusted rates	48.8%	60.8%	46.6%	48.8%
Terminal rates	9/24 (38%)	8/20 (40%)	9/24 (38%)	4/14 (29%)
First incidence (days)	594	435	633	635
Life table tests	P=0.453N	P=0.063	P=0.445N	P=0.461
Logistic regression tests	P=0.448N	P=0.169	P=0.521N	P=0.435
Cochran-Armitage test	P=0.032N			
Fisher exact test		P=0.170	P=0.440N	P=0.115N
Pituitary Gland (Pars Distalis): Carcinoma				
Overall rates	4/49 (8%)	1/50 (2%)	1/48 (2%)	0/50 (0%)
Adjusted rates	12.3%	5.0%	2.7%	0.0%
Terminal rates	1/24 (4%)	1/20 (5%)	0/24 (0%)	0/14 (0%)
First incidence (days)	617	729 (T)	654	.
Life table tests	P=0.070N	P = 0.262N	P=0.199N	P = 0.180N
Logistic regression tests	P=0.065N	P = 0.211N	P=0.195N	P=0.151N
Cochran-Armitage test	P=0.033N			
Fisher exact test		P=0.175N	P=0.187N	P=0.056N
Pituitary Gland (Pars Distalis): Adenoma o				10/50 (000)
Overall rates	20/49 (41%)	23/50 (46%)	15/48 (31%)	10/50 (20%)
Adjusted rates	56.3%	64.0%	48.1%	48.8%
Terminal rates	10/24 (42%)	9/20 (45%)	9/24 (38%)	4/14 (29%)
First incidence (days)	594 D=0.244N	435 B-0147	633 B-0.240N	635 R-0.475N
Life table tests	P = 0.244N	P = 0.147	P = 0.249N	P = 0.475N
Logistic regression tests	P = 0.210N	P=0.357	P = 0.291N	P=0.477N
Cochran-Armitage test Fisher exact test	P=0.005N	P=0.376	P=0.221N	P=0.021N
Preputial Gland: Adenoma				
Overall rates	2/50 (4%)	1/48 (2%)	5/50 (10%)	0/50 (0%)
Adjusted rates	8.3%	2.6%	20.8%	0.0%
Terminal rates	2/24 (8%)	0/19 (0%)	5/24 (21%)	0/14 (0%)
First incidence (days)	729 (T)	578	732 (T)	-
Life table tests	P = 0.498N	P=0.573N	P = 0.209	P=0.362N
Logistic regression tests	P = 0.536N	P = 0.532N	P = 0.209	P=0.362N
Cochran-Armitage test	P = 0.312N			
		P=0.515N	P=0.218	P=0.247N

TABLE A3 Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

.

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg	
Preputial Gland: Carcinoma					
Overall rates	6/50 (12%)	2/48 (4%)	1/50 (2%)	1/50 (2%)	
Adjusted rates	17.2%	5.1%	4.2%	6.3%	
Ferminal rates	1/24 (4%)	0/19 (0%)	1/24 (4%)	0/14 (0%)	
First incidence (days)	507	577	733 (T)	702	
Life table tests	P=0.095N	P=0.236N	P=0.072N	P=0.254N	
Logistic regression tests	P = 0.060N	P = 0.129N	P = 0.066N	P = 0.184N	
Cochran-Armitage test	P = 0.030N	1 -0.12/14	1-0.0001	1-0.10410	
Fisher exact test	1 -0.05011	P=0.148N	P=0.056N	P=0.056N	
Preputial Gland: Adenoma or Ca	rcinoma				
Overall rates	8/50 (16%)	3/48 (6%)	6/50 (12%)	1/50 (2%)	
Adjusted rates	24.4%	7.5%	25.0%	6.3%	
Terminal rates	3/24 (13%)	0/19 (0%)	6/24 (25%)	0/14 (0%)	
First incidence (days)	507	577	732 (T)	702	
Life table tests	P=0.120N	P=0.204N	P=0.406N	P=0.133N	
Logistic regression tests	P=0.107N	P=0.101N	P=0.452N	P=0.100N	
Cochran-Armitage test	P=0.026N				
Fisher exact test		P=0.113N	P=0.387N	P=0.015N	
Skin: Squamous Cell Papilloma o	or Squamous Cell Carcinoma				
Overall rates	1/50 (2%)	0/50 (0%)	3/50 (6%)	0/50 (0%)	
Adjusted rates	4.2%	0.0%	12.0%	0.0%	
Ferminal rates	1/24 (4%)	0/20 (0%)	2/24 (8%)	0/14 (0%)	
First incidence (days)	729 (T)	-	719	-	
Life table tests	P=0.642	P=0.536N	P=0.306	P=0.607N	
Logistic regression tests	P=0.633	P=0.536N	P=0.297	P=0.607N	
Cochran-Armitage test	P=0.503N				
Fisher exact test		P = 0.500N	P=0.309	P=0.500N	
Skin (Subcutaneous Tissue): Fibr					
Overall rates	4/50 (8%)	1/50 (2%)	0/50 (0%)	1/50 (2%)	
Adjusted rates	14.8%	4.0%	0.0%	5.6%	
Terminal rates	3/24 (13%)	0/20 (0%)	0/24 (0%)	0/14 (0%)	
First incidence (days)	683 D 0 170N	687	-	697	
Life table tests	P=0.179N	P = 0.265N	P = 0.065N	P=0.389N	
Logistic regression tests	P=0.194N	P=0.248N	P=0.069N	P=0.416N	
Cochran-Armitage test Fisher exact test	P=0.101N	B_0 101N	B-0.050M	B_0 101 M	
risher exact test		P=0.181N	P=0.059N	P=0.181N	
Skin (Subcutaneous Tissue): Fibr		1/50 (00)	250 100	0.50 1001	
Overall rates	2/50 (4%)	1/50 (2%)	3/50 (6%)	0/50 (0%)	
Adjusted rates	7.1%	2.2%	9.6%	0.0%	
Terminal rates	1/24 (4%)	0/20 (0%)	1/24 (4%)	0/14 (0%)	
First incidence (days)	702 B-0.20(N	529 B0 567N	684 B-0.480	- D_0.20(N)	
Life table tests	P = 0.396N	P = 0.567N	P = 0.489	P = 0.386N	
Logistic regression tests Cochran-Armitage test	P=0.381N	P=0.484N	P = 0.462	P=0.388N	
Fisher exact test	P=0.243N	P-0 500N	P-0 500	P-0 247N	
I ISHCI CARCI ICOL		P=0.500N	P=0.500	P=0.247N	

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

		Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
	'issue): Fibroma or H				·
verall rates		6/50 (12%)	2/50 (4%)	3/50 (6%)	1/50 (2%)
djusted rates		21.3%	6.1%	9.6%	5.6%
erminal rates	, *	4/24 (17%)	0/20 (0%)	1/24 (4%)	0/14 (0%)
rst incidence (days)	· · · · · ·	683	529	684	697
fe table tests	4	P=0.146N	P=0.225N	P=0.257N	P=0.211N
ogistic regression tests		P=0.152N	P=0.163N	P=0.280N	P=0.223N
ochran-Armitage test	• • •	P = 0.053N	*		e al esta
sher exact test			P=0.134N	P=0.243N	P=0.056N
stes: Adenoma		16150 (0206)	45/50 (00%)	AD150: (QA02)	24/50 (490%)
verall rates djusted rates		46/50 (92%) 100.0%	45/50 (90%) 100.0%	42/50 (84%)	24/50 (48%)
•	· • •	100.0%	100.0%	100.0%	95.9%
erminal rates		24/24 (100%) 507	20/20 (100%) 520	24/24 (100%)	13/14 (93%)
rst incidence (days) fe table tests			520 B=0.141	486 B-0 300N	488 R-0.452N
gistic regression tests		P = 0.272N	P = 0.141	P = 0.390N	P = 0.452N
	· · · ·	P = 0.479N	P=0.492	P=0.631N	P=0.555N
chran-Armitage test sher exact test		P<0.001N	P-0 500N	D_0 179N	B-0.001N
SHEL CARCE ICSI	the second second		P=0.500N	P=0.178N	P<0.001N
yroid Gland (C-cell): Adenoma				
verall rates	<i>j. is</i> uchoma	12/50 (24%)	6/50 (12%)	7/40 (1402)	5/50 (10%)
djusted rates	·, · ,	40.9%		7/49 (14%) 25.9%	5/50 (10%) 24.5%
rminal rates	•		21.7%		24.5%
rst incidence (days)		8/24 (33%)	2/20 (10%) 520	5/24 (21%)	1/14 (7%) 549
		649 R-0 200N	520 R=0.226N	687 B=0.164N	548 - P-0 201 N
fe table tests		P = 0.300N	P=0.226N P=0.159N		P = 0.391N
ogistic regression tests ochran-Armitage test	and the second	P=0.338N P=0.062N	. L	P=0.192N	P=0.399N
sher exact test		11 0.002IN (1177)	D-0.004N	P-0 166N	B-0.054N
SICI CARLE LESI	A LA PARA		P=0.096N	P=0.166N	P=0.054N
hyroid Gland (C-cell): Adenoma or Carci	noma			
verall rates		13/50 (26%)	7/50 (14%)	7/49 (14%)	5/50 (10%)
djusted rates		42.7%	24.4%	25.9%	24.5%
erminal rates		8/24 (33%)	2/20 (10%)	5/24 (21%)	1/14 (7%)
rst incidence (days)	No. And Anna Anna Anna Anna Anna Anna Anna	649	520	687	548
fe table tests	.:	P=0.222N	P=0.263N	P=0.117N	P=0.331N
ogistic regression tests	• 1 • 1 • 1 • 1 • 1 • 1 • 1	P=0.243N	P=0.170N	P=0.136N	P=0.327N
chran-Armitage test		P=0.034N		ŕ .	t t
sher exact test		· · · ·	P=0.105N	P=0.115N	• P=0.033N
	· · · ·	, , ,			*. · ·
l Organs: Mononucl	ear Cell Leukemia			and the second	*
verall rates		23/50 (46%)	22/50 (44%)	15/50 (30%)	8/50 (16%)
ljusted rates		72.0%	63.3%	43.0%	40.0%
	teran in the provession	16/24 (67%)	9/20 (45%)	7/24 (29%)	3/14 (21%)
rst incidence (days)	$(1,2,2,2) \mapsto (1,2,2,2) \mapsto (1,2,2)$, where $(1,2,2)$ is the set of	611 611 (No.)	488	486	548
ist mendence (aujo)	and a second second		P=0.341	P=0.108N	P=0.122N
fe table tests					
fe table tests ogistic regression tests			P=0.560	P=0.113N	P=0.130N
fe table tests ogistic regression tests ochran-Armitage test		P=0.031N P<0.001N	P=0.560 P=0.500N	a the second second second	P=0.130N P=0.001N

e de la serie 12 ... 12 ... A ... 19 ÷., a life to the terms of the $|\mathcal{T}(x)| = |\mathcal{T}(x)| = \frac{1}{2} |\mathcal{T}(x)| =$ ·, , · *..*

an a the Brite Brite at the second second 1. . . . the state of the s •. *

many far a transformer to many the

a state the

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
All Organs: Benign or Malignant Me	sothelioma			
Overall rates	3/50 (6%)	4/50 (8%)	1/50 (2%)	1/50 (2%)
Adjusted rates	8.4%	11.2%	4.0%	7.1%
Terminal rates	0/24 (0%)	0/20 (0%)	0/24 (0%)	1/14 (7%)
First incidence (days)	624	520	719	729 (T)
ife table tests	P=0.296N	P=0.385	P=0.320N	P=0.556N
ogistic regression tests	P=0.214N	P=0.547	P=0.326N	P=0.533N
Cochran-Armitage test	P=0.136N			
isher exact test		P=0.500	P=0.309N	P=0.309N
Il Organs: Benign Neoplasms				
Overall rates	49/50 (98%)	49/50 (98%)	45/50 (90%)	26/50 (52%)
Adjusted rates	100.0%	100.0%	100.0%	100.0%
Ferminal rates	24/24 (100%)	20/20 (100%)	24/24 (100%)	14/14 (100%)
First incidence (days)	507	435	486	488
ife table tests	P=0.299N	P=0.115	P=0.407N	P=0.491N
ogistic regression tests	P=0.654	P=0.748N	<u>_</u> f	· _
Cochran-Armitage test	P<0.001N			
isher exact test		P=0.753N	P=0.102N	P<0.001N
Al Organs: Malignant Neoplasms			. •	
Overall rates	39/50 (78%)	33/50 (66%)	28/50 (56%)	11/50 (22%)
Adjusted rates	88.2%	76.8%	68.4%	54.2%
ferminal rates	19/24 (79%)	11/20 (55%)	12/24 (50%)	5/14 (36%)
First incidence (days)	507	437	486	548
life table tests	P=0.007N	P=0.482	P=0.097N	P=0.014N
ogistic regression tests	P<0.001N	P=0.151N	P=0.037N	P=0.001N
Cochran-Armitage test	P<0.001N			
isher exact test		P=0.133N	P=0.016N	P<0.001N
All Organs: Benign or Malignant Neo	plasms		· · · ·	
Overall rates	49/50 (98%)	50/50 (100%)	45/50 (90%)	26/50 (52%)
Adjusted rates	100.0%	100.0%	100.0%	100.0%
Ferminal rates	24/24 (100%)	20/20 (100%)	24/24 (100%)	14/14 (100%)
First incidence (days)	507	435	486	488
life table tests	P=0.288N	P=0.093	P=0.407N	P=0.491N
ogistic regression tests	_	-	-	_
Cochran-Armitage test	P<0.001N			
Fisher exact test		P=0.500	P=0.102N	P<0.001N

(T) Terminal sacrifice

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone (including marrow), brain, epididymis, heart, kidney, large intestine, liver, lung, mammary gland, mandibular or mesenteric lymph node, nose, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, seminal vesicles, skin, small intestine, spleen, stomach, testis, thymus, thyroid gland, trachea, and urinary bladder; for other tissues, denominator is number of animals necropsied.

Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

e Not applicable; no neoplasms in animal group

¹ Value of statistic cannot be computed.

^d Beneath the "Vehicle Control" column are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

		Incidence in Controls	
Study	Benign	Malignant	Benign or Malignant
listorical Incidence at Souther	n Research Institute		
Benzaldehyde	17/49	2/49	19/49
Dichlorvos	21/50	2/50	22/50
Furan	8/501/509/5011/502/5011/50	9/50	
Furfural		11/50	
-Butyrolactone	15/48	15/48 0/48 15/48	15/48
Pentachloroanisole	12/50	3/50	15/50
Total	84/297 (28.3%)	10/297 (3.4%)	91/297 (30.6%)
Standard deviation	9.5%	2.1%	9.8%
Range	16%-42%	0%-6%	18%-44% ,
Overall Historical Incidence			
Total	228/804 (28.4%)	33/804 (4.1%)	255/804 ^b (31.7%)
Standard deviation	8.5%	3.9%	8.9%
Range	10%-42%	0%-14%	10%-44%

TABLE A4 Historical Incidence of Adrenal Medulla Pheochromocytomas in Male F344/N Rats Administered Corn Oil by Gavage^a

^a Data as of 3 April 1991
 ^b Includes two complex pheochromocytomas

.

Table A5

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Pentachloroanisole^a

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
Disposition Summary				
Animals initially in study	70	70	70	70
9-Month interim evaluation	10	. 10	10	10
15-Month interim evaluation	10	10	10	10
Early deaths				
Moribund	23	21	14	5
Natural deaths	3	9	12	31
Survivors			.	
Terminal sacrifice	. 24	20	24	14
Animals examined microscopically	70	70	70	70
Alimentary System				
Esophagus	(50)	(50)	(50)	(50)
Ulcer		1 (2%)		
Intestine large, cecum	(50)	(49)	(48)	(50)
Edema	1 (2%)		1 (2%)	1 (2%)
Parasite metazoan	2 (4%)		3 (6%)	
Ulcer	2 (4%)		1 (2%)	(10)
Intestine large, colon	(50)	(50)	(49)	(49)
Parasite metazoan	5 (10%)	(50)	2 (4%)	5 (10%)
Intestine large, rectum Edema	(50)	(50)	(49)	(47) 1 (2%)
Parasite metazoan	5 (10%)	6 (12%)	3 (6%)	3 (6%)
Lymphatic, dilatation	5 (1070)	0 (1270)	5 (070)	1 (2%)
Liver	(50)	(50)	(50)	(50)
Angiectasis	(50)	4 (8%)	1 (2%)	2 (4%)
Basophilic focus	27 (54%)	27 (54%)	26 (52%)	8 (16%)
Clear cell focus	14 (28%)	7 (14%)	6 (12%)	4 (8%)
Congestion		2 (4%)	2 (4%)	13 (26%)
Degeneration, cystic	2 (4%)	5 (10%)	9 (18%)	6 (12%)
Eosinophilic focus	3 (6%)	9 (18%)	9 (18%)	1 (2%)
Granuloma	19 (38%)	10 (20%)	6 (12%)	8 (16%)
Hematopoietic cell proliferation	4 (8%)	2 (4%)	2 (4%)	
Hepatodiaphragmatic nodule		2 (4%)	2 (4%)	1 (2%)
Hyperplasia, focal	7 (14%)	5 (10%)		2 (4%)
Inflammation, chronic	6 (12%)	8 (16%)	9 (18%)	4 (8%)
Inflammation, chronic active	1 /0//	0 // 21	1 (2%)	1 /0//
Mixed cell focus Bile dust, hymemologie	1 (2%)	3 (6%) 45 (00%)	AA (000%)	1 (2%)
Bile duct, hyperplasia	45 (90%) 2 (4%)	45 (90%)	44 (88%) 5 (10%)	26 (52%)
Centrilobular, atrophy	2 (4%)	6 (120%)	5 (10%) 6 (12%)	17 (2102)
Centrilobular, necrosis Hepatocyte, pigmentation		6 (12%)	1 (2%)	17 (34%) 4 (8%)
Hepatocyte, vacuolization cytoplasmic	8 (16%)	2 (4%)	1 (2%)	2 (4%)
Kupffer cell, hyperplasia	3 (6%)	1 (2%)	4 (8%)	2 (470)
Kupffer cell, pigmentation	÷ (5/0)	1 (2%)	. (0,0)	
Lobules, necrosis	2 (4%)	4 (8%)	1 (2%)	1 (2%)
Periportal, inflammation, chronic active				1 (2%)
Portal, necrosis				1 (2%)
Mesentery	(11)	(11)	(5)	(9) `´
Accessory spleen	1 (9%)	ì (9%)		
Fat, inflammation, pyogranulomatous	1 (9%)			
Fat, necrosis	6 (55%)	5 (45%)	4 (80%)	3 (33%)

.

. '

1997 - Sec.

TABLE A5

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Pentachloroanisole (continued) . .

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
	en e			с н
limentary System (continued)				
ancreas	(49)	(49)	(49)	(50)
Atrophy	14 (29%)	17 (35%)	19 (39%)	9 (18%)
Cytoplasmic alteration		3 (6%)	2 (4%)	1 (2%)
Edema				1 (2%)
Fibrosis	1 (2%)			
Focal cellular change	1 (2%)		3 (6%)	•
Hyperplasia, focal	19 (39%)	17 (35%)	8 (16%)	1 (2%)
Infiltration cellular, histiocyte	1 (2%)	17 (3570)	0 (1070)	1 (2/0)
Inflammation, chronic	1 (2%)		1 (2%)	
alivary glands		(50)	1 (270)	(50)
	(50)	(50)	(48)	(50)
Atrophy	· · · · ·	1 (2%)	1 (2%)	1
omach, forestomach	(50)	(50)	(50)	(50)
Dysplasia			1 (2%)	e 4
Edema	1 (2%)	2 (4%)	4 (8%)	
Erosion	2 (4%)		2 (4%)	1 · · · · · · · ·
Inflammation, chronic	1 (2%)	1 (2%)	1 (2%)	
Inflammation, chronic active		- ()	1 (2%)	
Mineralization	*.	1 (2%)	- (-/-)	a the second
Ulcer	3 (6%)	4 (8%)	2 (4%)	÷.
Mucosa, hyperplasia	6 (12%)	7 (14%)		
tomach, glandular		(50)	5 (10%)	(50)
	(50)	(50)	(50)	(50)
Edema		1 (2%)	1 (2%)	
Erosion	3 (6%)	1 (2%)	2 (4%)	
Hemorrhage	•		1 (2%)	· ·
Inflammation, chronic active	· .	2 (4%)		
Mineralization	4 (8%)	3 (6%)	1 (2%)	1 (2%)
Ulcer	3 (6%)	1 (2%)	1 (2%) 🐁 .	3 (6%)
Mucosa, hyperplasia	1 (2%)	- ()	- (-//)	- ()
ooth	(2)	(1)	روشار مراجع الرار	
Developmental malformation		í (100%)		a second and a second
	-			
ardiovascular System			ر با م	at in a second
lood vessel	(4)	(4)	(5)	(5)
Polyarteritis	4 (100%)	4 (100%)	4 (80%)	5 (100%)
leart	(50)	(50)	(49)	(50)
	(50)	(50)	(47)	
Angiectasis	00 (((0))			1 (2%)
Cardiomyopathy	33 (66%)	37 (74%)	36 (73%)	21 (42%)
Thrombus	1 (2%)	11 a.	1 (2%)	
Epicardium, inflammation, chronic	1 (2%)			15 L
Myocardium, inflammation, chronic	2 (4%)	3 (6%)	3 (6%)	7 (14%)
			. ,	and the second second
- Josef - Contain			· · · ·	
ndocrine System				
drenal gland, cortex	(49)	(50)	(50)	(50)
Accessory adrenal cortical nodule	14 (29%)	11 (22%)	8 (16%)	6 (12%)
Angiectasis	4 (8%)	2 (4%)	2 (4%)	4 (8%)
Clear cell focus	4 (8%)	5 (10%)	5 (10%)	3 (6%)
Congestion			2 (4%)	2 (4%)
Cyst	1 (2%)	· · · ·	- ()	- ()
Hematopoietic cell proliferation	2 (4%)	2 (4%)	1 (2%)	
	2 (7/0)	2 (4%)	1 (2%)	E /100%
Hemorrhage		· · ·	1 (00)	5 (10%)
Hyperplasia, diffuse	• <i>(a)</i>		1 (2%)	
Hyperplasia, focal	7 (14%)	10 (20%)	7 (14%)	2 (4%)
	•	2 (A01)		
Necrosis	· · · ·	2 (4%)	1 (2%)	
	3 (6%)	2 (4%) 2 (4%)	1 (2%)	2 (4%)

232A slaM ni 2noi23.I . 17 .

ZA J.IAAT

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study

-

				(bennince) meters sverem (continued)
, ,	24/2m 02	gx/gm 01	Vehicle Control	· · · ·
				of Pentachloroanisole (continued)

Follicular cell, hyperplasia						(%Z)		
Follicle, cyst		(%8)	9	(%21)		(%Z)	2	(%†)
C-cell, hyperplasia	6	(%81)		(%+7)	S	(%01)	7	(%8)
Ultimobranchial cyst			3	(%9)				,
buelg biory	(05)		(05)		(67)		(ös)	
Pars nervosa, cyst			I	(%Z)				,
Pars intermedia, hyperplasia		(%†)						•
Pars intermedia, angiectasis		(%7)	I.	(%Z)		•	ĩ	(%Z)
Pars distalis, pigmentation	2	(%†)			I	(%Z)		
Pars distalis, necrosis			I	(%Z)				
Pars distalis, hyperplasia	6	(%81)	6	(%81)	S	(%01)	z	(%†)
Pars distalis, hemorrhage				(%Z)				
Pars distalis, cyst		(%01)	2	(%†)	4	(%8)	z	(%†)
Pars distalis, angiectasis	I	(%Z)	t	(%Z)	I	(%Z)		(%)
nitary gland	(67)		(05)		(81)		(05)	
Hyperplasia	8	(%91)		(%71)	8	(%91)		(%9)
Hemotrhage		(%7)						
Cyst	l	(%Z)			τ	(%Z)		
is, pancreatic	(67)		(67)		(6\$)		(05)	
Intiltration cellular, lymphocyte			I	(%T)				
Hyperplasia	53	(%97)	97	(%75)	91	(%ZE)	6	(%61)
Cyst			I	(%7)			-	
Angiectasis				(%7)			τ	(%Z)
renal gland, medulla	(05)		(05)		(05)		(87)	

'S	Seminiferous tubule, atrophy	S	(%01)	*	(%8)	L	(%71)	S	(%01)
	Interstitial cell, hyperplasia	2	(%†)	2	(%7)	Z	(%†)	2	(%†)
A	Mineralization	56	(%ZS)		(%77)		(%85)	14	(%87)
<u>ຂາເອງ</u>		(05)		(05)		(05)		(05)	
ıI	Inflammation, suppurative	I	(%Z)						
Е	Edema	I	(%Z)						
v Isnims		(05)		(05)		(67)		(05)	
-	Inflammation, suppurative		(%05)	97	(%75)		(%0†)	SI	(%0E)
п	Inflammation, chronic		(%71)	2	(%†)		(%01)	4 ((%8)
न	Fibrosis	Z	(%†)			I	(%Z)		
	Едета	τ	(%Z)						
С	1zVO		(%†)		(%Z)				
9161201		(05)		(05)		(05)		(0S)	
-	Inflammation, suppurative		(%77)		(%51)		(%†1)		(%9)
	Inflammation, chronic		(%95)	53	(%87)		(%85)	SI .	(%0E)
Ъ	Foreign body	I	(%Z)				(%Z)		
	Ectasia		(%8)	I	(%Z)		(%Z)		
Isituqər		(05)		(81)		(05)		(0S)	
л	Inflammation, chronic		(%Z)						
Е	Едета		(%z)						
imybibiq3		(05)		(05)		(05)		(05)	
latins	mə3s&S		•						•

. .

34/2m 08

.

TABLE A5

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
Iematopoietic System				
Bone marrow	(50)	(50)	(50)	(50)
Angiectasis	(30)	(30)		1 (2%)
Hypercellularity	2 (4%)	3 (6%)	6 (12%)	1 (270)
		• •	0 (12%)	
Hyperplasia, reticulum cell	1 (2%)	1 (2%)	2 (40%)	
Hypocellularity	1 (2%)	1 (2%)	2 (4%)	
Myelofibrosis	(50)	2 (4%)	(50)	(50)
ymph node	(50)	(50)	(50)	(50)
Inguinal, hyperplasia, lymphoid		1 (2%)	1 (201)	
Inguinal, hyperplasia, plasma cell		1 (2%)	1 (2%)	
Inguinal, lymphatic, dilatation	1 (2%)			
Mediastinal, congestion				1 (2%)
Mediastinal, hemorrhage	8 (16%)	6 (12%)	10 (20%)	1 (2%)
Mediastinal, hyperplasia, lymphoid			1 (2%)	
Mediastinal, hyperplasia, plasma cell		5 (10%)	1 (2%)	1 (2%)
Mediastinal, pigmentation	4 (8%)	8 (16%)	2 (4%)	
Pancreatic, hemorrhage	1 (2%)			•
Pancreatic, hyperplasia, lymphoid	2 (4%)			
Renal, hyperplasia, lymphoid	1 (2%)			
Renal, lymphatic, dilatation	1 (2%)			
ymph node, mandibular	(50)	(49)	(49)	(49)
Congestion	1 (2%)		2 (4%)	5 (10%)
Hemorrhage			2 (4%)	1 (2%)
Hyperplasia, lymphoid	2 (4%)	4 (8%)	2 (4%)	3 (6%)
Hyperplasia, plasma cell	19 (38%)	18 (37%)	17 (35%)	5 (10%)
Hyperplasia, reticulum cell				1 (2%)
Infiltration cellular, polymorphonuclea	r		1 (2%)	- ()
Lymphatic, dilatation	2 (4%)	6 (12%)	10 (20%)	2 (4%)
Lymph node, mesenteric	(50)	(50)	(49)	(48)
Congestion	(50)	(50)	(1 (2%)
Erythrophagocytosis	1 (2%)	2 (4%)		1 (270)
			6 (12%)	2 (4%)
Hemorrhage Ukmamlasia kumphaid	1 (2%)	1 (2%)		2 (470)
Hyperplasia, lymphoid	• •		1 (2%)	
Hyperplasia, reticulum cell			1 (2%)	0 (10)
Necrosis			1 (2%)	2 (4%)
Pigmentation			1 (2%)	
Lymphatic, dilatation		1 (2%)	(50)	1 (2%)
Spleen	(50)	(49)	(50)	(50)
Congestion	2 (4%)	2 (4%)	1 (2%)	1 (2%)
Degeneration, fatty			1 (2%)	
Developmental malformation	1 (2%)			
Fibrosis	2 (4%)		3 (6%)	1 (2%)
Hematopoietic cell proliferation	9 (18%)	6 (12%)	7 (14%)	2 (4%)
Hemorrhage		. ,	1 (2%)	
Hyperplasia, mononuclear cell			1 (2%)	
Hyperplasia, re cell		2 (4%)	2 (4%)	
Necrosis	1 (2%)	1 (2%)	3 (6%)	1 (2%)
Pigmentation, hemosiderin	5 (10%)	7 (14%)	8 (16%)	
Lymphoid follicle, atrophy	- (//)	1 (2%)	· · · · · · · · · · · · · · · · · · ·	
Red pulp, hyperplasia		1 (2%)		
	(46)	(47)	(47)	(47)
Convertion	1 (2%)	(**)	5 (11%)	13 (28%)
Congestion		4 (9%)	· · ·	13 (28%)
Cyst Estopic porthymoid cloud	3 (7%)	7 (770)	1 (2%)	1(2%) 1(2%)
Ectopic parathyroid gland			5 (1104)	
Hemorrhage			5 (11%)	21 (45%)

.

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

	<i>y</i>	ehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
Integume	entary System	<u> </u>	(0.008, 0.0	<u></u>	
Mammary		(48)	(49)	(50)	(47)
	yperplasia, cystic	17 (35%)	13 (27%)	11 (22%)	4 (9%)
	yperplasia, lobular	17 (3570)	2 (4%)	2 (4%)	4 (370)
Skin	yperplasia, tootiat	(50)	2 (470)	(50)	(50)
	canthosis	(30)	(49)		(50)
		2 (4%)		1 (2%)	1 (2%)
	ngiectasis	1 (00)	1 (20)	1 (2%)	1 (00)
	yst epithelial inclusion	1 (2%)	1 (2%)	2 (4%)	1 (2%)
	xudate	1 (2%)			1 (2%)
	brosis	1 (2%)			
	oreign body	1 (2%)			
	yperkeratosis	1 (2%)		1 (2%)	
	yperplasia, basal cell		1 (2%)	·	
	flammation, chronic			1 (2%)	1 (2%)
	flammation, granulomatous	1 (2%)			
	lcer			1 (2%)	
	ip, hemorrhage			1 (2%)	
Sc	crotum, congestion			1 (2%)	13 (26%)
Ausculos	skeletal System	·····	- Martin -		
Bone		(50)	(50)	(50)	(50)
	emur, osteopetrosis	(00)	1 (2%)	(50)	(50)
Nervous S	System				
Brain		(50)	(50)	(50)	(50)
C	ompression	6 (12%)	4 (8%)	3 (6%)	2 (4%)
	ongestion		1 (2%)	4 (8%)	21 (42%)
Co					
Co De	egeneration, focal			1 (2%)	
Ca De He	egeneration, focal emorrhage	1 (2%)	2 (4%)	1 (2%)	
Ca De He	egeneration, focal		2 (4%)	1 (2%) 4 (8%)	
Cc De He Hy	egeneration, focal emorrhage	1 (2%) 1 (2%)	2 (4%) 4 (8%)	1 (2%) 4 (8%) 1 (2%)	. ,
Co De He Hy Mi	egeneration, focal emorrhage ydrocephalus		2 (4%)	1 (2%) 4 (8%)	. ,
Cc De He Hy Mi Ne	egeneration, focal emorrhage ydrocephalus lineralization ecrosis	1 (2%)	2 (4%) 4 (8%)	1 (2%) 4 (8%) 1 (2%)	
Cc De He Hy Mi Ne Respirato	egeneration, focal emorrhage ydrocephalus lineralization	1 (2%) 1 (2%)	2 (4%) 4 (8%) 1 (2%)	1 (2%) 4 (8%) 1 (2%) 1 (2%)	
Cc De He Hy Mi Ne Respirato Lung	egeneration, focal emorrhage ydrocephalus lineralization ecrosis ory System	1 (2%) 1 (2%) (50)	2 (4%) 4 (8%)	1 (2%) 4 (8%) 1 (2%)	(50)
Cc De Ho Hy Mi No Respirato Lung At	egeneration, focal emorrhage ydrocephalus lineralization ecrosis ory System telectasis	1 (2%) 1 (2%) (50) 1 (2%)	2 (4%) 4 (8%) 1 (2%) (50)	1 (2%) 4 (8%) 1 (2%) 1 (2%) (50)	(50)
Cc De Ho Hy Mi No Respirato Lung At Cc	egeneration, focal emorrhage ydrocephalus lineralization ecrosis ory System telectasis ongestion	1 (2%) 1 (2%) (50) 1 (2%) 2 (4%)	2 (4%) 4 (8%) 1 (2%) (50) 3 (6%)	1 (2%) 4 (8%) 1 (2%) 1 (2%) (50) 6 (12%)	(50) 30 (60%)
Cc De Ho Hy Mi No Respirato Lung At Cc Ed	egeneration, focal emorrhage ydrocephalus lineralization ecrosis ory System telectasis ongestion dema	1 (2%) 1 (2%) (50) 1 (2%)	2 (4%) 4 (8%) 1 (2%) (50) 3 (6%) 2 (4%)	1 (2%) 4 (8%) 1 (2%) 1 (2%) (50)	(50) 30 (60%) 5 (10%)
Cc De He Hy Mi Ne Respirato Lung At Cc Ed Fo	egeneration, focal emorrhage ydrocephalus lineralization ecrosis ory System telectasis ongestion dema oreign body	1 (2%) 1 (2%) (50) 1 (2%) 2 (4%) 3 (6%)	2 (4%) 4 (8%) 1 (2%) (50) 3 (6%) 2 (4%) 3 (6%)	1 (2%) 4 (8%) 1 (2%) 1 (2%) (50) 6 (12%) 1 (2%)	(50) 30 (60%) 5 (10%) 2 (4%)
Cc De He Hy Mi No Respirato Lung At Cc Ed Fo He	egeneration, focal emorrhage ydrocephalus lineralization ecrosis ory System telectasis ongestion dema oreign body emorrhage	1 (2%) 1 (2%) (50) 1 (2%) 2 (4%) 3 (6%) 1 (2%)	2 (4%) 4 (8%) 1 (2%) (50) 3 (6%) 2 (4%) 3 (6%) 3 (6%)	1 (2%) 4 (8%) 1 (2%) 1 (2%) (50) 6 (12%) 1 (2%) 2 (4%)	(50) 30 (60% 5 (10%) 2 (4%) 2 (4%)
Cc De He Hy Mi Ne Co Lung At Cc Ed Fo He Inf	egeneration, focal emorrhage ydrocephalus lineralization ecrosis ory System telectasis ongestion dema oreign body emorrhage filtration cellular, histiocyte	1 (2%) 1 (2%) (50) 1 (2%) 2 (4%) 3 (6%) 1 (2%) 33 (66%)	2 (4%) 4 (8%) 1 (2%) (50) 3 (6%) 2 (4%) 3 (6%) 3 (6%) 30 (60%)	1 (2%) 4 (8%) 1 (2%) 1 (2%) (50) 6 (12%) 1 (2%) 2 (4%) 28 (56%)	(50) 30 (60%) 5 (10%) 2 (4%) 2 (4%) 23 (46%)
Cc De He Hy Mi Ne Respirato Lung At Cc Ed Fo He Inf	egeneration, focal emorrhage ydrocephalus lineralization ecrosis ory System telectasis ongestion dema oreign body emorrhage filtration cellular, histiocyte flammation, chronic	1 (2%) 1 (2%) (50) 1 (2%) 2 (4%) 3 (6%) 1 (2%)	2 (4%) 4 (8%) 1 (2%) (50) 3 (6%) 2 (4%) 3 (6%) 3 (6%)	1 (2%) 4 (8%) 1 (2%) 1 (2%) (50) 6 (12%) 1 (2%) 2 (4%)	(50) 30 (60%) 5 (10%) 2 (4%) 2 (4%) 23 (46%) 6 (12%)
Cc De He Hy Mi Ne Respirato Lung At Cc Ed Fo Fo He Inf Inf	egeneration, focal emorrhage ydrocephalus lineralization ecrosis 	1 (2%) 1 (2%) (50) 1 (2%) 2 (4%) 3 (6%) 1 (2%) 33 (66%) 7 (14%)	2 (4%) 4 (8%) 1 (2%) (50) 3 (6%) 2 (4%) 3 (6%) 3 (6%) 3 (6%) 30 (60%) 14 (28%)	1 (2%) 4 (8%) 1 (2%) 1 (2%) (50) 6 (12%) 1 (2%) 2 (4%) 28 (56%)	(50) 30 (60%) 5 (10%) 2 (4%) 2 (4%) 23 (46%) 6 (12%) 1 (2%)
Cc De He Hy Mi Ne Respirato Lung At Cc Ed Fo He Infi Infi Infi	egeneration, focal emorrhage ydrocephalus (ineralization ecrosis 	1 (2%) 1 (2%) (50) 1 (2%) 2 (4%) 3 (6%) 1 (2%) 33 (66%)	2 (4%) 4 (8%) 1 (2%) (50) 3 (6%) 2 (4%) 3 (6%) 3 (6%) 30 (60%) 14 (28%) 2 (4%)	1 (2%) 4 (8%) 1 (2%) 1 (2%) (50) 6 (12%) 1 (2%) 2 (4%) 28 (56%)	(50) 30 (60%) 5 (10%) 2 (4%) 2 (4%) 23 (46%) 6 (12%)
Cc De He Hy Mi Ne Respirato Lung At Cc Ed Fo He Infi Infi Infi Infi	egeneration, focal emorrhage ydrocephalus (ineralization ecrosis 	1 (2%) 1 (2%) (50) 1 (2%) 2 (4%) 3 (6%) 1 (2%) 33 (66%) 7 (14%)	2 (4%) 4 (8%) 1 (2%) (50) 3 (6%) 2 (4%) 3 (6%) 3 (6%) 3 (6%) 30 (60%) 14 (28%)	1 (2%) 4 (8%) 1 (2%) 1 (2%) (50) 6 (12%) 1 (2%) 2 (4%) 28 (56%)	(50) 30 (60%) 5 (10%) 2 (4%) 2 (4%) 23 (46%) 6 (12%) 1 (2%)
Cc De He Hy Mi Ne Respirato Lung At Cc Ed Fo He Inf Inf Inf Inf	egeneration, focal emorrhage ydrocephalus lineralization ecrosis 	1 (2%) 1 (2%) (50) 1 (2%) 2 (4%) 3 (6%) 1 (2%) 33 (66%) 7 (14%)	2 (4%) 4 (8%) 1 (2%) (50) 3 (6%) 2 (4%) 3 (6%) 3 (6%) 30 (60%) 14 (28%) 2 (4%) 4 (8%)	1 (2%) 4 (8%) 1 (2%) 1 (2%) (50) 6 (12%) 1 (2%) 2 (4%) 28 (56%)	(50) 30 (60%) 5 (10%) 2 (4%) 2 (4%) 23 (46%) 6 (12%) 1 (2%)
Cc De He Hy Mi Ne Respirato Lung At Cc Ed Fo He Ini Ini Ini Ini Le Me At	egeneration, focal emorrhage ydrocephalus (ineralization ecrosis 	1 (2%) 1 (2%) (50) 1 (2%) 2 (4%) 3 (6%) 1 (2%) 33 (66%) 7 (14%) 1 (2%) 6 (12%)	2 (4%) 4 (8%) 1 (2%) (50) 3 (6%) 2 (4%) 3 (6%) 3 (6%) 30 (60%) 14 (28%) 2 (4%)	1 (2%) 4 (8%) 1 (2%) 1 (2%) (50) 6 (12%) 1 (2%) 2 (4%) 28 (56%)	(50) $30 (60%)$ $5 (10%)$ $2 (4%)$ $2 (4%)$ $23 (46%)$ $6 (12%)$ $1 (2%)$ $1 (2%)$

-11-

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
			<u>.</u>	
Respiratory System (continued)				
Nose	(50)	(50)	(50)	(50)
Congestion		•		3 (6%)
Exudate	17 (34%)	17 (34%)	12 (24%)	9 (18%)
Foreign body	8 (16%)	6 (12%)	5 (10%)	2 (4%)
Fungus	14 (28%)	15 (30%)	11 (22%)	6 (12%)
Inflammation, chronic	2 (4%)	7 (14%)	11 (22%)	5 (10%)
Pigmentation		1 (2%)		
Mucosa, erosion			· · · · · · · · · · · · · · · · · · ·	1 (2%)
Mucosa, hyperplasia	8 (16%)	7 (14%)	7 (14%)	3 (6%)
Mucosa, metaplasia, squamous	5 (10%)	8 (16%)	9 (18%)	5 (10%)
Nerve, hypertrophy	1 (2%)	1 (2%)		(/-)
Olfactory epithelium, pigmentation	(-/-)	29 (58%)	40 (80%)	25 (50%)
rachea	(50)	(49)	(50)	(50)
Exudate		(19)	(00)	1 (2%)
Mucosa, hyperplasia		1 (2%)		1 (2/0)
mucosa, nyperpiasia		1 (270)		
pecial Senses System				
ye	(2)	(7)	(2)	(2)
Cataract	1 (50%)	(7) 6 (86%)	1 (50%)	1 (50%)
	1 (50%)	0 (8070)	1 (50%)	1 (50%)
Phthisis bulbi		1 (1407)		1 (50%)
Cornea, hyperplasia	0 (1000)	1 (14%)	1 (5007)	1 (500%)
Retina, atrophy	2 (100%)	6 (86%)	1 (50%)	1 (50%)
Sclera, mineralization	1 (50%)	4 (57%)		1 (50%)
rinary System				
Lidney	(50)	(50)	(50)	(50)
Congestion	(50)	(33)		1 (2%)
Cyst	2 (4%)	1 (2%)	3 (6%)	1 (2%)
Hydronephrosis	~ (⁰ , ¹)	* (***)	1 (2%)	- (-//)
Infarct	1 (20%)		1(2%) 1(2%)	
	1 (2%) 38 (76%)	35 (70%)	30 (60%)	20 (40%)
Inflammation, chronic			. ,	14 (28%)
Inflammation, suppurative	10 (20%)	15 (30%) 12 (26%)	20 (40%)	· · ·
Mineralization	20 (40%)	13 (26%)	15 (30%)	8 (16%)
Nephropathy	49 (98%)	49 (98%)	46 (92%)	27 (54%)
Artery, hypertrophy		<u> </u>	00 ///00	1 (2%)
Renal tubule, pigmentation	1 (2%)	23 (46%)	22 (44%)	16 (32%)
Transitional epithelium, hyperplasia	2 (4%)	2 (4%)	1 (2%)	
Irethra	(2)			
Bulbourethral gland, ectasia	1 (50%)			
Jrinary bladder	(50)	(50)	(50)	(50)
Edema		1 (2%)		1 (2%)
Mucosa, hyperplasia	1 (2%)			

^a Number of animals examined microscopically at site and number of animals with lesion

APPENDIX B SUMMARY OF LESIONS IN FEMALE RATS IN THE 2-YEAR GAVAGE STUDY OF PENTACHLOROANISOLE

Table B1	Summary of the Incidence of Neoplasms in Female Rats	
	in the 2-Year Gavage Study of Pentachloroanisole	121
Table B2	Individual Animal Tumor Pathology of Female Rats	,
	in the 2-Year Gavage Study of Pentachloroanisole	124
Table B3	Statistical Analysis of Primary Neoplasms in Female Rats	
	in the 2-Year Gavage Study of Pentachloroanisole	140
Table B4	Historical Incidence of Adrenal Medulla Pheochromocytomas	
	in Female F344/N Rats Administered Corn Oil by Gavage	144
Table B5	Summary of the Incidence of Nonneoplastic Lesions in Female Rats	
	in the 2-Year Gavage Study of Pentachloroanisole	145

. ,

· · ·

- · ·

.

· .

.

Table B1

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Gavage Study of Pentachloroanisole^a

	Vehicle Control	20 mg/kg	40 mg/kg
Disposition Summary		<u></u>	
Animals initially in study	70	70	70
9-Month interim evaluation	10	10	10
15-Month interim evaluation	10	10	10
Early deaths			
Moribund	17	13	4
Natural deaths	4	2	2
Survivors	-	-	-
Terminal sacrifice	29	35	44
Animals examined microscopically	70	70	70
	/ U	70	/v
Alimentary System			
Intestine large, colon	(49)	(1)	(49)
intestine small, ileum	(50)	(1)	(50)
Liver	(50)	(50)	(50)
Hepatocellular adenoma			1 (2%)
Pancreas	(50)		(50)
Acinar cell, adenoma	2 (4%)		
Pharynx	(2)		(1)
Papilloma squamous	1 (50%)		
Stomach, forestomach	(50)	(1)	(50)
Sarcoma stromal, metastatic, uterus	(70)	1 (100%)	
Stomach, glandular	(50)	(1)	(50)
Cardiovascular System		·····	······································
Heart	(50)		(50)
		<u></u>	
Endocrine System			
Adrenal gland, cortex	(50)	(50)	(50)
Adenoma Adrenel elend medulle	1 (2%)	(50)	(70)
Adrenal gland, medulla	(50)	(50)	(50)
Pheochromocytoma benign	3 (6%)	5 (10%)	9 (18%)
Pheochromocytoma benign, multiple	(40)	2 (4%)	(50)
Pituitary gland	(49)	(50)	(50)
Pars distalis, adenoma	18 (37%)	21 (42%)	20 (40%)
Pars distalis, carcinoma	2 (4%)	2 (4%)	3 (6%)
Pars distalis, hamartoma	2 (40)	2 (19)	1 (2%)
Pars intermedià, adenoma Ihyroid gland	2 (4%)	2 (4%)	1 (2%)
C-cell, adenoma	(50)	(2)	(50)
C-cell, carcinoma	7 (14%)		9 (18%)
Follicular cell, adenoma	1 (2%)		
Follicular cell, carcinoma	1 (2%)	1 (50%)	
romediar cell, carcinolia		1 (50%)	

1

General Body System

None

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

· · · · · · ·	Vehicle Control	20 mg/kg	40 mg/kg
Genital System		· · ·	
Clitoral gland			
Adenoma	(50)	(8)	(50)
	5 (10%)	4 (50%)	3 (6%)
Carcinoma	3 (6%)	1 (13%)	2 (4%)
Ovary	(50)	(5)	(50)
Granulosa cell tumor malignant		2 (40%)	
Uterus	(50)	(50)	(50)
Adenoma		1 (2%)	and the state of the
Carcinoma in situ	1 (2%)		
Hemangioma	,		1 (2%)
Polyp stromal	13 (26%)	13 (26%)	7 (14%)
Sarcoma stromal	2 (4%)	1 (2%)	
Vagina	(2)	(1)	(3)
Carcinoma			1 (33%)
Leiomyoma	1 (50%)		
Polyp			1 (33%)
Sarcoma stromal, metastatic, uterus		1 (100%)	
· · ·	1		
Hematopoietic System			,
	(50)		(60)
Bone marrow	(50)		(50)
Lymph node	(50)	(11)	(50)
Renal, fibrosarcoma, metastatic, skin		1 (9%)	
Lymph node, mandibular	(50)	(3)	(50)
Lymph node, mesenteric	(49)	(3)	(50)
Spleen	(50)	(10)	(50)
Thymus	(47) .		(48)
Thymoma benign			1 (2%)
Thymoma malignant	1 (2%)		
	<u> </u>		
Integumentary System	() ()		
Mammary gland	(48)	(21)	(50) (50)
Adenoma	3 (6%)		المتألفة المتعالمين ومحالم المراجع
Carcinoma		. *.	1 (2%)
Fibroadenoma	16 (33%)	10 (48%)	7 (14%)
Skin	(50)	(3)	(50)
Papilloma squamous	1 (2%)		
Squamous cell carcinoma			1 (2%)
Subcutaneous tissue, fibroma	1 (2%)	1 (33%)	
Subcutaneous tissue, fibrosarcoma		1 (33%)	
			· · · · · · · · · · · · · · · · · · ·
Musculoskeletal System			
Skeletal muscle		(1)	-
Sarcoma stromal, metastatic, uterus		1 (100%)	
Nervous System	(50)	, AN	(50)
Brain	(50)	(4)	(50)
Astrocytoma malignant	1 (2%)		
Carcinoma, metastatic, pituitary gland	1 (2%)		
Oligodendroglioma malignant	1 (2%)		

ſ

3

1

.

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

· · · · ·	Vehicle Control	20 mg/kg	40 mg/kg	
Respiratory System	- <u></u>	<u></u>	- <u></u>	• •
Lung	(50)	(7)	(50)	•
Alveolar/bronchiolar adenoma		í (14%)	1 (2%)	
Nose	(49)	(50)	(50)	
Special Senses System	- <u> </u>			
None			- *	. 1
Urinary System	· · · · · · · · · · · · · · · · · · ·	······································		
Kidney	(50)	(50)	(50)	
Urinary bladder	(50)	(1)	(49)	
Systemic Lesions	<u></u>	<u> </u>	<u> </u>	
Multiple organs ^b	(50)	(50)	(50)	
Leukemia mononuclear	11 (22%)	14 (28%)	9 (18%)	• •
Lymphoma malignant lymphocytic	· · · · ·		1 (2%)	. *
Neoplasm Summary		<u></u>	· · · ·	
Total animals with primary neoplasms ^c	45	41	41	
Total primary neoplasms	98	82	80	,
Total animals with benign neoplasms	40	35	35	٠.
Total benign neoplasms	75	60	62	
Total animals with malignant neoplasms	22	20	18	•
Total malignant neoplasms	23	22	18	. ,
Total animals with metastatic neoplasms	1	2		
Total metastatic neoplasms	1	4		

a Number of animals examined microscopically at site and number of animals with lesion b

Number of animals with any tissue examined microscopically ¢

Primary neoplasms: all neoplasms except metastatic neoplasms

Number of Days on Study	2 1 3	5		4		2	2	7	7	-	9	9	1		4	6 6 9	8		8		0		7 2 9			7 2 9	
Carcass ID Number	5	e	5 ()	0	2	6 ·		1	2	7	8	5	6 2 3	3		8	1	9	8	6	3	7	7	7	7	
Alimentary System						_		_	-							_			-						_		······
Esophagus	4		+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large	-		÷	÷	÷	÷	÷	÷	÷	÷	÷	+	÷	+	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	+	÷	
Intestine large, cecum	-		÷	÷	÷		÷	÷		÷				÷		÷				+	+	+	÷	+	+	+	
Intestine large, colon	-		÷	+	÷	+	+	+		+		+	÷	÷		+			+	+	+	+	+	+	+	+	
Intestine large, rectum	-		÷ .	+	+	+	+	÷	÷	÷	+	+	+	+		+		+	+	+	+	+	+	+	+	÷	
Intestine small	4		+ •	+	+	+	+	+	+	÷	÷	+	+	+	+	+		÷	+	+	+	+	+	+	+	+	
Intestine small, duodenum	-		+ ·	+	÷	+	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	÷	+	÷	÷	+	+	+	+	÷	,
Intestine small, ileum			÷	÷	÷	÷	÷	÷	+	+	÷	÷	÷	÷	÷	÷	+	+	+	+	+	÷	+	+	+	+	
Intestine small, jejunum	-			÷	÷	÷	÷	÷	+	+	÷	÷	÷	+	÷	+	÷	+	÷	÷	+	+	+	+	÷	+	
Liver	· 4		÷	÷	÷	÷	÷	+	÷	+	÷	+	+	÷	÷	÷	+	÷	+	+	÷	+	÷	+	+	÷	
Mesentery			•	•	•	•	•	•	+		+	•		'	•	•	+	+	•	•	•	÷	•	•	÷	•	
Pancreas	-		÷.	+	+	Ŧ	+	÷		+		+	Ŧ	+	+	+			+	+	+	+	+	+	+	+	
Acinar cell, adenoma	•			•	•	1	1	'	ľ		'	'	•	'	•		•	'	•	'	•	•		•	•	•	
Pharynx																											
Papilloma squamous																											
Salivary glands		L _	.	-	±.	Ъ	-	Ъ	1	Т	1	-	ъ	+	+	-	+	1	+	+	+	+	+	+	+	+	
Stomach	-		т L	Ŧ	Ť	Ŧ	Ŧ	Ť	Ŧ	+	Ŧ	Ť	+		- -	+		+	+	т -	+		+	-	4		
Stomach, forestomach	ا بہ		т -	- -	÷.	т —	+	+	÷	T T	÷	÷		+	÷		+		+	÷	+	+	÷		÷	÷	
Stomach, glandular			т 1	1	т Т	-			+	+	1	+				+				+				1		÷	
Tongue			r	-	т	7	'	7	'	T.		'	•	•	1		•	'	•	1		'	•	'	•		
Tooth									+																		
Cardiovascular System Heart			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System																					_						
Adrenal gland	-	⊦ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex Adenoma		+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X		
Adrenal gland, medulla	-	⊦ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	
Pheochromocytoma benign																						Х				Х	
Islets, pancreatic	+	⊦ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Parathyroid gland	-	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pituitary gland	-	⊦ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pars distalis, adenoma										Х		х					х		х	Х			Х	Х	X		
Pars distalis, carcinoma															Х	х											
Pars intermedia, adenoma																											
Thyroid gland	-	۴.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
C-cell, adenoma				×.							X								x			\mathbf{x}^+			Х		
C-cell, carcinoma											-																
Follicular cell, adenoma											х																

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control

General Body System

None

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

124

Table B2

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

Number of Days on Study	7 2 9	2		2			, 2 9	2 9	7 2 9			7 3 0	7 3 0	7 3 0	7 3 0			3	7 3 0		3	, 3 0		, 3 0		3	
Carcass ID Number	8	8	3	9	9	9	0	0	0	1	1	1	2	3	3	6 3 5	4		4	4	4	5	5	5	6	6	Total Tissues Tumors
Alimentary System																				•				·			
Esophagus	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+		+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	`+	+	+	+	+	+	+	50
Intestine large, cecum	+		÷	+	+	+	+	+	+	+	+	+	+		-	+	•		+		+	+	+	+	+	+	50
Intestine large, colon	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M		+	+	+	49
Intestine large, rectum	+		ł	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	50
Intestine small	+		ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	50
Intestine small, duodenum	+		+	+	+	+	+	+	+	+	+	+	+	+	+		÷	+	+	+	+	+	+	+	+	+	50
Intestine small, ileum	+		÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, jejunum	+		ŧ.	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	50
Liver	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Mesentery							+		+			+			+	+					+					+	13
Pancreas	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Acinar cell, adenoma										х															х		2
Pharynx							+																		+		2
Papilloma squamous							х																				1
Salivary glands	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, glandular	. +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Tongue										+																	1
Tooth														+													2
Cardiovascular System																											
Heart	+	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																					-						
Adrenal gland	+	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	• •	t	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma																											1
Adrenal gland, medulla Pheochromocytoma benign	+	• •	t	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	50
	L		L	Ŧ	Ŧ	+	-	L	.	т.	ب	л.	L.	д.		+	L.		L.	ا لہ	л.	ــ	X	<u>ـ</u> ـ	. L	ـ	3
Islets, pancreatic Parathyroid gland																+											50 50
Pituitary gland	T N	4	• +-	+	+	+	÷	- -	÷	+	+	+	+	+	+	+	+	+ +	+	+ +	т +	+	т +	+	т +	+ +	30 49
Pars distalis, adenoma	14		×.			x		•				x		1	x		'	'	•		X			x		x	18
Pars distalis, carcinoma																											2
Pars intermedia, adenoma																			х							х	2
Thyroid gland	+	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x +	50
C-cell, adenoma								х						Х													7
C-cell, carcinoma																								х			1
Follicular cell, adenoma																											1

General Body System None

 IABLE B2

 Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole:

 Vehicle Control (continued)

Vehicle Control (continued)						••						-														-		•	
Number of Days on Study		· .		2 1 3	5	4 4 4	7	55 22 26	7	5 7 9	5 8 9	9	5 (9 1 6 (2		6			6 8 7	7 0 5	0	7 7 1 2 8 9	2 :	2 2	7	2			
Carcass ID Number	•	•		5			6 0 1		9	6 1 1	2		5 6 8 5 1 2	52	-	6 2 4	5 8 2	6 1 2	5 9 2		6	6 5 3 7 2 7	7	5 ± 7 * 3 4	5 : 7 [:] 4 :	7			
enital System Clitoral gland Adenoma Carcinoma Ovary				+ +	(+) (+)	+ +	+	 + - +	- +	+ X +	+	+ + +	+ ·	+ +	- + - +	`+ ,+	++	+++	++	+ X +	+ X +	+ ·	+ +	+ -	+	+	· · · ·		
Uterus Carcinoma <i>in situ</i> Polyp stromal Sarcoma stromal Vagina Leiomyoma				+	· +	+	+	+ + X	- + (• +	`+	+ x	+ ·	+ + + X N	C	+ ∵x	+	+	+	+ X	+	+ ·	+ X: 1	+ · X .	+	+	• , •	•	
ematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus Thymoma malignant	<u>ن</u> ب	- - - -		+++++++++++++++++++++++++++++++++++++++	+ + + + + X	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	- + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + + + + +	+ · + · + ·	+ + + + + +	- + - + - + - + - M	+++++++++++++++++++++++++++++++++++++++	++++++	+ + + + + +	+++++	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	 + + + + + + + +			
ntegumentary System Mammary gland Adenoma Fibroadenoma Skin Papilloma squamous Subcutaneous tissue, fibroma			• • •'	₩ +	[+ +	+	́м +	X	+ + X + +			+	+` · +; ·	+ + +	- + X - +	+	+ +	+	+ x +	+	+ X +	+ · X + ·		+ X : +		+	••••		
Ausculoskeletal System Bone				+	·~ +	+	+	+ +	÷ +	÷ +	+	+	+	+ 4	- +	+	+	+	+	+.	+	+	ŧ	+	+	+			. •

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

9 9 9 9 9 9 9 9 0		•					
Carcass ID Number 8 8 9 9 0 0 1 1 1 2 3 3 4 4 4 4 5 5 5 Genital System Clitoral gland + <td< th=""><th>77 33 00</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	77 33 00						
Clitoral gland + + + + + + + + + + + + + + + + + + +	56	55	5	6	6	6	Tissue
Clitoral gland + + + + + + + + + + + + + + + + + + +							
AdenomaXXXCarcinomaOvary+ + + + + + + + + + + + + + + + + + +	+ +	+ +	+	+	+	• +	- 50
Carcinoma Ovary + + + + + + + + + + + + + + + + + + +		κ.	•	•		x	
Ovary Uterus $+ + + + + + + + + + + + + + + + + + + $	х			х	х		3
Uterus + + + + + + + + + + + + + + + + + + +		+ +	+			-	-
Carcinoma in situXXXPolyp stromalXXX<							-
Polyp stromal X X X X X X X X Sarcoma stromal + + Vagina + + Leiomyoma X X Bone marrow + + + + + + + + + + + + + + + + + + +		•	•			•	1
Sarcoma stromal + Vagina + Leiomyoma X Hematopoietic System + Bone marrow + Lymph node + Lymph node, mandibular + Lymph node, mesenteric + Spleen + Thymus + Thymoma malignant + Integumentary System X Mammary gland + Adenoma X Fibroadenoma X Subcutaneous tissue, fibroma X Musculoskeletal System X							13
Vagina + Leiomyoma X Hematopoietic System Bone marrow Bone marrow + + + + + + + + + + + + + + + + + + +							2
Leiomyoma X Hlematopoietic System	+			+	+		2
Bone marrow $+ + + + + + + + + + + + + + + + + + + $					•		1
Lymph node $+ + + + + + + + + + + + + + + + + + + $					-		
Lymph node $+ + + + + + + + + + + + + + + + + + + $	+ +	+ +	+	+	+	• +	- 50
Lymph node, mandibular Lymph node, mesenteric Spleen Thymus Thymoma malignant Integumentary System Mammary gland Adenoma Fibroadenoma Skin Papilloma squamous Subcutaneous tissue, fibroma Musculoskeletal System Mammary System	+ +	+ +	+	+	+	+	- 50
Lymph node, mesenteric Spleen Thymus Thymoma malignant Integumentary System Mammary gland Fibroadenoma Fibroadenoma Subcutaneous tissue, fibroma Musculoskeletal System Musculoskeletal System	+ +	+ +	+	+	+	• +	- 50
Spleen $+ + + + + + + + + + + + + + + + + + + $	+ M	+ +	+	N	М	1 +	- 49
Thymus Thymoma malignant $+ + + + + + + + + + + + + + + + + + + $	+ +	+ +	+	+	+	+	- 50
Thymoma malignant Integumentary System Mammary gland + + + + + + + + + + + + + + + + + + +	+ +	+ +	+	+	+	• +	
Adenoma Fibroadenoma X X X X X X X X X X X X X X X X X X X			-		-	•	1
Mammary gland + + + + + + + + + + + + + + + + + + +							
Adenoma Fibroadenoma X X X X X X X X X X X X X X X X X X X	+ +	+ +	+	. 4	+	• +	- 48
Fibroadenoma X X X X X X X X X X X X X X X X X X X		•		,	•	x	
Skin + + + + + + + + + + + + + + + + + + +		x					16
Subcutaneous tissue, fibroma 	+ +	+ +	+		+	• +	- 50
Subcutaneous tissue, fibroma Musculoskeletal System	•••		·	•	Ĵ	•	1
Musculoskeletal System							1
Bone $+ + + + + + + + + + + + + + + + + + +$							
	+ +	+ +	+	-+	+	· +	- 50

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

								_							_					_								
Number of Days on Study	2 1 3	3 5 3	4 4 4	4 7 7	5 2 2	5 2 6	5 7 9	5 7 9	5 8 9	5 9 0	5 9 6	6 1 6	6 2 0	6 4 0		6 8 3	6 8 4	6 8 7	7 0 5	7 0 5	7 1 8	_	7 2 9	7 2 9	_	- ,		,
Carcass ID Number	5		0	0	2		9	1	2	7			2	3	6 2 4	8		9	8			7	7	5 7 4	7			
Nervous System Brain Astrocytoma malignant Carcinoma, metastatic, pituitary gland Oligodendroglioma malignant Peripheral nerve	+	+	+ x	+	+	+	+	+	+	+	+	+ x	+	+	+ x	+	+	+	+	+	+	+	+	+	+			
Respiratory System Lung Nose Trachea	++++++	++++	+++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++	+ + +	+++++	+++++	++++	++++	+ + +	++++	+ + +	++++++	++++	+ + +	+ + +	+++++	+++++	+++++	+ + +	+ + +	+ + +	+++++			
Special Senses System Eye			<u> </u>																	·								
Urinary System Kidney Urethra Urinary bladder	+	+ +	++	+++++		++	+ +	++	+	+ +	++	++	++	+ +	-		+ +											
Systemic Lesions Multiple organs Leukemia mononuclear	+	+	+	+	+	+ X	+ X	+	+	+	+	+	+	+	+	+	+ x		+	+	+	+	+ X	+	+		•	

Table B2

. .*

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

	_			_								_	_						_					_	
7 2 9	7 2 9	_		-	-	7 2 9	7 2 9			7 3 0	7 3 0	7 3 0				7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	-	-	
8	8	9	9	9	0	0	0	1	1	1	2	3	3	3	4	4	4	4	4	5	5	5	6	6	Total Tissues Tumors
+	• +		 +	<u>-</u>	• +	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
																							+		1 1 1 1
		- +	⊦ 4 ⊦ 4	- + - +	· + · +	++++++	+++++	+ + +	+++++	++++++	+++++	++++	++++	+++++	+++++	+++++	++++	+ + +	+++++	+ + +	+++++	+++++	+++++	+ + +	50 49 50
												_							+						1
+	· -1		+ +		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
+	• •		⊦ +		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
	5 8 4 + + W +	5 5 8 8 4 5 + + + + M + + +	9 9 9 5 5 5 8 8 9 4 5 3 + + + + M + + + + +	9 9 9 9 5 5 5 5 8 8 9 9 4 5 3 4 + + + + + M + + + + + + + + +	9 9 9 9 9 9 5 5 5 5 5 8 8 9 9 9 4 5 3 4 5 + + + + + + M + + + + + + + + + + +	9 9 9 9 9 9 9 5 5 5 5 5 6 8 8 9 9 9 0 4 5 3 4 5 3 + + + + + + M + + + + + + + + + + + + + + + + + +	9 9 9 9 9 9 9 9 9 5 5 5 5 5 6 6 8 8 9 9 9 0 0 4 5 3 4 5 3 4 + + + + + + + + M +	9 9 9 9 9 9 9 9 9 9 5 5 5 5 5 6 6 6 8 8 9 9 9 0 0 0 4 5 3 4 5 3 4 5 + + + + + + + + + M +	$9 9 9 9 9 9 9 9 9 9 0 0 0 1 \\ 5 5 5 5 5 5 6 6 6 6 6 \\ 8 8 9 9 9 0 0 0 1 \\ 4 5 3 4 5 3 4 5 3 \\ + + + + + + + + + + + + + + + + + + +$	9 9 9 9 9 9 9 9 9 9 0 0 $5 5 5 5 5 6 6 6 6 6 6$ $8 8 9 9 9 0 0 0 1 1$ $4 5 3 4 5 3 4 5 3 4$ $+ + + + + + + + + + +$ $M + + + + + + + + + + + + + + + + + + +$	9 9 9 9 9 9 9 9 9 0 0 0 0 5 5 5 5 5 6 6 6 6 6 6 6 8 8 9 9 9 0 0 0 1 1 1 1 4 5 3 4 5 3 4 5 3 4 5 + + + + + + + + + + + + + + + + + + +	9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 5 5 5 5 5 6 6 6 6 6 6 6 6 8 8 9 9 9 0 0 0 1 1 1 1 2 4 5 3 4 5 3 4 5 3 4 5 5 + + + + + + + + + + + + + + + + + + +	9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 8 8 9 9 9 0 0 0 1 1 1 1 2 3 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 5 3 4 + + + + + + + + + + + + + + + + + + +	2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 9 9 9 9 9 9 9 9 9 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 3 4 5 5 5 5 5 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5	2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	2 2 2 2 2 2 3

Pentachloroanisole, NTP TR 414

TABLE B2

· · · · · · · · · · · · · · · · · · ·		. 2	3	5	٢.	6	6	6,6	6	6	6	6 1	7 7	7	7	7	7	7	7	7	7	7	7	7		
Number of Days on Study	τ.	3	4	4 .	8	1	2 (4 6	7	8		9 (01	2	3	3	3	3	3	3	3	3	3	3		
· · · · · · · · · · · · ·		0	5	1	9	1	5	77	3	7	9 .	5 2	28	. 4	2	6	6	6	6	6 "	6	6	6	6		
		· .		_			~					~					_		~		_		~			
Carcass ID Number		8 5	8 5	· 8 7	9 0	9 2	8 5	в в 8,5	_8 _9	.8 5	8 8	9 : 3 :	99 30	2	8 7	8 6	8 6	8 6	8 6	8 6	8 7	8 7	8 7	8 8		
		1	2	1	1	1	3	14				2 :		2	2	1	2	3	4	5	3	4	5	3		
								<i>,</i> .								-										•
limentary System Intestine large				+																						
Intestine large, cecum				+																		۰.			•	÷
Intestine large, colon				+																						
Intestine large, rectum				+																				:		•
Intestine small				+																						
Intestine small, duodenum				+																	•					
Intestine small, ileum				+																						
Intestine small, jejunum				÷																					•	•
Liver		 +	· +	+	+	+	+	+`+	- + [`]	+	+	+ ·	+ +	· +	+	+	+	+	+	+	+	+	+	+		
Mesentery																	+						+			
Stomach						+					÷															
Stomach, forestomach						+																				
Sarcoma stromal, metastatic, uterus						Х												•								
Stomach, glandular						+																				
		··· ·																								
ardiovascular System None				÷			±	• • • •	1.55				4. ¹					-							•	
None ndocrine System				<u>.</u> ب			<u>؛</u>	·····	<u> </u>			<u>,</u>							<u></u>	<u></u>	<u> </u>		<u>.</u>		•	
None ndocrine System Adrenal gland	· · · · · · · · · · · · · · · · · · ·	+				++++	 + +	+ +	- +	+++++	+.	+	 + _ +	· · · ·	+++++++++++++++++++++++++++++++++++++++	++	++	+ +	++	++	++	++	<u>+</u> ++	++	• .	
None ndocrine System Adrenal gland Adrenal gland, cortex		+		+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,	+++++++++++++++++++++++++++++++++++++++	+++	+ + +	+ + + +	- +	+++++++++++++++++++++++++++++++++++++++	+	+	+ + +	· · · ·	+++++	++++	+++	+ +	++++	++++	++++	+++	+ + + +	+++		
None ndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign	· · · · · · · · · · · · · · · · · · ·	+	 - + - +	+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,	+ + +	++++	÷ + +	+ + + + + +	- + - +	+++++	+	+ + + +	+ + +	· +	+ + + X	++++	++++	++++	+++++	+++	++++	+ + +	++++++	+++	•	· · ·
None ndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple		+		+++++++++++++++++++++++++++++++++++++++	+ + + +	++++	<u>+</u> + +	+ + + + + +	- + - + - +	+++	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + +	- + - +	+ + + X	+++	++++	++++	++++	+++	+++	++++	++++	++++	•	· · · ·
None ndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland		+++++++++++++++++++++++++++++++++++++++	 + + + +	+ + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + +	- + + + + + + + + + + + + + + + + + + +	+++ +	+ + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	· · · ·			+++++++++++++++++++++++++++++++++++++++	++ + +	+++++++	+++++++++++++++++++++++++++++++++++++++	+++ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	•	
None ndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma		+++++++++++++++++++++++++++++++++++++++		+ + +	+ + + + + X	+++;	+ + +	+ + + + + + X	- + + + + + + + + + + + + + + + + + + +	++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	+ + + + + + + + X	+++++++++			+++++++++++++++++++++++++++++++++++++++	++ ++ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++ + X	+++++++++	+++++++++++++++++++++++++++++++++++++++	+++ ++ + + X		· · · ·
None Adrenal gland Adrenal gland, cortex Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma		+++++++		+++++++++++++++++++++++++++++++++++++++	+++++++*******************************	+++	<u></u>	+ + + + + + X	+	+++	+++++++	++++++++++	++++++++X	++++++++++++++++++++++++++++++++++++++			+++++++++++++++++++++++++++++++++++++++	+ + +	++++++++	+++++++++++++++++++++++++++++++++++++++	+++ + + X	+++ +	+++++++++++++++++++++++++++++++++++++++		· · · · · · · · · · · · · · · · · · ·	
None ndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma Pars intermedia, adenoma		+++++			+++++++	+++	<u>+</u> +++ +	+ + + + + + X	- + + - + + - + X+ - + X+ X+	·+++ ··	+++++++++++++++++++++++++++++++++++++++	+++++++++	+ + + + + + + + + X X	++++++++			+++ + +	+++++++++++++++++++++++++++++++++++++++	+++++++	+++++++++++	+++ + X	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++		· · · · · · · · · · · · · · · · · · ·	· · ·
None ndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma		· · · · · · · · · · · · · · · · · · ·		+ + +	++++++ +	+++	<u>+</u> +++ +	+ + + + + + + + + + + + + + + + + + +	+	· + + + · · · · · · · · · · · · · · · ·	+	+++++++++	+ + + + + + X X	++++++++			+++ + +	· + + + + + +	++++++++	+++++++++++++++++++++++++++++++++++++++	+++ + X	+++++++++++++++++++++++++++++++++++++++	+++ +			
None ndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma Pars intermedia, adenoma Thyroid gland Follicular cell, carcinoma		· · · · · · · · · · · · · · · · · · ·		× + + + + + + + + + + + + + + + + + + +	+++++ +	+++	<u>+</u> +++ ++	+ + + + + + + + + + + + + + + + + + +	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + X	+ + + + + + + + + + + + + + + + + + +	++++++++++++++++++++++++++++++++++++++			+++ +	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	+++ × +X	+++	+++ +		· · · · · · · · · · · · · · · · · · ·	
None Adrenal gland Adrenal gland, cortex Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma Pars intermedia, adenoma Thyroid gland Follicular cell, carcinoma		+		+ + + + + + + + + + + + + + + + + + +		+++	··· ·		× +	+++++++++++++++++++++++++++++++++++++++	+		<u>.</u>	++++++			+++ + +	· + + + + + + + + + + + + + + + + + + +	++++	+++++++++++++++++++++++++++++++++++++++	+++ × +X × ×	+++	+++ +			
None ndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, adenoma Pars distalis, carcinoma Pars intermedia, adenoma Thyroid gland Follicular cell, carcinoma eneral Body System None		· · · · · · · · · · · · · · · · · · ·		++++++++++++++++++++++++++++++++++++++		+++	··· ·	+ + + + + + + + + + + + + + + + + + +	× +	+++	+ + +	+++++++++	<u>.</u>	++++++++++++++++++++++++++++++++++++++			+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++ + + X + 1 = 1	+++	+++ +			
None ndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma Pars intermedia, adenoma Thyroid gland Follicular cell, carcinoma eneral Body System None		· · · · · · · · · · · · · · · · · · ·	······································	× +;+;+		+++	··· ·		× +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	- - - - - - - - -		++++++++++++++++++++++++++++++++++++++			+++++++++++++++++++++++++++++++++++++++	· + + + + + + + + + + + + + + + + + + +	+++ +	+++	+++ + +X	++++	+++ +			
None ndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, adenoma Pars distalis, carcinoma Pars intermedia, adenoma Thyroid gland Follicular cell, carcinoma eneral Body System None		· · · · · · · · · · · · · · · · · · ·		<u>*</u> +,+,+, +		+++	··· ·		× +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	- - - - - - - - -	<u>.</u>	· · · · · · · · · · · · · · · · · · ·			+++++++++++++++++++++++++++++++++++++++	· + + + + + + + + + + + + + + + + + + +	+++ +	+++	+++ × +X ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·	+++++++++++++++++++++++++++++++++++++++	+++ +			
None ndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma Pars intermedia, adenoma Thyroid gland Follicular cell, carcinoma eneral Body System None Menital System Clitoral gland		· · · · · · · · · · · · · · · · · · ·		++++++++++++++++++++++++++++++++++++++		+++	··· ·		× +		+++++++++++++++++++++++++++++++++++++++			+++ ++ X			+++ + +	++++ ++ +	+++++	+++	+++ × +X × ×	+++	+++ +			
None Adrenal gland Adrenal gland, cortex Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign Clitoral gland Adenoma Carcinoma Ovary				+++++++++++++++++++++++++++++++++++++++			··· ·		× +	+++++++++++++++++++++++++++++++++++++++	+ + + + +			· · · · · · · · · · · · · · · · · · ·			+++ + +	++++ + + X	+++++	+++		+++	+++ +			
None Cndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign Pheochromo		· · · · · · · · · · · · · · · · · · ·					··· ·		× +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +			· · · · · · · · · · · · · · · · · · ·			+++ + +	+++ ++ + +	+++	+++		+++	+++			
None Adrenal gland Adrenal gland, cortex Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma Pars distalis, carcinoma Thyroid gland Follicular cell, carcinoma General Body System None Senital System Clitoral gland Adenoma Carcinoma Ovary Granulosa cell tumor malignant Uterus		*		++++++++++++++++++++++++++++++++++++++		++++ +++- +	··· ·		× +	+++ ++ ++ ++	+.+.++			<u>.</u>	+ + +		+++ + + + + + + + + + + + + + + + + + +	++++ + + + + + +	+++	+++++++++++++++++++++++++++++++++++++++	+++ + + X	+++++++++++++++++++++++++++++++++++++++	+++ + + + + + + + + + + + + + + + + + +			
None Cndocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma Pars distalis, carcinoma Pars intermedia, adenoma Thyroid gland Follicular cell, carcinoma General Body System None Cenital System Clitoral gland Adenoma Carcinoma Ovary Granulosa cell tumor malignant Uterus Adenoma				····			··· ·	· · · · · · · · · · · · · · · · · · ·		+++ ++ ++ ++	+				+ + +		+++ + + + + + + + + + + + + + + + + + +	++++ + + + X	+++	+++++++++++++++++++++++++++++++++++++++	• • • • • • • • • • • • • • • • • • •	•	+++ + + + + + + + + + + + + + + + + + +			
None Endocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign Seneral Body System None Clitoral gland Adenoma Carcinoma Ovary Granulosa cell tumor malignant Uterus Adenoma Polyp stromal				· · · · · · · · · · · · · · · · · · ·		÷	··· ·			++++++++++++++++++++++++++++++++++++++	+				+ + +		+++ + + + + + + + + + + + + + + + + + +	++++ + + X +	+++ + + + + + + + + + + + + + + + + + +		+++ + + X + X + X + X + X + X + X + X +	•	++++++++ ++ x			
Endocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma Pars intermedia, adenoma Thyroid gland Follicular cell, carcinoma General Body System None Genital System Clitoral gland Adenoma Carcinoma Ovary Granulosa cell tumor malignant Uterus Adenoma				*** ***		++++ + + + + + + + + + + + + + + + + +	··· ·	· · · · · · · · · · · · · · · · · · ·		++++ ++ + *	+				+ + +		+++++++++++++++++++++++++++++++++++++++	+++ + + + + + + +	+++ + + + + + + + + + + + + + + + + + +		• • • • • • • • • • • • • • • • • • •	•	+++++++ ++ ×			

130

.

Table B2

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

(continued)									·									÷									
Number of Days on Study		7 3 6	3	7 3 6		7 3 6	7 3 6			3	3				3	7 3 6	7 3 6		7 3 7	3							
Carcass ID Number	-	8 8 4	8	8 9 1			8 9 4	0		0	1					9 2 3	9 2 4		9 3 3			9 4 1	9 4 2	9 4 3	4		Total Tissues Tumors
Mimentary System Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Mesentery Stomach Stomach, forestomach Sarcoma stromal, metastatic, uterus Stomach, glandular		+	- +	· •	+	+	+.	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	1 1 1 1 1 1 1 50 3 1 1 1 1 1
Cardiovascular System None			•		.,		• •							_													<u></u>
Endocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Pheochromocytoma benign, multiple Pituitary gland Pars distalis, adenoma Pars distalis, carcinoma Pars intermedia, adenoma Thyroid gland Follicular cell, carcinoma		+ + + X	- +					* *	++++ +X +X	++++	х +	+ + + + + X	+	+ X	х	+++++++		+	+	+	+ X	+++++++++++++++++++++++++++++++++++++++	+	+	х	х	50 50 5 2 50 21 2 2 2 2 1
General Body System None																											
Genital System Clitoral gland Adenoma Carcinoma Ovary Granulosa cell tumor malignant Uterus Adenoma Polyp stromal Sarcoma stromal Vagina Sarcoma stromal, metastatic, uterus		+ X	+ + - +	+	+	+	+ * + X	+ X +	+	+	+	+	+	+	+ x	+ X	+	+ X	+	+	+	+ + x	+	+ x + x	+	+ X +	8 4 1 5 2 50 1 13 1 1 1

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

																			_	_								
Number of Days on Study	3 3 0		4	4 8	3 :	1 :	6 (2 4 5 7	6	-	6 8 7	6 8 9	6 9 5				7 3 2	7 3 6	7 3 6	7 3 6	7 3 6	7 3 6	7 3 6	7 3 6	7 3 6	7 3 6			
Carcass ID Number	8 5 1	1	5	7 (9 9	9 1 2 1 1 1	8 8 5 8 3 1	_	9		-	9 3 2	3	0	2	7	6	6			8 6 5	8 7 3	8 7 4	8 7 5	8			
Iematopoietic System																							_			l		
Lymph node	+	⊦ -	+			+		+	-				+					+	+					+				
Renal, fibrosarcoma, metastatic, skin	х																											
Lymph node, mandibular						+																						
Lymph node, mesenteric								H	-									+										
Spleen		-	+				+	-	-	+	+	+	+											+				
ntegumentary System					-									_									_					
Mammary gland					+			+ 4	- +	+		+	+		+	+			+									
Fibroadenoma					•				•	x		x	•		ż	•			•									
Skin	+	F																					+					
Subcutaneous tissue, fibroma																												
Subcutaneous tissue, fibrosarcoma	Х	2																										
lusculoskeletal System										•									·				_					
Bone					+																	+						
Skeletal muscle						+																						
Sarcoma stromal, metastatic, uterus						X																						
Nervous System																											-	
Brain		•	+					ł					+			+												
			_			-												-										
Respiratory System																												
Respiratory System Lung	+	-					+		+			+	+										+	+				
	+	÷					+		+ X			+	+										+	+				
Lung	+ +	⊦	+	+	+	+	+ + ·	+ +			+	+ +	+ +	+	+	+	+	+	+	+	+	+	+ +		+			
Lung Alveolar/bronchiolar adenoma Nose	+	⊦ 	+	+	+	+	+ + ·	+ +			+	+ +	+	+	+	+	+	+	+	+	+	+	+ +		+			
Lung Alveolar/bronchiolar adenoma Nose	+	⊦ 	+	+	+	+	+ ·	+ +			+	+	+	+	+	+	+	+	+	+	+	+	+		+			
Lung Alveolar/bronchiolar adenoma Nose Special Senses System Eye	+	► 	+	+	+	+	+ ·	+ +			+	+	+	+	+	+	+	+	+	+	+	+	+		+			
Lung Alveolar/bronchiolar adenoma Nose pecial Senses System Eye	+ + +	⊦ 	+ 	+	+	+ +	+ ·			+	+	+	+	+	+	+		+	+	+	+	+	+	+				
Lung Alveolar/bronchiolar adenoma Nose Special Senses System Eye Urinary System	+	► ·	+ 	+	+	+	+ ·		× +	+	+	+	+	+	+	+		+	+	+	+	+	+	+				
Lung Alveolar/bronchiolar adenoma Nose Special Senses System Eye Urinary System Kidney Urinary bladder	+	► ·	+	+	+	+	+ ·		× +	+	+	+	+	+	+	+		+	+	+	+	+	+	+				
Lung Alveolar/bronchiolar adenoma Nose Special Senses System Eye Urinary System Kidney Urinary bladder	+	⊧ ·	+ + 	+ + + + + + + + + + + + + + + + + + + +	+	+	+ ·		× +	+	+ + + +	+	+	+ + + +			+		+ + +			_	+	+	+			
Alveolar/bronchiolar adenoma Nose Special Senses System Eye Urinary System Kidney	+	⊧ · 	++ ++ + x	+ + +	+	+	+ ·		× +	+ + +		+	+	+ + +	+		+					_	+	+	+			

~

TABLE B2

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

(continued)																											
Number of Days on Study	7 3 6	3	7 3 6	7. 3 6	3	7 3 6	7 3 6	7 3 6	7 3 6	7 3 6	7 3 6		7 3 7														
Carcass ID Number	8 8 4	8	9	8 9 2	8 9 3	8 9 4	9 0 3	9 0 4	9 0 5	9 1 1	9 1 2		9 1 4	9 1 5	9 2 3	9 2 4	9 2 5	9 3 3	9 3 4	9 3 5	9 4 1	9 4 2	9 4 3	9 4 4	9 4 5		tal sues/ mors
Hematopoletic System Lymph node Renal, fibrosarcoma, metastatic, skin Lymph node, mandibular Lymph node, mesenteric Spleen							+ +	+ +		м			+					+						++		11 1 3 3 10	
Integumentary System Mammary gland Fibroadenoma Skin Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma	+ X				+ x					+ X			+	+ X			-	+			+				+	21 10 3 1 1	
Musculoskeletal System Bone Skeletal muscie Sarcoma stromal, metastatic, uterus														+	+				+			+				6 1 1	
Nervous System Brain																										4	
Respiratory System Lung Alveolar/bronchiolar adenoma Nose	+	- - +	• +	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	7 1 50	
Special Senses System Eye		+														+					<u> </u>	+				4	
Urinary System Kidney Urinary bladder	+	· +	• +	· +	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	50 1	
Systemic Lesions Multiple organs Leukemia mononuclear	+	· +	• +	+	+	+	+	+	+ x	+	÷	+	+ X	+ x		+	+	+	+	+	+ x	+	+	+ X	+ X	50 14	

二百姓 化二氯化乙 Pentachloroanisole, NTP TR 414

* :

. . .

TABLE B2

ath	olog	у о	f F	'em	ale	e R	at	s iı	n t	he	2-`	Yea	11	Ga	vag	ge S	Stu	ıdy	of	Pe	ent	acl	hla	ro	an	iso	le:	4	0 r	ng/l	kg.	: د تا ب
		ing statio	_				-	-		-	_			~				-				_				~	_					_
				2	2	0	1	1	7	7		1	7	7	1				/ ~ ·			/	7	1:	2	7	7	2				:
				1	~	4	1	ſ	2					3	3							5	3		3	3	3	3				
					U	8	2	5	3	U	U	U	U	T .	1	1	1	1	1	1.	1.	L	1	I	I	1	Ţ	T				
				7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		, ,	, ,	7	7	7	7	7	7.	7				
				7	, ,	4	1	2	7	1		1	1	י. ר	' <u>`</u>	2	' 2	, ,	, 2 ·	, 2 ,	, 2 (2	<u>,</u>	Å	<i>.</i>	<i>'</i>	5					
				1	1	2	1	1	2	2		4	5	1	2	2	Δ	5	-			-	7	2	x.	5	1	-				
	• • •			•	•	2				~	5	•		•		5	-	. .	.		· ·		2		-	5	•	2				
															_				_									· • •		, ,		
				.+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+ -	+	+ -	+	+	+	+	+	+	+				
				+	+	÷	+	+	÷	÷	÷	÷	÷.		+	+	+	+	+ .	+		+	÷	+	÷	÷	+	+				
				÷	+	÷	÷	4	÷	+	÷	÷	+		+	+	÷	÷	÷ .	÷ .	÷ .	÷	÷	÷	÷	. ÷	+	4		•		
				4	4	÷	÷	+	4	÷	÷	+	÷				м	÷	÷ .	÷ .		÷	÷	÷	÷	· · ·	4	÷.				
	•			+	4	4	4	÷	4	, /F	÷	+	+		+	+	+	+	+	÷.	+	+	+	÷	+	4	÷	4	•			
	•			т -	т Т	1	1	÷	Ť	÷.	Ť	т. Т	÷	- -	+	÷	+	+	- -	÷.	+	+	- -	+	÷	Ť		Ļ				
				÷	÷	а —	÷	÷	. T	-T -	÷	÷	1		. I	÷	- T	т —	т 	Ļ.		÷	т 	÷	÷	÷	_	÷				
				т -	от Ц	ч —	т —	.т —	т 	т 	т -	Ť	т Т	•	, _	т —	т -	т 	т -	т —	т.	т _	т 	÷	т. Т.	т —	т 	÷				
	· ·			т -	- -	- -	т Т	т 	т 	т 	- -	т 	Ť		Ť	т —	т -	т _	т —	т -	т	т -	т -	т -	т _	т. Т		÷.	•			
			•	Ţ	Ţ	Ť	T	ਤਾਂ ਹ	ਤਾਂ ਹ	Ţ	Ţ	T	ਨੂੰ ਹ		Ť	Ţ	T				т :	T	Ţ	т _	T.	Ţ	Ť	- -				
				· T	Т	т	т	т	т	T	т	т	т	т	т	т	т	т	T	т	T	т	т	т	т	т	Ŧ	Ŧ		• • *		
		5								14																						
					·.					÷.	۰.	+	·	•	+																	
				+	+	T	т	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	+	т	т	Ŧ	+	T	т	T	Ŧ	Ŧ	т	т	T	Ŧ	т				
							۰.					· .		्तः			· .											· .				
				+	+	+	+	+	+	÷.	+	+	·+	.+	+	+	+	+	+	+	+ ·	+	+	+	+	+	+	T	•	÷		
		4		+	- 1	+	+	·+	- 1	+	+	+	+	+	+	+	+	+	+	+ ·	+ ·	+	+	+	+	+	+	+				
	•		-	+	+	- 1	·+	+	4	.+	; †		. +	+	+	+	÷+	+	+ '	+	+ ·	+	+	+	+	+	+	+				
				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		•		
																										+					•	
		÷																														
																					• • •		_				• •	. :	• •	÷.,	ſ	-
	· 1	•		÷		•						••	•		4	••															· •	
				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
•							•			4.55	••••		• ·	• -			•	<i>.</i>	_	-	· ·	,				••					•	
	,							-			*																				. •	
				+	+	+	., +	+	+	+	.+	.+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	• +				
				.+	+	+	+	+	+	_+	+	+	÷	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	. +	. '			
			. *	+	· +	+	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+ -	+	+	÷.	+	+	,• +	.+			·	
							Х		٠X			•	Х			-					Х						. •					
		¢		+	+	+	.+	÷	+	.+	+	+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	·+-				
				+	+	+	÷	.+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+				
	•		•	+	÷	+	+	+	+	+	+	.+	+	. +	+	+	+	+	+	+	+	+	+	+.	+	.+-	; +	+	••			
-		-			Х	Х				Х	X	Х	Х	· ·		Х			Х								X					
					-																		х			х		,				
				. 1																												
-	•	-	~							·						,													,			
	•																															
				+	+	+	+	+	+	+	+	+	:+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+				
					5 1 7 7 7			$\begin{array}{c} 5 5 6 7 \\ 1 7 2 1 \\ 7 0 8 2 \\ 7 7 7 7 \\ 7 4 7 1 \\ 1 1 2 1 \\ 1 1 2 1 \\ \end{array}$ $\begin{array}{c} + + + + \\ + + + + \\ + + + + \\ + + + + $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 6 7 7 7 1 7 2 1 1 2 7 0 8 2 5 3 7 7 7 7 7 7 7 7 4 7 1 3 7 1 1 2 1 1 3 1 1 2 1 1 3 + + + + + + + + + + + + + + + + + + +	5 5 6 7 7 7 7 7 1 7 2 1 1 2 3 7 0 8 2 5 3 0 7 7 7 7 7 7 7 7 7 7 4 7 1 3 7 1 1 1 2 1 1 3 2 + + + + + + + + + + + + + + + + + + +	$\begin{array}{c} 5 5 6 7 7 7 7 7 7 7 \\ 1 7 2 1 1 2 3 3 \\ 7 0 8 2 5 3 0 0 \\ \\ 7 7 7 7 7 7 7 7 7 7 7 7 \\ 7 4 7 1 3 7 1 1 \\ 1 1 2 1 1 3 2 3 \\ \\ \\ + + + + + + + + + \\ + + + + + +$	5 5 6 7 7 7 7 7 7 7 7 1 7 2 1 1 2 3 3 3 7 0 8 2 5 3 0 0 0 7 7 7 7 7 7 7 7 7 7 7 4 7 1 3 7 1 1 1 1 1 2 1 1 3 2 3 4 + + + + + + + + + + + + + + + + + + +	$\begin{array}{c} 5 & 5 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7$	$\begin{array}{c} 5 \ 5 \ 6 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7$	$\begin{array}{c} 5 \ 5 \ 6 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7$	$\begin{array}{c} 5 \ 5 \ 6 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7$	$\begin{array}{c} 5 & 5 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7$	$\begin{array}{c} 5 & 5 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7$	$\begin{array}{c} 5 & 5 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7$	$\begin{array}{c} 5 & 5 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7$	$\begin{array}{c} 5 \ 5 \ 6 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7$	$\begin{array}{c} 5 & 5 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7$	$\begin{array}{c} 5 & 5 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7$	$\begin{array}{c} 5 \ 5 \ 6 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7$	$\begin{array}{c} 5 \ 5 \ 6 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7$	$\begin{array}{c} 5 \ 5 \ 6 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7$	$\begin{array}{c} 5 \ 5 \ 6 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7$	5 5 6 7	$\begin{array}{c} 5 \ 5 \ 6 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7$	$\begin{array}{c} \begin{array}{c} 5 & 5 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7$	$\begin{array}{c} 1 & 7 & 2 & 1 & 1 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3$

134

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

(continued)																											_	
		 7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
umber of Days on Study		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
• · · · · · · · · · · · · · · · · · · ·			7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	8	8	0	8	0		Total
Carcass ID Number		5		5		6	6	6		7	7	8	8	8	-		, 9	ý	9	, 9	9	-	-	0	0	-		Tissues
		-					3									5							-	-	-	5		Tumor
		 	_		•		ξ.			_				_	7			-	<u> </u>	_	_							1 0111011
limentary System							- • • • ••			-			• • •		•			•		. •		-	•					
Esophagus		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		· 50
Intestine large		+	+	+	+	+	` +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Intestine large, cecum		+	+	·+	+	έ+	Ή	+	+	+	+	÷+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Intestine large, colon		+	+	+	Ŧ	+	` +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		· 49
Intestine large, rectum		+	+	+	+	14	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		· · 49
Intestine small		+	+	+	+	+	+	` +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50 ·
Intestine small, duodenum		+	+	+	+	+	+	+	+	+	+	+	+	·+	+	+	+	+	+	+	+	+	+	+	+	+		50
Intestine small, ileum		+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+		50
Intestine small, jejunum		+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	50
Liver		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Hepatocellular adenoma									·						х													1
Mesentery									+								+			+			+			+		7
Pancreas		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. '	50
Pharynx										1																		1
Salivary glands	,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Stomach		+	+	+	+	+	+	+	+	+	+	~ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Stomach, forestomach		+	+	+	+	+	+	+	·+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Stomach, glandular		+	+	+	·+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Tongue																												1
Tooth																							+					1
		_																										
Cardiovascular System																												
Heart		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	·+	+		50
Indocrine System							• •		1				•• •					-					,					
Adrenal gland		Ŧ	ъ	ъ	L.	-	ъ	<u>т</u>	<u>т</u>		-	ъ	<u>ـ</u> ـ	Т	л.	ъ	L.	÷	ـ	л.	ъ	<u>ب</u> ر	Ł	ъ	.	J.		50
Adrenal gland, cortex	-	÷		- -	+	+	т Ц	т Ц	т —	т Т	Ť	- -	т ч	т Т		- -	т Т	- -	Ŧ	- -	т Т	- -	Ť	Ť	т	т Т		50
Adrenal gland, medulla		+	+	`+	+	+	т -		+ +	т. Т.	+	+	+	т +	+	+	+	+	+	+	- -	- -	+	т -	+	т Т		50 50
Pheochromocytoma benign		r	т	т	x	. •	т	г	x	т	x	Ţ	т	+ X	т	x	т	т	т	т	т	Ŧ	.	т	. т	т		30 9
Islets, pancreatic		+	ᆂ	ᆂ	÷	+	+	+	л 	+	+	+	+		+		+	+	+	۰	<u>ــ</u> ـ	L.	<u>.</u>	J.		+		· 50
Parathyroid gland		+			+	т Т	4	т -	-	-	- -	Ť	- -		+	т ⊥	+	Ť	Ŧ	+	+	+	т Т	+				50
Pituitary gland		г Т	т -	т ж	т 	т —	<u>т</u>	Ŧ	т Т	.т.	Ŧ	Ť	т 	т ⊥	т 	- -	T -	+ +	- -	+ -	т 	+ _	+* ⊥	+ -	т 	т 		50
Pars distalis, adenoma		г	T	्र	x	x	x	¥	¥	т	x	т	т	т	. T	Ŧ	÷	x	v	Ŧ	Ŧ	x	Ŧ	x	т	Ŧ		20
Pars distalis, carcinoma					л	Λ		<u>,</u>	<u>^</u>		л						Λ	л	Λ			Λ	x	Λ				3
Pars distalis, hamartoma								· ·												х			Λ					1
Pars intermedia, adenoma															v					Λ								
Thyroid gland		J.	<u>т</u>	L.	L.	л.	.1.	.ئە	<u>ــ</u>	æ	ـ ـ				X			,	ر	۰		.,				,		1 50
C-cell, adenoma		T	Ŧ	v	Ŧ	v	_⊤ v	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ		. *	+	Ŧ	+	+	+	+	+	+	+	x	+	+		50
v-wii, autivilla				Х		Λ	X																	Å				9

ب به به به ا

· · · ·

الم الم

1.4

TABLE B2

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

Number of Days on Study	1	5 7 0	6 2 8	7 1 2	7 1 5	7 2 3	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1			7 3 1	3	7 3 1											
Carcass ID Number	7		7	7 1 1	3	7 7 3	1	1	1	1	2	2	2		2	3					•	7 4 4	7 4 5	5	7 5 2		
General Body System None	 			-						<u> </u>																	
Genital System																											
Clitoral gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adenoma Carcinoma				x		x				-	х																
		-	+	л +			т	+	+	-	-	+	+	т	т	-	-	т	т	<u>т</u>	<u>т</u>	-	-	<u>т</u>	т		
Ovary Uterus	+	-	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	Ŧ	Ŧ	Ŧ			Ť		+		
Hemangioma	Τ.	т	т	т	т	т	т	т	T	т	т	x	т	Τ.	Τ.	т	Ŧ	т	Ŧ	т	Ŧ	1	T	Ŧ	т		
Polyp stromal	x											Λ						x		x							
Vagina	n	+																~		~							
Carcinoma		x																									
Polyp		x																									
	 																					_					·
Hematopoietic System																											
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node, mandibular	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node, mesenteric	 +	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+		
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+						+		
Thymus	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	N	l +	+		
Thymoma benign																		x									
Integumentary System																											
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+		
Carcinoma																											
Fibroadenoma								х					Х														
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Squamous cell carcinoma																											
Musculoskeletal System	 																										
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

																								_					
Number of Days on Study	:	3	7 3 1	7 3 1	3	3 :	3	•	3	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1		7 3 1	7 3 1	7 3 1	7 3 1			7 3 1	3	3		7 3 1	3	
Carcass ID Number	:	5	5	5	6		6	•	6		7					7 8 4		7 9 1		7 9 3		7 9 5	0	(0	0	8 0 4	0	Total Tissues/ Tumors
General Body System None																										_			
Genital System																													
Clitoral gland Adenoma Carcinoma		+	+	+		+ ·	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+ X		+	• +	• •	+	+	+	+	50 3 2
Ovary		+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• •	+	+	+	+	50
Uterus		t	+	-		+ .	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+	+	+	+	50
Hemangioma																													1
Polyp stromal				Х	Č,													Х		Х		Х							7
Vagina											+									+								М	3
Carcinoma																													1
Polyp																													1
Hematopoietic System	<u></u>						_												<u>-</u>							_			
Bone marrow		+	+	-	- -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	50
Lymph node		÷	+	-		÷ .	+	÷	÷	+	+	+	+	+	÷	+	+	+	+	+	+	4	• +		÷	+	+	÷	50
Lymph node, mandibular		+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+	+	+	+	50
Lymph node, mesenteric		+	+	-		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+	+	+	+	50
Spleen		÷	+	- +	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+	+	+	+	50
		t	+	- +	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+	+	+	+	48
Thymus																													1
Thymus Thymoma benign																													
Thymoma benign																													
Thymoma benign Integumentary System		 +	 +			+	 +				 +	+	 +	+	+	+	+	+	 +	+	+				+	+	+	 +	50
Thymoma benign		+	+					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+	+	+	+	50 1
Thymoma benign Integumentary System Mammary gland		+	+				Х		+	+	+	+	+																1
Thymoma benign Integumentary System Mammary gland Carcinoma		 + +	+++				X X	x			+++		++																
Thymoma benign Integumentary System Mammary gland Carcinoma Fibroadenoma		+ +	++			•	X X	X +					+				+ +												1 7
Thymoma benign Integumentary System Mammary gland Carcinoma Fibroadenoma Skin		++	+			•	X X	X +	+				++																1 7 50

Pentachloroanisole, NTP TR 414

TABLE B2

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

(continued)				1							•					-				• •									•
Number of Days on Study	:		5 1 7	7	6 2 8	7 1 2	7 1 5	7 2 3	7 3 0	7 1 3 3 0 (7 <u>7</u> 3 3 0 0	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7. 3 1	7 3 1	7 3 1	7 3 1	7 3 1	••••		a
Carcass ID Number		•••	7 7 1	7 4 1	7 7 2	7 1 1	7 3 1	7 7 3	7 1 2	7 7 1 1 3 4	7 7	7 2 1	7 2 2	7 2 3	7 2 4	7 2 5	7 3 2	7 3 3	7 3 4	7 3 5	7 4 2	7 4 3	7 4 4	7 4 5	7 5 1	7 5 2		•.	
Nervous System Brain		U	+	• +	+	+	+	+	+	+ ·	+ -	⊦ ∔	• +	+	: +	+	+	+	+	+	+	+	+	+	+	+			•••
Respiratory System Lung Alveolar/bronchiolar aden Nose Trachea	oma . ,	· ·	+ + + + +	· + · +	+ + +	+ + +	+ + +	+ + +	+ ,+ ` '+	+	+ -	⊦ + ⊦ + ⊦ +	· + · +	+ X +	+	+ + +	++++	+ + +	+ + +	+ + +	+ + +	+ + +	+	,+ + +	+ + + -	+ + +			,
Special Senses System Ear Eye			•					-			;	14		+									+		•				
Urinary System Kidney Urinary bladder	· · ·	f g 44	;;+ +	- + - +	++	+ +	+++++++++++++++++++++++++++++++++++++++	+++	+,	+ + + +	+ -	+ ,+	• +	+++	;+ +	+ +	++	+++	+	+ +	+++	+ +	+ + +	+ +	+ +	.+ +		• •	
Systemic Lesions Multiple organs Leukemia mononuclear Lymphoma malignant lym	phocytic		+ X	-	+	+	+	+	·+ '	+	+ ·	⊦ ́+ X	- + {	+ X	+ x	+ x	+	+	+	+	+	+	+ X	, .	, +, ,,	+			

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

,																										
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
lumber of Days on Study	3 1		3 1	3 1	3 1	3 1		3			3 1	3 1	3 1				3 1			3 1	3 1	3 1	3 1	-	3 1	
·	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	8	8	8	8	8	Total
arcass ID Number	5 3			6 1												9 1	-	9 3			-		0 3			Tissue Tumo
ervous System	 -	-	,		•			••				`			, ·											
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
espiratory System																										
Lung Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ύ+	50 1
Nose Trachea	+	• +	+	· + · +	+ +	++	+ +	+	+ +	+ +	+ + ~	+ +	+ + ,	+ +	+ +	+ +	+ +	+ +	+ +	50 50						
pecial Senses System	 			• .			,																			
Ear Eye		+			+			+											+				+	+	+	1 8
rinary System																	-									
Kidney Urinary bladder	+	- + - +	++	· + · +	+ +	+ +	+ +	+ +	+ +	+++++++++++++++++++++++++++++++++++++++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ M	+ +	+ +	+ +	+ +	+ +	+ +	50 49
ystemic Lesions					• •						-															
Multiple organs Leukemia mononuclear Lymphoma malignant lymphocytic	4	- +	• +	.+	, +	.+	, +,	+	+	+	, +	+ X		+	+ X	+	+	X				+	+	+	+ X	

· ...

......

	Vehicle Control	20 mg/kg	40 mg/kg
Adrenal Medulla: Benign Pheochromocyto	ma		
Overall rates ^a	3/50 (6%)	7/50 (14%)	9/50 (18%)
Adjusted rates ^b	10.0%	19.1%	19.5%
Terminal rates ^c	2/29 (7%)	6/35 (17%)	
First incidence (days)	718	673	7/44 (16%) 712
Life table tests	P=0.193	P=0.247	P = 0.219
Logistic regression tests ^d	P=0.135	P=0.232	P = 0.170
Cochran-Armitage test ^d	P=0.049	1-0.2.52	1-0.170
Fisher exact test ^d	1 -0.047	P=0.159	P=0.061
Clitoral Gland: Adenoma			
Overall rates	5/50 (10%)	4/8 (50%) ^e	3/50 (6%)
Adjusted rates	15.8%		6.8%
Terminal rates	4/29 (14%)		3/44 (7%)
First incidence (days)	579 `		729 (T)
Life table tests			P=0.177N
Logistic regression tests			P=0.276N
Fisher exact test			P=0.357N
Clitoral Gland: Carcinoma			
Overall rates	3/50 (6%)	1/8 (13%) ^e	2/50 (4%)
Adjusted rates	9.5%		4.3%
l'erminal rates	1/29 (3%)		0/44 (0%)
First incidence (days)	705		712
Life table tests			P=0.320N
Logistic regression tests			P=0.414N
Fisher exact test			P=0.500N
Clitoral Gland: Adenoma or Carcinoma			
Overall rates	8/50 (16%) 24.2%	5/8 (63%) ^e	5/50 (10%)
Adjusted rates	24.2%		10.8%
Ferminal rates	5/29 (17%) 579		3/44 (7%) 712
First incidence (days)	579		
Life table tests Logistic regression tests			P=0.094N P=0.177N
Fisher exact test			P = 0.277N
Mammary Gland: Fibroadenoma			
Overall rates	16/50 (32%)	10/50 (20%)	7/50 (14%)
Adjusted rates	47.5%	26.1%	15.9%
Terminal rates	12/29 (41%)	7/35 (20%)	7/44 (16%)
First incidence (days)	522	687	729 (T)
Life table tests	P=0.001N	P = 0.052N	P = 0.002N
Logistic regression tests	P = 0.005N	P = 0.066N	P = 0.008N
Cochran-Armitage test	P = 0.020N		
Fisher exact test		P=0.127N	P=0.028N

TABLE B3 Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Gavage Study of Pentachloroanisole
TABLE B3

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	20 mg/kg	40 mg/kg
Mammary Gland: Adenoma	Annaki ''''''''''''''''''''''''''''''''''''		
Overall rates	3/50 (6%)	0/50 (0%)	0/50 (0%)
Adjusted rates	8.9%	0.0%	0.0%
Ferminal rates	1/29 (3%)	0/35 (0%)	0/44 (0%)
First incidence (days)	640	_f	-
Life table tests	P = 0.021N	P=0.092N	P=0.072N
Logistic regression tests	P = 0.035N	P = 0.116N	P=0.117N
Cochran-Armitage test	P=0.037N		
Fisher exact test		P=0.121N	P=0.121N
Mammary Gland: Adenoma or Fibroadenoma			
Overall rates	19/50 (38%)	10/50 (20%)	7/50 (14%)
Adjusted rates	53.4%	26.1%	15.9%
Terminal rates	13/29 (45%)	7/35 (20%)	7/44 (16%)
First incidence (days)	522	687	729 (T)
Life table tests	P<0.001N	P=0.013N	P<0.001N
Logistic regression tests	P<0.001N	P=0.017N	P = 0.001N
Cochran-Armitage test	P=0.004N		
Fisher exact test		P=0.038N	P=0.006N
Mammary Gland: Adenoma or Carcinoma			
Overall rates	3/50 (6%)	0/50 (0%)	1/50 (2%)
Adjusted rates	8.9%	0.0%	2.3%
Terminal rates	1/29 (3%)	0/35 (0%)	1/44 (2%)
First incidence (days)	640	-	729 (T)
Life table tests	P=0.109N	P = 0.092N	P=0.192N
Logistic regression tests	P=0.163N	P=0.116N	P=0.287N
Cochran-Armitage test	P=0.174N		
Fisher exact test		P=0.121N	P=0.309N
Pituitary Gland (Pars Distalis): Adenoma		01 (60 (10 (1))	00/50 (40/5)
Overall rates	18/49 (37%)	21/50 (42%)	20/50 (40%)
Adjusted rates	53.5%	50.9%	43.3%
Terminal rates	13/28 (46%)	15/35 (43%)	18/44 (41%)
First incidence (days)	589 D. 0.105N	589 D 0 40(D)	570 D. 0.1((N
Life table tests	P = 0.135N	P = 0.496N	P=0.166N
Logistic regression tests	P = 0.410N	P=0.559	P=0.468N
Cochran-Armitage test	P = 0.410	D	D. 0 440
Fisher exact test		P=0.371	P=0.449
Pituitary Gland (Pars Distalis): Carcinoma	2/40 (40)	2/50 (40%)	2150 (601)
Overall rates	2/49 (4%)	2/50 (4%)	3/50 (6%)
Adjusted rates	5.4%	5.7%	6.8% 2/44 (7%)
Terminal rates	0/28 (0%)	2/35 (6%) 720 (TD	3/44 (7%) 729 (T)
First incidence (days)	640 B-0 590	729 (T) B=0.622N	729 (T) B=0.663
Life table tests	P = 0.580	P = 0.622N	P = 0.663
Logistic regression tests	P = 0.466	P=0.676N	P=0.534
Cochran-Armitage test	P=0.417	D-0.694N	D-0 \$10
Fisher exact test		P=0.684N	P=0.510

	Vehicle Control	20 mg/kg	40 mg/kg
Pituitary Gland (Pars Distalis): Ad	enome or Carcinome		
Overall rates	20/49 (41%)	23/50 (46%)	23/50 (46%)
Adjusted rates	56.0%	55.9%	49.9%
Ferminal rates	13/28 (46%)	17/35 (49%)	21/44 (48%)
First incidence (days)	589	589	570
Life table tests	P=0.146N	P=0.468N	P = 0.181N
Logistic regression tests	P = 0.471N	P = 0.564	P = 0.543N
Cochran-Armitage test	P = 0.338	1 -0.504	1 -0.54514
	r =0.558	P=0.376	P=0.376
Fisher exact test		r=0.370	r=0.370
l'hyroid Gland (C-cell): Adenoma			
Overall rates	7/50 (14%)	0/2 (0%) ^e	9/50 (18%)
Adjusted rates	19.7%		19.8%
Terminal rates	3/29 (10%)		8/44 (18%)
First incidence (days)	444		517
Life table tests			P=0.524N
Logistic regression tests			P=0.346
Fisher exact test			P=0.393
Thyroid Gland (C-cell): Adenoma o	r Carcinoma		
Overall rates	8/50 (16%)	0/2 (0%) ^e	9/50 (18%)
Adjusted rates	22.8%	0/2 (0/0)	19.8%
Terminal rates	4/29 (14%)		8/44 (18%)
First incidence (days)	444		517
Life table tests			P = 0.399N
Logistic regression tests			P = 0.471
Fisher exact test			P = 0.500
			1-0.500
Uterus: Stromal Polyp			
Overall rates	13/50 (26%)	13/50 (26%)	7/50 (14%)
Adjusted rates	39.7%	32.9%	15.4%
Terminal rates	10/29 (34%)	9/35 (26%)	6/44 (14%)
First incidence (days)	526	667	517
Life table tests	P=0.011N	P=0.381N	P=0.015N
Logistic regression tests	P=0.044N	P=0.453N	P=0.063N
Cochran-Armitage test	P=0.093N		
Fisher exact test		P=0.590N	P=0.105N
Uterus: Stromal Polyp or Stromal	Sarcoma	·	
Overall rates	15/50 (30%)	14/50 (28%)	7/50 (14%)
Adjusted rates	42.7%	34.3%	15.4%
Cerminal rates	10/29 (34%)	9/35 (26%)	6/44 (14%)
First incidence (days)	526	611	517
Life table tests	P=0.004N	P = 0.296N	P = 0.005N
Logistic regression tests	P=0.025N	P = 0.230 N P = 0.413 N	P = 0.005 N
Cochran-Armitage test	P = 0.040N	1 -0.41514	1 -0.055IN
5	1 -0.04014	P=0.500N	P=0.045N
Fisher exact test		1-0.30014	1 = 0.04514

TABLE B3 Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

TABLE B3

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	20 mg/kg	40 mg/kg
MI Organs: Mononuclear Cell Leuken	nia	· · ·	
Dverall rates	11/50 (22%)	14/50 (28%)	9/50 (18%)
Adjusted rates	32.8%	32.8%	20.5%
Ferminal rates	8/29 (28%)	8/35 (23%)	9/44 (20%)
First incidence (days)	526	345	729 (T)
life table tests	P=0.098N	P=0.513	P=0.115N
ogistic regression tests	P=0.347N	P=0.327	P=0.277N
Cochran-Armitage test	P=0.363N		
Fisher exact test		P=0.322	P=0.402N
All Organs: Benign Neoplasms			
Overall rates	40/50 (80%)	35/50 (70%)	35/50 (70%)
Adjusted rates	90.8%	79.5%	71.4%
Terminal rates	25/29 (86%)	26/35 (74%)	30/44 (68%)
First incidence (days)	444	589	517
Life table tests	P<0.001N	P=0.036N	P=0.001N
Logistic regression tests	P=0.037N	P=0.064N	P=0.077N
Cochran-Armitage test	P=0.154N		
Fisher exact test		P=0.178N	P=0.178N
All Organs: Malignant Neoplasms			
Overall rates	22/50 (44%)	20/50 (40%)	18/50 (36%)
Adjusted rates	52.2%	45.4%	37.4%
Terminal rates	10/29 (34%)	12/35 (34%)	14/44 (32%)
First incidence (days)	353	330	517
Life table tests	P=0.034N	P=0.231N	P=0.042N
Logistic regression tests	P=0.423N	P=0.514N	P=0.415N
Cochran-Armitage test	P=0.238N		
Fisher exact test		P=0.420N	P=0.270N
All Organs: Benign or Malignant Neo	plasms		
Overall rates	45/50 (90%)	41/50 (82%)	41/50 (82%)
Adjusted rates	93.7%	83.7%	83.6%
Terminal rates	26/29 (90%)	27/35 (77%)	36/44 (82%)
First incidence (days)	353	330	517
Life table tests	P<0.001N	P=0.057N	P<0.001N
Logistic regression tests	P=0.133N	P=0.160N	P=0.113N
Cochran-Armitage test	P=0.165N		
Fisher exact test		P=0.194N	P=0.194N

(T) Terminal sacrifice

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone (including marrow), brain, clitoral gland, heart, kidney, large intestine, liver, lung, mammary gland, mandibular or mesenteric lymph node, nose, ovary, pancreas, parathyroid gland, pituitary gland, salivary gland, skin, small intestine, spleen, stomach, thymus, thyroid gland, trachea, urinary bladder, and uterus; for other tissues, denominator is number of animals necropsied.

b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^a Beneath the "Vehicle Control" column are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

Tissue was examined microscopically only when it was observed to be abnormal at necropsy; thus, statistical comparisons with the control are not appropriate.
 It complicable are not appropriate.

Not applicable; no neoplasms in animal group

	Incidence in Controls			
Study	Benign	Malignant	Benign or Malignant	
listorical Incidence at Souther	n Research Institute		·	
Benzaldehyde	5/49	2/49	7/49	
Dichlorvos	4/50	0/50	4/50	
Furan	2/50	0/50	3/50	
Furfural	2/47	1/47	3/47	
-Butyrolactone	1/50	0/50	1/50	
Pentachloroanisole	3/50	0/50	3/50	
Total	17/296 (5.7%)	3/296 (1.0%)	21/296 (7.1%)	
Standard deviation	2.9%	1.7%	4.0%	
Range	2%-10%	0%-4%	2%-14%	
Overall Historical Incidence				
Total	41/802 (5.1%)	5/802 (0.6%)	47/802 ^b (5.9%)	
Standard deviation	2.7%	1.2%	3.5%	
Range	0%-10%	0%-4%	0%-14%	

TABLE B4 Historical Incidence of Adrenal Medulla Pheochromocytomas in Female F344/N Rats Administered Corn Oil by Gavage^a

a Data as of 3 April 1991
 b Includes one complex pheochromocytoma

TABLE B5

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Gavage Study of Pentachloroanisole^a

	Vehicle Control	20 mg/kg	40 mg/kg
Disposition Summary			······································
Animals initially in study	70	70	70
Month interim evaluation	10	10	10
5-Month interim evaluation	10	10 .	10
arly deaths	10		10
Moribund	17	13	4
Natural deaths	4	2	2
urvivors	•	2	2
Terminal sacrifice	29	35	44
nimals examined microscopically	70	70	70
limentary System			
ntestine large, cecum	(50)	(1)	(50)
Inflammation, chronic	1 (2%)		
Parasite metazoan	2 (4%)		
itestine large, colon	(49)	(1)	(49)
Inflammation, chronic	1(2%)		a (1975)
Parasite metazoan	2 (4%)	(1)	2 (4%)
itestine large, rectum	(50)	(1)	(49)
Edema Inflammation, chronic	2 (40%)		1 (2%)
Parasite metazoan	2 (4%) 7 (14%)		9 (18%)
itestine small, ileum	7 (14%) (50)	(1)	(50)
Inflammation, chronic	(50)	(1)	1 (2%)
itestine small, jejunum	(50)	(1)	(50)
Inflammation, chronic			1 (2%)
Necrosis			1 (2%)
iver	(50)	(50)	(50)
Angiectasis		4 (8%)	2 (4%)
Basophilic focus	42 (84%)	44 (88%)	45 (90%)
Clear cell focus	5 (10%)	3 (6%)	2 (4%)
Developmental malformation		1 (2%)	5 (10%)
Eosinophilic focus	1 (2%)		2 (4%)
Granuloma	29 (58%)	19 (38%)	24 (48%)
Hematopoietic cell proliferation	2 (4%)	4 (8%)	3 (6%)
Hepatodiaphragmatic nodule Hyperplasia, focal	3 (6%)	7 (14%)	5 (10%)
Inflammation, chronic	4 (8%) 11 (22%)	6 (12%) 10 (20%)	5 (10%) 12 (24%)
Inflammation, chronic active	1 (2%)	10 (2070)	12 (24%)
Mixed cell focus	1 (270)	4 (8%)	4 (8%)
Bile duct, hyperplasia	31 (62%)	27 (54%)	17 (34%)
Centrilobular, atrophy	1 (2%)	1 (2%)	17 (5470)
Centrilobular, necrosis	1 (2%)	1 (2%)	1 (2%)
Hepatocyte, pigmentation		18 (36%)	24 (48%)
Hepatocyte, vacuolization cytoplasmic	4 (8%)	3 (6%)	1 (2%)
Kupffer cell, pigmentation	3 (6%)	2 (4%)	1 (2%)
Lobules, necrosis	2 (4%)	3 (6%)	1 (2%)
Oval cell, hyperplasia	1 (2%)		1 (2%)
Portal, necrosis			1 (2%)
lesentery	(13) 1 (8%)	(3)	(7)
Cyst	1 (8%)		
Necrosis	0 (15%)		1 (14%)
Fat, inflammation, chronic active	2 (15%)	2 (100%)	(10(11)
Fat, necrosis	10 (77%)	3 (100%)	6 (86%)

TABLE B5

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	20 mg/kg	40 mg/kg	
Alimentary System (continued)	<u> </u>			
ancreas	(50)		(50)	
Atrophy	11 (22%)		10 (20%)	
Cytoplasmic alteration			10 (20%)	
Hyperplasia, focal	2 (4%) 3 (6%)			
Inflammation, chronic	5 (070)		2 (6%)	
Duct, hyperplasia	1 (2%)		3 (6%)	
alivary glands	(50)		(50)	
Atrophy	(50)		3 (6%)	
Duct, dilatation	1 (2%)		1 (2%)	
Stomach, forestomach	(50)	(1)	(50)	
Edema	3 (6%)	(-)	1 (2%)	
Foreign body	5 (0,0)	1 (100%)	1 (270)	
Inflammation, chronic active	1 (2%)	1 (100%)	1 (2%)	
Ulcer	2 (4%)	1 (100,0)	1 (2%)	
Mucosa, hyperplasia	3 (6%)	1 (100%)	3 (6%)	
Stomach, glandular	(50)	(1)	(50)	
Erosion	2 (4%)	(-)	(50)	
Mineralization	3 (6%)			
Mucosa, hyperplasia	5 (0,0)		1 (2%)	
Sooth	(2)		(1)	
Developmental malformation	(2)		1 (100%)	
Inflammation, suppurative	1 (50%)		1 (10070)	
Cardiovascular System Heart	(50)		(50)	
Cardiomyopathy	20 (40%)		31 (62%)	
Myocardium, inflammation, chronic	4 (8%)		1 (2%)	
Endocrine System				
Adrenal gland	(50)	(50)	(50)	
Hypertrophy, focal		1 (2%)		
Adrenal gland, cortex	(50)	(50)	(50)	
Accessory adrenal cortical nodule	9 (18%)	13 (26%)	13 (26%)	
Angiectasis	24 (48%)	30 (60%)	27 (54%)	
Clear cell focus	4 (8%)	4 (8%)	4 (8%)	
Cyst			1 (2%)	
Degeneration, fatty		1 (2%)		
Hematopoietic cell proliferation	2 (4%)		•	
Hyperplasia, focal	12 (24%)	13 (26%)	12 (24%)	
Hypertrophy, focal	1 (2%)	3 (6%)	4 (8%)	
Necrosis		1 (2%)		
Vacuolization cytoplasmic, diffuse			1 (2%)	
Adrenal gland, medulla	(50)	(50)	(50)	
Angiectasis	1 (2%)	1 (2%)	1 (2%)	
Hyperplasia	10 (20%)	18 (36%)	25 (50%)	
	(/-)	()		
slets, pancreatic	(50)		(50)	

٠

TABLE **B5**

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	20 mg/kg	40 mg/kg	
Endocrine System (continued)			· · · · · · · · · · · · · · · · · · ·	
Pituitary gland	(49)	(50)	(50)	
Pars distalis, angiectasis	4 (8%)	7 (14%)	8 (16%)	
Pars distalis, cyst	20 (41%)	27 (54%)	20 (40%)	
		8 (16%)	8 (16%)	
Pars distalis, hyperplasia	9 (18%) 0 (18%)		9 (18%)	
Pars distalis, pigmentation	9 (18%)	10 (20%)		
Pars intermedia, angiectasis	1 (20)	1 (2%)	1 (2%)	
Pars intermedia, cyst	1 (2%)	2 (4%)	1 (2%)	
Pars intermedia, pigmentation		1 (2%)		
Pars nervosa, cyst	1 (2%)			
Thyroid gland	(50)	(2)	(50)	
Ultimobranchial cyst	3 (6%)		1 (2%)	
C-cell, hyperplasia	5 (10%)		13 (26%)	
Follicle, cyst			1 (2%)	
Follicular cell, hyperplasia			1 (2%)	
General Body System None				
Genital System			(50)	
Clitoral gland	(50)	(8)	(50)	
Ectasia	4 (8%)	2 (25%)	2 (4%)	
Hyperplasia			1 (2%)	• •
Inflammation, chronic	3 (6%)	1 (13%)	5 (10%)	
Inflammation, suppurative	3 (6%)		4 (8%)	
Ovary	(50)	(5)	(50)	•
Cyst	1 (2%)	1 (20%)	6 (12%)	
Uterus	(50)	(50)	(50)	
Abscess	2 (4%)	1 (2%)	2 (4%)	
Angiectasis		1 (2%)		•
Cyst	1 (2%)		2 (4%)	
Hemorrhage		3 (6%)	1 (2%)	
Hydrometra	7 (14%)	2 (4%)	6 (12%)	· ·
Hyperplasia, cystic	13 (26%)	13 (26%)	20 (40%)	
Inflammation, suppurative			2 (4%)	
Necrosis		1 (2%)	-((,,,))	
Myometrium, hyperplasia		1 (270)	1 (2%)	
	·			
Hematopoietic System	(50)		(50)	
Bone marrow	(50)		(50)	
Hypercellularity	1 (2%)		2 (4%)	
Hyperplasia, reticulum cell	3 (6%)	(11)	3 (6%)	
Lymph node	(50)	(11)	(50)	
Bronchial, hemorrhage			1 (2%)	
Bronchial, pigmentation			1 (2%)	
Inguinal, hyperplasia, plasma cell	1 (2%)	1 (9%)		
Lumbar, hyperplasia, plasma cell		1 (9%)		
Lumbar, lymphatic, dilatation		1 (9%)		
Mediastinal, hemorrhage	7 (14%)		2 (4%)	
Mediastinal, hyperplasia, lymphoid			1 (2%)	
		1 (9%)	2 (4%)	
Mediastinal, hyperplasia, plasma cell				

3

TABLE B5

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

		Vehicle Control	20 mg/kg	40 mg/kg
lemato	poietic System (continued)			
ymph	node (continued)			
	Pancreatic, hemorrhage		1 (9%)	
	Pancreatic, hyperplasia, plasma cell	1 (2%)	- ()	
	Pancreatic, infiltration cellular, histiocyte			1 (2%)
	Pancreatic, lymphatic, dilatation	1 (2%)	•	
	Renal, hemorrhage			1 (2%)
	Renal, pigmentation	,	1 (9%)	1 (2%)
Lymph	node, mandibular	(50)	(3)	(50)
	Hemorrhage		1 (33%)	1 (2%)
	Hyperplasia, lymphoid	1 (2%)	1 (33%)	2 (4%)
	Hyperplasia, plasma cell	14 (28%)	1 (33%)	20 (40%)
	Infiltration cellular, mast cell	1 (2%)		
	Pigmentation			1 (2%)
	Lymphatic, dilatation	1 (2%)	1 (33%)	5 (10%)
	node, mesenteric	(49)	(3)	(50)
	Hemorrhage	2 (4%)	1 (33%)	$\frac{1}{2}$ (2%)
	Hyperplasia, lymphoid			3 (6%)
	Lymphatic, dilatation	(50)	(10)	1 (2%)
Spleen	Concertion	(50)	(10)	(50)
	Congestion		1 (100%)	2 (4%)
	Developmental malformation Fibrosis		1 (10%)	1 (2%)
		15 (2004)	4 (40%)	6 (12%)
	Hematopoietic cell proliferation	15 (30%) 1 (2%)	4 (40%)	0 (1270)
	Hyperplasia, RE cell Necrosis	1(2%) 1(2%)	1 (10%)	
	Pigmentation, hemosiderin	5 (10%)	2 (20%)	7 (14%)
	Lymphoid follicle, hyperplasia	5 (10%)	2 (20%)	2 (4%)
Thymus	Lympion tomere, nyperplasia	(47)		(48)
	Cyst	3 (6%)		2 (4%)
Integur	nentary System	<u></u>		
	ry gland	(48)	(21)	(50)
	Hyperplasia, cystic	38 (79%)	15 (71%)	33 (66%)
	Hyperplasia, lobular	4 (8%)	2 (10%)	2 (4%)
Skin	Typerplasia, looular	(50)	(3)	(50)
	Hemorrhage	(50)	1 (33%)	(00)
	Inflammation, chronic		1 (00 %)	1 (2%)
	Inflammation, granulomatous	1 (2%)		
Muscul	oskeletal System			
Bone		(50)	(6)	(50)
	Calvarium, osteopetrosis	5 (10%)	6 (100%)	
	Femur, osteopetrosis	6 (12%)		1 (2%)
	•			
Nervou	s System			
Brain		(50)	(4)	(50)
	Compression	6 (12%)	` 3 (75%)	4 (8%)
	Degeneration, focal	1 (2%)		. /
	Hemorrhage	1 (2%)		1 (2%)
	Hydrocephalus	4 (8%)	1 (25%)	4 (8%)
		. (- (
				112/01
	Necrosis	1 (2%)		1 (2%)
		1 (2%) 1 (2%)		1 (2%)

TABLE B5

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

		Vehicle Control	20 mg/kg	40 mg/kg
Respire	tory System			
Jung		(50)	(7)	(50)
	Congestion	2 (4%)	1 (14%)	1 (2%)
	Edema	2 (4%)	1 (1470)	1 (270)
	Hemorrhage	1 (2%)		
	Infiltration cellular, histiocyte	24 (48%)	A (57%)	31 (62%)
	Inflammation, chronic		4 (57%) 1 (14%)	
	Inflammation, suppurative	12 (24%)	1 (14%)	18 (36%)
		1 (20)	1 (14%)	1 (2%)
	Pigmentation, cholesterol	1 (2%)		1 (20)
	Thrombus			1 (2%)
	Alveolar epithelium, hyperplasia	3 (6%)	2 (29%)	1 (2%)
	Smooth muscle, hyperplasia	1 (2%)		
lose		(49)	(50)	(50)
	Developmental malformation			1 (2%)
	Exudate	3 (6%)	8 (16%)	7 (14%)
	Foreign body	1 (2%)	3 (6%)	1 (2%)
	Fungus	1 (2%)	5 (10%)	1 (2%)
	Inflammation, chronic	5 (10%)	13 (26%)	11 (22%)
	Glands, hyperplasia	1 (2%)	-	
	Glands, necrosis	1 (2%)		
	Mucosa, hyperplasia		5 (10%)	2 (4%)
	Mucosa, metaplasia, squamous		4 (8%)	
	Olfactory epithelium, pigmentation		46 (92%)	50 (100%)
Frachea	, , , , , , , , , , , , , , , , , , , ,	(50)		(50)
	Inflammation, chronic	((())		1 (2%)
				1 (270)
Special	Senses System			
Special Eye	Senses System	(1)	(4)	(8)
Special Eye	Senses System Cataract	(1) 1 (100%)	3 (75%)	
Special Eye	Senses System Cataract Phthisis bulbi	(1) 1 (100%)		(8) 8 (100%)
Special Eye	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active	(1) 1 (100%)	3 (75%)	(8)
Special Eye	Senses System Cataract Phthisis bulbi	(1) 1 (100%)	3 (75%)	(8) 8 (100%)
Special Eye	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active	(1) 1 (100%) 1 (100%)	3 (75%) 1 (25%)	(8) 8 (100%) 1 (13%) 1 (13%)
Special Eye	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization	1 (100%)	3 (75%)	(8) 8 (100%) 1 (13%)
Special Sye	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization	1 (100%)	3 (75%) 1 (25%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%)
Special Eye Urinary	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy	1 (100%)	3 (75%) 1 (25%) 3 (75%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%)
Special Eye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization	1 (100%) 1 (100%) (50)	3 (75%) 1 (25%) 3 (75%) (50)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50)
Special Eye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization	1 (100%) 1 (100%) (50) 1 (2%)	3 (75%) 1 (25%) 3 (75%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%)
Special Eye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization V System Cyst Hydronephrosis	1 (100%) 1 (100%) (50)	3 (75%) 1 (25%) 3 (75%) (50)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2%)
Special Eye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization System Cyst Hydronephrosis Inflammation, acute	1 (100%) 1 (100%) (50) 1 (2%) 1 (2%)	3 (75%) 1 (25%) 3 (75%) (50) 1 (2%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2%) 1 (2%) 1 (2%)
Special Eye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization V System Cyst Hydronephrosis Inflammation, acute Inflammation, chronic	1 (100%) 1 (100%) (50) 1 (2%) 1 (2%) 7 (14%)	3 (75%) 1 (25%) 3 (75%) (50) 1 (2%) 11 (22%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 10 (20%)
Special 3ye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization V System Cyst Hydronephrosis Inflammation, acute Inflammation, suppurative	1 (100%) 1 (100%) (50) 1 (2%) 1 (2%) 7 (14%) 1 (2%)	3 (75%) 1 (25%) 3 (75%) (50) 1 (2%) 11 (22%) 1 (2%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2%) 1 (2%) 10 (20%) 1 (2%)
Special Eye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization V System Cyst Hydronephrosis Inflammation, acute Inflammation, chronic Inflammation, suppurative Mineralization	1 (100%) 1 (100%) (50) 1 (2%) 1 (2%) 7 (14%) 1 (2%) 21 (42%)	3 (75%) 1 (25%) 3 (75%) (50) 1 (2%) 11 (22%) 1 (2%) 24 (48%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)
Special 3ye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization / System Cyst Hydronephrosis Inflammation, acute Inflammation, chronic Inflammation, suppurative Mineralization Nephropathy	1 (100%) 1 (100%) (50) 1 (2%) 1 (2%) 7 (14%) 1 (2%)	3 (75%) 1 (25%) 3 (75%) (50) 1 (2%) 11 (22%) 1 (2%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2%) 1 (2%) 10 (20%) 1 (2%) 15 (30%) 42 (84%)
Special Eye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization V System Cyst Hydronephrosis Inflammation, acute Inflammation, chronic Inflammation, suppurative Mineralization Nephropathy Renal tubule, atrophy	1 (100%) 1 (100%) (50) 1 (2%) 1 (2%) 7 (14%) 1 (2%) 21 (42%) 41 (82%)	3 (75%) 1 (25%) 3 (75%) (50) 1 (2%) 11 (22%) 1 (2%) 24 (48%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)
Special Bye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization / System Cyst Hydronephrosis Inflammation, acute Inflammation, chronic Inflammation, suppurative Mineralization Nephropathy Renal tubule, atrophy Renal tubule, degeneration	1 (100%) 1 (100%) (50) 1 (2%) 1 (2%) 7 (14%) 1 (2%) 21 (42%) 41 (82%) 1 (2%)	3 (75%) 1 (25%) 3 (75%) (50) 1 (2%) 11 (22%) 1 (2%) 24 (48%) 48 (96%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 15 (30%) 42 (84%) 1 (2%)
Special Bye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization / System Cyst Hydronephrosis Inflammation, acute Inflammation, chronic Inflammation, suppurative Mineralization Nephropathy Renal tubule, atrophy Renal tubule, degeneration Renal tubule, dilatation	1 (100%) 1 (100%) (50) 1 (2%) 1 (2%) 7 (14%) 1 (2%) 21 (42%) 41 (82%)	3 (75%) 1 (25%) 3 (75%) (50) 1 (2%) 11 (22%) 1 (2%) 24 (48%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2%) 1 (2%) 10 (20%) 1 (2%) 15 (30%) 42 (84%)
Special Eye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization / System Cyst Hydronephrosis Inflammation, acute Inflammation, chronic Inflammation, suppurative Mineralization Nephropathy Renal tubule, atrophy Renal tubule, degeneration Renal tubule, dilatation Renal tubule, pigmentation	1 (100%) 1 (100%) (50) 1 (2%) 1 (2%) 7 (14%) 1 (2%) 21 (42%) 41 (82%) 1 (2%)	3 (75%) 1 (25%) 3 (75%) (50) 1 (2%) 11 (22%) 1 (2%) 24 (48%) 48 (96%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 15 (30%) 42 (84%) 1 (2%)
Special Eye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization / System Cyst Hydronephrosis Inflammation, acute Inflammation, chronic Inflammation, suppurative Mineralization Nephropathy Renal tubule, atrophy Renal tubule, degeneration Renal tubule, dilatation	1 (100%) 1 (100%) (50) 1 (2%) 1 (2%) 7 (14%) 1 (2%) 21 (42%) 41 (82%) 1 (2%)	3 (75%) 1 (25%) 3 (75%) (50) 1 (2%) 11 (22%) 1 (2%) 24 (48%) 48 (96%) 1 (2%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2
Special Eye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization / System Cyst Hydronephrosis Inflammation, acute Inflammation, chronic Inflammation, suppurative Mineralization Nephropathy Renal tubule, degeneration Renal tubule, dilatation Renal tubule, pigmentation Transitional epithelium, hyperplasia	1 (100%) 1 (100%) (50) 1 (2%) 1 (2%) 7 (14%) 1 (2%) 21 (42%) 41 (82%) 1 (2%) 1 (2%) 4 (8%)	3 (75%) 1 (25%) 3 (75%) (50) 1 (2%) 11 (22%) 1 (2%) 24 (48%) 48 (96%) 1 (2%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)
Special Eye Urinary Kidney	Senses System Cataract Phthisis bulbi Cornea, inflammation, chronic active Cornea, mineralization Retina, atrophy Sclera, mineralization / System Cyst Hydronephrosis Inflammation, acute Inflammation, chronic Inflammation, suppurative Mineralization Nephropathy Renal tubule, degeneration Renal tubule, dilatation Renal tubule, pigmentation Transitional epithelium, hyperplasia	1 (100%) 1 (100%) (50) 1 (2%) 1 (2%) 7 (14%) 1 (2%) 21 (42%) 41 (82%) 1 (2%) 1 (2%)	3 (75%) 1 (25%) 3 (75%) (50) 1 (2%) 11 (22%) 1 (2%) 24 (48%) 48 (96%) 1 (2%)	(8) 8 (100%) 1 (13%) 1 (13%) 8 (100%) 2 (25%) (50) 1 (2%) 1 (2

TABLE B5 Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Gavage Study of Pentachloroanisole (continued)

 Vehicle Control	20 mg/kg	40 mg/kg	
(50) 1 (2%) 1 (2%)	(1)	(49) 1 (2%) 2 (4%)	

^a Number of animals examined microscopically at site and number of animals with lesion

APPENDIX C

SUMMARY OF LESIONS IN MALE MICE IN THE 2-YEAR GAVAGE STUDY OF PENTACHILOROANISOLE

TABLE	C1	Summary of the Incidence of Neoplasms in Male Mice	
		in the 2-Year Gavage Study of Pentachloroanisole	153
Table	\mathbb{C}^2	Individual Animal Tumor Pathology of Male Mice	
		in the 2-Year Gavage Study of Pentachloroanisole	156
Table	C3	Statistical Analysis of Primary Neoplasms in Male Mice	
		in the 2-Year Gavage Study of Pentachloroanisole	174
Table	C4a	Historical Incidence of Adrenal Medulla Pheochromocytomas	
		in Male B6C3F, Mice Administered Corn Oil by Gavage	178
Table	C4b	Historical Incidence of Malignant Lymphomas in Male B6C3F ₁ Mice	
		Administered Corn Oil by Gavage	179
Table	C4c	Historical Incidence of Osteosarcomas in Male B6C3F ₁ Mice	
		Administered Corn Oil by Gavage	179
TABLE	C4d	Historical Incidence of Liver Hemangiomas and Hemangiosarcomas	
		in Male B6C3F ₁ Mice Administered Corn Oil by Gavage	180
Table	C5	Summary of the Incidence of Nonneoplastic Lesions in Male Mice	
		in the 2-Year Gavage Study of Pentachloroanisole	181

for the part of the light

Lesions in Male Mice

TABLE C1

· 이상 아이는 아님, 배상값은 그 ·

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Gavage Study of Pentachloroanisole^a

	Vehicle Control	20 mg/kg	40 mg/kg	
Disposition Summary		· · · · · · · · · · · · · · · · · · ·		
Animals initially in study	70	70	70	
P-Month interim evaluation	10	10	10	
5-Month interim evaluation	10	10	10	
Early deaths	••			
Accidental deaths	1	1		
Moribund	17	20	22	
Natural deaths	2	2		
urvivors				
Died last week of study			1	
Terminal sacrifice	30	27	27	
Animals examined microscopically	70	70	70	
	······			
Alimentary System ntestine small, ileum	(50)	(22)	(49)	
ntestine small, jejunum	(50)	(23)	(49)	
Adenocarcinoma			1 (2%)	
Liver	(50)	(50)	(50)	
Hemangiosarcoma	2 (4%)	5 (10%)	3 (6%)	
Hemangiosarcoma, multiple		3 (6%)	7 (14%)	
Hepatocellular carcinoma	7 (14%)	14 (28%)	9 (18%)	
Hepatocellular carcinoma, multiple	2 (4%)	2 (4%)	3 (6%) 13 (26%)	
Hepatocellular adenoma Hepatocellular adenoma multiple	18 (36%) 2 (4%)	18 (36%)	13 (26%) 1 (2%)	
Hepatocellular adenoma, multiple Histocratic sarcoma	2 (4%)	6 (12%)	1 (2%) 1 (2%)	
Histiocytic sarcoma Mesentery	(2)	(9)	(4)	
Fibrous histiocytoma	(2)	(9) 1 (11%)	(7)	
Squamous cell carcinoma, metastatic, stomach		• (**/0)	1 (25%)	
Pancreas	(50)	(23)	(50)	
Fibrous histiocytoma	. /	1 (4%)		
Squamous cell carcinoma, metastatic, stomach			1 (2%)	
Salivary glands	(50) (50)	(23) (50)	(50)	
Stomach, forestomach	(50)		(50)	
Fibrous histiocytoma		1 (2%)		
Papilloma squamous		1 (2%)	1 (2%)	
Squamous cell carcinoma	(50)	(48)	1 (2%)	
Stomach, glandular Squamous cell carcinoma	(50)	(48)	(49) 1 (2%)	
Cardiovascular System None				
Endocrine System				
Adrenal gland	(50)	(50)	(49)	
Capsule, spindle cell, adenoma	4 (8%)		2 (4%)	
Adrenal gland, cortex	(50)	(50)	(49)	
Adenoma	1 (2%)			
Capsule, fibrous histiocytoma		1 (2%)		
Adrenal gland, medulla	(50)	(50)	(48)	
Pheochromocytoma benign		4 (8%)	7 (15%)	
slets, pancreatic	(50)	(23)	(49)	
Adenoma		1 (4%)		
Fibrous histiocytoma		1 (4%)		

,

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	20 mg/kg	40 mg/kg	
Endocrine System (continued)	······································	_ <u></u> : <u>_</u> ;		
Thyroid gland	(50)	(49)	(50)	·
C-cell, carcinoma	1 (2%)	(49)	(50)	
Follicular cell, adenoma	1 (270)	1 (2%)		
Follicular cell, carcinoma	1 (2%)	- ()		
General Body System	· · ·		······································	
Tissue NOS			(1)	
Mediastinum, fibrosarcoma			1 (100%)	
Genital System			••	- * · ·
Epididymis	(50)	(24)	(50)	
Fibrous histiocytoma		1 (4%)		••
Prostate	(50)	(23)	(50)	
Fibrous histiocytoma		1 (4%)		
Hepatocellular carcinoma, metastatic, liver	(50)	1 (4%)	(50)	
Seminal vesicle	(50)	(24)	(50)	
Squamous cell carcinoma, metastatic, stomach	(50)	(22)	1 (2%)	
Testes Interstitial cell, adenoma	(50)	(23)	(50) 1 (2%)	•
Hematopoietic System Bone marrow Hemangiosarcoma Lymph node Mediastinal, fibrous histiocytoma Mediastinal, squamous cell carcinoma, metastatic, stomach	(50) 1 (2%) (50)	(23) (50) 1 (2%)	(50) 1 (2%) (50) 1 (2%)	
Lymph node, mandibular	(48)	(49)	(49)	
Lymph node, mesenteric	(50)	(49)	(50)	
Fibrous histiocytoma	. ,	1 (2%)		£
Squamous cell carcinoma, metastatic, stomach			1 (2%)	
Spleen	(50)	(50)	(50)	
Hemangiosarcoma	3 (6%)	1 (2%)	5 (10%)	•
Thymus	(49)	(22)	(50)	
Thymoma benign	1 (2%)			
Integumentary System				
Skin	(50)	(29)	(50)	
Hemangioma	1 (2%)			
Hemangiosarcoma		1 (3%)		
Keratoacanthoma	1 (2%)	_ /=-/-		-
Subcutaneous tissue, hemangioma		2 (7%)		
Musculoskeletal System		<u> </u>		
Bone	(50)	(24)	(50)	· · · ·
Osteosarcoma		2 (8%)		•
Skeletal muscle			(2).	
Fibrosarcoma			1 (50%)	
Hemangiosarcoma			1 (50%)	

.

ooiM olaM ai anoise.I

ID FIHAT

·	84/8m 0%	81/gm 02	Vehicle Control	· · · · · · · · · · · · · · · · · · ·
	2			ane Broome System
				spiratory System
	(%8) 7 (05)	(322) L (75)	(%21)9	gu Errorabe reloidarord/reloavlA
	(%8) †	(%77) L	1 (5%) 9 (15%)	Alveolar/bronchiolar adenoma. Alveolar/bronchiolar adenoma, multiple
	(%0I) S	(%EI) \$	(%8) *	Alveolar/bronchiolar carcinoma
	<i>,</i> , ,	(%E) I	(% 1) Z	Alveolar/bronchiolar carcinoma, multiple
	(%†) Z	(%E) I	(% 7) 7	Hepatocellular carcinoma, metastatic, liver
	(2017) C	(309) 6		Heparocellular carcinoma, metastatic, multiple, liver
	(%Z) I 5 (4%)	(%9) z		Histiocytic sarcoma
				ecial Senses System
	(1)			I
	(%001) I	()/		Fibrosatcoma
	\$ (100%)	e (100%) (9)	(2) (100%)	ласгіап gland Аделота
			·	msizy System
	(05)	(72) (72)	(05)	ancy Hepatocellular carcinoma, metastatic, liver Histiocutic sarcoma
	(%2) (%2) (%2) I	(72)	(05)	Histiocytic sarcoma Renal tubule, carcinoma inary bladder
<u> </u>	(05)	(74)	(05)	
	(05)	(05)	(05)	stemic Lesions Jtiple organs ^b
	(%Z) I	(%Z) I	5 (4%)	Histiocytic sarcoma Lymphoma malignant histiocytic
		(%Z) I	(~~)~~	Lymphoma malignant lymphocytic

84 84 84

30

94 95 95

L₽

97

Aumber of animals examined microscopically at site and number of animal with lesion b Number of animals with any tissue examined microscopically

38

Number of animals with any tissue examined microscopically

Total metastatic neoplasms

Total animals with primary neoplasms^c Total primary neoplasms Total animals with benign neoplasms Total benign neoplasms

Veoplasm Summary

Total malignant neoplasms Total animals with metastatic neoplasms

Total animals with malignant neoplasms

Primary neoplasms: all neoplasms except metastatic neoplasms

				-	_	_								_				_	_	_	_	_	_	_	
Number of Days on Study	0 0 9	4 2 4	4 9 1	2	8		1	6 1 7	7	9	9	9	9	0	7 7 0 0 1 9) (1	1	2		2		2	
								<u> </u>			•	<u> </u>		•	· .								_		
Carcass ID Number	0	0 0	0 4	.0 4	0 4	-	-	-	-	-	-	-		0 3) (5 4			0				0 0		
	8 1	2 1	7	2		6	9	2	7	3	1	6	1	0	6 () 9	95 11	2	0	1	4	5	6	7	
Alimentary System			•••							•															
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ +		+ +	• +	+	+	+	+	
Galibladder	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+ -	+ -	+ +	1	+ +	• +	+	+	+	+	
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ +		- +	+	+	+	+	+	
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ +		- +	+	+	+	+	+	
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ +	1	+ +	+	+	+	+	+	
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ +	+	+ +	• +	+	+	+	+	
Intestine small	÷	+	+	+	+	+	+	+	+	+	+	+	+'	+	+ -	+ -	+ +	- 4	+ +	• +	+	+	+	+	
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ +		- +	+	+	+	+	+	
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+ -	+ +		- +	+	+	+	+	+	
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ +		- +	+	+	+	+	+	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ +		- +	+	+	+	+	+	
Hemangiosarcoma															х			Z	۲.						
Hepatocellular carcinoma						Х							x		X Z			Ζ	C						·
Hepatocellular carcinoma, multiple		_												Х		2	K.								
Hepatocellular adenoma Hepatocellular adenoma, multiple		х						х		х	х			X	x		X	ζ	Х	X	X		х		
Mesentery Pancreas												,	,									+			
		-	-	Ţ	Ţ	Ť	+	Ţ	Ţ	Ţ	T	Ŧ.	T	Ť	+ •	r -	+ +		- +	. +	· +	· +	- +	+	
Salivary glands		Ţ	T	T	T	Ť	T	Ţ	Τ.	T	T	T	Ŧ	Ţ	<u> </u>		т т , ,			· +	· •	Ť	+	+	
Stomach	Ţ	-	Ţ.	.	T	+	+	Ŧ.	T	+	Ŧ.	+	+	+		t 1	r 1		• •	• +	*	· +	+	+	
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ +	+ +	1	- +	· +	· +	· +	+	+	
Stomach, glandular Tooth	+	+	++	+	++	+	++	++	+	++	++	++		+	+ -	+ +	+ + +	1 -	+ · +	· +	· +	++	++	++	
100th					·					·	·		•										•	•	
Cardiovascular System Heart		1					1.								+ -						1				
	+	т 	т 	-	+		т 	т ;	+ 	т 	+	<u> </u>		T	т -		+ +	· · ·	- T	· +			т 	+ 	
Endocrine System																									
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ +	+ +	- +	- +	+	+	+	+	+	
Capsule, spindle cell, adenoma					Х													X							
Adrenal gland, cortex Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ +	+ +	• +	- +	+	+	+	+	+	
								т		ъ			_	-			ı. •							т	
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+ · +			r -	+ +				+	+	+	+	
Islets, pancreatic	+	+	+	+	+	+	+	Ť	Ŧ	Ť.	+	+	+ ·		+ -	r 1	- 1 		- +	-	· +	+	•	+	
Parathyroid gland	+	+	+	+													+ +					+	+	+	
Pituitary gland	M	+	+	+				+									+ IN					+	+	T	
Thyroid gland	+	+	+	+	+	+	+			+	+	+	+	+	+ -	r 1	+ +	• •	- +	+	+	+	+	+	
C-cell, carcinoma									X																
Follicular cell, carcinoma									X																

TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control

1

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

					_														_								
	7		7	, ·	7	7	7	7		7	7	7	7	7	7	•	7	7	7	7	7	7	7	7	7	7	
Sumber of Days on Study	2 9				2 : 9 :	2 9				2 9																	
	0) () (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	0) 1	L	1	1	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	4	4	4	4	Total
	8	9) 3	3	4	5	7	8	9	0	1	2	3	4	7	8	3	4	5	6	8	9	0	1	4	5	Tissue
	1		1 1	L	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
limentary System		-																									
Esophagus	+	-	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Gallbladder	+	- 1	Mi	ŧ	+	+	+	+	+	+	М	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	46
Intestine large	+	-	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	-	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, colon	+	-	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, rectum	+	-	+ ·	t	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small	+	-	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, duodenum	+	-	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, ileum	+	-	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, jejunum	+	-	+ ·	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•			+	50
Liver	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma																											2
Hepatocellular carcinoma			Х																		Х						7
Hepatocellular carcinoma, multiple																											2
Hepatocellular adenoma								Х	х			Х	Х	Х				Х	Х					Х			18
Hepatocellular adenoma, multiple			Х																								2
Mesentery														+													2
Pancreas	-	-	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary glands	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	-	-	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	-	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, glandular	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	50
Tooth	4	۲	+	+	+	+	+	+	+	+	+		+	+		+	+	+		+	+	+	+	+	+		36
Cardiovascular System																	_					_					
Heart	+	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																											
Adrenal gland	-	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Capsule, spindle cell, adenoma										Х				Х													4
Adrenal gland, cortex	-	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma																			Х								1
Adrenal gland, medulla	-	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Islets, pancreatic	-1	۲	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Parathyroid gland	-	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	₽	E +	+	+	49
Pituitary gland	-	⊦	+	+	+	+	+	+	+	+	+	+	+	Μ	[+	+	+	+	+	+	+	M	1+	M	[+	+	44
Thyroid gland	-	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
C-cell, carcinoma																											1
Follicular cell, carcinoma																											1

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

			-	•		<u>'</u>								_								_							
	•	· E	0	2	9	2	8	. 9		. 1	7	9	9	9	9	0	0	0							7 2 9	7. 2 9	2		-
			. 4	0	4	4	4 3	1 6	2 9	3 2	3 7	0 3	1 1	2 6	3 1	3 0	4 6	5 0	4 9	2 5	1 2	1 0	0 1	0 4	0 5	0 6	0 7		
				Ŧ																			_		_				
			4	⊦ 4	- 4	⊢• ∔	• +	• +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	++	+		
					4	- +	- +		+	+			+			+	+	+	+		+				+				
			4	+ +		+ +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
ĸ			+	- + - +	 	⊦ + ⊦ +	• +	• + • +	+ +	+ +	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +		
																			_										
			-	- +		+ +	• +	• +	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+		
				L				. д	ъ	Т	т	Т	Т	т	т	Ŧ	ъ	_			ъ	т.	ъ	ᆂ	ъ	<u>т</u>	ъ		
			ר נ		- 7	гт Л 4	· -	· +	- +		т +	+	т +	т -	т +	т +	т +	т +	т +	т +	т +	- -	+	+	+	- -	+ +	•	
						, , , ⊢ +		· +	+	+	÷	+	÷	÷	+	÷	+	+	+	+	÷	÷	+	÷	+	÷	+		
						- +	• +	• +	÷	+	+	+	+	÷	+	÷	+	+	+	+	+	+	+	+	+	+	+		
			-																	х	х								
			H	⊦ +		⊦ +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
			, ,	: 4	ż	4 N	6 N.	6 M	M	, M	м	м	M	M	м	м	м	м	м	м	м	M	м	м	м	м	м		
												+	+																
									•			•	•	•	•														
s												•																	
	-	_																											
			+	+ +		⊦ +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
				0 9 4 8 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 2 9 4 0 0 4 0 8 2 1 1 + + + + + + + + + + + + + + + + + +	$ \begin{array}{c} 0 & 2 & 9 \\ 9 & 4 & 1 \\ 0 & 0 & 0 \\ 4 & 0 & 4 \\ 8 & 2 & 7 \\ 1 & 1 & 1 \\ + & + & 4 \\ + & + & 4 \\ + & + & 4 \\ + & + & 4 \\ + & + & 4 \\ + & + & 4 \\ + & + & 4 \\ + & + & 4 \\ + & + & 4 \\ + & + & 4 \\ + & + & 4 \\ + & + & 4 \\ + & + & 4 \\ + & + & 4 \\ \end{array} $ $ \begin{array}{c} 0 & 0 & 0 \\ 4 & 0 & 4 \\ 8 & 2 & 7 \\ 1 & 1 & 1 \\ \end{array} $	$\begin{array}{c} 0 & 2 & 9 & 2 \\ 9 & 4 & 1 & 9 \\ \hline \\ 0 & 0 & 0 & 0 \\ 4 & 0 & 4 & 4 \\ 8 & 2 & 7 & 2 \\ 1 & 1 & 1 & 1 \\ \hline \\ + & + & + \\ + & + & + \\ + & + & + \\ + & + &$	0 2 9 2 8 9 4 1 9 9 0 0 0 0 0 4 0 4 4 4 8 2 7 2 3 1 1 1 1 1 + + + + + + + + + + + + + +	0 2 9 2 8 9 9 4 1 9 9 9 0 0 0 0 0 0 4 0 4 4 4 1 8 2 7 2 3 6 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + +	$\begin{array}{c} 0 & 2 & 9 & 2 & 8 & 9 & 1 \\ 9 & 4 & 1 & 9 & 9 & 9 & 7 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 4 & 4 & 4 & 1 & 2 \\ 8 & 2 & 7 & 2 & 3 & 6 & 9 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline \\ + & + & + & + & + & + \\ + & + & + & +$	$\begin{array}{c} 0 & 2 & 9 & 2 & 8 & 9 & 1 & 1 \\ 9 & 4 & 1 & 9 & 9 & 9 & 7 & 7 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 4 & 4 & 4 & 1 & 2 & 3 \\ 8 & 2 & 7 & 2 & 3 & 6 & 9 & 2 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline \\ + & + & + & + & + & + & + \\ + & + & +$	$\begin{array}{c} 0 & 2 & 9 & 2 & 8 & 9 & 1 & 1 & 7 \\ 9 & 4 & 1 & 9 & 9 & 9 & 7 & 7 & 5 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 4 & 4 & 4 & 1 & 2 & 3 & 3 \\ 8 & 2 & 7 & 2 & 3 & 6 & 9 & 2 & 7 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline \\ + & + & + & + & + & + & + \\ + & + & +$	0 2 9 2 8 9 1 1 7 9 9 4 1 9 9 9 7 7 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 4 4 1 2 3 3 0 8 2 7 2 3 6 9 2 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 9 2 8 9 1 1 7 9 9 9 4 1 9 9 9 7 7 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 4 4 1 2 3 3 0 1 8 2 7 2 3 6 9 2 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 9 2 8 9 1 1 7 9 9 9 9 4 1 9 9 9 7 7 5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 4 4 1 2 3 3 0 1 2 8 2 7 2 3 6 9 2 7 3 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 9 2 8 9 1 1 7 9 9 9 9 9 9 4 1 9 9 9 7 7 5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 9 2 8 9 1 1 7 9 9 9 9 0 9 4 1 9 9 9 7 7 5 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 4 4 1 2 3 3 0 1 2 3 3 8 2 7 2 3 6 9 2 7 3 1 6 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2 9 2 8 9 1 1 7 9 9 9 9 0 0 9 4 1 9 9 9 7 7 5 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 4 4 4 1 2 3 3 0 1 2 3 3 4 8 2 7 2 3 6 9 2 7 3 1 6 1 0 6 1	0 2 9 2 8 9 1 1 7 9 9 9 9 0 0 0 9 4 1 9 9 9 7 7 5 1 1 1 1 1 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 9 2 8 9 1 1 7 9 9 9 9 0 0 0 0 9 4 1 9 9 9 7 7 5 1 1 1 1 1 1 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 9 2 8 9 1 1 7 9 9 9 9 0 0 0 0 1 9 4 1 9 9 9 7 7 5 1 1 1 1 1 1 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 9 2 8 9 1 1 7 9 9 9 9 0 0 0 0 1 1 9 4 1 9 9 9 7 7 5 1 1 1 1 1 1 1 5 8 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 9 2 8 9 1 1 7 9 9 9 9 0 0 0 0 1 1 1 1 9 4 1 9 9 9 7 7 5 1 1 1 1 1 1 1 5 8 0 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 9 2 8 9 1 1 7 9 9 9 9 0 0 0 0 1 1 1 2 9 4 1 9 9 9 7 7 5 1 1 1 1 1 1 5 8 0 2 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 9 2 8 9 1 1 7 9 9 9 9 0 0 0 0 1 1 1 2 2 9 4 1 9 9 9 7 7 5 1 1 1 1 1 1 5 8 0 2 7 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 9 2 8 9 1 1 7 9 9 9 9 0 0 0 0 1 1 1 2 2 2 9 4 1 9 9 9 7 7 5 1 1 1 1 1 1 1 5 8 0 2 7 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 9 2 8 9 1 1 7 9 9 9 9 0 0 0 0 1 1 1 2 2 2 2 2 9 4 1 9 9 9 7 7 5 1 1 1 1 1 1 5 8 0 2 7 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 9 2 8 9 1 1 7 9 9 9 9 0 0 0 0 1 1 1 2 2 2 2 2 2 9 4 1 9 9 9 7 7 5 1 1 1 1 1 1 5 8 0 2 7 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 9 2 8 9 1 1 7 9 9 9 9 0 0 0 0 1 1 1 2 2 2 2 2 2 9 4 1 9 9 9 7 7 5 1 1 1 1 1 1 5 8 0 2 7 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

(
Number of Days on Study	7	7			7 2	72	7 2	7 2	7 2	7	7	7 2	7	7 2	7 2	7 2	72	7 2	7 2	7	7	7	7	7 2	7 2	7	
······································	9				_																			9			
, or	0	0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	0	C) 1																					4		4	Total
	8	9) 3	3	4	5	7	8	9	0	1	2	3	4	7	8	3	4	5	6	8	9	0	1	4	5	Tissues
	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
General Body System None																											
Genital System																							_				
Coagulating gland										+				+		+						+		+	+		9
Epididymis	+	•••	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Penis																									+		1
Preputial gland Prostate			L		+	L	+	+					+			. I .			+	.1	+		+	+	+	+	22 50
Seminal vesicle	+		+ ·	+	+	T	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+++	+	• +	+	50 50
Testes	+		+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50
Hematopoietic System						_							_										_				
Bone marrow	+		+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma																											1
Lymph node	+	• -	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node, mandibular	+	• -	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	48
Lymph node, mesenteric	+	• •	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			50
Spleen	+	• •	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Hemangiosarcoma																									Х		3
Thymus	+	• •	+ ·	+	+	+	+	+	+	+	+	+	+			+	+	M	+	+	+	+	+	+	+	+	49
Thymoma benign														x						_							1
Integumentary System																											
Mammary gland																										M	
Skin	+	• •	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangioma																											1
Keratoacanthoma																		х									1
Musculoskeletal System																											
Bone	+		+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Nervous System																											
Brain	+	• •	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
							-																				

159

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

() 																											
Number of Days on Study	0 0 9	2	9	5 2 9	8	9	1	1	7	9	9	9	9	0	0	0	0	1	1	1	7 2 9	2	2	2	_		، ار
Carcass ID Number	0 4 8 1	0 0 2 1	0 4 7 1	0 4 2 1	0 4 3 1	0 1 6 1	0 2 9 1		3 7	0 3	1 1	2 6	3 1		4 6	0	9	5	1 2	0		04	0 5	0 6			
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma, multiple Hepatocellular carcinoma, metastatic,												x										х					
liver Nose Trachea	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	x + +		X + +		+ +	+ +	+ +	+ +	+ +	+ +	, + +								
Special Senses System Harderian gland Adenoma														_		+ x										 	
Urinary System Kidney Urinary bladder	+ +	++	++	++	+ +	++	++	++	+ +	++	+ +	++	++	++	++	++	++	++	++	++	++	++	+ +	++	++	 	
Systemic Lesions Multiple organs Lymphoma malignant histiocytic Lymphoma malignant mixed	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+ X		+	+	+	+	+	+	+	+	+ x	<u></u>	

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

Number of Days on Study	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	
Carcass IID Number	0 0 8 1	9	3	0 1 4 1	5	7	8	9	0	1	0 2 2 1	0 2 3 1	0 2 4 1	0 2 7 1		0 3 3 1	0 3 4 1	0 3 5 1	6	8	0 3 9 1	-	0 4 1 1	4 4	0 4 5 1	Total Tissues Tumors
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma, multiple	+	+	+ x x		+ x	+ x	+	+ x	+	+	+	+	+	+	+	+ x	+ x	+ x x	+	+ x	+	+	+	+	+	50 6 1 4 2
Hepatocellular carcinoma, metastatic, liver Nose Trachea	++	+ +	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	2 50 50
special Senses System Harderian gland Adenoma	+ X						•																			2 2
Urinary System Kidney Urinary bladder	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	50 50
Systemic Lesions Multiple organs Lymphoma malignant histiocytic Lymphoma malignant mixed	+	+	+	+	+	+	+	+	+	+	+ x		+	+	+	+	+	+	+	+	+	+	+	+	+	50 2 2

														_															
Number of Days on Study			9	5	7	-	9	9	9	9	0	0	0	0	0	7 0	0	7 0	1	1	1	1	1	1	1	2			·
· · ·		, .	2	1	. 6 	2	0	1	1	6	1	1	2	2	2	4	4	5	1	5	6	6	7	7	7	9	1		-
- '''			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		··
Carcass ID Number		•	6					5											8										
			4	3. 1	3 1		2 1				5. 1								7 1										
Mimentary System				_	_					_		-																	
Esophagus			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Gallbladder			+	+	+	+		Μ					+	+	+	+	+	+	+	+	+	+	+	+	+				
Intestine large			+	+	+	+	+	+				+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Intestine large, cecum			+	+	+	+	A	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Intestine large, colon Intestine large, rectum			+	+	+	+	+	+++	+	++++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Intestine small			- -	+ +	+	- F	÷	- +	+	+	÷	÷	÷	÷	÷	+	- -	+	÷	+	т +	τ +	- -	+	т +				
Intestine small, duodenum			+	+	+	÷	Å	÷	+	÷	÷	÷	÷	+	+	÷	+	+	÷	+	+	÷	÷	÷	÷				
Intestine small, ileum			+	+	÷	+	A	+	+	À	+	+	+	+	+	+	+	+	+	+	÷	+	+	÷	+				
Intestine small, jejunum			÷	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	` +	+	+	+	+				
Liver			+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+		
Hemangiosarcoma						Х		Х						х			х												
Hemangiosarcoma, multiple										Х												х		х					
Hepatocellular carcinoma							х				x	Х	х		х		х	х		х						х			
Hepatocellular carcinoma, multipl	e			v	X			v													v		х		v	v	\$7		
Hepatocellular adenoma Hepatocellular adenoma, multiple				Х	х			х							x					х	X		v	x	X	х	х		
Mesentery						+						+		+	Λ				ъ	+			Λ	Λ	+				
Fibrous histiocytoma						T						т		x					T						т				
Pancreas			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Fibrous histiocytoma			•	•			•			-	•	•	•	x			•	•	-										
Salivary glands			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Stomach	,		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach, forestomach			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Fibrous histiocytoma														х															
Papilloma squamous																													
Stomach, glandular			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Tooth				+						+	+			+		+	+			+	+	+			+				
Cardiovascular System		-																											
Heart			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Endocrine System																	-						_				_	-	
Adrenal gland			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex			+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+		
Capsule, fibrous histiocytoma														X															
Adrenal gland, medulla			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pheochromocytoma benign				. 1		L		4	X	1	L.	4	L.	J.	L	X	L	L.	4	L.	ъ	ъ	ъ	х -	×	х			
Islets, pancreatic Adenoma			+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+ X	+	+	+	+	+	+	+	Ŧ	+				
Fibrous histiocytoma														х		л													
Parathyroid gland			+	+	+	+	+	+	+	м	+	+	+		+	+	+	+	+	+	+	+	+	+	+				
Pituitary gland			+	+	+	÷	+	+	÷	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+		
Thyroid gland			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Follicular cell, adenoma																							х						

IABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg

162

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

w mg/kg (continued)														_												
Number of Days on Study	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2								
Carcass IID Number	4 4	4 5	4 6	4 7	4 8	4 9	5 0	5 1	5 3	5 4	5 6	6 2	6 6	6 7	1 7 0 1	7 1	7 5	7 8	7 9	8 0	8 3	8 5	8 8	8 9	9 0	Total Tissue Tumo
limentary System Esophagus																							-			23
Gallbladder																										18
Intestine large																										23
Intestine large, cecum Intestine large, colon																										21 23
Intestine large, rectum										·																23
Intestine small Intestine small, duodenum																+					+					25 22
Intestine small, ileum								1								+										22
Intestine small, jejunum																					+					23
Liver Hemangiosarcoma	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 5
Hemangiosarcoma, multiple																										3
Hepatocellular carcinoma			X							Х								Х						х		14
Hepatocellular carcinoma, multiple Hepatocellular adenoma	x	x			х			x		х			х				х		x	x	х	x				2 18
Hepatocellular adenoma, multiple			•								х						••			~					х	6
Mesentery												+				+					+					9
Fibrous histiocytoma Pancreas																										1 23
Fibrous histiocytoma																										ĩ
Salivary glands																										23
Stomach Stomach, forestomach	+	· +	• +	++	+++	++++	+++	+++	+++++++++++++++++++++++++++++++++++++++	++++	+++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++	+++++++++++++++++++++++++++++++++++++++	++++	++	++	+	50 50
Fibrous histiocytoma	•		•	•	•		•	•		•	•	•	•	•	•	'	•	'	•		'	•	'		1	1
Papilloma squamous								_																	х	1
Stomach, glandular Tooth	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		48 10
ardiovascular System Heart																										23
											<u></u>												-			
ndocrine System Adrenal gland	-		<u>ـ</u> ـ	<u>т</u>	+	-	ъ	Ŧ	-	+	+	т	ъ	Ŧ	-	-	<u>т</u>	ъ	т	т	Ŧ	ъ	т	50
Adrenal gland, cortex	+	· +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Capsule, fibrous histiocytoma											-				-	-			·				·			1
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign Islets, pancreatic																										4
Adenoma																										23 1
Fibrous histiocytoma																										1
Parathyroid gland																										22
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Thyroid gland Follicular cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	49 1
i omediai ven, adenoma																										1

20 mg/kg (continued)																												
Number of Days on Study	9	5		8	9	6 9 1	9	9		0	7 0 2	0	0			0	1	1		1		1			7 3 1		,	
Carcass ID Number	6 4	7 3	6 3	7 4	7 2	1 5 2 1	5 8	6 1	5 5	8 2	6 0	8 1	8 4	4 2	7 7	6 5	8 7	5 7	6 8	7 6	5 9	6 9	8 6	4 1	4 3			
General Body System None																										_		
Genital System		•																										
Epididymis	. +	+	- +	• +	• +	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+					
Fibrous histiocytoma												х																
Preputial gland	+	+	• +				+	+	+	+	+	+	+			+	+	+	+	+	+	+	+					
Prostate	+	+	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				•	
Fibrous histiocytoma												х																
Hepatocellular carcinoma, metastatic,																												
liver			X																									
Seminal vesicle	+	- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Testes	+	+	- +	• +	• +	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					
Hematopoietic System																												
Bone marrow	+	-+	- +	- `+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					
Lymph node	+	- +	- +	- +	• +	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+			,
Mediastinal, fibrous histiocytoma												х																
Lymph node, mandibular	+	- +	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Lymph node, mesenteric	+		- +	• +	• +	+	÷	Μ	+	+,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Fibrous histiocytoma												х																
Spleen	+	· -	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Hemangiosarcoma Thymus	+		- N	1+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x +		+	+					
Integumentary System																												
Mammary gland	N	()	/ h		ſN	М	м	м	м	м	м	м	м	м	м	м	м	м	м	м	м	м	м	ſ				
Skin						+																						
Hemangiosarcoma				'	•	×		•	•	•	•	•	•	•	•	•	·	•	•	·	·	•	•					
Subcutaneous tissue, hemangioma						-																						
Musculoskeletal System																												
Bone	+	• •	+ +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					
	•			•														x										

,

١

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

										_									_							
Number of Days on Study	7 3 1	7 3 2		7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	
Carcass ID Number	4 4 1	5	6		8		0	1	3	4	6	2	6	7	0	1	5	8	9	0	3	5	8	9	0	Total Tissues Tumors
General Body System None					<u> </u>																					<u> </u>
Genital System Epididymis Fibrous histiocytoma Preputial gland Prostate Fibrous histiocytoma Hepatocellular carcinoma, metastatic, liver Seminal vesicle Testes			+	_	+		+		+	+		+	+				+	+	+		+	+	+	+		24 1 32 23 1 1 24 23
Jematopoietic System Bone marrow Lymph node Mediastinal, fibrous histiocytoma Lymph node, mandibular Lymph node, mesenteric Fibrous histiocytoma Spleen Hemangiosarcoma Thymus	+ + +	+++++++++++++++++++++++++++++++++++++++	- + - + - +	- + - + - +	+++++++++++++++++++++++++++++++++++++++	· + · +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ ++++++	+ + + +	+ +++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+	+ M + +	+	+	++++++	· + + + +	+++++++	+++++++	++++++	+ + + +	+++++++++	·	23 50 1 49 49 1 50 1 22
Integumentary System Mammary gland Skin Hemangiosarcoma Subcutaneous tissue, hemangioma						+			+ x						+		+	+					+ X			29 1 2
Musculoskeletal System Bone Osteosarcoma				+ X																						24 2

Pentachloroanisole, NTP TR 414

TABLE C2

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued) -5 6 6 6 7 7. ٠ī Number of Days on Study 1 1 1 1 1 1 1 2 3 2 1 6 2 0 1 1 2 2 2 9 1 1 1 1 1.1 1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 **Carcass ID Number** . 8 8 4 4 1 3 Nervous System Brain **Respiratory System** Lung + + Alveolar/bronchiolar adenoma xx х х х Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma, multiple х Hepatocellular carcinoma, metastatic, х liver Hepatocellular carcinoma, metastatic, multiple, liver х Nose Trachea Special Senses System Eye Harderian gland + + Adenoma х х **Urinary System** Kidney Hepatocellular carcinoma, metastatic, liver х Urinary bladder Systemic Lesions Multiple organs + x Lymphoma malignant histiocytic Lymphoma malignant lymphocytic х Lymphoma malignant mixed х х

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

7 3 1	7 3 2			7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	
4 4	4 5	4 · 6	4 7	4 8	4	.5 0	5 1	5 3	5 4	5 6	6 2	6 6	6 7	7 0	7 1	7 5	7 8	7 9	8 0	8 3	8 5	8 8	8 9	9 0	Total Tissues Tumora
																									23
																		•							
				+				+				+			+		+			+				+	32
		Х						v				v			Х					v				v	7 4
								Λ				Λ								Λ				Λ	
																									1
																		·							1
																									2
+	• +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
																									23
		· · ·								·															
														+											1
							+				+			+		+									6
					<u>.</u>		<u>ж</u>				х			х		<u>х</u>									6
																									~~
						+																			25
																									1
																									24
+	• +	+	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
																									1 1
	1	1 2 1 1 1 1 4 4 4 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 2 2 1 1 1 1 4 4 4 4 4 5 6 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 5 5 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 + + + X + + + + + + + + + + + + + + + + + + +	1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 5 5 5 4 5 6 7 8 9 0 1 3 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + + + + + + + + + + +	1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 5 5 5 5 5 5 6 4 5 6 7 8 9 0 1 3 4 6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + + + + + X X X + + + + + + + + + + + + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \$	$\begin{array}{c} 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 $						

167

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg

	4	5	5	5	5	5	5	6	6	6	6	6	6	6	7 ^{.,}	77	' 7	7	7	7	7	7	7	7	
umber of Days on Study	6				9																				
· · · · · · · · · · · · · · · · · · ·	7				6																				
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	1	1	1	1	1	1	1	1	
arcass ID Number	0	7	7	8	0	2	1	8	9	9	0	7	8	1	1	1 0	9	0	0	8	9	7	7	7	
	3 1	9	8	9	6 1	0	0	3	0	5	4	5	1	8	2 9	9 0	9	1	9	0	6	1	2	3	
					_								_							_		_	_	_	
li mentary System Esophagus		L	- -		. т	т	т	Т	ъ	Т	т	т	Т	т	н.	. .			–	т	<u>т</u>	ъ	т	4	
Gallbladder	- -	4	· +		· -		Ŧ	Ŧ	Ŧ	Ŧ	÷	M	Ŧ	Ŧ	Ŧ	<u> </u>	г 7 ∟ 4	· +	Ť		Ŧ	Ŧ	Ŧ	+	
Intestine large	+	+	- +		. +	+	+	+	+	+	+		+	+	+	+ -		. +	+	+	÷	+	+	+	
Intestine large, cecum	+	4	- +		· +	+	÷	÷	÷	÷	+	-	÷	+	-	+ -			+	+	÷	÷	+	+	
Intestine large, colon	+	+	- ÷		• +	+	+	÷	÷	÷	÷			÷	+				÷	+	÷	÷	÷	+	
Intestine large, rectum	+	+	· +	. .	• 🕂	÷	+	+	+	+	+		÷	+		+ -		· +	+	+	+	+	+	+	
Intestine small	+	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+		+ +	• +	+	+	+	+	+	+	
Intestine small, duodenum	+	+	· M	i +	• +	+	+				+				+			+		+	+	+	+	+	
Intestine small, ileum	+	+	• +	• +		+					+				+			• +		+	+	+	+	+	
Intestine small, jejunum	+	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+ -	+ +	• +	+	+	+	+	+	+	
Adenocarcinoma																									
Liver	+	+	• +	· +	• +	+	+	+	+		+	+	+	+	+	+ -	⊦ +	• +	+	+	+	+	+	+	
Hemangiosarcoma										Х															
Hemangiosarcoma, multiple														х			X		Х		_			х	
Hepatocellular carcinoma						Х		X		_	_	х			2	X X	۲.	Х			Х	х			
Hepatocellular carcinoma, multiple					_					х	х			х		_	-								
Hepatocellular adenoma				Х	•											2	ζ.			Х			Х	х	
Hepatocellular adenoma, multiple																									
Histiocytic sarcoma									Х																
Mesentery				+			+																		
Squamous cell carcinoma, metastatic,					-																				
stomach	•			X																					
Pancreas	+	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+ -		• +	+	+	+	+	+	+	
Squamous cell carcinoma, metastatic,				х																					
stomach Salivary glands	-			· +		-			-	ъ	Ŧ	Т	т	т	–	Ŧ	<u>т</u>	<u>т</u>	т	т.	Т	
Stomach		1	· -	. т	· -		Ŧ	Ţ		Ŧ	Ŧ	Ť	Ŧ	т _	Ť.	т - -		· +					Ŧ	т 	
Stomach, forestomach	. I	+	- -	- +	· +	+	Ŧ		Ŧ	Ŧ	Ŧ	Ŧ	т +	т +	т. -	т - + -	гт Г 4			т +	Ť	т —	÷	т _	
Squamous cell carcinoma		- 1	· •	x			т	T		ľ		'		'	•			'	'		'			•	
Stomach, glandular	+	+	- +			+	+	+	+	+	+	+	+	+	+	+ -	⊢ →	. +	+	+	+	+	+	+	
Squamous cell carcinoma	•	'		x			•	•	•	•	'		•	•	•	-			•	•	·	•	•	•	
Tooth						+	+		+					+	+	+			+		+	+	+	+	
ardiovascular System							<u> </u>																		
Heart	+	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+ -	+ +	• +	+	+	+	+	+	+	
ndocrine System																									
Adrenal gland	+	+	- +	+	• +	+	+	+	+	+	+	+	+	+	+	+ -	⊢ ⊣	• +	+	+	+	+	+	+	
Capsule, spindle cell, adenoma	•		•	•	•	•	•	•	·	•	•				·	·			•	×		-	•	-	
Adrenal gland, cortex	+	+	- +	• +	· +	+	+	+	+	+	+	+	+	+	+ -	+ -	⊦ +	• +	+	+	+	+	+	+	
Adrenal gland, medulla	+	+	• +	N	1 +	+	+	+	+	+	+		+	+	+	+ -	⊢ +	• +	+	+	+	+	+	+	
Pheochromocytoma benign			,	_ /								x									X			x	
Islets, pancreatic	+	+	- +	• +	· +	+	+	+	+	+	+		+	+	+	+ -	⊢ +	• +	+	+	Μ	+	+	+	
Parathyroid gland	+	+	• +	• +	• +	+	+	+	+	+	+	+	+	+		+ -	⊦ ⊣	• +	+	+	+	+	+	+	
I arachyrole giane					1	1	.1.	_L.		1	+	+	1	-	н.	+ -	+ +	• +	+	+	+	+	+	+	
Pituitary gland Thyroid gland	+	+	- +		· •	- T	T	Ŧ		T	+	т	т	Ŧ	Ŧ		• •	•		•	•	•	•	•	

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

ve mild mild (communed)																										
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
lumber of Days on Study	2 9	3 0	3 0	3 0		3 0									3 1					_	-	-	3 1	-	-	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	
arcass ID Number	8	7	7	7							9												1			Total
	7	4	6	7	2	4	5	6	8	1	2	3	4	7	8	2	5	7	8	1	3	4	5	6	7	Tissue
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
limentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Gallbladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	49 50
Intestine large Intestine large, cecum	+	+	+	+	+	+	+	++	+++	+	++++	+++++++++++++++++++++++++++++++++++++++	+++	+++++	+	+++	+++	+++	+++++++++++++++++++++++++++++++++++++++	+	Ŧ	+++++++++++++++++++++++++++++++++++++++	+	+ +	+	50
Intestine large, colon	+	+	+	+	+	+	+		+	+	+	+		+	+	÷	÷	+	+	÷	+	+	+	+	+	50
Intestine large, rectum	+	+	+	+	+	+	+	+			+	+		+		+	+	+	+	+	+	+	+	+	+	50
Intestine small	+	+	+	+	+	+	+				+	+	+	+	·+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, duodenum	+	+	+	+	+	+			+			+			+			+		+		+		+	-	49
Intestine small, ileum	+		•	+							+				+				+			+	+	+		49 49
Intestine small, jejunum Adenocarcinoma	+	+	+	+ X	+	+	+	+	+	+	÷	+	+	+	+	M	+	+	+	+	+	+	+	+	+	49 1
Liver	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma				X	-	-		-							х											3
Hemangiosarcoma, multiple																			х		Х				х	7
Hepatocellular carcinoma														х												9
Hepatocellular carcinoma, multiple		v	x		x		x		x				v	x	v											· 3 13
Hepatocellular adenoma Hepatocellular adenoma, multiple Histiocytic sarcoma		~	^		Λ		Λ		Λ				Λ	Λ	Λ				x							13 1 1
Mesentery								+			+															4
Squamous cell carcinoma, metastatic, stomach																										1
Pancreas Squamous cell carcinoma, metastatic,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
stomach																										1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Squamous cell carcinoma				,										1				+	+	+	+		+			1 49
Stomach, glandular Squamous cell carcinoma	+	Ŧ	Ŧ	+	+	+	+		Ŧ	Ŧ	Ŧ	Ŧ	+.	+	т	+	т	т	т	T	т	т	т	т	T	49
Tooth		+				+	+		+	+	+	+	+				+		+					+	+	24
ardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	50
Indocrine System																										
Adrenal gland	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Capsule, spindle cell, adenoma						-	-	-	-	-	X			-												2
Adrenal gland, cortex	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, medulla	+	+	+	+	М	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	48
Pheochromocytoma benign	Х		Х						х															Х		7
Islets, pancreatic	• +	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	50
Pituitary gland Thyroid gland	+	+	+	M +	+	+++	+++	+	+	+	+	+	+	+	+	+	+	+	M	+			[+	+		47
									+	+	+	+	+	+	+	+	+	+	+	+	+	-+			+	50

TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: · it 40 mg/kg (continued) ,, iyo 4 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7.7 7.7 Number of Days on Study 4 5 9 9 1 1 1 7 2 2 0 1 1 1 1 1 0 0 **Carcass ID Number** 1 2 3 1 1 **General Body System** Tissue NOS Mediastinum, fibrosarcoma **Genital System** Epididymis Preputial gland + + Prostate Seminal vesicle Squamous cell carcinoma, metastatic, stomach х Testes Interstitial cell, adenoma Hematopoietic System Bone marrow Hemangiosarcoma Lymph node Mediastinal, squamous cell carcinoma, metastatic, stomach х Lymph node, mandibular + + + + Lymph node, mesenteric Squamous cell carcinoma, metastatic, stomach Spleen Hemangiosarcoma х х Thymus + **Integumentary System** Mammary gland Skin + + + + + + + ++ + + + + + + + + + + + **Musculoskeletal System** Bone Skeletal muscle Fibrosarcoma Hemangiosarcoma х

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

-

Number of Days on Study	7 2 9	3		3		7 3 0	3	3			3		3	7 3 1	7 3 1	3	7 3 1	3	3	3	3	3	3	3	7 3 1	3 ·	
Carcass IID Number	8 7	7 4	6	7	78	8 2		8 5	0 8 6 1	8	9 1	9 2	9 3	9 4	9 7	9 8	0 2	0 5	0 7	0 8	1 1	1 3	1 4	1 5		1 7	Total Tissues Tumors
General Body System Tissue NOS Mediastinum, fibrosarcoma																			+ X								1 1
Genital System							, and the second se										-										
Epididymis	+	+			+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Preputial gland						+	+	+	+				+			+		+		+	+	+		+	+		26
Prostate	+	4			+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Seminal vesicle	+	4	f		+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Squamous cell carcinoma, metastatic, stomach																											1
Testes	+	+		⊢⊣	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Interstitial cell, adenoma							х																				1
Hematopoietic System Bone marrow Hemangiosarcoma Lymph node	+ +	+ +	- 4 - 4		+ -	+ +	+	+ +	+ +	+	++	+ +	+			+ X +				+ +			+ +	+	++	++	50 1 50
Mediastinal, squamous cell carcinoma, metastatic, stomach																											1
	D.			L .	. .	<u>ь</u>	т		т																		
Lymph node, mandibular					+ •			+.		17 - J		+			+	+	+	+	+	+	Ţ	Ť	+	+	+	Ŧ	49 50
Lymph node, mesenteric Squamous cell carcinoma, metastatic, stomach	+	+	• •		Γ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	` +	+	50 1
Spleen	+	4		⊢ -	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma	T	'		-	•	•	•	•	•	1		'	ľ	•	'	ſ		•	ſ			x			•	x	5
Thymus	+	4	• •	ب	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+		50
Integumentary System																								, 			
Mammary gland	M	A	A D	<i>а</i>	יוא	M	м	м	м	м	м	м	м	м	м	м	м	м	м	м	м	м	ЪЛ	M	M	м	
Skin		4	1		+ +	+	+	+	+	+	+	+	+			+				+			+	+	4	+	50
										-	•.	-		-		-			·	-							
Musculoskeletal System					. .	L.	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Musculoskeletal System Bone	+	_																									
Musculoskeletal System Bone Skeletal muscle	+	T		r -			Ŧ	•	•	•	•		•	•	•	•			+	-		-	•				2
Bone	+	Т		r -		T	Ŧ	•	•		•	•	'	•	·	•			+ X	-	-	-	•				2 1
Bone Skeletal muscle	+	T		r -	, .	•	т	•	•		•	•	•	•	•	·			+ X	-	-		•	•			2 1 1

																										 -
															7 '											
Number of Days on Study.															0 (1)											
	,	•	0	0	0	0	9	U	1	2	'	I	1	•	1.))	3	3	3		' ' '		9	
	1														1											
Carcass ID Number	0														1											
															2 9 1 1											
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		. 1	. 1	1	1					1	
lervous System			١																							
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+ -	+ +	⊦ ⊣	⊦ ⊣		+ +	+ -	+	+	
lespiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+ -	+ +	+ -			+ +	۴ -	+	+	
Alveolar/bronchiolar adenoma																		2	C							
Alveolar/bronchiolar carcinoma																							2	X		
Hepatocellular carcinoma, metastatic,						v								v							·					
liver						х								Х												
Hepatocellular carcinoma, metastatic, multiple, liver												х						>	,							
Histiocytic sarcoma									х			Λ							•							
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	۲ -	+ +	⊢ ⊣			+ +	۴.	+	+	
Trachea	÷	÷	÷	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -	+ +		+ -		+ +	+ -	+	+	
Special Senses System Ear																										
Fibrosarcoma																										
Harderian gland															+											
Adenoma															х											
Jrinary System				<u> </u>					•																	
Kidney	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+ •	+ -	+ -	⊢⊣	+ +		+ -	+ •	+	+	
Histiocytic sarcoma									х												_					
Renal tubule, carcinoma																				>						
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+ -	+ -		+ +		+ -	+ •	+	+	
systemic Lesions																										
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+ -	+ -	+ +	+ -		+ · -	+ •	+	+	
Histiocytic sarcoma									х																	
Lymphoma malignant mixed	x	Х					х						х					2	۲.							

TABLE C2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

.

Number of Days on Study	7 2 9	7 3 0	7 3 0	_	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1	7 3 1		7 3 1			7 3 1							7 3 1		3	
	0	0	-	-	0	0	0																1			
Carcass ID Number	8 7 1	7 4 1	6			4	5	6	8	1		3		7		2	5	7	8	1	3	4	1 5 1	6	7	Total Tissues/ Tumors
Nervous System Brain	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Respiratory System Lung										,				1			+	+			+	1				50
Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic,	Ŧ	+ X	X	2	–	т Х	.	т	т	т	т	+ X	Ŧ	Ŧ	т	×	×		Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	50 4 5
liver Hepatocellular carcinoma, metastatic,																										2
multiple, liver Histiocytic sarcoma Nose	-				т	т	т	Ŧ	-	т	-	-	<u>т</u>	т	Т	<u>т</u>	Ŧ	-	-		T	-				2 1 50
Trachea	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50
Special Senses System	· · · · · · · · · · · · · · · · · · ·																									
Ear Fibrosarcoma																	+ X									1 1
Harderian gland Adenoma														+ X			•			+ X		+ X				4
Urinary System																										
Kidney Histiocytic sarcoma Renal tubule, carcinoma	+	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1
Urinary bladder	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Systemic Lesions																							. <u></u>			<u> </u>
Multiple organs Histiocytic sarcoma	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Lymphoma malignant mixed				х																x			х			8

Table C2

.

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

		Vehicle Control	20 mg/kg	40 mg/kg
1	- •	and the second	_	
drenal Gland: Adenoma				
Overall rates ^a		4/41 (10%)	0/28 (0%)	2/10 (20%)
Adjusted rates ^b	· · ·	13.5%	0.0%	27.6%
Ferminal rates ^c		2/23 (9%)	0/14 (0%)	1/4 (25%)
First incidence (days)		589	_e	715
Life table tests		P=0.484N	P=0.094N	P=0.655
ogistic regression tests ^a		P=0.529	P=0.119N	P=0.307
Cochran-Armitage test ^d	•	P=0.535		
Fisher exact test ^d			P=0.117N	P=0.334
Adrenal Medulla: Benign Pl	eochromocvtoma			
Overall rates	·····	0/50 (0%)	4/50 (8%)	7/48 (15%)
Adjusted rates	·	0.0%	11.4%	23.3%
Cerminal rates	1 L	0/30 (0%)	1/27 (4%)	5/27 (19%)
First incidence (days)	1. S.	-	691	691
Life table tests	1 1	P=0.005	P=0.067	P=0.007
Logistic regression tests		P = 0.004	P=0.069	P = 0.007
Cochran-Armitage test	· · · · · · · · · · · · · · · · · · ·	P = 0.005		
Fisher exact test		· ····································	P=0.059	P=0.005
×	$p = \frac{4}{3} \frac{1}{2} $			
Harderian Gland: Adenoma		0/60 / 10/ N	6150 (100)	AIED 1901
Overall rates	•	2/50 (4%)	6/50 (12%)	4/50 (8%)
Adjusted rates		6.1%	19.4%	13.2%
Ferminal rates		1/30 (3%)	4/27 (15%)	3/28 (11%)
First incidence (days)		705	701	701
Life table tests	· · ·	P = 0.264	P=0.126	P=0.312
Logistic regression tests		P = 0.264	P = 0.160	P=0.318
Cochran-Armitage test		P=0.290		and the second second
Fisher exact test			P=0.134	P=0.339
Liver: Hepatocellular Adeno	ma			
Overall rates		20/50 (40%)	24/50 (48%)	14/50 (28%)
Adjusted rates		51.5%	65.6%	44.2%
Terminal rates	۰ ۲۰	12/30 (40%)	15/27 (56%)	11/28 (39%)
First incidence (days)	•	424	651	596
ife table tests		P=0.207N	P=0.244	P=0.213N
ogistic regression tests	• .	P=0.126N	P=0.356	P=0.142N
Cochran-Armitage test		P=0.129N		
Fisher exact test	· • • • •		P=0.273	P=0.146N
Liver: Hepatocellular Carcin	ioma		·	
Overall rates		9/50 (18%)	16/50 (32%)	12/50 (24%)
Adjusted rates	19 A. A.	23.1%	38.8%	29.2%
Ferminal rates		2/30 (7%)	5/27 (19%)	2/28 (7%)
First incidence (days)		599	676	596
Life table tests		P=0.262	P=0.125	P=0.294
ogistic regression tests	į	P = 0.282	P=0.093	P=0.312
Cochran-Armitage test		P = 0.281		
Fisher exact test			P=0.083	P=0.312

TABLE C3 Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Gavage Study of Pentachloroanisole

174

. .

** *

.

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	20 mg/kg	40 mg/kg
iver: Hepatocellular Adenoma or Cs	ាក់ហាំពេលពេលខ	<u> </u>	
verall rates	26/50 (52%)	34/50 (68%)	24/50 (48%)
djusted rates	60.1%	78.4%	58.8%
erminal rates	13/30 (43%)	18/27 (67%)	12/28 (43%)
irst incidence (days)	424	651	596
ife table tests	P=0.508N	P=0.122	P=0.523N
ogistic regression tests	P=0.360N	P = 0.115	P = 0.403N
ochran-Armitage test	P = 0.381N	1-0.115	1-0.4051
isher exact test	1 - 0.00111	P=0.076	P=0.421N
iver: Hemangiosarcoma			х х
werall rates	2/50 (4%)	8/50 (16%)	10/50 (20%)
djusted rates	5.7%	20.0%	29.9%
erminal rates	0/30 (0%)	1/27 (4%)	6/28 (21%)
irst incidence (days)	701	682	612
ife table tests	P=0.014	P=0.069	P=0.015
ogistic regression tests	P=0.013	P=0.051	P=0.015
ochran-Armitage test	P=0.014		
sher exact test		P=0.046	P=0.014
ung: Alveolar/bronchiolar Adenoma			
werall rates	7/50 (14%)	7/32 (22%)	4/50 (8%)
djusted rates	22.0%	40.2%	13.4%
erminal rates	6/30 (20%)	3/9 (33%)	3/28 (11%)
rst incidence (days)	691	682	705 `
fe table tests	P=0.282N	P=0.125	P=0.300N
ogistic regression tests	P=0.257N	P=0.231	P=0.287N
ochran-Armitage test	P=0.233N		
sher exact test		P=0.264	P=0.262N
ung: Alveolar/bronchiolar Carcinom	80		
verall rates	6/50 (12%)	5/32 (16%)	5/50 (10%)
djusted rates	18.7%	45.7%	17.9%
erminal rates	5/30 (17%)	4/9 (44%)	5/28 (18%)
irst incidence (days)	691	691	729 (T)
fe table tests	P=0.494N	P=0.149	P=0.548N
ogistic regression tests	P=0.483N	P=0.324	P=0.541N
ochran-Armitage test	P=0.439N		
sher exact test		P=0.438	P=0.500N
ung: Alveolar/bronchiolar Adenoma			
verall rates	11/50 (22%)	12/32 (38%)	8/50 (16%)
djusted rates	33.4%	80.5%	27.3%
erminal rates	9/30 (30%)	7/9 (78%)	7/28 (25%)
rst incidence (days)	691	682	705
ife table tests	P=0.348N	P=0.013	P=0.361N
ogistic regression tests	P=0.318N	P=0.066	P=0.344N
ochran-Armitage test	P=0.278N		
isher exact test		P=0.102	P=0.306N

All Organs: Hemangiosarcoma Worall rates 4/50 (8%) 8/50 (16%) 10/50 (20%) Myisted rates 11.6% 20.0% 29.9% Irrit incidence (days) 701 682 612 Lie table tests P=0.056 P=0.215 P=0.066 opistic regression tests P=0.058 P=0.178 P=0.071 Schran -Armitage test P=0.060 P=0.178 P=0.074 All Organs: Hemangioma or Hemangiosarcoma Vorall rates 2/30 (7%) 3/27 (11%) 6/28 (21%) Tist incidence (days) 701 682 612 612 612 ife table tests P=0.103 P=0.155 P=0.116 0/26 (21%) 10/50 (20%) 10/50 (20%) Life table tests P=0.109 P=0.131 P=0.131 P=0.131 P=0.131 Valter rates 11.1% 16/8% 20.9% 10/50 (20%) 10/50 (20%) Uprass: Malgnant Lymphoma (Histiocytic, Lymphocytic, or Mixed) Dereal rates 11.1% 16/8% 20.9% Li table tests P=0.137 P=0.374		Vehicle Control	20 mg/kg	40 mg/kg
Derail rates 4/50 (8%) 8/50 (16%) 10/50 (20%) Mujusted rates 11.6% 20.0% 29.9% Valued rates 11.6% 20.0% 29.9% Tirst incidence (days) 701 682 612 Lic table tests P=0.056 P=0.215 P=0.066 Optimize test P=0.058 P=0.178 P=0.071 Schran -Armitage test P=0.060 10/50 (20%) 10/50 (20%) Vall Organs: Hemangioms or Hemangiosarcoma Decasition regression tests 29.9% 29.9% Vall organs: Hemangioma or Hemangiosarcoma Decasition regression tests 29.90% 21.7% 62.28 (21%) Trait incidence (days) 701 68.2 612 1.6 612 1.6 Optimize test P=0.103 P=0.155 P=0.116 1.6 1.6 1.6 1.6 1.6 1.6 8.50 (16%) 6.50 (12%) 8.50 (16%) 1.6 1.6 1.6 1.6 2.9 1.6 1.6 2.9 1.6 1.6 2.9 1.6 1.6 1.6 1.6 1.6 2.6 1.6 1.6 1.6	Il Organs: Hemangiosarcoma			
Valueted rates 11.6% 20.0% 29.9% Terminal rates 17.69 (3%) 1/27 (4%) 6/28 (21%) Tirst incidence (days) 701 682 612	2 2	4/50 (8%)	8/50 (16%)	10/50 (20%)
Reminal rates 1/30 (3%) 1/27 (4%) 6/22 (21%) First incidence (days) 701 682 P=0.068 Le table tests P=0.056 P=0.215 P=0.071 Sochran-Armitage test P=0.068 P=0.176 P=0.071 Tisher coact test P=0.060 P=0.071 P=0.071 Sochran-Armitage test P=0.070 P=0.071 P=0.071 Varial rates 5/50 (10%) 10/50 (20%) 10/50 (20%) Varial rates 2/30 (7%) 3/27 (1%) 6/22 (21%) Sochran-Armitage test P=0.103 P=0.155 P=0.162 Capistic regression tests P=0.104 P=0.131 P=0.124 Cochran-Armitage test P=0.114 P=0.131 P=0.131 Varial rates 2/30 (7%) 2/27 (7%) 3/28 (1%) Varial rates 2/30 (7%) 2/27 (7%) 3/28 (1%) Varial rates 2/30 (7%) 2/27 (7%) 3/28 (1%) Varial rates P=0.114 P=0.131 P=0.131 Varial rates P=0.137 P=0.149 P=0.175 Cochran-Armitage test P=0.137	Miusted rates	. ,		• •
Tint incidence (days) 701 682 612 Dif table tests P=0.056 P=0.215 P=0.060 Sochran-Armitage test P=0.060 P=0.071 Sochran-Armitage test P=0.060 P=0.074 Vall Organs: Hemangioma or Hemangiosarcoma P=0.178 P=0.074 Diverall rates 14.7% 26.2% 29.9% Incidence (days) 701 682 612 Creminal rates 2.30 (7%) 3/27 (11%) 672 (21%) Tist incidence (days) 701 682 612 Directatic regression tests P=0.109 P=0.155 P=0.116 Directaran-Armitage test P=0.019 P=0.131 P=0.131 Scheran-Armitage test P=0.114 P=0.331 P=0.131 Vist or rates 11.1% 16.8% 20.9% Varian rates 2/30 (7%) 2/27 (7%) 3/28 (11%) Vist rates 11.1% 16.8% 20.9% Vist rates 2/30 (7%) 2/27 (7%) 3/28 (11%) Vist rates P=0.137 P=0.374 P=0.175 Dopistic regression tests	·			
ife table tests $P = 0.056$ $P = 0.155$ $P = 0.071$ opistic regression tests $P = 0.066$ $P = 0.196$ $P = 0.071$ Sochran -Armitage test $P = 0.060$ $P = 0.178$ $P = 0.074$ Vall Organs: Hemangioma or Hemangiosarcoma $P = 0.070$ $0.50 (20\%)$ $10/50 (20\%)$ $10/50 (20\%)$ Vortali rates 14.7% 26.2% 29.9% Terminal rates $2/30 (7\%)$ $3/27 (11\%)$ $6228 (21\%)$ ife table tests $P = 0.103$ $P = 0.155$ $P = 0.124$ ochran -Armitage test $P = 0.103$ $P = 0.131$ $P = 0.131$ ister exact test $P = 0.103$ $P = 0.131$ $P = 0.131$ Ul Organs: Malignant Lymphoma (Histiocytic, Lymphocytic, or Mixed) $S50 (16\%)$ $S/50 (16\%)$ vortali rates $2/30 (7\%)$ $2/27 (7\%)$ $3/28 (11\%)$ iff table tests $P = 0.137$ $P = 0.374$ $P = 0.178$ Optimum Code (days) 491 592 467 iff table tests $P = 0.141$ $P = 0.370$ $P = 0.178$ Dothar -Armitage test $P = 0.141$ $P = 0.376$ $P = 0.178$				
Logistic regression tests P = 0.058 P = 0.196 P = 0.071 Dochran-Armitage test P = 0.060 P = 0.178 P = 0.074 Nul Organs: Hemangioma or Hemangiosarcoma Decolar 14.7% 26.2% 29.9% Derall rates 5/50 (10%) 10/50 (20%) 29.9% Identification of Hemangiosarcoma 22.00 (7%) 3/27 (11%) 662 (21%) Valiated rates 2/30 (7%) 3/27 (11%) 662 (21%) Tirst incidence (days) 701 682 612 Lie table tests P = 0.109 P = 0.155 P = 0.116 Opsiter regression tests P = 0.109 P = 0.131 P = 0.131 Chran-Armitage test P = 0.130 P = 0.131 P = 0.131 Valueted rates 4/50 (8%) 6/50 (12%) 8/50 (16%) Organs: Malignant Lymphoma (Histiocytic, Lymphocytic, or Mixed) 2/27 (7%) 3/28 (11%) Visite regression tests P = 0.137 P = 0.374 P = 0.175 Dochran-Armitage test P = 0.114 P = 0.320 P = 0.178 Dochran Armitage test P = 0.137 P				
Deckman P=0.060 isher exact test P=0.178 P=0.074 UI Organs: Hemangioma or Hemangiosarcoma Deckman				
Tisher exact test $P=0.178$ $P=0.074$ All Organs: Hemangioma or Hemangiosarcoma	0 0			1 0.071
becrall rates $5/50$ (10%) $10/50$ (20%) $10/50$ (20%) djusted rates 14.7% 26.2% 29.9% erminal rates 230 (7%) $3/27$ (11%) $6/28$ (21%) irst incidence (days) 701 682 612 ife table tests P=0.103 P=0.155 P=0.114 ife table tests P=0.109 P=0.131 P=0.131 isher exact test P=0.114 P=0.131 P=0.131 II Organs: Malignant Lymphoma (Histiocytic, Lymphocytic, or Mixed) by by by werall rates 2/30 (7%) $2/27$ (7%) $3/28$ (11%) idjusted rates 11.1% 16.8% 20.9% erminal rates 2/30 (7%) $2/27$ (7%) $3/28$ (11%) istic incidence (days) 491 592 467 ife table tests P=0.137 P=0.374 P=0.179 opdistic regression tests P=0.141 P=0.325 P=0.149 opdistar arcs 20/50 (58%) $36/50$ (72%) $25/50$ (50%) ubrane regression tests P=0.131 P=0.325 P=0.178 uil Organs:	v	1 -0000	P=0.178	P=0.074
bycrail rates 5/50 (10%) 10/50 (20%) 10/50 (20%) udjusted rates 14.7% 26.2% 29.9% erminal rates 230 (7%) 3/27 (11%) 6/28 (21%) ift table tests P=0.103 P=0.155 P=0.116 opistic regression tests P=0.109 P=0.159 P=0.124 icchara-Armitage test P=0.114 P=0.131 P=0.131 U Organs: Malignant Lymphoma (Histiocytic, Lymphocytic, or Mixed) Verail rates 2/30 (7%) 2/27 (7%) 3/28 (11%) isher exact test P=0.114 P=0.131 P=0.131 P=0.131 U Organs: Malignant Lymphoma (Histiocytic, Lymphocytic, or Mixed) Verail rates 2/30 (7%) 2/27 (7%) 3/28 (11%) ister exact test 11.1% 16.8% 20.9% 467 ife table tests P=0.137 P=0.374 P=0.179 9/26 (15%) ister exact test P=0.14 P=0.325 P=0.149 9/20 (50%) 3/50 (72%) 2/50 (50%) udjusted rates 70.9 (58%) 3/50 (72%) 2/50 (50%) 3/50 (50%) 3/50 (50%) 3/50 (50%) 3/50 (50%) 3/50 (50%) 3/50 (50%) <td>ll Organs: Hemangioma or Hemang</td> <td>ziosarcoma</td> <td></td> <td></td>	ll Organs: Hemangioma or Hemang	ziosarcoma		
Adjusted rates 14.7% 26.2% 29.9% Verminal rates $2/30$ (7%) $3/27$ (11%) $6/28$ (21%) Tirst incidence (days) 701 682 612			10/50 (20%)	10/50 (20%)
Terminal rates 2/30 (7%) 3/27 (11%) 6/28 (21%) Tirst incidence (days) 701 682 612 Life table tests P=0.103 P=0.155 P=0.116 Logistic regression tests P=0.109 P=0.159 P=0.124 Schran-Armitage test P=0.114 P=0.131 P=0.131 Verail rates 4/50 (8%) 6/50 (12%) 8/50 (16%) Vall Organs: Malignant Lymphoma (Histiocytic, Lymphocytic, or Mixed) P=0.131 P=0.131 Verail rates 2/30 (7%) 2/27 (7%) 3/28 (11%) Tirst incidence (days) 491 592 467 Life table tests P=0.137 P=0.374 P=0.175 Logistic regression tests P=0.141 P=0.325 P=0.149 Schran-Armitage test P=0.141 P=0.370 P=0.178 Vil Organs: Benign Neoplasms Verail rates 29/50 (58%) 36/50 (72%) 25/50 (50%) Verail rates 70.2% 85.2% 70.9% Section tests P=0.232N Verail rates P=0.38N P=0.124 P=0.402N Section tests P=0.232N Verail rates<		· · ·	, , ,	
Tint incidence (days) 701 682 612 ife table tests $P=0.103$ $P=0.155$ $P=0.116$ cohran-Armitage test $P=0.109$ $P=0.159$ $P=0.124$ isher exact test $P=0.114$ $P=0.131$ $P=0.131$ Ul Organs: Malignant Lymphoma (Histiocytic, Lymphocytic, or Mixed) $P=0.131$ $P=0.131$ Verail rates 4/50 (8%) 6/50 (12%) 8/50 (16%) value tates 11.1% 16.8% 20.9% 'erminal rates 2/30 (7%) 2/27 (7%) 3/28 (11%) 'ist incidence (days) 491 592 467 'dic table tests $P=0.137$ $P=0.374$ $P=0.175$ ogistic regression tests $P=0.141$ $P=0.325$ $P=0.149$ Cochran-Armitage test $P=0.141$ $P=0.370$ $P=0.178$ Vil Organs: Benign Neoplasms Verail rates 70.2% 85.2% 70.9% 'fer table tests $P=0.388N$ $P=0.124$ $P=0.402N$ opistic regression tests $P=0.388N$ $P=0.124$ $P=0.402N$ obchran-Armitage test $P=0.236N$ $P=0.272N$ <t< td=""><td></td><td></td><td></td><td></td></t<>				
Ife table tests $P=0.103$ $P=0.155$ $P=0.116$ opistic regression tests $P=0.109$ $P=0.159$ $P=0.124$ opistic regression tests $P=0.114$ $P=0.131$ $P=0.131$ II Organs: Malignant Lymphoma (Histiocytic, Lymphocytic, or Mixed) $P=0.131$ $P=0.131$ Diverall rates 4/50 (8%) 6/50 (12%) 8/50 (16%) Adjusted rates 11.1% 16.8% 20.9% reminal rates 2/30 (7%) 2/27 (7%) 3/28 (11%) irst incidence (days) 491 592 467 ize table tests $P=0.137$ $P=0.374$ $P=0.175$ opistic regression tests $P=0.141$ $P=0.325$ $P=0.149$ Sochran-Armitage test $P=0.141$ $P=0.370$ $P=0.178$ Ul Organs: Benign Neoplasms $Verall rates$ 29/50 (58%) 36/50 (72%) 25/50 (50%) Vigusted rates 70.2% 85.2% 70.9% 27 'if table tests $P=0.338$ $P=0.124$ $P=0.442$ opistic regression tests $P=0.235$ $P=0.272N$ $P=0.272N$ 'if table tests $P=0.236N$			· · ·	
pojstic regression tests $P=0.109$ $P=0.159$ $P=0.124$ Schran-Armitage test $P=0.114$ $P=0.131$ $P=0.131$ Il Organs: Malignant Lymphoma (Histiocytic, Lymphocytic, or Mixed) V V bverali rates $4/50$ (8%) $6/50$ (12%) $8/50$ (16%) ujusted rates 11.1% 16.8% 20.9% 'erminal rates $2/30$ (7%) $2/27$ (7%) $3/28$ (11%) 'uirst incidence (days) 491 592 467 'ic table tests $P=0.137$ $P=0.374$ $P=0.178$ 'opistic regression tests $P=0.144$ $P=0.325$ $P=0.149$ 'opistic regression tests $P=0.141$ $P=0.370$ $P=0.178$ 'li Organs: Benign Neoplasms Verali rates 70.2% 85.2% 70.9% verali rates $18/20$ (60%) $21/27$ (78%) $18/28$ (64%) 'jist incidence (days) 424 651 596 'ife table tests $P=0.338N$ $P=0.124$ $P=0.402N$ opistic regression tests $P=0.237N$ $P=0.274N$ $P=0.272N$ 'opthan - Armitage test	· · · ·			
P=0.114 P=0.131 P=0.131 Il Organs: Malignant Lymphoma (Histiocytic, Lymphocytic, or Mixed)		-		
Tisher exact test $P=0.131$ $P=0.131$ All Organs: Malignant Lymphoma (Histiocytic, Lymphocytic, or Mixed) Werall rates 4/50 (8%) 6/50 (12%) 8/50 (16%) Miguet rates 11.1% 16.8% 20.9% 'erminal rates 2/30 (7%) 2/27 (7%) 3/28 (11%) Tist incidence (days) 491 592 467 ife table tests P=0.137 P=0.374 P=0.175 orgistic regression tests P=0.114 P=0.325 P=0.149 Oxchran-Armitage test P=0.370 P=0.178 All Organs: Benign Neoplasms P=0.141 Temphoma tass 29/50 (58%) 36/50 (72%) 25/50 (50%) Verall rates 29/50 (58%) 36/50 (72%) 25/50 (50%) 36/50 (72%) 25/50 (50%) Miguet rates 70.2% 85.2% 70.9% Temphoma tass 18/26 (64%) 18/28 (64%) Tirst incidence (days) 424 651 596 9=0.237N P=0.272N Organs: Malignant Neoplasms P=0.236N P=0.124 P=0.402N 272N Sochran-Armitage test P=0.104 P=0.274N P=0.274N 24	0 0			
by evall rates $4/50$ (8%) $6/50$ (12%) $8/50$ (16%)udjusted rates11.1%16.8%20.9%'erminal rates2/30 (7%)2/27 (7%)3/28 (11%)inst incidence (days)491592467ife table testsP=0.137P=0.374P=0.175ogistic regression testsP=0.114P=0.325P=0.149ochran-Armitage testP=0.141*********************************	0		P=0.131	P=0.131
Overall rates $4/50$ (8%) $6/50$ (12%) $8/50$ (16%)Adjusted rates11.1%16.8%20.9%Cerminal rates2/30 (7%)2/27 (7%)3/28 (11%)Tirst incidence (days)491592467.ife table testsP=0.137P=0.374P=0.175.ogistic regression testsP=0.114P=0.325P=0.149Cochran-Armitage testP=0.141Tisher exact testP=0.178Nil Organs: Benign NeoplasmsP=0.141Tisher exact testP=0.370P=0.178Overall rates29/50 (58%)36/50 (72%)25/50 (50%)36/50 (72%)25/50 (50%)Adjusted rates70.2%85.2%70.9%18/28 (64%)Cerminal rates18/30 (60%)21/27 (78%)18/28 (64%).ogistic regression testsP=0.388NP=0.124P=0.402N.ogistic regression testsP=0.336NP=0.185P=0.272N.ogistic regression testsP=0.237NTisher exact testP=0.274NAll Organs: Malignant NeoplasmsP=0.237NTisher exact testP=0.274NAll Organs: Malignant Neoplasms21/50 (42%)30/50 (60%)35/50 (70%)Adjusted rates50.3%64.2%74.2%Cerminal rates10/30 (33%)11/27 (41%)16/28 (57%)Tist incidence (days)491592467.ife table testsP=0.003P=0.067P=0.015.ogistic regression testsP=0.003P=0.067P=0.005.ogistic regression testsP=0.003P=0.067P=0.0	All Organs: Malignant Lymphoma (H	Histiocytic, Lymphocytic, or Mixed)		
Adjusted rates11.1%16.8%20.9%ferminal rates2/30 (7%)2/27 (7%)3/28 (11%)first incidence (days)491592467de table testsP=0.137P=0.374P=0.175ogistic regression testsP=0.114P=0.325P=0.149Cochran-Armitage testP=0.114P=0.370P=0.178All Organs: Benign NeoplasmsP=0.114P=0.370P=0.178Derall rates29/50 (58%)36/50 (72%)25/50 (50%)Adjusted rates70.2%85.2%70.9%Cerminal rates18/36 (60%)21/27 (78%)18/28 (64%)de table testsP=0.388NP=0.124P=0.402Nde table testsP=0.326NP=0.272N25/50 (70%)de table testsP=0.236NP=0.124P=0.402Nde table testsP=0.237NTTde testP=0.237NTTde testP=0.237NTTde testP=0.104P=0.272Nde testP=0.237NTTde testP=0.237NTTde testP=0.03311/27 (41%)16/28 (57%)de test10/30 (33%)11/27 (41%)16/28 (57%)de table testsP=0.013P=0.112P=0.015de testP=0.003P=0.067P=0.005de table testsP=0.003P=0.005P=0.005de table testsP=0.003P=0.005P=0.005de table testsP=0.				8/50 (16%)
Terminal rates $2/30$ (7%) $2/27$ (7%) $3/28$ (11%)irst incidence (days)491592467irst incidence (days)491592467ife table tests $P=0.137$ $P=0.374$ $P=0.175$ ogistic regression tests $P=0.114$ $P=0.325$ $P=0.149$ cochran-Armitage test $P=0.141$ $P=0.370$ $P=0.178$ Will Organs: Benign Neoplasms $P=0.141$ $P=0.370$ $P=0.178$ Overall rates $29/50$ (58%) $36/50$ (72%) $25/50$ (50%)ull Organs: Benign Neoplasms 70.2% 85.2% 70.9% Verall rates $18/30$ (60%) $21/27$ (78%) $18/28$ (64%)Tirst incidence (days) 424 651596ife table tests $P=0.326N$ $P=0.124$ $P=0.402N$ ogistic regression tests $P=0.236N$ $P=0.124$ $P=0.402N$ ogistic regression tests $P=0.237N$ $P=0.124$ $P=0.272N$ Ochran-Armitage test $P=0.237N$ $P=0.104$ $P=0.274N$ Ull Organs: Malignant Neoplasms $P=0.237N$ $P=0.104$ $P=0.274N$ Val Organs: Malignant Neoplasms $P=0.013$ $P=0.112$ $P=0.015$ Verall rates $10/30$ (33%) $11/27$ (41%) $16/28$ (57%)Tirst incidence (days) 491 592 467 ife table tests $P=0.003$ $P=0.005$ $P=0.005$				• •
irst incidence (days) 491 592 467 ife table tests $P=0.137$ $P=0.374$ $P=0.175$ ogistic regression tests $P=0.114$ $P=0.325$ $P=0.149$ oxhran-Armitage test $P=0.141$ $P=0.370$ $P=0.178$ isher exact test $P=0.141$ $P=0.370$ $P=0.178$ verail rates 29/50 (58%) 36/50 (72%) 25/50 (50%) idjusted rates 70.2% 85.2% 70.9% 'erminal rates 18/30 (60%) 21/27 (78%) 18/28 (64%) orist incidence (days) 424 651 596 ife table tests $P=0.388N$ $P=0.124$ $P=0.402N$ ogistic regression tests $P=0.236N$ $P=0.185$ $P=0.272N$ ochran-Armitage test $P=0.237N$ $P=0.104$ $P=0.274N$ bil Organs: Malignant Neoplasms $P=0.237N$ $P=0.104$ $P=0.274N$ bil Organs: Malignant Neoplasms $P=0.033$ $P=0.112$ $P=0.015$ orgistic regression tests 50.3% 64.2% 74.2% 'erminal rates $10/30$ (33%) $11/27$ (41%) 1				
ile table tests $P=0.137$ $P=0.374$ $P=0.175$ ogistic regression tests $P=0.114$ $P=0.325$ $P=0.149$ ochran-Armitage test $P=0.141$ $P=0.370$ $P=0.178$ Ul Organs: Benign Neoplasms $P=0.141$ $P=0.370$ $P=0.178$ Verall rates 29/50 (58%) 36/50 (72%) 25/50 (50%) djusted rates 70.2% 85.2% 70.9% 'erminal rates 18/30 (60%) 21/27 (78%) 18/28 (64%) 'ife table tests $P=0.388N$ $P=0.124$ $P=0.402N$ ogistic regression tests $P=0.236N$ $P=0.185$ $P=0.272N$ ochran-Armitage test $P=0.237N$ $P=0.104$ $P=0.274N$ Ul Organs: Malignant Neoplasms $P=0.237N$ $P=0.104$ $P=0.274N$ Ul Organs: Malignant Neoplasms $P=0.237N$ $P=0.104$ $P=0.274N$ Ul Organs: Malignant Neoplasms $P=0.3\%$ $P=0.104$ $P=0.274N$ Ul Organs: Malignant Neoplasms $P=0.013$ $P=0.112$ $P=0.015$ orgistic regression tests $P=0.003$ $P=0.067$ $P=0.005$ ife table te			· · ·	· · ·
pogistic regression tests $P=0.114$ $P=0.325$ $P=0.149$ Sochran-Armitage test $P=0.141$ $P=0.370$ $P=0.178$ NII Organs: Benign Neoplasms $P=0.124$ $P=0.370$ $P=0.178$ Null Organs: Benign Neoplasms $29/50 (58\%)$ $36/50 (72\%)$ $25/50 (50\%)$ verail rates $29/50 (58\%)$ $36/50 (72\%)$ $25/50 (50\%)$ vijusted rates 70.2% 85.2% 70.9% terminal rates $18/30 (60\%)$ $21/27 (78\%)$ $18/28 (64\%)$ vijusted rates $18/30 (60\%)$ $21/27 (78\%)$ $18/28 (64\%)$ vijet table tests $P=0.338N$ $P=0.124$ $P=0.402N$ orgistic regression tests $P=0.236N$ $P=0.124$ $P=0.402N$ cochran-Armitage test $P=0.237N$ $P=0.104$ $P=0.274N$ Verall rates $21/50 (42\%)$ $30/50 (60\%)$ $35/50 (70\%)$ vijusted rates $21/50 (42\%)$ $30/50 (60\%)$ $35/50 (70\%)$ vijusted rates $10/30 (33\%)$ $11/27 (41\%)$ $16/28 (57\%)$ vijusted rates 90.013 $P=0.015$ $P=0.015$ v				
Period				
Tisher exact test $P=0.370$ $P=0.178$ All Organs: Benign Neoplasms 29/50 (58%) 36/50 (72%) 25/50 (50%) Deverall rates 29/50 (58%) 36/50 (72%) 25/50 (50%) Adjusted rates 70.2% 85.2% 70.9% Verminal rates 18/30 (60%) 21/27 (78%) 18/28 (64%) Verminal rates 18/30 (60%) 21/27 (78%) 18/28 (64%) Verminal rates 18/30 (60%) 21/27 (78%) 18/28 (64%) Opistic regression tests P=0.388N P=0.124 P=0.402N Opistic regression tests P=0.236N P=0.185 P=0.272N Opichran-Armitage test P=0.237N Distribution of the second sec	0 0			
Overall rates $29/50 (58\%)$ $36/50 (72\%)$ $25/50 (50\%)$ adjusted rates70.2% 85.2% 70.9%'erminal rates18/30 (60%) $21/27 (78\%)$ $18/28 (64\%)$ 'irst incidence (days) 424 651 596 ife table tests $P=0.388N$ $P=0.124$ $P=0.402N$ origistic regression tests $P=0.236N$ $P=0.124$ $P=0.402N$ ochran-Armitage test $P=0.237N$ $P=0.104$ $P=0.274N$ ochran-Armitage test $P=0.237N$ $P=0.104$ $P=0.274N$ bil Organs: Malignant Neoplasms $S0.3\%$ 64.2% 74.2% odjusted rates $10/30 (33\%)$ $11/27 (41\%)$ $16/28 (57\%)$ irst incidence (days) 491 592 467 erminal rates $P=0.013$ $P=0.112$ $P=0.015$ origistic regression tests $P=0.003$ $P=0.005$ $P=0.005$		1 0111	P=0.370	P=0.178
Overall rates $29/50 (58\%)$ $36/50 (72\%)$ $25/50 (50\%)$ Adjusted rates 70.2% 85.2% 70.9% Adjusted rates 70.2% 85.2% 70.9% Ferminal rates $18/30 (60\%)$ $21/27 (78\%)$ $18/28 (64\%)$ First incidence (days) 424 651 596 ife table tests $P=0.388N$ $P=0.124$ $P=0.402N$ ogistic regression tests $P=0.236N$ $P=0.185$ $P=0.272N$ ochran-Armitage test $P=0.237N$ $P=0.104$ $P=0.274N$ Norgans: Malignant Neoplasms $P=0.237N$ $P=0.104$ $P=0.274N$ All Organs: Malignant Neoplasms $21/50 (42\%)$ $30/50 (60\%)$ $35/50 (70\%)$ organs: Malignant Neoplasms $21/50 (42\%)$ $30/50 (60\%)$ $35/50 (70\%)$ organs: Malignant Neoplasms $P=0.013$ $P=0.112$ $P=0.015$ organs: malignant Neoplasms $P=0.013$ $P=0.112$ $P=0.015$ organs: malignant Neoplasms $P=0.013$ $P=0.003$ $P=0.005$	li Organs: Benign Neoplasms			
Adjusted rates 70.2% 85.2% 70.9% Cerminal rates $18/30 (60\%)$ $21/27 (78\%)$ $18/28 (64\%)$ Virst incidence (days) 424 651 596 ife table tests $P=0.388N$ $P=0.124$ $P=0.402N$ logistic regression tests $P=0.236N$ $P=0.124$ $P=0.402N$ logistic regression tests $P=0.236N$ $P=0.185$ $P=0.272N$ lochran-Armitage test $P=0.237N$ $P=0.104$ $P=0.274N$ Vise rates $21/50 (42\%)$ $30/50 (60\%)$ $35/50 (70\%)$ Adjusted rates 50.3% 64.2% 74.2% Cerminal rates $10/30 (33\%)$ $11/27 (41\%)$ $16/28 (57\%)$ Virst incidence (days) 491 592 467 ife table tests $P=0.013$ $P=0.112$ $P=0.015$ logistic regression tests $P=0.003$ $P=0.005$ $P=0.005$		29/50 (58%)	36/50 (72%)	25/50 (50%)
terminal rates $18/30 (60\%)$ $21/27 (78\%)$ $18/28 (64\%)$ Sirst incidence (days) 424 651 596 Life table tests $P=0.388N$ $P=0.124$ $P=0.402N$ Logistic regression tests $P=0.236N$ $P=0.185$ $P=0.272N$ Cochran-Armitage test $P=0.237N$ $P=0.104$ $P=0.274N$ Lil Organs: Malignant Neoplasms $P=0.23\%$ $P=0.104$ $P=0.274N$ Dverall rates $21/50 (42\%)$ $30/50 (60\%)$ $35/50 (70\%)$ Adjusted rates 50.3% 64.2% 74.2% Cerminal rates $10/30 (33\%)$ $11/27 (41\%)$ $16/28 (57\%)$ Sirst incidence (days) 491 592 467 Life table tests $P=0.013$ $P=0.112$ $P=0.015$ Logistic regression tests $P=0.003$ $P=0.005$ $P=0.005$. ,	• • •
First incidence (days) 424 651 596 ide table tests $P=0.388N$ $P=0.124$ $P=0.402N$ logistic regression tests $P=0.236N$ $P=0.185$ $P=0.272N$ lochran-Armitage test $P=0.237N$ $P=0.104$ $P=0.274N$ lochran-Armitage test $P=0.237N$ $P=0.104$ $P=0.274N$ lochran-Armitage test $P=0.3\%$ $P=0.104$ $P=0.274N$ lochran-Armitage test $P=0.3\%$ $P=0.104$ $P=0.274N$ lochran-Armitage test $P=0.3\%$ $P=0.104$ $P=0.274N$ lochran-Armitage test $21/50$ (42%) $30/50$ (60%) $35/50$ (70%) value tests 50.3% 64.2% 74.2% lochran-Armitage test $10/30$ (33%) $11/27$ (41%) $16/28$ (57%) life table tests $P=0.013$ $P=0.112$ $P=0.015$ locgistic regression tests $P=0.003$ $P=0.067$ $P=0.005$ lochran-Armitage test $P=0.003$ $P=0.005$ $P=0.005$				
Interface (algo) $P=0.124$ $P=0.402N$ ife table tests $P=0.388N$ $P=0.124$ $P=0.402N$ logistic regression tests $P=0.236N$ $P=0.185$ $P=0.272N$ lochran-Armitage test $P=0.237N$ $P=0.104$ $P=0.274N$ lisher exact test $P=0.3\%$ $P=0.104$ $P=0.274N$ lisher exact test $P=0.2750$ (42%) $30/50$ (60%) $35/50$ (70%) verail rates $21/50$ (42%) $30/50$ (60%) $35/50$ (70%) $36/50$ (70%) $36/50$ (70%) verail rates $10/30$ (33%) $11/27$ (41%) $16/28$ (57%) verail rates $P=0.013$ $P=0.112$ $P=0.015$ life table tests $P=0.003$ $P=0.067$ $P=0.005$ cochran-Armitage test $P=0.003$ $P=0.005$ $P=0.005$				
In close of the construction of th				
Dochran-Armitage test $P=0.237N$ Fisher exact test $P=0.104$ $P=0.274N$ All Organs: Malignant Neoplasms $21/50 (42\%)$ $30/50 (60\%)$ $35/50 (70\%)$ Overall rates 50.3% 64.2% 74.2% Verminal rates $10/30 (33\%)$ $11/27 (41\%)$ $16/28 (57\%)$ First incidence (days) 491 592 467 ife table tests $P=0.013$ $P=0.112$ $P=0.015$ cogistic regression tests $P=0.003$ $P=0.067$ $P=0.005$				
Fisher exact test $P=0.104$ $P=0.274N$ All Organs: Malignant Neoplasms $21/50 (42\%)$ $30/50 (60\%)$ $35/50 (70\%)$ Overall rates 50.3% 64.2% 74.2% Adjusted rates $10/30 (33\%)$ $11/27 (41\%)$ $16/28 (57\%)$ First incidence (days) 491 592 467 Life table tests $P=0.013$ $P=0.112$ $P=0.015$ Logistic regression tests $P=0.003$ $P=0.005$	• •			
Overall rates $21/50$ (42%) $30/50$ (60%) $35/50$ (70%)Adjusted rates 50.3% 64.2% 74.2% Cerminal rates $10/30$ (33%) $11/27$ (41%) $16/28$ (57%)First incidence (days) 491 592 467 Life table tests $P=0.013$ $P=0.112$ $P=0.015$ Logistic regression tests $P=0.003$ $P=0.005$ Cochran-Armitage test $P=0.003$ $P=0.003$	U		P=0.104	P=0.274N
Overall rates $21/50 (42\%)$ $30/50 (60\%)$ $35/50 (70\%)$ Adjusted rates 50.3% 64.2% 74.2% Adjusted rates $10/30 (33\%)$ $11/27 (41\%)$ $16/28 (57\%)$ First incidence (days) 491 592 467 Life table tests $P=0.013$ $P=0.112$ $P=0.015$ Logistic regression tests $P=0.003$ $P=0.005$ Cochran-Armitage test $P=0.003$ $P=0.003$	Al Organs: Malignant Neoplasms			
Adjusted rates 50.3% 64.2% 74.2% Cerminal rates $10/30$ (33%) $11/27$ (41%) $16/28$ (57%)First incidence (days) 491 592 467 Life table tests $P=0.013$ $P=0.112$ $P=0.015$ Logistic regression tests $P=0.003$ $P=0.067$ $P=0.005$ Cochran-Armitage test $P=0.003$ $P=0.003$	0 0	21/50 (42%)	30/50 (60%)	35/50 (70%)
erminal rates $10/30 (33\%)$ $11/27 (41\%)$ $16/28 (57\%)$ First incidence (days) 491 592 467 afe table tests $P=0.013$ $P=0.112$ $P=0.015$ cogistic regression tests $P=0.003$ $P=0.067$ $P=0.005$ Cochran-Armitage test $P=0.003$ $P=0.003$ $P=0.005$			· · /	· · ·
First incidence (days)491592467ife table tests $P=0.013$ $P=0.112$ $P=0.015$ cogistic regression tests $P=0.003$ $P=0.067$ $P=0.005$ Cochran-Armitage test $P=0.003$ $P=0.003$	•			
Interference $P=0.013$ $P=0.112$ $P=0.015$ Logistic regression tests $P=0.003$ $P=0.067$ $P=0.005$ Lochran-Armitage test $P=0.003$ $P=0.005$		· · ·	· · ·	• • •
cogistic regression tests $P=0.003$ $P=0.067$ $P=0.005$ Cochran-Armitage test $P=0.003$	· · ·	-		
Cochran-Armitage test P=0.003				
			1 0.007	
	isher exact test	1 -0.005	P=0.055	P=0.004

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Gavage Study of Pentachloroanisole (continued)
CO AISAT

Statistical Amalysis of Primary Neoplasms in Male Mice in the 2-Year Gavage Study of Pentachloroamisole (continued)

sher exact test		T10.0=4	720.0 = q
test sgerimrA-nerdoo	T=0.012		
stasti noizzerger oitzige	P=0.018	F=0.023	P=0.035
te table tests	170.0=q	T=0.102	280.0=q
rst incidence (days)	424	265	L97
ster initial rates	(%0L) 0E/IZ	(%68) LZ/ V Z	(%56) 87/97
tated rates	%8.08	%0.46	%8.26
verall rates	(%9L) 05/8E	(%76) 05/17	(%76) 05/97
amealqosh inangilaM io nginsä :enagio l			

Vehicle Control

3X/3m 02

soffices lenimon (T)

¹ Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone (including marrow), brain, epididymis, gallbladder, heart, kidney, large intestine, liver, lung, mammary gland, mandibular or mesenteric lymph node, nose, panetryroid gland, prinitary gland, preputial gland, prostate gland, salivary gland, seminal vesicles, skin, small intestine, spleen, stomach, testis, thymus, thyroid gland, trachea, and urinary bladder; for other tissues, denominator is number of animals necropsied.

b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

C Observed incidence at terminal kill

^d Beneath the "Vehicle Control" column are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

e Not applicable; no neoplasms in animal group

yil/yan 08

	· · · · ·	Incidence in Controls				
Study		Benign	Malignant		Benign or Malignant	
· · ·			n an	11 - A.A. +		
listorical Incidence at S	Southern Research	Institute				
Benzaldehyde		2/49	0/49		2/49	
Dichlorvos Furan		2/48 1/49	0/48 0/49		2/48 1/49	
furfural		2/50	1/50		3/50	e - 11
-Butyrolactone		1/48	1/48		2/48	1997 - M
-Nitroaniline		1/50	0/50		1/50	
entachloroanisole		0/50	0/50		0/50	
Total		9/344 (2.6%)	2/344 (0.6%)		11/344 (3.2%)	
Standard deviation		1.5%	1.0%		2.0%	
Range		0%-4%	0%-2%	,	0%-6%	· .
Overall Historical Incide		1. J. J. 19				
overall historical inclu	ence			`		
Total		17/602 /2 50%	2/602 (0.20%)		10/682 (2.8%)	
		17/682 (2.5%)	2/682 (0.3%)		19/682 (2.8%)	
Standard deviation	. <u>.</u>	1.6%	0.7% .		1.9%	
	· · · · ·		2/82 (0.3%) 0.7% 0%-2%	 -		
Standard deviation Range	· · · · · ·	1.6% 0%-4%	0.7%	· · · ·	1.9%	
Standard deviation Range		1.6% 0%-4%	0.7% .		1.9%	
Standard deviation Range	الله الدين الالي المعادية المعالي المعادية المعالي المعادي المعادي	1.6% 0%-4%	0.7%	· · ·	1.9%	•
Standard deviation Range	***********	1.6% 0%-4%	0.7%	· · · · · · · · · · · · · · · · · · ·	1.9%	•
Standard deviation Range	***********	1.6% 0%-4%	0.7% 0%-2%	· · · · · · · · · ·	1.9%	•
Standard deviation Range	***********	1.6% 0%-4%	0.7%	· · · · · · · · · · · · · · · · · · ·	1.9%	•
Standard deviation Range	***********	1.6% 0%-4%	0.7% 0%-2%	· · · ·	1.9%	•
Standard deviation Range	***********	1.6% 0%-4%	0.7% 0%-2%	· · · ·	1.9% 0%-6%	•
Standard deviation Range	۰ و ۲۰۰۰ و ۲۰	1.6% 0%-4%	0.7% 0%-2%		1.9% 0%-6%	
Standard deviation Range	۰ و ۲۰۰۰ و ۲۰	1.6% 0%-4%	0.7% 0%-2%		1.9% 0%-6%	
Standard deviation Range	· · · · · · · · · · · · · · · · · · ·	1.6%	0.7% 0%-2%		1.9%	
Standard deviation Range	،	1.6%	0.7% 0%-2%		1.9% 0%-6%	
Standard deviation Range	،	1.6%	0.7% 0%-2%	· · · · · · · · · · · · · · · · · · ·	1.9% 0%-6%	
Standard deviation Range	، میں اور	1.6%.0%-4%	0.7% 0%-2%		1.9%	
Standard deviation Range	، میں اور	1.6%	0.7% 0%-2%		1.9% 0%-6%	
Standard deviation Range	، به مدین ۱۹۰۰ و ۲۰۰۰ می ۱۹۰۰ - ۲۰۰۰ و ۲۰۰۰ ۱۹۰۰ - ۲۰۰۰ ۱۹۰۰ - ۲۰۰۰ و ۲۰۰۰ و ۲۰۰۰	1.6%.0%-4%	0.7% 0%-2%		1.9% 0%-6%	
Standard deviation Range	، به مدین ۱۹۰۰ و ۲۰۰۰ می ۱۹۰۰ - ۲۰۰۰ و ۲۰۰۰ ۱۹۰۰ - ۲۰۰۰ ۱۹۰۰ - ۲۰۰۰ و ۲۰۰۰ و ۲۰۰۰	1.6%.0%-4%	0.7% 0%-2%		1.9% 0%-6%	

TABLE C4a Historical Incidence of Adrenal Medulla Pheochromocytomas in Male B6C3F1 Mice Administered Corn Oil by Gavagea

.

.

Table C4b

Historical Incidence of Malignant Lymphomas in Male B6C3F₁ Mice Administered Corn Oil by Gavage^a

Study	Incidence in Controls			
Historical Incidence at Southern Research	Institute	<u></u>		
Benzaldehyde	1/50			
Dichlorvos	7/50	-		
Furan	5/50			
Furfural	5/50	*		
y-Butyrolactone	4/50			
p-Nitroaniline	4/50			
Pentachloroanisole	4/50	· · ·		
Total	30/350 (8.6%) ^b			
Standard deviation	3.6%			
Range	2%-14%			
Overall Historical Incidence				
Total	69/700 (9.9%)			
Standard deviation	3.9%			
Range	2%-18%			

^a Data as of 3 April 1991
 ^b Includes data for histiocytic, lymphocytic, mixed, NOS, and undifferentiated cell type lymphomas

TABLE C4c Historical Incidence of Osteosarcomas in Male B6C3F1 Mice Administered Corn Oil by Gavage^a

Study	Incidence in Controls
Historical Incidence at Southern Research I	Institute
Benzaldehyde Dichlorvos Furan Furfural γ-Butyrolactone <i>p</i> -Nitroaniline	0/50 0/50 0/50 0/50 0/50 0/50
Pentachloroanisole Overall Historical Incidence	0/50
Total Standard deviation Range	1/700 (0.1%) 0.5% 0%-2%

^a Data as of 3 April 1991

	Incidenc	e in Controls	
Study	Hemangioma	Hemangiosarcoma	
Historical Incidence at Souther	n Research Institute		
Benzaldehyde	1/50	0/50	
Dichlorvos	0/50	1/50	
Furan	0/50	2/50	
Furfural	1/50	2/50	
γ-Butyrolactone	0/50	2/50	
p-Nitroaniline	0/50	0/50	
Pentachloroanisole	0/50	2/50	
Total	2/350 (0.6%)	9/350 (2.6%)	
Standard deviation	1.0%	1.9%	
Range	0%-2%	0%-4%	
Overall Historical Incidence			
Total	3/699 (0.4%)	15/699 (2.1%)	
Standard deviation	0.9%	2.1%	
Range	0%-2%	0%-6%	

TABLE C4d Historical Incidence of Liver Hemangiomas and Hemangiosarcomas in Male B6C3F₁ Mice Administered Corn Oil by Gavage^a

^a Data as of 3 April 1991

Table CS

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Gavage Study of Pentachloroanisole^a

	Vehicle Control	20 mg/kg	40 mg/kg
Disposition Summary			······································
Animals initially in study	70	70	70
-Month interim evaluation	10	10	10
5-Month interim evaluation	10	10	10
Early deaths			
Accidental deaths	1	1	
Moribund	17	20	22
Natural deaths	2	2	
urvivors	-	-	
Terminal sacrifice	30	27	27
Died last week of study			1
Animals examined microscopically	70	70	70
limentary System	<u> </u>		
ntestine large, colon	(50)	(23)	(50)
Inflammation, suppurative	(50)		1 (2%)
ntestine large, rectum	(50)	(23)	(50)
Inflammation, suppurative	(50)	(22)	1 (2%)
ntestine small, ileum Hyperplasia	(50)	(22)	(49)
iver .	(50)	1 (5%) (50)	(50)
Angiectasis	(50) 1 (2%)	(50) 3 (6%)	(50)
Basophilic focus	5 (10%)	1 (2%)	1 (2%)
Basophilic focus, multiple	5 (1070)	1 (2%)	* (270)
Clear cell focus	2 (4%)	1 (2%)	2 (4%)
Clear cell focus, multiple	- ()	3 (6%)	3 (6%)
Cytologic alterations		50 (100%)	50 (100%)
Eosinophilic focus	8 (16%)	1 (2%)	
Eosinophilic focus, multiple	2 (4%)		
Fibrosis	1 (2%)		
Hematopoietic cell proliferation	1 (2%)		2 (4%)
Inflammation, subacute		49 (98%)	49 (98%)
Mixed cell focus	7 (14%)	4 (8%)	5 (10%)
Mixed cell focus, multiple	2 (4%)	11 (22%)	22 (44%)
Necrosis	2 (4%)	1 /0~~	1 (2%)
Biliary tract, dilatation Biliary tract, fibrosis		1 (2%)	2 (4%)
Biliary tract, fibrosis Biliary tract, hyperplasia		47 (94%)	1 (2%) 48 (96%)
Kupffer cell, pigmentation	1 (2%)	50 (100%)	48 (90%) 50 (100%)
Aesentery	$(2)^{(2\pi)}$	(9)	(4)
Hemorrhage	(~)	2 (22%)	(7)
Fat, necrosis	2 (100%)	5 (56%)	2 (50%)
ancreas	(50)	(23)	(50)
Acinar cell, atrophy	5 (10%)	4 (17%)	3 (6%)
Duct, dilatation			3 (6%)
tomach, forestomach	(50)	(50)	(50)
Hyperplasia	19 (38%)	23 (46%)	24 (48%)
tomach, glandular	(50)	(48)	(49)
Hyperplasia	1 (2%)		
ooth	(36)	(10)	(24)
Dysplasia	35 (97%)	`1 0 (100%)	23 (96%)
Foreign body	1 (3%)		4 / 464
Inflammation, chronic	1 /6/11	•	1 (4%)
Inflammation, subacute	1 (3%)		

Δ.

TABLE C5

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	20 mg/kg	40 mg/kg
Cardiovascular System		······	· · .
Heart	(50)	(23)	(50)
Inflammation, subacute	(30)	(23)	1 (2%)
Endocrine System			,
Adrenal gland	(50)	(50)	(49)
Capsule, spindle cell, hyperplasia	4 (8%)	2 (4%)	3 (6%)
Adrenal gland, cortex	(50)	(50)	(49)
Accessory adrenal cortical nodule	1 (2%)	(00)	1 (2%)
Hypertrophy, focal	9 (18%)	4 (8%)	7 (14%)
Adrenal gland, medulla	(50)	(50)	(48)
Hyperplasia	(50)	· · · · · · · · · · · · · · · · · · ·	29 (60%)
Hypertrophy		13 (26%)	
	(40)	3 (6%)	36 (75%)
Parathyroid gland	(49)	(22)	(50)
Cyst	2 (4%)	(50)	< 40 ⁻⁵
Pituitary gland	(44)	(50)	(47)
Pars distalis, cyst	3 (7%)	1 (2%)	4 (9%)
Pars distalis, hyperplasia	1 (2%)	1 (2%)	
Thyroid gland	(50)	(49)	(50)
Follicular cell, hyperplasia	1 (2%)		
General Body System None		•	
Genital System			
Epididymis	(50)	(24)	(50)
Granuloma sperm			1 (2%)
Preputial gland	(22)	(32)	(26)
Inflammation, subacute	3 (14%)	5 (16%)	2 (8%)
Duct, cyst	20 (91%)	26 (81%)	26 (100%)
Seminal vesicle	(50)	(24)	(50)
Inflammation, subacute	(00)	1 (4%)	
Testes	(50)	(23)	(50)
Atrophy	1 (2%)	(20)	
Hematopoietic System	(50)	(22)	(50)
Bone marrow	(50)	(23)	(50)
Myeloid cell, hypercellularity		17.0	2 (4%)
Lymph node	(50)	(50)	(50)
Inguinal, hyperplasia, lymphoid		1 (2%)	
Mediastinal, hyperplasia, lymphoid	· · ·		1 (2%)
Lymph node, mesenteric	(50)	(49)	(50)
Angiectasis			1 (2%)
Congestion			1 (2%)
Hematopoietic cell proliferation	1 (2%)		
Hyperplasia, lymphoid	1 (2%)	2 (4%)	1 (2%)
Thrombus		1 (2%)	
	(50)	(50)	(50)
spieen			
Spleen Hematopoietic cell proliferation	7 (14%)	8 (16%)	`10 (20%)

Table CS

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	20 mg/kg	40 mg/kg	
Integumentary System Skin Inflammation, suppurative	(50)	(29) 1 (3%)	(50)	
Musculoskeletal System				
Bone Hypertrophy	(50)	(24)	(50) 1 (2%)	
Nervous System	····		·	
Brain	(50)	(23)	(50)	•
Hemorrhage Necrosis	ł		1 (2%) 1 (2%)	•
Respiratory System		· · · · ·		
Lung	(50)	(32)	(50)	
Foreign body		1 (3%)		
Hemorrhage Infiltration cellular, histiocyte	7 (14%)	1 (3%) 3 (9%)	1 (2%) 5 (10%)	
Thrombus	/ (1470)	5 (570)	1 (2%)	
Alveolar epithelium, hyperplasia	7 (14%)	4 (13%)	2 (4%)	
Nose	(50)	(50)	(50)	
Exudate, serous	1 (2%)			
Foreign body	2 (4%)	14 (28%)	10 (20%)	
Inflammation, suppurative Mucosa, atrophy	5 (10%) 1 (2%)	12 (24%)	10 (20%)	, 1
Special Senses System None	et de La factoria			
Urinary System				
Kidney	(50)	(25)	(50)	
Inflammation, subacute	N	1 (4%)	N/	
Nephropathy	21 (42%)	12 (48%)	17 (34%)	
Cortex, cyst	4 (8%)	3 (12%)	4 (8%)	
Renal tubule, hyperplasia	1 (2%)		1 (2%)	

^a Number of animals examined microscopically at site and number of animals with lesion

.

APPENDIX D SUMMARY OF LESIONS IN FEMALE MICE IN THE 2-YEAR GAVAGE STUDY OF PENTACHILOROANISOLE

Table D1	Summary of the Incidence of Neoplasms in Female Mice	
	in the 2-Year Gavage Study of Pentachloroanisole	186
Table D2	Individual Animal Tumor Pathology of Female Mice	
	in the 2-Year Gavage Study of Pentachloroanisole	190
Table D3	Statistical Analysis of Primary Neoplasms in Female Mice	
	in the 2-Year Gavage Study of Pentachloroanisole	208
Table D4	Historical Incidence of Malignant Lymphomas in Female B6C3F, Mice	•
	Administered Corn Oil by Gavage	211
Table D5	Summary of the Incidence of Nonneoplastic Lesions in Female Mice	
	in the 2-Year Gavage Study of Pentachloroanisole	212

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Gavage Study of Pentachloroanisole^a

·	Vehicle Control	20 mg/kg	40 mg/kg	· · · · · ·
Disposition Summary	······································		· · ·	
Animals initially in study	70	70	70	
9-Month interim evaluation	10	10	10	· · · · · · · · · · · · · · · · · · ·
15-Month interim evaluation	10	10	7	
Early deaths				
Accidental deaths	1	1		
Moribund	17	18	29	·
Natural deaths	8	6	8	
Survivors	· .			· · · · ·
Terminal sacrifice	24	25	16	· · · · · · · · · · · · · · · · · · ·
Animals examined microscopically	70	70	70	
Alimentary System				
Intestine large, cecum	(43)	(21)	(49)	,
Intestine small, duodenum	(48)	(21)	(49)	· · · · · · · · · ·
Polyp adenomatous		(22)	1 (2%)	
Intestine small, jejunum	(48)	(23)	(49)	•
Adenocarcinoma			1 (2%)	
Sarcoma	1 (2%)	(* *)		
Liver	(50)	(50)	(50)	
Hemangiosarcoma			1 (2%)	
Hepatoblastoma			1 (2%)	
Hepatocellular carcinoma	4 (8%)	2 (4%)	2 (4%)	
Hepatocellular adenoma	8 (16%)	6 (12%)	10 (20%)	
Hepatocellular adenoma, multiple	· · · · · ·	2 (4%)	2 (4%)	
Hepatocholangiocarcinoma			1 (2%)	
Histiocytic sarcoma	1 (2%)	•		
Sarcoma		1 (2%)		
Mesentery	(25)	(18)	(24)	· · · ·
Cholangiocarcinoma, metastatic, liver			1 (4%)	
Fibrosarcoma			1 (4%)	
Hemangiosarcoma	1 (4%)		2 (8%)	1
Sarcoma	1 (4%)	2 (11%)		. '
Pancreas	(50)	(28)	(50)	
Cholangiocarcinoma, metastatic, liver			1 (2%)	•
Fibrosarcoma	· •		1 (2%)	
Sarcoma	1 (2%)			
Salivary glands	(50)	(25)	(49)	
Hemangiosarcoma	1 (2%)			·
Stomach, forestomach	(50)	(45)	(50)	
Papilloma squamous	• •	2 (4%)		
Sarcoma	1 (2%)	• •		
Stomach, glandular	(50)	(44)	(50)	
Carcinoid tumor malignant	1 (2%)		• •	
Tooth		(1)		· .
Sarcoma	• 、	1 (100%)		
Cardiovascular System	· · · · · · · · · · · · · · · · · · ·			
Heart	(50)	(25)	(50)	· · · · · · · · · · · · · · · · · · ·
Cholangiocarcinoma, metastatic, liver	(30)	()	1 (2%)	

. .

.

Table D1

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Gavage Study of Pentachloroanisole (continued)

· · ·	Vehicle Control	20 mg/kg	40 mg/kg	
Endocrime System				
Adrenal gland, cortex	(50)	(50)	(49)	
Adrenal gland, medulla	(50)	(49)	(48)	
Pheochromocytoma benign	()	1 (2%)		· · · · ·
Islets, pancreatic	(50)	(25)	(50)	
Pituitary gland	(47)	(49)	(50)	
Pars distalis, adenoma	7 (15%)	5 (10%)	3 (6%)	4
Pars intermedia, adenoma		1 (2%)		
Thyroid gland	(50)	(50)	(50)	•
Follicular cell, adenoma	1 (2%)		1 (07)	
Follicular cell, carcinoma			1 (2%)	
General Body System			· · · · · · · · · · · · · · · · · · ·	
None		•		
Conital System				
Genital System	(45)	(26)	(50)	
Ovary Cystadenoma, papillary	(45)	(36)	(50)	
Hemangioma	1 (2%)		2 (4%) 1 (2%)	
Luteoma		1 (3%)	1 (2%)	
Sarcoma		1 (3%)		
Teratoma malignant	1 (2%)	1 (570)		
Teratoma NOS	1 (270)	1 (3%)		
Uterus	(46)	(43)	(50)	
Adenoma	(10)	1 (2%)	(30)	· · · ·
Fibrous histiocytoma		1 (2%)		
Hemangioma	1 (2%)	- (-//)		
Hemangiosarcoma	- (-/~)	· .	1 (2%)	
Histiocytic sarcoma	1 (2%)		- ()	
Leiomyoma	- ()	1 (2%)		
Leiomyosarcoma		1 (2%)		
Sarcoma	4 F	2 (5%)	1 (2%)	. '
Sarcoma stromal		1 (2%)		
Hematopoietic System				
Bone marrow	(50)	(25)	(60)	
Hemangiosarcoma	(50)	(25)	(50)	
Lymph node	2 (4%)	(50)	1 (2%)	
	(50)	(50)	(50)	
Bronchial, cholangiocarcinoma, metastatic, liver Iliac, sarcoma		1 (2%)	1 (2%)	,
Mediastinal, cholangiocarcinoma, metastatic,		1 (270)		
liver			1 (2%)	· . · .
Renal, neoplasm NOS, metastatic, ovary	1 (2%)		1 (270)	
Lymph node, mandibular	(49)	(47)	(49)	
Mast cell tumor benign	1 (2%)	(")	(**)	
Lymph node, mesenteric	(50)	(49)	(50)	
Hemangiosarcoma	1 (2%)			
Spleen	(50)	(50)	(50)	
Hemangiosarcoma	2 (4%)	3 (6%)		
Thymus	(48)	(24)	(47)	
Fibrosarcoma			1 (2%)	10 A

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	20 mg/kg	40 mg/kg	
Integumentary System	<u> </u>	<u> </u>		<u> </u>
Mammary gland	(49)	(23)	(50)	
Adenocarcinoma	1 (2%)	1 (4%)		
Skin	(50)	(26)	(50)	
Subcutaneous tissue, fibrosarcoma			1 (2%)	
Subcutaneous tissue, hemangiosarcoma	2 (4%)	1 (4%)		
/lusculoskeletal System				
Skeletal muscle		(1)	(3)	
Fibrosarcoma		1 (100%)	1 (33%)	
Rhabdomyosarcoma			1 (33%)	
Nervous System				
Brain	(50)	(26)	(50)	
Meningioma benign			1 (2%)	
Respiratory System				
ung	(50)	(27)	(50)	
Adenocarcinoma, metastatic, harderian gland		2 (7%)		
Alveolar/bronchiolar adenoma	2 (4%)	1 (4%)	1 (2%)	
Alveolar/bronchiolar carcinoma		1 (4%)	1 (2%)	
Cholangiocarcinoma, metastatic, liver			1 (2%)	
Fibrosarcoma Hepatocellular carcinoma, metastatic, liver	1 (20%)		1 (2%)	
Mediastinum, fibrosarcoma	1 (2%)		1 (2%) 1 (2%)	
Special Senses System				
Ear	(2)	(1)	(1)	
Fibrosarcoma		1 (100%)		
Harderian gland	(6)	(2)	(4)	
Adenocarcinoma		2 (100%)		
Adenoma	3 (50%)		4 (100%)	
Jrinary System				
Kidney	(50)	(25)	(50)	
Cholangiocarcinoma, metastatic, liver			1 (2%)	
Jrinary bladder	(49)	(26)	(47)	
Hemangioma	1 (00)	1 (4%)		
Histiocytic sarcoma	1 (2%)	1 (401)		
Sarcoma		1 (4%)		
Systemic Lesions				
Multiple organs ^b	(50)	(50)	(50)	
Histiocytic sarcoma	1 (2%)			
Lymphoma malignant histiocytic	1 (2%)	1 (2%)		
Lymphoma malignant lymphocytic	2 (4%)	1 (2%)	8 (16%) 4 (9%)	
Lymphoma malignant mixed	4 (8%)	7 (14%)	4 (8%)	

ICI AIRAT

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Gavage Study of Pentachloroanisole (continued)

	2x/2m 0>	3x/2m 02	Vehicle Control	
<u> </u>				veoplasm Summary
	0 E	16	32	Total animals with primary neoplasms ^c
	85	95	25	Total primary neoplasms
	81	61	12	Total animals with benign neoplasms
	52	22	54	zmzslqoan nginad lstoT
	53	50	61	rotal animals with mangilam theoplasms
	EE	33	58	Total malignant neoplasms
	ĩ	2	ζ	Total animals with metastatic neoplasms
	8	2	Z	Total metastatic neoplasms
				Total animals with neoplasms uncertain-
		ĩ		benign or malignant
		t		Total uncertain neoplasms

Number of animals examined microscopically at site and number of animals with lesion Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms 9 ß

Э

Vehicle Control																		·					•						
Number of Days on Study			0 7 2		4 0 0	4 1 0	4 1 1	4 2 8	4 7 4	4 7 7	4 7 7	5 0 5	5 1 7	5 6 0		1	0	1	2	3	3				6 8 7		0		
Carcass ID Number			2 3 6 1	4	7	2	4	2 1 6 1	1	7	4 0	5	2 1 9 1	3 8	5 6	1 3	2	8	4 4	1	2 7	3	4	3	2 2 1 1	2 1 2 1	3		
Alimentary System																						_	_	_					
Esophagus			+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Gallbladder		•	+	• +	+	+	+	+	+	+	+	+	Μ	+	+	Á	+	+	+	+	+	+	+	+	+	+	+		
Intestine large			+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷		
Intestine large, cecum			+	· +	· +	+	+	+	+	+	+	+	À	Å	À	+	À	+	M	+	+	+	À	+	÷	+	+		
Intestine large, colon		•	+	÷ +	· +	+	+	+	+	+	+	+	+	+			+			+	+	+	+	+	Å	+	+		
Intestine large, rectum	· ·		+	+	+	+	+	+	+	+	+	+	+	+		+				+	+	+	+	+	+	+	+		
Intestine small		•			· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, duodenum				• +	· +	÷	+	÷	+	÷	+	÷	Å	+	+	À	÷	÷	÷	÷	÷	÷	+	÷	÷	+	÷		
Intestine small, ileum			+		· M	÷.	+	+		+	÷	+	A				À	+	+	+	÷.	+	÷	÷	Å	+	+		
Intestine small, jejunum			+	. +	· +	+	+	+	+	÷	÷	+	+			Å	÷.	÷	+	÷	+	÷	÷	÷	+	+	+		
Sarcoma			•	•	•	•	•	•	•	•	·	·	•	••	•	••		•	•	٠.	•	·	•	x	•	•	·		
Liver			ـ	L	· +	1	1	-	ъ	Т	+	Т	ъ	Ъ.	Ŧ	L.	т	ъ	Ŧ	+	+	+	+	Ĥ	-	+	ъ		
Hepatocellular carcinoma			'		. •	x			'	1			'	•	۰.	'	1	•	•	•	•	•	'	'	x	•	. •		
Hepatocellular adenoma		5				Λ					х															x			
Histiocytic sarcoma										х	Λ														Λ	~			
Mesentery					+			Ŧ	+		+	Ŧ			+		т		т	т		Ŧ		т		-			
Hemangiosarcoma Sarcoma					Ŧ		+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ		,	Ŧ		Ŧ		Ŧ	т		т		×		Ŧ			
Pancreas			<u>ـ</u>	.	. .	Ŧ	+	Ŧ	+	Ŧ	+	Ŧ	Ŧ	+	۲	+	Ŧ	+	Ŧ	+	Ŧ	+	Ŧ		+	+	Ŧ		÷
Sarcoma			т	· т	T	т	т	т	т,	т	т	т	Ţ	ч.	т	-1	т	· T	Ŧ	.1	Ŧ		т	x			т		•
	'	· ·	د		. .	Т	۲	Т	т	Т	Т	ъ	ъ	ъ	.	-	Ŧ	-	ъ	-	Ŧ	-	Ŧ	+		-	Ŧ		
Salivary glands Hemangiosarcoma			्र		· •	т	т	т	т	т	т	Ŧ	т	т	т	Ŧ	т	т	т	т	Ŧ	т	т	т	т	7	т		
Stomach						۰. ۲	. .		-	L	+	L	т.	L.	+	L	т		т	Ŧ	-		-	L.	Т	ъ	+		
Stomach, forestomach		s - 5		т т	- T	: <u> </u>	. <u>.</u>	т Т	Ť	т 	т 	Ť	т 	т 	т 	т 	т Т	т 上	т _	т _	т _	т Т	т 	т 	Ŧ		Ť		
Sarcoma			т	· •	· •	т	т	т	т	т	т	Ŧ	т	т	т	Ŧ	т	т	т	-	т	т	Ŧ	x	т	т	т		
		*						L		Ъ,		т		ъ		т	т	-	т	L.	Т	-	L.	-	+	Т	L.		
Stomach, glandular Carcinoid tumor malignant			т		· •	Ŧ	Τ.	. Τ	т	Ŧ	т	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	т	т	.т	т	т	Ŧ		
	· ·			**	• •				,		_			_		_												 	
Cardiovascular System																									· ·				
Heart			+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+		
Endocrine System										_										_									
Adrenal gland								L	J.	JL.	L.	JL.		ند	4	L.	Ŧ	.	ъ	+	_	ъ	л.	4	д	ــ	<u>д</u>		
Adrenal gland, cortex			T 	 	. T	τ	+ -	7 1	- -	+ -	7 1	+ -	+ +	т _	Ŧ	- -	т Т	т. Т		- -	-	Ť	т -	т 	÷	т -	т –		•
Adrenal gland, cortex Adrenal gland, medulla			- -	· •	. т	- T	T J	Ť	- -	т 	Ŧ	т 	.т _	т "	- -	7 -	т Т	7" -	т _		- -	+ +	т 	т 	т ц	т	ᅭ		
Adrenal giano, medulia Islets, pancreatic			+	-	, †		+	Ţ	+* _	- T	T	T.	T	- -	т 	⊤ ⊥	т -	т -	т _	- -	+ _	- -	т 	т 	т 	- -	т 		
		:	+	+	· • •	.+	+	+	<u> </u>	11 	+	. T 	+	- -	т 	₹	т -	τ -	Ŧ	7" 	- -	+ +	- -	т 	- -	- -	+ -		
Parathyroid gland			+	+	+	+	+	+	+	+ 	+	- T	+	- -	7° 	T _	т -	+ +	т -	+ +	- -	T	- -	- -	т 	- -	т 		
Pituitary gland			+	• +	+	M	+.	+	+	+	+	+	+	+	Ŧ	Ŧ	т	т	т	Ŧ	Ť	Ŧ	Ť	Ť	Ŧ		Ť		
Pars distalis, adenoma									<u>,</u> .					,							,		X	· .			X		
Thyroid gland Follicular cell, adenoma			+	• +	• +	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+		

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

Thyroid gland Follicular cell, adenoma

TABLE D2

(bounded) (continued) (continued) Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole:

bnelg biorydT	+	+ +	• +	+ +	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0S
Pars distalis, adenoma		X	Х		Х					Х												Х				L
Pituitary gland	+		- +	+ +	+		M	+	+	+	+	+	+	+	+	+	+	+	+	М	+		+	+	+	LÞ
Parathyroid gland	+		- M	+ +	÷	M	+	+	÷	+	+	+	÷	+	÷	+	+	+	+	+	÷	M	+	+	+	L\$
lalets, pancreatic		 			÷.	- -	Ļ.	÷	÷	÷	÷	÷	÷	÷	÷.	÷	÷		÷	÷	÷.	<u>т</u>	÷	÷	÷	05
Adrenal gland, medulla	1	т т 1 — 1	• +		т -	т Т	т 	Ľ.		- T		1	-		1	ц.		1	÷		т 	, ,	1	Ť.		
	+	+ +	· •	т т 	<u> </u>	Τ.	Τ.	Ţ	Ţ	Τ.		<u>.</u>	Ŧ	Ŧ	Ţ	T	.	Ţ	Τ.	Ţ	Τ.	Ţ	Τ.	Ţ	. <u> </u>	0S
Adrenal gland, cortex	+	+ +	- +	+ +	+	+	<u>.</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	05
Adrenal gland	+	+ +	• +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0S
mdocrine System																										
Heart	+	+ +	• +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	05
ardiovascular System																										
																										<u> </u>
Carcinoid tumor malignant										Х																l
Stomach, glandular	+	+ +	- +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	05
Sarcoma									•																	I
Stomach, forestomach	+	+ +	• +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	05
Stomach	+	+ +	- +	+ +	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	05
Hemangiosarcoma															х											ī
Salivary glands	+	+ +	- +	+ +	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	05
Sarcoma	•	• •	•	•••	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ĩ
Pancreas	<u>т</u>	т т		<u>ь</u> т	1	т	Т	т	L		т	т	Т	т.	Т		Т	Т	Т	<u>ь</u>	+	Т	т		т	
Sarcoma	Ŧ	- -		тт	т	т	т	т	T	т	т	T	т	т	Ŧ	Ŧ	т	т	т	Ŧ	Ŧ	т	т	T	T	20
-																										I
Hemangiosarcoma																		х								I
Mesentery			-	+	+			+		+			+				÷	+			+	+		+	+	52
Histiocytic sarcoma																										Ţ
Hepatocellular adenoma				Х		Х				х	Х						Х									8
Hepatocellular carcinoma		x	X					Х																		7
Liver	+		- +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	05
Sarcoma																										ī
Intestine small, jejunum	+	+ +	- +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	87
Intestine small, ileum	+	+ +	- ÷	 + +	÷	÷	÷	+	+	÷	+	÷	+	+	÷	÷	+	+	÷	÷	÷	÷	÷	÷	+	44
Intestine small, duodenum		 		 	÷	÷	÷	Ļ.	_	÷	÷	÷		÷.	÷	÷	÷	÷	÷	÷	÷	÷	÷		÷	817
Intestine small	+	тт. 1. 1.		т т 1 1	Ť	т -	т _	. <u>.</u>	т _	т +		Ŧ	Ŧ	т Т	т 1	T	т 1	Ť	- -	T	Ť	т 	Ţ	Ţ	· T	
				т т 	Ť	T	+	+	+	Ť	-	Ť		+	+	+	+	+	Ť	+	+	+	+	+	+	20
Intestine large, rectum			- +	+ +	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	05
Intestine large, colon		+ +	- +	+ +	+	+	.+	+	+	+	÷.	+	+	+	+	+	+	+	+	+	+	+	÷.	+	+	81
Intestine large, cecum	M	+ M	- +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	43
Intestine large	+	+ +	- +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	05
Gallbladder	+	+ + -	4 +	+ M	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	97
Esophagus	+	+ +	- +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	05
məizy System																										
					-		-	-	_					_				_		_	_			_		
	I .	11	ιI	r 1	l	ĩ	ſ	t	τ	ι	I	I	t	ĩ	I	I	I	I	I	I	ι	I	I	I	I	Tum
	2	S 7	8 8	Þ 8	S.	9	6	0	Ş	L	6	I	Z	ε	S	9	L	8	0	I	7	Þ	8	6	0	uzziT
arcass ID Number	2	5 1	t 1	2	້	z	Z	ε	ε	ε	ε	7	7	7	7	7	7	4	S	S.	ς	ς	ς	S	9	IR3O T
· · · · · · · · · · · · · · · · · · ·		ττ																								
	с	05	<u> </u>	0 4	0	<u> </u>	0	0	0				_					0					0			
anning the strain the second	0													7.												
umber of Days on Study		ε0 <i>LL</i>																								

X + + +

+ + +

+ +

+ + + + + +

+ +

ι

05 *L*

+ +

+ + + + + + +

venicie Control (continued)																												
Number of Days on Study	0 7 2		0	4 1 0	1	2	7	7	7	0	1	6	7	8		1	2	3	3	7	7	7	8	0	0			
Carcass ID Number	3 6	9	5 7	2 3 2 1	1 4	6	3 1	1 7	4 0	5 5	1 9	3 8	5 6	1 3	0	2 8	4 4	1 1	2 7	3 3	4	5 3	1	2	2 3			
General Body System None																												
Genital System					_											_												
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+			
Cystadenoma, papillary													•															
Teratoma malignant		Х																									•	
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Hemangioma																				х								
Histiocytic sarcoma								х																				
Hematopoietic System																	·				_					_		
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Hemangiosarcoma	'	'	'	•	'	'	'	•	ľ	•	•		•	•	•	•	•	•	•	'	•		•	•	•			
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Renal, neoplasm NOS, metastatic, ovary	•	x		•	•	•	•	•	·	•	·		·	·	•			•		•								
Lymph node, mandibular	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Mast cell tumor benign	•		•		•	•	•		·	·	•			x														
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Hemangiosarcoma																												
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Hemangiosarcoma																												
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	М	+	+	+	+	+	+	+	+			
Integumentary System		+		+			v		ъ	L.	Ъ	+	+	ـ	Т	+	Ъ	н	+	ъ	+	+	+	-	÷			
Mammary gland Adenocarcinoma	4	Ŧ	Ŧ	т	т	т	IAT	Ŧ	Ŧ	т	Ŧ	т	т	т	Ŧ	т	T	Ŧ	т	т		T	Ŧ	r	т			
Skin		+	ъ	+	-	т	+	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+			
Subcutaneous tissue, hemangiosarcoma	Ŧ	T	T	x		r	'	r	•	•	•	•	•	•	'	,	•	•			•	•		•	•			
Musculoskeletal System														<u></u>		_												_
ALUSCHIOSKEIELSI NVSLEM																												
Bone															+				. 1		. 4.			-				

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

Table D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

· ·																										
Number of Days on Study	7 0 5	7 3 0	7 3 0		-	7 3 0		-			7 3 0				7 3 0							7 3 0				
Carcass IID Number	2 2	2 1	2 1	2 2	2 2	-	2 2	_	2 3				2 4	2 4		2 4	2 4	2 4	2 5		2 5	2 5	2 5	2 5	2 6	Total
	2 1	5 1	8 1	4 1	5 1	6 1									5 1											Tissues Tumor:
General Body System None											_															<u> </u>
Genital System																										
Ovary	+	+	+	+	+	+	+	+			+	+	+	+	+	Μ	+	Μ	+	Μ	+	М	+	+	+	45
Cystadenoma, papillary									х														•			1 1
Teratoma malignant Uterus	т	Т		ъ	Ъ	т.	Т	Ŧ	т	<u>т</u>	<u>т</u>	Т	т	т	+	ъл	ъ	м	Т	M	<u>ـ</u> ـ	ъл	ъ	Т	+	46
Hemangioma	т	т	Ŧ	T	Ŧ	т	т	Ŧ	т	т	т	т	т	т	т	141	т	141	т	141	т	IAI	т	Ŧ	Ŧ	1
Histiocytic sarcoma																										1
Hematopoietic System									_					_												
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	÷	+	+	+	+	+	50
Hemangiosarcoma																х		х								2
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Renal, neoplasm NOS, metastatic, ovary																										1
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	М	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Mast cell tumor benign																										1
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma															Х											1
Spleen	+		+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma	Х															Х										2
Thymus	+	+	+	+	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
ntegumentary System																										
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenocarcinoma										Х																1
Skin		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Subcutaneous tissue, hemangiosarcoma	X	•												_										_		2
Musculoskeletal System														-												
Bone																+										50

TABLE]	D2
---------	----

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

Venicie Control (continued)													-															
Number of Days on Study	 0 7 2	0 8 1		4 1 0		2		4 7 7		0	1	6	7	5 8 3	0	1	2	3	3	7	7	7	8	7 0 2	0			
Carcass ID Number	6		7	2 3 2 1	4	. 6	1	7	4 0	5 5	1 9	8	6	3	0	8	4	1	2 7	3 3	4	5 3	1	2	3			
Nervous System Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷			
Respiratory System Lung Alveolar/bronchiolar adenoma Hepatocellular carcinoma, metastatic,	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x			
liver Nose Trachea	. + +	+ +	++	+ +	+ +	+ +	+ +	+++	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	X + +		+ +			
Special Senses System Ear Harderian gland Adenoma			•										+ x															
Urinary System Kidney Urinary bladder Histiocytic sarcoma	 , + +	+++	+++	+ +	++	+	++	+ + X		+ +	+ +	+ +	+ +	+++++	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+	++	+ +			
Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant histiocytic	+	+	+	+	· +	+	+	+ X	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+ X	+			
Lymphoma malignant lymphocytic Lymphoma malignant mixed																	•			x						-		

Table D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: Vehicle Control (continued)

																	_										
Number of Days on Study	0	7 3 0	7 3 0	3	7 3 0	7 3 0	7 3 0	7 3 0		7 3 0	-	7 3 0		7 3 0													
Carcass ID Number	2 2 2	1 5	2 1 8			2 2 6 1		0	3 5	3 7	9	4 1		4 3	4 5		4 7		0	1	2	- 5 4	8	9	6 0	1	Total Tissues Tumors
Nervous System				•		-				<u>.</u>	•																
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	-	50
Respiratory System															••												
Lung Alveolar/bronchiolar adenoma Hepatocellular carcinoma, metastatic,	+	+	• +	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	÷	50 2
liver Nose	–				т	ъ	ـ	ـ	т	<u>т</u>	<u>ــ</u>	–	<u>ــ</u>	<u>ــ</u>	–	-	<u>ــ</u>	-	<u>т</u>		<u>т</u>	-	<u>ــ</u>		. .	L	1 50
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• -+	F	50
Special Senses System					•			_																		_	
Ear											+								+								2
Harderian gland Adenoma				+ X			+				+								+ X		+						6 3
Urinary System													-														
Kidney	+	+	+	; +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	F	50
Urinary bladder Histiocytic sarcoma	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	i +	• +	• 4	F	49 1
Systemic Lesions																											
Multiple organs Histiocytic sarcoma Lymphoma malignant histiocytic	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• •	F	50 1 1
Lymphoma malignant hymphocytic Lymphoma malignant mixed											х		x	x										Х	с Х	¢	1 2 4

195

196

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg 0 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 7 4 4 4 Number of Days on Study 1 3 6 1 2 3 3 4 7 9 2 3 4 4 6 8 8 9 9 4 5 6 8 0 1 8 3 5 5 8 4 8 4 29 6 1 9 9 4 3 3 8 8 7 2 1 74 1 **Carcass ID Number** 56 7 5 6 9 9 7 57 5 59 9 9 85 67 6 6 6 7 79 0 0 5 0 9 6 8 7 2 4 7 1 5 2 4 2 1 9 1 7 4 4 7 9 6 1 Alimentary System Esophagus + Gallbladder + м Intestine large + + + Α + + + + + + + Intestine large, cecum А Α + + + + + + + + + + Α + + + + + + + + A + Intestine large, colon + + + Α + + + + + + + + + + + + + + + + + + + Intestine large, rectum + Α + + + + + + + + + + + + + + + + + + Intestine small + + + Α + + + + + + + + + + + + + + + + + Α + Intestine small, duodenum + + + Α Μ + + + + + + + + + Α + + + + + + + Intestine small, ileum M ++ Α + + + + + + ж. Α + + + + + + + Α + + + Intestine small, jejunum + + Α + + + + + + + + + + + + + Α + + + + + + + + Liver + Hepatocellular carcinoma х Hepatocellular adenoma х Hepatocellular adenoma, multiple Sarcoma х + Mesentery + + + + + х Х Sarcoma Pancreas + + + + Salivary glands + Stomach + + Stomach, forestomach Papilloma squamous Stomach, glandular + Tooth + х Sarcoma **Cardiovascular System** Heart **Endocrine System** Adrenal gland + + + Adrenal gland, cortex + + + + + + + Adrenal gland, medulla Μ + + + + + + + + + + + + + + х Pheochromocytoma benign Islets, pancreatic + + Parathyroid gland + + + + + + + + Pituitary gland + + + + M ++ + Pars distalis, adenoma х Pars intermedia, adenoma + + + + Thyroid gland + + + + + + + + + + ++

.

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

(continued)																									_	
Number of Days on Study	7 2 9	3	3	3	7 3 2	3	7 3 3	3																		
Carcass ID Number	7 5	3	5 6	5	3	5	8		2	3 5	6	0	1	2	3	4	5			8	1	3	8		0	Total Tissues Tumors
Alimentary System														_						_						
Esophagus																										25
Gallbladder																										23
Intestine large																										24
Intestine large, cecum																										21
Intestine large, colon																										24
Intestine large, rectum																										24
Intestine small																										23
Intestine small, duodenum Intestine small, ileum																										21 21
Intestine small, jejunum																										21
Liver	+	4	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatocellular carcinoma	•	'	•		•	•				•			•	•	•		•	•	•		•	•		•	x	2
Hepatocellular adenoma				х						х	х				х		х									6
Hepatocellular adenoma, multiple											•••			х		х										2
Sarcoma																										1
Mesentery									+		+				+	+	+				+	+			+	18
Sarcoma																										2
Pancreas												+				+			+							28
Salivary glands																										25
Stomach	+	-	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	-		-	+		+		+	+	+	+	+	+	+		+		+	+	+	+	+	+	+	45
Papilloma squamous Stomach, glandular					X +				,	1													X			2 44
Tooth		-	- +	-	+		+		Ŧ	+	+	+	Ŧ	+	+		+		+	+	+	+	+	+	+	44 1
Sarcoma																										1
Cardiovascular System Heart																										25
Endocrine System	<u></u>																			_						
Adrenal gland	+	-4	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	-		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, medulla	+	- -		+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pheochromocytoma benign																										1
Islets, pancreatic																										25
Parathyroid gland																										25
Pituitary gland	+	- -	- +	- +	+		+	+	+	+	+		+	+	+	+	+	+	+			+	+	+	+	49
Pars distalis, adenoma	Х	•			Х		Х					Х								Х						5
Pars intermedia, adenoma Thyroid gland				- +												,										1
Thyroid giand	+	-	r - 1	- +	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

			-																								 	
Number of Days on Study		0 1 1	1	3 3 3		4 1 5	4 2 8	4 3 4	4 3 8	4 4 4	4 7 2	4 9 9	5 2 6	5 3 1	5 4 9	5 4 9	5 6 4	5 8 3	5 8 3			6 4 7	6 5 2	6 6 1		7. 0 4		, •
Carcass ID Number	(6 0	3 5 9 1	3 6 6 1	3 7 8 1	3 5 7 1	3 6 2 1	3 9 4 1	3 9 7 1	3 7 1 1		3 7 0 1		3 5 4 1	0			3 6 1 1	9		7	4	6 4		7 9	3 9 6 1		
General Body System None																									,		 	
Genital System		·																										
Clitoral gland											۰.															+		
Ovary		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Luteoma																												
Sarcoma										v										х								
Teratoma NOS Uterus		-	i	т	<u>`</u> _	-	, L	-	-	X	т	Т	-	4	-	т	ъ	Ŧ	Т	-	ъ		-		-	н.		
Adenoma		T	т	т	т	т	т	т	т	т	T	т	т	т	т	т	т	Ŧ	т	т	т	Ŧ	т	-	т	т		
Fibrous histiocytoma																										1		
Leiomyoma																												
Leiomyosarcoma																												
Sarcoma																			Х	Х								
Sarcoma stromal							·																					
· · ·		•										•	•••		• •		•	•	_				•				 	
Hematopoietic System																												* *
Bone marrow		+	+	÷	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node		+	÷	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+		
Iliac, sarcoma				·			•							÷.,	,				х									
Lymph node, mandibular		+	+	+	+	Μ	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node, mesenteric		+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Spleen		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Hemangiosarcoma			L				L	-	т			1	-	М		X		т.	Т	м	Т	<u>т</u>	-	L	_	Ŧ		
Thymus		Τ.	Ŧ	· •	т	Ξ.	<u>т</u>	т	т	т	т ,		т		. .	т	т	т	т	141	т	-	т			т		
								_							_				-									
I. to an an to ma Crustom																м	.	L.	L	Ŧ	L.					+		
Integumentary System		ъ	4	L		3.4	1																					
Integumentary System Mammary gland		+	+	+	÷	Μ	[+	+	+	+	+	м	+	+	Ŧ	141	T	. *	•	•	т	Ŧ	+	Ŧ	+	т		
Mammary gland Adenocarcinoma		+	+	+	+	м +	+] +	+	+	+	+	м +	. + +	+	+	+ IVI	 +		•	•	+	+	+	+	+	т +		
Mammary gland	•	+	+ +	+ +	+ +	М +	+]	+	+	+	+	м +	+	+	+	+ X	+	+,	+	• +	+ .+	+	+	+	+	+		

Table D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

																										_
Number of Days on Study	2	'7 3	7 3	7 3	3	7 3		73	7 3		7 3	7 3	7 3		7 3											
	9	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	
· · · · · · · · · · · · · · · · · · ·	3	3		3	3	3	-	3			3		3		3	3	3	3			3		3	-	4	
Carcass IID Number	7	5	5	5		6			7							8		8					9		0	Total
	5	3	6				8				6						5						8			Tissue
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
General Body System None				,				•									·									Nexteendelse
Genital System																				<u> </u>						
Clitoral gland																										1
Ovary				+	+	+	+			+		+		+	+			+				+		+		36
Luteoma																		х								1
Sarcoma Teratoma NOS																										1
Uterus																										1 43
Adenoma	Ŧ	Ŧ	Ŧ	+			+	+	+ X	т	+	Ŧ	+				Ŧ	+		т	Ŧ		Ŧ	Т	T	43 1
Fibrous histiocytoma									Λ											х						1
Leiomyoma												х														1
Leiomyosarcoma											х															1
Sarcoma																										2
Sarcoma stromal																					Х					1
Hematopoietic System																										
Bone marrow																										25
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Iliac, sarcoma				•									•													1
Lymph node, mandibular	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Spleen	+	+	+ X	+	+	+	+	+	+	+ X	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	50 3
Hemangiosarcoma Thymus		,	л							Α.													+			24
Tetagumantam Sustam				<u> </u>																						
Integumentary System Mammary gland									Ŧ																	23
Adenocarcinoma				•					+ X																	1
									A																	
Skin																					+					26

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg (continued)

· · ·																											
Number of Days on Study	0 1 1	3 1 8		-	4 1 5	4 2 8		-	4	7	9	2	3	4	5 4 9	6	8	8	9	9		5	6 6 1	8			
Carcass ID Number	6 0	5 9	6 6	8	5 7	6 2	4	9 7	7 1	5 5	7 0	2	5 4	9 0		9 2	6 1	8 9	5 1	6 7		6 4	7 7	7 9	9 6		
Musculoskeletal System Bone Skeletal muscle Fibrosarcoma	+	+	+	+	+	+	÷	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	 · · · · ·	
Nervous System Brain Spinal cord	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	 	
Respiratory System Lung Adenocarcinoma, metastatic, harderian gland Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	·+	+	+	+	+	+ x	+	+	+	+	+ x	+		
Alveolar/bronchiolar carcinoma Nose Trachea	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	X + +		+ +		
Special Senses System Ear Fibrosarcoma Harderian gland																			+					+			
Adenocarcinoma																			x					x			
Urinary System Kidney Urinary bladder Hemangioma Sarcoma	++	+ +	+	++	+ +	+ +	+ +	++	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	+ +	++	++	+	+ +		
Systemic Lesions Multiple organs Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+ x	+	+	+ x	+	+	+ x			+	+		

• • •

soile olement ni enoise.I

LABLE DZ

(bouninoo) Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: 20 mg/kg

.

L I I OS	+ +	x +	+	+	x +	+	+	x +	+	+	+	+	+	+	x +	+	+	+	+	+	+	+	+	+	Systemic Lesions Multiple organs Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed
1 1 92 52				X +																					Urinary System Kidney Hemangioma Sarcoma
2 2 1 1	x +																								Special Senses System Ear Fibrosarcoma Harderian gland Adenocarcinoma
57 05 1 2 2	+ +	+	+		+ X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Lung Adenocarcinoma, metastatic, harderian gland Alveolar/bronchiolar adenoma Nose Yrschea Trachea
і 97																								+	Nervous System Brain Spinal cord Mespiratory System
I I SZ																					x +				Musculoskeletal System Bone Skeletal muscle Fibrosarcoma
Total Tissues/ Tumors	1 1 6 0 3 4 3 4	6				1 2 8 E												I 8 9 E					1 8 9 8	L	Carcass ID Number
	εε εε <i>L L</i>	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	ε	z	(continued) Number of Days on Study

x

102

202

TABLE D2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 4 4 Number of Days on Study 9 2 6 7 7 8 8 8 8 1 7 7 9 9 1 2 5 6 7 7 8 9 1 3 5 9 7 1 3 5 5 6 1. 6 9 9 4 0 2 9 9 1 3 1 6 3 7 2 2 3 3 2 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3 2 3 -3 2 **Carcass ID Number** 0 9 8 2 2 2 9 0 2 1 8 0 2 8 0 2 1 2 0 1 9 8 2 9 1 8 6 5 9 5 3 4 1 1 9 8 7 5 7 9 4 8 1 0 0 5 2 2 4 9 1 **Alimentary System** Esophagus Galibladder М Intestine large ÷ 4 + Intestine large, cecum A Intestine large, colon Α Intestine large, rectum + + 4 + 4 + + + + Intestine small Α + + Intestine small, duodenum A + Polyp adenomatous Intestine small, ileum А Intestine small, jejunum Adenocarcinoma Liver Hemangiosarcoma Hepatoblastoma Hepatocellular carcinoma Hepatocellular adenoma х хх Hepatocellular adenoma, multiple Hepatocholangiocarcinoma х Mesentery + Cholangiocarcinoma, metastatic, liver х х Fibrosarcoma Hemangiosarcoma Pancreas Cholangiocarcinoma, metastatic, liver х Fibrosarcoma х Salivary glands + Stomach ÷ + + ł + + + + + + ÷ + Stomach, forestomach + 4 + + + + + + + + + + + + + + + + + Stomach, glandular Cardiovascular System Heart + х Cholangiocarcinoma, metastatic, liver **Endocrine System** Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Islets, pancreatic + + + + + + + + + Parathyroid gland м Pituitary gland Pars distalis, adenoma Thyroid gland Follicular cell, carcinoma

Table D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

(continued)																										
Number of Days on Study			6 7		7 0	7 0	7 0	7 0	7 1	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	7 3	
	1	7	7	0	2	4	4	4	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
······································	3	3	3	2	3	2	2	3	3	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	
Carcass ID Number	3	0	0	9	1	8	8	0	2	8	8	8	9	9	9	9	9	0	0	1	1	1	1	1	-	Total
	0	2	6	3	4	1	4	7	6	3	6			1		7			9	0	2	3	6	7	_	Tissues
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
Mimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Gallbladder Intestine large	+	+	+	+	+	+	+	+	+	÷.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 50
Intestine large, cecum	Ŧ	Ŧ	I	. I	т - т	Ŧ	I	Ξ	Ŧ	+	Ŧ	+	+	- <u>-</u>	÷	+	+	Ŧ	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	30 49
Intestine large, colon	+	+	+	- -	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	÷	+	+	49
Intestine large, rectum	+	+	+	+	+	+	÷	+	+	÷	÷	÷	÷	+	÷	+	÷	+	÷	÷	÷	+	+	+	÷	50
Intestine small	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	49
Intestine small, duodenum	+	+	÷	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Polyp adenomatous						Х																				1
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenocarcinoma Liver		+				i						+	Х +													1 50
Hemangiosarcoma	Т	т	т	Т	т	т	т	т	т	т	T	т	т	т	+	* X	+	т	т	T	T	T	т	т	T	1
Hepatoblastoma					х											~										1
Hepatocellular carcinoma																		х	х							2
Hepatocellular adenoma		Х								Х				х							Х	Х		Х	Х	10
Hepatocellular adenoma, multiple				Х												х										2
Hepatocholangiocarcinoma																										1
Mesentery		+					+		+				+	+	+						+		+		+	24
Cholangiocarcinoma, metastatic, liver																										1
Fibrosarcoma																										1
Hemangiosarcoma												,		X				۰,			X					2 50
Pancreas Cholangiocarcinoma, metastatic, liver	Ŧ	Ŧ	Ŧ	-	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	+	Ŧ	+	+	+	+	+	50 1
Fibrosarcoma																										1 .
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach	÷	+	+	+	÷	÷	÷	÷	+	+	+	÷	+	+	÷	+	÷	÷	+	+	+	÷	÷	÷	÷	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	50
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cardiovascular System																<u> </u>										
Heart	+	+	+	+	÷	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	50
Cholangiocarcinoma, metastatic, liver	·	•	•	•	•	·	•	•	•	•	•	•	·	•	•	•	•	•	•	·	•	•	•		•	1
Endocrine System																								-		
Adrenal gland	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	м	+	+	+	+	+	+	+	49
Adrenal gland, cortex	+	.+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	M		+	+	+	+	+	÷	49
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	48
Islets, pancreatic	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pars distalis, adenoma														X				X						x		3
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Follicular cell, carcinoma																			х							1
	 ~							_	_				_							-					-	

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

9	2	2	6	7	7	8	8	8	8	1	7				1	2	5	6	7	7	8		1	3	5	
0 8	9 6)	8 5	2 9	2 5	2 3	9 4	0 1	2 1	1 9	1 8	8 7	0 5	2 7	8 9	0 4	2 8	1 1	2 0	0 0	1 5	9 2	8 2	2 4	9 9	
+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	
+		+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+ x		+	
								-																		
+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
+	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	
		_																		x						
++	• •	+ 1 + ·	м +	+ +	+++	++	+ +	+ +	++	++	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	++	+ +	+++	+ +	+ +			
+ M	· -	+ · +. ·	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +			+ +	+ +	+ +	+ +		+ +	+ +	+ +		+ +	
							_		_	_			_	_	_	_										
+	• 4	+ •	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +												
	9911 308 11 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	9 2 1 3 3 2 8 0 1 1 + - + - + - + - M - M -	9 2 1 3 3 2 0 9 8 6 1 1 + + + + + + + + + + + + + +	$\begin{array}{c} 9 & 2 & 6 \\ 1 & 3 & 5 \\ \hline 3 & 2 & 2 \\ 0 & 9 & 8 \\ 8 & 6 & 5 \\ 1 & 1 & 1 \\ \\ + & + + \\ + & + + \\ + & + + \\ + & + + \\ + & + + \\ + & + + \\ + & + + \\ + & + + \\ \hline + & + + \\ + & + + \\ + & + + \\ + & + + \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 9 \ 2 \ 6 \ 7 \ 7 \ 8 \ 8 \ 8 \ 8 \ 1 \ 7 \ 7 \ 9 \ 9 \ 1 \\ 1 \ 3 \ 5 \ 5 \ 6 \ 1 \ 6 \ 9 \ 9 \ 4 \ 0 \ 2 \ 9 \ 9 \ 9 \ 9 \\ \end{array}$	$\begin{array}{c} 9 \ 2 \ 6 \ 7 \ 7 \ 8 \ 8 \ 8 \ 8 \ 1 \ 7 \ 7 \ 9 \ 9 \ 1 \ 2 \\ 1 \ 3 \ 5 \ 5 \ 6 \ 1 \ 6 \ 9 \ 9 \ 4 \ 0 \ 2 \ 9 \ 9 \ 9 \ 7 \\ \end{array}$	9 2 6 7 7 8 8 8 8 8 1 7 7 9 9 1 2 5 1 3 5 5 6 1 6 9 9 4 0 2 9 9 9 7 1 3 2 2 3 3 3 2 2 9 0 2 1 1 8 0 2 8 0 2 8 6 5 9 5 3 4 1 1 9 8 7 5 7 9 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 2 6 7 7 8 8 8 8 8 1 7 7 9 9 1 2 5 6 1 3 5 5 6 1 6 9 9 4 0 2 9 9 9 7 1 3 3 2 2 3 3 3 2 2 9 0 2 1 1 8 0 2 8 0 2 1 8 6 5 9 5 3 4 1 1 9 8 7 5 7 9 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 2 6 7 7 8 8 8 8 1 7 7 9 9 1 2 5 6 7 1 3 5 5 6 1 6 9 9 4 0 2 9 9 9 7 1 3 1 3 2 2 3 3 3 2 3 3 3 2 3 3 3 3 2 3 3 2 3 3 2 3 3 3 3 0 9 8 2 2 2 2 9 0 2 1 1 8 0 2 8 0 2 1 2 8 6 5 9 5 3 4 1 1 9 8 7 5 7 9 4 8 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 9 \ 2 \ 6 \ 7 \ 7 \ 8 \ 8 \ 8 \ 8 \ 1 \ 7 \ 7 \ 9 \ 9 \ 1 \ 2 \ 5 \ 6 \ 7 \ 7 \\ 1 \ 3 \ 5 \ 5 \ 6 \ 1 \ 6 \ 9 \ 9 \ 4 \ 0 \ 2 \ 9 \ 9 \ 9 \ 7 \ 1 \ 3 \ 1 \ 6 \\ \hline \end{array}$	9 2 6 7 7 8 8 8 8 1 7 7 9 9 1 2 5 6 7 7 8 1 3 5 5 6 1 6 9 9 4 0 2 9 9 9 7 1 3 1 6 3 3 2 2 3 3 3 2 2 9 0 2 1 1 8 0 2 8 0 2 1 2 0 1 8 6 5 9 5 3 4 1 1 9 8 7 5 7 9 4 8 1 0 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 2 6 7 7 8 8 8 8 1 7 7 9 9 1 2 5 6 7 7 8 9 1 1 3 5 5 6 1 6 9 9 4 0 2 9 9 9 7 1 3 1 6 3 7 2 3 2 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 2 2 0 9 8 2 2 2 9 0 2 1 1 8 0 2 8 0 2 1 2 0 1 9 8 8 6 5 9 5 3 4 1 1 9 8 7 5 7 9 4 8 1 0 0 5 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 2 6 7 7 8 8 8 8 1 7 7 9 9 1 2 5 6 7 7 8 9 1 3 1 3 5 5 6 1 6 9 9 4 0 2 9 9 9 7 1 3 1 6 3 7 2 2 3 2 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 2 2 3 0 9 8 2 2 2 9 0 2 1 1 8 0 2 8 0 2 1 2 0 1 9 8 2 8 6 5 9 5 3 4 1 1 9 8 7 5 7 9 4 8 1 0 0 5 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 2 6 7 7 8 8 8 8 1 7 7 9 9 1 2 5 6 7 7 8 9 1 3 5 1 3 5 5 6 1 6 9 9 4 0 2 9 9 9 7 1 3 1 6 3 7 2 2 3 3 2 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3 2 2 3 2 0 9 8 2 2 2 9 0 2 1 1 8 0 2 8 0 2 1 2 0 1 9 8 2 9 8 6 5 9 5 3 4 1 1 9 8 7 5 7 9 4 8 1 0 0 5 2 2 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										

Lesions in Female Mice

TABLE D2 Individual Animal Tunnor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

(continued)	
Number of Days on Study	6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Carcass ID Number	3 3 3 2 3 2 2 3 3 2 2 2 2 2 2 2 2 2 3
General Body System None	
Gemital System Clitoral gland Ovary Cystadenoma, papillary Hemangioma Uterus Sarcoma Sarcoma	$\begin{array}{c} 1 \\ + + + + + + + + + + + + + + + + + +$
Hematopoietic System Bone marrow Hemangiosarcoma Lymph node Bronchial, cholangiocarcinoma, metastatic, liver Mediastinal, cholangiocarcinoma, metastatic, liver Mediastinal, cholangiocarcinoma, metastatic, liver Lymph node, mesenteric Spleen Thymus Fibrosarcoma	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$
Integumentary System Mammary gland Skin Subcutaneous tissue, fibrosarcoma	++++++++++++++++++++++++++++++++++++
Musculoskeletal System Bone Skeletal muscle Fibrosarcoma Rhabdomyosarcoma	+ + + + + + + + + + + + + + + + + + 50 + + + + + + + + + + + + + 3 X 1

205

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

-

(commuter)																										
Number of Days on Study	2 9 1	2	6	5 7	3 7 6	8	8		8				9	9	1	2		6		7	8	9	6 1 2	3		
Carcass ID Number	0 8	9 6	8 5	2	5	2 3	9 4	0 1	2 1	1 9	1 8	8 7	0 5	2 7	8 9	0 4	2 8	1 1	20	0 0	5	9 2	2 8 2 1	4	9 9	
Nervous System Brain Meningioma benign	+	• •		+ 4	+ +	- 4	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- processor
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Cholangiocarcinoma, metastatic, liver	+	• •			+ +	- +	+	+	+	+	+	+	÷	+	+	+	+	+	+	+ x	+	+	+	+ x	+	
Fibrosarcoma Hepatocellular carcinoma, metastatic, liver Mediastinum, fibrosarcoma Nose Trachea	+ +	• •		⊦ 4 ⊦ 4	⊦ 4 ⊦ 4	- + - +	· + · +	++++	+++	++++	++++	+++	+++	+ +	+++	++	++++	+++	+++	x + +	+++	+ +	++++	X + +		
Special Senses System Ear Eye Harderian gland Adenoma														+ x				+								
Urinary System Kidney Cholangiocarcinoma, metastatic, liver Urinary bladder	+	• •		⊦ 4 ⊦ 4	 ⊦ +	- + 1 M	· +	+ M	+	+++	+++	++	+++	+ +	+ +	++	+++	++	+ +	х			+++	+++	+++	
Systemic Lesions Multiple organs Lymphoma malignant lymphocytic Lymphoma malignant mixed	+	• •		+ -	⊦ 4	- 4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X		+	+	+ x	

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Pentachloroanisole: 40 mg/kg (continued)

	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
lumber of Days on Study	6	7	7	9	0	0	0	0	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	1	7	7	0	2	4	4	4	0				1													
		3	3	2	3	2	2	3	3	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	
Carcass ID Number	3	-												9				0			1					Total
	õ	-	6	3																						Tissue
	-			1																						Tumor
Nervous System						_						<u></u>														
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Meningioma benign															х											1
Respiratory System																				-						
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma													х													1
Alveolar/bronchiolar carcinoma		Х																								1
Cholangiocarcinoma, metastatic, liver																										1
Fibrosarcoma																					•					1
Hepatocellular carcinoma, metastatic,																										
liver																										1
Mediastinum, fibrosarcoma																										1
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Special Senses System																								_		
Ear																										1
Eye																		+								1
Harderian gland													+					+						+		4
Adenoma													х					Х						Х		4
Jrinary System																								_		
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cholangiocarcinoma, metastatic, liver																										1
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Systemic Lesions																		_								
Multiple organs	т	+	+	+	+	+	+	+	Т	Т	Ŧ	Ъ	т	т	т	ъ	–	ъ	+	Ъ	-	+	+	ъ	+	50
Lymphoma malignant lymphocytic	Ŧ	т	т	T.	x	г	x	-	г	г	F	т	г	г	r	r	г	٢	т	x	т	Ŧ		x	т	30 8
Lymphona malignant mixed			х		~		~				х		х							**			~	л	х	4
-/ mprouse meno																										-7

	Vehicle Control	20 mg/kg	40 mg/kg
Harderian Gland: Adenoma			
Overall rates ^a	3/50 (6%)	0/50 (0%)	4/50 (8%)
Adjusted rates ^b	10.7%	0.0%	20.9%
Terminal rates ^c	2/24 (8%)	0/25 (0%)	3/16 (19%)
First incidence (days)	576	_e	499
Life table tests ^d	P=0.276	P=0.124N	P=0.325
Logistic regression tests ^d	P=0.355	P = 0.124N P = 0.126N	P = 0.323 P = 0.432
Cochran-Armitage test ^d	P=0.406	1 =0.12014	r =0.4 <i>52</i>
Fisher exact test ^d	1 -0.400	P=0.121N	P=0.500
Harderian Gland: Adenoma or Adenoca	rcinoma		
Overall rates	3/50 (6%)	2/50 (4%)	4/50 (8%)
Adjusted rates	10.7%	6.7%	20.9%
Ferminal rates	2/24 (8%)	0/25 (0%)	3/16 (19%)
First incidence (days)	576	598	499
Life table tests	P=0.279	P=0.516N	P=0.325
ogistic regression tests	P = 0.366	P = 0.512N	P = 0.432
Cochran-Armitage test	P = 0.417		1-0.452
isher exact test		P=0.500N	P=0.500
Liver: Hepatocellular Adenoma			
Overall rates	8/50 (16%)	8/50 (16%)	12/50 (24%)
Adjusted rates	28.2%	29.7%	53.4%
erminal rates	5/24 (21%)	7/25 (28%)	7/16 (44%)
first incidence (days)	477	438	381
ife table tests	P=0.046	P=0.591N	P=0.065
ogistic regression tests	P=0.097	P=0.569	P=0.124
Cochran-Armitage test	P=0.185		
üsher exact test		P=0.607N	P=0.227
liver: Hepatocellular Carcinoma		2	
Overall rates	4/50 (8%)	2/50 (4%)	2/50 (4%)
Adjusted rates	13.5%	7.7%	12.5%
Cerminal rates	2/24 (8%)	1/25 (4%)	2/16 (13%)
irst incidence (days)	410	704	729 (T)
ife table tests	P=0.378N	P=0.335N	P=0.498N
ogistic regression tests	P=0.303N	P=0.349N	P=0.387N
Cochran-Armitage test	P = 0.252N		
isher exact test		P=0.339N	P=0.339N
.iver: Hepatocellular Adenoma or Hepa	tocellular Carcinoma		,
Dverall rates	11/50 (22%)	10/50 (20%)	14/50 (28%)
Adjusted rates	37.1%	36.1%	63.8%
erminal rates	7/24 (29%)	8/25 (32%)	9/16 (56%)
irst incidence (days)	410	438	381
life table tests	P=0.067	P=0.479N	P = 0.082
Logistic regression tests	P=0.151	P=0.544N	P = 0.187
Cochran-Armitage test	P = 0.277		
Tisher exact test		P=0.500N	P=0.322

TABLE D3 Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Gavage Study of Pentachloroanisole

,

Table D3										
Statistical Analysis	s of Primar	y Neoplasms	in	Female	Mice	im	the	2-Year	Gavage	Study
of Pentachloroanis	Ole (continue	d)								

	Vehicle Control	20 mg/kg	40 mg/kg
lver: Hepatoblastoma or Hepatocellul	ar Carcinoma		
Dverall rates	4/50 (8%)	2/50 (4%)	3/50 (6%)
Adjusted rates	13.5%	7.7%	16.7%
Ferminal rates	2/24 (8%)	1/25 (4%)	2/16 (13%)
First incidence (days)	410	704	702
ife table tests	P=0.569N	P=0.335N	P=0.636
ogistic regression tests	P = 0.487N	P=0.349N	P=0.567N
Cochran-Armitage test	P=0.417N	1 0 0.5 1911	1 -0.50/11
isher exact test		P=0.339N	P=0.500N
ituitary Gland (Pars Distalis): Adeno	ma		
Overail rates	7/47 (15%)	5/49 (10%)	3/50 (6%)
adjusted rates	26.5%	20.0%	18.8%
erminal rates	4/22 (18%)	5/25 (20%)	3/16 (19%)
ïrst incidence (days)	674	729 (Ť)	729 (T)
ife table tests	P=0.224N	P=0.324N	P=0.300N
ogistic regression tests	P=0.178N	P=0.358N	P=0.232N
Cochran-Armitage test	P=0.101N		
üsher exact test		P=0.350N	P=0.134N
MI Organs: Hemangiosarcoma			
Overall rates	5/50 (10%)	3/50 (6%)	3/50 (6%)
djusted rates	17.8%	10.5%	18.8%
erminal rates	3/24 (13%)	2/25 (8%)	3/16 (19%)
ïrst incidence (days)	410	549	729 (T)
ife table tests	P=0.451N	P=0.349N	P=0.569N
ogistic regression tests	P=0.348N	P=0.370N	P=0.443N
Cochran-Armitage test	P=0.283N		
ïsher exact test		P=0.357N	P=0.357N
Al Organs: Hemangioma or Hemangio			
Overall rates	6/50 (12%)	4/50 (8%)	4/50 (8%)
Adjusted rates	20.4%	14.4%	21.4%
erminal rates	3/24 (13%)	3/25 (12%)	3/16 (19%)
irst incidence (days)	410	549	576
ife table tests	P=0.496N	P=0.370N	P=0.591N
ogistic regression tests	P=0.374N	P=0.389N	P=0.447N
Cochran-Armitage test	P=0.303N		
ïsher exact test		P=0.370N	P=0.370N
Al Organs: Malignant Lymphoma (Hi			10 10 10 10
Overall rates	7/50 (14%)	9/50 (18%)	12/50 (24%)
djusted rates	26.2%	27.8%	52.3%
erminal rates	5/24 (21%)	4/25 (16%)	6/16 (38%)
irst incidence (days)	674	472	583
ife table tests	P=0.033	P=0.391	P=0.036
ogistic regression tests	P=0.057	P=0.360	P=0.049
Cochran-Armitage test	P=0.124	D 0.000	.
Fisher exact test		P=0.393	P=0.154

	Vehicle Control	20 mg/kg	40 mg/kg
All Organs: Benign Neoplasms			·····
Overall rates	21/50 (42%)	19/50 (38%)	18/50 (36%)
Adjusted rates	62.7%	67.1%	72.2%
Terminal rates	12/24 (50%)	16/25 (64%)	10/16 (63%)
First incidence (days)	477	438	381
Life table tests	P=0.304	P=0.407N	P=0.344
Logistic regression tests	P=0.544N	P=0.511N	P=0.568N
Cochran-Armitage test	P=0.304N		
Fisher exact test		P=0.419N	P=0.341N
All Organs: Malignant Neoplasms			
Overall rates	19/50 (38%)	20/50 (40%)	23/50 (46%)
Adjusted rates	57.8%	58.3%	81.3%
Terminal rates	11/24 (46%)	11/25 (44%)	11/16 (69%)
First incidence (days)	81	472	571
Life table tests	P=0.038	P=0.498	P=0.040
Logistic regression tests	P=0.099	P=0.453	P=0.117
Cochran-Armitage test	P=0.239		
Fisher exact test		P=0.500	P=0.272
All Organs: Benign or Malignant Neoplas	ims		
Overall rates	32/50 (64%)	31/50 (62%)	30/50 (60%)
Adjusted rates	86.0%	83.5%	93.6%
Terminal rates	19/24 (79%)	19/25 (76%)	14/16 (88%)
First incidence (days)	81	438	381
Life table tests	P=0.128	P=0.498N	P=0.132
Logistic regression tests	P=0.426	P=0.587N	P=0.467
Cochran-Armitage test	P=0.379N		
Fisher exact test		P=0.500N	P=0.418N

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Gavage Study of Pentachloroanisole (continued)

(T)Terminal sacrifice

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone (including marrow), brain, clitoral gland, gallbladder, heart, kidney, large intestine, liver, lung, mammary gland, mandibular or mesenteric lymph node, nose, ovary, pancreas, parathyroid gland, pituitary gland, salivary gland, skin, small intestine, spleen, stomach, thymus, thyroid gland, trachea, urinary bladder, and uterus; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the "Vehicle Control" column are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

^e Not applicable; no neoplasms in animal group

⁸928783 by Garn Oil by Gavage⁸ Historical Incidence of Malignant Lymphomas in Female B6C3F, Mice TABLE D4

Incidence in Controls

Xpn3S

Historical Incidence at Southern Research Institute

Kange	%0 1 -%7I
Standard deviation	%I`6
IstoT	(%£.42) 05£/58
Pentachloroanisole	0 <i>S/L</i>
<i>P-Nitroaniline</i>	0\$/6
A-Butyrolactone	05/11
Furtural	0\$/6
Furan	05/02
Dichlorvos	05/91
Benzaldehyde	05/81

Overall Historical Incidence

%0t-%t	Range
%E'8	Standard deviation
9 ^{(%2:} 22) 869/SSI	Total

⁸ Data as of 3 April 1991 b Includes data for histiocytic, lymphocytic, mixed, NOS, and undifferentiated cell type lymphomas

TABLE D5 Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Pentachloroanisole^a

	Vehicle Control	20 mg/kg	40 mg/kg	
Disposition Summary				
Animals initially in study	70	70	70	
9-Month interim evaluation	10	10	10	
15-Month interim evaluation	10	10	7	
Early deaths	10	10	,	
Accidental deaths	1	1		
Moribund	17	18	29	
Natural deaths	8	6	8	
Survivors	·	·	Ū	
Terminal sacrifice	24	25	16	
Animals examined microscopically	70	70	70	
Alimentary System			······	
Gallbladder	(46)	(23)	(49)	
Dilatation	1 (2%)			
Liver	(50)	(50)	(50)	
Angiectasis	1 (2%)	1 (2%)	1 (2%)	
Basophilic focus	2 (4%)	1 (2%)		
Cytologic alterations	1 (2%)	34 (68%)	39 (78%)	
Eosinophilic focus	5 (10%)	1 (2%)	1 (2%)	
Eosinophilic focus, multiple			3 (6%)	
Hematopoietic cell proliferation	9 (18%)	6 (12%)	9 (18%)	
Inflammation, subacute	1 (2%)	28 (56%)	32 (64%)	
Mixed cell focus		2 (4%)	2 (4%)	
Mixed cell focus, multiple			5 (10%)	
Necrosis	1 (2%)	2 (4%)	2 (4%)	
Vacuolization cytoplasmic		1 (2%)		
Biliary tract, dilatation			1 (2%)	
Biliary tract, hyperplasia	1 (2%)	16 (32%)	30 (60%)	
Kupffer cell, pigmentation		37 (74%)	48 (96%)	
Mesentery	(25)	(18)	(24)	
Hemorrhage		1 (6%)		
Inflammation, suppurative	8 (32%)	7 (39%)	8 (33%)	
Fat, necrosis	14 (56%)	8 (44%)	8 (33%)	
Pancreas	(50)	(28)	(50)	
Acinar cell, atrophy	4 (8%)	3 (11%)	2 (4%)	
Duct, dilatation	1 (2%)	1 (4%)	2 (4%)	
Salivary glands	(50)	(25)	(49)	
Atrophy	1 (2%)			
Foreign body	1 (2%)			
Stomach, forestomach	(50)	(45)	(50)	
Cyst epithelial inclusion	1 (2%)			
Foreign body	1 (2%)			
Hyperplasia	12 (24%)	7 (16%)	6 (12%)	
Cardiovascular System				
Heart	(50)	(25)	(50)	
Inflammation, subacute Mineralization	1 (2%) 1 (2%)			

Table DS

.

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	20 mg/kg	40 mg/kg
Endocrine System			
Adrenal gland	(50)	(50)	(49)
Capsule, spindle cell, hyperplasia		1 (2%)	
Adrenal gland, cortex	(50)	(50)	(49)
Accessory adrenal cortical nodule	2 (4%)	1 (2%)	
Hypertrophy, focal			1 (2%)
Necrosis	1 (2%)		
Parathyroid gland	(47)	(25)	(48)
Cyst		1 (4%)	
Pituitary gland	(47)	(49)	(50)
Pars distalis, cyst			1 (2%)
Pars distalis, hyperplasia	12 (26%)	8 (16%)	4 (8%)
Thyroid gland	(50)	(50)	(50)
Inflammation, subacute	1 (2%)		
Follicular cell, hyperplasia	5 (10%)	1 (2%)	1 (2%)
General Body System None			
Genital System			
Clitoral gland		(1)	(1)
Duct, cyst		1 (100%)	1 (100%)
Ovary	(45)	(36)	(50)
Abscess	12 (27%)	14 (39%)	18 (36%)
Cyst	3 (7%)	8 (22%)	5 (10%)
Hemorrhage		3 (8%)	
Uterus	(46)	(43)	(50)
Dilatation	9 (20%)		4 (8%)
Hyperplasia, cystic	42 (91%)	36 (84%)	46 (92%)
Inflammation, suppurative	5 (11%)	6 (14%)	10 (20%)
Mucosa, cyst	2 (4%)		1 (2%)
Hematopoietic System	•		
Bone marrow	(50)	(25)	(50)
Myeloid cell, hypercellularity	17 (34%)	11 (44%)	21 (42%)
Lymph node	(50)	(50)	(50)
Iliac, hyperplasia, lymphoid	1 (2%)	1 (2%)	2 (4%)
Iliac, inflammation, suppurative	1 (2%)		
Mediastinal, hyperplasia, lymphoid			1 (2%)
Mediastinal, inflammation, suppurative	2 (4%)		1 (2%)
Renal, hyperplasia, lymphoid	1 (2%)	1 (2%)	4 (8%)
Renal, inflammation, suppurative			1 (2%)
Lymph node, mandibular	(49)	(47)	(49)
Hyperplasia, lymphoid	1 (2%)		
Lymph node, mesenteric	(50)	(49)	(50)
Angiectasis		1 (2%)	1 (2%)
Hematopoietic cell proliferation			2 (4%)
Spleen	(50)	(50)	(50)
Hematopoietic cell proliferation	21 (42%)	18 (36%)	28 (56%)
Hyperplasia, lymphoid	1 (2%)		
TABLE D5 Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Pentachloroanisole (continued)

	Vehicle Control	20 mg/kg	40 mg/kg
Integumentary System Mammary gland Hyperplasia Skin Inflammation	(49) 1 (2%) (50)	(23) (26) 1 (4%)	(50) (50)
Musculoskeletal System			
Bone Hypertrophy	(50) 1 (2%)	(25)	(50)
Nervous System		· · · · · · · · · · · · · · · · · · ·	
Brain Hemorrhage Inflammation, subacute	(50) 1 (2%) 1 (2%)	(26)	(50)
Respiratory System			
Lung Abscess Foreign body	(50) 1 (2%) 1 (2%)	(27)	(50)
Infiltration cellular, histiocyte Inflammation, suppurative	1 (2%)	2 (7%) 1 (4%)	1 (2%)
Alveolar epithelium, hyperplasia Mediastinum, inflammation, suppurative Nose	1 (2%) 5 (10%) (50)	2 (7%) 5 (19%) (50)	3 (6%) (50)
Foreign body Fungus Inflammation, suppurative	7 (14%) 5 (10%)	15 (30%) 13 (26%)	19 (38%) 1 (2%) 21 (42%)
Special Senses System			
Harderian gland Hyperplasia	(6) 2 (33%)	(2)	(4)
Urinary System			
Kidney Amyloid deposition	(50) 2 (4%)	(25)	(50)
Hydronephrosis Nephropathy Cortex, cyst	1 (2%) 12 (24%) 1 (2%)	2 (8%) 3 (12%)	8 (16%)
Glomerulus, inflammation Transitional epithelium, hyperplasia	- ()	2 (8%) 1 (4%)	

^a Number of animals examined microscopically at site and number of animals with lesion

APPENDIX E GENETIC TOXICOLOGY

SALMONELL	A TYPHIMURIUM MUTAGENICITY TEST PROTOCOL	216
MOUSE LYN	APHOMA CELL MUTAGENICITY TEST PROTOCOL	216
CHINESE H	AMSTER OVARY CELL CYTOGENETICS PROTOCOLS	217
RESULTS		218
Table E1	Mutagenicity of Pentachloroanisole in Salmonella typhimurium	219
Table E2	Induction of Trifluorothymidine Resistance in Mouse L5178Y Lymphoma Cells	
	by Pentachloroanisole	221
	Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells	
	by Pentachloroanisole	225
Table E4	Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells	
	by Pentachloroanisole	226

GENETIC TOXICOLOGY

SALMONELLA TYPHIMURIUM MUTAGENICITY TEST PROTOCOL

Testing was performed as reported by Mortelmans *et al.* (1986). Pentachloroanisole was sent to the laboratory as a coded aliquot from Radian Corporation (Austin, TX). It was incubated with the *Salmonella typhimurium* tester strain (TA100, TA1535, TA1537, and TA98) either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver) for 20 minutes at 37° C prior to the addition of soft agar supplemented with *l*-histidine and *d*-biotin, and subsequent plating on minimal glucose agar plates. Incubation continued for an additional 48 hours.

Each trial consisted of triplicate plates of concurrent positive and negative controls and of at least five doses of pentachloroanisole. High dose was limited to 10,000 μ g/plate. All positive assays were repeated under the conditions which elicited the positive response.

In this assay, a positive response is defined as a reproducible, dose-related increase in histidine-independent (revertant) colonies in any one strain/activation combination. An equivocal response is defined as an increase in revertants which was not dose-related, not reproducible, or of insufficient magnitude to support a determination of mutagenicity. A negative response was obtained when no increase in revertant colonies was observed following chemical treatment.

MOUSE LYMPHOMA CELL MUTAGENICITY TEST PROTOCOL

The experimental protocol is presented in detail by McGregor *et al.* (1987). Pentachloroanisole was supplied as a coded aliquot by Radian Corporation (Austin, TX). The highest dose of pentachloroanisole was determined by solubility or toxicity and did not exceed 0.05 mg/mL. Mouse lymphoma L5178Y cells were maintained at 37° C as suspension cultures in Fischer's medium supplemented with 2 mM *l*-glutamine, 110 μ g/mL sodium pyruvate, 0.05% pluronic F68, antibiotics, and heat-inactivated horse serum; normal cycling time was about 10 hours. To reduce the number of spontaneously occurring trifluorothymidine (TFT) resistant cells, subcultures were exposed once to medium containing THMG (thymidine, hypoxanthine, methotrexate, glycine) for 1 day, to THG for 1 day, and to normal medium for 3 to 5 days. For cloning, horse serum content was increased and Noble agar was added. Freshly prepared S9 metabolic activation factors were obtained from the livers of Aroclor 1254-induced male rats.

All treatment levels within an experiment, including concurrent positive and solvent controls, were replicated. Treated cultures contained 6×10^6 cells in 10 mL of medium. This volume included the S9 fraction in those experiments performed with metabolic activation. Incubation with pentachloroanisole continued for 4 hours, at which time the medium plus pentachloroanisole was removed and the cells were resuspended in 20 mL of fresh medium and incubated for an additional 2 days to express the mutant phenotype. Cell density was monitored so that log phase growth was maintained. After the 48-hour expression period, 3×10^6 cells were plated in medium and soft agar supplemented with trifluorothymidine for selection of TFT-resistant cells (TK^{-/-}), and 600 cells were plated in nonselective medium and soft agar to determine cloning efficiency. Plates were incubated at 37° C in 5% CO₂ for 10 to 12 days. All data were evaluated statistically for both trend and peak response. Both responses had to be significant (P<0.05) for pentachloroanisole to be considered capable of inducing TFT-resistance; a single significant response led to a "questionable" conclusion, and the absence of both a trend and a peak response resulted in a "negative" call.

Minimum criteria for accepting an experiment as valid and a detailed description of the statistical analysis and data evaluation are presented in Myhr *et al.* (1985). This assay was initially performed

without S9; because a clearly positive response was not obtained, the experiment was repeated with induced S9.

CHINESE HAMSTER OVARY CELL CYTOGENETICS PROTOCOLS

Testing was performed as reported by Galloway *et al.* (1985, 1987) and is presented briefly below. Pentachloroanisole was sent to the laboratory as a coded aliquot from Radian Corporation (Austin, TX). It was tested in cultured Chinese hamster ovary (CHO) cells for induction of sister chromatid exchanges (SCEs) and chromosomal aberrations (Abs) both in the presence and absence of Aroclor 1254-induced male Sprague-Dawley rat liver S9 and cofactor mix. Cultures were handled under gold lights to prevent photolysis of bromodeoxyuridine-substituted DNA. Each test consisted of concurrent solvent and positive controls and of three doses of pentachloroanisole; the high dose was limited by toxicity or solubility, but did not exceed 700 μ g/mL.

In the SCE test without S9, CHO cells were incubated for 26 hours with pentachloroanisole in McCoy's 5A medium supplemented with 10% fetal bovine serum, *l*-glutamine (2mM), and antibiotics. Bromodeoxyuridine (BrdU) was added 2 hours after culture initiation. After 26 hours, the medium containing pentachloroanisole was removed and replaced with fresh medium plus BrdU and Colcemid, and incubation was continued for 2 hours. Cells were then harvested by mitotic shake-off, fixed, and stained with Hoechst 33258 and Giemsa. In the SCE test with S9, cells were incubated with pentachloroanisole, serum-free medium, and S9 for 2 hours. The medium was then removed and replaced with medium containing BrdU and no pentachloroanisole and incubation proceeded for an additional 26 hours, with Colcemid present for the final 2 hours. Harvesting and staining was the same as for cells treated without S9. For the SCE test, if significant chemical-induced cell cycle delay was seen, incubation time was lengthened to ensure a sufficient number of scorable cells.

In the Abs test without S9, cells were incubated in McCoy's 5A medium with pentachloroanisole for 20 hours; Colcemid was added and incubation continued. The cells were then harvested by mitotic shake-off, fixed, and stained with Giemsa. For the Abs test with S9, cells were treated with pentachloroanisole and S9 for 2 hours, after which the treatment medium was removed and the cells incubated for 18 hours in fresh medium, with Colcemid present for the final 2 hours. Cells were harvested in the same manner as for the treatment without S9. The harvest time for the Abs test was based on the cell cycle information obtained in the SCE test.

Cells were selected for scoring on the basis of good morphology and completeness of karyotype $(21 \pm 2 \text{ chromosomes})$. All slides were scored blind and those from a single test were read by the same person. For the SCE test, 50 second-division metaphase cells were scored for frequency of SCE per cell from each dose level; 100 first-division metaphase cells were scored at each dose level for the Abs test. Classes of aberrations included simple (breaks and terminal deletions), complex (rearrangements and translocations), and other (pulverized cells, despiralized chromosomes, and cells containing 10 or more aberrations).

Statistical analyses were conducted on both the slopes of the dose-response curves and the individual dose points. An SCE frequency 20% above the concurrent solvent control value was chosen as a statistically conservative positive response. The probability of this level of difference occurring by chance at one dose point is less than 0.01; the probability for such a chance occurrence at two dose points is less than 0.021. A single increased dose was considered weak evidence of a positive reponse; two increased doses were sufficient to evaluate the trial as positive. Chromosomal aberration data are presented as percentage of cells with aberrations. Both the dose-response curve and individual dose points were statistically analyzed. A statistically significant (P < 0.05) difference for one dose point was considered weak evidence for a positive response; significant differences for two or more doses indicated the trial was positive (Galloway *et al.*, 1987).

RESULTS

Pentachloroanisole (10 to 10.000 μ g/plate) was tested for induction of gene mutations in four strains of Salmonella typhimurium (TA100, TA1535, TA1537, and TA98) using a preincubation protocol with and without Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9 (Table E1; Mortelmans et al., 1986). No clear evidence of mutagenic activity was observed in strain TA100 or TA1535 with or without S9, but positive responses were obtained with the strains TA1537 and TA98 in the absence of S9; no increases in mutagenic colonies occurred in these strains with S9. Precipitation occurred at 1,000 μ g/plate and higher concentrations. In the mouse lymphoma assay, pentachloroanisole induced trifluorothymidine resistance in L5178Y cells over a concentration range of 18.75 to 500 μ g/mL in the presence of Aroclor 1254-induced male F344 rat liver S9; without S9, the responses were weak, not dose related, and inconsistent (Table E2; McGregor et al., 1987). Precipitation occurred in this assay also, at about the 125 μ g/mL dose level, and this may have been a factor in the lack of a clear dose-response relationship for all but one of the positive trials. In cytogenetic tests with Chinese hamster ovary (CHO) cells, pentachloroanisole induced sister chromatid exchanges (SCEs) (Table E3), but not chromosomal aberrations (Abs) (Table E4), with and without Aroclor 1254-induced male Sprague-Dawley rat liver S9. A delayed harvest protocol was required in the SCE test to offset pentachloroanisole-induced cell cycle delay and allow detection of the positive responses. Delayed harvest was also used for the Abs test to offset the cell cycle delay induced by pentachloroanisole. Precipitation occurred in the SCE and Abs tests for all pentachloroanisole concentrations of 35 μ g/mL and higher.

Table E1

Mutagenicity of Pentachloroanisole in Salm	onella typhimurium ^a
--	---------------------------------

			Revertants/plate ^b	· · · · · · · · · · · · · · · · · · ·		
Strain Dose	-59		+10% hamster S9	+10% rat S9		
(µg/plate)		<u> </u>		·		
 Ta100		<u></u>		·		
0	109 ± 4	4.4	136 ± 6.9	111 ± 5.8		
10			126 ± 0.6	141 ± 4.5		
33			131 ± 8.4	143 ± 2.6		
100	84 ± 5	5.7	114 ± 11.1	117 ± 14.7		
333	· 97 ± ().7	83 ± 5.5	79 ± 1.2		
1,000	94 ± 4	4.1 ^c	22 ± 5.5^{c}	$69 \pm 11.6^{\circ}$		
3,333	84 ± 3	5.3 ^c			÷	
6,666						
10,000	89 ± 3	3.5 ^c				
Trial summary	Negatia	14	Negative	Equivocal		
Trial summary Positive control ^d	Negative 219 ± 2		$2,130 \pm 37.6$	761 ± 81.5	. •	
TA1535						
1A1555 0	13 ± 3	76	7 ± 1.3	6 ± 0.6		
10	15 ± .	2.0	7 ± 0.6	6 ± 0.6		
33			7 ± 0.0 7 ± 1.5	0 ± 0.0 9 ± 0.9		
100	10 ±	1.2	7 ± 1.3 8 ± 0.6	7 ± 0.3 7 ± 1.2		
333	$10 \pm 10 \pm 10$		8 ± 0.0 8 ± 0.9	7 ± 1.2 4 ± 0.9		
1,000	$10 \pm 10 \pm$		$3 \pm 0.6^{\circ}$	4 ± 0.9 5 ± 0.6 ^c		
3,333	7 ± 1		5 ± 0.0	5 ± 0.0		
10,000	9 ± 3					
Trial summary	Negativ	ve.	Negative	Negative		
Positive control	129 ± 1		464 ± 43.3	187 ± 12.4		
			Revertants/plate	· · · · · · · · · · · · · · · · · · ·		
Strain Dose		-S9	+10% hamster S9	<u>+10% rat S9</u>		
(µg/plate)	Trial 1	Trial 2	Trial 1	Trial 1		
TA1537	<u></u>	, <u>, , , , , , , , , , , , , , , , , , </u>			······	
0	7 ± 0.6	4 ± 1.2	8 ± 1.5	7 ± 1.9		
10			8 ± 0.6	6 ± 1.2		
33			3 ± 1.3	6 ± 2.0		
100	6 ± 2.0		5 ± 1.5	3 ± 0.3		
333	6 ± 1.5	5 ± 1.2	2 ± 0.3	1 ± 0.3		
1,000	$7 \pm 2.3^{\circ}$	$5 \pm 1.5^{\circ}$	$1 \pm 0.0^{\circ}$	1 ± 0.0^{c}		
3,333	15 ± 0.3^{c}	12 ± 1.2^{c}				
6,666		19 ± 1.2^{c}				
10,000	24 ± 1.9^{c}	34 ± 3.2^{c}				
Trial summary	Positive	Positive	Negative	Negative		
Positive control	124 ± 15.8	254 ± 7.0	265 ± 4.6	236 ± 7.1		

		Revertants/plate							
Strain Dose		-\$9	+10% hamster S9	+10% rat S9					
(µg/plate)	Trial 1	Trial 2	Trial 1	Trial 1					
 TA98	1								
- 0	14 ± 1.2	12 ± 2.3	23 ± 3.2	20 ± 0.3					
10			18 ± 1.9	18 ± 1.2					
33			15 ± 2.0	22 ± 1.8	`				
100	11 ± 2.8		12 ± 1.2	19 ± 1.9					
333	11 ± 1.5	11 ± 3.0	9 ± 1.0	16 ± 0.7					
1,000	9 ± 0.7^{c}	15 ± 1.7^{c}	4 ± 0.9^{c}	19 ± 0.6^{c}					
3,333	23 ± 5.2^{c}	20 ± 2.7^{c}							
6,666		33 ± 5.5^{c}							
10,000	39 ± 7.1^{c}	45 ± 4.1^{c}							
Trial summary	Positive	Positive	Negative	Negative					
Positive control	510 ± 12.1	397 ± 21.4	$1,731 \pm 43.6$	364 ± 43.6					

TABLE E1

Mutagenicity of	Pentachloroanisole	in Salmonella	typhimurium	(continued)
-----------------	--------------------	---------------	-------------	-------------

^a Study performed at SRI, International. The protocol and these data are presented in Mortelmans et al. (1986).

^b Revertants are presented as mean \pm the standard error from three plates.

^c Precipitate on plate

d 2-aminoanthracene was used on all strains in the presence of S9. In the absence of metabolic activation,
 4-nitro-o-phenylenediamine was tested on TA98, sodium azide was tested on TA100 and TA1535, and 9-aminoacridine was tested on TA1537.

TABLE E2 Induction of Trifluorothymidine Resistance in Mouse LS178Y Lymphoma Cells by Pentachloroanisole^a

Averag InstuM Fractio	Mutant Fraction ⁶	insiuM inuoD	Relative Total Growth (%)	Cloning Efficiency (%)	Concentration (.Im/21)	puncdutoD
	58	95	80 I	89		Dimethylsulfoxide
LZ	LZ	84	76	09		
						Ethyl methanesultonate
p	136	190 190	99	LS		
142 _q	961	564	8 <i>L</i>	\$9	520	
						Pentachloroanisole
	82	89	901	18	SZ.IE	
58	22 77	89 85	76 06	69 08	\$79	
07	45	201 20	9L 76	98 60	152	
P ^{0S}	65	8L	LZ	44		
	02	512	34	201	520	
pIS	37	211	58	811	003	
45	0† S†	130 130	48 35	00 I 26	005	
						रमश्च २
						Dimethylsulfoxide
	99	201	511	42		annound futarity of
	25	66	88	7 9		
	67	64	86	19		
25	42	08	86	69	e	stenofluzanedtam lydtA
	247	413	86	95		Ethyl methanesulfonate
544 ₉	541	997	62	\$9	520	
	64	941	<i>L</i> 21	66	31.25	Pentachloroanisole
43	96	99	154	09	0 8 47.0	
	Lt	201	601	ZL	5.28	
25	LS	76	<u>L6</u>	SS		
67	29 79	178	7L	69	152 ₆	
E 9	79 E9	191 911	34 61	28 19	520	
ĩ <i>L</i>	18	153	52	IS		
	28	152	81	IS	200	
р ^{£8}	58	134	53	25		

TABLE E2

Induction of Trifluorothymidine Resistance in Mouse L5178Y Lymphoma Cells by Pentachloroanisole (continued)

Compound	Concentration (µg/mL)	Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Count	Mutant Fraction	Average Mutant Fraction
						
S9 Frial 1						
Dimethylsulfoxide						
		63	100	143	76	
		79	109	175	74	
		68 51	97 94	133 108	66 71	71
		51	54	108	71	/1
lethylcholanthrene				600		
	2.5	26	21	680 720	855	741 ^d
20 20	2.5	39	23	739	626	/41-
Pentachloroanisole						
	31.25	69	79	247	119	-
		52	36	523	333	226 ^d
	62.5	84	59	320	126	
		64	54	188	99	113 ^d
	125	67	105	262	130	
	250	66	43	149	75	102
	250	70	12	337	160	138 ^d
· .	500	63 68	11 14	220 332	116 164	138-
	500	70	14	332 191	91	127 ^d
Frial 2						
Dimethylsulfoxide		52	77	122	70	
		52 80	132	122	79 44	1. a
		92	92	103	44 64	62
Mathulahalanthan-						
Methylcholanthrene		23	11	961	1,408	
	2.5	51	27	956	627	1,017 ^d
Pentachloroanisole						
sindemotodilisoic	18.75	56	54	264	158	
	20.75	89	78	302	113	135 ^d
	37.5	58	53	273	158	
		105	82	364	115	137 ^d
	75 ^e	56	39	287	171	
		109	60	376	115	143 ^d
	150	88	58	436	166	
		86	47	340	133	149 ^d
	300	98	17	714	243	
		Lethal				

.

, .

TABLE E2

Induction of Trifluorothymidine Resistance in Mouse L5178Y Lymphoma Cells by Pentachloroanisole (continued)

Compound	Concentration (µg/mL.)	Cloning Efficiency (%)	Relative Total Growth (%)	Mutant Count	Mutant Fraction	Average Mutant Fraction
+S9 (continued) Trial 3						
Dimethylsulfoxide						
-		72	95	50	23	
		87	105	57	22	
		77	112	45	19	
		64	88	74	39	26
Methylcholanthrene						
		44	25	508	383	
	2.5	43	24	467	359	371 ^d
Pentachloroanisole						
	50	64	42	141	73	
		59	44	141	81	77 ^d
	75	66	29	136	69	
		64	34	81	42	55 ^d
	100	57	27	81	47	
		55	28	101	61	54 ^d
	125	66	21	114	57	
		96	18	171	60	58 ^d
	150	54	16	92	57	
		52	20	88	57	57 ^d
Trial 4						
Dimethylsulfoxide						
Dimethyisuitoxide		77	104	195	85	
		83	104	195	63	
		57	81	138	78	
		65	89	169	87	78
Methylcholanthrene						
wiennyienoiantiitene		43	27	700	545	
	2.5	43	30	598	436	. 491 ^d
Pentachloroanisole						
r entacinor oamsole	15	64	70	150	70	
	15	64 79	79 92	150 159	78 67	72
	25	84	65	218	67 87	12
	~	76	72	188	82	84
	50	52	40	196	124	57
	20	51	32	255	166	145 ^d
	75	37	6	387	350	
		36	7	324	299	324 ^d
	100	Lethal				
		Lethal				

-

5. p. e. e

ŧ

TABLE E2

Induction of Trifluorothymidine Resistance in Mouse L5178Y Lymphoma Cells by Pentachloroanisole (continued) 1.1.1

- a Study performed at Inveresk Research International. The experimental protocol and these data are presented in McGregor et al. (1987). The highest dose of pentachloroanisole was determined by solubility and toxicity. All dosed were tested in triplicate; the average of the three tests is presented in the table. Cells (6 x 10⁵/mL) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3 x 10⁶ cells were plated in medium and soft agar supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in nonselective medium and soft agar to determine the cloning efficiency.
- b Mean \pm standard error from three replicate plates of approximately 10⁶ cells each.
- С Mutant fraction (frequency) is a ratio of the mutant count to the cloning efficiency, divided by 3 (to arrive at MF 10⁶ cells treated); MF=mutant fraction. đ
- Significant positive response (P<0.05) e
- Precipitation at this and higher doses

Table E3

Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells by Pentachloroanisole^a

Compound	Dose (µg/mL)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hrs in BrdU	Relative SCEs Chromosome (%) ^b
59								
Summary: Positive							•	
Dimethylsulfoxide		50	1,049	694	0.66	13.9	26.3	
Mitomycin-C	0.001 0.010	39 5	809 106	692 236	0.85 2.22	17.7 47.2	26.3 26.3	29.29 236.53
Pentachloroanisole	75 100 125	36 50 50	744 1,043 1,043	475 882 840	0.63 0.84 0.80	13.2 17.6 16.8	26.3 34.3 ^c 34.3 ^c	-3.50 27.82° 21.73°
								P<0.001 ^d
-\$9								
Trial 1 Summary: Weak positive								
Dimethylsulfoxide		50	1,044	574	0.54	11.5	25.8	
Cyclophosphamide	0.35 2.00	50 5	1,046 104	790 187	0.75 1.79	15.8 37.4	25.8 25.8	37.37 227.04
Pentachloroanisole	117 350 709	50 50 50	1,044 1,052 1,042	606 642 950	0.58 0.61 0.91	12.1 12.8 19.0	25.8 25.8 34.0 ^c	5.57 11.00 65.82°
								P<0.001
Trial 2 Summary: Positive								
Dimethylsulfoxide		50	1,049	634	0.60	12.7	26.3	
Cyclophosphamide	0.35 2.00	50 5	1,046 105	855 193	0.81 1.83	17.1 38.6	26.3 26.3	35.24 204.13
Pentachloroanisole	595 648 700	50 50 50	1,040 1,040 1,042	757 968 878	0.72 0.93 0.84	15.1 19.4 17.6	26.3 34.3 ^c 34.3 ^c	20.43° 54.00° 39.42°
								P<0.001

[◦] Positive (≥20% increase over solvent control)

^a Study performed at Litton Bionetics, Inc. SCE=sister chromatid exchange; BrdU=bromodeoxyuridine. A detailed description of the SCE protocol is presented by Galloway *et al.* (1985, 1987). Precipitate was observed at all dose levels.

^b SCE's/chromosome of culture exposed to pentachloroanisole relative to those of culture exposed to solvent.

^c Because pentachloroanisole induced a delay in the cell division cycle, harvest times were extended to maximize the proportion of second division cells available for analysis.

^d Significance of relative SCEs/chromosome tested by the linear regression trend test vs. log of the dose

		-59				· .		+59		
Dose (µg/mL)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells w/Abs		Dose µg/mL)	Total Cells	No. of	Abs/ Cell	Percent Cells w/Abs
Trial 1 – Harves Summary: Negativ		5 hours ^b		<u>}</u>		1 – Harvest ary: Negative		2.5 hours ^b		
			•							
Dimethylsulfoxide					Dime	thylsulfoxide		-		
	100	2	0.02	2.0	•		100	0	0.00	0.0
Mitomycin-C			•		Cyclo	phosphamid	e	· · ·	1.	
0.04	50	14	0.28	24.0	-,	12.5	50	15	0.30	22.0
Pentachloroaniso	e	÷., .			Penta	chloroanisol	e			
101	100	1	0.01	1.0		595	100	5	0.05	4.0
126	100	1	0.01	1.0		648	100	3	0.03	3.0
151	100	0	0.00	0.0		700	100	4	0.04	3.0
				$P = 0.909^{c}$						P=0.126

TABLE E4

.

Induction of Chromosomal	Aberrations in	Chinese	Hamster (Ovarv Cel	ls hv	Pentachloroanisole ^a
induction of on one of the	TROUT WOLVING III		TTANIHOVAL (I chicachiloi cannoone

a Study performed at Litton Bionetics, Inc. Abs=aberrations. A detailed presentation of the technique for detecting

b

chromosomal aberrations is found in Galloway et al. (1985, 1987). Precipitate was noted at most dose levels. Because of significant chemical-induced cell cycle delay, incubation time prior to addition of Colcemid was lengthened to provide sufficient metaphases at harvest.

c Significance of percent cells with aberrations tested by the linear regression trend test vs. log of the dose

APPENDIX F ORGAN WEIGHTS

AND ORGAN-WEIGHT-TO-BODY-WEIGHT RATIOS

F1	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 13-Week Gavage Studies of Pentachloroanisole	228
F2		
	of Pentachloroanisole	229
F3		
	at the 15-Month Interim Evaluations in the 2-Year Gavage Studies	
	of Pentachloroanisole	230
F4	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice	
	in the 13-Week Gavage Studies of Pentachloroanisole	231
F5	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice	
	at the 9-Month Interim Evaluations in the 2-Year Gavage Studies	
	of Pentachloroanisole	232
F6	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice	
	of Pentachloroanisole	233
	72 73 74 75	 in the 13-Week Gavage Studies of Pentachloroanisole

20.00

. .

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 13-Week Gavage Studies of Pentachloroanisole^a TABLE F1

	Vehicle Control	40 mg/kg	80 mg/kg	120 mg/kg
Male				
n Necropsy body weight	$\frac{10}{356 \pm 6}$	10 $326 \pm 5^{**}$	3 318 ± 6**	
Brain				
Absolute Relative	2.03 ± 0.03 5.70 ± 0.09	$1.94 \pm 0.03^{\circ}$ 5.95 ± 0.08	$1.86 \pm 0.02^{**}$ 5.84 ± 0.04	
Heart				•
Absolute Relative	0.91 ± 0.03 2.57 ± 0.07	0.90 ± 0.03 2.74 ± 0.13	0.93 ± 0.03 2.92 ± 0.05	
R. Kidney Absolute	107 + 0.04	1 15 + 0.03	1 16 + 0.02	
Relative	3.01 ± 0.08	3.51 ± 0.07 **	$3.66 \pm 0.04^{**}$	•
Liver	12.30 + 0.36	12.98 + 0.38	13.15 + 0.25	•
Relative	IH I	1+ 1	IH 1	
Lungs	1 33 + 0.06	1 34 + 0 04	1 43 + 0 10	
	3.72 ± 0.15	4.11 ± 0.13	4.51 ± 0.35*	
R. Testis	1 40 + 0 04	1 41 + 0 03	1 44 + 0 02	
Relative	4.17 ± 0.09	4.31 ± 0.08	$4.53 \pm 0.06*$	
Thymus	0.07 + 0.07	20.0 + 0.20	0 77 + 0 05	
Relative	0.37 ± 0.02 1.03 ± 0.05	0.92 ± 0.03	0.27 ± 0.05 0.85 ± 0.15	
Female			·	, , , , , , , , , , , , , , , , , , ,
n Necropsy body weight	10 202 ± 4	10195 ± 3	$10\\192 \pm 3$	$\frac{2}{189 \pm 12}$
J - -	:			
Absolute	1.83 ± 0.02	1.80 ± 0.02	1.77 ± 0.03	1.76 ± 0.06
Kelative Heart	9.08 ± 0.12	9.25 ± 0.12	9.21 ± 0.19	9.33 ± 0.27
Absolute	0.60 ± 0.01	0.60 ± 0.01	0.61 ± 0.01	0.61 ± 0.10
R. Kidney				
Absolute Relative	0.64 ± 0.02 3.20 ± 0.06	0.70 ± 0.02 3.58 ± 0.09**	$0.72 \pm 0.02^{*}$ 3.75 ± 0.09**	$0.82 \pm 0.14^{\circ\circ}$ 4.31 ± 0.47**
Liver	1			
Absolute Relative	6.76 ± 0.18 33.54 ± 0.74	7.31 ± 0.14 37.59 ± 0.60 **	$7.94 \pm 0.17^{**}$ $41.34 \pm 0.70^{**}$	$9.08 \pm 1.87^{**}$ $47.61 \pm 6.87^{**}$
Lungs Absolute	0.91 ± 0.02	1.00 ± 0.04	0.94 ± 0.04	1.02 ± 0.16
Relative	4.52 ± 0.09	$5.14 \pm 0.16^*$	$4.93 \pm 0.23^*$	5.36 ± 0.51
Thymus Absolute	0.25 ± 0.01	0.24 ± 0.01	0.27 ± 0.03	0.25 ± 0.03
	1.26 ± 0.06	1.22 ± 0.04	1.38 ± 0.15	1.32 ± 0.08

-

and a second

** P≤0.01 Organ and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error). No data calculated for 120 mg/kg males and 140 mg/kg and 180 mg/kg rats due to 100% mortality.

Pentachloroanisole, NTP TR 414

228

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 9-Month Interim Evaluations in the 2-Year Gavage Studies of Pentachloroanisole^a

	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
Male		···· ··· ··· ··· ··· ··· ··· ···	······································	·····
n	10	10	10	10
Necropsy body weight	463 ± 12	447 ± 8	431 ± 7°	396 ± 5°°
Brain				
Absolute	2.09 ± 0.02	2.09 ± 0.02	2.06 ± 0.01	2.06 ± 0.02
Relative	4.52 ± 0.08	4.68 ± 0.06	4.79 ± 0.07°	5.22 ± 0.07°°
R. Kidney				
Absolute	1.22 ± 0.04	1.27 ± 0.03	1.25 ± 0.03	1.27 ± 0.02
Relative	2.62 ± 0.06	$2.84 \pm 0.05^{\circ}$	$2.92 \pm 0.08^{\circ \circ}$	$3.22 \pm 0.05^{\circ\circ}$
Liver			۲.	
Absolute	13.51 ± 0.42	13.37 ± 0.26	13.09 ± 0.29^{b}	13.82 ± 0.19
Relative	29.13 ± 0.33	29.95 ± 0.34	$30.46 \pm 0.48^{\circ b}$	$34.95 \pm 0.50^{\circ\circ}$
Thymus				
Absolute	0.29 ± 0.02	0.27 ± 0.03	0.32 ± 0.05	0.24 ± 0.03
Relative	0.62 ± 0.04	0.62 ± 0.07	0.75 ± 0.10	0.61 ± 0.07
Female				
n	10		10	10
Necropsy body weight	245 ± 5		236 ± 4	227 ± 5°
Brain				
Absolute	1.89 ± 0.02		1.92 ± 0.02	1.87 ± 0.01
Relative	7.73 ± 0.11		$8.16 \pm 0.12^{\circ}$	$8.27 \pm 0.18^{\circ}$
R. Kidney				
Absolute	0.71 ± 0.02		0.77 ± 0.02	0.75 ± 0.02
Relative	2.91 ± 0.05		$3.25 \pm 0.08^{\circ \circ}$	$3.33 \pm 0.08^{\circ}$
Liver				
Absolute	6.71 ± 0.27		7.36 ± 0.12	6.93 ± 0.26
Relative	27.31 ± 0.77		$31.25 \pm 0.53^{\circ \circ}$	30.49 ± 0.74**
Thymus				
Absolute	0.24 ± 0.03		0.20 ± 0.02	0.18 ± 0.02
Relative	0.96 ± 0.10		0.84 ± 0.09	0.78 ± 0.08

° Significantly different (P \leq 0.05) from the control group by Williams' or Dunnett's test

°° P≤0.01

a Organ and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error). No data calculated for 10 mg/kg females due to 100% mortality.
 b n=9

n=9

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 15-Month Interim Evaluations in the 2-Year Gavage Studies of Pentachloroanisole^a

· · · · ·	Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
Male	<u> </u>	<u> </u>	· · · ·	~ . 41 · 4
				As a construction of the c
n	10	9	9	5
Necropsy body weight	508 ± 8	479 ± 23	472 ± 9	425 ± 10**
Brain				
Absolute	2.09 ± 0.03	2.09 ± 0.02	2.04 ± 0.04	2.04 ± 0.07
Relative	4.12 ± 0.09	4.46 ± 0.26	4.33 ± 0.13	$4.80 \pm 0.13^{*}$
R. Kidney				
Absolute	1.35 ± 0.03	1.44 ± 0.06	1.40 ± 0.03	1.41 ± 0.07
Relative	2.66 ± 0.05	3.10 ± 0.24	2.96 ± 0.05	$3.32 \pm 0.10^{**}$
Liver		,		
Absolute	13.90 ± 0.39	14.74 ± 0.30	14.76 ± 0.45^{b}	14.68 ± 0.69
Relative	27.32 ± 0.48	31.75 ± 2.60	30.93 ± 0.63^{b}	$34.53 \pm 1.38^{**}$
Thymus				
Absolute	0.30 ± 0.03	0.36 ± 0.05	0.27 ± 0.04	0.23 ± 0.02
Relative	0.59 ± 0.06	0.76 ± 0.10	0.58 ± 0.09	0.54 ± 0.04
Female				
n	9		10	10
Necropsy body weight	291 ± 8		285 ± 7	268 ± 5*
Brain			· · · ·	
Absolute	1.89 ± 0.02		1.86 ± 0.03	1.93 ± 0.01
Relative	6.54 ± 0.17		6.56 ± 0.18	$7.22 \pm 0.13^{**}$
R. Kidney	0.54 2 0.17		0.00 - 0.10	
Absolute	0.76 ± 0.02		$0.85 \pm 0.02^{**}$	$0.86 \pm 0.02^{**}$
Relative	2.63 ± 0.05		$3.00 \pm 0.05^{**}$	$3.20 \pm 0.07^{**}$
Liver	2.05 2 0.05		5.00 - 0.00	
Absolute	6.82 ± 0.29	· .	7.70 ± 0.27	7.92 ± 0.35*
Relative	23.40 ± 0.63		$27.10 \pm 1.13^*$	29.58 ± 1.18**
Thymus				
Absolute	0.22 ± 0.02		0.19 ± 0.02	0.24 ± 0.03
Relative	0.22 ± 0.02 0.76 ± 0.06		0.66 ± 0.02	0.88 ± 0.11

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

Organ and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error). No data calculated for 10 mg/kg females due to 100% mortality.
 n=8

230

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 13-Week Gavage Studies of Pentachloroanisole^a

	Vehicle Control	40 mg/kg	80 mg/kg	120 mg/kg	140 mg/kg	180 mg/kg
Male		<u> </u>				
n	10	10	10	1 ^b		
Necropsy body weight	35.1 ± 0.8	34.5 ± 0.8	34.6 ± 0.4	32.0		
Brain	•					
Absolute	0.46 ± 0.02	0.44 ± 0.01	0.45 ± 0.01	0.45		
Relative	13.05 ± 0.63	12.73 ± 0.21	12.90 ± 0.19	14.06		
Heart						
Absolute	0.18 ± 0.01	0.17 ± 0.01	0.17 ± 0.00	0.15		
Relative	5.00 ± 0.23	4.78 ± 0.10	5.04 ± 0.12	4.69		. /
R. Kidney						
Absolute	0.31 ± 0.01	0.33 ± 0.01	0.33 ± 0.01	0.31		
Relative	8.78 ± 0.26	$9.51 \pm 0.22^{\circ}$	$9.51 \pm 0.22^{\circ}$	9.69		
Liver						
Absolute	2.04 ± 0.08	2.10 ± 0.07	$2.33 \pm 0.06^{\circ \circ}$	2.32		
Relative	58.12 ± 1.93	60.88 ± 1.15	$67.38 \pm 1.61^{\circ\circ}$	72.50		
Lungs	0.00 + 0.01	0.00 . 0.01	0.00 . 0.01	0.15		
Absolute	0.23 ± 0.01	0.20 ± 0.01	0.20 ± 0.01	0.17		
Relative D. Tratia	6.44 ± 0.44	5.82 ± 0.31	5.89 ± 0.20	5.31		
R. Testis	0.11 . 0.00	0.11 + 0.00	0.11 0.000	0.10		
Absolute Relative	0.11 ± 0.00	0.11 ± 0.00	0.11 ± 0.00	0.10		
	3.22 ± 0.10	3.16 ± 0.08	3.15 ± 0.09	3.13		
Thymus Absolute	0.05 ± 0.01^{c}	0.04 ± 0.00	0.05 ± 0.00	0.05		
Relative	$1.43 \pm 0.23^{\circ}$	1.17 ± 0.12	0.05 ± 0.00 1.35 ± 0.11	1.56		
Relative	1.45 ± 0.25	1.17 ± 0.12	1.55 ± 0.11	1.50		•
Female						:
n	10	10	10	10	10	4
Necropsy body weight	25.4 ± 0.3	26.1 ± 0.3	26.1 ± 0.2	26.2 ± 0.3	$26.7 \pm 0.3^{\circ}$	26.0 ± 0.4
Brain						
Absolute	0.46 ± 0.00	0.46 ± 0.02	0.46 ± 0.01	0.47 ± 0.01	0.49 ± 0.02	0.45 ± 0.02
Relative	18.30 ± 0.33	17.52 ± 0.61	17.75 ± 0.27	17.96 ± 0.36	18.24 ± 0.56	17.32 ± 0.71
Heart						
Absolute	0.13 ± 0.01	0.13 ± 0.01	0.13 ± 0.01	0.13 ± 0.00	0.15 ± 0.01	0.12 ± 0.00
Relative	5.09 ± 0.25	5.07 ± 0.34	4.79 ± 0.18	5.11 ± 0.12	5.50 ± 0.25	4.62 ± 0.14
R. Kidney	0.10 . 0.01	0.00 + 0.01	0.01 . 0.0000	0.01 . 0.0000	0.00	
Absolute Relative	0.19 ± 0.01 7.28 ± 0.24	0.20 ± 0.01 7.59 ± 0.19	$0.21 \pm 0.00^{\circ\circ}$ 8.01 ± 0.14°	$0.21 \pm 0.00^{\circ\circ}$ $8.06 \pm 0.13^{\circ\circ}$	$0.22 \pm 0.01^{\circ\circ}$ 8.35 ± 0.26^{\circ\circ}	$0.21 \pm 0.00^{\circ\circ}$ 7.89 ± 0.09°
Liver	7.20 ± 0.24	7.59 ± 0.19	$0.01 \pm 0.14^{\circ}$	8.00 ± 0.13^{11}	8.33 ± 0.20	7.89 ± 0.09
Absolute	1.25 ± 0.04	1.53 ± 0.03**	$1.61 \pm 0.02^{\circ \circ}$	1.70 + 0.029	1.88 + 0.06**	1.64 ± 0.08**
Relative	49.21 ± 1.08	$58.51 \pm 0.71^{\circ\circ}$	$61.78 \pm 0.91^{**}$	$65.05 \pm 0.92^{\circ\circ}$	$70.48 \pm 1.90^{\circ\circ}$	$62.78 \pm 2.26^{\circ\circ}$
Lungs						
Absolute	0.18 ± 0.01	0.19 ± 0.01	0.19 ± 0.01	0.20 ± 0.01	0.22 ± 0.02	0.18 ± 0.01
Relative	7.23 ± 0.42	7.34 ± 0.32	7.11 ± 0.43	7.74 ± 0.41	8.34 ± 0.58	6.92 ± 0.26
Thymus						
Absolute	0.05 ± 0.01	0.05 ± 0.00	0.05 ± 0.00	0.05 ± 0.00	0.05 ± 0.01	0.06 ± 0.00
Relative	2.00 ± 0.21	1.99 ± 0.13	1.92 ± 0.15	1.98 ± 0.12	1.98 ± 0.21	2.21 ± 0.10

° Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

°° P≤0.01

^a Organ and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean \pm standard error). No data calculated for 140 mg/kg and 180 mg/kg males due to 100% mortality. No standard error calculated due to high mortality in this group Ь

с n=9

	Vehicle Control	20 mg/kg	40 mg/kg
Male			
'n	10	10	10
Necropsy body weight	43.9 ± 1.0	45.0 ± 1.2	$40.3 \pm 1.0^*$
Brain			
Absolute	0.47 ± 0.00	0.46 ± 0.00	0.46 ± 0.00
Relative	10.6 ± 0.3	10.4 ± 0.3	$11.5 \pm 0.3^*$
R. Kidney			
Absolute	0.34 ± 0.01	0.36 ± 0.01	0.34 ± 0.01
Relative	7.80 ± 0.15	8.07 ± 0.25	$8.44 \pm 0.22^*$
Liver			
Absolute	1.65 ± 0.06	1.90 ± 0.10	1.81 ± 0.10
Relative	37.43 ± 0.88	$42.01 \pm 1.60^*$	$44.73 \pm 1.91^{**}$
R. Testis			0.10 . 0.00
Absolute	0.13 ± 0.00	0.12 ± 0.00	0.13 ± 0.00
Relative	2.84 ± 0.08	2.69 ± 0.09	$3.27 \pm 0.13^{**}$
Thymus	0.05 . 0.00	0.05 / 0.01	0.04 + 0.00
Absolute Relative	0.05 ± 0.00 1.04 ± 0.10	0.05 ± 0.01 1.18 ± 0.13	0.04 ± 0.00 0.86 ± 0.09
Relative	1.04 ± 0.10	1.16 ± 0.15	0.00 ± 0.09
Female			
n	10	9	10
Necropsy body weight	37.0 ± 2.0	35.2 ± 2.1	35.7 ± 1.5
Brain			
Absolute	0.48 ± 0.01	0.47 ± 0.01	0.48 ± 0.01
Relative	13.4 ± 0.8	13.9 ± 1.0	13.6 ± 0.5
R. Kidney			
Absolute	0.21 ± 0.01	0.22 ± 0.01	0.23 ± 0.01
Relative	5.78 ± 0.26	6.40 ± 0.22	6.39 ± 0.16
Liver			
Absolute	1.23 ± 0.06	1.32 ± 0.05	$1.50 \pm 0.03^{**}$
Relative	33.59 ± 1.41	$38.15 \pm 1.45^{\circ}$	$42.59 \pm 1.34^{**}$
Thymus	-		
Absolute	0.05 ± 0.00	0.04 ± 0.00	0.05 ± 0.00
Relative	1.30 ± 0.05	1.20 ± 0.08	1.32 ± 0.11

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice at the 9-Month Interim Evaluations in the 2-Year Gavage Studies of Pentachloroanisole^a

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Organ and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error).

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice at the 15-Month Interim Evaluations in the 2-Year Gavage Studies of Pentachloroanisole^a

	Vehicle Control	20 mg/kg	40 mg/kg	
Male				
n	10	10	10	
Necropsy body weight	48.7 ± 0.9	50.6 ± 0.8	47.7 ± 2.3	
Brain				
Absolute	0.47 ± 0.01	0.48 ± 0.01	$0.49 \pm 0.01^{\circ}$	
Relative	9.66 ± 0.16	9.46 ± 0.23	10.44 ± 0.37	
R. Kidney				
Absolute	0.41 ± 0.01	0.45 ± 0.02	0.42 ± 0.02	
Relative	8.43 ± 0.16	8.79 ± 0.40	8.84 ± 0.33	
Liver				
Absolute	2.51 ± 0.26	3.13 ± 0.15	3.17 ± 0.26	
Relative	52.56 ± 6.60	61.75 ± 2.16	65.59 ± 2.27°	
Thymus				
Absolute	0.07 ± 0.01	0.07 ± 0.01	0.05 ± 0.00	
Relative	1.32 ± 0.15	1.37 ± 0.17	1.07 ± 0.09	
Female				
n	10	10	7	
Necropsy body weight	47.6 ± 1.8	46.4 ± 2.3	48.7 ± 3.3	
Brain				
Absolute	0.49 ± 0.01	0.47 ± 0.01	$0.46 \pm 0.01^{\circ}$	
Relative	10.4 ± 0.4	10.3 ± 0.5	9.7 ± 0.6	
R. Kidney				
Absolute	0.25 ± 0.01	0.25 ± 0.01^{b}	0.27 ± 0.01	
Relative	5.38 ± 0.21	5.68 ± 0.15^{b}	5.56 ± 0.21	
Liver				
Absolute	1.59 ± 0.05	$1.85 \pm 0.10^{\circ b}$	$2.01 \pm 0.12^{\circ \circ}$	
Relative	33.53 ± 1.22	$39.52 \pm 1.29^{\circ \circ b}$	$41.49 \pm 0.91^{**}$	
Thymus				
Absolute	0.05 ± 0.01	0.04 ± 0.01	0.06 ± 0.01	
Relative	1.01 ± 0.11	0.93 ± 0.09	1.11 ± 0.17	

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

°° P≤0.01

^a Organ and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error).

b n=9

î

APPENDIX G

HEMATOLOGY AND CLINICAL CHEMISTRY

Table G1	Hematology and Clinical Chemistry Data for Rats	
	in the 13-Week Gavage Studies of Pentachloroanisole	236
Table G2	Hematology and Clinical Chemistry Data for Rats	
	at the 9-Month Interim Evaluations in the 2-Year Gavage Studies	
	of Pentachloroanisole	237
Table G3	Hematology and Clinical Chemistry Data for Rats	
	at the 15-Month Interim Evaluations in the 2-Year Gavage Studies	
	of Pentachloroanisole	239
Table G4	Hematology and Clinical Chemistry Data for Mice	
	in the 13-Week Gavage Studies of Pentachloroanisole	241
Table G5	Hematology and Clinical Chemistry Data for Mice	
	at the 9-Month Interim Evaluations in the 2-Year Gavage Studies	
	of Pentachloroanisole	243
Table G6	Hematology and Clinical Chemistry Data for Mice	
	at the 15-Month Interim Evaluations in the 2-Year Gavage Studies	
	of Pentachloroanisole	245

;"

Analysis V	ehicle Control	40 mg/kg	80 mg/kg	120 mg/kg	
Male					
n	10	10	3		
Hematology					
Hematocrit (%)	38.2 ± 0.3	39.1 ± 0.3	$40.2 \pm 0.7^*$		
Hemoglobin (g/dL)	15.3 ± 0.1	15.9 ± 0.1**	$16.4 \pm 0.3^{**}$		
Erythrocytes (10°/µL)	8.27 ± 0.04	8.24 ± 0.05	8.29 ± 0.06		
Mean cell volume (fL)	46.4 ± 0.2	$47.4 \pm 0.2^{**}$	$48.7 \pm 0.3^{**}$		·
Mean cell hemoglobin (pg)	18.5 ± 0.1	$19.3 \pm 0.1^{**}$	$19.7 \pm 0.2^{**}$		
Mean cell hemoglobin concentration (g/dL		$40.7 \pm 0.1^{**}$	$40.7 \pm 0.2^*$		
Leukocytes $(10^{3}/\mu L)$	4.23 ± 0.33	4.66 ± 0.26	3.67 ± 0.48		
n	10	10	3		
Clinical chemistry					
Alkaline phosphatase (IU/L)	194 ± 7	$144 \pm 4^{**}$	133 ± 2**		
Alanine aminotransferase (IU/L)	37 ± 2	34 ± 2	51 ± 16		
Aspartate aminotransferase (IU/L)	77 ± 5	$53 \pm 2^{**}$	73 ± 13		
Sorbitol dehydrogenase (IU/L)	10 ± 1^{b}	11 ± 1	17 ± 6		
Cholinesterase (IU/L)	628.1 ± 16.7	564.7 ± 12.2**	$532.0 \pm 6.4^{**}$		
Female					
1	10	10	8	1 ^c	
Hematology					
Hematocrit (%)	37.1 ± 0.3	37.4 ± 0.3	37.2 ± 0.3	36.7	
Hemoglobin (g/dL)	15.2 ± 0.1	$15.0 \pm 0.1^*$	$14.8 \pm 0.1^{**}$	14.7	
Erythrocytes $(10^{\circ}/\mu L)$	7.57 ± 0.06	$7.42 \pm 0.05^*$	7.46 ± 0.05	7.28	
Mean cell volume (fL)	49.1 ± 0.2	$50.3 \pm 0.2^{**}$	$49.8 \pm 0.2^{**}$	50.0	
Mean cell hemoglobin (pg)	20.0 ± 0.1	20.2 ± 0.1	19.9 ± 0.1	20.2	
Mean cell hemoglobin concentration (g/dL		$40.1 \pm 0.2^{**}$	$39.9 \pm 0.2^{**}$	40.1	
Leukocytes $(10^{3}/\mu L)$	3.95 ± 0.15	5.27 ± 0.18**	4.39 ± 0.15	3.80	
1	10	10	10	2	
Clinical chemistry					
Alkaline phosphatase (IU/L)	147 ± 5	150 ± 6	226 ± 11**	181 ± 0*	
Alanine aminotransferase (IU/L)	33 ± 1	31 ± 1	33 ± 1	33 ± 6	
Aspartate aminotransferase (IU/L)	75 ± 3	$60 \pm 3^{**}$	$62 \pm 4^{**}$	$53 \pm 8^*$	
Cholinesterase (IU/L)	2,658 ± 165	2,177 ± 112*	1,259 ± 53**	$1,058 \pm 2^{**}$	
Sorbitol dehydrogenase (IU/L)	10 ± 1^{d}	$2 \pm 0^{**e}$	3 ± 0^{e}	14 ± 1^{t}	

TABLE G1 Hematology and Clinical Chemistry Data for Rats in the 13-Week Gavage Studies of Pentachloroanisole^a

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

^a Mean ± standard error. No data calculated for 120 mg/kg, 140 mg/kg, and 180 mg/kg males or for 140 mg/kg and 180 mg/kg benales due to 100% mortality

n=7

No standard error calculated due to high mortality in this group

d = 4

 f^{e} n=8

n=2

Hematology and Clinical Chemistry

TABLE G2

Hematology and Clinical Chemistry Data for Rats at the 9-Month Interim Evaluations in the 2-Year Gavage Studies of Pentachloroanisole^a

۷	ehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
Male				
1	9	7	. 9	9
Hematology				
Hematocrit (%)	45.9 ± 0.6	45.7 ± 0.2	45.5 ± 0.3	45.8 ± 0.3
Hemoglobin (g/dL)	12.4 ± 1.4	14.6 ± 0.4	14.6 ± 0.3	15.0 ± 0.2
Erythrocytes (10 ⁶ /µL)	6.74 ± 0.09	6.83 ± 0.03	6.80 ± 0.04	6.82 ± 0.04
Mean cell volume (fL)	68.1 ± 0.2	66.9 ± 0.3°°	$67.1 \pm 0.3^{\circ}$	67.1 ± 0.1°°
Mean cell hemoglobin (pg)	18.3 ± 2.0	21.3 ± 0.5	21.5 ± 0.3	22.0 ± 0.2
Mean cell hemoglobin concentration (g/dL)	27.0 ± 3.0	31.9 ± 0.7	32.1 ± 0.6	32.8 ± 0.2
Platelets (10 ⁻³ /µL)	4.7 ± 0.1	4.9 ± 0.1	4.7 ± 0.1	4.4 ± 0.1
Reticulocytes (%)	1.6 ± 0.1	1.5 ± 0.1	1.9 ± 0.2	1.2 ± 0.1
Leukocytes $(10^3/\mu L)$	7.68 ± 0.67	7.71 ± 0.86	7.13 ± 0.65	7.04 ± 0.43
Segmented neutrophils (%)	28.33 ± 2.94	29.86 ± 3.23	25.44 ± 2.06	25.89 ± 2.75
Lymphocytes (%)	67.33 ± 2.92	65.71 ± 3.16	69.78 ± 2.39	68.67 ± 2.95
Monocytes (%)	0.33 ± 0.17	0.43 ± 0.30	0.33 ± 0.24	0.56 ± 0.24
Eosinophils (%)	0.89 ± 0.26	1.14 ± 0.40	0.78 ± 0.32	0.67 ± 0.33
Nucleated erythrocytes (/100 leukocytes)	1.50 ± 0.50^{b}	2.00 ^c	1.00 ± 0.00^{b}	1.00 ± 0.00^{d}
1	10	10	10	10
Clinical chemistry				
Urea nitrogen (mg/dL)	14.1 ± 0.7	14.5 ± 0.8	14.6 ± 0.6	$18.5 \pm 0.9^{\circ \circ}$
Methemoglobin (g/dL)	0.27 ± 0.06^{e}	0.62 ± 0.22^{f}	0.35 ± 0.06^{e}	0.53 ± 0.14^{e}
Alanine aminotransferase (IU/L)	46 ± 1	49 ± 2	50 ± 2	63 ± 8°°
Aspartate aminotransferase (IU/L)	71 ± 5	74 ± 7	69 ± 3	86 ± 7
Sorbitol dehydrogenase (IU/L)	7 ± 0	6 ± 1	8 ± 0	7 ± 1

.

٠ţ

n de la companya de l La companya de la comp	ehicle Control	20 mg/kg	40 mg/kg	a sa a a a
Female				
s;				
1	6	7	9	7
Hematology				
Hematocrit (%)	39.3 ± 1.8	40.3 ± 1.3	41.8 ± 0.7	
Hemoglobin (g/dL)	12.9 ± 0.9	13.2 ± 0.6	14.4 ± 0.2	
Erythrocytes $(10^6/\mu L)$	5.44 ± 0.25	5.57 ± 0.17	$5.88 \pm 0.11^*$	
Mean cell volume (fL)	72.3 ± 0.2	72.4 ± 0.2	71.1 ± 0.2**	· · · · · · · · · · · · · · · · · · ·
Mean cell hemoglobin (pg)	23.6 ± 0.8	23.7 ± 0.8	24.4 ± 0.2	
Mean cell hemoglobin concentration (g/dL)	32.7 ± 1.1	32.7 ± 1.1	34.3 ± 0.2	
Platelets $(10^3/\mu L)$	3.9 ± 0.5	4.4 ± 0.3	$4.8 \pm 0.1^*$	
Reticulocytes (%)	1.7 ± 0.2	1.9 ± 0.2	1.7 ± 0.2	
Leukocytes $(10^3/\mu L)$	4.32 ± 0.32	4.14 ± 0.32	5.37 ± 0.30	
Segmented neutrophils (%)	18.00 ± 3.18	22.71 ± 4.14	20.22 ± 3.23	
Lymphocytes (%)	75.83 ± 3.43	70.57 ± 4.92	74.56 ± 2.93	
Monocytes (%)	0.67 ± 0.49	0.29 ± 0.18	0.78 ± 0.32	
Eosinophils (%)	1.83 ± 0.70	0.57 ± 0.30	1.22 ± 0.32	
Nucleated erythrocytes (/100 leukocytes)	1.50 ± 0.50^{b}	1.33 ± 0.33^{d}	2.00 ± 0.71^{g}	. 1
1	10	10	10	
Clinical chemistry				н Алар
Urea nitrogen (mg/dL)	14.5 ± 0.5	$16.6 \pm 0.7^*$	$16.8 \pm 0.8^{*}$	
Methemoglobin (g/dL)	0.35 ± 0.06^{h}	$0.42 \pm 0.06^{\rm f}$	0.32 ± 0.06^{e}	
Alanine aminotransferase (IU/L)	36 ± 2	$29 \pm 1^{*}$	$30 \pm 1^{*}$	
Aspartate aminotransferase (IU/L)	65 ± 4	65 ± 5	55 ± 4	n na star i s
Sorbitol dehydrogenase (IU/L)	6 ± 1	4 ± 0	7 ± 0	

TABLE G2

Hematology and Clinical Chemistry Data for Rats at the 9-Month Interim Evaluations in the 2-Year Gavage Studies of Pentachloroanisole (continued)

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

^a Mean \pm standard error. No measurements taken for 10 mg/kg females.

^b n=2

^c No standard error calculated due to high mortality

d n=3

e n=9

¹ n=7 g n=4

h n=6

238

Hematology and Clinical Chemistry

TABLE G3

Hematology and Clinical Chemistry Data for Rats at the 15-Month Interim Evaluations in the 2-Year Gavage Studies of Pentachloroanisole²

Vehicle Control	10 mg/kg	20 mg/kg	40 mg/kg
10	9	9	5
41.9 ± 0.4	42.4 ± 0.7	43.4 ± 1.0	43.9 ± 1.2
14.9 ± 0.2	15.2 ± 0.2	$15.7 \pm 0.3^{\circ}$	15.7 ± 0.4
8.88 ± 0.09	9.21 ± 0.11°	9.57 ± 0.24°°	$9.45 \pm 0.16^{\circ \circ}$
47.2 ± 0.2	46.0 ± 0.7	46.2 ± 0.6	46.4 ± 0.6
16.8 ± 0.1	16.5 ± 0.2	16.7 ± 0.2	16.6 ± 0.1
L) 35.5 ± 0.2	35.9 ± 0.3	36.2 ± 0.2	35.8 ± 0.3
5.6 ± 0.1	5.1 ± 0.2°	$4.8 \pm 0.2^{\circ \circ}$	$4.4 \pm 0.2^{\circ \circ}$
2.1 ± 0.2	2.0 ± 0.2	$1.5 \pm 0.1^{\circ}$	1.7 ± 0.2
$2.84 \pm 0.11^{\circ}$	3.30 ± 0.37	3.08 ± 0.21	3.28 ± 0.22
39.00 ± 2.05	38.56 ± 3.16	37.22 ± 2.69	32.00 ± 2.83
57.60 ± 2.21	57.56 ± 2.98	60.67 ± 2.59	64.80 ± 2.40
2.00 ± 0.45	2.78 ± 0.49	1.67 ± 0.44	2.00 ± 0.71
0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
1.40 ± 0.34	1.11 ± 0.35	0.44 ± 0.18	1.20 ± 0.20
0.30 ± 0.21	0.44 ± 0.24	0.22 ± 0.15	_b
10	9	9	5
13.5 ± 0.8	10.9 ± 0.8	14.6 ± 1.2	$17.3 \pm 0.5^{\circ}$
50 ± 4	52 ± 3	$63 \pm 3^{\circ}$	86 ± 15°
63 ± 5	70 ± 4	71 ± 4	82 ± 10
	12 ± 1	14 ± 2	18 ± 4
	10 41.9 ± 0.4 14.9 ± 0.2 8.88 ± 0.09 47.2 ± 0.2 16.8 ± 0.1 35.5 ± 0.2 5.6 ± 0.1 2.1 ± 0.2 2.84 ± 0.11 39.00 ± 2.05 57.60 ± 2.21 2.00 ± 0.45 0.00 ± 0.00 1.40 ± 0.34 0.30 ± 0.21 10 13.5 ± 0.8 50 ± 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 9 9 41.9 ± 0.4 42.4 ± 0.7 43.4 ± 1.0 14.9 ± 0.2 15.2 ± 0.2 $15.7 \pm 0.3^{\circ}$ 8.88 ± 0.09 $9.21 \pm 0.11^{\circ}$ $9.57 \pm 0.24^{\circ\circ}$ 47.2 ± 0.2 46.0 ± 0.7 46.2 ± 0.6 16.8 ± 0.1 16.5 ± 0.2 16.7 ± 0.2 $12.35.5 \pm 0.2$ 35.9 ± 0.3 36.2 ± 0.2 5.6 ± 0.1 $5.1 \pm 0.2^{\circ}$ $4.8 \pm 0.2^{\circ\circ}$ 2.1 ± 0.2 2.0 ± 0.2 $1.5 \pm 0.1^{\circ}$ 2.84 ± 0.11 3.30 ± 0.37 3.08 ± 0.21 39.00 ± 2.05 38.56 ± 3.16 37.22 ± 2.69 57.60 ± 2.21 57.56 ± 2.98 60.67 ± 2.59 57.60 ± 2.21 57.56 ± 2.98 60.67 ± 2.59 2.00 ± 0.45 2.78 ± 0.49 1.67 ± 0.44 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.40 ± 0.34 1.11 ± 0.35 0.44 ± 0.18 0.30 ± 0.21 0.44 ± 0.24 0.22 ± 0.15 10 9 9 13.5 ± 0.8 10.9 ± 0.8 14.6 ± 1.2 50 ± 4 52 ± 3 $63 \pm 3^{\circ}$

<u>، ،</u>

eene State

.....

_ + ⁺

239

; ;

. . t. . à

J

	Vehicle Control	20 mg/kg	40 mg/kg	
Female				· · · ·
n	9	10	10	
Hematology				
Hematocrit (%)	41.9 ± 0.5	41.8 ± 0.4	40.9 ± 0.3	.s. (
Hemoglobin (g/dL)	15.2 ± 0.1	14.9 ± 0.1	$14.7 \pm 0.1^{\circ}$	
Erythrocytes (10 ⁶ /µL)	8.22 ± 0.07	8.16 ± 0.10	8.12 ± 0.07	
Mean cell volume (fL)	51.0 ± 0.5	51.2 ± 0.4	50.4 ± 0.4	
Mean cell hemoglobin (pg)	18.5 ± 0.1	18.2 ± 0.1	$18.1 \pm 0.1^*$	
Mean cell hemoglobin concentration (g/dI	L) 36.2 ± 0.2	35.7 ± 0.2	36.0 ± 0.3	
Platelets $(10^3/\mu L)$	4.6 ± 0.3	4.7 ± 0.1	4.3 ± 0.2	· · · · ·
Reticulocytes (%)	2.4 ± 0.1	$1.9 \pm 0.2^*$	$1.6 \pm 0.1^{**}$	
Leukocytes $(10^3/\mu L)$	2.24 ± 0.17	2.14 ± 0.12	2.32 ± 0.14	
Segmented neutrophils (%)	34.78 ± 3.13	34.70 ± 3.16	30.80 ± 2.35	
Lymphocytes (%)	62.44 ± 2.82	62.60 ± 3.33	67.50 ± 2.40	·. · ·
Atypical lymphocytes (%)	1.78 ± 0.57	1.90 ± 0.38	1.10 ± 0.28	
Monocytes (%)	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	•
Eosinophils (%)	0.89 ± 0.35	0.70 ± 0.30	0.60 ± 0.22	
Nucleated erythrocytes (/100 leukocytes)	0.22 ± 0.15	0.90 ± 0.41	$2.00 \pm 0.75^*$	
n ·	9	10	10	
Clinical chemistry				
Urea nitrogen (mg/dL)	11.7 ± 0.6	13.3 ± 0.8	15.7 ± 1.0**	
Alanine aminotransferase (IU/L)	44 ± 6	36 ± 3	42 ± 3	
Aspartate aminotransferase (IU/L)	69 ± 8	62 ± 3	67 ± 4	
Sorbitol dehydrogenase (IU/L)	10 ± 1	9 ± 1	12 ± 1	

TABLE G3

Hematology and Clinical Chemistry Data for Rats at the 15-Month Interim Evaluations in the 2-Year Gavage Studies of Pentachloroanisole (continued)

 $^{a}_{b}$ Mean \pm standard error. No measurements taken for 10 mg/kg females. No data calculated

240

	Vehicle Control	40 mg/kg	80 mg/kg	120 mg/kg
Male			ſ	
1 Hematology	10	10	9	1 ^b
Hematocrit (%)	36.6 ± 0.5	39.3 ± 0.7**	$41.6 \pm 0.6^{\circ \circ}$	40.0
Hemoglobin (g/dL) Erythrocytes (10 ⁶ /µL)	13.8 ± 0.2	$14.6 \pm 0.3^{\circ}$	$15.3 \pm 0.2^{\circ \circ}$	15.1
Mean cell volume (fL)	8.46 ± 0.13 43.2 ± 0.3	$8.88 \pm 0.17^{\circ}$ 44.3 ± 0.4	$9.40 \pm 0.10^{\circ\circ}$ 44.3 ± 0.3	9.42 42.0
Mean cell hemoglobin (pg)	16.3 ± 0.1	16.4 ± 0.2	16.3 ± 0.1	16.0
Mean cell hemoglobin concentration (g/dL) Leukocytes (10 ³ /µL)	37.6 ± 0.1	37.0 ± 0.2*	36.8 ± 0.1**	37.8
	4.80 ± 0.38	3.73 ± 0.49	4.79 ± 0.88	4.80
n Clinical chemistry	9	10	6	1 ^b
Alkaline phosphatase (IU/L)	25 ± 1	_c	32 ± 2^d	_c
Alanine aminotransferase (IU/L)	17 ± 3	17 ± 4	23 ± 9	7
Aspartate aminotransferase (IU/L)	105 ± 12	169 ± 49	111 ± 7	71

TABLE G4 Hematology and Clinical Chemistry Data for Mice in the 13-Week Gavage Studies of Pentachloroanisole^a

*			
÷. •	*		

• • ·	Vehicle Control	40 mg/kg	80 mg/kg	120 mg/kg	140 mg/kg	180 mg/kg
Female						
i Hematology	7	10	8	9	7	1 ^b
Hematocrit (%)	37.4 ± 0.5	41.9 ± 0.4**	$42.5 \pm 0.4^{**}$	42.3 ± 0.5**	43.1 ± 0.6**	41.1
Hemoglobin (g/dL) Erythrocytes (10 ⁶ /µL)	14.1 ± 0.2	14.8 ± 0.2*	15.1 ± 0.2**	15.2 ± 0.2**	15.3 ± 0.4**	15.4
Mean cell volume (fl	8.55 ± 0.13	$9.24 \pm 0.07^{**}$ $45.6 \pm 0.2^{**}$	$9.27 \pm 0.11^{**}$ $45.9 \pm 0.2^{**}$	$9.29 \pm 0.11^{**}$ $45.6 \pm 0.2^{**}$	$9.42 \pm 0.15^{**}$ $45.9 \pm 0.1^{**}$	9.32 44.0
Mean cell hemoglobin	-	45.0 ± 0.2 16.0 ± 0.1**	45.3 ± 0.2 16.3 ± 0.1	45.0 ± 0.2 16.3 ± 0.1	$45.9 \pm 0.1^{\circ}$ 16.2 ± 0.2*	16.5
Mean cell hemoglobin			35.5 ± 0.1**	35.8 ± 0.2	35.4 ± 0.4**	37.5
Leukocytes (10 ³ /µL)	3.73 ± 0.36	3.79 ± 0.36	4.91 ± 0.17	3.43 ± 0.35	5.16 ± 0.34	2.60
1	9	7	8	5	8	3 ^b
Clinical chemistry		-				
Alkaline phosphatase	60 ± 1^{e}	59 ± 1^{f}	63 ± 2	$69 \pm 1^{**g}$	61 ± 3^d	76
Alanine aminotransfe Aspartate aminotrans	13 ± 1	26 ± 1**	30 ± 3**	34 ± 6**	39 ± 1**	16 ± 10**
· spartate ammontaits	202 ± 65	110 ± 15	_106 ± 12	122 ± 60^{g}	141 ± 20	268 ± 101

TABLE G4 2 Hematology and Clinical Chemistry Data for Mice in the 13-Week Gavage Studies of Pentachloroanisole (continued)

٠ Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

а Mean ± standard error. No measurements taken for 140 mg/kg and 180 mg/kg males.

ь No standard error calculated due to high mortality in this group c

No data calculated

d n=2

e n=10 f

n=6 g

n=4

Table G5

Hematology and Clinical Chemistry Data for Mice at the 9-Month Interim Evaluations in the 2-Year Gavage Studies of Pentachloroanisole^a

	Vehicle Control	20 mg/kg	40 mg/kg
Male			· · ·
n	10	10	10
Hematology			
Hematocrit (%)	38.6 ± 1.1	40.3 ± 0.7	37.6 ± 0.9
Hemoglobin (g/dL)	13.0 ± 0.4	13.5 ± 0.3	12.6 ± 0.3
Erythrocytes $(10^3/\mu L)$	8.88 ± 0.26	9.23 ± 0.16	8.78 ± 0.18
Mean cell volume (fL)	43.4 ± 0.3	43.6 ± 0.3	43.7 ± 1.0
Mean cell hemoglobin (pg)	14.6 ± 0.2	14.6 ± 0.2	14.4 ± 0.1
Mean cell hemoglobin concentration (g/dL)	33.6 ± 0.4	33.4 ± 0.2	33.6 ± 0.2
Platelets $(10^3/\mu L)$	6.5 ± 0.9	$8.8 \pm 0.3^{\circ}$	$9.1 \pm 0.4^{\circ}$
Reticulocytes (%)	2.0 ± 0.1	2.1 ± 0.2	1.6 ± 0.2
Leukocytes $(10^3/\mu L)$	1.29 ± 0.20	1.21 ± 0.19	2.15 ± 0.36
Segmented neutrophils (%)	23.70 ± 2.65	26.40 ± 3.48	23.70 ± 3.43
Lymphocytes (%)	71.60 ± 2.84	67.60 ± 4.70	71.10 ± 3.46
Atypical lymphocytes (%)	2.40 ± 0.67	2.33 ± 0.58^{b}	3.70 ± 0.94
Monocytes (%)	0.30 ± 0.15	0.70 ± 0.40	0.40 ± 0.27
Eosinophils (%)	0.20 ± 0.13	0.40 ± 0.16	0.20 ± 0.13
n	10	10	10
Clinical chemistry			
Blood urea nitrogen (mg/dL)	21.4 ± 1.6	22.5 ± 3.2	18.3 ± 2.6
Methemoglobin (g/dL)	0.47 ± 0.09	0.46 ± 0.06	0.49 ± 0.09^{b}
Alanine aminotransferase (IU/L)	46 ± 13	42 ± 3	$70 \pm 13^*$
Aspartate aminotransferase (IU/L)	139 ± 33	77 ± 7	88 ± 18
Sorbitol dehydrogenase (IU/L)	44 ± 7	44 ± 5	59 ± 5
· · · · · · · · · · · · · · · · · · ·		·	¢

•

.÷...

1997 B -

4

· --- · · ·

	Vehicle Control	20 mg/kg	40 mg/kg	• .
l'emale			· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • • • • • • • • • • •
	10	9	10	
lematology			•	
Hematocrit (%)	38.8 ± 1.2	40.8 ± 0.9	41.3 ± 0.9	κ.
Hemoglobin (g/dL)	13.0 ± 0.4	13.7 ± 0.3	13.8 ± 0.3	· · · · ·
Erythrocytes (10 ⁶ /µL)	8.82 ± 0.24	9.15 ± 0.16	9.15 ± 0.21^{b}	.•
Mean cell volume (fL)	44.0 ± 0.4	44.1 ± 0.2	44.5 ± 0.2	
Mean cell hemoglobin (pg)	14.7 ± 0.2	14.9 ± 0.1	14.9 ± 0.1	
Mean cell hemoglobin concentration (g/dL)		33.7 ± 0.4	33.3 ± 0.3	
Platelets $(10^3/\mu L)$	6.8 ± 0.4	6.0 ± 0.9	6.7 ± 0.7	·
Reticulocytes (%)	2.1 ± 0.1^{b}	2.0 ± 0.2	2.0 ± 0.2	÷.,
Leukocytes $(10^{3}/\mu L)$	1.40 ± 0.23	1.17 ± 0.29	1.40 ± 0.32	
Segmented neutrophils (%)	19.70 ± 3.53	17.78 ± 3.29	20.00 ± 3.63	
Lymphocytes (%)	76.30 ± 3.89	77.89 ± 3.15	77.40 ± 3.77	·····
Atypical lymphocytes (%)	2.20 ± 0.77	3.22 ± 0.94	1.90 ± 0.50	
Monocytes (%)	0.20 ± 0.13	0.11 ± 0.11	0.20 ± 0.13	•
Eosinophils (%)	0.30 ± 0.21	0.22 ± 0.22	0.20 ± 0.13	
	9	9	8	• •
Clinical chemistry				
Blood urea nitrogen (mg/dL)	18.4 ± 2.0	17.8 ± 1.6	23.5 ± 6.3	
Methemoglobin (g/dL)	0.53 ± 0.08^{b}	$0.43 \pm 0.11^{\circ}$	0.46 ± 0.07^{b}	
Alanine aminotransferase (IU/L)	22 ± 2^{c}	$41 \pm 8^*$	$65 \pm 25^*$	
Aspartate aminotransferase (IU/L)	86 ± 18^{c}	182 ± 35	169 ± 74	
Sorbitol dehydrogenase (IU/L)	22 ± 4	$38 \pm 4^{**}$	$63 \pm 18^{**}$	· · ·

TABLE G5

Hematology and Clinical Chemistry Data for Mice at the 9-Month Interim Evaluations in the 2-Year Gavage Studies of Pentachloroanisole (continued)

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

^a Mean \pm standard error

^b n=9

c n=8

TABLE G6

Hematology and Clinical Chemistry Data for Mice at the 15-Month Interim Evaluations in the 2-Year Gavage Studies of Pentachloroanisole^a

	Vehicle Control	20 mg/kg	40 mg/kg	
Male				
1	10	10	10	
Hematology				
Hematocrit (%)	39.7 ± 0.8	37.7 ± 1.0	37.1 ± 1.1	
Hemoglobin (g/dL)	13.6 ± 0.3	$12.2 \pm 0.3^{\circ}$	$12.5 \pm 0.3^{\circ}$	
Erythrocytes (10 ⁶ /µL)	8.82 ± 0.26	8.16 ± 0.20	8.18 ± 0.21	
Mean cell volume (fL)	45.5 ± 0.8	46.3 ± 0.4	45.3 ± 0.7	
Mean cell hemoglobin (pg)	15.5 ± 0.2	$15.0 \pm 0.1^{\circ \circ}$	15.4 ± 0.1	
Mean cell hemoglobin concentration (g/dL)	34.1 ± 0.4	$32.4 \pm 0.2^{\circ \circ}$	33.9 ± 0.7	
Platelets $(10^3/\mu L)$	10.3 ± 0.5	10.4 ± 0.6	11.1 ± 0.4	
Reticulocytes (%)	1.4 ± 0.3	1.8 ± 0.1	1.6 ± 0.1	
Leukocytes $(10^3/\mu L)$	1.45 ± 0.19	2.27 ± 0.42	1.75 ± 0.16	
Segmented neutrophils (%)	27.20 ± 3.16	27.70 ± 3.99	26.10 ± 2.06	
Lymphocytes (%)	67.30 ± 3.37	65.70 ± 3.81	68.40 ± 2.69	
Atypical lymphocytes (%)	1.00 ± 0.47	1.80 ± 0.47	1.80 ± 0.68	
Monocytes (%)	0.00 ± 0.00	0.10 ± 0.10	0.20 ± 0.20	
Eosinophils (%)	0.50 ± 0.22	0.40 ± 0.16	0.10 ± 0.10	
1	10	10	10	
Clinical chemistry	,			
Urea nitrogen (mg/dL)	18.27 ± 0.75	18.51 ± 1.50	16.37 ± 1.28	
Alanine aminotransferase (IU/L)	50 ± 16^{b}	$272 \pm 46^{**}$	$356 \pm 56^{**}$	
Aspartate aminotransferase (IU/L)	85 ± 10	191 ± 35*	$256 \pm 37^{**}$	
Sorbitol dehydrogenase (IU/L)	58 ± 13	$207 \pm 37^{\circ}$	$190 \pm 44^{\circ c}$	

	Vehicle Control		20 mg/kg	40 mg/kg	
Female	·				
· · ·			10	-	
1 ·	10	•	10	• • 7	
Hematology					
				• .	
Hematocrit (%)	38.4 ± 0.6		40.4 ± 0.9	$41.9 \pm 1.2^*$	and the second second
Hemoglobin (g/dL)	12.8 ± 0.2		13.3 ± 0.3	$14.0 \pm 0.4^*$	
Erythrocytes (10°/µL)	8.29 ± 0.09	•	8.41 ± 0.17	$8.82 \pm 0.22^*$	
Mean cell volume (fL)	46.3 ± 0.7	•	47.9 ± 0.7	47.4 ± 0.6	
Mean cell hemoglobin (pg)	15.4 ± 0.2		15.8 ± 0.3*	15.9 ± 0.1	••. • • • • •
Mean cell hemoglobin concentration (g/dL)			32.9 ± 0.4	33.4 ± 0.5	
Platelets (10 ³ /µL)	7.4 ± 0.5		7.7 ± 0.2^{b}	7.5 ± 0.4	
Reticulocytes (%)	1.4 ± 0.1		1.7 ± 0.2	1.9 ± 0.3	1
Leukocytes $(10^{3}/\mu L)$	$0.57 \pm 0.04^{\circ}$	•	$1.06 \pm 0.13^{**}$	$0.94 \pm 0.13^{**}$	
Segmented neutrophils (%)	32.10 ± 4.59	· `` '	22.40 ± 2.42	24.86 ± 3.49	
Lymphocytes (%)	59.70 ± 4.85		73.60 ± 2.75	68.71 ± 3.26	
Atypical lymphocytes (%)	1.60 ± 0.75		1.40 ± 0.43	2.29 ± 0.61	· . · ·
Monocytes (%)	0.00 ± 0.00		0.00 ± 0.00	$0.29 \pm 0.18^{\circ}$	• .
Eosinophils (%)	0.70 ± 0.21		0.30 ± 0.15	0.71 ± 0.29	
	4				in the second second
1	·. 9		9 .	6	
Clinical chemistry		,	t		
Simon enembery					
Urea nitrogen (mg/dL)	12.93 ± 1.43		15.80 ± 1.53	16.10 ± 1.31	
Alanine aminotransferase (IU/L)	27 ± 3^{d}		32 ± 3	$46 \pm 10^{*}$	1. The second
Aspartate aminotransferase (IU/L)	100 ± 13	÷.	90 ± 14	100 ± 18	
Sorbitol dehydrogenase (IU/L)	30 ± 4		$48 \pm 6^*$	$73 \pm 16^{**}$	

TABLE G6

Hematology and Clinical Chemistry Data for Mice at the 15-Month Interim Evaluations in the 2-Year Gavage Studies of Pentachloroanisole (continued)

а Mean ± standard error

b n=9

c n=6 d

n=8

APPENDIX H

TOXICOKINETICS OF PENTACHILOROANISOLE IN F344 RATS AND B6C3F1 MICE

Methods	DN	248
	• • • • • • • • • • • • • • • • • • • •	
FIGURE H1	Plasma Concentrations of Pentachloroanisole and Pentachlorophenol	
	after Intravenous Administration of 10 mg/kg Pentachloroanisole	
	to Male and Female F344 Rats and B6C3F ₁ Mice	252
Figure H2	Plasma Concentrations of Pentachloroanisole and Pentachlorophenol	
	after Gavage Administration of 10, 20, and 40 mg/kg Pentachloroanisole	
	to Male and Female F344 Rats	253
Figure H3	Plasma Concentrations of Pentachloroanisole and Pentachlorophenol	
	after Intravenous Administration of 10, 20, and 40 mg/kg Pentachloroanisole	
	to Male and Female B6C3F ₁ Mice	254
Figure H4	Plots of Area Under Concentration versus Time of Pentachloroanisole	
	versus Pentachloroanisole Dose in F344 Rats and B6C3F ₁ Mice	255
Figure H5	Plots of Maximum Plasma Concentration (C_{max}) of Pentachloroanisole	
	versus Pentachloroanisole Dose in F344 Rats and B6C3F ₁ Mice	256
Table H1	Kinetic Parameters for Pentachloroanisole and Pentachlorophenol	
	in F344 Rats Administered Pentachloroanisole	257
Table H2	Kinetic Parameters for Pentachloroanisole and Pentachlorophenol	
	in B6C3F ₁ Mice Administered Pentachloroanisole	258

. ...

TOXICOKINETICS OF PENTACHLOROANISOLE IN F344 RATS AND B6C3F₁ MICE

INTRODUCTION

Toxicokinetic studies of pentachloroanisole were conducted in F344 rats and $B6C3F_1$ mice to aid interpretation of the results of the carcinogenicity studies and to improve the utility of the studies for risk assessment. The studies were designed to define the elimination profiles of pentachloroanisole after intravenous administration and the linear absorption and elimination range of pentachloroanisole after gavage administration.

METHODS

Formulations

The pentachloroanisole gavage formulations were prepared by directly dissolving pentachloroanisole into corn oil. The pentachloroanisole intravenous formulation was prepared by dissolving pentachloroanisole in Emulphor:ethanol:water (1:1:3). Concentrations of pentachloroanisole formulations were independently confirmed by a dose analysis method.

Animals

Male and female F344 rats approximately 13 weeks old were purchased from Charles River Breeding Laboratories (Raleigh, NC). Fifteen male rats and 15 female rats were administered 10 mg pentachloroanisole per kg body weight intravenously. Blood samples were collected from three animals at 2, 10, 20, and 30 minutes, and at 1, 3, 6, 10, 20, and 30 hours. Rats were sampled twice by alternating between orbital sinuses with a time interval of at least 2 hours. For gavage studies, groups of 12 male and 12 female rats were administered 10, 20, and 40 mg/kg pentachloroanisole. Blood samples were collected from three animals at 30 minutes, and at 1, 3, 6, 12, 18, 26, and 32 hours. Two blood samples were collected from each rat as in the intravenous study. Plasma was separated from blood samples and then stored at -20° C until analysis.

Male and female $B6C3F_1$ mice approximately 13 weeks old were purchased from Charles River Breeding Laboratories (Raleigh, NC). Thirty male and 30 female mice were administered 10 mg pentachloroanisole per kg body weight intravenously. Blood samples were collected as in the rat study. For gavage studies, 24 male and 24 female mice were administered 10, 20, and 40 mg/kg pentachloroanisole. Blood samples were collected once from each of three animals at each time point by orbital sinus bleeding. Plasma was separated from blood samples and then stored at -20° C until analysis.

Pentachloroanisole Analysis

Plasma pentachloroanisole concentrations were determined by gas chromatography. An aliquot of 50 μ L of plasma was mixed with 200 μ L of 2 M sodium hydroxide solution, to which an aliquot of 1 mL internal standard solution (1 μ g/mL aldrin in hexane) and 1 mL hexane was added for extraction. The organic phase was then extracted and transferred to an autosampler vial and 1 μ L of hexane extract was directly injected into a Varian 3500 Gas Chromatograph equipped with an autosampler and an electron capture detector. A DB-5 Megabore[®] glass column (30 m x 0.53 mm ID, 1.5 μ m film) was used. The initial oven temperature was 145° C with an initial holding time of 12 minutes, followed by a programmed temperature increase at 6° C/min to 210° C with a final holding time of 2 minutes. Helium at a flow rate of 10 mL/min was used as a carrier gas and nitrogen (20 mL/min) was used as make-up gas. The peak area ratio of pentachloroanisole to aldrin was used to construct the spiked plasma standard curve and to determine pentachloroanisole concentrations in samples. Plasma standards were prepared concurrently with each batch of samples by spiking a blank rat plasma with a pentachloroanisole solution. The method was validated over a range of 0.02 to 10 μ g/mL from which two linear standard curves were constructed. The recovery of pentachloroanisole from plasma was complete. The limit of detection (0.01 μ g/mL) for the

pentachloroanisole method was defined as three times the standard deviation of the blank divided by the slope of the standard curve. The limit of quantitation (0.02 μ g/mL) was defined as the lowest concentration for which the standard deviation was 10% relative standard deviation and the relative standard error was less than 10%.

Pentachlorophenol Analysis

Plasma pentachlorophenol concentrations were determined by high performance liquid chromatography. Plasma samples (100 μ L) were mixed with twice the volume of acetonitrile containing octanophenone (50 μ g/mL) as an internal standard. Samples were vortexed for 30 seconds and then filtered through a 0.2 μ m filter. The filtrates were diluted with an equal volume of water and the diluted filtrates (100 μ L) were directly injected into a Waters 510 Liquid Chromatograph equipped with an autosampler and a Varian 2050 UV detector. A Beckman Ultrasphere Cyano column (250 x 4.6 mm ID, 5 μ m particle) together with a Whatman CO:PELL ODS guard column (20 x 2 mm ID) were used. The mobile phase was 40% acetonitrile, 60% water with 1% acetic acid at a flow rate of 1 mL/min. The UV detector was operated at 229 nm. The peak area ratio of pentachlorophenol to octanophenone was used to construct the spiked plasma standard curve and to determine pentachlorophenol concentrations in samples. Plasma standards were prepared concurrently with each batch of samples by spiking blank rat plasma with pentachlorophenol solutions. The method was validated over a range of 1.0 to 200 μ g/mL, over which linearity was confirmed. The recovery of pentachlorophenol from plasma was approximately 95%. The limit of detection for the pentachlorophenol method was 0.18 μ g/mL and the limit of quantitation was 1.0 μ g/mL

Data Analysis

Plasma concentration data obtained from intravenous administration of pentachloroanisole in both rats and mice were evaluated for estimation of toxicokinetic parameters by the program NONLIN[®] (Metzler et al., 1974). The initial values to be used in the NONLIN[®] program were estimated by a curve stripping method. The area under the concentration versus time curves was estimated for all dose groups using the trapezoidal rule with an endpoint correction based on the estimated elimination half-life. The standard error of the area under the concentration versus time curve was calculated based on the standard error of plasma concentrations at each time point using Microsoft Excel (Microsoft Corporation, Redmond, WA). The Student *t*-test was performed whenever applicable. Linear regression analysis was performed using KaleidaGraph (Synergy Software, Reading, PA).

RESULTS

Intravenous Studies

After intravenous administration, pentachloroanisole was found to be rapidly eliminated in both male and female rats and mice (Figure H1) with no major observed sex-related differences. The elimination of pentachloroanisole can be described by a classical two-compartment model with first-order elimination kinetics. The terminal elimination half-lives in rats and mice were approximately 1.2 and 1.0 hours, respectively. The calculated plasma clearance was 6.07 L/kg-hr for male rats and 5.61 L/kg-hr for female rats, 8.45 L/kg-hr for male mice and 10.2 L/kg-hr for female mice. Given the value of hepatic blood perfusion rates of 4.78 L/kg-hr for rats and 8.5 L/kg-hr for mice, and taking into consideration the fraction of plasma in whole blood, it is apparent that non-hepatic metabolism or other nonhepatic elimination processes were occurring. The calculated volume of the central compartment was about 2.41 L/kg for male rats, 2.01 L/kg for female rats, 2.05 L/kg for male mice, and 4.5 L/kg for female mice. These values were suggestive of pentachloroanisole's tissue distribution which is consistent with pentachloroanisole's low water solubility. High concentrations of pentachlorophenol were observed immediately after the administration of pentachloroanisole in male and female rats and mice (Figure H1). The area under the concentration versus time curves and the dosage normalized area under the concentration curves for both the parent chemical and its major metabolite, pentachlorophenol, are given in Tables H1 and H2. The terminal half-life of pentachlorophenol in both rats and mice was estimated at approximately 8 hours.
Gavage Studies

After gavage administration, pentachloroanisole concentrations were found to be lower than those of pentachlorophenol by two to three orders of magnitude in both rats (Figure H2) and mice (Figure H3). For male and female rats and mice the area under the concentration versus time curves of pentachloroanisole increased with dose, but the dose proportionality was lost above 20 mg/kg (Figure H4). The dose normalized area under the concentration versus time curves of pentachloroanisole were sex dependent only in 10 mg/kg rats and 20 mg/kg mice, but the apparent sex-related differences in these two doses were believed to be artifacts caused by the limited number of data points available for area under the concentration versus time curve estimation. Dose proportionality was seen in all dose groups for the maximum concentration of pentachloroanisole achieved after gavage administration for male and female rats and mice (Figure H5). The variation of C_{max} in each dose group was also high. After gavage administration of pentachloroanisole, the area under the concentration versus time curve of pentachlorophenol and C_{max} increased with pentachloroanisole dose and appeared to be dose proportional for both rats and mice. The area under the concentration versus time curve of pentachlorophenol was sex dependent only in rats. The terminal half-life of pentachlorophenol in both rats and mice was estimated to be 5 to 9 hours. While there were no sex-related differences in pentachlorophenol terminal half-life in mice, the terminal half-life of pentachlorophenol in female rats tended to be longer than in male rats, suggesting a slower elimination of pentachlorophenol in female rats.

The bioavailability of pentachloroanisole after gavage administration was estimated based on the dosenormalized area under the concentration versus time curve (Tables H1 and H2). The calculated bioavailability was low but increased with dose. The low bioavailability by the gavage route is consistent with first-pass hepatic metabolism.

The bioavailability of pentachloroanisole after gavage administration was also estimated in rats based on the dosage normalized area under the concentration versus time curve of pentachlorophenol. Results of a separate experiment showed that the area under the concentration versus time curve of pentachlorophenol after intravenous administration of 5 mg/kg pentachlorophenol in rats was 440 μ g/mL-hr for female rats. Utilizing these data, the bioavailability of pentachloroanisole based on area under the concentration versus time curve of pentachlorophenol was calculated and the results are also listed in Table H1. It can be seen that the bioavailability is low using the area under the concentration versus time curve of pentachloroanisole and it is high using the area under the concentration versus time curve of its pentachlorophenol metabolite. This inconsistency in bioavailability further supports the idea of first-pass metabolism. Since the absolute value for the area under the concentration versus time curve of pentachlorophenol after an intravenous administration of pentachlorophenol to mice is not available, the bioavailability of pentachloroanisole in mice using pentachlorophenol concentrations was not calculated.

DISCUSSION

Female rats have larger values of area under the pentachlorophenol concentration versus time curve than do male rats. This difference can be correlated to the well-known sex-related differences in rats in the activity of UDP-glucuronosyltransferase, an enzyme responsible for glucuronidation of pentachlorophenol (Aitio and Marniemi, 1980).

Since both peak pentachloroanisole and pentachlorophenol plasma concentrations occurred at about 6 to 8 hours after dosing, and the biological half-life of pentachlorophenol is relatively long, bioaccumulation of pentachlorophenol after repeated daily gavage dosing of pentachloroanisole is predicted. This bioaccumulation of pentachlorophenol can explain the similar hyperthermia syndrome observed in rats after being dosed either with pentachloroanisole or pentachlorophenol (Garthoff *et al.*, 1982).

In contrast, no sex-related differences were observed in the areas under the concentration versus time curves for pentachloroanisole or pentachlorophenol. One explanation for this is the lack of sex-related differences in UDP-glucuronosyltransferase or monooxygenase activity in mice (Aitio and Marniemi, 1980;

Toxicokinetics

Jones, et al., 1980). Bioavailability of pentachloroanisole in mice was generally higher than in rats, which may suggest that the first-pass effect in mice was less severe than in rats although *in situ* glucuronidation is likely occurring. Since the peak plasma concentrations of both pentachloroanisole and pentachlorophenol after gavage administration of pentachloroanisole also occurred at about 8 hours in male and female mice, and the half-life of pentachlorophenol is relatively long, bioaccumulation of pentachlorophenol will almost certainly occur after repeated daily gavage dosing of pentachloroanisole. This might explain why most mice died at night after being administered 40 mg/kg or higher doses of pentachloroanisole by gavage.

The concentration of the metabolite, pentachlorophenol, was higher in female rats than in male rats after gavage administration and sex-related differences in toxic and carcinogenic responses to pentachloroanisole in rats and mice were observed. These findings cannot be attributed to the sex-related differences in systemic availability of pentachloroanisole or to the rate of metabolism of pentachloroanisole to pentachlorophenol.

FIGURE H1

Plasma Concentrations of Pentachloroanisole and Pentachlorophenol after Intravenous Administration of 10 mg/kg Pentachloroanisole to F344 Rats and $B6C3F_1$ Mice. (\blacktriangle) Pentachloroanisole, (o) Pentachlorophenol, (____) Two-compartment Model

Toxicokinetics

Figure H2

Plasma Concentrations of Pentachloroanisole and Pentachlorophenol after Gavage Administration of 10, 20, and 40 mg/kg Pentachloroanisole to Male and Female F344 Rats. (1) Pentachloroanisole, (0) Pentachlorophenol

253

FIGURE H3

Plasma Concentrations of Pentachloroanisole and Pentachlorophenol after Intravenous Administration of 10, 20, and 40 mg/kg Pentachloroanisole to Male and Female B6C3F₁ Mice. (A) Pentachloroanisole, (o) Pentachlorophenol

Figure H4

Plots of Area Under the Concentration versus Time of Pentachloroanisole versus Pentachloroanisole Dose in Rats and Mice.

TABLE H1

Kinetic Parameters for Pentachloroanisole (PCA) and Pentachlorophenol (PCP) in F344 Rats Administered Pentachloroanisole^a

		PCA				PCP		Bioavailability	Bioavailability Based on AUC	
Dose (mg/kg)	Route	Cmax (µg/ml)	AUC ^b (µg/ml/hr)	AUC/Dose	Cmax (µg/ml)	AUC ^c (µg/ml/hr)	AUC/Dose	PCA (%)	PCPd (%)	
le										
10	IV	_	1.93 ± 0.34	0.193 ± 0.034	32 ± 1	452 ± 13	45.2 ± 1.3			
10	Gavage	0.043 ± 0.002	0.27 ± 0.01	0.027 ± 0.001	29 ± 3	542 ± 38	54.2 ± 3.8	14 ± 3	62 ± 4	
20	Gavage	0.15 ± 0.035	0.71 ± 0.27	0.036 ± 0.014	66 ± 3	988 ± 34	49.4 ± 1.7	19 ± 8	56 ± 2	
40	Gavage	0.35 ± 0.069	2.45 ± 0.73	0.061 ± 0.018	107 ± 2	1596 ± 59	39.9 ± 1.4	31 ± 10	45 ± 2	
nale										
10	IV	_	1.92 ± 0.62	0.192 ± 0.062	20 ± 3*	385 ± 16*	38.5 ± 1.6*			
10	Gavage	$0.070 \pm 0.010*$	0.47 ± 0.075*	0.047 ± 0.0075*	44 ± 2*	704 ± 22*	70.4 ± 2.2*	24 ± 8	96 ± 3*	
20	Gavage	0.14 ± 0.020	0.61 ± 0.10	0.031 ± 0.005	80 ± 1*	1198 ± 36*	59.9 ± 1.8*	16 ± 5	82 ± 2*	
40	Gavage	0.28 ± 0.14	3.00 ± 0.50	0.075 ± 0.013	136 ± 6*	2084 ± 91*	52.1 ± 2.3*	39 ± 14	71 ± 3*	

* Significantly different from males (P≤0.01) by Student t-test.

* Data are presented as means ± standard deviations.

^b Endpoint correction using terminal half-life of 1.2 hours for male and female rats.

^c Endpoint correction using terminal half-life of 4 hours for male and female rats.

^d AUC values after iv administration of PCP at 5 mg/kg are 440 and 365 µg/ml/hr for male and female rats.

Kinetic Parameters for Pentachloroanisole (PCA) and Pentachlorophenol (PCP) in B6C3F1 Mice Administered Pentachloroanisole^a

		PCA				РСР	<u>Bioavailability Based on AUC</u>	
Dose (mg/kg)	Route	Cmax (µg/ml)	AUC ^b (µg/ml/hr)	AUC/Dose	Cmax (µg/ml)	AUC ^c (µg/ml/hr)	AUC/Dose	PCA (%)
fale		· · · · · · · · · · · · · · · · · · ·				<u>, _, _, ,</u>	·	
10	IV	-	1.26 ± 0.24	0.126 ± 0.024	26.85 ± 0.851	412 ± 16	41.2 ± 1.6	
10	Gavage	0.06 ± 0.007	0.41 ± 0.04	0.041 ± 0.004	28.8 ± 0.74	560 ± 19	56.0 ± 1.9	33 ± 7
20	Gavage	0.22 ± 0.17	1.19 ± 0.06	0.060 ± 0.003	40.3 ± 3.4	984 ± 66	49.2 ± 3.3	48 ± 9
40	Gavage	0.44 ± 0.03	4.62 ± 0.37	0.12 ± 0.009	103 ± 7.6	1752 ± 111	43.8 ± 2.8	95 ± 20
emale								
10	IV	_	1.10 ± 0.23	0.110 ± 0.023	31.62 ± 1.9	468 ± 21*	46.8 ± 2.1*	
10	Gavage	0.049 ± 0.012	0.38 ± 0.15	0.038 ± 0.015	34.2 ± 2.5	551 ± 24	55.1 ± 2.4	35 ± 15
20	Gavage	0.13 ± 0.03	0.77 ± 0.11*	0.039 ± 0.006*	62.9 ± 2.5*	1001 ± 29	50.1 ± 1.5	35 ± 9
40	Gavage	0.35 ± 0.080	3.58 ± 0.33	0.090 ± 0.008	115 ± 1.5	1759 ± 34		71 ± 15

ē

* Significantly different from males ($P \le 0.05$) by Student *t*-test.

* Data are presented as means ± standard deviations.

^b Endpoint correction using terminal half-life of 1 hour for male and female rats.

* Endpoint correction using terminal half-life of 5 hours for male and female rats.

APPENDIX I CHEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES

Procuremen	IT AND CHARACTERIZATION OF PENTACHLOROANISOLE	260
PREPARATION	AND ANALYSIS OF DOSE FORMULATIONS	262
Figure I1	Infrared Absorption Spectrum of Pentachloroanisole	263
Figure I2	Nuclear Magnetic Resonance Spectrum of Pentachloroanisole	
Table I1	Preparation and Storage of Dose Formulations in the Gavage Studies	
	of Pentachloroanisole	265
Table I2	Results of Analysis of Dose Formulations for Rats and Mice	
	in the 13-Week Gavage Studies of Pentachloroanisole	266
Table I3	Results of Analysis of Dose Formulations for Rats and Mice	
	in the 2-Year Gavage Studies of Pentachloroanisole	267
Table 14	Results of Referee Analysis of Dose Formulations for Rats	
	in the 13-Week and 2-Year Gavage Studies of Pentachloroanisole	270

CHEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES

PROCUREMENT AND CHARACTERIZATION OF PENTACHLOROANISOLE

Pentachloroanisole was obtained in three lots. Lot HE052008, which was obtained from the Aldrich Chemical Company (Milwaukee, WI), was used in the 16-day studies. The analytical chemistry laboratory, Midwest Research Institute Kansas City, MO, synthesized lots M012882 and M062783. Lot M012882 was used in the 13-week studies and lot M062783 was used in the 2-year studies. Identity, purity, and stability analyses were performed by the analytical chemistry laboratory. Reports on the syntheses and analyses performed in support of the pentachloroanisole studies are on file at the National Institute of Environmental Health Sciences.

Lot M012882 was synthesized by the methylation of pentachlorophenol (lot MM031080), which was obtained from Dow Chemical Company (Midland, MI). Pentachlorophenol was ground and recrystallized twice with absolute methanol. Methylation was performed by dripping iodomethane into a heated solution of pentachlorophenol in acetone buffered with potassium carbonate. The acetone was reduced by evaporation, and ethyl ether and benzene were added. The solution was extracted with 1 N sodium hydroxide and then with water. The organic phase was dried with anhydrous sodium sulfate and recrystallized from methanol as white needles.

Lot M062783 was synthesized by the methylation of pentachlorophenol which was produced by the acidification and purification of sodium pentachlorophenolate (lot MM12197A) obtained from Dow Chemical Company (Midland, MI). Lot MM12197A was ground and extracted with high-purity toluene. The powder was then acidified with 6 N hydrochloric acid and extracted with ethyl ether. The resulting slurry was washed with 5% sodium bicarbonate and then with water, and dried. The phenol obtained by this procedure was crystallized from boiling methanol. Benzene was added, and the solution was allowed to crystallize overnight. The crystals were washed with isooctane, then recrystallized from methanol. After further recrystallization from methanol/benzene and then benzene, methylation was performed as described for lot M012882.

All lots of the bulk chemical, a colorless or white crystalline solid, were identified as pentachloroanisole by infrared, ultraviolet/visible, and nuclear magnetic resonance (NMR) spectroscopy. All spectra were consistent with the expected structure of pentachloroanisole (Figures I1 and I2); no literature spectra were found for comparison.

The purity of all lots was determined by elemental analyses, Karl Fischer water analysis, thin-layer chromatography (TLC), and gas chromatography. Additionally, functional group analysis of methoxyls was used to determine purity of lot M062783. For lots HE052008 and M012882, TLC was performed on aluminum oxide, Type E, F-254 plates with two systems: A) 100% hexanes and B) isooctane:carbon disulfide (1:1). Visualization was accomplished with ultraviolet (254 nm) light and by a spray of 0.5% ethanolic solution of rhodamine B followed by a spray of 10% aqueous sodium carbonate solution. Hexachlorobenzene in methylene chloride was used as a reference standard. Gas chromatography for lot HE052008 was performed with a flame ionization detector (FID) and a nitrogen carrier gas at a flow rate of 70 mL/minute. Two systems were used:

- A) 10% SP-2100 on 80/100 mesh Supelcoport, with an oven temperature program of 50° C for 5 minutes, then 50° to 250° C at 10° C/minute, and
 - B) 1% SP-1000 on 100/120 mesh Supelcoport, with an oven temperature program of 50° C for 5 minutes, then 50° to 230° C at 10° C/minute.

Chemical Characterization and Dose Formulations

For lot HE052008, elemental analyses for carbon, hydrogen, and chlorine were in agreement with theoretical values. Karl Fischer water analysis showed $0.06 \pm 0.03\%$ water. TLC indicated one major spot and one trace impurity. Gas chromatography by both systems indicated one impurity with an area of approximately 0.2% of the major peak area. The overall purity was determined to be at least 99%. A gas chromatography analysis was conducted to quantify pentachlorophenol in the bulk chemical. The method was the same as that used in the purity analysis, and with a 1% SP-1240 DA on 100/120 mesh Supelcoport column system and an oven temperature of 190° C, isothermal. The analysis did not detect any pentachlorophenol at a concentration of 0.1% or above.

For lot M012882, elemental analyses for carbon, hydrogen, and chlorine were in agreement with theoretical values. Karl Fischer water analysis showed less than 0.05% water. TLC indicated one major spot and no impurities. Gas chromatography by the same systems used for the purity analysis of lot HE052008, but with a 10% SP-2100 on 100/120 mesh Supelcoport column for system A, indicated one impurity with an area of approximately 0.1% of the major peak area by both systems. A gas chromatography analysis conducted to quantify pentachlorophenol was the same as the special analysis used for lot HE052008, but with an oven temperature of 180° C, isothermal. The analysis did not detect any pentachlorophenol at a concentration of 0.1% or above. The overall purity of lot M012882 was determined to be slightly higher than that of lot HE052008.

Gas chromatography/mass spectroscopy with full mass scan was performed to identify and quantify impurities in lot M012882. A J&W fused silica capillary column was used with a helium carrier gas at 15 cm/second and an oven temperature program of 80° C for 2 minutes, then 80° to 325° C at 10° C/minute. Tetrachloroanisole was identified as the largest impurity; four unidentified impurities were also detected. Selected ion monitoring identified no additional impurities. Quantitation of tetrachloroanisole was performed with capillary gas chromatography with an electron capture detector, a carrier gas flow rate of 25 cm/second, and an oven temperature program of 100° C for 2 minutes, then 100° to 320° C at 10° C/minute. A tetrachloroanisole concentration of 1600 ppm was determined. Hexachlorobenzene was identified and quantitated using packed column gas chromatography with electron capture detection and a column system of 5% SP-1000 on 100/120 mesh Supelcoport, with an oven temperature of 160° C; 2.65 ppm hexachlorobenzene was quantified. Five unidentified impurities were also detected at levels of 0.1% or less.

For lot M052783, elemental analyses for carbon, hydrogen, and chlorine were in agreement with the theoretical values. Functional group analysis of the methoxyl group was in agreement with the theoretical levels. Karl Fischer water analysis indicated less than 0.1% water. TLC was performed using the same methods described for determining the purity of lots HE052008 and M012882, but with visualization accomplished with ultraviolet light at 254 and 366 nm and with a spray of 0.5% ethanolic rhodamine B followed by a spray of 10% aqueous sodium carbonate. TLC indicated a major spot only. Gas chromatography, conducted with the same systems used for the purity analysis of lot M012882, but with an oven temperature program of 50° C for 5 minutes, then 50° to 250° C at 10° C/minute for system B, indicated a major peak and no impurities with areas greater than 0.1% relative to the major peak. A gas chromatography analysis conducted to quantify pentachlorophenol was the same as the special analysis used for lot M012882. The analysis did not detect any pentachlorophenol at a concentration of 0.1% or above. Major peak comparison of lots M062783 and M012882 by gas chromatography, with 10% SP-2100 on 100/120 mesh Supelcoport and a column temperature of 210° C and with hexadecane added as an internal standard, indicated a purity of 101.1 \pm 2% for lot M062783 relative to lot M012882.

Gas chromatography/mass spectroscopy full mass scan was performed to identify and quantify impurities in lot M062783. The same system was used as that used to quantitate impurities in lot M012882, but with an oven temperature program of 110° to 320° C at 6° C/minute. Two chlorinated impurities were found: tetrachloroanisole (192 ppm) and tetrachlorobromanisole (361 ppm). One unidentified impurity with a concentration of 88 ppb was also detected with selected ion monitoring. Hexachlorobenzene was identified and quantitated using packed column gas chromatography with the same system used to quantitate impurities in lot M012882; 7.0 ppm hexachlorobenzene was identified. A concurrent analysis of lot M012882 was conducted, using the same methods as for lot M062783. Gas chromatography/mass spectroscopy indicated two impurities: tetrachloroanisole (1,664 ppm) and tetrachloroanisole (165 ppm). Two additional chlorinated impurities ware detected and

tetrachlorobromoanisole (165 ppm). Two additional chlorinated impurities were detected and quantitated at 1.2 ppm and 389 ppb, but were not identified. Packed column gas chromatography identified 2.6 ppm hexachlorobenzene. No chlorinated dibenzodioxins, dibenzofurans, or diphenyl ethers were detected in either lot. Capillary gas chromatography with electron capture detection was used to compare the impurity profiles and the reconstructed ion current chromatograms of the two lots.

Stability studies were performed using gas chromatography with the system A described for the purity studies, but with an oven temperature of 210° C and 0.2% hexadecane in hexanes added as an internal standard. Pentachloroanisole was found to be stable in bulk form when stored for 2 weeks at temperatures up to 60° C. During the 13-week and 2-year studies, the stability of the bulk chemical was monitored by the study laboratory using ultraviolet/visible spectroscopy and gas chromatography. System B described for the purity studies was used for monitoring in the 13-week studies; for the 2-year studies, System A with the following modifications was used: 10% OV 101 on 100/120 mesh Supelcoport at an oven temperature of 180° C. The bulk chemical was analyzed four times during the 13-week studies and seven times (at 4-month intervals) during the 2-year studies. No degradation of either lot of pentachloroanisole was seen throughout the studies.

PREPARATION AND ANALYSIS OF DOSE FORMULATIONS

Dose formulations were prepared by mixing the appropriate quantities of pentachloroanisole and corn oil on a weight-to-volume basis for the 16-day studies and on a weight-to-weight basis for the 13-week and 2-year studies (Table I1). Dose formulations were prepared three times and stored at 5° C during the 16-day studies. For the 13-week and 2-year studies, dose formulations were prepared weekly and stored at room temperature (approximately 22° C); maximum storage time for any dose formulation did not exceed 21 days. Dose formulations were hand agitated before administration.

For the stability studies, 4 mL aliquots of the dose formulations were diluted to 100 mL with hexane; 5 mL samples were then mixed with 5 mL of hexadecane, then further diluted with hexane. The pentachloroanisole content was determined by gas chromatography with FID, with 3% SP-2100 on 100/120 mesh Supelcoport and nitrogen as a carrier gas at 20 mL/minute. Hexadecane was added as an internal standard. The oven temperature was 150° C. Stability of the dose formulations was established for at least 3 weeks when stored in the dark at room temperature.

Dose formulations of pentachloroanisole were periodically analyzed by the study laboratory and at the analytical chemistry laboratory using the same gas chromatography method used in the stability studies, but with the FID at 300° C, 80/100 mesh Supelcoport, a carrier gas flow rate of 25 mL/minute, and 1.0 mg/mL octadecane as the internal standard. Dose formulations were analyzed three times during the 13-week studies, and all were within 10% of the target concentration (Table I2). During the 2-year studies, dose formulations were analyzed at least every 8 weeks; five times during the studies, animal room samples of the dose formulations were taken on the second day of dosing. All dose formulations sampled were within 10% of their target concentrations (Table I3). Periodic peroxide analyses of the corn oil vehicle by the study laboratory indicated that peroxide levels were within the acceptable limit of 10 mEq/kg. Results of periodic referee analysis by the analytical chemistry laboratory were in good agreement with the results obtained by the study laboratory (Table I4).

Freuxe I1 Imfrared Absorption Spectrum of Pentachloroanisole

263

Chemical Characterization and Dose Formulations

FIGURE I2 Nuclear Magnetic Resonance Spectrum of Pentachloroanisole

Table I1

Preparation and Storage of Dose Formulations in the Gavage Studies of Pentachloroanisole

16-Day Studies	13-Week Studies	2-Year Studies	
Preparation The appropriate quantities of pentachloroanisole and corn oil were mixed on a weight-to-volume basis, and stirred for at least 5 minutes or until the solution was achieved.	The appropriate quantities of pentachloroanisole and corn oil were mixed on a weight-to-weight basis, and stirred until the solution was achieved. Mixing was interrupted after 20 minutes to break up any clumps, then resumed.	Same as 13-week studies.	
Chemical Lot Number HE052008	M012882	M062783	
Maximum Storage Time Up to 21 days	Same as 16-day studies	Same as 16-day studies	
Storage Conditions In amber serum bottles at 5° C	In amber serum bottles in the dark at room temperature (22° C)	Same as 13-week studies	
Study Laboratory Southern Research Institute, Birmingham, AL	Same as 16-day studies	Same as 16-day studi es	
Referee Laboratory Midwest Research Institute, Kansas City, MO	Same as 16-day studies	Same as 16-day studies	

Date Prepared	Date Analyzed		Target Concentratio (% w/w))n ^a	Determined Concentratio (% w/w)		Difference from Target (%)
Rats		· · · · · · · · · · · · · · · · · · ·					Ţ
14110		• •					
12 April 1982	15 April 1982		0.87	۰.	0.859		-1
•	•	· · ·	1.74		1.75		+1
		1.11	2.61		2.63	the second	+1
		2 N	3.05		3.04		0
		÷.,	3.92	**** · ·	4.01		+2
24 May 1982	2 June 1982		0.87	- -	0.876		+1
			1.74		1.75		+1
		• • •	2.61	х. ¹	2.62		0
12 July 1982	15 July 1982	• .	0.87		0.933		+7
,		1.11	1.74	(-	1.86	•	+7
			2.61		2.73		+5
							· · · ·
Mice							
29 March 1982	31 March 1982		0.44	•	0.428		-3
	•	, '	0.87		0.857		-1
		: .	1.31	. •	1.290		-2
			1.52	11.1	1.504		1
			1.96		1.950	· ·	-1
24 May 1982	2 June 1982		0.44		0.426	-	-3
24 May 1702	2 54110 1702		0.87		0.878		+1
			1.31		1.31		0
		• •	1.52		1.54	· . • ·	+1
			1.96	• •	1.96		0
28 June 1982	15 July 1982		0.44		0.461		+5
	10 000, 1700	1200	0.87		0.946	1 1 1 1 1	+9
		1.1	1.31	٠,	1.38		+5
		1.91	1.52		1.56		+3
			1.96		1.94		-1

Results of Analysis of Dose Formulations for Rats and Mice in the 13-Week Gavage Studies of Pentachloroanisole

a Target concentrations for rats: 0.87% = 40 mg/kg; 1.74% = 80 mg/kg; 2.61% = 120 mg/kg; 3.05% = 140 mg/kg; 3.92% = 180 mg/kg. Target concentrations for mice: 0.44% = 40 mg/kg; 0.87% = 80 mg/kg; 1.31% = 120 mg/kg; 1.52% = 140 mg/kg; 1.96% = 180 mg/kg

.

1.54

.

.

÷...

. . .

b Results of duplicate analyses

Results of Analysis of Dose Formulations for Rats and Mice in the 2-Year Gavage Studies of Pentachloroanisole

Date Prepared	Date Analyzed	Target Concentration ⁿ (% w/w)	Determined Concentration ^b (% w/w)	Difference from Target (%)
Rats	· · · · · · · · · · · · · · · · · · ·		<u> </u>	······
15 September 1983	16 September 1983	0.22	0.216	-2
		0.44	0.430	-2
		0.87	0.884	+2
10 November 1983	11 November 1983	0.22	0.221	0
		0.44	0.443	+1
		0.87	0.875	+1
29 December 1983	30 December 1983,	0.22	0.224	+2
	3 January 1984	0.44	0.457	+4
	••••••••••••••••••••••••••••••••••••••	0.87	0.932	+7
	6, 9 January 1984 ^c	0.22	0.223	+1
	0, 2 Junuary 1904	0.44	0.432	-2
		0.87	0.858	-1
1 March 1984	1, 2 March 1984	0.22	0.220	0
	1, 2 Watch 1904	0.44	0.464	+5
		0.87	0.923	+6
10 May 1984	10, 11 May 1984	0.22	0.221	0
10 10144 1704	10, 11 May 1204	0.44	0.436	-1
		0.87	0.906	+4
	22 May 1984 ^c	0.22	0.218	-1
		0.44	0.433	-2
		0.87	0.866	0
21 June 1984	21, 22 June 1984	0.22	0.220	0
		0.44	0.438	0
		0.87	0.869	0
16 August 1984	16 August 1984	0.22	0.220	0
	1011060011001	0.44	0.439	0
		0.87	0.887	+2
27 September 1984	27 September 1984	0.22	0.218	-1
	p.	0.44	0.438	0
		0.87	0.858	-1
	5 October 1984 ^c	0.22	0.215	-2
		0.44	0.439	. 0
		0.87	0.871	0
15 November 1984	15 November 1984	0.22	0.220	0
		0.44	0.443	+1
		0.87	0.876	+1
24 January 1985	24 January 1985	0.22	0.219	0
,		0.44	0.438	0
		0.87	0.864	-1

4 11 1

Results of Analysis of Dose Formulations for Rats and Mice in the 2-Year Gavage Studies of Pentachloroanisole (continued)

Date Prepared	Date Analyzed	Target Concentration (% w/w)	Determined Concentration (% w/w)	Difference from Target (%)	
Rats (continued)					
7 March 1985	7 March 1985	0.22	0.218	-1	
		0.44	0.440	Ō	
		0.87	0.866	0	
	22 March 1985 ^c	0.22	0.218	-1	
		0.44	0.440	Ō	
		0.87	0.866	0	
25 April 1985	26 April 1985	0.22	0.220	0	
		0.44	0.452	+3	
		0.87	0.902	+4	
6 June 1985	10 June 1985	0.22	0.229	+4	
v vuno 1700	10 Bune 1900	0.44	0.444	+1	
		0.87	0.878	+1	
25 July 1985	26 July 1985	0.22	0.221	0	
		0.44	0.424	-4	
		0.87	0.871	0	
	5 August 1985 ^c	0.22	0.218	-1	
	0	0.44	0.442	0	
		0.87	0.878	+1	
5 September 1985	5, 6 September 1985	0.22	0.217	-1	
•	•	0.44	0.436	-1	
		0.87	0.867	0	
Mice					
19 January 1984	19 January 1984	0.22	0.226	+3	
		0.44	0.433	-2	
1 March 1984	1, 2 March 1984	0.22	0.204	-7	
		0.44	0.438	0	
10 May 1984	10, 11 May 1984	0.22	0.213	-3	• . *
-	•	0.44	0.420	-5	
	22 May 1984 ^c	0.22	0.211	-4	
•	- ,	0.44	0.426	-3	
21 June 1984	21, 22 June 1984	0.22	0.213	-3	
		0.44	0.434	, –1	
16 August 1984	16 August 1984	0.22	0.216	-2	
		0.44	0.435	-1	

Chemical Characterization and Dose Formulations

EI AJMAT

of Pentachloroanisole (continued) Results of Analysis of Dose Formulations for Rats and Mice in the 2-Year Gavage Studies

		LL'A	177.0		
	10 January 1986 ^c	77°0	0.441	0 1-	
	³ 3801 VIEUREL 01	22.0	8100	L L	
		44 .0	0.440	0	
2 January 1986	3 January 1986	22.0	022.0	0	
		44. 0	264.0	-5	
14 November 1985	15 November 1985	22.0	812.0	t-	
		0.44	164.0	7-	
5 September 1985	5, 6 September 1985	0.22	0.214	£-	1 a.
				_	
		0.44	0.442	0	
	⁵ 2861 leuguA 2	22.0	812.0	t-	
		44.0	0.432	Z-	
25 July 1985	26 July 1985	22.0	0.212	4	
		•		_ · · · ·	
20 (T. OURA A		740	0.430	7- 6-	
2891 anul d	2891 anul 01	22.0	6.213	£-	
		44.0	0.450	Z+	
28e1 lingA 22	28e1 lingA 82	22.0	712.0	I-	
			CCL 10	<u>^</u>	
	COCT HOURIN 77	* ***0 77:0	0.439 0.216	0 Z-	
	22 March 1985 ^c	22.0	912.0	L	
		0.44	0.436	I -	
7 March 1985	7 March 1985	0.22	912.0	z-	
		4 4.0	7650		
24 January 1985	24 January 1985	22.0	212.0 2£4.0	-5	
3901	3001		6100	v	
		0.44	0.440	0	
15 November 1984	15 November 1984	0.22	612.0	0	
	•	0.44	0*736	٥	
	2 Octoper 1984c	0.44	812.0	0 [-	
	21.001 modete() 3		0100	F	
	,	44.0	0.434	t-	
27 September 1984	27 September 1984	22.0	212.0	₩-	
(•		•
Mice (continued)					
· .	· .		· · ·	· · ·	•
		(m/m %)	(m/m %)	(%)	
		TRAININ TATTASTICS	1013121331100	isgraT mori	
Date Prepared	Date Analyzed	Target Concentration	Determined Concentration	tange T mont	

Target concentrations for rats: 0.22% = 10 mg/kg; 0.44% = 20 mg/kg; 0.87% = 40 mg/kg. Target concentrations for mice:

-

b Results of duplicate analyses $\frac{1}{2}$ Results of duplicate analyses

- **-** - - - -

esiques moon-leminA °

697

Results of Referee Analysis of Dose Formulations for Rats in the 13-Week and 2-Year Gavage Studies of Pentachloroanisole

	a state a state	Determined Conce	entration (% w/w)	· .
Target Conc (% w	entration	Study	Referee	,
	· · · · · · · · · · · · · · · · · · ·		<u> </u>	
			n an	
1.7	/4	1.75	1.755 ± 0.014	
	, , , [,] ()	计算机的复数形式		. *
		•		
0.2	2		$\begin{array}{r} 0.215 \ \pm \ 0.002 \\ 0.871 \ \pm \ 0.002 \end{array}$	•• ••
	37	0.438 0.902 0.217	$\begin{array}{r} 0.438 \pm 0.002 \\ 0.862 \pm 0.009 \\ 0.219 \pm 0.001 \end{array}$	
	(% w, 1.7 0.2 0.8 0.4	Target Concentration (% w/w) 1.74	Target Concentration Study (% w/w) Laboratory ^a 1.74 1.75 0.22 0.216 0.87 0.923 0.44 0.438	(% w/w) Laboratory ^a Laboratory ^o 1.74 1.75 1.755 \pm 0.014 0.22 0.216 0.215 \pm 0.002 0.87 0.923 0.871 \pm 0.002 0.44 0.438 0.438 \pm 0.002

a

Results of duplicate analyses Results of triplicate analyses (mean ± standard deviation) b

APPENDIX J INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH-07 RAT AND MOUSE RATION

Table J1	Ingredients of NIH-07 Rat and Mouse Ration	272
Table J2	Vitamins and Minerals in NIH-07 Rat and Mouse Ration	272
Table J3	Nutrient Composition of NIH-07 Rat and Mouse Ration	273
Table J4	Contaminant Levels in NIH-07 Rat and Mouse Ration	274

271

Ingredients ^b	Per	cent by Weig	ght
Ground #2 yellow shelled corn		24.50	· · · · · · · · · · · · · · · · · · ·
Ground hard winter wheat		23.00	
Soybean meal (49% protein)		12.00	
Fish meal (60% protein)		10.00	a state of the second
Wheat middlings		10.00	• • • • • •
Dried skim milk		5.00	
Alfalfa meal (dehydrated, 17% protein)		4.00	
Corn gluten meal (60% protein)		3.00	
Soy oil	 	2.50	
Dried brewer's yeast	-	2.00	* - 2
Dry molasses		1.50	
Dicalcium phosphate		1.25	•
Ground limestone		0.50	
Salt		0.50	· · ·
Premixes (vitamin and mineral)	 	0.25	

TABLE J1 Ingredients of NIH-07 Rat and Mouse Ration^a

^a NCI, 1976; NIH, 1978

^b Ingredients were ground to pass through a U.S. Standard Screen No. 16 before being mixed.

TABLE J2

Vitamins and Minerals in NIH-07 Rat and Mouse Ration^a

	Amount	Source	۰
Vitamins	•	:	
Α	5,500,000 IU	Stabilized vitamin A palmitate of	r acetate
D ₃	4,600,000 IU	D-activated animal sterol	
K ₃	2.8 g	Menadione	· · · · · ·
d - α -Tocopheryl acetate	20,000 IU		
Choline	560.0 g	Choline chloride	14
Folic acid	2.2 g		
Niacin	30.0 g		· · · · · · · · · · · · · · · · · · ·
d-Pantothenic acid	18.0 g	d-Calcium pantothenate	14 A. A.
Riboflavin	3.4 g		the state of
Thiamine	10.0 g	Thiamine mononitrate	
B ₁₂	4,000 μg		
Pyroxidine	1.7 g	Pyridoxine hydrochloride	
Biotin	140.0 mg	d-Biotin	А. А.
Minerals			5
Iron	120.0 ~	Iron sulfate	
Manganese	120.0 g		f-
Zinc	60.0 g 16.0 g	Manganous oxide Zinc oxide	
Copper Iodine	4.0 g	Copper sulfate Calcium iodate	
Cobalt	1.4 g		
Cobalt	0.4 g	Cobalt carbonate	

^a Per ton (2,000 lb) of finished product

Table J3

Nutrient Composition of NIH-07 Rat and Mouse Ration

	Mean 🗠 Standard		
Nutrient	Deviation	Range	Number of Samples
Protein (% by weight)	22.43 ± 0.87	21.10 - 24.90	28
Crude fat (% by weight)	5.56 ± 0.54	4.70 - 6.50	28
Crude fiber (% by weight)	3.51 ± 0.44	2.70 - 5.40	28
Ash (% by weight)	6.61 ± 0.28	6.20 - 7.30	28
Amino Acids (% of total dict)			
Arginine	1.308 ± 0.060	1.210 - 1.390	8
Cystine	0.306 ± 0.084	0.181 - 0.400	8
Glycine	1.150 ± 0.047	1.060 - 1.210	8
Histidine	0.576 ± 0.024	0.531 - 0.607	8
Isoleucine	0.917 ± 0.029	0.881 - 0.944	8
Leucine	1.946 ± 0.055	1.850 - 2.040	. 8
Lysine	1.270 ± 0.058	1.200 - 1.370	8
Methionine	0.448 ± 0.128	0.306 - 0.699	8
Phenylalanine	0.987 ± 0.140	0.665 - 1.110	8
Threonine	0.877 ± 0.042	0.824 - 0.940	8
Tryptophan	0.236 ± 0.176	0.107 - 0.671	8
Tyrosine	0.676 ± 0.105	0.564 - 0.794	8
Valine	1.103 ± 0.040	1.050 - 1.170	8
Essential Fatty Acids (% of total dict))		
Linoleic	2.393 ± 0.258	1.830 - 2.570	7
Linolenic	0.280 ± 0.040	0.210 - 0.320	7
Vitamins		i "	
Vitamin A (IU/kg)	10,668 ± 3,059	4,100 - 17,000	28
Vitamin D (IU/kg)	$4,450 \pm 1,382$	3,000 - 6,300	4
a-Tocopherol (ppm)	37.95 ± 9.41	22.50 - 48.90	8
Thiamine (ppm)	20.50 ± 2.27	17.0 - 27.0	28
Riboflavin (ppm)	7.92 ± 0.87	6.10 - 9.00	8
Niacin (ppm)	103.4 ± 26.59	65.0 - 150.0	8
Pantothenic acid (ppm)	29.54 ± 3.60	23.0 - 34.0	8
Pyridoxine (ppm)	9.55 ± 3.48	5.60 - 14.0	8
Folic acid (ppm)	2.25 ± 0.73	1.80 - 3.70	8
Biotin (ppm)	0.254 ± 0.042	0.19 - 0.32	8
Vitamin B ₁₂ (ppb)	38.45 ± 22.01	10.6 - 65.0	8
Choline (ppm)	$3,089 \pm 328.69$	2,400 - 3,430	8
Minerals			
Calcium (%)	1.21 ± 0.14	0.95 - 1.54	28
Phosphorus (%)	0.94 ± 0.05	0.87 - 1.10	28
Potassium (%)	0.883 ± 0.078	0.772 - 0.971	6
Chloride (%)	0.526 ± 0.092	0.380 - 0.635	8
Sodium (%)	0.313 ± 0.390	0.258 - 0.371	8
Magnesium (%)	0.168 ± 0.010	0.151 - 0.181	8
Sulfur (%)	0.280 ± 0.064	0.208 - 0.420	8
Iron (ppm)	360.5 ± 100	255.0 - 523.0	8
Manganese (ppm)	92.0 ± 6.01	81.70 - 99.40	8
Zinc (ppm)	54.72 ± 5.67	46.10 - 64.50	8
Copper (ppm)	11.06 ± 2.50	8.090 - 15.39	8
Iodine (ppm)	3.37 ± 0.92	1.52 - 4.13	6
Chromium (ppm)	1.79 ± 0.36	1.04 - 2.09	8
······	0.681 ± 0.14	0.490 - 0.780	v

•

. •

· · ·	Mean ± Standard	D - 44 - 4	Nuclear AG
	Deviation ^a	Range	Number of Samples
Arsenic (ppm)	0.61 ± 0.21	0.17 - 0.94	28
Cadmium (ppm)	<0.10		28
Lead (ppm)	0.61 ± 0.26	0.14 - 1.32	28
Mercury (ppm)	<0.05		28
Selenium (ppm)	0.33 ± 0.07	0.17 - 0.48	28
Aflatoxins (ppb)	<5.0		28
Nitrate nitrogen (ppm) ^b	11.81 ± 5.26	<0.10 - 22.0	28
Nitrite nitrogen (ppm) ^{b,c}	0.39 ± 1.34	<0.10 - 7.20	28
BHA (ppm) ^d	2.18 ± 0.67	<2.00 - 5.00	28
BHT (ppm) ^d	2.25 ± 1.14	<1.00 - 4.00	28
Aerobic plate count (CFU/g) ^e	48,313 ± 41,959	770 - 130,000	28
Coliform (MPN/g) ^{f,g}	34.96 ± 94.87	<3.00 - 460	28
(MPN/g) ^T	19.20 ± 46.28	<3.00 - 240	28
E. coli (MPN/g) ¹ ,h	3.04 ± 0.19	<3.00 - 4.00	28
Total nitrosoamines (ppb) ⁱ	7.29 ± 5.72	1.80 - 30.90	28
<i>N</i> -Nitrosodimethylamine (ppb) ⁱ	6.21 ± 5.63	0.80 - 30.00	28
<i>N</i> -Nitrosopyrrolidine (ppb) ¹	1.08 ± 0.47	0.90 - 3.40	28
	1.00 2 0.17	0.20 2.10	
esticides			
a-BHC	<0.01		28
β-BHC	<0.02		28
γ-BHC	<0.01		28
δ-BHC	<0.01		28
Heptachlor	<0.01		28
Aldrin	<0.01		28
Heptachlor epoxide	< 0.01		28
DDE	<0.01		28
DDD	<0.01		28
DDT	<0.01		28
HCB	<0.01		28
Mirex	<0.01		28
Methoxychlor	<0.05		28
Dieldrin	<0.01		28
Endrin	<0.01		28
Telodrin	<0.01		28
Chlordane	<0.05		28
Toxaphene	<0.1		28
Estimated PCBs	<0.2	· .	28
Ronnel	<0.2		28
Ethion	<0.01	,	28
Trithion	<0.02		28
	<0.05 <0.1		28
Diazinon Mathua			28 28
Methyl parathion	<0.02		
Ethyl parathion	<0.02	0.05 0.00	28
Malathion ^k	0.24 ± 0.60	0.05 - 3.20	28
Endosulfan I	<0.01		28
Endosulfan 2	<0.01		28
Endosulfan sulfate	<0.03		28

 TABLE J4

 Contaminant Levels in NIH-07 Rat and Mouse Ration

^a For values less than the limit of detection, the detection limit is given for the mean.

^b Sources of contamination: alfalfa, grains, and fish meal

^c Includes one large value of 7.20 ppm obtained in the lot milled on 17 August 1983.

^d Sources of contamination: soy oil and fish meal

• CFU = colony forming units

f MPN = most probable number

8 Includes one large value of 460 MPN/g obtained in the lot milled on 20 September 1983.

h Includes one large value of 4.0 MPN/g obtained in the lot milled on 17 October 1984.

i All values were corrected for percent recovery.

j BHC is Hexachlorocyclohexane or Benzene Hexachloride.

k Sixteen lots contained more than 0.05 ppm.

APPENDIX K SENTINEL ANIMAL PROGRAM

in the 13-W	eek and 2-Year Gavage	Studies of Pentachloroa	nisole 278
,			
·	•		
	Ň		
	· · · · ·		~
,	: *		
			•
		11 C	
		. '	
,		• *	
			•
		-	
*			
κ.			· · · ·
		· • .	
		•	•
			· · ·
		· · · · · · · · · · · · · · · · · · ·	
			· ·
			· · · ·
• •			
•			
		•	· · ·
		» '	
	15	· · ·	· .

7 - 1. - 18 - 1.

. . . .

275

SENTINEL ANIMAL PROGRAM

· .

METHODS

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via serology on sera from extra (sentinel) animals in the study rooms. These animals are untreated, and these animals and the study animals are subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Rats

During the 13-week studies, samples for viral screenings were collected from five male and five female control rats. During the 2-year studies, 15 male and 15 female rats were selected for the sentinel group at the time of randomization and allocation of the animals to dose groups in the 2-year studies. Five animals of each designated sentinel group were killed at 6, 12, and 18 months on study. Five male and five female rats assigned to the low-dose group in the 2-year studies were killed at 24 months. Blood from each animal was collected and allowed to clot. Serum for the viral screening was separated, cooled on ice, and shipped to Microbiological Associates, Incorporated (Bethesda, MD) for determination of the antibody titers. The following tests were performed:

13 Weeks

<u>Method of Analysis</u> Complement Fixation RCV (rat coronavirus) Sendai Time of Analysis

End of study End of study

End of study

End of study

End of study

Hemagglutination Inhibition H-1 (Toolan's H-1 virus) KRV (kilham rat virus) PVM (pneumonia virus of mice)

2 Years <u>Method of Analysis</u> ELISA

Mycoplasma species Mycoplasma arthritidis Mycoplasma pulmonis PVM RCV/SDA (rat coronavirus/sialodacryoadentis virus) Sendai

Hemagglutination Inhibition

H-1 KRV PVM Sendai Time of Analysis

6 months 18 and 24 months 12, 18, and 24 months 12, 18, and 24 months 6, 12, 18, and 24 months 12, 18, and 24 months 12, 18, and 24 months

kan din series de la La series de la serie

1.1.1.1.1.1.1.1.1

6, 12, 18, and 24 months 6, 12, 18, and 24 months 6 months 6 months

Mice

Fifteen male and female mice were selected at the time of randomization and allocation of the animals to the 2-year studies. Five animals of each designated sentinel group were killed at 6, 12, and 18 months. Five male and five female control mice in the 2-year studies were killed at 24 months. Blood from each animal was collected and allowed to clot. Serum for the viral screenings was separated, cooled on ice, and shipped to Microbiological Associates, Incorporated (Bethesda, MD) for determination of the antibody titers. The following tests were performed:

Method of Analysis

Complement Fixation LCM (lymphocytic choriomeningitis virus) M. Ad. (mouse adenoma virus)

ELISA

Ectro (Ectromelia virus) GDVII (mouse encephalomyelitis virus) M. Ad. M. arthritidis M. pulmonis MHV (mouse hepatitis virus) PVM Reo 3 (Reovirus 3) Sendai

Hemagglutination Inhibition

Ectro K (papovavirus) MVM (minute virus of mice) Poly (Polyoma virus) PVM Reo 3 Sendai

Immunofluorescence Assay EDIM (epizootic diarrhea of infant mice)

Test results are presented in Table K1.

Time of Analysis

6, 12, 18, and 24 months 6 months

- 12, 18, and 24 months 6, 12, 18, and 24 months 12, 18, and 24 months 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 12, 18, and 24 months
- 6 months 12, 18, and 24 months 6, 12, 18, and 24 months 6, 12, 18, and 24 months 6 months 6 months 6 months

12, 18, and 24 months

TABLE K1

Murine Virus Antibody Determinations for Rats and Mice in the 13-Week and 2-Year Gavage Studies of Pentachloroanisole

	Interval	Incidence of Antibody in Sentinel Animals	Positive Serologic Reaction for
	· · · · · · · · · · · · · · · · · · ·		
13-Week	Studies	· · ·	
Rats	13 weeks	0/10	None positive
2-Year S	tudies		
Rats	6 months	1/10	RCV/SDA
	12 months	0/10	None positive
	18 months	1/10	M. arthritidis [*]
	24 months	1/10	KRV ^b
Mice	6 months	0/10	None positive
	12 months	0/10	None positive
	18 months	0/10	None positive
	24 months	1/10	M. arthritidis

a b

ž

Possible Mycoplasma arthritidis Confirmed by immunofluorescent antibody

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS PRINTED AS OF MARCH 1993

TR

				· · ·
No.	CHEMICAL		TR No.	CHEMICAL
201	2,3,7,8-Tetrachlorodibenzo-p-dioxin (Dermal)	,	273	Trichloroethylene (Four Rat Strains)
201	1,2-Dibromo-3-chloropropane		274	Tris(2-ethylhexyl)phosphate
206				2-Chloroethanol
207	Cytembena FD & C Valley No. 6			8-Hydroxyquinoline
	FD & C Yellow No. 6			Tremolite
209	2,3,7,8-Tetrachlorodibenzo- <i>p</i> -dioxin (Gavage)		278	2,6-Xylidine
210	1,2-Dibromoethane		279	Amosite Asbestos
211	C.I. Acid Orange 10			Crocidolite Asbestos
212	Di(2-ethylhexyl)adipate	•		HC Red No. 3
213	Butyl Benzyl Phthalate			Chlorodibromomethane
214	Caprolactam			Diallylphthalate (Rats)
215	Bisphenol A			C.I. Basic Red 9 Monohydrochloride
216				Dimethyl Hydrogen Phosphite
217		1		1,3-Butadiene
219			289	Benzene
220	C.I. Acid Red 14		20)	Isophorone
221	Locust Bean Gum			HC Blue No. 2
222	C.I. Disperse Yellow 3			
223	Eugenol		294	Chrysotile Asbestos (Rats)
224	Tara Gum			Tetrakis(hydroxymethyl) phosphonium Sulfate &
225	D & C Red No. 9		290	Tetrakis(hydroxymethyl) phosponium Chloride
226	C.I. Solvent Yellow 14		200	
227	Gum Arabic	· ·		Dimethyl Morpholinophosphoramidate
228	Vinylidene Chloride		299	· · · · · · · · · · · · · · · · · · ·
229	Guar Gum		300	· · ·
230	Agar		301	o-Phenylphenol
231	Stannous Chloride			4-Vinylcyclohexene
232	Pentachloroethane		304	
233	2-Biphenylamine Hydrochloride			Chlorinated Paraffins (C_{23} , 43% chlorine)
234	Allyl Isothiocyanate			Dichloromethane (Methylene Chloride)
235	Zearalenone			Ephedrine Sulfate
236	D-Mannitol			Chlorinated Pariffins (C ₁₂ , 60% chlorine)
237	1,1,1,2-Tetrachloroethane		309	• •
238	Ziram			Marine Diesel Fuel and JP-5 Navy Fuel
239	Bis(2-chloro-1-Methylethyl)ether		311	,
240	Propyl Gallate			n-Butyl Chloride
242	Diallyl Phthalate (Mice)		313	
243	Trichlorethylene (Rats and Mice)		314	
244	Polybrominated Biphenyl Mixture		315	
245	Melamine			1-Chloro-2-methylpropene
246	Chrysotile Asbestos (Hamsters)		317	•
247	L-Ascorbic Acid		318	Ampicillin Trihydrate
248	4,4 '-Methylenedianiline Dihydrochloride		319	1,4-Dichlorobenzene
249	Amosite Asbestos (Hamsters)		320	Rotenone
250	Benzyl Acetate		321	
251	2,4- & 2,6-Toluene Diisocyanate			Phenylephrine Hydrochloride
252	Geranyl Acetate			Dimethyl Methylphosphonate
253	Allyl Isovalerate			Boric Acid
254	Dichloromethane (Methylene Chloride)		325	Pentachloronitrobenzene
255	1,2-Dichlorobenzene		326	Ethylene Oxide
257	Diglycidyl Resorcinol Ether		327	•
	Ethyl Acrylate		328	Methyl Carbamate
	Chlorobenzene			1,2-Epoxybutane
263	1,2-Dichloropropane			4-Hexylresorcinol
266	Monuron		331	Malonaldehyde, Sodium Salt
	1,2-Propylene Oxide		332	2-Mercaptobenzothiazole
	Telone II@ (1,3-Dichloropropene)		333	N-Phenyl-2-naphthylamine
	HC Blue No. 1		334	2-Amino-5-nitrophenol
272	Propylene		335	C.I. Acid Orange 3

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS PRINTED AS OF MARCH 1993 (CONT.)

TR No. CHEMICAL

- 336 Penicillin VK
- 337 Nitrofurazone
- 338 Erythromycin Stearate
- 339 2-Amino-4-nitrophenol340 Iodinated Glycerol
- 540 Ioumated Olycer
- 341 Nitrofurantoin 342 Dichlorvos
- 343 Benzyl Alcohol
- 344 Tetracycline Hydrochloride
- 345 Roxarsone
- 346 Chloroethane
- 347 D-Limonene
- 348 @-Methyldopa Sesquihydrate
- 349 Pentachlorophenol
- 350 Tribromomethane
- 351 p-Chloroaniline Hydrochloride
- 352 N-Methylolacrylamide
- 353 2,4-Dichlorophenol
- 354 Dimethoxane
- 355 Diphenhydramine Hydrochloride
- 356 Furosemide
- 357 Hydrochlorothiazide
- 358 Ochratoxin A
- 359 8-Methoxypsoralen
- 360 N,N-Dimethylaniline
- 361 Hexachloroethane
- 362 4-Vinyl-1-Cyclohexene Diepoxide
- 363 Bromoethane (Ethyl Bromide)
- 364 Rhodamine 6G (C.I. Basic Red 1)
- 365 Pentaerythritol Tetranitrate
- 366 Hydroquinone
- 367 Phenylbutazone
- 368 Nalidixic Acid
- 369 Alpha-Methylbenzyl Alcohol
- 370 Benzofuran
- 371 Toluene
- 372 3,3'-Dimethoxybenzidine Dihydrochloride
- 373 Succinic Anhydride

- TR No. CHEMICAL
 - 374 Glycidol
 - 375 Vinyl Toluene
 - 376 Allyl Glycidyl Ether
 - 377 o-Chlorobenzalmalononitrile
 - 378 Benzaldehyde
 - 379 2-Chloroacetophenone
 - 380 Epinephrine Hydrochloride
 - 381 d-Carvone
 - 382 Furfural
 - 385 Methyl Bromide
 - 386 Tetranitromethane
 - 387 Amphetamine Sulfate
 - 388 Ethylene Thiourea
 - 389 Sodium Azide
 - 390 3,3' Dimethylbenzidine Dihydrochloride
 - 391 Tris(2-chloroethyl) Phosphate
 - 392 Chlorinated Water and Chloraminated Water
 - 393 Sodium Fluoride
 - 394 Acetaminophen
 - 395 Probenecid
 - 396 Monochloroacetic Acid
 - 397 C.I. Direct Blue 15
 - 399 Titanocene Dichloride
 - 401 2,4-Diaminophenol Dihydrochloride
 - 402 Furan
 - 403 Resorcinol
 - 405 C.I. Acid Red 114
 - 406 y-Butyrolactone
 - 407 C.I. Pigment Red 3
 - 408 Mercuric Chloride
 - 409 Quercetin
 - 410 Naphthalene
 - 411 C.I. Pigment Red 23
 - 412 4,4'-Diamino-2,2'-Stilbenedisulfonic Acid
 - 413 Ethylene Glycol
 - 415 Polysorbate 80
 - 419 HC Hellow 4

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Central Data Management, NIEHS, P.O. Box 12233, MD A0-01, Research Triangle Park, NC 27709.

DEPARTMENT OF HEALTH & HUMAN SERVICES

Public Health Service National Toxicology Program Central Data Management P.O. Box 12233, MD A0-01 Research Triangle Park, NC 27709

> Official Business Penalty for Private Use - \$300

SPECIAL FOURTH-CLASS RATE POSTAGE AND FEES PAID DHHS/NIH Permit No. G-763

NIH Publication No. 93-3145 April 1993