NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 421

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF TALC

(CAS NO. 14807-96-6)

IN F344/N RATS AND B6C3F1 MICE

(INHALATION STUDIES)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

FOREWORD

The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation.

The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease.

The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. The prechronic and chronic studies were conducted in compliance with Food and Drug Administration (FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjected to retrospective quality assurance audits before being presented for public review.

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection *per se* is not an indicator of a chemical's carcinogenic potential.

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge while supplies last from the NTP Central Data Management, NIEHS, P.O. Box 12233, MD A0-01, Research Triangle Park, NC 27709 (919-541-1371).

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF TALC

(CAS NO. 14807-96-6)

IN F344/N RATS AND B6C3F, MICE

(INHALATION STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

September 1993

NTP TR 421

NIH Publication No. 93-3152

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

CONTRIBUTORS

National Toxicology Program

Evaluated and interpreted results and reported findings

K.M. Abdo, Ph.D. C.J. Alden. Ph.D. G.A. Boorman, D.V.M., Ph.D. D.A. Bridge, B.S. M. Dieter, Ph.D. S.L. Eustis, D.V.M., Ph.D. T.J. Goehl, Ph.D. R.A. Griesemer, D.V.M., Ph.D. J.K. Haseman, Ph.D. R.D. Irwin, Ph.D. G.N. Rao, D.V.M., Ph.D. K.L. Witt, M.S., Oak Ridge Associated Universities

Lovelace Biomedical and Environmental **Research Institute**

Conducted studies, evaluated pathology findings

C.H. Hobbs, D.V.M., Principal Investigator E.B. Barr, M.S. J.M. Benson, Ph.D. N. Gillette, D.V.M., Ph.D. F.F. Hahn, D.V.M., Ph.D. R.K. Jones, M.D. J.L. Mauderly, D.V.M. J.A. Pickrell, D.V.M., Ph.D.

Experimental Pathology Laboratories, Inc.

Provided pathology quality assurance

J.F. Hardisty, D.V.M., Principal Investigator

Integrated Laboratory Systems

Prepared quality assurance audits

S.L. Smith, J.D., Principal Investigator

Biotechnical Services, Inc. Prepared Technical Report

D.D. Lambright, Ph.D., Principal Investigator P. Chaffin, M.S. G.F. Corley, D.V.M. C.J. Fitz, M.A. A.B. James-Stewart, B.S.

NTP Pathology Working Group

Evaluated slides, prepared pathology report on rats (4 October 1990)

D.G. Goodman, V.M.D., Chair PATHCO, Inc. G.A. Boorman, D.V.M., Ph.D. National Toxicology Program S.L. Eustis, D.V.M., Ph.D. National Toxicology Program J.R. Hailey, D.V.M. National Toxicology Program J.F. Hardisty, D.V.M. Experimental Pathology Laboratories, Inc. J.F. Mahler, D.V.M. National Toxicology Program M.M. McDonald, D.V.M., Ph.D. National Toxicology Program M. Menard, D.V.M. North Carolina State University (observer) A. Pinter, M.D., Ph.D. National Institute of Hygiene, Hungary C. Van Pelt, D.V.M., Ph.D. E.I. DuPont De Nemours

Evaluated slides, prepared pathology report on mice (18 October 1990)

M.A. Stedham, D.V.M., Chair PAL G.A. Boorman, D.V.M., Ph.D. National Toxicology Program J.F. Hardisty, D.V.M. Experimental Pathology Laboratories, Inc. C.R. Jeng, B.V.M. North Carolina State University (observer) A.W. Macklin, D.V.M., Ph.D. **Burroughs Wellcome** M.M. McDonald, D.V.M., Ph.D. National Toxicology Program C.C. Shackelford, D.V.M., M.S., Ph.D.

National Toxicology Program

CONTENTS

ABSTRACT	•••••••••••••••••••••••••••••••••••••••	5
EXPLANATION	OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	9
TECHNICAL R	EPORTS REVIEW SUBCOMMITTEE	10
SUMMARY OF	TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS	11
INTRODUCTIO	DN	13
MATERIALS A	ND METHODS	19
RESULTS		25
DISCUSSION A	AND CONCLUSIONS	49
REFERENCES		57
APPENDIX A	Summary of Lesions in Male Rats in the Lifetime Inhalation Study of Talc	63
Appendix B	Summary of Lesions in Female Rats in the Lifetime Inhalation Study of Talc	95
Appendix C	Summary of Lesions in Male Mice in the 2-Year Inhalation Study of Talc	129
Appendix D	Summary of Lesions in Female Mice in the 2-Year Inhalation Study of Talc	161
Appendix E	Organ Weights and Organ-Weight-to-Body-Weight Ratios	193
Appendix F	4-Week Repeated Inhalation Studies in Rats and Mice	203
Appendix G	Lung Burden, Pulmonary Function, and Lung Biochemistry in Rats	215
Appendix H	Lung Burden and Lung Biochemistry in Mice	243
Appendix I	Chemical Characterization, Analysis, and Generation of Chamber Concentrations	261
Appendix J	Ingredients, Nutrient Composition, and Contaminant Levels in NIH-07 Rat and Mouse Ration	277
Appendix K	Sentinel Animal Program	283

-

TALC

(Non-Asbestiform)

CAS No. 14807-96-6

Molecular Formula: Mg₃Si₄O₁₀ (OH)₂ Molecular Weight: 379.26

Synonyms: talcum; agalite; emtal 596; non-asbestiform talc; non-fibrous talc; steatite; hydrous magnesium silicate

Talc ore may contain several other minerals including calcite, dolomite, magnesite, tremolite, anthophyllite, antigorite, quartz, pyrophyllite, micas, or chlorites. Talc products are sold in a multitude of grades which have physical or functional characteristics especially suited for particular applications, so occupational and consumer exposures to talc are complex. Epidemiology studies have suggested an association between non-fibrous talc and lung cancer risk. Talc was nominated by the National Institute of Occupational Safety and Health (NIOSH) for study by the NTP because of widespread human exposure and because of the lack of adequate information on its chronic toxicity and potential carcinogenicity. Toxicology and carcinogenicity studies of talc (non-asbestiform, cosmetic grade), a finely powdered hydrous magnesium silicate, were conducted by exposing groups of F344/N rats to aerosols for 6 hours per day, 5 days per week for up to 113 weeks (males) or 122 weeks (females). Groups of $B6C3F_1$ mice were exposed similarly for up to 104 weeks.

LIFETIME STUDY IN RATS

Groups of 49 or 50 male and 50 female rats were exposed to aerosols of 0, 6, or 18 mg/m³ talc until mortality in any exposure group reached 80% (113 weeks for males and 122 weeks for females). These exposures were selected based on 4-week inhalation studies of the terminal lung talc burden in F344/N rats; concentrations greater than 18 mg/m³ were expected to overwhelm lung clearance mechanisms and impair lung function. These exposure concentrations provided a dose equivalent of 0, 2.8, or 8.4 mg/kg per day for male rats and 0, 3.2, or 9.6 mg/kg per day for female rats. In a special study, additional groups of 22 male and 22 female rats were

similarly exposed and examined for interim pathology evaluations or pulmonary function tests after 6, 11, 18, and 24 months and lung biochemistry and cytology studies after 24 months. The talc aerosols had a median mass aerodynamic diameter of 2.7 μ m in the 6 mg/m³ chamber and a median diameter of 3.2 μ m in the 18 mg/m³ chamber, with geometric standard deviations of 1.9 μ m. However, there was a 7-week period beginning at study week 11 during which the chamber concentration for the 18 mg/m³ rats varied from approximately 30 to 40 mg/m^3 because of difficulties with the aerosol concentration monitoring system. Further, there was a 12-week period beginning at approximately week 70 during which there were difficulties in generating the talc aerosol, and the chamber concentrations for rats and mice were substantially lower than the target concentrations.

Survival, Body Weights, and Clinical Findings The survival of male and female rats exposed to talc was similar to that of the controls. Mean body weights of rats exposed to 18 mg/m³ were slightly lower than those of controls after week 65. No clinical findings were attributed to talc exposure.

Pathology Findings

Absolute and relative lung weights of male rats exposed to 18 mg/m^3 were significantly greater than those of controls at the 6-, 11-, and 18-month interim evaluations and at the end of the lifetime study, while those of female rats exposed to 18 mg/m^3 were significantly greater at the 11-, 18-, and 24-month interim evaluations and at the end of the lifetime study. Inhalation exposure of rats to talc produced a spectrum of inflammatory, reparative, and proliferative processes in the lungs. Granulomatous inflammation occurred in nearly all exposed rats and the severity increased with exposure duration and concentration. Hyperplasia of the alveolar epithelium and interstitial fibrosis occurred in or near foci of inflammation in many exposed rats, while squamous metaplasia of the alveolar epithelium and squamous cysts were also occasionally seen. Accumulations of macrophages (histiocytes), most containing talc particles, were found in the peribronchial lymphoid tissue of the lung and in the bronchial and mediastinal lymph nodes. In female rats, the incidences of alveolar/bronchiolar adenoma, carcinoma, and adenoma or carcinoma (combined) in the 18 mg/m³ group were significantly greater than those of controls. The incidences of pulmonary neoplasms in exposed male rats were similar to those in controls.

Minor alterations attributed to talc exposure were also observed in the upper respiratory tract. Hyperplasia of the respiratory epithelium of the nasal mucosa in males and accumulation of cytoplasmic, eosinophilic droplets in the nasal mucosal epithelium in male and female rats occurred with a concentration-related increased incidence in the exposed groups.

Adrenal medulla pheochromocytomas [benign, malignant, or complex (combined)] occurred with a significant positive trend in male and female rats, and the incidences in the 18 mg/m³ groups were significantly greater than those of controls. Although adrenal medulla hyperplasia occurred with similar frequency among exposed and control females, the incidences of hyperplasia in exposed males were significantly lower than in controls.

Lung Talc Burden

Lung talc burdens of male and female rats exposed to 6 mg/m^3 were similar and increased progressively from 6 to 24 months. Lung talc burdens of females exposed to 18 mg/m^3 also increased progressively from 6 to 24 months, while those of males exposed to 18 mg/m^3 remained about the same after 18 months. Lung burdens were generally proportional to exposure concentration at each interim evaluation.

Pulmonary Function, Bronchoalveolar Lavage, and Lung Biochemistry

In exposed male and female rats there was a concentration-related impairment of respiratory function which increased in severity with increasing exposure duration. The impairment was characterized by reductions in lung volume (total lung capacity, vital capacity, and forced vital capacity), lung compliance, gas exchange efficiency (carbon monoxide diffusing capacity), and nonuniform intrapulmonary gas distribution.

After 24 months, males exposed to 6 mg/m³ talc had a significant increase in ß-glucuronidase and polymorphonuclear leukocytes; males exposed 18 mg/m³ had significant increases in ß-glucuronidase, lactate dehydrogenase, alkaline phosphatase, and total protein in bronchoalveolar lavage fluid. All exposed females had significantly increased ß-glucuronidase, lactate dehydrogenase, alkaline phosphatase, total protein, and polymorphonuclear leukocytes; 18 mg/m³ females also had significantly increased glutathione reductase. Viability and phagocytic activity of macrophages recovered from lavage fluid were not affected by talc exposure.

Total lung collagen was significantly increased in rats at both exposure concentrations after 24 months, while collagenous peptides in lavage fluid and the percentages of newly synthesized protein from females, but not males, were also significantly increased at the 6 or 18 mg/m³ levels. In addition, lung proteinase activity, primarily cathepsin D-like activity, was significantly greater in exposed males and females. Rats exposed to talc also had significant increases in collagenous peptides and acid proteinase in lung homogenates.

2-YEAR STUDY IN MICE

Groups of 47 to 49 male and 48 to 50 female mice were exposed to aerosols containing 0, 6, or 18 mg/m^3 talc for up to 104 weeks. These exposures were selected based on 4-week inhalation studies of the terminal lung talc burden in B6C3F1 mice; concentrations greater than 18 mg/m³ were expected to overwhelm lung clearance mechanisms and impair lung function. These exposure concentrations provide a dose equivalent of 0, 2, or 6 mg/kg per day for male mice and 0, 1.3, or 3.9 mg/kg per day for female mice. In a special study, additional groups of 39 or 40 male and 39 or 40 female mice similarly exposed were examined for interim pathology evaluations, lung biochemistry, and cytology studies after 6, 12, and 18 months of exposure. The talc aerosols had a median mass aerodynamic diameter of 3.3 μ m with a geometric standard deviation of $1.9 \ \mu m$ in the 6 mg/m³ chamber, and a median diameter of 3.6 μ m with a geometric standard deviation of 2.0 μ m in the 18 mg/m³ chamber. Further, there was a 12-week period beginning at approximately week 70 during which there were difficulties in generating the talc aerosol, and the chamber concentrations for rats and mice were substantially lower than the target concentrations.

Survival, Body Weights, and Clinical Findings Survival and final mean body weights of male and female mice exposed to talc were similar to those of the controls. There were no clinical findings attributed to talc exposure.

Pathology Findings

Inhalation exposure of mice to talc was associated with chronic active inflammation and the accumulation of macrophages in the lung. In contrast to rats, hyperplasia of the alveolar epithelium, squamous metaplasia, or interstitial fibrosis were not associated with the inflammatory response in mice, and the incidences of pulmonary neoplasms in exposed and control groups of mice were similar. Accumulations of macrophages (histiocytes) containing talc particles were also present in the bronchial lymph node.

In the upper respiratory tract, cytoplasmic alteration, consisting of the accumulation of cytoplasmic eosinophilic droplets in the nasal mucosal epithelium, occurred with a concentration-related increased incidence in exposed male and female mice.

Lung Talc Burden

Lung talc burdens of mice exposed to 6 mg/m^3 were similar between males and females and increased progressively from 6 to 24 months, except for males at 18 months. The lung talc burdens of mice exposed to 18 mg/m³ were also similar between the sexes at each interim evaluation. Although the talc burdens of males and females increased substantially from 6 to 24 months, the values at 12 and 18 months were similar. Generally, lung burdens of mice exposed to 18 mg/m³ were disproportionately greater than those of mice exposed to 6 mg/m³, suggesting that clearance of talc from the lung was impaired, or impaired to a greater extent, in mice exposed to 18 mg/m³ than in mice exposed to 6 mg/m³.

Bronchoalveolar Lavage and Lung Biochemistry

Increases in total protein, β -glucuronidase, lactate dehydrogenase, glutathione reductase, total nucleated cells, and polymorphonuclear leukocytes in bronchoalveolar lavage fluid were observed primarily in mice exposed to 18 mg/m³, although some parameters were also increased in mice exposed to 6 mg/m³.

The amount of collagenous peptides in lavage fluid and total lung collagen were increased in male and female mice exposed to 18 mg/m^3 . Acid proteinase activity, principally cathepsin D-like activity, of lung homogenate supernatant fluid was also significantly increased in mice at the 18 mg/m^3 exposure concentration.

CONCLUSIONS

Under the conditions of these inhalation studies, there was some evidence of carcinogenic activity^{*} of talc in male F344/N rats based on an increased incidence of benign or malignant pheochromocytomas of the adrenal gland. There was clear evidence of carcinogenic activity of talc in female F344/N rats based on increased incidences of alveolar/bronchiolar adenomas and carcinomas of the lung and benign or malignant pheochromocytomas of the adrenal gland. There was no evidence of carcinogenic activity of talc in male or female B6C3F₁ mice exposed to 6 or 18 mg/m³.

The principal toxic lesions associated with inhalation exposure to the same concentrations of talc in rats included chronic granulomatous inflammation, alveolar epithelial hyperplasia, squamous metaplasia and squamous cysts, and interstitial fibrosis of the lung. These lesions were accompanied by impaired pulmonary function characterized primarily by reduced lung volumes, reduced dynamic and/or quasistatic lung compliance, reduced gas exchange efficiency, and nonuniform intrapulmonary gas distribution. In mice, inhalation exposure to talc produced chronic inflammation of the lung with the accumulation of alveolar macrophages.

^{*} Explanation of Levels of Evidence of Carcinogenic Activity is on page 9. A summary of Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appears on page 11.

	Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female B6C3F ₁ Mice
Exposure levels	0, 6, or 18 mg/m ³ (equivalent to 0, 2.8, or 8.4 mg/kg per day)	0, 6, or 18 mg/m ³ (equivalent to 0, 3.2, or 9.6 mg/kg per day)	0, 6, or 18 mg/m ³ (equivalent to 0, 2, or 6 mg/kg per day)	0, 6, or 18 mg/m ³ (equivalent to 0, 1.3, or 3.9 mg/kg per day)
Body weights	18 mg/m ³ group slightly lower than controls	18 mg/m ³ group slightly lower than controls	Exposed groups similar to controls	Exposed groups similar to controls
Survival rates	9/49, 14/50, 16/50	11/50, 13/49, 9/50	30/47, 28/48, 32/49	30/49, 23/48, 25/50
Nonneoplastic effects	Lung: granulomatous inflammation (2/49, 50/50, 49/50); interstitial fibrosis (1/49, 16/50, 33/50); alveolar epithelial hyperplasia (5/49, 26/50, 38/50); cyst (0/49, 0/50, 3/50); alveolar squamous metaplasia (0/49, 0/50, 2/50)	Lung: granulomatous inflammation (2/50, 47/48, 50/50); interstitial fibrosis (1/50, 24/48, 44/50); alveolar epithelial hyperplasia (2/50, 27/48, 47/50); cyst (0/50, 1/48, 7/50); alveolar squamous metaplasia (0/50, 0/48, 8/50)	Lung: chronic inflammation (0/45, 16/47, 40/48); macrophage hyperplasia (3/45, 46/47, 48/48)	Lung: chronic inflammation (0/46, 25/48, 38/50); macrophage hyperplasia (2/46, 45/48, 43/50)
Neoplastic effects	Adrenal medulla: benign or malignant pheochromocytoma (26/49, 32/48, 37/47)	Lung: alveolar/ bronchiolar adenoma (1/50, 0/48, 9/50); alveolar/bronchiolar carcinoma (0/50, 0/48, 5/50); alveolar/bronchiolar adenoma or carcinoma (1/50, 0/48, 13/50) Adrenal medulla: benign or malignant pheochromocytoma (13/48, 14/47, 23/49)	None	None
Level of evidence of carcinogenic activity	Some evidence	Clear evidence	No evidence	No evidence

Summary of the Lifetime and 2-Year Carcinogenicity Studies of Talc

. EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence, including animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results (clear evidence and some evidence); one category for uncertain findings (equivocal evidence); one category for no observable effects (no evidence); and one category for experiments that cannot be evaluated because of major flaws (inadequate study). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Report series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following five categories is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to potency or mechanism.

- Clear evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a dose-related
 (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a chemical-related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemical related.
- No evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing no chemical-related increases in malignant or benign neoplasms.
- Inadequate study of carcinogenic activity is demonstrated by studies that, because of major qualitative or quantitative limitations, cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. Such consideration should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- · adequacy of the experimental design and conduct;
- occurrence of common versus uncommon neoplasia;
- · progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- combining benign and malignant tumor incidence known or thought to represent stages of progression in the same organ or tissue;
- latency in tumor induction;
- multiplicity in site-specific neoplasia;
- metastases;
- supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- presence or absence of dose relationships;
- statistical significance of the observed tumor increase;
- concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- survival-adjusted analyses and false positive or false negative concerns;
- · structure-activity correlations; and
- in some cases, genetic toxicology.

NATIONAL TOXICOLOGY PROGRAM BOARD OF SCIENTIFIC COUNSELORS TECHNICAL REPORTS REVIEW SUBCOMMITTEE

The members of the Technical Reports Review Subcommittee who evaluated the draft NTP Technical Report on talc on June 23, 1992, are listed below. Subcommittee members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, subcommittee members have five major responsibilities in reviewing NTP studies:

- · to ascertain that all relevant literature data have been adequately cited and interpreted,
- to determine if the design and conditions of the NTP studies were appropriate,
- to ensure that the Technical Report presents the experimental results and conclusions fully and clearly,
- to judge the significance of the experimental results by scientific criteria, and
- to assess the evaluation of the evidence of carcinogenic activity and other observed toxic responses.

Gary P. Carlson, Ph.D., Chair Department of Pharmacology and Toxicology Purdue University West Lafayette, IN

Paul T. Bailey, Ph.D. Toxicology Division Mobil Oil Corporation Princeton, NJ

- Louis S. Beliczky, M.S., M.P.H.* Department of Industrial Hygiene United Rubber Workers International Union Akron, OH
- Kowetha A. Davidson, Ph.D. Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, TN
- Harold Davis, D.V.M., Ph.D. School of Aerospace Medicine Brooks Air Force Base, TX
- Jay I. Goodman, Ph.D., Principal Reviewer Department of Pharmacology and Toxicology Michigan State University East Lansing, MI

David W. Hayden, D.V.M., Ph.D. Department of Veterinary Pathobiology College of Veterinary Medicine University of Minnesota St. Paul, MN

Curtis D. Klaassen, Ph.D.* Department of Pharmacology and Toxicology University of Kansas Medical Center Kansas City, KS

Daniel S. Longnecker, M.D.* Department of Pathology Dartmouth Medical School Lebanon, NH

- Barbara McKnight, Ph.D., Principal Reviewer* Department of Biostatistics University of Washington Seattle, WA
- Ellen K. Silbergeld, Ph.D. University of Maryland Medical School Baltimore, MD

Lauren Zeise, Ph.D. California Department of Health Services/RCHAS Berkeley, CA

Matthew J. van Zwieten, D.V.M., Ph.D. Principal Reviewer Department of Safety Assessment Merck, Sharp & Dohme Research Laboratories West Point, PA

* Did not attend

SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS

On June 23, 1992, the draft Technical Report on the toxicology and carcinogenesis studies of talc received public review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, NC.

Dr. K.M. Abdo, NIEHS, introduced the toxicology and carcinogenesis studies of talc by discussing the rationale for study, describing the experimental design, reporting on survival and body weight effects, describing effects on respiratory function, and commenting on compound-related neoplasms in rats and nonneoplastic lesions in rats and mice. The proposed conclusions were some evidence of carcinogenic activity of talc in male F344/N rats, clear evidence of carcinogenic activity in female F344/N rats, and no evidence of carcinogenic activity in male or female B6C3F₁ mice.

Dr. van Zwieten, a principal reviewer, agreed with the proposed conclusions. He said that if available, information should be added to the Introduction regarding particle sizes of talc to which humans are exposed during various industrial and cosmetic uses. This would allow a comparison with the aerosol particle size distribution of talc in the animal studies. Dr. Abdo said such information was not available but since the material used was cosmetic grade he assumed humans were exposed to similar particle sizes. Dr. van Zwieten stated that the section dealing with the histpathologic description of pulmonary neoplasms in rats indicates that uncertainty existed regarding diagnosis of hyperplasia and benign and malignant neoplasia and asked for clarification. Dr. S.L. Eustis, NIEHS, said the pathologists were confident that the lesions diagnosed were neoplasms, but there was difficulty in determining whether or not a small number of lesions of inflammatory or hyperplastic nature were preneoplastic.

Dr. Goodman, the second principal reviewer, said his initial position was to disagree with the proposed conclusion. However, he said that he would defer a recommendation pending discussion of whether or not the maximum tolerated dose (MTD) was exceeded in female rats and consideration of the data concerning the trend towards an increased incidence of spontaneous pheochromocytomas in rats. Dr. Eustis argued that in this particular study the appearance of lung neoplasms together with impaired pulmonary function is relevant to what might occur in humans with dust overload. Thus, he said, even though the MTD may have been exceeded, the study is valid. Dr. Goodman believed that lung neoplasms produced in female rats following exposure to talc might have been secondary to chronic toxicity. He noted that the recommended time-weighted average human exposure level for talc containing no asbestos fibers is 2 mg/m³ and thought that this dose should have been used in the current study. Dr. Abdo agreed.

Because Dr. McKnight, the third principal reviewer, was unable to attend the meeting, Dr. L. Hart, NIEHS, read her review into the record. Dr. McKnight agreed in principle with the conclusions with the exception that consideration should be given to raising the level of evidence in male rats to clear evidence, since one of the arguments for the level chosen, i.e., no supporting hyperplasia in the adrenal gland, was not warranted. Further, there was strong supporting evidence from the increases in malignant pheochromocytomas and benign and malignant pheochromocytomas (combined) among female rats. Dr. Eustis said because of the high incidence of bilateral pheochromocytomas there was not enough tissue present to find hyperplasia. When considering all the evidence, including a preponderance of benign neoplasms in male rats, the level of evidence seemed appropriate. Dr. McKnight had commented that evidence from humans suggests that direct effects on the adrenal gland may be possible. Dr. Eustis said that although the possibility cannot be ruled out that talc may reach the adrenal gland, its lack of solubility in aqueous fluids and the way the substance is cleared by the lungs would make a direct effect on the adrenal gland very unlikely. Dr. McKnight thought that a sentence should be added to the conclusions stating that male and female mice might have tolerated higher doses. Dr. Eustis noted that as reported in the conclusions, exposure to talc produced chronic inflammation of the lungs in mice which supported an MTD being reached.

Dr. Goodman asked if the conclusion for female rats could be worded "clear evidence of carcinogenic activity only under those circumstances in which there was an indication of chronic toxicity." Dr. Eustis replied that in the discussion the appearance of neoplasms is clearly placed in the context of the chronic toxicity. Dr. Silbergeld said she was increasingly concerned about a rigid criterion whereby evidence of carcinogenicity is discounted if toxicity is present. Dr. Eustis commented that the degree of chronic disease, based on fibrosis and inflammation, was quite similar between male and female rats so it would be difficult to argue that the MTD was exceeded in one sex and not the other. Dr. J.K. Haseman, NIEHS, pointed out that after the levels of evidence there is a paragraph in the conclusion that delineates all toxic lesions associated with chemical exposure in the lung.

Dr. J. Haartz, NIOSH, asked that more details be provided for the spatial distribution of the talc in the chambers, and analyses of contaminants such as metals from impurities in the compressed air used. During the public comment period, Dr. Carlson read from a letter from Dr. Frank Mirer, Health and Safety Department, United Auto Workers. Dr. Mirer said the dose selection should be considered in light of current enforceable Permissible Exposure Limits, which are 5 mg/m³ respirable fraction and 15 mg/m³ for total dust. Thus, the low dose selected for this experiment is below the OSHA limit when timeweighted averaging is considered. Dr. Mirer suggested that the studies in male rats and male and female mice should be considered inadequate for determination of carcinogenicity of talc.

Dr. Goodman moved that the conclusion be modified to state that in light of lung toxicity previously noted,

the MTD was exceeded in female rats. Dr. Bailey seconded the motion which was defeated by two yes (Drs. Bailey, Goodman) to five no votes with one abstention (Dr. Silbergeld). Dr. Silbergeld abstained because she thought the notion as framed was not informative given that complexities known about the MTD for these types of compounds. Dr. van Zwieten moved that the Technical Report on talc be accepted with the revisions discussed and with the conclusions as written for male rats, some evidence of carcinogenic activity, for female rats, clear evidence of carcinogenic activity, and for male and female mice, no evidence of Dr. Hayden seconded the carcinogenic activity. motion. Dr. Goodman offered an amendment to insert a clause in the second sentence of the conclusions between "rats" and "based" as follows: "under conditions in which there was evidence of chronic lung toxicity." The amendment was tabled for lack of a second. Dr. Silbergeld offered an amendment to insert "the same doses of" between "to" and "talc" in the first sentence of the second paragraph of the conclusions. Dr. Zeise seconded the motion, which was accepted by six yes votes to two no votes (Drs. Davis, Goodman). Dr. Zeise offered an amendment that a sentence be added to the effect that mice may have been able to tolerate higher doses. The amendment was tabled for lack of a Dr. van Zwieten's original motion as second. amended by Dr. Silbergeld was then accepted by seven yes votes to one no vote (Dr. Goodman).

INTRODUCTION

TALC

(Non-Asbestiform)

CAS No. 14807-96-6

Molecular Formula: Mg₃Si₄O₁₀(OH)₂ Molecular Weight: 379.26

Synonyms: talcum; agalite; emtal 596; non-asbestiform talc; non-fibrous talc; steatite; hydrous magnesium silicate

CHEMICAL AND PHYSICAL PROPERTIES Talc is a fine powder, white to grayish white in color, with a greasy feel and luster. It is insoluble in water, cold acids, and alkalies (*Merck Index*, 1983) and has a density of 2.7 to 2.8 and a melting point of 900° to 1,000° C (Hawley, 1977). Talc as a pure mineral is composed of 63.5% SiO₂, 31.7% MgO, and 4.8% H₂O (Pooley and Rowlands, 1977).

PRODUCTION, USE,

AND HUMAN EXPOSURE

Talc is produced by open pit or underground mining of talc rocks and processed by crushing, drying, and milling. Contaminating minerals including iron, nickel, manganese, chromium, aluminum, and titanium are separated from talc by flotation or elutriation. Talc is then finely powdered, treated with boiling diluted hydrochloric acid, washed well, and dried (Osol et al., 1980). Geological formation of talc rock results from the alteration of magnesia- and silicarich ultramafic rocks under a range of temperatures and pressures. These hydrothermal alterations may lead to the formation of other mineral phases such as tremolite and serpentine minerals, including chrysotile. These mineral phases may occur as microscopic intergrowths, nodules, or discrete zones within or adjacent to talc (Rohl et al., 1976).

United States production of talc for 1985 was estimated at 1.1 million metric tons, with industrial pattern of use as follows: ceramics, 37%; paints, 19%; paper, 10%; roofing, 10%; plastics, 7%; cosmetics, 5%; rubber, 3%; insecticides, 1%; and other uses, 9% (Bureau of Mines, 1986). Commercial talc is categorized into cosmetic grade, which is free of asbestos, and industrial grade, which contains other minerals including asbestos (Hildick-Smith, 1976).

A comprehensive review of the literature before 1987 on the use, exposure, and biological effects of talc was published by IARC (1987). Talc is used as a dusting powder, including baby powder, either alone or with starch or boric acid, for medicinal or toiletry preparations; as an excipient and filler for pills and tablets; and for dusting tablet molds (*Merck Index*, 1983). It is also used as a filler and pigment for paints, putty, and plaster; as a carrier and diluent for pesticides; as an additive to clay in ceramic manufacture; in paper coatings; and for the manufacture of rubber and roofing materials (Hawley, 1977). The recommended time-weighted average (TWA) human exposure level for talc containing no asbestos fibers is 2 mg/m³ (ACGIH, 1989).

A large segment of the population is potentially exposed to talc. The number of workers exposed to talc has been estimated at 1,371,201, which includes 349,228 females (NIOSH, 1990). In addition, the public is potentially exposed to talc through its many uses in pharmaceuticals and consumer products. Based on its uses, human exposure to talc can occur via inhalation, ingestion, or dermal exposure.

Absorption, Distribution, and Excretion

Experimental Animals

The absorption and disposition of ³H-labeled talc in rats, mice, and guinea pigs administered a single oral dose, as well as its translocation in rabbits administered a single or multiple intravaginal dose was

studied by Phillips *et al.* (1978). The oral doses were 50 mg/kg for rats, 40 mg/kg for mice, and 25 mg/kg for guinea pigs. Rabbits were administered either a single intravaginal dose of 50 mg/kg or the same dose once a day for 6 days. In rats, mice, and guinea pigs, more than 95% of the dose was excreted in the feces 3 to 4 days after dosing. Less than 2% of the radioactivity was recovered in the urine. This radioactivity probably reflected contamination of urine samples with feces. No radioactivity was found in the liver or kidneys of these animals. No translocation of talc was found in the ovaries of rabbits.

Hanson *et al.* (1985) and Pickrell *et al.* (1989) studied the lung burden in groups of five male and five female F344/N rats and B6C3F₁ mice following inhalation exposure to concentrations of talc for 6 hours per day, 5 days per week, for 4 weeks. The mean exposure concentrations used were 2.3, 4.3, or 17 mg/m³ for rats and 2.2, 5.7, or 20.6 mg/m³ for mice. The resulting lung talc burdens were 0.08, 0.19, and 0.87 mg/g of lung for rats and 0.1, 0.33, and 1.2 mg/g of lung for mice. These data clearly indicate that the amount of talc retained per unit of lung tissue was proportional to the exposure concentration of talc.

Pulmonary deposition, translocation, and clearance of neutron-activated talc was studied in hamsters after a single, 2-hour, nose-only inhalation exposure (Wehner *et al.*, 1977a,b). Deposition of talc in the lung was demonstrated by X-ray fluorescence and X-ray diffraction. An estimated 6% to 8% of the inhaled quantity was deposited in the alveoli. The biological half-life of the talc deposited in the alveoli was estimated at 7 to 10 days. No translocation of talc to liver, kidneys, ovaries, or other parts of the body was found.

Humans

Talc, a filler in some drugs injected by addicts, was found in the lung (Groth *et al.*, 1972; Lamb and Roberts, 1972; Farber *et al.*, 1981; Crouch and Churg, 1983), spleen, kidney, liver, brain, adrenal gland, thyroid gland (Groth *et al.*, 1972), and retina (Atlee, 1972) of some addicts. In the lung, most of the talc particles were seen within the vessels of the alveolar walls and were often associated with marked foreign body granulomas (Crouch and Churg, 1983).

TOXICITY

Experimental Animals

The LD_{50} for talc has not been established. Talc caused death in guinea pigs administered 2 or 3 injections of 25 mg talc in saline (Dogra *et al.*, 1977) and in rats receiving a splenic injection of 1,400 mg/kg body weight (Eger and DaCanalis, 1964). Deaths occurred in rats exposed to a very dense atmosphere of talc (particle size $<5 \mu$ m) 3 hours a day, for 12 days (Policard, 1940). The concentration of talc in the atmosphere was not known and the observed mortality may have been due to suffocation.

Wagner et al. (1977) reported on the toxic effects of talc in rats exposed orally or by inhalation. No significant decrease in mean life span and no pathologic effects were found in rats fed 100 mg talc for Rats exposed to talc atmospheres of 101 days. 10.8 mg/m³ (particle size, $25 \,\mu$ m) for 3 months showed minimal lung fibrosis, and no change in severity occurred during the post-exposure period. By contrast, rats exposed to the same atmospheres for a year had minimal to slight fibrosis, and the severity had increased to moderate within a year after cessation of exposure. Rats exposed to atmospheres of 30 to 383 mg/m³ "industrial" or "pharmaceutical" talc for 9 months developed chronic inflammatory changes, including thickening of the pulmonary artery walls and emphysema (Bethege-Iwanska, 1971). There were no histopathologic changes in the lung, heart, liver, renal tissue, or uterus of hamsters exposed to respirable aerosols containing 8 mg/m³ of cosmetic grade talc for 150 minutes a day, 5 days per week, for 300 days (Wehner, 1980).

Rats administered a single intratracheal injection of 50 mg of pure talc in water did not show lung fibrosis or lymph node abnormalities. Those receiving the same dose of "calcined" talc developed lung and lymph node fibrosis (Luchtrath and Schmidt, 1959). These differing results may be related to differences in the crystal structures of "pure" and "calcined" talc. Bronchiolar inflammation occurred in rats 4 days after an intratracheal injection of 25 mg talc (containing tremolite) in water; collagenous tissue developed within a few months after injection (Gross *et al.*, 1970).

Injection of 10 mg of talc containing some asbestos into the pleural cavity of mice produced granulomas (Davis, 1972). A single injection of 20 mg of talc into the right pleural cavity of rats produced granulomas at the injection site; one lung adenoma was also observed but no other changes related to talc administration were observed in the lung (Wagner *et al.*, 1977). Rats with abdominal muscle implants of suture materials dusted with talc or talc pellets initially had mild to moderate acute inflammation, followed by chronic inflammation and granuloma formation within 3 days (Sheikh *et al.*, 1984).

Rats with subcutaneous inflammation caused by talc had a decrease in bone formation as evidenced by hypozincemia and a decrease in metaphyseal trabecular surfaces. Both hypozincemia and the decrease in osteoblast trabecular surfaces were directly proportional to the number of granulomas present (Marusic *et al.*, 1990).

Talc produced retinopathy in adult Rhesus monkeys administered intravenous injections of talc once every 2 weeks for 3.5 to 10 months. Talc particles were found lodged in the precapillary arterioles and capillaries, producing a focal occlusion of retinal and choroidal capillaries (Kaga *et al.*, 1982a,b).

Humans

Exposure to industrial grade talc dust causes pulmonary fibrosis; however, reports on cosmetic grade talc dust are conflicting. Hildick-Smith (1976) reported that cosmetic grade talc did not appear to be injurious to health, while Vallyathan and Craighead (1981) reported that it was. Four of seven workers exposed to heavy concentrations (0.4 to 36 mg/m³) of cosmetic grade talc for 4 to 27 years had histologic evidence of pulmonary fibrosis at death (Theriault et al., 1974). Wells et al. (1979) also noted chronic pulmonary degenerative disease in a housewife who reported heavy use of cosmetic talc. Inhalation of pure talc is known to result in a disease known as talcosis, which may include acute or chronic bronchitis and interstitial inflammation. Radiographically, the lesion appears as a small, irregular nodule, typical of a small-airway obstruction. Intravenous administration of talc-containing oral medications by abusers causes vascular granulomas (Feigin, 1986). Intravenous talcosis was diagnosed in a 36-year-old woman who was a drug abuser (Hill et al., 1990). Talcosis in this patient was identified by the presence of peripheral nodular lesions on chest X-rays and was confirmed by the presence of birefringent particles in a transbronchial biopsy. Pulmonary talc granulomatosis was diagnosed in a cocaine sniffer (Oubeid et al., 1990). Chest X-rays of a heroin addict who later died of respiratory failure showed a progressive massive fibrosis of the lung secondary to intravenous injection of the drug (Crouch and Churg, 1983). Microscopic examination of lung lesions revealed an active granulomatous reaction with associated vascular obliteration. Throughout the lesion, refractile birefringent plates of particulate material were noted. Interstitial perivascular and vascular granulomas were noted in the periphery of the lung. The particulate material was identified as talc by X-ray spectroscopy and diffraction methods. Intravenous injection of talccontaining drugs intended for oral use was the cause of pulmonary granulomatosis and pulmonary hypertension in 19 patients (Arnett et al., 1976). In patients with pulmonary hypertension, talc granuloma was found in the pulmonary arteries. In patients without hypertension, talc granuloma was found in the pulmonary interstitium. Patients suffering from talc granulomatosis (confirmed by lung biopsy) as a result of intravenous injection of crushed tablets of pentazocine had dyspnea, increased angiotensinconverting enzyme concentrations, and increased lymphocytes by bronchoalveolar lavage (Farber et al., 1982). Pneumoconiosis (talcosilicosis) was diagnosed in a 54-year-old female confectionery worker who was exposed to talc dust for 5 years (Canessa et al., 1990). Talc, administered by intrapleural instillation to promote pleural symphysis in the palliation of recurrent malignant pleural effusions, caused adult respiratory distress syndrome (ARDS) in three patients (Rinaldo et al., 1983). Symptoms of ARDS included fever, dyspnea, and respiratory failure. ARDS occurred in a 16-month-old baby inhaling baby powder. Normal pulmonary function returned in this patient after 6 years, as determined by a follow-up

CARCINOGENICITY

study (Reyes and Brown, 1989).

Experimental Animals

Results of carcinogenicity studies of talc in animals were reviewed by the IARC (1987). The following is an excerpt of this review:

No significant difference in neoplasm incidence was observed between two groups of 25 male and 25 female Wistar rats (10 weeks old) that received an equivalent of 50 mg/kg per day of commercial talc (composition not specified) in the diet or the basal diet for life (Gibel *et al.*, 1976). Similar results were obtained in groups of 16 male and 16 female Wistar rats (21 to 26 weeks old) that received 100 mg of Italian talc (particle size, 25 μ m; containing 92% talc, 3% chlorite, 1% carbonate minerals, and 0.5 to 1% quartz) per rat per day in the diet or the basal diet for 5 months and observed for life (Wagner *et al.*, 1977). In both studies small numbers of animals were used.

Groups of 24 male and 24 female Wistar rats, 6 to 8 weeks of age, were exposed by inhalation to 10.8 mg/m³ Italian talc aerosol 7.5 hours a day, 5 days per week, for 6 or 12 months. Ten days after the end of each exposure period, six rats in each group were killed; an additional four rats were killed one year later. Within 28 months from the beginning of the study, 12 animals in each group had died. No lung neoplasms were observed in rats exposed to talc for 6 months; one lung adenoma occurred in a rat exposed for 12 months. No lung neoplasms were found in the control rats (Wagner *et al.*, 1977).

Three groups of 50 male and 50 female hamsters, 4 weeks of age were exposed to talc aerosol (37.1 mg/m³, mean respirable fraction 9.8 mg/m³) for 3, 30, or 150 minutes per day, 5 days a week, for 30 days. Two additional groups of hamsters were exposed to talc aerosol (27.4 mg/m³, mean respirable fraction 8.11 mg/m³) for 30 or 150 minutes per day, for 300 days. Two groups of 25 male and 25 female hamsters were exposed to air and served as controls. No primary neoplasms were found in the respiratory system of any hamster. Twenty-five percent of the hamsters exposed to the aerosols for 30 or 150 minutes for 300 days had alveolar cell hyperplasia compared to 10% in the controls (Wehner *et al.*, 1977a, 1979).

No local neoplasms were found in 50 female R3 mice, 3 to 6 months of age, administered a 0.2 mL subcutaneous injection of talc of unspecified composition (80 mg talc in peanut oil) and observed for life (Neukomm and de Trey, 1961).

Forty Swiss albino rats, 6 weeks of age (sex unspecified) received a single intraperitoneal injection of 20 mg commercial talc (unspecified composition) in saline. Sixteen animals died by the end of 6 months. Of the 24 mice that lived to termination (time not specified) three had peritoneal mesotheliomas compared to three of 46 of the controls (Ozesmi *et al.*, 1985). This study was considered inadequate because of poor reporting.

Forty female Wistar rats, 8 to 12 weeks of age, were given four intraperitoneal injections of 25 mg granular talc in 2 mL saline at weekly intervals. Similarly, 80 females were injected with saline and served as controls. The rats were observed until termination or death (average survival time, 602 days). A mesothelioma occurred in one of 36 rats given talc but none was found in the controls (Pott *et al.*, 1974, 1976a,b).

No mesothelioma was observed in two groups of 24 male and 24 female Wistar rats administered a single intrapleural injection of 20 mg Italian talc in saline or saline alone. A pulmonary adenoma occurred in one rat that died at 25 months. Mean survival time (655 days for the talc group versus 691 for the controls) was not affected (Wagner *et al.*, 1977).

Groups of 30 to 50 female Osborne-Mendel rats, 12 to 20 weeks of age, received intrapleural implantation of one of seven grades of refined commercial talc from separate sources in hardened gelatin. Rats were observed for up to 2 years at which time survivors were killed. Pleural sarcoma incidences were: grade 1, 1/26; grade 2, 1/30; grade 3, 1/29; grade 4, 1/29; grade 5, 0/30; grade 6, 0/30; grade 7, 0/29. The incidence of pleural sarcoma was three of 491 in untreated controls, 17 of 615 in controls receiving implants of "nonfibrous" material described by the authors as "noncarcinogenic," and 14 of 29 in rats receiving UICC crocidolite asbestos (Stanton *et al.*, 1981).

The IARC Working Group noted that in most of the talc studies, little or no characterization of the mineralogy, fiber content, or particle size of the samples was given. Thus, the group concluded that there was inadequate evidence on the carcinogenicity of talc to experimental animals.

Humans

An epidemiology study of pottery workers in the United States revealed an association between exposure to non-fibrous talc and increased mortality and lung cancer incidence (Thomas and Stewart, 1987). Increased incidences of lung cancer occurred exclusively among pottery workers employed in the manufacture of plumbing fixtures. A later study of

Introduction

employees in three ceramic plumbing fixture factories showed increased mortality from respiratory disease and from lung cancer. The increased incidence in lung cancer was highest among workers who were simultaneously exposed to silica and talc. The lung cancer mortality risk increased with the number of years of exposure to talc, but showed no pattern by the number of years of exposure to silica. Among men exposed to talc, lung cancer risk decreased with age at first exposure to non-fibrous talc and increased with years since first exposure (Thomas, 1990). Whether or not exposure to silica had a promoting effect on lung cancer is not known. No increased risk for lung cancer or benign respiratory disease was found in millers or miners of non-asbestiform talc (Wergeland et al., 1990).

A case-control study found that women who had perineal exposure to deodorizing powders alone or in combination with other talc-containing powders, had a 2.8 times higher risk of developing borderline ovarian neoplasms than women who were not perineally exposed to powder (Harlow and Weiss, 1989). In an earlier study, the use of talc as a dusting powder on the perineum or on sanitary napkins by women was associated with an increased risk of epithelial ovarian cancer. Women engaged in both practices had a relatively higher risk of developing this type of cancer (Cramer et al., 1982). No information was presented regarding exposure levels or the content of contaminating minerals of the talc used. In another study, the role of exposure to talcum powder, tobacco, alcohol, and coffee, and the histories of tubal sterilization and hysterectomy on ovarian cancer risk was assessed. The study involved 188 women diagnosed with epithelial ovarian cancer and 539 control women. No association was found between the incidence of epithelial ovarian cancer and increasing frequency or duration of talc use. Patients did not differ from control women in the use of talc on sanitary pads, contraceptive diaphragms, or both. (Whittemore et al., 1988).

REPRODUCTIVE AND TERATOGENIC EFFECTS

Experimental Animals

Talc produced nonspecific abnormalities in chicken eggs at incidences similar to those caused by thalidomide and sulphadimethoxine (Yang, 1977).

No teratologic effects were observed in hamsters, rats, mice, or rabbits after oral administration of talc. The doses used were 1,600 mg/kg for rats and mice on days 6 through 15 of gestation, 1,200 mg/kg for hamsters on days 6 through 10 of gestation, and 900 mg/kg for rabbits on days 6 through 18 of gestation (Food and Drug Research Laboratories, 1973).

Humans

No information on the reproductive or teratogenic effects of talc in humans has been reported.

GENETIC TOXICITY

There are no published studies on the genotoxicity of talc. The IARC (1987) review of talc included unpublished results from a 1974 study conducted by Litton Bionetics that showed no mutagenic activity for talc *in vitro* or *in vivo*. Talc did not induce mutations in *Salmonella typhimurium* strains TA1530 or HisG46, or in the yeast, *Saccharomyces cerevisiae*. No chromosomal aberrations were observed in human fibroblasts treated with talc *in vitro*. In vivo tests conducted in rats gave negative results for induction of chromosomal aberrations in bone marrow cells and dominant lethal mutations in germinal cells.

STUDY RATIONALE

Talc was nominated by NIOSH in 1978 for testing by NTP because of the paucity of adequate information on its carcinogenicity and because of widespread human exposure. The inhalation route was chosen because it is the most common route for human exposure.

MATERIALS AND METHODS

Procurement and Characterization of Talc

Talc (MP 10-52 Grade) was obtained from Walsh and Associates (North Kansas City, MO) in two lots (W101882 and B5415). The talc was manufactured by the Minerals, Pigments, and Metals Division of Pfizer, Inc. and is one of their microtalc series of products. Both lots were from Pfizer's Barretts, Montana, mine which is a strip mine located between Barretts and Three Brother, Montana. This mine is the only source for the MP 10-52 grade talc. The grade designation is for high purity talc that has a top particle size of 10 μ m and according to the manufacturer contains no tremolite or any asbestiform minerals. Lot W101882 was used from the beginning of the 2-year studies through January 1986. Lot B5415 was used in the 2-year studies from 27 January 1986 to the end of the studies on 31 October 1986. The talc was extensively characterized by the analytical chemistry laboratory, Midwest Research Institute (Kansas City, MO), and by McCrone Associates (Norcross, GA). The methods and results of these studies are detailed in Appendix I.

The study mineral, a finely powdered white solid, was identified as talc by infrared spectroscopy, elemental analysis, Karl Fischer water analysis, thermogravimetric analyses, spark source mass spectrometry, automated scanning electron probe analyses, X-ray diffraction, polarized light microscopy, and transmission electron microscopy. Both lots were found to be asbestos free by polarized light microscopy and transmission electron microscopy. Results of automated scanning electron microprobe analysis of lot W101882 indicated that the sample was virtually free of silica (1 particle of silica in 1,466 particles examined). Bulk chemical stability studies were not conducted due to the physical and chemical properties of talc. During the study the compound was stored in tightly sealed plastic bags at 25° C.

Generation and Monitoring of Chamber Concentrations

Talc aerosols were generated in a single fluidized-bed generator by injecting compressed air into the bed (Figure 12). The aerosolized talc particles were then mixed with diluting air before being delivered to the exposure chambers (Hazleton 1000 and 2000, Lab Products, Inc.). A second fluidized-bed generator for the control chamber contained only the stainless steel bed material (Figures 13 and 14).

Aerosol concentrations were monitored daily in each chamber by taking three, 2-hour filter samples. Background concentrations of suspended particles were measured daily in the control chamber by taking a 6-hour filter sample. A RAM-S forward light scattering monitor (GCA, Bedford, MA) was used to determine the stability of the aerosol concentrations and the need to adjust the aerosol generation system during the exposure. Determinations were made at the beginning, middle, and end of each filter sampling period. The overall mean concentrations were 6.1 and 18.6 mg/m^3 for the rat study and 5.9 and 16.7 mg/m^3 for the mouse study. While the overall means were very close to target concentrations, there were problems experienced in maintaining control of chamber concentrations. Weekly mean exposure concentrations for the 2-year studies are presented in Figures I5 through I8.

Chamber Atmosphere Characterization

Uniformity of the aerosol concentrations in each chamber was determined at approximately 3-month intervals with the RAM-S. The spatial variation as estimated by the relative standard deviation was higher in the mouse study than in the rat study with values from 12% to 44% relative standard deviation for mice and 2% to 31% relative standard deviation for rats. To minimize the variation in talc concentrations, the animal cages were rotated weekly.

The time to reach 90% of the target concentration (T_{s0}) was approximately 10 minutes. Therefore, the length of the exposure was defined at 6 hours plus the T_{s0} of 10 minutes.

The aerosol size distribution was determined once each month for each chamber using a cascade impactor. The average mass mean aerodynamic diameter and the geometric standard deviation were calculated to be 2.7 \pm 1.9 μ m and 3.2 \pm 1.9 μ m for the 6 and 18 mg/m³ rat chambers. The values were $3.3 \pm 1.9 \ \mu\text{m}$ and $3.6 \pm 2.0 \ \mu\text{m}$ for the 6 and 18 mg/m³ mouse chambers. The individual values are presented in Tables I1 and I2.

Study Design

Groups of 50 male and 50 female rats and mice were selected for whole body inhalation to talc at target concentrations of 0, 6, or 18 mg/m^3 . These exposure concentrations provided a dose equivalent of 0, 2.8, or 8.4 mg/kg per day for male rats, 0, 3.2, or 9.6 mg/kg per day for female rats, 0, 2, or 6 mg/kg per day for male mice, and 0, 1.3, or 3.9 mg/kg per day for female mice. Rats were exposed for 6 hours per day, 5 days a week until mortality in any exposure group reached 80% (113 weeks for males and 122 weeks for females). Exposure of rats to talc was extended beyond 2 years based on the report that 80% of pulmonary neoplasms induced in rats by inhalation exposure to diesel exhaust occurred after 2 years (Mauderly et al., 1986). Mice were exposed for 103 or 104 weeks. At the conclusion of the exposures, rats were exposed to filtered air for 10 or 11 days, while mice were exposed to filtered air for 10 to 14 days. All animals were necropsied and received a complete pathology evaluation.

Additional special study groups of 22 male and 22 female rats and 40 male and 40 female mice similarly exposed to 0, 6, or 18 mg/m³ were designated for interim pathology evaluations; lung talc burden measurements; serial pulmonary function measurements (rats only); and lung biochemistry, cytology, and phagocytosis measurements. Rats were evaluated at 6, 11, 18, and 24 months, while mice were evaluated at 6, 12, and 18 months. Insufficient numbers of rats remained alive at week 103 of exposure for both pulmonary function and/or lung biochemistry/cytology and pathology distribution groups, therefore the remaining rats in these groups were combined. The numbers of rats and mice evaluated for pulmonary function and lung biochemistry, cytology, and phagocytosis and the methods used for each of the parameters are presented in Appendix G for rats and Appendix H for mice.

Source and Specification of Animals

Male and female F344/N rats were obtained from Lovelace Inhalation Toxicology Research Institute (Albuquerque, NM). Male and female $B6C3F_1$ mice were obtained from Frederick Cancer Research Center (Frederick, MD). Rats and mice were held 3 weeks before the studies began. Rats were 6 to 7 weeks old, and mice were 7 weeks old when the studies began. Animal health was monitored by serologic analyses during the studies under the protocols of the NTP Sentinel Animal Program (Appendix K).

Talc, NTP TR 421

Animal Maintenance

Rats and mice were housed individually throughout the studies. Drinking water was available *ad libitum*. Further details of animal maintenance are given in Table 1.

Clinical Examinations and Pathology

All rats and mice were observed twice daily. Clinical observations and body weights were recorded at the beginning of the studies, weekly for 13 weeks, and monthly thereafter.

A necropsy was performed on all rats in the lifetime core study and all mice in the 2-year core study. Organ weights were recorded for the brain, heart, right kidney, liver, and lung at the end of the studies. During necropsy, all organs and tissues were examined for grossly visible lesions. A complete histopathologic examination was performed on all animals. Tissues for microscopic examination were fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned to a thickness of 5 μ m, and stained with hematoxylin and eosin.

Microscopic evaluations were completed by the study laboratory pathologist and the pathology data were entered into the Toxicology Data Management System. The slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit for accuracy of labeling and animal identification and for thoroughness of tissue trimming. The slides, individual animal data records, and pathology tables were evaluated by an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. A quality assessment pathologist reviewed lung and bronchial and mediastinal lymph nodes in rats and mice and the nose in male mice for accuracy and consistency of lesion diagnosis.

The quality assessment report and slides were submitted to the Pathology Working Group (PWG) chair, who reviewed tissues for which there was a disagreement in diagnosis between the laboratory and quality assessment pathologists. All pulmonary neoplasms in female rats and representative histopathology slides of adrenal gland (rats), bronchial lymph node, lung, mediastinal lymph node (rats), and nose, or lesions of general interest were presented by the chair to the PWG for review. The PWG included the quality assessment pathologist as well as other pathologists experienced in rodent toxicologic pathology who examined these tissues without knowledge of dose group or previously rendered diagnoses. When the consensus diagnosis of the PWG differed from that of the laboratory pathologist, the final diagnosis was changed to reflect the opinion of the PWG. Details of these review procedures have been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). For subsequent analysis of pathology data, the diagnosed lesions for each tissue type were evaluated separately or combined according to the guidelines of McConnell et al. (1986).

Statistical Methods

Survival Analyses

The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the Results section of this report. Animals were censored from the survival analyses at the time they were found dead from other than natural causes or were missing, culled, or missexed; animals dying from natural causes were not censored. Statistical analyses for possible dose-related effects on survival used Cox's (1972) method for testing two groups for equality and Tarone's (1975) life table tests to identify dose-related trends. All reported P values for the survival analysis are two sided.

Calculation of Incidence

The incidences of neoplasms or nonneoplastic lesions presented in Tables A1, A4, B1, B4, C1, C4, D1, and D4 are given as the number of animals bearing such lesions at a specific anatomic site and the number of animals with that site examined microscopically. For calculation of statistical significance, the incidences of all nonneoplastic lesions and most neoplasms (Tables A3, B3, C3, and D3) are given as the ratio of the number of affected animals to the number of animals with the site examined microscopically. However, when macroscopic examination was required to detect neoplasms in certain tissues (e.g., skin, intestine, harderian gland, and mammary gland) before microscopic evaluation, or when neoplasms had multiple potential sites of occurrence (e.g., leukemia or lymphoma), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Neoplasm Incidences

The majority of neoplasms in these studies were considered to be incidental to the cause of death or not rapidly lethal. Thus, the primary statistical method used was logistic regression analysis, which assumed that the diagnosed neoplasms were discovered as the result of death from an unrelated cause and thus did not affect the risk of death. In this approach, neoplasm prevalence was modeled as a logistic function of chemical exposure and time. Both linear and quadratic terms in time were incorporated initially, and the quadratic term was eliminated if it did not significantly enhance the fit of the model. The exposed and control groups were compared on the basis of the likelihood score test for the regression coefficient of dose. This method of adjusting for intercurrent mortality is the prevalence analysis of Dinse and Lagakos (1983), further described and illustrated by Dinse and Haseman (1986). When neoplasms are incidental, this comparison of the time-specific neoplasm prevalences also provides a comparison of the time-specific neoplasm incidences (McKnight and Crowley, 1984).

In addition to logistic regression, alternative methods of statistical analysis were used, and the results of these tests are summarized in the appendixes. These include the life table test (Cox, 1972; Tarone, 1975), appropriate for rapidly lethal neoplasms, and the Fisher exact test and the Cochran-Armitage trend test (Armitage, 1971; Gart *et al.*, 1979), procedures based on the overall proportion of neoplasm-bearing animals.

Tests of significance include pairwise comparisons of each exposure group with controls and a test for an overall dose-response trend. Continuity-corrected tests were used in the analysis of neoplasm incidence, and reported P values are one sided. The procedures described above also were used to evaluate selected nonneoplastic lesions. For further discussion of these statistical methods, see Haseman (1984).

Analysis on Nonneoplastic Lesion Incidences

Because all nonneoplastic lesions in this study were considered to be incidental to the cause of death or not rapidly lethal, the primary statistical analysis used was a logistic regression analysis in which lesion prevalence was modeled as a logistic function of chemical exposure and time. For lesions detected at the interim evaluation, the Fisher exact test was used, a procedure based on the overall proportion of affected animals.

Analysis of Continuous Variables

Two approaches were employed to assess the significance of pairwise comparisons between exposed and control groups in the analysis of continuous variables. Organ and body weight data that had approximately normal distributions were analyzed using the parametric multiple comparison procedures of Williams (1971, 1972) and Dunnett (1955). Lung burden parameters that had skewed distributions were analyzed using the nonparametric multiple comparison methods of Shirley (1977) and Dunn (1964). Jonckheere's test (Jonckheere, 1954) was used to assess the significance of the dose-response trends and to determine whether a trend-sensitive test (Williams' or Shirley's test) was more appropriate for pairwise comparisons than a test that does not assume a monotonic dose-response trend (Dunnett's or Dunn's test).

Quality Assurance Methods

The lifetime and 2-year studies were conducted in compliance with Food and Drug Administration Good Laboratory Practice Regulations (21 CFR, Part 58). In addition, as study records were submitted to the NTP Archives, they were audited by an independent quality assurance contractor. Separate audits covering completeness and accuracy of the pathology data, pathology specimens, final pathology tables, and preliminary review draft of this NTP Technical Report were conducted. Audit procedures are presented in the reports, which are on file at the NIEHS. The audit findings were reviewed and assessed by the NTP staff so that all discrepancies had been resolved or were otherwise addressed during the preparation of this Technical Report.

Materials and Methods

TABLE 1

Experimental Design and Materials and Methods in the Lifetime and 2-Year Inhalation Studies of Talc

Study Laboratory Lovelace Inhalation Toxicology Research Institute (Albuquerque, NM)

Strain and Species Rats: F344/N Mice: B6C3F₁

Animal Source Rats: Lovelace Inhalation Toxicology Research Institute (Albuquerque, NM) Mice: Frederick Cancer Research Center (Frederick, MD)

Time Held Before Studies 3 weeks

Average Age When Placed on Studies Rats: 6-7 weeks Mice: 7 weeks

Date of First Exposure Rats: 2 July 1984 Mice: 4 June 1984

Duration of Exposure Rats: 6 hours/day, 5 days/week for 113 weeks (males) and 122 weeks (females) Mice: 6 hours/day, 5 days/week for 103-104 weeks

Date of Last Exposure

Rats: 29 August 1986 (males) and 31 October 1986 (females) Mice: 30 May 1986

Average Age When Killed

Rats: 120-121 weeks (males) and 129-130 weeks (females) Mice: 112-113 weeks

Method of Sacrifice

Injection of T-61 solution for all rats in the lifetime study, all rats designated for pathologic evaluation, and all mice. Halothane anesthesia for all rats designated for biochemical interim evaluations.

Necropsy Dates Rats: 8-9 September 1986 (males) and 10-11 November 1986 (females) Mice: 9-13 June 1986 (males) and 2-6 June 1986 (females)

Size of Study Groups 50 males and 50 females

Method of Animal Distribution Assigned to groups by weight and sex using computer-generated random numbers.

Animals per Cage 1

Method of Animal Identification Toe clip and ear tag

Diet NIH-07 Rat and Mouse Ration (Zeigler Bros., Gardner, PA) available *ad libitum* during nonexposure periods

Maximum Storage Time for Feed 90 days

TABLE 1

Experimental Design and Materials and Methods in the Lifetime and 2-Year Inhalation Studies of Talc (continued)

Water

Automatic Watering System (Edstrom), available ad libitum

Cages

Stainless steel mesh cages (Hazleton, Aberdeen, MD)

Chambers

Rats: Stainless steel multitiered whole-body exposure chambers (H2000, Hazleton Systems, Aberdeen, MD), washed weekly Mice: Stainless steel multitiered whole-body exposure chambers (H1000, Hazleton Systems, Aberdeen, MD), washed weekly

Bedding

Untreated paper cage board (Shepherd Specialties Paper, Inc., Kalamazoo, MI), changed twice a day

Filters

Room Air and Chamber Air High Efficiency Particulate Air (HEPA) Filter (prefilter and exit filter), MIL Spec MIL-F-51068C (Flanders, Washington, DC)

Animal Room Environment Rats

Average temperature: 25° C Relative humidity: 6%-100% Fluorescent light: 12 hours/day Room air changes: minimum of 10 changes/hour

Exposure Concentrations

0, 6, and 18 mg/m^3 by inhalation

Type and Frequency of Observation

Observed twice daily; body weights and clinical findings recorded at study initiation, weekly through week 13, and monthly thereafter

Necropsy

Necropsy performed on all animals. Organ weights recorded for brain, heart, right kidney, liver, and lung.

Histopathology

Complete histopathologic examinations performed on all animals. In addition to tissue masses and gross lesions, tissues examined included: adrenal gland, bone (including marrow), brain, clitoral gland (female rats), epididymis, esophagus, gallbladder (mice), harderian gland (female rats and mice), heart, kidney, large intestine (cecum, colon, rectum), larynx, liver, lung, lymph nodes (bronchial, mandibular, mediastinal, mesenteric), mammary gland, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland (male rats), prostate gland, salivary gland, seminal vesicle, skin, small intestine (duodenum, ileum, jejunum), spleen, stomach (forestomach, glandular), testis, thymus, thyroid gland, trachea, urinary bladder, and uterus.

Mice

Average temperature: 23° C

Relative humidity: 0%-100%

Fluorescent light: 12 hours/day

Room air changes: minimum of 10 changes/hour

RESULTS

Rats

4-WEEK STUDY DOSE SELECTION

Results of previous studies (Bethege-Iwansha, 1971; Wagner *et al.*, 1977; Wehner, 1980) indicated that talc produces its toxic effects after prolonged (1 year) exposure. Based on these results it was concluded that lung talc burden and not talc toxicity would be the limiting factor for dose selection for the chronic studies. For this reason the NTP chose to conduct a 4-week lung burden study rather than the conventional 13-week study.

Selection of 6 and 18 mg talc/m³ as the exposure concentrations was based on the results of a 4-week inhalation study in F344/N rats to determine lung talc burden and histopathologic changes associated with talc exposure. These studies indicated that the amount of talc retained in the lung was similar between sexes and proportional to exposure concentration (Appendix F). Microscopic examination of the lungs revealed an accumulation of alveolar macrophages in the lungs only at the 18 mg/m³ concentration. Based on these findings it was predicted that aerosol concentrations greater than 18 mg/m³ would overwhelm lung clearance mechanisms, impair lung function, and possibly shorten survival.

LIFETIME STUDY

Survival

Estimates of survival probabilities for male and female rats are shown in Table 2 and in the Kaplan-Meier curves in Figure 1. Survival of exposed male and female rats was similar to that of the controls.

Body Weights and Clinical Findings

The mean body weights of male and female rats exposed to 6 mg talc/m^3 were similar to those of

controls throughout the study (Tables 3 and 4, and Figure 2). Mean body weights of male and female rats exposed to 18 mg/m^3 were slightly lower than those of controls, particularly after week 65. The final mean body weight of males in the 18 mg/m^3 group was 4% lower than that of the controls, while the final mean body weight of females in the 18 mg/m^3 group was 14% lower than that of the controls.

All serological tests performed prior to the beginning of the study and after 6, 12, and 18 months of exposure were negative. After 24 months and 28 and 30 months (females), serological tests for Kilham rat virus (KRV), Sendai virus, and rat coronavirus/ sialodacryoadenitis virus (RCV/SDA) were positive (Table K1). The significance of the positive KRV titer is unknown since it was found in only one rat and was not observed at later times. No clinical findings or gross or microscopic lesions that could be attributed to Sendai virus or RCV/SDA infections were observed in the exposed or control groups. Since there was no clinical or pathological evidence of disease and since the infection occurred very late in the study, these subclinical infections are believed to have had no impact on the study results.

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplastic or nonneoplastic lesions of the lung, lymph node, nose, and adrenal medulla. Summaries of the incidences of nonneoplastic lesions and neoplasms, the individual animal tumor diagnoses, and the statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one group are presented in Appendix A for male rats and Appendix B for female rats.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
lifetime Study Groups			
Animals initially in study	49	50	50
Aoribund	23	19	20
atural deaths	17	17	14
nimals surviving to study termination ^a	9	14	16
ercent probability of survival at end of st	udy ^b 18	28	32
lean survival (days) ^c	696	707	711
urvival analysis ^d	P=0.217N	P=0.422N	P=0.192N
pecial Study Groups ^e			
Animals initially in study	22	22	22
loribund	9	5	6
latural deaths	2	2	6
cheduled evaluation	11	15	10
Females			
ifetime Study Groups			
Animals initially in study	50	50	50
íissing ^f	0	1	0
Aoribund	28	17	27
latural deaths	11	19	14
Animals surviving to study termination	11	13	9
Percent probability of survival at end of s	tudy 22	28	18
Mean survival (days)	743	753	758
survival analysis	P=0.846	P=0.805N	P=0.977
Special Study Groups			
Animals initially in study	22	. 22	22
Moribund	5	3	8
Natural deaths	2	1	2
Scheduled evaluation	15	18	12

TABLE 2 Survival of Rats in the Lifetime Inhalation Study of Talc

^a Includes animals that died during the last week of the study
^b Kaplan-Meier determinations
^c Mean of all deaths (uncensored, censored, and terminal sacrifice).
^d The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the exposed columns. A negative trend or lower mortality in a group is indicated by N.
^e Not included in survival analyses
^f Censored from survival analyses

Results

27

.

TABLE 3

Mean Body Weights and Survival of Male Rats in the Lifetime Inhalation Study of Talc

Weeks	0	0 mg/m^3		6 mg/m^3			18 mg/m³			
on		Number of	Av. Wt.	Wt. (% of	Number of	Av. Wt.	Wt. (% of	Number of		
Study (g)	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors		
1	118	72	121	103	72	119	101	72		
2	174	72	174	100	72	174	100	72		
3	201	72	200	100	72	202	101	72		
4	225	72	215	95	72	219	97	72		
5	237	72	239	101	72	238	101	72		
6	250	72	252	101	72	251	100	72		
7	265	72	263	99	72	263	99	72		
8	275	72	270	98	72	269	98	72		
9	287	72	280	9 8	72	281	98	72		
10	297	72	293	99	72	293	99	72		
11	304	72	300	99	72	297	98	72		
13	317	72	315	100	72	312	9 8	72		
17	339	72	338	100	72	331	98	72		
21	359	72	355	99	72	351	98	72		
25	374	71	370	· 99	72	367	98	72		
29 ^a	380	68	378	99	68	369	97	69		
33	398	68	393	99	68	386	97	69		
38	407	68	405	100	68	393	97	68		
41	413	68	412	100	68	401	97	68		
45	421	68	420	100	68	410	97	68		
49 ^a	431	63	428	99	65	418	97	65		
53	434	62	432	100	65	422	97	65		
57	435	62	432	99	65	424	97	65		
61	443	62	442	100	65	430	97	65		
65	450	61	444	99	65	432	96	65		
69	448	61	440	98	65	429	96	65		
73	453	60	442	98	65	432	95	63		
77	452	60	441	98	63	429	95	62		
81 ^a	444	55	434	98	57	423	95	59		
85	450	49	434	97	53	424	94	57		
89	447	47	437	98	50	424	95	51		
93	434	43	429	99	48	408	94	46		
97	429	40	427	100	41	407	95	40		
101	410	34	395	96	40	394	96	34		
105 ^a	390	29	391	100	35	385	99	28		
109	377	18	390	104	19	376	100	24		
113	358	11	389	109	15	342	96	21		
ean for w	eks									
1-13	246		244	99		243	99			
14-52	391		389	99		381	97			
3-113	428		425	99		411	96			

^a Interim evaluations occurred during weeks 27, 47, 79, and 105.

Results

Mean Body Weights and Survival of Female Rats in the Lifetime Inhalation Study of Talc

Weeks		mg/m ³		6 mg/m ³			<u>18 mg/m³</u>	
on		Number of	Av. Wt.	Wt. (% of	Number of	Av. Wt.	Wt. (% of	Number of
Study (g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors	
1	97	72	101	104	72		101	72
2	126	72	127	101	72	125	99	72
3	136	72	139	102	72	138	101	72
4	149	72	144	97	72 ^a	145	97	72
5	153	72	159	104	72	154	100	72
6	160	72	165	103	72	160	101	72
7	165	72	169	102	72	166	101	72
8	168	72	171	102	72	168	100	72
9	174	72	176	101	72	173	100	72
10	178	72	182	102	72	179	101	72
11	181	72	184	102	72	181	100	72
13	186	72	191	103	72	187	101	72
17	194	72	201	104	72	197	101	72
21	206	72	211	103	72	207	101	72
25	213	72	216	101	72	214	100	72
29 ^b	215	68	219	101	69	213	99	69
33	213	68	227	101	69	213	99	69
38	233	68	237	101	69	229	98	69
41	239	68	242	102	69	235	98	69
45	248	68	251	101	69	233	98 98	69
49 ^b	256	65	259	101	66	252	98	66
53	236 266	65	239	101	66	232 260	98 98	
53 57	200 276	62	270	102	66	269	98 98	66 65
61	285	62	288	101	66	209	98 97	65
65	200 290	61	288	100	66	278	96	65
69	296	61	200	99	66	281	90 95	
73	300	61	292				95 95	65
	303			98 98	64	284		65
77 81 ^b		61 57	297 201	98 100	62	284	94	64
	300	57	301	100	55	283	94	59
85	306	54	302	99 99	55	283	93	57
89 82	307	52	305	99	55	287 287	94	53
93 07	307	49	305	99	53	286	93	49
97 101	303	46	304	100	50	281	93	43
101	291	44	296	102	47	271	93	39
105 ^b	288	37	295	103	43	271	94	33
109	290	32	288	99	28	273	94	26
113	289	24	273	94	24	260	90	23
117	283	18	264	93	18	256	90	21
121	277	13	264	95	14	231	84	13
123	268	13	260	97	13	231	86	10
ean for we	eks							
1-13	156		159	102		156	100	
14-52	225		229	102		223	99	
3-123	291		288	99		271	93	

^a The number of animals weighed for this week is fewer than the number of animals surviving.
 ^b Interim evaluations occurred during weeks 27, 47, 79, and 105.

Talc, NTP TR 421

FIGURE 2 Growth Curves for Male and Female Rats Administered Talc by Inhalation for Their Lifetime

Results

Lung: Absolute and relative lung weights of male rats exposed to 18 mg/m^3 were significantly greater than those of controls at the 6-, 11-, and 18-month interim evaluations and at the end of the study, while those of female rats exposed to 18 mg/m^3 were significantly greater than those of controls at the 11-, 18-, and 24-month interim evaluations and at the end of the study (Appendix E). Although lung weights of males exposed to 6 mg/m^3 were not significantly different from controls at any of the interim evaluations, those of females at the 18-month interim evaluation and at the end of the lifetime study were significantly greater.

Pulmonary lesions in male and female rats occurring in response to the inhalation of talc aerosols were generally similar at the interim evaluations and the end of the study, but varied in incidence, extent, and severity with exposure concentration and duration (Table 5). At necropsy, the lungs of exposed rats had multiple small, round, pale white lesions visible through the visceral pleura. These lesions were generally larger and more extensive in rats exposed to 18 mg/m^3 than in those exposed to 6 mg/m^3 , and at the end of the study than at the earlier interim evaluations.

At the 6-month interim evaluation, the pulmonary lesions consisted of multiple, focal accumulations of alveolar macrophages and infrequent neutrophils within alveolar lumens (inflammation, granulomatous). When viewed under polarized light, the cytoplasm of the alveolar macrophages contained birefringent particles believed to be talc. In two female rats, the alveolar epithelium in some affected areas had increased numbers of low cuboidal type II pneumocytes (alveolar epithelial hyperplasia), but there was no apparent increase in the amount of collagen within the alveolar septa. The peribronchial lymphoid aggregates of several rats also contained focal accumulations of macrophages that varied from a few to approximately 10 cells in the plane of section (peribronchial hyperplasia, histiocytic).

In contrast to the first interim evaluation, hyperplasia of type II pneumocytes was associated with the intraalveolar accumulations of macrophages in all exposed rats examined at 11 months. Moreover, in the most severely affected foci, the alveolar septa were thickened by the accumulation of reticulin and collagen fibers (interstitial fibrosis). The lesions in rats examined at 18 and 24 months and in core study rats were similar but generally larger and more extensive (Plates 1 and 2). Although alveolar macrophages predominated in the inflammatory lesions, varying numbers of neutrophils were also present and the interstitium contained infiltrates of mononuclear inflammatory cells (lymphocytes and macrophages). Moreover, epithelioid macrophages and multinucleated giant cells were also observed within foci of inflammation at these later time points. In some rats, there were well-delineated areas of fibrosis that completely obliterated the alveoli (Plates 3 and 4). Hyperplasia of the alveolar epithelium was often prominent at the margins of these lesions (Plate 5). The affected cells were cuboidal or columnar with prominent nucleoli and exhibited some pleomorphism.

In addition to the changes described above, squamous metaplasia of the alveolar epithelium was observed in two male and eight female rats in the 18 mg/m³ groups of the core study (Table 5). The metaplasia was usually associated with inflammation and was characterized by the replacement of alveolar type I and type II pneumocytes by well-differentiated keratinized squamous cells. Squamous cysts were also observed in three males and seven females in the 18 mg/m³ groups and in one 6 mg/m³ female. The cysts had outer walls of well-differentiated, stratified squamous epithelium without cellular atypia and central lumens often containing sloughed keratin.

While it was the consensus of the Pathology Working Group that the squamous cysts represented a form of squamous metaplasia, there was some uncertainty regarding the biological potential of these lesions. Clearly, squamous metaplasia in the upper respiratory tract induced by some chemicals is preneoplastic. Currently, however, there is little known about the potential of these squamous cysts for autonomous growth or for progression to malignancy.

Although an alveolar/bronchiolar adenoma was observed in one 6 mg/m³ female at the 18-month interim evaluation, the remainder of the pulmonary neoplasms were seen in rats in the core study (Table 6). The incidences of alveolar/bronchiolar adenoma, carcinoma, and adenoma or carcinoma (combined) in female rats exposed to 18 mg/m³ were significantly greater than those of controls. A squamous cell carcinoma was also observed in an 13 mg/m^3 female. Alveolar/bronchiolar neoplasms occurred in two males exposed to talc aerosols, one at each of the exposure concentrations, and none were seen in control males. Because of the low number of affected male rats, these neoplasms could not be attributed to talc exposure.

TABLE 5

Incidences of Selected Lung Lesions in Rats in the Lifetime Inhalation Study of Talc

	Male			Female		
	0 mg/m ³	6 mg/m ³	18 mg/m ³	0 mg/m ³	6 mg/m ³	18 mg/m ³
6-Month Interim Evaluation			<u></u>		<u> </u>	
Lung ^a	3	3	3	3	3	3
Inflammation, Granulomatous ^b	0	3* (1.3) ^c	3* (2.3)	0	3* (1.3)	3* (3.0)
Peribronchial Hyperplasia, Histiocytic	0	1 (1.0)	2 (2.0)	0	1 (1.0)	2 (1.0)
Hyperplasia, Alveolar Epithelium	0	0	0	0	1 (1.0)	1 (1.0)
11-Month Interim Evaluation						
Lung	2	3	3	3	3	3
Inflammation, Granulomatous	0	3* (1.7)	3* (3.0)	0	3* (1.7)	3* (2.7)
Peribronchial Hyperplasia, Histiocytic	0	0	0	0	1 (1.0)	2 (1.5)
Hyperplasia, Alveolar Epithelium	0	3* (2.0)	3* (1.7)	0	3* (1.0)	3* (2.3)
Interstitium, Fibrosis, Focal	0	2 (1.0)	3* (1.0)	0	2 (1.0)	3* (1.0)
18-Month Interim Evaluation						
Lung	3	3	2	3	3	3
Inflammation, Granulomatous	1 (1.0)	3 (1.3)	2 (2.0)	0	3* (1.7)	3* (2.0)
Peribronchial Hyperplasia, Histiocytic	0	2 (1.0)	2 (1.0)	0	1 (1.0)	2 (1.0)
Hyperplasia, Alveolar Epithelium	1 (1.0)	3 (1.0)	2 (1.0)	1 (1.0)	3 (1.0)	3 (1.3)
Interstitium, Fibrosis, Focal	0 ` ´	3* (1.0)	2 (1.5)	0	3* (1.3)	3* (1.7)
Alveolar/bronchiolar Adenoma	0	0	0	0	1	0
24-Month Interim Evaluation						
Lung	3	6	2	5	9	3
Inflammation, Granulomatous	0	6* (1.5)	2 (2.0)	1 (1.0)	9**(1.4)	3 (1.7)
Peribronchial Hyperplasia, Histiocytic	0	1 (1.0)	1 (2.0)	0	2 (1.0)	0
Hyperplasia, Alveolar Epithelium	0	6* (1.0)	2 (1.5)	1 (1.0)	9**(1.4)	3 (2.3)
Interstitium, Fibrosis, Focal	0	5* (1.0)	2 (1.5)	0	8**(1.4)	3* (3.0)
Core Study						
Lung	49	50	50	50	48	50
Inflammation, Granulomatous	2 (1.0)	50**(1.6)	49**(2.3)	2 (1.5)	47**(1.5)	50**(2.8)
Peribronchial Hyperplasia, Histiocytic	0	12**(1.3)	8** (1.9)	0	8** (1.3)	9**(1.3
Alveolar Epithelium, Hyperplasia	5 (2.0)	26**(1.3)	38**(1.7)	2 (1.0)	27**(1.2)	47**(2.1)
Alveolus, Metaplasia, Squamous	0	0	2 (1.0)	0	0	8** (1.1
Interstitium, Fibrosis, Focal	1 (1.0)	16**(1.2)	33**(1.8)	1 (1.0)	24**(1.5)	45**(2.1)
Cyst (Squamous)	0	0	3	0	1	7**

* Significantly different (P≤0.05) from the control by Fisher's exact test (interim evaluation) or logistic regression (lifetime study)

** P≤0.01

;

a Number of animals with lung examined microscopically.
 b Number of animals with lesion.

^c Average severity grades of lesions in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked

TABLE 6

Incidences of Lung Neoplasms in Rats in the Lifetime Inhalation Study of Talc

		Male		Female			
	0 mg/m ³	6 mg/m ³	18 mg/m ³	0 mg/m ³	6 mg/m ³	18 mg/m ³	
Core Study				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			
Alveolar/bronchiolar Adenoma							
Overall rates ^a	0/49 (0%)	1/50 (2%)	1/50 (2%)	1/50 (2%)	0/48 (0%)	9/50 (18%)	
Terminal rates ^b	0/9 (0%)	0/14 (0%)	1/16 (6%)	0/11 (0%)	0/13 (0%)	1/9 (11%)	
First incidence (days)	_d``´	781	799 (Ť)	805	-	716	
Logistic regression test ^c	P=0.494	P=0.527	P=0.615	P<0.001	P=0.503N	P=0.010	
Alveolar/bronchiolar Carcinom	а						
Overall rates	0/49 (0%)	0/50 (0%)	1/50 (2%)	0/50 (0%)	0/48 (0%)	5/50 (10%)	
Terminal rates	0/9 (0%)	0/14 (0%)	1/16 (6%)	0/11 (0%)	0/13 (0%)	3/9 (33%)	
First incidence (days)	_	_ , ,	799 (Ť)	-	-	828	
Logistic regression test	P=0.370	-	P=0.615	P=0.003	-	P=0.028	
Alveolar/bronchiolar Adenoma	or Carcinoma						
Overall rates	0/49 (0%)	1/50 (2%)	1/50 (2%)	1/50 (2%)	0/48 (0%)	13/50 (26%)	
Terminal rates	0/9 (0%)	0/14 (0%)	1/16 (6%)	0/11 (0%)	0/13 (0%)	4/9 (44%)	
First incidence (days)	-	781 `	799 (T)	805 `	-	716` ´	
Logistic regression test	P=0.494	P=0.527	P=0.615	P<0.001	P=0.503N	P<0.001	
Squamous Cell Carcinoma							
Overall rates	0/49 (0%)	0/50 (0%)	0/50 (0%)	0/50 (0%)	0/48 (0%)	1/50 (2%)	

(T) Terminal sacrifice

^a Number of neoplasm-bearing animals/number of animals examined microscopically.

^b Observed incidence at terminal kill

^c Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The logistic regression test regards these lesions as nonfatal. A lower incidence in an exposure group is indicated by N.

^d Not applicable; no neoplasms in animal group

The adenomas were irregular, circumscribed masses consisting of cuboidal to columnar epithelium arranged in alveolar, tubular, or papillary formations and separated by varying amounts of collagenous connective tissue. The neoplastic epithelium generally formed a single layer and was relatively uniform with minimal cellular atypia. The carcinomas were distinguished from the adenomas on the basis of having greater cellular pleomorphism and atypia, but they exhibited little evidence of invasion and none metastasized (Plates 6 and 7). In several benign and malignant neoplasms, the central portion of the mass was composed primarily of dense collagen and the epithelial component was located at the periphery. The extent of fibrosis in these neoplasms is not typical of spontaneous alveolar/bronchiolar neoplasms in control F344/N rats. The fibrous connective tissue was not interpreted as being a primary scirrhous response to the neoplastic epithelium, but rather a component of the prolonged inflammatory reaction to talc.

Lymph node: Histiocytic hyperplasia, consisting of accumulations of macrophages in the subscapular and medullary sinuses, occurred in the bronchial lymph nodes (male: 0 mg/m^3 , 0/41; 6 mg/m^3 , 44/48; 18 mg/m^3 , 46/49; female: 0/46, 40/47, 45/47) and in the mediastinal lymph nodes of rats exposed to talc (male: 0/48, 40/49, 43/47; female: 0/47, 33/44, 40/47) (Tables A4 and B4). The macrophages had foamy cytoplasm filled with birefringent particles of talc.

Nose: Hyperplasia of the respiratory epithelium of the nasal mucosa occurred in three male rats exposed to 6 mg/m^3 and $14 \text{ male rats exposed to } 18 \text{ mg/m}^3$, but not in the control group (Table A4). The lesion consisted of an increase in the number of goblet cells

primarily in the mucosa of the nasal septum. Hyperplasia of the respiratory epithelium also occurred in several female rats, but the incidences in the exposed groups were not significantly increased (Table B4).

During the pathology review process, it was noted that male and female rats in control and exposed groups had large eosinophilic droplets in the cytoplasm of the olfactory and, to a lesser extent, the respiratory epithelium. The lesion (cytoplasmic alteration) was focal or multifocal and usually located near the junction of the two epithelial types. Although present in the controls, the incidences were increased in exposed rats (males: 3/49, 18/48, 40/47; females: 5/48, 23/45, 46/48).

Adrenal medulla: Focal adrenal medulla hyperplasia or pheochromocytoma were observed in rats at the various interim evaluations, but the number of affected rats was too small to draw definitive conclusions. However, in the core study, benign, malignant, or complex (combined) pheochromocytomas occurred with a significant positive trend in male and female rats, and the incidences in the 18 mg/m³ groups were significantly greater than those of controls by pairwise comparisons (Table 7). Moreover, bilateral pheochromocytomas were more frequent in exposed male rats than in controls (Tables A3 and B3). Although adrenal medulla hyperplasia occurred with similar frequency among exposed and control female rats, the incidences of hyperplasia in exposed males were significantly lower than controls. The lower incidences in exposed males are possibly due, in part, to the reduced amount of normal medullary tissue (e.g., medullary tissue without a pheochromocytoma) in which to observe hyperplasia.

Focal hyperplasia and pheochromocytoma constitute a morphological continuum. Focal hyperplasia consisted of irregular, small foci of small to normal sized medullary cells arranged in packets or solid clusters slightly larger than normal; compression of the surrounding tissue was minimal or absent. Pheochromocytomas were generally larger than focal hyperplasia and caused variable compression of the surrounding parenchyma; many obscured much or all of any remaining normal medullary tissue. The neoplastic cells were arranged in variably sized aggregates, large solid clusters, and/or trabecular cords several layers thick separated by a delicate fibrovascular stroma. The larger neoplasms usually exhibited greater cellular pleomorphism and atypia than smaller neoplasms. Because the only morphological criterion that unambiguously distinguishes malignant from benign pheochromocytomas is frank invasion or metastasis, a diagnosis of malignant pheochromocytoma was made only when there was invasion of the capsule. Complex pheochromocytomas consisted of an admixture of neoplastic pheochromocytes and neuroblasts, ganglion cells, and/or Schwann cells.

Lung Talc Burden

The lung talc burdens of exposed rats, normalized to control lung weight or exposure level, are presented in Tables G2 and G3. The lung talc burden normalized to control lung weight (mg talc/g control lung) adjusts for differences in lung weight between sexes or at different ages. The lung burden normalized to control lung weight and exposure level adjusts for exposure level to determine the effect of exposure concentration on talc clearance from the lung.

The data, normalized to control lung weight, show that talc burdens of rats exposed to 6 mg/m^3 were similar between males and females and increased progressively from 6 to 24 months (Table G2). Lung talc burdens in females exposed to 18 mg/m³ also increased progressively from 6 to 24 months. In contrast, lung talc burdens of males at the 18 mg/m³ exposure concentration increased from 6 to 18 months, but remained about the same at 18 and 24 months.

The exposure-normalized data show that lung talc burdens were generally proportional to exposure concentration at each interim evaluation. The exposure-normalized lung burdens of rats exposed to 6 or 18 mg/m³ were generally similar at each of the interim evaluations except for slight increases for males at 6 and 11 months and females at 6 months (Table G3). This suggests that either clearance of talc was not substantially impaired by increasing the exposure concentration, or that clearance of talc was impaired similarly at both exposure levels.

به بعدي وال

Results

TABLE 7

Incidences of Neoplasms and Nonneoplastic Lesions of the Adrenal Medulla in Rats in the Lifetime Inhalation Study of Talc

		Male		Female		
	0 mg/m ³	6 mg/m ³	18 mg/m ³	0 mg/m ³	6 mg/m ³	18 mg/m ³
11-Month Interim Evaluation	<u></u>			· · · ·		
Adrenal Medulla ^a	2	3	3	3	3	3
Hyperplasia ^b	0	0	0	0	0	0
Pheochromocytoma, Benign	1	0	0	0	0	0
18-Month Interim Evaluation						
Adrenal Medulla	3	3	2	2	3	3
Hyperplasia	0	1	0	0	1	1
Pheochromocytoma, Benign	0	0	1	0	0	0
24-Month Interim Evaluation					! .	
Adrenal Medulla	3	6	2	5	9	3
Hyperplasia	2	2	õ	3	Ō	Ō
Pheochromocytoma, Benign	0	2	0	0	4	0
Pheochromocytoma, Benign,						
Bilateral	1	1	2	0	1	3
Core Study					•	
Adrenal Medulla	49	48	47	48	47 ·	49
Hyperplasia	20	8**	9°	22	20	16
Pheochromocytoma, Benign					· .	
Overall rates ^c	25/49 (51%)	30/48 (63%)	36/47 (77%)	13/48 (27%)	14/47 (30%)	18/49 (37%)
Terminal rates ^d	6/9 (67%) ⁽	11/14 (79%)	16/16 (100%)	5/11 (45%)	5/13 (38%)	6/9 (67%)
First incidence (days)	429	558	614	678 ` ´	705	697
Logistic regression test ^e	P=0.007	P=0.213	P=0.009	P=0.185	P=0.541	P=0.225
Pheochromocytoma, Malignant					•	
Overall rates	3/49 (6%)	3/48 (6%)	7/47 (15%)	0/48 (0%)	1/47 (2%)	10/49 (20%)
Terminal rates	1/9 (11%)	1/14 (7%)	3/16 (19%)	0/11 (0%)	0/13 (0%)	3/9 (33%)
First incidence (days)	670	544	645	_f ` ´	849	784
Logistic regression test	P=0.096	P=0.662	P=0.178	P<0.001	P=0.509	P=0.001
Pheochromocytoma, Complex						
Overall rates	0/49 (0%)	2/48 (4%)	1/47 (2%)	0/48 (0%)	0/47 (0%)	0/49 (0%)
Terminal rates	0/9 (0%)	1/14 (7%)	0/16 (0%)	0/11 (0%)	0/13 (0%)	0/9 (0%)
First incidence (days)	-	558	743	-	-	-
Logistic regression test	P=0.486	P=0.230	P=0.503	-	-	-
Pheochromocytoma, Benign, Mali			0.00	10/10 /08/23	1.115 (000)	
Overall rates	26/49 (53%)	32/48 (67%)	37/47 (79%)	13/48 (27%)	14/47 (30%)	23/49 (47%)
Terminal rates	7/9 (78%) 420	12/14 (86%)	16/16 (100%)	5/11 (45%)	5/13 (38%) 705	8/9 (89%)
First incidence (days)	429 P=0.007	544 R=0 147	614 P=0.006	678 P=0.014	705 P=0.541	697 P=0.024
Logistic regression test	r=0.00/	P = 0.147	r=0.000	r≡0.014	r=0.341	r=0.024

* Significantly different (P≤0.05) from the control by logistic regression

°° P≤0.01

^a Number of animals with adrenal medulla examined microscopically.

^b Number of animals with lesion.

^c Number of animals with neoplasm per number of animals with adrenal medulla examined microscopically.

d Observed incidence at terminal kill

e Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The logistic regression test regards these lesions as nonfatal.

f Not applicable; no neoplasms in animal group

Pulmonary Function

Results of the respiratory function measurements are presented in Tables G9 through G41. A progressive dose and time-related impairment of respiratory function was observed in both male and female rats exposed to talc. The impairment was restrictive in nature, consisting of reduced lung volume, increased lung stiffness, reduced gas exchange efficiency, and nonuniform intrapulmonary gas distribution.

6-Month Interim Evaluation: At 6 months there were few significant differences between values for rats exposed to 18 mg/m³ and controls, and no significant differences between values for rats exposed to 6 mg/m³ and controls. There were, however, slight trends among both males and females toward smaller lung volumes and reduced forced expiratory flow. Total lung capacity, vital capacity, and forced vital capacity were all slightly smaller in the 18 mg/m³ groups, but only the forced vital capacity of females differed significantly from controls. All forced expiratory flow rates were lower in the 18 mg/m³ groups, but only those of males were significantly lower than those of the controls. The reduced flow rates were partly related to the smaller lungs, but even volume-normalized flow tended to be reduced in the exposed rats. The reduced flow rates most likely reflected changes in small airways. Total pulmonary resistance, which primarily reflects flow resistance in large airways, was unaffected.

11-Month Interim Evaluation: Functional alterations were clearly apparent in exposed males and females after 11 months. Total lung capacity, vital capacity, and forced vital capacity were significantly lower in males and females exposed to 18 mg/m³ and males exposed to 6 mg/m³. The reduced volume was accompanied by significant reductions in quasistatic lung compliance in males, and both dynamic and quasistatic lung compliance in females. The volume and compliance changes indicate a stiffening of the lung (or increase in elastic recoil). Forced expiratory flows during mid to late expiration were slightly lower in exposed males than in controls, but the differences were not significant.

A reduction of alveolar-capillary gas exchange efficiency was reflected by a significant reduction of carbon monoxide diffusing capacity in the 18 mg/m³ male and female rat groups. Although diffusing capacity is somewhat volume dependent, the reduced lung volume did not completely account for the change. Volume-normalized diffusing capacity was also significantly reduced in male and female rats exposed to 18 mg/m^3 .

18-Month Interim Evaluation: Total lung capacity, vital capacity, and forced vital capacity of all exposed groups of male and female rats were significantly lower than those of controls at 18 months, except for vital capacity of males exposed to 6 mg/m^3 . In females exposed to 18 mg/m³, these decreases were accompanied by significant increases in resting (functional residual capacity) and minimum (residual) volumes. The decrease in volume at maximum inflations (total lung capacity, vital capacity, and forced vital capacity) reflected the inability of the stiffened lungs to stretch normally. Volumenormalized forced expiratory flows of exposed male and female rats were generally greater than those of controls, due to the reduced lung volume and little or no reduction in flow.

All parameters of lung compliance in male and female rats exposed to 18 mg/m^3 were also significantly lower than controls at 18 months, while two of the three compliance parameters were significantly lower at the 6 mg/m³ exposure level. The carbon monoxide diffusing capacities in males and females exposed to 18 mg/m^3 were significantly lower than controls at 18 months, which is consistent with the findings at 11 months.

The slope of phase III of the single-breath N_2 washout of male and female rats exposed to 18 mg/m³ was significantly greater than controls, apparently due to uneven mixing of oxygen with residual nitrogen in the lung during maximal inflation. This finding reflects a nonuniform distribution of inhaled air.

24-Month Interim Evaluation: Because of reduced survival in all groups of male and female rats, fewer animals remained alive at 24 months for evaluation of pulmonary function. Because of the smaller group sizes (three rats each from the control and 18 mg/m³ groups were evaluated), few of the differences were statistically significant. Nevertheless, there were reductions in lung volume parameters (total lung capacity, vital capacity, and forced vital capacity), lung compliance, and carbon monoxide diffusing capacity in exposed male and female rats consistent with the findings at the earlier time periods.
Results

The progression of the functional impairments over the course of the study are illustrated in Figure 3, which plots the data for three functional parameters obtained from the three male and three female rats in the 18 mg/m^3 exposure groups surviving until 24 months.

Bronchoalveolar Lavage and Lung Biochemistry

Following the completion of the pulmonary function tests at the 24-month interim evaluation, bronchoalveolar lavage was performed on the remaining rats in these groups and the lavage fluid was evaluated for enzymes, protein, and cell content as shown in Tables G4 and G5. Values for glucose-6-phosphate dehydrogenase and glutathione peroxidase are not reported because they were below the limits of detection.

The values for β -glucuronidase, alkaline phosphatase, lactate dehydrogenase, and total protein in both male and female rats exposed to 18 mg/m³ talc were significantly greater than those of controls. In addition, females in this group had a significantly higher value of glutathione reductase. Both male and female rats exposed to 6 mg/m³ talc had significantly greater β -glucuronidase values, but only female rats exposed to 6 mg/m³ had higher values of alkaline phosphatase, lactate dehydrogenase, and protein. The percentages of polymorphonuclear leukocytes in the lavage fluid were also significantly greater in male and female rats exposed to talc at both concentration levels. The increases in enzymes, total protein, and leukocytes are consistent with the morphological findings of a chronic active inflammatory process and cellular degenerative changes.

The viability and phagocytic activity of alveolar macrophages recovered from the lungs of rats exposed to 6 or 18 mg talc/m³ or from the chamber controls ranged from approximately 60% to 80%. Neither the viability nor phagocytic activity were significantly affected by exposure to talc (Table G6).

Table G7 summarizes the effects of talc exposure on collagen metabolism and protein synthesis. Collagenous peptides in lavage fluid and collagen production (% newly synthesized protein) from female rats, but not males, exposed to 6 or 18 mg/m³ were significantly greater than controls. Total lung collagen from males and females at both exposure levels was also significantly greater. Values for non-collagenous protein synthesis were significantly greater in males exposed to 6 or 18 mg/m³ and in females exposed to 18 mg/m³ than in controls.

Lung proteinase activity, as determined from lavage fluid and homogenate supernatant fluid, is shown in Table G8. Acid proteinase activity, primarily cathepsin D, was significantly greater in both males and females exposed to 6 or 18 mg/m³ than in controls. Neutral proteinase activity in homogenate supernatant fluid was also greater in rats exposed to talc. The activity was mostly serine proteinase, like that of polymorphonuclear leukocyte elastase and cathepsin G.

FIGURE 3

Effect of 18 mg Talc/m³ Exposure on Respiratory Function of Male and Female Rats Surviving to 104 Weeks

38

Results

MICE

4-WEEK STUDY DOSE SELECTION

Selection of 6 and 18 mg talc/m³ as the exposure concentrations was based on the results of a 4-week inhalation study in $B6C3F_1$ mice to determine lung talc burden and histopathologic changes associated with talc exposure. These studies indicated that the amount of talc retained in the lung was similar between sexes and proportional to exposure concentration (Appendix K). Microscopic examination of the lungs revealed an accumulation of alveolar macrophages in the lungs only at 18 mg/m³. Based on these findings it was predicted that aerosol concentrations greater than 18 mg/m³ would overwhelm lung clearance mechanisms, impair lung function, and possibly shorten survival.

2-Year Study

Survival

Estimates of survival probabilities for male and female mice are shown in Table 8 and in the Kaplan-Meier curves in Figure 4. Survival of male and female mice exposed to talc was similar to that of the controls throughout most of the study. One female mouse exposed to 18 mg/m^3 died on day 20 and six others died of undetermined causes on day 28 of the study.

Body Weights and Clinical Findings

Mean body weights of male and female mice exposed to talc were similar to controls throughout the study (Tables 9 and 10, and Figure 5). There were no clinical findings in exposed mice that could be attributed to exposure to talc.

Prior to the start of the study and after 6 months of exposure, all serological tests were negative. At 12 months, 8/24 mice were positive for mouse hepatitis virus (MHV), but retesting of the serum by the enzyme linked immunosorbent assay (ELISA) showed all to be negative (Table K1). At the end of the study, 7/30 were positive for *Mycoplasma arthritidis* and 21/30 were positive for epizootic diarrhea of infant mice (EDIM). No clinical signs or gross or microscopic evidence of disease associated with *M. arthritidis* was observed. EDIM does not cause clinical disease or pathology in adult mice.

TABLE	8
-------	---

Survival of Mice in the 2-Year Inhalation Study of Talc

· ·	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			· · · · · · · · · · · · · · · · · · ·
Core Study Groups Animals initially in study	50	50	50
Missexed ^a	1	1	. 0
Missing ^a	2	1	ů 1
Moribund	1	2	3
Natural deaths	16	18	14
Animals surviving to study termination	30	28	.32
Percent probability of survival at end of study		58	66
		58 648	-00 645
Mean survival (days) ^c	648	048	045
Survival analysis ^d	P=0.886N	P=0.771	P=1.000N
Special Study Groups ^e			
Animals initially in study	39	40	40
Missing	0	1	1
Moribund	0	1	1
Natural deaths	4	5	7
Scheduled evaluation	35	33	31
	,		
Females			
	- ''		•
Core Study Groups			:
Animals initially in study	50	50	50
Culled ^a	0	1	0
Missing ^a	1	1	Ò
Moribund	2	4	4
Natural deaths	17	21	21
Animals surviving to study termination	30	23	25
Percent probability of survival at end of study		48	50
Mean survival (days)	663	648	590
Survival analysis	P=0.321	P=0.322	P=0.286
Special Study Groups		· · · · · · · · · · · · · · · · · · ·	
Animals initially in study	39	40	40
Moribund	2	5	, 1
Natural deaths	7.	5	10
Scheduled evaluation	30	30	

a Censored from survival analyses

b Kaplan-Meier determinations

С Mean of all deaths (uncensored, censored, and terminal sacrifice).

d The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the exposed columns. A negative trend or lower mortality in an exposure group is indicated by Ň.

• Not included in survival analyses

Results

FIGURE 4 Kaplam-Meier Survival Curves for Male and Female Mice Administered Talc by Inhalation for 2 Years

TABLE 9
Mean Body Weights and Survival of Male Mice in the 2-Year Inhalation Study of Talc

Week	Week <u>0 mg/m³</u>			6 mg/m ³			18 mg/m^3	•
on		Number of	Av. Wt.	Wt. (% of	Number of	Av. Wt.	Wt. (% of	Number o
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
						··· ·	······································	
1	23.3	50	23.8	102	50	23.7	102	50
2	24.0	48	23.9	100	49	24.3	101	50
3	25.0	47	25.4	102	49	24.8	. 99	50
4	25.4	47	26.4	104	49	25.0	98 .	50
5	26.1	47	26.2	100	49	26.6	102	49
6	27.3	47	27.4	100	49	26.9	99	49
7	27.8	47	27.4	99	49	27.5	99	49
8	25.8	47	27.9	108	49	29.7	115	49
9	28.1	47	28.3	101	48	28.5	101	49
10	28.8	47	28.5	99	48	28.7	100	49
11	29.1	47	29.5	101	48	28.3	97	49
12	29.0	47	29.2	101	48	28.7	99	49
.13	30.1	47	30.5	101	48	29.8	99	49
17	31.5	47	30.8	98	48	31.0	98	47
21	32.2	47	30.9	96	48	31.4	98	47
25	33.4	47	31.8	95	48	32.5	97	46
29	33.0	47	32.3	98	48	32.7	99	46
33	33.9	47	33.3	98	48	33.2	98	46
37	34.7	47	34.2	99	46	33.8	97	46
42	35.7	47	35.4	99	46	34.7	97	46
45	36.9	47	36.0	98	46	35.7	97	46
49	36.4	47	35.5	98	45	35.5	98	46
53	36.4	47	36.6	101	44	36.3	100	46
53 57	36.9	47	35.8	97	44	35.7	97	46
61	36.8	46	33.8 37.6	102	43	36.6	100	45
65	30.8 37.2	40	37.0	102	43	36.4	98	43
		44 44	37.1		43	36.0	98 99	44
69 73	36.5 37.2	44 42	36.5	102 98	43	35.1	99 94	42 42
73 77	37.2		36.5 35.1	98 95	43	35.0	94 95	42 42
	30.9 37.6	41 40	35.1 36.8	95 98	43 40	35.0	93 94	42 39
81 85	37.0 37.0	35	30.8 37.1	100	40 37	35.2	94	39
		35 35			37		93 95	39 38
89 02	36.7		35.9	98 104	34	34.8 33.4		38
93 97	34.9	34	36.3	104			96	
97	34.2	33	35.2	103	34	33.3	97	36
101	33.9	31	34.1	101	. 31	33.3	98	36
an for w	eks							* 4 - 4 *
1-13	26.9		27.3	101	;	27.1	101	•
4-52	34.2		33.4	98		33.4	98 .	
8-101	36.3		36.2	100		35.1	97	۰.

Results

Table 10

Mean Body Weights and Survival of Female Mice in the 2-Year Inhalation Study of Talc

Week0 mg/m ³				6 mg/m ³			18 mg/m^3	
on		Number of	Av. Wt.	Wt. (% of	Number of	Av. Wt.	Wt. (% of	Number of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	19.3	50	19.3	100	50	19.6	102	50
2	19.9	50	20.1	100	50	20.5	102	50
3	21.0	50	21.3	101	50	21.1	105	50
4	22.4	50	22.5	100	49	21.5	96	49
5	22.5	49	22.5	100	49	23.2	103	43
6	24.4	49	23.7	97	49	23.2	98	43
7	24.4	49	24.5	100	49	23.3 24.3	99	43
8	24.0	49	24.2	110	49	24.5	121	43
9	24.6	49	24.9	101	49	25.2	102	43
10	25.2	49	25.4	101	49	25.3	102	43
11	25.6	49	26.2	102	49	25.0	98	43
12	25.5	49	25.1	98	49	25.2	99	43
13	26.3	49	25.1 26.4	100	49	25.9	99	43
17	27.5	49	26.7	97	47	27.3	99	43
21	28.4	49	27.2	96	47	27.7	98	43
25	29.5	49	28.1	95	47	28.9	98	43
29	29.8	49	28.6	96	47	28.9	97	43
33	30.1	49	29.7	99	47	23.5	98	43
37	30.7	49	29.9	97	47	29.9	98 97	43
42	31.7	49	30.8	97 97	47	30.3	96	43
45	32.4	49	31.7	98	47	31.1	96	43
49	32.2	49	31.2	97	47	31.0	96	43
53	32.7	49	31.2	96	47	31.9	98	43
57	32.7	49	31.0	95	47	31.2	95	43
61	33.1	49	32.9	99	46	32.3	98	43
65	33.0	48	32.4	98	46	32.7	99	43
69	32.7	47	32.4	.99	40	32.1	98	43
73	32.8	43	32.1	98	44	31.0	95	42
73 77	32.6	43	31.3	96	43	31.3	95 96	41
81	33.5	43	32.7	90 98	43 39	32.1	96	40 37
85	32.5	41	33.0	102	39	32.1 32.7		
89	32.5	40 39	33.0	98	39 36	32.7	101 98	35 35
93	31.7	37	31.7	100	33	31.2	98	33
93 97	31.5	35	31.7	100	33 30	31.2 30.6	98 97	33 30
101	31.8	31	31.4	99	27	31.0	98	27
ean íor w	eeks							
1-13	23.3		23.6	101		23.6	101	
14-52	30.3		29.3	97		29.4	97	
3-101	32.6		32.0	98		31.7	97	

FIGURE 5 Growth Curves for Male and Female Mice Administered Talc by Inhalation For 2 Years

Results

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplastic or nonneoplastic lesions of the lung, lymph node, and nose. Summaries of the incidences of nonneoplastic lesions and neoplasms, the individual animal tumor diagnoses, and the statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one group are presented in Appendix C for male mice and Appendix D for female mice.

Lung: Absolute and relative lung weights of male and female mice exposed to 18 mg talc/m^3 were significantly greater than those of the controls at the 12-month interim evaluation and at the end of the study. Absolute lung weights of 18 mg/m^3 males and absolute and relative lung weights of 18 mg/m^3 females were significantly greater at the 18-month interim evaluation. Lung weights of mice exposed to 6 mg/m^3 were similar to controls at each of the interim evaluations.

The pulmonary lesions in mice exposed to talc were similar at the interim evaluations and at the end of the study, but the lesions varied in extent and severity with exposure concentration and duration (Table 11). The principal lung lesion occurring in exposed mice was an accumulation of alveolar macrophages in the alveoli surrounding terminal bronchioles (hyperplasia, macrophage) (Plate 8). The macrophages had abundant, slightly foamy to granular, eosinophilic cytoplasm containing birefringent talc particles. Small numbers of neutrophils were sometimes observed in the affected areas, and the interstitium contained infiltrates of mononuclear inflammatory cells (inflammation, chronic active) (Plates 9 and 10). In contrast to the pulmonary lesions in rats, hyperplasia of type II pneumocytes or fibrosis were not prominent components of the lesions in mice. The incidences of pulmonary neoplasms were similar among exposed groups and controls.

Lymph node: The bronchial lymph nodes of mice exposed to talc contained accumulations of macrophages in the medullary sinuses (hyperplasia, histio-cytic - male: 0 mg/m³, 1/32; 6 mg/m³, 32/39; 18 mg/m³, 42/44; female: 0/38, 25/37, 39/43; Tables C4 and D4). The macrophages had abundant, slightly foamy to

granular, eosinophilic cytoplasm filled with birefringent particles of talc.

Nose: The incidences of focal cytoplasmic alteration were increased in groups of mice exposed to talc (male: 5/45, 23/46, 40/47; female: 29/46, 37/46, 40/50; Tables C4 and D4). Focal cytoplasmic alteration was characterized by the formation of large eosinophilic droplets in the cytoplasm of olfactory and respiratory epithelial cells and was similar to that observed in rats.

Lung Talc Burden

The lung talc burdens, normalized to control lung weight or exposure level, are presented in Tables H2 and H3. Lung talc burden normalized to control lung weights (mg talc/g control lung) adjusts for differences in lung weight between sexes or at different ages. The lung burden normalized to control lung weight and exposure level adjusts for exposure level to determine the effect of exposure concentration on talc clearance from the lung.

The data, normalized to control lung weight, show that talc burdens of mice exposed to 6 mg/m³ were similar between males and females and increased progressively from 6 to 24 months, except for males at 18 months (Table H2). However, because of the small sample size of males at 18 months (two animals), the lung talc burden of this sample may not be representative of the group as a whole. The lung talc burdens of mice exposed to 18 mg/m³ were also similar between sexes at each interim evaluation. Although the talc burdens of males and females increased substantially from 6 to 24 months, the values at 12 and 18 months were similar.

The exposure-normalized data show that lung talc burdens of mice exposed to 18 mg/m^3 were disproportionately greater than those of mice exposed to 6 mg/m^3 (Table H2). The slight increases in exposure-normalized lung talc burden were statistically significant in males and females at 12 and 24 months, but not at 6 or 18 months. The lack of statistical significance at 18 months might be explained, in part, by the small sample size. These data suggest that clearance of talc from the lung was impaired, or impaired to a greater extent, in mice exposed to 18 mg/m^3 than in mice exposed to 6 mg/m^3 .

TABLE 11

Incidences of Selected Lung Lesions in Mice in the 2-Year Inhalation Study of Talc

		Male		Female		
	0 mg/m ³	6 mg/m ³	18 mg/m ³	0 mg/m ³	6 mg/m ³	18 mg/m ³
6-Month Interim Evaluation						
Lung ^a	4	4	4	4	4	4
Hyperplasia, Macrophage ^D Inflammation, Chronic Active	0 0	3 (1.0) ^c 0	4* (1.0) 1 (1.0)	0 0	0 0	4* (1.0) 0
12-Month Interim Evaluation						
Lung	4	4	4	3	4	4
Hyperplasia, Macrophage	0	4* (1.0)	4* (1.8)	0	4* (1.0)	4* (2.0)
Inflammation, Chronic Active	0	0	2 (2.0)	0	0	1 (3.0)
18-Month Interim Evaluation						
Lung	4	4	4	4	4	4
Hyperplasia, Macrophage	0	4* (1.3)	4* (2.5)	0	4* (1.3)	4* (2.5)
Inflammation, Chronic Active	0	0	2 (1.5)	0	0	0
Alveolar/bronchiolar Adenoma	0	1	0	1	0	0.
Alveolar/bronchiolar Carcinoma	1	0	0	0	0	0
2-Year Study						
Lung	4	47	48	46	48	50
Hyperplasia, Macrophage	3 (2.3)	46**(1.4)	48**(2.8)	2 (2.5)	45**(1.6)	43**(2.8)
Inflammation, Chronic Active	0	16**(1.1)	40**(2.2)	0	25**(1.4)	38**(2.3)
Alveolar Epithelium, Hyperplasia	1 (1.6)	0	0	0	0	1 (1.0)
Alveolar/bronchiolar Adenoma						
Overali rates ^d	6/45 (13%)	4/47 (9%)	9/48 (19%)	3/46 (7%)	2/49 (4%)	2/50 (4%)
Logistic regression test ^e	P=0.251	P=0.411N	P=0.371	P=0.467N	P=0.499N	P=0.515N
Alveolar/bronchiolar Carcinoma						
Overall rates	7/45 (16%)	2/47 (4%)	2/48 (4%)	2/46 (4%)	4/49 (8%)	1/50 (2%)
Logistic regression test	P=0.069N	P=0.073N	P=0.070N	P=0.325N	P=0.356	P=0.500N
Alveolar/bronchiolar Adenoma or Ca	rcinoma					
Overall rates	12/45 (27%)	5/47 (11%)	11/48 (23%)	5/46 (11%)	6/49 (12%)	3/50 (6%)
Logistic regression test	P=0.522N	P = 0.043N	P=0.423N	P=0.269N	P=0.519	P=0.367N

* Significantly different (P≤0.05) from the control by Fisher's exact test (interim evaluation) or logistic regression (2-year study)

** P≤0.01

^a Number of animals with lung examined microscopically.

^b Number of animals with lesion.

^c Average severity grades of lesions in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked

^d Number of animals with neoplasm per number of animals examined microscopically.

^e Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the control and that exposed group. The logistic regression test regards these lesions as nonfatal. A negative trend or a lower incidence in an exposure group is indicated by N.

Results

Bronchoalveolar Lavage and Lung Biochemistry

Bronchoalveolar lavage was performed and lung homogenate supernatants collected for analyses at 6, 12, 18, and 24 months. A summary of the changes occurring in bronchoalveolar fluid enzymes, protein and cells are shown in Tables H4 through H22. Values for glucose-6-phosphate dehydrogenase, glutathione peroxidase, and alkaline phosphatase were not reported because they were below the limit of detection.

B-Glucuronidase activity of lavage fluid from male and female mice exposed to 18 mg/m³ was greater than that of controls at 12, 18, and 24 months, but not at 6 months. In mice exposed to 6 mg/m³, B-glucuronidase activity was greater than that of controls only at the 24-month interim evaluation. Lactate dehydrogenase and glutathione reductase activities in male and female mice exposed to 18 mg/m³ were significantly greater than those of controls at 18 and 24 months. Glutathione activity of males exposed to 18 mg/m^3 was also greater than that of controls at 12 months. Values for total protein in lavage fluid from males and females in the 18 mg/m^3 groups were significantly greater than those of controls at 18 months; at 24 months only that of males was significantly greater.

Significant differences in total and differential cell counts between exposed and control mice were observed only at 18 and 24 months at the high concentration level (Tables H8 to H11). The numbers of total nucleated cells, polymorphonuclear leukocytes, and macrophages were significantly greater in males and females exposed to 18 mg/m³ than in controls. Exposure of mice to 6 or 18 mg talc/m³ produced a concentration-related decrease in phagocytic activity of macrophages derived from lavage fluid (Tables H12 to H14). The number of macrophages containing phagocytized sheep erythrocytes from male and female mice exposed to 18 mg/m^3 was significantly lower than that from control mice at 12, 18, and 24 months. Although phagocytic activity of macrophages from mice exposed to 6 mg/m³ was intermediate between controls and the high concentration groups, only the difference between the exposed and control males at 12 months was statistically significant.

The effects of talc exposure on lavage fluid collagenous peptides and total lung collagen are shown in Tables H15 through H18. The amount of collagenous peptides in lavage fluid from male mice exposed to 18 mg/m³ was significantly greater than that of controls at 12, 18, and 24 months, while collagenous peptides of females exposed to 18 mg/m³ were significantly increased only at 24 months. Consistent with these findings, total lung collagen was significantly greater in 18 mg/m³ at 18 and 24 months and in females at 24 months. Collagenous peptides and total lung collagen from mice exposed to 6 mg/m³ were similar to controls at each of the interim evaluations.

The acid and neutral proteinase activity of lung homogenate supernatant fluid and the acid proteinase activity of lavage fluid are shown in Tables H19 through H22. Although there were no consistent exposure-related changes in lavage fluid acid proteinase activity at any of the interim evaluations, acid proteinase activity in supernatant fluid from male and female mice exposed to 18 mg/m³ was significantly greater than controls at 12, 18, and 24 months. The increase in acid proteinase activity was primarily due to cathepsin D-like activity. There were no consistent exposure-related changes in neutral proteinase activity at any of the interim evaluations.

PLATE 1

Mild focal inflammation with thickening of the alveolar septa and distortion of the alveoli in the lung of a male F344/N rat exposed to 18 mg talc/m³ at the 18-month interim evaluation of the lifetime inhalation study. H&E, 25X

PLATE 2

Lung of a male F344/N rat exposed to 18 mg talc/m³ at the 18-month interim evaluation of the lifetime inhalation study. Note the accumulation of alveolar macrophages with pale granular cytoplasm in the alveolar duct and slight thickening of the septal walls. H&E, 80X

PLATE 3

Individual and confluent foci of interstitial fibrosis extend throughout the pulmonary parenchyma of a male F344/N rat exposed to 18 mg talc/m³ at the 24-month interim evaluation of the lifetime inhalation study. H&E, 6.6X

Plate 4

Higher magnification of Plate 3 showing accumulation of fibrous tissue and interspersed inflammatory cells which obliterate the alveoli. H&E, 33X

PLATE 5

Squamous metaplasia and hyperplasia of the alveolar epithelium adjacent to an area of chronic inflammation and interstitial fibrosis in the lung of a male F344/N rat exposed to 18 mg talc/m³ in the lifetime inhalation study. H&E, 40X

PLATE 6

Alveolar/bronchiolar carcinoma in a male F344/N rat exposed to 18 mg talc/m³ in the lifetime inhalation study. Note the large mass obliterating the pulmonary parenchyma. H&E, 2.5X

PLATE 7

Higher magnification of the alveolar/bronchiolar carcinoma shown in Plate 6. Note the neoplastic epithelium arranged in irregular papillary formations. H&E, 50X

PLATE 8

Minimal focal accumulation of alveolar macrophages in the lung of a male $B6C3F_1$ mouse exposed to 18 mg talc/m³ at the 12-month interim evaluation of the 2-year inhalation study. H&E, 50X

PLATE 9

Mild chronic active inflammation with slight thickening of the alveolar septa in the lung of a female $B6C3F_1$ mouse exposed to 18 mg talc/m³ in the 2-year inhalation study. H&E, 50X

Plate 10

Alveolar macrophages in alveoli and mononuclear cells in the interstitium of the lung of a male $B6C3F_1$ mouse exposed to 18 mg talc/m³ in the 2-year inhalation study. H&E, 100X

DISCUSSION AND CONCLUSIONS

Talc ore may contain several other minerals, including calcite, dolomite, magnesite, tremolite, anthophyllite, antigorite, quartz, pyrophyllite, micas, Since talc products are sold in a or chlorites. multitude of grades which have physical or functional characteristics especially suited for particular applications, occupational and consumer exposures to talc are complex. Exposure to industrial grade talc is known to cause pulmonary fibrosis, but the limited data on exposure to cosmetic grade talc are Recently, epidemiology studies have conflicting. suggested an association between nonfibrous talc and lung cancer risk (Thomas and Stewart, 1987). Talc was nominated by NIOSH for study by the NTP because of widespread human exposure and because of the lack of adequate information on its chronic toxicity and potential carcinogenicity.

The NTP toxicity and carcinogenicity studies of nonasbestiform, cosmetic grade talc, a finely powdered hydrous magnesium silicate, were conducted by exposing groups of male and female F344/N rats and $B6C3F_1$ mice to target aerosol concentrations of 0, 6, or 18 mg talc/m³ for 6 hours per day, 5 days per week. Rats were exposed to talc until mortality in any group reached 80% (113 weeks for males and 122 weeks for females). Mice were exposed for 103 or 104 weeks. Exposure concentrations for the longterm studies were based on talc deposition and clearance patterns obtained from 4-week inhalation studies (Hanson et al., 1985). In these studies, the amount of talc retained per gram of lung tissue was 79, 190, or 840 μ g for male rats and 76, 185, or 770 μ g for female rats exposed to 2, 6, or 18 mg/m³, respectively. The amount of talc retained per gram of lung tissue in mice exposed at the same concentration levels were 130, 330, or 1,140 μ g for males and 110, 330, or 1,160 μ g for females. Only rats and mice at the highest exposure level had talc-containing macrophages within the alveolar spaces. Because there was a direct relationship between chamber concentration and lung talc burden and because of the talc-containing alveolar macrophages at the 18 mg/m³ concentration, it was predicted that higher levels would overwhelm lung clearance mechanisms

in both species and cause deterioration of lung functions. Thus, 18 mg/m^3 was chosen as the top exposure concentration for the NTP long-term studies.

The overall mean chamber concentrations achieved in the NTP long-term studies were 6.1 and 18.6 mg/m³ for the rat study and 5.9 and 16.7 mg/m³ for the mouse study. The average mass mean aerodynamic diameter of the talc particles was calculated to be 2.7 μ m and 3.2 μ m for the 6 and 18 mg/m³ rat chambers and 3.3 μ m and 3.6 μ m for the 6 and 18 mg/m³ mouse chambers, respectively. Seventy-five percent of the talc particles counted in four samples were in the 1 to 3 μ m range. Monodisperse aluminosilicate particles larger than 10 μ m are nearly all removed by inertial impaction in the nasal chamber or at bifurcation of the airways in rats, while particle deposition in the alveolar ducts and alveoli rises from almost zero for 10 μ m particles to about 10% for $1 \,\mu m$ particles (Raabe et al., 1977). Thus, the large proportion of talc particles in these NTP studies were in the respirable range.

Because of difficulties with the aerosol concentration monitoring system for the 18 mg/m³ rat chamber, there was a 7-week period beginning at study week 11 during which the chamber concentration for the highdose rats varied from approximately 30 to 40 mg/m³. Further, there was a 12-week period beginning at approximately week 70 during which there were difficulties in generating the talc aerosol and the chamber concentrations for rats and mice were substantially lower than the target concentrations (Figures 15 to 18). Although the exposure concentrations varied substantially from target concentrations during these periods, this does not preclude drawing conclusions regarding the chronic toxicity and carcinogenicity of talc. Since talc is a relatively inert particle, the amount of talc deposited and retained at the target site (lung talc burden) is a more relevant measure of talc exposure than chamber concentration. The problems with maintaining the target concentrations in the NTP studies had no apparent substantive effect on lung talc burdens.

The lung talc burden represents the difference between the amount of talc deposited in the lung and the amount removed by the clearance mechanisms. Inhaled particles deposited on the mucosal surface of the trachea, bronchi, or bronchioles are transported up the airways and from the lung through the ciliary activity of the respiratory epithelium, while particles reaching the alveolar region are phagocytized by alveolar macrophages and, to a lesser extent, other phagocytic inflammatory cells. Some alveolar macrophages migrate to the ciliated epithelium of the airways while others cross the alveolar epithelium to enter the interstitium and finally the lymphatics. Phagocytic cells reaching the lymphatics are transported in the lymph to the bronchial and mediastinal lymph nodes. Depending on the physiochemical properties of the inhaled particles, they may be partially or completely degraded within phagolysosomes of the macrophages and soluble components released from the cell. Talc is insoluble in water, cold acids, and alkalies and is likely to be insoluble in biological fluids. Talc particles were observed within macrophages in the lung and bronchial and mediastinal lymph nodes of rats and mice in these inhalation studies.

The lung talc burden of rats was greater than that of mice at each of the exposure concentrations and interim evaluations. The difference in lung talc burden is most likely related to species anatomical and physiological differences known to influence particle deposition and retention including air flow pattern and velocity, respiratory rate, tidal volume, and clearance rate (McMahon et al., 1977; Raabe et al., 1977). The lung talc burdens of exposed rats and mice were generally similar between males and females at each exposure concentration and increased progressively with exposure duration. This indicated that the amount of talc deposited in the lung exceeded the clearance from the lung. The lung talc burden of rats was also generally proportional to exposure concentration at each interim evaluation, indicating that clearance of talc was not substantially impaired by increasing the exposure concentration, or that clearance of talc was impaired similarly at both exposure levels. In contrast, the lung talc burden of mice exposed to 18 mg/m³ was disproportionately greater than that of mice exposed to 6 mg/m³, indicating that clearance of talc from the lung was impaired, or impaired to a greater extent, in mice exposed to the higher concentration.

Analysis of bronchoalveolar lavage fluid has been used in human medicine for diagnosing the type or stage of various forms of interstitial lung disease and more recently as a rapid in vivo method of evaluating lung injury in toxicologic studies (Henderson et al., 1985). Bronchoalveolar lavage was performed on rats and mice exposed to talc to evaluate its usefulness in chronic toxicology studies. Qualitatively similar changes in lavage fluid enzymes and cytology were observed in both species. Increases in neutrophils and total protein in lavage fluid are sensitive indicators of inflammation, and the increases in these parameters in rats and mice exposed to talc are consistent with the inflammation observed histologically in the lungs. Increases in cytoplasmic (lactate dehydrogenase and glutathione reductase) and lysosomal (B-glucuronidase) enzymes, which are indicative of cellular injury, were also observed in both species. Whether lactate dehydrogenase and glutathione reductase were derived from parenchymal cells or inflammatory cells is unknown. The increase in glutathione reductase activity suggests that cellular injury may have involved an oxidative process involving free radicals produced during phagocytosis.

The phagocytic ability of alveolar macrophages recovered from lavage fluid was not impaired in rats exposed to talc for 24 months, as indicated by the lack of a significant difference in the number of viable macrophages and the percentage of cells phagocytizing sheep erythrocytes in exposed and control rats. In contrast, both the viability and the phagocytic ability of alveolar macrophages from exposed mice were significantly lower than those of macrophages from controls. The percentage of macrophages containing phagocytized erythrocytes decreased as aerosol concentration and exposure duration increased. Since alveolar macrophages play a major role in the clearance of particles from the lung, the decreased viability and phagocytic ability of these cells may explain the disproportionately greater lung talc burden in mice exposed to 18 mg/m³ than in mice exposed to 6 mg/m^3 and the difference in talc lung burdens between exposed rats and mice.

Due to limitations in chamber size and the number of animals that could be exposed, the numbers of animals utilized in the lung biochemistry studies were generally small. Therefore, some of the apparent inconsistencies in the results of these studies can be attributed to the small sample sizes and the biologic

Discussion and Conclusions

variation in pulmonary response among individuals. Despite these limitations, increases in lavage fluid collagenous peptides and total lung collagen were observed in both rats and mice exposed to 18 mg talc/m³. In rats, these changes were also accompanied by increases in noncollagenous protein synthesis (total ¹⁴C-proline incorporated into lung tissue minus that incorporated into collagen), and, in females only, an increase in collagen production (fraction of total ¹⁴C-proline incorporated into collagen). Some parameters were also significantly increased in rats exposed to 6 mg talc/m³. While these results are consistent with the fibrosis observed histologically in rats, fibrosis was not seen histologically in mice.

Talc exposure was associated with a dose- and timerelated impairment of respiratory functions in male and female rats. Although only slight trends were observed at 6 months in rats exposed to 18 mg/m³, functional alterations in rats at the high concentration were clearly evident after 11 months. In rats exposed to 6 mg/m³, decrements in respiratory function were observed in males at 11 months and in males and females at 18 months. The functional impairment was characterized by reduced lung volumes and reduced dynamic and/or quasistatic lung compliance, indicating an increase in elastic recoil (increased lung stiffness). Further, reduced gas exchange efficiency and nonuniform intrapulmonary gas distribution were also observed. These changes are consistent with the multifocal fibrosis and inflammation that was located in the centriacinar region of the lung.

Deposition of talc in the lungs of rats and mice produced an inflammatory response characterized primarily by the accumulation of alveolar macrophages and, to a lesser extent, neutrophils and monocytes within alveolar lumens. Smaller numbers of lymphocytes and plasma cells were also observed in the interstitial tissue surrounding airways, blood vessels, and alveolar septa. The lesions developed at the junction of the alveolar ducts and terminal bronchioles where particles of the size range used are known to be deposited (Brody and Roe, 1983). Although the inflammatory response was basically similar in rats and mice, there were important species differences. The lesions in rats were generally more extensive and more severe than those in mice at similar exposure concentrations. In rats, foreign body giant cells were occasionally observed and some of the alveolar macrophages developed the morphological characteristics of epithelioid macrophages. More importantly, the inflammatory lesions in rats were accompanied by interstitial fibrosis, hyperplasia of alveolar type II epithelial cells, and, infrequently, squamous metaplasia of the alveolar epithelium.

The differences in pulmonary response cannot be attributed to differences in lung talc burden, since fibrosis and alveolar epithelial hyperplasia were observed in rats exposed to 6 mg/m³, which had lung talc burdens less than that of mice exposed to 18 mg/m³. Saffiotti and Stinson (1988) have reported similar differences in pulmonary response between rats and mice following intratracheal instillation of These authors found that silica-induced silica. alveolar epithelial hyperplasia in mice was transient, returning to normal within several months, while that in rats was generally more severe and persisted until the end of the study. Since inhalation studies using both rats and mice are seldom performed, it is uncertain if this species difference might exist for other particulate substances.

The difference in pulmonary response between rats and mice may be related, in part, to species differences in reactivity of alveolar macrophages following phagocytosis of the talc particles. As the principal phagocytic cell of the lung, the alveolar macrophage is believed to play a major role in the inflammatory and fibrogenic reactions to inhaled particles (Brain, 1980; Brody, 1991). Much of the early work in this area centered on the differential cytotoxicity of phagocytized particles, particularly the various crystalline forms of asbestos and silica, to alveolar macrophages and the subsequent release of lysosomal enzymes which have proteolytic, elastolytic, and inflammatory properties (Brody and Davis, 1982; Nathan, 1987). More recently, alveolar macrophages have been found to produce arachidonic acid metabolites (Kouzan et al., 1985) and various cytokines that regulate cell proliferation, differentiation, and extracellular matrix production (Kelley, 1990). Of particular interest, rat alveolar macrophages exposed to iron spheres and asbestos fibers have been found to produce increased amounts of a homologue of platelet-derived growth factor (PDGF), the most potent mitogen known for mesenchymal cells (Bonner et al., 1989, 1990), and TGF-B, a potent inhibitor of mesenchymal cell proliferation and stimulator of matrix production (Kalter et al., 1989). Little is known about the putative role of PDGF and TGF-ß and other macrophage-derived products in the pathogenesis of lung disease, but they are likely to be important mediators of many cellular events.

The lesions in the lungs of rats exposed to aerosols of talc are very similar, qualitatively, to those reported to occur following long-term (approximately 2 years) exposure to other inorganic, non-fibrous, particulate substances including titanium dioxide (Lee et al., 1985), chromium dioxide (Lee et al., 1988), antimony trioxide and antimony ore concentrate (predominantly antimony trisulfide) (Groth et al., 1986), and volcanic ash (Wehner et al., 1986). Aerosols of each of these particulate substances were reported to elicit pulmonary inflammation, characterized primarily by the accumulation of alveolar macrophages, hyperplasia and squamous metaplasia of the alveolar epithelium, and fibrosis. Since the various components of the pulmonary response were not quantified in these studies, there may be quantitative differences in the degree of inflammation, fibrosis, and cellular degenerative hyperplastic and metaplastic changes to these particulate substances.

The lesions in rats exposed to talc are also similar to those observed in rats exposed to silica, but with important differences. Silica generally produces an inflammatory response that is more pronounced and persistent than the response to the relatively more inert particles like titanium dioxide and talc (Saffiotti and Stinson, 1988; Driscoll *et al.*, 1990). Further, while only occasional multinucleated foreign body giant cells and epithelioid macrophages were seen in the cellular response to talc, rats exposed to silica develop discrete nodular aggregates of epithelioid macrophages with multinucleated cells more typical of granulomatous inflammation.

The quantitative and qualitative differences in pulmonary toxicity of inhaled particles are likely related to the particle size, structure (amorphous, crystalline, and/or fibrous), surface chemistry, solubility (or durability), chemistry of soluble components, cytotoxicity, and other factors. While much of the research in this area has focused on asbestos (as well as other fibers) and silica, the same principles are likely to explain the differences in biological activity of other particulate substances. Although a complete discussion of these factors is beyond the scope of this report, some of the evidence is presented here.

A number of studies of the various forms of silicon dioxide have found that amorphous silica produces the mildest, slowest developing pulmonary changes followed, in ascending order, by quartz, cristobalite and tridymite (Allison, 1977; Hemenway *et al.*, 1986). Amorphous silica generally lacks a detectable crystalline X-ray diffraction pattern, while, of the crystalline forms, quartz has a less ordered symmetry than cristobalite and tridymite. Moreover, stishovite, which lacks the tetrahedral structure of other forms of silica, also lacks the fibrogenicity and cytotoxicity of the other forms (Brieger and Gross, 1967).

In general, the ability of various forms of silica to elicit pulmonary fibrosis parallels their cytotoxicity in vitro to alveolar macrophages (Reiser and Last, Further, there is a correlation between 1979). cytotoxicity and hemolytic activity in vitro (Allison, 1977). The biochemical basis of macrophage cytotoxicity and hemolytic activity is not fully understood, but the surface of crystalline silica presents highly reactive hydroxyl groups of silicic acid residues (silanol) that act as proton donors and may combine with constituents of cellular membranes (Langer and Nolan, 1986). Kaolinite (aluminum silicate), mica (potassium aluminum silicate), and talc (magnesium silicate) are also hemolytic in vitro (Narang et al., Dissolution of silicic acid residues from 1977). kaolinite, mica, and talc reduces the toxicity of these particulates, supporting the hypothesis that the reactive hydroxyl groups play an important role in cytotoxicity and hemolytic activity.

Following phagocytosis of silica (Allison, 1977) or kaolinite (Brody and Davis, 1982) particles by alveolar macrophages, hydrolytic enzymes are released from secondary lysosomes apparently as a result of the interaction of the particles with the lysosomal membrane. While the release of lysosomal enzymes into the cytoplasm may be directly responsible for cell death, it is less clear to what extent lysosomal enzymes released from the cells contribute to the other pulmonary lesions. Certainly, the ability to kill alveolar macrophages (cytotoxicity) is likely to inhibit or delay removal of the particles from the lung, increase the lung burden, and allow other biological effects to occur.

As already mentioned, macrophages secrete a large number of molecules including polypeptide hormones or cytokines, complement components, coagulation factors, arachidonic acid and its metabolites, bioactive lipids (prostaglandins and leukotrienes), binding proteins, enzyme inhibitors, extracellular matrix or cell adhesion proteins, and others (Nathan, 1987). Some, or perhaps many, of the apparent differences in the pulmonary response of rats to the various particulate substances may be related to the extent to which they cause cytotoxicity and nonspecific release of lysosomal enzymes or cause macrophages to secrete specific effector substances like the cytokines and inflammatory mediators.

Exposure of female rats to 18 mg talc/m³ was associated with increased incidences of alveolar/bronchiolar adenoma (0 mg/m³, 1/50; 6 mg/m³, 0/48; 18 mg/m³, 9/50), alveolar/bronchiolar carcinoma (0/50, 0/48, 5/50), and squamous cell carcinoma (0/50, 0/48, 1/50). The overall incidence of alveolar/bronchiolar adenoma or carcinoma (combined) in female rats of the 18 mg/m³ was significantly ($P \le 0.001$) greater than that of controls (1/50, 0/48, 13/50). The incidence of pulmonary neoplasms in female rats exposed to 18 mg/m³ also greatly exceeds that of control females (8/529, 1.5%) in the NTP lifetime studies reported by Solleveld et al. (1984). While comparison with the historical controls from NTP lifetime studies has some limitations (e.g., the studies were conducted about a decade earlier and are not contemporary), such a comparison provides some perspective. The increased incidence of pulmonary neoplasms in the 18 mg/m³ female rats was considered clear evidence of carcinogenic activity based on a) the strength of the statistical evidence ($P \le 0.001$), b) the increase in malignant as well as benign neoplasms, and c) comparison with lifetime historical controls.

In contrast to female rats, there was no increase in the incidence of pulmonary neoplasms in male rats or in male or female mice exposed to talc aerosols. While precise comparisons between studies of talc and other particulate substances cannot be made because of differences in route of administration (intratracheal versus inhalation), strain of rat used, and exposure duration, such comparison provides some perspective (Table 12). In 2-year inhalation studies of titanium dioxide (Lee et al., 1985), chromium dioxide (Lee et al., 1988), antimony trioxide and antimony ore concentrate (predominantly antimony trisulfide) (Groth et al., 1986), volcanic ash (Wehner et al., 1986), and quartz (Dagle et al., 1986), female rats had greater incidences of pulmonary neoplasms than male rats. Chromium dioxide, volcanic ash, antimony trioxide, and antimony ore concentrate induced pulmonary neoplasms only in female rats, whereas titanium dioxide and quartz induced pulmonary neoplasms in

male and female rats with a preponderance of neoplasms in females.

The morphological types of neoplasms induced by the particulates in the studies cited above also vary somewhat. The neoplasms in female rats exposed to talc were primarily alveolar/bronchiolar adenomas and carcinomas, although one squamous cell carcinoma also occurred. In female rats exposed to antimony trioxide or antimony ore concentrate (Groth et al., 1986), there were similar numbers of alveolar/bronchiolar neoplasms and squamous cell carcinomas (Table 12). Further, several scirrhous carcinomas were observed in antimony exposed rats. In female rats exposed to titanium dioxide (Lee et al., 1985), the incidences of alveolar/bronchiolar neoplasms and squamous cell carcinoma were also similar, whereas all but one of the neoplasms in males were alveolar/bronchiolar neoplasms. In contrast, nearly all the pulmonary neoplasms induced by quartz (Dagle et al., 1986), volcanic ash (Wehner et al., 1986) or chromium dioxide (Lee et al., 1988) were squamous cell (epidermoid) carcinomas.

The pathogenesis of pulmonary neoplasms induced by relatively insoluble particulate substances, such as talc, is currently unknown. Although a genotoxic mechanism cannot be ruled out, there are several lines of evidence to suggest that a direct effect of the particulate on the target cell genome is not involved. First, the insoluble nature of these particulates makes it unlikely that any chemical constituents will reach sufficient concentration to affect the target cells within the relatively short period between the time they are deposited on the alveolar surface and the time they are phagocytized. Further, although occasional alveolar epithelial cells have been observed to contain particles following intratracheal or inhalation exposure (Sorokin and Brian, 1975; Lee et al., 1979), the majority of particles are rapidly phagocytized by alveolar macrophages, some within minutes of deposition in the lung (Lauweryns and Baert, 1974). It is also clear that physical characteristics (crystalline structure, fiber dimension) and surface chemistry (presence of reactive groups on the particle surface), rather than soluble chemical components, are principal determinants of tissue reaction, and perhaps of carcinogenicity. The carcinogenicity of many fibrous materials (fiberglass, attapulgite, silicon carbide, mineral wool, and potassium titanate) decreases as fiber diameter exceeds 2.5 μ m and as fiber length decreases below $10 \,\mu m$ (Stanton and Wrench, 1972; Stanton et al., 1977).

TABLE 12

Results of Selected Whole Body Inhalation Carcinogenicity Studies of Particulate Materials

Compound and Dose	Study Duration	Species	Effects on Lungs ^a
Talc at 0, 6, or 18 mg/m ³ (this study)	Male: 113 weeks Female: 122 weeks	F344/N rats	Females: alveolar/bronchiolar adenoma (1/50, 0/48, 9/50); alveolar/bronchiolar carcinoma (0/50, 0/48, 5/50); squamous cell carcinoma (0/50, 0/48, 1/50)
Titanium dioxide at 0, 10, 50, or 250 mg/m ³ (Lee <i>et al.</i> , 1985)	104 weeks	CD rats	Females: alveolar/bronchiolar adenoma (0/77, 0/75, 0/74, 13/74); squamous cell carcinoma (0/77, 0/75, 0/74, 13/74)
Titanium tetrachloride at 0, 0.1, 1.0, or 10 mg/m ³ (Lee <i>et al.</i> , 1986)	104 weeks	Crl:CD rats	Females: squamous cell carcinoma (0/77, 0/75, 0/79, 3/75); Males: squamous cell carcinoma (0/79, 0/77, 0/78, 2/75)
Chromium dioxide at 0, 0.5, 0.5^{b} , or 25 mg/m ³ (Lee <i>et al.</i> , 1988)	104 weeks	Sprague- Dawley rats	Females: squamous cell carcinoma (0/106, 0/103, 0/108, 2/108); keratin cyst (0/106, 0/103, 0/108, 6/108)
Antimony trioxide at 0 or 45 mg/m ³ (Groth <i>et al.</i> , 1986)	73 weeks	Wistar rats	Females: alveolar/bronchiolar neoplasms (0/90, 11/90); squamous cell carcinoma (0/90, 9/90); scirrhous carcinoma (0/90, 5/90)
Antimony trisulfide at 0 or 40 mg/m ³ (Groth et al., 1986)	72 weeks	Wistar rats	Females: alveolar/bronchiolar neoplasms (0/90, 6/90); squamous cell carcinoma (0/90, 9/90); scirrhous carcinoma (0/90, 4/90)
Volcanic ash at 0, 5, or 50 mg/m ³ (Wehner et al., 1986)	up to 104 weeks	F344 rats	Females: several ^c squamous cell carcinomas in the 50 mg/m ³ group. Male: one squamous cell carcinoma in the 50 mg/m ³ group.
Quartz at 0 or 50 mg/m ³ (Wehner <i>et al.</i> , 1986)	up to 104 weeks	F344 rats	Females: moderate ^c numbers of squamous cell carcinomas in the 50 mg/m ³ group. Males: one squamous cell carcinoma in the 50 mg/m ³ group.

^a Neoplasm incidences are given as the number of animals with neoplasm per number of animals examined. The incidences are given in the order of increasing exposure concentration.

^b This dose represents unstabilized chromium dioxide; the other doses represent stabilized chromium dioxide.

^c Precise numbers not available in journal article.

A potential mechanism for the development of pulmonary neoplasms associated with insoluble particulate substances is that the prolonged stimulus for cell replication, due not only to cell injury but to the release of mitogenic growth factors from alveolar macrophages, provides a favorable environment for the promotion and progression of spontaneously initiated cells. The interim evaluations in the NTP talc study clearly demonstrate a progressive impairment of homeostatic growth regulation in the areas of chronic inflammation and fibrosis associated with talc deposition in rats. Hyperplasia of the alveolar epithelium was evident at 6 months and became more extensive and severe with duration of exposure. Not only were there increased numbers of cells (hyperplasia), but some cells assumed morphologic features atypical of regenerating or differentiated type II cells (epithelial dysplasia). The altered or dysplastic epithelium was particularly evident in areas of fibrosis. The squamous metaplasia observed in female rats also represents altered differentiation of populations of alveolar epithelial cells and is notable in light

Discussion and Conclusions

of the development of squamous cysts and squamous cell carcinomas.

The lack of a carcinogenic effect in male rats or in mice exposed to talc aerosols does not negate the possibility of a mechanism as described above. First, the difference between male and female rats may be one of magnitude rather than an absolute difference in effect. The influence of the length of exposure on the development of these late appearing lung neoplasms cannot be discounted; the length of exposure was 113 weeks for males and 122 weeks for females. Further, the promotion and progression of neoplasia involve a complex series of molecular events that are likely to differ qualitatively or quantitatively in males and females. Clearly, there are sex differences in the incidence of spontaneous and chemically induced neoplasms. As for mice exposed to talc, there was no histologic evidence of impaired growth regulation or fibrosis, consistent with the mechanism proposed above.

Pheochromocytomas (benign, malignant, or complex) of the adrenal medulla occurred with significant positive trends in both male and female rats exposed to talc (males: 26/49, 32/48, 37/47; females: 13/48, 14/47, 23/49). Further, the numbers of male and female rats with bilateral pheochromocytomas were also increased in the exposed groups. The overall incidences of this neoplasm in the 18 mg/m³ groups were significantly greater than those of the controls. Comparison with historical controls of NTP lifetime studies is not considered relevant, since there has been a pronounced increase in the spontaneous occurrence of pheochromocytomas in male rats in studies conducted by the NTP over the last 10 years (Rao *et al.*, 1990).

In contrast to the pheochromocytomas, the incidences of adrenal medulla hyperplasia in exposed male rats were lower than in controls, and the incidences were similar in all female groups. Because of the small size of the adrenal medulla, pheochromocytomas tend to obscure much or all of the remaining tissue. Therefore, the lower incidences of hyperplasia in groups of exposed males can be attributed, in part, to the larger number of pheochromocytomas.

While the increased incidences of pheochromocytomas in male rats were exposure related, the increase was considered to represent some, rather than clear, evidence of carcinogenic activity because a) the increase was associated primarily with benign neoplasms and b) there was no supporting increase in the incidence of hyperplasia. The increased incidence of pheochromocytomas in female rats was also exposure related.

Although the strength of the statistical association indicates that the pheochromocytomas are exposure related, a plausible mechanism for their increased occurrence in rats exposed to talc aerosols is not readily apparent. Since talc is relatively insoluble, it is extremely unlikely that any soluble components could have reached concentrations high enough in the blood to affect the adrenal medulla cells. Although purely speculative, there are two general hypotheses that might be considered. First, the increased incidence of adrenal pheochromocytomas may be a nonspecific effect of stress as a result of the chronic pulmonary inflammation. The body is known to respond to an exogenous challenge such as injury, inflammation, or infection by a set of distinct physiologic, metabolic, and endocrine changes including increases in serum adrenocorticotrophic hormone and cortisone levels, growth hormone, and catecholamine synthesis. Further, the adrenal medulla, as a modified sympathetic ganglia, reacts to neural as well as hormonal stimuli in the secretion of catecholamines. While prolonged stimulus of secretion is coupled with cellular hypertrophy and hyperplasia (cell proliferation) in many endocrine tissues, it is unknown if this occurs in the adrenal medulla. Moreover, if prolonged stress were to increase the rate of occurrence or growth of medullary proliferative lesions, similar exposure-related increases in pheochromocytoma incidence might be expected in other chronic toxicity/carcinogenicity studies. This has not generally been the case. Exposure-related increased incidences of pheochromocytoma were not observed or not reported in the 2-year inhalation studies of other particulate substances reported above.

A second hypothesis to consider is that cytokines (growth factors), released from macrophages or other cells in the lung, might be responsible for increasing the rate of growth of pheochromocytomas. Although alveolar macrophages have been found to secrete a number of cytokines known to stimulate proliferation of a variety of cell types, cytokines are generally believed to affect cells only in close proximity within the same organ. However, it has recently been found that measurable levels of hepatocyte growth factor are present in the plasma after two-thirds hepatectomy (Lindroos *et al.*, 1992). Thus, some cytokines or growth factors may have wider effects than currently known.

CONCLUSIONS

Under the conditions of these inhalation studies, there was *some evidence of carcinogenic activity*^{*} of talc in male F344/N rats based on an increased incidence of benign or malignant pheochromocytomas of the adrenal gland. There was *clear evidence of carcinogenic activity* of talc in female F344/N rats based on increased incidences of alveolar/bronchiolar adenomas and carcinomas of the lung and benign or malignant pheochromocytomas of the adrenal gland. There was no evidence of carcinogenic activity of talc in male or female $B6C3F_1$ mice exposed to 6 or 18 mg/m^3 .

The principal toxic lesions associated with inhalation exposure to the same concentrations of talc in rats included chronic granulomatous inflammation, alveolar epithelial hyperplasia, squamous metaplasia and squamous cysts, and interstitial fibrosis of the lung. These lesions were accompanied by impaired pulmonary function characterized primarily by reduced lung volumes, reduced dynamic and/or quasistatic lung compliance, reduced gas exchange efficiency, and nonuniform intrapulmonary gas distribution. In mice, inhalation exposure to talc produced chronic inflammation of the lung with the accumulation of alveolar macrophages.

* Explanation of Levels of Evidence of Carcinogenic Activity is on page 9. A summary of Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appears on page 11.

REFERENCES

Allison, A.C. (1977). Mechanisms of macrophage damage in relation to the pathogenesis of some lung diseases. In *Respiratory Defense Mechanisms, Part II* (J.D Brain, D.F. Proctor, and L.M. Reid, Eds.), pp. 1075-1102. Marcel Dekker, Inc., New York.

American Conference of Governmental Industrial Hygienists (ACGIH) (1988). Threshold Limit Values and Biological Exposure Indices for 1988-1989. Cincinnati, OH.

Armitage, P. (1971). Statistical Methods in Medical Research, pp. 362-365. John Wiley and Sons, New York.

Arnett, E.N., Battle, W.E., Russo, J.V., and Roberts, W.C. (1976). Intravenous injection of talc-containing drugs intended for oral use: A cause of pulmonary granulomatosis and pulmonary hypertension. *Am. J. Med.* 60, 711-718.

Atlee, W.E., Jr. (1972). Talc and cornstarch emboli in eyes of drug abusers. J. Am. Med. Assoc. 219, 49-51.

Bethege-Iwanska, J. (1971). Pathomorphological changes of respiratory system in experimental talcosis (Czech.). *Med. Prac.* 22, 45-57.

Bonner, J.C., Hoffman, M., and Brody, A.R. (1989). Alpha-macroglobulin secreted by alveolar macrophages serves as a binding protein for a macrophage-derived homologue of platelet-derived growth factor. *Am. J. Respir. Cell Mol. Biol.* 1, 171-179.

Bonner, J.C., Badgett, A., Osornio-Vargas, A.R., Hoffman, M., and Brody, A.R. (1990). PDGFstimulated fibroblast proliferation is enhanced synergistically by receptor recognized α_2 -macroglobulin. J. Cell Physiol. 145, 1-8.

Boorman, G.A., Montgomery, C.A., Jr., Eustis, S.L., Wolfe, M.J., McConnell, E.E., and Hardisty, J.F. (1985). Quality assurance in pathology for rodent carcinogenicity studies. In *Handbook of Carcinogen Testing* (H.A. Milman and E.K. Weisburger, Eds.), pp. 345-357. Noyes Publications, Park Ridge, NJ. Brain, J.D. (1980). Macrophage damage in relation to the pathogenesis of lung diseases. *Environ. Health Perspect.* 35, 21-28.

Brieger, H., and Gross, P. (1967). On the theory of silicosis. III. Stishovite. Arch. Environ. Health 15, 751-757.

Brody, A.R. (1991). Production of cytokines by particle-exposed lung macrophages. In *Cellular and Molecular Aspects of Fiber Carcinogenesis* (C.C. Harris, J.F. Lechner, and B.R. Brinkley, Eds.), pp. 83-103. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Brody, A.R., and Davis, G.S. (1982). Alveolar macrophage toxicology. In *Mechanisms in Respiratory Toxicology* Vol. II (H. Witschi and P. Nettesheim, Eds.), pp. 3-28. CRC Press, Boca Raton, FL.

Brody, A.R., and Roe, M.W. (1983). Deposition pattern of inorganic particles at the alveolar level in the lungs of rats and mice. *Am. Rev. Respir. Dis.* 128, 724-729.

Bureau of Mines (1986). Mineral Commodity Summaries. Vol. 156.

Canessa, P.A., Torraca, A., Lavecchia, M.A., Patelli, M., and Poletti, V. (1990). Pneumoconiosis (silicosis) in the confectionery industry. *Sarcoidosis* 7, 75-77.

Code of Federal Regulations (CFR), 21, Part 58.

Cox, D.R. (1972). Regression models and life-tables. J. R. Stat. Soc. B34, 187-220.

Cramer, D.W., Welch, W.R., Scully, R.E., and Wojciechowski, C.A. (1982). Ovarian cancer and talc. A case-control study. *Cancer* 50, 372-376.

Crouch, E., and Churg, A. (1983). Progressive massive fibrosis of the lung secondary to intravenous injection of talc. A pathologic and mineralogic analysis. *Am. J. Clin. Pathol.* 80, 520-526.

Dagle et al. (1986). In Silica, Silicosis, and Cancer (D.F. Goldsmith, D.M. Winn, and C.M. Shy, Eds.), Praeger, New York.

Davis, J.M.G. (1972). The fibrogenic effects of mineral dusts injected into the pleural cavity of mice. *Br. J. Exp. Pathol.* 53, 190-201.

Dinse, G.E., and Haseman, J.K. (1986). Logistic regression analysis of incidental-tumor data from animal carcinogenicity experiments. *Fundam. Appl. Toxicol.* 6, 44-52.

Dinse, G.E., and Lagakos, S.W. (1983). Regression analysis of tumour prevalence data. *Appl. Statist.* 32, 236-248.

Dogra, R.K.S., Iyer, P.K.R., Shanker, R., and Zaidi, S.H. (1977). Effect of talc injected intravenously in guinea pigs. *Toxicology* 7, 197-206.

Driscoll, K.E., Lindenschmidt, R.C., Maurer, J.K., Higgins, J.M., and Ridder, G. (1990). Pulmonary response to silica or titanium dioxide: Inflammatory cells, alveolar macrophage-derived cytokines, and histopathology. *Am. J. Respir. Cell Mol. Biol.* 2, 381-390.

DuBois, A.B., Botelho, S.Y., Bedell, G.N., Marshall, R., and Comroe, J.H. Jr. (1956). A rapid plethysmographic method for measuring thoracic gas volume: A comparison with a nitrogen washout method for measuring functional residual capacity in normal subjects. J. Clin. Invest. 35, 322-326.

Dunn, O.J. (1964). Multiple comparisons using rank sums. *Technometrics* 6, 241-252.

Dunnett, C.W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50, 1096-1121.

Eger, W., and DaCanalis, S. (1964). Organ especially liver - alterations resulting from a single injection of quartz, asbestos or talc into the portal circulation of the rat (Ger.). *Beitr. Silikoseforsch.* 81, 12-42.

Farber, H.W., Fairman, R.P., and Glauser, F.L. (1981). Bronchoalveolar lavage: A new technique for the diagnosis of talc granulomatosis. *Chest* 80, 342. (Abstr.)

Farber, H.W., Fairman, R.P., and Glauser, F.L. (1982). Talc granulomatosis: Laboratory findings similar to sarcoidosis. *Am. Rev. Respir. Dis.* 125, 258-261.

Feigin, D.S. (1986). Talc: Understanding its manifestations in the chest. Am. J. Roentgenol. 146, 295-301.

Food and Drug Research Laboratories (1973). Teratologic Evaluation of FDA 71-43 (Talc) (PB-223 828). Washington, DC.

Gart, J.J., Chu, K.C., and Tarone, R.E. (1979). Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62, 957-974.

Gibel, W., Lohs, K., Horn, K.H., Wildner, G.P., and Hoffmann, F. (1976). Experimental study on carcinogenic activity of asbestos filters (Ger.). Arch. Geschwulstforsch. 46, 437-442.

Gregory, R.E., and Pickrell, J.A. (1982). Determination and partial characterization of the endogenous proteolytic activity present in rat lung. 1981-1982 Annual Report, pp. 455-459. Lovelace Inhalation Toxicology Research Institute, Albuquerque, NM.

Gross, P., deTreville, R.T.P., Cralley, L.J., Granquist, W.T., and Pundsack, F.L. (1970). The pulmonary response to fibrous dusts of diverse compositions. *Am. Ind. Hyg. Assoc. J.* 31, 125-132.

Groth, D.H., Mackay, G.R., Crable, J.V., and Cochran, T.H. (1972). Intravenous injection of talc in a narcotics addict. *Arch. Pathol.* **94**, 171-178.

Groth, D.H., Stettler, L.E., Burg, J.R., Busey, W.M., Grant, G.C., and Wong, L. (1986). Carcinogenic effects of antimony trioxide and antimony ore concentrate in rats. *J. Toxicol. Environ. Health* **18**, 607-626.

Hanson, R.L., Benson, J.M., Henderson, T.R., Carpenter, R.L., Pickgel, J.A., and Brown, S.C. (1985). Method for determining the lung burden of talc in rats and mice after inhalation exposure to talc aerosols. J. Appl. Toxicol. 5, 283-286.

Harkema, J.R., Mauderly, J.L., and Hahn, F.F. (1982). The effects of emphysema on oxygen toxicity in rats. *Am. Rev. Respir. Dis.* 126, 1058-1065.

References

Harkema, J.R., Mauderly, J.L., Gregory, R.E., and Pickrell, J.A. (1984). A comparison of starvation and elastase models of emphysema in the rat. *Am. Rev. Respir. Dis.* 129, 584-591.

Harlow, B.L., and Weiss, N.S. (1989). A case-control study of borderline ovarian tumors: The influence of perineal exposure to talc. *Am. J. Epidemiol.* 130, 390-394.

Harmsen, A.G., and Jeska, E.L. (1980). Surface receptors on porcine alveolar macrophages and their role in phagocytosis. *J. Reticuloendoth. Soc.* 27, 631-637.

Haseman, J.K. (1984). Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. *Environ. Health Perspect.* 58, 385-392.

Hawley, G.G. (Ed.) (1977). The Condensed Chemical Dictionary, 9th ed, p. 835. Van Nostrand Reinhold Co., New York.

Hemenway, D.R., Absher, M., Landesman, M., Trombley, L., and Emerson, R.J. (1986). Differential lung response following silicon dioxide polymorph aerosol exposure. In *Silica, Silicosis, and Cancer* (D.F. Goldsmith, D.M. Winn, and C.M. Shy, Eds.), pp. 105-116. Praeger, New York.

Henderson, R.F., Benson, J.M., Hahn, F.F., Hobbs, C.H., Jones, R.K., Mauderly, J.L., McClellan, R.O., and Pickrell, J.A. (1985). New approaches for the evaluation of pulmonary toxicity: Bronchoalveolar lavage fluid analysis. *Fundam. Appl. Toxicol.* 5, 451-458.

Hildick-Smith, G.Y. (1976). The biology of talc. Br. J. Ind. Med. 33, 217-229.

Hill, A.D., Toner, M.E., and Fitzgerald, M.X. (1990). Talc lung in a drug abuser. *Ir. J. Med. Sci.* 159, 147-148.

International Agency for Research on Cancer (IARC) (1987). Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 42. IARC, Lyon, France.

Jonckheere, A. (1954). A distribution-free k-sample test against ordered alternatives. *Biometrika* 41, 133-145.

Kaga, N., Tso, M.O., and Jampol, L.M. (1982a). Talc retinopathy in primates: A model of ischemic retinopathy. III. An electron microscopic study. *Arch. Ophthalmol.* 100, 1649-1657.

Kaga, N., Tso, M.O., Jampol, L.M., Setogawa, T., and Rednam, K.R.V. (1982b). Talc retinopathy in primates: A model of ischemic retinopathy. II. A histopathologic study. *Arch. Ophthalmol.* 100, 1644-1648.

Kalter, V.G., Bonner, J.C., and Brody, A.R. (1989). Secretion of TGF^B by rat alveolar macrophages and characterization of receptors for TGF^B on rat lung fibroblasts. *Cytokine* 1, 76. (Abstr.)

Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457-481.

Kelley, J. (1990). Cytokines of the lung. Am. Rev. Respir. Dis. 141, 765-788.

Kouzan, S., Brody, A.R., Nettesheim, P., and Eling, T. (1985). Production of arachidonic acid metabolites by macrophages exposed *in vitro* to asbestos, carbonyl iron particles, and calcium ionophore. *Am. Rev. Respir. Dis.* 131, 624-632.

Lamb, D., and Roberts, G. (1972). Starch and talc emboli in drug addicts' lungs. J. Clin. Pathol. 25, 876-881.

Langer, A.M., and Nolan, R.P. (1986). Physiochemical properties of quartz controlling biological activity. In *Silica, Silicosis, and Cancer* (D.F. Goldsmith, D.M. Winn, and C.M. Shy, Eds.), pp. 125-135. Praeger, New York.

Lauweryns, J.M., and Baert, J.H. (1974). The role of the pulmonary lymphatics in the defense of the distal lung: Morphological and experimental studies of the transport mechanisms of intratracheally instillated particles. *Ann. N.Y. Acad. Sci.* 221, 244-275.

Lee, K.P., Barras, C.E., Griffith, F.D., and Waritz, R.S. (1979). Pulmonary response to glass fiber by inhalation exposure. *Lab. Invest.* 40, 123-133.

Lee, K.P., Trochimowicz, H.J., and Reinhardt, C.F. (1985). Pulmonary response of rats exposed to titanium dioxide by inhalation for two years. *Toxicol. Appl. Pharmacol.* 79, 179-192.

Lee, K.P., Kelly, D.P., Schneider, P.W., and Trochimowicz, H.J. (1986). Inhalation toxicity study on rats exposed to titanium tetrachloride atmospheric hydrolysis products for two years. *Toxicol. Appl. Pharmacol.* 83, 30-45.

Lee, K.P., Ulrich, C.E., Geil, R.G., and Trochimowicz, H.J. (1988). Effects of inhaled chromium dioxide dust on rats exposed for two years. *Fundam. Appl. Toxicol.* **10**, 125-145.

Lindroos, P., Tsai, W.H., Zarnegar, R., and Michalopoulos, G.K. (1992). Plasma levels of HGF in rats treated with tumor promoters. *Carcinogenesis* 13, 139-141.

Luchtrath, H., and Schmidt, K.G. (1959). Talc and steatite, their relation to asbestos and their effects in intratracheal experiments in rats (Ger.). *Beitr. Silikoseforsch.* **61**, 1-60.

Maronpot, R.R., and Boorman, G.A. (1982). Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. *Toxicol. Pathol.* **10**, 71-80.

Marusic, A., Kos, K., Stavljenic, A., and Vukicevic, S. (1990). Talc granulomatosis in the rat: Involvement of bone in the acute-phase response. *Inflammation* 14, 205-216.

Mauderly, J.L. (1977). Bronchopulmonary lavage of small laboratory animals. *Lab. Anim. Sci.* 27, 255-261.

Mauderly, J.L., Jones, R.K., McClellan, R.O., Henderson, R.F., and Griffith, W.C. (1986). Carcinogenicity of diesel exhaust inhaled chronically by rats. In *Carcinogenic and Mutagenic Effects of Diesel Engine Exhaust* (N. Ishinishi, A. Koizumi, R.O. McClellan, and W. Stober, Eds.), pp. 397-409. Elsevier, Amsterdam.

McConnell, E.E., Solleveld, H.A., Swenberg, J.A., and Boorman, G.A. (1986). Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. JNCI 76, 283-289.

McKnight, B., and Crowley, J. (1984). Tests for differences in tumor incidence based on animal carcinogenesis experiments. J. Am. Stat. Assoc. 79, 639-648. McMahon, T.A., Brain, J.D., and Lemott, S. (1977). Species differences in aerosol deposition. In *Inhaled Particles IV, Part 1* (W.H. Walton, Ed.), pp. 23-32. Pergamon Press, New York.

The Merck Index (1983). 10th ed. (M. Windholz, Ed.), p. 8920. Merck & Company, Rahway, NJ.

Narang, S., Rahman, Q., Kaw, J.L., and Zaidi, S.H. (1977). Dissolution of silicic acid from dusts of kaolin, mica and talc and its relation to their hemolytic activity - an *in vitro* study. *Exp. Pathol.* 13, 346-349.

Nathan, C.F. (1987). Secretory products of macrophages. J. Clin. Invest. 79, 319-326.

National Cancer Institute (NCI) (1976). Guidelines for Carcinogen Bioassay in Small Rodents. Technical Report Series No. 1. NIH Publication No. 76-801. National Institutes of Health, Bethesda, MD.

National Institute for Occupational Safety and Health (NIOSH) (1990), National Occupational Exposure Survey (NOES) (1981-1983), unpublished provisional data as of July 1, 1990.

National Institutes of Health (NIH) (1978). Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

Neukomm, S., and de Trey, M. (1961). Study of possible carcinogenic and/or co-carcinogenic brightening agents (Fr.). *Med. Exp.* 4, 298-306.

Neuman, R.E., and Logan, M.A. (1950). The determination of hydroxyproline. J. Biol. Chem. 184, 299-306.

Olgivie, C.M., Forster, R.E., Blackmore, W.S., and Morton, J.W. (1957). A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J. Clin. Invest. 36, 1-17.

Osol, A., Chase, G.D., Gennaro, A.R., Gibson, M.R., Granberg, C.B., Harvey, S.C., King, R.E., Martin, A.N., Swinyard, E.A., and Zink, G.L. (Eds.) (1980). *Remington's Pharmaceutical Sciences*, 16th ed, p. 1266. Mack Publishing Co., Easton, PA.

References

Oubeid, M., Bickel, J.T., Ingram, E.A., and Scott, G.C. (1990). Pulmonary talc granulomatosis in a cocaine sniffer. *Chest* 98, 237-239.

Özesmi, M., Patiroglu, T.E., Hillerdal, G., and Özesmi, C. (1985). Peritoneal mesothelioma and malignant lymphoma in mice caused by fibrous zeolite. *Br. J. Ind. Med.* 42, 746-749.

Phillips, J.C., Young, P.J., Hardy, K., and Gangolli, S.D. (1978). Studies on the absorption and disposition of ³H-labelled talc in the rat, mouse, guinea-pig and rabbit. *Food Cosmet. Toxicol.* 16, 161-163.

Pickrell, J.A., Hahn, F.F., Rebar, A.H., Horoda, R.A., and Henderson, R.F. (1987). Changes in collagen metabolism and proteinolysis after repeated inhalation exposure to ozone. *Exp. Mol. Pathol.* 46, 159-167.

Pickrell, J.A., Snipes, M.B., Benson, J.M., Hanson, R.L., Jones, R.K., Carpenter, R.L., Thompson, J.J., Hobbs, C.H., and Brown, S.C. (1989). Talc deposition and effects after 20 days of repeated inhalation exposure of rats and mice to talc. *Environ. Res.* 49, 233-245.

Policard, A. (1940). Effect of talc dusts on lungs. Experimental study (Fr.). Arch. Mal. Prof. 2, 530-539.

Pooley, F.D., and Rowlands, N. (1977). Chemical and physical properties of British talc powders. In *Inhaled Particles* (W.H. Walton and B. McGovern, Eds.), Vol. IV, Part 2, pp. 639-646. Pergamon Press, Oxford.

Pott, F., Huth, F., and Friedrichs, K.-H. (1974). Tumorigenic effect of fibrous dusts in experimental animals. *Environ. Health Perspect.* 9, 313-315.

Pott, F., Friedrichs, K.-H., and Huth. F. (1976a). Results of animal experiments concerning the carcinogenic effect of fibrous dusts and their interpretation with regard to the carcinogenesis in humans. Zentralbl. Bakteriol. Mikrobiol. Hyg. [B] 162, 467-505.

Pott, F., Dolgner, R., Friedrichs, K.-H., and Huth, F. (1976b). Oncogenic effect of fibrous dusts. Animal experimentation and its relation to human carcinogenesis (Fr.). Ann. Anat. Pathol. 21, 237-246.

Raabe, O.G., Yeh, H.-C., Newton, G.J., Phalen, R.F., and Velasquez, D.J. (1977). Deposition of inhaled monodisperse aerosols in small rodents. In *Inhaled Particles IV, Part 1* (W.H. Walton, Ed.), pp. 3-20. Pergamon Press, New York.

Rao, G.N., Haseman, J.K., Grumbein, S., Crawford, D.D., and Eustis, S.L. (1990). Growth, body weight, survival, and tumor trends in F344/N rats during an eleven-year period. *Toxicol. Pathol.* 18, 61-69.

Reiser, K.M., and Last, J.A. (1979). Silicosis and fibrogenesis: Fact and artifact. *Toxicology* 13, 51-72.

Reyes, de la Rocha, S., and Brown, M.A. (1989). Normal pulmonary function after baby powder inhalation causing adult respiratory distress syndrome. *Pediatr. Emerg. Care* 5, 43-48.

Rinaldo, J.E., Owens, G.R., and Rogers, R.M. (1983). Adult respiratory distress syndrome following intrapleural instillation of talc. *J. Thorac. Cardiovasc. Surg.* 85, 523-526.

Rohl, A.N., Langer, A.M., Selikoff, I.J., Tordini, A., Klimentidis, R., Bowes, D.R., and Skinner, D.L. (1976). Consumer talcums and powders: Mineral and chemical characterization. *J. Toxicol. Environ. Health* 2, 255-284.

Sadtler Standard Spectra. IR No. 1737. Sadtler Research Laboratories, Philadelphia, PA.

Saffiotti, U., and Stinson, S.F. (1988). Lung cancer induction by crystalline silica: Relationships to granulomatous reactions and host factors. *Environ. Carcinog. Revs. (J. Environ. Sci. Health [C])* 6, 197-222.

Sheikh, K.M.A., Duggal, K., Relfson, M., Gignac, S., and Rowden, G. (1984). An experimental histopathologic study of surgical glove powders. *Arch. Surg.* 119, 215-219.

Shirley, E. (1977). A non-parametric equivalent of Williams' test for contrasting increasing dose levels of a treatment. *Biometrics* 33, 386-389.

Solleveld, H.A., Haseman, J.K., and McConnell, E.E. (1984). Natural history of body weight gain, survival, and neoplasia in the F344 rat. *JNCI* 72, 929-940.

Sorokin, S.P., and Brian, J.D. (1975). Pathways of clearance in mouse lungs exposed to iron oxide aerosols. *Anat. Rec.* 181, 581-625.

Stanton, M.F., and Wrench, C. (1972). Mechanisms of mesothelioma induction with asbestos and fibrous glass. J. Natl. Cancer Inst. 48, 797-821.

Stanton, M.F., Layard, M., Tegeris, A., Miller, E., May, M., and Kent, E. (1977). Carcinogenicity of fibrous glass: Pleural response in the rat in relation to fiber dimension. J. Natl. Cancer Inst. 58, 587-603.

Stanton, M.F., Layard, M., Tegeris, A., Miller, E., May, M., Morgan, E., and Smith, A. (1981). Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. *J. Natl. Cancer Inst.* 67, 965-975.

Tarone, R.E. (1975). Tests for trend in life table analysis. *Biometrika* 62, 679-682.

Theriault, G.P., Burgess, W.A., DiBerardinis, L.J., and Peters, J.M. (1974). Dust exposure in the Vermont Granite Sheds. *Arch. Environ. Health* 28, 12-17.

Thomas, T.L. (1990). Lung cancer mortality among pottery workers in the United States. *IARC Sci. Publ.* **97**, 75-81.

Thomas, T.L., and Stewart, P.A. (1987). Mortality from lung cancer and respiratory disease among pottery workers exposed to silica and talc. *Am. J. Epidemiol.* **125**, 35-43.

Vallyathan, N.V., and Craighead, J.E. (1981). Pulmonary pathology in workers exposed to nonasbestiform talc. *Hum. Pathol.* 12, 28-35.

Wagner, J.C., Berry, G., Cooke, T.J., Hill, R.J., Pooley, F.D., and Skidmore, J.W. (1977). Animal experiments with talc. In *Inhaled Particles* (W.H. Walton and B. McGovern, Eds.), Vol. IV, Part 2, pp. 647-654. Pergamon Press, Oxford.

Wehner, A.P. (1980). Effects of inhaled asbestos, asbestos plus cigarette smoke, asbestos cement and talc baby powder in hamsters. In *Biological Effects of Mineral Fibres* (J.C. Wagner, Ed.), IARC Scientific Publications No. 30, Vol. 1, pp. 373-376. Lyon, France.

Wehner, A.P., Zwicker, G.M., Cannon, W.C., Watson, C.R., and Carlton, W.W. (1977a). Inhalation of talc baby powder by hamsters. *Food Cosmet. Toxicol.* 15, 121-129.

Wehner, A.P., Wilkerson, C.L., Cannon, W.C., Buschbom, R.L., and Tanner, T.M. (1977b). Pulmonary deposition, translocation and clearance of inhaled neutron-activated talc in hamsters. *Food Cosmet. Toxicol.* 15, 213-224.

Wehner, A.P., Stuart, B.O., and Sanders, C.L. (1979). Inhalation studies with Syrian golden hamsters. *Prog. Exp. Tumor Res.* 24, 177-198.

Wehner, A.P., Dagle, G.E., Clark, M.L., and Buschbom, R.L. (1986). Lung changes in rats following inhalation exposure to volcanic ash for two years. *Environ. Res.* 40, 499-517.

Wells, I.P., Dubbins, P.A., and Whimster, W.F. (1979). Pulmonary disease caused by the inhalation of cosmetic talcum powder. *Br. J. Radiol.* 52, 586-588.

Wergeland, E., Andersen, A., and Bærheim, A. (1990). Morbidity and mortality in talc-exposed workers. *Am. J. Ind. Med.* 17, 505-513.

Whittemore, A.S., Wu, M.L., Paffenberger, R.S., Jr., Sarles, D.L., Kampert, J.B., Grosser, S., Jung, D.L., Ballon, S., and Hendrickson, M. (1988). Personal and environmental characteristics related to epithelial ovarian cancer. II. Exposures to talcum powder, tobacco, alcohol, and coffee. *Am. J. Epidemiol.* 128, 1228-1240.

Williams, D.A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose control. *Biometrics* 27, 103-117.

Williams, D.A. (1972). The comparison of several dose levels with a zero dose control. *Biometrics* 28, 519-531.

Yang. T.S. (1977). Studies on sulfonamide-induced anomalies in chick embryos (2). Jpn. J. Steril. 22, 32-40.

APPENDIX A SUMMARY OF LESIONS IN MALE RATS IN THE LIFETIME INHALATION STUDY OF TALC

Table A1	Summary of the Incidence of Neoplasms in Male Rats	
	in the Lifetime Inhalation Study of Talc	64
Table A2	Individual Animal Tumor Pathology of Male Rats	
	in the Lifetime Inhalation Study of Talc	68
Table A3	Statistical Analysis of Primary Neoplasms in Male Rats	
	in the Lifetime Inhalation Study of Talc	86
Table A4	Summary of the Incidence of Nonneoplastic Lesions in Male Rats	
	in the Lifetime Inhalation Study of Talc	90

63

TABLE A1

Summary of the Incidence of Neoplasms in Male Rats in the Lifetime Inhalation Study of Talc^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³	
Disposition Summary		<u> </u>		
Animals initially in study	49	50	50	
Early deaths		20		
Moribund	23	19	20	
Natural deaths	17	17	14	
Survivors				
Died last week of study	1	2	3	
Terminal sacrifice	8	12	13	
Animals examined microscopically	49	50	50	
Alimentary System	<u></u>			
Intestine large, cecum	(42)	(38)	(37)	
Intestine large, colon	(43)	(43)	(46)	
Intestine small, duodenum	(48)	(44)	(46)	
Intestine small, ileum	(39)	(34)	(35)	.*
Intestine small, jejunum	(40)	(38)	(40)	
Liver	(49)	(50)	(48)	
Neoplastic nodule			1 (2%)	
Neoplastic nodule, multiple	2 (4%)	1 (2%)	3 (6%)	
Osteosarcoma, metastatic, multiple, bone	1 (2%)			
Hepatocyte, adenoma		1 (2%)		
Mesentery	(2)		(1)	
Pancreas	(48)	(46)	(47)	
Salivary glands	(49)	(50)	(50)	
Fibroma		í (2%)		
Stomach, forestomach	(49)	(47)	(47)	
Fibrosarcoma			1 (2%)	
Stomach, glandular Fibrosarcoma	(49)	(47)	(47) 1 (2%)	
Cardiovascular System			· · · · · · · · · · · · · · · · · · ·	
Heart	(49)	(50)	(50)	-
Endocrine System			_	
Adrenal gland, cortex	(49)	(49)	(48)	
Adrenal gland, medulla Osteosarcoma, metastatic, uncertain primary	(49)	(48)	(47)	
site			1 (2%)	
Pheochromocytoma malignant	2 (4%)	3 (6%)	6 (13%)	
Pheochromocytoma complex		2 (4%)	1 (2%)	
Pheochromocytoma benign	13 (27%)	9 (19%)	20 (43%)	
Bilateral, pheochromocytoma malignant	1 (2%)		1 (2%)	
Bilateral, pheochromocytoma benign	12 (24%)	21 (44%)	16 (34%)	
Islets, pancreatic	(47)	(41)	(43)	
Adenoma	1 (2%)		2 (5%)	
Carcinoma	1 (2%)			
Parathyroid gland	(45)	(45)	(46)	
Adenoma		1 (2%)		
Pituitary gland	. (47)	(50)	(49)	
Pars distalis, adenoma	12 (26%)	ì 11 (22%)	10 (20%)	
Pars distalis, carcinoma	. ,	1 (2%)		
Pars intermedia, adenoma			2 (4%)	

Table A1

Summary of the Incidence of Neoplasms in Male Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Endocrine System (continued)			
Thyroid gland	(45)	(46)	(46)
C-cell, adenoma	3 (7%)	4 (9%)	3 (7%)
C-cell, carcinoma		1 (2%)	
Follicular cell, adenoma			1 (2%)
General Body System	<u>. </u>		
Tissue NOS	(1)	(1)	
Pheochromocytoma malignant, metastatic,			
adrenal gland		1 (100%)	
Genital System		<u></u>	
Epididymis	(49)	(50)	(49)
Preputial gland	(48)	(49)	(48)
Adenoma	1 (2%)	1 (2%)	1 (2%)
Carcinoma	1 (2%)	6 (12%)	1 (2%)
Prostate	(49)	(45)	(48)
Seminal vesicle	(49)	(48)	(47)
Testes Bilatoral interntitial call adaptame	(49) 18 (270%)	(50)	(50)
Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	18 (37%) 13 (27%)	24 (48%) 15 (30%)	24 (48%) 12 (24%)
		· · ·	· · ·
Hematopoietic System Bone marrow	(48)	(48)	(47)
Lymph node	(49)	(50)	(50)
Lymph node, bronchial	(41)	(48)	(49)
Lymph node, mandibular	(46)	(48)	(47)
Lymph node, mediastinal	(48)	(49)	(47)
Lymph node, mesenteric	(49)	(48)	(47)
Spleen	(49)	(50)	(48)
Fibrosarcoma	í (2%)		
Fibrous histiocytoma		1 (2%)	
Osteosarcoma, metastatic, bone	1 (2%)		
Thymus	(48)	(40)	(43)
Thymoma malignant	1 (2%)		
Integumentary System	<u>,,,,,</u>		
Mammary gland	(45)	(48)	(50)
Adenocarcinoma	1 (2%)		
Skin	(48)	(50)	(50)
Basosquamous tumor malignant			1 (2%)
Fibroma		2 (4%)	
Fibrous histiocytoma			1 (2%)
Keratoacanthoma		2 (4%)	2 (4%)
Neurofibroma		1 (2%)	
Squamous cell carcinoma		1 (2%)	
Subcutaneous tissue, fibroma		1 (2%)	
Subcutaneous tissue, fibrosarcoma	1 (20%)	1 (2%)	
Subcutaneous tissue, schwannoma malignant	1 (2%)		

TABLE A1

Summary of the Incidence of Neoplasms in Male Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Musculoskeletal System			······································
Bone	(49)	(50)	(50)
Pelvis, osteosarcoma	1 (00)	1 (2%)	
Scapula, osteosarcoma Vertebra, osteosarcoma	1 (2%)		1 (2%)
Skeletal muscle	(1)		1 (270)
Nervous System		<u></u> ,,,	
Brain	(49)	(50)	(50)
Astrocytoma malignant	1 (2%)		
Respiratory System			
Lung	(49)	(50)	(50)
Alveolar/bronchiolar adenoma		1 (2%)	1 (2%)
Alveolar/bronchiolar carcinoma, multiple			1 (2%)
Fibrosarcoma, metastatic, salivary glands	1 (2%)		
Osteosarcoma, metastatic	•	1 (2%)	
Osteosarcoma, metastatic, uncertain primary			1 (20%)
site Osteosarcoma, metastatic, multiple, bone	1 (2%)		1 (2%)
Nose	(49)	(48)	(47)
Chondroma	1 (2%)	(40)	(47)
Sarcoma	1 (270)	1 (2%)	
Special Senses System None			
Urinary System	·······		
Kidney	(49)	(49)	(48)
Renal tubule, carcinoma	2 (4%)		
Urinary bladder	(49)	(48)	(47)
Papilloma	1 (2%)		
Systemic Lesions			
Multiple organs ^b	(49)	(50)	(50)
Leukemia mononuclear	24 (49%)	21 (42%)	23 (46%)
Lymphoma malignant lymphocytic	1 (2%)		
Mesothelioma benign	1 (2%)		1 (29%)
Mesothelioma malignant			1 (2%)

TABLE A1

Summary of the Incidence of Neoplasms in Male Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³	
Neoplasm Summary				
Total animals with primary neoplasms ^c	48	49	50	
Total primary neoplasms	116	135	137	
Total animals with benign neoplasms	42	45	45	
Total benign neoplasms	78	96	98	
Total animals with malignant neoplasms	34	33	33	
Total malignant neoplasms	38	39	39	
Total animals with metastatic neoplasms	2	2	1	
Total metastatic neoplasms	4	2	2	
Total animals with malignant neoplasms, uncertain primary site			1	

Number of animals examined microscopically at site and number of animals with lesion Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms а

b

c

Number of Days on Study	3		2	5	6	8	9	9	2	2	3	3	5	5		8	6 8 2	9	0	0	0			3		
	_	3	-		4												3									
Carcass ID Number																	4									
																	8									
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	.1	1	1	1		
limentary System								_																		
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+		
Intestine large, cecum	• +	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+		
Intestine large, colon	+	+	+	М	+	+	÷	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+		
Intestine large, rectum	М	+	+	+	+	+	+	+	+	Μ	+	+	+	Α	M.	+	+	+	+	+	+	+	+	+		
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, ileum	Α	+	+	+	+	+	+										Α		+							
Intestine small, jejunum	. A	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	Α	+	+	+	+	+	+	Α		
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+		
Neoplastic nodule, multiple																		х								
Osteosarcoma, metastatic, multiple, bone										х																
Mesentery	+																									
Pancreas	+	+	+	+	+	+	+			Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Salivary glands	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach	+	+	+	+	+	+		+		+	+	+	+		+		+	+	+	+	+	+	+	+		
Stomach, forestomach	+	+	+	+	+	+					+		+		+			+	+	+	+	+	+	+		
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		•
Cardiovascular System																-										
Blood vessel				+											+											
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Endocrine System																										-
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pheochromocytoma malignant															х											
Pheochromocytoma benign			Х												х	Х		Х	х							
Bilateral, pheochromocytoma malignant													_													
Bilateral, pheochromocytoma benign													х								х					
Islets, pancreatic	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adenoma																										
Carcinoma																										
Parathyroid gland																	+									
Pituitary gland	+	+	+	+			+							I	+	+	+	+	1			+	+	+		
Pars distalis, adenoma					X							X		,					_		X			,		
Thyroid gland C-cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+ x	+	+	+	+	+	+	+		

 TABLE A2

 Individual Animal Tumor Pathology of Male Rats in the Lifetime Inhalation Study of Talc: 0 mg/m³

+: Tissue examined microscopically A: Autolysis precludes examination M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined Table A2

Number of Days on Study	4	4	4	4	4	5	7 6 1	6	6	8	8	8	8	8	9	9	9	9	9	9	0	0	8 0 0	0	0	
······································	3	2	3		3	4	4	3	3	3	3	3	4	3	3	3	3	3	3	3	2	2	3	3	4	
Carcass ID Number	-	-																					2			Total
	-																						2			Tissues
																							1			Tumor
Alimentary System															-											
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large	+	+	+	+	+	+	+	Α	+	+	Α	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	45
Intestine large, cecum	+	Α	+	+	+	+	М										+	+	+	Α	+	+	+	+	+	42
Intestine large, colon							+											+	+	+	+	+	+	+	+	43
Intestine large, rectum							+											+	+	+	+	+	+	+	+	38
Intestine small							+											+	+	+	+	+	+	+	+	48
Intestine small, duodenum	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small, ileum							+		+	A	A	+	A	+	+	+	+	+	+	+	+	+	+	+	+	39
Intestine small, jejunum	+						+												+			+	+	+	+	40
Liver	+																					+	+	+	+	49
Neoplastic nodule, multiple Osteosarcoma, metastatic, multiple, bone	•			•	•	•	·		•	•	•	•	•	x	•	•	•	•	•	•	•	•			•	2 1
Mesentery				+																						2
Pancreas	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	49
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+			+	+	+	+	49
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+			+			+	+			+	+	+	+	49
Stomach, glandular	+	+	+	+	+	+																+	+	+	+	49
Cardiovascular System								_	_					_							_		·			
Blood vessel								+												+						4
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Endocrine System							_							_												
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	49
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pheochromocytoma malignant		х																								2
Pheochromocytoma benign		Х					х		х	х				х					х					х	х	13
Bilateral, pheochromocytoma malignant																				Х						1
Bilateral, pheochromocytoma benign				х	х	х					х					х		х					Х			12
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	I	+	+	+	+	47
Adenoma																			Х							1
Carcinoma																								х		1
Parathyroid gland	Μ	+	+	+	+	+	+	+	+			М	+										+			45
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+			+		47
Pars distalis, adenoma	Х												х					Х				х			х	12
Thyroid gland	+	+	+	+	+	+	+	Α	+	+	+	+	Α	+	+	Μ	+			+	+	+			+	45
C-cell, adenoma																		Х					Х			3

69

TABLE A2

······································										_														-		ued)	
	3	3	4	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7			
Number of Days on Study	3	6	2	5	6	8	9	9	2	2	3	3	5	5	7	8	8	9	0	0	0	0	2	3			
	4	0	9	1	8	6	0	3	2	8	1	5	0	6	0	2	2	8	0	0	4	9	4	9			
	3	3	3	3	4	2	2	3	3	4	3	3	3	4	3	3	3	3	3	3	3	3	2	4			-
Carcass ID Number	6	0	6	4	1	9	9	1	8	2	3	4	6	1	4	4	4	1	1	8	9	1	9	1.			
	1	0	8	0	3	4	5	8	7	0	9	2	3	8	5	3	8	7	6	5	0	3	6	4			
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
General Body System		_													•												
Tissue NOS			+													_											
enital System																										_	
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Adenoma			Х																								
Carcinoma						Х																					
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	° +	+	+	+	+	+	+	+			
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Bilateral, interstitial cell, adenoma													х			х							Х	Х			·
Interstitial cell, adenoma				х					x									x	х			х					
Iematopoietic System		_																							•		
Bone marrow	بد	ـ	+	т.	+	Ŧ	Т	+	Ŧ	ж.	Ŧ	+	+	Α	+	+	+	+	+	+	+	+	-	÷			
Lymph node	т 1	т 	т 	т 	т 	т 	т -	т т	т 	т 	т 	т Т	т Т	л Т	т 	Ť	т Т	т Т	т - т	т -	т 						
Lymph node, bronchial	т 		- T	т 	M	M	+ +	т -	т 			т -	т -	Ť	т +	Ť	т -	т Т	т -	т -		т —	т 	т -			
	т 1	Ţ	т ,	т ,	141	141	т ,	Ţ	- -	- T	- T	т 1	т 1	т 1	T	т	T	T	т 1	- T	Ň	т Г і		- T			
Lymph node, mandibular	+	+	+	+	Ţ	-	T		+	-		Ţ	T	Ţ	T	T	Ţ	Ţ		Ţ	M		-	Ţ			
Lymph node, mediastinal	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	++	+	+	+	+	+	+	++			
Lymph node, mesenteric	т 1	Ţ	- T	Ţ	Ţ	- T	T	Ţ	T	Ţ	Ţ	Ť	+	+	+	Ţ	Ť	T	т 		Ţ	Ţ	Ţ	Ť			
Spleen	т	Ŧ	Ŧ	т	T	Ŧ	T	т	Ŧ	T	т	т	Ŧ	x	Ŧ	т	т	Ŧ	т	Ŧ	т	Ŧ	т	Ŧ			
Fibrosarcoma										x				Λ													
Osteosarcoma, metastatic, bone Thymus	· .							+				т	+	Ŧ	+		-	+	Ŧ		-	+		L			
Thymoma malignant	т	x	+	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	-	T	T	т	T	т			
ntegumentary System	· ··									-		_															
Mammary gland	м	+	+	+	+	+	+	+	+	+	+	+	+	+	М	М	+	+	+	+	+	+	+	+			
Adenocarcinoma																											
Skin	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Subcutaneous tissue, schwannoma																											
malignant																					Х						
Ausculoskeletal System																							_	_			
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Scapula, osteosarcoma	т		1.	•		'	'		'	x	•		+	•	•	•		•		•		•		•			
Skeletal muscle										~ 1																	
Table A2

7 8 2 1 9 1 0 1 7 3 9 8 5 1 6 7 4 9 1 6 3 7 2 4 9 Tissu	Number of Days on Study	4	7 4 1	4	7 4 6				6			8		8	7 8 7		7 9 5	9	9	7 9 9	9	8 0 0	8 0 0	-	8 0 0	0	
Tissue NÓS 1 Genital System Epididymis + + + + + + + + + + + + + + + + + + +	Carcass ID Number	6 7	9 8	6 2	9 1	1 9	1 1	1 0	9 1	4 7	2 3	8 9	8 8	1 5	2 1	9 6	3 7	2 4	6 9	7 1	8 6	9 3	9 7	2 2	4 4	1 9	Total Tissue: Tumor
Epiddymis + + + + + + + + + + + + + + + + + + +		·																									1
Preputial gland + + + + + + + + + + + + + + + + + + +						-																		-			
Adenoma 1 Carcinoma 1 Prostate + + + + + + + + + + + + + + + + + + +		+	+	+++	+++	+++	++	+ +	+	+++	+++	+++	+++	++		+ м	+ +	++	++	+++	++	+++	+	+++	++	+ +	
Prostate + + + + + + + + + + + + + + + + + + +		т			•	,	'	•	•		•	•	•		•		•		•		•	•		•	,	·	
Seminal vesicle + + + + + + + + + + + + + + + + + + +	Carcinoma																										1
Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma $+ + + + + + + + + + + + + + + + + + + $		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Bilateral, interstitial cell, adenoma X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 13 Hematopoletic System Bone marrow + + + + + + + + + + + + + + + + + + +		+												+													
Interstitial cell, adenoma X X X X X X X X X		+				+							+	+	+	+					+	•			+		
Bone marrow $+ + + + + + + + + + + + + + + + + + + $			л	л		x		л	~	Λ	~	л		x	х	x	л				х		л		x		
Bone marrow + + + + + + + + + + + + + + + + + + +	Hematopoietic System																										
Lymph node, bronchial Lymph node, madibular $+ + + + + + + + + + + + + + + + + + + $	Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lymph node, mandibular $+ + + + + + + + + + + + + + + + + + +$		+	+	+	+	+	+		+															+	+	+	
Lymph node, mediastinal + + + + + + + + + + + + + + + + + + +		+	+	+																						-	
Lymph node, mesenteric $+ + + + + + + + + + + + + + + + + + + $		+	+																								
Spleen $+ + + + + + + + + + + + + + + + + + + $		+	+	+	+																						
Fibrosarcoma 1 Osteosarcoma, metastatic, bone 1 Thymus + + + + + + + + + + + + + + + + + + +		+	+	+	+																						
Osteosarcoma, metastatic, bone Thymus Thymoma malignant1 $1 + + + + + + + + + + + + + + + + + + +$		т	т	Ŧ	т	Ŧ	Ŧ	т	-	т	т	т	т	т	т	Ŧ	т	Ŧ	T	т	т	т	Ŧ	T	т	Ŧ	
Thymus Thymoma malignant $+ + + + + + + + + + + + + + + + + + + $																											
^{Thymoma malignant 1 ^{Integumentary System ^{Mammary gland} + + + + + + + + + + + + + + +}}		+	+	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mammary gland $+ + + + + + + + + + + + + + + + + + + $			•	•	-		-	·		-	·	•		-			·	-	-	·	-	•		-			
Mammary gland $+ + + + + + + + + + + + + + + + + + + $	ntegumentary System																										
Adenocarcinoma X 1 Skin + + + + + + + + + + + + + + + + + + +	Mammary gland	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Subcutaneous tissue, schwannoma 1 malignant 1 Musculoskeletal System 49	Adenocarcinoma													х													
malignant 1 Musculoskeletal System 49		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Bone $++++++++++++++++++++++++++++++++++++$	•																										1
Bone $++++++++++++++++++++++++++++++++++++$	Musculoskeletal System														_						_						
Scapula, osteosarcoma 1		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Skeletal muscle 1																											

.

TABLE A2

Number of Days on Study	3	6	2	5	6	8	9	9	2	2	3	3	5	5	7	8	8	9	0	0	0	0	7 2	3	
·	4	0	9	1	8	6	0	3	2	8	1	<u> </u>	0	6	0	2	2	8	0	0	4	9	4	9	
																							2		
Carcass ID Number	1	0	8	0	3	4	5	8	7	0	9	2	3	8	5	3	8	7	6	5	0	3	9 6 1	4	
Nervous System																									
Brain Astrocytoma malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Respiratory System				_																					
Larynx	+	Ι	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Fibrosarcoma, metastatic, salivary glands										v											x				
Osteosarcoma, metastatic, multiple, bone Nose	щ	-	ъ	J.		<u>т</u>	Ŧ	-	+	X	Ŧ	-	т.	ъ	Ŧ	+	+	ъ	+	+	+	<u>н</u>	+	Ŧ	
Chondroma	т	т	т	т	т	т	T		т	Ŧ	т		T		4		×	-		•	•		•		
Trachea	+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Special Senses System				_	-																				•
Eye														+									+		
Urinary System																									
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Renal tubule, carcinoma Urinary bladder	-1	L	ч	L.	1	L.	д	ъ	.د.	ᆂ	ъ	<u>ـ</u>	ъ	س	<u>ــ</u>	۰	Ъ	ـ	ᆂ	ъ	ъ	Ŧ	+	_	
Papilloma	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т	т	Τ'	Ŧ	Ŧ	т _	т	T	т	т	т	ť	т	Ŧ	т 	т 	T	
Systemic Lesions			•			-							-												
Multiple organs		+	+			+	+																	+	
Leukemia mononuclear Lymphoma malignant lymphocytic	Х			Х				х	х		х	х	Х			Х		Х	х		x	Х	X	x	5

Number of Days on Study	4	7 4 1	4	4	7 4 7	5	7 6 1	-		7 8 2	7 8 4	7 8 5	7 8 6	8	9	7 9 5	7 9 9	7 9 9	7 9 9	7 9 9	8 0 0	0	0	8 0 0	0	
Carcass ID Number	6 7	8	6 2	9 1	9	1 1	4 1 0 1	9 1	7	2 3	8 9	8 8	1 5	2 1	6	3 7	4	6 9	7 1	8 6	9 3	7	2 2	4	1 9	Total Tissues, Tumors
Nervous System Brain Astrocytoma malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	49 1
Respiratory System Larynx Lung Fibrosarcoma, metastatic, salivary	+ +	++	+ +	+ +	++	++	+ +	+++	+ +	+ +	+ +	++	+ +	+ +	+++	+ +	++	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	48 49
glands Osteosarcoma, metastatic, multiple, bone Nose Chondroma	+	+		+		+	-	•	+	•	+	•	+	•			•		÷	•	+	+		+		1 1 49 1
Trachea 	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 3
Urinary System Kidney Renal tubule, carcinoma Urinary bladder Papilloma	+ +	+ +	+	+		++	+ + X		+ +	Х		+ +	++		+ X +							+ +	+ +	+ +	+ +	49 2 49 1
Systemic Lesions Multiple organs Leukemia mononuclear Lymphoma malignant lymphocytic Mesothelioma benign	+ X		+ X	+ X	+ X	+	+ X	+	+	+ X	+	+	+	+	+ X	+	+	+	+ X	+	+ X	+	+ X	+	+ X	49 24 1 1

Parathyroid gland

Adenoma

Pituitary gland

Thyroid gland

C-cell, adenoma C-cell, carcinoma

74

Individual Animal Tumor Pathology of Male Rats in the Lifetime Inhalation Study of Talc: 6 mg/m³ 777 Number of Days on Study 8 2 2 4 5 7 9 9 0 1 3 4 5 5 6 7 7 9 1 2 2 3 3 4 4 6 7 9 4 8 3 3 3 4 1 3 8 0 7 3 3 7 0 5 2 8 4 9 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 00 0 0 1 **Carcass ID Number** 2 0 5 0 7 7 0 0 4 0 1 2 6 3 5 0 0 5 0 1 8 9 8 5 2 9 3 3 1 9 8 0 1 7 0 3 3 2 2 3 7464 69 7 549 1 1 1 1 1 **Alimentary System** Esophagus Intestine large + + + Α + Α + Α + + + Α + + + + + + + + + + + + Intestine large, cecum Α Α + + Α + + + + + Α Α + + + + + + Α Α Intestine large, colon + + A + Α + + + + + Α + Α + + + + Α + + + + + + + Intestine large, rectum + M + A ++ + + A + Μ ++ + A + + + + Α + + + + + + + + A A +Intestine small + + + A + + + + A + + + + A + + + ++ Intestine small, duodenum + + + + Intestine small, ileum Α + + + A A A + + A + + + A A ++ + ++ + A A+ + + Bilateral, pheochromocytoma benign х х х х х + A A + + + M + + Islets, pancreatic + + + A+ + + + + + Α + + M + +

Intestine small, jejunum	+	+	+	Α	+	+	+	+	+	Α	Α	Α	+	+	Α	+	+	+	Α	Α	+	+	+	+	Α
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Neoplastic nodule, multiple																									
Hepatocyte, adenoma																									
Pancreas	+	+	+	Α	+	+	+	+	+	+	Α	Α	+	+	+	+	+	+	+	Α	+	+	+	+	+
Salivary glands Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach	. +	+	+	Α	+	+	+	+	+	+	Α	Α	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach, forestomach	+	+	+	Α	+	+	+	+	+	+	Α	Α	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach, glandular	+	+	+	Α	+	+	+	+	+	+	A	A	+	+	+	+	+	+	+	+	+	+	+	+	+ 、
Cardiovascular System Blood vessel									+			_										+			
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	Α	+	+	Ι	+	+	+	+	+	+	+	+
			Х																		
				Х																	
				х							х				х	х				х	
	++	+ + + +	++++++++	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + X	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + A + + + + + + + + +	+ + + + + + + + + + A + + + + + + + + +	+ + + + + + + + + + A + + + + + + + + +	+ + + + + + + + + + A + + + + + + + + +	+ + + + + + + + + + A + + + + + + + + +	+ + + + + + + + + + + A + + + + + + + +	+ + + + + + + + + + A + + + + + + + + +	+ + + + + + + + + + + A + + + + + + + +	+ + + + + + + + + + + A + + + + + + + +	+ + + + + + + + + + + A + + + + + + + +	

х + ++ + + + + + + + + + + Pars distalis, adenoma х х х Pars distalis, carcinoma + + + + + +

+ + M M + + + +

+

+ + +

+ + + + M + +

- --- --

TABLE A2

																		_					_			
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	8	8	8	8	8	8	8	
Sumber of Days on Study	4	4	5	5	6	6			8	8	9	9	9	9	9	9	9	9	õ	Õ	Õ	0	-	Õ	-	
amoer of Days on Stady	6	7	-	9							-	-				-	-			Ŏ	Ŏ	-	-	ů	-	
	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	
Carcass ID Number	2	3	9	3	2	0	5	5	2	0	3	0	3	3	3	5	7	7	0	7	9	2	2	2	3	Total
	6	2	8	2	6	4	1		8	5	4	1	0	5	6	2	4	5	8	8	9	1	5	9	0	Tissue
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Intestine large, cecum	+	+	À	À	+	Å	+	+	+	+	A		+	+	+	+	+	Å	+	+	+	+	+	+	+	38
Intestine large, colon	+	+	+	+	+	+	+		+			+	+	+	·	+		A	+	+	+	+	+	+	+	43
Intestine large, rectum	+	+	M	M	+	+	+		+		A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	41
Intestine small	+	+	+	+	+	+			+				+	+	+	+	+	+	+	+	+	+	+	+	+	44
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Intestine small, ileum		Å	Å	Å	+	-	-	•				-		-	+		+	Å	+	+	+	+	+	+	+	34
Intestine small, jejunum	. +	4	4	A	÷		÷								+					+	÷	+	+	+	÷	38
Liver	+	+	+	+					+						+			+		+	+	+	+	÷	+	50
Neoplastic nodule, multiple	т	т	т	т	т	1	1	т	т	т	т	x				Т	T	1			'			'		1
Hepatocyte, adenoma												Λ													x	1
Pancreas	.	-	+	+	+	-	ъ	т	+	-	-	1	Т	т	+	+	-	-	+	-	+	-		Т	л +	46
Salivary glands				- -	т т	т 			+			+	+		+			+		- T	т 		т 	т -	т _	50
Fibroma	т	т	т	Ŧ	т	т	т	т	x	Ŧ	т	Ŧ	т	Ŧ	т	т	т	Ŧ	Ŧ	т	т	т	т	т	т	1
							,																			47
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Stomach, forestomach Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47 47
Cardiovascular System																										
Blood vessel			+					+	+																	5
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																										
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	+	+	+	49
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Pheochromocytoma malignant				•	•	•	·	·	·	·	x	•	x	•					•				•			3
Pheochromocytoma complex																							х			2
Pheochromocytoma benign											х						x					x	x			9
Bilateral, pheochromocytoma benign	x		x	х		x	х	x	x	x				x	х	x		х		x	х				х	21
Islets, pancreatic				+								+	+										+		+	41
Parathyroid gland	+			+			'n								+									+		45
Adenoma	т					'		•					•			,		•	•	•					•	1
Pituitary gland	L.	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pars distalis, adenoma	т		x		T	x		x	-		T	P		x	,					x				1-		11
Pars distalis, adenoma Pars distalis, carcinoma		~	Λ			л	x						Λ	л						~						1
Thyroid gland		-	-	+	д.	L.			<u>т</u>	ـــ	ـــ	ـــ	<i>ц</i> .	Т		ъ	4	L.	ъ	L	L	L	L	ъ	<u>ـ</u> ـ	46
	+	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	x		x	+	Ŧ	т	Ŧ	x		x		Ŧ	Ŧ	7	
C-cell, adenoma										v		л		Λ					^		^					4
C-cell, carcinoma										х																1

TABLE A2

Individual Animal Tumor Pathology																•	, -										.,	
	1	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7			
Number of Days on Study	8	2	2	4	5	7	9	9	0	1	3	4	5	5	6	7	7	9	1	2	2	3	3	4	4			
	6	7	9	4	8	3	3	3	4	1	3	8	0	7	3	3	7	0	5	2	8	4	9	0	1			
<u></u>	 0	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	0		1	0	0	0			1			
Carcass ID Number		2		5		ů.									5													
				9											7													
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
General Body System																		_					<u> </u>			<u>.</u>		
Tissue NOS																					+							
Pheochromocytoma malignant,																									•			
metastatic, adrenal gland																					x	,						
Genital System	 								-											•••••								
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Preputial gland	+	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	·		
Adenoma	•	•	·	•	•	•	•	•	•	•	•••	·	•		•	·	•		•	•		·	•		•			
Carcinoma		х			х																		x	x				
Prostate	+		+	М		+	+	+	м	+	м	+	м	+	+	+	+	+	+	+	+	+			Α			
Seminal vesicle				Μ									+		+	+	+	+	+	+	+	+	+	+	+			
Testes		+	+	+	+		+			+			+	+	+	+	+	+	+	+	+	+	+	+	+			
Bilateral, interstitial cell, adenoma					-	•	·	·	x		-		x			-	x			x			x		x			
Interstitial cell, adenoma				х		X				х					х			х				х						
Hematopoietic System	 • • •																	_			,							_
Bone marrow	т	т	ж	т	ъ	Ъ	+	т	-	ъ	ъ	Δ	Δ	ъ	+	Ŧ	+	+	. . .	-	+	<u>ــ</u>	+	Ŧ	<u> </u>			
Lymph node	Ť	т 	т 	т _	т _	т 	т 	т 	т 			+			+	Ť	т 	т 	т -		т 	т 	т 	т 				
Lymph node, bronchial	т 	т _	Ť	т 	Ŧ	+	+	т 	M		+	+	т Т	+	Ť	+	+	·⊥	+	Ă	+	- -	т 	+	+			
Lymph node, bronchiar Lymph node, mandibular	- -	т -	Ť	Ŧ	т Т	т -	т 	Ť		+		ī	+	+	+	+	т 			+	т 	T		+				
Lymph node, mediastinal	1	1	÷.	1	+	+	+	м м	+		+	+	÷	+	+	+	+	+	+		+	÷.	÷	+				
Lymph node, mesenteric	1	цт. Т	Ţ	Ť	-	+	+		+				+		+	+	+	+	+	+	+	- -	+		+			
Spleen	- -		- -	Ť	Ļ	т Т	т Т	т Т	т	Ţ	+	т Т	т _	Ţ	т Т	+	+	т Т	т -	т _	- -	- -	- T		+			
Fibrous histiocytoma	т	т	T	т	т	т	т	-	т	т		r	т	Ŧ	т	1	'		Ŧ	Т	Ŧ	,		'	+			
Thymus	+	+	+	М	+	+	+	+	+	+	+	М	.+	+	+	+	М	+	+	+	+	+	Ι	+	+			
	 																											
Integumentary System																							• .					
Mammary gland				+											+	+							+	+	+			
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+		•	
Fibroma														Х	v													
Keratoacanthoma															Х													
Neurofibroma																												
Squamous cell carcinoma																												
Subcutaneous tissue, fibroma						٠																						
Subcutaneous tissue, fibrosarcoma																												

Lesions in Male Rats

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the Lifetime Inhalation Study of Talc: 6 mg/m³ (continued) 8 8 8 8 8 777 7 7 7 8 8 777 7 7 7 7 7 77 7 7 Number of Days on Study 9 9 9 9 9 9 9 0 0 0 0 0 4 5 5 6 6 8 8 8 8 9 0 0 4 6 7 7 9 1 2 0 1 3 7 1 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 Carcass ID Number 2 393 2 0 5 52 0 3 0 3 3 3 5 7 7 0 2 2 Total 7 9 23 1 0 8 5 4 1 0 5 6 2 4 5 8 8 9 1 5 9 0 Tissues/ 6 282 6 4 Tumors 1 General Body System Tissue NOS 1 Pheochromocytoma malignant, metastatic, adrenal gland 1 **Genital** System Epididymis 50 Preputial gland 49 Adenoma x 1 Carcinoma 6 х Prostate + 45 Seminal vesicle 48 + + + + + + + + + ++ + + + + + + + + + + + + Testes + + + + + + + + + + + + 50 + + + + + + + + Bilateral, interstitial cell, adenoma хххх ххх х XXXXXX 24 х х Interstitial cell, adenoma XXXXX х хх х 15 Hematopoietic System Bone marrow 48 Lymph node 50 Lymph node, bronchial + + + 48 + + + + + ++ + Lymph node, mandibular 48 + Lymph node, mediastinal + + + + + + + + + + + ++ + + + + + + + + + 49 Lymph node, mesenteric 48 + + I + + + + + + + + + + + + + + + + + + Spleen + + 50 + + + + + + + + + + + ++ Fibrous histiocytoma Х 1 Thymus + M I + + + M + 40 + M + M + M ++ + + Integumentary System Mammary gland М 48 Skin 50 + + + Fibroma х 2 Keratoacanthoma х 2 Neurofibroma х 1 Squamous cell carcinoma х 1 Subcutaneous tissue, fibroma х 1 Subcutaneous tissue, fibrosarcoma х 1

Number of Days on Study	8	2	2	4	5	5 7 3	9	9	0	1	3	4	5	5	6	7	7	9	1	2	2	3	3	4	4	
						0																				· · ·
Carcass ID Number	6	9	7	9	5	0 4 1	9	3	3	1	9	8	0	1	7	0	3	3	2	2	3	7	4	6	4	
Musculoskeletal System																	-					-	-			
Bone Pelvis, osteosarcoma	+	+	+	+	. +	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Nervous System														_												
Brain	+	+	+	+	+	÷	+	+	+	+	+	+	+	÷	+	+	÷	+	+	+	+	÷	+	+	+	
Respiratory System				÷																						
Larynx Lung	+	+	+	+	+	+	+	+	+++	+	+++	+	+++	+	+	+++	+++	+	+	+	+	+	+	+	+	
Alveolar/bronchiolar adenoma Osteosarcoma, metastatic	•	•	•	•	'	•	ľ	'		x		•	'	,	•			•	'	'	'	•	1			, •
Nose	+	+	+	+	+	+	+	+	+	+	Α	+	+	+		+	+	+	+	+	+	+	+	+	+	
Sarcoma Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x +	+	+	+	+	+	+	+	+	+	+	
Special Senses System											5															
Eye	+																									
Urinary System																										
Kidney Urinary bladder	+ +	+ +	+ +	A +	+ +	+ +	+ +	+ +	+ +	+ +	+ A	+ +														
Systemic Lesions																										
Multiple organs Leukemia mononuclear	+	+		+ x		+	+ X	+ x	+	+	+ x	+ x	+ X	+	+	+		+ x		+	+	+	+ X		+ x	

Individual Animal Tumor Pathology	of Mal	e	Ra	ts :	in	the	L	ife	tim	e]	Inh	ala	atio	DN	Sti	udy	ya	ſĨ	[ale	c: (6 m	ng/	m³	(00	ontir	ued)
Number of Days on Study	7 4 6	7 4 7	7 5 7	7 5 9	7 6 1	7 6 2	7 8 0	7 8 1	7 8 3	7 8 7	7 9 1	7 9 9	7 9 9	7 9 9	7 9 9	7 9 9	7 9 9	7 9 9	8 0 0	8 0 0	8 0 0	8 0 0	8 0 0	-	8 0 0	
Carcass IID Number	2 6	3	0 9 8 1	3 2	2 6	1 0 4 1	5 1	5 0	8	0 5		0 1	3 0	5	3 6	2	7 4	7 5	0 8	7 8	9 9	2 1	2 5	1 2 9 1	3 0	Total Tissu Tumo
Musculoskeletal System Bone Pelvis, osteosarcoma	+	4	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Nervous System Brain	+	4	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Respiratory System Larynx Lung Alveolar/bronchiolar adenoma Osteosarcoma, metastatic Nose Sarcoma Trachea	+ + +	+ + +	⊦ + ⊦ + ⊦ +			+ + A	+		+ +	+				+ +		+ + + +			+++++++++++++++++++++++++++++++++++++++						++++++	49 50 1 1 48 1 50
Special Senses System Eye																					÷					2
Urinary System Kidney Urinary bladder	+ +	 + +	⊦ + ⊦ +	• +	· +	· + 1 +	++	+	+ +	+ +	+ +	++	++	++	++	++	+	++	++	+ +	++	+	++	+	++	49 48
Systemic Lesions Multiple organs Leukemia mononuclear	+ X		+ +	-		+	+ X	+	+ X	+	+	+	+	+	+ X	+	+	+ X	+	+ x	+	+	+	+ X	+	50 21

80

Number of Days on Study	2 4 8	4 9 2	5 0 0	9	0	0	1		1	1	2	3	4	6 5 1	5	5	7	8	9	9	0	0	1	_	3	
Carcass ID Number	2	1 4	2 0	1 7		1 7	1 7		2 2			1	5	0	2 2		2 7				2 2			1 5	1 7	
	9 1	5 1	3 1	7 1	4 1	4 1	-	9 1		6 1	5 1	7 1	1 1	2 1		7 1				2 1	5 1			0 1	2 1	
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	·+	+	+	+	+	+	+	
Intestine large, cecum	+	Α	+	Α	Α	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	Α	Α	+	+	+	+	
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, rectum	+	Μ	Μ	Α	+	+	+	+	+	+	М	+	Α	+	+	+	+	+	Μ	Μ	Μ	Μ	+	Μ	+	
Intestine small	+	+	+	Α	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, duodenum	+	+	+	Α	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, ileum	М	Α	Α	Α	+	+	+	+	М	+	+	+	Α	+	+	+	+	+	+	Α	Α	Α	+	+	+	
Intestine small, jejunum	+	Α	Α	Α	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	Α	Α	+	+	+	+	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Neoplastic nodule Neoplastic nodule, multiple Mesentery									x													х	•	X		
Pancreas	+	Т	т	۸	ъ	-		<u>т</u>	т	т	Т	ъ	т	т	-	Т	Т	<u>т</u>	-		+	ъ	Ť	L.		
Salivary glands		- -	Ξ	A .	Ŧ	+	+	+	+	Ŧ	Ŧ		Ξ	Ŧ	Ŧ	Ŧ	Ŧ		Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	
Stomach	+	- -	+	Å	+	+	т +	+	+	+	+	- -	+	+	+	+	÷	-	+	- -	+	+	+	+	т +	
Stomach, forestomach		т -		A	+	+	+	+	+	+	+		- -	т —	+	- -	+	+	т -	- -	т -		+	+	т —	
Fibrosarcoma		'	x	1	•	,	1			•					T	•	'				T	'	'	•		
Stomach, glandular	+	+		Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Fibrosarcoma Tongue		•	x		•	•	•	•	•	•	•			•	•	•		•	•	•		'	•		•	
									,																	_
Cardiovascular System																										
Blood vessel				+									+								+					
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System			• •									_					_									
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, medulla Osteosarcoma, metastatic, uncertain primary site	+	+	+	Μ	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	
Pheochromocytoma malignant													X										~			
Pheochromocytoma complex Pheochromocytoma benign									x	x	x	x	x	х			x		x							
Bilateral, pheochromocytoma malignant Bilateral, pheochromocytoma benign							x																		x	
Islets, pancreatic	+	+	+	Α	+			+	+	+	+	+	+	Ι	+	+	+	+	+	+						
Adenoma								_		х															_	
Parathyroid gland	M	+	+	+	+	+	+	I	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	
Pituitary gland	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+				+			+	
Pars distalis, adenoma										v		v							X	х			х			
Pars intermedia, adenoma Thyroid gland	1		д		ъ		L.	L	L	X	Ł	X	L		4	.ب	Ŧ	1	L	L		L	ъ	L	+	
Thyroid gland C-cell, adenoma	+	Ŧ	Ŧ	Ŧ	Ŧ	+	x ⁺	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	-	Ŧ	Ŧ	А	Ŧ	Ŧ	т	Τ.	
Follicular cell, adenoma																										

.

Individual Animal Tumor Pathology of Male Rats in the Lifetime Inhalation Study of Talc: 18 mg/m³ (continued) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 Number of Days on Study 47889999999999999900000000 3 8 3 8 1 1 3 4 8 9 9 9 9 9 Q Q 9 0 0 0 0 0 0 0 0 2 2 2 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 Carcass ID Number 2049 7 7 9 4 5 5 789 9 9 224 7 7 4 6 4 4 6 Total 1 2 4 5 4 1 7 6 5 6 9 8 0 3 6 8 0 8 3 6 7 8 5 6 Tissues/ 2 1 1 1 1 Tumors Alimentary System Esophagus 49 Intestine large 47 AA + 1 Intestine large, cecum ΑΑ + Α Α Α 37 + A Α Intestine large, colon AA ++ + + + + + + + + + + + + + + A 46 Intestine large, rectum 34 A A M ++ М м + + + + + + + + + + + + + + м + + Intestine small A A + + + + + + + + + 46 Intestine small, duodenum A A + 46 + + + + + + 4 + + + + + Intestine small, ileum AA ++ + Α + + Α + + + + + + + + + + + + + + AA 35 Intestine small, jejunum AA ++ + + + + + + + + + + 40 + + + + ++ + + + Α Α Liver AA +48 + + + + + + + + + + + Neoplastic nodule 1 Neoplastic nodule, multiple х 3 Mesentery 1 Pancreas 47 AA ++ ++ ++ + + + Salivary glands + + ++ + + + + + + + + + + + + + ++ + + + + 50 Stomach 47 A A ++ + + + + + + + + + ++ + + + + + + Stomach, forestomach A A +47 Fibrosarcoma 1 Stomach, glandular A A + +47 + Fibrosarcoma 1 Tongue 1 Cardiovascular System Blood vessel 5 Heart 50 **Endocrine** System Adrenal gland 49 + A ++ + + + + + Adrenal gland, cortex A A + + +48 + + + + Adrenal gland, medulla 47 Α +Osteosarcoma, metastatic, uncertain primary site 1 Pheochromocytoma malignant х х х хх 6 x X Pheochromocytoma complex 1 Pheochromocytoma benign х Х х х хх XXXXX 20 Bilateral, pheochromocytoma malignant х 1 Bilateral, pheochromocytoma benign ххх х Х 16 Х х хх 43 2 ММ + Islets, pancreatic + + + Μ Adenoma х Parathyroid gland + М + + + + + + + + 46 + + + + x x + X + X Pituitary gland + + x + + 49 Pars distalis, adenoma 10 Pars intermedia, adenoma 2 A + + + M + + +Thyroid gland 46 \mathbf{x}^{+} C-cell, adenoma X X 3 Follicular cell, adenoma 1

	2		~	F					,		,	,		,			,			,	_	~	_	-	-	
Number of Days on Study						6 0																				
Number of Days on Study						9																				
······································	2	1	2	1	2	1	1									2	2		1							
Carcass ID Number	1		0	7			-		_				5													
	9 1			7 1		4 1							1 1													
General Body System None																										
Genital System			<u> </u>			-												-								
Epididymis	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Penis																								-		
Preputial gland	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	
Adenoma																										
Carcinoma											Х															
Prostate	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Seminal vesicle	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	А	+	+	+	+	
Testes	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Bilateral, interstitial cell, adenoma Interstitial cell, adenoma						x	x			x	х	x		x	х	X	х	x			х	х	х	x	х	
lematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	Ŧ	-	÷.	+	+	
Lymph node	+	+	+	+	+	+	+	+	÷.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	
Lymph node, bronchial	. +	+	+	÷	+	+	+	+	+	+	+	+	+	+	÷	+		'n	+	+	+	+	+	÷	+	
Lymph node, mandibular	+	+	+	Å	+	+	+	+	÷	÷	İ	+	+	+	÷	÷	+	+	÷	+	+	+	+	+	+	
Lymph node, mediastinal	ī	M	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node, mesenteric	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Spleen	+	+	+	Å	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	.+	+	+	+	
Thymus	I	+	+			+				Μ	+		+	+	+	+		+	+	+	+	+	+	+	+	
ntegumentary System																										
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Basosquamous tumor malignant														х												
Fibrous histiocytoma																										
Keratoacanthoma			_	х															,							
Musculoskeletal System																										
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Vertebra, osteosarcoma	X																									

Table A2 --

$\begin{array}{c} 3 \ 8 \ 3 \ 8 \ 1 \ 1 \ 3 \ 4 \ 8 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9$	lumber of Days on Study	7 4		7 8		7 9		7 9		7 9	7 9	8 0	-	-	8 0	-	-	8 0	0									
Carcass ID Number 2 0 4 9 4 7 9 4 5 5 6 7 8 9 9 2 2 4 4 6 7 7 2 1 2 4 5 4 1 7 6 5 6 7 8 3 6 8 0 8 3 6 7 7 5 6 9 9 9 2 2 4 4 6 7 7 2 1		3	8	3	8	1	1	3	4	8	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																								_		-		- 4 - 1
1 1	arcass ID Number	-																										Total
None Genital System Epiddymis + + + + + + + + + + + + + + + + + + +			1																									Tissues Tumor
Epididymis Penis+ + + + + + + + + + + + + + + + + + +								 -	_																			
Epididymis + + + + + + + + + + + + + + + + + + +	Genital System								_									_					_					<u></u>
Penis++ <td></td> <td>+</td> <td></td> <td>49</td>		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		49
Adenoma CarcinomaXCarcinoma $A + + + + + + + + + + + + + + + + + + +$													+			+					+							3
Adenoma CarcinomaXCarcinoma $A + + + + + + + + + + + + + + + + + + +$	Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		48
Carcinoma ProstateA+++ <t< td=""><td>1 5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>	1 5																											1
ProstateA + + + + + + + + + + + + + + + + + + +																												ĩ
Seminal vesicle Testes Bilateral, interstitial cell, adenoma $A + + + + + + + + + + + + + + + + + + +$		Α	+	+	+	4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		48
TestesBilateral, interstitial cell, adenomaInterstitial cell, adenomaNematopoietic SystemBone marrowLymph nodeLymph node, bronchialLymph node, bronchialLymph node, mandibularLymph node, mediastinalLymph node, mediastinalLymph node, mediastinalLymph node, mediastinalLymph node, mediastinalHematopoietic SystemA A + + + + + + + + + + + + + + + + + +				÷	÷	÷	+	÷	÷	÷	÷.		÷		÷	÷.		÷	÷.		_	÷	÷	Ĺ.	_	÷		47
Bilateral, interstitial cell, adenomaXXX </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>÷</td> <td>÷</td> <td></td> <td>÷</td> <td></td> <td>1</td> <td>÷</td> <td></td> <td></td> <td>, _</td> <td>÷</td> <td>_</td> <td>÷</td> <td></td> <td>1</td> <td>Ļ</td> <td>Т</td> <td>_</td> <td></td> <td>÷</td> <td></td> <td></td> <td>50</td>						÷	÷		÷		1	÷			, _	÷	_	÷		1	Ļ	Т	_		÷			50
Interstitial cell, adenoma X </td <td></td> <td></td> <td></td> <td>'</td> <td></td> <td></td> <td></td> <td></td> <td>'</td> <td></td> <td>'</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td>24</td>				'					'		'	1		1			1											24
Bone marrow Lymph node Lymph node, bronchial Lymph node, mediastinal Lymph node, mediastinal Lymph node, mediastinal Lymph node, mediastinal Lymph node, mediastinal Lymph node, mediastinal Lymph node, mesenteric Spleen ThymusAA++		л	Λ		л		л			Λ		x	Λ	х	л		x	л	Λ	^		л	Ŷ	• • •	л	л	·	12
Bone marrow Lymph node Lymph node, bronchial Lymph node, bronchial Lymph node, mandibular Lymph node, mediastinal Lymph node, mediastinal 	Jematopoietic System		_														·											
Lymph node $+ + + + + + + + + + + + + + + + + + + $		Δ	Δ	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		47
Lymph node, bronchial + + + + + + + + + + + + + + + + + + +			<u>д</u>		÷	÷	÷	- -	+	÷.		÷	, ,	÷	÷	÷	, ,	+	÷		÷	÷		Ļ				50
Lymph node, mandibular Lymph node, mediastinal Lymph node, mediastinal Lymph node, mesenteric $A + + + + + + + + + + + + + + + + + + +$			÷	÷	÷		÷	, _	+	÷	т Т	÷	т. Т	÷	ц Т	+	÷	÷	÷	1	÷		÷		+			49
Lymph node, mediastinal $+ + + + + + + + + + + + + + + + + + + $		م	+		÷	÷.	+	+	+	÷	+	+	+	+	÷	+	+	+	+	+	÷	÷	+	+	+			47
Lymph node, mesentericAAA++					Ĺ.	÷		÷				Ļ	÷	÷	÷	÷	÷		÷	÷	÷	÷	r		÷	- -		47
Spleen Thymus $+ A + + + + + + + + + + + + + + + + + +$			۰ ۸			т Т	÷	, _	т —	т -	т —	÷	, 	÷	÷	÷	т Т	г —	1	т Т	÷	т 	1	т -	1	- -		47
Thymus $A + + + M + + + + + + + + + + + + + + + $		A					T	Ť	T	T	T	т 1	Ţ	т 	Ţ.	T	Ť	т 1	Ţ	T	Ţ	Ť	T	т ,				47
Integumentary SystemMammary gland $+ + + + + + + + + + + + + + + + + + + $		+					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Mammary gland $+ + + + + + + + + + + + + + + + + + + $	1 nymus	A	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	M		43
Skin+ + + + + + + + + + + + + + + + + + +																												
Basosquamous tumor malignant Fibrous histiocytoma X Keratoacanthoma X		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Fibrous histiocytoma X Keratoacanthoma X		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Keratoacanthoma X																												1
															Х													1
	Keratoacanthoma				х																							2
Ausculoskeletal System	Ausculoskeletal System																	_										
Bone + + + + + + + + + + + + + + + + + + +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50

83

and the second
TABLE A2

Number of Days on Study	2 4 8	9	0	9	0	0	6 1 4	1	1	1	2	3	4	5	5	5	7	8	9	9	0	0	1	2	3	
Carcass ID Number	1 9	4 5	0 3	7 7	4 4	7 4	1 7 5 1	4 9	2 4	6 6	9 5	1 7	5 1	0 2	2 7	6 7	7 0	2 6	7 6	5 2	2 5	5 1	5 2	5 0	7 2	
Nervous System Brain Spinal cord	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Respiratory System Larynx Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma, multiple	+ +	+ +	+ +	+ +	+ +	++	+++	+ +	++	++	++	++	+ +	+ +	+ +	++	+ +	++	+ +	+ +	+ +	++	++	+ +	+ +	
Osteosarcoma, metastatic, uncertain primary site Nose Trachea	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	X + +	+ +	+ +	
Special Senses System Eye												+								-				+		 . '
U rinary System Kidney Ureter	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	
Urethra Urinary bladder	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant	+	+ X					* x					+	+		+ X				+	+ x	+	+ x		+ x	+	

Lesions in Male Rats

TABLE A2

Number of Days on Study											_			_							_			_			
$\begin{array}{c} 3 & 8 & 3 & 8 & 1 & 1 & 3 & 4 & 8 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9$		7	7	7	7	7	7	7	7	7		7	7	7	•			•	8	8	8	8	8	8	8	8	
Carcass ID Number	Number of Days on Study	•								9 8	.9 9													-			
Carcass ID Number 2 0 4 9 4 7 7 9 4 5 5 6 7 8 9 9 2 2 4 4 6 7 7 Total 2 1 2 4 5 4 1 7 6 5 6 9 8 0 3 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9 9 2 2 4 4 6 7 7 Total 1 <											·		_														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_	_		_																			_		-	70-4-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	arcass ID Number	-	•	-	-	-	-	-												2	4			-		•	
Brain $+ + + + + + + + + + + + + + + + + + + $																											Tumor
Spinal cord1Respiratory SystemLarynx $+ A + + + + + + + + + + + + + + + + + +$	Nervous System																				_						
Larynx $+ A + + + + + + + + + + + + + + + + + +$		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Larynx+ A + + + + + + + + + + + + + + + + + +	Respiratory System																										
Lung $+ + + + + + + + + + + + + + + + + + + $		+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Alveolar/bronchiolar carcinoma, multipleX1Osteosarcoma, metastatic, uncertain primary site1Nose Trachea $A + + + + A A + + + + + + + + + + + + +$	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
multipleX1Osteosarcoma, metastatic, uncertain primary site1Nose $A + + + + A + A + + + + + + + + + + + +$														х													1
primary site1Nose $A + + + + A + A + + + + + + + + + + + +$	multiple													x													1
Nose Trachea $A + + + + A + A + + + + + + + + + + + +$	osteosarcoma, metastatic, uncertain																										1
Trachea A A + + + + + + + + + + + + + + + + + +		А	+	+	+	+	А	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Eye 2 Urinary System $A A + + + + + + + + + + + + + + + + + +$													+		+	+	+	+	+	+	+	+	+	+	+	+	
Kidney $A A + + + + + + + + + + + + + + + + + +$																											2
Kidney $A A + + + + + + + + + + + + + + + + + +$	Jrinary System																				_					;	
Urethra + 1 Urinary bladder $A A + + + + + + + + + + + + + + + + + +$		Α	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Urinary bladder A A + + + + + + + + + + + + + + + + + +																											
Systemic Lesions Multiple organs + + + + + + + + + + + + + + + + + + +	Urethra												+														1
Multiple organs $+ + + + + + + + + + + + + + + + + + + $	Urinary bladder	Α	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Leukemia mononuclear XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							+	+	+	+				+	+	+	+	+	+	+			+	+			
Mesothelioma malignant X 1		x	X		Х		v				х		Х	Х		Х					Х				Х		

85

Statistical Analysis of Primary Neoplasms in Male Rats in the Lifetime Inhalation Study of Talc

· · · · · ·

· .	0 mg/m ³	6 mg/m ³	18 mg/m³
		<u></u>	· · · · · · · · · · · · · · · · · · ·
drenal Medulla: Benign Pheochromocy		00/49 ((20))	0(110 (000))
Overall rates ^a	25/49 (51%)	30/48 (63%)	36/47 (77%)
Adjusted rates	87.6%	90.2%	100.0%
erminal rates	6/9 (67%)	11/14 (79%)	16/16 (100%)
first incidence (days)	429	558	614
ife table tests ^a	P=0.434	P=0.515N	P=0.499
ogistic regression tests ^d	P=0.007	P=0.213	P=0.009
Cochran-Armitage test ^d	P=0.007		
isher exact test ^a		P=0.175	P=0.008
drenal Medulla: Malignant Pheochrom	ocytoma		· · ,
verall rates	3/49 (6%)	3/48 (6%)	7/47 (15%)
djusted rates	17.2%	15.2%	31.5%
erminal rates	1/9 (11%)	1/14 (7%)	3/16 (19%)
irst incidence (days)	670	544	645
ife table tests	P=0.242	P=0.552N	P=0.376
ogistic regression tests	P=0.096	P=0.662	P=0.178
ochran-Armitage test	P=0.083		
isher exact test		P=0.651	P=0.142
drenal Medulla: Benign, Malignant, or	Complex Pheochromocytoma	1	
overall rates	26/49 (53%)	32/48 (67%)	37/47 (79%)
djusted rates	91.7%	93.6%	100.0%
erminal rates	7/9 (78%)	12/14 (86%)	16/16 (100%)
irst incidence (days)	429	544	614
ife table tests	P=0.483	P=0.549N	P=0.539
ogistic regression tests	P=0.007	P=0.147	P=0.006
Cochran-Armitage test	P=0.007		- · · · · · · · ·
isher exact test	,	P=0.123	P=0.007
iver: Hepatocellular Adenoma or Neopl	astic Nodule		
verall rates	2/49 (4%)	2/50 (4%)	4/48 (8%)
djusted rates	11.2%	14.3%	14.9%
erminal rates	0/9 (0%)	2/14 (14%)	1/16 (6%)
irst incidence (days)	698	799 (T)	615
	P=0.359	P=0.586N	P=0.434
oristic regression tests	P=0.248	P = 0.661N	P = 0.333
ogistic regression tests ochran-Armitage test	P = 0.248 P = 0.237	1 -0.0011	1 -0.555
isher exact test	1 - 0.207	P=0.684N	P=0.329
ancreatic Islets: Adenoma			
verall rates	1/47 (2%)	0/41 (0%)	2/43 (5%)
djusted rates	12.5%	0.0%	9.9%
erminal rates	1/8 (13%)	0/13 (0%)	1/13 (8%)
irst incidence (days)	799 (T)	_e	617
· · · ·	P=0.387	P = 0.403N	P=0.612
ife table tests	P = 0.308	P = 0.403N P = 0.403N	P = 0.479
ogistic regression tests		1 -0.40514	1 -0.777
Cochran-Armitage test	P=0.304	P=0.534N	P=0.466
isher exact test		r=0.334IN	r 0.400

86

Ì

Statistical Analysis of Primary Neoplasms in Male Rats in the Lifetime Inhalation Study of Talc (continued)

,	0 mg/m ³	6 mg/m ³	18 mg/m ³
ancreatic Islets: Adenoma or Carcinoma			
Verall rates	2/47 (4%)	0/41 (0%)	2/43 (5%)
Adjusted rates	25.0%	0.0%	9.9%
erminal rates	2/8 (25%)	0/13 (0%)	1/13 (8%)
First incidence (days)	799 (T)	-	617
Life table tests	P = 0.650	P=0.135N	P=0.560N
ogistic regression tests	P=0.544	P=0.135N	P=0.683
Cochran-Armitage test	P=0.531		
isher exact test		P=0.282N	P=0.657
ituitary Gland (Pars Distalis): Adenoma			
Overall rates	12/47 (26%)	11/50 (22%)	10/49 (20%)
adjusted rates	53.6%	42.8%	42.1%
erminal rates	3/9 (33%)	3/14 (21%)	4/16 (25%)
ïrst incidence (days)	568	558	697
ife table tests	P=0.174N	P=0.334N	P=0.160N
ogistic regression tests	P=0.307N	P=0.419N	P=0.324N
Cochran-Armitage test	P=0.344N		
isher exact test		P=0.432N	P=0.362N
Pituitary Gland (Pars Distalis): Adenoma or	· Carcinoma		· .
Dverall rates	12/47 (26%)	12/50 (24%)	10/49 (20%)
djusted rates	53.6%	45.8%	42.1%
erminal rates	3/9 (33%)	3/14 (21%)	4/16 (25%)
irst incidence (days)	568	558	697
ife table tests	P=0.159N	P=0.411N	P=0.160N
ogistic regression tests	P=0.287N	P=0.509N	P=0.324N
Cochran-Armitage test	P=0.325N		
isher exact test		P=0.524N	P=0.362N
Preputial Gland: Carcinoma			
Dverall rates	1/48 (2%)	6/49 (12%)	1/48 (2%)
Adjusted rates	2.3%	22.5%	2.5%
erminal rates	0/9 (0%)	1/14 (7%)	0/16 (0%)
irst incidence (days)	586	527	628
ife table tests	P=0.361N	P=0.090	P=0.753N
ogistic regression tests	P=0.440N	P=0.058	P=0.750
Cochran-Armitage test	P=0.425N		
isher exact test		P=0.059	P=0.753N
reputial Gland: Adenoma or Carcinoma			
Dverall rates	2/48 (4%)	7/49 (14%)	2/48 (4%)
adjusted rates	4.4%	28.5%	8.6%
erminal rates	0/9 (0%)	2/14 (14%)	1/16 (6%)
ïrst incidence (days)	429	527	628
ife table tests	P=0.331N	P=0.134	P=0.632N
ogistic regression tests	P=0.454N	P=0.078	P=0.673
Cochran-Armitage test	P=0.436N		
Fisher exact test		P=0.084	P=0.692N

Statistical Analysis of Primary Neoplasms in Male Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m³
Skin: Keratoacanthoma or Squamous Cell Carcinoma	<u>, ma</u> nna <u>-</u>	·····	
Overall rates	0/49 (0%)	3/50 (6%)	2/50 (4%)
Adjusted rates	0.0%	13.5%	6.6%
Ferminal rates	0/9 (0%)	1/14 (7%)	0/16 (0%)
First incidence (days)	-	663	594
Life table tests	P=0.414	P=0.161	P=0.331
ogistic regression tests	P=0.323	P=0.128	P = 0.239
Cochran-Armitage test	P = 0.319		1 - 0.209
Fisher exact test		P=0.125	P=0.253
'estes: Adenoma			
Overall rates	31/49 (63%)	39/50 (78%)	36/50 (72%)
Adjusted rates	100.0%	100.0%	97.0%
Ferminal rates	9/9 (100%)	14/14 (100%)	15/16 (94%)
First incidence (days)	551	544	609
life table tests	P=0.198N	P=0.524	P=0.245N
ogistic regression tests	P=0.333	P=0.056	P=0.268
Cochran-Armitage test	P=0.295		
isher exact test		P=0.082	P=0.238
'hyroid Gland (C-cell): Adenoma			
Overall rates	3/45 (7%)	4/46 (9%)	3/46 (7%)
Adjusted rates	24.5%	28.6%	14.5%
Serminal rates	2/9 (22%)	4/14 (29%)	2/16 (13%)
irst incidence (days)	682	799 (T)	614
ife table tests	P=0.348N	P=0.620N	P=0.476N
ogistic regression tests	P=0.511N	P = 0.641	P = 0.625N
Cochran-Armitage test	P=0.560N		
ïsher exact test		P=0.512	P=0.651N
Thyroid Gland (C-cell): Adenoma or Carcinoma			
Overall rates	3/45 (7%)	5/46 (11%)	3/46 (7%)
Adjusted rates	24.5%	33.0%	14.5%
erminal rates	2/9 (22%)	4/14 (29%)	2/16 (13%)
irst incidence (days)	682	787	614
ife table tests	P=0.296N	P=0.568	P=0.476N
ogistic regression tests	P=0.467N	P = 0.502	P=0.625N
Cochran-Armitage test Tisher exact test	P=0.523N	P=0.369	P=0.651N
	,		
II Organs: Mononuclear Cell Leukemia	24/40 (4001)	21/50 (4207)	22/50 (160)
Overall rates	24/49 (49%) 70.2%	21/50 (42%)	23/50 (46%) 42 5%
Adjusted rates	70.3%	59.9%	62.5%
erminal rates	3/9 (33%)	4/14 (29%) 520	6/16 (38%)
irst incidence (days)	334 D. A 2000M	529 D. 0.22201	492 D - 0 260N
ife table tests	P = 0.298N	P = 0.232N	P = 0.269N
ogistic regression tests	P = 0.501N	P = 0.317N	P=0.479N
Cochran-Armitage test	P=0.486N	P-0 210N	P-0 462N
Fisher exact test		P=0.310N	P=0.462N

Statistical Analysis of Primary Neoplasms in Male Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
All Organs: Benign Neoplasms	· · · · · · · · · · · · · · · · · · ·		
Overall rates	42/49 (86%)	45/50 (90%)	45/50 (90%)
Adjusted rates	100.0%	100.0%	100.0%
Terminal rates	9/9 (100%)	14/14 (100%)	16/16 (100%)
First incidence (days)	429	544	594
Life table tests	P=0.161N	P=0.314N	P=0.153N
Logistic regression tests	P=0.463	P=0.430	P=0.480
Cochran-Armitage test	P=0.353		
Fisher exact test		P=0.365	P=0.365
All Organs: Malignant Neoplasms			
Overall rates	34/49 (69%)	34/50 (68%)	34/50 (68%)
Adjusted rates	88.4%	80.9%	80.0%
Terminal rates	6/9 (67%)	7/14 (50%)	9/16 (56%)
First incidence (days)	334	527	248
Life table tests	P=0.222N	P=0.308N	P=0.216N
Logistic regression tests	P=0.534N	P=0.539N	P=0.571N
Cochran-Armitage test	P=0.505N		
Fisher exact test		P=0.527N	P=0.527N
All Organs: Benign or Malignant Neoplasms			
Overall rates	48/49 (98%)	49/50 (98%)	50/50 (100%)
Adjusted rates	100.0%	100.0%	100.0%
Terminal rates	9/9 (100%)	14/14 (100%)	16/16 (100%)
First incidence (days)	334	527	248
Life table tests	P=0.154N	P=0.241N	P=0.139N
Logistic regression tests	P=0.337	P=0.771	P=0.506
Cochran-Armitage test	P=0.348		
Fisher exact test		P=0.747	P=0.495

(T)Terminal sacrifice

¹ Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, epididymis, heart, kidney, larynx, liver, lung, nose, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The life table test regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in an exposure group is indicated by N.

e Not applicable; no neoplasms in animal group

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the Lifetime Inhalation Study of Talc^a

-

	0 mg/m ³	6 mg/m ³	18 mg/m ³
	· · · · ·		
Disposition Summary	40		
Animals initially in study	49	50	50
Early deaths Moribund	23	10	20
Natural deaths	23 17	19 17	20
Survivors	17	17	14
Died last week of study	1	2	3
Terminal sacrifice	8	12	13
	0	12	15
Animals examined microscopically	49	50	50
Alimentary System		· · · · · · · · · · · · · · · · · · ·	
Esophagus	· (49)	(50)	(49)
Inflammation			í (2%)
Intestine large, cecum	(42)	(38)	(37)
Hemorrhage		1 (3%)	
Inflammation	9 (21%)	2 (5%)	5 (14%)
Parasite metazoan	3 (7%)	4 (11%)	4 (11%)
Ulcer	1 (2%)		
Intestine large, colon	(43)	(43)	(46)
Hyperplasia, lymphoid	1 (2%)		
Inflammation	1 (2%)		1 (2%)
Mineralization			1 (2%)
Parasite metazoan	2 (5%)	1 (2%)	1 (2%)
Intestine large, rectum	(38)	(41)	(34)
Inflammation	6 (16%)	1 (2%)	1 (3%)
Metaplasia, squamous, focal			1 (3%)
Parasite metazoan		2 (5%)	
Intestine small, duodenum	(48)	(44)	(46)
Inflammation	4 (00)		1 (2%)
Mineralization	1 (2%)	<i>i</i>	
Necrosis, focal	1 (2%)	1 (00)	
Ulcer	1 (2%)	1 (2%)	
Intestine small, ileum	(39)	(34)	(35)
Hyperplasia, lymphoid		1 (3%)	2 (6%)
Lymphatic, ectasia	(10)	1 (3%)	(10)
Liver	(49)	(50)	(48)
Angiectasis, focal	1 (2%)		
Atrophy	1 (2%)	18 (3(%))	10 (40%)
Basophilic focus	18 (37%)	18 (36%) 7 (14%)	19 (40%)
Clear cell focus	3 (6%)	7 (14%)	4 (8%)
Congestion	0 (1997)	1 (2%) 17 (24%)	0 (10%)
Degeneration, cystic	9 (18%)	17 (34%)	9 (19%)
Degeneration, diffuse	0 (40)	7 (1 407)	1 (2%)
Eosinophilic focus	2 (4%)	7 (14%)	7 (15%) 12 (25%)
Fatty change	16 (33%)	14 (28%)	12 (25%)
Fibrosis	1 (2%)	1 (2%)	
Hematocyst Hyperplasia, focal		1 (470)	1 (2%)
Inflammation, granulomatous, focal	3 (6%)	1 (2%)	1 (270)
Inflammation, granulomatous, local	5 (0/0)	1 (470)	1 (2%)
	3 (6%)		1 (2%)
Necrosis, focal Thrombosis	3 (6%) 1 (2%)		1 (270)
Bile duct, hyperplasia	39 (80%)	46 (92%)	44 (92%)
Dife duci, hyperplasia	57 (50%)	+0 (5270)	++ ()=/0)

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Alimentary System (continued)			
Liver (continued)			
Centrilobular, atrophy	9 (18%)	4 (8%)	7 (15%)
Centrilobular, degeneration	8 (16%)	12 (24%)	9 (19%)
Centrilobular, degeneration, fatty	S (1070)	12 (2470)	1 (2%)
Centrilobular, necrosis	5 (10%)		2 (4%)
Mesentery	(2)		(1)
Inflammation	(-)		1 (100%)
Pancreas	(48)	(46)	(47)
Lobules, atrophy	11 (23%)	7 (15%)	8 (17%)
Salivary glands	(49)	(50)	(50)
Inflammation	1 (2%)	(50)	(50)
Necrosis	1 (270)		1 (20%)
Stomach, forestomach	(49)	(47)	1 (2%)
Hyperkeratosis	(43)	(47)	(47)
Inflammation	1 (70%)		1 (2%)
Mineralization	1 (2%)	A (001)	1 (20)
	1 (2%)	4 (9%) 5 (11%)	1 (2%)
Ulcer Stomach glandular	5 (10%) (40)	5 (11%) (47)	8 (17%) (47)
Stomach, glandular Minemination	(49)	(47)	(47)
Mineralization	6 (12%)	6 (13%)	6 (13%)
Ulcer	3 (6%)	3 (6%)	2 (4%)
Cardiovascular System			
Blood vessel	(4)	(5)	(5)
Aorta, mineralization	3 (75%)	5 (100%)	4 (80%)
Mesenteric artery, aneurysm			2 (40%)
Mesenteric artery, inflammation			1 (20%)
Mesenteric artery, mineralization	3 (75%)	5 (100%)	3 (60%)
Mesenteric artery, thrombosis	1 (25%)	1 (20%)	1 (20%)
Heart	(49)	(50)	(50)
Cardiomyopathy	42 (86%)	47 (94%)	50 (100%)
Atrium, thrombosis	9 (18%)	5 (10%)	11 (22%)
Epicardium, hyperplasia	1 (2%)		()
Myocardium, inflammation	- ()	1 (2%)	
Myocardium, mineralization	2 (4%)	6 (12%)	5 (10%)
······	- ((,,,)		5 (1070)
Endocrine System			
Adrenal gland, cortex	(49)	(49)	(48)
Degeneration	1 (2%)		
Degeneration, fatty	8 (16%)		2 (4%)
Degeneration, focal	1 (2%)		
Hyperplasia, diffuse			2 (4%)
Hyperplasia, focal	11 (22%)	4 (8%)	9 (19%)
Necrosis, focal	1 (2%)		
Adrenal gland, medulla	(49)	(48)	(47)
Hyperplasia	19 (39%)	8 (17%)	8 (17%)
Bilateral, hyperplasia	1 (2%)		1 (2%)
Islets, pancreatic	(47)	(41)	(43)
Hyperplasia	-		1 (2%)
Parathyroid gland	(45)	(45)	(46) `
Hyperplasia	6 (13%)	11 (24%)	12 (26%)
Bilateral, hyperplasia	1 (2%)	. /	

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the Lifetime Inhalation Study of Talc (continued)

--

	0 mg/m ³	6 mg/m ³	18 mg/m³
Endocrine System (continued)			. <u></u>
Pituitary gland	(47)	(50)	(49)
Angiectasis, focal		1 (2%)	()
Cyst		1 (2%)	1 (2%)
Pars distalis, hyperplasia	8 (17%)	8 (16%)	7 (14%)
Pars nervosa, hyperplasia	- ()	1 (2%)	
Thyroid gland	(45)	(46)	(46)
C-cell, hyperplasia	5 (11%)	7 (15%)	2 (4%)
G eneral Body System None			· · · ·
Genital System			· · ·
Epididymis	(49)	(50)	(49)
Spermatocele		í (2%)	
Preputial gland	(48)	(49) `´	(48)
Hyperplasia	3 (6%)		1 (2%)
Inflammation	7 (15%)	2 (4%)	5 (10%)
Prostate	(49)	(45)	(48)
Atrophy	1 (2%)		1 (2%)
Inflammation	22 (45%)	14 (31%)	19 (40%)
Seminal vesicle	(49) `	(48) `	(47) `
Atrophy	1 (2%)		
Inflammation	• 1 (2%)		
Testes	(49) `´	(50)	(50)
Atrophy	14 (29%)	11 (22%)	16 (32%)
Hyperplasia, lymphoid		2 (4%)	`` ,
Hyperplasia, lymphoid, focal			1 (2%)
Interstitial cell, hyperplasia	2 (4%)	1 (2%)	3 (6%)
Serosa, proliferation	. ,		1 (2%)
Hematopoietic System			
Bone marrow	(48)	(48)	(47)
Atrophy		• •	2 (4%)
Atrophy, focal		1 (2%)	. ,
Inflammation		1 (2%)	
Myelofibrosis		1 (2%)	1 (2%)
Myeloid cell, hyperplasia	2 (4%)	3 (6%)	6 (13%)
_ymph node	(49)	(50)	(50)
Hemorrhage, chronic		1 (2%)	
Pancreatic, atrophy	1 (2%)	. ,	
Pancreatic, hyperplasia, lymphoid	1 (2%)		
ymph node, bronchial	(41)	(48)	(49)
Atrophy	2 (5%)		
Hemorrhage		1 (2%)	
Hemorrhage, acute	1 (2%)		
Hemorrhage, chronic	4 (10%)		
Hyperplasia, histiocytic		44 (92%)	46 (94%)
Lymph node, mandibular	(46)	(48)	(47)
Hemorrhage		í (2%)	
Hyperplasia, lymphoid		2 (4%)	
Hyperplasia, plasma cell		2 (4%)	5 (11%)
Inflammation, chronic active		· · ·	2 (4%)

Table A4

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the Lifetime Inhalation Study of Talc (continued)

and the second s

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Hematopoletic System (continued)	<u>, , , , , , , , , , , , , , , , , , , </u>		<u> </u>
Lymph node, mediastinal	(48)	(49)	(47)
Atrophy	1 (2%)		()
Hemorrhage	1 (2)0)	3 (6%)	
Hemorrhage, acute	1 (2%)	5 (070)	
Hemorrhage, chronic	6 (13%)		
Hyperplasia, histiocytic	0 (15%)	40 (82%)	43 (91%)
	1 (29%)	40 (8270)	43 (7170)
Pigmentation, hemosiderin	1 (2%)		(47)
ymph node, mesenteric	(49)	(48)	(47)
Atrophy	1 (2%)		
Hemorrhage		2 (4%)	
Hemorrhage, acute	1 (2%)		
Hyperplasia, lymphoid	1 (2%)	2 (4%)	3 (6%)
Hyperplasia, plasma cell			1 (2%)
Inflammation, chronic active			1 (2%)
Spleen	(49)	(50)	(48)
Atrophy	í (2%)		2 (4%)
Autolysis	×		1 (2%)
Congestion, chronic	1 (2%)		- (•)
Cyst	. (270)		1 (2%)
Fibrosis		1 (2%)	- (~70)
		5 (10%)	7 (10/)
Fibrosis, focal	1 (20)		2 (4%)
Hematopoietic cell proliferation	1 (2%)	2 (4%)	3 (6%)
Hyperplasia, histiocytic		1 (2%)	
Hyperplasia, lymphoid		1 (2%)	1 (2%)
Infarct	3 (6%)		
Inflammation, granulomatous, focal	1 (2%)		1 (2%)
Thymus	(48)	(40)	(43)
Atrophy		2 (5%)	
Cyst	1 (2%)		
Integumentary System	· · · · · · · · · · · · · · · · · · ·		
Mammary gland	(45)	(48)	(50)
Galactocele	í (2%)		
Skin	(48)	(50)	(50)
Cyst epithelial inclusion		1 (2%)	()
Subcutaneous tissue, inflammation		1 (270)	1 (2%)
Tail, necrosis	1 (2%)		L (4/0)
		<u> </u>	
Musculoskeletal System Bone	(49)	(50)	(50)
	(47)		(JU) 5 (10%)
Fibrous osteodystrophy	3 (6%)	4 (8%)	5 (10%)
Coccygeal, necrosis	1 (2%)	1 (00)	
Pelvis, fracture		1 (2%)	
Nervous System		<u> </u>	
Brain	(49)	(50)	(50)
Compression	5 (10%)	2 (4%)	2 (4%)
Hemorrhage	- ()	1 (2%)	
Infarct		- (2/0)	1 (2%)
Necrosis, focal	1 (2%)	2 (4%)	- (=/0)
Spinal cord	1 (270)	2 (7/0)	(1)
Degeneration			(1) 1 (100%)
			I (10070)

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the Lifetime Inhalation Study of Talc (continued)

· - -

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Respiratory System			
Larynx	(48)	(49)	(49)
Inflammation, suppurative	6 (13%)		
Lung	(49)	(50)	(50)
Congestion	1 (2%)		
Crystals, focal	1 (2%)		
Cyst			3 (6%)
Hemorrhage, chronic	2 (4%)		
Infarct	1 (2%)		
Inflammation, granulomatous	2 (4%)	50 (100%)	49 (98%)
Inflammation, suppurative		2 (4%)	
Mineralization		4 (8%)	
Alveolar epithelium, hyperplasia	5 (10%)	26 (52%)	38 (76%)
Alveolus, hemorrhage, focal	1 (2%)		
Alveolus, metaplasia, squamous	. /		2 (4%)
Artery, thrombosis	1 (2%)		
Interstitium, fibrosis, focal	1 (2%)	16 (32%)	33 (66%)
Interstitium, mineralization	2 (4%)	1 (2%)	4 (8%)
Peribronchial, hyperplasia, histiocytic		12 (24%)	8 (16%)
Nose	(49)	(48)	(47)
Inflammation, suppurative	2 (4%)	1 (2%)	
Lumen, foreign body	1 (2%)		
Lumen, hemorrhage			1 (2%)
Mucosa, inflammation, suppurative	4 (8%)	5 (10%)	2 (4%)
Nasolacrimal duct, inflammation, suppurative		1 (2%)	
Respiratory epithelium, hyperplasia		3 (6%)	14 (30%)
Trachea	(49)	(50)	(48)
Inflammation, suppurative	3 (6%)		1 (2%)
Special Senses System			
Eye	(3)	(2)	(2)
Cataract	1 (33%)	(2) 1 (50%)	2 (100%)
Inflammation, chronic			1 (50%)
Cornea, inflammation, necrotizing	•		1 (50%)
Cornea, necrosis	1 (33%)		
Lens, cataract	1 (33%)		
Retina, degeneration	2 (67%)	1 (50%)	1 (50%)
Jrinary System			
Kidney	(49)	(49)	(48)
Calculus micro observation only			1 (2%)
Cyst	3 (6%)		1 (2%)
Hydronephrosis	AE (DOM)	1 (2%)	1 (2%)
Nephropathy Medulla inflammation	45 (92%)	47 (96%) 1 (2%)	43 (90%)
Medulla, inflammation Renal tubule, necrosis		1 (2%)	1 (2%)
Jreter		1 (2%)	(1)
Calculus micro observation only			1 (100%)
Jrethra			(1)
Fibrosis			1 (100%)
Jrinary bladder	(49)	(48)	(47)
Calculus gross observation			1 (2%)
Inflammation	1 (2%)		
Mucosa, hyperplasia			1 (2%)

÷

^a Number of animals examined microscopically at site and number of animals with lesion

APPENDIX B SUMMARY OF LESIONS IN FEMALE RATS IN THE LIFETIME INHALATION STUDY OF TALC

Table B1	Summary of the Incidence of Neoplasms in Female Rats	
	in the Lifetime Inhalation Study of Talc	96
Table B2	Individual Animal Tumor Pathology of Female Rats	
	in the Lifetime Inhalation Study of Talc	100
Table B3	Statistical Analysis of Primary Neoplasms in Female Rats	
	in the Lifetime Inhalation Study of Talc	118
Table B4	Summary of the Incidence of Nonneoplastic Lesions in Female Rats	
	in the Lifetime Inhalation Study of Talc	123

Summary of the Incidence of Neoplasms in Female Rats in the Lifetime Inhalation Study of Talc^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Disposition Summary			
Animals initially in study	50	50	50
Early deaths	50		50
Moribund	28	17	27
Natural deaths	11	19	14
Survivors			
Terminal sacrifice	11	13	9
Missing		1 .	
Animals examined microscopically	50	49	50
Alimentary System			
Intestine small, ileum	(44)	(32)	(38)
Liver	(50)	(48)	(50)
Granulosa-theca tumor malignant, metastatic,		· · ·	
ovary			1 (2%)
Hepatocellular carcinoma		1 (2%)	
Neoplastic nodule		3 (6%)	1 (2%)
Pancreas	(50)	(46)	(49)
Pharynx			(1)
Squamous cell carcinoma			1 (100%)
Salivary glands	(50)	(48)	(50)
Fibrosarcoma			1 (2%)
Sarcoma	(50)	1 (2%)	
Stomach, forestomach	(50)	(45)	(49)
Stomach, glandular	(50)	(47)	(50)
Tongue		(2)	
Sarcoma, metastatic		1 (50%)	
Squamous cell papilloma		1 (50%)	
Tooth		(1)	'i
Adamantinoma benign		1 (100%)	
Cardiovascular System			
Heart	(50)	(48)	(50)
Granulosa-theca tumor malignant, metastatic,			
ovary			1 (2%)
Endocrine System			
Adrenal gland, cortex	(50)	(47)	(49)
Granulosa-theca tumor malignant, metastatic,	()		()
ovary			1 (2%)
Adrenal gland, medulla	(48)	(47)	(49)
Granulosa-theca tumor malignant, metastatic,			
ovary			1 (2%)
Pheochromocytoma malignant	10 (000)	1 (2%)	7 (14%)
Pheochromocytoma benign Bilateral, pheochromocatoma malignant	13 (27%)	10 (21%)	11 (22%)
Bilateral, pheochromocytoma malignant Bilateral, pheochromocytoma benign		4 (0%)	3 (6%) 7 (14%)
Bilateral, pheochromocytoma benign Islets, pancreatic	(50)	4 (9%) (45)	7 (14%) (49)
Adenoma	1 (2%)	1 (2%)	1 (2%)
·		(42)	(47)
Parathyroid gland	(43)		
Parathyroid gland Pituitary gland	(43) (50)		
Parathyroid gland Pituitary gland Pars distalis, adenoma	(43) (50) 19 (38%)	(47) 18 (38%) 3 (6%)	(50) 21 (42%) 2 (4%)

Summary of the Incidence of Neoplasms in Female Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Endocrine System (continued)	····		······································
Thyroid gland	(50)	(47)	(49)
Bilateral, C-cell, carcinoma	í (2%)		
C-cell, adenoma	5 (10%)		6 (12%)
C-cell, carcinoma	2 (4%)	2 (4%)	2 (4%)
Follicular cell, adenoma		1 (2%)	
General Body System None			
Genital System			
Clitoral gland	(47)	(44)	(46)
Adenoma			1 (2%)
Carcinoma	2 (4%)		1 (2%)
Ovary	(50)	(47)	(50)
Granulosa cell tumor malignant	1 (2%)		
Granulosa cell tumor benign		2 (4%)	
Granulosa-theca tumor benign		1 (2%)	1 (20)
Bilateral, granulosa-theca tumor malignant	(50)	(49)	1 (2%)
Uterus Polyn stromal	(50) 5 (10%)	(48) 7 (15%)	(50)
Polyp stromal Sarcoma stromal	5 (10%)	7 (15%) 1 (2%)	4 (8%)
		1 (2%)	
Hematopoietic System			
Bone marrow	(50)	(43)	(49)
Lymph node	(50)	(48)	(50)
Lymph node, bronchial	(46)	(47)	(47)
Adenocarcinoma, metastatic, thyroid gland	1 (2%)		
Squamous cell carcinoma, metastatic, lung			1 (2%)
Lymph node, mandibular	(47)	(46)	(47)
Sarcoma, metastatic	(47)	1 (2%)	(47)
Lymph node, mediastinal	(47)	(44)	(47)
Adenocarcinoma, metastatic, thyroid gland Carcinoma, metastatic, uncertain primary site	1 (2%)		1 (2%)
Fibrosarcoma, metastatic, skin			1 (2%)
Granulosa-theca tumor malignant, metastatic,			2 (270)
ovary			1 (2%)
Lymph node, mesenteric	(49)	(47)	(47)
Spleen	(50)	(48)	(50)
Thymus	(47)	(44)	(47)
Mixed tumor malignant		1 (2%)	
Myxoma		1 (2%)	
Schwannoma benign			1 (2%)
Thymoma benign	1 (2%)		
Integumentary System			
Mammary gland	(50)	(48)	(50)
Adenocarcinoma	2 (4%)		2 (4%)
Adenoma	1 (2%)	2 (4%)	2 (4%)
Fibroadenoma	11 (22%)	10 (21%)	13 (26%)
Fibroma	1 (2%)	1 (2%)	
Fibrosarcoma	-		1 (2%)

Summary of the Incidence of Neoplasms in Female Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Integumentary System (continued)			······································
Skin	(50)	(49)	(50)
Keratoacanthoma		1 (2%)	1 (2%)
Subcutaneous tissue, fibrosarcoma		1 (2%)	1 (2%)
Musculoskeletal System			
Bone	(50)	(48)	(50)
Mandible, sarcoma	1 (2%)		()
Mandible, sarcoma, metastatic	- (-//)	1 (2%)	
Skeletal muscle	(1)	(1)	
Liposarcoma	(-)	1 (100%)	
Nervous System		<u></u>	
Brain	(50)	(48)	(50)
Astrocytoma benign	1 (2%)		(**)
Carcinoma, metastatic, pituitary gland	2 (4%)	1 (2%)	1 (2%)
Ependymoma malignant	1 (2%)	- (-//)	
Respiratory System			· · · · · · · · · · · · · · · · · · ·
Larynx	(50)	(48)	(48)
Adenocarcinoma, metastatic, thyroid gland	1 (2%)	()	()
Jung	(50)	(48)	(50)
Adenocarcinoma, metastatic, multiple, mammary			
gland	1 (2%)		
Alveolar/bronchiolar adenoma	1 (2%)		8 (16%)
Alveolar/bronchiolar adenoma, multiple	- (-//)		1 (2%)
Alveolar/bronchiolar carcinoma			4 (8%)
Alveolar/bronchiolar carcinoma, multiple			1 (2%)
Granulosa-theca tumor malignant, metastatic,			1 (270)
ovary			1 (2%)
Squamous cell carcinoma			1 (2%)
	<u></u>		1 (270)
Special Senses System None			
Urinary System			
Kidney	(49)	(47)	(49)
Lipoma		1 (2%)	()
Jrinary bladder	(50)	(45)	(50)
Systemic Lesions		· · · · · · · · · · · · · · · · · · ·	
Multiple organs ^b	(50)	(49)	(50)
Leukemia mononuclear	13 (26%)	20 (41%)	18 (36%)
Lymphoma malignant lymphocytic	13 (2070)	20 (41%) 2 (4%)	10 (5070)
Lymphoma malignant mixed		1 (2%)	

Summary of the Incidence of Neoplasms in Female Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m^3	6 mg/m ³	18 mg/m ³	
Neoplasm Summary		<u> </u>		
Total animals with primary neoplasms ^c	44	47	49	
Total primary neoplasms	85	100	124	
Total animals with benign neoplasms	38	35	39	
Total benign neoplasms	59	65	78	
Total animals with malignant neoplasms	23	31	35	
Total malignant neoplasms	26	35	46	
Total animals with metastatic neoplasms	4	3	4	
Total metastatic neoplasms	6	8	10	
Total animals with malignant neoplasms, uncertain primary site			1	

a Number of animals examined microscopically at site and number of animals with lesion
 b Number of animals with any tissue examined microscopically
 c Primary neoplasms: all neoplasms except metastatic neoplasms

TABLE B2

	 		_	_	_		_																				
•																											
	0	0	8	8	8	4	6	9	6	4	7	7	8	8	6	6	9	7	1	2	6	7	8	2	9		
	 3	4	3	3	3	3	4	4	3	3	3	3	4	3	3	3	3	4	3	3	3	3		3	4		
	3																										
	5																						6	1	8		
	1	1	1	1	1	1																					
																	•	_	-;								
	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
					+	+	+												+		+	+	+	+	+		
					-															-		+	+	+	+		
	+				+																	+	+	+	+		
	+																					+	+	-			
																								+	+		
	-																							+	+		
	•	•		•	•	•	•	•	·	•			•	•				•	·	•	·	•	·		·		
	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+		•
	+	+	+	+	+	+	÷	+	+								+	+	+	+	+	+	+	+	+		
	+	÷	+	÷	+															÷	+	+	+	+	· +		
	+	+	+	÷	+		-															+					•
	+	+	+	+	+	•																					
	 		_		-,																						
																	+										
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	·+	+	+		
	 	_																		_		_					
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
	+	+	+	+	+	+	+	÷	+	+	+	+	+	÷	+	÷	+	+	+	+	+	+	+	+	+		
	+	+	+	+	+	+	+	÷	+	+				-	+	+				-		-			-		
	•	•	·	•	•	•	•	•	•		•	·	x	·	•	•	•	x	•	·	•				•		
	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+		+	+	+				+		
	•		•	•	•		•		•		-						-		-		-		-		-		
	+	М	M	+	+	+	+	+	+	+	+	М	+	+	+	+	+	М	+	+	+	+	+	+	М		
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
				-	x		x	х	X								,	x	х		х			x	x		
								-	2						х											•	
	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+		
	•	-	·	•	·	•	•		•								-		-		-	-	-	-	-		
		7 0 3 3 5 1 M + + + + + + + + + + + + + + + + +	$ \begin{array}{c} 7 & 9 \\ 0 & 0 \\ \hline 3 & 4 \\ 3 & 3 \\ 5 & 0 \\ 1 & 1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 9 9 5 0 0 8 8 3 4 3 3 3 3 7 0 5 0 7 6 1 1 1 1 1 $M + + + + + + + + + + + + + + + + + + +$	7 9 9 5 6 0 0 8 8 8 3 4 3 3 3 3 3 7 0 5 5 0 7 6 0 1 1 1 1 1 $M + + + + + + + + + + A + + + + A + + + + A + + + + A + + + + A + + + + A + + + + A + $	$7 9 9 5 6 8 \\ 0 0 8 8 8 4 \\ 3 4 3 3 3 3 \\ 3 3 7 0 5 5 \\ 5 0 7 6 0 7 \\ 1 1 1 1 1 1 1 \\ 1 1 1 1 1 \\ \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 7 9 9 5 6 8 8 9 2 3 4 7 7 8 8 9 1 1 \\ 0 0 8 8 8 8 4 6 9 6 4 7 7 8 8 6 6 9 \\ 3 4 3 3 3 3 3 4 4 3 3 3 3 4 3 3 3 3 4 3 3 3 3 \\ 3 3 7 0 5 5 3 2 5 8 0 7 0 0 5 2 0 \\ 5 0 7 6 0 7 2 9 8 4 2 6 2 8 9 7 5 \\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 9 9 5 6 8 9 2 3 4 7 7 8 9 1 1 2 3 6 9 7 1 2 3 6 9 7 1 2 3 6 6 9 7 1 2 3	$\begin{array}{c} 7 \ 9 \ 9 \ 5 \ 6 \ 8 \ 8 \ 9 \ 2 \ 3 \ 4 \ 7 \ 7 \ 8 \ 9 \ 1 \ 1 \ 2 \ 3 \ 6 \ 6 \\ 0 \ 0 \ 8 \ 8 \ 8 \ 4 \ 6 \ 9 \ 6 \ 4 \ 7 \ 7 \ 8 \ 9 \ 1 \ 1 \ 2 \ 3 \ 6 \ 6 \\ 0 \ 0 \ 8 \ 8 \ 8 \ 4 \ 6 \ 9 \ 6 \ 4 \ 7 \ 7 \ 8 \ 8 \ 6 \ 6 \ 9 \ 7 \ 1 \ 2 \ 6 \\ \end{array}$	7 9 9 5 6 8 8 9 2 3 4 7 7 8 9 7 1 2 3 6 6 9 7 1 2 6 6 6 7 7 8 8 6 6 9 7 1 2 6 7 3 4 3	7 9 9 5 6 8 8 9 2 3 4 7 7 8 9 1 1 2 3 6 6 6 7 1 2 6 6 6 6 7 1 2 6 6 6 6 9 7 1 2 6 7 8 8 6 6 9 7 1 2 6 7 8 8 6 6 9 7 1 2 6 7 7 8 8 6 6 9 7 1 2 6 7 7 8 8 7 1 2 6 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8	7 9 9 5 6 8 8 9 2 3 4 7 7 8 9 1 1 2 3 6 6 6 7 7 8 9 1 1 2 3 6 6 6 7 7 8 8 6 6 9 7 1 2 6 7 8 2 3	3 3 7 0 5 2 0 0 8 5 2 2 3 0 5 0 7 6 0 7 2 9 8 4 2 6 2 8 9 7 5 6 7 2 1 8 6 1 8 1	7 9 9 5 6 8 8 9 2 3 4 7 7 8 9 1 1 2 3 6 6 6 6 7 7 0 0 8 8 8 4 6 9 6 4 7 7 8 8 6 6 9 7 1 2 6 7 8 2 9 3 4 3 3 3 3 4 4 3 3 3 3 4 3 3 3 3 4 3 3 3 3 4 3 3 3 3 3 3 3 4 3 3 7 0 5 5 3 2 5 8 0 7 0 0 5 2 0 0 9 8 5 2 2 3 0 5 0 7 6 0 7 2 9 8 4 2 6 2 8 9 7 5 6 7 2 1 8 6 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									

General Body System

None

+: Tissue examined microscopically A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue

X: Lesion present Blank: Not examined

											-	-				-	-			-						
			8				8						8													
lumber of Days on Study	8 6	8 9					1 6										6 2							6 3	-	
······································		3	2	3	3	4	3		3	3	3	3	4	4	3	3	3	3	3	2	3	2		4	4	
arcass IID Number		1	-	-	0		3 7					-	0	2	0	1	2	3		-	8	-		0	2	Total
	5	1	5	6	1	4	3	7	3	2	4	6	3	2	3	2	9	0	2	0	1	9	0	7	8	Tissue
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
limentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, cecum	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	46
Intestine large, colon	+	÷	÷.	+	÷	+	+		÷.	÷	+	+	+	+	+	+	+	+	÷.	÷	+	+	+	+	+	48
Intestine large, rectum	M	1		÷	'n		1	1	÷	Ť	÷	÷	÷	÷	÷	+	, 	÷	÷.	÷	M		÷	M	-	. 38
Intestine small	+	<u>_</u>	т 		141	+	+	г -	+	+	+	+	-	+	+	+	+	Ţ		+	+	. т -	, 	141	т -	48
Intestine small, duodenum		T	T	Т. 	Ţ	Ť	+	т					- T					т 1	т 1				Ţ	Ţ	T	48
		+	-	Ţ		. <u>.</u>		Ţ	+		+	+		+		+	+	+	+			+		+	Ŧ	
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	44
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Mesentery																										1
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, glandular	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cardiovascular System						_					_												_			
Blood vessel		+				+																				3
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Indocrine System		_	_																_			<u> </u>				
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+		+		+								+		+	+	+	50
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+				+						+	-			+	+	÷	48
Pheochromocytoma benign			X		x			x		x			·				x		x		·			x		13
Islets, pancreatic	+	+	+	+		+	+		+			+	+	+	+			+			+	+		+		50
Adenoma		•	•	•	•	•	•	•	x		•	•		•	'	•	•	•	•	•	·	·	•	•	•	1
Parathyroid gland	+	+	+	Ŧ	+	+	+	+			+	+	+	+	т	+	Ъ	Т	+	Ъ	м	·	+	ъ	-	43
Pituitary gland	+	+				+	+	+	+		+										.+				+	43 50
Pars distalis, adenoma	X	г		x		x		т	X			x		Ŧ	т	г	т	т	т	7	. 7'		x		x	50 19
Pars distalis, carcinoma	~		Λ	л		л			^	x	л	л			х							~	Λ		Λ	3
Thyroid gland		. ب	+	+	+	+	+	+	+				+										,		+	50 50
Bilateral, C-cell, carcinoma	Ŧ	т	т	т	Ŧ	т	т	т	т	т	т	т	Ŧ	т	т	т	т	Ŧ	т	+	Ŧ	+	Ŧ	+	+	
				v								v		v	v									v		1
C-cell, adenoma C-cell, carcinoma	x			Х		x						Х		Ā	Х									Х		5 2

General Body System

None

TABLE **B2** Individual

Number of Days on Study	7	9	9	5	6	8	8	9	2	3	4	7	6 7 8	8	9	1	1	2	3	6	6	6	6	7 7 2			,
	3			3		3									3									3		 	
Carcass ID Number	3 5 1	0	7	6	0	7	2	9	8	4	2	6	0 2 1	8	9	7	5	6	7	2	1	8	6	1	8		
Genital System	<u> </u>						<u> </u>	-			_															 	
Clitoral gland Carcinoma	М	[+	+	+								-			+				+	+	+	М	+	+	+		
Ovary Granulosa cell tumor malignant		+				+									+							Х		+			
Uterus Polyp stromal	+	+	x		+	+	+	+	+	+	+	+-	+	+	+	+	+	+	+	+	+	+	+	+	+	·	
Hematopoietic System									<u> </u>																	 <u> </u>	
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node	+	+	+	+	+	+			+			+		+		+	+	+	+			+		+	+		
Lymph node, bronchial Adenocarcinoma, metastatic, thyroid	+	+	+	+	+	+	+	+	+	+	+	+ x	М	+	+	+	+	+	+	+	+	+	+	+	, +		
gland Lymph node, mandibular	ъ	-	м	- L	Ŧ	+	+	+	Ŧ	+	ъ		+	т.	+	+	Ŧ	+	+	м	+	+	+	+	+		
Lymph node, mediastinal Adenocarcinoma, metastatic, thyroid											+	+	M														
gland												х															
Lymph node, mesenteric				+									+						+	+	+	+	+	+	+		
Spleen				+							+				+				+	+	+	+	+	+	+		
Thymus Thymoma benign	м	M	. M	1 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	·	
Integumentary System																								•			
Mammary gland Adenocarcinoma Adenoma	+ X		+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Fibroadenoma										х			x								x						
Fibroma															х												
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Musculoskeletal System														_													
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Mandible, sarcoma Skeletal muscle			+														x										
Nervous System																											
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Astrocytoma benign Carcinoma, metastatic, pituitary gland Ependymoma malignant															x				•-		х						

Lesions in Female Rats

Table B2

	_	_	-	-	-	-	-	-	-	-	-	_	-	-			-	-	-	~	~		~	~	•	
		.7																						8		
Number of Days on Study																								6 3		
<u></u>	4	3	3	3	3	4	3	4	3	3	3	3	4	4	3	3	3	3	3	3	3	3	4	4	4	
Carcass ID Number																								0		Total
																								7		Tissue: Tumor
· · · · · · · · · · · · · · · · · · ·	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	
Genital System																										40
Clitoral gland Carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+		+ X		47 2
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+		50
Granulosa cell tumor malignant	•	•	•	•	•	·		,	•	•	•	•	•	•	·	•	•	•		•	·	•	•	•	•	1
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Polyp stromal			х		х											Х										5
Hematopoietic System																				_				<u></u>		
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node	+	+	+	+	+	+	+	+	+	+														+		50
Lymph node, bronchial	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	Μ	+	+	+	+	+	46
Adenocarcinoma, metastatic, thyroid gland																										1
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+							M							+		47
Lymph node, mediastinal Adenocarcinoma, metastatic, thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	47 1
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	`+	+	+	+	+	+	+	+	+	+	+	49
Spleen	+	+	+	+	+	+	+				+	+					+	+	+	+	+	+	+	+	+	50
Thymus	+	+		+				+			+		+			+	+							+		47
Thymoma benign																									X	1
ntegumentary System		·																		_		· · · · · · · ·				
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenocarcinoma																										2
Adenoma																				х						1
Fibroadenoma				Х		Х	х			х	Х	х									Х				Х	11
Fibroma Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 50
			· ·			<u></u>																	—	<u></u>		
Ausculoskeletal System																										F 0
Bone Mandible, sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+	+	50 1
Skeletal muscle																										1
Nervous System					<u>.</u>																					
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Astrocytoma benign																										1
Carcinoma, metastatic, pituitary gland										х																2
Ependymoma malignant																			Х							1

TABLE B2

Individual Animal Tumor Pathology of Female Rats in the Lifetime Inhalation Study of Talc: 0 mg/m³ (continued). Number of Days on Study 7 9 9 5 6 8 8 9 2 3 4 7 7 8 9 1 1 2 3 6 6 6 6 7 7 0 0 8 8 8 4 6 9 6 4 7 7 8 8 6 6 9 7 1 2 6 7 8 2 9 3 4 3 3 3 3 4 4 3 3 3 3 4 3 3 3 3 4 3 3 3 3 3 3 4 **Carcass ID Number** 3 3 7 0 5 5 3 2 5 8 0 7 0 0 5 2 0 0 9 8 5 2 2 3 0 75 721 7 5 0 7 6 0 2 984 26 28 9 6 86 18 1 1 1 1 1 1 1 1 1 1 1 1 **Respiratory System** Larynx Adenocarcinoma, metastatic, thyroid gland Lung Adenocarcinoma, metastatic, multiple, mammary gland х Alveolar/bronchiolar adenoma Nose + A + + + + + + + + A + + ++ + + + + + + + + + + Trachea + + + + + + + + + Special Senses System Eye + Harderian gland + + + **Urinary System** Kidney + + + + + + + A ++ + + + + + + + + + + + + + + + Urinary bladder + + + + ++ + + + + + + + + + + + + ++ + + Systemic Lesions Multiple organs + X + + + + + + + + + + + + + х х Leukemia mononuclear хххх

Lesions in Female Rats

Table B2

	-	-	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~		~	
Aughter of Deve on Study	• •	7	~	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	-	
Number of Days on Study							1 6																			;
	4	3	3	3	3	4	3	4	3	3	3	3	4	4	3	3	3	3	3	3	3	3	4	4	4	
Carcass ID Number	2	1	5	3	0	2	7	2		5	7	5	0	2	0	-	2	_	_	_	-	9	0	0	2	Total
	5	1	5	6	1	4	3	7	3	2	4	6	3		3						1	9	0	7	8	Tissues
	1	1	1	1	1	1	1	1	1	1	1	1	1							1	1	1	1	1	1	Tumors
Respiratory System																										
Larynx	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenocarcinoma, metastatic, thyroid gland						•			•	•	•	•	•	•					•		•	•		•		1
Lung Adenocarcinoma, metastatic, multiple, mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma				х																						1 1
Nose	+	+	+	<u>^</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	Ŧ	–	48
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	÷	÷	+	+	+	+	+	+	+	50
Special Senses System																										
Eye																	+									2
Harderian gland									+	+																5
Urinary System																										
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Systemic Lesions																										
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear	x								-	¥	X	Y	-	x	-	-	-	-	-	-	•	-	x	-	•	13

ndividual Animal Tumor Pathology o	of Fem	ale	e R	lat	s ii	n ti	he	Li	feti	m	e Iı	nh	ala	tio	n S	Stu	ıdy	of	T	alc	: 6	m	ıg/ı	n'		
Number of Days on Study	8	0	2	5	5 6 1	6	6	4		6	7	9	9			7 2 4	7 2 9	7 3 8	7 4 0	4			-	7 6 6	-	• • •
Carcass ID Number	3 8	4	6 8	3 7	6 9	4 3	9 5	1 0	9 6	4 1	1 8	4 5	9 2	7 0	0 4 0 1	0 9	1 6	8 9	1 5	3 9	1 2	6 7	2 3	1 7	6 3	
		<u> </u>	•	•	_	_			•		-	-	-	_	<u> </u>	-		-	-	-	-	-	-	-	• 	
Mimentary System																										
Esophagus			+		+								+		+		+			+	+	+	+	+	+	
Intestine large			+		+				+						A											
Intestine large, cecum			+		+										A											
Intestine large, colon			+												A											
Intestine large, rectum Intestine small															М +											
Intestine small Intestine small, duodenum				++											++											
Intestine small, duodenum Intestine small, ileum	•		•	•											Ă											
Intestine small, jejunum															Â											
Liver															+											
Hepatocellular carcinoma Neoplastic nodule	T	Λ	т	.1	'	,		,	•	•	•	•	•			x	•	•	•	•	•	•			•	
Mesentery																							+		+	
Pancreas															+					+	+	+	+	+	+	•
Salivary glands Lymphoma malignant lymphocytic, metastatic	+	A	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+	-
Sarcoma					x		+							1	л.	т	٨	Т	+	-	+	+	т.	Ŧ	т.	
Stomach Stomach, forestomach			+	+	+	+ +	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ		A A						- -	Ŧ	- -	
Stomach, forestomach Stomach, glandular Tongue			+		+++	+	+	+	+	+	+	+	+	+	+		Â						÷	÷	+	
Sarcoma, metastatic Squamous cell papilloma					х																					· ·
Tooth Adamantinoma benign											* X															
Cardiovascular System																								-		
Blood vessel															+											
Heart	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ndocrine System																										
Adrenal gland	+	Α	+	+	+	+	+	Α		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex	+	A	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, medulla Pheochromocytoma malignant Pheochromocytoma benign	+	Α	+	+	+	+	+	Α	+	+	+	+	+	+ x	+	+	+	+	+	+ x	+	+	+ x	+	+	
Bilateral, pheochromocytoma benign														-								X				
Islets, pancreatic Adenoma	+	A	+	+	+								+		+	+	+	+	+	+	+	+	+	+	Μ	
Parathyroid gland			+		+		Μ				Μ			+	+	+	+	+	+	+	+	I	+	+	+	
Pituitary gland	+	Α	+	+	+	+	+	Ι	+	+	+	+			+	+	+		+		+		+	+	+	
Pars distalis, adenoma												7.7		х				х	х	X	X				х	
Pars distalis, carcinoma						х						Х														1
Table B2

•		7	•											8								8	ð	
8 6				0 0	1 2	1 5	1 8	1 9	4 1	4 9	6 2	6 2	6 2	6 2	6 2	6 2	6 2	6 3	6 3	6 3	6 3			
4	4	3	8	5	4	7	6	7	4	4	6	8	0	1	7	2	1	6	1	1	3	6	0	Total Tissue Tumo
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	43
					+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	34
																	+	+	+	+	+	+	+	41
																+	+	+	+	+	+	+	+	37
+																		+	+	+	+	+	+	46
+																		+	+	+	+	+	+	44
																								32
																								40 48
Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	т	т	Ŧ	т	Ŧ	т	т	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ		48 1
				Y				v															л	3
				Λ				Λ																2
+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	46
										÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	4			48
•			•	•	•	,	•		•	•		'		'	'	'	'	•	•	1	T	'	•	
																								1
+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	47
+	+	+	+	+	+	+	+	+	+	+	+									+	+	+	+	45
+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
			+																					2
																								1
			х																					1 1
																								1
+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	3 48
										_												-		······································
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
										X														1
v				v	х			х		х	х				х			х	х				v	10
		+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4 45
	• -																						х	1
				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	42
+ X							+	+ X	+	+ X	+	+	* x	+	+	+	+	+	+	+			+	47 18
	1 4 4 1 1 + + + A A + + + + + + + + + + + + +	6 8 1 0 4 2 4 4 1 1 +++AAA++ ++++AAA+++ ++++++++++++++++++++++++++++++++++++	6 8 8 1 0 1 4 2 4 4 4 3 1 1 1 + + + + A A A + A A A + A A + A A A A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 8 8 9 0 2 5 8 9 1 9 2 4 4 3 8 5 4 7 6 7 4 4 6 8 0 1 7 1	6 8 8 9 0 2 5 8 9 1 9 2 2 2 2 2 2 2 2 1 2 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 8 9 0 2 5 8 9 1 9 2	6 8 8 9 0 2 5 8 9 1 9 2 2 2 2 2 2 2 3 3 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0	6 8 9 0 2 5 8 9 1 9 2 2 2 2 2 3 3 3 1 0 1 1 0	6 8 9 0 2 5 8 9 1 9 2	6 8 9 0 2 5 8 9 1 9 2 2 2 2 2 2 3 3 3 3 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1	6 8 9 0 2 5 8 9 1 9 2 2 2 2 2 3											

.

	4	5	5	5	5	5	5	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7		
Number of Days on Study	8					6									2									6			
	-														Ō												
	0	0	0	1	0	0	0	1	0	1	1	0	0	0	0	1	1	0	1	0	1	0	0	0	0	 	
Carcass ID Number	3														4												
	8	8	8	7	9	3	5	0	6	1	8	5	2	0	0	9	6	9	5	9	2	7	3	7	3		
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
Endocrine System (continued)																		-									_
Thyroid gland	+	Α	. +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+		
C-cell, carcinoma																											
Follicular cell, adenoma																								٠			
General Body System									-					-													
																			<u>.</u>								
Genital System																			14								
Clitoral gland						· + · +		+	+	+	+	+	+	+											ім +		
Ovary Granulosa cell tumor benign	+	А		• +	-	+	+	Ŧ	Ŧ	+	+	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	т	т		
Granulosa cen tumor benign Granulosa-theca tumor benign																		x									
Uterus	+	+		. +	• +	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	· +		
Lymphoma malignant lymphocytic, metastatic																											
Polyp stromal											х				х									х			
Sarcoma stromal				X	<u> </u>																						
Iematopoietic System																									•		
Bone marrow	+	Α	+	+	+	+	Α	Α	+	+	+	+	A	+	+	+	+	+	+	+	+	A	+	+	+		
Lymph node	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node, bronchial														+	М	+	÷	+	+	÷	+	+	+	+	+		
Lymph node, mandibular	+	Α	. +	M		+	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Sarcoma, metastatic					Х		,																				
Lymph node, mediastinal						+			+			-	+			+		+	+	+	+	+	M	+	+		
Lymph node, mesenteric															+						+				+		
Spleen															+ +										+		
Thymus Mixed tumor malignant	+	A	. 1	- +	• +	* *	Ŧ	Ŧ	x	Ŧ	Ŧ	IVI	IVI	т	т	т	т	1	т	т	т	Ŧ	T	т	т		
Myxoma								•	Λ						х												
																_										 	
ntegumentary System																											
Mammary gland	+	+	• •	- +	• +	• +	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	.+		
Adenoma					-																						
Fibroadenoma	X				Х	•															X	X		Х			
Fibroma																											
Lymphoma malignant lymphocytic, metastatic																											
Skin	+	+	• •	- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Keratoacanthoma Subcutaneous tissue, fibrosarcoma																			x								

	7	7	17	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		
Sumber of Days on Study	8	9	9	9	0	1	1	1	1	4	4	6	6	6	6	6	6	6	6	6	6	6	6	6		
	6	8	8 8	9	0	2	5	8	9	1	9	2	2	2	2	2	2	2	3	3	3	3	3	3		
Э ППР БГ) 1																							Total
Carcass ID Number			24 13																							Tissue
			1																							Tumor
Endocrine System (continued)		_	<u></u>																							
Thyroid gland	+ +		+ +			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		47	
C-cell, carcinoma	т 1		гт		- T	Ŧ	x	т	x	-	1	'	,				'				ľ				2	
Follicular cell, adenoma				Х	Z		Λ		Л															•	1	
General Body System																										
None																										
Conital System																										
Genital System Clitoral gland	L		ب _	ı		. т	т	т	ᆂ	ᆂ	т	ᆂ	ъ	+	+	+	ᆂ	Ŧ		-	Ŧ	-	ъ	ъ		44
Ovary	ר لـ		+ + + +	ד ב -	- +	· +	+	+	+	+	- -	+ +	- -	+			- +	г +	+	т +	+	+	M	г +		44
Granulosa cell tumor benign			, т	-т	-	Ŧ	T	Ŧ	Ŧ	Ŧ	T.	T	•	ſ	•	'	'	1	'		x		141	ŗ		2
Granulosa-theca tumor benign																				••						1
Uterus	4		+ +	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	+		48
Lymphoma malignant lymphocytic,																										
metastatic		2	ĸ																							1
Polyp stromal									Х				Х			х		х								7
Sarcoma stromal																										1
Hematopoietic System																										
Bone marrow	-		+ A	1 +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		43
Lymph node	-	+ -	+ +	- +	- +	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		48
Lymph node, bronchial	-		+ +	- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		47
Lymph node, mandibular	-		+ +	- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		46
Sarcoma, metastatic																										1
Lymph node, mediastinal			+ +	- +	- +	• +	+	+						+					+	+	+	+	+	+		44
Lymph node, mesenteric	-		+ +	- +	- +	• +	+	+	+		+			+		+	+		+					+		47
Spleen	-		+ +	- +	- +	• +		+																		48
Thymus	-		+ +	- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+		44
Mixed tumor malignant Myxoma																										1 1
integumentary System																										
Mammary gland	-	+ -	+ +	+	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		48
Adenoma								-	-	-	-	-	-	-	-				-	-		X		x		2
Fibroadenoma			Х	C							х			х	х								х			10
Fibroma													х													1
Lymphoma malignant lymphocytic,																										
metastatic		-	ĸ.				_			_	_										_					1
Skin	-		+ +	+	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+		49
Keratoacanthoma																						Х				1
Subcutaneous tissue, fibrosarcoma																										1

109

.

,

Number of Days on Study 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7		4	5	5	5	Ś	5	5	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	
$ 2 \ 8 \ 6 \ 7 \ 1 \ 6 \ 6 \ 7 \ 1 \ 8 \ 8 \ 0 \ 7 \ 5 \ 0 \ 4 \ 9 \ 8 \ 0 \ 7 \ 5 \ 0 \ 2 \ 6 \ 8 $ Carcass ID Number $ \frac{2 \ 8 \ 6 \ 7 \ 1 \ 8 \ 8 \ 0 \ 7 \ 5 \ 0 \ 1 \ 9 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1$	Number of Dave on Study																										
Carcass ID Number 3 4 6 3 6 4 9 1 9 4 1 4 9 7 4 0 1 8 1 3 1 6 2 1 6 1 8 7 9 3 5 0 6 1 8 1	Number of Days on Study																										
8 8 8 7 9 3 5 0 6 1 8 5 2 0 0 9 6 9 5 9 2 7 3 7 3 $1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1$	<u>, i productore de la constante /u>	0	0																								··
I 1	Carcass ID Number	3	4	6	3	6	4	9	1	9	4	1	4	9	7	4	0	1	8	1	3	1	6	2	1	6	
Bone Mandible, sarcoma, metastatic Skeletal muscle Liposarcoma $+ A + + + + + + + + + + + + + + + + + +$		-																									
Mandible, sarcoma, metastatic Skeletal muscle LiposarcomaXNervous System Brain Carcinoma, metastatic, pituitary gland+ A + + + + + + + + + + + + + + + + + +	Musculoskeletal System																			_			<u>.</u>				<u> </u>
Skeletal muscle LiposarcomaVervous System Brain Carcinoma, metastatic, pituitary gland+ A + + + + + + + + + + + + + + + + + +	Bone	+	Á	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
LiposarcomaNervous System Brain Carcinoma, metastatic, pituitary gland+ A + + + + + + + + + + + + + + + + + +	Mandible, sarcoma, metastatic					х																					
Brain Carcinoma, metastatic, pituitary gland+ A + + + + + + + + + + + + + + + + + +																											
Carcinoma, metastatic, pituitary gland X Respiratory System + <td>Nervous System</td> <td></td> <td>,</td> <td></td>	Nervous System														,												
Respiratory SystemLarynx+ A + + + + + + + + + + + + + + + + + +	Brain	+	Α	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Larynx+ A + + + + + + + + + + + + + + + + + +	Carcinoma, metastatic, pituitary gland						х																				
Lung Nose+ A + + + + + + + + + + + + + + + + + +																											
Lung Nose $+ A + + + + + + + + + + + + + + + + + +$	Larynx	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Trachea $+ A + + + + + + + + + + + + + + + + + +$		+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Special Senses System + + Harderian gland + + Urinary System + + Kidney + + Lipoma Lymphoma malignant lymphocytic, metastatic Urinary bladder + A Harderian gland + + Kidney + A Lipoma Lymphoma malignant lymphocytic, + Metastatic + + Urinary bladder + A Systemic Lesions + +	Nose	+	Α	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	Α	+	+	+	Α	+	+	+	+	
Harderian gland + + Urinary System + A + + + + + A + + + + + + + + + + + + +	Trachea	+	Α	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	
Urinary System Kidney + A + + + + A + + + + + + + + + + + +																										_	
Kidney + A + + + + + A + + + + + + + + + + + +	Harderian gland										+													+			
Lipoma Lymphoma malignant lymphocytic, metastatic Urinary bladder + A + M + + + A + + + + + + + + + + + +																				•							
Lymphoma malignant lymphocytic, metastatic Urinary bladder + A + M + + + A + + + + + + + + + + + +	•	+	A	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
metastatic Urinary bladder + A + M + + + A + + + + + + + + + + + +	•																										
Systemic Lesions	metastatic																										
	Urinary bladder	+	A	+	м	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Multiple organs $'++++++++++++++++++++++++++++++++++++$																											
	Multiple organs	•+	+	-	+	+	+	+	+	+	-	+	· ·	+	+	+	+			+	+	+	+	+	+	+	
Leukemia mononuclear X X X X X X X X X X X X X				х				х	х		х		х	х				х	х		х		X		х		
Lymphoma malignant lymphocytic X Lymphoma malignant mixed X	Lymphoma malignant lymphocytic																х										

Lesions in Female Rats

Individual Animal Tumor Pathology of Female Rats in the Lifetime Inhalation Study of Talc: 6 mg/m³ (continued) Number of Days on Study 8 9 9 9 0 1 1 1 1 4 4 6 6 6 666 6 6 6 6 6 6 6 8 8 9 0 2 5 8 9 19 2 2 2 2 2 2 2 3 3 3 3 3 3 6 1 1 Carcass ID Number 2 4 3 8 1 3 6 1 4 6 1 1 2 2 4 6 7 8 9 1 3 3 4 4 Total 4 4 3 8 5 4 7 6 7 4 4 6 8 0 1 7 2 1 6 1 1 3 6 0 Tissues/ Tumors Musculoskeletal System 48 Bone Mandible, sarcoma, metastatic 1 Skeletal muscle + 1 х Liposarcoma 1 Nervous System Brain 48 Carcinoma, metastatic, pituitary gland 1 **Respiratory** System Larynx 48 Lung 48 + + + 4 + + + + + Nose 45 + + + Trachea + 48 + 4 + + + + + Special Senses System + ` 7 Harderian gland + + + + **Urinary System** Kidney 47 + + ++ + + + + Lipoma х 1 Lymphoma malignant lymphocytic, metastatic х 1 Urinary bladder + + + M +45 Systemic Lesions Multiple organs 49 + + + + + ххх Leukemia mononuclear Х **x x x x x** 20 Lymphoma malignant lymphocytic х 2 Lymphoma malignant mixed 1

													6										7			
Number of Days on Study													8 4										4 6	4 7	-	
· · ·	_	2	_										2 0													
Carcass ID Number	7	0	6	2	3	5	0	1	6	8	7	5	8 1	0	9	6	0	2	6	6	1	3	2	9	9	
Alimentary System							ş.			_															<u> </u>	
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large													+													
Intestine large, cecum													+													
Intestine large, colon													+		+									+		
Intestine large, rectum													Μ													
Intestine small													+											+		
Intestine small, duodenum	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	
Intestine small, ileum	+	+	Α	+	+	Α	Α	+	+	\pm	+	+	Α	+	Α	+	+	+	Α	+	Α	+	Α	+	+	
Intestine small, jejunum	+	+	Α	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Granulosa-theca tumor malignant, metastatic, ovary																x										
Neoplastic nodule																										
Pancreas	+	+	Α		+	+	+	+	+	+	+	<u>+</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pharynx				+																						
Squamous cell carcinoma				X																						
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Fibrosarcoma																										
Stomach	+	+	+										+						+						+	
Stomach, forestomach Stomach, glandular	+	+	++										+ +													•
Cardiovascular System										_			-				-							<u></u>		<u></u>
Blood vessel																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Granulosa-theca tumor malignant,																										
metastatic, ovary																x 										
Endocrine System																										
Adrenal gland	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex	. +	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	, +	
Granulosa-theca tumor malignant, metastatic, ovary			•								,	,	+	_		x	_		. ئە	.1	.4	ъ	بر		بد	
Adrenal gland, medulla Granulosa-theca tumor malignant, metastatic, ovary	+	+	А	+	+	+	+	+	Ŧ	Ŧ	Ŧ		Ŧ	*		т х	7	Ŧ	т	Ŧ	Ŧ	т	т	Ŧ	Ŧ	
Pheochromocytoma malignant Pheochromocytoma benign																							x			
Bilateral, pheochromocytoma malignant															_ .											
Bilateral, pheochromocytoma benign															х		Х									
Islets, pancreatic	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	
Adenoma							х																			
Parathyroid gland	M	(+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	

~

Lesions in Female Rats

TABLE B2

Individual Animal Tumor Pathology of	Fen	nalo	≥R	lats	s ie	1 t	he	Li	feti	ima	e In	mlha	ala	tio	n S	Stu	ıdy	oí	T	alc	: 1	8 1	mg	/	cor	ntinued)
	7	7	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	
Number of Days on Study	8	8	9	Õ	2	2	-		3		4	-		5					6				6			
·	4	-		3			8		5					0			2				2	3		3		
	2	2	2	2	1	1	1	2	2	1	1	2	2	2	2	1	1	1	1	1	2	2	2	2	2	
Carcass ID Number	5	8	3	5	6	6	5	7	1	9	9	0	5	6	3	6	5	6	6	8	3	3	5	5	8	Total
	7	7	3	3	2		7	7	5	0	1	5	8	4	1	5	8	3	6	2	2	8	4	9	6	Tissue
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
Mimentary System		-																								
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	46
Intestine large, cecum	Α	+	+	+	+	Α	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	43
Intestine large, colon	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	45
Intestine large, rectum	+	+	+	+	+									+			+	+	+	+	+	+	+	+	+	41
Intestine small	+	+	+	+	+	A			+		+	+	+		+		+	+	+	+	+	+	+	+	+	48
Intestine small, duodenum	+	+	+	+	+	A			+						+		+	+	+	+	+	+	+	+	+	47
Intestine small, ileum	Á	+	+	+	+	A			+		Å	-	+		Å		+	+	+	+	+	+	+	+	+	38
Intestine small, jejunum	+	+	+	+	+	A				+					+		+	+	+	+	+	+	+	+	+	46
Liver Granulosa-theca tumor malignant,	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
metastatic, ovary																										1
Neoplastic nodule																х										1
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pharynx																										1
Squamous cell carcinoma																										1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	50
Fibrosarcoma																х										1
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cardiovascular System																										
Blood vessel										+																1
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Granulosa-theca tumor malignant, metastatic, ovary																										1
Endocrine System																								<u></u>		
Adrenal gland	ر	ц	L.	L	L.	L.	л.	٩	۰	ъ	Ŧ		н	ъ	л.	L.	4		L	۱.		L	Ŀ	,		40
Adrenal gland, cortex		- -	т 	ᆂ	т Т	т ⊥	т -	- -	τ ⊥	т 	т Т	Ŧ	т "	- -	T -	+ -	+ -	T L	+ -	т 	т 	T	т 	+	T L	49 49
Granulosa-theca tumor malignant, metastatic, ovary	Ŧ	Ŧ	т	т	т	т	Ŧ	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т	-	Ŧ	+	Ŧ	49
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Granulosa-theca tumor malignant, metastatic, ovary								•	-	·	•		•	,				•	•	•	•	•	•	•	•	1
Pheochromocytoma malignant	X				х			х	х	х	х												х			7
Pheochromocytoma benign			х		X		х		x		-			х						x			x		х	11
Bilateral, pheochromocytoma malignant															х		х				х					3
Bilateral, pheochromocytoma benign						х							х						х		_	х		х		7
Islets, pancreatic	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+			49
Adenoma																		-	-			,				1
							+																			-

113

1.

TABLE B2

	-	-	-	-					,							_	_	_	_	_	_	_	_	_	_		
		5		5		6		6						6									7	7	7		
Number of Days on Study				9 4															1 7				4 6	4 7	7 3		
<u> </u>	1	2	2	2	1	2	2	2	1	2	2	2	2	2	1	2	1	2	2	2	1	2	1	2	2	 	
Carcass ID Number	6 7 1	0	6	1 2 1	3		0	1	6	8	7	5	8		9	6	0	2	6	6	1	3	2	9	9		
Endocrine System (continued)																										 	
Pituitary gland	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pars distalis, adenoma	т	т	т	т	т	x		x	т	x	Ŧ	x		x	7		'		'	'	x	'	'	'			
Pars distalis, adenoma						~		~		~	х									х							
Thyroid gland	+	+	A	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+		+	+	+	+	+		
C-cell, adenoma		•		·	•				•		•	ż			-			•	•	•	·	•		•			
C-cell, carcinoma										x	x																
General Body System None	-																									 	
Genital System																											
Clitoral gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	Μ	+		
Adenoma																											
Carcinoma																											
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	+	+	Ŧ	Ŧ		
Bilateral, granulosa-theca tumor																x											
malignant Uterus	-	<u>т</u>	-	-	+	+	Ŧ	+	+	· _	+	ъ	Ŧ	Ŧ	ъ		+	+	+	+	+	+	+	+	+		
Polyp stromal	т	т	т	т	т	т	Ŧ	Ŧ	Ŧ	T	т	x	т	т	т		'	'	'	x	'	•	'	'	•		
Hematopoietic System						_			_																		
Bone marrow	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+		
Lymph node	+	+	+	+	+	+	+	+	+	+	+				+		+	+	+	+	+	+	+	+	+		
Lymph node, bronchial	+	+	+	+	+	+	+	+	+	+	+	М	+	+	М	+	+	+	+	Μ	+	+	+	+	+		
Squamous cell carcinoma, metastatic,																v											
lung								14					J.	+		X		L.	ــ	ــ	д		м	.	<u>ــ</u>		
Lymph node, mandibular				+					+	+	+	+	+	+		++							м +				
Lymph node, mediastinal Carcinoma, metastatic, uncertain primary site	+	+	+	+	+	+	+	+	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	٣	Ŧ	т	Ŧ	Ŧ	Ŧ	т	т	т	т	т		
Fibrosarcoma, metastatic, skin									х																		
Granulosa-theca tumor malignant, metastatic, ovary																x											
Lymph node, mesenteric	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Thymus	+	+	+	M	Μ	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Schwannoma benign																											

Lesions in Female Rats

COLUMN STREET

																								8 6		
lumber of Days on Study																								3		
·······																								2		
arcass ID Number	5	8	3	5	6	6	5	7	1	9	9	0	5	6	3	6	5	6	6	8	3	3	5	5	8	Total
	7	7	3	3	2	4	7	7	5	0	1	5	8	4	1	5	8	3	6	2	2	8	4	9	6	Tissues
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
Indocrine System (continued)																										
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pars distalis, adenoma			х		х	х								х				х				х	Х		х	21
Pars distalis, carcinoma																										2
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
C-cell, adenoma								X											x					X		6
C-cell, carcinoma						÷																				2
eneral Body System None																										
Genital System																										
Clitoral gland	+	+	+	+	+	М	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	46
Adenoma									х																	1
Carcinoma																					Х					1
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Bilateral, granulosa-theca tumor malignant																										1
Uterus	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Polyp stromal	X			•																					Х	4
lematopoietic System																										
Bone marrow	+	+	·+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node, bronchial	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<u>,</u> 47
Squamous cell carcinoma, metastatic,																										
lung																										. 1
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	.+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	47
Lymph node, mediastinal	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	Μ	+	+	+	Μ	47
Carcinoma, metastatic, uncertain																										
primary site				Х																						1
Fibrosarcoma, metastatic, skin																										1
Granulosa-theca tumor malignant,																										
metastatic, ovary																										1
Lymph node, mesenteric	+	+	+	+	+	+	+	+	, +	+	+	+	+	+	Μ	+	+	М	+	+	+	+	+	+	+	47
Spleen	+	+	+	+	, +	+	+	+	+	.+.	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
	B 4									`					+	1			+							47
Thymus Schwannoma benign	M	. +	+	+	- +	- T		T	-+-	Ŧ	+	+	Ŧ	т	T	+ X		+	Ŧ	т	+	+	+	+	т	47

	5	5	5	5	6	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study													8											4	7	
													4											7	3	
	1	2	2	2	1	2	2	2	1	2	2	2	2	2	1	2	1	2	2	2	1	2	1	2	2	
Carcass ID Number													õ													
carcass in Aumoci	7												8													
													1													
ntegumentary System																										
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenocarcinoma																										
Adenoma								•																		
Fibroadenoma												х	х			-				х		х		х		
Fibrosarcoma																										
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Keratoacanthoma		Х																								
Subcutaneous tissue, fibrosarcoma									x																	
Ausculoskeletal System																					•		•			
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Nervous System																										
Brain Consistence matastatic pituitary sland	+	+	+	+	, +	+	+	+	+	+	x	+	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	
Carcinoma, metastatic, pituitary gland					-						^															
Respiratory System								,									-	-	+	-				+	-	
Larynx	+	+	+	+	+	1	+	1	Ť	Ť	T	+	Ŧ	Ŧ	Ŧ	+	+++	Ŧ	Ŧ	Ŧ				+		
Lung Alveolar/bronchiolar adenoma	+	+	+	+	Ŧ	т	т	т	т	т	Ŧ	Ŧ	Ŧ	т	т	Ŧ	т	x	т	Ŧ	Ŧ	x		Ŧ	Ŧ	
Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma, multiple																		,								
Granulosa-theca tumor malignant,																										
metastatic, ovary																X										
Squamous cell carcinoma															,	x			л.		.1					
Nose Trachea				++		+ +		+ +		+ +		+ +	+ +	+ +	+ +		А +					+	+	+	+	
Special Senses System									_		• .															, 1
Eye																										
Harderian gland Lacrimal gland										+	+	+		+					+	+		+			.+	
															,											
	+	+++	· A	+++	++	+ +	+ +	+ +	+ +	++	++	++	+ +	+	+ +	+	+	+	+	+	++	+	+	+	+	
U rinary System Kidney Urinary bladder	+																									
Kidney Urinary bladder	+																									
Kidney Urinary bladder Systemic Lesions	+	+	 - +	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Urinary System Kidney Urinary bladder Systemic Lesions Multiple organs Leukemia mononuclear	+ + X	+	+ X	+	+ x	+ x	+	+ x	+	+ x	+	+	+ x	+	+	+	+ x	+	+	+	+ x	+	+		+ x	

Lesions in Female Rats

	7	7	7	8	8	8	8	8	8	8	8				8				8					8		
Jumber of Days on Study	8			0			2					4	4	5	5	5	6	6	6	6	6	6	6	6	6	
	4	6	6	3	2	3	8	9	5	1	1	2	8	0	4	7	2	2	2	2	2	3	3	3	3	
· · · · · · · · · · · · · · · · · · ·		2	2	<u> </u>	1	1	1	<u>,</u>		1	1	2	2	2	2	1	1	1	1	1	<u>,</u>	2	2	2		
Carcass ID Number	5	_	_	2 5			5																_	_	-	Total
	-			3																						Tissue
				1																						Tumor
ntegumentary System																			_							
Mammary gland	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenocarcinoma					Х						х															2
Adenoma								Х					Х													2
Fibroadenoma							Х		х		Х				Х				Х	Х	Х		Х			13
Fibrosarcoma						Х																				1
Skin	+	+	· +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Keratoacanthoma Subcutaneous tissue, fibrosarcoma																										1 1
Musculoskeletal System Bone				 							 +	 +	+	+	+	+	 +	+		+	+		 +	 +		50
Boile	1	'								<u> </u>	·	T	•			,			'	<u> </u>					•	
Nervous System Brain				- +							L		т	т	+	т	L.	-	т	-	-	т	L.	-	т	50
Carcinoma, metastatic, pituitary gland	т	т	· T		· •	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	1
Respiratory System																										
Larynx	+	+		- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lung	+			- +	• +						+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma		Х				х	Х		х			Х							х							8
Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma							x	Х					х							x	х					1 4
Alveolar/bronchiolar carcinoma,							Λ						Λ							Λ	Λ					-
multiple																								х		1
Granulosa-theca tumor malignant,																										
metastatic, ovary																										1
Squamous cell carcinoma																										1
Nose Trachea				- + - +					+ +			+		++				+ +	+	+	+	+	+	+	+ +	48 50
Special Senses System																										,
Eye											+											+				2
Harderian gland Lacrimal gland	+			+	-							+	+ +	+		+									+	15 1
Urinary System								•																		
Kidney	+	+	• -4	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Urinary bladder	+	-	• •	+ +	- +	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Systemic Lesions																										
Multiple organs	+	· +		⊦ +		+	+			+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	50
Leukemia mononuclear		Х		X				х			х						х						X		х	18

. . .

ŝ,

TABLE B3

Statistical Analysis of Primary Neoplasms in Female Rats in the Lifetime Inhalation Study of Talc

· .	· · ·	0 mg/m ³	6 mg/m ³	18 mg/m ³
Adrenal Medulla: Benign Pheoch	romocytoma		<u> </u>	
Overall rates ^a	· · · · · · · · · · · · · · · · · · ·	13/48 (27%)	14/47 (30%)	18/49 (37%)
Adjusted rates ^b		61.3%	59.7%	82.5%
Terminal rates ^c		5/11 (45%)	5/13 (38%)	
First incidence (days)		678	705	6/9 (67%)
Life table tests ^d		P=0.135		697 D. 0 102
Logistic regression tests ^d			P = 0.529	P=0.183
		P=0.185	P=0.541	P=0.225
Cochran-Armitage test ^a Fisher exact test ^d		P=0.180	D	
isner etact test			P=0.474	P=0.212
drenal Medulla: Malignant Pheo	chromocytoma		12 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	
Overall rates		0/48 (0%)	1/47 (2%)	10/49 (20%)
Adjusted rates		0.0%	7.1%	56.9%
Terminal rates		0/11 (0%)	0/13 (0%)	3/9 (33%)
First incidence (days)		_e	849	784
Life table tests		P<0.001	P=0.531	P=0.002
Logistic regression tests		P<0.001	P = 0.509	P = 0.001
Cochran-Armitage test		P<0.001		1 -0.001
Fisher exact test		1 - 1/1/1	P=0.495	P<0.001
· · · · · · · · · · · · · · · · · · ·				
Adrenal Medulla: Benign or Mali	gnant Pheochromocyt		1	
Overall rates		13/48 (27%)	14/47 (30%)	23/49 (47%)
Adjusted rates	1	61.3%	59.7%	95.2%
ferminal rates	· ·	5/11 (45%)	5/13 (38%)	8/9 (89%)
first incidence (days)		678	705	697
Life table tests		P=0.016	P=0.529	P=0.033
ogistic regression tests		P=0.014	P=0.541	P=0.024
Cochran-Armitage test		P=0.021		
Fisher exact test	•		P=0.474	P=0.034
liver: Neoplastic Nodule				
Overall rates		0/50 (0%)	3/48 (6%)	1/50 (2%)
Adjusted rates	e .	0.0%	13.6%	10.0%
Ferminal rates	1	0/11 (0%)	0/13 (0%)	0/9 (0%)
First incidence (days)	•	-	0/13 (0%) 724	857
ife table tests	· · ·	- P=0.550		
· · · ·			P=0.114	P=0.464
ogistic regression tests		P = 0.561	P=0.117	P=0.496
Cochran-Armitage test Fisher exact test	· · · ·	P=0.556	P=0.114	P=0.500
	-			• •••••
iver: Neoplastic Nodule or Hepa	tocellular Carcinoma		an far an an an an Arr	
Overall rates		0/50 (0%)	4/48 (8%)	1/50 (2%)
Adjusted rates	•	0.0%	20.2%	10.0%
Ferminal rates		0/11 (0%)	1/13 (8%)	0/9 (0%)
First incidence (days)		_	724	857
life table tests	2 N - A	P=0.575	P=0.066	P=0.464
ogistic regression tests		P=0.602	P=0.060	P=0.496
Cochran-Armitage test		P=0.599		
Fisher exact test			P=0.054	P=0.500

Lesions in Female Rats

TABLE B3

Statistical Analysis of Primary Neoplasms in Female Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Lung: Alveolar/bronchiolar Adenoma			
Dverall rates	1/50 (2%)	0/48 (0%)	9/50 (18%)
	1/50 (2%) 4.5%	0.0%	40.8%
Adjusted rates		0/13 (0%)	
First incidence (days)	0/11 (0%) 805	0/13 (0%)	1/9 (11%) 716
Life table tests	P<0.001	_ P=0.529N	P=0.015
ogistic regression tests	P<0.001	P = 0.523N P=0.503N	P = 0.010
Cochran-Armitage test	P<0.001	1 -0.50514	1 =0.010
Fisher exact test	1 < 0.001	P=0.510N	P=0.008
		r -0.51014	1 -0.000
ung: Alveolar/bronchiolar Carcinoma			,
Overall rates	0/50 (0%)	0/48 (0%)	5/50 (10%)
Adjusted rates	0.0%	0.0%	41.7%
erminal rates	0/11 (0%)	0/13 (0%)	3/9 (33%)
First incidence (days)	- · · ·	-	828
ife table tests	P=0.002	-	P=0.027
ogistic regression tests	P=0.003	_	P=0.028
Cochran-Armitage test	P=0.004		
isher exact test		-	P=0.028
ung: Alveolar/bronchiolar Adenoma or C	າ ເວັດເຊັ່າ ແມ່ນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັ		· ·
Dverall rates	1/50 (2%)	0/48 (0%)	12/50 (26%)
Adjusted rates	4.5%	0.0%	13/50 (26%) 65.8%
erminal rates	0/11 (0%)	0/13 (0%)	4/9 (44%)
First incidence (days)	805	(15 (070)	716
ife table tests	P<0.001	P=0.529N	P=0.001
ogistic regression tests	P<0.001	P = 0.503N	P<0.001
Cochran-Armitage test	P<0.001	1 0.00011	1 30.001
isher exact test		P=0.510N	P<0.001
former Clards Ethnoods-	· ·		
Aammary Gland: Fibroadenoma Dverall rates	11/50 (22%)	10/49 (20%)	13/50 (26%)
Adjusted rates	47.6%	41.4%	64.0%
erminal rates	2/11 (18%)	3/13 (23%)	
irst incidence (days)	634	482	4/9 (44%) 678
ife table tests	P=0.304	P=0.489N	P=0.394
ogistic regression tests	P = 0.363	P = 0.508N	P = 0.428
Cochran-Armitage test	P = 0.343	1 -0.50814	1 -0.428
isher exact test	1-0.343	P=0.521N	P=0.408
Aammary Gland: Fibroma, Fibroadenoma werall rates		13/40 (270%)	15/50 (2001)
Adjusted rates	13/50 (26%) 54.7%	13/49 (27%) 59.0%	15/50 (30%)
Cerminal rates			68.6%
irst incidence (days)	3/11 (27%) 634	6/13 (46%) 482	4/9 (44%) 678
ife table tests	P=0.314		678 B-0.404
ogistic regression tests		P=0.544N	P = 0.404
Cochran-Armitage test	P=0.394 P=0.371	P=0.585	P=0.434
Fisher exact test	P=0.371	B-0547	B-0 412
DIG WALLIES		P=0.567	P=0.412

TABLE	B 3
-------	------------

Statistical Analysis of Primary Neoplasms in Female Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m³
Mammary Gland: Fibroma, Fibroadenoma, Adenor	na. or Adenocarcinoma		
Overall rates	15/50 (30%)	13/49 (27%)	16/50 (22%)
Adjusted rates	56.6%	13/49 (27%) 59.0%	16/50 (32%) 70.1%
Ferminal rates	3/11 (27%)	6/13 (46%)	4/9 (44%)
First incidence (days)	370	482	678
Life table tests	P=0.378	P=0.386N	P=0.494
Logistic regression tests	P = 0.457	P=0.425N	P = 0.531
Cochran-Armitage test	P=0.430		1 = 0.551
isher exact test	1 00.000	P=0.437N	P=0.500
Pituitary Gland (Pars Distalis): Adenoma			
Overall rates	19/50 (38%)	18/47 (38%)	21/50 (42%)
Adjusted rates	62.1%	60.5%	78.3%
ferminal rates	3/11 (27%)	3/13 (23%)	4/9 (44%)
First incidence (days)	568	697	633
ife table tests	P=0.360	P=0.512N	P=0.425
ogistic regression tests	P=0.409	P=0.557N	P=0.457
Cochran-Armitage test	P=0.380		
Fisher exact test		P=0.571	P=0.419
Pituitary Gland (Pars Distalis): Carcinoma			
Overall rates	3/50 (6%)	3/47 (6%)	2/50 (4%)
Adjusted rates	17.1%	12.2%	5.6%
Ferminal rates	1/11 (9%)	1/13 (8%)	0/9 (0%)
First incidence (days)	696	566	676
Life table tests	P=0.438N	P=0.636N	P=0.506N
ogistic regression tests	P=0.427N	P=0.634	P=0.497N
Cochran-Armitage test	P=0.418N		
Fisher exact test		P=0.631	P = 0.500N
Pituitary Gland (Pars Distalis): Adenoma or Carci	inoma		
Overall rates	22/50 (44%)	21/47 (45%)	23/50 (46%)
Adjusted rates	69.8%	66.2%	79.5%
Terminal rates	4/11 (36%)	4/13 (31%)	4/9 (44%)
First incidence (days)	568	566	633
Life table tests	P=0.429	P = 0.502N	P=0.488
ogistic regression tests	P=0.506	P = 0.570N	P=0.545
Cochran-Armitage test	P=0.471	D 0.65.	D. 0.600
Fisher exact test		P=0.554	P=0.500
Thyroid Gland (C-cell): Adenoma			
Overall rates	5/50 (10%)	0/47 (0%)	6/49 (12%)
Adjusted rates	33.5%	0.0%	34.0%
Cerminal rates	2/11 (18%)	0/13 (0%)	2/9 (22%)
First incidence (days)	805	-	678
life table tests	P=0.253	P=0.030N	P = 0.467
ogistic regression tests	P = 0.283	P=0.029N	P = 0.505
Cochran-Armitage test	P=0.276	B-0.022N	B-0.496
Fisher exact test		P=0.033N	P = 0.486

Lesions in Female Rats

TABLE B3

Statistical Analysis of Primary Neoplasms in Female Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Thyroid Gland (C-cell): Carcinoma	······································		
Overall rates	3/50 (6%)	2/47 (4%)	2/49 (4%)
Adjusted rates	11.1%	12.2%	4.9%
Yerminal rates	0/11 (0%)	0/13 (0%)	0/9 (0%)
irst incidence (days)	677	818	675
ife table tests	P=0.430N	P=0.507N	P=0.493N
ogistic regression tests	P=0.462N	P=0.516N	P=0.533N
Cochran-Armitage test	P = 0.463N	1 0.51010	. 0.0001
isher exact test	1 -0.40514	P=0.530N	P=0.510N
hyroid Gland (C-cell): Adenoma or Carcinoma			
Overall rates	8/50 (16%)	2/47 (4%)	8/49 (16%)
Adjusted rates	40.9%	12.2%	37.2%
erminal rates	2/11 (18%)	0/13 (0%)	2/9 (22%)
irst incidence (days)	677	818	675
ife table tests	P=0.418	P=0.051N	P=0.579
ogistic regression tests	P=0.435	P=0.048N	P=0.599N
Sochran-Armitage test	P=0.414		
isher exact test		P=0.056N	P=0.590
Jterus: Stromal Polyp			
Overall rates	5/50 (10%)	7/49 (14%)	4/50 (8%)
adjusted rates	22.3%	34.4%	19.5%
erminal rates	1/11 (9%)	3/13 (23%)	1/9 (11%)
irst incidence (days)	398	678	678
ife table tests	P=0.439N	P=0.400	P=0.532N
ogistic regression tests	P=0.376N	P=0.372	P=0.505N
Cochran-Armitage test	P=0.386N		
ïsher exact test		P=0.365	P=0.500N
Iterus: Stromal Polyp or Stromal Sarcoma			
Overall rates	5/50 (10%)	8/49 (16%)	4/50 (8%)
djusted rates	22.3%	35.8%	19.5%
erminal rates	1/11 (9%)	3/13 (23%)	1/9 (11%)
ïrst incidence (days)	398	557	678
ife table tests	P=0.412N	P=0.298	P=0.532N
ogistic regression tests	P=0.360N	P=0.265	P = 0.505N
Cochran-Armitage test	P=0.363N		
ïsher exact test		P=0.264	P=0.500N
ll Organs: Mononuclear Cell Leukemia			
Overall rates	13/50 (26%)	20/49 (41%)	18/50 (36%)
djusted rates	45.7%	73.3%	60.1%
erminal rates	1/11 (9%)	8/13 (62%)	3/9 (33%)
irst incidence (days)	390	526	536
ife table tests	P=0.234	P=0.164	P=0.232
ogistic regression tests	P=0.226	P=0.084	P = 0.152
Cochran-Armitage test	P=0.250		
Fisher exact test		P=0.088	P=0.194

Statistical Analysis of Primary Neoplasms in Female Rats in the Lifetime Inhalation Study of Talc (continued)

		0 mg/m ³	6 mg/m ³	18 mg/m ³
All Organize Malianan	. T			· · · · ·
All Organs: Malignant Overall rates	Lympnoma	0/50 (001)	2/40 (601)	0/50 (0%)
		0/50 (0%) 0.0%	3/49 (6%) 10.3%	0.0%
Adjusted rates				
Terminal rates		0/11 (0%)	0/13 (0%) 724	0/9 (0%)
First incidence (days)		- -		
Life table tests		P = 0.525N	P = 0.124	-
Logistic regression tests		P=0.497N	P=0.118	-
Cochran-Armitage test		P=0.499N	D 0117	
Fisher exact test			P=0.117	-
All Organs: Benign Ne	oplasms			
Overall rates	-	38/50 (76%)	35/49 (71%)	39/50 (78%)
Adjusted rates		97.2%	96.9%	97.4%
Terminal rates		10/11 (91%)	12/13 (92%)	8/9 (89%)
First incidence (days)	1. Sec. 1. Sec	398	482	558
Life table tests		P=0.338	P=0.350N	P=0.440
Logistic regression tests		P=0.544	P=0.312N	P=0.562N
Cochran-Armitage test		P=0.415		
Fisher exact test	• • •		P=0.387N	P=0.500
All Organs: Malignant	Neonlasms			
Overall rates		23/50 (46%)	31/49 (63%)	35/50 (70%)
Adjusted rates		69.3%	85.8%	90.5%
Terminal rates		4/11 (36%)	9/13 (69%)	6/9 (67%)
First incidence (days)		370	526	536
Life table tests		P=0.054	P=0.189	P=0.061
Logistic regression tests	· 1	P = 0.034 P = 0.013	P = 0.056	P = 0.001
Cochran-Armitage test	,	P = 0.013 P = 0.016	1 -0.050	1-0.010
Fisher exact test		1-0.010	P=0.064	P=0.013
	Malignant Neoplasms	ALEO (0000)	17/10 10/01	40/50 (00/7/)
Overall rates		44/50 (88%)	47/49 (96%) 97.9%	49/50 (98%) 100.0%
Adjusted rates		97.6%	97.9%	100.0%
Terminal rates		10/11 (91%)	12/13 (92%)	9/9 (100%)
First incidence (days)		370	482	536
Life table tests		P=0.248	P=0.447	P=0.279
Logistic regression tests		P=0.053	P=0.145	P = 0.060
Cochran-Armitage test		P=0.049		
Fisher exact test			P=0.141	P=0.056

^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, salivary gland, spleen, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The life table test regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in an exposure group is indicated by N.

^e Not applicable; no neoplasms in animal group

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Lifetime Inhalation Study of Talc^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³	
Disposition Summary	· · · · · · · · · · · · · · · · · · ·	*****		
Animals initially in study	50	50	50	
Early deaths	20	50		
Moribund	28	17	27	
Natural deaths	11	19	14	
Survivors				
Terminal sacrifice	11	13	9	
Missing		1		
Animals examined microscopically	50	49	50	
Alimentary System	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****	······	
Intestine large, cecum	(46)	(34)	(43)	
Hemorrhage, focal	(10)	1 (3%)	()	
Inflammation	11 (24%)	1 (3%)	6 (14%)	
Parasite metazoan	7 (15%)	3 (9%)	6 (14%)	
Ulcer	1 (2%)	1 (3%)	1 (2%)	
Intestine large, colon	(48)	(41)	(45)	
Inflammation		1 (2%)	2 (4%)	
Parasite metazoan	2 (4%)	3 (7%)	3 (7%)	
Intestine large, rectum	(38)	(37)	(41)	
Inflammation	4 (11%)			
Parasite metazoan	2 (5%)	1 (3%)	1 (2%)	
Intestine small, duodenum	(48)	(44)	(47)	
Necrosis, focal	1 (2%)			
Intestine small, ileum	(44)	(32)	(38)	
Hyperplasia, lymphoid	2 (5%)	(49)	(50)	
Liver	(50)	(48)	(50)	
Atrophy Basophilic focus	27 (54%)	1 (2%) 17 (35%)	1 (2%)	
Clear cell focus	1 (2%)	2 (4%)	21 (42%) 1 (2%)	
Cyst multilocular	1 (2%)	2 (470)	1 (270)	
Degeneration, cystic	- (=/0)	2 (4%)	1 (2%)	
Eosinophilic focus	2 (4%)	5 (10%)	4 (8%)	
Fatty change	18 (36%)	18 (38%)	14 (28%)	
Hematopoietic cell proliferation	1 (2%)		()	
Infiltration cellular, mononuclear cell			1 (2%)	
Inflammation, granulomatous, focal	13 (26%)	3 (6%)	4 (8%)	
Inflammation, necrotizing, focal		1 (2%)		
Inflammation, suppurative	1 (2%)			
Necrosis, focal	5 (10%)	1 (2%)	2 (4%)	
Pigmentation, hemosiderin	1 (2%)			
Thrombosis			1 (2%)	
Bile duct, hyperplasia	36 (72%)	38 (79%)	36 (72%)	
Centrilobular, atrophy	10 (202)	2 (4%)	6 (12%)	
Centrilobular, degeneration	10 (20%)	14 (29%)	10 (20%)	
Centrilobular, necrosis	2 (4%)	2 (4%)	2 (4%)	
Hepatocyte, atrophy, focal		9 ((7))	1 (2%)	
Serosa, thrombosis		3 (6%)		
Mesentery Granuloma	(1)	(2)		
	1 (100%)	1 (50%)		
Inflammation, chronic active		1 (50%)		

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Lifetime Inhalation Study of Talc (continued)

-

-

	0 mg/m ³	6 mg/m ³	18 mg/m³
Alimentary System (continued)			
Pancreas	(50)	(46)	(49)
Hyperplasia, nodular	1 (2%)	(+0)	(4)
Inflammation	1 (2%)	1 (2%)	
Lobules, atrophy	7 (14%)	7 (15%)	9 (18%)
Salivary glands	(50)	(48)	(50)
Inflammation	2 (4%)	(10)	(50)
Stomach, forestomach	(50)	(45)	(49)
Hyperkeratosis	1 (2%)	(13)	1 (2%)
Inflammation	1 (2%)		2 (4%)
Mineralization	1 (270)	1 (2%)	2 (470)
Ulcer	9 (18%)	4 (9%)	3 (6%)
Stomach, glandular	(50)	(47)	(50)
Erosion	(30)	(47)	1 (2%)
Inflammation	1 (2%)	1 (2%)	1 (270)
Mineralization	2 (4%)	2 (4%)	2 (4%)
Ulcer	3 (6%)	2 (4%)	2 (4%) 3 (6%)
Ulcer, multiple	1 (2%)	2 (470)	1 (2%)
Arteriole, muscularis, lamina propria,	1 (270)		1 (270)
mineralization		1 (2%)	
		1 (270)	•
Cardiovascular System			
Blood vessel	(3)	(3)	(1)
Aorta, mineralization		3 (100%)	1 (100%)
Mesenteric artery, aneurysm	1 (33%)		
Mesenteric artery, inflammation	3 (100%)		
Mesenteric artery, mineralization		1 (33%)	1 (100%)
Mesenteric artery, thrombosis	1 (33%)	1 (33%)	
Heart	(50)	(48)	(50)
Cardiomyopathy	35 (70%)	40 (83%)	36 (72%)
Inflammation, focal	1 (2%)		1 (2%)
Atrium, thrombosis	5 (10%)	8 (17%)	5 (10%)
Myocardium, embolus		2 (4%)	
Myocardium, inflammation, focal		1 (2%)	
Myocardium, mineralization	1 (2%)	4 (8%)	3 (6%)
		· · ·	
Endocrine System Adrenal gland, cortex	(50)	(47)	(49)
Degeneration, cystic	1 (2%)	(**)	
Degeneration, fatty	3 (6%)		
Degeneration, facty Degeneration, focal	1 (2%)	1 (2%)	
Hyperplasia, diffuse	1 (270)	1 (2%)	1 (2%)
Hyperplasia, toral	9 (18%)		13 (27%)
Necrosis	3 (10%)	12 (26%)	
	1 (20%)	1 (2%)	2 (4%)
Necrosis, focal Bigmentation, hemosiderin	1 (2%)	1 (2%)	
Pigmentation, hemosiderin	1 (2%)	(47)	(49)
Adrenal gland, medulla	(48)	(47)	(49)
Cyst	1 (2%)	10 (3001)	14 (2007)
Hyperplasia	20 (42%)	18 (38%)	14 (29%)
Bilateral, hyperplasia	2 (4%)	2 (4%)	2 (4%)

Table B4

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Endocrine System (continued)			· · · · · · · · · · · · · · · · · · ·
Parathyroid gland	(43)	(42)	(47)
Hyperplasia	3 (7%)	Á (10%)	2 (4%)
Bilateral, hyperplasia	1 (2%)	. ,	
Pituitary gland	(50)	(47)	(50)
Cyst	2 (4%)		1 (2%)
Pars distalis, hyperplasia	10 (20%)	6 (13%)	4 (8%)
Pars distalis, necrosis			1 (2%)
Thyroid gland	(50)	(47)	(49)
C-cell, hyperplasia	10 (20%)	8 (17%)	4 (8%)
General Body System None	A de l'Anna de la companya de la co		······
Conidal Suctors			
Genital System Clitoral gland	(17)	(44)	(16)
	(47)	(44)	(46)
Hyperplasia Inflammation	2 (4%)	1 (20%)	1 (2%)
Inflammation Ovary	1 (2%)	1 (2%)	1 (2%)
-	(50) 5 (10%)	(47)	(50)
Cyst Uterus		(48)	1 (2%)
	(50)	(48)	(50) 1 (2%)
Cyst Inflammation	1 (2%) 1 (2%)	1 (2%)	1 (2%)
Endometrium, hyperplasia	3 (6%)	1 (2%)	
Lamina propria, fibrosis	20 (40%)	39 (81%)	19 (38%)
	20 (40%)	37 (81%)	17 (3670)
Hematopoietic System			
Bone marrow	(50)	(43)	(49)
Atrophy	1 (2%)	2 (5%)	1 (2%)
Hyperplasia, histiocytic	1 (2%)		1 (2%)
Inflammation, granulomatous, focal	1 (2%)		
Myelofibrosis	1 (2%)	3 (7%)	3 (6%)
Necrosis, focal	• • • • • •	1 (2%)	
Myeloid cell, hyperplasia	2 (4%)	2 (5%)	3 (6%)
Lymph node	(50)	(48)	(50)
Axillary, hemorrhage, chronic			1 (2%)
Lymph node, bronchial	(46)	(47)	(47)
Cyst Eibronia	1 (2%)	1 /0 //	
Fibrosis Hemorrhage, chronic		1 (2%)	
Hemorrhage, chronic Hyperplacia, histiografic		1 (2%)	15 (040%)
Hyperplasia, histiocytic Inflammation, suppurative	1 (2%)	40 (85%)	45 (96%)
Pigmentation, hemosiderin	1 (2%)		
Lymph node, mandibular	(47)	(46)	(47)
Hyperplasia, lymphoid	(**)	(46) 1 (2%)	(47) 1 (2%)
Hyperplasia, plasma cell	2 (4%)	1 (2%)	1 (2%)
Inflammation, chronic active	1 (2%)	~ (#/0)	1 (2%)
Inflammation, suppurative	- (=/0)		1 (2%)

÷٩

٠,

TABLE B4

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Lifetime Inhalation Study of Talc (continued)

· -

		· .	× .
	0 mg/m ³	6 mg/m ³	18 mg/m ³
Hematopoietic System (continued)		ta standarda en estadores en esta	· · · · · · · · · · · · · · · · · · ·
Lymph node, mediastinal	(47)	(44)	(47)
Hemorrhage, chronic	1 (2%)	(++)	(47)
Hyperplasia, histiocytic	1 (270)	33 (75%)	40 (85%)
Hyperplasia, lymphoid	1 (2%)	55 (1570)	1 (2%)
Inflammation, chronic active	- (-//)		1 (2%)
Inflammation, suppurative	1 (2%)	1 (2%)	- (=/0)
Lymph node, mesenteric	(49)	(47)	(47)
Hemorrhage		1 (2%)	
Hyperplasia, lymphoid	2 (4%)	1 (2%)	2 (4%)
Hyperplasia, plasma cell	1 (2%)	- ()	- ()
Inflammation, chronic active	4 (8%)	1 (2%)	
Inflammation, granulomatous		- ()	1 (2%)
Spleen	(50)	(48)	(50)
Atrophy	2 (4%)	2 (4%)	2 (4%)
Fibrosis, focal	3 (6%)	1 (2%)	1 (2%)
Hematopoietic cell proliferation	4 (8%)	6 (13%)	7 (14%)
Hyperplasia, lymphoid		()	1 (2%)
Inflammation, granulomatous, focal	1 (2%)		= ()
Pigmentation, hemosiderin	2 (4%)		
Capsule, hemorrhage			1 (2%)
Thymus	(47)	(44)	(47)
Inflammation	1 (2%)		
Tataan aataan Sustam			
Integumentary System	(50)	(40)	(50)
Mammary gland	(50)	(48)	(50)
Galactocele		1 (2%)	
Hyperplasia, cystic Lobules, hyperplasia		2 (4%)	1 (20%)
Skin	(50)	(40)	1 (2%)
	(50)	(49)	(50)
Inflammation, focal	1 (2%)		
Musculoskeletal System			
Bone	(50)	(48)	(50)
Fibrous osteodystrophy	4 (8%)	3 (6%)	4 (8%)
Hyperostosis	4 (8%)	1 (2%)	3 (6%)
Pelvis, fracture	1 (2%)		
Vertebra, cyst	1 (2%)		
Nervous System	······		
Brain	(50)	(48)	(50)
Compression	(30) 8 (16%)	(48) 7 (15%)	9 (18%)
Hemorrhage	3 (10/0)	1 (2%)	1 (2%)
Hydrocephalus		1 (270)	1(2%) 1(2%)
Inflammation, focal		1 (2%)	1 (270)
White matter, necrosis, focal		1 (270)	2 (4%)
			~ (1,0)

Table B4

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Respiratory System			
Larynx	(50)	(48)	(48)
Inflammation, necrotizing			1 (2%)
Inflammation, suppurative	2 (4%)	1 (2%)	1 (2%)
Lung	(50)	(48)	(50)
Crystals, focal	1 (2%)		
Cyst	- ()	1 (2%)	5 (10%)
Cyst, multiple		- ()	2 (4%)
Edema	1 (2%)		- (117)
Hemorrhage	1 (270)	1 (2%)	1 (2%)
Hyperplasia, adenomatous, diffuse		- (270)	2 (4%)
Inflammation, granulomatous	2 (4%)	47 (98%)	50 (100%)
Inflammation, suppurative	2 (4%)	1 (2%)	
Mineralization	2 (470)	2 (4%)	
Alveolar epithelium, hyperplasia	2 (4%)	27 (56%)	47 (94%)
Alveolus, metaplasia, squamous	2 (470)	21 (50%)	8 (16%)
Bronchus, epithelium, degeneration, focal	1 (2%)		0 (10%)
Interstitium, fibrosis	1 (270)		1 (2%)
Interstitium, fibrosis, focal	1 (2%)	24 (50%)	44 (88%)
Interstitium, mineralization	1 (270)	1 (2%)	1 (2%)
· ·			
Peribronchial, hyperplasia, histiocytic Nose	(49)	8 (17%)	9 (18%)
	(48)	(45)	(48)
Inflammation, suppurative		1 (2%)	1 (201)
Lumen, foreign body		0 (89)	1 (2%)
Mucosa, inflammation, suppurative	1 (20)	3 (7%)	5 (10%)
Nasolacrimal duct, inflammation, suppurative	1 (2%)		
Nerve, developmental malformation	1 (2%)	1 (00)	
Olfactory epithelium, metaplasia		1 (2%)	a (197)
Respiratory epithelium, hyperplasia	1 (2%)	1 (2%)	2 (4%)
Respiratory epithelium, metaplasia, squamous	(50)	1 (2%)	(50)
Trachea	(50)	(48)	(50)
Inflammation, necrotizing			1 (2%)
Inflammation, suppurative	3 (6%)	1 (2%)	2 (4%)
Special Senses System		· · · · · · · · · · · · · · · · · · ·	
Eye	(2)		(2)
Cataract	2 (100%)		2 (100%)
Retina, degeneration	2 (100%)		2 (100%)
Harderian gland	(5)	(7)	(15)
Inflammation	4 (80%)	3 (43%)	3 (20%)

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the Lifetime Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Urinary System			
Kidney	(49)	(47)	(49)
Abscess	1 (2%)		
Cyst		1 (2%)	1 (2%)
Cyst, multiple	1 (2%)		· ·
Embolus, multiple		1 (2%)	÷,
Infarct	1 (2%)		
Infarct, multiple			1 (2%)
Inflammation	1 (2%)	1 (2%)	
Nephropathy	44 (90%)	43 (91%)	42 (86%)
Capsule, inflammation	· · ·	1 (2%)	
Medulla, inflammation		1 (2%)	1 (2%)
Renal tubule, necrosis	1 (2%)		2 (4%)
Urinary bladder	(50)	(45)	(50)
Inflammation			í (2%)

^a Number of animals examined microscopically at site and number of animals with lesion

.

APPENDIX C SUMMARY OF LESIONS IN MALE MICE IN THE 2-YEAR INHALATION STUDY OF TALC

Table C1	Summary of the Incidence of Neoplasms in Male Mice	
	in the 2-Year Inhalation Study of Talc	131
Table C2	Individual Animal Tumor Pathology of Male Mice	
	in the 2-Year Inhalation Study of Talc	134
Table C3	Statistical Analysis of Primary Neoplasms in Male Mice	
	in the 2-Year Inhalation Study of Talc	152
Table C4	Summary of the Incidence of Nonneoplastic Lesions in Male Mice	
	in the 2-Year Inhalation Study of Talc	156

129

Table C1

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Inhalation Study of Talc^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³	
Disposition Summary				
Animals initially in study	50	50	50	
Early deaths				
Moribund	1	2	3	
Natural deaths	16	18	14	
Survivors				
Terminal sacrifice	30	28	32	
Missexed	1	1		
Missing	2	1	1	
Animals examined microscopically	46	47	49	
Alimentary System	,,,,	<u> </u>		
Gallbladder	(31)	(29)	(35)	
Intestine large, colon	(36)	(38)	(39)	
intestine small, duodenum	(32)	(30)	(34)	
Intestine small, ileum	(33)	(32)	(35)	
Adenocarcinoma		1 (3%)		
Liver	(45)	(47)	(48)	
Hemangiosarcoma	1 (2%)		1 (2%)	
Hemangiosarcoma, metastatic, spleen	1 (2%)			
Hepatocellular carcinoma	6 (13%)	5 (11%)	11 (23%)	
Hepatocellular adenoma	1 (2%)	8 (17%)	4 (8%)	
Hepatocellular adenoma, multiple	2 (4%)	1 (2%)		
Pancreas	(42)	(39)	(42)	
Hepatocellular carcinoma, metastatic, liver	1 (2%)			
Salivary glands	(45)	(46)	(47)	
Stomach, glandular	(39)	(43)	(43)	
Cardiovascular System				
Heart	(45)	(46)	(49)	
Alveolar/bronchiolar carcinoma, metastatic,				
lung			1 (2%)	
Endocrine System		· · · · · · · · · · · · · · · · · · ·		
Adrenal gland	(43)	(46)	(47)	
Spindle cell, adenoma	1 (2%)	1 (2%)	1 (2%)	
Adrenal gland, cortex	(43) ໌	(46) `	(47)	
Adenoma		1 (2%)	1 (2%)	
Adrenal gland, medulla	(39)	(39)	(42)	
Pheochromocytoma malignant	1 (3%)			
Pituitary gland	(44)	(44)	(46)	
Adenoma	1 (2%)			
Pars intermedia, adenoma		2 (5%)	_	
Thyroid gland Follicular cell, adenoma	(45)	(46)	(45) 2 (4%)	
General Body System				
General mony Systems		(3)		
		(3)	(2)	
Hemangioma			1 (50%)	

TABLE C1

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Inhalation Study of Talc (continued)

Prostate (40) Geminal vesicle (41) (41) Testes (43) (43) Hemangiosarcoma 1 (2%) Hemangiosarcoma, metastatic, spleen 1 (3%) Lymph node (45) (45) Lymph node, bronchial (32) (45) Lymph node, mandibular (23) (45) Lymph node, mediastinal (9) Lymph node, mediastinal (9) Lymph node, mediastinal (36) (44) Hemangiosarcoma, metastatic, spleen (36) Spleen (44) (44) Hemangiosarcoma metastatic, spleen (44) Hemangiosarcoma (34) (44) Alveolar/bronchiolar carcinoma, metastatic, lung Integumentary System None (46) (46) Hemangiosarcoma, metastatic, spleen (46) Kervous System None		
Epididymis (39) (40) Prostate (41) (41) Seminal vesicle (41) (41) Testes (43) (41) Hemangiosarcoma 1 (2%) (43) Hemangiosarcoma, metastatic, spleen 1 (3%) (40) Lymph node (45) (45) Lymph node, bronchial (32) (41) Alveolar/bronchiolar carcinoma, metastatic, lung (23) (41) Lymph node, mandibular (23) (41) Hemangiosarcoma, metastatic, spleen (23) (41) Lymph node, mediastinal (9) (23) (44) Lymph node, mediastinal (9) (25%) (11) Themangiosarcoma, metastatic, spleen (34) (44) (44) Hemangiosarcoma and tastatic, spleen (34) (46) (46) Integumentary System (46) (46) (46) None Integurentary fornchiolar carcinoma, metastatic, spleen (46) (46) Respiratory System Integurentary fornchiolar carcinoma, metastatic, lung (45) (46) Nervous System Integur		
Prostaie (40) Seminal vesicle (41) (Testes (43) (Hemangiosarcoma 1 (2%) Hemangiosarcoma, metastatic, spleen 1 (3%) (Hemangiosarcoma, metastatic, spleen 1 (3%) (Lymph node to choial (32) (Alveolar/bronchiolar carcinoma, metastatic, lung 1 Lymph node, madibular (23) (Hemangiosarcoma, metastatic, spleen 1 Lymph node, mediastinal (9) (Hemangiosarcoma, metastatic, spleen 1 Lymph node, mediastinal (9) (Hemangiosarcoma, metastatic, spleen 1 Lymph node, mediastinal (9) (Hemangiosarcoma, metastatic, spleen 1 Spleen (44) (Hemangiosarcoma 2 (5%) 1 Thymus (34) (Alveolar/bronchiolar carcinoma, metastatic, lung 1 Integumentary System 1 None (46) (46) (46) (46) (46) (46) (46) (46)	(39)	(42)
Seminal vesicle (41) Testes (43) Hemangiosarcoma 1 (2%) Hemangiosarcoma, metastatic, spleen 1 (3%) Lymph node (45) Lymph node, bronchial (32) Alveolar/bronchiolar carcinoma, metastatic, lung (36) Lymph node, mediastinal (9) Lymph node, mediastinal (9) Lymph node, mesenteric (36) Lymph node, mesenteric (36) Lymph node, mesenteric (36) Lymph node, mesenteric (36) Hemangiosarcoma, metastatic, spleen (41) Spleen (44) Hemangiosarcoma 2 (5%) Thymus (34) Alveolar/bronchiolar carcinoma, metastatic, lung (34) Integumentary System (46) None (46) Musculoskeletal System (46) None (45) Nervous System (45) None (45)	(43)	(44)
Testes (43) (43) Hemangiosarcoma 1 (2%) Hematopoietic System (40) (40) Bone marrow (40) (40) Hematopoietic System 1 (3%) (40) Lymph node (45) (13%) Lymph node, bronchial (32) (32) Alveolar/bronchiolar carcinoma, metastatic, lung (23) (45) Lymph node, mediastinal (9) (44) (44) Lymph node, mediastinal (25%) (14) (14) Hemangiosarcoma 2 (5%) (5%) (5%) Thymus (34) (34) (46) (46) Musculoskeletal System (46) (46) (46) (46) Hemangiosarcoma, metastatic, spleen Skeletal muscle (46) (46) (46) (46) (46) (46) (46	(43)	(39)
Hemangiosarcoma 1 (2%) Hematopoietic System (40) Bone marrow (40) Hemangiosarcoma, metastatic, spleen 1 (3%) Lymph node (45) Lymph node, bronchial (32) Lymph node, mandibular (23) Lymph node, mandibular (23) Lymph node, mediastinal (9) Lymph node, mediastinal (23) Hemangiosarcoma, metastatic, spleen (44) Spleen (44) Hemangiosarcoma 2 (5%) Thymus (34) Integumentary System (34) None (46) Musculoskeletal System (46) None (46) (46) Nervous System (45) (46) None (45) (45) Respiratory System (45) (45) Naveolar/bronchiolar adenoma (45) (45)	(44)	(45)
Bone marrow (40) Hemangiosarcoma, metastatic, spleen 1 (3%) Lymph node (45) Lymph node, bronchial (32) Alveolar/bronchiolar carcinoma, metastatic, (32) Lymph node, mandibular (23) Lymph node, mediastinal (9) Lymph node, mediastinal (14) Hemangiosarcoma (46) Hemangiosarcoma, metastatic, spleen Solee (46) Hemangiosarcoma, metastatic, spleen Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System (45) None (45) Lung (45) Lung (45) Lung (45) Alveolar/bronchiolar adenoma (45)		
Bone marrow (40) Hemangiosarcoma, metastatic, spleen 1 (3%) .ymph node (45) (ymph node, bronchial (32) Alveolar/bronchiolar carcinoma, metastatic, (32) lung (33) .ymph node, mandibular (23) .ymph node, mediastinal (9) .ymph node, mediastinal (36) .ymph node, mediastinal (9) .ymph node, mediastinal (14) .ymph node, mediastinal (14) .ymph node, mediastinal (14) .ymph node, mediastinal (14) .ymph node, mediastinal (15) .ymph node, mediastinal (14) .ymph node, mediastinal (15) .ymph node, mediastinal (13%)		
Hemangiosarcoma, metastatic, spleen 1 (3%) Lymph node (45) Lymph node, bronchial (32) Alveolar/bronchiolar carcinoma, metastatic, (32) Lymph node, mandibular (23) Hemangiosarcoma, metastatic, spleen (36) Lymph node, mediastinal (9) Lymph node, mediastinal (9) Lymph node, mediastinal (9) Lymph node, mediastinal (23) Lymph node, mediastinal (9) Lymph node, mediastinal (9) Lymph node, mediastinal (9) Lymph node, mediastinal (9) Lymph node, mesenteric (36) Hemangiosarcoma, metastatic, spleen (44) Spleen (44) Hemangiosarcoma, metastatic, spleen (34) Integumentary System (34) None (46) Musculoskeletal System (46) Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, spleen Skeletal muscle (45) (45) None (45) (45) Respiratory System (45) (45)	(42)	(43)
Lymph node (45) Lymph node, bronchial (32) Alveolar/bronchiolar carcinoma, metastatic, lung (23) Lymph node, mandibular (23) Lymph node, mediastinal (9) Lymph node, mediastinal (9) Lymph node, mesenteric (36) Lymph node, mesenteric (36) Lymph node, mesenteric (36) Lymph node, mesenteric (36) Hemangiosarcoma 2 (5%) Fuhrman (34) Hemangiosarcoma, metastatic, spleen (34) Spleen (46) Alveolar/bronchiolar carcinoma, metastatic, lung (46) Musculoskeletal System (46) None (46) None (46) None (45) None (45) None (45) None (45) Alveolar/bronchiolar adenoma 6 (13%)		
Jymph node, bronchial (32) (Alveolar/bronchiolar carcinoma, metastatic, lung (32) (Jymph node, mandibular (23) (Jymph node, mediastinal (9) (Jymph node, mediastinal (9) (Jymph node, mediastinal (9) (Jymph node, mesenteric (36) (Hemangiosarcoma, metastatic, spleen (44) (Filen (144) (Hemangiosarcoma 2 (5%) (Chymus (34) (Alveolar/bronchiolar carcinoma, metastatic, lung (34) (Musculoskeletal System (34) (None (46) ((Musculoskeletal System (((None (46) ((Nervous System (((None ((((Respiratory System ((((Jung (45) (((Alveolar/bronchiolar adenoma	(46)	(48)
Alveolar/bronchiolar carcinoma, metastatic, lung Lymph node, mandibular (23) (1 Hemangiosarcoma, metastatic, spleen Lymph node, mesenteric (36) (2 Hemangiosarcoma, metastatic, spleen Spleen (44) (1 Hemangiosarcoma 2 (5%) Thymus (34) (34) (34) Alveolar/bronchiolar carcinoma, metastatic, lung Integumentary System None (46) (46) Hemangiosarcoma, metastatic, spleen Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System None (45) (45) Alveolar/bronchiolar adenoma (45) (43%)	(39)	(44)
ymph node, mandibular (23) (1 Hemangiosarcoma, metastatic, spleen (9) (1 ymph node, mesenteric (36) (1 Hemangiosarcoma, metastatic, spleen (44) (1 Spleen (44) (1 Hemangiosarcoma 2 (5%) (5%) Chymus (34) (1 Alveolar/bronchiolar carcinoma, metastatic, lung (46) (1 Musculoskeletal System (46) (1 Sone (46) (46) (1 Kespiratory System (45) (1 None (45) (1 Nervous System (45) (1 None (45) (1 Alveolar/bronchiolar adenoma 6 (13%) (45)	(55)	1 (2%)
Hemangiosarcoma, metastatic, spleen Lymph node, mediastinal Lymph node, mediastinal Lymph node, mediastinal (36) Hemangiosarcoma, metastatic, spleen Spleen Hemangiosarcoma 2 (5%) Thymus Alveolar/bronchiolar carcinoma, metastatic, lung Musculoskeletal System None Musculoskeletal System Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, spleen Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System None Respiratory System Lung Alveolar/bronchiolar adenoma (45) (45) Alveolar/bronchiolar adenoma mutiple	(23)	(19)
Lymph node, mediastinal (9) (1 Lymph node, mesenteric (36) (1 Hemangiosarcoma, metastatic, spleen (44) (1 Hemangiosarcoma 2 (5%) Thymus (34) (34) (1 Alveolar/bronchiolar carcinoma, metastatic, 1 lung (34) (34) (1 Musculoskeletal System Bone (46) (1 Hemangiosarcoma, metastatic, spleen (46) (46) (1 Hemangiosarcoma, metastatic, spleen (46) (46) (1 Hemangiosarcoma, metastatic, spleen (46) (1 Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, 1 metastatic, 1 Nervous System None (45) (1 Alveolar/bronchiolar adenoma (45) (13%) (13%) (13%)	()	1 (5%)
Lymph node, mesenteric (36) (Hemangiosarcoma, metastatic, spleen (44) (Hemangiosarcoma 2 (5%) (Thymus (34) (Alveolar/bronchiolar carcinoma, metastatic, lung (45) (Hemangiosarcoma, metastatic, spleen (46) (Hemangiosarcoma, metastatic, spleen (45) (Hemangiosarcoma, spleen (45) (Hemangiosarcoma, spleen (45) (Heman	(10)	(7)
Hemangiosarcoma, metastatic, spleen (44) Spleen (44) Hemangiosarcoma 2 (5%) Phymus (34) Alveolar/bronchiolar carcinoma, metastatic, lung (34) Integumentary System (34) None (46) Musculoskeletal System (46) Bone (46) Hemangiosarcoma, metastatic, spleen (46) Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System (45) None (45) Alveolar/bronchiolar adenoma 6 (13%)	(39)	(40)
Spleen (44) (44) (44) (44) (44) (44) (44) (44	(37)	1 (3%)
Hemangiosarcoma 2 (5%) Chymus (34) Alveolar/bronchiolar carcinoma, metastatic, lung (34) Integumentary System (34) None (46) Musculoskeletal System (46) Bone (46) Hemangiosarcoma, metastatic, spleen (46) Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System (45) None (45) Alveolar/bronchiolar adenoma 6 (13%) Alveolar/bronchiolar adenoma, multiple (45)	(44)	
Chymus (34) Alveolar/bronchiolar carcinoma, metastatic, lung (integumentary System None Musculoskeletal System Bone Gone (46) Hemangiosarcoma, metastatic, spleen Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System None Respiratory System _ung _u	(44)	· (47) 2 (4%)
Alveolar/bronchiolar carcinoma, metastatic, lung integumentary System None Musculoskeletal System Bone (46) (Hemangiosarcoma, metastatic, spleen Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System None Respiratory System Lung (45) (Alveolar/bronchiolar adenoma 6 (13%)	(22)	2 (4%)
lung Integumentary System None Musculoskeletal System Bone (46) Hemangiosarcoma, metastatic, spleen Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System None Respiratory System Lung (45) Alveolar/bronchiolar adenoma 6 (13%)	(33)	(40)
None Musculoskeletal System Bone (46) (Hemangiosarcoma, metastatic, spleen Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System None Respiratory System Lung (45) (Alveolar/bronchiolar adenoma 6 (13%) Alveolar/bronchiolar adenoma, multiple		1 (3%)
Bone (46) (Hemangiosarcoma, metastatic, spleen Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System None Respiratory System Lung (45) (Alveolar/bronchiolar adenoma 6 (13%) Alveolar/bronchiolar adenoma, multiple		
Bone (46) (Hemangiosarcoma, metastatic, spleen Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System None Respiratory System Lung (45) (Alveolar/bronchiolar adenoma 6 (13%) Alveolar/bronchiolar adenoma, multiple		· · · · ·
Hemangiosarcoma, metastatic, spleen Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System None Respiratory System Lung (45) (Alveolar/bronchiolar adenoma 6 (13%) Alveolar/bronchiolar adenoma, multiple	(47)	(49)
Skeletal muscle Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System None Respiratory System Lung (45) (Alveolar/bronchiolar adenoma 6 (13%) Alveolar/bronchiolar adenoma, multiple	()	1 (2%)
Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung Nervous System None Respiratory System Lung (45) (Alveolar/bronchiolar adenoma 6 (13%) Alveolar/bronchiolar adenoma, multiple		(1)
metastatic, lung Nervous System None Respiratory System Lung (45) (Alveolar/bronchiolar adenoma 6 (13%) Alveolar/bronchiolar adenoma, multiple		(1)
None Respiratory System Lung (45) (Alveolar/bronchiolar adenoma 6 (13%) Alveolar/bronchiolar adenoma, multiple		1 (100%)
Lung (45) (Alveolar/bronchiolar adenoma 6 (13%) Alveolar/bronchiolar adenoma, multiple		
Lung (45) (45) Alveolar/bronchiolar adenoma 6 (13%) Alveolar/bronchiolar adenoma, multiple (45)		
Alveolar/bronchiolar adenoma6 (13%)Alveolar/bronchiolar adenoma, multiple6	(47)	(48)
Alveolar/bronchiolar adenoma, multiple	4 (9%)	7 (15%)
		2 (4%)
	2 (4%)	2 (4%)
Alveolar/bronchiolar carcinoma, multiple 1 (2%)	- ()	- (
Hemangiosarcoma, metastatic, liver 1 (2%)		
Hemangiosarcoma, metastatic, spleen		1 (2%)
Hepatocellular carcinoma, metastatic, liver	1 (2%)	2 (4%)

TABLE C1

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Special Senses System			
Harderian gland Adenoma	(1) 1 (100%)		(4) 4 (100%)
Urimary System Kidney	(45)	(46)	(48)
Carcinoma, metastatic, uncertain primary site	1 (2%)	· -	
Urinary bladder	(43)	(38)	(43)
Sarcoma	1 (2%)		
Systemic Lesions	<u> </u>		
Multiple organs ^b	(46)	(47)	(49)
Lymphoma malignant lymphocytic		1 (2%)	
Lymphoma malignant mixed	2 (4%)		
Lymphoma malignant undifferentiated cell	3 (7%)		
Neoplasm Summary		· · · · · · · · · · · · · · · · ·	
Total animals with primary neoplasms ^c	26	20	28
Total primary neoplasms	36	26	38
Total animals with benign neoplasms	11	16	18
Total benign neoplasms	12	17	22
Total animals with malignant neoplasms	20	8	15
Total malignant neoplasms	24	9	16
Total animals with metastatic neoplasms	4	1	4
Total metastatic neoplasms	5	1	11
Total animals with malignant neoplasms,			
uncertain primary site	1		

a b Number of animals examined microscopically at site and number of animals with lesion Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms

с

TABLE C2

	, i i i i i i i i i i i i i i i i i i i		4	4											6												
Number of Days on Study	0			8										7		1		3		3	-	3					
	8	2	7	4	6	8	3	1	9	5	7	7	9	7	4	0	6	6	6	6	6	6					
	4	3	4	5	3	3	4	4	5	3	4	5	5	4	4	5	3	3	3	3	3	3					
Carcass ID Number	3														5										•		
	5														5												
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1					
Alimentary System	<u> </u>																										
Esophagus	М	M	[+]	М	+	+	+	+	+	М	+	М	+	+	+	+	+	+	+	+	+	+					•
Gallbladder	М	M	M	М	Α	Α	Α	Α	М	+	+	Α	Α	+	+	Α	М	+	М	+	+	+					
Intestine large	Α	+	Α	Α	Α	Α	Α	Α	Α	+	+	Α	+	+	+	Α	+	+	+	+	+	+					
Intestine large, cecum															+												
Intestine large, colon															+							+					
Intestine large, rectum	Α	+	Α	Α	Α	Α	Α	Α	Α	+	Α	Α	Μ	Μ	+	Α	+	+	+	+	+	+					
Intestine small	Α	+	Α	Α	Α	Α	Α	Α	Α	+	Α	Α	Α	+	+	Α	+	+	+	+	+	+			÷ .		
Intestine small, duodenum	Α	Α	Α	Α	Α	Α	Α	Α	Α	+	Α	Α	Α	+	+	Α	+	+	+	+	+	+					
Intestine small, ileum	Α	+	Α	Α	Α	Α	Α	Α	Α	+	Α	Α	Α	Α	• +	Α	+	+	+	+	+	+					
Intestine small, jejunum	Α	+	Α	Α	Α	Α	Α	Α	Α	+	Α	Α	Α	Α	+	Α	+	+	+	+	+	+	. 1				
Liver	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					
Hemangiosarcoma																Х											
Hemangiosarcoma, metastatic, spleen																											
Hepatocellular carcinoma								Х	х			Х				Х	Х	Х									
Hepatocellular adenoma																								+		· .	
Hepatocellular adenoma, multiple																								۰.	. '		·
Pancreas	M	+	+	+	+	Α	+	Α	+	+	+	+	+	+	+	Α	+	+	+	+	+	+					
Hepatocellular carcinoma, metastatic, liver												x								. '				•			۰.
Salivary glands	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					
Stomach	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					
Stomach, forestomach	Α	+	+	+	+	+	+	+	+	Ι	+	+	Μ	+	+	+	+	+	+	+	+	+					
Stomach, glandular	Α	+	A	+	A	Μ	+	A	+	+	+	A	+	+	+	+	+	+	+	+	+	+	,			,	
Cardiovascular System														_			_			-							
Heart	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					
Endocrine System																											
Adrenal gland	Α	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	I	+	+	+	+	+					
Spindle cell, adenoma																											
Adrenal gland, cortex	Α	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	I	+	+	+	+	+					
Adrenal gland, medulla																						Μ				*	
Pheochromocytoma malignant																											
Islets, pancreatic	Μ	+	Ι	+	+	Μ	+	Α	+	М	+	Α	+	Ι	Μ	I	+	+	+	+	+	Μ					
Parathyroid gland	Μ	M	M	+	Μ	Μ	Μ	+	+	+	+	+	+	Μ	+	+	+	Μ	Μ	Μ	+	M					. •
Pituitary gland	М	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+					• •
Adenoma												х															
Thyroid gland	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+					

+: Tissue examined microscopically A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue

X: Lesion present Blank: Not examined

Lesions in Male Mice

Table C2 Individual A

Individual Animal Tumor Pathology			1444		0.00	0000		- <u>т</u> с		1100	11190	1000				~y	<u> </u>	<u>т</u>		_	6	9	. (~
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4		
	6	7	7	7	7	7	7	8	8	8	8	8	8	9	9	9	9	0	0	0	0	0	0	0		
,	3	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	3	4	4	4	4	5	5		
Carcass ID Number	9	9	0	0	2	2	2	3	3	5	5	5	6	8	8	9	1	9	2	2	8	8	2	2		Total
	2	8	2	3	1	3	4	1	4	1	2	8	4	5	8	2	3	3	6	7	2	4	0	1		Tissue
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		Tumor
Alimentary System																										
Esophagus	+	+	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		41
Gallbladder	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		31
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		36
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		34
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		36
Intestine large, rectum	+	+	+	+	+	+	+	+	+	I	+	+	+	+	+	+	+	+	+	+	+	+	+	+		32
Intestine small	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		34
Intestine small, duodenum	+	+	+	+	+	+	+	÷	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+		32
Intestine small, ileum	+	+	+	+	+	+	+	÷	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+		33
Intestine small, jejunum	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		32
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		45
Hemangiosarcoma Hemangiosarcoma, metastatic, spleen Hepatocellular carcinoma								x																		1 1 6
Hepatocellular adenoma															Х											1
Hepatocellular adenoma, multiple					Х								Х													2
Pancreas Hepatocellular carcinoma, metastatic, liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		42
Salivary glands	L.	-		.بد	Ŧ	+	÷	-	Ъ	+	+	+	+	+	т	+	т	т	-	Т	-	т		т		1 45
Stomach	, +		+	+	+	+		т. —	+						+		т -	+	т -	Ť	т Т	т -	т -	т _		45
Stomach, forestomach	+	+	+	+	+	÷	+	+		+	+	+	+		+	+	+	+	+	1	-	1	т —	+		43
Stomach, glandular	+	+	+	+	+	+		+	+						-				+	÷	+	+				45 39
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		45
Endocrine System																									<u> </u>	
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		43
Spindle cell, adenoma																					-	x		-		1
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+		43
Adrenal gland, medulla	+								+																	39
Pheochromocytoma malignant																				Х						1
Islets, pancreatic									+																	26
Parathyroid gland																								М		25
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	+	+	+	+	+		44
Adenoma											•															1
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ '		45

135

	· · · · · · · · · · · · · · · · · · ·	_	_		_	· · · ·										_					_		_		 	
	0	4	4	4	4	5	5	5	5	5	5	5	6	6	6	7	7	7	7	7	7	7				
Number of Days on Study	0	3	3	8	8	1	4	7	7	8	8	8	2	7	8	1	3	3	3	3	3	3				
													9													
······································	4	3	4	5	3	3	4	4	5	3	4	5	5	4	4	5	3	3	3		3	3			 	
Carcass ID Number													2								-					
													3													
													1													
General Body System None																								ŀ	 	
Genital System																_						_			 	
Epididymis	+	+	+	м	+	+	+	+	+	+	+	+	+	+	м	+	+	м	+	+	м	I				
Preputial gland	•	•	+			•	·	•	•	•	+	+	•	+		•	+		•	•		-				
Prostate	м	+		М	+	I	+	+	+	+		+	+		I	+		+	+	+	+	+				
Seminal vesicle						-		+	+	+	+	Å	Å		+	À	+	+	+	+	+	+				
Testes													+						+	+	+	+				
Hemangiosarcoma							-			·				·												
lematopoietic System																_				-					 	
Bone marrow	Α	+	Α	+	+	Α	+	Α	+	Α	+	Α	+	+	+	+	+	+	+	+	+	+				
Hemangiosarcoma, metastatic, spleen																										
Lymph node	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Lymph node, bronchial													I				+	+	+	+	+	+				
Lymph node, mandibular													Μ													
Lymph node, mediastinal	М	Μ	M	M	I	Μ	+	М	М	+	M	м	Μ	М	М	Μ	Μ	Μ	Μ	Μ	М	+				
Lymph node, mesenteric	М	+	Α	Μ	[+	Μ	+	Μ	+	+	Μ	Α	+	+	+	+	+	+	+	+	Ι	Μ				
Spleen	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Hemangiosarcoma																										
Thymus	М	I	Μ	M	(+	М	М	A	+	М	+	+	+	I	+	+	М	+	+	+	+	+				
ntegumentary System		_																							 	
Mammary gland	м	Μ	M	M	M	М	М	+	М	+	М	I	М	М	М	М	М	М	М	М	М	Μ				
Skin													+													
	_																							,	 	
/lusculoskeletal System																										
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Nervous System				_			<u>. </u>																			,
Brain							+														+					

Lesions in Male Mice

Table C2

of Mal	e	Mie	ce i	im	the	2	-Ya	ear	In	nha	lai	ion	ı S	tuo	ly	oľ	Ta	lc:	0	шţ	yn	1 ³ (coi	tinued)	
7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4		
6																		0	0	0	0	0	0		
3	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	3	4	4	4	4	5	5		
9	9	0	0	2	2	2	3	3	5	5	5	6	8	8	9	1	9	2	2	8	8	2	2		Total
2	8	2	3	1	3	4	1	4	1	2	8	4	5	8	2	3	3	6	7	2	4	0	1		Tissue
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		Tumor
																				-					
		-		_																	-				
+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	М	+	+	+		39
																				+	+	+			8
+	+	• +	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	-+		40
+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		41
+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		43
																	х								1
																	_								
+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		40
							х																		1
+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		45
I	+	·M	+	+	+	+	М	+	+	+	+	+	+	М	+	М	+	+	Μ	+	+	M	I N	1	32
М	[+	·M	M	+	+	+	+	+	+	+	+	+	+	+	+	М	М	+	Μ	Μ	. +	+	- +		23
М	I N	1 M	М	+	М	Μ	Μ	M	+	+	М	Μ	Μ	+	Μ	Μ	+	Μ	Μ	Μ	M	[+	N	I	9
+	+	• +	+	+	+	+	+	+	+	+	+	+	Ι	+	+	+	+	+	+	+	+	+	+		36
+	+	• +	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	- +		44
							Х	Х																	2
I	+	• +	+	+	+	+	+	+	I	+	+	+	+	+	+	+	+	+	+	+	+	+	+		34
<u></u>				-						-															
м	₽	1 M	М	м	М	М	м	M	м	м	М	+	М	М	М	м	+	м	+	м	I	м	[N	I	5
																									44
																		_					_		
+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		46
<u> </u>							_										_								
	7 3 6 3 9 2 1 + + + + + + + 1 M M + + I I M	7 7 3 3 6 7 3 3 9 9 2 8 1 1 + + + + + + + + + + + + + + + + +	7 7 7 3 3 3 6 7 7 3 3 4 9 9 0 2 8 2 1 1 1 + + + + + + H + M M M M M + + + M M M + + +	7 7 7 7 3 3 3 3 6 7 7 7 3 3 4 4 9 9 0 0 2 8 2 3 1 1 1 1 + + + + + + + + H M M M M M M + + + + M M M M + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 7 7 7 7 7 7 7 7 7 7 7 7 3 3 3 3 3 3 3 3 3 3 3 3 3 6 7 7 7 7 7 7 7 8 8 8 3 3 4 4 4 4 4 4 4 4 4 4 9 9 0 0 2 2 2 2 3 3 5 2 8 2 3 1 3 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 7 7 7 7 7 7 7 7 8 8 8 8 3 3 4 4 4 4 4 4 4 4 4 4 4 9 9 0 0 2 2 2 2 3 3 5 5 2 8 2 3 1 3 4 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 9 0 0 2 2 2 2 3 3 5 5 5 6 2 8 2 3 1 3 4 1 4 1 2 8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7$	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7	7 7	7 7	7 7	7 7	7 7	7 7	3 4 4

	~	÷.,	· .			~	~	~	~	~	~	~			~	~	-	-	-	-	~	-				
Number of Days on Study	0								5 7												3					
Number of Days on Study	-								, 9												-	-				
· · · · · · · · · · · · · · · · · · ·	4	3	4	5	3	3	4	4	5	3	4	5	5	4	4	5	3	3	3	3	3	3	 		·	
Carcass ID Number									1																	*
· · · · · · · · · · · · · · · · · · ·									5 1																	
Respiratory System											<u>-</u>													,		
Larynx	Α	+	• +	• +	- +	• +			+	+	+	+	+				+									
Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	Α	+	• +	• 4	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+ X		+	+		•		• -
Alveolar/bronchiolar carcinoma, multiple																		x							•	
Hemangiosarcoma, metastatic, liver																X										
Nose Trachea	+ A	+	- + - A	· +	- +	• +	+++	А +	+	+	+	+	+	+			+ +			+	+	+				
Special Senses System Ear																							 		1	۰.
Harderian gland Adenoma																									•	
Urinary System																	-						 			
Kidney Carcinoma, metastatic, uncertain primary site	Α	+	• +	1	- +	• +	• +	+	+ x		+	+	+	+	+	+	+	+	+	+	+	+				
Urinary bladder Sarcoma	Α	+	• +	- A	\ +	• +	+	Α	+	+	+	+ X		+	+	+	+	+	+	+	+	+				
Systemic Lesions																			-				 			
Multiple organs Lymphoma malignant mixed Lymphoma malignant undifferentiated	+	+	• +		- +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				. `

Lesions in Male Mice

TABLE C2

Individual Animal Tumor Pathology of Male Mice in the 2-Year Inhalation Study of Talc: 0 mg/m³ (continued)

Number of Days on Study	7 3 6	7 3 7	3	7 3 7	3 7	7 7	7 3 7	7 3 7	7 3 8	7 3 8	7 3 8	7 3 8	3	7 3 8		7 3 9	7 3 9	3	7 4 0	7 4 0	7 4 0	7 4 0	4	4	7 4 0	
Carcass ID Number	9 2) (] (0 2								4 5 2 1		4 6 4 1	5										1	 Total Tissues/ Tumors
Respiratory System	<u> </u>																									 <u></u>
Larynx	I		L	Ŧ	-	ъ	Ŧ	Ŧ	+	т.	Ŧ	+	+	Ŧ	+	Ŧ	+	ъ	+	+	+	ъ	+	ъ	ъ	42
Lung	-							+				+								+	+	+	+	+	+	45
Alveolar/bronchiolar adenoma	•		•			x		x		•	•		x	•	•	•		•	•	•	•	•	•	·	•	6
Alveolar/bronchiolar carcinoma	х			х																х		х			х	6
Alveolar/bronchiolar carcinoma,																						-				
multiple																										1
Hemangiosarcoma, metastatic, liver																										1
Nose	+		ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
			ь. ¹	N A	.1.	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	42
Trachea Special Senses System	+				т 						• 															
	+							-				•							+ x			+				 1 1 1
Special Senses System Ear Harderian gland Adenoma	+		г . 			•					• 	•										+				 1
Special Senses System Ear Harderian gland							+						+	 	 	+	+		x		+		+	+	+	 1
Special Senses System Ear Harderian gland Adenoma Urinary System Kidney													+	+	+	+	+	+	x		+		+	+	+	 1
Special Senses System Ear Harderian gland Adenoma Urinary System													+	+	+	+	+	+	x		+		+	+	+	 1
Special Senses System Ear Harderian gland Adenoma Urinary System Kidney Carcinoma, metastatic, uncertain	+		+	+	+	+	+	+	+	+	+								+	+		+		-		1 1 45
Special Senses System Ear Harderian gland Adenoma Urinary System Kidney Carcinoma, metastatic, uncertain primary site	+		+	+	+	+	+	+	+	+	+	+							+	+		+		-		 1 1 45 1
Special Senses System Ear Harderian gland Adenoma Urinary System Kidney Carcinoma, metastatic, uncertain primary site Urinary bladder Sarcoma	+		+	+	+	+	+	+	+	+	+	+							+	+		+		-		 1 1 45 1 43
Special Senses System Ear Harderian gland Adenoma Urinary System Kidney Carcinoma, metastatic, uncertain primary site Urinary bladder Sarcoma Systemic Lesions	+		++	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	x + +	++	+	++	+	+	+	 1 1 45 1 43 1
Special Senses System Ear Harderian gland Adenoma Urinary System Kidney Carcinoma, metastatic, uncertain primary site Urinary bladder Sarcoma Systemic Lesions Multiple organs	+		++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x + +	++	+	++	+	+	+	 1 1 45 1 43
Special Senses System Ear Harderian gland Adenoma Urinary System Kidney Carcinoma, metastatic, uncertain primary site Urinary bladder Sarcoma Systemic Lesions	+		++	+	+	+	+	+	+	+	+	+ + +	+	+	+	+	+	+	x + +	++	+	++	+	+	+	1 1 45 1 43 1 46

139

.

3

.

140

TABLE	C2
Tes all all	

logy of	INTRI							-14					101	13		uy		18	ii¢;	<u> </u>	m	yu 	1				
	2	2	3	4	5	5	5	5	5	5	6	6	6	6	6	6	7	7	7	7	7	7	7				
	5	5	4	2	4	5	5	8	9	9	2	2	3	8	8	8	1	1	2	3	3	·3	3				
	3	3	4	3	6	0	8	4	0	1	4	6	3	1	5	8	0	9	2	6	6	6	6				
<u> </u>	0	1	0	0	 1	1	0	1	1	1	0	0	0	1	1	0	0	1	1	0	0	0	0				
	3	3	4	0																-		-	-				
	5 1							1	6	9	1	4	8	7	0	1	5	4	2	1	4	5	8				
																									 -		
	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
																				+	+	+	+				
																				+	+	+	+				
																				+	+	+	+				
																				+	+	+	+				
	Α	+	+	Α	Α	Α	Μ	Α	+	Α	+	Α	Α	+	Α	+	+	Μ	+	+	+	+	+				
-	Α	A	+	Α	Α	Α	Α	Α	+	Α	+	Α	Α	+	Α	+	Α	+	Α	+	+	+	+				
	Α	Α	+	Α	Α	Α	Α	Α	Α	${}^{\circ}\mathbf{A}$	+	Α	Α	Α	Α	+	Α	+	Α	+	+	+	Μ				
	A	Α	A	A	Α	Α	A	A	+	A	+	Α	Α	A	Α	+	A	+	Α	+	+	+	+				
	Α	Α	+	Α	Α	Α	Α	Α	+	Α	+	Α	Α	+	Α	+	Α	Α	Α	+	+	+	+				
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
					х		х						X X				x	х				x					
	М	Α	+	Α	Μ	Α	М	+	+	+	+	+	М	+	+	+	+	+	+	+	+	_ +	+				
	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
	+	+	+	Α	+	Α	Α	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+				•
	+	+	+	Α	+	Α	Α	+	+	+	+	Ι	Α	+	+	+	+	+	I	+	+	+	+ -				
	+	+	+	Α	+	Α	Α	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+				
		+																									
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
				_		-																	<u>.</u>				
	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				4
															•												
•	Α	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
	+	+	Ι	+	Μ	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+				
	+	+	+	+	+	+	+	I	+	+	+	+	+		+	+	+	+	+	+	+	+	+		•		
		2 5 3 0 3 5 1 + A A A A A A A A A A A A A A A A A A	2 2 5 5 3 3 0 1 3 3 5 3 1 1 + + A A A A A A A A A A A A A A	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 \ 2 \ 3 \ 4 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5$	$\begin{array}{c} 2 \ 2 \ 3 \ 4 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5$	2 2 3 4 5 5 5 5 5 5 6 6 6 6 5 5 4 2 4 5 5 8 9 9 2 2 3 3 3 4 3 6 0 8 4 0 1 4 6 3 0 1 0 0 1 1 0 1 1 1 0 0 0 3 3 4 0 2 6 4 5 5 2 4 7 3 5 3 2 7 1 4 0 1 6 9 1 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 3 4 5 5 5 5 5 5 6 6 6 6 6 5 5 4 2 4 5 5 8 9 9 2 2 3 8 3 3 4 3 6 0 8 4 0 1 4 6 3 1 0 1 0 0 1 1 0 1 1 0 1 4 1 4 6 3 1 3 4 0 2 6 4 5 5 2 4 7 3 5 5 3 2 7 1 4 0 1 6 9 1 4 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + + + M + + + + + + + + + + + A M I M A A A A A + A + I A A A + + A A A A A A + A + A + A + A + A A A A A A A + A + A A + A + A A A A A A A + A + A A + A + A A A A A A A A + A + A A + A + A A A A A A A A + A + A A + A + A A A A A A A A + A + A A + A + A A A A A A A A + A + A A + A A + A A A A A A A A + A + A A + A A + A A A A A A A A + A + A A + A A + A A A A A A A A + A + A A A A A + A A A A A A A A + A + A A + A A + A A A A A A A + A + A A + A A + A A A A A A A + A + A A A A A A A A A A A A A + A + A A A A A A A A A A A A A A + A + A A A A A A A A A A A A A A + A + A A A A A + A A A A A A A + A + A + A A A A + A A A A A A A A + A + A A A A A + A A A A A A A A + A + A A A A A + A A A A A A A A + A + A A A A A + A A A A A A A A + A + A + A A A A + A A A A A A A A + A + A + A A A A + A A A A A A A A + A + A + A A + + + + + A + A A + + + + + + + + + + + +	2 2 3 4 5 5 5 5 5 5 6 6 6 6 6 6 5 5 4 2 4 5 5 8 9 9 2 2 3 8 8 3 3 4 3 6 0 8 4 0 1 4 6 3 1 5 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1 3 3 4 0 2 6 4 5 5 2 4 7 3 5 0 5 3 2 7 1 4 0 1 6 9 1 4 8 7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 3 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 5 5 4 2 4 5 5 8 9 9 2 2 3 8 8 8 3 3 4 3 6 0 8 4 0 1 4 6 3 1 5 8 0 1 0 0 1 1 0 1 1 0 1 4 6 3 1 5 8 0 1 0 0 1 1 0 1 1 0 1 4 6 3 1 5 8 0 1 0 0 1 1 0 1 1 0 1 6 9 1 4 6 7 0 1	2 2 3 4 5 5 5 5 5 5 6 6 6 6 6 6 6 7 5 5 4 2 4 5 5 8 9 9 2 2 3 8 8 8 8 1 3 3 4 3 6 0 8 4 0 1 4 6 3 1 5 8 0 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 3 3 4 0 2 6 4 5 5 2 4 7 3 5 0 6 1 5 3 2 7 1 4 0 1 6 9 1 4 8 7 0 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + + + M + + + + + + + + + + + + + + + +	2 2 3 4 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 5 5 4 2 4 5 5 8 9 9 2 2 3 8 8 8 8 1 1 3 3 4 3 6 0 8 4 0 1 4 6 3 1 5 8 0 9 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 3 3 4 0 2 6 4 5 5 2 4 7 3 5 0 6 1 5 5 3 2 7 1 4 0 1 6 9 1 4 8 7 0 1 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 3 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 5 5 4 2 4 5 5 8 9 9 2 2 3 8 8 8 1 1 2 3 3 4 3 6 0 8 4 0 1 4 6 3 1 5 8 0 9 2 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 3 3 4 0 2 6 4 5 5 2 4 7 3 5 0 6 1 5 3 5 3 2 7 1 4 0 1 6 9 1 4 8 7 0 1 5 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 3 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 5 5 4 2 4 5 5 8 9 9 2 2 3 8 8 8 1 1 2 3 3 3 4 3 6 0 8 4 0 1 4 6 3 1 5 8 0 9 2 6 0 1 0 0 1 1 0 1 1 0 1 4 1 0 0 0 1 1 0 0 1 1 0 3 3 4 0 2 6 4 5 5 2 4 7 3 5 0 6 1 5 3 0 5 3 2 7 1 4 0 1 6 9 1 4 8 7 0 1 5 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 3 4 5 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7 7 5 5 4 2 4 5 5 8 9 9 2 2 3 8 8 8 1 1 2 3 3 3 3 4 3 6 0 8 4 0 1 4 6 3 1 5 8 0 9 2 6 6 0 1 0 0 1 1 0 1 1 0 1 4 6 3 1 5 8 0 9 2 6 6 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 3 3 4 0 2 6 4 5 5 2 4 7 3 5 0 6 1 5 3 0 0 5 3 2 7 1 4 0 1 6 9 1 4 8 7 0 1 5 4 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 3 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7	2 2 3 4 5 5 5 5 6 6 6 6 7	2 2 3 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7	5 5 4 2 5 8 8 1 1 2 3	2 2 3 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7

A \$7----

- -

Lesions in Male Mice

Table C2

Individual Animal Tumor Pathology	7 ODI I VII 801	e 1	VII I O		101	une	- 4	- X C		ШШ	nuæ		noi	19	ເພດ	IY .	OI	189	1C:	6	ROUT	¥¤	n- (cor	ntinued)	
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4		
······································	6	6	7	7	7	7	7							8			9	-	0	Ó	0	0	0	0		
			0			0	0		0	0	0	0	0	1	1	1	1	1	0	0	1	1	1			
Carcass ID Number		-	3						7		9		9			2					2					Total
	Ō	4				5								1												Tissue
,	•	-				1																				Tumor
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		46
Galibladder	+	4	+	÷	÷	+	ľ	+	+		+	+		+			+	+	+	+	+	+		- -		40 29
Intestine large	, 	÷	÷	÷	÷.	÷	+	÷	+	÷	+	÷	+	+	+		÷.	÷	+	1	+			4		38
Intestine large, cecum	т -	т -	+ +	т Т	т –	+	+	+	+	т Т	+	+		+			+	+	+	т -	т Т	T L	т _	· +		35
		- T	- T	T	т	T	- T	т	- T _1	T	++	T	T J	- T			T J	T	T J		T	Ť	T	+		
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	-	+	+	+		+	+	+	+	+	+	+	+	· +		38
Intestine large, rectum	+	+	+	Ţ	+	+	+		+	+	+	+	+	+		+	+	+	+	IVI	+	+		N		32
Intestine small	+	+	+	+	+	+	+		+	+		+	+	+	+	+	+	+	+	+	+	+	+	+		34
Intestine small, duodenum	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	30
Intestine small, ileum Adenocarcinoma	+	+	+	+	7	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	32
																							ъ	. .		1
Intestine small, jejunum	+	+				M			+	+	+	+	+	+	+	+	+	+	+		+					31
Liver	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	47
Hepatocellular carcinoma		Х																				•				5
Hepatocellular adenoma Hepatocellular adenoma, multiple	Х								х							x				х	х	Х				8 1
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	I	+	+	+			39
Salivary glands			÷	,	÷	+	+			÷	_	÷	÷	÷		+	+	÷	Ļ	۰ ۲	÷			· +	_	46
Stomach	-			т 	т Т	т 		т 	1	т 	1	т 	т 	т -		+	т 	т 	т 		т 	1	•	- +		43
Stomach, forestomach	т	T	т -	Ţ	T	T	т 	Ţ	Ţ	Ţ	T	+	T	Ť			T	Ţ	+	+	. T	Ť				
•	+	+	+	+	Ť	+	+	+	+	Ť	+	+	+	+			•+	+	+	+	+					41
Stomach, glandular Tooth	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	• +	•	43 3
Cardiovascular System																						-				
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+		46
Endocrine System	····=													-							-			-		
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	46
Spindle cell, adenoma										x																1
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. .		46
Adenoma		•		•	•	•	•	•		•	x		•	•	•	•	•	•	•	•	•	•		'		1
Adrenal gland, medulla	+	+	+	+	+	+	+	+	Ŧ	+	ī		+	М	+	+	+	+	+	+	+	L	M	د 1		39
Islets, pancreatic	т т	- N 4	+ +	1	۳ بر	T	т. Т	T	т -	1	i	M		-	ī	т Т		+	P.4	T T	т - т	T		іт • +		20
Parathyroid gland	1					I	T M	1 T	T M	1	1 1.4			-	-	+			M		-	1	- T			
			. IVI	+	+	-			M		M			М									+	• +		21
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	IM	+	+	+	+	+	+	+	•	44
Pars intermedia, adenoma														Х												2
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	•	46

141

TABLE C2

													6											
Number of Days on Study													3											
	3	3	4	3	6	0	8	4	0	1	4	6	3	1	5	8	0	9	2	6	6	6	6	
······································	0	1	0	0	1	1	0	1	1	1	0	0	0	1	1	0	0	1	1	0	0	0	0	 <u> </u>
Carcass ID Number	3	3	4	0	2	6	4	5	5	2	4	7	3	5	0	6	1	5	3	0	0	0	0	
													8											
													1											
General Body System	<u> </u>	.				<u>.</u>	<u> </u>	<u>.</u>																
Tissue NOS	+	+	+																					
Genital System				_	-																			
Epididymis	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	
Preputial gland			+							+	~											+		
Prostate	+			Α	I	Α	+	+	+		+	+	+	+	+	+	+	+	+	+	+		+	
Seminal vesicle													+											
Testes	A	+	+	+	+	Α	+	+	+	+	÷	+	+	+	A	+	+	+	+	+	+	+	+	
Iematopoietic System																								
Bone marrow	· +	+	+	Ŧ	A	A	+	A	A	А	+	+	+	+	+	+	+	+	+	+	+	÷	+	
Lymph node													+				+							
Lymph node, bronchial													+											
Lymph node, mandibular													M											
Lymph node, mediastinal													M											
Lymph node, mesenteric													Μ											
Spleen													+											
Thymus													М											
integumentary System																								
Mammary gland	М	М	М	м	м	Α	м	м	м	М	м	М	М	М	м	+	м	+	+	м	+	м	м	
Skin													+											
Musculoskeletal System														·		_								
Bone	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	
Nervous System				-														<u> </u>				_	······	
Brain	+	+	+	+	÷	+	+	+	+	+	+	÷	+	+	+	+	÷	+	+	+	+	+	+	
Respiratory System																								
Larynx	Ά	+	+	Δ	+	A	Α	+	+	+	+	+	A	+	+	+	+	+	+	+	I	+	÷	
Lung						+	+	÷	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	
Alveolar/bronchiolar adenoma	,		•	•	•	•	•	•	•	•	•	•	•	·	•	•		•	·	x	·	•	· ·	
Alveolar/bronchiolar carcinoma							x																•	
Hepatocellular carcinoma, metastatic, liver																		x						
Nose	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Trachea	+	+	+	+	+	Α	T	+	+	Ŧ	+	+	Α	+	+	+	+	+	+	+	+	+	+	

Lesions in Male Mice

TABLE C2

Individual Animal Tumor Pathology o	f Mal	le]	Mie	ce i	im 1	the	2-	Ye	ar	Im	ha	lati	ion	S	tud	ly (oľ	Ta 	lc:	6	mp	ym	1 ³ (e	contin	ued)
Number of Days on Study						7	7	7		7	7				7						7	7	7	7	
	3 6	3 6	3 7	3 8	3 8		3 8	3 8	3 8	3 9	3 9	3 9	4 0	4 0	4 0	4 0	4 0								
															1										
Carcass ID Number	0	4	3	6	4	5	6	1	2	3	5	6	9	1	0 5 1	7	5	5	2	2	4	5	8	2	Total Tissue Tumo
General Body System Tissue NOS													-												3
Genital System	, <u> </u>					-									<u> </u>			_							
Epididymis	М	[+	+	+	+	+	+	м	+	+	+	+	I	+	+	+	+	I	I	+	+	+	I	+	39
Preputial gland	•••		•	•	·	•	•		•	•	•	•	-	·		·	•	+	-	+	•	•	-		6
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	43
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	43
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Iematopoietic System	·																								
Bone marrow	+	+	+	+	+	+	+							+	+	+	+	+	+	+	+	+	+	+	42
Lymph node	+	+	+	+	+	+		+			-	•	-		+				+			+		+	46
Lymph node, bronchial															+										39
Lymph node, mandibular															+										23
Lymph node, mediastinal															+										10
Lymph node, mesenteric															+										39
Spieen Thymus															+ +										44 33
ntegumentary System																									
Mammary gland	Μ	IM	IM	M	М	М	М	М	М	М	М	м	М	М	М	м	М	М	+	М	М	М	М	Μ	5
Skin	+	I	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	45
Ausculoskeletal System																									
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Nervous System																									
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Respiratory System																		_							
Larynx	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	41
Lung	+	+ v	; +·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic,		Х						х						X X											4 2
liver																									1
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Trachea	+	-	-	+	ъ								N A												43

143
TABLE C2

.

Individual Animal Tumor Pat	hology of	Mal	e 1	Mie	ce	in	th	e 2	2-Y	eai	r Iı	nha	ala	tio	n S	Stu	dy	of	T٤	alc:	6	m	g/n	1 ³ (cont	tinue	cd)		
Number of Days on Study	······································	2	2	3	4	5	5	5	5 8	5	5	6 2	6	6	6 8	6	6 8	7	7	7	7	7	7	7					
Number of Days on Study		-	-	-	_	•	0	-		-	-	_	6	-		5			-		-	5 6	6	5 6					
		0	1	0	0	1	1	0	1	1	1	0	0	0	1	1	0	0	1	1	0	0	0	0					
Carcass ID Number		3 5	3 3	4 2	07	2 1	6	4	5	5	2	4	7	3	5	-	6 1	1	5	3 2	0	0	0	0 8					
		1	3 1	1	1	1	4	1	1	1	1	1	4	。 1	1	•	1	1	4	_	1	4	-	0 1					
Special Senses System None									_																	-			
Urinary System																			_					·				•	
Kidney							A									+	+	+	+	+	+	+		+					
Urinary bladder		A	+	+	A	.+	A	A	. A	+	+	+	+	A	+	A 	+	A	+	+	+	+	+	+		•			
Systemic Lesions													••																
Multiple organs Lymphoma malignant lymphoc	ytic	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	+ x		+	+					

TABLE C2

Individual Animal Tumor Pathology	7 OÎ	Mal	le 1	Mi	ce	im	th	e 2	2-Y	ear	• Ir	nha	nla(tio	1 S	stu	dy	oſ	Ta	lc:	6	mş	ym	1 ³ (continued)	
		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study		3 6	3 6	3 7	-	3 7	3 7	3 7	3 7	3 7	3 8	3 8	3 8	3 8	3 8	3 8	3 9	3 9	3 9	4 0	4 0	4 0	4 0	4 0	4 0	
		0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	1	1	1	1	
Carcass ID Number		1	1	3		6	•	6	7	7	9	9	9	9	0	0	_	3	_	3	9	2	2	5	•	Total
		0	4	3	6	4	5	6	1	2	3	5	6	9	1	5	7	5 1	5	2	2	4	5	8	2	Tissues, Tumors
Special Senses System None				<u>.</u>																						
Urinary System												<u> </u>														
Kidney Urinary bladder		+	+	+	• +	• +	• +	+	• +	+	+	+	+	+	+	+ +		+ +		++	+ M	+	+ +	+ +	+ +	46 38
Systemic Lesions											-												-			
Multiple organs Lymphoma malignant lymphocytic		+	+	+	• +	· +	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47 1

146

TABLE C2

Individual Animal Tumor Pathology of									41		<u></u>									_								
	0	1	1	1	4	4	4	4	5	5	5	6	6	7	7	7	7	7	7	7	7	7	7	7				
Number of Days on Study	2	1	1	5	2	3	5	7	3	4	5	5	7					3	3	3	3	3	3	3				
	8	4	5	9	2	8	7	8	8	1	4	8	2	1	4	5	7	6	6	6	6	6	6	6				
	1	1	1	3	2	1	2	2	1	2	2	2	2	2	2	3	3	1	1	1	1	2	2	2				
Carcass ID Number	8	8	9	1	8	8	2	1	8	7	4	8	4	8	1	0	4	8	8	9	9	1	1	1				
• 1	7 1			0 1											5 1													
Alimentary System Esophagus	м	г т	т	т	т	м	т	ъ	+	+	_	+	_	+	м	+	+	+	+	+	+	+	+	_				
Gallbladder															A						+	+	1	+				
Intestine large															A						+	÷	+	+				
Intestine large, cecum															A						+	÷	+	+				
Intestine large, colon															A						+	+	+	+				
Intestine large, rectum															Α						+	+	+	+				
Intestine small	Α	Α	+	Α	Α	Α	+	Α	+	Α	Α	Α	Α	Α	Α	+	Α	+	+	+	+	+	+	+				
Intestine small, duodenum	Α	Α	+	Α	Α	Μ	+	Α	Μ	Α	Α	Α	Α	Α	Α	+	A	+	+	+	+	+	+	+				
Intestine small, ileum	Α	Α	A	Α	Α	Α	+	Α	+	А	Α	Α	Α	Α	Α	+	Α	+	+	+	÷	+	+	+				
Intestine small, jejunum	Α	Α	+	Α	Α	Α	+	Α	+	А	Α	Α	Α	Α	Α	+	Α	+	+	+	+	+	+	+				
Liver	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				
Hemangiosarcoma																							х					
Hepatocellular carcinoma						Х	х		х	х	х	х									х							
Hepatocellular adenoma													х						х	х								
Pancreas	+	+	+	+	Α	÷									+		+	+	+	+	+	+	I	+				
Salivary glands	+	+	+	+	Α	+									+		+	+	+	+	+	+	+	+				
Stomach	+	+	+	+											+					+	+	+	+	+				
Stomach, forestomach	+	+	+	+		-		-							+					+	+	+	+	+				
Stomach, giandular	+	+	+	+	Α	+	+	+	+	Ą	A	A	+	A	+	+	A	+	+	+	+	+	+	+				
Cardiovascular System																									_	-	• •	• 、
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				· · · ·
Alveolar/bronchiolar carcinoma,																									,			
metastatic, lung						x																					` , .	
				_				_															_		_			
Endocrine System Adrenal gland	+	+	+	+	Α	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+				
Spindle cell, adenoma					• -												х											
Adrenal gland, cortex	+	+	+	+	Α	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+			. `	
Adenoma																										•		· · ·
Adrenal gland, medulla	+	+	Ι	+	Α	+	+	+	Μ	Μ	Α	+	+	+	+	+	+	+	+	+	+	+	+	÷	•			
Islets, pancreatic	. I	I	+	+	Α	+	+	+	Μ	A	Α	Α	+	Α	+	+	+	I	I.	I	. M	+	I	I				
Parathyroid gland	+	+	+	+	Α	Μ	Μ	+	I	М	Α	+	+	М	+	Μ	+	+	+	I	М	Μ	+	Μ				
Pituitary gland	+	+	+	+	Α	+	+	+	+	+	Α	+	+	М	+	+	+	+	+	+	+	+	+	+				
Thyroid gland	+	+	+	+	Α	I	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+				,
Follicular cell, adenoma																												
General Body System		_																								۰.		
Tissue NOS															+					• •							1.1	
Hemangioma																									1.1.1			
Hemangiosarcoma, metastatic, spleen															х												· · ·	

Lesions in Male Mice

31 M.S. of

	_	_	_	_	-	_	-	-	-	-	-	-		-	-	-	-	-	-	-	_	~	_	_	-		
torre have a C There are Star lar	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
lumber of Days on Study	3 7	3 7	3 7	3	3 7	3 7	3 7	3 8	3 8	3 8	3 8	3 8	3 9	3 9		3 9	3 9	3 9	3 9	4 0	4 0	4 0	4 0	4 0	4 0		
	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	2	2	2	3	3	3		
Carcass ID Number	2	2	4	4	5	5	-	7	8	0	-	0		3	3	3		3	4	1	5	5	0	1	1		Total
	3	4	2	8	0	1	2	9	4	3		8		3		7	-	9	5	7	3	5	7	1	-		Tissues
· . •	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		Tumor
limentary System																						_					
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		46
Gallbladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	ŗ	+	+	, +		35
Intestine large	+	+	+	+	+	÷	+	+	+	÷	+	+	+	÷	+	+	+	+	+	÷	+	+	+	+	+		40
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+		37
Intestine large, colon	, +	+	+	+	+	+	+	+	÷	+	÷	+	+	+	+	+	+	+	+	÷	+	+	+	+	+		39
Intestine large, rectum	M	ŗ	+	+	+	+	Ņ	Ň	+	+	+	M	+	÷	+	+	+	÷	+	+	+	+	+	+	+		31
Intestine small	+	4	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	÷	+	÷	+	+	+	+	+		36
Intestine small, duodenum	· +	, +	+	+	+	+	÷	+	+	+	+	+	+	÷	+	÷	M	÷	+	+	+	+	+	÷.	+		34
Intestine small, ileum	+	+	+	+	+	+	÷	+	+	+	+	+	4	+	+	+	+	+	+	+	÷	+	+	+	+		35
Intestine small, jejunum	+	+	+	+	+	+	÷.	+	÷	+	+	+	+	÷	÷	÷	+	+	+	+	+	+	+	+	+		36
Liver	+	+	+	÷	+	+	+	÷	+	+	+	+	+	÷	+	+	+	+	+	÷	+	+	+	+	+		48
Hemangiosarcoma	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	·	•	·	·			1
Hepatocellular carcinoma				x	х			x																X			11
Hepatocellular adenoma																								x			4
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		42
Salivary glands	+	+	+	+	+	+	÷	+	+	+	÷	+	+	÷	+	+	+	÷	+	÷.	÷	+	+	+	÷		47
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		46
Stomach, forestomach	+	+	+	+	+	÷	+	÷	+	+	÷	+	+	+	+	÷	+	+	+	÷	+	+	· +	+	+		46
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		43
landiorocoulen Sustam																		-									
Cardiovascular System																									i		40
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+,		49
Alveolar/bronchiolar carcinoma, metastatic, lung																								•			1
																										_	
ndocrine System																											
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+		47
Spindle cell, adenoma																						,		1			1
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		47 '
Adenoma																				х							1
Adrenal gland, medulla	+	+	+	+	+		+					+	+	+	+	+	+		+	+	+	+	+	+	Ι		42
Islets, pancreatic	+	I	+	+	+	+			М			I		+	+	+	I	Μ		I	+	+	I	- E +	+		24
Parathyroid gland	+	+	+	+	Μ	+	Μ								+												26
Pituitary gland	. +	+	+	+	+	+	+		+			+	+	+		+	+	+	+	+	+		+				46
Thyroid gland Follicular cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+ X		+	+	•	45 2
eneral Body System																											•.
Tissue NOS																									+		2
Hemangioma																									X	•	1

, ,

	•		1							~	-	~		-	-	7	-	-	-	-	-	-	-	-			
Number of Days on Study	-	-	-	1	-	4	4 5	4	5 3	5 4	5		6 7		7 2												
amore of Days on Study	8						7																6				
	1					1	2	~	1		<u>,</u>	<u> </u>	2		2			1	1	1	1	<u> </u>		2	••••		
Carcass ID Number	8	8					2																				
	. 7	-					1																				
	•						1																				
Genital System																							,				
Epididymis	+	• +	• +	• +	A	+	+	+	+	+	м	+	+	Α	+	+	+	+	+	+	м	+	+	+			
Preputial gland	•			• +		•••	+	·	·	•		·	•		•				·	•		•		·			
Prostate	+					. +	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+		•	
Seminal vesicle							+											+	+	+	+	÷	+	÷			
Testes							+																				
Iematopoietic System														_			<u></u>						<u></u>			<u></u>	•
Bone marrow	. +	. +		• +	A	A	+	+	Α	Α	Α	Α	+	+	+	+	+	+	+	+	+	+	+	+			
Lymph node	+	· +	• 4				+												+	+	+	+	+	+			
Lymph node, bronchial	+	+	N	1 N	ſÀ	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+			
Alveolar/bronchiolar carcinoma,											-																
metastatic, lung						х																					
Lymph node, mandibular	М	11	Ι	+	A	M	(+	М	+	Μ	М	Μ	М	М	+	+	+	+	+	+	М	М	Μ	М			
Hemangiosarcoma, metastatic, spleen			-					•							x												
Lymph node, mediastinal	M	ſ٨	ſN	1 N	۱ M	ſM	M	М	М	М	м	М	+	Μ	+	м	М	+	М	Μ	М	Μ	М	М			
Lymph node, mesenteric							+																				
Hemangiosarcoma, metastatic, spleen		• •	•						•	•	• •				x	-	• • •					-					
Spleen	+				. A	+	+	+	+	+	A	+	+	+		+	+	+	+	+	+	+	+	+			
Hemangiosarcoma		'						'	•	•	••	•	x	•	x	•	•	•	•	•	•	•	•	•			
Thymus	+	. N	(_	. N	ſМ	(+	+	+	+	+	A	+		÷		+	+	+	+	+	м	+	+	+			
Alveolar/bronchiolar carcinoma,	т	. 14	г т	14	1 14	. 1	т.	т	T	T	<i>c</i> i	'	141	•	•	•	'	•	•	•	141	•	'	'			
metastatic, lung						x																					
ntegumentary System													-														
	т	т	N	<u>د م</u>	(N	C M	M	L.	Т	м	м	м	м	м	м	м	м	м	м	м	м	м	м	М			
Mammary gland							• •••																				
Skin	+	+		- +			Ŧ	т 		-			Ŧ	- T	7	1	·r	т 	τ		τ	т	-	т			
Ausculoskeletal System																	_										
Bone	. +	• +		• +	• +	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Hemangiosarcoma, metastatic, spleen						L									х		•										
Skeletal muscle						+																					
Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung						x																				•	
Nervous System														•				•		_							
Brain	+	• +		- +	· A	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			

Lesions in Male Mice

TABLE C2 Individual A

Individual Animal Tumor Pathology o						_												_					-	_		
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3		3				3		4	4	4		4	
	7	7	7	7	7	7	7	8	8	8	8	8	9	9	9	9	9	9	9	0	0	0	0	0	0	
	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	2	2	2	3	3	3	
Carcass ID Number	2	-	4		_				8																	Total
	3	_	2						4																	Tissues
	1								1																	Tumor
Genital System	<u>.</u>														_									_		
Epididymis	+	+	- +	+	+	- +	+	+	+	+	+	+	М	+	+	+	+	+	М	+	+	+	+	Μ	+	42
Preputial gland						+					+						+	+								8
Prostate	+	+	· +	- +	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Seminal vesicle	+	+	• +	+			+	+		+			+				+		+							39
Testes	+	+	• +	- +		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Hematopoietic System	-																									
Bone marrow	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	43
Lymph node	+	+	• +	+		- +			+															+	+	48
Lymph node, bronchial	+								+															+	+	44
Alveolar/bronchiolar carcinoma, metastatic, lung						-						·		-		·				·	-		-			1
Lymph node, mandibular	+	₽	í I	N	1 +	- N	1+	+	Μ	М	М	+	+	М	+	М	М	+	М	Μ	+	Μ	M	M	+	19
Hemangiosarcoma, metastatic, spleen																										1
Lymph node, mediastinal	+	N	1 N	1 N	1 N	1 N	1 M	[+	М	М	М	М	Μ	М	М	+	М	Μ	Μ	М	+	Μ	M	M	М	7
Lymph node, mesenteric	+	+	• +	- +		- +	+	+	+	+	+	+	+	+	+	+	+	+	М	+	I	+	+	+	+	40
Hemangiosarcoma, metastatic, spleen																										1
Spleen	+	4	• -+	+		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Hemangiosarcoma																										2
Thymus	+	+	• +	+		- +	M	[+]	+	+	+	+	+	+	М	+	+	I	+	+	+	+	+	+	+	40
Álveolar/bronchiolar carcinoma, metastatic, lung																		-								1
Integumentary System		-					-		. -	• -					• •		• •						_			_
Mammary gland																									М	8
Skin	+	+	+ +	- +		- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Musculoskeletal System																		-								
Bone	+	+	• +			+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Hemangiosarcoma, metastatic, spleen																										1
Skeletal muscle																										1
Thoracic, alveolar/bronchiolar carcinoma, metastatic, lung																										1
Nervous System	•																									
Brain	ـ ـ					د ۲		+	+	⊥	т	Т	ъ	ъ	Т	т	т	ـ	ъ.	ъ	т	Ŧ	L	Т	ъ	48
Li alli	+	-	- 1	- 1	- 1	+	- +	T	Ŧ	T	T	+	+	-	+	+	Ŧ	+	+	- +	- +	- +	- +	- +	+	48

149

N		-	1		14	4	4	4	5 :	55	6	6	7	7	7	7	7	7	7	7	7	7				
Number of Days on Study			1 4		52 92		5 7		34 81		5 8	7 2	2 2 1 4		2 7	3 6	3 6	3 6	3 6	3 6	3 6	3 6	٠	:	<i>e</i> 1,	
						-		<u> </u>			<u> </u>		-				, in the second se	Č	Č	Č.	Ť	•				
		1	1,	1 3	32	1	2	2	1 2	2 2	2	2	2 2	2 3	3	1	1	1	1	2	2	2				
Carcass ID Number		8	8	9 1	18	8	2	1	8 1	74	8	4	8 1	0	4	8	8	9	9	1	1	1			· ,	
		7	3	5 (0 5	6	1	9	5 1	79	3	1	2 :	56	3	4	9	2	3	1	3	4				
		1	1	1 1	1 1	1	1	1	1 1	1 1	1	1	1 1	1	1	1	1	1	1	1	1	1				
Respiratory System									** .										·					· ,	•	
Larynx		÷	+	+ •	+ A	. +	+	+	+ •	+ A	+	+	A ·	+ +	• +	+	+	+	+	+	+	+				
Lung		+	+	÷ -	+ A	+	+	+	+ •	+ +	+	+	+ •	+ +	+	+	+	+	+	+	+	+		٠		
Alveolar/bronchiolar adenoma												Х					Х									
Alveolar/bronchiolar adenoma, multiple																Х								,		
Alveolar/bronchiolar carcinoma						Х									Х	,				÷ .	•					
Hemangiosarcoma, metastatic, spleen													2	K												
Hepatocellular carcinoma, metastatic,									_	-																
																				· •						
liver										K.	X															
Nose		+	+	+ -	+ A	. +	+	•	+ -	+ A	+	+	+ ·	+ +	· +	+	+	+	+	+	+	+			• •	
		+ +	+	+ - + -	+ A + A	. + . +	+ +	•	+ -		+	+ +	+ · A ·	⊦ + ⊦ +	· + · +	+	+ +	++	+ +	+ +	+ +	+ +				
Nose Trachea	-	+ +	+	+ ·	+ A + A	· + · +	+ +	•	+ -	+ A	+	+ +	+ · A ·	+ +	++	+	++	+ +	+ +	+	+ +	++	•		• • •	
Nose	- - 	+	+	+ -	+ A + A	. +	+ +	•	+ -	+ A	+	+	+ · A ·	+ + + +		+	+ +	++	++	+	++	++			· · ·	
Nose Trachea Special Senses System		+	+	+ •	+ A + A	. +	++	•	+ -	+ A	+	+	+ · A ·	+ + + + + X		+	+	+ + + X	++	++	++	++			· · · · · · · · · · · · · · · · · · ·	
Nose Trachea Special Senses System Harderian gland Adenoma		+	+	+ ·	+ A + A	· +	++	•	+ -	+ A	+	+	+ · A ·			+	+		++	+	++	+				
Nose Trachea Special Senses System Harderian gland Adenoma Urinary System		+ +	+	+ -	+ A + A 	· +	++	•	+ -	+ A	+	+ +	+ · A ·	Х		+	+ +		+ +	++	++	+ +				
Nose Trachea Special Senses System Harderian gland Adenoma		+++	++++	+ -	+ A + A 	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	A 	+ ·	+ A	+ M	+	+ ·	к 	: 	++++++	++++++		++++++	++	++++++	++++++				
Nose Trachea Special Senses System Harderian gland Adenoma Urinary System Kidney		+++++	+ + + + + + + + + + + + + + + + + + + +	+ ·	+ A + A + + A + + A	++	+++	A 	+ ·	+ A + A	+ M	+	+ ·	к 	: 	+++++++	+++		+++++	++	+++++	++++++				

Lesions in Male Mice

Individual Animal Tumor Pathology of Male Mice in the 2-Year Inhalation Study of Talc: 18 mg/m³ (continued) 77777 7 Number of Days on Study 4 4 4 4 4 4 7 7 7 7 7 7 8 8 8 8 8 9 9 9 9 9 9 9 9 0 0 0 0 0 0 7 3 3 3 Carcass ID Number 2 2 4 4 5 5 5 7 8 0 0 0 3 3 3 3 3 3 3 4 1 5 5 0 1 1 Total 3 4 2 8 0 1 2 9 4 3 4 8 2 3 4 7 8 9 5 7 3 5 7 1 3 Tissues/ Tumors **Respiratory** System 46 Larynx 48 Lung + + + + + + + х х х х X 7 Alveolar/bronchiolar adenoma 2 2 Alveolar/bronchiolar adenoma, multiple Х Alveolar/bronchiolar carcinoma Hemangiosarcoma, metastatic, spleen 1 Hepatocellular carcinoma, metastatic, liver 2 47 Nose + + + + + + + + + + + + + + + + + + + 42 Trachea I + М Special Senses System + + x x Harderian gland 4 Adenoma 4 Urinary System Kidney 48 + + + + + + + + + + + Urinary bladder 43 Systemic Lesions 49 Multiple organs + +

TABLE C3

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Inhalation Study of Talc

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Harderian Gland: Adenoma	· · · · · · · · · · · · · · · · · · ·		
Overall rates ^a	1/46 (2%)	0/47 (0%)	4/49 (8%)
Adjusted rates ^b	3.3%	0.0%	12.0%
Ferminal rates ^c	1/30 (3%)	0/28 (0%)	3/32 (9%)
First incidence (days)	736 (T)	_e	725
life table tests ^d	P=0.073	P=0.514N	P=0.204
ogistic regression tests ^d	P=0.075	P = 0.514N	P=0.216
Cochran-Armitage test ^d	P=0.065		
isher exact test ^d		P=0.495N	P=0.201
iver: Hepatocellular Adenoma			
Overall rates	3/45 (7%)	9/47 (19%)	4/48 (8%)
Adjusted rates	10.0%	29.5%	11.8%
ferminal rates	3/30 (10%)	7/28 (25%)	3/32 (9%)
First incidence (days)	736 (T)	633	672
life table tests	P=0.489N	P=0.050	P=0.539
ogistic regression tests	P=0.493N	P = 0.061	P=0.552
Cochran-Armitage test	P=0.515N		· ·
isher exact test		P=0.070	P=0.536
iver: Hepatocellular Carcinoma			
Overall rates	6/45 (13%)	5/47 (11%)	11/48 (23%)
Adjusted rates	16.7%	13.7%	27.3%
erminal rates	2/30 (7%)	1/28 (4%)	5/32 (16%)
ïrst incidence (days)	571	546	438
ife table tests	P=0.114	P=0.491N	P=0.187
ogistic regression tests	P=0.116	P=0.445N	P=0.203
Cochran-Armitage test	P=0.097		
isher exact test		P = 0.469N	P=0.177
iver: Hepatocellular Adenoma or Carcinoma			
Overall rates	9/45 (20%)	13/47 (28%)	14/48 (29%)
djusted rates	25.6%	38.1%	34.5%
erminal rates	5/30 (17%)	8/28 (29%)	7/32 (22%)
irst incidence (days)	571	546	438
ife table tests	P=0.256	P=0.228	P=0.230
ogistic regression tests	P=0.216	P=0.257	P=0.223
Cochran-Armitage test üsher exact test	P=0.225	P=0.269	P=0.217
		r =0.209	r0.217
ung: Alveolar/bronchiolar Adenoma	6/45 (13%)	A/A7 (90%)	Q/18 (100%)
Verall rates		4/47 (9%) 14.2%	9/48 (19%) 27.0%
djusted rates erminal rates	20.0%	14.3%	27.0%
	6/30 (20%) 736 (TD	4/28 (14%) 726 (T)	8/32 (25%) 672
irst incidence (days)	736 (T) P=0 224	736 (T) R=0.411N	672 B-0.222
ife table tests ogistic regression tests	P = 0.224	P = 0.411N	P=0.333 P=0.271
	P = 0.251	P=0.411N	P=0.371
Cochran-Armitage test üsher exact test	P=0.210	P=0.342N	P-0 336
ISHUI CAAUL (COL		P = 0.342N	P=0.336

Table C3

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Inhalation Study of Talc (continued)

÷.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Lung: Alveolar/bronchiolar Carcinoma			
Overall rates	7/45 (16%)	2/47 (4%)	2/48 (4%)
Adjusted rates	23.3%	5.9%	5.2%
Ferminal rates	7/30 (23%)	1/28 (4%)	0/32 (0%)
First incidence (days)	736 (T)	558	438
life table tests	P=0.068N	P=0.093N	P=0.068N
ogistic regression tests	P=0.069N	P=0.073N	P=0.070N
Cochran-Armitage test	P=0.065N		
isher exact test		P=0.069N	P=0.065N
ung: Alveolar/bronchiolar Adenoma or Carcinoma			
Dverall rates	12/45 (27%)	5/47 (11%)	11/48 (23%)
Adjusted rates	40.0%	16.4%	30.8%
erminal rates	12/30 (40%)	4/28 (14%)	8/32 (25%)
irst incidence (days)	736 (T)	558	438
ife table tests	P=0.533N	P=0.063N	P=0.426N
ogistic regression tests	P=0.552N	P=0.043N	P=0.423N
Cochran-Armitage test	P=0.554N		
isher exact test		P=0.043N	P=0.429N
°ituitary Gland (Pars Intermedia): Adenoma			
Overall rates	0/44 (0%)	2/44 (5%)	0/46 (0%)
Adjusted rates	0.0%	6.5%	0.0%
erminal rates	0/29 (0%)	1/27 (4%)	0/32 (0%)
First incidence (days)	_	681	-
ife table tests	P=0.547N	P=0.238	-
ogistic regression tests	P=0.566N	P=0.239	-
Cochran-Armitage test	P=0.564N		
ïsher exact test		P=0.247	-
pleen: Hemangiosarcoma			
Overall rates	2/44 (5%)	0/44 (0%)	2/47 (4%)
Adjusted rates	6.9%	0.0%	5.5%
Cerminal rates	2/29 (7%)	0/28 (0%)	0/32 (0%)
First incidence (days)	736 (T)	-	672
ife table tests	P=0.595	P = 0.246N	P=0.650N
ogistic regression tests	P = 0.581	P=0.246N	P = 0.668N
Cochran-Armitage test Fisher exact test	P=0.577	P=0.247N	P=0.666N
All Organs: Hemangiosarcoma	ALAC (DOT)	0/47 (001)	2140 1671
Overall rates	4/46 (9%) 12.0%	0/47 (0%) 0.0%	3/49 (6%) 8 407
Adjusted rates	12.9%	0.0%	8.4%
Ferminal rates First incidence (days)	3/30 (10%) 710	0/28 (0%)	1/32 (3%) 672
Life table tests	710 P=0.529N	 P=0.071N	
Logistic regression tests		P = 0.060N	P=0.448N P=0.456N
Cochran-Armitage test	P=0.545N P=0.554N	1-0.0001	I -0.43014
Fisher exact test	1 -0.33414	P=0.056N	P=0.464N
LISHOL CARVE LOL		1 -0.05014	1

TABLE C3

TABLE C3 Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
	· · · · · · · · · · · · · · · · · · ·		
All Organs: Hemangioma or Hemangiosarcoma	•		
Overall rates	4/46 (9%)	0/47 (0%)	4/49 (8%)
Adjusted rates	12.9%	0.0%	11.4%
Ferminal rates	3/30 (10%)	0/28 (0%)	2/32 (6%)
First incidence (days)	710	<u> </u>	672
life table tests	P=0.515	P=0.071N	P=0.590N
ogistic regression tests	P=0.505	P=0.060N	P=0.598N
Cochran-Armitage test	P=0.492		
Fisher exact test		P = 0.056N	P=0.607N
All Organs: Malignant Lymphoma (Lymphocytic, Mix	ed, or Undifferentiated	Cell Type)	•
Overall rates	5/46 (11%)	1/47 (2%)	0/49 (0%)
Adjusted rates	16.7%	3.6%	0.0%
Terminal rates	5/30 (17%)	1/28 (4%)	0/32 (0%)
First incidence (days)	736 (T)	736 (T)	-
Life table tests	P=0.019N	P=0.116N	P=0.027N
ogistic regression tests	P = 0.019N	P=0.116N	P = 0.027N
Cochran-Armitage test	P = 0.020N		1 0.02711
Fisher exact test		P=0.097N	P=0.024N
All Organs: Benign Neoplasms			
Overall rates	11/46 (24%)	16/47 (34%)	18/40 /270%)
Adjusted rates	35.2%	51.1%	18/49 (37%) 51.4%
Ferminal rates	10/30 (33%)	13/28 (46%)	
First incidence (days)	587	633	15/32 (47%) 672
Life table tests	P=0.158	P=0.135	P=0.127
Ogistic regression tests	P = 0.150	P = 0.188	P=0.138
Cochran-Armitage test	P = 0.139	1 -0.100	1-0.155
Fisher exact test	1-0.157	P=0.199	P=0.128
All Organs: Malignant Neoplasms			
Dverall rates	20/46 (13%)	8/47 (17%)	15/40 (21%)
Adjusted rates	20/46 (43%) 58.3%	23.3%	15/49 (31%) 35.9%
Cerminal rates			
First incidence (days)	16/30 (53%) 571	4/28 (14%) 546	6/32 (19%) 438
Life table tests	P = 0.253N	P = 0.012N	438 P=0.166N
Logistic regression tests	P = 0.262N	P = 0.005N	P = 0.152N
Cochran-Armitage test	P = 0.245N	1-0.00511	F =0.152N
Fisher exact test	1-0.24510	P=0.005N	P=0.139N
All Organs: Benign or Malignant Neoplasms			
Diverall rates	76146 (5704)	20/47 (420%)	78/10 15704
	26/46 (57%) 76 2%	20/47 (43%) 58.0%	28/49 (57%) 46 5%
Adjusted rates	76.2%	58.0% 14/28 (50%)	66.5% 19 <i>0</i> 2 (56%)
Ferminal rates	22/30 (73%) 571		18/32 (56%)
First incidence (days)	571 B-0.442	546 B0 208N	438 B-0 554
Life table tests	P = 0.442	P = 0.208N	P = 0.554
ogistic regression tests	P=0.344	P = 0.102N	P=0.503
Cochran-Armitage test	P=0.399	D 010751	D
Fisher exact test		P=0.127N	P=0.558

Lesions in Male Mice

TABLE C3

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Inhalation Study of Talc (continued)

(T)Terminal sacrifice

- ^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, epididymis, gallbladder, heart, kidney, larynx, liver, lung, nose, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.
- ^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality
- ^c Observed incidence at terminal kill
- ^a Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The life table test regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in an exposure group is indicated by N.
- e Not applicable; no neoplasms in animal group

TABLE C4

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Inhalation Study of Talc^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³	
Disposition Summary	· · · · · · · · · · · · · · · · · · ·		······	
Animals initially in study	50	50	50	
Early deaths				
Moribund	1	2	3	
Natural deaths	16	18	14	
Survivors				
Terminal sacrifice	30	28	32	
Missexed	1	1		
Missing	2	1	1	
Animals examined microscopically	46	47	- 49	
Alimentary System		·		
Gallbladder	(31)	(29)	(35)	
Dilatation			1 (3%)	
Epithelium, hyperplasia, papillary			1 (3%)	
Intestine large, cecum	(34)	(35)	(37)	
Hyperplasia, lymphoid		1 (3%)	3 (8%)	
Intestine large, colon	(36)	(38)	(39)	
Hyperplasia, lymphoid	1 (3%)			
Intestine large, rectum	(32)	(32)	(31)	
Serosa, inflammation, suppurative		1 (3%)		
Intestine small, duodenum	(32)	(30)	(34)	
Hyperplasia, lymphoid			1 (3%)	
Mucosa, atrophy	3 (9%)	7 (23%)	3 (9%)	
Intestine small, ileum	(33)	(32)	(35)	
Hyperplasia, lymphoid	5 (15%)	3 (9%)	5 (14%)	
Mucosa, atrophy	3 (9%)	5 (16%)	4 (11%)	
Peyer's patch, necrosis	1 (3%)	(21)	(26)	
Intestine small, jejunum	(32)	(31)	(36) 1 (3%)	
Hyperplasia, lymphoid	2 (001)	2 (10%)		
Mucosa, atrophy	3 (9%)	3 (10%)	2 (6%)	
Liver	(45)	(47)	(48) 1 (2%)	
Abscess	1 (2%)	3 (6%)	5 (10%)	
Focal cellular change	4 (9%)	1 (2%)	5 (10%)	
Hematocyst	2 (4%)	2 (4%)		
Hematopoietic cell proliferation	2 (4%) 2 (4%)	2 (4%)		
Infarct	2 (4%)	3 (6%)	1 (2%)	
Inflammation, focal Mineralization, focal		1 (2%)	- (=/0)	
Necrosis, focal	4 (9%)	5 (11%)	4 (8%)	
Pigmentation, hemosiderin, focal	4 (570)	0 (11/0)	1 (2%)	
Bile duct, hyperplasia, focal			1 (2%)	
Serosa, inflammation, suppurative			1 (2%)	
Pancreas	(42)	(39)	(42)	
Serosa, inflammation, suppurative			1 (2%)	
Stomach, forestomach	(43)	(41)	(46) `	
Hyperplasia, squamous, focal		1 (2%)	í (2%)	
Tooth		(3)		
Dysplasia		3 (100%)		

.

Table C4

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Cardiovascular System			····
Heart	(45)	(46)	(49)
Thrombosis	(45)	1 (2%)	1 (2%)
Coronary artery, mineralization		1 (2%)	1 (2%)
Myocardium, degeneration, focal	1 (2%)	1 (270)	
Myocardium, fibrosis, focal	1 (270)	1 (2%)	
Endocrine System Adrenal gland	(43)	(46)	(47)
Spindle cell, hyperplasia	38 (88%)	37 (80%)	35 (74%)
Adrenal gland, cortex			
Atrophy	(43)	(46)	(47)
Hyperplasia, focal	1 (2%)	1 (2%)	
Vacuolization cytoplasmic, focal		1 (2%) 3 (7%)	4 (9%)
Parathyroid gland	(25)		
Cyst	3 (12%)	(21) 1 (5%)	(26)
Pituitary gland	(44)	(44)	(46)
Cyst	1 (2%)	(**)	(40)
Pigmentation, lipofuscin	1 (2%)		1 (2%)
Thyroid gland	(45)	(46)	(45)
Cyst	2 (4%)	1 (2%)	1 (2%)
Follicular cell, hyperplasia			
General Body System None	4 (9%)	8 (17%)	8 (18%)
General Body System	4 (9%)	8 (17%)	o (10%)
General Body System	4 (9%)	8 (1 <i>170</i>)	6 (16%)
General Body System None			
General Body System None Genital System	(39)	(39)	(42)
General Body System None Genital System Epididymis	(39) 1 (3%)	(39) 1 (3%)	(42)
General Body System None Genital System Epididymis Inflammation, suppurative	(39) 1 (3%) (8) 7 (88%)	(39)	
General Body System None Genital System Epididymis Inflammation, suppurative Preputial gland	(39) 1 (3%) (8)	(39) 1 (3%) (6)	(42) (8) 8 (100%) 1 (13%)
General Body System None Genital System Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40)	(39) 1 (3%) (6)	(42) (8) 8 (100%) 1 (13%) (44)
General Body System None Genital System Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative	(39) 1 (3%) (8) 7 (88%) 3 (38%)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%)	(42) (8) 8 (100%) 1 (13%)
General Body System None Genital System Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40) 3 (8%)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%)	(42) (8) 8 (100%) 1 (13%) (44) 4 (9%)
General Body System None Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia Seminal vesicle	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%) (43)	(42) (8) 8 (100%) 1 (13%) (44) 4 (9%) (39)
General Body System None Genital System Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia Seminal vesicle Inflammation, suppurative	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40) 3 (8%) (41)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%) (43) 2 (5%)	(42) (8) 8 (100%) 1 (13%) (44) 4 (9%) (39) 1 (3%)
General Body System None Genital System Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia Seminal vesicle Inflammation, suppurative Testes	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40) 3 (8%)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%) (43)	(42) (8) $8 (100%)$ $1 (13%)$ (44) $4 (9%)$ (39) $1 (3%)$ (45)
General Body System None Genital System Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia Seminal vesicle Inflammation, suppurative Testes Aspermatogenesis, diffuse	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40) 3 (8%) (41)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%) (43) 2 (5%)	(42) (8) $8 (100%)$ $1 (13%)$ (44) $4 (9%)$ (39) $1 (3%)$ (45) $1 (2%)$
General Body System None Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia Seminal vesicle Inflammation, suppurative Testes Aspermatogenesis, diffuse Atrophy, diffuse	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40) 3 (8%) (41) (43)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%) (43) 2 (5%) (44)	(42) (8) $8 (100%)$ $1 (13%)$ (44) $4 (9%)$ (39) $1 (3%)$ (45)
General Body System None Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia Seminal vesicle Inflammation, suppurative Testes Aspermatogenesis, diffuse Atrophy, diffuse Hypospermia	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40) 3 (8%) (41)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%) (43) 2 (5%) (44) 2 (5%)	(42) (8) $8 (100%)$ $1 (13%)$ (44) $4 (9%)$ (39) $1 (3%)$ (45) $1 (2%)$
General Body System None Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia Seminal vesicle Inflammation, suppurative Testes Aspermatogenesis, diffuse Atrophy, diffuse Hypospermia Inflammation, suppurative	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40) 3 (8%) (41) (43) 1 (2%)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%) (43) 2 (5%) (44) 2 (5%) 1 (2%) (5%) 1 (2%) (5%) (42) (44) (44) (44) (45	(42) (8) 8 (100%) 1 (13%) (44) 4 (9%) (39) 1 (3%) (45) 1 (2%) 1 (2%)
General Body System None Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia Seminal vesicle Inflammation, suppurative Testes Aspermatogenesis, diffuse Atrophy, diffuse Hypospermia	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40) 3 (8%) (41) (43)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%) (43) 2 (5%) (44) 2 (5%)	(42) (8) $8 (100%)$ $1 (13%)$ (44) $4 (9%)$ (39) $1 (3%)$ (45) $1 (2%)$
General Body System None Genital System Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia Seminal vesicle Inflammation, suppurative Testes Aspermatogenesis, diffuse Atrophy, diffuse Hypospermia Inflammation, suppurative Seminiferous tubule, degeneration, focal	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40) 3 (8%) (41) (43) 1 (2%)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%) (43) 2 (5%) (44) 2 (5%) 1 (2%) (5%) 1 (2%) (5%) (42) (44) (44) (44) (45	(42) (8) 8 (100%) 1 (13%) (44) 4 (9%) (39) 1 (3%) (45) 1 (2%) 1 (2%)
General Body System None Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia Seminal vesicle Inflammation, suppurative Testes Aspermatogenesis, diffuse Atrophy, diffuse Hypospermia Inflammation, suppurative	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40) 3 (8%) (41) (43) 1 (2%) 3 (7%)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%) (43) 2 (5%) (44) 2 (5%) 1 (2%) 4 (9%)	(42) (8) 8 (100%) 1 (13%) (44) 4 (9%) (39) 1 (3%) (45) 1 (2%) 1 (2%) 1 (2%)
General Body System None Genital System Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia Seminal vesicle Inflammation, suppurative Testes Aspermatogenesis, diffuse Atrophy, diffuse Hypospermia Inflammation, suppurative Seminiferous tubule, degeneration, focal Hematopoietic System Bone marrow	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40) 3 (8%) (41) (43) 1 (2%) 3 (7%)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%) (43) 2 (5%) (44) 2 (5%) 1 (2%) 4 (9%) (42)	(42) (8) 8 (100%) 1 (13%) (44) 4 (9%) (39) 1 (3%) (45) 1 (2%) 1 (2%) 1 (2%) (43)
General Body System None Genital System Epididymis Inflammation, suppurative Preputial gland Dilatation Inflammation Prostate Inflammation, suppurative Epithelium, hyperplasia Seminal vesicle Inflammation, suppurative Testes Aspermatogenesis, diffuse Atrophy, diffuse Hypospermia Inflammation, suppurative Seminiferous tubule, degeneration, focal	(39) 1 (3%) (8) 7 (88%) 3 (38%) (40) 3 (8%) (41) (43) 1 (2%) 3 (7%)	(39) 1 (3%) (6) 6 (100%) (43) 7 (16%) 1 (2%) (43) 2 (5%) (44) 2 (5%) 1 (2%) 4 (9%)	(42) (8) 8 (100%) 1 (13%) (44) 4 (9%) (39) 1 (3%) (45) 1 (2%) 1 (2%) 1 (2%)

TABLE C4

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Hematopoietic System (continued)			
Lymph node	(45)	(46)	(48)
Iliac, hyperplasia, lymphoid	1 (2%)	(10)	(10)
Iliac, hyperplasia, plasma cell	1 (2%)		
Lumbar, hyperplasia, lymphoid	1 (2%)	1 (2%)	
Lumbar, hyperplasia, plasma cell		1 (2%)	
Pancreatic, inflammation, granulomatous		1 (2%)	
Renal, depletion lymphoid			1 (2%)
Renal, hyperplasia, lymphoid			1 (2%)
Lymph node, bronchial	(32)	(39)	(44)
Abscess			í (2%)
Hyperplasia, histiocytic	1 (3%)	32 (82%)	42 (95%)
Hyperplasia, histiocytic, lymphoid		1 (3%)	``
Hyperplasia, lymphoid	3 (9%)	10 (26%)	23 (52%)
Infiltration cellular, mixed cell	3 (9%)	1 (3%)	3 (7%)
Inflammation, acute	1 (3%)		
Follicular, necrosis	1 (3%)		
Lymph node, mandibular	(23)	(23)	(19)
Hyperplasia, histiocytic		1 (4%)	
Hyperplasia, lymphoid			1 (5%)
Follicular, necrosis			1 (5%)
Lymph node, mediastinal	(9)	(10)	(7)
Hyperplasia, histiocytic	1 (11%)	1 (10%)	2 (29%)
Hyperplasia, lymphoid		2 (20%)	
Lymph node, mesenteric	(36)	(39)	(40)
Depletion lymphoid	1 (3%)		2 (5%)
Hyperplasia, lymphoid	4 (11%)	3 (8%)	6 (15%)
Infiltration cellular, mixed cell	18 (50%)	20 (51%)	13 (33%)
Inflammation, granulomatous		1 (3%)	
Thrombosis			1 (3%)
Follicular, necrosis		6 (15%)	2 (5%)
Spleen	(44)	(44)	(47)
Hematocyst		1 (2%)	
Hematopoietic cell proliferation	6 (14%)	7 (16%)	10 (21%)
Hyperplasia, lymphoid	3 (7%)	2 (5%)	3 (6%)
Hyperplasia, mast cell			1 (2%)
Inflammation, granulomatous		1 (2%)	
Lymphoid follicle, depletion lymphoid		2 (5%)	5 (11%)
Lymphoid follicle, necrosis	2 (5%)	5 (11%)	1 (2%)
Thymus	(34)	(33)	(40)
Cyst	3 (9%)	2 (6%)	1 (3%)
Hyperplasia, lymphoid			1 (3%)
Inflammation, granulomatous		1 (3%)	
Necrosis	1 (3%)	10 (2021)	2 (5%)
Cortex, depletion lymphoid Epithelial cell, hyperplasia, focal	6 (18%) 1 (3%)	10 (30%)	8 (20%)
	1 (570)		
Integumentary System	(14)		(40)
Skin	(44)	(45)	(48)
Abscess	1 (22)	1 (2%)	1 /201
Alopecia	1 (2%)		1 (2%)
Inflammation, acute		2 (4%)	
Ulcer, focal		2 (4%)	

TABLE C4

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Inhalation Study of Talc (continued)

7

	0 mg/m ³	б mg/m ³	18 mg/m ³
Musculoskeletal System			
Bone	(46)	(47)	(49)
Rib, cartilage, fracture healed	1 (2%)		
Vervous System			
Brain	(46)	(47)	(48)
Mineralization, focal	37 (80%)	`39 (83%)	38 (79%)
Respiratory System			
arynx	(42)	(41)	(46)
Inflammation, acute	1 (2%)		1 (2%)
Lung	(45)	(47)	(48)
Congestion	3 (7%)	1 (2%)	1 (2%)
Hyperplasia, macrophage	3 (7%)	46 (98%)	48 (100%)
Inflammation, chronic active		16 (34%)	40 (83%)
Thrombosis			1 (2%)
Alveolar epithelium, hyperplasia, focal	1 (2%)		
Peribronchiolar, inflammation, chronic active	1 (20)	1 (2%)	
Perivascular, inflammation, suppurative	1 (2%)	(46)	(17)
lose	(45)	(46)	(47)
Cytoplasmic alteration, focal Erosion, focal	5 (11%) 1 (2%)	23 (50%)	40 (85%)
Inflammation, acute	1 (2%) 4 (9%)	1 (2%) 4 (9%)	2 (4%) 7 (15%)
· · · · · · · · · · · · · · · · · · ·			
Special Senses System			
Ear	(1)		
Inflammation, granulomatous	1 (100%)		
Jrinary System			
Kidney	(45)	(46)	(48)
Casts protein	1 (2%)		
Cyst	2 (4%)	1 /	
Hydronephrosis	3 (7%)	1 (2%)	0 // 01
Inflammation, suppurative, focal	3 (7%)	5 (11%) 2 (7%)	3 (6%)
Metaplasia, osseous, focal	2 (70%)	3 (7%)	2 (10)
Nephropathy, chronic Capsule, inflammation, suppurative	3 (7%)		2 (4%) 1 (2%)
Pelvis, inflammation, suppurative	2 (4%)	5 (11%)	1 (2%) 1 (2%)
Jrinary bladder	(43)	(38)	(43)
Dysplasia, focal	1 (2%)		(,
Inflammation, chronic active	6 (14%)	5 (13%)	2 (5%)
Ulcer, focal			1 (2%)
Transitional epithelium, hyperplasia		1 (3%)	

^a Number of animals examined microscopically at site and number of animals with lesion

APPENDIX D SUMMARY LESIONS IN FEMALE MICE IN THE 2-YEAR INHALATION STUDY OF TALC

Table D1	Summary of the Incidence of Neoplasms in Female Mice	
	in the 2-Year Inhalation Study of Talc	163
Table D2	Individual Animal Tumor Pathology of Female Mice	
	in the 2-Year Inhalation Study of Talc	166
Table D3	Statistical Analysis of Primary Neoplasms in Female Mice	
	in the 2-Year Inhalation Study of Talc	184
Table D4	Summary of the Incidence of Nonneoplastic Lesions in Female Mice	
	in the 2-Year Inhalation Study of Talc	185

Lesions in Female Mice

TABLE D1

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Inhalation Study of Talc^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Disposition Summary			
Animals initially in study	50	50	50
Early deaths		20	20
Moribund	2	4	4
Natural deaths	17	21	21
Survivors			
Terminal sacrifice	30	23	25
Missing	1	1	
Culled		1	
Animals examined microscopically	46	48	50
Alimentary System			
Esophagus	(43)	(47)	(48)
Gallbladder	(31)	(28)	(29)
Intestine large, cecum	(35)	(29)	(34)
Leiomyoma			1 (3%)
Intestine large, colon	(38)	(33)	(32)
Leiomyosarcoma	. ,	í (3%)	
Intestine small, ileum	(33)	(27)	(31)
Liver	(46)	(46)	(50)
Hemangioma		1 (2%)	
Hepatocellular carcinoma	7 (15%)	5 (11%)	4 (8%)
Hepatocellular adenoma	5 (11%)	1 (2%)	4 (8%)
Mesentery	(2)		
Pancreas	(42)	(39)	(44)
Salivary glands	(46)	(48)	(50)
Hemangioma	1 (2%)		
Stomach, glandular	(45)	(39)	(46)
Cardiovascular System			
Heart	(46)	(48)	(50)
Alveolar/bronchiolar carcinoma, metastatic,			
lung		1 (2%)	
Endocrine System		······································	
Adrenal gland	(46)	(45)	(50)
Spindle cell, adenoma	1 (2%)	()	()
Adrenal gland, cortex	(46)	(44)	(50)
Adenoma	1 (2%)		<u> </u>
Adrenal gland, medulla	(41)	(43)	(45)
Pheochromocytoma malignant	1 (2%)	()	()
Pituitary gland	(42)	(42)	(48)
Adenoma	5 (12%)	4 (10%)	2 (4%)
Carcinoma	- \/	2 (5%)	
Thyroid gland	(43)	(47)	(49)
Follicular cell, adenoma	1 (2%)	2 (4%)	2 (4%)

TABLE D1

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m³	
General Body System				
Tissue NOS	(4)	(1)	(2)	
Fibrosarcoma	1 (25%)			
Hemangioma	1 (25%)		1 (50%)	
Hemangiosarcoma			1 (50%)	
Genital System				
Ovary	(38)	(43)	(46)	
Adenocarcinoma, metastatic, uterus	1 (3%)			
Adenoma	1 (3%)	1 (2%)		
Cystadenoma		1 (2%)		
Luteoma	2 (5%)			
Uterus	(44) `	(45)	(49)	1 A.
Adenocarcinoma	1 (2%)			
Carcinoma adenosquamous			1 (2%)	· .
Hematopoietic System				
Bone marrow	(41)	(43)	(45)	
Lymph node	(46)	(46)	(49)	
Lymph node, bronchial	· · ·			
	(38)	(37)	(43)	
Adenocarcinoma, metastatic, kidney	1 (20)	1 (3%)		
Adenocarcinoma, metastatic, uterus Alveolar/bronchiolar carcinoma, metastatic,	1 (3%)	2 (8%)		
lung	(25)	3 (8%)	00	
Lymph node, mandibular	(35)	(38)	(36)	· .
Lymph node, mediastinal	(13)	(17)	(14)	
Adenocarcinoma, metastatic, kidney Alveolar/bronchiolar carcinoma, metastatic,		1 (6%)		-
lung		1 (6%)	(27)	
Lymph node, mesenteric	(35)	(31)	(37)	
Spleen	(45)	(44)	(50)	
Hemangiosarcoma			1 (2%)	•
Thymus	(40)	(40)	(41)	
Alveolar/bronchiolar carcinoma, metastatic, lung		2 (5%)	, ,	
Integumentary System				
Mammary gland	(41)	(45)	(48)	
Fibrosarcoma		()	1 (2%)	· · .
Musculoskeletal System				
Bone	(46)	(48)	(50)	
Vertebra, alveolar/bronchiolar carcinoma,	(**)	(**)	(30)	
metastatic, lung		1 (2%)		
Nervous System				
Spinal cord			(1)	
Thoracic, ganglioneuroma			1 (100%)	
THORADIO, BUILDING ALOUND			1 (10070)	

Table D1

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Inhalation Study of Talc (continued)

(50) 2 (4%) 1 (2%) 1 (2%) (45)
2 (4%) 1 (2%) 1 (2%)
2 (4%) 1 (2%) 1 (2%)
1 (2%) 1 (2%)
1 (2%) 1 (2%)
1 (2%)
(45)
(1)
1 (100%)
,
(50)
(
(41)
(50)
1 (2%)
3 (6%)
2 (4%)
2 (4%)
21
31
10
13
15
18
18
18 1 1

Number of animals examined microscopically at site and number of animals with lesion Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms а

b

с

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Inhalation Study of Talc: 0 mg/m³ 0 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7 4 5 9 4 8 8 8 9 2 2 2 2 2 2 2 Number of Days on Study 3 2 6 8 0 0 0 2810362399 999 0 4 **n** 6 5 7 5 6 5 5 534 4 4 4 4 5 5 4 5 4 4 3 3 3 3 3 3 **Carcass ID Number** 3 0 3 7 1 2 8 1 7 7 0 2 9 0 4 9 7 8 8 8 8 5 5 8 7 7 6 6 7 9 3 0 4 6 7 0 2 5 3 146 1 **Alimentary System** Esophagus + + M + + M M + ++ + Gallbladder A M A M A M A + A Α Α Α A + + Intestine large A + + A A A + + A + A+ + + + Intestine large, cecum A + A A A A A A A +Α + А + Α Intestine large, colon A + A A A A + + A + A+ + + + + м Intestine large, rectum A M + M M A + + M A A M+ + + М A + A A A A A + A A A A A Intestine small + + + Intestine small, duodenum + + м Δ Intestine small, ileum A + A A A A A A A A A A A + + + Intestine small, jejunum Α + A A A A A + A A A A A + Α + + + + + + + + Liver + + + + Hepatocellular carcinoma х х х x Hepatocellular adenoma Mesentery Pancreas + + + Α + A A+ + + + Ĩ + + + Salivary glands + + + Hemangioma Stomach + + А + Stomach, forestomach + + Α + + + + + + + + + + Stomach, glandular + Α + + + + + + + + + **Cardiovascular System** Heart + + + + **Endocrine System** Adrenal gland Spindle cell, adenoma Adrenal gland, cortex Adenoma Adrenal gland, medulla M + M + + + I I+ + + Pheochromocytoma malignant M + A A M + I M I M I M + +Islets, pancreatic + + + + + M + + + MMMI M + Parathyroid gland ММ + M + + M + M I ++ + + + + Pituitary gland M + + + MM + + +I + + + + хх х Adenoma X + + + + + + Thyroid gland + Follicular cell, adenoma

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3 -	3	3	
	9	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	3	
	3	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	4	4	5	5	5	5	
Carcass ID Number	9	1	1	4	4	4	4	4	5	7	7	7	7	7	0	0	0	0	2	0	8	3	3	3	3	Total
	0	1	8	0		2	3		0	0	1	4	8	9	1	2	4	9	9		0	0	1	8	9	Tissue
	1	1	1	1	1		1																			Tumor
Mimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	43
Gallbladder	+	+	+	+	+	+	Ι	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	31
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	40
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	35
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	38
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	M	+	+	+	+	34
Intestine small	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	35
Intestine small, duodenum	+	N	M	í +	+	+	+	+	+	+	+	+	+	+	M	M	+	+	+	M	+	+	+	+	+	27
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	÷				+				+	+	+	÷	+	+	÷	33
Intestine small, jejunum	+	÷	+	+	+	+	+	+	÷	+	+	Ň				+	+	+	+	+	+	+	+	+	÷	33
Liver	+	+	+	+		+	+	+	+					-	+		+	+	+	+	+	+	+	+	+	46
Hepatocellular carcinoma	x		•	•			•	•	•	•	•		'	•	•	•	•	•		•	•	•	x	•	•	7
Hepatocellular adenoma						х		х			х												~	х		5
Mesentery								~			~		Т											~		2
Pancreas	<u>ـ</u>	-	-	-	Ъ	Ŧ	ш	-	ъ	т	+	+	+	+	+	+	ъ	т	ъ	-	ъ	т	ъ	-	<u>н</u>	42
Salivary glands	, 		Ļ			, 		Ť	Ţ	+	+		+	+	+	+	+	т Т	т 	т -	т 	т 		+	т 	46
Hemangioma	т	-	т	т	т	т	т	Ŧ	т	т	т	x	т	т	т	т	т	т	т	т	т	т	т	т	т	40
Stomach	<u>ь</u>			.L	Т	+	ъ	Ŧ	Ŧ	-	Т		т	Ŧ	+	т	1	т	ъ	-	л					45
Stomach, forestomach					- T	т 				+	+++		+	T	T	Ť	Ŧ	Ţ	Ţ	T	Ť	+	+	+	+	
Stomach, glandular		-			+	+ +	+	-	+	+	+	++	+	+	+	++	++	++	++	+	+	+	+	+	+	45 45
	т 	-	+	т 	т 	т 	т 		т 		т 	т	-	т 	т 	т 	т 			Ŧ		+	+	+	+	43
Cardiovascular System Heart			-	-	-				1				-		+											16
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Indocrine System													_													
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	46
Spindle cell, adenoma																				X						1
Adrenal gland, cortex			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Adenoma	X																									1
Adrenal gland, medulla Pheochromocytoma malignant					+			+	+	+		х			+								+			41 1
Islets, pancreatic							I																			25
Parathyroid gland	+						M																			23
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		42
Adenoma																									x	5
																										40
Thyroid gland Follicular cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+ X		+	+	43 1

Individual Animal Tumor Pathology of Female Mice in the 2-Year Inhalation Study of Talc: 0 mg/m³ (continued)

• •

TABLE D2

•	Å				F			~	~	j.			1			È	-	-	~	~	-						
Number of Days on Study	03	4	4	4 8	_	5	5	5 4	5						6 9				2	2							
tumor of Days on Study	0			7											2							• .			4.	•.	
		-	_		-	_				_	_ 	 		-	_		_	-									
Carcass ID Number	-		5	_		4															-						
arcass ID Number	3			7 6								2	9				7			8 4	_						
	-			1																							
			<u> </u>	•	•	•	• 	•		<u> </u>	<u> </u>	•	-	•	•	-	•	•	•	<u> </u>	<u> </u>						
General Body System																											
Tissue NOS																								•		•	
Fibrosarcoma Hemangioma																											
пешандюша																											
Genital System																											
Ovary	+	+	+	+	+	+	+	I	+	+	I	Μ	+	+	+	+	+	+	+	+	+						
Adenocarcinoma, metastatic, uterus																											
Adenoma																						•					
Luteoma																											
Uterus Adenocarcinoma	м	1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+						
Iematopoietic System			-																								
Bone marrow	+	-	Δ	+	Δ	Δ	+	Δ	A	+	+			+	+	+	+	+	+	+	Ŧ						
Lymph node	+		+			+							÷	+	+	÷	+	+	÷	÷	+					,	•
Lymph node, bronchial	M			+											+	-	+	+	+								
Adenocarcinoma, metastatic, uterus					·																						
Lymph node, mandibular				+																			•				
Lymph node, mediastinal				Μ																							
Lymph node, mesenteric				Μ																							
Spicen				+																							
Thymus	M	М	+	+	+	м	+	+	+	+	+	+	+	м	+	м	+	+	+	+	+						
ntegumentary System																											
Mammary gland	А	+	+	+	+	Α	+	I	+	+	+	М	+	+	+	+	+	+	+	+	+						
Skin				+				+	÷		+				+				÷								
/usculoskeletal System																											
Bone	۰	+	Ŧ	+	Ŧ	+	Ŧ	Ŧ	+	+	+	+	+	Ŧ	+	Ŧ	+	Ŧ	+	Ŧ	Ŧ						
Done	Ŧ	т	Ŧ	T'	T'	т 	-	T	T	т 	- -	<u>.</u>	т 	т 	Ŧ	т 	т	T	τ	т [,]	т						
lervous System																									· .		
Brain															+												

Table D2

																									ued)
7	7	7	7	7	7	7	7	7	7	7	7											7	7	7	
2				3				3	3	3	3	3	3	3	3	3	3						_	_	
9	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	3	
3	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	4	4	5	5	5	5	
9	1	1	4	4	4	4	4	5	7	7	7	7	7	0	0	0	0	2	0	8	3	3	3	3	Total
0	1	8	0	1	2	3	5	0	0	1	4	8	9	1	2	4	9	9	9	0	0	1	8	9	Tissues
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
								+		+		+						+							4
																									1
																		х							1
																								`	
+	+	+	M	i +	+	+	м	+	+	+	М	+	+	м	+	+	+	+	I	+	+	+	+	+	38
																									1
																х									1
					Х											х									2
+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
						х																			1
+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	41
+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
M	: +	+	• +	+	• +	+	+	+	I	+	+	+	+	+	+	+	+	+	I	+	+	+	+	+	38
						Х																			1
+	+	+	• +	ŀ	1 M	i +	+	+	+	+	+	+	+	М	М	+	+	+	М	+	Μ	+	+	+	35
M	M	IN	4 M	[₽	1 +	М	M	M	М	+	+	М	М	М	М	М	Μ	Μ	+	М	Μ	М	Μ	+	13
M	[+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	M	+	35
+	+	+	- +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	40
						<u> </u>																			
+	+	+	• +	+	·I	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	41
+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
+	+	· -+	• +	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
+	+	. .	- +		- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
	3 9 0 1 + + + M M M M M + + M M M + +	3 4 9 1 0 1 1 1 1 1 + + + + + + M + + + M M M + + + + + M M M + + + +	2 3 3 9 0 0 3 4 4 9 1 1 0 1 8 1 1 1 + + + + + + + + + M + + + + + M M M M + + + + + + + + + + + + + + + + + + +	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 & 3 & 3 & 3 & 3 \\ 9 & 0 & 0 & 0 & 0 \\ \hline 3 & 4 & 4 & 4 & 4 \\ 9 & 1 & 1 & 4 & 4 \\ 0 & 1 & 8 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$	$\begin{array}{c} 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$	$\begin{array}{c} 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$	$\begin{array}{c} 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$	$\begin{array}{c} 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$	$\begin{array}{c} 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$	$\begin{array}{c} 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$	$\begin{array}{c} 2 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \$	$\begin{array}{c} 2 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \$	$\begin{array}{c} 2 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \$	$\begin{array}{c} 2 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \$	$\begin{array}{c} 2 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \$	$\begin{array}{c} 2 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \$	2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Ϋ́.

TABLE D2

0 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7 Number of Days on Study 3 2 6 8 0 0 0 4 5 9 4 8 8 8 9 2 2 2 2 2 2 2 0 3 2 3 9 5 5 3 3 **Carcass ID Number** 8 8 **Respiratory System** Larynx I Lung Alveolar/bronchiolar adenoma х х Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic, liver X Nose Trachea **Special Senses System** Harderian gland + х Adenoma Urinary System Kidney Hepatocellular carcinoma, metastatic, liver Х Urinary bladder M + Systemic Lesions Multiple organs Lymphoma malignant lymphocytic Х Lymphoma malignant mixed Lymphoma malignant undifferentiated х cell type

Individual Animal Tumor Pathology of Female Mice in the 2-Year Inhalation Study of Talc: 0 mg/m³ (continued)

_

_

- --

TABLE D2

ndividual Animal Tumor Pathology	of F	'em	ala	• ℕ	/lic	ei	m í	the	2-	Ye	ær	In	ha	lat	ion	n S	âna d	ly (of	Ta	lc:	0 1	mg	/m	³ (o	ont	inued)
Number of Days on Study		7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	
Carcass IID Number		9 0	1					4 4 3 1		5 0	7 0	7 1	7 4		7 9	0 1	0 2	0 4		2 9	9	8 0	3 0	1	3 8	3 9	Total Tissue: Tumor
Respiratory System Larynx Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma		+ +	+ +	+++	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	++	M +	+ +	I +	+ +	+ +		+ +	+ + X	+ + x	+ +	+ +	+ +	42 46 3 2
Hepatocellular carcinoma, metastatic, liver Nose Trachea	-	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ M	+ +	+ +	+ +	+ +	+ +	+ +	+ +	2 46 40
Special Senses System Harderian gland Adenoma																										+ x	2 2
Jrinary System Kidney Hepatocellular carcinoma, metastatic, liver		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46 1
Urinary bladder		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Systemic Lesioms Multiple organs Lymphoma malignant lymphocytic Lymphoma malignant mixed		+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+ X	+	+ x		+	+	+	+	+	+ x	46 2 3
Lymphoma malignant undifferentiated cell type				x										~					^							л	3

.

. . . .

-. -

. . .

_

TABLE D2 Individual

Individual Animal Tumor Pathology	UI FEL	141						_																				
	0	0	4	4	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	6	7	7	7				
Number of Days on Study	2	9	2	9	0	3	4	5	5	6	1	2	2	4	4	6	7	7	8	9	9	0	0	1				
	0	2	2	1	0	4	8	4	9	4	8	1	8	1	5	5	6	8	6	2	9	9	9	2				
<u> </u>									0																			,
Carcass ID Number									1																			
									9																			
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1				
Alimentary System	-																					÷						
Esophagus	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+				
Gallbladder	Α	Μ	M	M	Α	Α	+	+	+	A	Α	Α	Α	Α	Α	Α	Α	Α	Μ	A	A	. +	A	+				
Intestine large																								. +				
Intestine large, cecum																								. +				
Intestine large, colon Leiomyosarcoma			-						+																:			
Intestine large, rectum									Μ																			
Intestine small									+																			
Intestine small, duodenum									+																			
Intestine small, ileum																								. +				
Intestine small, jejunum																								. +				
Liver	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	• • +	· +	+				
Hemangioma Hepatocellular carcinoma															x				x									
Hepatocellular adenoma													т	м									,	T				
Pancreas Seliciones elegado									+														• •	· 1				
Salivary glands									+															* *				
Stomach formation ash									++															+				
Stomach, forestomach																											:	
Stomach, glandular	A	+	+	A	A	+	+	+	+	A	A	+	+	A	+	+	А	+	+	+	+	• +	· A	. +				
Cardiovascular System															_													
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	+				
Alveolar/bronchiolar carcinoma,																												
metastatic, lung				Х																		,		`				
Endocrine System				_		_																						
Adrenal gland	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	4	+		+				
Adrenal gland, cortex	+			A						+	+	+	Ň						+	+	+	· +	• +	• +				•
Adrenal gland, medulla	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	14	+				
Islets, pancreatic									+																			
Parathyroid gland																								M		÷		
Pituitary gland																								+				
Adenoma	•																											
Carcinoma						х												х										
Thyroid gland	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	+				
Follicular cell, adenoma																												

.

Lesions in Female Mice

TABLE D2

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	1	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	4	9	9	9	9	0	0	0	0	0	1	1	1	1	1	2	2	2	2	2	2	3	3	3	
	0	0		0	1	-	0	-		_	-		1	_		-	-		_						
Carcass ID Number	8			3			5		7														7	8	Total
	5	4	9	0	6	2	4	6	8	7	7	9	9	1	8	4	5	6	8	9	2	7	8	0	Tissues
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
Alimentary System	11-11 ₁₁₁																								
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Galibladder	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	28
Intestine large	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	34
Intestine large, cecum	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	29
Intestine large, colon	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	33
Leiomyosarcoma																			Х						1
Intestine large, rectum	Α	÷	+	М	+	+	+	+	+	+	М	I	+	+	+	+	+	+	+	Μ	+	+	+	М	23
Intestine small	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	29
Intestine small, duodenum	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ι	+	+	+	+	+	М	Μ	25
Intestine small, ileum	Α	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	÷	+	27
Intestine small, jejunum	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	28
Liver	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Hemangioma								Х																	1
Hepatocellular carcinoma														Х			х							х	5
Hepatocellular adenoma								х																	1
Pancreas	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	39
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Stomach	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Stomach, forestomach	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Stomach, glandular	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	39
Cardiovascular System																									
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Alveolar/bronchiolar carcinoma, metastatic, lung																									1
Endocrine System																					_	_			
Adrenal gland	Δ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	45
Adrenal gland, cortex			+		- T	+	Ť	Ť	т —	т -	Ť	Ţ	т Т	т Т	Ļ	+	÷	+	+	т Т	т —	- -	- -	+	43 44
Adrenal gland, medulla				+	+	+	+	- -	- -	т —	+	+	+	Ť	÷	+	+	Ť	т -	т -	- 	- -	+	+ +	44 43
Islets, pancreatic								+	M	I	+	•		+	r	Ī		+	+	+	+	- -	•	+	20
Parathyroid gland									M												ľ	- -	M	•	20 18
Pituitary gland				+		+			+																42
Adenoma	•	•	•	•	x		•	•	•	•		x	•	•	•	•	•	•		x		•	•	•	4
Carcinoma																									2
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Follicular cell, adenoma				•	X	-	•	-	-					•		•			•	x		•	•	•	2

173

TABLE D2

Individual Animal Tumor Pathology	of Fen	nal	e N	Aic	ė i	n 1	he	2-	Ye	ar	In	ha	lati	ion	I St	tuć	ly (of	Ta	lc:	6	m	g/I	m³	(co	ntinue	ed)	
Number of Days on Study		9		4 9 1						6	1	2	2	4	6 4 5	6	7	7		9	9	0		0	1			
Carcass ID Number				1			1 7				0 2		0														·	
	7 1			5 1				8	9	5	2	0		1	6	8	8	1	9	3	0	8	3	0	0			
General Body System Tissue NOS	· <u>,</u>																•							_				
Genital System																												
Ovary	+	+	+	Α	+	+	+	+	+	+	+	• +	м	+	+	+	А	+	+	+	-		ł	+	+			
Adenoma Cystadenoma																												
Uterus	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	A	+	A	+	+	+	• +		ł	+	+			
Hematopoietic System				_																								
Bone marrow	+	+	+	Α	+	+	Α	+	+	Α	+	+	+	Α	+	+	+	+	+	+	- 4		ł	+	+			
Lymph node				+																+	• -	⊦ -	ł	+	+			
Lymph node, bronchial Adenocarcinoma, metastatic, kidney Alveolar/bronchiolar carcinoma,	M	[M	I M	[+		+	М	I	+	+	М	+	+	М	+ X				M	[+	• •		_	+	I			
metastatic, lung	_	. .		X								_					X						K.					
Lymph node, mandibular				M																								
Lymph node, mediastinal Adenocarcinoma, metastatic, kidney Alveolar/bronchiolar carcinoma,	IV	1 12	IM	[+	м	M	м	M	M	M	M	M	+	+	x		M	. IVI	. +	1	N			Ŧ	M			
metastatic, lung	•	<pre>c</pre>																	r 1.				K.					
Lymph node, mesenteric Spleen				A A																								
Thymus				+																								
Alveolar/bronchiolar carcinoma,						÷		:																				
metastatic, lung				х																		2	K					
Integumentary System								Ŷ	• •																			
Mammary gland	+	+	+	Α	+	+	+	+	+	+	+	+			+													
Skin	+	+	+	Ą	+	+	÷	+	+	+	+	+	+	+	+	+	M	[+	+	+		⊦ ·	+	+	+			
Musculoskeletal System																											_	
Bone	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	4	• •	۴ ۱	t	+	+			
Vertebra, alveolar/bronchiolar carcinoma, metastatic, lung																						2	X					
Nervous System	<u></u>																											
Brain	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +	- -		÷ -	+	+	+			

TABLE D2

-

Individual Animal Tumor Pathology	of Fen	nal	e	Mic	e i	m (he	2-	Ye	91°	Iml	hal	ati	on	St	:wd	ly d) ())	Tal	c:	6	mg	/m	3 (coi	ntinued)
Number of Days on Study	7 · 1 4			7 2 9	7 2 9	7 3 0	7 3 0	7 3 0		7 3 0	7 3 1	7 3 1	7 3 1	3	7 3 1	3	3	3	3	3	3	3	3	7 3 3	
Carcass ID Number	8 5	4	2 9	0 3 0 1	0 6	2	5 4	7 6	7 8	0 7	8 7	8 9	0 9	1 1	3 8	4 4	4 5	6 6	6 8	6 9	7 2	4 7	7 8	8 0	Total Tissue Tumos
General Body System Tissue NOS				-													_								1
Senital System											•														······································
Ovary	+	• +		- M	: +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	43
Adenoma																х									1
Cystadenoma					Х																				1
Uterus	+	• +	• +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Iematopoietic System											•		-												
Bone marrow	Α	4	1	- +	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+ ·	43
Lymph node	+	- +	• -1	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Lymph node, bronchial Adenocarcinoma, metastatic, kidney Alveolar/bronchiolar carcinoma,	+	- +	• I	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	37 1
metastatic, lung	n	<i>.</i> .							N #								N #								3
Lymph node, mandibular Lymph node, mediastinal				⊦+ -M																					38 17
Adenocarcinoma, metastatic, kidney Alveolar/bronchiolar carcinoma,	Iv	1 IV	1 7	- 141	I IVI		IVI	т	т	т	т	Ŧ	т	т	IVI	141	IVI	IVI	IVI	T	IVI	IVI	IVI	M	1
metastatic, lung						+	т	•				b 4		T			•			b 4					1
Lymph node, mesenteric Spleen		. +		- + - +																					31
Thymus				- + - +																					44 40
Alveolar/bronchiolar carcinoma, metastatic, lung	·	•			'	•	•	т	,	•	т	1	'	т	Ŧ	1	1-	т	т	,	т	т	т	т	2
ntegumentary System																									
Mammary gland	+			- +	+	+	+	T	+	+	+	+	+	+	+	+	+	Ŧ	+	4	+	+	+	+	45
Skin	+	- +	• -1	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Ausculoskeletal System						-								_											
Bone	+	- +		+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Vertebra, alveolar/bronchiolar carcinoma, metastatic, lung																									1
Nervous System														 ,											40
Brain	+	- +		+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48

1.00

-

	•	•				-	e	~					6		~						,	-	7	~	
Number of Days on Study													2												
Tumber of Days on Study													8												
													0												
Carcass ID Number													5												
													6 1												
Respiratory System								·												_				_	
Larynx	+	+	+	Α	Α	I	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenocarcinoma, metastatic, kidney															х										
Alveolar/bronchiolar adenoma									Х							_	_					_			
Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic,				х												х	х					х			
liver															x										
Nose									+				+												
Trachea	+	+	+	A	A 	+	м 	+	+	A 	A	+	A	A	+	+	M	+	M	+	+	+	+	+	
Special Senses System																									
Eye												+													
Harderian gland Adenoma												+													
Urinary System															•										
Kidney	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	
Adenocarcinoma															Х										
Urinary bladder	Α	Α	+	Α	+	+	+	+	+	A	+	+	+	Α	Α	+	Α	+	+	+	+	+	+	+	
Systemic Lesions																					_				
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	
Lymphoma malignant lymphocytic Lymphoma malignant mixed													х										Х		

.

Lesions in Female Mice

Table D2

Individual Animal Tumor Pathology c	of Fem	ala	e₿	lic	e in	nî	he	2-7	Yes	dr i	InI	hal	ati	on	St	ud	y (of '	Fa l	c:	6 1	mg	/m	³ (c	ontinued)	
Number of Days on Study	7 1 4	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	-	-	-		3	3	3	3		3		7 3 2		7 3 2	_	-	3		
	0	0					0																			
Carcass ID Number	8						5																		-	otal
							4 1																			issues/ umors
Respiratory System																										
Larynx	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		3
Lung Adenocarcinoma, metastatic, kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		8 1
Alveolar/bronchiolar adenoma							x																			2
Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic,							Λ																			4
liver														х												2
Nose	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		6
Trachea	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	Μ	3	6
Special Senses System																		-								
Eye																										1
Harderian gland Adenoma													+ X													2 1
Urinary System																										
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4	6
Adenocarcinoma																										1
Urinary bladder	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4	0
Systemic Lesions																								-		
Multiple organs	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	4	8
Lymphoma malignant lymphocytic					•							х														3
Lymphoma malignant mixed			Х					х	х	х																4

TABLE D2

Individual Animal Tumor Patho	 _		_		_			_					_				_	-			_		_	_		
							0																			
Number of Days on Study	2	2	2	2	2	2	2	7	0	1	4	5	5	6	8	4	4	5	6	6	8	9	0	1	1	
	0	8	8	8	8	8	8	3	8	6	8	4	8	9	1	2	6	5	1	5	6	2	6	6	8	
	2	1	2	2	2	2	2	3	3	2	2	3	3	3	2	3	2	3	2	2	2	2	2	2	2	
Carcass ID Number							0																			
							7 1																			
limentary System	 				_															_						
Esophagus	+	+	+	+	+	Μ	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Gallbladder							М																			
Intestine large	A	Α	Α	+	+	Α	Α	+	+	A	+	Α	+	Α	+	Α	+	A	Α	Α	+	+	A	Α	+	
Intestine large, cecum Leiomyoma							Α																	•••	-	
Intestine large, colon							Α																			
Intestine large, rectum							A																			
Intestine small							A			_															•	
Intestine small, duodenum							A																			
Intestine small, ileum							Α																			
Intestine small, jejunum							A																			
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Hepatocellular carcinoma Hepatocellular adenoma															x										X X	
Pancreas	۸	т	т	т	м	۸	+	т	т		т	т	-			ъ	т	т	т	т	-	т	-			
Salivary glands							+																			
Stomach							+																			
Stomach, forestomach							+																			
Stomach, glandular							+																			
Cardiovascular System	 																			_		_				
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System													-			_				_			-	_		
Adrenal gland	+	+	+	+			+													+	+	+	+	+	+	
Adrenal gland, cortex				+		-	+		-				+				+		-	+	+	+	+	+	+	
Adrenal gland, medulla							I																			
Islets, pancreatic							M																			
Parathyroid gland	-			•			M				-	-	-	-			-		-					-		
Pituitary gland Adenoma							+				+	+	+	+	Ŧ					х						
Thyroid gland Follicular cell, adenoma	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
General Body System																										
Tissue NOS								+																		
Hemangioma																										
Hemangiosarcoma								х																		

Table D2

.

	_	_	_	_	_	_	_	-	_	_	_	-	_	_	-	_	_	_	-	-	_	-	-	-	-	
	-	7		7	7	7	7	7	7	7	7	7	7		•		7	7	7	7	7	7	7	7	•	
Number of Days on Study	2 9	2 9	2 9	2 9	2 9	3 0	3 0	3 0	3 0	3 1	3 1	3 1	3 1	3 1		3 2	3 2	3 2	3 2	3 2	3 3	3 3	3 3	3 3		
	2	2	2	2	2	2	2	<u> </u>	2	2	2	 2	3	3		3	3	3	3	3	2	2	2	3	3	· · · · · ·
Carcass ID Number		_		3													-				5		9	-		Total
	0						1								4						6	9		2		Tissues
	-	-	•	1																				-		Tumor
limentary System						<u> </u>																				· · · · • •• · · · · • ••
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Gallbladder	+	+	+	+	+	M		+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	29
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	36
Intestine large, cecum	+	+	+	+	+	+		+	+	+	+				+		+		+	+	+	+	+	+		34
Leiomyoma		•	•	•	•		·					x														1
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	32
Intestine large, rectum	+	+	+	+			M											Í	+	+	+	+	+	+	+	27
Intestine small	+	+	+	+	+	+		+			+	+	+	+		+	+	+	+	+	+	+	+	+	+	34
Intestine small, duodenum		+		+	+								+	+		+	+	+	+	+	+	+	М	+	+	27
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	31
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	31
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatocellular carcinoma	x										х			х												4
Hepatocellular adenoma									x													х				4
Pancreas	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Cardiovascular System															_											<u></u>
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System	·····																									
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, medulla	+	+	+	Ι	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Islets, pancreatic	+	Ι	Μ	I	+	Ι					+	Μ	Ι									+	+	Μ	I	23
Parathyroid gland	м	1	+	+	+	I	М	Μ	М	+	I	+	+	М	М	+	+	М	I	М	+	+	+	М	+	25
Pituitary gland			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Adenoma	X																									2
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Follicular cell, adenoma							х	х																		2
General Body System																										
Tissue NOS									+																	2
Hemangioma									х																	1
Hemangiosarcoma																										1

TABLE D2

			_					_		_	_									_			_				 _
	0	0	0	0					5									6	6	6	6	6	7	7	7		
Number of Days on Study	2		2	2									5											1	_		
	0	8	8	8	8	8	8	3	8	6	8	4	8	9	1	2	6	5	1	5	6	2	6	6	8		
	2	1	2	2	2	2	2	3	3	2	2	3	3	3	2	3	2	3	2	2	2	2	2	2	2		
Carcass ID Number	9	9	0	0	0	0	0	4	4	0	3	1	5	6	7	2	3	5	2	2	3	6	9	6	5		
																								7 1			
Genital System																											 _
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	м	+	+	м	+	+	+	+		
Uterus	+	+	Μ	+	+	+	+	+	+	+	+	+											+	+	+		
Carcinoma adenosquamous																											
Hematopoietic System																		_									
Bone marrow	+	+	+	+	+	+	+	A	+	Α	Α	+	+	Α	Α	+	+	+	+	+	+	+	+	+	+		
Lymph node													+						+	+	+	+	+	+	+		
Lymph node, bronchial													+					+	+	+	+	+	+	+	+		
Lymph node, mandibular	+	Μ	Μ	Μ	+	+	+	+	+	+	+	+	М	М	+	+	+	+	+	+	+	+	+	+	+		
Lymph node, mediastinal																								+			
Lymph node, mesenteric	Μ	Μ	Α	+	М	Μ	М	+	+	Α	+	Α	+	+	+	М	+	+	+	+	М	+	Μ	+	+		'
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Hemangiosarcoma																											
Thymus	М	Μ	+	Μ	+	+	М	М	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	Μ	Ι		
Integumentary System																_			_	_						<u> </u>	
Mammary gland	+	+	м	+	+	+	+	+	+	+	+	I	+	+	+	+	+	+	+	+	+	+	+	+	+		
Fibrosarcoma												-			-			-					-	·			
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Musculoskeletal System			+																								
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Nervous System														_									_				
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Spinal cord Thoracic, ganglioneuroma																											
Respiratory System			_													_				_							 _
Larynx	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lung	+	+	+	+	+	÷	÷	÷	+	÷	÷	+	÷	+	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	+		
Alveolar/bronchiolar adenoma			'	'	'	•	•	•	•	•	x		•	•	•	•		•		·	•	•	,				
Alveolar/bronchiolar carcinoma											~		х														
Hemangiosarcoma, metastatic, tissue NOS								х																			
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Å	+	M	+	+	+	+	+	+	+		
	-				,		-																	-			

Lesions in Female Mice

TABLE D2

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	2	2	2	3		3			3			•	3				3	-	3	3	3	3	•	
ARTIFICE OF TAARS OF SCOREY	9	9	_	-	-	-		-							2						3			3	-	
	2	2	2	2	2	2	2	2	2	2	2				3	3	3	3	3	3	2	2	2	3	3	
Carcass ID Number	1	2	3		4					9			1				_	5			-	-	9	_	-	Total
	0 1		4 1												4 1											Tissues Tumors
																						7				
Genital System																										
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		M		+	+	+	+	+	+	++	46
Uterus Carcinoma adenosquamous	Ŧ	+	+	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	T	Ŧ	Ŧ	+	Ŧ	т	+	Ŧ	Ŧ	Ŧ	x	+	Ŧ	Ŧ	Ŧ	Ŧ	49 1
lematopoietic System																										<u></u>
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node, bronchial	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	43
Lymph node, mandibular	М	+	+	М	I	М	+	+	М	+	+	+	+	+	М	М	+	+	+	+	+	М	+	М	+	36
Lymph node, mediastinal	M	M	M	Μ											М					+	М	+	+	Μ	M	14
Lymph node, mesenteric		+			+		+	+	+	+	+	+			+				+	+	+		+		M	37
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma																	х									1
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	I	41
ntegumentary System																						-				
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	48
Fibrosarcoma																х										1
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Musculoskeletal System																										
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Vervous System																										
Brain	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Spinal cord	+																									1
Thoracic, ganglioneuroma	х																									1
Respiratory System																										
Larynx	I	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma												х														2
Alveolar/bronchiolar carcinoma																										1
Hemangiosarcoma, metastatic, tissue NOS																										1
Nose	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Trachea	M	: +	+	+	+	+	+	+	+	+	+	+	+	Μ	I	+	+	+	+	+	+	+	+	+	+	45
.4

Individual Animal Tumor Pathology o	of Fei	nal	e l	Mic	e i	i n 1	the	2.	Ye	ar	In	ha	lati	on	S	tud	ly e	of '	Tal	c:	18	m	g/r	n ³	(con	tinu	ied)	
	Ö	0	0	0	0	0	0	4	5	5	5	5	5	5	5	6	6	6	6	6	6	6	7	7	7			
Number of Days on Study	2	2	2	2	2	2	2	7	0	1	4	5	5	6	8	4	4				8	9	0	1	1			
	0	8	8	8	8	8	8	3	8	6	8	4	8	9	1	2	6	5	1	5	6	2	6	6	8			- 1
<u></u>	2	: 1	2	2	2	2	2	3	3	2	2	3	3	3	2	3	2	3	2	2	2	2	2	2	2			
Carcass ID Number	9	9	0	-	0	0	0	4	4			1	5		7	2	3	5	2	2	-	6	9		5			
	2		-				7	9				6	3	0		8	2	2	-		6				9			
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Special Senses System Harderian gland Adenocarcinoma					-																		+ X					
Urinary System																												
Kidney	4	+ +	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Urinary bladder	F	AA	. +	• +	+	+	Α	. +	+	+	+	Α	+	+	+	Α	+	Α	+	+	A	+	A	Α	+			
Systemic Lesions		_																										
Multiple organs	+	+ +	+	• +	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	•		
Lymphoma malignant histiocytic																х												
Lymphoma malignant lymphocytic																								v				
Lymphoma malignant mixed																								х				
Lymphoma malignant undifferentiated cell type																		x						•			•	

Table D2

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2 9	2 9	2 9	_	2 9		3 0	3 0	3 0	3 1	3 1	3 1	3 1	3 1	3 2	3 2	3 2	3 2	3 2	3 2	3 3	3 3	3 3	3 3	3 3	
	2	2	2	2	2	2	2	2	2	-	2	2	3	•	-	3	3	3	3	3	2	2	2	3	-	
Carcass ID Number	-	9		8	-	0	6 1 1	-	8		-	9 9 1	7	9	4	-	2 9 1	4	5	8	6	-	0	-	9	Total Tissues Tumor
pecial Senses System Harderian gland Adenocarcinoma																										1 1
Harderian gland Adenocarcinoma Jrinary System																										1
Harderian gland Adenocarcinoma	+	+	+	· +	· +		+++++++++++++++++++++++++++++++++++++++	+++	+++	+++	++	+++	++++	++++	++++	+++	++++	+++	++	++	+++	+++	+++	++++	+++	
Harderian gland Adenocarcinoma Vrinary System Kidney Urinary bladder ystemic Lesions Multiple organs				· + · +	<u> </u>	· + · +						++++	+++++++	+++++	++++	+++++	++++	++++++			++++++		++++++	+++++++	++++	1
Adenocarcinoma Jrimary System Kidney Urinary bladder Systemic Lesions					<u> </u>								+	+ + + x	+++++	++++++	+ + + + X						+	++++++	+++	1 50 41 50

TABLE D3

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Inhalation Study of Talc

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Liver: Hepatocellular Adenoma			
Overall rates ^a	5/46 (11%)	1/47 (2%)	4/50 (8%)
Adjusted rates ^b	16.7%	4.3%	14.0%
erminal rates ^c	5/30 (17%)	1/23 (4%)	2/25 (8%)
irst incidence (days)	729 (T)	729 (T)	581
ife table tests ^d	P=0.565	P=0.169N	P=0.602N
ogistic regression tests ^d	P=0.603N	P=0.169N	P=0.539N
ochran-Armitage test ^d	P=0.523N		
isher exact test ^d		P=0.097N	P=0.447N
iver: Hepatocellular Carcinoma			
verall rates	7/46 (15%)	5/47 (11%)	4/50 (8%)
djusted rates	19.1%	18.4%	15.4%
erminal rates	3/30 (10%)	3/23 (13%)	3/25 (12%)
irst incidence (days)	426	645	718
ife table tests	P=0.308N	P=0.487N	P=0.344N
ogistic regression tests	P=0.243N	P=0.372N	P=0.255N
ochran-Armitage test	P=0.197N		
isher exact test		P=0.364N	P=0.216N
iver: Hepatocellular Adenoma or Carcinoma	`		
verall rates	11/46 (24%)	6/47 (13%)	7/50 (14%)
djusted rates	31.1%	22.5%	25.2%
erminal rates	7/30 (23%)	4/23 (17%)	5/25 (20%)
irst incidence (days)	426	645	581
ife table tests	P=0.329N	P = 0.262N	P=0.330N
ogistic regression tests	P=0.253N	P=0.147N	P=0.227N
ochran-Armitage test	P=0.184N		
isher exact test		P=0.131N	P=0.163N
ung: Alveolar/bronchiolar Adenoma			
verall rates	3/46 (7%)	2/49 (4%)	2/50 (4%)
djusted rates	10.0%	6.7%	6.4%
erminal rates	3/30 (10%)	1/23 (4%)	1/25 (4%)
irst incidence (days)	729 (T)	559 D. 6 (200)	548
ife table tests	P = 0.505N	P = 0.589N	P = 0.562N
ogistic regression tests	P=0.467N	P=0.499N	P=0.515N
ochran-Armitage test isher exact test	P=0.425N	P=0.470N	P=0.460N
ung Alveolor/bronchiolor Carcinoma			
ung: Alveolar/bronchiolar Carcinoma	2/46 (4%)	4/49 (8%)	1/50 (2%)
verall rates	2/40 (4 <i>%)</i> 6.7%	4/49 (8%) 11.6%	2.6%
djusted rates		0/23 (0%)	2.0% 0/25 (0%)
erminal rates	2/30 (7%) 729 (T)	491	558
irst incidence (days)	729 (T) P=0.383N	P = 0.286	P=0.539N
ife table tests		P=0.286 P=0.356	P = 0.500N
ogistic regression tests	P=0.325N P=0.309N	1 -0.550	1 -0.50014
Cochran-Armitage test	1	P=0.369	P=0.468N
isher exact test		1 -0.303	1 -0.10011

i-

Lesions in Female Mice

Table D3

े. उन्ह Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
ung: Alveolar/bronchiolar Adenoma or Carcinoma			· ·
Dverall rates	5/46 (11%)	6/49 (12%)	3/50 (6%)
djusted rates	16.7%	17.5%	8.9%
erminal rates	5/30 (17%)	1/23 (4%)	1/25 (4%)
irst incidence (days)	729 (T)	491	548
ife table tests	P=0.337N	P=0.394	P=0.428N
ogistic regression tests	P=0.269N	P=0.519	P=0.367N
ochran-Armitage test	P=0.235N		
sher exact test		P=0.545	P=0.311N
vary: Luteoma			
verall rates	2/38 (5%)	0/43 (0%)	0/46 (0%)
djusted rates	8.0%	0.0%	0.0%
erminal rates	2/25 (8%)	0/21 (0%)	0/24 (0%)
rst incidence (days)	729 (T)	_e	-
ife table tests	P=0.177N	P=0.277N	P=0.246N
ogistic regression tests	P=0.177N	P=0.277N	P=0.246N
ochran-Armitage test	P=0.146N		
sher exact test		P=0.217N	P=0.202N
tuitary Gland (Unspecified Site): Adenoma			
verall rates	5/42 (12%)	4/43 (9%)	2/48 (4%)
djusted rates	15.1%	18.2%	7.1%
erminal rates	2/30 (7%)	4/22 (18%)	1/25 (4%)
rst incidence (days)	683	729 (T)	665
ife table tests	P=0.239N	P=0.610	P=0.290N
ogistic regression tests	P=0.189N	P=0.604N	P = 0.220N
ochran-Armitage test	P=0.133N		
sher exact test		P = 0.485N	P=0.166N
ituitary Gland (Unspecified Site): Carcinoma			
verall rates	0/42 (0%)	2/43 (5%)	0/48 (0%)
djusted rates	0.0%	5.5%	0.0%
erminal rates	0/30 (0%)	0/22 (0%)	0/25 (0%)
rst incidence (days)	-	534	-
fe table tests	P=0.591N	P=0.237	-
ogistic regression tests	P=0.515N	P=0.274	-
ochran-Armitage test	P=0.542N		
sher exact test		P=0.253	-
ituitary Gland (Unspecified Site): Adenoma or Ca			
verall rates	5/42 (12%)	6/43 (14%)	2/48 (4%)
djusted rates	15.1%	22.7%	7.1%
erminal rates	2/30 (7%)	4/22 (18%)	1/25 (4%)
rst incidence (days)	683	534	665
ife table tests	P=0.216N	P=0.352	P=0.290N
ogistic regression tests	P=0.150N	P=0.451	P=0.220N
ochran-Armitage test	P=0.111N		
isher exact test		P=0.517	P=0.166N

TABLE D3

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³	
			-	
ll Organs: Hemangioma or Hemangiosarcoma		<i>.</i>	· · ·	
Overall rates	2/46 (4%)	1/49 (2%)	3/50 (6%)	
djusted rates	6.7%	4.3%	10.1%	
erminal rates	2/30 (7%)	1/23 (4%)	2/25 (8%)	
irst incidence (days)	729 (T)	729 (T)	473	
ife table tests	P=0.323	P=0.593N	P=0.434	
ogistic regression tests	P=0.356	P=0.593N	P=0.495	
Cochran-Armitage test	P=0.399			
isher exact test		P=0.476N	P=0.540	
ll Organs: Malignant Lymphoma (Histiocytic, Lym	phocytic, Mixed, or Undi	ferentiated Cell Type)		
Dverall rates	7/46 (15%)	7/49 (14%)	8/50 (16%)	
djusted rates	21.3%	26.7%	27.4%	
erminal rates	5/30 (17%)	5/23 (22%)	5/25 (20%)	
First incidence (days)	509	628	642	
ife table tests	P=0.358	P=0.454	P=0.387	
ogistic regression tests	P=0.406	P=0.607	P=0.463	
Cochran-Armitage test	P = 0.514			
fisher exact test		P=0.563N	P=0.571	
All Organs: Benign Neoplasms				
Dverall rates	18/46 (39%)	9/49 (18%)	10/50 (20%)	
Adjusted rates	54.5%	36.4%	33.0%	
Ferminal rates	15/30 (50%)	8/23 (35%)	6/25 (24%)	
irst incidence (days)	683	559	548	
Life table tests	P=0.148N	P=0.125N	P=0.145N	
ogistic regression tests	P=0.094N	P=0.044N	P=0.071N	
Cochran-Armitage test	P=0.050N			
Fisher exact test		P=0.022N	P=0.033N	
Il Organs: Malignant Neoplasms				
Overall rates	19/46 (41%)	19/49 (39%)	15/50 (30%)	
adjusted rates	51.9%	55.4%	45.6%	
erminal rates	13/30 (43%)	9/23 (39%)	8/25 (32%)	
First incidence (days)	426	491	473	
Life table tests	P=0.372N	P=0.340	P=0.441N	
ogistic regression tests	P=0.241N	P=0.546N	P = 0.279N	
Cochran-Armitage test	P=0.143N			
isher exact test		P=0.483N	P=0.173N	
All Organs: Benign or Malignant Neoplasms				
Dverall rates	31/46 (67%)	26/49 (53%)	21/50 (42%)	
Adjusted rates	81.4%	75.1%	58.9%	
Ferminal rates	23/30 (77%)	15/23 (65%)	11/25 (44%)	
First incidence (days)	426	491	473	
Life table tests	P=0.141N	P=0.537	P=0.168N	
ogistic regression tests	P=0.036N	P = 0.162N	P=0.035N	
Cochran-Armitage test	P = 0.011N			
Fisher exact test		P=0.112N	P=0.011N	

Lesions in Female Mice

TABLE D3

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Inhalation Study of Talc (continued)

(T)Terminal sacrifice

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, gallbladder, heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, salivary gland, spleen, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

Ь Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

- đ Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The life table test regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in an exposure group is indicated by N. e
- Not applicable; no neoplasms in animal group

С Observed incidence at terminal kill

TABLE D4

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Inhalation Study of Talc^a

	0 mg/m ³	6 mg/m ³	18 mg/m³
Disposition Summary	<u> </u>	u,_u,	· · · · · · · · · · · · · · · · · · ·
Animals initially in study	50	50	50
Early deaths	50	50	50
Moribund	2	4	4
Natural deaths	17	21	21
urvivors	17	21	21
Terminal sacrifice	30	23	25
lissing	1	1	25
Culled	1	1	
		1	
Animals examined microscopically	46	48	50
limentary System	· · · · · · · · · · · · · · · · · ·		
ntestine large, cecum	(35)	(29)	(34)
Hyperplasia, lymphoid	N/		1 (3%)
Serosa, inflammation, suppurative		1 (3%)	
ntestine large, colon	(38)	(33)	(32)
Serosa, inflammation, suppurative	N/	2 (6%)	
ntestine small, duodenum	(27)	(25)	(27)
Ulcer, focal	1 (4%)		
Mucosa, atrophy	2 (7%)	6 (24%)	4 (15%)
Serosa, inflammation, suppurative	= (())	2 (8%)	
ntestine small, ileum	(33)	(27)	(31)
Hyperplasia, lymphoid	1 (3%)	1 (4%)	()
Mucosa, atrophy	4 (12%)	6 (22%)	6 (19%)
Peyer's patch, necrosis	((==,;))	- ()	1 (3%)
Serosa, inflammation, suppurative		2 (7%)	1 (3%)
ntestine small, jejunum	(33)	(28)	(31)
Mucosa, atrophy	2 (6%)	7 (25%)	3 (10%)
Serosa, inflammation, suppurative	2 (0,0)	2 (7%)	1 (3%)
iver	(46)	(46)	(50)
Eosinophilic focus	(10)	1 (2%)	()
Fibrosis, focal		1 (2%)	
Focal cellular change	2 (4%)	3 (7%)	1 (2%)
	1 (2%)	2 (4%)	2 (4%)
Hematopoietic cell proliferation	1 (2%)	2 (4%)	1 (2%)
Inflammation, focal	1 (2%)	2 (4%)	2 (4%)
Necrosis, focal Pigmentation, hemosiderin, focal	1 (270)	1 (2%)	2 (470)
		1 (2%)	
Centrilobular, degeneration		1 (2%)	
Centrilobular, necrosis, coagulative	A (9%)	7 (15%)	5 (10%)
Serosa, inflammation, suppurative	4 (9%) 2 (4%)	(15%)	5 (1070)
Sinusoid, inflammation		(39)	(44)
ancreas	(42)	(33)	2 (5%)
Inflammation, focal	1 (2%)		2 (570)
Acinus, hyperplasia, focal	1 (2%)	5 (13%)	4 (9%)
Serosa, inflammation, suppurative	1 (2%)	(48)	(50)
alivary glands	(46)		1 (2%)
Inflammation, acute	(45)	1 (2%) (45)	(50)
tomach	(45)	(**)	1 (2%)
Serosa, inflammation, granulomatous	1 (20/1)	2 (10%)	1 (2%)
Serosa, inflammation, suppurative	1 (2%)	2 (4%) (45)	
tomach, forestomach	(45)	(45)	(50) 1 (2%)
Hyperplasia, mast cell, focal	2 / 40/ \		
Hyperplasia, squamous, focal	2 (4%)	4 (9%) 3 (7%)	2 (4%)
Ulcer, focal	1 (2%)	3 (7%)	

Table D4

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Limentary System (continued)			
tomach, glandular	(45)	(39)	(46)
Inflammation, suppurative			1 (2%)
Ulcer, focal	1 (2%)	1 (3%)	
Forestomach, inflammation, focal		1 (3%)	2 (4%)
Cardiovascular System		<u> </u>	·····
leart	(46)	(48)	(50)
Myocardium, degeneration, focal	í (2%)		
Myocardium, inflammation, focal		1 (2%)	
Myocardium, mineralization, focal	1 (2%)		
Pericardium, inflammation, suppurative	1 (2%)	2 (4%)	4 (8%)
Indocrine System			
Adrenal gland	(46)	(45)	(50)
Capsule, inflammation, suppurative	Á (9%)	7 (16%)	5 (10%)
Corticomedullary junction, hemorrhage	2 (4%)	3 (7%)	1 (2%)
Spindle cell, hyperplasia	46 (100%)	45 (100%)	47 (94%)
drenal gland, cortex	(46)	(44)	(50)
Cyst	2 (4%)	3 (7%)	
Inflammation, suppurative, focal			1 (2%)
Vacuolization cytoplasmic, focal	3 (7%)		
drenal gland, medulla	(41)	(43)	(45)
Hyperplasia, focal	2 (5%)		
arathyroid gland	(23)	(18)	(25)
Hyperplasia	1 (4%)		
ituitary gland	(42)	(42)	(48)
Cyst	2 (5%)		
Hemorrhage, focal	2 (5%)		
Hyperplasia, focal Bigmentation linefuncin	2 (5%)		
Pigmentation, lipofuscin hyroid gland	1 (2%)	(17)	(40)
Cyst	(43)	(47)	(49)
Inflammation, acute, focal	2 (5%)		2 (49%)
C-cell, hyperplasia	1 (2%)		2 (4%)
Follicular cell, hyperplasia	9 (21%)	12 (26%)	1 (2%) 10 (20%)
	······································	12 (20%)	10 (20%)
General Body System		(1)	
Tissue NOS Thrombosis, chronic	(4) 1 (25%)	(1)	(2)
Canidal Russan	••• <u></u>		
Genital System Dvary	(39)	(42)	(46)
Abscess	(38) 4 (11%)	(43) 10 (23%)	(46) 7 (15%)
Cyst	4 (11%) 6 (16%)	10 (23%) 11 (26%)	7 (15%) 10 (22%)
Thrombosis	1 (3%)	11 (26%) 2 (5%)	10 (22%)
Iterus	(44)	(45)	(49)
Angiectasis	(**)	(70)	1 (2%)
Hyperplasia, histiocytic, focal			1 (2%)
Metaplasia, squamous		1 (2%)	- (=/0)

TABLE D4

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Genital System (continued)	·····	<u> </u>	
Uterus (continued)			
Thrombosis	1 (2%)		
Endometrium, hyperplasia, cystic	34 (77%)	30 (67%)	35 (71%)
Mucosa, inflammation, suppurative	3 (7%)	7 (16%)	4 (8%)
Serosa, inflammation, suppurative	1 (2%)	4 (9%)	2 (4%)
	· (2,0)		- (, , ,)
Hematopoietic System			
Bone marrow	(41)	(43)	(45)
Hyperplasia	1 (2%)	4 (9%)	5 (11%)
Myelofibrosis	28 (68%)	23 (53%)	27 (60%)
Myeloid cell, hyperplasia	1 (2%)	6 (14%)	3 (7%)
.ymph node	(46)	(46)	(49)
Iliac, hyperplasia, lymphoid			1 (2%)
Iliac, inflammation	1 (2%)		1 (2%)
Pancreatic, hyperplasia, lymphoid	1 (2%)		1 (2%)
Pancreatic, infiltration cellular, mixed cell			1 (2%)
Pancreatic, follicular, necrosis			1 (2%)
Renal, hyperplasia, lymphoid		2 (4%)	2 (4%)
Renal, infiltration cellular, mixed cell		×	1 (2%)
Renal, inflammation	1 (2%)	1 (2%)	1 (2%)
Renal, follicular, necrosis		2 (4%)	1 (2%)
Lymph node, bronchial	(38)	(37)	(43)
Hyperplasia, histiocytic		25 (68%)	39 (91%)
Hyperplasia, lymphoid		16 (43%)	20 (47%)
Infiltration cellular, mixed cell	1 (3%)		
Inflammation, acute	1 (3%)	1 (3%)	1 (2%)
Lymph node, mandibular	(35)	(38)	(36)
Cyst			1 (3%)
Depletion lymphoid	1 (3%)		
Hyperplasia, histiocytic	1 (3%)	1 (201)	2 (90%)
Hyperplasia, lymphoid	1 (201)	1 (3%)	3 (8%)
Hyperplasia, plasma cell	1 (3%)	1 (201)	
Infiltration cellular, mixed cell		1 (3%)	1 (20%)
Inflammation		1 (3%) 1 (2%)	1 (3%)
Follicular, necrosis	(12)	1 (3%)	(14)
Lymph node, mediastinal	(13)	(17)	2 (14%)
Hyperplasia, histiocytic	1 (8%)	3 (18%)	2 (14%) 2 (14%)
Hyperplasia, lymphoid	1 (9/7)	1 (6%)	2 (1470)
Infiltration cellular, mixed cell	1 (8%)	(21)	(37)
Lymph node, mesenteric	(35)	(31) 1 (3%)	2 (5%)
Depletion lymphoid		1 (370)	1 (3%)
Hematocyst		1 (3%)	1 (3%)
Hyperplasia, histiocytic		2 (6%)	2 (5%)
Hyperplasia, lymphoid		2 (070)	1 (3%)
Hyperplasia, plasma cell Infiltration cellular, mixed cell	5 (14%)	5 (16%)	5 (14%)
Infiltration cellular, mixed cell	5 (1470)	2 (6%)	1 (3%)
Inflammation Follioulor neorogic	3 (9%)	12 (39%)	7 (19%)
Follicular, necrosis	(45)	(44)	(50)
Spleen	2 (4%)		()
Congestion Hematopoietic cell proliferation	2 (4%) 8 (18%)	12 (27%)	10 (20%)
Hyperplasia, lymphoid	5 (11%)	8 (18%)	6 (12%)
пурстріазіа, тушрното	5 (1170)	0 (10/0)	· (***/0)

Lesions in Female Mice

TABLE D4

start with the manual start

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Inhalation Study of Talc (continued)

0 mg/m ³	6 mg/m ³	18 mg/m ³
. <u></u>		
2 (19)		1 (20)
	2 (70%)	1 (2%)
		3 (6%)
		5 (10%) 2 (4%)
		2 (4%)
		(41)
2 (3%)		
		1 (20%)
2 (907)		1 (2%)
		15 (270%)
8 (20%)	12 (30%)	15 (37%)
(41)	(45)	(48)
		1 (2%)
1 (2%)		
	(46)	(50)
		N- 7
(46)	(48)	(50)
1 (2%)		
		
(46)	(48)	(50)
(40)		(50)
36 (79%)		20 (59%)
50 (18%)	33 (09%)	29 (58%)
(42)	(43)	(48)
	(48)	(50)
	3 (6%)	(~~)
- (-//)	- (0,0)	1 (2%)
2 (4%)	45 (94%)	43 (86%)
- () /)		38 (76%)
1 (2%)	- (52/6)	
- (=///)		1 (2%)
	3 (6%)	1 (2%)
1 (2%)		5 (10%)
		(50)
		40 (80%)
	57 (5070)	10 (070)
		1 (20%)
3 (170)		1 (2%)
6 (13%)	4 (9%)	5 (10%)
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE D4

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Inhalation Study of Talc (continued)

	0 mg/m ³	6 mg/m ³	18 mg/m ³	
Special Senses System				
Eye		(1)		
Inflammation, suppurative		1 (100%)		
Harderian gland	(2)	(2)	(1)	
Inflammation, suppurative		1 (50%)		
Urinary System				<u></u>
Kidney	(46)	(46)	(50)	
Casts protein		2 (4%)		
Infarct	1 (2%)	1 (2%)		
Inflammation, focal	1 (2%)	1 (2%)	1 (2%)	
Metaplasia, osseous, focal	1 (2%)		2 (4%)	
Nephropathy, chronic	1 (2%)	1 (2%)		
Capsule, inflammation, suppurative	3 (7%)	6 (13%)	5 (10%)	
Renal tubule, hyperplasia, focal		1 (2%)		
Urinary bladder	(44)	(40)	(41)	
Serosa, inflammation, suppurative		3 (8%)	3 (7%)	
Submucosa, hyperplasia, lymphoid	1 (2%)			
Submucosa, inflammation, suppurative			1 (2%)	

^a Number of animals examined microscopically at site and number of animals with lesion

APPENDIX E ORGAN WEIGHTS

AND ORGAN-WEIGHT-TO-BODY-WEIGHT RATIOS

Table E1	6-Month Interim Evaluation in the Lifetime Inhalation Study of Talc in Rats	194
Table E2	11-Month Interim Evaluation in the Lifetime Inhalation Study of Talc in Rats	195
Table E3	18-Month Interim Evaluation in the Lifetime Inhalation Study of Talc in Rats	196
Table E4	24-Month Interim Evaluation in the Lifetime Inhalation Study of Talc in Rats	197
Table E5	End of the Lifetime Inhalation Study of Talc in Rats	198
Table E6	6-Month Interim Evaluation in the 2-Year Inhalation Study of Talc in Mice	199
Table E7	12-Month Interim Evaluation in the 2-Year Inhalation Study of Talc in Mice	200
Table E8	18-Month Interim Evaluation in the 2-Year Inhalation Study of Talc in Mice	201
Table E9	End of the 2-Year Inhalation Study of Talc in Mice	202

一般に第一名 遊

193

÷.

TARTE	F1
TABLE	EI

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			<u> </u>
1 .	3	3	3
Necropsy body wt	379 ± 2	365 ± 9	$351 \pm 4^*$
Brain			
Absolute	2.061 ± 0.073	1.962 ± 0.035	1.964 ± 0.041
Relative	5.44 ± 0.22	5.38 ± 0.22	5.59 ± 0.10
leart			
Absolute	1.087 ± 0.024	0.984 ± 0.047	1.008 ± 0.018
Relative	2.87 ± 0.07	2.69 ± 0.07	2.87 ± 0.03
R. Kidney			
Absolute	1.203 ± 0.055	1.155 ± 0.028	1.143 ± 0.025
Relative	3.17 ± 0.16	3.16 ± 0.01	3.25 ± 0.04
liver			
Absolute	12.969 ± 0.336	11.658 ± 0.483	11.644 ± 0.613
Relative	34.20 ± 0.79	31.89 ± 0.65	33.11 ± 1.43
Lungs			
Absolute	1.196 ± 0.049	1.201 ± 0.060	$1.600 \pm 0.073^{**}$
Relative	3.15 ± 0.11	3.29 ± 0.19	$4.55 \pm 0.19^{**}$
Female			
1	3	3	3
Necropsy body wt	216 ± 10	210 ± 5	212 ± 7
Brain			
Absolute	1.801 ± 0.020	1.800 ± 0.030	1.860 ± 0.031
Relative	8.39 ± 0.33	8.57 ± 0.28	8.82 ± 0.39
leart			
Absolute	0.679 ± 0.023	0.691 ± 0.031	0.716 ± 0.055
Relative	3.16 ± 0.11	3.29 ± 0.13	3.38 ± 0.20
R. Kidney			
Absolute	0.700 ± 0.043	0.775 ± 0.025	0.751 ± 0.030
Relative	3.25 ± 0.17	3.69 ± 0.10	3.55 ± 0.07
liver			
Absolute	7.579 ± 0.502	7.253 ± 0.172	6.875 ± 0.409
Relative	35.13 ± 1.09	34.51 ± 0.33	32.47 ± 1.21
Lungs			
Absolute	1.006 ± 0.112	0.986 ± 0.064	1.090 ± 0.010
Relative	4.71 ± 0.65	4.69 ± 0.29	5.17 ± 0.21

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 6-Month Interim Evaluation in the Lifetime Inhalation Study of Talc^a

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

TABLE E2

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 11-Month Interim Evaluation in the Lifetime Inhalation Study of Talca

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
1	2	3	3
Necropsy body wt	425 ± 10	406 ± 15	395 ± 14
Brain			
Absolute	2.018 ± 0.010	1.616 ± 0.306	2.020 ± 0.012
Relative	4.75 ± 0.13	3.97 ± 0.74	5.13 ± 0.16
Heart			
Absolute	1.161 ± 0.080	1.051 ± 0.063	1.079 ± 0.048
Relative	2.73 ± 0.12	2.58 ± 0.06	2.73 ± 0.09
R. Kidney			
Absolute	1.313 ± 0.008	1.242 ± 0.062	1.216 ± 0.069
Relative	3.09 ± 0.09	3.07 ± 0.26	3.07 ± 0.07
Liver			
Absolute	12.824 ± 0.065	12.454 ± 0.424	12.223 ± 0.618
Relative	30.20 ± 0.86	30.72 ± 1.47	30.92 ± 0.50
Lungs			
Absolute	1.228 ± 0.143	1.152 ± 0.043	$1.979 \pm 0.077^{\circ\circ}$
Relative	2.90 ± 0.40	2.85 ± 0.18	$5.02 \pm 0.16^{\circ \circ}$
Female			
1	3	3	3
Necropsy body wt	254 ± 7	249 ± 5	247 ± 10
Brain			
Absolute	1.863 ± 0.003	1.867 ± 0.036	1.845 ± 0.030
Relative	7.36 ± 0.22	7.52 ± 0.18	7.50 ± 0.19
leart			
Absolute	0.858 ± 0.032	0.796 ± 0.020	0.753 ± 0.063
Relative	3.38 ± 0.06	3.20 ± 0.06	3.05 ± 0.19
t. Kidney			
Absolute	0.830 ± 0.007	0.839 ± 0.002	$0.735 \pm 0.034^{\circ}$
Relative	3.28 ± 0.11	3.38 ± 0.07	2.99 ± 0.13
iver			-
Absolute	7.878 ± 0.275	7.774 ± 0.130	7.537 ± 0.354
Relative	31.13 ± 1.53	31.30 ± 0.47	30.57 ± 0.50
Lungs			
Absolute	0.959 ± 0.037	1.039 ± 0.034	$1.551 \pm 0.163^{\circ\circ}$
Relative	3.79 ± 0.20	4.18 ± 0.09	$6.27 \pm 0.48^{\circ \circ}$

0 ° Significantly different (P ≤ 0.05) from the control group by Williams' or Dunnett's test °° P ≤ 0.01

505 N.C.

	0 mg/m ³	6 mg/m ³	18 mg/m ³	
Male	<u></u>		<u> </u>	
1	3	3	2	
Necropsy body wt	446 ± 14	428 ± 10	430 ± 2	
Brain				
Absolute	2.019 ± 0.043	1.965 ± 0.035	2.092 ± 0.004	
Relative	4.53 ± 0.10	4.60 ± 0.17	4.86 ± 0.01	
leart				
Absolute	1.077 ± 0.065	1.027 ± 0.030	1.131 ± 0.103	
Relative	2.41 ± 0.09	2.40 ± 0.07	2.63 ± 0.23	
R. Kidney				
Absolute	1.913 ± 0.599	1.328 ± 0.063	1.317 ± 0.023	
Relative	4.27 ± 1.31	3.10 ± 0.12	3.06 ± 0.06	·
liver				
Absolute	14.329 ± 1.434	13.866 ± 0.882	12.520 ± 0.189	
Relative	32.10 ± 3.01	32.38 ± 1.68	29.10 ± 0.56	
ungs			•	
Absolute	1.691 ± 0.100	1.852 ± 0.058	$3.169 \pm 0.121^{**}$	
Relative	3.78 ± 0.13	4.34 ± 0.21	$7.36 \pm 0.25^{**}$	
Female			. · · ·	
1	3	3	3	
Necropsy body wt	305 ± 5	$275 \pm 4^{**}$	$280 \pm 4^*$	
Brain				
Absolute	1.840 ± 0.028	1.827 ± 0.045	1.847 ± 0.013	
Relative	6.04 ± 0.17	$6.63 \pm 0.11^*$	$6.61 \pm 0.13^{*}$	
leart				
Absolute	0.772 ± 0.015	$0.706 \pm 0.010^*$	0.765 ± 0.011	
Relative	2.53 ± 0.08	2.56 ± 0.03	$2.74 \pm 0.01^*$	
R. Kidney				
Absolute	0.929 ± 0.023	0.902 ± 0.038	0.955 ± 0.047	
Relative	3.05 ± 0.12	3.28 ± 0.17	3.41 ± 0.13	
liver				
Absolute	8.750 ± 0.223	8.540 ± 0.648	8.904 ± 0.596	
Relative	28.71 ± 0.35	31.03 ± 2.47	31.84 ± 1.94	
Lungs				
Absolute	1.130 ± 0.026	$1.395 \pm 0.046^{**}$	$2.600 \pm 0.030^{**}$	
Relative	3.71 ± 0.12	$5.07 \pm 0.11^{**}$	9.31 ± 0.18**	

TABLE E3

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 18-Month Interim Evaluation in the Lifetime Inhalation Study of Talc^a

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

Table E4

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 24-Month Interim Evaluation in the Lifetime Inhalation Study of Talc^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male	· · · · · · · · · · · · · · · · · · ·		<u></u>
n	3	6	2
Necropsy body wt	406 ± 29	422 ± 12	392 ± 30
Brain			
Absolute	2.068 ± 0.015	2.023 ± 0.025	1.989 ± 0.008
Relative	5.15 ± 0.42	4.81 ± 0.11	5.10 ± 0.37
leart			0.000 . 0.00/
Absolute	1.065 ± 0.022	1.126 ± 0.044	0.993 ± 0.026
Relative	2.66 ± 0.25	2.69 ± 0.18	2.54 ± 0.13
R. Kidney			
Absolute	1.720 ± 0.138	1.577 ± 0.048	1.649 ± 0.068
Relative	4.25 ± 0.32	3.76 ± 0.19	4.24 ± 0.50
Liver			
Absolute	15.298 ± 0.187	14.924 ± 0.480	14.344 ± 1.253
Relative	38.11 ± 3.23	35.55 ± 1.80	37.05 ± 6.03
Lungs			
Absolute	1.766 ± 0.177	2.150 ± 0.230	2.473 ± 0.674
Relative	4.40 ± 0.55	5.18 ± 0.69	6.48 ± 2.21
Female			
n	5	9	3
Necropsy body wt	296 ± 17	296 ± 10	262 ± 25
Brain			
Absolute	1.821 ± 0.023	1.826 ± 0.011	1.865 ± 0.012
Relative	6.24 ± 0.42	6.24 ± 0.21	7.23 ± 0.63
Heart			
Absolute	0.826 ± 0.014	0.826 ± 0.032	0.824 ± 0.045
Relative	2.83 ± 0.19	2.81 ± 0.10	3.16 ± 0.13
R. Kidney			
Absolute	1.118 ± 0.055	1.137 ± 0.044	1.021 ± 0.022
Relative	3.82 ± 0.26	3.85 ± 0.10	3.97 ± 0.44
Liver			
Absolute	11.218 ± 0.527	12.127 ± 0.672	9.966 ± 0.246
Relative	38.38 ± 2.74	41.16 ± 2.12	38.84 ± 4.59
Lungs			
Absolute	1.014 ± 0.104	1.447 ± 0.219	$3.261 \pm 0.115^{\circ \circ}$
Relative	3.40 ± 0.23	4.88 ± 0.67	$12.73 \pm 1.62^{\circ \circ}$

** Significantly different (P≤0.01) from the control group by Williams' or Dunnett's test

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male	<u></u>		
n	8	12	13
Necropsy body wt	379 ± 17	397 ± 6	$326 \pm 12^{**}$
Brain			
Absolute	2.030 ± 0.016	2.041 ± 0.015	2.014 ± 0.019
Relative	5.45 ± 0.28	5.16 ± 0.09	$6.29 \pm 0.25^*$
leart			
Absolute	1.385 ± 0.104	1.288 ± 0.041	1.302 ± 0.064
Relative	3.68 ± 0.26	3.26 ± 0.13	4.05 ± 0.22
R. Kidney			
Absolute	1.899 ± 0.151	1.847 ± 0.125	1.737 ± 0.101
Relative	5.09 ± 0.49	4.69 ± 0.37	5.39 ± 0.35
Liver			
Absolute	15.501 ± 0.861	16.562 ± 0.540	14.055 ± 0.936
Relative	41.03 ± 1.67	41.92 ± 1.73	42.85 ± 1.76
Lungs			
Absolute	2.154 ± 0.124	2.509 ± 0.068	$4.026 \pm 0.196^{**}$
Relative	5.76 ± 0.38	6.34 ± 0.21	$12.65 \pm 0.85^{**}$
Female			
1	12	13	9
Necropsy body wt	260 ± 14	247 ± 14	231 ± 9
Brain			
Absolute	1.975 ± 0.122	1.860 ± 0.020	1.847 ± 0.028
Relative	8.03 ± 0.95	7.89 ± 0.51	8.06 ± 0.27
Heart			
Absolute	1.020 ± 0.039	1.006 ± 0.026	1.047 ± 0.027
Relative	4.03 ± 0.24	4.33 ± 0.39	4.58 ± 0.20
R. Kidney			
Absolute	1.313 ± 0.047	1.235 ± 0.049	1.281 ± 0.079
Relative	5.21 ± 0.34	5.22 ± 0.36	5.66 ± 0.55
Liver			
Absolute	12.005 ± 0.660	12.567 ± 0.903	12.247 ± 0.678
Relative	46.35 ± 1.68	51.25 ± 2.90	53.65 ± 3.82
Lungs			
Absolute	1.575 ± 0.109	$2.673 \pm 0.362^{**}$	$4.050 \pm 0.228^{**}$
Relative	6.11 ± 0.35	$11.77 \pm 2.10^*$	$17.83 \pm 1.43^{**}$

TABLE E5 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the End of the Lifetime Inhalation Study of Talc^a

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

١

** P≤0.01

Table E6

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice at the 6-Month Interim Evaluation in the 2-Year Inhalation Study of Talc^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
n	4	4 ·	4
Necropsy body wt	31.3 ± 0.9	31.1 ± 0.9	32.1 ± 0.6
Brain			
Absolute	0.431 ± 0.028	0.458 ± 0.006	0.469 ± 0.008
Relative	13.81 ± 0.90	14.74 ± 0.23	14.60 ± 0.38
Heart			
Absolute	0.159 ± 0.003	0.165 ± 0.008	0.157 ± 0.011
Relative	5.10 ± 0.07	5.31 ± 0.33	4.88 ± 0.25
R. Kidney			
Absolute	0.303 ± 0.022	0.297 ± 0.018	0.292 ± 0.011
Relative	9.66 ± 0.40	9.58 ± 0.70	9.10 ± 0.33
Liver			_
Absolute	1.737 ± 0.079	1.792 ± 0.066	1.731 ± 0.060
Relative	55.51 ± 1.06	57.75 ± 2.77	53.84 ± 1.19
Lungs			
Absolute	0.165 ± 0.008	0.149 ± 0.010	0.173 ± 0.017
Relative	5.29 ± 0.35	4.78 ± 0.27	5.35 ± 0.44
Female			
n	4	4	4
Necropsy body wt	27.1 ± 0.9	27.2 ± 1.7	29.5 ± 1.4
Brain			
Absolute	0.474 ± 0.007	0.482 ± 0.008	0.474 ± 0.019
Relative	17.52 ± 0.36	17.85 ± 0.81	16.10 ± 0.67
Heart			
Absolute	0.142 ± 0.004	0.133 ± 0.005	0.145 ± 0.006
Relative	5.27 ± 0.30	4.92 ± 0.19	4.92 ± 0.15
R. Kidney			
Absolute	0.201 ± 0.011	0.203 ± 0.004	0.217 ± 0.008
Relative	7.40 ± 0.20	7.53 ± 0.34	7.37 ± 0.13
Liver			
Absolute	1.541 ± 0.099	1.640 ± 0.138	1.628 ± 0.033
Relative	56.86 ± 2.92	60.01 ± 1.74	55.38 ± 1.91
Lungs			
Absolute	0.190 ± 0.019	0.164 ± 0.011	0.178 ± 0.011
Relative	7.11 ± 0.96	6.03 ± 0.28	6.04 ± 0.26

	0 mg/m ³	6 mg/m ³	18 mg/m ³	
Male				
n .	4	4	4	
Necropsy body wt	34.6 ± 1.7	37.2 ± 0.3	33.1 ± 1.3	
Brain				
Absolute	0.478 ± 0.020	0.475 ± 0.009	0.475 ± 0.009	
Relative	13.87 ± 0.31	12.76 ± 0.16	14.39 ± 0.38	
Heart				
Absolute	0.196 ± 0.023	0.195 ± 0.005	0.205 ± 0.023	
Relative	5.62 ± 0.37	5.23 ± 0.10	6.21 ± 0.69	
R. Kidney				
Absolute	0.334 ± 0.007	0.339 ± 0.020	0.311 ± 0.027	
Relative	9.71 ± 0.28	9.12 ± 0.52	9.41 ± 0.86	
Liver				
Absolute	1.612 ± 0.052	1.886 ± 0.124	1.928 ± 0.240	
Relative	46.77 ± 0.79	50.72 ± 3.25	58.55 ± 8.01	
Lungs				
Absolute	0.157 ± 0.009	0.216 ± 0.018	$0.243 \pm 0.032^*$	
Relative	4.54 ± 0.17	5.80 ± 0.46	$7.30 \pm 0.72^{**}$	
Female			•	
n	3	4	4	
Necropsy body wt	32.1 ± 2.4	33.3 ± 1.3	28.7 ± 1.2	
Brain				
Absolute	0.478 ± 0.006	0.488 ± 0.005	0.491 ± 0.008	
Relative	15.04 ± 1.16	14.74 ± 0.70	17.16 ± 0.55	
Heart	15.04 ± 1.10	11.77 2 0.70		
Absolute	0.151 ± 0.004	0.162 ± 0.008	$0.190 \pm 0.010^*$	
Relative	4.72 ± 0.23	4.91 ± 0.42	$6.64 \pm 0.47^{\circ}$	
R. Kidney	4.72 - 0.25			
Absolute	0.225 ± 0.010	0.231 ± 0.008	0.230 ± 0.011	
Relative	7.03 ± 0.22	6.97 ± 0.40	8.01 ± 0.10	•
Liver				
Absolute	1.470 ± 0.105	$1.796 \pm 0.036^*$	1.477 ± 0.093	
Relative	46.04 ± 3.71	54.20 ± 2.55	51.40 ± 2.48	
Lungs				
Absolute	0.151 ± 0.019	0.191 ± 0.014	$0.207 \pm 0.015^*$	
Relative	4.68 ± 0.23	5.78 ± 0.61	$7.19 \pm 0.24^{**}$	

TABLE E7

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice at the 12-Month Interim Evaluation in the 2-Year Inhalation Study of Talc^a

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

Organ Weight Analyses

Table ES

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice at the 18-Month Interim Evaluation in the 2-Year Inhalation Study of Talc^a

•	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
a	4	4	4
Necropsy body wt	33.1 ± 3.0	37.5 ± 2.1	35.4 ± 1.7
Brain			
Absolute	0.467 ± 0.007	0.470 ± 0.009	0.496 ± 0.014
Relative	14.51 ± 1.44	12.63 ± 0.58	14.10 ± 0.76
Heart			
Absolute	0.193 ± 0.017	0.186 ± 0.011	0.203 ± 0.006
Relative	6.18 ± 1.29	5.00 ± 0.35	5.77 ± 0.22
R. Kidney			
Absolute	0.342 ± 0.007	0.361 ± 0.021	0.350 ± 0.009
Relative	10.66 ± 1.23	9.66 ± 0.47	9.91 ± 0.22
Liver			
Absolute	1.844 ± 0.228	1.796 ± 0.080	1.748 ± 0.113
Relative	57.08 ± 7.95	48.07 ± 1.26	49.28 ± 1.45
Lungs			
Absolute	0.229 ± 0.034	0.238 ± 0.013	$0.345 \pm 0.032^{\circ}$
Relative	7.45 ± 2.01	6.42 ± 0.57	9.79 ± 0.91
Female			
n `	4	4	4
Necropsy body wt	32.1 ± 1.2	31.9 ± 1.6	$27.6 \pm 1.0^{\circ}$
Brain			
Absolute	0.483 ± 0.007	0.467 ± 0.019	0.501 ± 0.038
Relative	15.10 ± 0.59	14.73 ± 0.90	18.33 ± 1.91
Heart			
Absolute	0.155 ± 0.008	0.154 ± 0.011	0.164 ± 0.010
Relative	4.85 ± 0.28	4.87 ± 0.47	5.96 ± 0.48
R. Kidney			
Absolute	0.238 ± 0.009	0.233 ± 0.011	0.228 ± 0.007
Relative	7.41 ± 0.28	7.35 ± 0.45	8.32 ± 0.55
Liver			
Absolute	1.446 ± 0.056	1.592 ± 0.034	1.318 ± 0.055^{b}
Relative	45.10 ± 1.35	50.17 ± 2.02	48.69 ± 0.30^{b}
Lungs			
Absolute	0.223 ± 0.008	0.242 ± 0.018	$0.299 \pm 0.018^{\circ\circ}$
Relative	6.96 ± 0.07	7.65 ± 0.73	$10.90 \pm 0.87^{\circ\circ}$

° Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

°° P≤0.01 a Orecen

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error)

b n=3

	0 mg/m ³	6 mg/m ³	18 mg/m ³	
Male				
n	30	28	32	
Necropsy body wt	33.4 ± 0.5	32.1 ± 0.8	$31.2 \pm 0.4^{**}$	
Brain				
Absolute	0.461 ± 0.004	0.458 ± 0.004	0.460 ± 0.005	
Relative	13.90 ± 0.22	14.50 ± 0.34	$14.78 \pm 0.19^{*}$	
Heart				
Absolute	0.183 ± 0.003	0.181 ± 0.004	0.183 ± 0.005	
Relative	5.52 ± 0.12	5.68 ± 0.10	5.88 ± 0.15	
R. Kidney				
Absolute	0.361 ± 0.010	0.362 ± 0.010	0.354 ± 0.006	
Relative	10.85 ± 0.27	11.28 ± 0.16	11.34 ± 0.18	
Liver				
Absolute	1.845 ± 0.064	1.733 ± 0.073^{b}	$1.535 \pm 0.033^{**c}$	
Relative	55.64 ± 2.21	53.14 ± 1.72^{b}	$49.27 \pm 1.03^{\circ c}$	
Lungs		· · · · · · · · · · · · · · · · · · ·		
Absolute	$0.252 \pm 0.008^{\circ}$	0.258 ± 0.009^{b}	$0.408 \pm 0.011^{**}$	
Relative	$7.47 \pm 0.25^{\circ}$	8.01 ± 0.24^{b}	$13.08 \pm 0.33^{**}$	
Female				
n	30	23	25	•
Necropsy body wt	31.4 ± 0.6	31.7 ± 0.7	30.7 ± 0.5	
Brain				
Absolute	0.484 ± 0.004	0.469 ± 0.006	0.477 ± 0.003	
Relative	15.53 ± 0.26	14.93 ± 0.28	15.59 ± 0.20	
Heart				
Absolute	0.164 ± 0.005	$0.190 \pm 0.009^{**}$	0.163 ± 0.003	
Relative	5.24 ± 0.15	$6.02 \pm 0.28^{**}$	5.32 ± 0.09	1
R. Kidney				
Absolute	0.251 ± 0.007^{d}	0.265 ± 0.010	0.257 ± 0.007^{e}	
Relative	8.03 ± 0.17^{d}	8.38 ± 0.27	8.37 ± 0.14^{e}	
Liver		<i>.</i>		
Absolute	1.816 ± 0.089	1.770 ± 0.107^{f}	1.761 ± 0.083^{e}	
Relative	57.41 ± 2.25	55.45 ± 3.13^{f}	56.94 ± 1.93^{e}	
Lungs				
Absolute	0.276 ± 0.014	0.293 ± 0.012	$0.410 \pm 0.010^{**}$	
Relative	8.80 ± 0.42	9.28 ± 0.34	$13.39 \pm 0.28^{**}$	

TABLE E9 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice at the End of 2-Year Inhalation Study of Talc^a

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01
 ^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body

b n=27

с n=28

d n=29

n=24

e f n=22

APPENDIX F 4-WEEK INHALATION STUDIES IN RATS AND MICE

MATERIALS A	AND METHODS	204
Table F1	Experimental Design and Materials and Methods in the A-Week Inhalation Studies of Talc	20%
RESULTS		208
Table F2	Survival and Mean Body Weights of Rats in the 4-Week Inhalation Study of Talc	ፈመን
TABLE F3	Organ Weights and Organ-Weight-to-Body-Weight Ratios of Rats	
	in the 4-Week Inhalation Study of Talc	210
Table F4	I upg Tale Burden of Rats in the 4-Week Inhalation Study of Tale	211
TABLE F5	Normalized Lung Talc Burden of Rats in the 4-Week Inhalation Study of Talc	211
TABLE F6	Survival and Mean Body Weights of Mice in the 4-Week Inhalation Study of Talc	212
TABLE F7	Organ Weights and Organ-Weight-to-Body-Weight Ratios of Mice	
T PODDALS R. /	in the 4-Week Inhalation Study of Talc	213
TABLE FS	Lung Talc Burden of Mice in the 4-Week Inhalation Study of Talc	214
	Normalized Lung Talc Burden of Mice in the 4-Week Inhalation Study of Talc	214
TABLE F9	Normalized Lung Taic Burgess of Miles and the S-Week Infinitiation Starty of Tare TTTTTT	

203

· · · · ·

÷.,.,

MATERIALS AND METHODS

Procurement and Characterization of Talc

Talc was obtained from Walsh and Associates (North Kansas City, MO) in one lot (W101882). Identity and purity analyses were performed by the analytical chemistry laboratory, Midwest Research Institute (Kansas City, MO).

The study chemical, a finely powdered white solid, was identified as talc by infrared spectroscopy, elemental analysis, and microscopic analyses. The moisture content of the bulk chemical was analyzed and was determined to be stable throughout the studies. Bulk chemical studies were not conducted due to the physical and chemical properties of talc. The compound was stored in sealed Nalgene containers.

Generation and Monitoring of Chamber Concentrations

Talc aerosols were generated in a fluidized bed generator by injecting filtered air into the bed. Samples were collected continuously during the 6-hour exposure day on glass fiber filters. Only one sampling port position was used each day to collect the samples from each chamber. Once a week, samples were collected on Zefluor filters so that the magnesium content of aerosolized talc could be determined and be compared to the magnesium content of bulk talc. Cascade impactor samples were collected 3 to 6 times a week to determine aerosol particle size. The amount of talc collected on the filters and impactor stages was quantitated gravimetrically. The extent of carry-over of the stainless steel material from the fluidized bed generator was quantitated by measuring the amount of acid-soluble nickel and chromium in filter samples taken from the exposure atmosphere twice during the studies.

Study Design

Groups of 10 male and 10 female F344/N rats and B6C3F₁ mice were exposed by inhalation to talc at target concentrations of 0, 2, 6, and 18 mg/m³. Rats and mice were exposed for 6 hours daily, 5 days a week, for 4 weeks.

Source and Specification of Animals

Male and female F344/N rats were obtained from Lovelace Inhalation Toxicology Research Institute (Albuquerque, NM). Male and female $B6C3F_1$ mice were obtained from Simonsen Laboratory (Gilroy, CA). Rats and mice were held 3 weeks before the studies began, and were 6 to 7 weeks old when the studies began. Animal health was monitored by serologic analyses during the studies under the protocols of the NTP Sentinel Animal Program.

Animal Maintenance

Rats and mice were housed individually throughout the studies. Drinking water was available *ad libitum*. Further details of animal maintenance are given in Table F1.

Clinical Examinations and Pathology

All rats and mice were observed twice daily. Clinical observations and body weights were recorded at the beginning of the studies, each week, and at the end of the studies. Organ weights were recorded for the heart, right kidney, liver, and lung at the end of the studies.

A necropsy was performed on all animals. During necropsy, all organs and tissues were examined for grossly visible lesions. A complete histopathologic examination was performed on all 18 mg/m³ and control animals. Tissues for microscopic examination were fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned to a thickness of 5 μ m, and stained with hematoxylin and eosin.

Lung Burden Analysis

Groups of five male and five female rats and mice were analyzed for lung talc burden. Lungs were homogenized using water and the proteins were precipitated with 70% perchloric acid. The individual

4-Week Inhalation Studies

samples were filtered and washed with 5% trichloroacetic acid (TCA) to remove perchlorates. Washing continued until magnesium levels in the wash were within 10% of levels in the TCA solution (≤ 0.03 ppm magnesium). Filters and tissue residues were placed in 15-mL porcelain crucibles, dried slowly (200° C), and then ashed at 600° C for 1 hour. Ashed samples were transferred to Teflon beakers using 2 mL HCl and evaporated to dryness. Samples were then digested in hydrofluoric acid (HF), and the HF evaporated. Additional HF was added and reevaporated. Sulfuric acid was added to remove trace HF, and samples were then diluted with distilled water and analyzed for magnesium by atomic absorbance (Perkin Elmer, Model 307, Atomic Absorption Spectrophotometer) with a magnesium hollow cathode lamp and an air acetylene flame (Hanson *et al.*, 1985).

TABLE F1

Experimental Design and Materials and Methods in the 4-Week Inhalation Studies of Talc

Study Laboratory Lovelace Inhalation Toxicology Research Institute (Albuquerque, NM)

Strain and Species Rats: F344/N rats Mice: B6C3F₁ mice

Animal Source Rats: Lovelace Inhalation Toxicology Research Institute (Albuquerque, NM) Mice: Simonsen Laboratory (Gilroy, CA)

Time Held Before Studies 3 weeks

Average Age When Placed on Studies 6-7 weeks

Date of First Exposure Rats: 20 April 1983 Mice: 16 June 1983

Duration of Exposure 6 hours/day, 5 days/week for 4 weeks

Date of Last Exposure Rats: 18 May 1983 Mice: 13 July 1983

Average Age When Killed 10 to 11 weeks

Method of Sacrifice Intraperitoneal injection of T-61 solution

Necropsy Dates Rats: 19-20 May 1983 Mice: 14-15 July 1983

Size of Study Groups 10 males and 10 females

Method of Animal Distribution Randomized by weight

Animals per Cage 1

Method of Animal Identification Ear tag and toe clip

Diet

NIH-07 Rat and Mouse Ration (Zeigler, Bros., Gardner, PA) available ad libitum during non-exposure periods

Maximum Storage Time for Feed 90 days

206

4-Week Inhalation Studies

TABLE F1

Experimental Design and Materials and Methods in the 4-Week Inhalation Studies of Talc (continued)

Water

Automatic Watering System (Edstrom Industries, Waterford, WI), available ad libitum

Cages

Stainless steel mesh cages (Hazleton, Aberdeen, MD), changed weekly

Chambers

Stainless steel multitiered whole-body exposure chambers (H2000 and H1000, Hazleton Systems, Aberdeen, MD) washed weekly

Excreta Pan

Techboard untreated paper (Shepherd Specialties Paper, Inc., Kalamazoo, MI), changed twice a day

Filters

Room Air and Chamber Air High Efficiency Particulate Air (HEPA) Filter, MIL Spec MIL-F-51068C (Flanders, Washington, DC), changed as required

Mice

Average temperature: 24° C Relative humidity: 42%

Fluorescent light: 12 hours/day

Room air changes: minimum of 10 changes/hour

Animal Room Environment

Rols Average temperature: 23° C Relative humidity: 40.3% Fluorescent light: 12 hours/day Room air changes: minimum of 10 changes/hour

Exposure Concentrations

0, 2, 6, and 18 mg/m³ by inhalation

Type and Frequency of Observation Observed twice daily; body weights and clinical findings recorded at study initiation and weekly thereafter

Necropsy

Necropsy was performed on all animals. Organ weights recorded for heart, right kidney, liver, and lung

Histopathology

Complete histopathologic examinations performed on all 18 mg/m³ and control animals. In addition to tissue masses, gross lesions, and associated tymph nodes, tissues examined included: larynx, lung, nasal turbinates, trachea, and tracheobronchial lymph nodes.

Lung Talc Burden

Groups of 5 male and 5 female rats and mice were evaluated for lung talc burden.

RESULTS

Rats

All rats survived to the end of the study and there were no clinical findings related to talc exposure. The final mean body weights of exposed male and female rats were similar to the controls (Table F2).

There were no significant increases in any organ-weight-to-body-weight ratios in male or female rats (Table F3). The talc lung burdens increased with talc exposure level (Table F4); however, the ratio of lung burden to exposure concentration was somewhat higher at the 6 and 18 mg/m³ exposure levels (Table F5). The increase in talc lung burden with exposure concentration may have been because the maximum ability of the respiratory tract to clear particles was exceeded at the 6 and 18 mg/m³ exposure levels.

There was a minimal increase in the number of intra-alveolar macrophages in the lung of male and female rats exposed to 18 mg/m³. The lesion was diffuse in nature and in no instance were clusters of greater than three alveolar macrophages observed. The individual macrophages were slightly larger than normal and had cytoplasm which contained fine eosinophilic granules.

Mice

One male mouse exposed to 2 mg/m^3 and one male mouse exposed to 6 mg/m^3 died before the end of the study. The final mean body weights of exposed male and female mice were similar to those of the controls (Table F6). There were no clinical findings associated with exposure to talc aerosols.

There were no significant changes in any organ-weight-to-body-weight ratios in exposed male or female mice (Table F7). Talc lung burdens increased with talc exposure level (Table F8). However, the ratio of lung burden to exposure concentration was constant at all exposure levels (Table F9). In contrast to rats, the maximum ability of the respiratory tract to clear particles was apparently not exceeded at the 18 mg/m³ level.

The only lesions related to inhalation of talc aerosols were observed in the lung of male and female mice exposed to 18 mg/m³. The changes were minimal and consisted of a diffuse increase in the number of intra-alveolar macrophages. In most cases, pulmonary macrophages did not exceed two per alveolus, but occasional clusters of up to 10 alveolar macrophages were observed. The individual macrophages were two to three times normal size with foamy granular cytoplasm.

208

4-Week Inhalation Studies

Table F2

Survival and Mean Body Weights of Rats in the 4-Week Inhalation Study of Talc

			Final Weight		
Dose (mg/m³)	Survival ^a	Initial	<u>Mean Body Weight^b</u> Final	Change	Relative to Controls (%)
Male		/	<u></u>		
0	5/5	144 ± 5	221 ± 5	78 ± 3	
2	5/5	144 ± 5	233 ± 9	89 ± 12	105
6	5/5	150 ± 8	223 ± 9	73 ± 2	101
18	5/5	145 ± 4	213 ± 4	6 ± 11	96
Female					
0	5/5	110 ± 2	151 ± 2	41 ± 2	
2	5/5	109 ± 2	151 ± 5	42 ± 6	100
6	5/5	110 ± 2	150 ± 6	40 ± 6	100
18	5/5	110 ± 2	150 ± 2	40 ± 2	100

Number of animals surviving/number initially in group
 Weights and weight changes are given as mean + stand

Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the studies.

,	0 mg/m ³	2 mg/m ³	6 mg/m ³	18 mg/m ³
Male	· · · · · · · · · · · · · · · · · · ·	······		
n	5	5	5	5
Necropsy body wt	219 ± 5	226 ± 9	218 ± 9	212 ± 10
Heart				
Absolute	0.796 ± 0.020	0.828 ± 0.020	0.828 ± 0.020	0.826 ± 0.070
Relative	3.64 ± 0.07	3.67 ± 0.09	3.82 ± 0.19	3.89 ± 0.21
R. Kidney				
Absolute	0.882 ± 0.047	0.856 ± 0.040	0.856 ± 0.040	0.898 ± 0.035
Relative	4.02 ± 0.14	3.82 ± 0.30	3.93 ± 0.09	4.25 ± 0.09
Liver				
Absolute	8.640 ± 0.383	8.952 ± 0.614	8.952 ± 0.614	9.076 ± 0.520
Relative	39.42 ± 1.10	39.90 ± 3.59	40.96 ± 1.71	42.82 ± 0.59
Lungs				
Absolute	0.990 ± 0.025	1.058 ± 0.039	1.050 ± 0.040	0.994 ± 0.042
Relative	4.53 ± 0.13	4.68 ± 0.06	4.83 ± 0.18	4.70 ± 0.07
Female				
n	5	5	5	5
Necropsy body wt	148 ± 1	144 ± 5	146 ± 5	150 ± 1
Heart				
Absolute	0.600 ± 0.019	0.632 ± 0.023	0.630 ± 0.023	0.632 ± 0.022
Relative	4.05 ± 0.11	4.40 ± 0.15	4.31 ± 0.06	4.23 ± 0.17
R. Kidney				
Absolute	0.628 ± 0.014	0.638 ± 0.025	0.638 ± 0.025	0.630 ± 0.025
Relative	4.24 ± 0.06	4.43 ± 0.10	4.37 ± 0.15	4.21 ± 0.17
Liver				
Absolute	5.950 ± 0.286	5.766 ± 0.262	5.766 ± 0.262	6.156 ± 0.269
Relative	40.17 ± 1.63	40.26 ± 2.46	39.43 ± 1.21	41.20 ± 1.94
Lungs	.			
Absolute	0.846 ± 0.032	0.820 ± 0.035	0.822 ± 0.040	0.866 ± 0.035
Relative	5.72 ± 0.20	5.69 ± 0.06	5.62 ± 0.17	5.79 ± 0.23

TABLE F3 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 4-Week Inhalation Study of Talc^a

4-Week Inhalation Studies

TABLE F4

	0 mg/m ³	2 mg/m ³	6 mg/m ³	18 mg/m ³
Male	-,,			
n	5	5	5	5
µg talc	4.28 ± 1.63	81.60 ± 2.06°°	186.00 ± 9.27**	846.00 ± 45.45°°
µg talc/g lung	4.50 ± 1.86	78.80 ± 2.75°°	$190.00 \pm 7.75^{\circ\circ}$	842.00 ± 69.96**
Female				
n	5	4	5	5
µg talc	0.58 ± 0.24	56.50 ± 1.56°	$127.20 \pm 9.27^{\circ\circ}$	546.00 ± 35.16**
µg talc/g lung	0.66 ± 0.27	$76.00 \pm 3.24^{\circ}$	$185.00 \pm 10.41^{\circ \circ b}$	770.00 ± 51.28°°

° Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

°° P≤0.01

^a Mean ± standard error

^b n=4

Table F5

Lung Talc Burden (Normalized to Exposure Concentration) of Rats in the 4-Week Inhalation Study of Talc^a

	0 mg/m ³	2 mg/m ³	6 mg/m ³	18 mg/m ³
Male				
n	5	5	5	5
	_b	34.25 ± 1.21**	44.22 ± 1.80°°	49.52 ± 4.12**
Feinale				
n	5	4	4	5
	-	$33.05 \pm 1.40^{\circ \circ}$	43.03 ± 2.41**	45.30 ± 3.01**

** Significantly different (P≤0.01) from the control group by Dunn's or Shirley's test

^a Mean \pm standard error; units are presented as μg talc/g control lung per mg/m³.

^b Values of magnesium in sample pools of 2 to 3 control lungs were less than the limit of detectability (0.1 ppm). Therefore no equivalent of measurement of talc was calculated to be present in control lungs.

			<u>Mean Body Weight^b (</u>	an Body Weight ^b (g)	
Dose (mg/m ³)	Survival ^a	Initial	Final	Change	Final Weight Relative to Controls (%)
Male	· · · · · · · · · ·				······
0	5/5	25.8 ± 0.1	28.1 ± 0.2	2.3 ± 0.2	
2	4/5	25.8 ± 0.2	27.5 ± 0.4	1.9 ± 0.4	98
6	4/5	25.8 ± 0.2	27.3 ± 0.3	1.5 ± 0.4	97
18	5/5	25.8 ± 0.2	27.0 ± 0.7	1.2 ± 0.6	96
Female					
0	5/5	20.6 ± 0.2	22.7 ± 1.1	2.1 ± 1.2	
2	5/5	20.6 ± 0.2	22.6 ± 0.9	2.0 ± 0.9	. 99
6	5/5	20.7 ± 0.2	23.6 ± 0.8	2.9 ± 0.8	104
18	5/5	20.6 ± 0.2	22.7 ± 0.7	2.1 ± 0.8	100

TABLE F6 Survival and Mean Body Weights of Mice in the 4-Week Inhalation Study of Talc

a

Number of animals surviving/number initially in group Weights and weight changes are given as mean \pm standard error. Subsequent calculations are based on animals surviving to the end of the studies. b

	0 mg/m ³	2 mg/m ³	6 mg/m ³	18 mg/m ³
Male				
n	5	4	4	5
Necropsy body wt	28.8 ± 0.3	$24.8 \pm 0.6^{\circ \circ}$	$26.8 \pm 0.5^{\circ \circ}$	$25.3 \pm 0.1^{\circ \circ}$
Heart				
Absolute	0.194 ± 0.015	0.198 ± 0.021	0.235 ± 0.018	0.218 ± 0.010
Relative	6.73 ± 0.47	7.97 ± 0.87	8.78 ± 0.62	8.62 ± 0.36
R. Kidney				
Absolute	0.278 ± 0.007	0.245 ± 0.012	0.263 ± 0.009	$0.242 \pm 0.009^{\circ}$
Relative	9.66 ± 0.26	9.86 ± 0.33	9.81 ± 0.28	9.57 ± 0.34
Liver				
Absolute	1.868 ± 0.051	$1.383 \pm 0.079^{**}$	1.673 ± 0.045	1.678 ± 0.050
Relative	64.89 ± 1.53	55.59 ± 2.23**	62.49 ± 0.70	66.36 ± 1.77
Lungs				
Absolute	0.254 ± 0.007	0.230 ± 0.007	0.288 ± 0.038	0.228 ± 0.007
Relative	8.83 ± 0.29	9.26 ± 0.12	10.72 ± 1.31	9.02 ± 0.28
Female				
n	5	5	5	5
Necropsy body wt	23.1 ± 0.3	$20.9 \pm 0.7^{\circ}$	22.3 ± 0.4	22.7 ± 0.3
Heart				
Absolute	0.168 ± 0.014	0.162 ± 0.016	0.180 ± 0.011	0.152 ± 0.015
Relative	7.26 ± 0.54	7.78 ± 0.82	8.05 ± 0.44	6.67 ± 0.61
R. Kidney				
Absolute	0.192 ± 0.004	$0.174 \pm 0.005^{\circ \circ}$	0.188 ± 0.002	0.198 ± 0.002
Relative	8.31 ± 0.23	8.33 ± 0.14	8.44 ± 0.20	8.71 ± 0.10
Liver				
Absolute	1.458 ± 0.057	$1.208 \pm 0.025^{**}$	1.374 ± 0.029	1.458 ± 0.029
Relative	63.02 ± 2.02	57.88 ± 1.14°	61.56 ± 0.62	64.12 ± 1.07
Lungs				
Absolute	0.218 ± 0.005	0.215 ± 0.009^{b}	0.234 ± 0.005	0.220 ± 0.005
Relative	9.43 ± 0.16	$10.47 \pm 0.12^{\circ \circ b}$	$10.49 \pm 0.23^{\circ \circ}$	9.67 ± 0.17

TABLE F7 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 4-Week Inhalation Study of Talca

[°] Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

°° P≤0.01

a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean \pm standard error) n=4

b

÷÷÷,

	0 mg/m ³	2 mg/m^3	6 mg/m ³	18 mg/m ³
Male				
n	5	5	5	5
ug talc	_b	19.60 ± 1.29	50.20 ± 2.84	197.00 ± 5.75
g talc/g lung	-	128.0 ± 9.7	322.0 ± 19.6	$1,138.0 \pm 10.7$
emale				
	5	5	5	5
g talc	-	15.40 ± 1.21	49.80 ± 1.66	180.60 ± 6.61
g talc/g lung	-	101.6 ± 8.4	328.0 ± 13.6	1,162.0 ± 66.4

TABLE F8

Lung Talc Burden of Mice in the 4-Week Inhalation Study of Talc^a

^a Mean ± standard error

^b Values of magnesium in sample pools of 2 to 3 control lungs were less than the limit of detectability (0.1 ppm). Therefore no equivalent of measurement of talc was calculated to be present in control lungs.

TABLE F9Lung Talc Burden (Normalized to Exposure Concentration) of Micein the 4-Week Inhalation Study of Talc^a

	0 mg/m ³	2 mg/m ³	6 mg/m ³	18 mg/m ³
 Male				·····
n	5	5	5	5
	_b	58.170 ± 4.405	56.480 ± 3.443	55.240 ± 0.512
Female				
n	5	5	5	5
	-	46.180 ± 3.820	57.540 ± 2.372	56.400 ± 3.223

^a Mean \pm standard error; units are presented as μ g talc/g control lung per mg/m³.

^b Values of magnesium in sample pools of 2 to 3 control lungs were less than the limit of detectability (0.1 ppm). Therefore no equivalent of measurement of talc was calculated to be present in control lungs.

APPENDIX G

LUNG BURDEN, PULMONARY FUNCTION, AND LUNG BIOCHEMISTRY IN RATS

Methods .		216
Table G1	Number of Rats Evaluated for Lung Talc Burden, Pulmonary Function,	
	and Lung Biochemistry	220
Table G2	Lung Talc Burden (Normalized to Control Lung Weight) of Rats	221
TABLE G3	Lung Talc Burden (Normalized to Exposure Concentration) of Rats	221
TABLE G4	Bronchoalveolar Lavage Fluid Enzymes of Rats	841
	at the 24-Month Interim Evaluation	222
TADIE CE	au the 24-ividentul lindentul internal Evaluation	444
Table G5	Bronchoalveolar Lavage Fluid Cell Populations of Rats	
	at the 24-Month Interim Evaluation	222
Table G6	Viability and Phagocytic Activity of Macrophages in Bronchoalveolar Fluid	
	of Rats at the 24-Month Interim Evaluation	223
Table G7	Lung Collagen Metabolism and Protein Synthesis in Rats	
	at the 24-Month Interim Evaluation	223
Table G8	Proteinase Activity in Lavage Fluid and Lung Homogenate Supernatant Fluid	
	of Rats at the 24-Month Interim Evaluation	224
Table G9	Respiratory Frequency of Rats	225
TABLE G10	Total Lung Capacity of Rats	225
TABLE G11	Total Lung Capacity/Kilogram Body Weight of Rats	226
TABLE G11 TABLE G12	Tidal Volume of Rats	226
TABLE G13	Minute Volume of Rats	227
TABLE G14	Minute Volume/Kilogram Body Weight of Rats	227
TABLE G15	Residual Volume of Rats	228
Table G16	Residual Volume/Total Lung Capacity of Rats	228
Table G17	Vital Capacity of Rats	229
Table G18	Vital Capacity/Total Lung Capacity of Rats	229
Table G19	Forced Vital Capacity of Rats	230
Table G20	Forced Vital Capacity/Kilogram Body Weight of Rats	230
Table G21	Functional Residual Capacity of Rats	231
Table G22	Functional Residual Capacity/Total Lung Capacity of Rats	231
Table G23	Total Pulmonary Resistance of Rats	232
TABLE G24	Maximum Quasistatic Compliance of Rats	232
TABLE G25	Quasistatic Chord Compliance of Rats	233
TABLE G26	Dynamic Compliance of Rats	233
TABLE G20 TABLE G27		233 234
	Peak Expiratory Flow of Rats	
TABLE G28	Peak Expiratory Flow/Forced Vital Capacity of Rats	234
TABLE G29	Expiratory Flow 10% Forced Vital Capacity of Rats	235
TABLE G30	Expiratory Flow 10% Forced Vital Capacity/Forced Vital Capacity of Rats	235
TABLE G31	Expiratory Flow 25% Forced Vital Capacity of Rats	236
Table G32	Expiratory Flow 25% Forced Vital Capacity/Forced Vital Capacity of Rats	236
Table G33	Expiratory Flow 50% Forced Vital Capacity of Rats	237
Table G34	Expiratory Flow 50% Forced Vital Capacity/Forced Vital Capacity of Rats	237
Table G35	Mean Midexpiratory Flow of Rats	238
Table G35	Mean Midexpiratory Flow/Forced Vital Capacity of Rats	238
TABLE G37	Carbon Monoxide Diffusing Capacity of Rats	239
TABLE G38	Carbon Monoxide Diffusing Capacity/Lung Volume of Rats	239
TABLE G39	Carbon Monoxide Diffusing Capacity/Kilogram Body Weight of Rats	240
TABLE G40	Percent Forced Vital Capacity Expired in 0.1 Second of Rats	240
TABLE G41	Slope III of N_2 Washout of Rats	241
	Carolise und an 145 AAGGUEGEE AE HTCERS	<i>₽</i> ¶1

METHODS

Lung Burden

Lung talc burden was measured to determine the relationship between the exposure concentration and the amount of talc deposited and retained within the pulmonary region of the respiratory tract. The method used for analyzing for talc in lungs has been published (Hanson *et al.*, 1985). Lung burdens were determined on three male and three female rats from each exposure group sacrificed at 6, 10, 18, and 24 months after the start of exposure. The analysis was based on determination of acid-insoluble magnesium in the lung. Midwest Research Institute reported that the value for the magnesium was 19.33% for batch 02 and 19.47% for batch 03. These values and the results of the analysis at Lovelace Inhalation Toxicology Research Institute were close to the theoretical value of magnesium for talc (19.22%). Since rats sacrificed at 27, 47, and 79 weeks had been exposed to only batch 02 of talc, 19.33% magnesium was used to calculate the quantity of talc for these rats. Because batch 03 was used for the last 4 months of exposure and lung burdens of rats after 105 weeks of exposure to talc would be expected to contain substantial amounts of batch 03 talc, 19.47% magnesium was used to calculate the quantity of talc deposited in the lungs of these rats.

All operations in conjunction with tissue analysis for talc were done while wearing talc-free gloves. Left lung lobes were weighed at necropsy and stored frozen (-20° C) until used. Lungs were homogenized using water and the proteins were precipitated with 70% perchloric acid. The individual samples were filtered and washed with 5% trichloroacetic acid (TCA) to remove perchlorates. Washing continued until magnesium levels in the wash were within 10% of levels in the TCA solution (≤ 0.03 ppm magnesium). Filters and tissue residues were placed in 15 mL porcelain crucibles, dried slowly (200° C), and then ashed at 600° C for 1 hour. Ashed samples were transferred to Teflon beakers using 2 mL HCl and evaporated to dryness. Samples were then digested in hydrofluoric acid (HF), and the HF evaporated. Additional HF was added and reevaporated. Sulfuric acid was added to remove trace HF, and samples were then diluted with distilled water and analyzed for magnesium by atomic absorbance (Perkin Elmer, Model 306, Atomic Absorption Spectrophotometer) with a magnesium hollow cathode lamp and an air acetylene flame (Hanson *et al.*, 1985).

Pulmonary Function

Groups of 10 male and 10 female rats from each exposure group were assigned for respiratory function analyses. Respiratory function was measured at 6 months, 10 months, and 18 months. At 24 months of exposure, respiratory function was performed on all surviving rats not assigned to the lifetime study. Respiratory function was measured by noninvasive techniques, using methods previously published (Harkema *et al.*, 1982).

Tests were conducted using a 1.4 L combination flow and pressure plethysmograph. Flows were measured by measuring differential pressures across a wire screen pneumotachograph in the plethysmograph wall. Volumes were obtained by integration (Model 6, Pulmonary Mechanics Analyzer, Buxco Electronics, Sharon, CT). In the pressure mode, used only for measuring functional residual capacity, the pneumotachograph hole was sealed and volume changes were measured as pressure changes. The plethysmograph was maintained at approximately 37° C by a resistance element. Transpulmonary pressure was measured using transducers connected to the external airway and a liquid-filled, 2.2 mm O.D. esophageal catheter.

A positive-negative pressure respirator system was used to induce quasistatic and forced respiratory movements. Reservoirs maintained at +40 and -50 cm H_2O were connected to the airway by solenoid valves. Inspiratory and quasistatic expiratory flow rates were limited by calibrated needle valves to 5 and 3 mL/sec, respectively. Inspirations were stopped automatically at a transpulmonary pressure of 30 cm H_2O , defining the lung volume at that distending pressure as total lung capacity. Forced inhalations were induced from total lung capacity by opening the airway to the negative pressure

Lung Burden, Pulmonary Function, and Lung Biochemistry in Rats

reservoir via a rapidly opening valve having a 9.5 mm I.D., with no intentional flow restriction between the valve and the reservoir.

The rats were anesthetized with halothane and intubated orally with a tracheal catheter 5.5 cm long \times 1.8 mm I.D., fabricated from a 14-gauge intravenous catheter as previously described (Mauderly, 1977). The breathing port in the plethysmograph wall was a Luer fitting drilled to 2.5 mm I.D. The frequency response of the plethysmograph-respirator-tracheal catheter system has been tested and found adequate for forced expiratory events in rats. No phase lag among flow, pressure, and volume signals has been found in the frequency range of spontaneous breathing.

Rats were anesthetized, intubated and placed prone in the plethysmograph. The esophageal catheter was adjusted to maximize the recorded transpulmonary pressure signal. Anesthetic depth was adjusted to yield a respiratory frequency of 50 to 60 per minute. Respiratory frequency, tidal volume, minute volume, dynamic lung compliance, and total pulmonary resistance were recorded during spontaneous respiration, time-averaged by a data logger and displayed on a teletype terminal.

Prior to each subsequent measurement procedure, the rat's lung was manually inflated with a syringe to induce apnea. A quasistatic deflation from total lung capacity to residual volume allowed measurement of vital capacity and the quasistatic expiratory pressure-volume curve. Quasistatic lung chord compliance was measured as the slope of the curve over the chord between the apneic lung volume and the volume at $+10 \text{ cm } H_2O$ pressure. Maximum quasistatic compliance was measured as the steepest slope of the pressure-volume curve over any 2 cm H_2O pressure interval. Functional residual capacity was measured by the barometric method (Dubois *et al.*, 1956) from recordings of lung volume and airway pressure changes as the rat resumed breathing against a blocked airway. From these measurements, all subdivisions of lung volume, including residual volume, were calculated.

Alveolar-capillary gas exchange was evaluated by a single-breath, CO diffusing capacity test (Ogilvie *et al.*, 1957). The lungs were inflated with a gas mixture containing CO and Ne in air to 20 cm H_2O transpulmonary pressure. After 6 seconds, one-half of the gas was withdrawn and the remaining gas collected for analysis by gas chromatography. The lung volume when inflated with the mixture was measured by neon dilution.

A forced inhalation was performed as described above, and the maneuver analyzed by a microprocessor in the data logger (Model D-12, Buxco). Data included forced vital capacity (FVC), the percentage of FVC exhaled in 0.1 second, flow rates at peak flow, and at 50%, 25%, and 10% of FVC.

A single-breath nitrogen washout was performed by recording volume and nitrogen concentration of expirate during a slow deflation after an inflation to total lung capacity with oxygen. The slope of phase III ("alveolar plateau") of the washout curve was calculated to assess the uniformity of intrapulmonary gas distribution.

Lung Biochemistry

All surviving rats from each exposure group (the 3 males and 3 females originally assigned for lung burden/histology and the 10 males and 10 females from physiology/biochemistry) were sacrificed after 105 weeks of exposure.

The rats were anesthetized with halothane and sacrificed by exsanguination from the abdominal aorta or renal artery. The heart and lung block was removed, the right apical, right cardiac, and right intermediate portions of each rat lung were given endobronchial saline lavage (6 mL total volume in three, 2.0 mL washes of saline), and the bronchoalveolar lavage (BAL) fluid was centrifuged at $300 \times G$ to separate the cells from the supernatant fluid.
Airway Fluid Enzymes and Cytology Measurements

In this study, BAL fluid was analyzed to determine the degree of:

- 1) Cell injury as indicated by concentration of lactate dehydrogenase (LDH).
- 2) Chronic inflammatory response as indicated by presence of increased numbers of polymorphonuclear leukocytes (PMN) and pulmonary alveolar macrophages (AM) as well as increased protein and alkaline phosphatase activity.
- 3) Lysosomal activation as indicated by ß-glucuronidase and acid proteinase activity. Elevated enzyme activities have been observed in BAL fluid from rodents exposed to particles. These enzymes may be associated with the breakdown of necrotic tissues.
- 4) Response to oxidant injury as indicated by increased glutathione reductase activity.

The supernatant fluid was analyzed by spectrophotometric, kinetic, and enzymatic analyses for the activities of β -glucuronidase, LDH, glucose-6-phosphate dehydrogenase, alkaline phosphatase, glutathione reductase, and glutathione peroxidase. Acid proteinase was measured by the release of radiolabeled globin peptides from the trichloroacetic acid-precipitable protein substrate, and total protein was analyzed colorimetrically (Henderson *et al.*, 1985).

Numbers of total nucleated cells recovered in lavage fluid were determined using a cell counter (Coulter Electronic, Hileah, FL) or a hemocytometer. Cytocentrifuge preparations of resuspended cells were made, stained with Wright's stain (Diff-Quick, Curtin Matheson Scientific, Denver, CO) and the differential cell count determined.

Alveolar macrophages (AM) were recovered from BAL fluid of the same rats as described above. The cells (1×10^6) were suspended in Roswell Park Memorial Institute (RPMI) 1640 culture medium and pelleted by centrifugation and the supernatant removed. Cells were resuspended in 1 mL of a 1% suspension of IgG antibody-sensitized sheep red blood cells (SRBC) in RPMI 1640. The antibody-sensitized SRBC were made as previously described (Harmsen and Jeska, 1980). The subagglutinating titer of heat-inactivated rabbit anti-SRBC serum was used to sensitize the SRBC. The AM and SRBC suspensions were incubated at 37° C for 1 hour in a humidified atmosphere of 5% CO₂ in air. The AM and SRBC were sedimented by centrifugation and the supernatant discarded. Unphagocytized SRBC was stopped by the addition of an equal volume of saline and cytocentrifuge preparations were made. The slides were stained with Wright's stain (Diff-Quik, American Scientific Products, McGaw Park, IL) and the percent of AM phagocytizing SRBC was determined by light microscopy. Three fields of 100 cells per preparation were counted. Viability was determined by trypan blue exclusion.

Lung Tissue Collagen and Proteinase

In this study, rats sacrificed at 105 weeks of talc exposure were used for collagen metabolism, protein synthesis, and proteinase activity measurements. Tissue and BAL fluid from single rats were used for analyses.

To estimate collagen and protein synthesis, ¹⁴C-proline (0.1 μ Ci/g body weight) was injected intraperitoneally approximately 2 to 3 hours prior to sacrifice. Lung lobes to be analyzed for collagen were frozen in liquid nitrogen and pulverized. The pulverized lungs were extracted overnight in 0.5 M acetic acid at 4° C, and centrifuged to separate the insoluble material from the supernatant fluid. The supernatant fluid was separated into high and low molecular weight fractions using Amicon Cones with a size cutoff of approximately 50 kDa.

All samples for collagen analyses from lung and lavage supernatant fluid were hydrolyzed for approximately 18 hours in 6N HCl at 110° C to convert proteins to their individual amino acids, were evaporated to dryness to remove the HCl, and were resuspended in 0.001 N HCl prior to analysis.

Lung Burden, Pulmonary Function, and Lung Biochemistry in Rats

....

Collagen quantity was measured and multiplied by 7.46 to convert BAL or lung tissue hydroxyproline content to BAL or lung tissue collagen content, taking into account that collagen is approximately 13% hydroxyproline by weight (Neuman and Logan, 1950).

Radioactive proline and hydroxyproline were quantitated in the low molecular weight supernatant fluid fraction and in a sample containing both the high molecular weight supernatant fluid fraction and the acetic acid insoluble fraction. Following this, the radioactive proline and hydroxyproline quantities were used to calculate the noncollagenous protein synthesis, the collagen production, and the intracellular collagen degradation.

Noncollagenous protein synthesis was measured as the total radioactive proline incorporation into lung tissue minus the incorporation into lung tissue which was related to collagen synthesis. The radioactive proline in collagen was assumed to be equal to the radioactive hydroxyproline, thus, incorporation into collagen was calculated as twice the radioactive hydroxyproline. Collagen production (% of newly synthesized protein that was collagen) was calculated as the percentage of the total incorporation of proline into all proteins constituted by collagen, and adjusted for the 5.4-fold difference in the content of total amino acids (proline and hydroxyproline) between collagen and noncollagenous protein (Pickrell *et al.*, 1987). Intracellular collagen degradation (as a percent of newly synthesized collagen) was calculated as the percentage of total radioactive hydroxyproline in collagen constituted by low molecular weight radioactive hydroxyproline.

Lung tissue proteinase activity was measured as the release of ¹⁴C-leucine from prelabeled globin at pH 4.2 and 7.5 (Gregory and Pickrell, 1982; Harkema *et al.*, 1984; Pickrell *et al.*, 1987). Acid proteinase activity was inhibited by leupeptin to indicate either neutrophil and macrophage cathepsin B (inhibited) or macrophage cathepsin D (not inhibited)-like activity. Neutral proteinase activity was inhibited by 1,10-phenanthroline to indicate either macrophage elastase (inhibited) or neutrophil elastase-cathepsin G (not inhibited)-like activity.

	Male		Female			
	0 mg/m ³	6 mg/m ³	18 mg/m ³	0 mg/m ³	6 mg/m ³	18 mg/m ³
ung Burden				·····		
6-Month Interim	_a	3	3		- 3	3
11-Month Interim	-	3	3	_	3	3
18-Month Interim	-	3	3		2	3
24-Month Interim	-	6	9	-	2	3
ulmonary Function						
6-Month Interim	9	10	10	10	10	10
11-Month Interim	9	10	10	10	10	10
18-Month Interim	9	10	10	9	9	9
24-Month Interim	3	6	3	6	9	3
ung Biochemistry						
24-Month Interim	3	6	2	5	9	3

TABLE G1

Number of Rats Evaluated for Lung Talc Burden, Pulmonary Function, and Lung Biochemistry

^a Lung burden not measured in 0 mg/m³ rats.

Lung Burden, Pulmonary Function, and Lung Biochemistry in Rats

	6 months	12 months	18 months	24 months
ale				
0 mg/m^3	_b	-	_	-
0 mg/m ³ 6 mg/m ³ 18 mg/m ³	2.63 ± 0.24	$4.38 \pm 0.59^{\circ}$	$7.31 \pm 0.71^{**}$	$10.45 \pm 1.26^{**}$
18 mg/m^3	10.83 ± 0.23	$20.96 \pm 2.04^{\circ}$	$27.57 \pm 0.91^{\circ}$	$24.15 \pm 3.41^{\circ}$

4.71 ± 0.26°

 14.16 ± 3.36

 $7.66 \pm 0.34^{\circ\circ}$

 $24.33 \pm 0.63^{\circ}$

TABLE G2

Male

Female

 0 mg/m^3

Lung Tale

6 mg/m³ 2.43 ± 0.19 18 mg/m^3 8.34 ± 0.12

Significantly different (P≤0.05) from the 6 month group by Dunn's or Shirley's test ٥

°° P≤0.01

а Mean ± standard error; units are presented as mg talc/g control lung.

Ь No measurements taken

TABLE G3 Lung Talc Burden (Normalized to Exposure Concentration) of Rats^a

	Male		Female	
	6 mg/m ³	18 mg/m ³	6 mg/m ³	18 mg/m ³
6-Month Interim	0.439 ± 0.040	0.602 ± 0.013*	0.406 ± 0.032	0.464 ± 0.007*
12-Month Interim	0.731 ± 0.098	$1.165 \pm 0.113^*$	0.785 ± 0.043	0.787 ± 0.187
18-Month Interim	1.22 ± 0.12	1.53 ± 0.05	1.28 ± 0.06	1.35 ± 0.04
24-Month Interim	1.74 ± 0.21	1.34 ± 0.19	1.52 ± 0.15	1.63 ± 0.13

ø

Significantly different (P ≤ 0.05) from the 6 mg/m³ group by Dunn's or Shirley's test Mean \pm standard error; units are presented as mg talc/g control lung per mg talc/m³. а

 $9.10 \pm 0.88^{\circ\circ}$

 $29.40 \pm 2.40^{\circ\circ}$

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male		····	
B-Glucuronidase	1.09 ± 0.40	$18.86 \pm 3.20^{\circ}$	89.24 ± 14.24**
Lactate Dehydrogenase	$1,634 \pm 545$	$3,193 \pm 606$	8,262 ± 380*
Alkaline Phosphatase	364.7 ± 147	572.8 ± 86.8	1,604.7 ± 143*
Glutathione Reductase	103.03 ± 16.43	99.35 ± 19.79	110.99 ± 51.27
Total Protein ^b	1.78 ± 0.40	3.12 ± 0.64	$5.79 \pm 0.55^*$
Female			
B -Glucuronidase	3.33 ± 0.97	$41.05 \pm 4.39^{**}$	154.16 ± 17.21**
Lactate Dehydrogenase	$1,655 \pm 266$	$3,906 \pm 444^*$	$14,436 \pm 1,218^{**}$
Alkaline Phosphatase	427.8 ± 30.9	853.6 ± 79.7**	$2,504.7 \pm 221^{**}$
Glutathione Reductase	100.6 ± 1.7	135.2 ± 22.4	$460.0 \pm 44.8^*$
Total Protein	1.20 ± 0.22	$4.30 \pm 0.36^{**}$	$12.96 \pm 0.28^{**}$

TABLE G4

Bronchoalveolar Lavage Fluid Enzymes of Rats at the 24-Month Interim Evaluation^a

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

^a Mean ± standard error; units presented as mIU/g control lung.

^b Mean \pm standard error; units presented as mro/g control lung.

TABLE G5 Bronchoalveolar Lavage Fluid Cell Populations of Rats at the 24-Month Interim Evaluation^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			- · · · · · · · · · · · · · · · · · · ·
Polymorphonuclear Cells	0.333 ± 0.167	$24.417 \pm 2.557^*$	32.500 ± 3.000*
Lymphocytes	0.000 ± 0.000	0.500 ± 0.258	0.500 ± 0.500
Macrophages	93.67 ± 3.72	$70.25 \pm 2.53^*$	$62.75 \pm 1.75^*$
Epithelial Cells	6.00 ± 3.61	4.83 ± 1.41	4.25 ± 1.75
Female			
Polymophonuclear Cells	0.625 ± 0.315	25.778 ± 2.673**	37.000 ± 1.528**
Lymphocytes	0.000 ± 0.000	$0.722 \pm 0.188^*$	$1.333 \pm 0.667^*$
Macrophages	91.38 ± 1.75	71.22 ± 2.95**	57.33 ± 4.67**
Epithelial Cells	8.00 ± 2.01	$2.28 \pm 0.50^*$	4.33 ± 2.60

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

^a Mean ± standard error; units presented as percent of total cells.

Table G6

Viability and Phagocytic Activity of Macrophages in Bronchoalveolar Fluid of Rats at the 24-Month Interim Evaluation

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Viability ^a Phagocytic Activity ^b	63.67 ± 5.91 83.13 ± 4.54	66.73 ± 1.59 63.12 ± 8.14	57.70 ± 5.00 65.30°
Female			
Viability Phagocytic Activity	82.65 ± 9.65 75.60 ± 5.14	74.64 ± 3.24 66.51 ± 8.09	61.00 ± 4.42 70.15 ± 2.85

^a Mean ± standard error; units are presented as percent viable cells.

Mean ± standard error; units are presented as percent viace cens.
 Mean ± standard error; units are presented as percent cells phagocytizing sheep erythrocytes.

 $rac{n=1}{n=1}$; no standard error calculated

TABLE G7 Lung Collagen Metabolism and Protein Synthesis in Rats at the 24-Month Interim Evaluation

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Lavage Fluid Collagenous Peptides ^a	39.79 ± 5.07	46.99 ± 6.51	79.21 ± 13.73
Total Lung Collagen ^b	13.87 ± 0.60	$15.98 \pm 0.39^{\circ}$	18.88 ± 3.35*
Collagen Production ^c	1.58 ± 0.17	1.60 ± 0.17	1.63 ± 0.22
Collagen Degradation ^d	31.67 ± 1.72	27.74 ± 1.42	9.18 ± 2.38*
Non-Collagenous Protein Synthesis ^e	142.1 ± 14.5	199.8 ± 22.1*	$312.2 \pm 10.6^{**}$
Female			
Lavage Fluid Collagenous Peptides	78.27 ± 11.64	$115.36 \pm 8.61*$	174.71 ± 13.56**
Total Lung Collagen	14.32 ± 0.66	19.95 ± 1.58*	36.47 ± 3.39**
Collagen Production	0.982 ± 0.185	$1.804 \pm 0.144^{\circ}$	$2.264 \pm 0.347^{**}$
Collagen Degradation	14.41 ± 2.44	21.59 ± 4.99	9.38 ± 1.63
Non-Collagenous Protein Synthesis	173.9 ± 34.5	325.8 ± 90.9	554.3 ± 107*

° Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

°° P≤0.01

Mean \pm standard error; units are presented as $\mu g/g$ control lung.

^b Mean \pm standard error; units are presented as mg/g control lung.

^c Mean \pm standard error; units are presented as percent new protein.

^d Mean ± standard error; units are presented as percent new collagen.

^e Mean \pm standard error; units are presented as disintegrations per minute x 10⁻³/g control lung.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Lavage Fluid			
Acid Proteinase	0.994 ± 0.329	1.866 ± 0.174	$4.307 \pm 0.218^{*}$
Cathepsin D	0.147 ± 0.147	0.599 ± 0.150	$2.420 \pm 0.147^{**}$
Cathepsin B	0.924 ± 0.415	1.267 ± 0.094	1.887 ± 0.365
Homogenate Supernatant Fluid			
Acid Proteinase	10.92 ± 0.64	$17.51 \pm 0.90^*$	$25.13 \pm 1.50^{**}$
Cathepsin D	8.53 ± 0.91	$14.04 \pm 0.62^*$	$21.03 \pm 1.56^{**}$
Cathepsin B	2.39 ± 0.41	3.48 ± 0.37	$4.10 \pm 0.06^*$
Neutral Proteinase	0.715 ± 0.168	$2.417 \pm 0.304^*$	4.505 ^b
PMN Elastase Cathepsin G	0.490 ± 0.218	$1.936 \pm 0.242^*$	4.457 ± 0.377**
Macrophage Elastase Collagenase	0.225 ± 0.099	0.482 ± 0.077	0.000 ^b
Female			
Lavage Fluid			
Acid Proteinase	1.52 ± 0.12	$3.46 \pm 0.33^{\circ}$	$6.05 \pm 0.73^{**}$
Cathepsin D	0.015 ± 0.015	$1.310 \pm 0.292^*$	$4.043 \pm 0.578^{**}$
Cathepsin B	1.61 ± 0.26	2.15 ± 0.22	2.01 ± 0.17
Homogenate Supernatant Fluid			
Acid Proteinase	14.04 ± 0.95	$29.43 \pm 1.18^{**}$	38.61 ± 1.81**
Cathepsin D	10.05 ± 0.68	$22.97 \pm 1.07^{**}$	$30.25 \pm 1.60^{**}$
Cathepsin B	3.99 ± 0.58	$6.46 \pm 0.60^*$	$8.37 \pm 0.42^{**}$
Neutral Proteinase	0.648 ± 0.087	$5.040 \pm 0.418^{**}$	12.293 ± 1.598**
PMN Elastase Cathepsin G	0.785 ± 0.142	$4.351 \pm 0.261^{**}$	$10.313 \pm 2.694^{**}$
Macrophage Elastase Collagenase	0.054 ± 0.037	$0.683 \pm 0.175^*$	$2.012 \pm 1.126^*$

TABLE G8 Proteinase Activity in Lavage Fluid and Lung Homogenate Supernatant Fluid of Rats at the 24-Month Interim Evaluation^a

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

^a Mean \pm standard error; units are presented as mg/hour per gram control lung. ^b n=1: no standard error calculated

n=1; no standard error calculated

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
5-Month Interim	57.11 ± 0.86	55.00 ± 1.13	54.00 ± 0.75
1-Month Interim	55.33 ± 1.11	56.10 ± 0.92	53.50 ± 0.99
8-Month Interim	56.50 ± 1.34	55.40 ± 1.08	54.60 ± 1.13
24-Month Interim	57.67 ± 1.20	56.50 ± 1.80	56.67 ± 1.86
Female			
5-Month Interim	52.10 ± 0.55	54.50 ± 1.19	54.30 ± 0.90
11-Month Interim	53.60 ± 0.73	53.70 ± 1.10	55.20 ± 0.94
18-Month Interim	55.44 ± 1.12	54.56 ± 0.93	55.22 ± 1.41
24-Month Interim	57.67 ± 1.23	54.44 ± 0.93	59.00 ± 0.58

TABLE G9

Respiratory Frequency of Rats^a

* Significantly different ($P \le 0.05$) from the control by Dunn's or Shirley's test

^a Mean \pm standard error; units are presented as breaths/min.

TABLE G10Total Lung Capacity of Rats^a

	0 mg/m ³	ճ mg/m ³	18 mg/m ³
Male	,		<u> </u>
6-Month Interim	19.86 ± 0.54	19.48 ± 0.46	19.25 ± 0.39
11-Month Interim	20.06 ± 0.32	$18.44 \pm 0.39^{**}$	$17.67 \pm 0.45^{\circ\circ}$
8-Month Interim	20.30 ± 0.45	$18.87 \pm 0.41^{\circ}$	$16.34 \pm 0.52^{\circ \circ}$
4-Month Interim	20.50 ± 0.83	20.20 ± 0.28	16.47 ± 1.53
Female			
-Month Interim	14.20 ± 0.25	14.56 ± 0.27	13.80 ± 0.27
1-Month Interim	13.29 ± 0.21	12.91 ± 0.17	$12.06 \pm 0.26^{**}$
8-Month Interim	13.94 ± 0.26	$12.68 \pm 0.28^{**}$	$11.43 \pm 0.31^{\circ\circ}$
4-Month Interim	14.85 ± 0.31	$13.73 \pm 0.34^{\circ}$	$11.50 \pm 1.07^{\circ\circ}$

0

° Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

°° P=≤.01

^a Mean ± standard error; units are presented as mL.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
5-Month Interim	51.63 ± 1.05	51.45 ± 1.03	52.32 ± 0.78
1-Month Interim	47.71 ± 0.99	$44.11 \pm 0.87^{\circ}$	$43.42 \pm 0.74^{*1}$
8-Month Interim	45.92 ± 1.58	42.98 ± 1.15	$38.74 \pm 1.50^{\circ}$
24-Month Interim	51.05 ± 4.36	48.49 ± 1.40	44.16 ± 1.29
Female			
6-Month Interim	67.73 ± 1.26	67.06 ± 1.65	65.41 ± 1.50
1-Month Interim	55.21 ± 1.91	52.37 ± 1.05	50.24 ± 1.19
8-Month Interim	45.78 ± 1.26	43.40 ± 1.18	43.26 ± 2.42
24-Month Interim	49.03 ± 1.31	48.93 ± 2.49	44.54 ± 0.51

TABLE G11 Total Lung Capacity/Kilogram Body Weight of Rats^a

* Significantly different (P \leq 0.05) from the control by Dunn's or Shirley's test ** P \leq 0.01

^a Mean \pm standard error; units are presented as mL/kg.

TABLE G12 **Tidal Volume of Rats**^a

0 mg/m ³	6 mg/m ³	18 mg/m ³
1.83 ± 0.09	1.90 ± 0.08	2.01 ± 0.10
1.94 ± 0.06	1.91 ± 0.06	1.93 ± 0.06
1.66 ± 0.08	1.63 ± 0.08	1.74 ± 0.08
1.50 ± 0.00	1.85 ± 0.16	$2.13 \pm 0.19^*$
1.65 ± 0.07	1.53 ± 0.11	$1.40 \pm 0.07^*$
1.66 ± 0.07	1.68 ± 0.06	1.43 ± 0.09
1.54 ± 0.04	$1.34 \pm 0.06^*$	$1.40 \pm 0.03^{*}$
1.43 ± 0.08	1.39 ± 0.09	1.37 ± 0.15
	$\begin{array}{c} 1.83 \pm 0.09 \\ 1.94 \pm 0.06 \\ 1.66 \pm 0.08 \\ 1.50 \pm 0.00 \end{array}$ $\begin{array}{c} 1.65 \pm 0.07 \\ 1.66 \pm 0.07 \\ 1.54 \pm 0.04 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ţ

* Significantly different (P \leq 0.05) from the control by Dunn's or Shirley's test a Mean \pm standard error; units are presented as mL.

Lung Burden, Pulmonary Function, and Lung Biochemistry in Rats

	0 mg/m ³	6 mig/m ³
Male	<u>t servina servina de ser</u>	
-Month Interim	102.5 ± 3.9	104.8 ± 4.2
11-Month Interim	104.5 ± 3.4	106.2 ± 2.3
18-Month Interim	97.34 ± 2.79	90.83 ± 3.45
24-Month Interim	92.53 ± 2.64	107.25 ± 6.34

85.43 ± 4.22

87.89 ± 3.95

87.14 ± 2.71

 83.87 ± 5.04

 83.05 ± 4.44

88.18 ± 3.26

79.64 ± 5.29

73.54 ± 3.02**

TABLE G13

 $^{\circ\circ}$ Significantly different (P=0.01) from the control by Dunn's or Shirley's test ^a Mean \pm standard error; units are presented as mL/min.

TABLE G14

Female

6-Month Interim

11-Month Interim 18-Month Interim

24-Month Interim

Minute Volume/Kilogram Body Weight of Rats^a

	0 mg/m^3	6 mg/m ³	18 mg/m ³
Male	an a	in a surfa _{r da} n yang surfar surfar surfar yang surfar surfar surfar surfar surfar surfar surfar surfar surfar	
6-Month Interim	266.0 ± 7.0	277.7 ± 12.8	285.1 ± 9.5
11-Month Interim	247.9 ± 5.9	254.5 ± 7.2	247.6 ± 8.2
18-Month Interim	219.4 ± 4.6	206.8 ± 8.2	226.8 ± 10.5
24-Month Interim	229.5 ± 12.7	256.9 ± 14.8	319.9 ± 38.1
Female			
6-Month Interim	408.7 ± 23.3	381.7 ± 19.5	362.7 ± 19.2
11-Month Interim	365.0 ± 18.9	359.3 ± 18.1	330.1 ± 20.7
18-Month Interim	286.2 ± 11.0	250.6 ± 7.6	291.6 ± 17.7
24-Month Interim	276.9 ± 17.4	282.5 ± 21.4	328.8 ± 57.7

а Mean ± standard error; units are presented as mL/min per kg. 18 mg/m³

 104.8 ± 3.4 100.5 ± 2.8 95.87 ± 4.61 117.77 ± 11.70

 76.36 ± 3.45

78.78 ± 3.81

 82.07 ± 5.95

76.83 ± 2.29**

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male	· · · · · · · · · · · · · · · · · · ·		
6-Month Interim	2.90 ± 0.21	2.99 ± 0.17	2.64 ± 0.11
11-Month Interim	2.06 ± 0.17	1.63 ± 0.10	1.70 ± 0.16
18-Month Interim	1.96 ± 0.15	1.74 ± 0.13	1.98 ± 0.16
24-Month Interim	3.23 ± 0.48	2.83 ± 0.19	2.20 ± 0.32
Female			
6-Month Interim	2.18 ± 0.14	2.39 ± 0.22	2.47 ± 0.15
11-Month Interim	1.22 ± 0.15	1.25 ± 0.17	1.65 ± 0.14
18-Month Interim	1.28 ± 0.11	1.52 ± 0.13	$1.83 \pm 0.13^{\circ}$
24-Month Interim	1.68 ± 0.11	1.72 ± 0.23	1.73 ± 0.19

TABLE G15 Residual Volume of Rats^a

** Significantly different (P≤0.01) from the control by Dunn's or Shirley's test

^a Mean ± standard error; units are presented as mL.

0 mg/m^3 6 mg/m^3 18 mg/m³ Male 6-Month Interim 0.146 ± 0.009 0.154 ± 0.009 0.137 ± 0.004 0.088 ± 0.005 11-Month Interim 0.102 ± 0.008 0.096 ± 0.008 0.092 ± 0.007 0.121 ± 0.010 18-Month Interim 0.097 ± 0.007 24-Month Interim 0.157 ± 0.019 0.140 ± 0.010 0.133 ± 0.011 Female 0.163 ± 0.013 0.179 ± 0.011 6-Month Interim 0.153 ± 0.009 $0.137 \pm 0.011^*$ 0.096 ± 0.013 11-Month Interim 0.091 ± 0.010 0.091 ± 0.007 $0.120 \pm 0.010^{\circ}$ $0.160 \pm 0.009^{**}$ 18-Month Interim 0.125 ± 0.016 0.151 ± 0.005 24-Month Interim 0.113 ± 0.007

TABLE G16 Residual Volume/Total Lung Capacity of Rats^a

* Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

** P≤0.01

^a Mean ± standard error; units are presented as mL/mL.

TABL	e G17		
Vital	Capacity	രി	Rats ^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male		<u></u>	
-Month Interim	16.96 ± 0.49	16.49 ± 0.44	16.61 ± 0.32
1-Month Interim	18.01 ± 0.27	$16.82 \pm 0.37^{\circ}$	15.97 ± 0.42°°
8-Month Interim	18.35 ± 0.45	17.15 ± 0.38	$14.36 \pm 0.51^{\circ\circ}$
4-Month Interim	17.27 ± 0.48	17.35 ± 0.34	14.27 ± 1.26
Female			
-Month Interim	12.02 ± 0.22	12.17 ± 0.20	11.33 ± 0.28
1-Month Interim	12.06 ± 0.20	11.68 ± 0.18	$10.40 \pm 0.25^{\circ\circ}$
8-Month Interim	12.66 ± 0.21	$11.14 \pm 0.31^{\circ\circ}$	$9.61 \pm 0.26^{\circ\circ}$
24-Month Interim	13.15 ± 0.27	$11.99 \pm 0.32^{\circ}$	9.77 ± 0.90

° Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

°° P≤0.01

^a Mean \pm standard error; units are presented as mL.

TABLE G18 Vital Capacity/Total Lung Capacity of Rats^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			<u> </u>
-Month Interim	0.854 ± 0.009	0.846 ± 0.009	0.863 ± 0.004
1-Month Interim	0.898 ± 0.008	0.912 ± 0.005	0.904 ± 0.008
8-Month Interim	0.904 ± 0.007	0.909 ± 0.006	0.878 ± 0.010
4-Month Interim	$0.843 \pm .0.19$	0.859 ± 0.010	0.867 ± 0.011
emale			
-Month Interim	0.847 ± 0.009	0.837 ± 0.013	0.821 ± 0.011
1-Month Interim	0.908 ± 0.010	0.905 ± 0.012	$0.862 \pm 0.010^{\circ}$
8-Month Interim	0.908 ± 0.007	$0.879 \pm 0.010^{\circ}$	$0.841 \pm 0.009^{\circ\circ}$
4-Month Interim	0.886 ± 0.007	0.874 ± 0.016	0.849 ± 0.005

^o Significantly different (P \leq 0.05) from the control by Dunn's or Shirley's test ^{oo} P \leq 0.01 ^a Mean \pm standard error; units are presented as mL/mL.

٠.

	0 mg/m³	6 mg/m ³	18 mg/m ³
Male		· · · · · · · · · · · · · · · · · · ·	
6-Month Interim	17.88 ± 0.40	17.15 ± 0.45	17.38 ± 0.41
1-Month Interim	19.03 ± 0.38	$18.07 \pm 0.43^*$	$17.25 \pm 0.45^*$
8-Month Interim	19.45 ± 0.45	$17.92 \pm 0.34^*$	$15.28 \pm 0.56^{**}$
24-Month Interim	17.27 ± 0.61	17.53 ± 0.46	14.90 ± 1.08
Female			
-Month Interim	12.53 ± 0.33	12.38 ± 0.26	$11.27 \pm 0.33^*$
1-Month Interim	12.86 ± 0.25	12.44 ± 0.26	$11.22 \pm 0.25^{**}$
8-Month Interim	13.39 ± 0.24	$11.91 \pm 0.28^{**}$	$10.24 \pm 0.27^{**}$
4-Month Interim	13.08 ± 0.30	12.33 ± 0.33	$10.03 \pm 0.93^{**}$

TABLE G19 Forced Vital Capacity of Rats^a

* Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

** $P \le 0.01$ a Mean ± standard error; units are presented as mL.

TABLE G20 Forced Vital Capacity/Kilogram Body Weight of Rats^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male		,	· · · ·
6-Month Interim	46.48 ± 0.61	45.32 ± 1.18	47.32 ± 1.25
11-Month Interim	45.26 ± 0.95	43.22 ± 0.95	42.42 ± 0.89
18-Month Interim	44.00 ± 1.56	40.82 ± 1.01	$36.23 \pm 1.57^{**}$
24-Month Interim	42.85 ± 2.67	42.00 ± 0.93	40.18 ± 2.32
Female			
6-Month Interim	59.78 ± 1.75	57.01 ± 1.49	53.37 ± 1.48*
11-Month Interim	53.35 ± 1.68	50.43 ± 1.16	46.69 ± 0.90**
18-Month Interim	43.95 ± 1.18	40.76 ± 1.08	38.75 ± 2.17 **
24-Month Interim	43.23 ± 1.51	43.87 ± 2.08	38.85 ± 0.48

* Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

** P≤0.01

^a Mean \pm standard error; units are presented as mL/kg.

Lung Burden, Pulmonary Function, and Lung Biochemistry in Rats

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
5-Month Interim	4.48 ± 0.25	4.48 ± 0.22	4.17 ± 0.10
11-Month Interim	3.34 ± 0.24	3.16 ± 0.09	3.19 ± 0.12
18-Month Interim	3.24 ± 0.16	3.07 ± 0.11	3.53 ± 0.14
24-Month Interim	4.53 ± 0.52	3.98 ± 0.24	4.37 ± 0.59
Female			
6-Month Interim	3.51 ± 0.12	3.72 ± 0.16	3.57 ± 0.15
11-Month Interim	2.78 ± 0.12	2.74 ± 0.10	2.87 ± 0.14
8-Month Interim	2.47 ± 0.08	$2.82 \pm 0.12^{\circ}$	$3.17 \pm 0.14^{\circ}$
24-Month Interim	3.07 ± 0.13	3.31 ± 0.26	3.27 ± 0.18

TABLE G21

Functional Residual Capacity of Rats^a

 $^\circ$ Significantly different (P≤0.05) from the control by Dunn's or Shirley's test $^{\circ\circ}$ P≤0.01

^a Mean \pm standard error; units are presented as mL.

TABLE G22 Functional Residual Capacity/Total Lung Capacity of Rats^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
6-Month Interim	0.226 ± 0.012	0.230 ± 0.009	0.217 ± 0.006
1-Month Interim	0.166 ± 0.011	0.172 ± 0.006	0.181 ± 0.007
8-Month Interim	0.159 ± 0.006	0.163 ± 0.005	0.217 ± 0.008
24-Month Interim	0.220 ± 0.020	0.197 ± 0.012	0.268 ± 0.042
Female			
6-Month Interim	0.248 ± 0.008	0.255 ± 0.009	0.258 ± 0.008
1-Month Interim	0.209 ± 0.008	0.212 ± 0.006	$0.238 \pm 0.010^{\circ}$
8-Month Interim	0.177 ± 0.007	$0.223 \pm 0.010^{\circ \circ}$	0.277 ± 0.010
24-Month Interim	0.207 ± 0.009	0.240 ± 0.016	$0.287 \pm 0.021^{\circ}$

 $^\circ$ Significantly different (P≤0.05) from the control by Dunn's or Shirley's test $^{\circ\circ}$ P≤0.01

^a Mean \pm standard error; units are presented as mL/mL.

r

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male	*****	- 1994	······································
6-Month Interim	0.117 ± 0.018	0.105 ± 0.010	0.115 ± 0.009
11-Month Interim	0.097 ± 0.007	0.107 ± 0.010	0.098 ± 0.008
18-Month Interim	0.075 ± 0.014	0.096 ± 0.009	$0.120 \pm 0.009^{*}$
24-Month Interim	0.110 ± 0.025	0.087 ± 0.028	0.067 ± 0.020
Female			. •
6-Month Interim	0.144 ± 0.008	0.143 ± 0.016	0.152 ± 0.014
11-Month Interim	0.131 ± 0.008	0.150 ± 0.009	0.146 ± 0.010
18-Month Interim	0.130 ± 0.012	0.131 ± 0.016	$0.180 \pm 0.010^{\circ}$
24-Month Interim	0.138 ± 0.020	0.131 ± 0.014	0.150 ± 0.035

TABLE G23 Total Pulmonary Resistance of Rats^a

* a

Significantly different (P \leq 0.05) from the control by Dunn's or Shirley's test Mean \pm standard error; units are presented as cm H₂O/mL per second.

TABLE G24 Maximum Quasistatic Compliance of Rats^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
fale			· · · · · · · · · · · · · · · · · · ·
Month Interim	1.97 ± 0.15	1.84 ± 0.12	2.01 ± 0.13
1-Month Interim	2.32 ± 0.10	$1.92 \pm 0.12^*$	$1.91 \pm 0.09^*$
8-Month Interim	2.35 ± 0.07	2.09 ± 0.16	$1.57 \pm 0.07^{**}$
4-Month Interim	2.00 ± 0.30	2.01 ± 0.11	1.48 ± 0.20
emale			· ·
-Month Interim	1.37 ± 0.11	1.47 ± 0.11	1.37 ± 0.08
1-Month Interim	1.273 ± 0.062	1.276 ± 0.033	0.968 ± 0.057**
8-Month Interim	1.704 ± 0.108	$1.123 \pm 0.050^{**}$	0.908 ± 0.068**
4-Month Interim	1.538 ± 0.055	$1.263 \pm 0.062^{**}$	0.883 ± 0.093**

* Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

** P≤0.01

^a Mean \pm standard error; units are presented as mL/cm H₂O.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male		,	
-Month Interim	1.18 ± 0.05	1.16 ± 0.04	1.17 ± 0.03
1-Month Interim	1.34 ± 0.02	$1.20 \pm 0.04^{\circ}$	$1.15 \pm 0.04^{\circ \circ}$
8-Month Interim	1.343 ± 0.037	$1.205 \pm 0.040^{\circ}$	$0.982 \pm 0.037^{\circ\circ}$
24-Month Interim	1.167 ± 0.104	1.220 ± 0.035	0.890 ± 0.124
Female			
-Month Interim	0.824 ± 0.030	0.895 ± 0.091	0.802 ± 0.024
1-Month Interim	0.841 ± 0.020	0.809 ± 0.016	$0.684 \pm 0.025^{\circ\circ}$
8-Month Interim	0.879 ± 0.019	$0.749 \pm 0.027^{\circ\circ}$	$0.607 \pm 0.030^{\circ\circ}$
24-Month Interim	0.883 ± 0.035	$0.764 \pm 0.024^{\circ}$	0.573 ± 0.084 °°

Table G25

Quasistatic Chord Compliance of Rats^a

 $^\circ$ Significantly different (P≤0.05) from the control by Dunn's or Shirley's test $^{\circ\circ}$ P≤0.01

^a Mean \pm standard error; units are presented as mL/cm H₂O.

Table (526			
Dynami	c Compliance	oſ	Rats ^a	

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
-Month Interim	0.546 ± 0.053	0.575 ± 0.043	0.536 ± 0.058
1-Month Interim	0.748 ± 0.041	0.647 ± 0.048	0.687 ± 0.046
8-Month Interim	0.990 ± 0.080	$0.741 \pm 0.043^{\circ}$	0.685 ± 0.050
24-Month Interim	0.930 ± 0.173	0.987 ± 0.130	1.173 ± 0.186
Female			
-Month Interim	0.399 ± 0.029	0.445 ± 0.032	0.380 ± 0.034
1-Month Interim	0.492 ± 0.024	$0.426 \pm 0.027^{\circ}$	0.393 ± 0.020
8-Month Interim	0.618 ± 0.053	0.527 ± 0.027	0.372 ± 0.025 °°
4-Month Interim	0.650 ± 0.065	0.618 ± 0.045	$0.377 \pm 0.077^{\circ}$

٥ Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

⁶⁰ $P \le 0.01$ ^a Mean ± standard error; units are presented as mL/cm H₂O.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male	· · · · · · · · · · · · · · · · · · ·		
-Month Interim	139.9 ± 1.9	138.7 ± 2.8	132.5 ± 4.0
1-Month Interim	136.6 ± 1.4	133.5 ± 4.5	132.9 ± 2.0
8-Month Interim	132.2 ± 1.2	132.3 ± 0.7	129.5 ± 0.6**
4-Month Interim	126.1 ± 2.7	124.5 ± 1.9	124.0 ± 1.0
Female			
-Month Interim	120.1 ± 8.7	122.3 ± 6.6	113.5 ± 5.7
1-Month Interim	125.3 ± 4.3	123.9 ± 4.9	123.2 ± 2.1
8-Month Interim	120.6 ± 3.0	113.2 ± 2.3	114.3 ± 2.5
4-Month Interim	117.1 ± 2.5	116.7 ± 3.4	110.1 ± 4.7

TABLE G27 Peak Expiratory Flow of Rats^a

** Significantly different (P≤0.01) from the control by Dunn's or Shirley's test

^a Mean \pm standard error; units are presented as mL/second.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			······································
6-Month Interim	7.85 ± 0.18	8.12 ± 0.22	7.63 ± 0.16
11-Month Interim	7.21 ± 0.18	7.44 ± 0.33	7.74 ± 0.20
18-Month Interim	6.82 ± 0.15	$7.40 \pm 0.14^*$	8.57 ± 0.29**
24-Month Interim	7.31 ± 0.14	7.13 ± 0.21	8.40 ± 0.52
Female			
6-Month Interim	9.56 ± 0.62	9.82 ± 0.35	10.08 ± 0.47
11-Month Interim	9.73 ± 0.22	9.95 ± 0.31	$11.01 \pm 0.23^{**}$
18-Month Interim	9.02 ± 0.20	9.57 ± 0.37	$11.21 \pm 0.32^{**}$
24-Month Interim	8.96 ± 0.22	9.47 ± 0.19	$11.16 \pm 1.13^{**}$

TABLE G28 Peak Expiratory Flow/Forced Vital Capacity of Rats^a

* Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

** P≤0.01

^a Mean \pm standard error; units are presented as mL/second per mL.

Lung Burden, Pulmonary Function, and Lung Biochemistry in Rats

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
6-Month Interim	28.22 ± 2.04	24.20 ± 1.77	19.60 ± 2.67*
11-Month Interim	26.33 ± 1.82	$20.80 \pm 1.14^{\circ}$	21.60 ± 1.50
18-Month Interim	19.00 ± 1.87	18.00 ± 1.61	20.70 ± 1.17
24-Month Interim	11.33 ± 1.20	18.67 ± 1.50	18.33 ± 1.76
Female			
6-Month Interim	17.40 ± 2.88	18.10 ± 3.10	16.60 ± 2.68
11-Month Interim	19.20 ± 2.36	19.50 ± 1.97	23.30 ± 2.29
18-Month Interim	19.67 ± 1.62	19.00 ± 1.45	21.78 ± 0.66
24-Month Interim	12.67 ± 1.65	$18.44 \pm 1.51^{\circ}$	17.00 ± 2.52

TABLE G29

Expiratory Flow 10% Forced Vital Capacity of Rats^a

۵ Significantly different (P≤0.05) from the control by Dunn's or Shirley's test a

Mean ± standard error; units are presented as mL/second.

TABLE G30 Expiratory Flow 10% Forced Vital Capacity/Forced Vital Capacity of Rats^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
5-Month Interim	1.58 ± 0.11	1.41 ± 0.09	$1.13 \pm 0.16^{\circ}$
1-Month Interim	1.39 ± 0.10	1.16 ± 0.08	1.27 ± 0.11
8-Month Interim	0.986 ± 0.106	1.002 ± 0.085	$1.372 \pm 0.085^{\circ}$
24-Month Interim	0.661 ± 0.085	$1.057 \pm 0.065^*$	$1.256 \pm 0.188^{\circ}$
Female			
6-Month Interim	1.37 ± 0.21	1.43 ± 0.23	1.45 ± 0.22
1-Month Interim	1.47 ± 0.17	1.55 ± 0.14	$2.07 \pm 0.19^{\circ\circ}$
8-Month Interim	1.47 ± 0.13	1.62 ± 0.15	$2.14 \pm 0.09^{\circ \circ}$
24-Month Interim	0.959 ± 0.109	$1.488 \pm 0.102^{\circ}$	$1.693 \pm 0.170^{\circ}$

 $^\circ$ Significantly different (P≤0.05) from the control by Dunn's or Shirley's test $^{\circ\circ}$ P≤0.01

^a Mean ± standard error; units are presented as mL/second per mL.

÷

. .

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			· · · · · · · · · · · · · · · · · · ·
6-Month Interim	63.56 ± 3.30	55.00 ± 5.57	44.30 ± 6.59*
11-Month Interim	62.00 ± 2.89	60.40 ± 3.46	59.30 ± 3.36
18-Month Interim	50.50 ± 2.57	54.20 ± 2.45	$62.20 \pm 2.80^{**}$
24-Month Interim	47.00 ± 2.89	51.33 ± 3.97	60.00 ± 3.79
Female			
6-Month Interim	44.30 ± 7.73	41.20 ± 7.14	35.60 ± 5.59
11-Month Interim	50.40 ± 5.68	43.00 ± 5.69	54.60 ± 4.01
18-Month Interim	52.33 ± 4.57	42.56 ± 4.76	49.00 ± 3.67
24-Month Interim	40.67 ± 3.80	49.33 ± 6.17	46.00 ± 12.49

TABLE G31 Expiratory Flow 25% Forced Vital Capacity of Rats^a

* Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

** P≤0.01

^a Mean \pm standard error; units are presented as mL/second.

TABLE G32 Expiratory Flow 25% Forced Vital Capacity/Forced Vital Capacity of Rats^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			······································
6-Month Interim	3.56 ± 0.19	3.21 ± 0.31	2.54 ± 0.37
11-Month Interim	3.26 ± 0.14	3.35 ± 0.20	3.47 ± 0.24
18-Month Interim	2.61 ± 0.15	$3.03 \pm 0.14^*$	$4.14 \pm 0.27^{**}$
24-Month Interim	2.72 ± 0.07	2.92 ± 0.20	$4.06 \pm 0.35^*$
Female			
6-Month Interim	3.50 ± 0.59	3.25 ± 0.53	3.10 ± 0.43
11-Month Interim	3.88 ± 0.42	3.43 ± 0.44	4.88 ± 0.37
18-Month Interim	3.91 ± 0.34	3.60 ± 0.44	4.75 ± 0.27
24-Month Interim	3.10 ± 0.24	3.95 ± 0.44	4.66 ± 1.28
· · · · ·			·

* Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

** P≤0.01

^a Mean \pm standard error; units are presented as mL/second per mL.

Lung Burden, Pulmonary Function, and Lung Biochemistry in Rats

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
6-Month Interim	111.33 ± 7.11	94.00 ± 7.61	78.70 ± 10.05°
1-Month Interim	111.7 ± 4.4	100.1 ± 7.1	102.1 ± 6.2
8-Month Interim	98.75 ± 6.00	97.10 ± 3.59	107.70 ± 5.25
24-Month Interim	99.33 ± 10.17	92.33 ± 4.47	94.67 ± 9.02
Female			
5-Month Interim	75.30 ± 11.98	73.90 ± 10.54	66.00 ± 8.52
11-Month Interim	85.50 ± 8.87	78.00 ± 10.09	94.10 ± 5.57
8-Month Interim	93.00 ± 8.40	76.11 ± 9.60	87.67 ± 6.91
24-Month Interim	86.50 ± 7.12	85.89 ± 10.40	83.67 ± 23.90

TABLE G33

Expiratory Flow 50% Forced Vital Capacity of Rats^a

Significantly different (P \leq 0.05) from the control by Dunn's or Shirley's test Mean \pm standard error; units are presented as mL/second. ٥

TABLE G34 Expiratory Flow 50% Forced Vital Capacity/Forced Vital Capacity of Rats^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			· · · · · · · · · · · · · · · · · · ·
5-Month Interim	6.23 ± 0.39	5.50 ± 0.47	$4.49 \pm 0.55^{\circ}$
1-Month Interim	5.86 ± 0.18	5.55 ± 0.40	5.95 ± 0.40
8-Month Interim	5.08 ± 0.30	5.43 ± 0.21	7.18 ± 0.50**
24-Month Interim	5.73 ± 0.44	5.30 ± 0.36	6.38 ± 0.62
Female			
6-Month Interim	5.95 ± 0.90	5.85 ± 0.77	5.79 ± 0.67
1-Month Interim	6.58 ± 0.62	6.21 ± 0.77	8.39 ± 0.48°
8-Month Interim	6.92 ± 0.59	6.48 ± 0.90	8.49 ± 0.54
24-Month Interim	6.63 ± 0.55	6.88 ± 0.77	8.50 ± 2.50

Significantly different (P≤0.05) from the control by Dunn's or Shirley's test
 P≤0.01
 a Mean ± standard error; units are presented as mL/second per mL.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Aale		•••• • • • • • • • • • • • • • • • • •	
-Month Interim	101.90 ± 5.20	89.30 ± 7.34	74.27 ± 9.38*
1-Month Interim	102.52 ± 3.54	94.92 ± 6.02	94.11 ± 4.51
8-Month Interim	93.12 ± 3.99	91.41 ± 2.81	98.44 ± 3.67
4-Month Interim	87.13 ± 6.27	87.78 ± 3.74	90.33 ± 7.07
emale			
-Month Interim	71.07 ± 12.01	70.72 ± 10.66	60.65 ± 7.99
1-Month Interim	81.38 ± 7.94	73.24 ± 9.19	87.91 ± 5.04
8-Month Interim	85.98 ± 6.80	69.51 ± 7.53	81.79 ± 5.58
4-Month Interim	78.28 ± 5.27	79.94 ± 9.44	75.13 ± 19.66

TABLE G35 Mean Midexpiratory Flow of Rats^a

* Significantly different (P \leq 0.05) from the control by Dunn's or Shirley's test Mean \pm standard error, units are presented as mI (second

Mean ± standard error; units are presented as mL/second.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
6-Month Interim	5.71 ± 0.30	5.23 ± 0.44	4.24 ± 0.51
11-Month Interim	5.39 ± 0.16	5.27 ± 0.35	5.49 ± 0.32
18-Month Interim	4.78 ± 0.13	5.11 ± 0.18	6.55 ± 0.39**
24-Month Interim	5.04 ± 0.24	5.03 ± 0.29	6.10 ± 0.56
Female			
6-Month Interim	5.62 ± 0.91	5.59 ± 0.78	5.31 ± 0.62
11-Month Interim	6.27 ± 0.56	5.83 ± 0.70	$7.85 \pm 0.45^*$
18-Month Interim	6.41 ± 0.48	5.90 ± 0.72	7.94 ± 0.41
24-Month Interim	5.99 ± 0.39	6.40 ± 0.69	7.65 ± 2.13

TABLE G36 Mean Midexpiratory Flow/Forced Vital Capacity of Rats^a

• Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

** P≤0.01

^a Mean \pm standard error; units are presented as mL/second per mL.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
6-Month Interim	0.364 ± 0.014	0.347 ± 0.008	0.336 ± 0.010
11-Month Interim	0.400 ± 0.010	0.373 ± 0.010	$0.331 \pm 0.020^{\circ\circ}$
18-Month Interim	0.338 ± 0.022	0.301 ± 0.015	$0.235 \pm 0.009^{\circ\circ}$
24-Month Interim	0.303 ± 0.027	0.288 ± 0.011	$0.177 \pm 0.035^{\circ}$
Female			
6-Month Interim	0.238 ± 0.012	0.241 ± 0.008	0.213 ± 0.010
11-Month Interim	0.233 ± 0.008	0.231 ± 0.005	0.190 ± 0.003°°
18-Month Interim	0.233 ± 0.010	0.207 ± 0.009	$0.137 \pm 0.011^{\circ\circ}$
24-Month Interim	0.198 ± 0.007	0.183 ± 0.006	$0.113 \pm 0.017^{\circ\circ}$

۰. .

TABLE G37

Carbon Monoxide Diffusing Capacity of Rats^a

* Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

°° P≤0.01

^a Mean ± standard error; units are presented as mL/minute per mm Hg.

0 mg/m^3 6 mg/m³ 18 mg/m³ Male 6-Month Interim 0.020 ± 0.001 0.020 ± 0.000 0.019 ± 0.000 11-Month Interim 0.021 ± 0.000 0.021 ± 0.001 $0.019 \pm 0.001^{\circ}$ **18-Month Interim** 0.017 ± 0.001 0.025 ± 0.008 $0.014 \pm 0.001^{\circ}$ 24-Month Interim 0.015 ± 0.002 0.015 ± 0.001 $0.010 \pm 0.002^{\circ}$ Female 6-Month Interim 0.019 ± 0.001 0.019 ± 0.001 0.017 ± 0.001 11-Month Interim 0.018 ± 0.001 0.019 ± 0.000 $0.017 \pm 0.000^{\circ}$ $0.012 \pm 0.001^{\circ\circ}$ **18-Month Interim** 0.017 ± 0.001 0.016 ± 0.001 24-Month Interim 0.013 ± 0.001 0.013 ± 0.001 0.009 ± 0.001

TABLE G38 Carbon Monoxide Diffusing Capacity/Lung Volume of Rats^a

° Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

°° P≤0.01

^a Mean ± standard error; units are presented as mL/minute per mm Hg per mL.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			·····
5-Month Interim	0.949 ± 0.039	0.917 ± 0.017	0.914 ± 0.026
1-Month Interim	0.951 ± 0.021	0.892 ± 0.021	$0.812 \pm 0.043^{**}$
8-Month Interim	0.759 ± 0.043	0.683 ± 0.029	$0.554 \pm 0.016^{**}$
24-Month Interim	0.749 ± 0.056	0.691 ± 0.025	$0.465 \pm 0.062^{\circ}$
Female			
5-Month Interim	1.13 ± 0.05	1.11 ± 0.04	1.01 ± 0.04
1-Month Interim	0.968 ± 0.045	0.939 ± 0.033	$0.792 \pm 0.019^{**}$
8-Month Interim	0.766 ± 0.034	0.705 ± 0.028	$0.502 \pm 0.028^{**}$
24-Month Interim	0.656 ± 0.031	0.650 ± 0.027	$0.435 \pm 0.036^*$

TABLE G39

Carbon Monoxide Diffusing Capacity/Kilogram Body Weight of Rats^a

* Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

** P≤0.01

^a Mean ± standard error; units are presented as mL/minute per mm Hg per kg.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male	· · · · · · · · · · · · · · · · · · ·		
6-Month Interim	61.11 ± 1.52	59.80 ± 2.15	53.90 ± 2.64
11-Month Interim	58.22 ± 0.98	57.40 ± 2.74	60.30 ± 1.63
18-Month Interim	55.00 ± 0.63	$58.30 \pm 0.90^*$	$66.50 \pm 2.13^{**}$
24-Month Interim	58.67 ± 1.20	57.00 ±1.71	64.00 ± 2.89
Female			
6-Month Interim	62.80 ± 5.17	64.20 ± 3.82	63.40 ± 3.86
11-Month Interim	67.00 ± 2.82	65.20 ± 3.61	75.50 ± 1.78*
18-Month Interim	66.44 ± 2.60	64.56 ± 3.57	75.78 ± 1.56*
24-Month Interim	65.83 ± 2.09	66.78 ± 3.31	73.00 ± 9.17

TABLE G40 Percent Forced Vital Capacity Expired in 0.1 Second of Rats^a

* Significantly different (P ≤ 0.05) from the control by Dunn's or Shirley's test ** P ≤ 0.01

^a Mean ± standard error; units are presented as percent forced vital capacity.

Lung Burden, Pulmonary Function, and Lung Biochemistry in Rats

	0 mg/m ³	6 mg/m ³	18 mg/m ³
			····
lale			
-Month Interim	0.400 ± 0.023	0.431 ± 0.037	0.481 ± 0.049
1-Month Interim	0.449 ± 0.019	0.446 ± 0.037	0.437 ± 0.040
8-Month Interim	0.393 ± 0.037	0.361 ± 0.035	$0.555 \pm 0.041^{\circ}$
4-Month Interim	0.627 ± 0.077	0.438 ± 0.045	0.597 ± 0.083
'emale			
-Month Interim	0.587 ± 0.059	0.528 ± 0.049	0.596 ± 0.042
1-Month Interim	0.704 ± 0.027	0.735 ± 0.029	0.813 ± 0.076
8-Month Interim	0.601 ± 0.053	0.699 ± 0.074	1.008 ± 0.087*
4-Month Interim	0.535 ± 0.040	0.580 ± 0.071	$1.520 \pm 0.409^{\circ}$

TABLE G41

Slone III of N. Washout of Rats^a

^o Significantly different (P≤0.05) from the control by Dunn's or Shirley's test ^{oo} P≤0.01 ^a Mean \pm standard error; units are presented as percent N₂/mL.

APPENDIX H

LUNG BURDEN AND LUNG BIOCHEMISTRY IN MICE

METHODS .		244
TABLE H1	Number of Mice Evaluated for Lung Talc Burden and Lung Biochemistry	247
Table H2	Lung Talc Burden (Normalized to Control Lung Weight) of Mice	248
TABLE H3	Lung Talc Burden (Normalized to Exposure Concentration) of Mice	248
TABLE H4	Bronchoalveolar Lavage Fluid Enzymes of Mice	
	at the 6-Month Interim Evaluation	249
Table H5	Bronchoalveolar Lavage Fluid Enzymes of Mice	
÷.	at the 12-Month Interim Evaluation	249
Table H6	Bronchoalveolar Lavage Fluid Enzymes of Mice	
	at the 18-Month Interim Evaluation	250
Table H7	Bronchoalveolar Lavage Fluid Enzymes of Mice	
	at the 24-Month Interim Evaluation	250
Table H8	Bronchoalveolar Lavage Fluid Cell Populations of Mice	
	at the 6-Month Interim Evaluation	251
Table H9	Bronchoalveolar Lavage Fluid Cell Populations of Mice	
	at the 12-Month Interim Evaluation	251
Table H10	Bronchoalveolar Lavage Fluid Cell Populations of Mice	
	at the 18-Month Interim Evaluation	252
Table H11	Bronchoalveolar Lavage Fluid Cell Populations of Mice	
	at the 24-Month Interim Evaluation	252
Table H12		
	at the 12-Month Interim Evaluation	253
Table H13		
	at the 18-Month Interim Evaluation	253
Table H14		
	in Bronchoalveolar Fluid of Mice at the 24-Month Interim Evaluation	
Table H15	Measurements of Lung Collagen in Mice at the 6-Month Interim Evaluation	
Table H16	Measurements of Lung Collagen in Mice at the 12-Month Interim Evaluation	-
Table H17	Measurements of Lung Collagen in Mice at the 18-Month Interim Evaluation	255
TABLE H18	Lung Collagen Metabolism and Protein Synthesis in Mice	
	at the 24-Month Interim Evaluation	256
TABLE H19	Proteinase Activity in Lavage Fluid and Lung Homogenate Supernatant Fluid	
	of Mice at the 6-Month Interim Evaluation	257
TABLE H20	Proteinase Activity in Lavage Fluid and Lung Homogenate Supernatant Fluid	
	of Mice at the 12-Month Interim Evaluation	258
TABLE H21		
	of Mice at the 18-Month Interim Evaluation	259
Table H22	Proteinase Activity in Lavage Fluid and Lung Homogenate Supernatant Fluid	
	of Mice at the 24-Month Interim Evaluation	260

METHODS

Lung Burden

Lung talc burden was measured to determine the relationship between the exposure concentration and the amount of talc deposited and retained within the pulmonary region of the respiratory tract. The method used for determination of talc in the lungs of rats and mice has been published (Hanson *et al.*, 1985). Lung talc burdens were determined on the left lung of four male and four female mice from each exposure group sacrificed at 6, 12, and 18 months after the start of exposure. At 24 months, lung burdens were determined on the left lungs of two mice from the biochemistry group. The analysis was based on determination of acid insoluble magnesium in the lung. Midwest Research Institute reported that the value for the magnesium was 19.33% for batch 02, and 19.47% for batch 03. The values reported by Midwest Research Institute and the results of the analysis at Lovelace Inhalation Toxicology Research Institute were close to the theoretical value of magnesium for talc (19.22%). Since mice sacrificed at 6, 12, and 18 months had been exposed to only batch 02 of talc, 19.33% magnesium was used to calculate quantity of talc for these mice. Since batch 03 was used for the last 4 months of exposure, and lung burdens of mice after 24 months of exposure talc would be expected to contain substantial amounts of batch 03 talc, 19.47% magnesium was used to calculate quantity of talc in lungs for these mice.

All operations in conjunction with the tissue analysis for talc were done with talc-free gloves. Left lung lobes were weighed at necropsy and stored frozen (-20° C) until used. Lungs were homogenized using water and the proteins precipitated with 70% perchloric acid. The individual samples were filtered and washed with 5% trichloroacetic acid (TCA) to remove perchlorates. Washing continued until magnesium levels in the wash were within 10% of levels in the TCA solution (≤ 0.03 ppm magnesium). Filters and tissue residues were placed in 15-mL porcelain crucibles, dried slowly (200° C), and then ashed at 600° C for 1 hour. Ashed samples were transferred to Teflon beakers using 2 mL HCl and evaporated to dryness. Samples were digested in hydrofluoric acid (HF), and the HF evaporated. Additional HF was added and reevaporated. Sulfuric acid was added to remove trace HF, and samples were diluted with distilled water and analyzed for magnesium by atomic absorbance (Perkin Elmer, Model 306, Atomic Absorption Spectrophotometer) with a magnesium hollow cathode lamp and an air acetylene flame (Hanson *et al.*, 1985).

Lung Biochemistry

In this study, bronchoalveolar lavage (BAL) fluid enzyme activity and cell numbers were measured as biochemical and cytological indicators of pulmonary injury from inhalation of talc. Four male and four female mice from each exposure group were sacrificed at 27, 52, and 79 weeks, and all remaining lung toxicology mice were sacrificed at 24 months. Numbers of animals sacrificed at each interim evaluation are shown in Table H1.

Mice were anesthetized with halothane and sacrificed by exsanguination from the abdominal aorta or renal artery. The heart and lung block were removed. Mice were administered endobronchial saline lavage (3 to 4 mL total volume in four, 0.75 to 1.0 mL washes) and the BAL fluid centrifuged at $300 \times G$ to separate the cells from the supernatant fluid.

At all sacrifices, biochemical analyses were done on lavage fluid from single mice. At the 24-month terminal sacrifice where lung burden measurements were also performed on the left lung lobes, mouse lavage fluids were paired (from two mice) to obtain sufficient cells for the analyses and paired mouse lung tissue samples (from two mice) were analyzed to obtain sufficient lung tissue for collagen analyses.

Airway Fluid Enzymes and Cytology

In this study, BAL fluid was analyzed to determine degree of:

- 1) Cell injury as indicated by quantities of BAL fluid lactate dehydrogenase (LDH).
- 2) Chronic inflammatory response as indicated by presence of increased numbers of polymorphonuclear leukocytes (PMN) and pulmonary alveolar macrophages (AM) as well as increased BAL fluid protein and alkaline phosphatase activity.
- 3) Lysosomal activation as indicated by quantities of BAL fluid ß-glucuronidase and acid proteinase. Elevated quantities of these enzymes have been observed in BAL fluid from rodents exposed to particulates. These enzymes may be associated with the breakdown of necrotic tissues.
- Response to oxidant injury as indicated by increased quantities of glutathione reductase and peroxidase activity.

The supernatant fluid was analyzed for the activities of ß-glucuronidase, LDH, glucose-6-phosphate dehydrogenase, alkaline phosphatase, glutathione reductase, and glutathione peroxidase by spectrophotometric, kinetic, and enzymatic techniques. Acid proteinase was measured by release of radiolabeled globin from the trichloroacetic acid precipitatible protein substrate, and total protein was analyzed colorimetrically (Henderson *et al.*, 1985). ß-Glucuronidase was not performed at the 6-month interim evaluation, but was performed at all other sacrifice times.

Numbers of total nucleated cells recovered in lavage fluid were determined on each sample using a cell counter (Coulter Electronics, Hileah, FL) or a hemocytometer. Cytocentrifuge preparations of resuspended cells were made, stained with Wrights stain (Diff-Quik, Curtin Matheson Scientific, Denver, CO) and differential cell counts were determined. At the 6-, 12-, and 18-month interim sacrifices, analyses were done on individual mice.

Alveolar macrophages (AM) were recovered from BAL fluid of the same mice as described above. Cells (0.5×10^6) in Roswell Park Memorial Institute (RPMI) culture medium were pelleted by centrifugation and the supernatant removed. Cells were resuspended in 1 mL of a 1% suspension of IgG antibodysensitized sheep red blood cells (SRBC) in RPMI 1640. The antibody sensitized SRBC were made as previously described (Harmsen and Jeska, 1980). The subagglutinating titer of heat-inactivated rabbit anti-SRBC serum was used to sensitize the SRBC. The AM and SRBC suspensions were incubated at 37° C for 1 hour in a humidified atmosphere of 5% CO₂ in air. The AM and SRBC were sedimented by centrifugation and the supernatant discarded. Unphagocytized SRBC were removed by lysing the red blood cells with water for 30 seconds. The lysing of unphagocytized SRBC was stopped by the addition of an equal volume of saline and cytocentrifuge preparations were made. The slides were stained with a rapid Wright's stain (Diff-Quik, American Scientific Products, McGaw Park, IL) and the number of AM phagocytizing 0, 1, 2, 3 to 4, and > 4 SRBC was determined by light microscopy. Three fields of 100 cells per preparation were counted. Viability of macrophages was not determined at the 6-, 12-, and 18-month week sacrifices because the small number of cells recovered from these mice lungs precluded the measurement of cell viability. Viability determination of macrophages was made on macrophages obtained at the final sacrifice because sufficient numbers of cells were generally available at this time.

Lung Tissue Collagen and Proteinase

At 6-, 12-, and 18-month sacrifices, collagen content of lungs and lavage fluid was measured. At the 24-month sacrifice, additional collagen metabolism and protein synthesis measurements were made on survivors from each group. Proteinase activities were measured at all sacrifice times.

The supernatant BAL fluid was analyzed for hydroxyproline and acid proteinase. Lung tissue and bronchoalveolar lavage (BAL) fluid samples were hydrolyzed with 6N HCl at 110° C for approximately 18 hours to convert proteins to their individual amino acids. Collagen quantity was measured and multiplied by 7.46 to convert BAL or lung tissue hydroxyproline content to BAL or lung tissue collagen content, taking into account that collagen is approximately 13% hydroxyproline by weight (Neuman and Logan, 1950).

Additional collagen metabolism measurements were made on the mice sacrificed after 24 months of talc exposure to further define collagen metabolism. Approximately 2 to 3 hours prior to sacrifice, ¹⁴C-proline (0.1 μ Ci/g body weight) was injected intraperitoneally to estimate collagen and protein synthesis. Radioactive proline and hydroxyproline were quantitated in lung hydrolysate. Following this, the radioactive proline and hydroxyproline quantities were used to calculate the noncollagenous protein synthesis, and the collagen production.

Noncollagenous protein synthesis was indicated as total ¹⁴C-proline incorporation into lung tissue minus the incorporation into lung tissue which was related to collagen synthesis. The radioactive proline in collagen was assumed to be equal to the radioactive hydroxyproline, thus, incorporation into collagen was calculated as twice the radioactive hydroxyproline. Collagen production (% of newly synthesized protein that was collagen) was calculated as the percent of the total incorporation of proline into all proteins constituted by collagen, and adjusted for the 5.4-fold difference in the content of total amino acids (proline and hydroxyproline) between collagen and noncollagenous protein (Pickrell *et al.*, 1987).

At each sacrifice time, lung tissue proteinase activity was measured as the release of ¹⁴C-leucine from prelabeled globin at pH 4.2 and 7.5 (Gregory and Pickrell, 1982; Harkema *et al.*, 1984; Pickrell *et al.*, 1987). Acid proteinase activity was inhibited by leupeptin to indicate either cathepsin B (inhibited) or cathepsin D (not inhibited)-like activity. Neutral proteinase activity was inhibited by 1,10-phenanthroline to indicate either macrophage elastase (inhibited) or neutrophil elastase-cathepsin G (not inhibited)-like activity.

Table H1

	Male		Female			
	0 mg/m ³	6 mg/m ³	18 mg/m ³	0 mg/m ³	6 mg/m ³	18 mg/m ³
ung Burden						
6-Month Interim	_a	2	4	_	4	4
12-Month Interim	-	4	4	-	4	4
18-Month Interim	-	2	1	· _	4	3
24-Month Interim	-	8	6	-	6	5
Lung Biochemistry						
6-Month Interim	4	4	4	4	4	4
12-Month Interim	4	4	4	4	4	4
18-Month Interim	4	4	4	4	4	4
24-Month Interim	9	8	6	7	6	5

Number of Mice Evaluated for Lung Talc Burden and Lung Biochemistry

^a Lung burden not measured in 0 mg/m³ mice

	6 months	12 months	18 months	24 months
Male				
0 mg/m^3	_b	-	_	_
6 mg/m ³	0.415 ± 0.114	1.084 ± 0.130	0.426 ± 0.040	2.973 ± 0.762*
18 mg/m ³	1.41 ± 0.29	$9.00 \pm 1.45^*$	8.36 ^c	19.73 ± 4.03**
Female				
0 mg/m^3		-	_	_
6 mg/m^3	0.524 ± 0.056	0.707 ± 0.170	$1.387 \pm 0.178^{**}$	2.667 ± 0.720**
18 mg/m ³	1.35 ± 0.24	6.17 ± 1.39*	$7.83 \pm 1.36^*$	$20.05 \pm 0.98^{**}$

Lung Talc Burden (Normalized to Control Lung Weight) of Mice^a

* Significantly different (P≤0.05) from the 6 month group by Dunn's or Shirley's test

** P≤0.01

^a Mean \pm standard error; units are presented as mg talc/g control lung.

b Not examined

n=1; no standard error calculated

 TABLE H3

 Lung Talc Burden (Normalized to Exposure Concentration) of Mice^a

	Male		Fem	ale
	6 mg/m ³	18 mg/m ³	6 mg/m ³	18 mg/m ³
6-Month Interim	0.069 ± 0.019	0.078 ± 0.016	0.087 ± 0.009	0.075 ± 0.013
12-Month Interim	0.181 ± 0.022	$0.500 \pm 0.081^*$	0.118 ± 0.028	$0.343 \pm 0.077^*$
18-Month Interim	0.071 ± 0.007	0.464 ^b	0.231 ± 0.030	0.435 ± 0.075
24-Month Interim	0.496 ± 0.127	$1.096 \pm 0.224^*$	0.445 ± 0.120	$1.114 \pm 0.055^*$

* Significantly different (P≤0.05) from the 6 mg/m³ group by Dunn's or Shirley's test

^a Mean \pm standard error; units are presented as mg talc/g control lung per mg talc/m³

b n=1; no standard error calculated

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Лаје		•	
Lactate Dehydrogenase	$1,408 \pm 658$	$1,317 \pm 106$	$2,107 \pm 336$
Glutathione Reductase	148.4 ± 33.8	123.3 ± 28.3	227.2 ± 65.6
Total Protein ^b	3.57 ± 0.89	1.92 ± 0.70	6.24 ± 1.23
remale			
Lactate Dehydrogenase	1.988 ± 157	$2,351 \pm 180$	$1,400 \pm 197$
Glutathione Reductase	206.8 ± 14.7	166.0 ± 21.3	148.5 ± 29.4
Total Protein ^b	2.55 ± 0.53	4.43 ± 0.34	6.89 ± 4.29

Bronchoalveolar Lavage Fluid Enzymes of Mice at the 6-Month Interim Evaluation^a

Mean ± standard error; units are presented as mIU/g control lung.
 Mean ± standard error; units are presented as mg/g control lung.

TABLE H5 Bronchoalveolar Lavage Fluid Enzymes of Mice at the 12-Month Interim Evaluation^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			,
B-Glucuronidase	0.188 ± 0.114	0.486 ± 0.346	12.787 ± 3.604*
Lactate Dehydrogenase	$1,107.6 \pm 545$	540.2 ± 59.0	$1,487.1 \pm 456$
Glutathione Reductase	89.50 ± 11.65	91.67 ± 6.60	$302.40 \pm 65.15^*$
Total Protein ^b	2.21 ± 0.74	1.56 ± 0.33	6.19 ± 2.63
Female			
B-Glucuronidase	0.073 ± 0.073	0.413 ± 0.251	9.786 ± 2.271**
Lactate Dehyrogenase	$1,209.7 \pm 305$	447.5 ± 76.1	$1,805.3 \pm 285$
Glutathione Reductase	113.57 ± 19.78	97.93 ± 14.93	198.65 ± 23.44
Total Protein ^b	3.54 ± 1.27	3.61 ± 1.38	4.82 ± 2.88

° Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

°° P≤0.01

^a Mean \pm standard error; units are presented as mIU/g control lung. ь

Mean ± standard error; units are presented as mg/g control lung.

Bronchoalveolar Lavage Fluid Enzymes of Mice at the 18-Month Interim Evaluation^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
B -Glucuronidase	0.000 ± 0.000	1.344 ± 1.267	9.937 ± 4.196**
Lactate Dehydrogenase	434.0 ± 45.7	642.4 ± 119	1,039.9 ± 168**
Glutathione Reductase	63.93 ± 14.16	106.38 ± 12.15	217.18 ± 45.29*
Total Protein ^b	3.43 ± 0.62	$6.23 \pm 0.97^*$	9.45 ± 1.95**
Female			
B-Glucuronidase	4.243 ± 4.203	0.334 ± 0.334	19.064 ± 9.200
Lactate Dehydrogenase	501.4 ± 46.9	404.2 ± 97.6	$1,217.6 \pm 255*$
Glutathione Reductase	73.19 ± 14.94	71.27 ± 12.11	$240.55 \pm 44.06^*$
Total Protein ^b	2.96 ± 0.40	3.41 ± 0.92	9.59 ± 1.23*

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

^a Mean ± standard error; units are presented as mIU/g control lung.

^b Mean ± standard error; units are presented as mg/g control lung.

TABLE H7		
Bronchoalveolar Lavage Fluid Enz	ymes of Mice at the 24-Mo	nth Interim Evaluation ^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
B-Glucuronidase	0.000 ± 0.000	$1.811 \pm 0.878^{**}$	16.571 ± 3.932**
Lactate Dehydrogenase	$1,769 \pm 259$	$1,439 \pm 295$	$2,965 \pm 131^*$
Glutathione Reductase	73.66 ± 9.75	87.55 ± 25.16	$229.53 \pm 58.46^*$
Total Protein ^b	1.69 ± 0.20	2.34 ± 0.22	$4.68 \pm 0.70^{**}$
Female			
B -Glucuronidase	0.000 ± 0.000	$2.624 \pm 1.176^{**}$	13.778 ± 2.640**
Lactate Dehydrogenase	$1,082 \pm 155$	$1,596 \pm 197^*$	2,026 ± 279**
Glutathione Reductase	68.66 ± 7.42	73.37 ± 13.91	163.46 ± 33.43*
Total Protein ^b	1.111 ± 0.310	0.872 ± 0.261	2.228 ± 0.501
)			

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

^a Mean ± standard error; units are presented as mIU/g control lung.

^b Mean \pm standard error; units are presented as mg/g control lung.

Table	H8
-------	----

Bronchoalveolar Lavage Fluid Cell Populations of Mice at the 6-Month Interim Evaluation^a

~	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Polymorphonucleated Cells	0.250 ± 0.250	3.250 ± 1.250	12.000 ± 3.764°°
Lymphocytes	0.750 ± 0.750	0.750 ± 0.479	0.000 ± 0.000
Macrophages	92.50 ± 3.23	95.75 ± 1.44	84.75 ± 2.95
Epithelial Cells	6.500 ± 3.775	0.250 ± 0.250	3.250 ± 1.250
Female	^		
Polymorphonuclear Cells	0.000 ± 0.000	$1.250 \pm 0.629^{\circ}$	$1.750 \pm 0.854^{\circ}$
Lymphocytes	0.000 ± 0.000	1.000 ± 1.000	0.000 ± 0.000
Macrophages	95.00 ± 2.16	94.75 ± 1.44	96.00 ± 1.22
Epithelial Cells	5.00 ± 2.16	3.00 ± 1.73	2.25 ± 1.31

^o Significantly different (P ≤ 0.05) from the control group by Dunn's or Shirley's test ^o P ≤ 0.01 ^a Mean \pm standard error; units are presented as percent of total cells.

Table H9			
Bronchoalveolar Lavag	Fluid Cell Popula	tions of Mice at the	e 12-Month Interim Evaluation ^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male	· ····		
Polymorphonuclear Cells	26.75 ± 15.12	7.50 ± 5.85	15.00 ± 14.01
Lymphocytes	0.750 ± 0.250	2.250 ± 1.436	0.333 ± 0.333
Macrophages	70.50 ± 14.56	83.25 ± 6.91	73.33 ± 12.14
Epithelial Cells	2.00 ± 1.41	7.00 ± 2.12	11.33 ± 7.36
Female			
Polymorphonuclear Cells	1.33 ± 1.33	$34.50 \pm 10.27^{\circ}$	2.25 ± 0.85
Lymphocytes	1.000 ± 0.577	3.500 ± 1.500	0.000 ± 0.000
Macrophages	92.67 ± 0.33	58.25 ± 11.65	91.00 ± 2.04
Epithelial Cells	5.00 ± 1.53	3.75 ± 1.75	6.75 ± 2.84

٥ Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test a

Mean \pm standard error; units are presented as percent of total cells.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male		· · · · · · · · · · · · · · · · · · ·	·····
Polymorphonuclear Cells	0.250 ± 0.250	8.750 ± 4.404	19.000 ± 6.258*
Lymphocytes	0.000 ± 0.000	0.500 ± 0.500	1.000 ± 0.577
Macrophages	89.00 ± 1.22	82.75 ± 5.81	75.75 ± 4.73
Epithelial Cells	10.75 ± 1.44	8.00 ± 4.74	4.25 ± 2.39
Female			
Polymorphonuclear Cells	0.250 ± 0.250	1.000 ± 0.577	16.000 ± 3.606 *
Lymphocytes	0.000 ± 0.000	0.000 ± 0.000	$1.333 \pm 0.882^*$
Macrophages	84.50 ± 5.52	92.67 ± 0.88	79.00 ± 3.06
Epithelial Cells	15.25 ± 5.54	6.33 ± 0.88	3.67 ± 2.33

Bronchoalveolar Lavage Fluid Cell Populations of Mice at the 18-Month Interim Evaluation^a

* Significantly different (P ≤ 0.05) from the control group by Dunn's or Shirley's test a Mean \pm standard error; units are presented as percent of total cells.

TABLE H11 Bronchoalveolar Lavage Fluid Cell Populations of Mice at the 24-Month Interim Evaluation^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Polymorphonuclear Cells	0.200 ± 0.200	$13.000 \pm 2.345^*$	16.500 ± 1.803**
Lymphocytes	0.000 ± 0.000	0.375 ± 0.239	0.500 ± 0.289
Macrophages	89.10 ± 2.50	$78.25 \pm 1.61^{\circ}$	$80.33 \pm 0.60*$
Epithelial Cells	10.70 ± 2.61	8.38 ± 1.01	2.67 ± 1.59
Female			
Polymorphonuclear Cells	0.000 ± 0.000	$7.500 \pm 1.607^*$	20.667 ± 5.918**
Lymphocytes	0.000 ± 0.000	0.500 ± 0.500	0.500 ± 0.500
Macrophages	86.38 ± 3.57	87.00 ± 2.08	73.67 ± 8.46
Epithelial Cells	13.63 ± 3.57	5.00 ± 1.00	5.17 ± 3.03

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

^a Mean ± standard error; units are presented as percent of total cells.

Table H12

Phagocytic Activity of Macrophages in Bronchoalveolar Fluid of Mice at the 12-Month Interim Evaluation^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Phagocytic Activity	85.50 ± 1.44	$56.10 \pm 2.23^{\circ}$	16.77 ± 2.98**
Female			
Phagocytic Activity	77.07 ± 9.88	52.10 ± 9.22	17.37 ± 6.17**

° Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

°° P≤0.01

^a Mean ± standard error; units are presented as percent cells phagocytizing sheep erythrocytes.

TABLE H13

Phagocytic Activity of Macrophages in Bronchoalveolar Fluid of Mice at the 18-Month Interim Evaluation^a

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Phagocytic Activity	37.43 ± 8.55	14.10 ± 4.54	$11.98 \pm 2.22^{\circ}$
Female			
Phagocytic Activity	46.85 ± 11.08	20.03 ± 7.45	$6.65 \pm 0.35^{\circ}$

^o Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

^a Mean ± standard error; units are presented as percent cells phagocytizing sheep erythrocytes.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Viability ^a Phagocytic Activity ^b	79.20 ± 3.44 37.14 ± 9.80	64.60 ± 4.15 11.90 ± 4.64	83.23 ± 0.87 3.56 ± 2.25**
Female			
Viability Phagocytic Activity	60.50 ± 8.80 21.57 ± 6.77	$47.17 \pm 2.74 \\ 13.60 \pm 4.71$	59.77 ± 3.21 4.35 ± 2.65*

TABLE H14 Viability and Phagocytic Activity of Macrophages in Bronchoalveolar Fluid of Mice at the 24-Month Interim Evaluation

* Significantly different (P≤0.05) from the control by Dunn's or Shirley's test
 ** P≤0.01

 ^a Mean ± standard error; units are presented as percent viable cells.
 ^b Units are presented as percent cells phagocytizing sheep erythrocytes.
TABLE H15

Measurements of Lung Collagen in Mice at the 6-Month Interim Evaluation

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Lavage Fluid Collagenous Peptides ^a Total Lung Collagen ^b	67.13 ± 9.76 7.42 ± 0.48	24.83 ± 8.18 7.51 ± 1.38	79.64 ± 18.03 12.27 ± 4.53
Female			
Lavage Fluid Collagenous Peptides Total Lung Collagen	42.92 ± 8.49 4.69 ± 0.35	70.83 ± 9.09 5.85 ± 0.89	51.17 ± 5.14 11.00 ± 3.88

^a Mean \pm standard error; units are presented as $\mu g/g$ control lung.

^b Mean ± standard error; units are presented as mg/g control lung.

TABLE H16

Measurements of Lung Collagen in Mice at the 12-Month Interim Evaluation

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Lavage Fluid Collagenous Peptides ^a Total Lung Collagen ^b	74.23 ± 9.42 11.94 ± 0.47	68.73 ± 4.11 12.44 ± 0.82	$117.62 \pm 11.07^{\circ}$ 13.30 ± 1.11
Female			
Lavage Fluid Collagenous Peptides Total Lung Collagen	89.88 ± 12.99 11.64 ± 0.48	73.66 ± 11.58 11.84 ± 0.45	108.55 ± 7.56 13.78 ± 1.09

° Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

a Mean \pm standard error; units are presented as $\mu g/g$ control lung. b Mean \pm standard error; units are presented as $\mu g/g$ control lung.

^b Mean ± standard error; units are presented as mg/g control lung.

TABLE H17

Measurements of Lung Collagen in Mice at the 18-Month Interim Evaluation

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Lavage Fluid Collagenous Peptides ^a Total Lung Collagen ^b	$\begin{array}{r} 42.54 \ \pm \ 2.15 \\ 6.60 \ \pm \ 0.49 \end{array}$	51.18 ± 5.40 7.13 ± 0.30	70.67 ± 8.41** 9.70 ± 0.70**
Female			
Lavage Fluid Collagenous Peptides Total Lung Collagen	54.09 ± 11.27 6.16 ± 0.25	37.68 ± 6.01 6.96 ± 0.31	64.88 ± 6.56 7.34 ± 0.43

° Significantly different (P≤0.01) from the control by Dunn's or Shirley's test

Mean \pm standard error; units are presented as $\mu g/g$ control lung.

Mean \pm standard error; units are presented as mg/g control lung.

TABLE H18

Lung Collagen Metabolism and Protein Synthesis in Mice at the 24-Month Interim Evaluation

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Lavage Fluid Collagenous Peptides ^a	54.39 ± 4.42	65.98 ± 5.01	91.92 ± 4.93**
Total Lung Collagen ^b	8.53 ± 0.71	8.55 ± 0.59	$13.71 \pm 2.81^*$
Collagen Production ^c	1.133 ± 0.274	0.779 ± 0.151	1.554 ± 0.291
Non-Collagenous Protein Synthesis ^d	68.48 ± 10.41	58.84 ± 4.19	93.73 ± 9.73
Female			
Lavage Fluid Collagenous Peptides	38.09 ± 4.38	39.26 ± 4.01	$62.14 \pm 9.04^*$
Total Lung Collagen	6.04 ± 0.27	6.41 ± 0.36	$7.91 \pm 0.35^*$
Collagen Production ^c	1.15 ± 0.33	1.65 ± 0.13	1.33 ± 0.12
Non-Collagenous Protein Synthesis ^d	52.46 ± 8.60	47.55 ± 6.94	84.51 ± 4.84

* Significantly different (P≤0.05) from the control by Dunn's or Shirley's test

** P≤0.01

a

b

c

Mean \pm standard error; units are presented as $\mu g/g$ control lung. Mean \pm standard error; units are presented as mg/g control lung. Mean \pm standard error; units are presented as percent new protein. Mean \pm standard error; units are presented as disintegrations per minute x 10⁻³/g control lung. d

Lung Burden and Lung Biochemistry of Mice

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
_avage Fluid			
Acid Proteinase	1.27 ± 0.24	1.65 ± 0.47	2.05 ± 0.23
Cathepsin D	0.078 ± 0.038	$0.656 \pm 0.321^{\circ}$	$0.876 \pm 0.107^{\circ}$
Cathepsin B	1.006 ± 0.239	0.992 ± 0.716	0.954 ± 0.010
Iomogenate Supernatant Fluid			
Acid Proteinase	5.83 ± 1.07	8.10 ± 0.78	7.45 ± 0.64
Cathepsin D	2.27 ± 0.46	3.30 ± 0.57	_P
Cathepsin B	3.56 ± 0.80	4.80 ± 0.58	-
Neutral Proteinase	0.634 ± 0.039	$0.360 \pm 0.043^{\circ}$	-
PMN Elastase Cathepsin G	0.446 ± 0.014	0.418 ± 0.357	-
Macrophage Elastase Collagenase	0.207 ± 0.058	0.340 ± 0.154	-
Female			
Lavage Fluid			
Acid Proteinase	0.762 ± 0.089	$1.595 \pm 0.038^{**}$	1.346 ± 0.097
Cathepsin D	0.457 ± 0.166	0.998 ± 0.016	0.628 ± 0.113
Cathepsin B	0.260 ± 0.068	0.571 ± 0.063	$0.718 \pm 0.094^{\circ}$
Homogenate Supernatant Fluid			
Acid Proteinase	4.35 ± 0.31	$6.95 \pm 0.61^{\circ}$	5.77 ± 0.61
Cathepsin D	1.78 ± 0.12	$3.89 \pm 1.52^{\circ}$	$3.12 \pm 0.06^{\circ}$
Cathepsin B	2.57 ± 0.22	3.06 ± 1.01	2.65 ± 0.56
Neutral Proteinase	0.522 ± 0.047	0.535 ± 0.039	0.848 ^c
PMN Elastase Cathepsin G	0.416 ± 0.033	0.347 ± 0.066	-
Macrophage Elastase Collagenase	0.106 ± 0.043	0.188 ± 0.058	-

TABLE H19 Proteinase Activity in Lavage Fluid and Lung Homogenate Supernatant Fluid of Mice at the 6-Month Interim Evaluation^a

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

°° P≤0.01

^a Mean ± standard error; units are presented as mg/hour per gram control lung.
 ^b n=0; no data recorded
 ^c n=1; no standard error calculated

12

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			
Lavage Fluid			;
Acid Proteinase	1.65 ± 0.13	2.11 ± 0.82	3.25 ± 0.28
Cathepsin D	0.403 ± 0.163	0.970 ± 0.244	1.796 ± 0.306**
Cathepsin B	1.25 ± 0.10	1.25 ± 0.78	1.46 ± 0.05
Homogenate Supernatant Fluid			
Acid Proteinase	7.21 ± 0.50	$9.35 \pm 0.07^*$	$16.50 \pm 0.95^{**}$
Cathepsin D	5.32 ± 0.27	$7.71 \pm 0.16^*$	$14.32 \pm 1.27^{**}$
Cathepsin B	1.89 ± 0.48	1.64 ± 0.10	2.18 ± 0.39
Neutral Proteinase	0.386 ± 0.055	1.029 ± 0.416	$1.088 \pm 0.271^*$
PMN Elastase Cathepsin G	0.110 ± 0.110	0.005 ± 0.005	0.209 ± 0.148
Macrophage Elastase Collagenase	0.426 ± 0.159	1.127 ± 0.422	0.879 ± 0.162
Female			
Lavage Fluid			
Acid Proteinase	1.94 ± 0.17	1.79 ± 0.35	$3.60 \pm 0.33^*$
Cathepsin D	0.526 ± 0.263	0.463 ^b	$1.525 \pm 0.266^*$
Cathepsin B	1.50 ± 0.41	2.14 ^b	2.08 ± 0.08
Homogenate Supernatant Fluid			
Acid Proteinase	7.88 ± 0.24	$10.48 \pm 0.50^*$	$16.92 \pm 1.84^{**}$
Cathepsin D	6.40 ± 0.70	8.44 ± 0.51	14.76 ± 1.59**
Cathepsin B	1.55 ± 0.54	2.04 ± 0.22	2.16 ± 0.55
Neutral Proteinase	0.423 ± 0.183	0.601 ± 0.108	0.824 ± 0.057
PMN Elastase Cathepsin G	0.215 ± 0.125	0.213 ± 0.213	0.190 ± 0.124
Macrophage Elastase Collagenase	0.280 ± 0.116	0.446 ± 0.127	0.653 ± 0.158

TABLE H20

Proteinase Activity in Lavage Fluid and Lung Homogenate Supernatant Fluid of Mice at the 12-Month Interim Evaluation^a

* Significantly different (P \leq 0.05) from the control group by Dunn's or Shirley's test ** P \leq 0.01

^a Mean \pm standard error; units are presented as mg/hour per gram control lung. ^b n=1; no standard error calculated

	0 mg/m ³	6 mg/m ³	18 mg/m ³ .
Male			· · · · ·
avage Fluid			
Acid Proteinase	0.264 ± 0.044	0.428 ± 0.120	0.384 ± 0.066
Cathepsin D	0.212 ± 0.046	$0.073 \pm 0.013^{\circ}$	$0.051 \pm 0.035^{\circ}$
Cathepsin B	0.069 ± 0.037	$0.355 \pm 0.127^{\circ}$	$0.342 \pm 0.057^{\circ}$
Homogenate Supernatant Fluid			
Acid Proteinase	3.29 ± 0.58	4.76 ± 0.49	8.38 ± 0.85°°
Cathepsin D	2.71 ± 0.24	$4.98 \pm 0.63^{\circ}$	$8.45 \pm 0.63^{\circ\circ}$
Cathepsin B	0.607 ± 0.327	0.053 ± 0.053	0.403 ± 0.270
Neutral Proteinase	0.425 ± 0.079	0.548 ± 0.022	0.528 ± 0.034
PMN Elastase Cathepsin G	0.158 ± 0.066	0.242 ± 0.061	0.254 ± 0.017
Macrophage Elastase Collagenase	0.286 ± 0.093	0.306 ± 0.041	0.275 ± 0.031
Female			
Lavage Fluid			
Acid Proteinase	0.267 ± 0.103	0.561 ± 0.126	0.382 ± 0.040
Cathepsin D	0.219 ± 0.085	0.012 ± 0.012	0.062 ± 0.036
Cathepsin B	0.088 ± 0.034	$0.587 \pm 0.095^{\circ}$	$0.358 \pm 0.098^{\circ}$
Homogenate Supernatant Fluid			
Acid Proteinase	3.97 ± 0.41	$5.57 \pm 0.26^{\circ}$	$9.03 \pm 0.88^{\circ\circ}$
Cathepsin D	3.28 ± 0.23	$5.37 \pm 0.16^{\circ}$	9.17 ± 0.75°°
Cathepsin B	0.694 ± 0.284	0.232 ± 0.096	0.265 ± 0.265
Neutral Proteinase	0.381 ± 0.041	$0.540 \pm 0.036^{\circ}$	$0.583 \pm 0.035^{\circ}$
PMN Elastase Cathepsin G	0.265 ± 0.038	0.391 ± 0.038	0.268 ± 0.041
Macrophage Elastase Collagenase	0.116 ± 0.033	0.149 ± 0.054	$0.315 \pm 0.045^{\circ}$

Table H21

Proteinase Activity in Lavage Fluid and Lung Homogenate Supernatant Fluid of Mice at the 18-Month Interim Evaluation^a

^o Significantly different (P ≤ 0.05) from the control group by Dunn's or Shirley's test ^{oo} P ≤ 0.01 ^a Mean \pm standard error; units are presented as mg/hour per gram control lung.

	0 mg/m ³	6 mg/m ³	18 mg/m ³
Male			· · ·
Lavage Fluid			
Acid Proteinase	1.62 ± 0.14	1.92 ± 0.18	$3.56 \pm 0.67^*$
Cathepsin D	0.000 ± 0.000	0.260 ± 0.156	1.613 ± 0.632**
Cathepsin B	1.94 ± 0.19	1.72 ± 0.28	1.78 ± 0.29
Iomogenate Supernatant Fluid			
Acid Proteinase	9.23 ± 1.16	13.85 ± 1.56	24.34 ± 2.66*
Cathepsin D	6.63 ± 0.96	$10.82 \pm 0.98^{\circ}$	18.75 ± 1.73**
Cathepsin B	2.60 ± 0.39	3.03 ± 0.78	$5.58 \pm 1.11^{\circ}$
Neutral Proteinase	0.417 ± 0.072	0.568 ± 0.104	$0.862 \pm 0.164^*$
PMN Elastase Cathepsin G	0.251 ± 0.034	0.382 ± 0.093	0.341 ± 0.106
Macrophage Elastase Collagenase	0.166 ± 0.063	0.186 ± 0.040	0.521 ± 0.250
a tang at	$(1,\infty) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} $	n i an an an an	
Female		•	• • • • • • •
_avage Fluid			
Acid Proteinase	0.854 ± 0.077	1.012 ± 0.149	0.998 ± 0.212
Cathepsin D	0.194 ± 0.089	0.114 ± 0.114	0.402 ± 0.146
Cathepsin B	0.708 ± 0.118	1.000 ± 0.365	0.596 ± 0.305
Iomogenate Supernatant Fluid			
Acid Proteinase	7.83 ± 1.11	9.76 ± 0.56	$22.54 \pm 1.29^*$
Cathepsin D	5.10 ± 0.67	8.04 ± 0.95	17.93 ± 0.55**
Cathepsin B	2.73 ± 0.47	1.71 ± 0.57	4.61 ± 1.00
Neutral Proteinase	0.454 ± 0.096	0.646 ± 0.143	$0.922 \pm 0.077^*$
PMN Elastase Cathepsin G	0.172 ± 0.063	0.341 ± 0.082	0.360 ± 0.093
Macrophage Elastase Collagenase	0.421 ± 0.293	0.314 ± 0.162	0.563 ± 0.102

TABLE H22 Proteinase Activity in Lavage Fluid and Lung Homogenate Supernatant Fluid of Mice at the 24-Month Interim Evaluation^a

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** $P \le 0.01$ ^a Mean ± standard error; units are presented as mg/hour per gram control lung.

APPENDIX I

CHIEMICAL CHIARACTERIZATION, ANALYSIS, AND GENERATION OF CHIAMBER CONCENTRATIONS

Procurement and Characterization of Talc
GENERATION AND MONITORING OF CHAMBER CONCENTRATIONS
FIGURE I1 Infrared Absorption Spectrum of Talc 266
FIGURE I2 Fluid Bed Generator
FIGURE I3 Aerosol Dilution/Delivery System
FIGURE I4 Talc Chronic Exposure System 269
FIGURE I5 Talc Aerosol Filter Concentrations in the 6 mg/m ³ Rat Chamber
FIGURE 16 Talc Aerosol Filter Concentrations in the 18 mg/m ³ Rat Chamber
FIGURE I7 Talc Aerosol Filter Concentrations in the 6 mg/m ³ Mouse Chamber
FIGURE IS Talc Aerosol Filter Concentrations in the 18 mg/m ³ Mouse Chamber
TABLE I1 Summary of Aerosol Size Measurements
for the 6 and 18 mg/m ³ Rat Chambers
TABLE I2 Summary of Aerosol Size Measurements
for the 6 and 18 mg/m ³ Mouse Chambers 275

261

CHEMICAL CHARACTERIZATION, ANALYSIS, AND GENERATION OF CHAMBER CONCENTRATIONS

PROCUREMENT AND CHARACTERIZATION OF TALC

Talc was obtained from Walsh and Associates (North Kansas City, MO) in two lots (W101882 and B5415). Lot W101882 was used from the beginning of the 2-year studies through 26 January 1986. Lot B5415 was used in the 2-year studies from 27 January 1986 to the end of the studies. The talc was extensively characterized by the analytical chemistry laboratory, Midwest Research Institute (MRI; Kansas City, MO) and McCrone Associates (Norcross, GA). Reports on analyses performed in support of the talc studies are on file at the National Institute of Environmental Health Sciences.

The two lots of the chemical, a finely powdered white solid, were identified as talc by infrared spectroscopy. All spectra were consistent with those expected for the structure and with the literature spectra of talc (Sadtler Standard Spectra), as shown in Figure 11.

Lot W101882 was divided into three subbatches, which were analyzed separately. Each subbatch was characterized by elemental analyses, Karl Fischer water analysis, spark source mass spectrometry, and microscopic analyses. Microscopic analysis of each lot consisted of polarized light microscopy (PLM) and transmission electron microscopy (TEM). For PLM the sample was mounted in refractive index liquids and the optical parameters were determined. Dispersion staining has the advantage that small quantities of asbestos can easily be detected since the optical properties are interpreted from bright colors seen on a black background. The colors seen are the results of differences in refractive index dispersion for a liquid and a solid. TEM was performed by sonically dispersing approximately 0.1 g of talc in a solution of 0.001% methyl cellulose in particle-free water. A drop of the suspension was placed on a carbon coated 200-mesh copper grid, and 20 grid openings were examined. The detection limit was 0.1% by weight. No asbestos fibers were detected in any of the subbatches by polarized light microscopy.

Elemental analyses of hydrogen, magnesium, and silicon for all three subbatches of the lot were in agreement with the theoretical values for talc. The major impurities were 0.7% aluminum and 1.0% iron. Karl Fischer water analysis indicated approximately 0.2% absorbed water. Spark source mass spectrometry for the three subbatches also indicated approximately 0.1% phosphorus, 0.5% fluorine, and 0.05% calcium, while the remaining elemental impurities were less than 0.01%.

A special study was performed on this lot to determine if the sample met the American Society for Testing and Materials standard specifications for magnesium silicate. Results indicated that lot W101882 met the standard specifications.

Automated scanning electron microscopic analysis demonstrated that the talc was virtually free of silica. In the analysis a sample of talc is suspended in methylcellulose. Under computer control the particles are located, and maximum, minimum, and average diameters are determined; then a chemical analysis is performed. Of the 1,466 particles that were examined, one was identified as silica, 1,241 were talc, 136 were of tremolite type composition, 77 were mixed silicates, one was possibly zircon, and 10 were not identified. The single silica particle had an average diameter of 3.9 μ m.

Lot B5415 was characterized by elemental analyses, Karl Fischer water analysis, spark source mass spectrometry, and microscopic analyses using the same methods described for lot W101882. Elemental analyses values were similar to results obtained for lot W101882. The major impurities present were 0.1% calcium, 0.5% aluminum, and 1% iron. Karl Fischer water analysis indicated 1.2% absorbed water. Spark source mass spectrometry also indicated 0.04% phosphorus, >0.5% aluminum, 0.03% sodium,

Chemical Characterization and Dose Formulation

0.35% fluorine, and all other impurities were less than 0.03%. Microscopic analyses using PLM and TEM detected no asbestos fibers.

Comparative purity analyses of the two lots used in these studies were conducted due to problems with the generation of inhalation concentrations. Four samples of talc were used, two samples each from lots W101882 and B5415. Samples A and B were from lot W101882, sample C was from lot B5415, and sample D was a frozen reference from lot B5415 that had been stored at MRI.

Analyses performed included elemental analyses, microscopic analyses (PLM, TEM, determination of particle size distribution, and aspect ratios), X-ray diffraction, and thermogravimetric analysis (TGA). PLM and TEM analyses were performed on samples C and D. Analysis by PLM followed the procedures described earlier; TEM followed the same procedure described earlier except the talc was sonically dispersed in a solution of 90% isopropanol in particle-free water. The determinations of particle size distribution and aspect ratios were performed on all four samples. Using TEM for both analyses, selected area diffraction (SAD) patterns were used to confirm that the particles being measured were talc. The particle size was taken as the average of two diameters 90° to each other and aspect ratios were taken as the ratio of the two diameters. Thermogravimetric analysis (TGA) was performed on samples A, B, and C on a DuPont 910 differential scanning calorimeter (DSC) with calcium oxalate monohydrate used as a calibrating standard, at an initial temperature of 50° C with a programmed maximum temperature of 1,100° C, at a rate of 20° C per minute.

Elemental analyses for hydrogen, magnesium, and silicon for all four samples were in agreement with theoretical values. PLM and TEM detected no asbestos fibers in any of the samples. The results for particle size distribution and aspect ratios indicated that there were only minor differences in particle size between the samples and more than 75% of the particles were in the 1.0 to 3.0 μ m range. More than 90% of the talc particles had aspect ratios between 1 and 1.4, and less than 1% had ratios greater than 3:1. X-ray diffraction confirmed that all four samples were primarily talc with small quantities of chlorite and dolomite. Thermogravimetric analysis indicated that samples A, B, and C were similar. A main peak at 912° C in all three samples caused by the loss of chemically combined water was equal to a loss of 4.7% by weight. A minor peak at 590° C in all three samples may represent the loss of CO₂ from dolomite and amounted to a loss of 0.7% by weight which is equivalent to 1.5% dolomite.

	м. С	ed)	Particles Count	(% of Total		
. * .	<u>Talc D</u>	<u>Taic C</u>	Talc B	<u>Talc A</u>	<u>Size Range (µm)</u>	• · ·
·· · ·	1.94	12.50	2.97	5.88	0.5-1.0	
· · · · ·	11.65	19.23	9.90	15.69	1.0-1.5	
	26.21	24.04	26.73	26.47	1.5-2.0	
	23.30	21.15	17.82	20.59	2.0-2.5	
	8.74	10.58	18.81	11.76	2.5-3.0	
	7.77	4.81	12.87	5.88	3.0–3.5	
	5.83	2.88	5.94	3.92	3.5-4.0	
	4.85	1.92	1.98	2.94	4.0-4.5	
	3.88	0.96	0.99	2.94	4.5-5.0	• • •
	2.91	0.96	0.99	1.96	5.0-5.5	
. i., i.,	1.94	0.96	0.99	1.96	5.5-6.0	
	0.97	-	-	-	6.0-6.5	

The moisture content of the bulk chemical was reanalyzed every 4 months at the study laboratory by determining the weight loss following heating at 120° C for 16 hours. The results indicated that the moisture content of the talc was similar between the two lots and did not change during the 2-year studies. Bulk chemical stability studies were not performed on talc because the physical and chemical

properties of talc indicate that it should be stable over a wide range of temperatures. The compound was stored in tightly sealed plastic bags at 25° C.

GENERATION AND MONITORING OF CHAMBER CONCENTRATIONS

Aerosol Generation System: Talc aerosol was generated from one 4-inch, fluid bed generator (FBG). Figure I2 shows the schematic of the FBG with the gravity feed and collecting pan collection systems. The FBG bed contained type 316 stainless steel powder (Hoeganaes Corporation, Riverton, NJ), consisting of irregularly shaped particles 125 to 180 μ m in diameter. The stainless steel powder was cleaned prior to use. The cleaning system used a 4-inch FBG with dry, filtered air flowing through at a flow rate of 80 ft³/min. The high flow rate through the bed removed the finest stainless steel particles. The cleaning system was run for 24 hours to ensure that all the "fines" were removed.

Following cleaning of the bed material, talc was mixed with the stainless steel powder at approximately 1 to 2.5 g of talc per 500 g bed material. The concentration of talc in the bed material was one method used to adjust exposure concentrations in the chamber. During the time period of November 1985 to January 1986, when difficulty in maintaining target concentrations was experienced, higher loadings were used in an effort to maintain target concentrations.

For generation of the talc aerosol, fluidization of the bed material mixed with talc occurred when compressed air (≈ 200 Lpm) was injected into the bed through a porous metal distribution plate which supports the bed. The motion of the bed released the much smaller talc particles into the air; the larger, heavier stainless steel particles were retained in the bed. A Kr-85 discharger was placed above the bed to reduce the particle charges. The aerosolized talc particles were mixed with diluting air (≈ 200 Lpm) to achieve the desired concentrations and were then delivered to the exposure chambers (Figures I3 and I4). As the talc powder was removed from the bed, the bed material was continually drained from the FBG through an overflow port located at the side of the generator. As spent bed material was drained from the generator, fresh talc-containing bed material was constantly added into the generator from a hopper located above the generator.

Stainless steel multi-tiered whole-body exposure chambers (H2000, Lab Products, Inc.) were used to expose the rats in this study while the smaller H1000 chambers were used for the mice. Flow rates through the chambers were 12 ± 2 ft³/min. To reduce the spatial variation of aerosol concentration and to increase the uniformity of mixing, the aerosol was diluted using a dilutor prior to its introduction into the chamber. Also, animal cages were rotated weekly to reduce the variation of concentrations of talc aerosols that the rodents were exposed to during the 2-year studies.

Aerosol Concentration Monitoring: Aerosol concentrations in each exposure chamber were monitored by collecting filter samples for three, 2-hour periods during each 6-hour exposure day. The background concentration of total suspended particles in each control chamber was monitored each exposure day by collecting one 6-hour filter sample. Overnight filter samples for total suspended particles were collected from the 18 mg/m³ chambers monthly. All filter samples were taken at a flow rate of 3 L/minute. Each filter was weighed before and after the sample was collected, and the aerosol mass concentrations were calculated by dividing the mass increment (mg) by the volume sampled (m³); the means and standard deviations for each chamber were calculated for each exposure day. Weekly mean exposure concentrations for the 2-year studies are presented in Figures 15 through 18. The concentrations during non-exposure hours in the 18 mg/m³ chambers ranged from 0.02 to 1.1 mg/m³.

A RAM-S continuous aerosol monitor was used to monitor the stability of the aerosol concentrations and to determine the need to adjust the aerosol generation system during exposures. The RAM-S was used to monitor each chamber for at least 5 minutes at the beginning, middle, and end of the filter sampling period. A 2 L/minute flow rate through the RAM-S was achieved using an internal pump in the device. Both RAM-S and filter samples were taken at one point of the chambers above the animal cage. A Y-shaped probe was used, allowing simultaneous filter sampling and RAM-S aerosol mass

Chemical Characterization and Dose Formulation

monitor operation. The overall temporal variation in chamber concentrations in the 2-year studies were 33% and 27% relative standard deviation (RSD) for the mouse 6 and 18 mg/m³ chambers. The variations were 31% and 36% RSD for the rat 6 and 18 mg/m³ chambers. At least a portion of this variability may be ascribed to the period when talc generation problems were encountered (November 1985 through February 1986). In addition, a portion of the variability for the 18 mg/m³ rat chamber may be ascribed to the time when higher concentrations were being generated (September through November, 1984).

During the period of November 5, 1985, through January 27, 1986, difficulties were experienced maintaining the required exposure levels of talc for the lifetime and 2-year exposure studies. Concentrations of aerosolized talc were significantly below target. Attempts were made to increase the flow of talc into the generator and raise the concentration; however, the talc-laden stainless steel bed material fed into the generator less freely than it had prior to November 1985. There were no observable chemical changes in either the talc or the stainless steel bed material and no malfunctions in the generation system which could be pinpointed as the underlying cause for the poor flow characteristics of the bed material. On January 27, 1986, the generator was restarted with a new batch of talc. After a stabilization period of 3 weeks, the flow properties of the bed material showed significant improvement.

It was also observed during February 1986, that when the ratio of talc to bed material was increased above 1.6 g talc per 500 g bed material, the bed began to show the poor flow properties characteristic of the previous batch of talc. When the bed loading was reduced below 1.6 g talc per 500 g bed material, the flow properties stabilized. This indicated that the bed has a maximum loading limit which must not be exceeded. By March 1986, the generator had stabilized and chamber target concentrations were achieved. The exact cause of these generation problems was never resolved.

In November 1984 it was noticed that the RAM-S monitor indicated an off-scale reading (>10 V which is equivalent to 20 mg/m³) for the 18 mg/m³ rat chamber. Reasonable agreement was found between RAM-S readings and filter samples in the other chambers. Investigations of this discrepancy indicated that the airflow through the critical orifice controlling flow through the filter was reduced. Evaluation of the previously collected pressure drop associated with this orifice and one having nearly identical nominal flow revealed that the flow to the sampling filter of the high level rat chamber dropped significantly on September 24, 1984. These data suggest that the sampling orifice had become partially clogged. In order to obtain a correction factor to recalculate the chamber concentration data, the filter pressure drop and exposure chamber pressure drop data were retrieved and used to determine the actual pressure drop across the sampling filter for the time period of September 24 through November 14, 1984. A group of 18 filters from different lots of the type used to sample the talc exposure chambers were tested to determine the pressure drop across them as a function of the flow through the filter. These data indicated that values for flow could be calculated from the pressure drop data. The relationship between pressure drop and filter flow rate was used to recalculate the sampling filter flow for each day. When the chamber sampling orifice flow rate was taken into account, the best estimate of the correction factor is 2.06. This factor has been used to multiply the originally recorded chamber concentrations for those dates. The corrected values are reported.

Aerosol size distribution was determined once a month for each chamber using a cascade impactor operated at a flow rate of 15 L/minute. Stainless steel disks coated with apiezon grease were used as impactor substrates and the amount of talc collected on each stage was determined by the difference in stage weight before and after the sample was collected. The mass medium aerodynamic diameter and the geometric standard deviation were calculated from the mass data, effective cutoff diameter of each stage, and impactor flow rate. The results are presented in Tables I1 and I2.

FIGURE I1 Infrared Absorption Spectrum of Talc

266

Talc, NTP TR 421

Chemical Characterization and Dose Formulation

3 i i

FIGURE I2 Fluid Bed Generator

FIGURE I3 Aerosol Dilution/Delivery System

FIGURE I4 Talc Chronic Exposure System

FIGURE I5 Talc Aerosol Filter Concentrations in the 6 mg/m³ Rat Chamber

FIGURE I7 Talc Aerosol Filter Concentrations in the 6 mg/m³ Mouse Chamber

FIGURE I8 Talc Aerosol Filter Concentrations in the 18 mg/m³ Mouse Chamber

TARIE	

Summary of Aerosol Size Measurements for the 6 and 18 mg/m³ Rat Chambers

6 mg/m ³			18 mg/m ³		
Date	Mass Median Aerodynamic Diameter (µm)	Geometric Standard Deviation	Date	Mass Median Aerodynamic Diameter (µm)	Geometri Standard Deviation
9 July 1984	2.3	2.6	25 June 1984	3.6	2.0
6 August 1984	2.6	1.7	1 August 1984	3.0	1.8
4 September	2.8	1.8	27 August 1984	3.2	1.9
3 October 1984	2.6	1.8	26 September 1984	2.9	1.8
31 October 1984	2.9	1.8	24 October 1984	3.2	1.9
27 November 1984	2.5	1.8	20 November 1984	3.0	1.9
4 January 1985	2.6	1.8	24 December 1984	2.8	1.8
25 January 1985	2.5	1.7	14 January 1985	2.9	1.8
25 February 1985	2.6	1.8	19 February 1985	2.8	1.8
19 March 1985	2.8	1.8	15 March 1985	3.1	2.0
22 April 1985	2.9	1.7	12 April 1985	3.1	1.8
13 June 1985	3.0	1.9	8 May 1985	2.9	1.9
9 July 1985	2.8	1.8	10 June 1985	3.0	1.9
August 1985	2.7	1.9	5 July 1985	3.5	1.8
3 September 1985	2.7	1.5	1 August 1985	3.1	1.9
30 September 1985	2.3	1.3	26 August 1985	2.9	1.9
28 October 1985	2.6	1.5	23 September 1985	2.6	1.6
2 December 1985	3.1	1.7	21 October 1985	2.0	1.5
18 December 1985	3.0	1.7	25 November 1985	4.0	2.1
3 January 1986	1.8	2.8	17 December 1985	3.3	1.9
	3.6	2.8 1.9	30 December 1985	3.7	1.9
8 January 1986	3.1	1.8	3 January 1986	4.0	2.2
13 January 1986	2.9	2.2	8 January 1986	3.8	1.9
24 February 1986 24 March 1986	3.4	1.9	18 February 1986	3.2	2.1
	3.4	2.3	17 March 1986	3.6	1.9
22 April 1986	3.2 2.4	1.9	14 April 1986	4.0	2.0
23 May 1986 23 May 1986	2.4	1.9	19 May 1986	3.2	1.8
	2.3	1.9	2 June 1986	3.2	2.1
27 May 1986 16 June 1986	2.5	2.7	17 June 1986	3.3	1.9
30 June 1986	2.7	2.4	15 July 1986	3.4	2.0
	2.2	2.4	11 August 1986	3.1	1.9
28 July 1986	2.5 2.1	2.5	•	2.9	1.9
25 August 1986			9 September 1986	2.9	2.3
22 September 1986 20 October 1986	2.5 2.7	2.0 2.3	6 October 1986	2.1	2.3
Mcan ± standard					
deviation	2.7 ± 0.4	1.9 ± 0.4		3.2 ± 0.4	1.9 ± 0.2

Chemical Characterization and Dose Formulation

TABLE I2

Summary of Aerosol Size Measurements for the 6 and 18 mg/m³ Mouse Chambers

6 mg/m ³			18 mg/m ³		
Date	Mass Median Aerodynamic Diameter (µm)	Geometric Standard Deviation	Date	Mass Median Aerodynamic Diameter (µm)	Geometric Standard Deviation
 18 June 1984	3.9	1.8	25 June 1984	3.6	2.0
16 July 1984	3.4	1.9	23 July 1984	. 3.7	1.9
14 August 1984	3.5	1.8	20 August 1984	3.5	1.8
18 September 1984	3.3	1.8	10 September 1984	3.9	2.0
10 October 1984	3.1	1.9	17 October 1984	3.8	1.9
7 November 1984	3.3	1.8	19 November 1984	. 3.5	1.7
4 December 1984	3.0	1.8	12 December 1984	3.3	1.9
7 January 1985	3.4	1.6	7 January 1985	3.4	1.8
4 February 1985	3.2	1.8	8 February 1985	3.6	1.9
1 March 1985	2.9	1.9	7 March 1985	3.6	1.9
29 March 1985	3.1	1.8	5 April 1985	3.5	1.9
23 April 1985	3.6	1.8	2 May 1985	3.6	1,8
22 May 1985	3.1	2.0	29 May 1985	3.5	2.2
21 June 1985	3.3	1.8	26 June 1985	3.7	2.0
23 July 1985	3.4	1.8	29 July 1985	3.5	1.9
15 August 1985	3.5	1.8	20 August 1985	3.8	1.9
9 September 1985	2.6	1.3	16 September 1985	3.3	1.8
7 October 1985	2.7	1.5	14 October 1985	2.8	1.7
4 November 1985	2.5	1.5	12 November 1985	4.1	2.1
9 December 1985	3.4	1.6	16 December 1985	3.8	2.0
19 December 1985	3.6	2.0	3 January 1986	3.6	1.9
3 January 1985	3.9	2.0	8 January 1986	5.0	2.0
8 January 1986	4.0	2.1	10 February 1986	3.3	2.4
20 January 1986	3.7	1.8	13 March 1986	3.1	2.5
3 March 1986	3.0	2.1	7 April 1986	3.4	2.0
31 March 1986	2.9	2.1	5 May 1986	3.3	2.2
28 April 1986	3.2	4.7	-		
Mean 🛨 standard					
deviation	3.3 ± 0.4	1.9 ± 0.6		3.6 ± 0.4	2.0 ± 0.2

275

APPENDIX J

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH-07 RAT AND MOUSE RATION

Table J1	Ingredients of NIH-07 Rat and Mouse Ration	278
Table J2	Vitamins and Minerals in NIH-07 Rat and Mouse Ration	278
Table J3	Nutrient Composition of NIH-07 Rat and Mouse Ration	279
Table J4	Contaminant Levels in NIH-07 Rat and Mouse Ration	280

Ingredients ^b	Percent by Weight
Ground #2 yellow shelled corn	24.50
Ground hard winter wheat	23.00
Soybean meal (49% protein)	12.00
Fish meal (60% protein)	10.00
Wheat middlings	10.00
Dried skim milk	5.00
Alfalfa meal (dehydrated, 17% protein)	4.00
Corn gluten meal (60% protein)	3.00
Soy oil	2.50
Dried brewer's yeast	2.00
Dry molasses	1.50
Dicalcium phosphate	1.25
Ground limestone	0.50
Salt	0.50
Premixes (vitamin and mineral)	0.25

TABLE J1 Ingredients of NIH-07 Rat and Mouse Ration^a

a

NCI, 1976; NIH, 1978 Ingredients were ground to pass through a U.S. Standard Screen No. 16 before being mixed. b

TABLE J2 Vitamins and Minerals in NIH-07 Rat and Mouse Ration^a

	Amount	Source	•	· ·
Vitamins				
Α	5,500,000 IU	Stabilized vitamin A palmitate or acetate	· .	
	4,600,000 IU	D-activated animal sterol		
D ₃ K ₃	2.8 g	Menadione		
d-a-Tocopheryl acetate	20,000 IU			
Choline	560.0 g	Choline chloride		· · ·
Folic acid	2.2 g			· , .
Niacin	30.0 g			
d-Pantothenic acid	18.0 g	d-Calcium pantothenate		
Riboflavin	3.4 g	•		
Thiamine	10.0 g	Thiamine mononitrate		
B ₁₂	4,000 μg		· ·	
Pyridoxine	1.7 g	Pyridoxine hydrochloride		
Biotin	140.0 mg	d-Biotin		
biotin	a toto mg			
Minerals				
Iron	120.0 g	Iron sulfate		. :
Manganese	60.0 g	Manganous oxide	. <u>.</u>	
Zinc	16.0 g	Zinc oxide		
Copper	4.0 g	Copper sulfate		
Iodine	1.4 g	Calcium iodate		
Cobalt	0.4 g	Cobalt carbonate		

^a Per ton (2,000 lb) of finished product

Table J3

Nutrient Composition of NIH-07 Rat and Mouse Ration

·	Mean 🗠 Standard	_	
Nutrient	Deviation	Range	Number of Samples
Protein (% by weight)	22.22 ± 0.72	21.1-23.5	13
Crude fat (% by weight)	5.59 ± 0.55	4.7-6.4	13
Crude fiber (% by weight)	3.36 ± 0.30	2.7-3.8	13
Ash (% by weight)	6.55 ± 0.23	6.1-7.0	13
mino Acids (% of total diet)			
Arginine	1.308 ± 0.606	1.210-1.390	8
Cystine		0.181-0.400	8
Glycine	$\begin{array}{c} 0.306 \pm 0.084 \\ 1.150 \pm 0.047 \end{array}$	1.060-1.210	8
Histidine	0.576 ± 0.024	0.531-0.607	8
Isoleucine	0.576 ± 0.024 0.917 ± 0.029	0.881-0.944	8
			8
Leucine	1.946 ± 0.055	1.850-2.040	8
Lysine	1.270 ± 0.058	1.200-1.370	8
Methionine	0.448 ± 0.128	0.306-0.699	8
Phenylalanine	0.987 ± 0.140	0.665-1.110	
Threonine	0.877 ± 0.042	0.824-0.940	8
Tryptophan	0.236 ± 0.176	0.107-0.671	8
Tyrosine	0.676 ± 0.105	0.564-0.794	8
Valine	1.103 ± 0.040	1.050-1.170	8
Ssential Fatty Acids (% of tot			
Linoleic	2.393 ± 0.258	1.830-2.570	7
Linolenic	0.280 ± 0.040	0.2100.320	7
litamins		Constant of the second of the second	
Vitamin A (IU/kg)	9,846 ± 2,839	5,600-15,000	13
Vitamin D (IU/kg)	4 450 + 1 202	3,000-6,300	4
a-Tocopherol (ppm)	$4,430 \pm 1,382$ 37.95 ± 9.41	22.5-48.9	8
Thiamine (ppm)	20.77 ± 2.01	17.0-23.0	13
Riboflavin (ppm)	7.92 ± 0.87	6.10-9.00	8
Niacin (ppm)	103.4 ± 26.59	65.0-150.0	8
,	No. 6 3 Julie ≥ 29.54 ± 3.60	23.0-34.0	8
Pyridoxine (ppm)	^N ™TR# 15 A 14 9.55 ± 3.48	5.60-14.0	8
Folic acid (ppm)	2.25 ± 0.73	1.80-3.70	8
Biotin (ppm)	0.254 ± 0.042	0.19-0.32	8
Vitamin B ₁₂ (ppb)	38.45 ± 22.01	10.6-65.0	8
Choline (ppm)	$3,089 \pm 328.69$	2,400-3,430	8
linerals	the state of the s		
Calcium (%)	1.17 ± 0.09	1.06-1.41	13
Phosphorus (%)	0.92 ± 0.03	0.87-0.99	13
Potassium (%)	0.883 ± 0.078	0.87-0.99	
Chloride (%)	0.883 ± 0.078 0.526 ± 0.092	0.380-0.635	6 8
	0.320 ± 0.092 0.313 ± 0.390		8
Sodium (%) Magnesium (%)		0.258-0.371	
•	0.168 ± 0.010	0.151-0.181	8
Sulfur (%)	0.280 ± 0.064	0.208-0.420	8
Iron (ppm)	360.5 ± 100	255.0-523.0	8
Manganese (ppm)	92.0 ± 6.01	81.70-99.40	8
Zinc (ppm)	54.72 ± 5.67	46.1064.50	8
Copper (ppm)	11.06 ± 2.50	8.090-15.39	8
lodine (ppm)	.3.37 ± 0.92	1.52-4.13	6
Chromium (ppm)	1.79 ± 0.36	1.04-2.09	8
Cobalt (ppm)	0.681 ± 0.14	0.490-0.780	4

 Applies and the second sec second sec

TABLE .	J 4
---------	------------

Contaminant Levels in NIH-07 Rat and Mouse Ration

$\begin{array}{c} 0.72 \pm 0.19 \\ < 0.1 \\ 0.57 \pm 0.31 \\ < 0.05 \\ 0.35 \pm 0.08 \\ < 5.0 \\ 12.56 \pm 4.47 \\ 0.14 \pm 0.11 \end{array}$	0.33-0.94 0.14-1.32	13 13
<0.1 0.57 ± 0.31 <0.05 0.35 ± 0.08 <5.0 12.56 ± 4.47		13
<0.1 0.57 ± 0.31 <0.05 0.35 ± 0.08 <5.0 12.56 ± 4.47		13
$\begin{array}{c} 0.57 \pm 0.31 \\ < 0.05 \\ 0.35 \pm 0.08 \\ < 5.0 \\ 12.56 \pm 4.47 \end{array}$	0.14–1.32	
<0.05 0.35 ± 0.08 <5.0 12.56 ± 4.47		13
0.35 ± 0.08 <5.0 12.56 ± 4.47		13
<5.0 12.56 ± 4.47	0.210.44	13
12.56 ± 4.47		13
	2.80-18.0	13
	<0.10-0.50	13
2.54 ± 1.05	<2.00-5.00	13
2.39 ± 1.33	<1.00-4.00	13
$39,523 \pm 39,878$	3,400-130,000	13
3.72 ± 1.79	<3.00-9.00	11
9.46 ± 14.11	<3.00-43.0	13
3.08 ± 0.28	<3.0-4.00	13
6.99 ± 4.13	1.80-16.00	13
5.67 ± 3.79	0.80-15.00	13
1.32 ± 0.73	1.00-3.40	13
<0.01		13
<0.02		13
<0.01		13
<0.01		13
<0.01		13
<0.01		13
<0.01		13
		13
		13
		13
		13
		13
		13
		13
		13
		13
		13
		13
		13
		13
		13
		13
		13
		13
		13
	0.05-0.28	13
0.00 ± 0.07	V.V.J-U.40	
0.09 ± 0.07		
0.09 ± 0.07 <0.01 <0.01		13 13 13
	< 0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	< 0.02 < 0.01 < 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.02 < 0.02 < 0.02

Feed Analyses

.

- C# +44---

TABLE J4 Contaminant Levels in NIH-07 Rat and Mouse Ration (continued)

- ^a For values less than the limit of detection, the detection limit is given for the mean.
- ^b Sources of contamination: alfalfa, grains, and fish meal
- ^c Sources of contamination: soy oil and fish meal
- ^d CFU = colony forming unit
- ^e MPN = most probable number
- f Includes two high values of 39 and 43 MPN/g obtained from lots milled 15 March 1984 and 9 May 1984, respectively.
- ^g One lot milled 17 October 1984 contained 4.00 MPN/g; all other lots contained 3.00 MPN/g
- ^h All values were corrected for percent recovery.
- ⁱ BHC = hexachlorocyclohexane or benzene hexachloride.
- ^j Seven lots contained more than 0.05 ppm.

가지 않는 것이 있는 것이 있는 것이. 방법은 가지 않는 것이 가지 않는 것이 있는 것이 같이 있는 것이 같이 있다. 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 있다. 같이 있는 것이 없는 것이 없는 것이 없이 있

adatate e en el Textette de la filie el terre devener en el el el el el el el el el e El terret de terret de terret el en el en el en el en el terret el en terret el en el en el el el el el en el e

AND AND A DAY LAND

and a state of the

AIPIPIENIDIX IK SIENTIINEL ANIMAL PROGRAM

Methods		284
Table IX1	Murine Virus Antibody Determinations for Rats and Mice	
	in the 2-Year and Lifetime Inhalation Studies of Talc	286

283

SENTINEL ANIMAL PROGRAM

METHODS

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via serology on sera from extra (sentinel) animals in the study rooms. These animals and the study animals are subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Rats

Prior to the beginning of the lifetime study, five male and five female F344/N rats of each sex were sacrificed and serum samples were taken for serological evaluation by Microbiological Associates (Bethesda, MD). Serum samples were also taken from selected rats for serology testing at each of the interim evaluations: three male and three female rats at 6 months; eight male and nine female rats at 12 and 18 months; 11 male and 17 female rats at 24 months; and 15 male and 15 female rats at the terminal sacrifice (male, 113 weeks; female, 122 weeks). Blood collected from each animal was allowed to clot and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates (Bethesda, MD) for determination of antibody titers. The following tests were performed:

Method of Analysis

ELISA

CARB (cilia-associated respiratory bacillus) Mycoplasma arthritidis Mycoplasma pulmonis PVM (pneumonia virus of mice) RCV/SDA (rat coronavirus/sialodacryoadenitis virus)

Sendai

Hemagglutination Inhibition H-1 (Toolan's H-1 virus)

KRV (Kilham rat virus)

PVM Sendai

Immunofluorescence Assay KRV RCV RCV/SDA

Time of Analysis

Study termination (males only) 12, 18, 24 months, study termination 12, 18, 24 months, study termination 6, 12, 18, 24 months, study termination Study initiation, 6, 12, 18, 24 months, study termination

6, 12, 18, 24 months, study termination

Study initiation,

6, 12, 18, 24 months, study termination Study initiation, 6, 12, 18, 24, study termination Study initiation Study initiation

24 months (males only) 24 months (males only) 28 months (males only)

Mice

Prior to the beginning of the 2-year study, five male and five female $B6C3F_1$ mice were sacrificed and serum samples were taken for serological evaluation by Microbiological Associates (Bethesda, MD). Serum samples for serology testing were also taken from control males and females at each of the interim evaluations (four males and four females at 6 months; 12 males and 12 females at 12 months) and at the terminal sacrifice (15 males and 15 females). (Samples were inadvertently omitted for mice evaluated after 18 months of exposure on 4-5 December, 1985.) Blood collected from each animal was allowed to clot and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates (Bethesda, MD) for determination of antibody titers. The following tests were performed:

Method of Analysis

Complement Fixation LCM (lymphocytic choriomeningitis virus) Mouse adenoma virus

ELISA

Ectromelia virus GDVII (mouse encephalomyelitis virus) Mouse adenoma virus MHV (mouse hepatitis virus) *M. arthritidis M. pulmonis* PVM Reovirus 3 Sendai

Hemagglutination Inhibition

Ectromelia virus K (papovirus) MVM (minute virus mice) PVM Polyoma virus Reovirus 3 Sendai

Immunofluorescence Assay EDIM (Epizootic diarrhea of infant mice) Reovirus 3 6, 12, 24 months Study initiation, 6, 12, 24 months 6, 12, 24 months Study initiation, 6, 12, 24 months
Study initiation, 6, 12, 24 months

Time of Analysis

Study initiation

Study initiation 12, 24 months Study initiation, 6, 12, 24 months Study initiation Study initiation, 6, 12, 24 months Study initiation Study initiation

6, 12, 24 months 24 months

	Interval (months)	Incidence of Antibody in Sentinel Animals	Positive Serologic Reaction for
Rats			
i uu	6 months	0/6	None positive
	12 months	0/17	None positive
	18 months	0/17	None positive
	24 months		
	(males)	1/11	KRV
		9/11	Sendai
		6/11	RCV
	(females)	13/17	Sendai
		13/17	RCV/SDA
	28 months	r.	
		15/15	Sendai
		3/15	RCV/SDA
	30 months	15/15	Sendai
		1/15	RCV/SDA
Mice			
VILLE	6 months	0/8	None positive
	12 months	0/24	MHV
	24 months	2/30	Reovirus 3
		7/30	M. arthritidis
		21/30	EDIM

TABLE K1

Murine Virus Antibody Determinations for Rats and Mice in the 2-Year and Lifetime Inhalation Studies of Talc

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS **PRINTED AS OF SEPTEMBER 1993**

TR No. CHEMICAL

201	2,3,7,8-Tetrachlorodibenzo-p-dioxin (Dermal)
206	1,2-Dibromo-3-chloropropane
207	
208	
209	2,3,7,8-Tetrachlorodibenzo-p-dioxin (Gavage)
210	1,2-Dibromoethane
211	C.I. Acid Orange 10
212	Di(2-ethylhexyl)adipate
213	Butyl Benzyl Phthalate
214	Caprolactam
215	Bisphenol A
216	11-Aminoundecanoic Acid
217	Di(2-Ethylhexyl)phthalate
219	2,6-Dichloro-p-phenylenediamine
220	
221	Locust Bean Gum
	C.I. Disperse Yellow 3
	Eugenol
224	-
225	
	C.I. Solvent Yellow 14
	Gum Arabic
228	
	Guar Gum
230	
230	Stannous Chloride
232	
232	
	Allyl Isothiocyanate
	Zearalenone
	D-Mannitol
	1,1,1,2-Tetrachloroethane
238	
239	
240	17
242	
243	
	Polybrominated Biphenyl Mixture
	Melamine
	Chrysotile Asbestos (Hamsters)
	L-Ascorbic Acid
	4,4'-Methylenedianiline Dihydrochloride
· 249	
250	
251	2,4- & 2,6-Toluene Diisocyanate
252	Geranyl Acetate
253	Allyl Isovalerate
254	Dichloromethane (Methylene Chloride)
255	1,2-Dichlorobenzene
257	Diglycidyl Resorcinol Ether
259	Ethyl Acrylate
261	Chlorobenzene
263	1,2-Dichloropropane
266	Monuron
267	1,2-Propylene Oxide
269	Telone II. (1,3-Dichloropropene)
271	HC Blue No. 1

- 272 Propylene

TR No. CHEMICAL

	· · · ·
273	Trichloroethylene (Four Rat Strains)
274	Tris(2-ethylhexyl)phosphate
275	2-Chloroethanol
276	
277	
278	_, _ ,
279	
280	
281	HC Red No. 3
282	Chlorodibromomethane
284	
285	C.I. Basic Red 9 Monohydrochloride
287	Dimethyl Hydrogen Phosphite
288	1,3-Butadiene
289	Benzene
291	Isophorone
293	
294	Chlorinated Trisodium Phosphate
295	Chrysotile Asbestos (Rats)
296	Tetrakis(hydroxymethyl) phosphonium Sulfate &
	Tetrakis(hydroxymethyl) phosponium Chloride
298	Dimethyl Morpholinophosphoramidate
299	C.I. Disperse Blue 1
300	3-Chloro-2-methylpropene
301	o-Phenylphenol
303	4-Vinylcyclohexene
304	Chlorendic Acid
305	Chlorinated Paraffins (C_{23} , 43% chlorine)
306	Dichloromethane (Methylene Chloride)
307	Ephedrine Sulfate
308	Chlorinated Pariffins (C_{12} , 60% chlorine)
309	Decabromodiphenyl Oxide Marine Diesel Fuel and JP-5 Navy Fuel
310 311	Tetrachloroethylene (Inhalation)
312	<i>n</i> -Butyl Chloride
312	Mirex
313 314	Methyl Methacrylate
315	Oxytetracycline Hydrochloride
316	1-Chloro-2-methylpropene
317	Chlorpheniramine Maleate
318	Ampicillin Trihydrate
319	1,4-Dichlorobenzene
320	Rotenone
321	Bromodichloromethane
322	Phenylephrine Hydrochloride
323	Dimethyl Methylphosphonate
324	Boric Acid
325	Pentachloronitrobenzene
326	Ethylene Oxide
327	Xylenes (Mixed)
328	Methyl Carbamate
329	1,2-Epoxybutane
330	4-Hexylresorcinol
331	Malonaldehyde, Sodium Salt
332	
333	-
334	2-Amino-5-nitrophenol
	C.I. Acid Orange 3

Her Million 1922 r......

☆U.S. GOVERNMENT PRINTING OFFICE: 1993 300-970/00002

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS PRINTED AS OF SEPTEMBER 1993 (CONT.)

CHIEMIICAL TR No.

- 336 Penicillin VK
- Nitrofurazone 337
- Erythromycin Stearate 338
- 339 2-Amino-4-nitrophenol Icdinated Glycerol 340
- 341 Nitrofurantoin
- 342 Dichlorves
- Benzyl Alcohol 343
- Tetracycline Hydrochloride 344
- 345 Rotarsone
- 346 Chloroethane
- 347 **D-Limonene**
- @-Methyldopa Sesquihydrate 348
- 349 Pentachlorophenol
- 350 Tribromomethane
- 351 p-Chloroaniline Hydrochloride
- 352 N-Methylolacrylamide
- 353 2,4-Dichlorophenol
- 354 Dimethoxane
- 355 Diphenhydramine Hydrochloride
- 356 Furosemide
- Hydrochlorothiazide 357
- 358 Ochratoxin A
- 359 8-Methoxypsoralen
- 360 N,N-Dimethylaniline
- 361 Hexachloroethane
- 362 4-Vinyl-1-Cyclohexene Diepoxide
- 363 Bromoethane (Ethyl Bromide)
- 364 Rhodamine 6G (C.I. Basic Red 1)
- 365 Pentaerythritol Tetranitrate
- 366 Hydroquinone
- Phenylbutazone 367
- 368 Nalidixic Acid
- 369 Alpha-Methylbenzyl Alcohol
- 370 Benzofuran
- 371 Toluene
- 3,3-Dimethoxybenzidine Dihydrochloride 372
- 373 Succinic Anhydride
- 374 Glycidol
- 375 Vinyl Toluene
- 376 Allyl Glycidyl Ether
- o-Chlorobenzalmalononitrile 377

- - 378 Benzaldehyde
 - 379 2-Chloroacetophenone
 - 380 Epinephrine Hydrochloride
 - 381 d-Carvone
 - 382 Furfural
 - Methyl Bromide 385
 - Tetranitromethane 386
 - 387 Amphetamine Sulfate
 - 388 Ethylene Thiourea
 - 389 Sodium Azide
 - 390 3,3'-Dimethylbenzidine Dihydrochloride
 - Tris(2-chloroethyl) Phosphate 391
 - Chlorinated Water and Chloraminated Water 392
 - 393 Sodium Fluoride
 - 394 Acetaminophen
 - 395 Probenecid
 - 396 Monochloroacetic Acid
 - 397 C.I. Direct Blue 15
 - 398 **Polybrominated Biphenyls**
 - 399 Titanocene Dichloride
 - 2,4-Diaminophenol Dihydrochloride 401
 - 402 Furan

 - 403 Resorcinol
 - 405 C.I. Acid Red 114
 - 406 y-Butyrolactone
 - 407 C.I. Pigment Red 3
 - Mercuric Chloride 408
 - 409 Quercetin
 - 410 Naphthalene
 - 411 C.I. Pigment Red 23
 - 412 4,4-Diamino-2,2-Stilbenedisulfonic Acid
 - Ethylene Glycol 413
 - Pentachloroanisole 414
 - 415 Polysorbate 80
 - 416 o-Nitroanisole
 - p-Nitrophenol 417
 - 418 p-Nitroaniline
 - 419 HC Hellow 4
 - 427 Turmeric Oleoresin
 - 434 1,3-Butadiene

 - 443 Oxazepam

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Central Data Management, NIEHS, P.O. Box 12233, MD A0-01, Research Triangle Park, NC 27709.

TR No. CHEMICAL

DEPARTMENT OF HEALTH & HUMAN SERVICES

Public Health Service National Toxicology Program Central Data Management P.O. Box 12233, MD A0-01 Research Triangle Park, NC 27709

.

SPECIAL FOURTH-CLASS RATE POSTAGE AND FEES PAID DHHS/NIH Permit No. G-763

Official Business Penalty for Private Use - \$300

> NIH Publication No. 93-3152 September 1993