NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 422

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

STUDIES OF COUMARIN

(CAS NO. 91-64-5)

(GAVAGE STUDIES)

FOREWORD

The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation.

ł

The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease.

The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. The prechronic and chronic studies were conducted in compliance with Food and Drug Administration (FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjected to retrospective quality assurance audits before being presented for public review.

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection *per se* is not an indicator of a chemical's carcinogenic potential.

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge while supplies last from NTP Central Data Management, NIEHS, P.O. Box 12233, MD A0-01, Research Triangle Park, NC 27709 (919-541-1371).

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF COUMARIN

(CAS NO. 91-64-5)

IN F344/N RATS AND B6C3F, MICE

(GAVAGE STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

September 1993

NTP TR 422

NIH Publication No. 93-3153

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

CONTRIBUTORS

National Toxicology Program

Evaluated and interpreted results and reported findings

C.J. Alden, Ph.D.
G.A. Boorman, D.V.M., Ph.D.
D.A. Bridge, B.S.
J.K. Dunnick, Ph.D.
S.L. Eustis, D.V.M., Ph.D.
T.J. Goehl, Ph.D.
R.A. Griesemer, D.V.M., Ph.D.
J.R. Hailey, D.V.M.
J.K. Haseman, Ph.D.
G.N. Rao, D.V.M., Ph.D.
D.B. Walters, Ph.D.
K.L. Witt, M.S., Oak Ridge Associated Universities

International Research and Development Corporation

Conducted 16-day and 13-week studies, evaluated pathology findings

P.L. Lang, Ph.D., Study Director D. Rajasekaran, D.V.M., M.V.S.C., F.R.V.C.S.

American Biogenics Corporation

Conducted 2-year studies, evaluated pathology findings

I.A. Muni, Ph.D., Principal Investigator R. Dahlgren, D.V.M. E.B. Gordon, Ph.D. D.S. Wyand, D.V.M.

Experimental Pathology Laboratories, Inc.

Provided pathology quality assurance

J.F. Hardisty, D.V.M., Principal Investigator B.F. Hamilton, D.V.M., Ph.D. K. Yoshitomi, D.V.M., Ph.D.

Integrated Laboratory Systems

Prepared quality assurance audits

S.L. Smith, J.D., Principal Investigator

NTP Pathology Working Group

Evaluated slides, prepared pathology report on rats (28 November 1990)

J.R. Leininger, D.V.M., Ph.D., Chair Pathology Associates, Inc. J.M. Cullen, V.M.D., Ph.D. North Carolina State University S.L. Eustis, D.V.M., Ph.D. National Toxicology Program J.R. Hailey, D.V.M. National Toxicology Program R.A. Herbert, D.V.M. (observer) Purdue University M.M. McDonald, D.V.M., Ph.D. National Toxicology Program K. Yoshitomi, D.V.M., Ph.D. Experimental Pathology Laboratories, Inc. Evaluated slides, prepared pathology report on mice (20 December 1990)

(20 December 1990) P. Hildebrandt, D.V.M., Chair

- PATHCO, Inc. B.F. Hamilton, D.V.M., Ph.D. Experimental Pathology Laboratories, Inc.
- M.P. Jokinen, D.V.M. National Toxicology Program M.M. McDonald, D.V.M., Ph.D.
- National Toxicology Program J.A. Popp, D.V.M., Ph.D. Chemical Industry Institute of Toxicology C.C. Shackelford, D.V.M., M.S., Ph.D. National Toxicology Program

Biotechnical Services, Inc. *Prepared Technical Report*

D.D. Lambright, Ph.D., Principal Investigator P. Chaffin, M.S. G.F. Corley, D.V.M. A.B. James-Stewart, B.S.

CONTENTS

ABSTRACT		5
EXPLANATION	OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	10
TECHNICAL R	EPORTS REVIEW SUBCOMMITTEE	11
SUMMARY OF	TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS	12
INTRODUCTIC	DN	13
MATERIALS A	ND METHODS	21
RESULTS	• • • • • • • • • • • • • • • • • • • •	31
DISCUSSION A	ND CONCLUSIONS	73
REFERENCES		79
Appendix A	Summary of Lesions in Male Rats in the 2-Year Gavage Study of Coumarin	85
Appendix B	Summary of Lesions in Female Rats in the 2-Year Gavage Study of Coumarin	129
Appendix C	Summary of Lesions in Male Mice in the 2-Year Gavage Study of Coumarin	169
Appendix D	Summary of Lesions in Female Mice in the 2-Year Gavage Study of Coumarin	209
Appendix E	Summary of Lesions in Male Rats in the Stop-Exposure Gavage Study of Coumarin	253
Appendix F	Genetic Toxicology	279
Appendix G	Organ Weights and Organ-Weight-to-Body-Weight Ratios	291
Appendix H	Hematology, Clinical Chemistry, and Urinalysis Results	299
Appendix I	Chemical Characterization and Dose Formulation Studies	315
Appendix J	Ingredients, Nutrient Composition, and Contaminant Levels in NIH-07 Rat and Mouse Ration	329
Appendix K	Sentinel Animal Program	335

3

COUMARIN

CAS No. 91-64-5

Chemical Formula: $C_9H_6O_2$ Molecular Weight: 146.5

Synonyms: 5,6-benzo-alpha-pyrone, 2H-1-benzopyran-2-one, 2H-benzo[b]pyran-2-one, 1,2-oxo-1,2-benzopyran, 1,2-benzopyrone, *cis-o*coumarinic acid lactone, coumarinic anhydride, cumarin, *o*-hydroxycinnamic acid lactone, kumarin, [2-propenoic acid, 3-(2hydroxyphenyl)-delta-lactone], Rattex, tonka bean camphor

Coumarin is the basic structure of numerous naturally occurring compounds with important and diverse physiological activities. More than a thousand coumarin derivatives have been described, varying from simple coumarins containing alkyl and hydroxyl side chains to complex coumarins with benzoyl, furanoyl, pyranoyl, or alkylphosphorothionyl Coumarin and 3,4-dihydrocoumarin substituents. were nominated by the Food and Drug Administration and the National Cancer Institute for study because of the widespread use of coumarin in perfumes, cosmetics, and other products as a fragrance, continued interest in coumarin compounds as flavor-enhancing agents for foods, and the interest in structure-activity relationships of this important group of compounds. Coumarin is believed to be metabolized to a 3,4-epoxide intermediate, which may be responsible for its toxic effects, while 3,4-dihydrocoumarin, which lacks the 3,4-double bond, is not considered likely to form an epoxide intermediate.

Toxicity and carcinogenicity studies were conducted by administering coumarin (97% pure) in corn oil by gavage to groups of male and female F344/N rats and B6C3F₁ mice for 16 days, 13 weeks, and 2 years. Genetic toxicology studies were conducted in *Salmonella typhimurium*, cultured Chinese hamster ovary cells, *Drosophila melanogaster*, and B6C3F₁ mice.

16-Day Study in Rats

Groups of five male and five female rats received coumarin in corn oil by gavage at doses of 0, 25, 50, 100, 200, or 400 mg per kg body weight, 5 days a week for a total of 12 doses in a 16-day period. All female rats and four male rats receiving 400 mg/kg died. The mean body weight gains and final mean body weights of surviving dosed male and female rats were similar to those of the controls. There were no clinical signs of organ-specific toxicity, and there was no evidence of impaired blood coagulation from measurements of capillary clotting time or prothrombin and activated partial thromboplastin time.

16-Day Study in Mice

Groups of five male and five female mice received coumarin in corn oil by gavage at doses of 0, 40, 75, 150, 300, or 600 mg per kg body weight, 5 days a week for a total of 12 doses in a 16-day period. All mice receiving 600 mg/kg, two male mice receiving 300 mg/kg, and one male mouse receiving 75 mg/kg died. The mean body weight gains and final mean body weights of surviving dosed male and female mice were similar to those of the controls. Clinical findings of inactivity, excessive lacrimation, piloerection, bradypnea, ptosis, or ataxia were observed in some mice from the 300 and 600 mg/kg groups within the first several hours after dosing. Capillary clotting time and platelet counts of dosed mice were similar to those of controls.

13-WEEK STUDY IN RATS

Groups of 10 male and 10 female rats received coumarin in corn oil by gavage at doses of 0, 19, 38, 75, 150, or 300 mg per kg body weight. Three male and three female rats receiving 300 mg/kg died. The mean body weight gains and final mean body weights of male rats that received 150 and 300 mg/kg were significantly lower than those of the controls. There were no clinical signs related to specific organ toxicity.

Male and female rats receiving coumarin exhibited dose-related decreases in mean erythrocyte volume and mean erythrocyte hemoglobin, and dose-related increases in erythrocyte counts. Serum levels of total bilirubin and one or more cytoplasmic enzymes including alanine aminotransferase, aspartate aminotransferase, ornithine carbamoyltransferase, and/or sorbitol dehydrogenase in males and females receiving 300 mg/kg were higher than those of controls.

The absolute and relative liver weights of male and female rats that received 150 and 300 mg/kg were significantly greater than those of the controls. Centrilobular hepatocellular degeneration and necrosis, chronic active inflammation, and bile duct hyperplasia were observed in the liver of rats receiving 150 or 300 mg/kg.

The high dose selected for the 2-year study was 100 mg/kg, which was just below the level at which mortality, lower final mean body weights, and treatment-related liver lesions were observed in the 13-week study.

13-WEEK STUDY IN MICE

Groups of 10 male and 10 female mice received coumarin in corn oil by gavage at doses of 0, 19, 38, 75, 150, or 300 mg per kg body weight. Two male mice receiving 300 mg/kg died. The mean body weight gain and final mean body weight of surviving male mice that received 300 mg/kg were significantly lower than those of the controls. No clinical signs of toxicity were observed. Male and female mice receiving coumarin exhibited dose-related decreases in mean erythrocyte volume and mean erythrocyte hemoglobin. The absolute and relative liver weights of males and females that received 150 and 300 mg/kg were significantly greater than those of the controls. Centrilobular hepatocellular hypertrophy was observed in male and female mice receiving 300 mg/kg.

The high dose selected for the 2-year study was 200 mg/kg, which was just below the level at which mortality and liver lesions were observed in the 13-week study.

2-YEAR STUDY IN RATS

Groups of 60 male and 60 female rats were administered coumarin in corn oil by gavage at doses of 0, 25, 50, or 100 mg per kg body weight. After 15 months, 10 animals from each group were evaluated.

Survival, Body Weights, and Clinical Findings None of the male rats receiving 100 mg/kg and only two males receiving 50 mg/kg survived until the end of the study (vehicle control, 28/50; 25 mg/kg, 9/50; 50 mg/kg, 2/51; 100 mg/kg, 0/50). Survival of dosed female rats was similar to that of the controls (29/50, 38/50, 36/50, 30/50). The reduced survival in dosed male rats was primarily attributed to chemical-related exacerbation of spontaneously occurring renal disease. Final mean body weights of female rats that received 100 mg/kg and all dosed groups of male rats were lower than those of the controls. There were no clinical signs of toxicity in rats, other than nonspecific signs relating to debilitation as a result of renal or other spontaneous disease.

Hematology and Clinical Chemistry

At the 15-month interim evaluation, the values for one or more hematologic parameters including mean erythrocyte volume, mean erythrocyte hemoglobin in 50 and 100 mg/kg rats, and hematocrit or hemoglobin in 100 mg/kg rats were significantly lower than those of controls. Activated partial thromboplastin times were also significantly lower in 50 and 100 mg/kg males, while platelet counts were significantly higher. Activities of alanine aminotransferase, sorbitol dehydrogenase, or γ -glutamyltransferase in 50 and 100 mg/kg male and 100 mg/kg female rats were significantly higher than those of the controls at the 15-month interim evaluation.

Pathology Findings

The principal lesions associated with the administration of coumarin to rats for up to 2 years occurred in the liver, kidney, and forestomach. While the hepatic lesions were seen in all groups of males, they occurred only in the 50 and 100 mg/kg females. The lesions consisted of a spectrum of changes including hepatocellular necrosis, fibrosis, cytologic alteration, and increased severity of bile duct hyperplasia. The incidences of hepatocellular neoplasms were not increased in dosed rats.

There was a chemical-related increase in the average severity of nephropathy in all groups of dosed male and female rats. There were corresponding increased incidences of parathyroid gland hyperplasia in all groups of dosed males, probably as a result of compromised renal function. In the standard evaluation of single kidney sections, a low incidence of renal adenomas was seen in all groups of males and in 100 mg/kg females (males: vehicle control, 1/49; 25 mg/kg, 2/50; 50 mg/kg, 2/51; 100 mg/kg, 1/50; females: 0/49, 0/50, 0/50, 2/49). An evaluation of step sections identified additional individuals with renal tubule focal hyperplasia (males: 2/49, 12/50, 10/51, 6/50; females: 1/49, 0/50, 4/50, 2/49) and adenoma (males: 0/49, 4/50, 5/51, 4/50; females: 0/49, 0/50, 1/50, 1/49) in the dosed groups.

The incidences of forestomach ulcers in all groups of dosed male rats and in 100 mg/kg female rats were significantly greater than those of the controls (males: 7/48, 24/50, 35/51, 34/50; females: 1/48, 1/49, 6/50, 9/48).

STOP-EXPOSURE EVALUATION

A group of 40 male rats received 100 mg/kg coumarin in corn oil by gavage for 9 months, when 20 of the animals were necropsied and evaluated. The remainder of the male rats received only the corn oil vehicle during the 15-month recovery period. Similarly, a group of 30 male rats received 100 mg/kg coumarin in corn oil by gavage for 15 months, when 10 of the rats were necropsied and evaluated. The remaining 20 rats received only corn oil during the 9-month recovery period. A group of 20 vehicle control male rats were necropsied at 9 months, and another 10 vehicle control male rats were necropsied at 15 months. While chemical-related hepatic lesions were seen at both the 9- and 15-month interim evaluations, the incidences and severities of these lesions following the recovery period were generally similar to controls. Thus, the hepatic lesions produced by 9 or 15 months of exposure were reversible. In contrast to the liver lesions, the severity of nephropathy in male rats following the recovery period was significantly greater than that of males examined at the 9- and 15-month interim evaluations. This is not unexpected, since nephropathy is a progressive degenerative disease that naturally increases in severity with age.

The incidence of renal tubule hyperplasia in the 15-month stop-exposure group (dosed for 15 months followed by the recovery period) and the incidence of renal tubule adenoma in the 9-month stop-exposure group were significantly greater than those of the control group.

2-YEAR STUDY IN MICE

Groups of 70 male and 70 female mice were administered coumarin in corn oil by gavage at doses of 0, 50, 100, or 200 mg per kg body weight for up to 2 years. After 15 months, 19 or 20 mice from each group were evaluated.

Survival, Body Weights, and Clinical Findings Survival of dosed male and female mice was similar to that of the controls (males: vehicle control, 43/50; 50 mg/kg, 47/50; 100 mg/kg, 42/50; 200 mg/kg, 37/51; females: 33/50, 40/50, 42/51, 28/51). The mean body weights of 200 mg/kg male and female mice were lower than those of controls throughout much of the study. There were no clinical findings related to chemical administration.

Hematology and Clinical Chemistry

Mean erythrocyte volume, mean erythrocyte hemoglobin, and hematocrit of 200 mg/kg males and mean erythrocyte volume of 200 mg/kg females were significantly lower than those of the controls. Blood platelet counts of 200 mg/kg males and females were significantly higher than those of controls. There were no biologically significant differences in enzyme activities between dosed and control mice.

Pathology Findings

The principal toxic lesions associated with the administration of coumarin to mice occurred in the liver. The incidences of centrilobular hypertrophy in 100 and 200 mg/kg males and 200 mg/kg females were significantly greater than those of controls. The incidences of syncytial alteration in all male dose groups and in 200 mg/kg females were also significantly greater than controls.

The incidences of eosinophilic foci, a putative preneoplastic lesion, and of hepatocellular adenoma were significantly greater in the 50 and 100 mg/kg females. Hepatocellular carcinomas occurred with low incidences in the dosed females, but none occurred in the controls. The overall incidence of hepatocellular neoplasms (benign and malignant combined) in the 50 and 100 mg/kg females (control, 8/50; 50 mg/kg, 27/49; 100 mg/kg, 31/51; 200 mg/kg, 13/50) exceeds the range in historical controls (range 2%-34%; 129/898, 14.4%) from recent NTP studies. The reason for a lack of liver response in 200 mg/kg female mice is not known, but may be due in part to the decrease in body weight. While the incidences of eosinophilic foci were marginally greater in dosed male mice, the incidences of hepatocellular neoplasms were similar among the dosed and control groups.

The incidences of alveolar/bronchiolar adenomas were significantly greater in 200 mg/kg male and female mice than in the controls. Further, the incidence of alveolar/bronchiolar carcinoma in 200 mg/kg females was also significantly greater than in controls. The overall incidence of pulmonary neoplasms (benign and malignant combined) in the 200 mg/kg groups (males: 14/50, 9/50, 15/50, 25/51; females: 2/51, 5/49, 7/49, 27/51) exceeds the range in historical controls (males: range 6%-28%; 166/900, 18.4%; females: range 0%-14%; 58/899, 6.5%) from recent NTP studies.

The incidence of squamous cell papilloma of the forestomach in 50 mg/kg males was greater than that of the controls (2/50, 8/50, 2/50, 0/51) and also exceeds the range of this neoplasm in control male mice from recent NTP studies (range 0%-14%; 27/902, 3.0%). The incidence of squamous cell papilloma of the forestomach in 50 mg/kg female mice was also slightly increased (1/52, 5/50, 2/51, 2/51); however, the incidence did not exceed the NTP historical range (27/901, 3%; range, 0%-10%).

GENETIC TOXICOLOGY

Coumarin induced gene mutations in Salmonella typhimurium strain TA100 in the presence, but not in the absence, of exogenous metabolic activation (S9); no mutations were induced in strains TA98, TA1535, or TA1537, with or without S9. In Chinese hamster ovary cells, coumarin induced sister chromatid exchanges in the absence of S9, and chromosomal aberrations in the presence of S9. Coumarin did not induce sex-linked recessive lethal mutations in germ cells of male *Drosophila melanogaster* treated either as adults by feeding or injection, or as larvae by feeding. No increase in the frequency of micronucleated erythrocytes was observed in peripheral blood of male and female $B6C3F_1$ mice administered coumarin by gavage for 13 weeks.

CONCLUSIONS

Under the conditions of these 2-year gavage studies there was some evidence of carcinogenic activity* of coumarin in male F344/N rats based on increased incidences of renal tubule adenomas. There was equivocal evidence of carcinogenic activity of coumarin in female F344/N rats based on a marginally increased incidence of renal tubule adenomas. There was some evidence of carcinogenic activity of coumarin in male B6C3F₁ mice based on the increased incidence of alveolar/bronchiolar adenomas. There was clear evidence of carcinogenic activity of coumarin in female B6C3F₁ mice based on increased incidences of alveolar/bronchiolar adenomas, alveolar/bronchiolar carcinomas, and hepatocellular adenomas. The marginally increased incidences of squamous cell papillomas of the forestomach in male and female mice receiving 50 mg/kg may have been related to coumarin administration.

The administration of coumarin to rats was also associated with an increased severity of nephropathy in the kidney and of bile duct hyperplasia in the liver, increased incidences of ulcers of the forestomach, and necrosis, fibrosis, and cytologic alteration of the liver. Administration of coumarin to mice was also associated with centrilobular hypertrophy, syncytial alteration, and eosinophilic focus in the liver.

Explanation of Levels of Evidence of Carcinogenic Activity is on page 10. A summary of the Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appears on page 12.

Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female B6C3F ₁ Mice
D oses), 25, 50, or 100 mg/kg in corn oil by gavage	0, 25, 50, or 100 mg/kg in corn oil by gavage	0, 50, 100, or 200 mg/kg in corn oil by gavage	0, 50, 100, or 200 mg/kg in corn oil by gavage
Body weights Dosed groups lower than controls	High-dose group lower than controls	High-dose group lower than controls	High-dose group lower than controls
2-Year survival rates 28/50, 9/50, 2/51, 0/50	29/50, 38/50, 36/50, 30/50	43/50, 47/50, 42/50, 37/51	33/50, 40/50, 42/51, 28/51
Nonneoplastic effects Liver: cytologic alterations (0/49, 0/50, 28/51, 29/50); fibrosis (0/49, 3/50, 41/51, 42/50); necrosis (1/49, 13/50, 38/51, 40/50); bile duct hyperplasia severity grades (1.6, 1.8, 2.2, 2.1) Forestomach: ulcer (7/48, 24/50, 35/51, 34/50) Nephropathy severity grades (2.0, 3.1, 3.7, 3.6)	Liver: fibrosis (0/50, 0/50, 1/50, 12/50); necrosis (3/50, 3/50, 4/50, 15/50); degener- ation (0/50, 0/50, 8/50, 30/50); bile duct hyperplasia severity grades (1.2, 1.3, 1.3, 1.5) Forestomach: ulcer (1/48, 1/49, 6/50, 9/48) Nephropathy severity grades (1.2, 1.4, 1.8, 2.3)	Liver: syncytial alteration (0/50, 6/50, 35/50, 47/51); centrilobular hypertrophy (1/50, 2/50, 23/50, 44/51); eosinophilic focus (6/50, 15/50, 13/50, 15/51)	Liver: syncytial alteration (0/50, 0/49, 2/51, 19/50); centrilobular hypertrophy (0/50, 0/49, 0/51, 17/50); eosinophilic focus (4/50, 20/49, 20/51, 9/50)
Neoplastic effects Kidney: renal tubule adenoma (single sections – 1/49, 2/50, 2/51, 1/50); renal tubule adenoma (step sections – 0/49, 4/50, 5/51, 4/50)	None	Lung: alveolar/bronchiolar adenoma (14/50, 8/50, 14/50, 24/51); alveolar/bronchiolar adenoma or carcinoma (combined) (14/50, 9/50, 15/50, 25/51)	Lung: alveolar/bronchiolar adenoma (2/51, 5/49, 7/49, 20/51); alveolar/bronchiolar carcinoma (0/51, 0/49, 0/49, 7/51); alveolar/bronchiolar adenoma or carcinoma (combined) (2/51, 5/49, 7/49, 27/51) Liver: hepatocellular adenom (8/50, 26/49, 29/51, 12/50)
U ncertain findings None	Kidney: renal tubule adenoma (single sections – 0/49, 0/50, 0/50, 2/49); renal tubule adenoma (step sections –	Forestomach: squamous cell papilloma (2/50, 8/50, 2/50, 0/51)	Forestomach: squamous cell papilloma (1/52, 5/50, 2/51, 2/51)
Tous of ouidence of consistent	0/49, 0/50, 1/50, 1/49)		
Level of evidence of carcinog Some evidence	Equivocal evidence	Some evidence	Clear evidence
Genetic toxicology Salmonella typhimurium gene Sister chromatid exchanges Chinese hamster ovary cel Chromosomal aberrations		TA100; negative with or without S	9 in TA98, TA1535, and TA153
Chinese hamster ovary cel Sex-linked recessive lethal mu	itations	inistened in find on the initiation	
Drosophila melanogaster: Micronucleated erythrocytes B6C3F ₁ mouse peripheral	-	inistered in feed or by injection	

Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of Coumarin

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence, including animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results (clear evidence and some evidence); one category for uncertain findings (equivocal evidence); one category for no observable effects (no evidence); and one category for experiments that cannot be evaluated because of major flaws (inadequate study). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Report series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following five categories is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to potency or mechanism.

- Clear evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a dose-related

 (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a chemical-related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemical related.
- No evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing no chemical-related increases in malignant or benign neoplasms.
- Inadequate study of carcinogenic activity is demonstrated by studies that, because of major qualitative or quantitative limitations, cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. Such consideration should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- · adequacy of the experimental design and conduct;
- occurrence of common versus uncommon neoplasia;
- · progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- combining benign and malignant tumor incidence known or thought to represent stages of progression in the same organ or tissue;
- latency in tumor induction;
- multiplicity in site-specific neoplasia;
- metastases;
- supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- presence or absence of dose relationships;
- statistical significance of the observed tumor increase;
- · concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- · survival-adjusted analyses and false positive or false negative concerns;
- structure-activity correlations; and
- in some cases, genetic toxicology.

NATIONAL TOXICOLOGY PROGRAM BOARD OF SCIENTIFIC COUNSELORS TECHNICAL REPORTS REVIEW SUBCOMMITTEE

The members of the Technical Reports Review Subcommittee who evaluated the draft NTP Technical Report on coumarin on June 23, 1992, are listed below. Subcommittee members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, subcommittee members have five major responsibilities in reviewing NTP studies:

- to ascertain that all relevant literature data have been adequately cited and interpreted,
- to determine if the design and conditions of the NTP studies were appropriate,
- · to ensure that the Technical Report presents the experimental results and conclusions fully and clearly,
- to judge the significance of the experimental results by scientific criteria, and
- to assess the evaluation of the evidence of carcinogenic activity and other observed toxic responses.

Gary P. Carlson, Ph.D., Chair Department of Pharmacology and Toxicology Purdue University West Lafayette, IN

Paul T. Bailey, Ph.D., Principal Reviewer Toxicology Division Mobil Oil Corporation Princeton, NJ

Louis S. Beliczky, M.S., M.P.H.* Department of Industrial Hygiene United Rubber Workers International Union Akron, OH

Kowetha A. Davidson, Ph.D., Principal Reviewer Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, TN

Harold Davis, D.V.M., Ph.D. School of Aerospace Medicine Brooks Air Force Base, TX

Jay I. Goodman, Ph.D. Department of Pharmacology and Toxicology Michigan State University East Lansing, MI David W. Hayden, D.V.M., Ph.D., Principal Reviewer Department of Veterinary Pathobiology College of Veterinary Medicine University of Minnesota St. Paul, MN

Curtis D. Klaassen, Ph.D.* Department of Pharmacology and Toxicology University of Kansas Medical Center Kansas City, KS

Daniel S. Longnecker, M.D.° Department of Pathology Dartmouth Medical School Lebanon, NH

Barbara McKnight, Ph.D.* Department of Biostatistics University of Washington Seattle, WA

Ellen K. Silbergeld, Ph.D. University of Maryland Medical School Baltimore, MD

Lauren Zeise, Ph.D. California Department of Health Services/RCHAS Berkeley, CA

Matthew J. van Zwieten, D.V.M., Ph.D Department of Safety Assessment Merck, Sharp & Dohme Research Laboratories West Point, PA

* Did not attend

SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS

On June 23, 1992, the draft Technical Report on the toxicology and carcinogenesis studies of coumarin received public review by the National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, NC.

Dr. J.K. Dunnick, NIEHS, introduced the toxicology and carcinogenesis studies of coumarin by discussing the uses and rationale for study, describing the experimental design including an additional 2-year stop-exposure evaluation in male rats, reporting on survival and body weight effects, and commenting on compound-related neopiasms and nonneoplastic lesions in male and female rats and mice.

The proposed conclusions were some evidence of carcinogenic activity of coumarin in male F344/N rats and male B6C3F₁ mice, equivocal evidence of carcinogenic activity of coumarin in female F344/N rats, and clear evidence of carcinogenic activity of coumarin in female B6C3F₁ mice.

Dr. Bailey, a principal reviewer, agreed with the proposed conclusions. He said it would be useful to have pharmacokinetic or metabolism data on the fate of coumarin in the Fischer rat and B6C3F, mouse. Dr. Bailey said he would also like to see included in the report a discussion on the relevancy of these carcinogenicity studies to humans since there are data indicating that humans metabolize coumarin differently than do rodents. Dr. Dunnick said the available data on human and rodent metabolism of coumarin had been cited in the Introduction, but would also be integrated into the Discussion. Dr. Bailey reported that Rhone Poulenc, Inc., had evaluated the carcinogenic potential of coumarin in Swiss (CD-1^{*}) mice and Sprague-Dawley rats, and suggested that the data be obtained and included after NTP review. Dr. Dunnick responded that the FDA had some of the Rhone Poulenc information under review and that, if available, it would be cited in the report.

Dr. Hayden, the second principal reviewer, agreed with the proposed conclusions. He asked why only male and not female rats were used in the stopexposure evaluation. Dr. Dunnick said the liver lesions reported in the literature were observed in male rats. Dr. Hayden requested an explanation for the high incidence of bile duct hyperplasia in the absence of fibrosis in male vehicle control rats. Dr. S.L. Eustis, NIEHS, said that mild bile duct hyperplasia is a common spontaneous degenerative lesion of aging rats. Dr. Hayden said that the inclusion of a table comparing the toxic and carcinogenic effects of coumarin with those of 3,4-dihydrocoumarin would be useful.

Dr. Davidson, the third principal reviewer, agreed with the proposed conclusions for male rats and male and female mice, but disagreed with the conclusion for female rats. Based on the low incidences of hyperplasia and renal tubule adenomas, Dr. Davidson said she believed the conclusion for female rats should be no evidence of carcinogenic activity. Dr. Dunnick said that the incidence of two renal tubule adenomas in 100 mg/kg female rats was greater than the incidence in historical controls and added that renal tubule adenomas are rare neoplasms. Thus, an association between the occurrence of the neoplasm and the administration of coumarin could not be ruled out. Dr. Davidson asked if the stop-exposure evaluation was done in rats to determine if there was a relationship between progression and regression of liver neoplasms and the occurrence of cholangiofibrosis and bile duct carcinomas. Dr. Eustis said the primary purpose of the stopexposure study was to examine the biological behavior of cholangiofibrosis and to determine if the lesions would progress to cholangiocarcinomas. He noted that the lesions progressed to carcinomas during the NTP studies on furan and that they had been reported in German studies. However, they were not induced in the present studies.

Dr. Bailey moved that the Technical Report on coumarin be accepted with the revisions discussed and with the conclusions as written, some evidence of carcinogenic activity for male rats and mice, equivocal evidence of carcinogenic activity for female rats, and clear evidence of carcinogenic activity for female mice. Dr. Hayden seconded the motion. Dr. Davidson offered an amendment that the level of evidence for female rats be changed to no evidence of carcinogenic activity. Dr. Goodman seconded the amendment, which was defeated by two yes (Drs. Davidson and Goodman) to six no votes. The original motion by Dr. Bailey was then accepted unanimously with eight votes.

INTRODUCTION

COUMARIN

CAS No. 91-64-5

Chemical Formula: C₉H₆O₂ Molecular Weight: 146.5

Synonyms: 5,6-benzo-alpha-pyrone, 2H-1-benzopyran-2-one, 2H-benzo[b]pyran-2-one, 1,2-oxo-1,2-benzopyran, 1,2-benzopyrone, *cis-o*coumarinic acid lactone, coumarinic anhydride, cumarin, *o*-hydroxycinnamic acid lactone, kumarin, [2-propenoic acid, 3-(2hydroxyphenyl]-delta-lactone], Rattex, tonka bean camphor

CHEMICAL AND PHYSICAL PROPERTIES

Coumarin is a colorless crystal, flake, or powder, with a fragrant odor similar to vanilla, and a bitter, aromatic burning taste. It is slightly soluble in water and freely soluble in hot ethanol. The ultraviolet absorption spectrum of coumarin in alcohol shows a strong band at 265 to 275 nm. The melting point of coumarin is 70.6° C, with a boiling point of 297° to 299° C. Coumarin is found naturally in plants and may also be synthesized from salicylaldehyde and acetic anhydride in the presence of sodium acetate (Fenaroli's, 1971; Hawley, 1977; Kirk-Othmer, 1978).

USE AND HUMAN EXPOSURE

Coumarin is the odoriferous principle of the tonka bean and sweet clover, and occurs in oil of lavender, oil of cassia, citrus oils, and in some 60 other species of plants. Coumarins are also found in the watersoluble fractions of cigarette smoke (Schumacher *et al.*, 1977) and in certain tobaccos and alcoholic beverages (Cohen, 1979). Coumarin was first isolated from tonka beans in 1820, and is now widely used in perfumes, cosmetics, and related products owing to its pleasant bitter-sweet and characteristic odor (Kirk-Othmer, 1978; Murray et al., 1982). In addition, coumarin is used as an agent to mask the odor of other chemicals including iodoform, phenolic, and quinoline odors, and as such may be found in paints, printing inks, insecticides, plastics, and synthetic rubbers. It is also used in the electroplating industry to reduce porosity and increase brightness of electroplated metals, especially nickel, zinc, and cadmium (Kirk-Othmer, 1978). At one time coumarin was an important food-flavoring material, but in 1954 the FDA withdrew approval for the use of coumarin in foods because of reported liver toxicity in rodents (FDA, 1954). The annual production of coumarin has been estimated at greater than 544 tons (Kirk-Othmer, 1978).

Typical concentrations of coumarin found in common household products range from 0.03% to 0.2% in soaps, 0.003% to 0.02% in detergents, 0.015% to 0.1% in creams and lotions, and 0.3% to 0.8% in perfumes (Cohen, 1979).

The National Institute for Occupational Safety and Health estimated that approximately 240,000 workers are potentially exposed to coumarin (NIOSH, 1990).

ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

The metabolism and excretion of coumarin have been studied in several different species, including man. Coumarin metabolites identified and the percentages of dose excreted in the urine and feces of rat, rabbit, and man are shown in Table 1. Probable pathways for the metabolism of coumarin are shown in Figure 1.

Coumarin is rapidly absorbed from the intestinal tract after oral administration. In rats given a single oral dose of $[3-^{14}C]$ -coumarin, ^{14}C appeared in the serum, liver, and kidney within 5 minutes and attained a maximum concentration after 45 to 60 minutes (Feuer *et al.*, 1966). Within 48 hours, 70% of the oral dose was eliminated in the urine and 10% was eliminated in the feces. Similarly, in a group of four men and two women given 0.857 mg/kg coumarin *per os*, the parent compound and its major metabolite, 7-hydroxycoumarin, were detected in the blood within minutes while peak concentrations were reached in about 10 to 20 minutes (Ritschel *et al.*, 1977). More than 80% of the administered dose was excreted in the urine within 24 hours.

Coumarin and its metabolites do not accumulate to a significant extent in any rat (Kaighen and Williams, 1961: Feuer et al., 1966) or rabbit tissues (Kaighen and Williams, 1961) following oral exposure or in any rat tissues following intraperitoneal administration (Van Sumere and Tuechy, 1971). Following administration of a single intraperitoneal dose of [3-14C]-coumarin, 14C was detected in various organs, particularly the liver and kidney, at levels much higher than that of the blood at any given period (Piller, 1977). The blood and tissue ¹⁴C levels declined steadily over a 100-hour post-administration period, with a biological half-life of approximately 43 hours. Ritschel et al. (1976) reported a half-life of about 1.5 hours in the blood of humans given intravenous doses of 0.125 to 0.25 mg/kg.

TABLE 1

	R abbit ^b	Rat ^b	Human ^c	
Metabolites in Urine				
Coumarin, Unchanged	12.3-16.7	3.1-7.4	_d	
3-Hydroxycoumarin	18.1-28.2	1.7–1.8	_	
4-Hydroxycoumarin	0.3-0.9	0.0-0.5	_	
5-Hydroxycoumarin	0.3-0.5	-	_	
6-Hydroxycoumarin	2.0-4.7	0.3	-	
7-Hydroxycoumarin	10.0-16.0	0.3-0.5	68–92	
8-Hydroxycoumarin	1.3-2.5	0.3-0.5	_	
o-Coumaric	Trace	Trace	-	
o-Hydroxyphenyllactic acid	2.6-3.5	0.6-0.9		
o-Hydroxyphenylacetic acid	18.1-22.1	12.5-27.2	1-6	
o-Hydroxyphenylpropionic acid	Trace	Trace	in the state of th	
			s is started at the	· · · · ·
Total in Urine	80.3-92.4	47.0-60.5	80–100	
Total in Feces	0.2-0.7	32.4-38.8	the state of the state	

^a Expressed as percentage of dose administered

^b From Kaighen and Williams, 1961

^c From Shilling et al., 1969

^d Metabolite not measured for this species

o-HPAA

(1)	7-Hydroxylase
(2)	3-Hydroxylase
o-CA	o-Coumaric acid
6,7-DHC	6,7-Dihydroxycoumarin
3-HC	3-Hydroxycoumarin
4-HC	4-Hydroxycoumarin
5-HC	5-Hydroxycoumarin
6-HC	6-Hydroxycoumarin
7-HC	7-Hydroxycoumarin
8-HC	8-Hydroxycoumarin
o-HPAA	o-Hydroxyphenylacetic acid
o-HPHA	o-Hydroxyphenylhydracrylic acid
o-HPLA	o-Hydroxyphenyllactic acid
o-HPPA	o-Hydroxyphenylpropionic acid
o-HPPyA	o-Hydroxyphenylpyruvic acid

FIGURE 1 Pathways of Coumarin Metabolism In Vivo and In Vitro from Cohen (1979) Coumarin is metabolized primarily in the liver by microsomal enzymes associated with the endoplasmic reticulum (Feuer *et al.*, 1965a,b; Peters *et al.*, 1991). Coumarin is metabolized first by cytochrome P-450 enzymes, resulting in hydroxylation prior to conjugation with glucuronide. Hydroxylation occurs primarily at the number 3 and 7 positions to yield 3-hydroxycoumarin or 7-hydroxycoumarin, respectively. 3-Hydroxycoumarin can be further metabolized by nonenzymatic ring opening to form *o*-hydroxyphenylacetic acid and *o*-hydroxyphenyllactic acid.

There are substantial qualitative differences in the metabolism of coumarin among various species. Studies with rat hepatic microsomes have shown that coumarin is metabolized by isoenzymes of the cytochrome P-450 IA and IIB subfamilies, resulting in hydroxylation primarily at the number 3 position with subsequent ring opening and further metabolism to o-hydroxyphenylacetic acid and o-hydroxyphenyllactic acid (Feuer, 1970a,b; Lake, 1984; Peters et al., 1991). During this process, reactive metabolites are generated which covalently bind to microsomal proteins and glutathione (Peters et al., 1991). Based on these studies, Peters et al. (1991), postulated that a coumarin 3,4-epoxide intermediate is formed which may rearrange to 3-hydroxycoumarin with subsequent ring opening, or form a glutathione conjugate. While hydroxylation also apparently occurs at other ring positions, the extent of activity at the 4, 5, 6, 7, or 8 positions is low in rats.

In contrast to rats, coumarin metabolism in humans results principally in the hydroxylation at the number 7 position with the formation of 7-hydroxycoumarin and 7-hydroxycoumarin glucuronide (Ritschel *et al.*, 1977). Further, Miles *et al.* (1990) have shown that the isoenzyme responsible for most, if not all, of the coumarin 7-hydroxylase activity in the human liver belongs to the cytochrome P-450 IIA subfamily.

The differences in metabolism of coumarin among various species is largely reflected by the quantitative differences in hydroxylation at the 3 and 7 positions. Gangolli *et al.* (1974) showed that the amount of 7-hydroxycoumarin found in the urine of various species, as a percentage of the administered dose of coumarin, was 1% in the squirrel monkey, ferret, and guinea pig; 3% in the mouse and dog; 5% in the hamster; 12% in the pig; 19% in the cat; and 60% in the baboon.

The metabolites of coumarin identified in various species are shown in Table 1. In rats, the metabolites are excreted in significant amounts in both the urine and feces. Following the oral administration of [3-14C]-coumarin to rats, the amount of labeled metabolites in the urine varied from 47% to 60% of the administered dose, while that in the feces varied from 32% to 38% (Kaighen and Williams, 1961). Although some of the orally administered coumarin may be metabolized by intestinal microflora (Scheline, 1968), the significant level of metabolites found in the feces may reflect the high level of biliary excretion observed in the rat. Within 24 hours of an oral or intraperitoneal dose of 50 mg/kg, about 50% of the dose was excreted in the bile of rats as unidentified ring-opened compounds (Williams et al., 1965). By contrast, in humans more than 80% of the metabolites of coumarin are found in the urine, suggesting that enterohepatic circulation of coumarin in humans is substantially less than that in rats.

TOXICITY

Experimental Animals

The oral LD_{s0} value for coumarin is reported as 420 mg/kg in C3H/HeJ mice and 780 mg/kg in DBA/2J mice (Endell and Seidel, 1978). The oral LD_{s0} for coumarin in rats is reported as 292 to 680 mg/kg (Hazleton *et al.*, 1956).

Osborne-Mendel rats fed coumarin in the diet at a level of 1,000 ppm for up to 4 weeks showed no evidence of toxicity, while rats fed 10,000 ppm coumarin for 4 weeks or 2,500 ppm for 29 weeks had growth retardation and liver alterations characterized as slight midzonal fatty change (Hagan et al., 1967). In Sprague-Dawley rats given a single oral dose of 125 to 500 mg/kg coumarin, hepatotoxic changes consisting of centrilobular hepatic necrosis occurred within 24 hours (Lake, 1984). The mechanism for liver toxicity is thought to be due to the production of one or more coumarin metabolites by cytochrome P-450-dependent mixed-function oxidase enzymes. It has been hypothesized that a 3,4-epoxide intermediate may be responsible for coumarin-induced hepatotoxicity in the rat. 3,4-Dihydrocoumarin, which lacks the 3,4-double bond, does not produce liver toxicity when given to Sprague-Dawley rats intraperitoneally at doses of 127 or 254 mg/kg, although coumarin at these doses does produce hepatotoxicity (Lake et al., 1989).

In another study, Sprague-Dawley rats were fed either a control diet or a diet containing 5,000 ppm coumarin for 1, 3, 6, 9, 12, or 18 months with estimated coumarin intakes of 50 mg/kg per day for 2 weeks, 360 mg/kg per day for 3 months, and 200 mg/kg per day for 1 year. After 1 month the liver showed extensive vacuolation of hepatocytes with some necrosis; the effect was diffuse and affected all lobes. After 3 months the bile duct proliferation was more extensive. After 9 or more months of coumarin treatment there were large areas of fibrosis in the liver. In addition, there were irregular ducts formed of pale staining cells in a heavy fibrous stroma. There was no evidence of local invasion or metastasis (Evans *et al.*, 1989).

Humans

Information on the toxicity of coumarin in humans is limited to Phase I and II toxicity studies in cancer patients given coumarin in combination with cimetidine. These studies found no major organ toxicity attributable to the use of coumarin, given at doses of 100 to 400 mg/day for several weeks to 1 month (Dexeus *et al.*, 1990).

Reproductive and Developmental Toxicity

Experimental Animals

No malformations were found in the offspring of mice fed diets containing 500 to 2,500 ppm coumarin on days 6 through 17 of gestation, but increased numbers of stillbirths and delayed ossification were seen at the 2,500 ppm level, and increased mortality up to 3 weeks of age was seen at all levels (Roll and Bär, 1967). The purity of the coumarin used in these studies was not given.

Humans

No information on the reproductive and developmental toxicity of coumarin in humans is reported in the literature.

CARCINOGENICITY

Experimental Animals

Coumarin administered in feed at a level of 5,000 ppm to six male and six female Osborne-Mendel rats for 2 years caused liver damage characterized as focal proliferation of bile ducts with cholangiofibrosis, fatty metamorphosis, and focal necrosis, but produced no carcinogenic effect (Hagan *et al.*, 1967). In addition, Evans *et al.* (1989) reported that long-term administration of coumarin at dietary levels of 5,000 ppm produced cholangiofibrosis in Sprague-Dawley rats, but no treatment-related tumors. Groups of Syrian golden hamsters fed diets containing 0, 1,000, or 5,000 ppm coumarin for up to 2 years showed no evidence of hepatotoxicity or hepatocarcinogenicity (Ueno and Hirono, 1981). Baboons receiving doses of 0, 2.5, 7.5, 22.5, or 67.5 mg/kg coumarin for 16 or 24 months showed no evidence of dose-related tumors. Liver toxicity was observed at the high dose and was characterized as dilatation of the endoplasmic reticulum (Evans *et al.*, 1979).

Bär and Griepentrog (1967) and Griepentrog (1973) characterized liver lesions in rats as bile duct carcinomas after long-term administration of coumarin. In these studies five groups of rats were fed diets containing 1,000 to 6,000 ppm coumarin for up to 2 years. Of the animals surviving to the end of the studies, 12 rats that received 5,000 ppm and five rats that received 6,000 ppm developed bile duct carcinomas. No carcinomas were seen in the rats fed 1,000 or 2,500 ppm coumarin (Bär and Griepentrog, 1967; Griepentrog, 1973). Cohen (1979) reported that a review of the bile duct lesions in the Griepentrog study showed that the cytologic changes in the bile duct were more consistent with fatty degeneration, necrosis, and proliferation than with the original diagnosis of carcinoma. These studies provided little information on the purity of the coumarin used, and little consistent information on other toxic endpoints such as clinical findings and body weights.

In a study of 3,4-dihydrocoumarin, administered by subcutaneous injection twice a week for 51 or 57 weeks at a dose of 0.5 mg to mice and 2 mg to rats, no tumors were found. Only a few animals were included in each treatment group (Dickens and Waynforth, 1968). In addition, no tumors were observed in dogs administered 3,4-dihydrocoumarin orally at a dose of 150 mg/kg per day for 2 years (Hagan *et al.*, 1967).

No tumors were observed in Osborne-Mendel rats that received diets containing 500 to 15,000 ppm 6-methylcoumarin for up to 2 years (Hagan *et al.*, 1967).

Humans

Some coumarin derivatives have been reported to have antitumor activity against human cancer (Nair et al., 1991). The precise mechanism is not understood, but it has been suggested that this antitumor activity may be due to immune modulation. At this time coumarin is not approved by the FDA for use as an anticancer agent. Compounds structurally related to coumarin, such as Warfarin $(3-\alpha$ -phenyl-B-acetylethyl-4-hydroxy-coumarin), are used as anticoagulants, but coumarin itself has no anticoagulant properties and is not approved for use as a licensed drug in the United States (Thornes et al., 1989). At the 1991 meeting of the American Cancer Society there were several reports on the antitumor properties of coumarin, nitrocoumarin derivatives, and 6,7-OH coumarin derivatives in a variety of model systems. When MTV-H-ras transgenic mice were given 200 μ M coumarin in drinking water for 6 months, tumor incidence was decreased and tumor onset was delayed (Tseng, 1991). Coumarin has also been reported to inhibit the effects of 7,12-dimethylbenz(a)anthracene-induced neoplasia in the rat mammary gland (Wattenberg et al., 1979).

Coumarin administered to humans at a dose of 1 g/m^2 per day for 8 days significantly increased lymphocyte response to phytohaem-agglutinin, indicating that coumarin can activate lymphocytes and stimulate some immunologic functions (Berkarda et al., 1983). Other studies on the ability of coumarin to restore cellular immunity in patients with chronic brucellosis have been reported by Thornes (1983). Cellular immunity was partially restored in patients given 25 mg coumarin daily for 6 months or 100 mg daily for 1 month as evidenced by increased numbers of lymphocytes and activated T cells, and a restoration of the delayed hypersensitivity reaction which is often decreased in patients with brucellosis. Other in vitro studies also suggest that coumarin may enhance the lymphocytic mitogenic response (Marshall et al., 1989b).

Liver toxicity was not reported in humans where coumarin and related compounds were used as experimental anticancer agents with a typical oral dose of approximately 100 mg/day (Marshall *et al.*, 1987a,b; 1989a).

GENETIC TOXICITY

Coumarin induced gene mutations in Salmonella typhimurium strain TA100 in the presence of S9 activation; no mutagenic activity was noted in any other test strains, with and without S9 (Stoltz and Scott, 1980; Norman and Wood, 1981; Haworth *et al.*, 1983). No induction of sex-linked recessive lethal mutations was observed in germ cells of male *Drosophila melanogaster* treated with coumarin as adults, by feeding or injection (Yoon *et al.*, 1985), or as larvae by feeding (Valencia *et al.*, 1989). No increase in unscheduled DNA synthesis was reported in rat tracheal epithelium cultures treated with 1.46 mg/mL coumarin in the absence of S9 (Ide *et al.*, 1981).

Chromosomal effects have been reported in mammalian cells following treatment with coumarin. Cytogenetic tests with Chinese hamster ovary cells demonstrated induction of sister chromatid exchanges by 100 to 300 μ g/mL coumarin in the absence, but not the presence, of S9; a dose-related increase in chromosomal aberrations was also observed in Chinese hamster ovary cells after treatment with coumarin, but only in the presence of S9 (Galloway *et al.*, 1987).

Studies of the cytogenetic effects of coumarin in plants are difficult to interpret due to the presentation of the experimental protocols and the data. However, there seems to be agreement that mitotic inhibition and increases in the frequencies of acentric fragments, anaphase bridges, and other chromosomal abnormalities in plants were consequences of coumarin exposures (D'Amato and D'Amato-Avanzi, 1954; Riley and Hoff, 1960; Sarma and Tripathi, 1976).

The only metabolites for which genotoxicity information is available are 7-hydroxycoumarin and 3,4-dihydrocoumarin. 7-Hydroxycoumarin did not induce gene mutations in *Salmonella typhimurium* strains TA98, TA100, or TA1537, with and without S9, at doses up to 2 mg/mL, but it was reported to induce mutations in *Klebsiella pneumoniae* in the absence of S9 (Voogd *et al.*, 1980). Previously published genotoxicity data for 3,4-dihydrocoumarin are limited to two Salmonella gene mutation assays, conducted with and without S9; results from both studies were negative for TA98, TA100, TA1535, and TA1537 (Prival *et al.*, 1982; Haworth *et al.*, 1983). In the companion NTP studies of 3,4-dihydrocoumarin, chemical administration induced sister chromatid exchanges, but not chromosomal aberrations in cultured Chinese hamster ovary cells, with and without S9. No induction of micronuclei was observed in peripheral blood erythrocyte samples obtained from male and female B6C3F₁ mice at the end of the 13-week toxicity study (NTP, 1993).

STUDY RATIONALE

Coumarin was nominated by the FDA and NCI for toxicity and carcinogenicity studies because it is widely distributed in perfumes, soaps, and other common household products; because of continued interest in using coumarin compounds as flavorenhancing agents for foods; and because complete comparative toxicity and carcinogenicity studies in rats and mice had not previously been performed. The oral route of exposure was used to mimic exposure in foods. Due to minimal solubility in water and unpalatability in feed, coumarin was administered by gavage in corn oil.

MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF COUMARIN

Coumarin was obtained from Rhone Poulenc, Incorporated (Monmouth Junction, NJ), in two lots (7971 and 5H2003). Lot 7971 was used throughout the 16-day and 13-week studies and lot 5H2003 was used throughout the 2-year studies. Identity, purity, and stability analyses were performed by the analytical chemistry laboratory, Midwest Research Institute (Kansas City, MO), and confirmed by the study laboratory (Appendix I).

Both lots of the chemical, a white crystalline powder, were identified as coumarin by infrared, ultraviolet/ visible, and nuclear magnetic resonance spectroscopy. The purity of the lots was found to be greater than 97% by Karl Fischer water analysis, titration of the free acid, lactone hydrolysis, thin-layer chromatography, and gas chromatography. Thin-layer chromatography of both lots indicated only one major spot. Gas chromatography of both lots indicated one major peak and no impurities with total areas greater than 0.1% relative to the major peak area. Stability studies performed at the analytical chemistry laboratory indicated that coumarin was stable as a bulk chemical for at least 2 weeks at temperatures up to 60° C. The stability of the bulk chemical was monitored periodically at the study laboratory with gas chromatography and free acid titration methods; no change in purity was observed.

Preparation and Analysis of Dose Formulations

The dose formulation suspensions for gavage administration were prepared by mixing coumarin and corn oil (Table I1). Studies to determine stability of the gavage preparations were conducted by the analytical chemistry laboratory. The stability studies of the dose formulations were performed using a gas chromatographic method. The findings of the studies indicated that the dose formulations were stable for at least 3 weeks at room temperature, when stored in the dark, and under simulated dosing conditions (exposed to light and air for 3 hours). No special handling was required during dosing.

Periodic analyses of the dose formulations of coumarin were conducted at the study laboratory and the analytical chemistry laboratory using ultraviolet spectroscopy. During the 16-day studies all dose formulations were analyzed. During the 13-week studies, the dose formulations were analyzed every 6 weeks (Tables I2 and I3). During the 2-year studies, the dose formulations were analyzed every 6 to 10 weeks (Table I4). In the 2-year studies, 100% of the dose formulations were within 10% of the target concentrations. Periodic analyses of the corn oil vehicle by the study laboratory indicated that peroxide levels were within the acceptable limit of 10 mEq/kg. Results of the periodic referee analyses performed by the analytical chemistry laboratory were in agreement with the results obtained by the study laboratory (Table I5).

16-DAY STUDIES

Male and female F344/N rats and $B6C3F_1$ mice were obtained from Charles River Breeding Laboratories (Portage, MI). At receipt the rats and mice were 35 to 42 days old. The animals were quarantined for 14 days before dosing began. During this time two males and two females of each species were randomly selected and evaluated for evidence of disease.

Groups of five male and five female rats received coumarin in corn oil by gavage at doses of 0, 25, 50, 100, 200, or 400 mg/kg body weight; groups of five male and five female mice received coumarin in corn oil by gavage at doses of 0, 40, 75, 150, 300, or 600 mg/kg body weight. All doses were given once daily for 5 days per week, with at least two consecutive dosing days at the end of the studies. Animals were housed five per cage; water and feed were available *ad libitum*. Clinical findings were recorded twice daily. The animals were weighed at study initiation, at day 7, and at the end of the studies. Details of study design and animal maintenance are summarized in Table 2. At the end of the 16-day studies, blood was collected from the orbital sinus of all animals for clinical pathology analyses. The clinical pathology parameters measured are listed in Table 2. A gross necropsy was performed on all rats and mice, and complete histopathologic examinations were conducted on all animals. The tissues routinely examined microscopically are listed in Table 2.

13-WEEK STUDIES

The 13-week studies were conducted to evaluate the cumulative toxic effects of repeated exposure to coumarin and to determine the appropriate doses to be used in the 2-year studies.

Male and female F344/N rats and $B6C3F_1$ mice were obtained from Charles River Breeding Laboratories (Portage, MI). Upon receipt, the rats were 29 to 36 days old and the mice were 36 to 43 days old. The animals were quarantined for 23 (rats) or 24 (mice) days before dosing began. At this time, five males and five females of each species were randomly selected and evaluated for evidence of disease. At the end of the studies, serologic analyses were performed on 5 rats and 10 mice of each sex using the protocols of the NTP Sentinel Animal Program (Appendix K).

Groups of 10 male and 10 female rats and mice received coumarin in corn oil by gavage at doses of 0, 19, 38, 75, 150, or 300 mg/kg body weight 5 days per week for 13 weeks. Animals were housed five per cage; water and feed were available *ad libitum*. Clinical findings were recorded twice daily. The animals were weighed at the beginning of the studies and weekly thereafter. Further details of study design and animal maintenance are summarized in Table 2.

At the end of the 13-week studies, blood was collected from all animals and urine was collected from rats for clinical pathology analyses. The parameters measured are listed in Table 2. A necropsy was performed on all animals. The brain, heart, right kidney, liver, lung, right testis, and thymus of rats were weighed. The left kidney, liver, and left testis of mice were weighed. Tissues for microscopic examination were embedded in paraffin, sectioned to a thickness of 4 to 6 μ m, and stained with hematoxylin and eosin. A complete histopathologic examination was performed on all control animals, animals killed moribund, and all animals from the 300 mg/kg dose

groups that lived to the end of the studies. The livers from all dosed rats and mice were examined microscopically. Table 2 lists the tissues and organs routinely examined microscopically.

2-YEAR STUDIES Study Design

Groups of 60 male and 60 female rats received coumarin in corn oil by gavage at doses of 0, 25, 50, or 100 mg/kg body weight for 103 weeks; groups of 70 male and 70 female mice received coumarin in corn oil by gavage at doses of 0, 50, 100, or 200 mg/kg body weight for 103 weeks. Ten rats and 20 mice per dose group were designated for interim evaluations after 15 months of chemical administration.

Stop-Exposure Evaluation

Groups of male rats receiving 100 mg/kg coumarin for 9 or 15 months followed by a recovery period were evaluated to assess the potential for coumarininduced liver lesions to progress or regress. This stop-exposure evaluation was conducted based on literature reports of hepatic cholangiofibrosis and cholangiocarcinomas occurring in rats given coumarin for 2 years (Bär and Griepentrog, 1967).

A group of 40 male rats received 100 mg/kg coumarin in corn oil by gavage for 9 months, when 20 of the animals were necropsied and evaluated. The remainder of the male rats received only the corn oil vehicle until they died or the end of the study was reached. Similarly, a group of 30 male rats received 100 mg/kg coumarin in corn oil by gavage for 15 months, when 10 of the rats were necropsied and evaluated. The remaining 20 rats received only corn oil until the end of the study. A group of 20 vehicle control male rats were necropsied at 9 months, and another 10 vehicle control male rats were necropsied at 15 months for comparison with those receiving coumarin and killed at these time points. The incidences of lesions in male rats receiving coumarin and evaluated at 9 or 15 months were compared with those in male rats receiving coumarin for 9 or 15 months, respectively, followed by the recovery period.

Source and Specification of Animals

Male and female F344/N rats and $B6C3F_1$ mice were obtained from Frederick Cancer Research Center (Frederick, MD) for use in the 2-year studies. Rats were quarantined for 15 (males) or 16 (females) days, and mice were quarantined for 16 (males) or

Materials and Methods

17 (females) days before the beginning of the studies. Five rats and five mice of each sex were randomly selected and evaluated for evidence of disease. Serology samples were collected for viral screening. Rats and mice in the 2-year studies were 44 (males) and 45 (females) days old at the beginning of the studies. The health of the animals was monitored during the studies according to the NTP Sentinel Animal Program (Appendix K).

Animal Maintenance

Rats were housed five per cage; mice were housed individually. Feed and water were available *ad libitum*. Cages were rotated every 2 weeks. Further details of animal maintenance are given in Table 2. Information on feed composition and contaminants is provided in Appendix J.

Clinical Examinations and Pathology

All animals were observed twice daily. Clinical findings were recorded weekly for the first 13 weeks, and monthly thereafter. Animals were weighed at the beginning of the studies, weekly for the initial 13 weeks, and monthly thereafter. Blood was collected by cardiac puncture from all animals at the 9- and 15-month interim evaluations to determine hematology and clinical chemistry parameters. The clinical pathology parameters measured are listed in Table 2. The brain, left kidney, right kidney, and liver were weighed at the 9- and 15-month interim evaluations.

A complete necropsy was performed on all animals. At necropsy, all organs and tissues were examined for gross lesions, and all major tissues were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned, and stained with hematoxylin and eosin for microscopic examination. Histopathologic examinations were performed on all tissues with gross lesions. Tissues examined are listed in Table 2.

Microscopic evaluations were completed by the study laboratory pathologist, and the pathology data were entered into the Toxicology Data Management System. The microscopic slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were evaluated by an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy, the slide and tissue counts were verified, and the histotechnique was evaluated. A quality assessment pathologist reviewed the kidney in rats, the clitoral gland and thyroid gland in female rats, and the liver and lung in mice for accuracy and consistency of lesion diagnosis.

The quality assessment report and slides were submitted to the NTP Pathology Working Group (PWG) chair, who reviewed the kidney in rats and mice, clitoral gland and nose in rats, forestomach, lung, lymph node, salivary gland, skeletal muscle, skin, and uterus in mice, and any tissues for which there was a disagreement in diagnosis between the laboratory and quality assessment pathologists. Representative histopathology slides containing examples of disagreements in diagnosis between the laboratory and quality assessment pathologists, or lesions of general interest were presented by the chair to the PWG for review. The PWG consisted of the quality assessment pathologist and other pathologists experienced in rodent toxicologic pathology. This group examined the tissues without any knowledge of dose groups or previously rendered diagnoses. When the consensus opinion of the PWG differed from that of the laboratory pathologist, the diagnosis was changed. Thus, the final diagnoses represent a consensus of contractor pathologists and the PWG. Details of these review procedures have been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). For subsequent analyses of pathology data, the diagnosed lesions for each tissue type were evaluated separately or combined according to the guidelines of McConnell et al. (1986).

Statistical Methods

Survival Analyses

The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses if they were found dead of other than natural causes or were found to be missing; animals dying from natural causes were not censored. Statistical analyses for possible dose-related effects on survival used Cox's (1972) method for testing two groups for equality and Tarone's (1975) life table test to identify dose-related trends. All reported P values for the survival analyses are two sided.

Calculation of Incidence

The incidences of neoplasms or nonneoplastic lesions as presented in Tables A1, A5, B1, B5, C1, C5, D1, D5, E1, and E4 are given as the number of animals bearing such lesions at a specific anatomic site and the number of animals with that site examined microscopically. For calculation of statistical significance, the incidences of most neoplasms (Tables A3, B3, C3, D3, and E3) and all nonneoplastic lesions are given as the ratio of the number of affected animals to the number of animals with the site examined microscopically. However, when macroscopic examination was required to detect neoplasms in certain tissues (e.g., skin, intestine, harderian gland, and mammary gland) before microscopic evaluation, or when neoplasms had multiple potential sites of occurrence (e.g., leukemia or lymphoma), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Neoplasm Incidences

The majority of neoplasms in these studies were considered to be incidental to the cause of death or not rapidly lethal. Thus, the primary statistical method used was logistic regression analysis, which assumed that the diagnosed neoplasms were discovered as the result of death from an unrelated cause and thus did not affect the risk of death. In this approach, neoplasm prevalence was modeled as a logistic function of chemical exposure and time. Both linear and quadratic terms in time were incorporated initially, and the quadratic term was eliminated if it did not significantly enhance the fit of the model. The dosed and control groups were compared on the basis of the likelihood score test for the regression coefficient of dose. This method of adjusting for intercurrent mortality is the prevalence analysis of Dinse and Lagakos (1983), further described and illustrated by Dinse and Haseman (1986). When neoplasms are incidental, this comparison of the time-specific neoplasm prevalences also provides a comparison of the time-specific neoplasm incidences (McKnight and Crowley, 1984).

In addition to logistic regression, other methods of statistical analysis were used, and the results of these tests are summarized in the appendixes. These include the life table test (Cox, 1972; Tarone, 1975), appropriate for rapidly lethal neoplasms, and the Fisher exact test and the Cochran-Armitage trend test (Armitage, 1971; Gart *et al.*, 1979), procedures based on the overall proportion of neoplasm-bearing animals.

Tests of significance included pairwise comparisons of each dosed group with controls and a test for an overall dose-response trend. Continuity-corrected tests were used in the analysis of neoplasm incidence, and reported P values are one sided. The procedures described in the preceding paragraphs were also used to evaluate selected nonneoplastic lesions. For further discussion of these statistical methods, refer to Haseman (1984).

Analysis of Nonneoplastic Lesion Incidences

Because all nonneoplastic lesions in this study were considered to be incidental to the cause of death or not rapidly lethal, the primary statistical method used was a logistic regression analysis in which lesion prevalence was modeled as a logistic function of chemical exposure and time. For lesions detected at the interim evaluation, the Fisher exact test was used, a procedure based on the overall proportion of affected animals.

Historical Control Data

Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of neoplasm incidence. Consequently, neoplasm incidences from the NTP historical control database (Haseman *et al.*, 1984, 1985) are included in the NTP reports for neoplasms appearing to show compound-related effects.

Analysis of Continuous Variables

Two approaches were employed to assess the significance of pairwise comparisons between dosed and control groups in the analysis of continuous variables. Organ and body weight data, which have approximately normal distributions, were analyzed using the parametric multiple comparison procedures of Dunnett (1955) and Williams (1971, 1972). Clinical chemistry and hematology data, which typically have skewed distributions, were analyzed using the nonparametric multiple comparison methods of Dunn (1964) and Shirley (1977). Jonckheere's test (Jonckheere, 1954) was used to assess the significance of the dose-response trends and to determine whether a trend-sensitive test (Williams' or Shirley's test) was more appropriate for pairwise comparisons than a test that does not assume a monotonic dose-response trend (Dunnett's or Dunn's test). Average severity values were analyzed for significance using the Mann-Whitney U test (Hollander and Wolfe, 1973).

Quality Assurance Methods

The 13-week and 2-year studies were conducted in compliance with Food and Drug Administration Good Laboratory Practice Regulations (21 CFR, Part 58). In addition, as records from the 2-year studies were submitted to the NTP Archives, they were audited retrospectively by an independent quality assurance contractor. Separate audits covering completeness and accuracy of the pathology data, pathology specimens, final pathology tables, and preliminary review draft of this NTP Technical Report were conducted. Audit procedures and findings are presented in the reports and are on file at NIEHS. The audit findings were reviewed and assessed by NTP staff so that all discrepancies had been resolved or were otherwise addressed during the preparation of this Technical Report.

GENETIC TOXICOLOGY

The genetic toxicity of coumarin was assessed by testing the ability of the chemical to induce mutations in various strains of *Salmonella typhimurium* and *Drosophila melanogaster*, chromosome damage in Chinese hamster ovary cells, and micronuclei in the peripheral blood cells of mice. The protocols for these studies and the results are given in Appendix F.

The genetic toxicity studies of coumarin are part of a larger effort by the NTP to develop a database that would permit the evaluation of carcinogenicity in experimental animals from the structure of the chemical and its responses in short-term *in vitro* and

in vivo genetic toxicity tests. These genetic toxicity tests were originally developed to study mechanisms of chemical-induced DNA damage and to predict carcinogenicity in animals, based on the electrophilic theory of chemical carcinogenesis and the somatic mutation theory (Miller and Miller, 1977; Straus, 1981; Crawford, 1985).

There is a strong correlation between a chemical's potential electrophilicity (structural alert to DNA reactivity), mutagenicity in Salmonella, and carcinogenicity in rodents. The combination of electrophilicity and Salmonella mutagenicity is highly correlated with the induction of carcinogenicity in rats and mice and/or at multiple tissue sites (Ashby and Tennant, 1991). Other in vitro genetic toxicity tests do not correlate well with rodent carcinogenicity (Tennant et al., 1987; Zeiger et al., 1990), although these other tests can provide information on the types of DNA and chromosome effects that can be induced by the chemical being investigated. Data from NTP studies show that a positive response in Salmonella is currently the most predictive in vitro test for rodent carcinogenicity (89% of the Salmonella mutagens were rodent carcinogens), and that there is no complementarity among the in vitro genetic toxicity tests. That is, no battery of tests that included the Salmonella test improved the predicitivty of the Salmonella alone. The predictivity of carcinogenicity of a positive response in bone marrow chromosome aberration or micronucleus tests is not vet defined.

•

Experimental Design and Materials and Methods in the Gavage Studies of Coumarin

ł

16-Day Studies	13-Week Studies	Stop-Exposure Evaluation	2-Year Studies
Study Laboratory International Research and Development Corporation,	International Research and Development Corporation,	American Biogenics Corporation, Woburn, MA	American Biogenics Corporation, Woburn, MA
Mattawan, MI	Mattawan, MI		
Strain and Species			
Rats: F344/N Mice: B6C3F ₁	Rats: F344/N Mice: B6C3F ₁	Male Rats: F344/N	Rats: F344/N Mice: B6C3F ₁
Animal Source			
Charles River Breeding Laboratories, Inc., Portage, MI	Charles River Breeding Laboratories, Inc., Portage, MI	Frederick Cancer Research Center, Frederick, MD	Frederick Cancer Research Center, Frederick, MD
Time Held Before Studies			
14 days	Rats: 23 days Mice: 24 days	15 days	Rats: 15 days (males) and 16 days (females) Mice: 16 days (males) and 17 days (females)
Average Age When Studies	Began		
49-56 days	Rats: 52-59 days Mice: 60-67 days	44 days	44 days (males) and 45 days (females)
Date of First Dose 5 January 1981	Rats: 9 April 1981 Mice: 10 April 1981	6 September 1984	Rats: 6 September 1984 (males) 7 September 1984 (females Mice: 8 November 1984 (males) 9 November 1984 (females)
Duration of Dosing			
16 days	91 days	9-Month stop-exposure group: 39-40 weeks 15-Month stop-exposure group: 65 weeks	103 weeks
Date of Last Dose			
21 January 1981	Rats: 9 July 1981 Mice: 10 July 1981	27 August 1986	Rats: 27 August 1986 (males) 28 August 1986 (females) Mice: 29 October 1986 (males) 30 October 1986 (females)

,

|

Experimental Design and Materials and Methods in the Gavage Studies of Coumarin (continued)

16-Day Studies	13-Week Studies	Stop-Exposure Evaluation	2-Year Studies
Necropsy Dates 21 January 1981	Rats: 9 July 1981 Mice: 10 July 1981	9-Month interim: 6-7 June 1985 15-Month interim: 2-5 December 1985 Terminal: 4-5 September 1986	Rats: 15-Month interim – 2-6 December 1985 Terminal – 4-10 September 1986 Mice: 15-Month interim – 5-7 and 10-11 February 1986 Terminal – 6-7 and 10-12 November 1986
Average Age at Necropsy 65-72 days	Rats: 143-150 days Mice: 151-158 days	9-Month interim: 46 weeks 15-Month interim: 71-72 weeks	15-Month interim: 71-72 weeks 2-year study 110-111 weeks
Size of Study Groups 5 males and 5 females	10 males and 10 females	 9-Month stop-exposure: 20 dosed and 20 control rats evaluated at 9 months; 20 dosed rats evaluated after recovery period. 15-Month stop-exposure: 10 dosed and 10 control rats evaluated at 15 months; 20 dosed rats evaluated after recovery period. 	Rats: 60 males and 60 females Mice: 70 males and 70 females
Method of Distribution Animals assigned by random numbers; average cage weights were approximately equal.	Same as 16-day studies	Same as 16-day studies	Same as 16-day studies
Animals per Cage 5	5	5	Rats: 5 Mice: 1
Method of Animal Identific: Rats: Metal tag Mice: Toe clip	ation Rats: Metal tag Mice: Toe clip	Toe clip	Toe clip
Diet NIH-07 open formula mash diet (Zeigler Brothers, Inc., Gardners, PA); available ad libitum	Same as 16-day studies	NIH-07 pelleted diet (Zeigler Brothers, Inc., Gardners, PA); available ad libitum	Same as stop-exposure evaluation

16-Day Studies	13-Week Studies	Stop-Exposure Evaluation	2-Year Studies
Maximum Storage Time for 120 days from the date of milling	Feed Same as 16-day studies	Same as 16-day studies	Same as 16-day studies
Water Automatic watering system, available <i>ad libitum</i>	Same as 16-day studies	Hardco Automatic Watering System, available <i>ad libitum</i>	Same as stop-exposure evaluation
Cages Clear polycarbonate, changed twice weekly	Same as 16-day studies	Polycarbonate (Lab Products, Inc., Maywood, NJ), changed twice weekly	Same as stop-exposure evaluation
Bedding BetaChips®, hardwood laboratory bedding (Northeastern Products Corp., Warrensburg, NY), changed twice weekly	Same as 16-day studies	Sani-chip heat-treated hardwood chips (Old Mother Hubbard, Lowell, MA), changed twice weekly	Same as stop-exposure evaluation
Cage Filters Nonwoven polyester, changed every other week	Nonwoven polyester, changed once weekly	Nonwoven polyester (Snow Filtration Co., Cincinnati, OH), changed once every 2 weeks	Same as stop-exposure evaluation
Racks Stainless steel, changed every other week	Stainless steel, changed once weekly	Stainless steel (Lab Products, Inc., Maywood, NJ), changed once every 2 weeks	Same as stop-exposure evaluation
Animal Room Environment Temperature: 22° C Relative humidity: 36% Fluorescent light: 12 hours/day Room air: not available	Temperature: Rats – 24° C Mice – 23° C Relative humidity: Rats – 47.1% Mice – 50.8% Fluorescent light: 12 hours/day Room air: not available	Temperature: 22.7° C \pm 1.2° C Relative humidity: 55.7% \pm 8.6% Fluorescent light: 12 hours/day Room air: not available	Temperature: Rats - 22.7° C \pm 1.2° C Mice - 21.9° C \pm 0.8° C Relative humidity: Rats - 55.7% \pm 8.6% Mice - 56.7% \pm 7.4% Fluorescent light: 12 hours/day Room air: not available
Doses Rats: 0, 25, 50, 100, 200, or 400 mg/kg coumarin in corn oil by gavage; once daily, 5 days per week Mice: 0, 40, 75, 150, 300, or 600 mg/kg coumarin in corn oil by gavage; once daily, 5 days per week	Rats: 0, 19, 38, 75, 150, or 300 mg/kg coumarin in corn oil by gavage; once daily, 5 days per week Mice: 0, 19, 38, 75, 150, or 300 mg/kg coumarin in corn oil by gavage; once daily, 5 days per week	0 or 100 mg/kg coumarin in corn oil by gavage; once daily, 5 days per week for 9 or 15 months; followed by administration of only corn oil by gavage until the end of the 2-year study	Rats: 0, 25, 50 or 100 mg/k, coumarin in corn oil by gavage; once daily, 5 days per week Mice: 0, 50, 100, or 200 mg/kg coumarin in corn oil by gavage; once daily, 5 days per week

ļ

Experimental Design and Materials and Methods in the Gavage Studies of Coumarin (continued)

16-Day Studies	13-Week Studies	Stop-Exposure Evaluation	2-Year Studies
Type and Frequency of Obse	ervation		
Animals observed for mortality twice daily; animals weighed initially, weekly, and at the end of the studies; clinical observations recorded daily	Animals observed for mortality twice daily; animals weighed initially, weekly, and at the end of the studies; clinical observations recorded daily and once weekly at the following intervals: pre-dosing, 30-60 minutes post-dosing, and 2 hours post-dosing	Animals observed for mortality twice daily; animal weights and clinical findings recorded weekly through week 13, monthly thereafter, and at interim evaluations or at the end of the studies.	Same as stop-exposure evaluation
Method of Sacrifice Carbon dioxide asphyxiation	Same as 16-day studies	9- and 15-month interims: Anesthetized with methoxyflurane followed by exsanguination Terminal: Carbon dioxide asphyxiation	Same as stop-exposure evaluation
Necropsy			
Necropsy performed on all animals.	Necropsy performed on all animals. Organs weighed included: Rats – brain, heart, right kidney, liver, lung, right testis, and thymus Mice – left kidney, liver, and left testis	Necropsy performed on all animals. Organ weights recorded for brain, left kidney, right kidney, and liver.	Necropsy performed on all animals. Organ weights recorded for brain, left kidney, right kidney, and liver.
Clinical Pathology Blood samples were	Blood from the orbital sinus	Blood complex were	Diord semples were
blood samples were collected from the orbital sinus of all animals. <i>Hematology:</i> platelets, capillary clotting time, fibrinogen (rats), prothrombin time (rats), activated partial thromboplastin time (rats)	was collected from all animals surviving to the end of the studies. Urine samples were collected from rats only. <i>Hematology:</i> hematocrit, hemoglobin, erythrocytes, leukocyte count and differential, platelets, mean cell volume, mean cell hemoglobin, mean cell hemoglobin concentration, prothrombin time, and clotting time (mice) (continued)	Blood samples were obtained by cardiac puncture from all animals at the interim evaluations. <i>Hematology</i> : hematocrit, hemoglobin, erythrocytes, mean cell volume, mean cell hemoglobin concentration, platelets, reticulocytes, leukocyte count and differential, nucleated erythrocytes, activated partial thromboplastin time, and thromboplastin time (continued)	Blood samples were obtained by cardiac punctur from all animals at the interim evaluations. <i>Hematology:</i> hematocrit, hemoglobin, erythrocytes, mean cell volume, mean cell hemoglobin concentration, platelets, reticulocytes, leukocytes count and differential, nucleated erythrocytes, activated partial thromboplastin time (rats), and thromboplastin time (rats) (continued)

Experimental Design and Materials and Methods in the Gavage Studies of Coumarin (continued)

·

16-Day Studies	13-Week Studies	Stop-Exposure Evaluation	2-Year Studies
Clinical Pathology (continued)			
	Clinical chemistry (rats only): sodium, potassium, chloride, calcium, alanine aminotransferase, aspartate aminotransferase, ornithine carbamoyltransferase, lactate dehydrogenase, sorbitol dehydrogenase, blood urea nitrogen, creatinine, total protein, albumin, A/G ratio, bilirubin, cholinesterase, and phosphorus Urinalssis (rats only): specific gravity	<i>Clinical chemistry:</i> calcium, alkaline phosphatase, alanine aminotransferase, sorbitol dehydrogenase, and gamma-glutamyltransferase	Clinical chemistry: calcium (rats), alkaline phosphatase, alanine aminotransferase, sorbitol dehydrogenase, and gamma-glutamyltransferase
Histopathology		Complete histopathology was	Complete histopathology wa
None	Complete histopathology was performed on all controls, all animals killed moribund, and all high-dose animals surviving to the end of the studies. In addition to gross lesions and tissue masses, the tissues examined included: adrenal gland, brain, clitoral gland (rats), epididymis, esophagus, gallbladder (mice), heart, kidney, large intestine (cecum, colon, rectum), liver, lung, mammary gland, mandibular lymph node, mesenteric lymph node, muscle, nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland (rats), prostate gland, salivary gland, small intestine (duodenum, ileum, jejunum), spleen, sternum (including marrow), stomach (mice), testis, thymus, thyroid gland, trachea, urinary bladder, and uterus. In addition, the liver was examined in all dosed groups.	complete instepartiology was performed on all animals. In addition to gross lesions and tissue masses, the tissues examined included: adrenal gland, bone (including marrow), brain, epididymis, esophagus, heart, kidney, large intestine (cecum, colon, rectum), liver, lung, lymph node (mandibular and mesenteric), mammary gland, nose, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, seminal vesicle, skin, small intestine (duodenum, ileum, jejunum), spleen, stomach (forestomach and glandular), testis, thymus, thyroid gland, trachea, and urinary bladder.	performed on all animals. In addition, to gross lesions and tissue masses, the tissue examined included: adrenal gland, bone (including marrow), brain, clitoral gland (rats), epididymis, esophagus, gallbladder (mice), heart, kidney, large intestine (cecum, colon, rectum), liver, lung, lymph node (mandibular and mesenteric), mammary gland, nose, ovary, pancreas parathyroid gland, pituitary gland, preputial gland (rats) prostate gland, salivary gland, seminal vesicle, skin, small intestine (duodenum, ileum, jejunum), spleen, stomach (forestomach and glandular), testis, thymus, thyroid gland, trachea, urinary bladder, and uterus.

RESULTS

RATS 16-Day Study

All female rats and four male rats that received 400 mg/kg died within the first 3 days of the study (Table 3). One male receiving 50 mg/kg also died on day 3, but the death was caused by gavage error rather than chemical toxicity. There were no clinical signs relating to specific organ toxicity, although one or more male or female rats in the 400 mg/kg group exhibited excessive lacrimation, decreased activity, prostration, ataxia, or bradypnea in the first several days prior to death. The final mean body weights

and mean body weight gains of rats that received 200 mg/kg or less were similar to those of the controls. There was no evidence of impaired blood coagulation from measurements of capillary clotting time, prothrombin and activated partial thromboplastin time, and blood fibrinogen at the end of the study (Table H1). Histopathology was not performed in the 16-day study. Because of the chemical-related deaths in rats receiving 400 mg/kg in the 16-day study, 300 mg/kg was selected as the high dose for the 13-week study.

TABLE 3

Survival and Mean Body Weights of Rats in the 16-Day Gavage Study of Coumarin

	Survival ^a		Final Weight		
Dose (mg/kg)		Initial	<u>Mean Body Weight^b</u> Final	Change	Relative to Controls (%)
Male					<u> </u>
0	5/5	134 ± 5	183 ± 6	49 ± 3	
25	5/5	137 ± 7	192 ± 7	55 ± 3	105
50	4/5 ^c	139 ± 10	191 ± 9	51 ± 4	104
100	5/5	137 ± 6	191 ± 7	54 ± 2	104
200	5/5	135 ± 5	181 ± 5	47 ± 2	99
400	1/5 ^đ	136 ± 5	159	24	87
Female					
0	5/5	109 ± 3	136 ± 4	27 ± 2	
25	5/5	110 ± 4	140 ± 5	30 ± 2	103
50	5/5	112 ± 3	141 ± 4	29 ± 1	104
100	5/5	109 ± 3	138 ± 3	29 ± 1	102
200	5/5	111 ± 3	136 ± 3	25 ± 2	100
400	0/5 ^e	110 ± 2	-	_	_

^a Number of animals surviving/number initially in group

^b Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the studies. No data were collected for groups with 100% mortality. Differences from the control group are not significant by Williams' or Dunnett's tests.

^c Day of death: 3

^d Day of death: 2, 2, 2, 3

^e Day of death: 2, 2, 3, 3, 3

13-WEEK STUDY

Three females and one male receiving 300 mg/kg died during the first week of the study, and two additional males in the 300 mg/kg group died during weeks 8 and 9 (Table 4). There were no other chemicalrelated deaths. There were no clinical signs related to specific organ toxicity.

Swelling in the ventral neck region, presumably due to edema and inflammation of the subcutaneous tissue, salivary glands and/or lymph nodes, was observed in one or more rats in each of the dosed and control groups, except for the 19 and 150 mg/kg groups of females. These observations were made during weeks 7 and 8 of the study and were likely due to infection with sialodacryoadenitis virus, although serology analyses were not performed. Diffuse inflammation of the salivary gland, consistent with sialodacryoadenitis virus infection, was observed microscopically in two 300 mg/kg male rats that died in weeks 8 and 9. In the weeks that followed, some rats also exhibited excessive lacrimation and porphyrin-stained crusts around the eyes and mouth. These observations were also likely related to viral infection.

The final mean body weights and body weight gains of male rats that received 150 or 300 mg/kg were significantly lower than those of controls (Table 4). In contrast, mean body weight gains of females receiving coumarin, except for the 300 mg/kg group, were higher than those of the controls. While the increased body weights are likely related to increased feed consumption, the cause is not readily apparent.

Male and female rats receiving coumarin exhibited dose-related decreases in mean erythrocyte volume and mean erythrocyte hemoglobin, and dose-related increases in erythrocyte counts (Table H2). The differences in these parameters between the dosed groups and controls were significant primarily in rats that received 75 mg/kg or more, although some were significant at lower doses. Although these changes

TABLE 4		
Survival and Mean Body V	Weights of Rats in the 13-Week	Gavage Study of Coumarin

			Mean Body Weight ^b (g)			
Dose (mg/kg)	Survival ^a	Initial	Final	Change	Final Weight Relative to Controls (%)	
Male						
0	10/10	179 ± 6	335 ± 9	156 ± 7		
19	10/10	178 ± 4	321 ± 5	143 ± 4	96	
38	10/10	176 ± 4	336 ± 7	161 ± 5	100	
75	10/10	177 ± 5	322 ± 6	145 ± 5	96	
150	10/10	181 ± 6	$310 \pm 5^{**}$	$129 \pm 3^{**}$	92	
300	7/10 ^c	181 ± 5	$278 \pm 6^{**}$	$101 \pm 5^{**}$	83	
Female						
0	10/10	132 ± 3	191 ± 2	59 ± 3		
19	10/10	132 ± 3	$204 \pm 3^*$	72 ± 2**	107	
38	10/10	128 ± 4	202 ± 3	74 ± 3**	106	
75	10/10	132 ± 3	200 ± 3	68 ± 1	105	
150	10/10	133 ± 3	$205 \pm 2^*$	$72 \pm 2^{**}$	107	
300	7/10 ^d	130 ± 3	190 ± 7	62 ± 5	100	

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Number of animals surviving/number initially in group

^b Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the studies.

^c Week of death: 1, 8, 9

^d Week of death: 1, 1, 1

Ð

are statistically significant and chemical related, the actual differences are slight and are not clinically important. The hematocrit and hemoglobin concentration of dosed groups were similar to those of controls, and there was no chemical-related effect on activated partial thromboplastin time.

The serum levels of total bilirubin and several cytoplasmic enzymes including alanine aminotransferase, aspartate aminotransferase, ornithine carbamoyltransferase, and sorbitol dehydrogenase were markedly higher in many male and female rats receiving 300 mg/kg than in controls (Table H2). The values of some of these enzymes were also higher in rats, particularly males, receiving 150 mg/kg. These changes are consistent with the liver toxicity observed histologically. At necropsy the absolute and relative liver weights of male and female rats receiving 150 or 300 mg/kg coumarin were significantly greater than those of the controls (Table G1). The increased relative weights of testis (males), lungs, kidney, heart, and brain of male and female rats were the result of lower body weights rather than organ toxicity. The absolute and relative thymus weights of 300 mg/kg male and female rats were significantly lower than those of controls, presumably as a result of debilitation and stress associated with liver toxicity.

Consistent with the elevations in serum enzymes and increases in liver weights, the principal morphologic lesion associated with the administration of coumarin occurred in the liver of male and female rats receiving 150 or 300 mg/kg (Table 5). The toxic lesion,

TABLE 5

Incidences of Selected Nonneoplastic Lesions in Rats in the 13-Week Gavage Study of Coumarin

Dose	Vehicle Control	19 mg/kg	38 mg/kg	75 mg/kg	1 <i>5</i> 0 mg/kg	340 mg/kg
Male			-			<u> </u>
Liver ^a	10	10	10	10	10	10
Centrilobular Hepatitis ^b	0	0	0	1	7°°(1.6) ^c	10°°(2.7)
Kidney	10	10	10	10	10	10
Nephropathy	0	0	0	0	8°° (1.0)	6°°(1.0)
Necrosis	0	0	0	0	0	3 (2.3)
Female						
Liver	10	10	10	10	10	10
Centrilobular Hepatitis	0	0	0	0	5*(1.4)	10°°(2.8)
Kidney	10	_d	_	_	-	10
Nephropathy	1					5 (1.0)
Necrosis	0	,				5° (1.1)

° Significantly different (P≤0.05) from the control group by the Fisher exact test

°° P≤0.01

^a Number of animals with organ examined microscopically.

^b Number of animals with lesion.

^c Average severity grade of lesion in affected animals: 1 = minimal; 2 = mild; 3 = moderate; 4 = marked

^d Kidney not examined microscopically at these dose levels.

recorded as centrilobular hepatitis, consisted of a spectrum of changes including centrilobular hepatocyte degeneration and necrosis, chronic active inflammation, and bile duct hyperplasia. The lesions varied in severity from animal to animal as well as from lobule to lobule within the liver of any particular animal. In general, however, the lesions varied from minimal to mild in rats receiving 150 mg/kg and mild to marked in rats receiving 300 mg/kg.

Degeneration of hepatocytes was the most frequent change and varied from minimal cell injury to overt necrosis. Hepatocyte degeneration consisted of swollen cells with granular or vacuolated cytoplasm Ultrastructural examination of these (Plate 1). hepatocytes revealed accumulations of small- to moderate-sized lipid droplets within the cytoplasm. Hepatocellular necrosis varied in severity from necrosis of a few widely scattered individual cells to confluent necrosis of centrilobular hepatocytes (Plate 2). The necrosis was characterized by nuclear pyknosis or karyorrhexis, or complete loss of nuclear and cytoplasmic detail. Chronic active inflammation was associated with hepatocellular degeneration and necrosis and consisted of accumulations of neutrophils, monocytes, and macrophages in sinusoids and

portal triads. The bile duct hyperplasia was characterized by increased numbers of small ductules with prominent epithelium, and occurred in rats with the more severe hepatocellular changes (Plate 3).

Although not reported by the laboratory pathologist, a blind reevaluation of the kidneys revealed minimal nephropathy with tubular casts in many of the high-dose males and females and minimal to marked focal necrosis of proximal convoluted tubule epithelium in others (Table 5). Kidneys from control rats were generally normal. The nephropathy consisted of one or several scattered proximal convoluted tubules with thickened basement membranes and basophilic epithelial cells. In rats that died during the study, the necrosis was characterized by increased cytoplasmic eosinophilia and nuclear pyknosis or The lesions in rats that survived karyorrhexis. generally consisted of atrophic tubules with scattered necrotic cells and regenerating epithelium.

Dose Selection Rationale: Based on the mortality observed in rats receiving 300 mg/kg and the hepatic toxicity observed in rats receiving 150 mg/kg or more in the 13-week study, the doses selected for the 2-year study in rats were 25, 50, and 100 mg/kg.

2-YEAR STUDY

Survival

Estimates of survival probabilities for male and female rats are shown in Table 6 and in the Kaplan-Meier curves in Figure 2. Survival of male dosed groups was significantly lower than that of controls, primarily as a result of chemical-related increased severity of renal disease in dosed animals. None of the 100 mg/kg males and only two of the 50 mg/kg males survived until the end of the study. Survival of dosed female rats was similar to that of the controls.

Body Weights and Clinical Findings

The mean body weights of male rats receiving 50 or 100 mg/kg were lower than those of the controls throughout the study (Figure 3 and Table 7). The decrement in the body weight of 100 mg/kg males ranged from 9% at week 2 to 22% at week 89, while that of 50 mg/kg males ranged from 5% at week 2 to 20% at the end of the study. The mean body weights of 100 mg/kg female rats were consistently lower than, but within 10% of, those of controls throughout the study (Figure 3 and Table 8).

TABLE 6

Survival of Rats in the 2-Year Gavage Study of Coumarin

Vel	hicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Male		· · · · ·		· · · · · · · · · · · · · · · · · · ·
Animals initially in study	60	60	60	60
5-Month interim evaluation ^a	10	10	9	10
Vatural deaths	6	7	13	17
Aoribund kills	14	31	34	31
Accidental deaths ^a	2	3	2	2
nimals surviving to study termination	28	9	2	0
ercent probability of survival at end of study ^b	59	19	4	0
fean survival (days) ^c	619	592	553	530
urvival analysis ^d	P<0.001	P<0.001	P<0.001	P<0.001
Semale				
Animals initially in study	60	60	60	60
5-Month interim evaluation ^a	10	10	10	10
Jatural deaths	5	4	2	6
foribund kills	14	7	7	14
ccidental deaths ^a	2	1	5	0
nimals surviving to study termination	29	38	36 ^e	30
ercent probability of survival at end of study	61	78	80	60
lean survival (days)	630	646	614	645
urvival analysis	P=0.616	P=0.133N	P=0.070N	P=0.990

· ·.·.

^a Censored from survival analyses

^b Kaplan-Meier determinations

^c Mean of all deaths (uncensored, censored, and terminal sacrifice)

^d The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the dosed columns. A lower mortality in a dose group is indicated by N.

e Includes one animal that died during the last week of the study.

FIGURE 3 Growth Curves for Male and Female Rats Administered Coumarin by Gavage for 2 Years

Mean Body Weights and Survival of Mal	e Rats in the 2-Year Gavage Study of Coumarin
---------------------------------------	---

Weeks	Vehicle	e Control		25 mg/kg		<u> </u>	50 mg/k			100 mg/		
on	Av. Wt.	No. of	Av. Wt.	WL (% of	No. of	Av. Wt.	WL (% of	No. of	Av. Wt.	Wt. (% of	No. of	
Study	(g)	Survivors	(g)	controls)	Survivors	· (g)	controls)	Survivors	(g)	controls)	Survivor	
1	145	. 60	146	101	60	143	99	60	144	100	60	
2	216	59	215	100	· 60	206	95	60	196	91	60	
3	247	59	247	100	60	237	96	60	225	91	59	
4	269	. 59	267	99	. 60	258	96	60	243	91	59	
5	286	59	285	100	60	273	95	60	254	89	59	
6	304	59	303	100	60	289	95	60	270	89	59	
7	315	59	312	99	60	303	O 96	·· 60	284	90	59	
8	324	59	321	· 99	⁺ 60	316	98	60	-290	89	59	
9	338	59	334	99	60	326	97	60	301	89	59	
10	349	59	344	99	60	335	96	59	311	89	59	
11	355	59	350	99	60	342	96	59	318	90	59	
12	368	59	363	99	60	351	95	59	327	89	59	
13	372	59	367	99	59	353	95	59	326	88	59	
18	394	59	395	100	59	373	95	59	349	89	59	
21	409	59	409	100	59	392	96	59	364	89	59	
25	426	59	419	98	59	401	94	59	375	88	59	
29	441	59	435	99	59	415	94	59	379	86	59	
33	462	59	458	99	59	426	92	59	391	85	59	
37	469	59	469	100	59	442	94	59	410	87	59	
41	481	59	480	100	59	450	93	59	412	86	59	
45	486	. 59	482	99	59	455	94	59	418	86	58	
49	498	58	495	99	59	468	94	59	430	86	58	
53	502	58	505	101	57	471	94	59	429	85	58	
57	514	57	510	99	56	475	93	59	436	85	57	
61	523	55	521	100	56	485	93	58	443	85	55	
65	523	46	525	100	48	488	93 94	48	441	85	47	
70 ^a	526	40	525 526	101	40	400	93	40 46	441	83 84	47	
73	520 527	44	525	100	43	491	93 92	· 40	441	82	43 37	
73	522	44	518	99	43	400	92 91	36	435	83	29	
81	522	43	505	99 97	42	473	89	30	433	83 81	29	
					- 38							
85 89	510 502	40 - 35	491 469	96 93	38	428 414	`84 82	24 14	411 389	81 78	17* 10	
	502 500	35			32 25		82 82	· 7	202	/8	10	
93 97			452	91		410	84					
97 101	483	33	433	·90	· 14							
101	475	30 20	428	90 95	10	270	00	2				
103	471	29	401	85	9	378	80	2				
Mean for			000	~		207	06		2/0			
1-13	299		296	. 99		287	· 96		268	90 97		
14-52	452		449	99 92		425	94		392	87		
3-103	507		486	96		455	90		428	84		

^a Interim evaluation occurred during week 65.

.

38

Mean Body Weights and Survival of Female Rats in the 2-Year Gavage Study of Coumarin

Weeks Vehicle Control		e Control		25 mg/kg			50 mg/kg			100 mg/kg		
on	Av. Wt.	No. of	Av. Wt.	WL (% of	No. of	Av. W1.	₩1. (% of	No. of	Av. W1.	WL (% of	No. of	
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors	(g)	controls)		
1	112	60	112	100	60	112	100	. 60	109	97	60	
2	150	60	149	99	60	149	100	59	142	95	60	
3	163	60	161	99	60	. 164	100	59	154	95	60	
4	171	60	172	101	60	174	102	58	164	96	60	
5	180	60	180	100	60	183	102	57	173	96	60	
6	187	60	186	100	60	189	101	57	182	97	60	
7	188	60	191	101	60	193	103	57	185	99	60	
8	194	60	195	101	60	196	101	57	188	97	60	
9	195	60	199	102	60	199	102	57	193	99	60	
10	202	60	204	101	60	204	101	56	197	98	60	
11	203	60	206	102	60	207	102	56	199	98	60	
12	208	60	210	101	60	211	102	56	204	98	60	
13	211	60	212	101	60	213	101	56	203	96	60	
18	215	59	218	101	60	222	103	56	212	98	60	
21	220	59	224	102	60	226	103	56	218	99	60	
25	227	59	232	102	60	230	102	56	220	97	60	
29	234	58	241	103	60	240	102	55	225	96	60	
33	241	58	249	103	60	249	104	55	234	97	60	
37	249	58	255	103	59 ^a	255	102	55	237	95	60	
41	255	58	262	103	59	261	103	55	245	96	60	
45	264	58	271	103	59	270	102	55	249	95	60	
49	268	58	279	104	57	275	103	55	252	94	60	
53	277	57	285	103	57	282	102	55	255	92	60	
57	288	57	295	103	57	294	102	55	266	92	59	
61	294	57	307	105	57	305	104	55	277	94	59	
65	300	51	312	104	53	311	104	51	281	94	56	
70 ^b	308	46	321	104	46	320	104	45	289	94	48	
73	316	45	330	104	46	332	105	45	300	95	47	
77	319	45	334	105	45	333	105	45	303	95	47	
81	322	44	338	105	44	339	106	43	308	96	45	
85	324	43	341	105	44	343	106	43	310	96	44	
89	326	41	348	107	44	348	107	41	311	95	43	
93	333	39	349	105	44	351	106	39	310	93	40	
97	336	36	353	105	40	348	103	39	310	92	34	
101	336	33	354	105	39	354	105	37	314	93	30	
103	339	29	352	104	38	350	103	36	312	92	30	
Mean for	weeks											
1-13	182		183	101		184	101		176	97		
14-52	241		248	103		248	103		232	96		
53-103	316		330	104		329	104		296	94		

^a The number of animals weighed for this week is fewer than the number of animals surviving.
 ^b Interim evaluation occurred during week 65.

There were no clinical signs of toxicity in rats, other than nonspecific signs relating to debilitation as a result of renal or other spontaneous disease. Male rats receiving coumarin were noted to resist the gavage procedure.

Hematology and Clinical Chemistry

The results of hematology and clinical chemistry evaluations at 15 months are shown in Table H5. The values of several hematologic parameters for 50 and 100 mg/kg groups of male and female rats were significantly lower than those of controls. While mean erythrocyte volume and mean erythrocyte hemoglobin were significantly lower in the 50 and 100 mg/kg groups than in the controls, significantly lower values for hematocrit and hemoglobin were observed only in the 100 mg/kg groups. Although the differences between the dosed and control groups were slight and not clinically important, they are characteristic of a microcytic normochromic anemia. In 50 and 100 mg/kg males, activated partial thromboplastin times were significantly lower and platelet counts were significantly higher than controls, suggesting that the microcytic normochromic anemia was due to chronic blood loss from impaired blood coagulation.

Activities of alanine aminotransferase, sorbitol dehydrogenase, or γ -glutamyltransferase in 50 and 100 mg/kg males and 100 mg/kg females were significantly higher than those of controls (Table H5). Activities of these cytoplasmic enzymes are characteristically elevated due to hepatocellular degeneration and necrosis, consistent with the liver toxicity observed histologically.

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplasms or nonneoplastic lesions of the liver, kidney, parathyroid gland, pharynx, forestomach, thyroid gland, nose, testis, and pituitary gland. Summaries of the incidences of nonneoplastic lesions and neoplasms, the individual animal tumor diagnoses, the statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one group, and historical control incidences for the biologically significant neoplasms mentioned in this section are presented in Appendix A for male rats and Appendix B for female rats. Liver: The absolute and relative liver weights of male and female rats that received 100 mg/kg were significantly greater than those of controls at the 15-month interim evaluation (Table G4). Consistent with the increase in organ weight, a spectrum of degenerative lesions occurred with a dose-related increase in incidence and/or average severity in male and female rats receiving coumarin by gavage (Table 9). Despite the wide variability in extent and severity of the liver lesions among individual animals, the lesions were generally more frequent and more severe in males.

Hepatocellular degeneration was usually minimal to mild in severity and occurred in randomly distributed lobules within an affected lobe. The affected hepatocytes were usually located in the centrilobular region (zone 3 of the liver acinus) and were characterized by the presence of multiple small, clear, intracytoplasmic vacuoles which gave the cytoplasm a granular appearance, or fewer larger vacuoles typical of lipid accumulation (Plates 5 and 6). The latter was recorded as fatty change at the 15-month interim evaluation. Hepatocellular degeneration was often accompanied by minimal to mild necrosis of individual cells or small clusters of cells, usually in the centrilobular or midzonal area of the hepatic lobule. Moderate to marked necrosis, which occurred in only a few rats, was zonal (generally centrilobular) to massive with the latter showing only a few viable hepatocytes near the portal area and blood filling the necrotic lobules (Plate 4). In many rats with mild to marked centrilobular necrosis, the hepatocytes in the peripheral regions of the liver lobules were enlarged and exhibited increased cytoplasmic basophilia. These peripherolobular hepatocytes also had enlarged, vesicular nuclei and cells in mitosis were more frequent than normally seen. This change was diagnosed as cytologic alteration. Liver fibrosis was characterized by bands of connective tissue running between lobules and connecting central areas to each other and to portal areas (Plates 7 and 8). This lesion was considered a sequel of necrosis.

The severity of bile duct hyperplasia, a naturally occurring age-related lesion in rats, increased with increasing dose in rats administered coumarin. The lesion was characterized by increased profiles of welldifferentiated bile ductules in the portal areas (Plates 9 and 10). These lesions did not exhibit the mucus cell metaplasia or epithelial dysplasia typical of cholangiofibrosis.

TABLE 9

Incidences of Nonneoplastic Lesions of the Liver of Rats in the 2-Year Gavage Study of Coumarin

Dose	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Male				
5-Month Interim Evaluation				
Liver ^a	10	10	9	10
Fatty Change ^b	0	$8^{**}(1.8)^{c}$	8°°(1.1)	5*(1.4)
Hepatocyte Degeneration	0	7°°(1.3)	8°°(1.9)	5*(1.0)
Coagulative Necrosis	0	0	0	1 (1.0)
Bile Duct Hyperplasia	6 (1.0)	8 (1.8)	9 (1.7)	9 (1.7)
2-Year Study				
Liver	49	50	51	50
Hepatocyte Degeneration	0	1 (2.0)	0	1 (3.0)
Coagulative Necrosis	1 (3.0)	13**(1.5)	38**(1.7)	40**(2.4)
Fibrosis	0	3 (1.3)	41**(1.6)	42**(1.9)
Bile Duct Hyperplasia	41 (1.6)	41 (1.8)	45 (2.2)	47°°(2.1)
Cytologic Alteration	0	0	28**(1.8)	29**(2.4)
Female				
15-Month Interim Evaluation				
Liver	10	8	8	10
Fatty Change	0	0	5°(1.2)	9** (2.3)
Hepatocyte Degeneration	0	0	3 (1.0)	9** (1.0)
Coagulative Necrosis	0	0	1 (1.0)	0
Bile Duct Hyperplasia	1 (1.0)	3 (1.0)	1 (1.0)	3 (1.0)
2-Year Study				
Liver	50	50	50	50
Hepatocyte Degeneration	0	0	8*(1.5)	30**(2.0)
Coagulative Necrosis	3 (2.3)	3 (1.0)	4 (2.0)	15**(1.7)
Fibrosis	0	0	1 (1.0)	12**(1.8)
Bile Duct Hyperplasia	26 (1.2)	27 (1.3)	29 (1.3)	20 (1.5)
Cytologic Alteration	0	0	0	9°*(2.4)

* Significantly different (P≤0.05) from the control group by the Fisher exact test (15-month interim) or the logistic regression test (2-year study) ** P≤0.01

^a Number of animals with organ examined microscopically.
 ^b Number of animals with lesion.

^c Average severity grade of lesion in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked

There was a decreased incidence of basophilic focus in dosed male and female rats. In males this decrease was due in part to the decreased survival in the dosed groups. There were no chemical-related increased incidences of liver neoplasms.

Kidney: The relative kidney weights of male and female rats receiving 100 mg/kg were significantly greater than those of controls at the 15-month interim evaluation (Table G4). The absolute kidney weights of 100 mg/kg rats were not increased, apparently because of the marked decrement in mean body weight. While nephropathy was observed in nearly all dosed and control rats, particularly males, the average severity of renal disease increased with increasing dose at the 15-month interim evaluation and at the end of the 2-year study (Tables 10 and 11). The more frequent occurrence of moderate or marked nephropathy in 50 and 100 mg/kg males was the principal cause of reduced survival of these groups.

Nephropathy was characterized by glomerulosclerosis, thickening of tubule basement membrane, degeneration and atrophy of tubule epithelium, dilatation of tubule lumens by pale pink acellular material (hyaline casts), interstitial fibrosis, and chronic inflammation. Regeneration of tubule epithelium was also observed frequently, and the extent and severity of this process paralleled the overall severity of the degenerative changes. In general, the severity grades were based upon the extent of tubular and glomerular involvement: minimal — less than 25%; mild — 25% to 50%; moderate — 50% to 75%; marked — greater than 75%.

The kidneys were initially sampled for histopathology by preparing a single hematoxylin and eosin stained section of each kidney. In addition to the nephropathy previously described, low numbers of renal tubule adenomas were seen in all groups of male rats and in the 100 mg/kg female rats (Tables 10, 11, A1, and B1). The incidences in the 25 and 50 mg/kg males and in 100 mg/kg female rats (two per group) were not significantly greater than those of the controls. However, no more than one per group has been observed in historical NTP 2-year control F344/N rats (Tables A4a and B4a). Renal tubule hyperplasia, a possible precursor of adenoma, occurred in male rats in the control and 25 mg/kg groups (Tables 10 and A5); hyperplasia was not observed in female rats.

Primarily because of the occurrence of this rare neoplasm in 100 mg/kg female rats and in the male groups, additional step sections of kidney were prepared from the remaining formalin-fixed tissue. Approximately 6 to 8 additional sections taken at 1 μ m intervals were prepared for each male and female rat. Additional rats, primarily dosed males, were identified with focal hyperplasia or adenoma. A carcinoma was also seen in one 25 mg/kg male rat. The incidences of these proliferative lesions in the step sections and in the single and step sections combined are shown in Tables 10 and 11. While hyperplasia or adenoma clearly occurred more frequently in the dosed male rats, the incidences did not increase with increasing dose. In female rats, the lesions occurred much less frequently, but the adenomas were seen in the 50 and 100 mg/kg groups.

Renal tubule hyperplasia, as defined in this study, was distinguished from the common regenerative epithelial changes commonly seen as a part of nephropathy and was considered a preneoplastic lesion. Hyperplasia, adenoma, and carcinoma were part of a morphological continuum and occurred in the cortex of the kidney. Hyperplasia of the tubule epithelium was characterized by single or multiple profiles of a single tubule partially or completely filled with normal or slightly enlarged epithelial cells. The renal tubule adenomas were discrete, sometimes multinodular masses at least three times greater in diameter than an average tubule and composed of somewhat pleomorphic epithelial cells arranged in complex tubular structures and solid clusters. The carcinoma was larger than the adenomas and exhibited cellular pleomorphism and atypia and central necrosis.

Oncocytomas were observed in two 25 mg/kg male rats (Table 10). These were small, discrete nodules of uniform cells with dense, hyperchromatic nuclei and granular eosinophilic cytoplasm. While these lesions also occurred in the cortex, they appear to be morphologically distinct from renal tubule hyperplasia, adenoma, or carcinoma.

Incidences of Kidney Lesions in Male Rats in the 2-Year Gavage Study of Coumarin

Dose	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Single Sections (Standard Evaluation))			······································
15-Month Interim Evaluation				
Kidney ^a	10	10	9	10
Nephropathy ^b	10 (1.0) ^c	10 (1.7) **	9 (2.3)**	10 (2.5)**
Renal Tubule Adenoma	0	0	1	0
2-Year Study				
Kidney	49	50	51	50
Nephropathy	48 (2.0)	48 (2.9)**	50 (3.6)**	50 (3.6)**
Renal Tubule Hyperplasia	1	3	0	0
Renal Tubule Adenomad	1	2	2	1
Step Sections (Extended Evaluation)				
15-Month Interim Evaluation				
Kidney	10	10	9	10
Renal Tubule Hyperplasia	0	0	1	1
Renal Tubule Adenoma	0	0	0	0
-Year Study				
Kidney	49	50	51	50
Renal Tubule Hyperplasia	2	12**	10**	6
Renal Tubule Adenoma	0	4	5*	4
Renal Tubule Carcinoma	0	1	0	0
Renal Tubule Adenoma or Carcinoma	0	 5*	5°	4
Renal Tubule Oncocytoma	0	2	0	0
Single and Step Sections Combined				
15-Month Interim Evaluation				
Kidney	10	10	9	10
Renal Tubule Hyperplasia	0	0	1	1
Renal Tubule Adenoma	0	0	1	0
2-Year Study				
Kidney	49	50	51	50
Renal Tubule Hyperplasia	3	15**	10**	6
Renal Tubule Adenoma	1	6°	7**	5
Renal Tubule Carcinoma	0	1	0	0
Renal Tubule Adenoma or Carcinoma	1	6¢	7**	5
Renal Tubule Oncocytoma	0	2	0	0

 Significantly different (P≤0.05) from the control group by the logistic regression test (2-year study) or Mann-Whitney U test (severity grades)

** P≤0.01

^a Number of animals with organ examined microscopically.

^b Number of animals with lesion.

^c Group average severity grade of lesion: 0 = normal, 1 = minimal, 2 = mild, 3 = moderate, 4 = marked

d Historical incidence for 2-year corn oil gavage studies with vehicle control groups (mean ± standard deviation): 8/1,019 (0.8% ± 1.0%); range 0%-2%

Dose	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Single Sections (Standard Evalua	ntion)		· · · · · · · · · · · · · · · · · · ·	
15-Month Interim Evaluation				
Kidney ^a	10	8	10	10
Nephropathy ^b	4 (0.4) ^c	8*(1.0)*	10*(1.0)**	10*(1.5)**
2-Year Study				
Kidney	49	50	50	49
Nephropathy	34 (0.9)	44*(1.2)*	44*(1.6)**	49**(2.3)**
Renal Tubule Adenoma ^d	0	0	0	2
Step Sections (Extended Evaluation	ion)			
15-Month Interim Evaluation				
Kidney	10	8	10	10
Renal Tubule Hyperplasia	0	0	0	0
Renal Tubule Adenoma	0	0	0	0
2-Year Study				
Kidney	49	50	50	49
Renal Tubule Hyperplasia	1	0	4	2
Renal Tubule Adenoma	0	0	1	1 ^e
Single and Step Sections Combin	led			
5-Month Interim Evaluation				
Kidney	10	8	10	10
Renal Tubule Hyperplasia	0	0	0	0.
Renal Tubule Adenoma	0	0	0	0
2-Year Study				
Kidney	49	50	50	49
Renal Tubule Hyperplasia	1	0	4	2
Renal Tubule Adenoma	0	0	1	2

Incidences of Kidney Lesions in Female Rats in the 2-Year Gavage Study of Coumarin

* Significantly different (P≤0.05) from the control group by the Fisher exact test (15-month interim), logistic regression test (2-year study), or Mann-Whitney U test (severity grades)

** P≤0.01

^a Number of animals with organ examined microscopically.

^b Number of animals with lesion.

^c Group average severity grade of lesion: 0 = normal, 1 = minimal, 2 = mild, 3 = moderate, 4 = marked

d Historical incidence for 2-year corn oil gavage studies with vehicle control groups (mean ± standard deviation): 2/1,018 (0.2% ± 0.6%); range 0%-2%

^e The adenoma in the step section is the same adenoma seen in the original single section.

Parathyroid gland: The incidences of bilateral, diffuse hyperplasia of the parathyroid gland in 25, 50, and 100 mg/kg male rats were significantly greater than that of controls (0 mg/kg, 3/41; 25 mg/kg, 20/47; 50 mg/kg, 31/49; 100 mg/kg, 29/47; Table A5). This increased incidence of hyperplasia was considered to be secondary to the increased severity of renal disease and characteristic of renal secondary hyperparathyroidism. Consistent with the overall lower severity of renal disease in females as compared with males, parathyroid hyperplasia occurred infrequently but only in dosed female rats (Table B5).

Pharynx: Squamous cell papillomas occurred in one control, one 25 mg/kg, and one 50 mg/kg male and in two 100 mg/kg female rats (Tables A1 and B1). Further, a squamous cell carcinoma was seen in another 50 mg/kg male rat. No more than one squamous cell neoplasm (papilloma or carcinoma) has been observed in an individual control group of male or female rats from recent NTP 2-year gavage studies (Tables A4b and B4b). Because of the overall low incidences, the lack of increasing incidence over a fourfold range of doses in males, and the lack of statistical significance, these neoplasms were not considered chemical related.

Forestomach: Ulcers of the forestomach occurred frequently in dosed male rats, and the incidences in dosed male rats were significantly greater than that of controls (Tables 12 and A5). While ulcers occurred much less frequently in dosed females, the incidence in the 100 mg/kg group was also significantly greater than controls. The forestomach ulcers were characterized by focal necrosis of the mucosa and adjacent muscularis mucosa. A few of the forestomach ulcers had perforated, resulting in a secondary peritonitis which was considered to be the cause of death. The squamous epithelium at the margin of the ulcers was usually thickened by an increase in cells (hyperplasia) and keratin (hyperkeratosis); the adjacent submucosa was infiltrated with acute and chronic inflammatory cells.

Squamous cell papillomas of the forestomach occurred in several male and female rats (Tables 12, A1, and B1). The incidence of three papillomas in the 25 mg/kg females contrasts with the historical incidence of 3/1,020 in control female F344/N rats from recent NTP 2-year studies (Table B4c). However, since there were no increased incidences in the 50 and 100 mg/kg females, the squamous cell papillomas in the 25 mg/kg females were not considered to be chemical related.

Thyroid gland: Follicular cell carcinomas were seen in one control and one 25 mg/kg male, while follicular cell adenomas were seen in three additional 25 mg/kg males (Table A1). No follicular cell neoplasms were observed in 50 or 100 mg/kg males. Follicular cell hyperplasia, a precursor to follicular cell neoplasia, did not occur in any male rat groups. The incidence of four thyroid gland follicular cell neoplasms in 25 mg/kg male rats exceeds the range observed in control male rats from recent NTP 2-year studies (range 0%-6%; 22/1,009, 2.2%; Table A4c). The marginally greater incidence of thyroid neoplasms in 25 mg/kg males is difficult to evaluate because of the early deaths of dosed male rats. However, the absence of thyroid gland follicular cell hyperplasia suggests this is not a chemical-related response.

Nose: The incidences of suppurative inflammation in the nose in 50 and 100 mg/kg male and 100 mg/kg female rats were significantly greater than those of controls (males: 13/49, 20/50, 27/51, 41/50; females: 4/50, 2/50, 0/50, 13/49; Tables A5 and B5). Inflammation generally consisted of accumulations of neutrophils in the nasal cavity, often associated with globules of yellow refractile material compatible with corn oil or fragments of plant material. Inflammation in the nose is frequently observed in corn oil gavage studies and appears to be due to reflux of corn oil into the nasal cavity following dosing. The increased incidence in dosed animals may be related to the greater degree of irritation caused by the coumarin-corn oil mixture than by corn oil alone.

Testis: The incidences of testicular interstitial cell adenomas in dosed groups of male rats were marginally greater than those of controls (38/45, 43/49, 42/49, 46/50; Table A3), but the incidence in each group is within the historical range of controls from recent NTP studies (range 88%-94%; 886/1,012, 85.6%; Table A4d) and is not considered chemical related.

Pituitary gland: The incidence of adenomas of the pituitary gland pars distalis in the 100 mg/kg male rats was marginally lower than that of the controls (19/48, 12/48, 16/49, 6/50; Table A3).

Dose	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Male				
15-Month Interim Evaluation				
Forestomach ^a Squamous Cell Papilloma ^b	10 0	10 1	9 0	10 1
2-Year Study				
Forestomach Ulcer	48 7	50 24**	51 35**	50 34**
Squamous Cell Papilloma ^c Overall rate ^d Logistic regression test ^e	0/49 (0%) P=0.219	1/50 (2%) P=0.275	0/51 (0%) _ ^f	1/50 (2%) P=0.543
Female				
2-Year Study				
Forestomach Ulcer	48 1	49 1	50 6	48 9**
Squamous Hyperplasia	0	2	0	0
Squamous Cell Papilloma ^g Overall rate Logistic regression test	1/50 (2%) P=0.407N	3/50 (6%) P=0.406	0/50 (0%) P=0.457N	1/50 (2%) P=0.749

TABLE 12 Incidences of Neoplasms and Nonneoplastic Lesions of the Forestomach of Rats in the 2-Year Gavage Study of Coumarin

** Significantly different (P≤0.01) from the control group by the logistic regression test

^a Number of animals with organ examined microscopically.

^b Number of animals with lesion.

^c Historical incidence for 2-year corn oil gavage studies with vehicle control groups (mean ± standard deviation): 5/1,020 (0.5% ± 1.1%); range 0%-4%

^d Number of animals with neoplasm per number of animals necropsied.

^e In the control column are the P values associated with the trend test. In the dosed group columns are the P values corresponding to the pairwise comparisons between the controls and that dosed group. The logistic regression test regards these lesions as nonfatal. A negative trend or lower incidence in a dose group is indicated by N.

f Not applicable; no neoplasms in animal group

^g Historical incidence: $3/1,020 (0.3\% \pm 0.7\%)$; range 0%-2%

STOP-EXPOSURE EVALUATION

Stop-exposure groups of male rats were included in the NTP 2-year study to evaluate the potential for chemical-related liver lesions to progress or regress during a recovery period, based on reports that coumarin produced cholangiofibrosis and bile duct carcinomas in male rats (Bär and Griepentrog, 1967; Griepentrog, 1973). Groups of 20 male rats each were given 100 mg/kg coumarin for 9 or 15 months followed by administration of only the gavage vehicle until the end of the study (2 years). To determine progression or regression of chemical-related lesions during the recovery period, the incidences of neoplasms and nonneoplastic lesions in these stopexposure groups were compared with those of male rats scheduled for 9- and 15-month interim evaluations. To provide an additional measure of dose response relative to duration of exposure, the incidences of neoplasms in rats in the 9- and 15-month stop-exposure groups were compared with the incidences in rats receiving 100 mg/kg for the entire 2 years (the latter group was part of the regular 2-year study).

Survival

Estimates of the survival probability for male rats in the stop-exposure groups are shown in Table 13. Nine of the 20 males that received 100 mg/kg for 9 months (9-month stop-exposure group) and two of the 20 males that received 100 mg/kg for 15 months (15-month stop-exposure group) survived until week 104. The decreased survival of each of the stop-exposure groups was attributed primarily to a chemical-related increased severity of renal disease.

Body Weights

The mean body weights of male rats in the 9- and 15-month stop-exposure groups are compared with the controls of the regular 2-year study in Table 14. The mean body weights of the 9-month stop-exposure group ranged from 8% less than controls at week 2 to about 15% less at week 40, when the administration of coumarin to this group ceased. Thereafter, body weight gain of this group improved slightly and the weight deficit diminished to about 12% for much of the study.

The weight gain of the 15-month stop-exposure group followed a similar pattern. The mean body weights of the 15-month stop-exposure group ranged from 7% to 15% less than controls during the period that the rats received coumarin. After week 65, when the administration of coumarin to this group was stopped, the weight deficit diminished slightly to about 12%.

TABLE 13

Survival of Male Rats in the Stop-Exposure Gavage Evaluation of Coumarin

	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)	
Animals initially in study	40	30	
9-Month interim evaluation ^a	20	0	
15-Month interim evaluation ^a	0	10	
Natural deaths	4	2	
Moribund kills	6	13	
Accidental deaths ^a	. 1	3	
Animals surviving to study termination	- 9	2	
Percent probability of survival at end of study ^b	47	12	
Mean survival (days) ^c	629	511	

^a Censored from survival analyses

^b Kaplan-Meier determinations

^c Mean of all deaths (uncensored, censored, and terminal sacrifice)

Weeks	Vehicle	Vehicle Control		100 mg/kg (9-month)			100 mg/kg (15-month)		
on	Av. Wt.	No. of		Wt. (% of				f No. of	
Study	(g)	Survivors	(g)		Survivors	(g)		Survivors	
1	145	60	145	101	20	148	102	20	
2	216	59	199	92	20	202	93	20	
. 3	247	59	223	90	20	227	92	20	
4	269	59	247	92	20	251	93	20	
5	286	59	260	91	20	265	93	20	
6	304	59	275	91	20	279	92	18	
7	315	59	284	90	20	289	92	18	
8	324	59	290	90	19	294	91	18	
9	338	59	298	88	19	304	90	18	
10	349	59	308	88	19	315	90	18	
11	355	59	314	89	19	322	91	17	
12	368	59	322	88	19	329	90	17	
13	372	59	329	88	19	338	91	17	
18	394	59	344	87	19	354	90	17	
21	409	59	358	88	19	367	90	17	
25	426	59	376	88	19	384	90	17	
29	441	59	380	86	19	392	89	17	
33	462	59	392	85	19	397	86	17	
37	469	59	405	86	19	415	88	16	
41	481	59	404	84	19	416	86	16	
45	486	59	418	86	18	425	87	16	
49	498	58	428	86	18	437	88	16	
53	502	58	442	88	18	432	86	16	
57	514	57	454	88	18	444	86	16	
61	523	55	459	88	18	444	85	16	
65 ^a	521	46	457	88	18	446	86	16	
70	526	44	463	88	18	456	87	16	
73	527	44	461	88	18	456	87	14	
77	522	43	466	89	17	452	87	14	
81	521	43	456	88	17	425	82	12	
85	510	40	451	89	15	446	88	9	
89	502	35	444	88	13	451	90	5	
93	500	35	435	87	13	441	88	3	
97	483	33	392	81	13	431	89	3	
101	475	30	423	89	9	390	82	3	
101	473	29	401	85	9	366	78	3	
					-			-	
Mean for we 1-13	eeks 299		269	90		274	92		
1-13									
	452 507		389 443	86 87		399 434	88 86		
53-103	507		443	8/		434	80		

,

Mean Body Weight and Survival of Male Rats in the 9-Month and 15-Month Stop-Exposure Gavage Evaluation of Coumarin

^a Interim evaluation occurred during week 65.

Pathology and Statistical Analyses of Results

Summaries of the incidences of neoplasms and nonneoplastic lesions and the individual animal diagnoses for male rats of the stop-exposure groups are shown in Appendix E. For statistical analyses, the incidences of neoplasms in the stop-exposure groups were compared with the controls of the regular 2-year study (Table E3a) and with the group receiving 100 mg/kg for the entire study (Table E3b).

Progression or Regression of Chemical-Induced Lesions

Consistent with the findings of the 2-year study in male rats, chemical-related lesions were observed in the liver and kidney at the 9- and 15-month interim evaluations of the stop-exposure groups (Tables 15 and 16). Comparisons of the incidences of hepatic lesions at the interim evaluations with their corresponding stop-exposure groups show that the incidences and/or severity of the lesions returned to levels similar to those of controls following cessation of exposure at 9 or 15 months (Tables 17 and 18). Thus, the hepatocellular and biliary lesions produced by 9 or 15 months of exposure were reversible. For completeness, Table 19 compares the incidences of liver lesions among male rats receiving 100 mg/kg in the 9- and 15-month stop-exposure groups and in the 2-year study group. These comparisons also show that continued administration is necessary for the manifestation of these lesions at the end. Since coumarin administered by gavage to F344/N rats failed to produce cholangiofibrosis or bile duct carcinomas, as suggested by reports in the literature, the primary purpose of the stop-exposure groups was largely confounded.

In contrast to the liver lesions, the severity of nephropathy in male rats of the two stop-exposure groups was significantly greater at the end of 2 years than that in the male rats at the respective interim evaluations (Tables 17 and 18). This is not unexpected, since nephropathy is a progressive degenerative disease that naturally increases in severity with age. However, it does indicate that renal damage caused by 9 or 15 months of exposure to coumarin was largely irreversible. Consistent with the increased average severity of renal disease, the incidence of parathyroid hyperplasia was greater in the stop-exposure groups than in the 9- and 15-month interim evaluation groups (Tables 17 and 18). The severity of nephropathy and incidence of parathyroid hyperplasia in male rats receiving 100 mg/kg coumarin for the entire 2-year study were significantly greater than those in the stop-exposure groups (Table 19).

In the standard evaluation of single sections, renal tubule adenomas were seen in one male in the 9-month 100 mg/kg stop-exposure group and in two males in the 15-month 100 mg/kg stop-exposure group (Table 16). Further, renal tubule oncocytomas were also seen in two males in the 15-month 100 mg/kg stop-exposure group. Microscopic examination of the additional step sections revealed additional males with hyperplasia and adenoma in these stop-exposure groups (Table 16).

Dose	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
9-Month Interim Evaluation			· ·
Liver ^a Necrosis ^b Bile Duct Hyperplasia	17 0 7 (1.0)	18 17**(1.6) ^c 17**(1.6)	
15-Month Interim Evaluation ^d			۰ ۲۰
Liver	17		20
Fatty Change	1 (1.0)		14**(1.6)
Necrosis	0		3 (1.0)
Hepatocyte Degeneration Bile Duct Hyperplasia	0 11 (1.0)		13**(1.2) 19*(1.8)
Stop-Exposure			
Liver	49	20	20
Necrosis	1 (3.0) ^c	2 (2.0)	3 (2.3)
Hepatocyte Degeneration	0	0	1 (1.0)
Bile Duct Hyperplasia	41 (1.6)	17 (1.9)	14 (1.4)
Fibrosis	0	0	2 (1.5)

TABLE 15 Incidences of Nonneoplastic Liver Lesions in Male Rats in the Stop-Exposure Gavage Evaluation of Coumarin

* Significantly different (P≤0.01) from the control group by the Fisher exact test (interims)

** (P≤0.01)

^a Number of animals with organ examined microscopically.

^b Number of animals with lesion.

c

Average severity grade of lesion in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = markedIncludes data from the 15-month interim in the 2-year core study and the 15-month interim in the stop-exposure evaluation. d

.

Incidences of Selected Lesions of the Kidney, Forestomach, and Parathyroid Gland in Male Rats in the Stop-Exposure Gavage Evaluation of Coumarin

Dose	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
Single Sections (Standard Evalua	ition)		·····
9-Month Interim Evaluation			
Kidney ^a	17	18	
Nephropathy ^b	17 (1.0) ^c	18 (2.3)**	
15-Month Interim Evaluation ^d			
Kidney	17		20
Nephropathy	17 (1.3)		20 (2.7)**
Stop-Exposure			
Kidney	49 ^e	20	20
Nephropathy	48 (2.0)	20 (3.1)**	20 (3.4)**
Renal Tubule Hyperplasia	1	0	3
Renal Tubule Adenoma	1	1	2
Renal Tubule Oncocytoma	0	0	2
Parathyroid Gland	41	19	18
Hyperplasia	3	4	8**
Forestomach	48	19	19
Ulcer	7	3	5
Step Sections (Extended Evaluat	ion)		
15-Month Interim Evaluation			
Kidney	17		20
Hyperplasia	0		1
Renal Tubule Adenoma	0		1
Stop-Exposure			
Kidney	49	20	20
Renal Tubule Hyperplasia	2	2	5**
Renal Tubule Adenoma	0	3*	1
(continued)			

Incidences of Selected Lesions of the Kidney, Forestomach, and Parathyroid Gland in Male Rats in the Stop-Exposure Gavage Evaluation of Coumarin (continued)

Dose	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
ingle and Step Sections Combi	ned		
5-Month Interim Evaluation			
Kidney	17		20
Renal Tubule Hyperplasia	0		1
Renal Tubule Adenoma	0		1
Stop-Exposure			
Kidney	49	20	20
Renal Tubule Hyperplasia	3	2	7**
Renal Tubule Adenoma	1	4*	2

 Significantly different (P≤0.05) from the control group by the logistic regression test (stop-exposure) or Mann-Whitney U test (severity grades).

** P≤0.01

^a Number of animals with organ examined microscopically.

^b Number of animals with lesion.

^c Group average severity grade of lesion: 0 = normal, 1 = minimal, 2 = mild, 3 = moderate, 4 = marked

^d Includes data from the 15-month interim in the 2-year core study and the 15-month interim in the stop-exposure evaluation.

^e For comparison the data for the vehicle control group of the regular 2-year study is included here.

Comparison of the 9-Month Interim Evaluation with the 9-Month Stop-Exposure Group in the Stop-Exposure Gavage Evaluation of Coumarin

Dose (100 mg/kg)	9-Month Interim Evaluation	9-Month Stop-Exposure Group
Liver ^a	18	20
Necrosis ^b	17 (1.6) ^c	2**(2.0)
Bile Duct Hyperplasia	17 (1.6)	17 (1.9)
Kidney	18	20
Nephropathy	18 (2.3)	20 (3.1)**
arathyroid Gland	18	19
Hyperplasia	0	4
tomach, Forestomach	18	19
Ulcer	0	3

** Significantly different (P≤0.01) from the 9-month interim group by the logistic regression test (incidence data) or Mann-Whitney U test (severity grades)

^a Number of animals with organ examined microscopically.

^b Number of animals with lesion.

^c Average severity grade of lesion in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked

TABLE 18

Comparison of the 15-Month Interim Evaluation with the 15-Month Stop-Exposure Group in the Stop-Exposure Gavage Evaluation of Coumarin

Dose (100 mg/kg)	15-Month Interim Evaluation ^a	15-Month Stop-Exposure Group
Liver ^b	20	20
Fatty Change ^c	14 $(1.6)^{d}$	3**(1.0)
Necrosis	3 (1.0)	3 (1.7)
Hepatocyte Degeneration	13 (1.2)	1**(1.0)
Fibrosis	0	3 (1.7)
Bile Duct Hyperplasia	19 (1.8)	14 (1.4)
Kidney	20	20
Nephropathy	20 (2.7)	20 (3.4)**
Parathyroid Gland	20	18
Hyperplasia	0	8**
Stomach, Forestomach	20	19
Ulcer	0	5*

* Significantly different (P≤0.05) from the 15-month interim group by the logistic regression test (incidence data) or Mann-Whitney U test (severity grades)

** P≤0.01

^a Includes data from the 15-month interim in the 2-year core study and the 15-month interim in the stop-exposure evaluation.

^b Number of animals with organ examined microscopically.

^c Number of animals with lesion.

^d Average severity grade of lesion in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked

TABLE 19Incidences of Selected Lesions of the Liver and Kidney of Male Rats:Comparison of the 9- and 15-Month Stop-Exposure Groups with the 2-Year Core Groupin the Stop-Exposure Gavage Evaluation of Coumarin

Dose (100 mg/kg)	9-Month Stop-Exposure Group	15-Month Stop-Exposure Group	2-Year Core Group
Liver ^a	20	20	50
Hepatocyte Degeneration ^b	0	$1(1.0)^{c}$	1 (3.0)
Necrosis	2 (2.0)	3 (1.7)	40**(2.4)
Fibrosis	0	3 (1.7)	42**(1.9)
Bile Duct Hyperplasia	17 (1.9)	14 (1.4)	47 (2.1)
lidney	20	20	50
Nephropathy	20 (3.1)	20 (3.4)	50 (3.6)*
Renal Tubule Hyperplasia ^d	2	7	6
Renal Tubule Adenoma ^d	4	2	5
arathyroid Gland	19	18	47
Hyperplasia	4	8	29**
tomach, Forestomach	19	19	50
Ulcer	3	5	34**

* Significantly different (P≤0.05) from the 9-month stop-exposure group by the logistic regression test (incidence data) or Mann-Whitney U test (severity grades)

** (P≤0.01)

^a Number of animals with organ examined microscopically.

^b Number of animals with lesion.

^c Average severity grade of lesion in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked

^d Includes standard (single section) and extended (step sections) evaluations.

MICE

16-Day Study

All male and female mice receiving 600 mg/kg died within the first 3 days of the study (Table 20). Of the mice that received 300 mg/kg, one female died on day 1 and one male died on day 6. While the deaths of mice in the 300 and 600 mg/kg groups were considered chemical related, the cause of death of one 75 mg/kg male on day 3 was uncertain. There were no clinical findings related to specific organ toxicity. One or more clinical findings of inactivity, excessive lacrimation, piloerection, bradypnea, ptosis, or ataxia were observed in one or more mice from the 300 and 600 mg/kg groups within the first several hours after dosing. These signs were generally seen during the first week of the study.

The mean body weight gains and final mean body weights of all surviving mice that received coumarin were similar to those of the controls. Further, the platelet counts and capillary clotting time of mice receiving coumarin were also similar to those of the controls (Table H6). Histopathology examinations were not performed in the 16-day study.

TABLE 20

Survival and Mean Body Weights of Mice in the 16-Day Gavage Study of Coumarin

			Mean Body Weight ^b	(g)	Final Weight
Dose Survival ^a (mg/kg)	Initial	Final	Change	Relative to Controls (%)	
Ale					
0	5/5	22.6 ± 0.9	24.6 ± 1.4	2.0 ± 0.8	
40	5/5	21.8 ± 0.9	24.4 ± 0.8	2.6 ± 0.2	<u>9</u> 9
75	4/5 ^c	22.4 ± 0.5	25.3 ± 0.5	2.5 ± 0.3	103
150	5/5	22.2 ± 0.8	24.6 ± 0.8	2.4 ± 0.2	100
300	4/5 ^d	21.2 ± 0.7	23.5 ± 1.2	2.0 ± 0.4	96
600	0/5 ^e	23.2 ± 0.7	-	-	-
emale					
0	5/5	18.6 ± 0.5	21.0 ± 1.0	2.4 ± 0.5	
40	5/5	17.4 ± 0.6	20.2 ± 0.6	2.8 ± 0.2	96
75	5/5	18.4 ± 0.8	20.4 ± 0.8	2.0 ± 0.3	97
150	5/5	17.6 ± 0.7	20.4 ± 0.5	2.8 ± 0.6	97
300	4/5 ^f	18.2 ± 0.5	20.0 ± 0.7	1.8 ± 0.3	95
600	0/5 ^g	18.4 ± 1.2	-	_	_

^a Number of animals surviving/number initially in group

^b Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the studies. No data were collected for groups with 100% mortality. Differences from the control group are not significant by Williams' or Dunnett's tests.

^c Day of death: 3

^d Day of death: 6

^e Day of death: 1, 1, 2, 2, 3

f Day of death: 1

^g Day of death: 1, 1, 1, 1, 3

13-WEEK STUDY

Two male mice that received 300 mg/kg died during the first week (Table 21). One female mouse receiving 75 mg/kg died in week 12 and one female receiving 19 mg/kg died in week 2. While the cause of death of the latter two mice was not reported by the laboratory, the deaths were more likely related to gavage error than to toxicity. There were no clinical signs of toxicity observed. The mean body weight gain and final mean body weight of males that received 300 mg/kg were significantly lower than those of controls (Table 21).

Hematology evaluations revealed a dose-related decrease in mean erythrocyte volume and mean erythrocyte hemoglobin in male and female mice receiving coumarin (Table H7). The mean erythrocyte volume of males receiving 38 mg/kg or more and of females receiving 75 mg/kg or more was significantly lower than that of controls. The hematocrit of male mice receiving 300 mg/kg was also significantly lower than controls. While these changes were not

clinically important, they are characteristic of a microcytic, normochromic anemia.

At necropsy, the absolute and relative liver weights of male and female mice receiving 150 or 300 mg/kg were significantly greater than those of the controls (Table G5). Significantly increased relative brain and testis weights of 300 mg/kg male mice were considered to be due to the significantly lower body weight of this group. The principal lesion observed in mice receiving 300 mg/kg was minimal to mild centrilobular hepatocellular hypertrophy, consistent with the significant increase in liver weight. The hepatocellular hypertrophy was seen in seven males and seven females in the 300 mg/kg group; hypertrophy was not seen in the next lower dose group.

Dose Selection Rationale: Based on the mortality observed in the 300 mg/kg group in the 16-day and 13-week studies and the lack of significant toxicity at lower doses, the high dose selected for the 2-year study was 200 mg/kg.

TABLE 21

Survival and Mean Body Weights of Mice in the 13-Week Gavage Study of Coumarin

			Mean Body Weight ^b (g)	Final Weight
Dose Survival ^a (mg/kg)	Initial	Final	Change	Relative to Controls (%)	
Male					
0	10/10	25.0 ± 0.6	32.3 ± 0.8	7.3 ± 0.6	
19	10/10	24.4 ± 0.5	32.6 ± 0.9	8.2 ± 0.4	101
38	10/10	24.7 ± 0.6	32.7 ± 0.8	8.0 ± 0.5	101
75	10/10	24.6 ± 0.6	32.1 ± 0.7	7.5 ± 0.7	99
150	10/10	24.6 ± 0.6	31.6 ± 0.5	7.0 ± 0.4	98
300	8/10 ^c	24.2 ± 0.5	28.3 ± 0.7 **	$4.4 \pm 0.4^{\circ \circ}$	87
Female				,	
0	10/10	19.1 ± 0.5	25.3 ± 0.6	6.2 ± 0.5	
19	9/10 ^d	19.0 ± 0.2	25.1 ± 0.4	6.1 ± 0.4	99
38	10/10	19.4 ± 0.3	25.0 ± 0.7	5.6 ± 0.5	99
75	9/10 ^e	19.3 ± 0.4	25.8 ± 0.7	6.3 ± 0.4	102
150	10/10	19.1 ± 0.4	24.8 ± 0.6	5.7 ± 0.3	98
300	10/10	18.6 ± 0.5	23.5 ± 0.7	$4.9 \pm 0.4^{*}$	93

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's tests

** P≤0.01

 a Number of animals surviving/number initially in group
 b Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the studies.

^c Week of death: 1, 1

d Week of death: 2

e Week of death: 12

2-YEAR STUDY

Survival

Estimates of survival probabilities for male and female mice are shown in Table 22 and in the Kaplan-Meier curves in Figure 4. Survival of all dosed groups of male and female mice was similar to that of the controls.

Body Weights and Clinical Findings

The mean body weights of 200 mg/kg male mice were about 3% to 10% lower than those of controls from week 10 to week 81 of the study. Thereafter, the body weight differences between the 200 mg/kg and control males diminished, and at the end of the study the mean body weights were similar. The mean body weights of 200 mg/kg female mice followed a pattern similar to males and varied from about 3% to 18% lower than controls from week 11 until week 49. The body weight differences diminished slightly thereafter, but remained about 12% lower at the end of the study (Figure 5 and Tables 23 and 24).

Hematology and Clinical Chemistry

Chemical-related changes in hematology parameters were more apparent in male mice than in females (Table H8). Mean erythrocyte volume, mean erythrocyte hemoglobin, and hematocrit of 200 mg/kg males were significantly lower than those of the controls. Of these parameters, only mean erythrocyte volume of 200 mg/kg females was significantly lower than controls. The platelet counts of both males and females in the 200 mg/kg groups were significantly higher than controls. Of the clinical chemistry parameters evaluated, only the value of alkaline phosphatase in 200 mg/kg males was significantly different from controls. The lower mean value of alkaline phosphatase for 200 mg/kg males is of uncertain significance, since increases in this enzyme are usually seen with certain disease processes.

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplasms or nonneoplastic lesions of the lung, liver, and forestomach. Summaries of the incidences of nonneoplastic lesions and neoplasms, the individual animal tumor diagnoses, the statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one group, and historical control incidences for the biologically significant neoplasms mentioned in this section are presented in Appendix C for male mice and Appendix D for female mice.

Vel	nicle Control	50 mg/kg	100 mg/kg	200 mg/kg
Male				
Animals initially in study	70	70	70	70
15-Month interim evaluation ^a	20	20	20	19
Natural deaths	5	3	1	11
Moribund kills	1	0	6	3
Accidental deaths ^a	1	0	1	0
Animals surviving to study termination	43	47	42	37
Percent probability of survival at end of study ^b	88	94	87	74
Mean survival (days) ^c	642	647	618	619
Survival analysis ^d	P=0.008	P=0.476N	P=0.927	P=0.075
Female				
Animals initially in study	70	70	70	70
15-Month interim evaluation ^a	18	20	19	19
Natural deaths	7	5	3	13
Moribund kills	8	5	5	8
Accidental deaths ^a	4	0	1	2
Animals surviving to study termination	33	40 ^e	42	28
Percent probability of survival at end of study	70	80	85	61
Mean survival (days)	577	639	618	577
Survival analysis	P=0.105	P=0.240N	P=0.124N	P=0.330

Survival of Mice in the 2-Year Gavage Study of Coumarin

а Censored from survival analyses

b

Kaplan-Meier determinations Mean of all deaths (uncensored, censored, and terminal sacrifice) с

d The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the dosed columns. A lower mortality in a dose group is indicated by N. e

Includes one animal killed moribund the last week of the study.

i

FIGURE 4 Kaplan-Meier Survival Curves for Male and Female Mice Administered Coumarin by Gavage for 2 Years

Mean Body Weights and Survival of Male Mice in the 2-Year Gavage Study of Coumarin

Weeks	Vehicle	e Control		50 mg/kg	<u> </u>		100 mg/	kg		200 mg/	kg
on	Av. Wt.	No. of	Av. Wt.	WL (% o	f No. of	Av. Wt.	WL (% of	No. of	Av. Wt.	WL. (% of	No. of
Study	(g)	Survivors	(g)	controls)) Survivors	(g)	controls)	Survivors	(g)	controls)	Survivor
1	22.8	70	22.4	98	70	22.3	98	69	22.6	99	70
2	24.1	70	24.0	100	70	24.2	100	69	24.1	100	70
3	25.9	70	25.9	100	70	25.3	98	70	25.5	99	70 ^a
4	26.3	70	26.3	100	70	25.9	99	70	25.8	98	70
5	27.4	70	27.3	100	70	27.1	99	70	27.3	100	70
6	27.9	70	28.2	101	70	27.9	100	70	27.9	100	70
8	28.7	70	29.0	101	70	28.4	99	70	28.3	99	70
9	30.2	70	29.8	99	70	29.4	97	70	29.0	96	70
10	30.9	70	30.9	100	70	30.3	98	69	29.9	97	70
11	31.9	70	31.9	100	70	31.4	98	69	30.8	97	70
12	32.4	70	32.2	99	70	32.1	99	69	31.0	96	70
13	32.8	70	33.0	101	70	32.7	100	69	31.7	97	70
17	34.8	70	34.9	100	70	34.0	98	68	33.7	97	70
21	38.6	70	38.2	99	70	36.9	96	68	36.0	93	70
25	41.9	70	40.8	97	70	39.8	95	68	38.8	93	70
29	41.7	70	42.1	101	70	41.8	100	68	40.8	98	69
33	44.6	70	43.0	96	70	42.3	95	68	41.2	92	69
37	45.5	70	44.2	97	70	44.2	97	68	42.3	93	69
41	47.5	70	47.1	99	70	46.8	99	68	43.9	92	69
45	47.6	70	46.1	97	70	46.2	97	68	42.2	89	69
49	48.5	70	47.1	97	70	46.6	96	68	44.0	91	68
53	49.9	70	48.9	98	70	48.5	97	68	45.5	91	68
57	48.6	70	48.1	99	70	48.8	100	68	45.4	93	68
62	50.3	70	50.2	100	70	51.1	102	67	46.7	93	67
65	51.1	65	50.6	99	65	51.6	101	62	47.9	94	62
69 ^b	52.6	49	52.0	99	50	52.3	99	47	47.7	91	47
73	52.4	49	51.6	99	50	52.1	99	47	47.4	91	46
77	53.0	49	52.6	99	49	52.2	99	46	48.4	91	46
81	54.3	48	54.2	100	49	54.0	99	44	49.4	91	44
85	52.4	48	52.5	100	49	52.2	100	44	48.9	93	44
89	54.4	48	54.6	100	48	53.2	98	44	50.4	93	43
93	54.3	48	55.0	101	48	55.4	102	43	52.1	96	43
97	53.3	46	53.3	100	48	53.8	101	43	51.2	96	40
101	52.5	45	53.1	100	47	53.4	101	43	50.0	95	38
101	51.8	44	53.1	101	47	54.7	102	43	51.7	100	37
		••		100		•					
Mean for			20.4	100		10.1			27.0	98	
1-13	28.4		28.4	100		28.1	99 07		27.8		
14-52	43.4		42.6	98 100		42.1	97 100		40.3	- 93 93	
53-103	52.2		52.1	100		52.4	100		48.8	73	

The number of animals weighed for this week is fewer than the number of animals surviving. Interim evaluation occurred during week 65. а

b

TABLE 24

Mean Body Weights and Survival of Female Mice in the 2-Year Gavage Study of Coumarin

Weeks Vehicle Control		<u>Control</u>		50 mg/kg			100 mg/			200 mg/	
on	Av. WL	No. of	Av. Wt.	WL (% of	No. of	Av. Wt.	₩Ł (% o	No. of	Av. WL	₩£. (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	18.5	70	18.7	101	70	18.6	101	70	18.5	100	70
2	20.2	65	20.5	102	70	20.2	100	70	19.9	99	70
4	22.0	65	22.7	103	70	21.9	100	68	21.8	99	70
5	22.5	65	23.1	103	70	23.0	102	68	22.5	100	70
6	23.1	65	24.0	104	70	23.4	101	68	22.8	99	70
8	24.5	65	25.1	102	70	24.7	101	68	24.2	99	69
9	25.3	65	25.6	101	70	25.1	99	68	24.5	97	69
10	25.3	65	26.4	104	70	26.0	103	67	25.3	100	69
11	26.4	65	27.1	103	70	27.0	102	67	25.7	97	69
12	26.9	65	27.6	103	70	27.6	103	67	26.4	98	69
13	27.6	65	27.7	100	70	28.1	102	67	26.7	97	69
17	28.6	65	29.6	104	70	29.5	103	67	27.7	97	69
21	31.9	65	32.8	103	70	32.8	103	67	29.7	93	68
25	34.4	64	35.3	103	70	35.4	103	67	32.1	93	68
29	36.1	64	36.8	102	70	36.7	102	67	32.9	91	68
33	38.0	64	38.7	102	70	38.7	102	67	33.8	90	67
37	39.9	64	40.3	101	70	40.0	100	67	34.9	88	65
41	41.6	64	41.9	101	70	41.4	100	67	35.7	86	64
45	42.3	64	41.8	99	70	40.5	96	67	35.0	83	63
49	45.3	64	43.4	96	70	42.2	93	67	37.3	82	63
53	44.0	63	43.7	99	70	42.6	97	67	38.5	88	62
57	43.9	63	43.5	99	70	42.5	97	67	38.6	88	62
62	47.4	63	46.0	97	70	44.7	94	67	40.6	86	61
65	48.1	60	45.8	95	68	45.3	94	64	41.1	85	59
69 ^a	48.9	44	48.4	99	50	46.3	95	48	43.1	88	42
73	49.1	44	49.0	100	49	46.1	94	48	42.4	86	40
77	49.6	44	49.9	101	49	47.1	95	48	43.7	88	39
81	47.4	42	51.4	108	49	48.3	102	47	44.0	93	40
85	49.0	40	50.0	102	48	47.5	97	46	43.6	89	40
89	50.6	40	51.2	101	47	48.5	96	46	44.6	88	37
93	52.9	39	52.6	99	45	49.4	93	46	45.7	86	36
97	50.5	38	51.7	102	43	48.1	95	45	46.4	92	34
101	49.8	35	50.8	102	42	48.2	97	42	45.4	91	30
103	51.4	33	51.2	102	41	48.8	95	42	45.0	88	28
Mean for	weeks										
1-13	23.6		24.2	103		23.9	101		23.3	99	
14-52	37.6		37.8	101		37.5	100		33.2	88	
53-103	48.8		48.9	100		46.7	96		43.1	88	

^a Interim evaluation occurred during week 65.

Lung: Alveolar/bronchiolar adenomas were seen in two 50 mg/kg and three 200 mg/kg male mice and in one 100 mg/kg and two 200 mg/kg female mice at the 15-month interim evaluation, while none were seen in controls (Tables 25, C1, and D1). In the 2-year study, the incidences of alveolar/bronchiolar adenomas in the 200 mg/kg male and female mice were significantly greater than those of the controls. Further, the incidence of alveolar/bronchiolar carcinomas in 200 mg/kg females, but not in males, was also significantly greater than controls. The incidences of pulmonary neoplasms in 200 mg/kg male and female mice are well above the range of historical control groups in recent NTP studies (Tables C4a and D4a).

No nonneoplastic lesions of the lungs of dosed mice were considered chemical related. Low incidences of focal alveolar epithelial hyperplasia, generally considered a precursor of alveolar/bronchiolar neoplasms, occurred at low incidence in all groups of male mice and all but the control group of female mice (Tables 25, C5, and D5).

Alveolar epithelial hyperplasia, alveolar/bronchiolar adenoma, and alveolar/bronchiolar carcinoma constitute a morphologic continuum. Alveolar epithelial hyperplasia consisted of focal areas with normal alveolar architecture lined by cuboidal or low columnar epithelial cells. Adenomas were discrete expansile masses that compressed adjacent tissue. The adenomas lacked normal architecture and consisted of somewhat pleomorphic cuboidal to columnar cells arranged in regular or papillary patterns. No single morphological criterion distinguished carcinomas from adenomas. As the neoplasms became larger they generally exhibited greater heterogeneity of growth pattern and cellular pleomorphism and atypia. Neoplasms diagnosed as carcinomas consisted of cells that were moderately to highly pleomorphic and, in some areas, appeared to grow in solid clusters. Mitotic figures were frequently observed.

TABLE 25

Incidences of Lung	Lesions in Mice	in the 2-Year	Gavage Study of	Coumarin
--------------------	-----------------	---------------	-----------------	----------

Dose	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
Male				
15-Month Interim Evaluation				
Lung ^a	10	2	1	9
Alveolar/bronchiolar Adenoma ^b	0	2	0	3
2-Year Study				
Lung	50	50	50	51
Alveolar Epithelium Hyperplasia	3	1	4	5
Alveolar/bronchiolar Adenoma ^c				
Overall rate ^d	14/50 (28%)	8/50 (16%)	14/50 (28%)	24/51 (47%)
Adjusted rate ^e	29.7%	17.0%	33.3%	58.3%
Terminal rate ^f	10/43 (23%)	8/47 (17%)	14/42 (33%)	20/37 (54%)
First incidence (days)	653	729 (T)	729 (T)	558
Logistic regression test ^g	P=0.004	P = 0.114N	P=0.588N	P=0.038
Alveolar/bronchiolar Carcinoma ^h				
Overall rate	1/50 (2%)	1/50 (2%)	2/50 (4%)	1/51 (2%)
Adjusted rate	2.2%	2.1%	4.8%	2.7%
Terminal rate	0/43 (23%)	1/47 (2%)	2/42 (5%)	1/37 (3%)
First incidence (days)	716	729 (Ť)	729 (T)	729 (Ť)
Logistic regression test	P=0.579	P=0.619	P=0.332	P=0.758N
Alveolar/bronchiolar Adenoma or Car	rcinoma ⁱ			
Overall rate	14/50 (28%)	9/50 (18%)	15/50 (30%)	25/51 (49%)
Adjusted rate	29.7%	19.1%	35.7%	60.8%
Terminal rate	10/43 (23%)	9/47 (19%)	15/42 (36%)	21/37 (57%)
First incidence (days)	653	729 (T)	729 (T)	558
Logistic regression test	P=0.003	P=0.171N	P=0.500N	P=0.025
(continued)				

TABLE 25

Incidences of Lung Lesions in Mice in the 2-Year Gavage Study of Coumarin (continued)

Dose	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
emale				
5-Month Interim Evaluation				
ung	8	1	1	9
Alveolar Epithelium Hyperplasia	0	1	Ō	0
Alveolar/bronchiolar Adenoma	0	0	1	2
-Year Study				
Jung	51	49	49	51
Alveolar Epithelium Hyperplasia	0	3	4	4
Alveolar/bronchiolar Adenoma				
Overall rate	2/51 (4%)	5/49 (10%)	7/49 (14%)	20/51 (39%)
Adjusted rate	5.8%	11.8%	16.3%	64.2%
Terminal rate	1/33 (3%)	3/40 (8%)	6/42 (14%)	17/28 (61%)
First incidence (days)	708	673	694	684
Logistic regression test	P<0.001	P=0.201	P=0.072	P<0.001
Alveolar/bronchiolar Carcinoma ^k				
Overall rate	0/51 (0%)	0/49 (0%)	0/49 (0%)	7/51 (14%)
Adjusted rate	0.0%	0.0%	0.0%	22.3%
Terminal rate	0/33 (0%)	0/40 (0%)	0/42 (0%)	5/28 (18%)
First incidence (days)	_1	-	-	615
Logistic regression test	P<0.001	-	-	P=0.007
Alveolar/bronchiolar Adenoma or Ca	rcinoma ^m			
Overall rate	2/51 (4%)	5/49 (10%)	7/49 (14%)	27/51 (53%)
Adjusted rate	5.8%	11.8%	16.3%	81.5%
Terminal rate	1/33 (3%)	3/40 (8%)	6/42 (14%)	22/28 (79%)
First incidence (days)	708	673	694	615
Logistic regression test	P<0.001	P=0.201	P=0.072	P<0.001

(T)Terminal sacrifice

^a Number of animals with organ examined microscopically.

^b Number of animals with lesion.

^c Historical incidence for 2-year corn oil gavage studies with vehicle control groups (mean \pm standard deviation): 141/900 (15.7% \pm 5.7%); range 4%-28%

^d Number of animals with neoplasm per number of animals with organ examined microscopically.

- ^e Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality.
- f Observed incidence in animals surviving until the end of the study.

^g In the control column are the P values associated with the trend test. In the dosed group columns are the P values corresponding to the pairwise comparisons between the controls and that dosed group. The logistic regression test regards these lesions as nonfatal. A lower incidence in a dose group is indicated by N.

- h Historical incidence: 34/900 (3.8% ± 3.6%); range 0%-12%
- ⁱ Historical incidence: 166/900 (18.4% ± 5.9%); range 6%-28%
- ^j Historical incidence: 40/899 (4.4% ± 2.4%); range 0%-10%
- ^k Historical incidence: 19/899 (2.1% ± 2.0%); range 0%-6%
- ¹ Not applicable; no neoplasms in animal group
- ^m Historical incidence: 58/899 (6.5% ± 3.7%); range 0%-14%

Liver: The administration of coumarin to mice was associated with increased incidences of several nonneoplastic lesions of the liver in mice evaluated at 15 months and at the end of the study (Tables 26, C5, and D5). At the 15-month interim evaluation, the incidences of syncytial alteration and centrilobular hypertrophy in 200 mg/kg mice were significantly greater than those of controls. At the end of the study, the incidences of these lesions were significantly greater in 100 and 200 mg/kg males and 200 mg/kg females. Coagulative necrosis of hepatocytes also occurred more frequently in the 200 mg/kg mice.

Syncytial alteration was generally minimal to mild in severity and consisted of widely scattered, enlarged, individual hepatocytes with 3 to 10 nuclei (Plate 11). The term syncytial alteration may be a misnomer since the alteration is likely not the result of cell fusion, but rather a failure of cell division. Centrilobular hypertrophy was also minimal to mild in severity and characterized by generalized, centrilobular hepatocellular enlargement (Plate 12). The affected cells usually had cytoplasm that stained more homogeneous and densely eosinophilic than cells in the periportal region. About a third or less of the liver lobule was affected in minimal lesions, while one-third to one-half the liver lobule was affected in mild lesions. Coagulative necrosis was focal and randomly distributed in some mice or located within or adjacent to hepatocellular neoplasms in others. In a few mice, it consisted of massive necrosis of an entire liver lobe and was judged the cause of death. Thus, the coagulative necrosis, while increased in incidence in the dosed groups, was not clearly chemical related.

The incidences of eosinophilic focus were significantly greater in all groups of dosed mice, except for the 100 mg/kg males and 200 mg/kg females, than in controls (Table 26). Consistent with the increased incidences of foci in females, the incidences of hepatocellular adenoma in the 50 and 100 mg/kg female mice were also significantly greater than controls. A few hepatocellular carcinomas occurred in dosed females, but none were seen in controls. The incidences of benign and malignant neoplasms combined in the 50 and 100 mg/kg females (55% and 61%) exceeds the range of historical controls from recent NTP studies (range 2%-34%; 129/898, 14.4%; Table D4b). The absence of a significant increased incidence of hepatocellular neoplasms in the 200 mg/kg group may be related to the reduced body weights of this group.

In contrast to female mice, the incidences of hepatocellular adenoma in dosed males were similar to that of controls, while the incidence of hepatocellular carcinoma in the 200 mg/kg group was lower than controls. The incidences of hepatocellular neoplasms in all male groups were high (57%-70%) but within the range of historical controls (range 14%-72%; 370/901, 41.1%; Table C4b).

Hepatic foci of cytoplasmic alteration, hepatocellular adenoma, and hepatocellular carcinoma constituted a morphologic continuum. The foci generally consisted of enlarged cells with eosinophilic, basophilic, or clear cytoplasm and were classified based on the predominant staining characteristics of the cytoplasm. The staining characteristics of the cytoplasm generally reflect increased amounts of smooth endoplasmic reticulum (eosinophilic), rough endoplasmic reticulum or ribosomes (basophilic), or glycogen (clear). The architecture of the hepatic plates was generally normal within foci of cytoplasmic alteration. Hepatocellular adenomas were discrete masses with distorted or absent lobular architecture consisting of plates one to two cells thick, similar to the normal liver. The hepatocytes often had staining properties similar to those found in foci of cytoplasmic alteration. In contrast to the adenomas, hepatocellular carcinomas had heterogeneous growth patterns with hepatocytes arranged in plates two to six cells thick or with glandular structures. Carcinomas exhibited a greater degree of cellular pleomorphism and atypia than did Hepatoblastomas usually consisted adenomas. predominantly of neoplastic cells similar to those of carcinomas, but with an added component of small, undifferentiated cells with intensely basophilic cytoplasm.

TABLE 26

Incidences of Liver Lesions in Mice in the 2-Year Gavage Study of Coumarin

Dose	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
Aale		·		
5-Month Interim Evaluation				
Liver ^a	10	4	6	9
Syncytial Alteration ^b	0	1 (1.0) ^c	4 (1.8)	9**(2.0)
Centrilobular Hypertrophy	0	0	0	8**(2.9)
Hepatocellular Adenoma	0	2	1	3
2-Year Study				
	50	50	50	51
Liver Ecsinophilia Eccus	6	30 15*	13	15**
Eosinophilic Focus	0 0		35**(1.2)	47**(1.9)
Syncytial Alteration		6*(1.2)	• •	
Centrilobular Hypertrophy	1 (2.0)	2 (2.0)	23**(1.7)	44**(1.6)
Coagulative Necrosis	3 (2.3)	1 (3.0)	0	8 (3.3)
Hepatocellular Adenoma ^d				
Overall rate ^e	26/50 (52%)	29/50 (58%)	29/50 (58%)	27/51 (53%)
Terminal rate ^f	56.5%	59.2%	67.4%	64.0%
Adjusted rate ^g	23/43 (50%)	27/47 (57%)	28/42 (67%)	22/37 (59%)
First incidence (days)	680	607	567	476
Logistic regression testh	P=0.519N	P=0.344	P=0.344	P=0.542
Hepatocellular Carcinoma ⁱ				
Overall rate	11/50 (22%)	11/50 (22%)	5/50 (10%)	3/51 (6%)
Terminal rate	23.6%	22.0%	11.6%	7.5%
Adjusted rate	8/43 (19%)	8/47 (17%)	4/42 (10%)	2/37 (5%)
First incidence (days)	541	532	636	558
Logistic regression test	P = 0.003N	P = 0.505	P = 0.099N	P = 0.011N
		r = 0.505	F=0.09914	F=0.0111
Hepatocellular Adenoma or Carcinor				
Overall rate	35/50 (70%)	34/50 (68%)	31/50 (62%)	29/51 (57%)
Adjusted rate	71.4%	68.0%	70.4%	67.2%
Terminal rate	29/43 (67%)	31/47 (66%)	29/42 (69%)	23/37 (62%)
First incidence (days)	541	532	567	476
Logistic regression tests	P = 0.080N	P = 0.500N	P = 0.263N	P=0.122N
Hepatoblastoma ^k				
Overall rate	0/50 (0%)	0/50 (0%)	5/50 (10%)	1/51 (2%)
Adjusted rate	0.0%	0.0%	11.3%	2.7%
Terminal rate	0/43 (0%)	0/47 (0%)	4/42 (10%)	1/37 (3%)
First incidence (days)]	-	1	729 (T)
Logistic regression test	P=0.299	-	P = 0.060	P = 0.470
0 0				
Hepatocellular Carcinoma or Hepato Overall rate		11/50 (22%)	9/50 (18%)	3/51 (60%)
	11/50 (22%) 23.6%	11/50 (22%)	9/50 (18%) 20 2%	3/51 (6%) 7.5%
Adjusted rate	23.6%	22.0%	20.2% 7/42 (17%)	7.5% 207 (5%)
Terminal rate	8/43 (19%)	8/47 (17%) 522	7/42 (17%)	2/37 (5%)
First incidence (days)	541	532	1	558

· :

.

TABLE 26

Incidences of Liver Lesions in Mice in the 2-Year Gavage Study of Coumarin (continued)

Dose	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
'emale	- <u></u> .	<u></u>	,	<u> </u>
5-Month Interim Evaluation				
iver	8	1	2	9
Eosinophilic Focus	0	1 (2.0)	2 (1.5)	0
Syncytial Alteration	0	0	0	4**(1.0)
Centrilobular Hypertrophy	0	0	0	8**(1.6)
Coagulative Necrosis	1 (2.0)	0	0	0
Hepatocellular Adenoma	1	0	0	0
-Year Study				
iver	50	49	51	50
Eosinophilic Focus	4 (2.5)	20**(2.3)	20**(2.4)	9 (1.9)
Syncytial Alteration	0	0	2 (1.0)	19**(1.4)
Centrilobular Hypertrophy	0	0	0	17**(1.2)
Coagulative Necrosis	2 (2.5)	2 (3.0)	2 (2.0)	11**(3.3)
Hepatocellular Adenoma ⁿ				
Overall rate	8/50 (16%)	26/49 (53%)	29/51 (57%)	12/50 (24%)
Adjusted rate	23.4%	63.4%	62.9%	39.7%
Terminal rate	7/33 (21%)	25/40 (63%)	25/42 (60%)	10/28 (36%)
First incidence (days)	694	722	564	684
Logistic regression test	P=0.525	P<0.001	P<0.001	P=0.227
Hepatocellular Carcinoma ^o				
Overall rate	0/50 (0%)	3/49 (6%)	3/51 (6%)	1/50 (0%)
Adjusted rate	0.0%	7.3%	6.7%	2.8%
Terminal rate	0/33 (0%)	2/40 (5%)	1/42 (2%)	0/28 (0%)
First incidence (days)	-	715	672	655
Logistic regression test	P=0.570N	P=0.132	P=0.101	P=0.594
Hepatocellular Adenoma or Carcinon	na ^p			
Overall rate	8/50 (16%)	27/49 (55%)	31/51 (61%)	13/50 (26%)
Adjusted rate	23.4%	64.3%	65.9%	41.4%
Terminal rate	7/33 (21%)	25/40 (63%)	26/42 (62%)	10/28 (36%)
First incidence (days)	694	715	564	655
Logistic regression tests	P=0.447	P<0.001	P<0.001	P=0.163
Hepatoblastoma ^q				
Overall rate	0/50 (0%)	1/49 (2%)	0/51 (0%)	0/50 (0%)
Adjusted rate	0.0%	2.5%	0.0%	0.0%
Terminal rate	0/33 (0%)	1/40 (3%)	0/42 (0%)	0/28 (0%)
First incidence (days)	- ` ´	729 (T)	-	-
Logistic regression test	P=0.601N	P=0.538	-	-
Hepatocellular Carcinoma or Hepato	blastoma ^r			,
Overall rate	0/50 (0%)	4/49 (8%)	3/51 (6%)	1/50 (2%)
Adjusted rate	0.0%	9.7%	6.7%	2.8%
Terminal rate	0/33 (0%)	3/40 (8%)	1/42 (2%)	0/28 (0%)
First incidence (days)	-	715	672	655
				P=0.594

-

TABLE 26

Incidences of Liver Lesions in Mice in the 2-Year Gavage Study of Coumarin (continued)

* Significantly different (P≤0.05) from the control group by the Fisher exact test (15-month interim) or logistic regression test (2-year study)

** P≤0.01

(T)Terminal sacrifice

- ^a Number of animals with organ examined microscopically.
- ^b Number of animals with lesion.
- ^c Average severity grade of lesion in affected animals: 1 = minimal, 2 = mild, 3 = moderate, 4 = marked
- d Historical incidence for 2-year corn oil gavage studies with vehicle control groups (mean ± standard deviation): 249/901 (27.6% ± 15.0%); range 4%-58%
- e Number of animals with neoplasm per number of animals with organ examined microscopically.
- f Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality.
- ^g Observed incidence in animals surviving until the end of the study.
- ^h In the control column are the P values associated with the trend test. In the dosed group columns are the P values corresponding to the pairwise comparisons between the controls and that dosed group. The logistic regression test regards these lesions as nonfatal. A negative trend or lower incidence in a dose group is indicated by N.
- i Historical incidence: 155/901 (17.2% ± 5.8%); range 8%-32%
- ^j Historical incidence: 370/901 (41.1% ± 15.5%); range 14%-72%
- ^k Historical incidence: $2/901 (0.2\% \pm 0.7\%)$; range 0%-2%
- ¹ Not applicable; no neoplasms in animal group
- ^m Historical incidence: 155/901 (17.2% ± 5.8%); range 8%-32%
- ⁿ Historical incidence: 94/898 (10.5% ± 7.2%); range 2%-26%
- ^o Historical incidence: 41/898 (4.6% ± 3.6%); range 0%-14%
- ^p Historical incidence: 129/898 (14.4% ± 8.1%); range 2%-34%
- ^q Historical incidence: 0/898
- ^r Historical incidence: $41/898 (4.6\% \pm 3.6\%)$; range 0%-14%

Forestomach: Squamous hyperplasia of the forestomach was seen in one control male, three 50 mg/kg males, and three 100 mg/kg males. Squamous cell papillomas of the forestomach occurred more frequently in 50 mg/kg male mice than in controls; the incidence in the 100 mg/kg group was similar to controls and none were seen in the 200 mg/kg group (Tables 27 and C1). Squamous cell carcinomas were seen in one 50 mg/kg and two 100 mg/kg males as well, and none were observed in the controls. The incidence of squamous cell papilloma in the 50 mg/kg males slightly exceeds the range in historical controls from recent NTP studies; further, no more than one squamous cell carcinoma has been observed in a group of 50 historical control male mice (Table C4c).

The incidence of forestomach hyperplasia was significantly increased in 100 mg/kg female mice. Similar to the pattern seen in male mice, the incidence of squamous cell papilloma in the 50 mg/kg females was slightly greater than that of the controls. However, the incidence is within the range of NTP historical controls (Table D4c). Squamous cell carcinomas were seen in one 50 mg/kg and one 100 mg/kg female (Tables 27 and D1).

Focal hyperplasia of the forestomach epithelium, squamous cell papilloma, and squamous cell carcinoma constitute a morphologic continuum. Hyperplasia was characterized by focally thickened stratified squamous epithelium forming rugose folds that extended into the stomach lumen. Papillomas also consisted of thickened, folded epithelium, but the folds were more complex and had a fibrovascular core. Differentiation of the epithelium within papillomas was normal and there was no cellular atypia. Squamous cell carcinomas consisted of cords of stratified squamous epithelium which invaded the submucosa and muscularis.

GENETIC TOXICOLOGY

Positive results were obtained with *in vitro* mutagenicity tests, but no mutagenic responses were observed *in vivo*. Coumarin (33 to 3,333 μ g/plate) was tested for induction of gene mutations in *Salmonella typhimurium* strains TA98, TA100, TA1535, and TA1537 using a preincubation protocol with and without Aroclor 1254-induced male Sprague-Dawley rat and Syrian hamster liver S9; a positive response was obtained only in TA100 with S9 (Table F1; Haworth *et al.*, 1983).

In Chinese hamster ovary cells, coumarin induced sister chromatid exchanges in the absence, but not the presence, of Aroclor 1254-induced male Sprague-Dawley rat liver S9; the lowest effective dose was 100 μ g/mL (Table F2; Galloway et al., 1987). In both sister chromatid exchange trials without S9, the increases in sister chromatid exchanges were significant, but did not correlate with dose. Coumarin was also tested for induction of chromosomal aberrations in Chinese hamster ovary cells with and without A dose-related positive response was also S9. observed, but only in the presence of S9 (Table F3; Galloway et al., 1987). A significant increase in chromosomal aberrations was seen at the highest dose tested (1,600 μ g/mL) with S9; at this dose, 37% of cells showed chromosomal damage.

Coumarin did not induce sex-linked recessive lethal mutations in germ cells of male *Drosophila melano-gaster* exposed either as adults, by feeding (70 ppm) or by injection (500 ppm), or as larvae, treated by feeding (194 and 200 ppm) (Table F4; Yoon *et al.*, 1985; Valencia *et al.*, 1989).

Peripheral blood erythrocytes of male and female $B6C3F_1$ mice administered coumarin at doses up to 300 mg/kg for 13 weeks by gavage were examined for frequencies of micronuclei; no increases in micronucleated normochromatic erythrocytes were observed (Table F5).

TABLE 27

Incidences of Forestomach Lesions in Mice in the 2-Year Gavage Study of Coumarin

Dose	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
Male		·		
Forestomach ^a	48	49	49	47
Squamous Hyperplasia ^b	1	3	3	0
Squamous Cell Papilloma ^c Overall rate ^d	2/50 (4%)	8/50 (16%)	2/50 (10%)	0/51 (0%)
Adjusted rate ^e	4.7%	8/50 (16%) 17.0%	2/50 (4%) 4.8%	0.0%
Terminal rate ^f	2/43 (5%)	8/47 (17%)	2/42 (5%)	0.0%
First incidence (days)	729 (T)	729 (T)	729 (T)	_h
Logistic regression test ^g	P = 0.051N	P = 0.048	P = 0.695	P=0.233N
Squamous Cell Carcinoma	0/50 (00)	1/50 /00/>	2150 (101)	0/51 (001)
Overall rate	0/50 (0%)	1/50 (2%)	2/50 (4%)	0/51 (0%)
Adjusted rate	0.0%	2.1%	4.1%	0.0%
Terminal rate	0/43 (0%)	1/47 (2%) 729 (T)	0/42 (0%)	0/37 (0%)
First incidence (days) Logistic regression test	- P=0.289N	729 (T) P=0.518	1	-
Logistic regression test	1-0.2071	1-0.310	-	_
Squamous Cell Papilloma or Carcin				
Overall rate	2/50 (4%)	9/50 (18%)	4/50 (8%)	0/51 (0%)
Adjusted rate	4.7%	19.1%	8.7%	0.0%
Terminal rate	2/43 (5%)	9/47 (19%)	2/42 (5%)	0/37 (0%)
First incidence (days)	729 (T)	729 (T)	1	-
Logistic regression test	P=0.042N	P=0.039	P=0.686	P = 0.272N
Female				
Forestomach	48	49	49	46
Squamous Hyperplasia	0	2	5°	0
Squamous Cell Papilloma ^k				
Overall rate	1/52 (2%)	5/50 (10%)	2/51 (4%)	2/51 (4%)
Adjusted rate	2.4%	12.5%	4.8%	7.1%
Terminal rate	0/33 (0%)	5/40 (13%)	2/42 (5%)	2/28 (7%)
First incidence (days)	589	729 (T)	729 (T)	729 (T)
Logistic regression test	P=0.548N	P=0.095	P=0.493	P=0.493
Squamous Cell Carcinoma ¹				
-	0/52 /00/1	1/50 (20%)	1/51 (201)	0/51 (00)
Overall rate Adjusted rate	0/52 (0%) 0.0%	1/50 (2%) 2.5%	1/51 (2%)	0/51 (0%)
Terminal rate	0.0%	2.5% 1/40 (3%)	2.3% 0/42 (0%)	0.0%
First incidence (days)	0/33 (0%)	1/40 (3%) 729 (T)	0/42 (0%) 694	0/28 (0%)
	P=0.573N	729 (T) P=0.538	P = 0.419	_
Logistic regression test		1 ~0.330	1-0.417	-
Squamous Cell Papilloma or Carcir				
Overall rate	1/52 (2%)	6/50 (12%)	3/51 (6%)	2/51 (4%)
Adjusted rate	2.4%	15.0%	7.0%	7.1%
Terminal rate First incidence (days)	0/33 (0%)	6/40 (15%)	2/42 (5%)	2/28 (7%)
	589	729 (T)	694	729 (T)

Incidences of Forestomach Lesions in Mice in the 2-Year Gavage Study of Coumarin (continued)

* Significantly different (P≤0.05) from the control group by the logistic regression test

- ^d Number of animals with neoplasm per number of animals necropsied.
- ^e Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality.
- ^f Observed incidence in animals surviving until the end of the study.
- ^g In the control column are the P values associated with the trend test. In the dosed group columns are the P values corresponding to the pairwise comparisons between the controls and that dosed group. The logistic regression test regards these lesions as nonfatal. A negative trend or lower incidence in a dose group is indicated by N.

- ^j Historical incidence: $31/902 (3.4\% \pm 3.6\%)$; range 0%-14%
- ^k Historical incidence: 27/901 (3.0% ± 2.9%); range 0%-10%
- ¹ Historical incidence: 3/901 (0.3% ± 1.0%); range 0%-4%
- ^m Historical incidence: $30/901(3.3\% \pm 3.3\%)$; range 0%-10%

⁽T)Terminal sacrifice

^a Number of animals with organ examined microscopically.

^b Number of animals with lesion.

 ^c Historical incidence for 2-year corn oil gavage studies with vehicle control groups (mean ± standard deviation): 27/902 (3.0% ± 3.4%); range 0%-14%

^h Not applicable; no neoplasms in animal group

ⁱ Historical incidence: 4/902 (0.4% ± 0.9%); range 0%-2%

Plate 1

Centrilobular hepatocellular degeneration of the liver in a male F344/N rat receiving 150 mg/kg coumarin in the 13-week gavage study. Note the clear vacuoles (lipid droplets) within the cytoplasm of the affected cells. H&E, 80X

Plate 2

Centrilobular hepatocellular necrosis of the liver in a male F344/N rat receiving 300 mg/kg coumarin in the 13-week gavage study. Note the necrotic cells with pale cytoplasm and pyknotic or fragmented nuclei surrounding the central venule. H&E, 80X

Plate 3

Bile duct hyperplasia and inflammation of the liver in a male F344/N rat receiving 300 mg/kg coumarin in the 13-week gavage study. The portal area contains branching bile ducts and a mixed leukocyte infiltrate. H&E, 80X

Plate 4

Moderate coagulative necrosis of the liver in a male F344/N rat receiving 100 mg/kg coumarin in the 2-year gavage study. Note the pale, shrunken hepatocytes with pyknotic or fragmented nuclei. H&E, 50X

PLATE 5

Hepatocellular granular degeneration of the liver in a female F344/N rat receiving 100 mg/kg coumarin in the 2-year gavage study. Note the hepatocytes with pale cytoplasm which tend to be located in centrilobular or midzonal areas of the hepatic lobules. H&E, 10X

PLATE 6

Higher magnification of the hepatocellular granular degeneration in Plate 5 showing swollen hepatocytes with clear cytoplasm. H&E, 50X

PLATE 7

Moderate fibrosis of the liver in a male F344/N rat receiving 100 mg/kg coumarin in the 2-year gavage study. Bands of collagenous connective tissue extend between hepatic lobules. H&E, 10X

PLATE 8

Higher magnification of the liver fibrosis in Plate 7 showing collapsed stroma and collagenous connective tissue separating hepatic lobules. H&E, 50X

PLATE 9

Fibrosis and moderate bile duct hyperplasia of the liver in a male F344/N rat receiving 100 mg/kg coumarin in the 2-year gavage study. H&E, 20X

PLATE 10

Higher magnification of the fibrosis and bile duct hyperplasia in Plate 9 showing the increased number of small biliary ducts and ductules. H&E, 50X

PLATE 11

Syncytial alteration (arrow) of a hepatocyte in the liver of a male $B6C3F_1$ mouse receiving 200 mg/kg coumarin in the 2-year gavage study. H&E, 100X

PLATE 12

Centrilobular hepatocellular hypertrophy of the liver in a male $B6C3F_1$ mouse receiving 200 mg/kg coumarin in the 2-year gavage study. Note the pale swollen hepatocytes surrounding the central venule in the right half of the photomicrograph. H&E, 50X

DISCUSSION AND CONCLUSIONS

Coumarin is the basic structure of numerous naturally occurring compounds with important and diverse physiological activities. More than 1,000 coumarin derivatives have been described, varying from simple coumarins, containing alkyl and hydroxyl side chains, to complex coumarins with benzoyl, furanoyl, pyranoyl, or alkylphosphorothionyl substituents. The NTP has previously reported on toxicity and carcinogenicity studies of 8-methoxypsoralen (NTP, 1989a), a furanocoumarin, and ochratoxin A (NTP, 1989b), a dihydroisocoumarin, as well as quercetin (NTP, 1992), a benzo-gammapyrone derivative resembling the 1,2-benzopyrone moiety in coumarin.

Coumarin and 3,4-dihydrocoumarin were nominated for study by the Food and Drug Administration and the National Cancer Institute because of the widespread use of coumarin in perfumes, cosmetics, and other products as a fragrance, continued interest in using coumarin compounds as flavor-enhancing agents for foods, and the interest in chemical structure-biological activity relationships of this important group of compounds. This Technical Report describes the findings of the 16-day, 13-week, and 2-year toxicity and carcinogenicity studies of coumarin in F344/N rats and B6C3F₁ mice. The results of the NTP toxicity and carcinogenicity studies of 3,4-dihydrocoumarin are reported separately (NTP, 1993).

The principal toxic effects associated with the administration of coumarin occurred in the liver of both rats and mice and in the kidney of rats. Slight, but clinically unimportant, effects also occurred in the blood of both species, and ulcers of the forestomach occurred more frequently in dosed rats than in controls. While the hepatotoxicity of coumarin in several species of experimental animals has previously been described (Hazleton *et al.*, 1956; Hagan *et al.*, 1967; Lake, 1984), the renal effects observed in rats in the NTP studies have not been reported previously.

The hepatic effects observed in rats in the 13-week study occurred primarily in groups receiving 150 or

300 mg/kg and included increased liver weight, accumulation of lipid within hepatocytes, centrilobular hepatocellular degeneration and necrosis, bile duct hyperplasia, and inflammation. Consistent with the histologic observations, there were elevations in activities of several cytoplasmic enzymes found within hepatocytes including alanine aminotransferase, aspartate aminotransferase, sorbitol dehydrogenase, and ornithine carbamoyltransferase. These cytoplasmic enzymes are released into the blood following hepatocellular injury and necrosis.

While the hepatic lesions produced in rats by the prolonged administration of coumarin in the 2-year study were similar to those in the 13-week study, there were slight differences possibly due to one or more factors including the lower doses, cumulative toxicity, age of the animals, or the duration or chronicity of the lesions in the 2-year study. In the 2-year study, the degree of inflammation associated with the hepatocellular and biliary lesions was less apparent, and fibrosis, which did not occur in the 13-week study, was seen in dosed rats in the 2-year study. On a body weight basis, male rats were more susceptible than female rats to coumarin. In males, hepatic lesions were seen in groups receiving 25, 50, or 100 mg/kg, while in females they were seen only in groups receiving 50 or 100 mg/kg. Moreover, the various hepatic lesions generally occurred more frequently in males than females at similar dose levels.

While the administration of coumarin to F344/N rats was associated with an increase in the severity of bile duct hyperplasia, the atypical bile duct cells and marked peribiliary fibrosis (cholangiofibrosis) described by Hagan *et al.* (1967) in Osborne-Mendel male rats were not seen in the NTP 2-year study. Further, the induction of bile duct carcinomas as reported by Griepentrog (1973) was also not observed. However, the studies by Hagan *et al.* (1967) and Griepentrog (1973) were conducted by administering coumarin in the diet at levels substantially higher than those received by the rats in the NTP 2-year study. The cholangiofibrosis and bile duct carcinomas were observed in male rats receiving dietary levels of 5,000 to 6,000 ppm coumarin, which is estimated to deliver 250 to 500 mg/kg, in contrast to the 100 mg/kg given by gavage in the NTP study. Thus, the doses of coumarin used in the NTP study may have been too low to induce these lesions.

The increased liver weights in rats receiving coumarin in the NTP 13-week and 2-year studies is likely related to an increase in hepatocyte endoplasmic reticulum and microsomal protein synthesis or enzyme induction. Grasso *et al.* (1974) have shown by electron microscopy that coumarin administration to rats produces hypertrophy and dilatation of the endoplasmic reticulum. Consistent with the role of the endoplasmic reticulum in protein synthesis, Nievel (1969) demonstrated increased microsomal protein synthesis in the liver of rats given 50 to 450 mg coumarin/kg body weight for 3 to 7 days.

The hepatocyte lipid accumulation observed in the NTP studies may be related to impaired function of the endoplasmic reticulum, the principal site of lipid synthesis and formation of lipoproteins, or to perturbations in glucose metabolism or energy production in hepatocytes. Feuer et al. (1965a,b) demonstrated a reduction in glucose-6-phosphatase activity and a concomitant increase in glucose-6-phosphate dehydrogenase activity in the rat liver following oral administration of coumarin. These investigators also showed o-hydroxyphenylacetic acid and o-hydroxyphenyllactic acid, two metabolites of coumarin in the rat, inhibited glucose-6-phosphatase activity in vitro, while coumarin and 3-, 4-, 6-, 7-, and 8-hydroxycoumarin produced no inhibition (Feuer et al., 1966). They concluded that ring opening during the metabolism of coumarin confers inhibitory activity and that the phenolic hydroxyl group in the ortho position of the aromatic acids is important for the inhibitory activity.

While the biochemical mechanisms by which coumarin produces hepatocyte necrosis in rats has not been determined, a reactive intermediate capable of binding to cytoplasmic proteins is generated during the metabolism of coumarin. Coumarin rapidly depletes intracellular glutathione levels both *in vivo* and *in vitro* in rat hepatocyte suspensions or monolayer cultures and enhances urinary mercapturic acid excretion after *in vivo* administration (Lake, 1984; Lake *et al.*, 1989; Peters *et al.*, 1991). Further, sulfhydryl agents inhibit covalent binding to microsomal proteins (den Besten *et al.*, 1990). It has been suggested that coumarin may be converted to a 3,4-epoxide intermediate which may either rearrange to 3-hydroxycoumarin or coumarin 3,4-dihydrodiol, or produce toxicity by covalent binding to cytoplasmic proteins (Lake et al., 1989; Peters et al., 1991). A structurally related compound, precocene I (7-methoxy-2,2-dimethyl-2H-benzo[b]pyran) also produces centrilobular hepatocellular necrosis in the rat and is metabolized by microsomal cytochrome P-450 enzymes to a reactive metabolite which binds covalently to proteins and depletes hepatic glutathione levels (Halpin et al., 1984; Ravindranath et al., 1987).

Although the specific metabolite or metabolites producing the bile duct hyperplasia observed in the NTP study and the cholangiofibrosis observed in male rats by other investigators have not been identified, the biliary lesions are likely related to the excretion of toxic coumarin metabolites in the bile. Williams *et al.* (1965) showed that 50% of an oral or intraperitoneal dose of coumarin was excreted in the bile as unidentified ring-opened compounds.

In contrast to rats, mice did not exhibit lipid accumulation in hepatocytes or centrilobular hepatocellular necrosis in the NTP 13-week and 2-year studies. These differences are likely related to quantitative differences in the coumarin metabolites produced by these species or to differences in the rates of formation and conjugation of the toxic intermediate(s). Coumarin hydroxylase activity has been shown to be highly strain-dependent in mice. In a study of 16 strains of mice for coumarin hydroxylase activity, five strains were shown to have high activity while the other 11 had low activity (Wood and Taylor, 1979). Coumarin hydroxylase activity varied from a low of 32 (units of enzyme activity) to 358 in the strains examined. Endell and Seidel (1978) showed that the LD₅₀ in CH3/HeJ mice for orally administered coumarin was approximately half that of DBA/2J mice, and that hepatotoxicity, as measured by elevations in serum enzyme activity, was substantially greater in CH3/HeJ mice than in DBA/2J mice. These observations correlate with the higher hepatic coumarin 7-hydroxylase activity in DBA/2J mice (Wood and Conney, 1974). The metabolism of coumarin in the $B6C3F_1$ mouse has not been studied.

Coumarin likely may not produce hepatoxicity in humans similar to that in rats because of the demonstrated differences in metabolism between

Discussion and Conclusions

these species. In contrast to rats, the metabolism of coumarin in humans results principally in the hydroxylation at the number 7 position with the formation of 7-hydroxycoumarin and 7-hydroxycoumarin glucuronide (Ritschel*et al.*, 1977). As mentioned above, the higher hepatic coumarin 7-hydroxylase activity in DBA/2J mice is associated with a much higher threshold for hepatotoxicity.

Centrilobular hepatocellular hypertrophy was seen in most male and female mice in the 300 mg/kg dose groups, but not in mice in the lower dose groups in the 13-week study. However, the mean liver weights of the 150 mg/kg groups as well as the 300 mg/kg groups were significantly greater than controls, indicating that hypertrophy was probably also present in mice receiving 150 mg/kg. Centrilobular hypertrophy was also frequently observed in males receiving 100 or 200 mg/kg and in females receiving 200 mg/kg in the 2-year study. The centrilobular hepatocellular hypertrophy in mice was likely related to an increase in endoplasmic reticulum and enzyme induction as reported in rats receiving coumarin (Nievel, 1969; Grasso *et al.*, 1974).

The kidneys of male and female rats, but not mice, also exhibited toxic effects related to the administration of coumarin in the NTP 13-week and 2-year studies. In the 13-week study, the most severe renal lesions were observed in the three male rats receiving 300 mg/kg that died during the study. The lesions in these rats consisted of widespread necrosis of the proximal tubule epithelium, while others exhibited scattered renal tubules with thickened basement membranes and small basophilic cells. While the latter lesion is typical of spontaneous nephropathy occasionally seen in untreated rats, similar lesions were not seen in the concurrent control males. In the 2-year study, nearly all males and most females in each of the groups including the control groups exhibited degenerative renal lesions, but the average severity of the nephropathy increased with dose. The severity of nephropathy in the dosed rats as well as the controls was generally greater in males than in females.

The chemical-related increased severity of nephropathy in dosed males was the principal cause of the decreased survival of the 50 and 100 mg/kg groups. The incidences of parathyroid gland hyperplasia in all groups of dosed males were also higher than controls, consistent with renal secondary hyperparathyroidism. Hyperparathyroidism accompanies severe nephropathy in rats because the progressive loss of renal function disrupts calcium and phosphorus homeostasis, leading to prolonged parathyroid gland stimulation.

Renal toxicity associated with coumarin administration has been reported to occur in dogs given oral doses of 100 mg/kg for 8 consecutive days (Hazleton et al., 1956). These investigators described swelling and granularity of tubule epithelial cells and bile stained hyaline casts in tubule lumens, and suggested that the renal lesions were consistent with "bile nephrosis." Renal toxicity was not described in rats receiving 10,000 ppm in the feed for 8 weeks or in rats receiving 2,500 ppm for 29 weeks (Hazleton et al., 1956). Further, renal toxicity was not reported to occur in a 2-year study in rats given coumarin at dietary levels of 2,500 ppm or 5,000 ppm (Hagan et al., 1967). While it is not clear why renal toxicity was not seen in these studies, the route of administration and the strain of rats used were different from those of the NTP studies.

Increased incidences of neoplasms attributed to the administration of coumarin in the NTP studies were observed in the kidney of male rats, lung of male and female mice, and liver of female mice. Bile duct carcinomas, as reported by Griepentrog (1973) were not seen in dosed F344/N rats, possibly because of differences in route of administration and dose level. There have been no previous long-term studies in mice.

During the initial standard evaluation of single sections of the kidney, renal tubule adenomas were identified in one control, two 25 mg/kg, two 50 mg/kg, and two 100 mg/kg male rats. Moreover, 2 of 20 males receiving 100 mg/kg for 15 months followed by the recovery period also had renal tubule neoplasms, which is substantially greater than the incidence in NTP historical control male rats (8/1,019, 0.8%). In addition, two 100 mg/kg female rats had renal adenomas, which is also much higher than the incidence in historical controls (2/1,018, 0.2%). Although renal neoplasms are relatively uncommon in control rats, the low incidences in rats receiving coumarin were difficult to interpret.

The NTP has found that multiple sectioning of the kidney may enable a more precise evaluation of the

potential chemical-related induction of renal proliferative lesions than observations made from single sections. The majority of renal neoplasms in the 2-year study of coumarin were small and identified only by microscopic examination. Thus, multiple sections might be expected to increase the number of neoplasms observed and allow a more rigorous statistical evaluation. The residual formalin-fixed kidneys from all male and female rats were step sectioned to provide approximately eight additional tissue sections of each kidney for microscopic examination.

As expected, additional renal tubule neoplasms were identified in the step sections, and the majority were seen in dosed males. The overall incidences in rats were as follows: males, control, 1/49; 25 mg/kg, 6/50; 50 mg/kg, 7/50; 100 mg/kg, 5/50; females, 0/49; 0/50; 1/50; 2/50. Moreover, focal hyperplasia was also observed in dosed rats with incidences that generally paralleled the incidences of renal neoplasms. The incidences of focal hyperplasia and of renal tubule adenoma in the low- and mid-dose male rats, but not the high-dose males, were significantly greater than those of the controls. The marginal increased incidence of renal tubule neoplasms was considered chemical related because of the statistical significance and supporting evidence of focal hyperplasia, a lesion considered to be preneoplastic. The lack of statistical significance by pairwise comparison of the high-dose and control incidences and lack of a dose-related trend is likely due to the lower survival of the high-dose group, and perhaps due to the increased severity of nephropathy in the high-dose group. The nephropathy may influence the induction, development, or progression of renal neoplasms in several ways, including a reduction in target cell population from continued degeneration and necrosis, alteration in vascularity as a result of the interstitial fibrosis, or other alterations in microenvironment.

The increased incidences of renal tubule neoplasms in dosed male rats were considered to provide "some" rather than "clear evidence" of carcinogenic activity because a) the increased incidences were marginal and b) the majority of neoplasms were benign. While the evaluation of step sections revealed one additional adenoma in a mid-dose female, the low incidences of renal tubule neoplasms in mid- and high-dose females could not be clearly attributed to coumarin administration. The incidences of pharyngeal neoplasms, primarily squamous cell papillomas, in mid-dose males, thyroid gland follicular cell neoplasms in low-dose males, and forestomach squamous cell papillomas in low-dose females were notable because they marginally exceeded the incidences of these neoplasms in NTP historical controls. However, they were not attributed to coumarin administration because a) the incidences were not significantly increased relative to concurrent controls, b) there was no apparent dose response, and c) there was no supporting evidence of hyperplasia or other preneoplastic lesions.

The stop-exposure groups of male rats were included in the present NTP studies because of the controversy over the biological potential of coumarin-induced biliary lesions as described by Bär and Griepentrog (1967). These authors reported that diets containing 5,000 ppm or 6,000 ppm coumarin induced bile duct carcinomas in male rats. However, other scientists reviewing these liver lesions considered them to represent a nonneoplastic proliferative lesion sometimes diagnosed as cholangiofibrosis (Cohen, 1979). The intent was to produce the biliary lesions diagnosed as cholangiofibrosis or bile duct carcinoma in rats dosed for 9 or 15 months and to follow their progression or regression during the recovery period. However, the doses administered to male rats in the present study did not produce these lesions. As expected, the degenerative hepatocellular lesions observed in F344/N rats did not progress following cessation of dosing. In contrast to the liver lesions, the renal injury produced by coumarin was not reversible, and the severity of nephropathy in male rats of the two stop-exposure groups was greater than that in the controls. This is not unexpected based on the progressive nature of this spontaneous, age-related disease.

In contrast to rats, the 2-year study of coumarin in mice was associated with chemical-related increased incidences of neoplasms in the lung and liver, but not the kidney. The incidences of alveolar/bronchiolar adenomas in groups of males and females receiving 200 mg/kg were significantly greater than those of the controls. In female mice, the increased incidence of benign pulmonary neoplasms was accompanied by a significant increase in the incidence of malignant neoplasms as well. The incidences of pulmonary neoplasms, benign or malignant combined, in both the high-dose male and female mice were well above the highest incidence observed in groups of NTP historical controls. The chemical-related increased incidence of benign pulmonary neoplasms in male mice was considered "some evidence" of carcinogenic activity while the increased incidences of benign and malignant pulmonary neoplasms in female mice was considered "clear evidence" of carcinogenic activity.

While nonneoplastic liver lesions related to coumarin administration were observed in both male and female mice, a chemical-related increased incidence of hepatocellular neoplasms was seen only in females receiving 50 or 100 mg/kg. Although only the incidence of hepatocellular adenoma was increased in the 50 and 100 mg/kg females, it was supported by an increased incidence of eosinophilic foci in these dose groups. Eosinophilic foci are morphologically similar to adenomas and are considered preneoplastic in mice. Although it is not known for certain why the incidence of hepatocellular neoplasms in the 200 mg/kg group was not increased relative to controls, the lower body weights of this group may have contributed to the lack of effect. Rao et al. (1987) have reported that body weight is positively correlated with the incidence of spontaneous liver neoplasms in mice in 2-year studies.

Squamous cell neoplasms of the forestomach, primarily papillomas, were marginally increased in 50 mg/kg male and female mice. Further, the incidences in the 50 mg/kg groups slightly exceeded the highest incidences observed in groups of historical controls. However, the forestomach neoplasms could not be clearly related to the administration of coumarin because the incidences in the 50 mg/kg groups were not significantly greater than those of the controls and there was no corresponding increase over a fourfold range of doses from 50 to 200 mg/kg.

The results of the *in vitro* genetic toxicity tests are also consistent with the hypothesized metabolism of coumarin to an electrophilic intermediate. Coumarin was mutagenic in *Salmonella typhimurium* strain TA100 only in the presence of liver S9 fraction, indicating that a metabolite, rather than the parent compound, was responsible for the mutagenicity. While it is not clear why coumarin produced a positive response only in strain TA100, this strain has been found to be more sensitive to mutagens. The positive response for mutations in *S. typhimurium* and the increased incidences of neoplasms at several sites in rats and mice administered coumarin is consistent with findings from other studies conducted by the NTP. Of 114 chemicals studied by the NTP, the S. typhimurium assay had the highest positive predictivity for carcinogenicity in rodents, with 89% of the mutagenic chemicals also producing increases in neoplasms in rats and/or mice (Tennant *et al.*, 1987; Zeiger *et al.*, 1990).

The toxicity and carcinogenic activity demonstrated by coumarin in the NTP 13-week and 2-year studies contrasts with those of 3,4-dihydrocoumarin (NTP, 1993). While the amount of 3,4-dihydrocoumarin administered to rats was four times that of coumarin in the 13-week studies, hepatocyte lipidosis, degeneration and necrosis, and bile duct hyperplasia were not observed. Partial saturation of the lactone ring by the introduction of a methyl group, as in 6-methylcoumarin, has also been shown to decrease liver toxicity in the rat (Feuer, 1974). Further, 3,4dihydrocoumarin did not increase the incidence of pulmonary neoplasms in dosed male or female mice in the 2-year study, even though the doses of 3,4dihydrocoumarin administered to mice were four times greater than those of coumarin. These findings are consistent with the hypothesis that a reactive metabolite generated from oxidation of the coumarin 3,4-double bond, possibly coumarin 3,4-epoxide, is responsible for covalent binding with cytoplasmic constituents and subsequent hepatotoxicity and carcinogenic activity in the lung. 3,4-Dihydrocoumarin, which lacks the double bond, would not be expected to produce the epoxide. Moreover, unlike coumarin, 3,4-dihydrocoumarin was not mutagenic in any of the S. typhimurium strains, with or without liver S9 fraction.

Although a reactive intermediate generated at the 3,4-double bond of coumarin may be responsible for the hepatotoxicity in rats and carcinogenic activity in the lung of mice, the renal toxicity in rats and carcinogenic effect in the liver of mice are not so readily explained. The severity of nephropathy was greater in male rats receiving either coumarin or 3,4-dihydro-coumarin, and a marginal increase in the incidence of renal tubule adenomas was also observed in dosed male rats of both studies. The magnitude of these effects was similar despite a sixfold difference in dose, suggesting that there are quantitative differences in the formation of the responsible metabolite.

The mechanism of the development of renal tubule adenomas in male rats receiving coumarin or 3,4-dihydrocoumarin needs to be studied further to determine the relevance of this effect. While it is possible that an electrophilic metabolite other than a 3,4-epoxide is responsible for induction of renal neoplasms, the potential role of cytotoxicity in the development of these neoplasms should be investi-DNA damage has been associated with gated. cytotoxicity, but it is clear that the mechanism of cell injury or cell death may determine the type and extent of DNA damage (Stevens and Jones, 1990). Further, injury and necrosis of tubule epithelial cells induces both proliferation and dedifferentiation of regenerating cells. Konishi and Ward (1989) have demonstrated increased ³H-thymidine labeling indices in the tubule epithelium with increasing severity of Cell proliferation is an essential nephropathy. component of the multistage process of carcinogenesis (Cohen and Ellwein, 1990). It is interesting to note that 8-methoxypsoralen (a furanocoumarin), ochratoxin A (a dihydrocoumarin), and quercetin (a benzo-gamma-pyrone derivative resembling the 1,2-benzopyrone moiety in coumarin) were also nephrotoxic and produced renal tubule neoplasms.

Both coumarin and 3,4-dihydrocoumarin also produced an increase in the incidence of hepatocellular neoplasms in female mice. This effect was observed in groups of females receiving 25 to 50 mg/kg coumarin, or 400 or 800 mg/kg 3,4-dihydrocoumarin.

These observations also suggest that the mechanism of induction of liver neoplasms in female mice does not involve an electrophilic metabolite generated from the 3,4-double bond. Unlike the kidney, there was no histologic evidence of liver toxicity to suggest that enhanced cell proliferation secondary to cell injury played a role in the induction of these neoplasms. The possible role of other mechanisms such as alterations in gene expression through changes in DNA methylation cannot be excluded (Goodman *et al.*, 1991).

CONCLUSIONS

Under the conditions of these 2-year gavage studies there was some evidence of carcinogenic activity* of coumarin in male F344/N rats based on increased incidences of renal tubule adenomas. There was equivocal evidence of carcinogenic activity of coumarin. in female F344/N rats based on a marginally increased incidence of renal tubule adenomas. There was some evidence of carcinogenic activity of coumarin in male B6C3F₁ mice based on the increased incidence of alveolar/bronchiolar adenomas. There was clear evidence of carcinogenic activity of coumarin in female B6C3F₁ mice based on increased incidences of alveolar/bronchiolar adenomas, alveolar/bronchiolar carcinomas, and hepatocellular adenomas. The marginally increased incidences of squamous cell papillomas of the forestomach in male and female mice receiving 50 mg/kg may have been related to coumarin administration.

The administration of coumarin to rats was also associated with an increased severity of nephropathy in the kidney and of bile duct hyperplasia in the liver, increased incidences of ulcers of the forestomach, and necrosis, fibrosis, and cytologic alteration of the liver. Administration of coumarin to mice was also associated with centrilobular hypertrophy, syncytial alteration, and eosinophilic focus in the liver.

^{*} Explanation of Levels of Evidence of Carcinogenic Activity is on page 10. A summary of the Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appears on page 12.

REFERENCES

Armitage, P. (1971). Statistical Methods in Medical Research, pp. 362-365. John Wiley and Sons, New York.

Ashby J., and Tennant, R.W. (1991). Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. *Mutat. Res.* 257, 229-306.

Bär, V.F., and Griepentrog, F. (1967). Die Situation in der gesundheitlichen Beurteilung der Aromatisierungsmittel für Lebensmittel. Medizin und Ernächrung &, 244-251.

Berkarda, B., Bouffard-Eyüboglu, H., and Derman, U. (1983). The effect of coumarin derivatives on the immunological system of man. *Agents Actions* 13, 50-55.

den Besten, C., Körösi, S.A., Beamand, J.A., Walters, D.G., and Lake, B.G. (1990). Studies on the mechanism of coumarin-induced toxicity in rat hepatocytes. *Toxicol. In Vitro* 4, 518-521.

Boorman, G.A., Montgomery, C.A., Jr., Eustis, S.L., Wolfe, M.J., McConnell, E.E., and Hardisty, J.F. (1985). Quality assurance in pathology for rodent carcinogenicity studies. In *Handbook of Carcinogen Testing* (H.A. Milman and E.K. Weisburger, Eds.), pp. 345-357. Noyes Publications, Park Ridge, NJ.

Code of Federal Regulations (CFR) 21, Part 58.

Cohen, A.J. (1979). Critical review of the toxicology of coumarin with special reference to interspecies differences in metabolism and hepatotoxic response and their significance to man. *Food Cosmet. Toxicol.* 17, 277-289.

Cohen, S.M., and Ellwein, L.B. (1990). Cell proliferation in carcinogenesis. *Science* 249, 1007-1011.

Cox, D.R. (1972). Regression models and life tables. J. R. Stat. Soc. B34, 187-220.

Crawford, B.D. (1985). Perspectives on the somatic mutation model of carcinogenesis. In Advances in Modern Environmental Toxicology (W.G. Flamm and R.J. Lorentzen, Eds.), pp. 13-59. Princeton Scientific Publishing Co., Inc., Princeton, NJ.

D'Amato, F., and D'Amato-Avanzi, M.G. (1954). The chromosome-breaking effect of coumarin derivatives in the *Allium* test. *Caryologia* 6, 134-150.

Dexeus, F.H., Logothetis, C.J., Sella, A., Fitz, K., Amato, R., Reuben, J.M., and Dozier, N. (1990). Phase II study of coumarin and cimetidine in patients with metastatic renal cell carcinoma. *J. Clin. Oncol.* 8, 325-329.

Dickens, F., and Waynforth, H.B. (1968). Studies on carcinogenesis by lactones and related substances. Br. Emp. Can. Camp. Res. 46, 108.

Dinse, G.E., and Haseman, J.K. (1986). Logistic regression analysis of incidental-tumor data from animal carcinogenicity experiments. *Fundam. Appl. Toxicol.* 6, 44-52.

Dinse, G.E., and Lagakos, S.W. (1983). Regression analysis of tumour prevalence data. *Appl. Statist.* 32, 236-248.

Dunn, O.J. (1964). Multiple comparisons using rank sums. *Technometrics* 6, 241-252.

Dunnett, C.W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50, 1096-1121.

Endell, W., and Seidel, G. (1978). Coumarin toxicity in different strains of mice. Agents Actions 8, 299-302.

Evans, J.G., Gaunt, I.F., and Lake, B.G. (1979). Two-year toxicity study on coumarin in the baboon. Food Cosmet. Toxicol. 17, 187-193. Evans, J.G., Appleby, E.C., Lake, B.G., and Conning, D.M. (1989). Studies on the induction of cholangiofibrosis by coumarin in the rat. *Toxicology* 55, 207-224.

Fenaroli's Handbook of Flavor Ingredients (1971). (T.E. Furia and N. Bellanca, Eds.). Chemical Rubber Co., Cleveland, OH.

Feuer, G. (1970a). 3-Hydroxylation of coumarin or 4-methylcoumarin by rat-liver microsomes and its induction by 4-methyl-coumarin given orally. *Chem.*-*Biol. Interact.* 2, 203-216.

Feuer, G. (1970b). Induction of drug-metabolizing enzymes of rat liver by derivatives of coumarin. *Can. J. Physiol. Pharmacol.* **48**, 232-240.

Feuer, G. (1974). The metabolism and biological actions of coumarins. In *Progress in Medicinal Chemistry* (G.P. Ellis and G.B. West, Eds.), Vol. 10, pp. 85-158. North-Holland Publishing Co., Amsterdam.

Feuer, G., Golberg, L., and Le Pelley, J.R. (1965a). Liver response tests. II. Effect of coumarin on glucose-6-phosphatase metabolism in rat liver. *Food Cosmet. Toxicol.* **3**, 251.

Feuer, G., Golberg, L., and Le Pelley, J.R. (1965b). Liver response tests. I. Exploratory studies on glucose-6-phosphatase and other liver enzymes. *Food Cosmet. Toxicol.* **3**, 235-250.

Feuer, G., Golberg, L., and Gibson, K.I. (1966). Liver response tests. VII. Coumarin metabolism in relation to the inhibition of rat-liver glucose 6-phosphatase. *Food Cosmet. Toxicol.* **4**, 157-167.

Food and Drug Administration (FDA) (1954). Federal Register, 21, part 8.

Galloway, S.M., Armstrong, M.J., Reuben, C., Colman, S., Brown, B., Cannon, C., Bloom, A.D., Nakamura, F., Ahmed, M., Duk, S., Rimpo, J., Margolin, B.H., Resnick, M.A., Anderson, B., and Zeiger, E. (1987). Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. *Environ. Mol. Mutagen.* 10 (Suppl. 10), 1-175. Gangolli, S.D., Shilling, W.H., Grasso, P., and Gaunt, I.F. (1974). Studies on the metabolism and hepatotoxicity of coumarin in the baboon. *Biochem.* Soc. Trans. 2, 310-312.

Gart, J.J., Chu, K.C., and Tarone, R.E. (1979). Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. *J. Natl. Cancer Inst.* **62**, 957-974.

Goodman, J.I., Ward, J.M., Popp, J.A., Klaunig, J.E., and Fox, T.R. (1991). Mouse liver carcinogenesis: Mechanisms and relevance. *Fundam. Appl. Toxicol.* 17, 651-665.

Grasso, P., Wright, M.G., Gangolli, S.D., and Hendy, R.J. (1974). Liver response tests. IX. Cytopathological changes in the enlarged but histologically normal rat liver. *Food Cosmet. Toxicol.* **12**, 341.

Griepentrog, F. (1973). Pathologisch-anatomische Befunde zur karzinogenen Wirkung von Cumarin im Tierversuch. *Toxicology* 1, 93-102.

Hagan, E.C., Hansen, W.H., Fitzhugh, O.G., Jenner, P.M., Jones, W.I., Taylor, J.M., Long, E.L., Nelson, A.A., and Brouwer, J.B. (1967). Food flavourings and compounds of related structure. II: Subacute and chronic toxicity. *Food Cosmet. Toxicol.* 5, 141-157.

Halpin, R.A., Vyas, K.P., El-Naggar, S.F., and Jerina, D.M. (1984). Metabolism and hepatotoxicity of the naturally occurring benzo[b]pyran precocene I. *Chem.-Biol. Interact.* 48, 297-315.

Haseman, J.K. (1984). Statistical issues in the design, analysis, and interpretation of animal carcinogenicity studies. *Environ. Health Perspect.* 58, 385-392.

Haseman, J.K., Huff, J., and Boorman, G.A. (1984). Use of historical control data in carcinogenicity studies in rodents. *Toxicol. Pathol.* 12, 126-135.

Haseman, J.K., Huff, J.E., Rao, G.N., Arnold, J.E., Boorman, G.A., and McConnell, E.E. (1985). Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. JNCI **75**, 975-984.

References

Hawley, G.G. (Ed.) (1977). The Condensed Chemical Dictionary, 9th ed., pp. 98, 235, 296. Van Nostrand Reinhold Co., New York.

Haworth, S., Lawlor, T., Mortelmans, K., Speck, W., and Zeiger, E. (1983). Salmonella mutagenicity test results for 250 chemicals. *Environ. Mutagen.* 5 (Suppl. 1), 3-142.

Hazleton, L.W., Tusing, T.W., Zeitlin, B.R., Thiessen, R., Jr., and Murer, H.K. (1956). Toxicity of coumarin. J. Pharmacol. Exp. Ther. 118, 348-358.

Hollander, M., and Wolfe, D.A. (1973). Nonparametric Statistical Methods. John Wiley and Sons, New York.

Ide, F., Ishikawa, T., and Takayama, S. (1981). Detection of chemical carcinogens by assay of unscheduled DNA synthesis in rat tracheal epithelium in short-term organ culture. J. Cancer Res. Clin. Oncol. 102, 115-126.

Jonckheere, A. (1954). A distribution-free k-sample test against ordered alternatives. *Biometrika* 41, 133-145.

Kaighen, M., and Williams, R.T. (1961). The metabolism of [3-¹⁴C]coumarin. J. Med. Pharm. Chem. 3, 25-43.

Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457-481.

Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., (1978). Vol. 7, pp. 196-206. John Wiley and Sons, New York.

Konishi, N., and Ward, J.M. (1989). Increased levels of DNA synthesis in hyperplastic renal tubules of aging nephropathy in female F344/NCr rats. *Vet. Pathol.* 26, 6-10.

Lake, B.G. (1984). Investigations into the mechanism of coumarin-induced hepatotoxicity in the rat. *Arch. Toxicol. Suppl.* 7, 16-29.

Lake, B.G., Gray, T.J.B., Evans, J.G., Lewis, D.F.V., Beamand, J.A., and Hue, K.L. (1989). Studies on the mechanism of coumarin-induced toxicity in rat hepatocytes: Comparison with dihydrocoumarin and other coumarin metabolites. *Toxicol. Appl. Pharmacol.* 97, 311-323.

MacGregor, J.T., Wehr, C.M., and Langlois, R.G. (1983). A simple fluorescent staining procedure for micronuclei and RNA in erythrocytes using Hoeschst 33258 and pyronin Y. *Mutat. Res.* 120, 269-275.

MacGregor, J., Wehr, C.M., Henika, P.R., and Shelby, M.D. (1990). The *in vivo* erythrocyte micronucleus test: Measurement at steady state increases assay efficiency and permits integration with toxicity studies. *Fundam. Appl. Toxicol.* 14, 513-522.

Margolin, B., Collings, B., and Mason, J. (1983). Statistical analysis and sample-size determinations for mutagenicity experiments with binomial responses. *Environ. Mutagen.* 5, 705-716.

Maronpot, R.R., and Boorman, G.A. (1982). Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. *Toxicol. Pathol.* 10, 71-80.

Marshall, M.E., Mendelsohn, L., Butler, K., Cantrell, J., Harvey, J., and Macdonald, J.S. (1987a). Treatment of non-small cell lung cancer with coumarin and cimetidine. *Cancer Treat. Rep.* 71, 91-92.

Marshall, M.E., Mendelsohn, L., Butler, K., Riley, L., Cantrell, J., Wiseman, C., Taylor, R., and Macdonald, J.S. (1987b). Treatment of metastatic renal cell carcinoma with coumarin (1,2-benzopyrone) and cimetidine: A pilot study. J. Clin. Oncol. 5, 862-866.

Marshall, M.E., Butler, K., Cantrell, J., Wiseman, C., and Mendelsohn, L. (1989a). Treatment of advanced malignant melanoma with coumarin and cimetidine: A pilot study. *Cancer Chemother. Pharmacol.* 24, 65-66. Marshall, M.E., Conley, D., Hollingsworth, P., Brown, S., and Thompson, J.S. (1989b). Effects of coumarin (1,2-benzopyrone) on lymphocyte, natural killer cell, and monocyte functions *in vitro*. J. Biol. Response Mod. 8, 70-85.

McConnell, E.E., Solleveld, H.A., Swenberg, J.A., and Boorman, G.A. (1986). Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. JNCI 76, 283-289.

McKnight, B., and Crowley, J. (1984). Tests for differences in tumor incidence based on animal carcinogenesis experiments. J. Am. Stat. Assoc. 79, 639-648.

Miles, J.S., McLaren, A.W., Forrester, L.M., Glancey, M.J., Lang, M.A., and Wolf, C.R. (1990). Identification of the human liver cytochrome P-450 responsible for coumarin 7-hydroxylase activity. *Biochem. J.* 267, 365-371.

Miller, J.A., and Miller, E.C. (1977). Ultimate chemical carcinogens as reactive mutagenic electrophiles. In *Origins of Human Cancer*, (H.H. Hiatt, J.D. Watkins, and J.A. Winsten, Eds.), pp. 605-627. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Murray, R.D.H., Méndez, J., and Brown, S.A. (1982). The Natural Coumarins: Occurrence, Chemistry and Biochemistry. John Wiley & Sons, New York.

Nair, R.V., Fisher, E.P., Safe, S.H., Cortez, C., Harvey, R.G., and DiGiovanni, J. (1991). Novel coumarins as potential anticarcinogenic agents. *Carcinogenesis* 12, 65-69.

National Cancer Institute (NCI) (1976). Guidelines for Carcinogen Bioassay in Small Rodents. Technical Report Series No. 1. NIH Publication No. 76-801. National Institutes of Health, Bethesda, MD.

National Institute for Occupational Safety and Health (NIOSH) (1990). National Occupation Exposure Survey (NOES) (1981-1983), unpublished provisional data as of July 1, 1990.

National Institutes of Health (NIH) (1978). Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

National Toxicology Program (NTP) (1989a). Toxicology and Carcinogenesis Studies of 8-Methoxypsoralen (CAS No. 298-81-7) in F344/N Rats (Gavage Studies). Technical Report Series No. 359. NIH Publication No. 89-2814. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.

National Toxicology Program (NTP) (1989b). Toxicology and Carcinogenesis Studies of Ochratoxin A (CAS No. 303-47-9) in F344/N Rats (Gavage Studies). Technical Report Series No. 358. NIH Publication No. 89-2813. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.

National Toxicology Program (NTP) (1992). Toxicology and Carcinogenesis Studies of Quercetin (CAS No. 117-39-5) in F344/N Rats (Feed Studies). Technical Report Series No. 409. NIH Publication No. 92-3140. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.

National Toxicology Program (NTP) (1993). Toxicology and Carcinogenesis Studies of 3,4-Dihydrocoumarin (CAS No. 119-84-6) in F344/N Rats and B6C3F₁ Mice (Gavage Studies). Technical Report Series No. 423. NIH Publication No. 93-3154. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.

Nievel, J.G. (1969). Effect of coumarin, BHT and phenobarbitone on protein synthesis in the rat liver. *Food Cosmet. Toxicol.* 7, 621.

Norman, R.L., and Wood, A.W. (1981). Assessment of the mutagenic potential of coumarin in histidinedependent strains of *Salmonella typhimurium*. *Proc. Amer. Assoc. Cancer Res.* 22, 109. (Abstr.)

References

Peters, M.M., Walters, D.G., van Ommen, B., van Bladeren, P.J., and Lake, B.G. (1991). Effect of inducers of cytochrome P-450 on the metabolism of [3-¹⁴C]coumarin by rat hepatic microsomes. *Xenobiotica* 21, 499-514.

Piller, N.B. (1977). $[3^{-14}C]$ coumarin distribution in rat tissues after the injection of a single dose. *Res. Exp. Med.* 171, 93.

Prival, M.J., Sheldon, A.T., Jr., and Popkin, D. (1982). Evaluation, using S. typhimurium, of the mutagenicity of seven chemicals found in cosmetics. Food Chem. Toxicol. 20, 427-432.

Rao, G.N., Piegorsch, W.W., and Haseman, J.K. (1987). Influence of body weight on the incidence of spontaneous tumors in rats and mice of long-term studies. *Am. J. Clin. Nutr.* 45, 252-260.

Ravindranath, V., Boyd, M.R., and Jerina, D.M. (1987). Hepatotoxicity of precocene I in rats. Role of metabolic activation *in vivo*. *Biochem. Pharmacol.* 36, 441-446.

Riley, H.P., and Hoff, V.J. (1960). Chromosome breakage in *Tulbaghia violacea* by radiation and chemicals. *Nucleus* 3, 1-18.

Ritschel, W.A., Hoffmann, K.A., Tan, H.S.I., and Sanders, P.R. (1976). Pharmacokinetics of coumarin upon i.v. administration in man. *Arzneimittelforschung* 26, 1382.

Ritschel, W.A., Tan, H.S., Hoffman, K.A., Sanders, P.R., and Schmucker, V.R. (1977). Metabolism of coumarin upon i.v. administration in man. *Drug Dev. Eval.* 22, 190-195.

Roll, R., and Bär, F. (1967). Die Wirkung von Cumarin (o-hydroxyzimtsäure-lacton) auf trächtige Mäuseweibchen. Arzneimittelforschung 17, 97-100.

Sadtler Standard Spectra. IR No. 1691. Sadtler Research Laboratories, Philadelphia, PA.

Sarma, Y.S.R.K., and Tripathi, S.N. (1976). Effects of chemicals on some members of Indian Charophyta II. *Caryologia* 29, 263-276.

Scheline, R.R. (1968). Studies on the role of the intestinal microflora in the metabolism of coumarin in rats. *Acta Pharmacol. Toxicol.* 26, 325-331.

Schmid, W. (1976). The micronucleus test for cytogenetic analysis. In *Chemical Mutagens: Principles and methods for their detection*, (A. Hollaender, Ed.), Vol. 4, pp. 31-53. Plenum Press, New York.

Schumacher, J.N., Green, C.R., Best, F.W., and Newell, M.P. (1977). Smoke composition. An extensive investigation of the water-soluble portion of cigarette smoke. J. Agri. Food Chem. 25, 310-320.

Shilling, W.H., Crampton, R.F., and Longland, R.C. (1969). Metabolism of coumarin in man. *Nature* 221, 664-665.

Shirley, E. (1977). A non-parametric equivalent of Williams' test for contrasting increasing dose levels of a treatment. *Biometrics* 33, 386-389.

Stevens, J.L., and Jones, T.W. (1990). The role of damage and proliferation in renal carcinogenesis. *Toxicol. Lett.* 53, 121-126.

Stoltz, D.R., and Scott, P.M. (1980). Mutagenicity of coumarin and related compounds for *Salmonella* typhimurium. Can. J. Genet. Cytol. 22, 679. (Abstr.)

Straus, D.S. (1981). Somatic mutation, cellular differentiation, and cancer causation. JNCI 67, 233-241.

Tarone, R.E. (1975). Tests for trend in life table analysis. *Biometrika* 62, 679-682.

Tennant, R.W., Margolin, B.H., Shelby, M.D., Zeiger, E., Haseman, J.K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R. (1987). Prediction of chemical carcinogenicity in rodents from *in vitro* genetic toxicity assays. *Science* 236, 933-941.

Thornes, R.D. (1983). Coumarins, melanoma and cellular immunity. In *Protective Agents in Cancer*, (D.C.H. McBrien and T.F. Slater, Eds.), pp. 43-56. Academic Press, London.

Thornes, D., Daly, L., Lynch, G., Browne, H., Tanner, A., Keane, F., O'Loughlin, S., Corrigan, T., Daly, P., Edwards, G., Breslin, B., Brown, H., Shine, M., Lennon, F., Hanley, J., McMurray, N., and Gaffrey, E. (1989). Prevention of early recurrence of high risk malignant melanoma by coumarin. *Eur. J. Surg. Oncol.* **15**, 431-435.

Tseng A., Jr. (1991). Chemoprevention of tumors in MTV-H-ras transgenic mice with coumarin. Am. Assoc. Cancer Res. Proc. 32, Abstract No. 2257.

Ueno, I., and Hirono, I. (1981). Non-carcinogenic response to coumarin in Syrian golden hamsters. *Food Cosmet. Toxicol.* **19**, 353-355.

Valencia, R., Mason, J.M., and Zimmering, S. (1989). Chemical mutagenesis testing in *Drosophila*. VI. Interlaboratory comparison of mutagenicity tests after treatment of larvae. *Environ. Mol. Mutagen.* 14, 238-244.

Van Sumere, C.F., and Tuechy, H. (1971). The metabolism of [2-¹⁴C]coumarin and [2-¹⁴C]-7-hydroxycoumarin in the rat. *Arch. Int. Physiol. Biochim.* **79**, 665-679.

Voogd, C.E., Van der Stel, J.J., and Jacobs, J.J.J.A.A. (1980). On the mutagenic action of some enzyme immunoassay substrates. J. Immunol. Methods 36, 55-61.

Wattenberg, L.W., Lam, L.K.T., and Fladmoe, A.V. (1979). Inhibition of chemical carcinogen-induced neoplasia by coumarins and α -angelicalactone. *Cancer Res.* **39**, 1651-1660.

Williams, D.A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose control. *Biometrics* 27, 103-117.

Williams, D.A. (1972). The comparison of several dose levels with a zero dose control. *Biometrics* 28, 519-531.

Williams, R.T., Millburn, P., and Smith, R.L. (1965). The influence of enterohepatic circulation on toxicity of drugs. *Ann. N.Y. Acad. Sci.* 123, 110.

Wood, A.W., and Conney, A.H. (1974). Genetic variation in coumarin hydroxylase activity in the mouse (*Mus musculus*). Science 185, 612-614.

Wood, A.W., and Taylor, B.A. (1979). Genetic regulation of coumarin hydroxylase activity in mice. *J. Biol. Chem.* **254**, 5647-5651.

Yoon, J.S., Mason, J.M., Valencia, R.C., Woodruff, R.C., and Zimmering, S. (1985). Chemical mutagenesis testing in *Drosophila*. IV. Results of 45 coded compounds tested for the National Toxicology Program. *Environ. Mutagen.* 7, 349-367.

Zeiger, E., Haseman, J.K., Shelby, M.D., Margolin, B.H., and Tennant, R.W. (1990). Evaluation of four *in vitro* genetic toxicity tests for predicting rodent carcinogenicity: Confirmation of earlier results with 41 additional chemicals. *Environ. Mol. Mutagen.* 16 (Suppl. 18), 1-14.

Zimmering, S., Mason, J.M., and Valencia, R. (1989). Chemical mutagenesis testing in *Drosophila*. VII. Results of 22 coded compounds tested in larval feeding experiments. *Environ. Mol. Mutagen.* 14, 245-251.

APPENDIX A SUMMARY OF LESIONS IN MALE RATS IN THE 2-YEAR GAVAGE STUDY OF COUMARIN

Table A1	Summary of the Incidence of Neoplasms in Male Rats	
	in the 2-Year Gavage Study of Coumarin	87
TABLE A2	Individual Animal Tumor Pathology of Male Rats	
	in the 2-Year Gavage Study of Coumarin	92
Table A3	Statistical Analysis of Primary Neoplasms in Male Rats	
	in the 2-Year Gavage Study of Coumarin	116
Table A4a	Historical Incidence of Renal Tubule Neoplasms in Male F344/N Rats	
	Receiving Corn Oil by Gavage	121
Table A4b	Historical Incidence of Oral Cavity Neoplasms in Male F344/N Rats	
	Receiving Corn Oil by Gavage	121
TABLE A4c	Historical Incidence of Thyroid Gland Follicular Cell Neoplasms	
	in Male F344/N Rats Receiving Corn Oil by Gavage	122
Table A4d	Historical Incidence of Testicular Neoplasms in Male F344/N Rats	
	Receiving Corn Oil by Gavage	122
Table A5	Summary of the Incidence of Nonneoplastic Lesions in Male Rats	
	in the 2-Year Gavage Study of Coumarin	123

85

55

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin^a

Disposition Summary Anamas initially in study 60 70 13 17 Natural deaths 6 7 13 17 13 17 Survivors 7 13 17 13 17 10 10 10 60 50 50 50 50 <th></th> <th>Vehicle Control</th> <th>25 mg/kg</th> <th>50 mg/kg</th> <th>100 mg/kg</th>		Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Animals initially in study 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 50 60 9 10 10 10 10 9 10 31 3	Disposition Summary		·····	. <u></u>	· · · · · · · · · · · · · · · · · · ·
15 Month Interin evaluation 10 10 9 10 Accidental deaths 2 3 2 2 Moribund 14 31 34 31 Natural deaths 6 7 13 17 Survivors Terminal sacrifice 28 9 2 Animals examined microscopically 60 60 60 60 Ibree (10) (10) (10) (10) Ibree (10) (10) (10) (10) Ibree (10) (10) (10) (10) Papilions squamous 1 (10%) 1 (10%) Papilions aquamous 1 (10%) 1 (10%) 1 Cardiovascular System 1 (10%) 2 (20%) 2 (20%) Cardiovascular System 1 (10%) 2 (20%) 2 (20%) 2 (20%) 2 (20%) 2 (20%) 2 (20%) 2 (20%) 2 (20%) 2 (20%) 2 (20%) <td< td=""><td></td><td>60</td><td>60</td><td>60</td><td>60</td></td<>		60	60	60	60
Accidental deaths 2 3 2 2 Moribund 14 31 34 31 Natural deaths 6 7 13 17 Survivors Terminal sacrifice 28 9 2 Animals examined microscopically 60 60 60 60 Issues Caroline System 1 10% 9 10 Leukenia mononuclear 1 10% 1 10% 1 10% Somach, forestomach (10) (10) (10) 1 10% 1 10% 1 10% 1 10% 1 10% 1 10% 1 10% 1 10% 1 10% 1 10% 1 10% 1 10% 1 10% 1 10% 1 10% 1 10% 2 2 20% 1 10% 2 2 20% 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3					10
Moreinal daths 14 31 34 31 Natural daths 6 7 13 17 Surviors 7 13 17 Surviors 28 9 2 Animals examined microscopically 60 60 60 15-Month Interim Evaluations Attimentary System 1 (10%) 1 (10%) Lever (10) (10) (9) (10) Papilloma squamous 10% 1 (10%) 1 (10%) 1 (10%) Papilloma squamous 10% 1 (10%) 1 (10%) 1 (10%) Cardiovascular System 1 (10%) 2 (100%) 2 (20%) Cardiovascular System 1 (10%) 2 (100%) 8 (80%) None 1 (10%) 2 (100%) 8 (80%) Cardiovascular System (10) (10) 2 (20%) Cardiovascular System (10%) 2 (20%) 8 (80%) None (10%) 9 (100%) 8 (100%) 8 (80%) Feates (10) (10%)	Early deaths				
Natural deaths 6 7 13 17 Terminal scriftee 28 9 2 Animals examined microscopically 60 60 60 60 Animals examined microscopically 60 60 60 60 60 Animals examined microscopically 60 60 60 60 60 Animest System					
Survices Terminal sacrifice 28 9 2 Animals examined microscopically 60 60 60 60 15-Month Interim Evaluation Atimentary System Liver (10) (10) (9) (10) 12-Month Interim Evaluation Atimentary System Liver (10) (10) (9) (10) Papilloma squamous (10) (1) (10%) 1 (10%) Papilloma squamous (10) (1) (10) (10) Papilloma squamous (10) (1) (10) (10) Papilloma squamous (10) (1) (10) (10) Papilloma squamous (10) (1) (10) 2 (20%) Cardiovascular System None (10) (2) (10) 2 (20%) Endocrine System None (10) (10) (10) 8 (80%) 8 (80%) Interstitial cell, adenoma (10) (10) (10) 1 (10%) Leukemia mononuclear (10) (10) (10) (10) Leukemia mononuclear (10) <td< td=""><td>Moribund</td><td>14</td><td></td><td></td><td></td></td<>	Moribund	14			
Terminal sacrifice 28 9 2 Animals examined microscopically 60 60 60 60 IS-Month Interim Evaluation Milmentary System Aver (10) (10) (10) (9) (10) Hepatocellular adenoma Leukemia mononuclear (10) (10) (10) (10) (10) Papillom squamous (10) (1) (10%) (10%) (10%) Cardiovascular System None (10) (1) (10%) (10%) 2 (100%) 2 (20%) General Body System None (10) (10) (2) (10) (10) General Body System None (10) (10%) 8 (80%) 9 (100%) 8 (100%) 8 (80%) Hematopoletic System None (10) (10) (10) (10) (10%) 1 (10%) Partial System None (10) (10) (10) (10) (10) (10) (10) Leukemia mononuclear (10) (10%) (10%) (10%) (10%) (10%) Leukemia mononuclear		6	7	13	17
Animals examined microscopically 60 60 60 60 15-Month Interim Evaluation Mimentary System Levicemia mononuclear User (10) (10) (10) (9) (10) Hepatocellular adenoma Levicemia mononuclear Stomach, forestomach (10) (10) (1) (10%) Papilloma squamous (10) (1) (10%) (10%) (10%) Cardiovascular System None (10) (10) (1) (10%) (2) (10) Pars distalis, adenoma 1 (10%) 2 (10%) 2 (20%) General Body System None (10) (9) (8) (10) (10) 1 (10%) Interstitial cell, adenoma (10) (9) (8) (10) 8 (80%) 8 (10%) 1 (10%) 1 (10%) 1 (10%) 1 (10%) 1 (10%) 1 (10%) 1 (10%) 1 (10%) 1 (10%) 1 (10%) 1 1 1 1				_	
15-Month Interim Evaluation Nimentary System Aret (10) (10) (9) (10) Aret (10) (10) (10) (10) 1 10%) Leukemia mononuclear Incark, forestomach (10) (1) 1 10%) 1 (10%) Papilloma squamous 1 (10) (1) 1 (10%) 1 (10%) Cardiovascular System None 1 (10%) (2) (10) 2 (20%) 1 (10) 1 (10) 1 1 1 1 1 1 1 1 1 1	Terminal sacrifice	28	9	2	
Minentary System (10) (10) (9) (10) Aver (10) (10) (10) 1 (10%) Hepatocellular adenoma 1 (10%) 1 (10%) Leukenia mononuclear (10) (1) (10%) 1 (10%) Papilloma squamous (10) (1) (10%) 1 (10%) Cardiovascular System 1 (10%) 2 (20%) 2 Candiovascular System 1 1 2 (10%) 2 (20%) Candiovascular System 1 1 (10%) 2 (20%) 2 (20%) Ceneral Body System 1 1 10%) 9 100%) 8 80%) 9 100%) 8 80%) 9 100%) 8 80%) 9 10% 1 10% 1 10% 1 10% 1 1 1 1 1 1 1 1 1 1 1 1 <td>Animals examined microscopically</td> <td>60</td> <td>60</td> <td>60</td> <td>60</td>	Animals examined microscopically	60	60	60	60
Liver (10) (10) (9) (10) Hepatocellular adenoma 1	5-Month Interim Evaluation				
Hepatocellular adenoma Leukemia mononuclear i (10%) i (10%) Stomach, forestomach Papilloma squamous (10) i (10%) Cardiovascular System None Endocrine System Pituitary gland Pars distalis, adenoma I (10%) Ceneral Body System None General Body System None General Body System None Hematopoietic System Lymph node, manibular (10) Leukemia mononuclear (10) Leukemia mononuclear </td <td>Alimentary System</td> <td></td> <td></td> <td></td> <td></td>	Alimentary System				
Hepatocellular adenoma i (10%) Leukemia mononuclear i (10%) Stomach, forestomach (10) Papilloma squamous i (10%) Cardiovascular System i (10%) None i (10%) Endocrine System i (10%) Pituitary gland (10) Pars distalis, adenoma i (10%) General Body System i (10%) Stomach, forestomach (10) General Body System i (10%) Stomach, forestomach (10) Interstitial Cell, adenoma 8 (80%) Vaph node, mandibular (9) Leukemia mononuclear i (10%) Lymph node, mesenteric (10) Lymph node, mesenteric (10) Lymph node, mesenteric (10) Leukemia mononuclear i (10%) Spleen (10) (10) Leukemia mononuclear i (10%) Spleen (10) i (10%) Leukemia mononuclear i (10%) i (10%) Leukemia mononuclear i (10%) i (11%) Leukemia mononuclear i (10%) <td></td> <td>(10)</td> <td>(10)</td> <td>(9)</td> <td>(10)</td>		(10)	(10)	(9)	(10)
Stomach, forestomach Papilloma squamous (10) (1) 1 (100%) (10) 1 (100%) Cardiovascular System None (10) (1) 1 (10%) (10) Endocrine System Privilary gland (10) (2) (10) Pars distalis, adenoma 1 (10%) 2 (20%) General Body System None (10) (10) (10) General Body System None (10) (10) (10) Hematopoietic System Lymph node, mandibular (9) (8) (10) Lukemia mononuclear (10) (10) (10) Lukemia mononuclear (10) (10) (10) Spleen (10) (10) (10) Leukemia mononuclear (10) (10) (10) Spleen (10) (10) (10) Leukemia mononuclear (10) (10) (10) Leukemia mononuclear (10) (10) (10%) Integumen		. /			
Papilloma squamous 1 (100%) 1 (100%) Cardiovascular System None Pituliary gland (10) (2) (10) Pars distalis, adenoma 1 (10%) 2 (100%) 2 (20%) General Body System 1 (10%) 2 (100%) 2 (20%) General Body System 0 2 (100%) 2 (20%) Genital System 1 (10%) 8 (80%) 9 (100%) 8 (80%) Hematopoietic System 1 (10%) 1 (10%) 1 (10%) Leukemia mononuclear 1 (10%) 1 (10%) 1 (10%) Spleen (10) (1) 1 (10%) Leukemia mononuclear 1 (10%) 1 (10%) 1 (10%) Spleen (10) (1) 1 (10%) 1 (10%) Leukemia mononuclear 1 (10%) 1 (10%) 1 (10%) 1 (11%) Integumentary System (9) (9) (9) (9) (9)					
Cardiovascular System None System Endocrine System Pars distalis, adenoma (10) 1 (10%) (2) 2 (100%) (10) 2 (20%) General Body System None (10) (10) (9) (10) (8) (10) (10) 8 (80%) (10) 9 (100%) (10) 8 (100%) Genital System Central System Central System Particular Central System Used State Central System Central System C		(10)	(1)		
None Endocrine System (10) (2) (10) 2 (20%) Pars distalis, adenoma 1 (10%) 2 (100%) 2 (20%) 2 (20%) General Body System 1 (10%) 2 (100%) 2 (20%) General Body System Second 2 (20%) 2 (20%) Interstitial cell, adenoma 8 (80%) 9 (100%) 8 (100%) 8 (80%) Hematopoietic System Second 1 (10%) 1 (10%) 1 (10%) Leukemia mononuclear (10) (10) 1 (10%) 1 (10%) Spleen (10) (1) (10) 1 (10%) 1 (10%) Leukemia mononuclear (10) (10) 1 (10%) 1 (11%) Leukemia mononuclear (10) (10) 1 (11%) 1 (11%)	Papilloma squamous		1 (100%)		1 (10%)
Pituitary gland (10) (2) (10) Pars distalis, adenoma 1 (10%) 2 (100%) 2 (20%) General Body System Secondary System 2 (100%) 2 (20%) Genital System Interstilial cell, adenoma 8 (80%) 9 (100%) 8 (100%) 8 (80%) Hematopoietic System 1 100 8 (80%) 9 (100%) 8 (100%) 8 (80%) Lymph node, mandibular (9) (10) 1 (10%) 1 (10%) Lymph node, mandibular (10) 1 (10%) 1 (10%) Spleen (10) (1) (10) Leukemia mononuclear 1 (10%) 1 (10%) Thymus (10) (1) (10) Leukemia mononuclear 1 (10%) (10) (10) Integumentary System (10) (9) (9)					
Pars distalis, adenoma 1 (10%) 2 (100%) 2 (20%) General Body System None Genital System (10) (9) (8) (10) Genital System Testes (10) (9) (8) (10) Interstitial cell, adenoma 8 (80%) 9 (100%) 8 (100%) 8 (80%) Hematopoietic System (10) (10) (10) (10) Lymph node, mandibular (9) (10) (10) (10) Leukemia mononuclear (10) (10) (10) (10) Leukemia mononuclear (10) (1) (10) (10%) Spleen (10) (1) (10) (10%) Leukemia mononuclear (10) (1) (10%) Leukemia mononuclear (10) (1) (10%) Leukemia mononuclear (10) (1) (10%) Integumentary System (9) (9) (9)	Endocrine System				
General Body System None Genital System Testes (10) Interstitial cell, adenoma 8 (80%) 9 (160%) 8 (100%) Hematopoietic System Lymph node, mandibular (9) Lukemia mononuclear 1 (10%) Lymph node, mesenteric (10) Lukemia mononuclear 1 (10%) Spleen (10) (1) Spleen (10) (1) Leukemia mononuclear 1 (10%) Lukemia mononuclear 1 (10%) Integumentary System (9) Mammary gland (9) (9)				(2)	
Senital System (10) (9) (8) (10) Testes (10) 8 (80%) 9 (100%) 8 (100%) 8 (80%) Hematopoietic System (10) (10) (10) (10) Leukemia mononuclear (10) (10) (10%) Jymph node, mesenteric (10) (10) (10%) Leukemia mononuclear (10) (10) (10%) Spleen (10) (1) (10%) Leukemia mononuclear (10) (10%) (10%) Kemai mononuclear (10) (1) (10%) I Leukemia mononuclear (10) (1) (10%) Teymus (10) (1) (10%) (9) Leukemia mononuclear (10) (9) (9) (9)	Pars distalis, adenoma	1 (10%)		2 (100%)	2 (20%)
Testes (10) (9) (8) (10) Interstitial cell, adenoma 8 (80%) 9 (100%) 8 (100%) 8 (80%) Hematopoietic System (10) (10) (10) (10) Leukemia mononuclear 1 (10%) (10) 1 (10%) Lymph node, mesenteric (10) (10) 1 (10%) Leukemia mononuclear 1 (10%) 1 (10%) 1 (10%) Spleen (10) (1) (10) 1 (10%) Leukemia mononuclear (10) 1 (10%) 1 (10%) Spleen (10) (1) (10) 1 (10%) Leukemia mononuclear (10) (1) (10) 1 (10%) Thymus (10) (1) (10) 1 (10%) 1 (10%) Leukemia mononuclear (10) (9) 1 (11%) 1 (11%) 1 (11%) Integumentary System (9) (9) (9) (9) (9) (9)					
Interstitial cell, adenoma8 (80%)9 (100%)8 (100%)8 (80%)Hematopoietic SystemLymph node, mandibular(9)(10)Leukemia mononuclear1 (10%)Lymph node, mesenteric(10)(10)Leukemia mononuclear1 (10%)Spleen(10)(1)Leukemia mononuclear1 (10%)Spleen(10)(1)Leukemia mononuclear1 (10%)Spleen(10)(1)Leukemia mononuclear1 (10%)Thymus(10)(1)Leukemia mononuclear(10)Mategumentary System(9)Mammary gland(9)	Genital System				
Interstitial cell, adenoma 8 (80%) 9 (160%) 8 (100%) 8 (80%) Hematopoietic System Lymph node, mandibular (9) (10) Leukemia mononuclear (10) (10) Leukemia mononuclear (10) (1) (10) Leukemia mononuclear (10) (1) (10) Leukemia mononuclear (10) (1) (10) Leukemia mononuclear (10) (1) (10%) Leukemia mononuclear (10) (1) (10%) (10) (1) (10%) (9) (9) (9)		(10)	(9)	(8)	(10)
Lymph node, mandibular(9)(10)Leukemia mononuclear1 (10%)Lymph node, mesenteric(10)Leukemia mononuclear1 (10%)Spleen(10)Leukemia mononuclear1 (10%)Chymus(10)Leukemia mononuclear1 (10%)Chymus(10)Leukemia mononuclear1 (10%)Chymus(10)Leukemia mononuclear1 (10%)Chymus(10)Leukemia mononuclear(10)(10)(10)Leukemia mononuclear(10)(10)(10)(10)(10)(11)(11%)(11) <td>Interstitial cell, adenoma</td> <td></td> <td>9 (100%)</td> <td>8 (100%)</td> <td></td>	Interstitial cell, adenoma		9 (100%)	8 (100%)	
Lymph node, mandibular(9)(10)Leukemia mononuclear1 (10%)Lymph node, mesenteric(10)Leukemia mononuclear1 (10%)Spleen(10)Leukemia mononuclear1 (10%)Thymus(10)Leukemia mononuclear1 (10%)Thymus(10)Leukemia mononuclear1 (10%)Thymus(10)Leukemia mononuclear1 (10%)Mategumentary System(9)Mammary gland(9)	Hematopoietic System		<u> </u>		
Leukemia mononuclear 1 (10%) Lymph node, mesenteric (10) Leukemia mononuclear 1 (10%) Spleen (10) (1) (10) Leukemia mononuclear 1 (10%) 1 (10%) Spleen (10) (1) (10) Leukemia mononuclear 1 (10%) (9) Integumentary System (10) (9) Mammary gland (9) (9)		(9)			(10)
Lymph node, mesenteric(10)(10)Leukemia mononuclear1 (10%)Spleen(10)Leukemia mononuclear1 (10%)Chymus(10)Leukemia mononuclear9)Leukemia mononuclear1 (11%)Integumentary System(9)Mammary gland(9)	Leukemia mononuclear	N. 7			
Leukemia mononuclear 1 (10%) Spleen (10) (1) (10) Leukemia mononuclear 1 (10%) 1 (10%) Chymus (10) (9) 1 (11%) Leukemia mononuclear 1 (11%) 1 (11%) Integumentary System (9) (9) (9)	.ymph node, mesenteric	(10)			
ipleen (10) (1) (10) Leukemia mononuclear 1 (10%) Chymus (10) (9) Leukemia mononuclear 1 (11%) ntegumentary System (9) Mammary gland (9)	Leukemia mononuclear				
Leukemia mononuclear 1 (10%) Chymus (10) Leukemia mononuclear 1 (11%) ntegumentary System (9) Mammary gland (9)	pleen	(10)		(1)	(10)
Leukemia mononuclear 1 (11%) 					1 (10%)
Leukemia mononuclear 1 (11%) Integumentary System (9)		(10)			(9)
Mammary gland (9) (9)	Leukemia mononuclear				1 (11%)
Mammary gland (9) (9)	nteoumentary System			· ··· · · · · · · · · · · · · · · · ·	
		(0)			(0)
		マリ 1 (11%)			(9)

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
15-Month Interim Evaluation Musculoskeletal System None	(continued)			
Nervous System None			<u></u>	
Respiratory System Lung Alveolar/bronchiolar adenoma Leukemia mononuclear	(10)		(1) 1 (100%)	(10) 1 (10%)
Special Senses System None				
Urinary System Kidney Renal tubule, adenoma	(10)	(10)	(9) 1 (11%)	(10)
Systemic Lesions Multiple organs ^b Leukemia mononuclear	(10)	(10)	(9)	(10) 1 (10%)
2-Year Study				
Alimentary System Intestine large, colon Adenoma, papillary	(45)	(48)	(42) 1 (2%)	(44)
Intestine small Adenocarcinoma Intestine small, duodenum	(45) (46)	(47) (48)	(47) 1 (2%) (48)	(44) (46)
Fibrosarcoma, metastatic Intestine small, ileum	1 (2%) (45)	(46)	(43)	(42)
Fibrosarcoma, metastatic Intestine small, jejunum Fibrosarcoma, metastatic	1 (2%) (45) 1 (2%)	(47)	(45)	(44)
Liver Fibrosarcoma, metastatic Hemangiosarcoma	(49) 1 (2%)	(50)	(51)	(50) 1 (2%)
Hepatocellular carcinoma Mesentery Fibrosarcoma, metastatic	2 (4%) (19) 1 (5%)	(11)	(15)	(7)
Pancreas Adenoma Fibrosarcoma, metastatic	(47) 1 (2%) 1 (2%)	(49) 2 (4%)	(50) 3 (6%)	(49)
Pharynx Carcinoma Papilloma squamous	(1) (1) 1 (100%)	(1)	(2) 1 (50%) 1 (50%)	

ţ

Table A1

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
2-Year Study (continued)				,, <u> </u>
Alimentary System (continued)				
Stomach, forestomach	(48)	(50)	(51)	(50)
Papilloma squamous		1 (2%)		1 (2%)
Stomach, glandular	(47)	(48)	(49)	(50)
Fibrosarcoma, metastatic	1 (2%)			
footh		(1)		
Cardiovascular System		<u> </u>		
Heart	(49)	(49)	(51)	(50)
Endocrine System		<u></u>	<u></u>	<u></u>
Adrenal gland, cortex	(49)	(50)	(50)	(50)
Adrenal gland, medulla	(49)	(50)	(50)	(50)
Pheochromocytoma benign	<u>َ</u> 9́ (18%)	5 (10%)	5 (10%)	· •
Islets, pancreatic	(47)	(50)	(50)	(49)
Adenoma	4 (9%)	1 (2%)	2 (4%)	
Parathyroid gland	(41)	(47)	(49)	(47)
Adenoma	1 (2%)			
Pituitary gland	(48)	(48)	(49)	(50)
Pars distalis, adenoma	19 (40%)	12 (25%)	16 (33%)	6 (12%)
Thyroid gland	(47)	(49)	(49)	(50)
C-cell, adenoma	1 (2%)	1 (2%)	1 (2%)	
C-cell, carcinoma	1 (2%)			
Follicular cell, adenoma	1 (20)	3 (6%)		
Follicular cell, carcinoma	1 (2%)	1 (2%)		
General Body System				
Tissue NOS	(2)		(1)	(1)
Adenocarcinoma	1 (50%)			
Fibrosarcoma	1 (50%)			
Genital System		ar a star a star		
Epididymis	(45)	(50)	(46)	(50)
Preputial gland	(45)	(49)	(50)	(47)
Adenoma	2 (4%)	1 (2%)	1 (2%)	
Carcinoma	1 (2%)	1 (2%)		1 (2%)
Prostate	(45)	(50)	(50)	(49)
Seminal vesicle	(45)	(50)	(50)	(49)
Fibrosarcoma, metastatic	1 (2%)			
Testes	(45)	(49)	(46)	(50)
Interstitial cell, adenoma	38 (84%)	43 (88%)	42 (91%)	46 (92%)

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
2-Year Study (continued)			· <u> </u>	
Hematopoietic System				
Blood	(1)			
Bone marrow	(1) (48)	(1)	(50)	(50)
Lymph node	(48)	(50)	(50)	(50)
Lymph node, mandibular	(49)	(50) (47)	(49)	(48)
Lymph node, mesenteric	(43)	(50)	(48)	(48)
Spleen	(48)	(50)	(48) (50)	(50) (50)
Hemangiosarcoma	(40)	(50)	(50)	
Thymus	(47)	(48)	(48)	1 (2%) (47)
Sarcoma	1 (2%)	(10)	(40)	(47)
Integumentary System				
Mammary gland	(45)	(46)	(44)	(45)
Adenoma	(40)	(46)	(44)	(45)
Fibroadenoma	3 (7%)	1 (2%)	2 (5%)	1 (2%)
Skin	(49)	(50)	(51)	(50)
Basal cell adenoma	1 (2%)	(30)	(51)	(50)
Fibroma	• (•,0)		1 (2%)	
Keratoacanthoma		1 (2%)	x (270)	1 (2%)
Papilloma squamous	1 (2%)	3 (6%)		1 (2%)
Squamous cell carcinoma	2 (270)	5 (676)	1 (2%)	1 (270)
Face, papilloma squamous		1 (2%)	- (-//)	
Pinna, papilloma squamous		1 (2%)		
Sebaceous gland, adenoma		1 (2%)		
Subcutaneous tissue, fibroma	2 (4%)		1 (2%)	
Subcutaneous tissue, fibrosarcoma	1 (2%)			
Musculoskeletal System	(40)	(50)	(51)	(50)
Bone Chordoma	(49) 1 (2%)	(50)	(51)	(50)
Skeletal muscle	(1)		(2)	(1)
Fibrosarcoma, metastatic	(1) 1 (100%)		(~)	(*)
Nervous System				
Brain	(47)	(50)	(49)	(49)
	(**)		(**)	
Respiratory System				
Lung	(49)	(49)	(50)	(50)
Adenocarcinoma, metastatic	1 (2%)			
Alveolar/bronchiolar adenoma	1 (2%)	2 (4%)		1 (2%)
Fibrosarcoma	1 (2%)			
Squamous cell carcinoma, metastatic		1 (2%)		

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

ntrol 25 mg/kg 50 mg/kg	100 mg/kg
(3) (1)	
(3) (1) 1 (33%)	
1 (33%) 1 (100	1961
(3)	(1)
1 (339	(I) (A)
(2) (1)	(1)
(2) (1) 2 (100%)	1 (100%)
.	
(50) (51)	(50)
1 (2%)	(55)
(2%)	
(2%) 1 (2%) 2 (4%)	b) 1 (2%)
(1)	,
(49) (50)	(49)
(50) (51)	(50)
(16%) 10 (20%) 1 (2%	
2%) 1 (2%	
9 8	10
46 47	47
10 12	13
98 85	63
9 8	9
46 46	47
10 12	12
84 80	58
	1
13 4	3
	1
14 4	4
1	
1	
	_
1	1
	3
	1

а Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site. b

Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms с

 TABLE A2

 Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: Vehicle Control

+++++++++++++++++++++++++++++++++++++++		F +	+ 4 + 4	- +	+++++++++++++++++++++++++++++++++++++++	+ + + X + M	+ + + A	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	х	+ + + X +	++++++++	+ + + X M	++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + X +	+ + + + X +	+ + + + X +	+ + + +	
+++++++++++++++++++++++++++++++++++++++		F +	+ 4 + 4	- + - + - +	+++++++++++++++++++++++++++++++++++++++	+ + + X +	+ + + A	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + + + X	+ + + X +	++++++++	+ + + X M	++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + X +	+ + + + X +	+ + + + X +	+ + + +	
+++++		 	 	- +	+++++++++++++++++++++++++++++++++++++++	+ + + X	++++	+++++	+++++	+++++	+++++	+ + + +	+++++	++++++	+ + + + X	+++++	+ + + + X	++++	+++++	+ + + + X	+ + + + X	+ + + + X	+ + +	
+++++		 	 	- +	+++++++++++++++++++++++++++++++++++++++	+ + + X	++++	+++++	+++++	+++++	+++++	+ + + +	+++++	+++++	+ + + + X	+++++	+ + + + X	++++	+++++	+ + + + X	+ + + + X	+ + + + X	+ + +	
+	· + 			- +	+ + + + +	+ + + + + +	+ +++	+ + + + + +	+ + + + +	+ + + + +	+ +++	+ + + + +	+ + + + + +	+ + + + +	+ + + + +	+ + + + +	+ + + + +	+ +++	+ + + + + +	+ + + + +	+++++	+ + + + +	+ + + + +	
+	· · · · · · · · · · · · · · · · · · ·	 	 	- +	+	+++++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + + +	+ + + +	+ + + +	+ + + +	+	+ + + +	+ + + +	+ + + +	+ + + +	+	+	+ + + +	+ + + +	
+	· -	 		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
+	· -	+ +	+ +	- + - +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
+					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	_																							
									х															
+	-	+ +	+ +	• +	+	+	+	+		+	+	+	A	+	+	+	Μ	+	+	+	+	+	+	
+	- 1	+ +		+	+	+	+	+	+	+	+	+	+							+	+			
+	- 1	+ +	- 4	• +	+	+	+	+	+	+	+	+	+	+	+	+	М	÷	+	+	+	+	+	
+	-	+ +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
																					x			
																					+			
									x															
+	1	- 1	- 1	Ŧ	т	Ŧ	n	Ŧ	+	Ŧ	Ŧ	Ŧ	T	r	т	т	141	т	т	٣	T	r	'	
. ۲		L			Ŧ	ъ	۸	+		+	+	+	+	+	+	+	M	+	+	+	+	+	+	
		-	- +	+				+	-		Ŧ					+			+	+				
									х															
+	+		- +	• +	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	
									х															
+	-	⊦ -	- +	+	+	+	Μ	+		+	+	+	М	+	+	+	Μ	Α	+	+	+	+	+	
•					-	•		÷	x	-					,									
+	+	1	- +	+	+	+	м	+		+	+	+	М	+	+	+	М	м	+	+	+	+	+	
Г	'		T			•	••	•	x	•	•	•	•		`	'		••	'	•		•	*	
ر. +	4	1		. +																				
+	-		т 	- -	+																	+	+	
+	-	- 1		- -	- -																+	+	+	
+	+	- 1		· +	+																+	+	+	
+	1	- 1			+																+	+	+	
+	-		- +	• +	+	+	+										+	+	+	+	+	+	+	
						-						_				_								
3			-																					
1	-				0																			
0	0	0	0	0	0																-			
5																				-	29		_	
																					2		•	
	3 5 0 1 1 0 3 3 +++++++++++++++++++++++++++	3 7 5 2 0 0 1 1 0 1 3 4 + + + + + + + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 7 0 2 7 1 7 7 8 0 0 1 2 2 6 7 9 0 2 2 2 5 2 8 0 2 3 3 8 6 1 9 1 2 3 0 1 4 9 4 0 8 9 0 <td>3 7 0 2 7 1 7 7 8 0 1 2 2 6 7 9 9 0 2 2 2 2 5 2 8 0 2 3 3 8 6 1 9 1 2 3 0 1 4 9 4 0 8 9 0<td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td>	3 7 0 2 7 1 7 7 8 0 1 2 2 6 7 9 9 0 2 2 2 2 5 2 8 0 2 3 3 8 6 1 9 1 2 3 0 1 4 9 4 0 8 9 0 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$																		

+: Tissue examined microscopically A: Autolysis precludes examination M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

TABLE A2

ontinuea)																								_			
umber of Days on Study	7 2 9	2	2	2 2	2 :	2	2	2	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	2	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	
arcass ID Number	0 0 2 4	2) () (3 4	0 (4 -	0 4	0 4	0 5	0 5	0 6	0 7	0 8	0 8	0 9	9	0 1 1 2	1 1		1 2	0 2	0 4	0 5	0 0 6 1	0 8	0 1 0 4	1 2	Total Tissue Tumor
	<u></u>	-																					<u> </u>				
limentary System																											40
Esophagus	-		+ •	+ ·	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large	-		+ ·	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Intestine large, cecum	-		+ ·	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Intestine large, colon	-		+ ·	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45 45
Intestine large, rectum	1		r ·	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	
Intestine small	-		+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Intestine small, duodenum Fibrosarcoma, metastatic	-		+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46 1
Intestine small, ileum	4		÷.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Fibrosarcoma, metastatic			•		•	'	'	•	'	'	1			'	•			'	'		'	'	'	•	'	1	1
Intestine small, jejunum	4		+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Fibrosarcoma, metastatic			•	•	•	•			•	,	'	•	1		•	•	•		•		'	'	•	•	'		1
Liver	-		+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Fibrosarcoma, metastatic			•	•	•	•			•		'	•	'	•	•	•	•	•	•		'	'	•	•	•	1	1
Hepatocellular carcinoma	,	<u>,</u>																									2
Mesentery			+				+			+					+	+	+		+					+		+	19
Fibrosarcoma, metastatic							•			•						•			'					•		•	1
Pancreas	-		ب	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Adenoma				•	•	•	•		•	•	•	•	•	x		•	•	•	'			•		•		•	1
Fibrosarcoma, metastatic																											1
Pharynx																											1
Papilloma squamous																											1
Salivary glands	-		÷.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	49
Stomach	-		• •	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Stomach, forestomach	-		+ -	÷.	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	48
Stomach, glandular	-		+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Fibrosarcoma, metastatic			•		•	•	·		·			•				•		•	•	·	•	•	•	•	•	·	1
ardiovascular System																											
Blood vessel												+															1
Heart	4	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ndocrine System		_																									
Adrenal gland	-	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, cortex	-		+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, medulla	+	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pheochromocytoma benign			x																х				х				9
Islets, pancreatic	-	+ •	+	+	+	+		+	+	+	+	+	+	+		+		+	+	+	+	+	+	+	+	+	47
Adenoma								х							х		х										4
Parathyroid gland	4	- 1	M	+	+	+	+	+	+	+	+	+	Μ	+	+	+	М	+	+	+	+	+	+	+	+	+	41
Adenoma																											1

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

,

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

(commuted)		
Number of Days on Study	3 3 4 4 5 5 5 6 6 6 6 6 6 7	
Carcass ID Number	0 0	
Endocrine System (continued) Pituitary gland Pars distalis, adenoma Thyroid gland C-cell, adenoma C-cell, carcinoma Follicular cell, carcinoma	+ + + M + + + + + + + + + + + + + + + +	
General Body System Tissue NOS Adenocarcinoma Fibrosarcoma	+ + X X	
Genital System Epididymis Preputial gland Adenoma Carcinoma Prostate Seminal vesicle Fibrosarcoma, metastatic Testes Interstitial cell, adenoma	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	
Hematopoietic System Blood Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus Sarcoma	+ + + + + + + + + + + + + + + + + + +	
Integumentary System Mammary gland Fibroadenoma Skin Basal cell adenoma Papilloma squamous Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma	+ + + M + + + M + + + + + + + + + + + +	

TABLE A2

Number of Days on Study	7 2 9	2	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	3							
Carcass ID Number	0 2	0 0 2	0 3	0 0 4	0 4	4	0 5	0 5	0 6	0 7	0 8	0 8	9	0 9	1 1	1 1	1 1	1 2	2	0 4	0 5	0 6	8	1 0	1 2	Total Tissues Tumors
	4		3	1	2	2	3	4	2	2	1	2	2	4	2			4		<u> </u>	1	1	3 	4	<u> </u>	1 UHIOP
Endocrine System (continued)																										
Pituitary gland	+		+	+	+	+	+		+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Pars distalis, adenoma	X								X			X					X			X			X		x	19
Thyroid gland	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
C-cell, adenoma																										1
C-cell, carcinoma			Х										17													1
Follicular cell, carcinoma													<u>x</u>													1
General Body System	_						_																			
Tissue NOS																										2
Adenocarcinoma																										1
Fibrosarcoma																										1
Genital System																										
Epididymis	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Preputial gland	+	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Adenoma							Х				Х															2
Carcinoma																								Х		1
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	45
Seminal vesicle	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Fibrosarcoma, metastatic																										1
Testes					+																					45
Interstitial cell, adenoma	X	. X	: X	. X	x		X	x	х	X	_X	<u>x</u>	X	X	X	X	_X	x	x	<u>x</u>	x	X	_X	X	x	38
Hematopoietic System																										
Blood											+															1
Bone marrow	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node, mandibular	+		• +				+		+	+		+			+				+			+				48
Lymph node, mesenteric	+	•			+	•	•	+		+	•	·	•	•	•	•	•	•	М	•	-	•	•	+	+	43
Spleen	+	• +	• +				+			+			+											+	+	48
Thymus Sarcoma	+	• -+	- +	+ X		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47 1
Internmentam Surter																										
Integumentary System				<i>P</i> 4											,	,										A.E.
Mammary gland Fibroadenoma	+	+	+	IVI	[+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45 3
Skin	L	د.	L.	–	+	ᆂ	Ŧ	Ŧ	т	Т	ᆂ	ᆂ	÷	Ŧ	ъ	ᆂ	ـ	ـ	Ł	Ŧ	۲	٩	Ŧ	د	+	3 49
Basal cell adenoma	-	- 1	· +	Ť	x		٣	Ŧ	т	т	Ŧ	т	т	- T *	Ŧ	т	т	Ŧ	Ŧ	т	т	т	Ŧ	т	Ŧ	49
Papilloma squamous					Λ																					1
Subcutaneous tissue, fibroma								х																		2
Subcutaneous tissue, fibrosarcoma									х																	1

95

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

Number of Days on Study	3 3 5		3 4 7 (2 8	5 2	2 7		1 7	5 5 7 7 8 8		0	0	1	2	2	6	7	9	9			7 2 8	7 2 9	2	7 2 9	
Carcass ID Number	1 0	1		1 01) 1		5 7) 0) 1 7 2 3 1	0 3	1 2	0 3	0 9	1 2	0 6	0 3	0 7	0 3	0 6	0 6	0 8	8	0 1	1	0 2	
Musculoskeletal System Bone Chordoma Skeletal muscle Fibrosarcoma, metastatic	+		+ -	+ -	+ •	+ •	+ -	+ +	- +	+ + X		+ x		+	+	+	+	+	+	+	+	+	+	+	
Nervous System Brain	+		+ -	+ -	+ -	+ -	+ -	+ +	- +		+	+	+	+	+	+	+	A	A	+	+	+	+	+	
Respiratory System Lung Adenocarcinoma, metastatic Alveolar/bronchiolar adenoma	+		+ •	+ +	+ ·	+ -	+ -	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+ x		+	+	
Fibrosarcoma Nose Trachea	+ +		+ - + -	+ +	+ - + -	+ - + -	+ - + -	⊦ + ⊦ +	- +	+	+ +			X + +	+										
Special Senses System None																									
Urinary System Kidney Fibrosarcoma, metastatic Renal tubule, adenoma Urinary bladder	+		 + -	+ +	+ -			+ + + N		х				+ M	+	++			+ M				x		
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma NOS	+		+ •		+ -	+ -		+ + {	- +	+	+	+	+ x	+	+		+ x		+	+ x		+	+	+	

and 1988 have been also and a second state of the

7 7 7 7 7 7 7 7 7 7 7 Number of Days on Study 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 99 Total 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 **Carcass** ID Number 0 0 0 0 0 0 2 3 4 4 4 5 5 6 7 8 8 9 9 1 1 1 2 2 4 5 6 8 0 2 Tissues/ 2 4 5 3 1 2 5 3 4 5 5 1 2 2 4 2 3 5 4 1 3 1 1 3 4 3 Tumors Musculoskeletal System Bone 49 1 Chordoma Skeletal muscle 1 1 Fibrosarcoma, metastatic **Nervous System** 47 Brain + + ++ + + + + + + + + + + + + + + + + + **Respiratory System** Lung 49 Adenocarcinoma, metastatic 1 Alveolar/bronchiolar adenoma х 1 Fibrosarcoma 1 Nose 49 + Trachea 49 + Special Senses System None **Urinary** System Kidney 49 Fibrosarcoma, metastatic 1 Renal tubule, adenoma 1 Urinary bladder 45 Systemic Lesions Multiple organs 49 + + + + + + + + х хх Leukemia mononuclear 8 Mesothelioma NOS 1

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

.

TABLE A2

Number of Days on Study	· <u> </u>		9	4	5	7	4 8 2	9	0	1	6	7	8	9	0	0	1	1	1	2	2	2	3	3	3	4	4			
Carcass ID Number		<u> </u>	2 1		1 8	2 4	-	2 0	1 7	2 1	2 2	1 4	2 4	1 5	1 9	2 3		1 5	2 1	1 4	1 5	1 6	2 2	1 9	1 3	1 4	1 7			
·																		~	1 											
Alimentary System																														
Esophagus			+	+	+	· +	• ; +	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	•		
Intestine large			+	+	+	• +	· +	+	+	+	+	+	+	Α	+	Α	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, cecum			+	+	+	+	• +	+	+	` +	+	+	+	A	Α	Α	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, colon			+	+	+	+	+	+	+	+	+	+	+	Α	+	Α	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, rectum			+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine small			+	+	+	+	· +	+	+	+	+	+	+	Α	Α	Α	+	+	+	+	+	÷	+	+	+	+	+			
Intestine small, duodenum			+	+	+	+	• +	· +	+	+	+	+	+	+	Α	Α	+	+	+	+	+	+	+	+	+	+	+			
Intestine small, ileum			+	+	+	+	• +	+	+	+	+	+	+	Α	Α	Α	+	Α	+	+	+	+	+	+	+	+	+			
Intestine small, jejunum			+	+	+	· +	· +	+	+	+	+	+	+	Α	Α	Α	+	+	+	+	+	+	+	+	+	+	+			
Liver			+	+	+	· +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+			
Mesentery															+							+		+			+			
Pancreas			+	+	+	+	• +	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+			
Adenoma										Х																				
Pharynx																														
Papilloma squamous																														
Salivary glands			+	+	+	· +	• +	• +	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	4	+	+			
Stomach			·+	+	+	• +	• +	· +	+	+	+	['] +	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+			
Stomach, forestomach			+	+	+	+	• +	+	+	+	+	+	+	+			+			+	+	+	+	+	+	+	+			
Papilloma squamous																														
Stomach, glandular			+	+	+	• +	• +	+	+	+	+	+	+	+	Α	Α	+	+	+	+	+	+	+	+	+	÷	· +·	-	•	
Tooth																										•	•			
Cardiovascular System												_								-										
Blood vessel																+			+				+							
Heart		,	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+			
Endocrine System														_																
Adrenal gland			+	+	+	· +	· +	+	+	+		+					+			+	+	+	+	+	+	+	+			
Adrenal gland, cortex			+	+	+	· +	+ +	· +	+	+	+	+	+	+	+															
Adrenal gland, medulla			+	+	+	· +	• +	· +	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	`+	+	+			
Pheochromocytoma benign									Х						Х															
Islets, pancreatic Adenoma			+	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Parathyroid gland			+	+	+	• +	• +	• +	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+			
Pituitary gland			+	+	+	• +	• +	• +	+	+	+	+	+	+	Α	+	+	+	≁	+	+	+	+	+	+	+	+		-	
Pars distalis, adenoma												X		х							Х			Х						
Thyroid gland			+	+	+	• +	• +	· +	• +	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+			
														-									х						•	
C-cell, adenoma Follicular cell, adenoma																							~				х			

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 25 mg/kg

Table A2

and a lange of the second state

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 25 mg/kg (continued)

continued)	- <u></u> -							_	- <u></u>		_							-						~		
Number of Days on Study	5	5	6	6	6 6 3	6	7	7	7	7	7	8	9	9		1	2	2	2	2	2	2	2	3	3	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	1	2	2	1											2							2	_	1		Total
	6 2	0 3			4 2										3 3					7 3	2 5		3 4	3 3		Tissue: Tumor
Jimentary System																-								-		
Esophagus	+	-	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large	+		• +	+	+	+	+	+	+	+	+	+			+			+	+		+	+	+	+	+	48
Intestine large, cecum				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine large, colon	+		- +	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	48
Intestine large, rectum	-	י ب		+	÷	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	+	+	+	+	+	+	49
Intestine small	+	י ב .			+	+		+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	47
Intestine small, duodenum	т ,	٦ بر	т 	т _	+	+	+	т Т	т	+	+	+	+	+	r T	+	+	+	-	т -	+	т —	т –	1	+	48
Intestine small, ileum	+	۳ بر	т. 	т ц	T L	т ⊥	т -	т _	+	+	+	+	т ⊥	+	+	+	+	+	т 	т 	+	т ⊥	т Т	τ μ	ар ан	40 46
Intestine small, jejunum	+	1	т : 	т 	T L	+	+	т ⊥	+				т 		+				+	т 	+	+	т -	т 	т 4	40
Liver	+		· •	- T	T	+		+			+	+			+	+	+	+	T	- T	т Т	Ţ		+	т ц	50
	+		~ т	· +	т	т	т	т		т	т	т	T	т	т		т		т	Ŧ	Ť	т	т	т	т	11
Mesentery	+		+	+	,				+							+		+			+					49
Pancreas Adenoma	+	. 1	• +	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	т	+	Ŧ	т	Ŧ	Ŧ	Ŧ	+	x	
																									^	2
Pharynx									+																	1
Papilloma squamous									X																	1
Salivary glands	+	• -	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach	+		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach, forestomach	+		• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Papilloma squamous																									X	1
Stomach, glandular Tooth	+	• •	- +	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	48 1
Cardiovascular System				_									_						_			_				~
Blood vessel		۲	-																							4
Heart	+		+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Indocrine System			-																							
Adrenal gland	+	• •	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	• •	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, medulla	+	• •	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign								Х												х		х				5
Islets, pancreatic	+	- 4	- +	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma																	х									1
Parathyroid gland	+		+ +	+	+	+	Μ	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	47
Pituitary gland	+	• +	+ +	M	í +	+	+	+	+	+	+	+	+	+	·+	+	+	+	+	+	+	+	+	+	+	48
Pars distalis, adenoma			Х		Х			Х				Х	Х				х					Х	Х			12
Thyroid gland	+	• +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
C-cell, adenoma																										1
Follicular cell, adenoma			Х							х																3
Follicular cell, carcinoma																х										1

(continued)		_			_																						
Number of Days on Study	0 9 0	4	4	5	7	8	9	0	1	6	7	8	5 9 3	0	0	1	1	1	2	2	2	3	3	3	6 4 5	4	
Carcass ID Number	2 1	1	3	1 8	2 4	1 3	2 0	1 7	2 1	2 2	1 4	2 4	1 5	1 9	2 3	1 5	1 5	2 1	1 4	1 5	1 6	2 2	1 9	1 3	0 1 4 2	1 7	
General Body System None		_																									
Genital System		_				<u>,</u>												,	_	_	_						
Epididymis	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Preputial gland	N	1	t	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma																											
Carcinoma																		х									
Prostate	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+		+	•	+	+	+	+	+	+	+	+	
Seminal vesicle	+	• •	+	+	+	+	+	+	+	+	+	+		+	+	+	+		+	+	+	+	+	+	+	+	
Testes	+	•	+	+	+	+	+	+			+		Α												+		
Interstitial cell, adenoma						Х	X	Х	х	Х		x		Х	x	х		х	х	х	X	х	X	х	х	х	
Hematopoietic System								_																			
Blood															+												
Bone marrow	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node, mandibular	M	1 -	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node, mesenteric	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Spleen	+	• •	+	+	+	+	+	+	+				• +									+	+	+			
Thymus	+		+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	М	+	+	+	+	+	+	
Integumentary System					_						·	_				-								_			
Mammary gland Fibroadenoma	M	1 ·	+	+	+	М	М	+	+	М	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	
Skin	+		+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	
Keratoacanthoma						\mathbf{X}																					
Papilloma squamous										х																	
Face, papilloma squamous																											
Pinna, papilloma squamous																											
Sebaceous gland, adenoma																					х						
					_							-													-	_	
Musculoskeletal System	· .			-	-				.1	ч	ч	-	-	4			+	-	+	ч	-	+	+	L	L	+	
Bone	+		Ť	Ŧ	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	Ŧ	Ŧ	+	+	

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 25 mg/kg (continued)

10.11 13. 10.11 13. Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 25 mg/kg (continued)

	_	_																			_						
6 5 2		5	6	6	6	6	7	7	7	7	7	8	9	9	9	1	7 2 9	2	2	7 2 9	7 2 9	7 2 9	7 2 9	3	3		
1 6		2 0	2 1	1 6	2 4	2 0	1 7	2 4	1 3	1 6	2 0	2 0	2 2	1 8	2 3	1 9	1 4	1 5	1 7	1 7	2 2	2 3	2 3	1 3	2 2		Total Tissues, Tumors
-+	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	+		50
+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	+		49
						х																					1 1
L.		т	-	т	-	т	+	т	ъ	т	т	<u>т</u>	т.	+	+	+	-	-	-	+		+			50
r L		+ +	+	+					+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+				50
r L	-	+	+	•	-																-						49
																											43
				2																				_			1
-+	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	• +	-	50
	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	• +	• +	• +	-	50
+	F	+	+	Μ	+	+	+	+	+	+		+	+	+	+	+		+	+	+	+	+	• +	• +	• +	-	47
+	F	+	+	+	+		+	+	+	+	•	+	+	+	+	•	•	+	+	+	+	+	• +	• +	+	-	50
-	ŀ	+	+	-			-	+				-	-		-	-	-				•				-		50
+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +	• +	• +		48
-	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	- +	• +	• +	-	46
		-1							-	_		,		,				,								_	1 50
-	r	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +	- +	-	50 1
							x																		x	r	3
							Λ														x				~	•	3 1
																											1
																											1
					_													_							_		
-	ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	+	• +	- +	-	50
		5 2 0 1 6 2 + + + + + + + + + + + + + + + + + +	$ \begin{array}{c} 5 & 5 \\ 2 & 7 \\ \hline 0 & 0 \\ 1 & 2 \\ 6 & 0 \\ 2 & 3 \\ \hline \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + + \\ + \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5 & 5 & 6 & 6 & 6 & 6 & 7 & 7 \\ 2 & 7 & 0 & 1 & 3 & 6 & 1 & 1 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 \\ 6 & 0 & 1 & 6 & 4 & 0 & 7 & 4 \\ 2 & 3 & 3 & 3 & 2 & 4 & 1 & 1 \\ \hline \\ \\ + & + & + & + & + & + & + \\ + & + &$	$\begin{array}{c} 5 & 5 & 6 & 6 & 6 & 6 & 7 & 7 & 7 \\ 2 & 7 & 0 & 1 & 3 & 6 & 1 & 1 & 3 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 2 & 1 & 2 & 2 & 1 & 2 & 1 \\ 6 & 0 & 1 & 6 & 4 & 0 & 7 & 4 & 3 \\ 2 & 3 & 3 & 3 & 2 & 4 & 1 & 1 & 2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} 5 & 5 & 6 & 6 & 6 & 6 & 7 & 7 & 7 & 7 \\ 2 & 7 & 0 & 1 & 3 & 6 & 1 & 1 & 3 & 5 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	$\begin{array}{c} 5 & 5 & 6 & 6 & 6 & 7 & 7 & 7 & 7 & 7 & 7 \\ 2 & 7 & 0 & 1 & 3 & 6 & 1 & 1 & 3 & 5 & 5 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	$\begin{array}{c} 5 & 5 & 6 & 6 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7$	$\begin{array}{c} 5 \ 5 \ 6 \ 6 \ 6 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 8 \ 9 \\ 2 \ 7 \ 0 \ 1 \ 3 \ 6 \ 1 \ 1 \ 3 \ 5 \ 5 \ 0 \ 2 \\ \hline \\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	5 5 6 6 7 7 7 7 7 8 9 9 2 7 0 1 3 6 1 1 3 5 5 0 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>$\begin{array}{c} 5 & 5 & 6 & 6 & 6 & 6 & 7 & 7 & 7 & 7 & 7 & 8 & 9 & 9 & 9 \\ 2 & 7 & 0 & 1 & 3 & 6 & 1 & 1 & 3 & 5 & 5 & 0 & 2 & 4 & 8 \\ \hline \\ 0 & 0$</td> <td>$\begin{array}{c} 5 & 5 & 6 & 6 & 6 & 6 & 7 & 7 & 7 & 7 & 7 & 8 & 9 & 9 & 9 & 1 \\ 2 & 7 & 0 & 1 & 3 & 6 & 1 & 1 & 3 & 5 & 5 & 0 & 2 & 4 & 8 & 9 \\ \hline \\ 0 & 0$</td> <td>5 5 6 6 7 7 7 7 8 9 9 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>5 5 6 6 7 7 7 7 8 9 9 1 2 2 2 7 0 1 3 6 1 1 3 5 5 0 2 4 8 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>5 5 6 6 7 7 7 7 8 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>5 5 6 6 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>5 5 6 6 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>5 5 6 6 7 7 7 8 9 9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 2 2 3 3 2 4 1 1 3 3 5 1 4 2 1 1 3 5 1 4 2 3 5 2 4 1 1 1 1 2 3 5 1 4 2 3 5 1 4 2 3 5 1 4 2 3 5 1 4 2 3 5 1 4 2 3 5 1 4 2 3 5 1</td><td>5 5 6 6 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>3 5 6 6 6 6 7 7 7 7 7 7 8 9 9 9 1 2 2 2 2 2 2 2 2 3 2 7 0 1 3 6 1 1 3 5 5 0 2 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>5 5 6 6 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>5 5 6 6 6 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td></td>	$\begin{array}{c} 5 & 5 & 6 & 6 & 6 & 6 & 7 & 7 & 7 & 7 & 7 & 8 & 9 & 9 & 9 \\ 2 & 7 & 0 & 1 & 3 & 6 & 1 & 1 & 3 & 5 & 5 & 0 & 2 & 4 & 8 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	$\begin{array}{c} 5 & 5 & 6 & 6 & 6 & 6 & 7 & 7 & 7 & 7 & 7 & 8 & 9 & 9 & 9 & 1 \\ 2 & 7 & 0 & 1 & 3 & 6 & 1 & 1 & 3 & 5 & 5 & 0 & 2 & 4 & 8 & 9 \\ \hline \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	5 5 6 6 7 7 7 7 8 9 9 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 6 6 7 7 7 7 8 9 9 1 2 2 2 7 0 1 3 6 1 1 3 5 5 0 2 4 8 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>5 5 6 6 7 7 7 7 8 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>5 5 6 6 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td> <td>5 5 6 6 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td> <td>5 5 6 6 7 7 7 8 9 9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 2 2 3 3 2 4 1 1 3 3 5 1 4 2 1 1 3 5 1 4 2 3 5 2 4 1 1 1 1 2 3 5 1 4 2 3 5 1 4 2 3 5 1 4 2 3 5 1 4 2 3 5 1 4 2 3 5 1 4 2 3 5 1</td> <td>5 5 6 6 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td> <td>3 5 6 6 6 6 7 7 7 7 7 7 8 9 9 9 1 2 2 2 2 2 2 2 2 3 2 7 0 1 3 6 1 1 3 5 5 0 2 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>5 5 6 6 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td> <td>5 5 6 6 6 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td>	5 5 6 6 7 7 7 7 8 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 6 6 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 5 6 6 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 5 6 6 7 7 7 8 9 9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 1 1 1 1 2 2 3 3 2 4 1 1 3 3 5 1 4 2 1 1 3 5 1 4 2 3 5 2 4 1 1 1 1 2 3 5 1 4 2 3 5 1 4 2 3 5 1 4 2 3 5 1 4 2 3 5 1 4 2 3 5 1 4 2 3 5 1	5 5 6 6 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3 5 6 6 6 6 7 7 7 7 7 7 8 9 9 9 1 2 2 2 2 2 2 2 2 3 2 7 0 1 3 6 1 1 3 5 5 0 2 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 6 6 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 5 6 6 6 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

101

0 3 3 3 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 Number of Days on Study 9 4 5 7 8 9 0 1 6 7 8 9 0 0 1 1 1 2 2 2 3 3 3 4 4 0 3 2 7 2 2 3 8 9 7 3 3 0 0 1 3 5 2 5 5 1 6 9 5 5 0 **Carcass ID Number** 2 1 1 2 1 2 1 2 2 1 2 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 88 4 30 7 1 2 4 4 5 9 3 5 5 1 4 5 6 2 9 3 4 7 5 4 1 4 1 5 3 5 3 5 1 1 2 3 3 1 2 4 5 2 5 4 4 1 1 **Nervous System** Brain + 4 + + + + + + + + + + + + + + + + + **Respiratory System** Larynx Lung + Alveolar/bronchiolar adenoma Squamous cell carcinoma, metastatic Nose + + Trachea + + + + Μ + + + + + + + + + + + + + ++ + + + **Special Senses System** + X Ear Fibroma Papilloma squamous Zymbal's gland + х Carcinoma **Urinary** System \mathbf{x}^{+} + + Kidney Adenoma Renal tubule, adenoma Urethra Urinary bladder + A + + + + + + + ++ + + ++ + + + + Systemic Lesions Multiple organs + + + + + + + + + + х хххх х Leukemia mononuclear

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 25 mg/kg (continued)

A Course of these

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 25 mg/kg (continued)

(continued)										_						_		_						_		
Number of Days on Study	6 5 2	6 5 7	(•	5 6	5 7	7	7		6 7 5	8	6 9 2	6 9 4	9	7 1 9	7 2 9	7 3 0								
Carcass ID Number	0 1 6) () () 2 ()) () (2 1		0 1	0 1	2	2		1	0 2	0	0 1	0	_	0	0	2	0 2 3	0 1 3	2	Total Tissues
	2	3		3 3		2 "	+ 1	1	2	4	2	1	1	3	3	5	1	4	2	3	5	2	4	3	4	Tumor
Nervous System Brain	+	• -	⊦ ·	+ -	⊦ ·	+	+ -	+ 4	- +	+	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	50
Respiratory System Larynx							<u></u>																			1
Lung Alveolar/bronchiolar adenoma Squamous cell carcinoma, metastatic	+ X		+	+ -		+ · x	+ -	+ +	+ +	+ X		+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 2 1
Nose Trachea	+ +		+ +	+ -			+ •	+ + + +	+ + + +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	50 49
Special Senses System													-													2
Ear Fibroma																+	+									3 1
Papilloma squamous																	х									1
Zymbal's gland						+																				2
Carcinoma						x											_									2
Urinary System																									•	50
Kidney Adenoma	-		t	+ -	t i	+	+ -	+ -	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Renal tubule, adenoma Urethra	2														+											1 1
Urinary bladder	4		ł	+ -	ł	+	+ -	+ +	⊦ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Systemic Lesions					_	<u>.</u>											. <u> </u>									
Multiple organs Leukemia mononuclear	-		ł	+ •	ł	+	+ •	+ +	⊦ +	• +	+	+	+	+	+ X		+	+	+	+	+ X	+ X		+	+	50 10

103

TABLE A2

-	-	-																							
0	0	0	0	0	0	0	ò	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
_																									
	1 3	6 4	8 5	5 3	9 5	5 5	2 5	4 2	6 1	1 4	3 3	9 1	5 3	4 4	5 5	2 4	6 1	4 1	0 4	0 2	9 3	8 4	5 1	6 3	
	_			_	_			_											_	_		_			
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	Α	Μ	
+	+	+	Α	+	+	+	+	+	+	+	+	+	Α	+	+	+	Α	+	+	+	+	Μ	Α	Μ	
+	+	+			+		+	+																	
+	+																								
+	+	+	Α	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	Α	М	
										х															
+	+	+					+	+	+							+	+	+	+	+					
. +	+	+				+	+	+	+							+	Α								
+	+	+		•	•				+																
+	+	+	+	•	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+			+	+	
				-																					
+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	
																		х							
	^	•																							
+	-							+	-	Ŧ	+	+	-	т	-		м	-	-	+	-	+	-		
		- +	<u>_</u>	Ť	Ť	т Т	т —	. .	+	+	+	т +	+	т +	+ +				+	+	+	т —		т Т	
	+	+	+	+	+	- -	+	+	+	•			•		•				+	+	+	+	+	+	
+	+	+	+	+	+	+	+		+							•			+	+	+	÷	+	+	
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
																									_
+	+	+	Α	+	+				+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
		-		_	_				-	~															
+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
											,				,										
+	+	+	А	+																					
	,																								
+	- +	• +	А	+	+	+	+	+	+	+	+	+	+	+	+	+	141	+	+	+	Ŧ	Ŧ	Ŧ	Τ.	
	6 3 0 2 7 3 +++++++++++++++++++++++++++++++++	$ \begin{array}{c} 6 & 0 \\ 3 & 8 \\ \hline 0 & 0 \\ 2 & 3 \\ 7 & 1 \\ 3 & 3 \\ \hline + + + \\ + + \\ + \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$																			

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 50 mg/kg

Lesions in Male Rats

TABLE A2

6 6 6 6 7 7 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 8 9 9 9 0 0 0 1 1 2 2 2 2 2 3 3 4 4 4 5 6 7 7 9 2 3 Number of Days on Study 6 1 2 7 5 5 2 2 2 5 8 0 1 3 3 5 7 6 8 9 4 9 0 8 4 6 0. 0 0 0 0 0 2 2 3 3 3 3 2 2 3 3 3 3 Total 3 2 2 3 2 3 Carcass ID Number 2 2 2 3 2 3 3 2 Tissues/ 9 7 3 6 7 1 5 7 5 6 0 3 2 5 8 8 5 2 6 6 7 6 5 1 6 4 Tumors 5 5 3 1 1 2 2 4 2 3 2 1 2 2 3 1 3 2 4 5 5 2 5 5 4 4 Alimentary System 51 Esophagus + + + + + + + + + + Intestine large Α + Α + + + + + + + + 45 41 А + Α + + + Intestine large, cecum Α + + + + + + + + + + + + Intestine large, colon + + + + + + + Α + + + Α + + 42 + Adenoma, papillary х 1 + + 43 Intestine large, rectum + + + + + + + + + + + + + + + + + Α + + + Intestine small 47 + + Adenocarcinoma 1 Intestine small, duodenum 48 + + 4 + + + + + 43 Intestine small, ileum Μ + + + + Α + + + + + Intestine small, jejunum 45 + + + + + Α + + + + + + + + + + Liver + 51 + + + + + 15 Mesentery + + + Pancreas + + + 50 Adenoma хх 3 Pharynx 2 Carcinoma 1 Papilloma squamous х 1 Salivary glands 49 + + Stomach + + + + 51 + + + + + Stomach, forestomach + + 51 + + + + + + + + + + Stomach, glandular 49 + Α + Cardiovascular System Blood vessel 2 Heart 51 **Endocrine** System Adrenal gland 50 + + + + + + Adrenal gland, cortex 50 + + + + + Adrenal gland, medulla + + 50 + + + + + + + + + + + + + + Pheochromocytoma benign х х 5 х х Islets, pancreatic + 50 + Adenoma х 2 х Parathyroid gland + + + + + + 49 + + + + + + + + + Pituitary gland 49 + Pars distalis, adenoma х х х хх х хх хх 16 Thyroid gland + + + + + + + + + + + + + + 49 C-cell, adenoma х 1

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)

105

(continued)		_								_			_				<u> </u>	_									 	
Number of Days on Study	0 6 3	(4 4 2 2 8 9	2 7	9	9	5 0 6	0	1	1	2	3	3	5 3 3	3	4	4	4	5	5 5 6		7		8	:		
Carcass ID Number	0 2 7 3		3 3	2 2 6 8	2 2 3 5	2	3 5		3 4	3 6	3 1	3 3	2 9	3 5	0 3 4 4	2 5	3 2	2 6	3 4	3 0	3 0	9	2 8	2 5	3			
General Body System Tissue NOS																											 	
Genital System Epididymis Preputial gland Adenoma Prostate Seminal vesicle Testes Interstitial cell, adenoma	- - - - - - - -		+ +	+ -+	A -	+ + + + + + + +	- + - +	++		++	+	++++	+ + M	+ + +	+ + + +	+	++++	+ + + M	+	++++	+++++	+++++	+++++++++++++++++++++++++++++++++++++++	· + · +	+ + X + + + N	+ { + +		
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	- - - - - - - - - - - - - - - - - - -		+ +	+ 1 + 1 + 1 + 1	A - A - A -	+ 4 + 4 + 4	- + - + - +	· + · +	+	+	+	+	+ + + + + +	+ + + + + +		+	+ +	M + +	+	+ M +	+ + +	+ + + + + +	+	- + - +		+ ∕I +	 	
Integumentary System Mammary gland Fibroadenoma Skin Fibroma Squamous cell carcinoma Subcutaneous tissue, fibroma		+]		M · + ·	+ +	+ +	- +	· + - +	++	++	+++	м +			+ X +		+			+	+	+	• •	1 + · +	- N	м +	 -	
Musculoskeletal System Bone Skeletal muscle		 F	+	+ ·	+ -	+ +	- 4	· +	+	+	• +	+ +		+	+	+	+	+	+	+	+		• +	- +		+	 	
Nervous System Brain			+	+	+ -	+ +		- +	• +	• +	• +	• +	+	+	+	+	+	+	+	+	A	. +	· -+	- A		+	 	

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)
記録の行う

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 5 5 5 5 6 6 2 2 3 3 4 4 4 5 6 7 7923 1 1 2 2 2 Number of Days on Study 8 9 9 9 0 0 0 7 5 5 2 2 2 5 8 0 1 3 3 5 7 6 8 9 4 9 0 8 4 6 6 1 2 0 0 0 0 0 0 0 0 0 0 0 2 3 2 3 3 3 3 Total 2 3 3 3 2 2 3 2 2 3 3 3 3 2 **Carcass ID Number** 2 2 2 2 3 6 3 4 6 7 1 5 7 5 6 0 3 2 5 8 8 5 2 6 6 Tissues/ 7 6 5 9 1 7 Tumors 5 5 4 2 5 4 5 5 5 3 1 1 2 2 4 2 3 2 1 2 2 3 1 3 2 4 **General Body System** 1 Tissue NOS + **Genital System** Epididymis 46 Μ 50 Preputial gland + + + + + + + + + + + + Adenoma 1 Prostate + + + 50 + Seminal vesicle 50 + 46 Testes + M + + + + + + Interstitial cell, adenoma х 42 Hematopoietic System Bone marrow 50 Lymph node 49 + + Μ + + Lymph node, mandibular М 48 + + + + + + + + + + + + + + + + + + + Lymph node, mesenteric + + + + + + + + + + 48 + + + + + + + + + + + + + + + Spleen + + + + + + + + + + + + 50 + + + + + + + + + + + + + 48 м Thymus + **Integumentary System** Mammary gland 44 + Fibroadenoma X 2 Skin 51 + Fibroma х 1 Squamous cell carcinoma х 1 Subcutaneous tissue, fibroma 1 Musculoskeletal System Bone 51 Skeletal muscle 2 **Nervous System** Brain 49

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)

(continued)	
Number of Days on Study	0 4 4 4 5 6
Carcass ID Number	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Respiratory System Lung Nose Trachea	+ + + A + + + + + + + + + + + + + + + +
Special Senses System Ear Papilloma squamous Eye Papilloma squamous Zymbal's gland	+ + + X +
Urinary System Kidney Renal tubule, adenoma Urinary bladder	+ + + + + + + + + + + + + + + + + + +
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma NOS	+ + + + + + + + + + + + + + + + + + +

i.

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)

-

Ē

(continued) 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 5 5 5 8 9 9 9 0 0 0 1 1 2 2 2 2 2 3 3 4 4 4 5 6 7 7 9 2 3 Number of Days on Study 8 4 6 6 1 2 7 5 5 2 2 2 5 8 0 1 3 3 5 7 6 8 9 4 9 0 Total **Carcass ID Number** 7 6 5 9 1 7 6 3 4 6 7 1 5 7 5 6 0 3 2 5 8 8 5 2 6 6 Tissues/ 5 5 4 2 5 4 5 5 5 3 1 1 2 2 4 2 3 2 1 2 2 3 1 3 2 4 Tumors **Respiratory** System Lung 50 + + +++ + + + + ++ + + + + + + + + + + Nose 51 + Trachea + 50 + Special Senses System Ear 1 + х Papilloma squamous 1 3 Eye Papilloma squamous 1 Zymbal's gland 1 **Urinary System** Kidney 51 + + х Renal tubule, adenoma х 2 Urinary bladder + 50 + Systemic Lesions Multiple organs 51 + + + Leukemia mononuclear 1 Mesothelioma NOS х 1

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)

umber of Days on Study	1	0	3 8 0	2	2	5	4 7 7	8	9	9	9	0		1	1	1	1	1	2	3	3	5	5	5	6		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		. <u> </u>
Carcass ID Number	3	4			3	-			4										4	-		-	4	-	-		
	7 2	4 5					5 3																				
limentary System			,				_		_									_									
Esophagus	+	+	• +		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large	+	+	• +		+ +	+	+	+	+	+	+	+	+	+	+	Α	Α	+	+	+	+	+	+	Α	+		
Intestine large, cecum	+	+	• +	• •	- +	M	1 +	+	+	+	+	+	+	+	+	Α	Α	+	+	+	+	+	+	Α	+		
Intestine large, colon	+	ł	- +	- 1	+ +	+	+	+	+	+	+	+	+	+	+	Α	Α	+	+	+	+	+	+	Α	+		
Intestine large, rectum	+	+	• +	- 4	- +	+	+	+	+	+	+	+											+	Α	+		
Intestine small	+	+	• +		- +	+	+	+	+	+	+	+			+									Α			
Intestine small, duodenum	. +	+	• +	- 1	+ +																		+				
Intestine small, ileum	+	+	• +		+ +	M	1 +	+	+	+	÷	+			+							+	+		•		
Intestine small, jejunum	+	+	• +		- +	M	(+	+	+	+	+	+			+							+		Α			
Liver	+	+	• +		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Hemangiosarcoma						_	_																				
Mesentery							1 +														+	+					
Pancreas	+	+					+								+	+	-	-	+	+	+	+	+	+	+		
Salivary glands	+	+	• +		- +	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach	+	+	+		+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach, forestomach	+	+	• +		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+		
Papilloma squamous																											
Stomach, glandular	+	+	• •	1	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Tongue															_			_						_			
Cardiovascular System																											
Blood vessel								,													L						
Heart	+	+	- +		- +	+	+	+	+	+	+	+	+	+	_	+	- -					+	_	+			
Endocrine System																											
Adrenal gland	+	+	- +		+ +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex	+	+	• +		+ +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, medulla	+	+	- +		+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Islets, pancreatic	+	+	• +					-	+		+	+			+		+	+	+	+	+	+	+	+			
Parathyroid gland	+	N	n +	- 1	- +	• +	+	+	+	+	+	+	+	+	+	IVI	+	+	+	+	+	+	+	+	+		
Pituitary gland	+	4	- +		r +	+	+	x ⁺	Ŧ	+	+	+	+	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	x +	Ŧ	Ŧ		
Pars distalis, adenoma	-	J.			L_4	د .	+	л +		ـــ	ъ	-	т	ъ	+	Ŧ	+	Ŧ	ъ	Ŧ	+	+		+	Ŧ		
Thyroid gland	+	+	- +	- 1	r 1	+	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	т	т	Ŧ	т	т	т	т.	т	Ŧ	Ŧ	т	т		
								_		_							-	_	_			_				· · · ·	
General Body System																											

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 100 mg/kg

TABLE A2 Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 100 mg/kg

(continued) 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 6 6 7 8 8 8 9 0 0 1 1 1 1 1 3 3 3 3 4 4 5 5 6 9 Number of Days on Study 6 2 0 0 9 5 1 7 1 1 5 8 8 0 1 6 8 3 6 0 4 0 8 3 6 7 Total **Carcass** ID Number 3 7 4 3 0 6 7 9 9 2 6 7 1 8 6 8 9 8 8 7 8 8 4 5 7 Tissues/ 7 5 4 2 3 2 1 3 4 5 5 2 5 5 3 4 5 1 3 3 4 1 3 2 5 Tumors 4 **Alimentary System** 50 Esophagus + Intestine large 43 Α Α Α 42 Intestine large, cecum Α Α Α + + + Intestine large, colon 44 + ΑΑ + 47 Intestine large, rectum + Α + + 44 Intestine small + ΑΑ + + + 4 Intestine small, duodenum Α + 46 + + + + + + + Intestine small, ileum ΑΑ 42 Α + + + + + + + + + + А + Intestine small, jejunum + ΑΑ 44 + + + + 4 + Liver + + 50 + + + + ++ + + Hemangiosarcoma x 1 Mesentery 7 + Pancreas 49 + + + + + + + Salivary glands + 50 + Stomach 50 + + + Stomach, forestomach 50 Papilloma squamous x 1 Stomach, glandular + 50 + + Tongue 1 Cardiovascular System Blood vessel 1 Heart 50 **Endocrine** System Adrenal gland 50 Adrenal gland, cortex 50 Adrenal gland, medulla 50 Islets, pancreatic 49 + + + + + + + + + + + Parathyroid gland 47 M Pituitary gland 50 + + Pars distalis, adenoma х х х 6 x Thyroid gland + 50 + **General Body System** 1

Tissue NOS

Number of Days on Study		578999011	5 5 5 5 5 5 5 5 5 5 1 1 1 2 3 3 5 5 5 6 2 7 8 8 5 3 4 1 2 2 0
Carcass ID Number	3 4 4 4 3 7 4 2 0 8	4 4 4 4 3 4 4 3 4 1 5 1 5 9 2 1 7 3	
Genital System Epididymis Preputial gland Carcinoma Prostate Seminal vesicle Testes Interstitial cell, adenoma	+ X X X X		X + + + + + + + + + + M + + + + + + + + +
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Hemangiosarcoma Thymus	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ M + + + + + + M + + + M + + + + + + M + + + + + +
Integumentary System Mammary gland Adenoma Skin Keratoacanthoma Papilloma squamous	M + + M + + + + + + + X	M + + + + M + + + + + + + + + + + + + X	+ + + + + + + + + +
Musculoskeletal System Bone Skeletal muscle	+ + + + +	+ + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
Nervous System Brain Peripheral nerve Spinal cord	+ + + + + + +	A + + + + + + + +	+ + + + + + + + + + +
Respiratory System Lung Alveolar/bronchiolar adenoma Nose Trachea	+ + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

Lesions in Male Rats

TABLE A2

 $= \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

																							_					
Number of Days on Study	5 6 3	5	6		7	8		8		0	0	1	1	1	1	6 1 8	3	3	3	3	4	4	5	5	6	9)	
Carcass ID Number	0 3 7 4	5	4 7	4 4	4 3	4 0	4 6	3 7	9	3 9	4 2		4 7	4 1	3 8	0 4 6 3	3 8	3 9	3 8	4 8	7			0 4 4 3	5		3 7	Total Tissues/ Tumors
Genital System Epididymis Preputial gland Carcinoma Prostate Seminal vesicle Testes	-	+	++	+ +	++++++	+ + + + + + +	+	+ +	+ +	+++++++	+ +	+ + +	+	+ + +				+ +	+ + + + + + + + + + + + + + + + + + + +	+++++++	+ +	+ +	+ +	+	++++++	 	+ +	50 47 1 49 49 50
Interstitial cell, adenoma							x									x												46
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Hemangiosarcoma Thymus	-	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++		+	+ X	+	++	+	+ + + +	+ + + +	+ + + +	+ + +	+	+ +	+ + +	+ + + +	+ + +	+ + +	+	+ +	+ + +	+ + +	+ + + + +	 	+ +	50 48 48 50 50 1 47
Integumentary System Mammary gland Adenoma Skin Keratoacanthoma Papilloma squamous	-	+ +	+	++	+ +	 + +	+	++	++	++	+ +	+ +	+	+	+	+	+	+ +		+ X +		+	+ +	+				45 1 50 1 1
Musculoskeletal System Bone Skeletal muscle	<u></u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++			+	50 1
Nervous System Brain Peripheral nerve Spinal cord		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	49 1 1
Respiratory System Lung Alveolar/bronchiolar adenoma Nose Trachea		+ + +	+ + +	++++	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	+++++	+ + +	+ + +	++++	++++	+++++	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++	++	++++	+ + +	++++	+++++++++++++++++++++++++++++++++++++++	+	+ +		+ + +	50 1 50 50

(continued)										_									_							
Number of Days on Study	0 1 9	0	8	4 2 0	4 2 6	4 5 6	4 7 7	4 8 5	4 9 2	4 9 6	4 9 6	5 0 3	5 1 0	5 1 1	5 1 2	5 1 7	5 1 8	5 1 8	5 2 5	5 3 3	5 3 4	5 5 1	5 5 2	5 5 2	5 6 0	
Carcass ID Number	0 3 7 2	4	4 2	0 4 0 2	0 3 8 3	0 4 1 1	0 4 5 3	0 4 1 3	0 4 5 4	0 3 9 2	0 4 2 1	0 4 1 2	0 3 7 3	0 4 3 4	0 4 5 5	0 4 6 4	0 4 2 3	0 4 7 1	0 4 1 4	0 4 3 3	0 4 2 4	0 4 3 5	0 4 3 1	0 4 7 4	0 4 0 5	
Special Senses System Eye Zymbal's gland Carcinoma															+ X											
Urinary System						-	_					_														
Kidney	+	- +	+ +	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Renal tubule, adenoma Urinary bladder	+	- +	• +	+	+	+	+	+	+	+	x +	+	+	+	+	+	+	+	+	+	+	ł	+	+	M	
Systemic Lesions			_					_		_					_				_							
Multiple organs Mesothelioma NOS	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	+	

.

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

6 6 6 7 8 8 8 9 0 0 1 1 1 1 3 3 3 3 4 4 5 5 6 9 Number of Days on Study 3 6 7 2 0 0 9 5 1 7 1 1 5 8 8 0 1 6 8 3 6 0 4 0 8 Total **Carcass ID Number** 7 7 4 3 0 6 7 9 9 2 6 7 1 8 6 8 9 8 8 7 8 8 4 5 7 Tissues/ 4 5 4 2 3 2 1 3 4 5 5 2 5 5 3 4 5 1 3 3 4 1 3 2 5 Tumors Special Senses System Eye + 1 Zymbal's gland 1 Carcinoma 1 Urinary System Kidney 50 Renal tubule, adenoma 1 49 Urinary bladder + + + + + + + Systemic Lesions 50 Multiple organs + Mesothelioma NOS х 1

Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Adrenal Medulla: Benign Pheochromocytoma	<u></u>			
Overall rates ^a	9/49 (18%)	5/50 (10%)	5/50 (10%)	0/50 (0%)
Adjusted rates ^b	27.2%	29.9%	61.1%	0.0%
Ferminal rates ^c	5/28 (18%)	2/9 (22%)	1/2 (50%)	0/0 (0%)
First incidence (days)	573	503	506	_e
Life table tests ^d	P=0.483	P=0.468	P = 0.055	P=0.613N
Logistic regression tests ^d	P = 0.038N	P=0.295N	P = 0.607N	P = 0.078N
Cochran-Armitage test ^d	P = 0.002N			
Fisher exact test ^d		P=0.183N	P=0.183N	P=0.001N
Lidney (Renal Tubule): Adenoma (Single Se	ctions)			
Overall rates	1/49 (2%)	2/50 (4%)	2/51 (4%)	1/50 (2%)
Adjusted rates	3.6%	6.4%	12.1%	2.4%
Cerminal rates	1/28 (4%)	0/9 (0%)	0/2 (0%)	0/0 (0%)
First incidence (days)	729 (T)	583	602	496
Life table tests	P = 0.192	P=0.337	P = 0.122	P=0.486
Logistic regression tests	P=0.614	P=0.490	P=0.375	P=0.787
Cochran-Armitage test	P=0.549			
Fisher exact test		P=0.508	P=0.515	P=0.747N
Kidney (Renal Tubule): Adenoma (Single an	d Step Sections)			
Overall rates	1/49 (2%)	5/50 (10%)	7/51 (14%)	5/50 (10%)
Adjusted rates	3.6%	22.0%	70.4%	31.8%
nterim rates	0/10 (0%)	0/10 (0%)	1/9 (11%)	0/10 (0%)
First incidence (days)	729 (T)	613	506	426
Life table tests	P<0.001	P=0.024	P<0.001	P=0.003
ogistic regression tests	P=0.059	P=0.078	P=0.009	P=0.119
Cochran-Armitage test	P=0.145			
Fisher exact test		P=0.107	P=0.034	P=0.107
Mammary Gland: Fibroadenoma				
Overall rates	3/49 (6%)	1/50 (2%)	2/51 (4%)	0/50 (0%)
Adjusted rates	8.9%	3.1%	10.8%	0.0%
Ferminal rates	1/28 (4%)	0/9 (0%)	0/2 (0%)	0/0 (0%)
First incidence (days)	622	625	533	-
Life table tests	P = 0.524N	P=0.463N	P=0.391	P=0.691N
ogistic regression tests	P=0.136N	P=0.317N	P=0.555N	P=0.225N
Cochran-Armitage test	P=0.100N			
Fisher exact test		P=0.301N	P=0.481N	P=0.117N
Mammary Gland: Fibroadenoma or Adenom	a			
Overall rates	3/49 (6%)	1/50 (2%)	2/51 (4%)	1/50 (2%)
Adjusted rates	8.9%	3.1%	10.8%	14.3%
Ferminal rates	1/28 (4%)	0/9 (0%)	0/2 (0%)	0/0 (0%)
First incidence (days)	622	625	533	638
Life table tests	P=0.343	P=0.463N	P=0.391	P=0.456
Logistic regression tests	P=0.397N	P=0.317N	P=0.555N	P=0.574N
Cochran-Armitage test	P = 0.272N			
Fisher exact test		P = 0.301N	P = 0.481N	P=0.301N

, I I -

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Pancreas: Adenoma	<u> </u>			
Overall rates	1/47 (2%)	2/49 (4%)	3/50 (6%)	0/49 (0%)
Adjusted rates	3.6%	13.2%	13.5%	0.0%
Terminal rates	1/28 (4%)	1/9 (11%)	0/2 (0%)	0/0 (0%)
First incidence (days)	729 (T)	518	548	_
Life table tests	P=0.376	P=0.255	P = 0.060	_f
Logistic regression tests	P = 0.407N	P=0.493	P=0.279	_
Cochran-Armitage test	P = 0.325N			
Fisher exact test		P=0.516	P=0.332	P=0.490N
Pancreatic Islets: Adenoma				
Overall rates	4/47 (9%)	1/50 (2%)	2/50 (4%)	0/49 (0%)
Adjusted rates	13.3%	11.1%	27.9%	0.0%
Terminal rates	3/28 (11%)	1/9 (11%)	0/2 (0%)	0/0 (0%)
First incidence (days)	660	729 (T)	588	-
Life table tests	P=0.468	P=0.554N	P = 0.207	P = 0.976N
Logistic regression tests	P = 0.403N	P = 0.399N	P = 0.677	P = 0.526N
Cochran-Armitage test	P = 0.048N	D 04/001	D 0 01031	D 005401
Fisher exact test		P=0.162N	P=0.310N	P = 0.054N
Pituitary Gland (Pars Distalis): Adenoma				
Overall rates	19/48 (40%)	12/48 (25%)	16/49 (33%)	6/50 (12%)
Adjusted rates	51.2%	56.2%	100.0%	48.1%
Terminal rates	11/28 (39%)	3/9 (33%)	2/2 (100%)	0/0 (0%)
First incidence (days)	472 P=0.005	577 P=0.296	506 P<0.001	485 R=0.130
Life table tests Logistic regression tests	P = 0.003 P = 0.072N	P = 0.290 P = 0.183N	P = 0.594	P=0.130 P=0.035N
Cochran-Armitage test	P = 0.003N	1 =0.10510	1 -0.574	1-0.0551
Fisher exact test	1 -0.00510	P=0.095N	P=0.309N	P=0.002N
Preputial Gland: Adenoma or Carcinoma				
Overall rates	3/45 (7%)	2/49 (4%)	1/50 (2%)	1/47 (2%)
Adjusted rates	10.7 %	7.8%	3.6%	3.1%
Terminal rates	3/28 (11%)	0/9 (0%)	0/2 (0%)	0/0 (0%)
First incidence (days)	729 (T)	615	580	525
Life table tests	P=0.318	P=0.531	P=0.565	P=0.441
Logistic regression tests	P=0.394N	P=0.602N	P=0.681N	P=0.698N
Cochran-Armitage test	P=0.188N			
Fisher exact test		P=0.459N	P=0.270N	P=0.292N
Skin: Squamous Cell Papilloma				
Overall rates	1/49 (2%)	4/50 (8%)	0/51 (0%)	1/50 (2%)
Adjusted rates	2.6%	28.1%	0.0%	2.7%
Terminal rates	0/28 (0%)	2/9 (22%)	0/2 (0%)	0/0 (0%)
First incidence (days)	609	569	-	511
Life table tests	P=0.284	P=0.053	P=0.643N	P=0.637
Logistic regression tests	P = 0.475N	P = 0.156	P = 0.479N	P = 0.708N
Cochran-Armitage test	P=0.330N	D_0 197	D_0 400N	D-074751
Fisher exact test		P = 0.187	P = 0.490N	P=0.747N

TABLE A3

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg	
Skin: Squamous Cell Papilloma or Sq	uamous Cell Carcinoma				
Overall rates	1/49 (2%)	4/50 (8%)	1/51 (2%)	1/50 (2%)	
Adjusted rates	2.6%	28.1%	50.0%	2.7%	
erminal rates	0/28 (0%)	2/9 (22%)	1/2 (50%)	0/0 (0%)	
First incidence (days)	609	569	729 (T)	511	
ife table tests	P=0.119	P=0.053	P = 0.421	P=0.637	
ogistic regression tests	P = 0.617	P=0.156	P = 0.672	P = 0.708N	
Cochran-Armitage test	P = 0.365N	. 0.150	1 0.072	1-0.7001	
isher exact test		P=0.187	P=0.742N	P=0.747N	
kin: Basal Cell Adenoma, Keratoaca	nthoma. Squamous Cell Papillom	a. or Squamous	Cell Carcinoma		
verall rates	2/49 (4%)	5/50 (10%)	1/51 (2%)	2/50 (4%)	
djusted rates	6.0%	29.6%	50.0%	4.7%	
erminal rates	1/28 (4%)	2/9 (22%)	1/2 (50%)	0/0 (0%)	
irst incidence (days)	609	482	729 (T)	380	
ife table tests	P=0.103	P=0.058	P=0.473	P=0.378	
ogistic regression tests	P = 0.417N	P = 0.215	P = 0.733	P = 0.579N	
Cochran-Armitage test	P = 0.362N				
isher exact test		P=0.226	P=0.485N	P=0.684N	
kin (Subcutaneous Tissue): Fibroma	or Fibrosarcoma				
Overall rates	3/49 (6%)	0/50 (0%)	1/51 (2%)	0/50 (0%)	÷.,
adjusted rates	9.5%	0.0%	2.8%	0.0%	
erminal rates	2/28 (7%)	0/9 (0%)	0/2 (0%)	0/0 (0%)	
irst incidence (days)	609	0,) (0 <i>70</i>)	539	0/0 (070)	
ife table tests	P=0.418N	P=0.275N	P=0.706	P = 0.690N	
ogistic regression tests	P = 0.132N	P = 0.154N	P = 0.395N	P = 0.348N	
Cochran-Armitage test	P = 0.083N	1-0.15410	1 -0.57514	1-0.54614	
isher exact test	1 -0.00514	P=0.117N	P=0.294N	P=0.117N	
tomach (Forestomach): Squamous Co	II Danilloma				
Werall rates	0/49 (0%)	1/50 (2%)	0/51 (0%)	1/50 (20%)	
Adjusted rates	0.0%	11.1%	0.0%	1/50 (2%) 4.8%	
erminal rates	0.0%	1/9 (11%)	0.0%	4.8 <i>%</i> 0/0 (0%)	
irst incidence (days)	0/28 (070)	729 (T)	-	580	
ife table tests	– P=0.060	P=0.275	_	P=0.367	
	P=219	P = 0.275	-	P = 0.543	
ogistic regression tests Cochran-Armitage test	P = 0.408	r -0.275	-	r0.343	
isher exact test	r=0.408	P=505	_	P=0.505	
'estes: Adenoma					
	38/45 (84%)	43/49 (88%)	42/46 (91%)	46/50 (92%)	
verall rates	100.0%	100.0%	100.0%	100.0%	
djusted rates erminal rates	28/28 (100%)				
erminal rates irst incidence (days)	28/28 (100%) 408	9/9 (100%) 482	2/2 (100%) 428	0/0 (0%) 307	
			428 P<0.001	307 P<0.001	
ife table tests	P<0.001	P<0.001 P=0.167			
ogistic regression tests	P=0.002	P=0.167	P=0.018	P=0.005	
Cochran-Armitage test	P=0.149	B-0 422	B-0.040	B-0.204	
Fisher exact test		P=0.433	P=0.248	P=0.204	

8) -112

TABLE A3

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Thyroid Gland (Follicular Cell): Adenoma	<u></u>			<u> </u>
Overall rates	0/47 (0%)	3/49 (6%)	0/49 (0%)	0/50 (0%)
Adjusted rates	0.0%	13.6%	0.0%	0.0%
Ferminal rates	0/28 (0%)	0/9 (0%)	0/2 (0%)	0.0 <i>%</i> 0/0 (0%)
First incidence (days)	6/25 (070) -	645	0/2 (0/0)	-
Life table tests	P=0.509	P=0.055	_	_
Logistic regression tests	P = 0.500N	P = 0.110	_	_
Cochran-Armitage test	P = 0.299N	1-0.110		-
Fisher exact test	1 - 0.27714	P=0.129	-	-
Thyroid Gland (Follicular Cell): Adenoma o	r Carcinoma			
Overall rates	1/47 (2%)	4/49 (8%)	0/49 (0%)	0/50 (0%)
Adjusted rates	3.6%	22.3%	0.0%	0.0%
Ferminal rates	1/28 (4%)	0/9 (0%)	0/2 (0%)	0/0 (0%)
First incidence (days)	729 (T)	645	-	-
Life table tests	P=0.434	P=0.037	P=0.959N	_
ogistic regression tests	P = 0.473N	P = 0.118	P=0.959N	
Cochran-Armitage test	P = 0.117N			
Fisher exact test		P=0.194	P=0.490N	P=0.485N
All Organs: Mononuclear Cell Leukemia				
Overall rates	8/49 (16%)	10/50 (20%)	1/51 (2%)	0/50 (0%)
Adjusted rates	22.4%	46.4%	3.6%	0.0%
erminal rates	3/28 (11%)	2/9 (22%)	0/2 (0%)	0/0 (0%)
First incidence (days)	420	503	580	-
Life table tests	P=0.266N	P=0.058	P=0.390N	P=0.295N
ogistic regression tests	P=0.002N	P=0.385	P = 0.022N	P=0.008N
Cochran-Armitage test	P<0.001N			
Fisher exact test		P≈0.416	P=0.013N	P=0.003N
All Organs: Benign Neoplasms				
Overall rates	45/49 (92%)	46/50 (92%)	46/51 (90%)	47/50 (94%)
Adjusted rates	100.0%	100.0%	100.0%	100.0%
Cerminal rates	28/28 (100%)	9/9 (100%)	2/2 (100%)	0/0 (0%)
First incidence (days)	408	482	428	307
Life table tests	P<0.001	P<0.001	P<0.001	P<0.001
ogistic regression tests	P=0.054	P=0.494	P=0.545	P=0.082
Cochran-Armitage test	P=0.419			
Fisher exact test		P=0.631	P=0.526N	P=0.489
M Organs: Malignant Neoplasms				
Overall rates	17/49 (35%)	13/50 (26%)	4/51 (8%)	3/50 (6%)
Adjusted rates	45.9%	51.5%	53.9%	10.3%
Ferminal rates	9/28 (32%)	2/9 (22%)	1/2 (50%)	0/0 (0%)
irst incidence (days)	420	482	408	512
ife table tests	P=0.533	P=0.201	P=0.621N	P=0.558
ogistic regression tests	P<0.001N	P=0.302N	P=0.006N	P=0.006N
Cochran-Armitage test	P<0.001N			
Fisher exact test		P = 0.235N	P<0.001N	P<0.001N

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
All Organs: Benign or Malignant Neoplasms				
Overall rates	46/49 (94%)	46/50 (92%)	47/51 (92%)	47/50 (94%)
Adjusted rates	100.0%	100.0%	100.0%	100.0%
Terminal rates	28/28 (100%)	9/9 (100%)	2/2 (100%)	0/0 (0%)
First incidence (days)	408	482	408	307
Life table tests	P<0.001	P<0.001	P<0.001	P<0.001
Logistic regression tests	P=0.129	P=0.722	P = 0.580	P=0.221
Cochran-Armitage test	P=0.527			
Fisher exact test		P = 0.511N	P = 0.523N	P=0.651

(T)Terminal sacrifice

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, epididymis, heart, kidney, larynx, liver, lung, nose, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

e Not applicable; no neoplasms in animal group

f Value of statistic cannot be computed

TABLE A4a

Historical Incidence of Renal Tubule Neoplasms in Male F344/N Rats Receiving Corn Oil by Gavage^a

	Incidence in Controls									
	Adenoma	Carcinoma	Adenoma or Carcinoma							
	······································	· · · · · · · · · · · · · · · · · · ·								
overall Historical Incidence										
Overall Historical Incidence Total Standard deviation	8/1,019 (0.8%) 1.0%	2/1,019 (0.2%) 0.6%	10/1,019 (1.0%) 1.2%							

^a Data as of 17 December 1991.

TABLE A4b Historical Incidence of Oral Cavity Neoplasms in Male F344/N Rats Receiving Corn Oil by Gavage^a

	Incidence in Controls										
	Squamous Cell Papilloma	Squamous Cell Carcinoma	Squamous Cell Papilloma or Squamous Cell Carcinoma								
verall Historical Incidence	······································	· · · · · · · · · · · · · · · · · · ·	NN								
Total	4/1,020 (0.4%)	1/1,020 (0.1%)	5/1,020 (0.5%)								
Standard deviation	0.8%	0.5%	0.9%								
Range	0%-2%	0%-2%	0%-2%								

^a Data as of 17 December 1991, includes data for oral mucosa, tongue, pharynx, tooth, and lip.

	Incidence in Controls		
	Adenoma	Carcinoma	Adenoma or Carcinoma
Overall Historical Incidence			
Total Standard deviation Range	13/1,009 (1.3%) 1.3% 0%–4%	9/1,009 (0.9%) 1.2% 0%-4%	22/1,009 (2.2%) 1.9% 0%–6%

TABLE A4c Historical Incidence of Thyroid Gland Follicular Cell Neoplasms in Male F344/N Rats Receiving Corn Oil by Gavage^a

^a Data as of 17 December 1991.

TABLE A4d Historical Incidence of Testicular Neoplasms in Male F344/N Rats Receiving Corn Oil by Gavage^a

	Incidence in Controls				
	Adenoma	Carcinoma	Adenoma or Carcinoma		
Dverall Historical Incidence					
m	00/11 010 (07 50)	0/1 012 (0 0%)	006/1 012 (05 60%)		
Total Standard deviation	886/1,012 (87.5%) 5.7%	0/1,012 (0.0%)	886/1,012 (85.6%) 5.7%		

^a Data as of 17 December 1991.

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Coumarin^a

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Disposition Summary	<u></u>	<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>	
Animals initially in study	60	60	60	60
15-Month interim evaluation	10	10	9	10
Early deaths				
Accidental deaths	2	3	2	2
Moribund	14	31	34	31
Natural deaths	6	7	13	17
Survivors				
Terminal sacrifice	28	9	2	
Animals examined microscopically	60	60	60	60
15-Month Interim Evaluation				
Alimentary System				
Liver	(10)	(10)	(9)	(10)
Basophilic focus	(-*)	1 (10%)	~7	(**)
Fatty change		8 (80%)	8 (89%)	5 (50%)
Inflammation, chronic	1 (10%)			
Necrosis, coagulative				1 (10%)
Bile duct, hyperplasia	6 (60%)	8 (80%)	9 (100%)	9 (90%)
Hepatocyte, degeneration, granular		7 (70%)	8 (89%)	5 (50%)
Mesentery	(2)	(1)	(3)	
Fat, inflammation, suppurative		1 (100%)		
Fat, necrosis, coagulative	2 (100%)	1 (100%)	3 (100%)	
Cardiovascular System	<u></u>			<u> </u>
Heart	(10)			(10)
Cardiomyopathy	9 (90%)			2 (20%)
Endocrine System	<u> </u>		<u></u>	
Thyroid gland	(10)			(10)
C-cell, hyperplasia	1 (10%)			()
General Body System		<u> </u>		
None				
Genital System	<u></u>			
Preputial gland	(10)			(9)
Inflammation, suppurative	1 (10%)			Ì (11%)
Prostate	(10)			(10)
Inflammation, suppurative				1 (10%)
Testes	(10)	(9)	(8)	(10)
Interstitial cell, hyperplasia	3 (30%)			1 (10%)
Seminiferous tubule, atrophy			1 (13%)	
Hematopoietic System	<u> </u>	<u></u>	<u></u>	······
Spleen	(10)		(1)	(10)
Fibrosis	. ,		1 (100%)	

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
15-Month Interim Evaluation (a Integumentary System None	continued)	,		
Musculoskeletal System Bone Necrosis	(10) 1 (10%)			(10)
Nervous System None				
Respiratory System				
Nose Inflammation, suppurative	(10) 2 (20%)		(1) 1 (100%)	(10) 3 (30%)
Special Senses System			/1)	
Eye Pigmentation			(1) 1 (100%)	
Urinary System				
Kidney Nephropathy	(10) 10 (100%)	(10) 10 (100%)	(9) 9 (100%)	(10) 10 (100%)
2-Year Study				
Alimentary System				
Esophagus Inflammation, suppurative	(49)	(49) 1 (2%)	(51)	(50)
Periesophageal tissue, hemorrhage		1 (2%)	(10)	<i>(</i> 1)
Intestine large, colon	(45)	(48)	(42)	(44)
Inflammation, suppurative intestine small, duodenum	(46)	1 (2%) (48)	(48)	(46)
Ulcer	1 (2%)	1 (2%)	2 (4%)	3 (7%)
Liver	(49)	(50)	(51)	(50)
Basophilic focus	16 (33%)	4 (8%)	2 (4%)	4 (8%)
Clear cell focus	5 (10%)			1 (2%)
Cyst			28 (55%)	1 (2%) 29 (58%)
Cytologic alterations Developmental malformation	2 (4%)	1 (2%)	28 (55%) 1 (2%)	4 (8%)
Eosinophilic focus	2 (4%) 5 (10%)	1 (2%)	(270)	3 (6%)
Fatty change	4 (8%)	6 (12%)	7 (14%)	1 (2%)
Fibrosis		3 (6%)	41 (80%)	42 (84%)
Hemorrhage		_		3 (6%)
Hyperplasia	2 (4%)	2 (4%)		2 (4%)
Infiltration cellular, lymphocyte	3 (6%)	1 (2%) 1 (2%)		
Inflammation, chronic Inflammation, suppurative		1 (2%) 3 (6%)	3 (6%)	2 (4%)

Lesions in Male Rats

TABLE A5

아이 가 나는

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

		25 mg/kg		
-Year Study (continued)				
Alimentary System (continued)				
Liver (continued)				2 (4%)
Mineralization	4 (8%)	1 (2%)	1 (2%)	2 (470)
Mixed cell focus Necrosis, coagulative	4 (8%) 1 (2%)	13 (26%)	38 (75%)	40 (80%)
, ç	41 (84%)	41 (82%)	45 (88%)	47 (94%)
Bile duct, hyperplasia Hepatocyte, degeneration, granular	41 (6470)	1 (2%)	45 (0070)	1 (2%)
Periductular, fibrosis		1 (2%)		1 (270)
Mesentery	(19)	(11)	(15)	(7)
Ectopic tissue	(1))	(11)	1 (7%)	(')
Fat, hemorrhage	1 (5%)			
Fat, inflammation, chronic	2 (11%)	1 (9%)	1 (7%)	1 (14%)
Fat, inflammation, suppurative	2 (11/0)	3 (27%)	- (///)	2 (29%)
Fat, necrosis, coagulative	12 (63%)	7 (64%)	13 (87%)	3 (43%)
Pancreas	(47)	(49)	(50)	(49)
Atrophy	4 (9%)	7 (14%)	2 (4%)	1 (2%)
Fibrosis	+ (2/0)	. (**/0)	2 (4%)	- (-//)
Infiltration cellular, lymphocyte			2 (173)	1 (2%)
Inflammation, chronic		1 (2%)		- (=//)
Inflammation, suppurative		1 (2%)		1 (2%)
Acinar cell, hyperplasia	1 (2%)	- (-//)		- (-//)
Acinus, hyperplasia	2 (4%)	1 (2%)		
Vein, dilatation	- (,	1 (2%)		
Salivary glands	(49)	(49)	(49)	(50)
Inflammation, suppurative	(19)	1 (2%)	(**)	(30)
Necrosis, caseous		= ()	1 (2%)	
Stomach, forestomach	(48)	(50)	(51)	(50)
Hyperkeratosis	2 (4%)	3 (6%)	4 (8%)	(**)
Inflammation, chronic	= ()	3 (6%)	5 (10%)	4 (8%)
Inflammation, suppurative		3 (6%)	1 (2%)	3 (6%)
Mineralization				1 (2%)
Ulcer	7 (15%)	24 (48%)	35 (69%)	34 (68%)
Stomach, glandular	(47)	(48)	(49)	(50)
Inflammation, chronic		2 (4%)	3 (6%)	1 (2%)
Inflammation, suppurative		1 (2%)		1 (2%)
Mineralization		4 (8%)	5 (10%)	5 (10%)
Ulcer	2 (4%)	5 (10%)	8 (16%)	7 (14%)
Tongue	-	\/	<u> </u>	(1)
Necrosis, Zenker's				1 (100%)
Cardiovascular System	<u> </u>			
Blood vessel	(1)	(4)	(2)	(1)
Aorta, mineralization	(*)	1 (25%)	(-)	1 (100%)
Mesenteric artery, arteriosclerosis		1 (25%)		. (
Mesenteric artery, polyarteritis		- (2 (100%)	
Mesenteric artery, thrombus			1 (50%)	
Heart	(49)	(49)	(51)	(50)
Cardiomyopathy	27 (55%)	34 (69%)	25 (49%)	21 (42%)
Inflammation, suppurative		- (() /)	1 (2%)	()
Thrombus		1 (2%)	* (****)	

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
2-Year Study (continued)				
Endocrine System				
Adrenal gland, cortex	(49)	(50)	(50)	(50)
Clear cell focus	(43)	1 (2%)	(50)	(50)
Cytoplasmic alteration		1 (2%)	1 (2%)	2 (4%)
Hypertrophy				
Adrenal gland, medulla	(49)	1 (2%) (50)	(50)	(50)
Basophilic focus	1 (2%)	1 (2%)	(50)	(50)
Congestion	1 (2%)	1 (270)		
Hyperplasia	1 (270)	4 (8%)		
Parathyroid gland	(41)	(47)	(49)	(47)
Hyperplasia	3 (7%)		31 (63%)	(47)
Pituitary gland	(48)	20 (43%) (48)	(49)	29 (62%) (50)
Pars distalis, cyst	1 (2%)	4 (8%)	(**)	(30) 3 (6%)
Pars distalis, hypertrophy	1 (270)	1 (2%)		3 (0/0)
Pars intermedia, hemorrhage	1 (2%)	1 (270)		
Thyroid gland	(47)	(49)	(49)	(50)
C-cell, hyperplasia	(47) 5 (11%)	3 (6%)	1 (2%)	
Follicle, cyst	1 (2%)	5 (070)	1 (270)	2 (4%)
	I (270)			· .
General Body System				
Tissue NOS	(2)		(1)	(1)
Inflammation, chronic				1 (100%)
	<u></u>			
Genital System Preputial gland	(45)	(49)	(50)	(47)
Hyperplasia	1 (2%)	(4))	(50)	(1)
Inflammation, chronic	1 (2%)	2 (4%)	1 (2%)	
Inflammation, suppurative	7 (16%)	6 (12%)	3 (6%)	1 (2%)
Duct, dilatation		0 (1270)	2 (4%)	3 (6%)
·	3 (7%)	(50)	(50)	(49)
Prostate	(45)	(50)	(30)	(**)
Edema Ulmormiosio	1 (20%)	7 (101)		
Hyperplasia Inflammation, chronic	1 (2%)	2 (4%)	1 (2%)	1 (2%)
	A (00%)	7 (14%)	6 (12%)	4 (8%)
Inflammation, suppurative	4 (9%) (45)	(49)	(46)	(50)
Testes	(45)	2 (4%)	2 (4%)	1 (2%)
Interstitial cell, hyperplasia Seminiferous tubule, atrophy	3 (7%)	2 (470)	2 (470)	1 (470)
				· · · · · · · · · · · · · · · · · · ·
Hematopoietic System		(50)	(50)	
Bone marrow	(48)	(50)	(50)	(50)
Hyperplasia, mononuclear cell	1 (2%)			e - 1
Hyperplasia, neutrophil	(10)	1 (2%)	(10)	(40)
Lymph node	(49)	(50)	(49)	(48)
Lumbar, hemorrhage		1 (2%)	1 (2%)	3 (6%)
Mediastinal, hemorrhage		2 (4%)		1 (2%)
Mediastinal, pigmentation		/		1 (2%)
Renal, hemorrhage		1 (2%)		

1993年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日。 1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1999年1月1日,1 Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
2-Year Study (continued)				
Hematopoietic System (continued)				
Lymph node, mandibular	(48)	(47)	(48)	(48)
Congestion	1 (2%)	()	()	()
Edema	1 (270)			1 (2%)
Hyperplasia, lymphoid	1 (2%)	2 (4%)	3 (6%)	5 (10%)
Hyperplasia, plasma cell	1 (2%)	2 (4%)		
Infiltration cellular, histiocyte	- (-/-)	- (,		1 (2%)
Lymph node, mesenteric	(43)	(50)	(48)	(50)
Hyperplasia, lymphoid	(15)	(50)	1 (2%)	()
Infiltration cellular, histiocyte		1 (2%)	- ()	
Pigmentation, hemosiderin				1 (2%)
Spleen	(48)	(50)	(50)	(50)
Amyloid deposition		$\sim \sim$		1 (2%)
Congestion	2 (4%)	1 (2%)		1 (2%)
Developmental malformation	2 (4%)	- ()		- \)
Hemorrhage	- ()	1 (2%)		
Hyperplasia, histiocytic		1 (2%)		
Hyperplasia, lymphoid		1 (2%)	1 (2%)	
Hypoplasia	1 (2%)	- ()	- ()	
Infarct		2 (4%)		
Inflammation, suppurative		2 (4%)	2 (4%)	
Necrosis, coagulative			1 (2%)	
Pigmentation, hemosiderin	1 (2%)		1 (2%)	2 (4%)
Thrombus				1 (2%)
Thymus	(47)	(48)	(48)	(47)
Ectopic tissue			1 (2%)	
Inflammation, suppurative		1 (2%)		1 (2%)
Integumentary System	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -			- <u></u>
Mammary gland	(45)	(46)	(44)	(45)
Galactocele	2 (4%)		2 (5%)	
Skin	(49)	(50)	(51)	(50)
Acanthosis			1 (2%)	
Cyst epithelial inclusion	3 (6%)	1 (2%)	2 (4%)	
Degeneration			1 (2%)	
Hemorrhage	1 (2%)	1 (2%)		
Hyperkeratosis			1 (2%)	
Inflammation, chronic	2 (4%)	3 (6%)		
Inflammation, suppurative		1 (2%)	2 (4%)	
Sebaceous gland, inflammation, chronic		1 (2%)		
Musculoskeletal System				·····
Bone	(49)	(50)	(51)	(50)
Inflammation, chronic	~ /		1 (2%)	
Cranium, proliferation		1 (2%)		
Skeletal muscle	(1)		(2)	(1)
Inflammation, chronic	• /		1 (50%)	. /
Inflammation, suppurative			1 (50%)	1 (100%)

- - -

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
2-Year Study (continued)				
Nervous System				
Brain	(47)	(50)	(49)	(49)
Cerebellum, developmental malformation	1 (2%)	(50)	(42)	(47)
Hypothalamus, compression	1 (2%)			
Meninges, hemorrhage	1 (270)			1 (2%)
Respiratory System				
Larynx		(1)		
Hemorrhage		1 (100%)		
Lung	(49)	(49)	(50)	(50)
Atelectasis			1 (2%)	
Edema			1 (2%)	
Foreign body			- (-//)	1 (2%)
Hemorrhage		1 (2%)		- (-~)
Hyperplasia, macrophage		2 (4%)		1 (2%)
Inflammation, suppurative	1 (2%)	1 (2%)	2 (4%)	- ()
Mineralization		1 (2%)	- (/	
Alveolar epithelium, hyperplasia	5 (10%)	1 (2%)	1 (2%)	1 (2%)
Nose	(49)	(50)	(51)	(50)
Fungus	Á (8%)	2 (4%)	4 (8%)	3 (6%)
Hemorrhage		1 (2%)		1 (2%)
Inflammation, suppurative	13 (27%)	20 (40%)	27 (53%)	41 (82%)
Metaplasia, squamous		1 (2%)		
Olfactory epithelium, degeneration				1 (2%)
Respiratory epithelium, hyperplasia				1 (2%)
Trachea	(49)	(49)	(50)	(50)
Inflammation, suppurative			1 (2%)	
Special Senses System		· · · · · · · · · · · · · · · · · · ·		
			(3)	. (1)
Eye Cataract			(3)	(1) 1 (100%)
Cornea, edema			1 (33%)	1 (100%)
Retina, degeneration			1 (55%)	1 (100%)
Zymbal's gland		(2)	(1)	(1)
		(2)	1 (100%)	(1)
Inflammation, suppurative			1 (100%)	
Urinary System				
Kidney	(49)	(50)	(51)	(50)
Congestion	1 (2%)			
Nephropathy	48 (98%)	48 (96%)	50 (98%)	50 (100%)
Cortex, cyst	1 (2%)	3 (6%)	2 (4%)	1 (2%)
Renal tubule, hyperplasia	1 (2%)	3 (6%)	(50)	
Urinary bladder	(45)	(49)	(50)	(49)
Hyperplasia	1 (2%)			- /A.M.
Inflammation, suppurative				1 (2%)

^a Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site.

APPENDIX B SUMMARY OF LESIONS IN FEMALE RATS IN THE 2-YEAR GAVAGE STUDY OF COUMARIN

TABLE B1	Summary of the Incidence of Neoplasms in Female Rats	
	in the 2-Year Gavage Study of Coumarin	130
TABLE B2	Individual Animal Tumor Pathology of Female Rats	
	in the 2-Year Gavage Study of Coumarin	134
TABLE B3	Statistical Analysis of Primary Neoplasms in Female Rats	
	in the 2-Year Gavage Study of Coumarin	158
TABLE B4a	Historical Incidence of Renal Tubule Neoplasms in Female F344/N Rats	
	Receiving Corn Oil by Gavage	162
TABLE B4b	Historical Incidence of Oral Cavity Neoplasms in Female F344/N Rats	
	Receiving Corn Oil by Gavage	162
TABLE B4c	Historical Incidence of Forestomach Neoplasms in Female F344/N Rats	
	Receiving Corn Oil by Gavage	162
TABLE B 5	Summary of the Incidence of Nonneoplastic Lesions in Female Rats	
	in the 2-Year Gavage Study of Coumarin	163

94 L 198

TABLE **B1**

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Gavage Study of Coumarin^a

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Disposition Summary				
Animals initially in study	60	60	60	60
15-Month interim evaluation	10	10	10	10
Early deaths				,
Accidental deaths	2	1	5	
Moribund	14	7	7	14
Natural deaths	5	4	2	6
Survivors				
Died last week of study	20	20	1	
Terminal sacrifice	29	38	35	30
Animals examined microscopically	60	60	60	60
15-Month Interim Evaluation Alimentary System None				
Cardiovascular System None	· · · · · · · · · · · · · · · · · · ·			
Endocrine System				
Pituitary gland Pars distalis, adenoma	(9)	(1) 1 (100%)		(10)
General Body System None		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Genital System				
Uterus	(10)	(1)	(3)	(10)
Polyp	1 (10%)	(1) 1 (100%)	(3) 2 (67%)	2 (20%)
Hematopoietic System None				
Integumentary System None				
Musculoskeletal System None				
Nervous System None				

Lesions in Female Rats

TABLE B1

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
15-Month Interim Evaluation Respiratory System None	(continued)			
Special Senses System None	· · · · · · · · · · · · · · · · · · ·			
Urinary System None	· <u>_</u> ·· <u>_</u> ·· <u>_</u> ··			
2-Year Study	······································			
Alimentary System				
Intestine large, cecum	(46)	(47)	(49)	(45)
Intestine large, colon	(47)	(48)	(49)	(47)
Intestine large, rectum	(48)	(49)	(48)	(48)
ntestine small, ileum	(46)	(47)	(48)	(46)
Intestine small, jejunum	(46)	(48)	(48)	(46)
Leiomyoma		1 (2%)	(20)	/
Liver	(50)	(50)	(50)	(50)
Mesentery	(3)	(6)	(9)	(7)
Sarcoma	(10)	(40)	(40)	1 (14%)
Pancreas	(49)	(49)	(48)	(46)
Pharynx				(2)
Papilloma squamous		(50)	(50)	2 (100%)
Salivary glands Stomach	(50)	(50)	(50)	(50)
Stomach, forestomach Papilloma squamous	(48) 1 (2%)	(49) 3 (6%)	(50)	(48) 1 (2%)
Stomach, glandular	(48)	(49)	(49)	(47)
Cardiovascular System			<u> </u>	
Heart	(50)	(50)	(50)	(50)
Endocrine System				
Adrenal gland, cortex	(50)	(50)	(48)	(50)
Adenoma Adronal aland, madulla	1 (2%)	(50)	(49)	(40)
Adrenal gland, medulla	(50)	(50)	(48)	(49) 1 (2%)
Pheochromocytoma benign Islets, pancreatic	3 (6%) (49)	2 (4%) (49)	2 (4%) (48)	1 (2%) (47)
Adenoma	(49) 1 (2%)	(-)	1 (2%)	2 (4%)
Pituitary gland	(49)	(47)	(48)	(49)
Pars distalis, adenocarcinoma	1 (2%)	(**)	(-0)	
Pars distalis, adenoma	30 (61%)	25 (53%)	23 (48%)	28 (57%)
Thyroid gland	(49)	(50)	(49)	(49)
C-cell, adenoma			(**)	1 (2%)
C-cell, carcinoma				1 (2%)
Follicular cell, adenoma				1 (2%)
Follicular cell, carcinoma	1 (2%)	1 (2%)	1 (2%)	1 (2%)

TABLE B1

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
2-Year Study (continued)				
General Body System				
Tissue NOS	(2)			(1)
Fibroma	1 (50%)			(1) 1 (100%)
Genital System				
Clitoral gland	(48)	(47)	(48)	(49)
Adenoma		6 (13%)		2 (4%)
Carcinoma		1 (2%)	1 (2%)	2 (4%)
Ovary	(50)	(49)	(50)	(49)
Granulosa-theca tumor benign			1 (2%)	
Oviduct			(1)	
Uterus	(50)	(50)	(49)	(49)
Polyp	7 (14%)	13 (26%)	4 (8%)	5 (10%)
Sarcoma				1 (2%)
Vagina	(1)	(1)		(4)
Leiomyoma		1 (100%)		
Leiomyosarcoma				1 (25%)
Sarcoma				1 (25%)
Hematopoietic System				
Bone marrow	(50)	(50)	(49)	(49)
Lymph node	(49)	(50)	(50)	(49)
Lymph node, mandibular	(49)	(47)	(48)	(48)
Lymph node, mesenteric	(47)	(49)	(48)	(48)
Spleen	(47)	(50)	(49)	
Thymus	(48)	(48)	(49)	(49) (47)
	(40)	(40)	(+)	(+/)
Integumentary System				
Mammary gland	(49)	(50)	(50)	(50)
Adenocarcinoma	1 (2%)	· ·		1 (2%)
Adenoma	1 (2%)	2 (4%)		
Fibroadenoma	17 (35%)	24 (48%)	22 (44%)	11 (22%)
Fibrosarcoma			1 (2%)	
Skin	(50)	(50)	(50)	(50)
Lipoma			1 (2%)	
Papilloma squamous		1 (2%)		
Squamous cell carcinoma	1 (2%)			1 (2%)
Subcutaneous tissue, fibroma		1 (2%)	1 (2%)	1 (2%)
Musculoskeletal System	·····			··
Bone	(50)	(50)	(50)	(50)
Bone Skeletal muscle	(50)	(50)	(50)	(50)
			(1)	
Nervous System				
Brain	(50)	(50)	(50)	(49)
Meninges, meningioma NOS			1 (2%)	

Lesions in Female Rats

TABLE B1

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
2-Year Study (continued)				
Respiratory System				
Lung	(50)	(49)	(50)	(50)
Adenoma		1 (2%)		
Special Senses System				
Ear		,	(1)	
Papilloma squamous			1 (100%)	
Eye	(1)	(4)	(1)	(1)
Papilloma squamous			1 (100%)	
Zymbal's gland			(1)	
Squamous cell carcinoma			1 (100%)	
Urinary System				
Kidney	(49)	(50)	(50)	(49)
Lipoma		1 (2%)		
Sarcoma				1 (2%)
Renal tubule, adenoma				2 (4%)
Urinary bladder	(50)	(49)	(49)	(47)
Papilloma squamous				1 (2%)
Systemic Lesions		<u></u>	<u> </u>	
Multiple organs ^b	(50)	(50)	(50)	(50)
Leukemia mononuclear	6 (12%)	5 (10%)	6 (12%)	4 (8%)
Mesothelioma NOS	1 (2%)		· (//)	(0,0)
Neoplasm Summary			······	
fotal animals with primary neoplasms ^c				
15-Month interim evaluation	1	2	2	2
2-Year study	41	44	40	43
Fotal primary neoplasms				
15-Month interim evaluation	1	2	2	2
2-Year study	75	91	71	76
Total animals with benign neoplasms				. –
15-Month interim evaluation	1	2	2	2
2-Year study	37	43	36	40
Total benign neoplasms		•		
15-Month interim evaluation	1	2	2	2
2-Year study	64	84	60	61
otal animals with malignant neoplasms				
2-Year study	10	7	10	11
fotal malignant neoplasms				
2-Year study	10	7	10	15
fotal animals with uncertain neoplasms				
benign or malignant				
2-Year study	1		1	
fotal uncertain neoplasms				
2-Year study	1		1	

a Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site. b

С

Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms

TABLE B2

		_		. <u> </u>											_				_								
Number of Days on Study	0 9 2	1	8 3	5	4 4 3 9 5 1	9	5	8	0	1	2	4	5	6	6	9	9	0	0	1	1	1	2	2	2	2	
Carcass ID Number	0		0 (0											0 7											· · · · · ·
	0 3	-	2 2 4 5	2	2	1	4	9	4	9	2	0	8	9	3	6 5	7	5	1	1	6	9	0	3	8	9	
Alimentary System																	_										
Esophagus	+		+ -	+	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large	A		A -	ł	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, cecum	A		A -	+	+ •	+	+	+	+	+	+	Α	+	A	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, colon	Α		A -	+	+ ·	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, rectum	A		A -	t	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small	-		A -		-	+								Α		+	-	+	+	+	+	+	+	+	+	+	
Intestine small, duodenum					+ ·																+	+	+	+	+	+	
Intestine small, ileum	-		A -				+									+			+		+	+	+	+	+	•	
Intestine small, jejunum	Α		A -													+		+	i.		+	+	+	+		+	
Liver	+	• •	+ -	+	+ ·	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Mesentery							+										+										
Pancreas Solicione clondo	+				+ ·								+			+					+		+	+	+	+	
Salivary glands	+		+ - A	+	+ ·			+	+	+	+	++	+	+	+	+ +	++	+++		++	+	+	+	+	++	+	
Stomach Stomach, forestomach	A		<u> </u>	τ ∔	+ ·	+ +	+	+ +	+ +	++	++	++	++	++	++	+ +	++	++	+	+	+	+	+	+		++	
Papilloma squamous		4		1 ⁻	Γ.	F	ч.	т.	r		Ŧ	-r	т	r	T	-	٢	Ŧ	T	T	٣	Ŧ	Ŧ	Ŧ	т	T	
Stomach, glandular			Α-	+	+ -	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	÷	+	+	+	+	+	+	
Tongue		•	-					-	ĩ	,	•			+	•		,	,			-	•		•			
Cardiovascular System Heart	+		+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<u>-</u> -
Endocrine System		-																									. <u> </u>
Adrenal gland	+		+ •	ŧ.	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	
Adrenal gland, cortex			+ -	+	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma								-	-	-	-	-	-		-	-	-	-	-	-				-	-		
Adrenal gland, medulla	+		+ -	ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pheochromocytoma benign									х																		
Islets, pancreatic	+	- 2	A -	ł	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma																						х					
Parathyroid gland	+		+ -	t	+ ·	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pituitary gland	+	- /	A -	ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pars distalis, adenocarcinoma												-			_	_		х									
Pars distalis, adenoma					х				х				x			X				x			X			X	
Thyroid gland	+	- 4	A -	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Follicular cell, carcinoma									х																		

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: Vehicle Control

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

TABLE B2

- ----

continued)																			_							
	7	7	, 7	, ·	7 7	7 [,]	7 7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
umber of Days on Study	3	3	3 3	3 :	3 3	3 3	33						3	3	3	3	3	3	3	3	3		3	3		
	2	2	2 2	2 :	2 2	2 :	2 2	2 2	2 2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	
	0	0) () (0 () (0 () () 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	6	7	1 7	<i>'</i>	7 7	7 [.]	7 7	1 7	7	7	6	7	7	7	7	7	8	7	7	7	7	7	7	8	8	Total
	9	1	2	2 :	3 4	4	5 5	5 8	39	9	9	0	3	6	6	7	0	0	4	4	5	7	9	0	0	Tissues
	1	2	2 3	3	5 2	2	1 3	3 3	3 1	. 4	4	5	1	1	2	1	2	4	1	5	4	2	2	3	4	Tumor
Alimentary System			_	_																						
Esophagus	+		+ •	+	+ •	+	+ •	+ •	+ +	+ +		- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large	+		+ •	+	+	+	+ •	+ •	+ +	+ -	1	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine large, cecum	+		+ •	+	+ •	+	+ •	+ •	+ +	+ +	+	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Intestine large, colon	+	• •	+ •	+	+ ·	+	+ •	+ •	+ +	+ -		- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine large, rectum	+	• •	+ •	ł	+	-	+ ·	+ ·	+ +	+ -	⊦ -1	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small	+	• •	+ ·	ł	+ ·	+	+ ·	+ ·	+ +	+ -	1	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	46
Intestine small, duodenum	+	• •	+ ·	ł	+ ·	+	+ ·	+ ·	+ +	+ -	+ +	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine small, ileum	+	• •	+ •	+	+	+	+ ·	+ ·	+ +	+ -	- 1	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	46
Intestine small, jejunum	+	• •	+ ·	+	+	+	+ ·	+ •	+ +	+ -								+	+	+	+	+	+	+		46
Liver	+	• •	+ •	+	+	+	+ ·	+ ·	+ +	+ -		- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	50
Mesentery												+	•													3
Pancreas	+		+ ·	+	+		+ ·			+ -			- +		+			+	+	+	+	+	+	+	+	49
Salivary glands	+	• •	+ •	+	+ ·			+ ·	+ +	+ -					+	+		+	+	+	+	+	+	+		50
Stomach	+	• •	+ •	+	+ ·		+ ·	+ •	+ +	+ -	+ +				+	+	+	+	+	+	+	+	+	+		48
Stomach, forestomach	+	• •	+ ·	+	+	+	+ ·	+ •	+ +	+ -		+ +	• +	+	+	+	+	+	+	+	+	+	+		+	48
Papilloma squamous																	+	+	+					X		1 48
Stomach, glandular Tongue	4		•	Ŧ	Ŧ	Ŧ	+ •	T '	+ +	- -	- 1			Ŧ	Ŧ	+	+	Ŧ	Ŧ	+	Ŧ	Ŧ	+	Ŧ	+	48
Cardiovascular System Heart	+		+ ·	+	+	+	+	+ ·	+ +	+ -				+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System		_																								
Adrenal gland	+	• •	+ •	+	+	+	+ •	+ •	+ +	+ -	1	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	• •	+ •	+	+	+	+ ·	+ ·	+ +	+ -	+ +	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma	Х	C																								1
Adrenal gland, medulla	+	• •	+ ·	+	+	+	+	+ ·	+ +	+ -		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign									-	ĸ													Х			3
Islets, pancreatic	+	• •	+ •	+	+	+	+ ·	+ ·	+ +	+ -	+ +	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenoma																										1
Parathyroid gland	-	•	+ ·				M		+ +					+	+	+	+	+	+	+	+	+		+	-	46
Pituitary gland	+		+ ·	+	+	+	+	+ ·	+ +	+ -	+ +	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	49
Pars distalis, adenocarcinoma										-	-															1
Pars distalis, adenoma									х)		>				х				x					X		30
Thyroid gland Follicular cell, carcinoma	+		+ ·	+	+	+	+	+ ·	+ +	+ -		⊢ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	49 1
Politicular cell, carcinoma																										

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

TABLE B2

013445566 Number of Days on Study 9 8 5 3 9 1 2 4 5 6 6 9 9 0 0 1 1 1 2 2 2 2 58 0 2 6 5 1 4 0 4 7 4 4 9 9 2 5 3 9 0 8 24 9 9 9 9 9 0 0 0 **Carcass ID Number** 7 777 7 7 6 7 7 7 8 7 6 7 7 7 7 7 7 7 6 7 777 0 2 2 2 4 9 4 9 2 0 8 9 36 1 7 5 1 1 6 9 3 8 9 0 3 4 5 2 4 4 2 3 3 1 1 1 3 3 5 3 5 5 1 4 5 2 2 2 5 **General Body System Tissue NOS** \mathbf{x}^{+} + Fibroma **Genital System** Clitoral gland + M +м + + + + Ovary + + + Uterus + + + + + + Polyp х Vagina Hematopoietic System Blood Bone marrow Lymph node + Α + + + + + + + + + + + Lymph node, mandibular Α + + + + + + Lymph node, mesenteric + Α + Spleen + Α + Thymus + Α + + + + + + + + + + + **Integumentary System** Mammary gland + M + Adenocarcinoma Adenoma х Fibroadenoma Skin Squamous cell carcinoma Musculoskeletal System Bone + Nervous System + + + + + + + + + + + + + + Brain + + + + **Respiratory System** Lung + + + + + 4 + Nose + + + + + + Trachea ┶ + + +

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

Lesions in Female Rats

TABLE B2

ويستعدون والمترافة المتحدية ومعدلات

. HE

Contraction in the second

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

continued)																			_	_							
Number of Deve on Standar		7	7	7	7	7	7	7	7 3	7 3	7	7 3	7 3	7 3	7 3	7 3	7 3	7 3	73	7	7 3	7	7	7 3	7		,
Number of Days on Study	-	3 2	3 2	3 2	3 2	3 2	2		2	2	3 2	3		3	3	3					4	4			4		
			0				0	0						0		0								-	0		T. 4-1
Carcass ID Number				7	7	7	7				7					7			7				7				Total
	-		1 2	2 3	3 5	4 2	5 1		8 3	9 1	9 4			3 1		6 2	7 1		0 4		4 5	5 4	7 2	9 2	0 3		Tissues Tumor
General Body System				<u> </u>													- <u></u>			_						ù	
Tissue NOS																											2
Fibroma						-	_	_										_									1
Genital System					_																						
Clitoral gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Ovary		+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+		50 50
Uterus Polyp		+ X	+	+	+	+	+	+	+	+	+	+	+	+		+ X	+	+	+ X	+	+	+	+	+	+ X		50 7
Vagina		Λ					+								Λ	Λ			~						Λ		1
Iematopoietic System																											
Blood																					+						1
Bone marrow		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node, mandibular		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node, mesenteric Spleen		+	+	+	++	- M	+ i +	++		++			+++				++		++	++	+	+	+	+	+	++	47 49
Thymus		+	+	+										-		+					+	+	+	+		+	49
ntegumentary System																						_					
Mammary gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenocarcinoma										х																	1
Adenoma																											1
Fibroadenoma			x		X			X							X			X							X		17
Skin Squamous cell carcinoma		Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Musculoskeletal System																										<u>.</u>	
Bone		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Nervous System						_			_	_																	
Brain		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Respiratory System									-	_				<u>.</u>				-							_		
Lung		+	+	+	+	+	+	+	+							+			+	+				+	+	+	50
Nose Trachea		+	+	+	+	+	+	+	+	+	+		+		+	•	+	+	+	+		+		+		+	50
Tracnea		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50

-

TABLE B2

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

Number of Days on Study	0 1 3 4 4 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7
Carcass ID Number	0 0
Special Senses System Eye	+
Urinary System Kidney Urinary bladder	+ A + + + + + + + + + + + + + + + + + +
Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma NOS	++++++++++++++++++++++++++++++++++++

Lesions in Female Rats

Table B2

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

				_												_										
	7	7	7	7	, 7	-	7 7	, ,	77	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3 3	3	3 3	3 3	33	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	2	2	2	2	2 2	2	2 2	2 2	22	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	
	0	0	0	() 0) (0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	6	7	7	1	7	1	7 7	7 7	77	7	6	7	7	7	7	7	8	7	7	7	7	7	7	8	8	Total
	9	1	2	3	34	5	5 5	5 8	89	9	9	0	3	6	6	7	0	0	4	4	5	7	9	0	0	Tissue
	1	2	3	5	5 2	1	1 3	3 3	3 1	4	4	5	1	1	2	1	2	4	1	5	4	2	2	3	4	Tumor
Special Senses System Eye																										1
Jrinary System																										
Kidney	+	-			+ +	⊦ -	+ •	+ •	+ -	+ +	- +	+	+	+	+	•	+	•	+	+	+	+	· +	• +	+	49
Urinary bladder	+	-			+ +	۰ ۱ 	+ •	+ •	+ +		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Urinary bladder Systemic Lesions	+					⊦ ·	+ •	+ -	+ +		- +	+	+	+	+	+	+	+	+	+	+	+			+	50
Urinary bladder Systemic Lesions Multiple organs									+ + + +				+		+					+	+				+	50
Urinary bladder Systemic Lesions																					+					

TABLE B2

Number of Days on Study	2 4 5	3	3	3	3	4	1 5	5 5	56 55 99	6	9	1	2	2	2	2	3	3	3	3	3	3	3	3	3	
Carcass ID Number	8	8 4	7	4	8 8 1	9 0) {) {	88) 0 3 8 3 6 1 1	8 7	8 2	9 2	8 2	8 6	8 8	9 0	8 1	8 2	8 3	8 4	8 5	8 6	8 7	8 8	8 9	
Mimentary System																			-							
Esophagus	Δ	4			+ +		L .	L .	+ +			+	. т	+	+	+	+	Ъ	Ŧ	+	+	+	-	<u>ـ</u> ـ	ъ	
Intestine large	л 													+	+	+	+	1	-	1	1	1	4	- -	т Т	
Intestine large, cecum	т А	1						-					· +	•			+	- -	+	+	+	- -	- -	7 4	т —	
Intestine large, colon		H					а́.		г т Н Н		+			+			+		+	1		1	т -	- -	т —	
Intestine large, colon Intestine large, rectum	+		- 1 - 1						r 7 + 4						+		+	T	+	+	т Т	-1" -	- T	+	+	
Intestine small	т А	۲ ل	ר ב ב						г т + 4				· +		+		+	1	+	- -	- -	- -	- +	τ -	+ +	
Intestine small, duodenum	Δ	L L							г т + 4						+		+	+	- -	+ +	- -	+	- -+	- -	т Т	• · · · ·
Intestine small, ileum													· +			+	+	+	+	+	+	+	+	+	+	
Intestine small, jejunum									г т + 4					+	т Т	, ,	+		т Т	<u>т</u>		,. 	- -	+	•	
Leiomyoma	А	1	1				- Z	× 7	. 1	1	т	T	T	Τ'	т	т	r	Ŧ	T	Ŧ	т	Ŧ	т	т	T	
Liver	Ŧ	4			⊢ →		+ -	L _	+ +				+	+	+	Ŧ	+	ىد	ъ	+	+	+	+	L.	Ŧ	
Mesentery	т	1	1			-			. 1	1	Ŧ	- + ·	т [.]	Ŧ	Ł	r	r	Ŧ	r	r	г	T	Т	т	Ŧ	
Pancreas	۸	H			ь л	_ ~	+ -	L	+ +		L	•	· +	Ŧ	+	+	+	+	Ŧ	ъ	Ŧ	Ŧ	÷	4	Ъ	
Salivary glands	A _	۲ د	רי ע		, 1 , 1		 	 	 + -+					- -	г +	- +	÷	Ţ	r T	÷	+	+	+	+	+	
Stomach	A	1	ר ב.		г т Н - Н			г ¬ Ь +	 					+	+	+	+	- -	+	+	+	+	+	т Т		
Stomach, forestomach	л А	۲ ل	ר ב _		י י ר א			, , F -	, , , ,	י ב.		- +		+	+	÷	+						+			
Papilloma squamous	А						•		. 1			1	ſ	1		,	'		•	x		•		'	'	
Stomach, glandular	Α	H			+ +		+ -	⊢⊣	+ +	• •	+ +	+	+	+	+	+	+	+	+		+	+	+	+	Ŧ	
Cardiovascular System		_								_		-							_			<u></u>				
Heart	+	4	1		⊦ ⊣		+ -	+ +	+ +	• •	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System	<u></u>									_							<u> </u>							<u> </u>		
Adrenal gland	+	Н			+ +		+ •	+ -	+ +	- 4	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex	· +	-	1		+ +	+ <u> </u>	+ -	+ -	+ +	• +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, medulla	+	-	+ -		+ +	⊢ -	+ -	+ -	+ +		⊦ ,+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pheochromocytoma benign													Х													
Islets, pancreatic	Α	4	+ -		+ +		+ -	+ -	+ +	• +	+ +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	
Parathyroid gland	+	-	+ +		+ +	F I	M -	+ -	+ +		+ +	+	+	+	+	+	+	+	+	+	Ι	+	+	+	+	
Pituitary gland	А	4			+ +	+ -	+ -	+ -	+ N	14	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pars distalis, adenoma							х 2						X								Х		Х			
Thyroid gland Follicular cell, carcinoma	+	-		- -	+ -1		+ -	+ -	+ +		⊦ 4	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 25 mg/kg

General Body System

None

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 25 mg/kg (continued) 7 7 7 7 77 7777 7 77 7 7 7 7 7 7 7 7 7 7 7 7 3 Number of Days on Study 3 4 4 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 2 2 0 9 9 9 8 8 8 8 8 8 8 8 8 9 9 8 8 8 8 9 9 999 Total Carcass ID Number 8 0 1 1 1 3 3 5 6 7 8 8 9 0 2 2 2 3 5 6 0 1 1 1 2 Tissues/ 9 5 4 1 4 3 4 5 3 4 5 1 2 2 3 5 2 4 3 2 5 2 2 3 5 3 Tumors Alimentary System 49 Esophagus 49 Intestine large + + 47 + + + + + + Intestine large, cecum + + + 48 Intestine large, colon + + 49 Intestine large, rectum + + ++ + + + + 4 + + 4 + Intestine small 48 + + + + + + + + Intestine small, duodenum ÷ + + + + 48 + + + + + + + + + 4 + + 4 Intestine small, ileum 47 + + + + 48 Intestine small, jejunum + 1 Leiomyoma х Liver 50 6 Mesentery + + Pancreas 49 + 50 Salivary glands + + + + + + + Stomach + + + + + 49 + + + + + + + + + + + + + ++ 4 + + + Stomach, forestomach + 49 + + + + + + + + + ++ +Х х Papilloma squamous 3 Stomach, glandular 49 + + + + Cardiovascular System Heart 50 **Endocrine** System Adrenal gland 50 + + Adrenal gland, cortex 50 + + ++ Adrenal gland, medulla 50 + + Pheochromocytoma benign 2 49 Islets, pancreatic + + + + + + + + + + ++ + + + + + Parathyroid gland + + + + + + М + + + + + + 47 + + + + + + + + + + + + + Pituitary gland + + + + + + + + + ++ + + + + ++ + + + + + Α + 47 Pars distalis, adenoma ххх XXX хх 25 XXXX Х Х Thyroid gland + + +++ + ++ + + + + + + 50 Follicular cell, carcinoma x 1

General Body System

(continued)					_	_																					
Number of Days on Study	2 4 5		3	3	3	3	4	5	5	5	6	9	1	2	2	7 2 9	2	7 3 2	7 3 2	7 3 2	7 3 2		7 3 2	3	3	7 3 2	
Carcass ID Number	8 8		4	8 7	8 4	8 1	9 0	8 9	8 3	8 6	8 7	8 2	9 2	8 2	8 6	0 8 8 4	9 0	8 1	8 2	8 3	8 4	8 5	8 6	8 7	8 8	8 9	
Genital System Clitoral gland Adenoma Carcinoma Ovary Uterus Polyp	 	+	 + +	- + + +	++++	++++	+ + +	++++	х +	+ M + X	+	+	++++	+	M + + X	+ X + +	+	+ + X	+	+	+	+	+	++	+ + X	++	
Vagina Leiomyoma						* x									-												
Hematopoietic System Blood Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	4 4 4 4 4 4	+ + +	+ + + + +	+ + + + +	+ + + + + + +	+ + + + +	+ + + + +	+ + + + +	+ + + + + +	+ + + + + M	+ + + + + +	+ + + + + +	++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + + + + +	+ +	+ + M + + +	+ +	+ +	++++++	+ + + + + + -	+ + + + + + + + + + + + + + + + + + + +	+ + + +	+ + + + +	+ + + + + + + + + + + + + + + + + + + +	
Integumentary System Mammary gland Adenoma Fibroadenoma Skin Papilloma squamous Subcutaneous tissue, fibroma		+ .	+	+					x	x	x	x		+ X +		x		+ X +	x				+		+ X +		
Musculoskeletal System Bone		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	
Nervous System Brain	-	 ⊦	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	
Respiratory System Lung Adenoma Nose Trachea		 ⊦ ⊦	+ + +	+++++++++++++++++++++++++++++++++++++++	+++	+++++	++++	++++++	++++	++++	+++++	+++++	+++++	+++++	+++++	++++	+++++	+ + +	· + +	+++++	++++	++++++	+++++	+ +	· +	· + · +	

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 25 mg/kg (continued)

TABLE B2
Lesions in Female Rats

TABLE B2

	-	-	-	-	-	~	-	-	-	-	~	7	7	7	-	7	7	7	7	7	7	7	7	7	~	
	7			7	7	7		7			7	7			7				7			7	7			
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	-	3	3	3		3	3	3	3	3		
	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	
	0	0	0	0	0	0	0	0	0	0					0		0	0	0	0	0	0	0	0	0	
Carcass ID Number	8	9	9	9	8	8	8	8	8	8	8	8	8	9	9	8	8	8	8	8	9	9	9	9	9	Total
	9	0	1	1	1	3	3	5	6	7	8	8	9	0	2	2	2	3	5	6	0	1	1	1	2	Tissue
	5	4	1	4	3	4	5	3	4	5	1	2	2	3	5	2	4	3	2	5	2	2	3	5	3	Tumor
Genital System																										<u></u>
Clitoral gland	+	- 4	• +	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Adenoma		X								х							х									6
Carcinoma	_								х																	1
Ovary	4		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Uterus				+		+	+		+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	50
Polyp	X		•	•	•		•	•	•	x	-	•		x		•					x	•	·	x	·	13
Vagina	<u>_</u>	-																			• •					15
Leiomyoma																										1
Hematopoietic System						<u> </u>																				<u> </u>
Blood																										1
Bone marrow	-1		• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node	+		• +			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node, mandibular	+	• +	• +	M		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Lymph node, mesenteric	4		• +	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Spleen	+	- 4	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Thymus	-	1	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	48
ntegumentary System																										
Mammary gland	4		• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma					Х							х														2
Fibroadenoma	X		х			Х	Х	Х	Х		Х	х	х		х			х			х			Х		24
Skin	-		• +	+	+	+	+	+	+	+				+	+	+	+	+	+	+	+	+	+	+	+	50
Papilloma squamous Subcutaneous tissue, fibroma					х																					1 1
Musculoskeletal System Bone			- +	 · +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Nervous System																								_		
Brain	4		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Respiratory System								_				_									•					· <u> </u>
Lung	-	1	• +	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	49
Adenoma															`		х									1
Nose	4	• +	- +	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	50
Trachea	-		• +	· +	+	+	+	+	+	+	+	+	+	+	+	+	·+-	+	+	+	+	+	<u>ـ</u> ــ	-	+	50

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 25 mg/kg

Number of Days on Study	2 3 3 4 4 3 3 3 5 4 4 9				7 7 7 7 7 3 3 3 3 2 2 2 2
Carcass ID Number	0 0 0 0 8 8 8 8 8 4 7 4 3 1 1 5	1 0 9 3		80123450	
Special Senses System Eye	A	+	+	+	· · ·
Urinary System Kidney Lipoma Urinary bladder	+ + + -			+ + + + + + + + + + + + + + + + + + +	
Systemic Lesions Multiple organs Leukemia mononuclear		+ + + + + × X		+ + + + + + + + + + + + + + + + + + +	+ + + + X

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 25 mg/kg (continued)

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 25 mg/kg (continued) Number of Days on Study 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 Carcass ID Number 8 9 9 9 8 8 8 8 8 8 8 8 8 9 9 8 8 8 8 9 9 9 9 9 9 9 9 Total 9 0 1 1 1 3 3 5 6 7 8 8 9 0 2 2 2 3 5 6 0 1 1 1 2 Tissues/ 5 4 1 4 3 4 5 3 4 5 1 2 2 3 5 2 4 3 2 5 2 2 3 5 3 Tumors Special Senses System Eye + + 4 Urinary System Kidney + 50 + Lipoma х 1 Urinary bladder + + 49 + + + Systemic Lesions Multiple organs 50 + + + + + + + + + + + + + + х Leukemia mononuclear 5

÷

Number of Days on Study	1	2	3	6	8	5	6	0	2	3	3	9		0	7 2 9	2	2	2	2	3	3		7 3 2			
Carcass ID Number	0 9 9 3	0 1	9 9	9 5	9 7	9 8	9 8	9 7	0 2	9 3	9 7	0 4	0 0	9 4	0 9 4 4	9 8	9 8	9 8	0 0	9 5	9 5	9 5	9 6	0 2	0 3	
Alimentary System							_	_	_							_			-	_	_					
Esophagus	+	·+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	
Intestine large	+	+	+	+	•	+	+	+	+	÷	+	÷	÷	+	+	+	+	+	+	+	+	Å	+	- -	+	
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+			+			
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+		•	+	-	•		+			
Intestine large, rectum	+	+	M	+	+	+	+	-		+	+	+	+	+		+	+	+			+		+			
Intestine small	+	+	+	+	+	+		-		-			+	-	+			+				_	+		-	
Intestine small, duodenum	+	+	+	+	+										+			+		+		_	+			
Intestine small, ileum	+	+	+	+	+	+									+							-				
Intestine small, jejunum	+	+	+	+	+	+									+							-				
Liver	+	+	+	+	+						+				+								+			
Mesentery	•	'	•		'	•	•	+	•	•	•	•	+	•	+	'		+	+		'		'	'	•	
Pancreas	+	+	+	+	+	+	+	÷	+	+	Α	+		+	+	+	+		+	+	+	Α	+	+	+	
Salivary glands	+	+	+	+							+				+							+	+	+	÷	
Stomach	+	+	+	+	+	+			+		+	+			+						+	+	+	+	+	
Stomach, forestomach	+	+	+	+	+	+			+						+						+	+	+	+	÷	
Stomach, glandular	+	+	+	+	+	+			+						+						+	Å	+	+	+	
Cardiovascular System												_				_					_					
Blood vessel																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System		_							_																	
Adrenal gland	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+			+			
Pheochromocytoma benign																										
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	
Adenoma							-		-	-												-				
Parathyroid gland	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pituitary gland	+	+													+											
Pars distalis, adenoma									х	х		х			х	х	х		х	х	х				х	
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	
Follicular cell, carcinoma																										

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 50 mg/kg

General Body System

None

146

Lesions in Female Rats

TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 50 mg/kg

- di 7 pogi di a titurre di 121

(continued) 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 Number of Days on Study 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 **Carcass ID** Number 9 9 0 0 0 0 0 0 9 9 9 0 0 0 0 0 0 0 0 0 Total 9 9 9 9 9 Tissues/ 3 7 7 9 0 1 12 3 3 3 4 4 0 1 1 2 2 3 3 4 4 5 6 6 1 5 3 2 5 1 5 1 3 1 Tumors 3 2 4 4 4 1 3 2 2 4 5 2 -5 2 4 Alimentary System Esophagus 49 + 49 Intestine large + + 49 + + + + ++ + + + + + + + + Intestine large, cecum + + + + 49 Intestine large, colon + + + + + + + + + + + + + + + + + + 48 + + ++ + + + + Intestine large, rectum + + + + + + + + + + + + + + 48 Intestine small + + + + + + + + + + + 48 Intestine small, duodenum + + + + + + + + + + + ++ + + + + + + + 48 Intestine small, ileum + Intestine small, jejunum + + + + + + + + + + + + + + 48 + + + + + + + + + Liver + ÷ + 50 + + + + + ++ + + + + + + + + + + + + + + 9 Mesentery 48 + + Pancreas + Salivary glands 50 + 50 Stomach + + 50 Stomach, forestomach + + + + ++ + + + + + + + + + + + + + + + + + + 49 Stomach, glandular + ++ + + + + + + + + + ++ + + + + Cardiovascular System Blood vessel 1 Heart 50 + + + **Endocrine** System Adrenal gland 48 Adrenal gland, cortex + + + + + + + + + + 48 + + + + + + + + + 48 Adrenal gland, medulla + + + + + + + + + + + + + + + + + + + Pheochromocytoma benign х 2 х Islets, pancreatic + 48 + + + + Adenoma Х 1 Parathyroid gland M + M45 + + + + M + + + M + + + + + + + + + + + + Pituitary gland + 48 + + + + + + + + ÷ + + + + + + + + + + + + + + Pars distalis, adenoma ххх ххх х х хх х х х 23 Thyroid gland ++ + + + + + + + ++ + + + + + 49 Follicular cell, carcinoma Х 1

General Body System None

0 0 0 0 1 5 5 6 6 6 6 6 7 7 7 1 7 7 7 7 7 7 777 Number of Days on Study 1 2 3 6 8 5 6 0 2 3 3 9 0 0 2 2 2 2 2 3 3 3 3 3 3 3 1 5 7 9 9 4 7 9 4 2 5 1 59 9 9 9 2 2 2 2 1 2 2 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 **Carcass ID Number** 9 0999 999 0 99009 99 99099 9 900 9 1 9 5 7 8 8 7 2 3 74 0 4 4 8 8 8 0 5 5 5 6 2 3 3 54 5 2 3 1 4 35 534 2 4 5 1 1 3 5 4 1 3 4 3 **Genital System** Clitoral gland + M + + M + + + + + Carcinoma Ovary + + + Granulosa-theca tumor benign Oviduct Uterus + + + + + + Polyp x Hematopoietic System Bone marrow Lymph node + 4 + ÷ + + + + + + + Lymph node, mandibular + + Μ + + + + Lymph node, mesenteric + + + + + + + + + + + + + + + ++ + ++ + + + + + Spleen + + + + + + + + + +++ ++ + + +Α + + + + + ++ Thymus + ++ + + + + + + + **Integumentary System** Mammary gland + + + хх х хх хх Fibroadenoma Fibrosarcoma Skin + + + + + + + +Lipoma х Subcutaneous tissue, fibroma **Musculoskeletal System** Bone Skeletal muscle **Nervous System** Brain х Meninges, meningioma NOS **Respiratory System** Lung + + + + + + + + + + + + + + + + ++ + + Nose + + + + + + + + + ÷ + Trachea + + + + +

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)

TABLE B2 Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 50 mg/kg

1227

(continued) Number of Days on Study 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 0 0 0 0 0 0 0 0 0 0 9 9 9 0 0 0 0 0 0 0 0 0 Total **Carcass ID Number** 9 9 9 9 9 0 9 9 Tissues/ 5 6 6 7 7 9 0 1 1 2 3 3 3 4 4 0 1 1 2 2 3 3 4 4 3 2 4 2 4 4 4 1 3 2 2 4 5 1 5 3 2 5 1 5 1 3 1 2 Tumors 3 5 **Genital System** 48 Clitoral gland + + + х 1 Carcinoma Ovary + 50 + + + 1 Granulosa-theca tumor benign Oviduct 1 Uterus 49 + х хх Polyp 4 Hematopoietic System 49 Bone marrow + + 50 Lymph node + + + + ÷ + Lymph node, mandibular + М + 48 + Lymph node, mesenteric + I + + + 49 + Spleen + 49 49 Thymus I + + + + 4 + + + + + + + + **Integumentary System** + + + + + + + + + + + Mammary gland + + 50 + + ++ + + + + + + + + х Fibroadenoma х хх х XXXXXX х х хх 22 Fibrosarcoma х 1 Skin + 50 + + + x Lipoma 1 Subcutaneous tissue, fibroma 1 **Musculoskeletal System** Bone + + +50 + + + + + + + + + + + + Skeletal muscle 1 Nervous System Brain 50 + + + + + Meninges, meningioma NOS 1 **Respiratory System** Lung 50 \pm Nose + + + + + + + + 50 + + + + + + + + + + + ++ + + + + Trachea + + + + + + 50 + + + + + + + + + + + + + + + + + +

0 0 0 0 1 5 5 6 6 6 6 6 . 7 7 7 7 7 77 777 7 7 7 1 2 3 6 8 5 6 0 2 3 3 9 0 0 2 2 2 2 2 3 3 3 3 3 3 3 Number of Days on Study 3 1 4 7 9 4 5 1 2 5 7 1 5 9 9 9 9 9 9 2 2 2 2 2 2 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 **Carcass ID Number** 9 0 9 9 9 99 9 0 99 0 0 99 9 9 9 0 9 9 9 9 0.0 7 2 3 7 95788 4 0 4 4 8 8 8 0 5 5 5 6 2 3 9 1 3 4 5 2 1 3 1 5 4 4 3 5 5 3 4 2 4 5 1 1 3 4 3 3 5 Special Senses System Ear Papilloma squamous Eye Papilloma squamous Harderian gland + Zymbal's gland Squamous cell carcinoma **Urinary System** + + + + + ++ + + + Kidney + + + + ++ + + + + + + + + Urinary bladder + + Α + + + + + + + + + + Systemic Lesions Multiple organs + + + + + + + + + + + + + х х х х хх Leukemia mononuclear

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)

(continued) Number of Days on Study 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 **Carcass ID Number** 99 99 9 9 9 0 0 0 0 0 0 9 9 9 0 0 0 0 0 0 0 0 0 Total 3 5 6 6 7 7 9 0 1 1 2 3 3 3 4 4 0 1 1 2 2 3 3 4 4 Tissues/ 2 4 2 4 4 4 1 3 2 2 4 5 1 5 3 2 5 1 5 1 3 1 2 Tumors 3 5 Special Senses System + X Ear 1 Papilloma squamous 1 + X 1 Eye Papilloma squamous 1 Harderian gland 1 Zymbal's gland + X 1 Squamous cell carcinoma 1 Urinary System Kidney 50 + + + + + + Urinary bladder + + + + + + + + + + 49 + + ++ + + + + + + + + + + + Systemic Lesions Multiple organs 50 + + + + + + + + + + + + + + + Leukemia mononuclear 6

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 50 mg/kg

TABLE B2

Number of Days on Study	7	6	5 9)	4	5	8	1	2	4	4		5	5	6	7	7	8	9	9	9	2	2	7 2 9	2	3		
Carcass ID Number	0 6	1 4	. 1	l 3	1 0	1 6	1 1	1 5	1 0	1 4	1 6	0 5	0 8	1 2	1 1	0 7	1 0	0 8	1 6	0 9	0 9	0 5	0 7	1 1 5 5	1 6	0 5	 	
Mimentary System	<u></u>								_	_	_					_											 	
Esophagus	+	- 4	۴.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large	Å	4	, 													+							+	+	+	+		
Intestine large, cecum	A															+							+	+	+	+		
Intestine large, colon																+				+	+	+	+	+	+	+		
Intestine large, rectum																+					+	+	+	+	+	+		
Intestine small		. 4														+				+	+	+	+	+	+	+		
Intestine small, duodenum	A	. 4			+											+		+	+	+	+	+	+	+	+	+		
Intestine small, ileum	A	. 4	+ •													+			+	+	+	+	+	+	+	+		
Intestine small, jejunum	A	. +	+ -	+								+					+	+	+	+	+	+	+	+	+	+		
Liver	+	-	۰ ۱	+												+	+	+	+	+	+	+	+	+	+	+		
Mesentery									+		+			M		-			+									
Sarcoma											x																	
Pancreas	Α	-	+ -	+	+	+	+	Α	+	Α		+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+		
Pharynx								-									-											
Papilloma squamous																												
Salivary glands	+	4	+ -	ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach	Α	. 4	+ -	+	+	+	+	+	+	Α	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach, forestomach	Α	4	+ -	ł	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Papilloma squamous					х																							
Stomach, glandular	Α	. +	+ -	+	+	+	+	+	+	Α	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Tongue																												
Cardiovascular System Heart																								+	+	+	 <u></u>	
		_				-						. <u> </u>	•	, 													 	
Endocrine System																												
Adrenal gland	+	+	۲ - ۲	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex	+	+	⊦ -	t-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, medulla	Α	-	+ •	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pheochromocytoma benign				1	<u>а</u> .	1	-	٨	L				J		. 1.		л	_L	<i>.</i> т.	.L	4	<u>д</u>	<u>ــ</u>	ъ	д	ъ		
Islets, pancreatic	A		r .	٣	Τ.	т	Ŧ	A	Ŧ	A	Ŧ	т	т	т	т	+	т	т	т	т	т	т	+	т	x	+		
Adenoma Bornthurseid sland										,										M								
Parathyroid gland			⊦ -	-	+	+	+	+	+	+	+	+	+	+									+			+		
Pituitary gland	+				+ v	Ŧ			+				+ X		-			+ X		Ŧ	+ X		\mathbf{x}^+			+ X		
Pars distalis, adenoma			ζ.		X -	т		X			X				ᅭ					1				+				
Thyroid gland	A		r .	т	+	+	Ŧ	Ŧ	Ŧ	Ŧ	т	т	т	т	т	т	т	т	т	т	Ŧ	Ŧ	т	Ŧ	т	т		
C-cell, adenoma																						x					•	
C-cell, carcinoma Follicular cell, adenoma												x										Λ						

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 100 mg/kg

(continued)

7 7 7 7 7 7 7 7 7 Number of Days on Study 22 2 2 3 3 3 3 3 3 3 3 4 4 4 2 2 2 2 2 2 2 4 4 4 4 1 1 1 1 1 **Carcass ID Number** 0 0 1 1 1 1 0 0 0 Total 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 6 6 6 7 8 8 0 3 4 5 5 9 2 2 3 4 5 6 8 9 9 0 1 2 5 Tissues/ 1 2 4 2 1 4 2 3 1 3 3 3 3 4 4 2 2 5 5 1 5 1 5 2 1 Tumors Alimentary System 50 Esophagus Intestine large 45 + Intestine large, cecum + + + 45 Intestine large, colon 47 + + + + + + + + + + + + + + + +4 + + + + Intestine large, rectum + + + + + + + + + + + + + + + + 48 Intestine small 46 + + + 1 + + + + + + + + + + + + + -+ 4 + + Intestine small, duodenum + ++ + + 48 Intestine small, ileum 46 + + + + + + + + + + + + + + + + Intestine small, jejunum + + + + + + + + + + + + ++ + + ++ + + + + 46 + + + Liver 50 + + + + + + + + + Mesentery 7 Sarcoma 1 Pancreas 46 Pharynx 2 + Papilloma squamous х 2 х Salivary glands + + + + + + + + + + + 50 + + + + + + + + Stomach + + + 47 ++ + Stomach, forestomach 48 Papilloma squamous 1 Stomach, glandular 47 + Tongue 1 Cardiovascular System Heart 50 **Endocrine** System Adrenal gland 50 + + + Adrenal gland, cortex 50 + + + + + + Adrenal gland, medulla + + + + 49 + ++ + + + + + Pheochromocytoma benign X 1 Islets, pancreatic 47 + + + Adenoma X 2 Parathyroid gland 47 + + + + + + M + + + + + + + + + ++ + + + + + Pituitary gland + 49 ++ + Pars distalis, adenoma ххх х хх Х хх 28 Thyroid gland + + + + + + + + + + + + + + + + 49 C-cell, adenoma x 1 C-cell, carcinoma 1 Follicular cell, adenoma 1 Follicular cell, carcinoma х 1

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 100 mg/kg

153

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

					_								_														_
Number of Days on Study		7	6	9	4	-5	8	1	2	4	4	6 5 1	5	5	6	7	7	8	9	9	9	2	2	7 2 9		3	
Carcass ID Number		0 6	1 4	1 3	1 0	1 6	1 1	1 5	1 0	1 4	1 6	1 0 5 5	0 8	1 2	1 1	0 7	1 0	0 8	1 6	0 9	0 9	0 5	0 7	1 5	1 6	0 5	
General Body System					_																						
Tissue NOS Fibroma				+ X																							
Genital System	<u>,</u>			_						_														_			
Clitoral gland Adenoma Carcinoma		М	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+ X		+	+	+	+	+	+	
Ovary		+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	
Uterus		Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	
Polyp																				х	Х						
Sarcoma											X																
Vagina											+					+											
Leiomyosarcoma Sarcoma											x											•					
Hematopoietic System																									_		
Bone marrow		+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node		A	+	+	+	+	+	+	+	+	+	+		+	+	+	+	Ŧ	+	+	+	+	+	• +	+	+	
Lymph node, mandibular		Μ	+	+	+									Μ		•	+	+	+	+	+	+	+	+	+	+	
Lymph node, mesenteric					+		+			+		+					+	+	+	+	+	+	+	+	+	+	
Spleen		•	-	+				-		Α									+				+	•	· +	+	
Thymus		+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	
ntegumentary System																											
Mammary gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenocarcinoma						v				v					v	v	v					v			v		
Fibroadenoma						X			4	X		+				X			<u>д</u>	д	ـــ	X _		г	X		
Skin Squamous cell carcinoma		+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	Ŧ	Ŧ	т	Ŧ	T	т	T	Ŧ	т	т	т	т	
Subcutaneous tissue, fibroma																x											
Musculoskeletal System				_																		<u> </u>		-			
viusculoskeletal System																				+							

....

· ·

Lesions in Female Rats

TABLE B2

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

continued)																_										
Number of Days on Study	7 3 2		3 3		7 3 2	-	7 3 2	7 3 2	7 3 2	7 3 2	7 3 3	7 3 3	3	7 3 3	•	3	3	3		3	7 3 4	7 3 4	7 3 4	7 3 4	3	
	1	. 1	1	1	1	1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Carcass ID Number	C) () (0 (0	0	1	1	1		0				1					-	-		1	_	1	Total
	6	6	56	5 7	8	8	0	3	4	5	5	9	2	2	3	4	5	6	8	9	9	0	1	2	5	Tissue
	1	. 2	2 4	2	1	4	2	3	1	3	3	3	3	4	4	2	2	5	5	1	5	1	5	2	1	Tumor
General Body System																										
Tissue NOS																										1
Fibroma																										1
Genital System		,													<u></u>						<u> </u>					
Clitoral gland	-	+ -	+ +	⊢ ⊣	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenoma																									x	2
Carcinoma																					х					2
Ovary	-	+ -	+ +	+ +	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	49
Uterus	-	+ •	+ +	⊢ ⊣	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Polyp										Х													х		х	5
Sarcoma																										1
Vagina						+											+									4
Leiomyosarcoma						Х																				1
Sarcoma																										1
							_	-			-2				_					_						
Hematopoietic System																										10
Bone marrow	-	+ -	+ +	⊢ +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node	-	+ ·	+ -	+ -		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node, mandibular	-	+ •	+ -	+ +		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lymph node, mesenteric	-	+ -	+ +	+ +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Spleen	•	+ -	+ +	+ +	- +	- +	+	+	•		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Thymus	-	+ -	+ -	+ -	+ +	- +	+	I	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Integumentary System			-									<u> </u>											_			
Mammary gland	-	+ -	+ -	+ -	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenocarcinoma					•		•	•	•	•	•	•	•	•	x			,	•	•	•	•	·	•	-	1
Fibroadenoma			,			x		х												х			х			11
Skin	-	+ -	+ -	+ -	+	- +				+	+	+	+	+	+	+	+	+	+			+		+	+	50
Squamous cell carcinoma				-		•		•	•	•	•	·	•	•	•	•	x	•	•		•	•	•	•	•	1
Subcutaneous tissue, fibroma																										1
Musculoskeletal System															_											
Bone	-	. .	+ -	- -	بر ا		–	۲	щ	Т	بد	ъ	ъ	.	L	÷	J.	⊥	<u>т</u>	<u>ــ</u>	л.	д	ـــ	ىبە	ъ	50
DOILC	-	г''	т •	Γ -	- 1	- +	-																			

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

Number of Days on Study	7	6	9	5 4 3	5	8	1	2	4	4	5	5	5	6	7	7	8	9	9	9	2	2	2	2	7 3 2		
Carcass ID Number	0 6	1 4	1 3	1 1 0 3	1 6	1 1	1 5	1 0	1 4	1 6	0 5	0 8	1 2	1 1	0 7	1 0	0 8	1 6	0 9	0 9	0 5	0 7	1 5	1 6	0 5		
Nervous System Brain Spinal cord	A	. 4	- +	- +	+	+	+	+	+	+	+	+ +		+	+	+	+	+	+	+	+	+	+	+	+		
Respiratory System Lung Nose Trachea	+ A +		- + - +		+++++	+ + +	+ + +	+ + +	+++++	+ + +	+ + +	+ + +		+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	++++	+ + +	+++++	++++	+++++	+ + +		
Special Senses System Eye						-								_												<u> </u>	
Urinary System Kidney Sarcoma Renal tubule, adenoma Urinary bladder Papilloma squamous			- +	· +	++	+	+			x		+			+	-	-		+	x	·			+ +			
Systemic Lesions Multiple organs Leukemia mononuclear	+ X		- +	- + X		+	+	+ X		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		

Table B2

Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

(continued)																										
Number of Days on Study	7 3 2	7 3 2	3		7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	-								
Carcass ID Number	0 6	0 6	0 6	1 0 7 2	0 8	0 8	1 0	1 3	1 4	1 5	0 5	0 9	1 2	1 2	1 3	1 4	1 5	1 6	0 8	0 9	0 9	1 0	1 1	1 2	1 5	Total Tissue Tumor
Nervous System Brain Spinal cord	+	• +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1
Respiratory System Lung Nose Trachea	+ + +	· + + +	- + - +	- + · +	+ + +	+++++	+ + +	++++	+ + +	+ + +	50 49 49															
Special Senses System Eye								+																		1
Urinary System Kidney Sarcoma Renal tubule, adenoma Urinary bladder Papilloma squamous				• +						·		+	++								x			+		49 1 2 47 1
Systemic Lesions Multiple organs Leukemia mononuclear	+	• +	- - +	- +	+	+	+	+	+	+	+	+	+	+ x		+	+	+	+	+	+	+	+	+	+	50 4

TABLE	B3
-------	-----------

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Gavage Study of Coumarin

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Adrenal Medulla: Benign Pheochromocytoma	·			
Overall rates ^a	3/50 (6%)	2/50 (4%)	2/48 (4%)	1/49 (2%)
Adjusted rates ^b	9.1%	5.3%	5.7%	3.3%
Ferminal rates ^c	2/29 (7%)	2/38 (5%)	2/35 (6%)	1/30 (3%)
First incidence (days)	607	729 (T)	729 (T)	729 (T)
ife table tests	P=0.235N	P=0.401N	P=0.434N	P=0.295N
ogistic regression tests ^d	P=0.235N	P=0.480N	P=0.519N	P=0.300N
Cochran-Armitage test ^d	P=0.241N			
üsher exact test ^d		P=0.500N	P=0.520N	P=0.316N
Clitoral Gland: Adenoma			· . ·	•
Overall rates	0/48 (0%)	6/47 (13%)	0/48 (0%)	2/49 (4%)
Adjusted rates	0.0%	15.9%	0.0%	6.3%
erminal rates	0/29 (0%)	5/36 (14%)	0/34 (0%)	1/30 (3%)
First incidence (days)	_e	659	• •	693
life table tests	P=0.580	P=0.031	f	P=0.234
ogistic regression tests	P=0.594N	P=0.018	-	P=0.241
Cochran-Armitage test	P=0.584N			
ïsher exact test	·	P=0.012	-	P=0.253
Clitoral Gland: Adenoma or Carcinoma				
Overall rates	0/48 (0%)	7/47 (15%)	1/48 (2%)	4/49 (8%)
Adjusted rates	0.0%	18.6%	2.9%	11.7%
erminal rates	.0/29 (0%)	6/36 (17%)	1/34 (3%)	2/30 (7%)
First incidence (days)	-	659	729 (T)	642
ife table tests	P=0.252	P = 0.018	P=0.532	P≈0.066
ogistic regression tests	P = 0.280	P = 0.010	P=0.532	P = 0.067
Cochran-Armitage test	P=0.286			
risher exact test		P=0.006	P=0.500	P = 0.061
Kidney (Renal Tubule): Adenoma (Single Sec			· .	
Overall rates	0/49 (0%)	0/50 (0%)	0/50 (0%)	2/49 (4%)
Adjusted rates	0.0%	0.0%	0.0%	6.4%
ferminal rates	0/29 (0%)	0/38 (0%)	0/36 (0%)	1/30 (3%)
First incidence (days)	-	-	-	699
Life table tests	P=0.037	-	-	P = 0.234
ogistic regression tests	P=0.044	-	-	P=0.238
Cochran-Armitage test	P=0.045			D- 0.247
ïsher exact test		-	-	P=0.247
Kidney (Renal Tubule): Adenoma (Single and Overall rates	l Step Sections) 0/49 (0%)	0/50 (0%)	1/50 (2%)	2/49 (4%)
Adjusted rates	0.0%	0.0%	2.8%	6.4%
Cerminal rates	0/29 (0%)	0/38 (0%)	1/36 (3%)	1/30 (3%)
First incidence (days)	(0,0)	-	729 (T)	699
life table tests	P=0.057	-	P=0.543	P=0.234
ogistic regression tests	P = 0.065	_	P = 0.543	P = 0.238
Cochran-Armitage test	P = 0.069			
Fisher exact test			P=0.505	P=0.247

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	109 mg/kg	
Aammary Gland: Fibroadenoma	<u></u>			· · · ·	
Overall rates	17/50 (34%)	24/50 (48%)	22/50 (44%)	11/50 (22%)	
Adjusted rates	48.2%	57.0%	59.5%	29.8%	
erminal rates	12/29 (41%)	20/38 (53%)	21/36 (58%)	6/30 (20%)	
irst incidence (days)	491	659	709	551	
ife table tests	P=0.065N	P=0.393	P = 0.470	P = 0.131N	
ogistic regression tests	P = 0.045N	P = 0.143	P=0.211	P=0.118N	
ochran-Armitage test	P=0.051N				
isher exact test		P=0.111	P=0.206	P=0.133N	
ammary Gland: Fibroadenoma or Ade	enoma				
Dverall rates	18/50 (36%)	25/50 (50%)	22/50 (44%)	11/50 (22%)	
adjusted rates	51.3%	59.4%	59.5%	29.8%	
erminal rates	13/29 (45%)	21/38 (55%)	21/36 (58%)	6/30 (20%)	
ïrst incidence (days)	491	659	709	551	
ife table tests	P=0.039N	P=0.414	P=0.564	P=0.093N	-
ogistic regression tests	P=0.026N	P=0.147	P = 0.280	P=0.081N	
Cochran-Armitage test	P=0.031N				
isher exact test		P=0.113	P=0.270	P=0.093N	
lammary Gland: Fibroadenoma, Adeno					
Overall rates	19/50 (38%)	25/50 (50%)	22/50 (44%)	12/50 (24%)	
djusted rates	54.3%	59.4%	59.5%	32.7%	
erminal rates	14/29 (48%)	21/38 (55%)	21/36 (58%)	7/30 (23%)	
irst incidence (days)	491	659	709	551	
ife table tests	P=0.044N	P = 0.502	P=0.512N	P = 0.095N	
ogistic regression tests	P=0.030N	P=0.203	P=0.360	P=0.083N	
Cochran-Armitage test	P=0.035N				
isher exact test		P=0.157	P=0.342	P=0.097N	
ituitary Gland (Pars Distalis): Adenon	na				
overall rates	30/49 (61%)	25/47 (53%)	23/48 (48%)	28/49 (57%)	
djusted rates	74.3%	60.7%	60.2%	69.1%	
erminal rates	19/29 (66%)	21/37 (57%)	20/35 (57%)	18/30 (60%)	
irst incidence (days)	435	547	622	463	
ife table tests	P = 0.512N	P = 0.042N	P = 0.033N	P=0.393N	
ogistic regression tests	P=0.424N	P = 0.211N	P=0.156N	P = 0.391N	
Cochran-Armitage test	P=0.416N				
üsher exact test		P=0.278N	P=0.133N	P=0.419N	
ituitary Gland (Pars Distalis): Adenor					
Overall rates	31/49 (63%)	25/47 (53%)	23/48 (48%)	28/49 (57%)	
adjusted rates	75.1%	60.7%	60.2%	69.1%	
erminal rates	19/29 (66%)	21/37 (57%)	20/35 (57%)	18/30 (60%)	
First incidence (days)	435	547	622	463	
ife table tests	P = 0.452N	P=0.029N	P=0.023N	P=0.336N	
ogistic regression tests	P=0.356N	P=0.155N	P = 0.111N	P = 0.312N	
Cochran-Armitage test	P=0.351N				
Fisher exact test		P=0.214N	P = 0.094N	P=0.340N	

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Stomach (Forestomach): Squamous Cell Papillo				- <u></u>
Overall rates	1/50 (2%)	3/50 (6%)	0/50 (0%)	1/50 (2%)
Adjusted rates	3.4%	7.9%	0.0%	2.1%
Ferminal rates	1/29 (3%)	3/38 (8%)	0/36 (0%)	0/30 (0%)
First incidence (days)	729 (T)	729 (T)	-	543
Life table tests	P=0.413N	P = 0.406	P=0.457N	P = 0.752N
Logistic regression tests	P = 0.407N	P = 0.406	P = 0.457N	P = 0.749
Cochran-Armitage test	P = 0.409N	1 01100		
Fisher exact test		P=0.309	P=0.500N	P=0.753N
Jterus: Stromal Polyp				
Overall rates	7/50 (14%)	13/50 (26%)	4/50 (8%)	5/50 (10%)
Adjusted rates	22.3%	33.2%	11.1%	15.6%
Ferminal rates	5/29 (17%)	12/38 (32%)	4/36 (11%)	3/30 (10%)
First incidence (days)	699 `´´	659 `	729 (T)	699
Life table tests	P=0.128N	P=0.264	P = 0.161N	P=0.381N
Logistic regression tests	P=0.127N	P = 0.165	P=0.201N	P=0.385N
Cochran-Armitage test	P=0.117N			
Fisher exact test		P=0.105	P=0.262N	P = 0.380N
All Organs: Mononuclear Cell Leukemia				
Overall rates	6/50 (12%)	5/50 (10%)	6/50 (12%)	4/50 (8%)
Adjusted rates	15.5%	12.0%	14.4%	9.4%
Terminal rates	1/29 (3%)	3/38 (8%)	2/36 (6%)	1/30 (3%)
First incidence (days)	554	439	554	375
Life table tests	P = 0.354N	P = 0.401 N	P=0.559N	P=0.370N
Logistic regression tests	P=0.223N	P=0.512N	P=0.619	P=0.430N
Cochran-Armitage test	P=0.334N			
Fisher exact test		P = 0.500N	P = 0.620N	P=0.370N
All Organs: Benign Neoplasms				
Overall rates	37/50 (74%)	43/50 (86%)	36/50 (72%)	40/50 (80%)
Adjusted rates	85.8%	93.5%	90.0%	86.8%
Terminal rates	23/29 (79%)	35/38 (92%)	32/36 (89%)	24/30 (80%)
First incidence (days)	435	531	622	463
Life table tests	P=0.350	P=0.370N	P=0.109N	P = 0.415
Logistic regression tests	P = 0.547	P = 0.126	P=0.540N	P = 0.409
Cochran-Armitage test	P = 0.454			B 6 6 4 6
Fisher exact test		P=0.105	P=0.500N	P=0.318
All Organs: Malignant Neoplasms				
Overall rates	10/50 (20%)	7/50 (14%)	10/50 (20%)	11/50 (22%)
Adjusted rates	24.9%	17.0%	24.4%	29.9%
Terminal rates	2/29 (7%)	5/38 (13%)	6/36 (17%)	7/30 (23%)
First incidence (days)	554	439	554	375
Life table tests	P = 0.311	P = 0.202N	P = 0.491N	P=0.507
Logistic regression tests	P=0.447	P = 0.298N	P=0.588	P = 0.487
Cochran-Armitage test	P=0.335			
Fisher exact test		P = 0.298N	P = 0.598N	P=0.500

Lesions in Female Rats

TABLE B3

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
All Organs: Benign or Malignant Neoplasms				····
Overall rates	41/50 (82%)	44/50 (88%)	40/50 (80%)	43/50 (86%)
Adjusted rates	89.0%	93.6%	90.9%Ì	89.5%
Terminal rates	24/29 (83%)	35/38 (92%)	32/36 (89%)	25/30 (83%)
First incidence (days)	435	439	554	375
Life table tests	P=0.360	P=0.191N	P=0.127N	P=0.485
Logistic regression tests	P=0.407N	P=0.359	P=0.604	P=0.484
Cochran-Armitage test	P = 0.448			
Fisher exact test		P=0.288	P=0.500N	P=0.393

(T)Terminal sacrifice

3

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, salivary gland, spleen, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

e Not applicable; no neoplasms in animal group

Value of statistic cannot be computed

TABLE B4a

Historical Incidence of Renal Tubule Neoplasms in Female F344/N Rats Receiving Corn Oil by Gavage^a

	Incidence in Controls			
	Adenoma	Carcinoma	Adenoma or Carcinoma	
overall Historical Incidence		······································		
Total	2/1,018 (0.2%)	0/1,018 (0.0%)	2/1,018 (0.2%)	
Standard deviation	0.6%		0.6%	
Range	0%-2%		0%-2%	

TABLE B4b

Historical Incidence of Oral Cavity Neoplasms in Female F344/N Rats Receiving Corn Oil by Gavage^a

	Incidence in Controls			
	Squamous Cell Papilloma	Squamous Cell Carcinoma	Squamous Cell Papilloma or Squamous Cell Carcinoma	
Overall Historical Incidence				
Total Standard deviation Range	4/1,020 (0.4%) 0.8% 0%–2%	2/1,020 (0.2%) 0.6% 0%–2%	6/1,020 (0.6%) 0.9% 0%–2%	

^a Data as of 17 December 1991, includes data for oral mucosa, tongue, pharynx, tooth, and lip.

TABLE B4c Historical Incidence of Forestomach Neoplasms in Female F344/N Rats Receiving Corn Oil by Gavage^a

		Incidence in Contro	ols
	Squamous Cell Papilloma	Squamous Cell Carcinoma	Squamous Cell Papilloma or Squamous Cell Carcinoma
Overall Historical Incidence		· · · ·	а
Total	3/1,020 (0.3%) 0.7%	0/1,020 (0.0%)	3/1,020 (0.3%) 0.7%
Standard deviation Range	0.7%		0%-2%

^a Data as of 17 December 1991.

162

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Disposition Summary			۵ <u>۵ مېږ ۲۵ مېږ</u> ۲۰ <u>مې</u>	······································
Animals initially in study	60	60	60	60
15-Month interim evaluation	10	10	10	10
Early deaths				
Accidental deaths	2	1	5	
Moribund	14	7	7 2	14
Natural deaths Survivors	5	4	2	6
Died last week of study			1	
Terminal sacrifice	29	38	35	30
Animals examined microscopically	60	60	60	60
15-Month Interim Evaluation		<u> </u>	· · · · · · · · · · · · · · · · · · ·	- <u>-</u>
Alimentary System				
Liver	(10)	(8)	(8)	(10)
Basophilic focus	3 (30%)	ì (13%)	. /	ì (10%)
Developmental malformation		1 (13%)	3 (38%)	2 (20%)
Fatty change			5 (63%)	9 (90%)
Inflammation, chronic	5 (50%)	2 (25%)	3 (38%)	4 (40%)
Necrosis			1 (13%)	
Bile duct, hyperplasia	1 (10%)	3 (38%)	1 (13%)	3 (30%)
Hepatocyte, degeneration, granular			3 (38%)	9 (90%)
Mesentery Fat, mineralization		(2) 2 (100%)	(1)	
Fat, necrosis, coagulative		2 (100%) 2 (100%)	1 (100%) 1 (100%)	
		2 (100 %)	1 (100%)	
Cardiovascular System				
Heart	(10)			(10)
Cardiomyopathy	5 (50%)			2 (20%)
Endocrine System				
Pituitary gland	(9)	(1)		(10)
Pars distalis, cyst		`		2 (20%)
General Body System			·····	<u></u>
None				
Genital System	,	· · · · _ · _ · · · · · · · · · · ·		
Clitoral gland	(10)		(1) 1 (100%)	(10)
Inflammation, suppurative	1 (10%)		1 (100%)	
Dvary	(10)	(1)		(10)
Follicle, cyst	(10)	<u>ì</u> (100%)		(1.0.)
Uterus Hydrometra	(10) 2 (20%)	(1)	(3) 1 (33%)	(10) (2007)
Hydrometra	2 (20%)		1 (33%)	2 (20%)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
15-Month Interim Evaluation	(continued)			· · · · · · · · · · · · · · · · · · ·
Hematopoietic System				
Lymph node, mandibular	(10)			(9)
Hyperplasia, lymphoid		(1)		1 (11%)
Spleen Congestion	(10)	(1) 1 (100%)		(10)
		· (100%)		
ntegumentary System None				
Musculoskeletal System None	<u>- 117, - 17, -</u> ,,			· · · · · · · · · · · · · · · · · · ·
Nervous System None		<u></u>		
Respiratory System				
Nose	(10)			(10)
Inflammation, suppurative				1 (10%)
Special Senses System None				<u></u>
Urinary System	,,,,	<u> </u>	<u></u>	
Kidney	(10)	(8)	(10)	(10)
Nephropathy	4 (40%)	8 (100%)	10 (100%)	10 (100%)
2-Year Study	<u></u>		,	
Alimentary System				
ntestine small, duodenum	(47)	(48)	(48)	(48)
Ulcer				2 (4%)
Liver	(50)	(50)	(50)	(50)
Basophilic focus	36 (72%)	32 (64%)	17 (34%)	20 (40%)
Clear cell focus		1 (2%)		3 (6%)
Cytologic alterations	6 (120/)	2 (601)	6 (170%)	9 (18%) 4 (8%)
Developmental malformation	6 (12%)	3 (6%) 1 (2%)	6 (12%) 1 (2%)	4 (8%) 2 (4%)
Eosinophilic focus Fatty change	5 (10%)	1 (270)	7 (14%)	.8 (16%)
Fibrosis	5 (1070)		1 (2%)	12 (24%)
Hematopoietic cell proliferation	1 (2%)		- ()	(//0)

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
2-Year Study (continued)			<u>, , , , , , , , , , , , , , , , , , , </u>	
Alimentary System (continued)				
Liver (continued)				
Inflammation, chronic	14 (28%)	22 (44%)	18 (36%)	17 (34%)
Inflammation, suppurative	1 (2%)		1 (2%)	
Mineralization				1 (2%)
Mixed cell focus	6 (12%)		1 (2%)	3 (6%)
Necrosis, coagulative	3 (6%)	3 (6%)	4 (8%)	15 (30%)
Bile duct, cyst			1 (2%)	
Bile duct, hyperplasia	26 (52%)	27 (54%)	29 (58%)	20 (40%)
Hepatocyte, cytologic alterations				1 (2%)
Hepatocyte, degeneration, granular			8 (16%)	30 (60%)
Mesentery	(3)	(6)	(9)	(7)
Fat, cyst		1 (17%)		
Fat, inflammation, chronic		1 (17%)	2 (22%)	2 (29%)
Fat, necrosis, coagulative	3 (100%)	3 (50%)	5 (56%)	2 (29%)
Pancreas	(49)	(49)	(48)	(46)
Infiltration cellular, lymphocyte		1 (2%)		
Acinus, atrophy	6 (12%)	1 (2%)	4 (8%)	4 (9%)
Acinus, hyperplasia	• •			1 (2%)
Salivary glands	(50)	(50)	(50)	(50)
Inflammation, chronic	1 (2%)			
Stomach, forestomach	(48)	(49)	(50)	(48)
Developmental malformation	1 (2%)			
Hyperkeratosis		2 (4%)	1 (2%)	1 (2%)
Hyperplasia, squamous		2 (4%)		•
Inflammation, chronic	1 (2%)		1 (2%)	
Inflammation, suppurative		1 (2%)		
Ulcer	1 (2%)	1 (2%)	6 (12%)	9 (19%)
Stomach, glandular	(48)	(49)	(49)	(47)
Mineralization	1 (2%)			
Ulcer	4 (8%)		1 (2%)	7 (15%)
Tongue	(1)			(1)
Hyperkeratosis				1 (100%)
Hyperplasia	1 (100%)			
Inflammation, suppurative	1 (100%)			
Cardiovascular System				
Blood vessel			(1)	
Polyarteritis, chronic			1 (100%)	
Heart	(50)	(50)	(50)	(50)
Cardiomyopathy	22 (44%)	20 (40%)	22 (44%)	21 (42%)
Fibrosis	2 (4%)		2 (4%)	1 (2%)
Inflammation, suppurative				1 (2%)
Mineralization	1 (2%)			2 (4%)
Thrombus	2 (4%)		1 (2%)	

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
2-Year Study (continued)	···	······································		
Endocrine System				
	(50)	(50)	(49)	(50)
Adrenal gland, cortex	(50)	(50)	(48)	(50)
Atrophy Clear cell focus	1 (2%)	1 (20%)	2 (40)	1 (201)
	3 (6%)	1 (2%)	2 (4%)	1 (2%)
Hemorrhage	1 (2%)			
Hyperplasia	1 (2%)	(50)	(40)	
Adrenal gland, medulla	(50)	(50)	(48)	(49)
Basophilic focus	2 (4%)	1 (2%)		
Infiltration cellular, lymphocyte			1 (2%)	
Parathyroid gland	(46)	(47)	(45)	(47)
Hyperplasia			3 (7%)	1 (2%)
Pituitary gland	(49)	(47)	(48)	(49)
Pars distalis, congestion		1 (2%)		
Pars distalis, cyst	5 (10%)	8 (17%)	7 (15%)	4 (8%)
Pars distalis, pigmentation, melanin	1 (2%)			
Pars intermedia, congestion	1 (2%)			
Pars nervosa, cyst multilocular			1 (2%)	
Thyroid gland	(49)	(50)	(49)	(49)
C-cell, hyperplasia	6 (12%)	5 (10%)	6 (12%)	Á (8%)
Follicle, cyst		`` ,	1 (2%)	
Genital System Clitoral gland Inflammation, suppurative Duct, dilatation Ovary Corpus luteum, cyst Follicle, cyst Uterus Hydrometra Hyperplasia, cystic Necrosis, coagulative Cervix, inflammation, suppurative Epithelium, cytoplasmic alteration Vagina	(48) 3 (6%) 2 (4%) (50) 2 (4%) 4 (8%) (50) 7 (14%) 3 (6%) 1 (2%) 1 (2%) (1)	$(47) \\ 10 (21\%) \\ 2 (4\%) \\ (49) \\ 2 (4\%) \\ (50) \\ 5 (10\%) \\ 3 (6\%) \\ 1 (2\%) \\ (1)$	(48) 6 (13%) 4 (8%) (50) 1 (2%) 1 (2%) (49) 7 (14%) 1 (2%)	(49) 4 (8%) 1 (2%) (49) 2 (4%) (49) 10 (20%) 1 (2%) 1 (2%) (4)
	1 (100%)	(1)		(4)
Cyst Humerkerstosis	1 (100%)			1 (25%)
Hyperkeratosis		1 (100%)		1 (25%)
Inflammation, suppurative		1 (100%)		
Hematopoietic System				
Blood	(1)	(1)		
Anisocytosis		1 (100%)		
Monocytosis		1 (100%)		
-	(50)	(50)	(49)	(49)
Bone marrow	N /	· /		
Bone marrow Hyperplasia, neutrophil			1 (2%)	
Bone marrow Hyperplasia, neutrophil Inflammation, chronic	1 (2%)		1 (2%)	

(49)		······································	<u> </u>
(49)			
(49)			
(42)	(50)	(50)	(49)
	(50)	(50)	1 (2%)
		1 (2%)	1 (2/0)
1 (2%)		1 (270)	
	(47)	(48)	(48)
	((10)	(10)
1 (270)	1 (2%)		
	1 (270)	1 (2%)	
(47)	(49)		(49)
(47)	(43)	(4))	(47)
1 (70%)	2 (470)		
	(50)	(49)	(49)
(49)			
1 (70%)	1 (270)	1 (270)	1 (2%)
1 (470)	2 (19%)	1 (2%)	
			1 (20%)
	3 (0%)		1 (2%)
(40)	(49)		(47)
(48)	(48)	(49)	(47)
			1 (2%)
(49)	(50)	(50)	(50)
			1 (2%)
		- ()	- ()
	1 (2%)		
		(50)	(50)
(00)		()	2 (4%)
	1 (2%)		2 (1/2)
		· · · · · · · · · · · · · · · · · · ·	
	(50)	(50)	/# ^.
(50)	(50)	(50)	(50)
			1 (2%)
			1 (2%)
			·····
(50)	(50)	(50)	(49)
1 (2%)			(17)
		1 (2%)	
		- (=/0)	
1 (2%)	2 (4%)	3 (6%)	2 (4%)
	- (770)	5 (0/0)	- (-70)
1 (<i>470</i>)	2 (4%)		
	2 (770)	1 (2%)	
- -	$(49) \\ (49) \\ (47) \\ (47) \\ (49) \\ (49) \\ (49) \\ (49) \\ (48) \\ (48) \\ (48) \\ (48) \\ (50) \\ $	(49) (47) (47) (1(2%)) (47) (49) (47) (49) (47) (49) (50) (50) (50) (1(2%)) (1(2%)) (1(2%)) (1(2%)) (1(2%)) (1(2%)) (1(2%)) (1(2%)) (1(2%)) (1(2%)) (50) (50) (50) (50) (50) (50) (50) (5	(49) (47) (47) (48) (47) (48) (47) (48) (47) (49) (49) (49) (49) (49) (49) (49) (49

Vehicle Control 25 mg/kg 50 mg/kg 100 mg/kg 2-Year Study (continued) **Respiratory System** (49) 2 (4%) (50) (50) Lung (50) Congestion í (2%) Edema 2 (4%) Foreign Body 4 (8%) Hemorrhage 1 (2%) Inflammation 1 (2%) 2 (4%) 1 (2%) 1 (2%) Alveolar epithelium, hyperplasia 1 (2%) 2 (4%) 1 (2%) 1 (2%) Alveolus, inflammation, chronic 1 (2%) (50) (50) (50) (49) Nose 1 (2%) Congestion 1 (2%) 1 (2%) Fungus Inflammation, suppurative 4 (8%) 2 (4%) 13 (27%) Special Senses System (1) (4) (1) (1) Eye í (100%) Anterior chamber, edema 1 (100%) Cornea, edema 1 (100%) 3 (75%) Lens, cataract Retina, degeneration 1 (100%) **Urinary System** (49) (49) (50) (50) Kidney í (2%) Inflammation, suppurative 2 (4%) 1 (2%) 1 (2%) Mineralization 44 (88%) 49 (100%) Nephropathy 34 (69%) 44 (88%) 2 (4%) Cortex, cyst 1 (2%) Urinary bladder (50) (49) (49) (47) 1 (2%) Inflammation, suppurative

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Gavage Study of Coumarin (continued)

^a Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site.

APPENDIX C SUMMARY OF LESIONS IN MALE MICE IN THE 2-YEAR GAVAGE STUDY OF COUMARIN

Table C1	Summary of the Incidence of Neoplasms in Male Mice	150
TABLE C2	in the 2-Year Gavage Study of Coumarin	170
iadle va	in the 2-Year Gavage Study of Coumarin	174
Table C3	Statistical Analysis of Primary Neoplasms in Male Mice	
	in the 2-Year Gavage Study of Coumarin	198
Table C4a	Historical Incidence of Alveolar/Bronchiolar Neoplasms	
	in Male B6C3F ₁ Mice Receiving Corn Oil by Gavage	202
Table C4b	Historical Incidence of Liver Neoplasms in Male B6C3F ₁ Mice	
	Receiving Corn Oil by Gavage	202
TABLE C4c	Historical Incidence of Forestomach Neoplasms in Male B6C3F, Mice	
	Receiving Corn Oil by Gavage	202
Table C5	Summary of the Incidence of Nonneoplastic Lesions in Male Mice	
	in the 2-Year Gavage Study of Coumarin	203

169

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Gavage Study of Coumarina

	L					
	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg		
Disposition Summary						
Animals initially in study	70	70	70	70		
15-Month interim evaluation ^b	20	20	20	19		
Early deaths						
Accidental deaths	1		1			
Moribund	1		6	3		
Natural deaths	5	3	1	11		
Survivors						
Terminal sacrifice	43	47	42	37		
Animals examined microscopically	60	60	60	60		
15-Month Interim Evaluation						
Alimentary System						
Liver	(10)	(4)	(6)	(9)		
Hepatocellular adenoma	()	2 (50%)		3 (33%)		
Hepatocellular adenoma, multiple		- ()	1 (17%)			
Cardiovascular System None						
Endocrine System None						
General Body System None						
Genital System None		·····				
Hematopoietic System None		<u> </u>				
Integumentary System None			a			
Musculoskeletal System		····				
None	······································	•				
Nervous System None						
	<u></u>	<u></u>				

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
15-Month Interim Evaluation (conti	nued)		<u></u>	·
Respiratory System	,			
Lung	(10)	(2)	(1)	(9)
Alveolar/bronchiolar adenoma		2 (100%)		3 (33%)
Special Senses System Harderian gland Adenoma	<u></u>			(1) 1 (100%)
Urinary System None				
2-Year Study	<u> </u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		· · · · · · · · · · · · · · · · · · ·
Alimentary System				
Gallbladder	(40)	(47)	(47)	(42)
Squamous cell carcinoma, metastatic, stoma	ach		1 (2%)	
Intestine large, cecum	(47)	(47)	(49)	(42)
Intestine small, ileum	(48)	(47)	(48)	(42)
Intestine small, jejunum	(46)	(47)	(49)	(42)
Adenocarcinoma	2 (4%)	1 (2%)		
Adenoma	(#0)	1 (2%)	(#0-	
Liver	(50)	(50)	(50)	(51)
Hepatoblastoma	10 (000)	11 (000)	5 (10%)	1 (2%)
Hepatocellular carcinoma	10 (20%)	11 (22%)	5 (10%)	3 (6%)
Hepatocellular carcinoma, multiple	1 (2%)	0 (100%)	10 (040/)	10 10500
Hepatocellular adenoma Hepatocellular adenoma, multiple	15 (30%) 11 (22%)	9 (18%) 20 (40%)	12 (24%) 17 (34%)	13 (25%)
Histiocytic sarcoma	11 (22%)	20 (4070)	17 (54%)	14 (27%) 1 (2%)
Squamous cell carcinoma, metastatic, stom	ach		1 (2%)	1 (270)
Mesentery	(8)	(3)	(3)	(3)
Squamous cell carcinoma, metastatic, stom		(9)	1 (33%)	(3)
Pancreas	(49)	(50)	(50)	(50)
Squamous cell carcinoma, metastatic, stom		(33)	1 (2%)	(30)
Stomach, forestomach	(48)	(49)	(49)	(47)
Papilloma squamous	2 (4%)	8 (16%)	2 (4%)	
Squamous cell carcinoma		1 (2%)	2 (4%)	
Cardiovascular System			·····	······
Heart	(50)	(50)	(50)	(51)
Endocrine System				
Adrenal gland, cortex Adenoma	(49)	(49)	(49) 1 (2%)	(51)
Adrenal gland, medulla	(49)	(49)	(48)	(50)
Pheochromocytoma benign	1 (2%)	(**)	(~)	1 (2%)
Islets, pancreatic	(49)	(50)	(50)	(50)
Adenoma			3 (6%)	2 (4%)
Thyroid gland	(49)	(50)	(50) ໌	(51)
C-cell, adenoma		1 (2%)	· · ·	
C-cell, carcinoma		1 (2%)		
Follicular cell, adenoma				2 (4%)

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
2-Year Study (continued)		<u> </u>	<u> </u>	·
General Body System				
None			•	
Genital System				
Epididymis	(49)	(50)	(50)	(50)
reputial gland	(16)	(18)	(13)	(9)
rostate	(49)	(50)	(50)	(51)
Seminal vesicle	(49)	(50)	(50)	(51)
Squamous cell carcinoma, metastatic, stom			1 (2%)	
Testes	(49)	(50)	(50)	(50)
Interstitial cell, adenoma	3 (6%)			
	<u> </u>	e		
Hematopoietic System Bone marrow	(49)	(50)	(50)	(50)
Lymph node	(49)	(50)	(49)	(50)
Histiocytic sarcoma	(**)	(30)	(**)	1 (2%)
Jymph node, mandibular	(48)	(48)	(48)	(46)
-ymph node, mesenteric	(49)	(49)	(47)	(48)
Spleen	(49)	(50)	(50)	(50)
Histiocytic sarcoma	(17)	(~~)	(20)	1 (2%)
Thymus	(47)	(45)	(44)	(41)
	····		···/	
Integumentary System				
Skin	(49)	(50)	(50)	(51)
Basal cell adenoma		1 (2%)		
Tail, neurofibroma		1 (2%)		
Musculoskeletal System	····			
Bone	(40)	(50)	(50)	(51)
Skeletal muscle	(49)	(50)	(1)	(31)
Diaphragm, squamous cell carcinoma, meta	estatic		(4)	
stomach			1 (100%)	
			<u></u>	
Nervous System Brain	(49)	(50)	(50)	(50)
Respiratory System	(50)		(50)	
Lung	(50)	(50)	(50)	(51)
Alveolar/bronchiolar adenoma	12 (24%)	8 (16%)	12 (24%)	19 (37%)
Alveolar/bronchiolar adenoma, multiple	2 (4%)	1 (00)	2 (4%)	5 (10%)
Alveolar/bronchiolar carcinoma	1 (2%)	1 (2%)	2 (4%)	1 (2%)
Carcinoma, metastatic	1 (2%)			
Hepatocellular carcinoma, metastatic	1 (2%)	1 (20%)	1 (20%)	
Hepatocellular carcinoma, metastatic, liver		1 (2%)	1 (2%)	1 (2%)
Hepatocellular carcinoma, metastatic	(49)	(50)	(50)	(51)
Nose	(49)	(50)	(30)	(31)

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
2-Year Study (continued)				
Special Senses System				
Harderian gland	(3)	(1)	(1)	
Adenoma	3 (100%)	1 (100%)	1 (100%)	
Urinary System		ـــــــــــــــــــــــــــــــــــــ		
Kidney	(49)	(50)	(50)	(49)
Squamous cell carcinoma, metastatic, stomach		• •	ì (2%)	
Renal tubule, adenoma	1 (2%)			
Urinary bladder	(49)	(50)	(50)	(48)
Systemic Lesions				
Multiple organs ^c	(50)	(50)	(50)	(51)
Histiocytic sarcoma				1 (2%)
Lymphoma malignant			2 (4%)	1 (2%)
Lymphoma malignant histiocytic				2 (4%)
Lymphoma malignant lymphocytic		3 (6%)	1 (2%)	· · ·
Lymphoma malignant mixed			1 (2%)	
Neoplasm Summary				
Total animals with primary neoplasms ^d				
15-Month interim evaluation		3	1	6
2-Year study	42	40	42	39
Total primary neoplasms				
15-Month interim evaluation		4	1	7
2-Year study	64	68	68	65
Total animals with benign neoplasms				
15-Month interim evaluation		3	1	6
2-Year study	38	35	36	38
Total benign neoplasms				
15-Month interim evaluation		4	1	7
2-Year study	50	50	50	56
Total animals with malignant neoplasms				
2-Year study	14	14	16	8
Total malignant neoplasms				
2-Year study	14	18	18	9
Total animals with metastatic neoplasms				
2-Year study	2	1	2	1
Total metastatic neoplasms				
2-Year study	2	1	8	1

а Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site. Ь

Of the animals designated for the 15-month interim evaluation, only 5-10 per dose group were examined microscopically.

с Number of animals with any tissue examined microscopically d

Primary neoplasms: all neoplasms except metastatic neoplasms

Number of Days on Study	. 5 6	4	5	6 7 0	8		7 2 6				7 2 9	7 2 9	7 2 9	7 2 9				7 2 9	7 2 9		7 2 9	7 2 9	7 3 0	7 3 0	7 3 0		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u> </u>	
Carcass ID Number	6 9 1	9	1 7 1		4	3		1	6	8	1	3		2	3	6	9		7	8				0 4 1	6		
Alimentary System												_				_						_					
Esophagus	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Gallbladder	+			Α							+	+	+	M	M	+	+	+	Ň	+	+	+	+	+	+		
Intestine large	+			A						+	+	+				+	+	+	+	+	+	+	+	+	+		
Intestine large, cecum	+			A					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, colon	+			A					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, rectum	+			Â							+	+	+	+	+	+	+	+	+	İ	i	+	+	+	+		
Intestine small				A							+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, duodenum				A								+		+		÷	+	+	+	+	+	+	+	+	+		
Intestine small, ileum				A							+	+	+	+	÷	+	+	÷.	+	÷	+	+	÷	+	+		
Intestine small, jejunum				A								+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adenocarcinoma		**	•		•					'	•	•	•	'	•	•		•	'	•	'		'	'	•		
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+:	+	+	+	ч	+	+	+	ъ	+	+	+		
Hepatocellular carcinoma				x	ľ	'	'	x	1	•	'	•		•.	•	'	1		'	x			'	'	x		
Hepatocellular carcinoma, multiple		Λ	Λ	Λ				Λ					x					•		Λ					Λ		
Hepatocellular adenoma					х		х		х					х	x		х					x					
Hepatocellular adenoma, multiple						х	~			х				~	~			х	x		x	Λ			х		
Mesentery						Λ				~	+	н.						~	~	+					+		
Pancreas	+	+	Ŧ	Α	+	+	+	+	+	+		+	+	÷	+	+	+	+	+	+	÷	+	+	+			
Salivary glands			+	Â				÷.	÷	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	т +	+		
Stomach				Â				+	+	+	÷	+	+	+	÷	+	+	+	, +		+	+			+		
Stomach, forestomach	+	A		Â					+	+	+	+	+	+	÷	- -	+	÷	+	+	÷	+	+	+	+		
Papilloma squamous			•				•	•		•			•	•	•		,	•	•	•	•		,	'	•		
Stomach, glandular	+	A	+	Α	+	A	Α	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Cardiovascular System									_											•							
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Endocrine System																											
Adrenal gland	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, medulla	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pheochromocytoma benign													х														
Islets, pancreatic	+			Α																					+		
Parathyroid gland	+			Μ																							
Pituitary gland				Μ																							
Thyroid gland	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: Vehicle Control

+: Tissue examined microscopically A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

					_																_					
Number of Days on Study	7 3	7 3	7 3	7 3		7 3	3		3	3	3	7 3	7 3	7 3	3	7 3		7 3	7 3	7 3	7 3			7 3	3	
	0	0	0	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	0	6	6	0	1	1	1	2	2	2	6	0	1	1	1	1	2	3	5	5	5	5	5	6	6	Total
	8	1	6	9	2	5	9	4	5	9	3	5	0	1	3	4	2	8	0	1	3	4	6	0	7	Tissues
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumors
Alimentary System									_	_											-					
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Gallbladder	+	M	[+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	40
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	45
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Adenocarcinoma					х				Х																	2
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatocellular carcinoma Hepatocellular carcinoma, multiple		Х	X					х							Х											10 1
Hepatocellular adenoma	X			Х				Х			Х	Х				х					х			х		15
Hepatocellular adenoma, multiple					Х		х						х					х					х			11
Mesentery															+	+		+								8
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Papilloma squamous																		Х						х		2
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Cardiovascular System Heart	+						+			+	 +				+	+	+	+						+		50
						-T			т 	т 		т			т 	т 		т 	т		т 	т 				
Endocrine System																										
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, cortex	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pheochromocytoma benign		,																								1
Islets, pancreatic	+				+	+	+	+	+	+		+	+	+				+		+	+	+	+	+	+	49
		- R./	[+]	+	+	+	+	+	+	+	Μ	+	+		М								+		+	38
Parathyroid gland						-						-														
Parathyroid gland Pituitary gland Thyroid gland	M +		M	ГМ +		-	+	+	+ +	++		++	+		I +						++	++	+	++	+	42 49

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

(continued)																										· ·
Number of Days on Study	4 5 6	4	5	6 7 0	8	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	· · · · · ·
Carcass ID Number	6 9	5 9	1 7	0 6 8 1	3 4	0 3	3 0	0 1	1 6	1 8	2 1	2 3	3 1	3 2	3 3	3 6	3 9	4 0	4 7	4 8	4 9	6 2	0 2	0 4	0 6	
General Body System Tissue NOS	+				-																					
Genital System Epididymis Preputial gland Prostate Seminal vesicle Testes Interstitial cell, adenoma	+ +	+	+	A A A A	+ + +	+ +	+ +	+	+	+	+	+	+	+	+	+	+	+	++++++	+	+	+	+	+ + + + +	+	
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+ + +	+ + +	· + + +	A M M A A	(+ (+ (+	+ + + +	+ + + +	+ + + +	+ + + +	+++++	+ + +	+ + +	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+ +	+ + +	+ + +			+ + + + + +	+	
Integumentary System Mammary gland Skin				I M · A																					M +	
Musculoskeletal System Bone	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Nervous System Brain	+	+	• +	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Carcinoma, metastatic Heatocellular carcinoma metastatic	+	+	+ + X	+ X		x x	+ X			+ X		+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	
Hepatocellular carcinoma, metastatic Nose Trachea	+	+	• +	A		+ +	+ +	^ + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

(continued)												0			•											
Number of Days on Study	7 3 0	3	7 3 0	7 3 3	3	7 3 3	3	3	7 3 3	3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	3	7 3 4	3	7 3 4	7 3 4	3	7 3 4	3	
Carcass ID Number	0 8	-	6 6	0 0 9 1	1 2	1 5	1 9	2 4	2 5	2 9	6 3	0 5	1 0	1 1	1 3	1 4	2 2	3 8	5 0	5 1	5 3	5 4	6	6 0	6 7	Total Tissue Tumor
General Body System Tissue NOS																										1
Genital System Epididymis Preputial gland Prostate Seminal vesicle Testes Interstitial cell, adenoma	+ + + +	+ + + + +	· + + + +	+++++	+ + + + +	+ + + +	+ + +	+ + + + + +	 + + + + +	+ + + +	++++++++++++++++++++++++++++++++++	 + + + +	 + + + +	+	 + + + + + +	+ + + + +	+	+++++++	 + + + +	+ + + + +	++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + X	+ + + + +		49 16 49 49 49 3
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+ +	+++++		+	+ M + +	+++++	+++++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+++++	+ + +	+ + + +	++++++	+ + + +	++++++	+ + + + + + +	+++++++	+++++++	++++++	++++++	+	+++++++++++++++++++++++++++++++++++++++	49 49 48 49 49 47
integumentary System Mammary gland Skin				м +																						1 49
Musculoskeletal System Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Nervous System Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Carcinoma, metastatic Hepatocellular carcinoma, metastatic	+	+	+ x	+	+	+	+ x	+	+	+	+	+ x		+	+	+	+	+ x	+	+	+	* x	+	+ x	+ X	50 12 2 1 1 1
Nose Trachea	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	49 49

.

TABLE C2

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

	· · · · · ·
Number of Days on Study	4 5 6 6 7 3 3 3
Carcass ID Number	0 0
Special Senses System Eye Harderian gland Adenoma Lacrimal gland	+ + + + X X
Urinary System Kidney Renal tubule, adenoma Urinary bladder	+ + + A + + + + + + + + + + + + + + + +
Systemic Lesions Multiple organs	
Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued) 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 777 Number of Days on Study 3 0 0 0 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 6 6 0 1 1 1 2 2 2 6 0 1 1 1 1 2 3 5 5 5 5 6 6 **Carcass ID** Number Total 8 1 6 9 2 5 9 4 5 9 3 5 0 1 3 4 2 8 0 1 3 4 6 0 7 Tissues/ Tumors Special Senses System 2 Eye Harderian gland + 3 х Adenoma 3 Lacrimal gland М Urinary System Kidney 49 Renal tubule, adenoma 1 Urinary bladder 49 + + Systemic Lesions Multiple organs 50 + + + + + + + + + + + ++ + + + + + + + + + +

TABLE C2

														_												
Number of Days on Study	5 3 2	0	7 0 1		2	2	2	2	2	2	2	2	2	2		7 2 9	7 2 9	7 2 9			7 2 9		7 3 0	7 3 0	3	
Carcass ID Number	0 8 4 1	0 9 8 1	0 7 2 1	7	7 3	8 0	8 3	8 8	9 1	9 2	9 7	9 9	0 0	0 1	3	0 8	0 9	1 3	2 2	2 5	2 6	2 9	7 5	7 8	8 7	
limentary System										_										``						
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Gallbladder	+	Å	+	+	+	+	÷	+	+		I	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, cecum	Á	À	Å	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, colon	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine large, rectum	+	Å	+	+	+	+			+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small			A		+				+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, duodenum				+						+		+		+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, ileum				+						+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, jejunum				+							+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	
Adenocarcinoma Adenoma				·	•	·	•			·	•		•	•		·	·	·	x	•	•	•	•	•	•	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Hepatocellular carcinoma	X	Х	Х				х		Х																	
Hepatocellular adenoma		Х														х				х	Х					
Hepatocellular adenoma, multiple			Х	х						х		х	Х				х		х			Х		Х	Х	
Mesentery														+												
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, forestomach	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	
Papilloma squamous						Х				х				Х										Х		
Squamous cell carcinoma																										
Stomach, glandular	Α	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Cardiovascular System		· ··	.,																							
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Endocrine System	<u> </u>					·																				
Adrenal gland	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	·+	+	
Adrenal gland, cortex	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	
Adrenal gland, medulla	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Parathyroid gland	+	+	+	+	+	Μ	Μ	+	+	+	Μ	М	+	+	+	I	+	М	+	+	+	+	+	+	+	
Pituitary gland	Α	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	
C-cell, adenoma							x										Х									
C-cell, carcinoma																										

A THEFT OF LEASE

Table C2

	-	~		-	-	-	-		-	~	-	-	_	-	~	-	-	~	-	~	~	~	-	~	~	
			7				7					7			7						7	7	7	7	7	
Number of Days on Study	3	3	3	3	3		3										3	3	3	3	3	3	3	3	-	
	0	0	0	0	0	0	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	
	0	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	
Carcass ID Number	8	1	2	2		3	7	8	0	1	1	1	1	2	2	3	3	7	8	9	0	1	3	3	3	Total
	9	8	1	7	8	5	9	5	2	0	4	5	6	0	3	0	1	7	6	4	4	2	7	8	9	Tissue
	1	1				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
Alimentary System				_		_																				<u> </u>
Esophagus	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Gallbladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+		М	+	+	+	+	+	+	47
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, rectum	+	+	+	+	+	+	I	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Adenocarcinoma Adenoma	х																									1 1
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatocellular carcinoma	X		Х													Х	Х		х				Х			11
Hepatocellular adenoma							Х			Х				Х			Х		х							9
Hepatocellular adenoma, multiple	Х	Х		Х		х					х				Х			х			х		х		х	20
Mesentery																+			+							3
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Papilloma squamous					Х				Х							Х						Х				8
Squamous cell carcinoma																								Х		1
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Cardiovascular System																		-							<u> </u>	
Heart	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	.+	+	+	+	+	+	+	+	50
Endocrine System			-			-															_					
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Islets, pancreatic	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	М	+	+	+	+	+	+	М	41
Pituitary gland	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	46
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
C-cell, adenoma																										1
C-cell, carcinoma																										1

Number of Days on Study	3	0	0	7 2 9	2	2	2	2	2	2	2	2	7 2 9.	2.	2	2	2	2	2	2	7 2 9	2	3	3	3		
Carcass ID Number	8 4	9 8	7 2	0 7 1 1	7 3	8 0	8 3	8 8	9 1	9 2	9 7	9 9	0 0	0	0 3	0 8	0 9	1 3	2 2	2 5	2 6	2 9	7 5	7 8	8 7		
General Body System None				- <u>-</u>											•											<u></u>	
Genital System Epididymis	+		 · _+	 · +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Preputial gland	•	+				+			+			+		+								+	+				
Prostate	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+		
Seminal vesicle	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Testes	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Hematopoietic System																							_				
Bone marrow	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node, mandibular	+	+		• +																					+		
Lymph node, mesenteric	+			+																							
Spleen Thymus	+			· + +																							
Integumentary System																											
Mammary gland	М	M	l M	1 M	I M	М	М	М	М	М	М	Μ	Μ	М	М	м	м	М	м	М	М	+	М	M	М		
Skin	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Basal cell adenoma																											
Tail, neurofibroma						х																					
Musculoskeletal System									-																		
Bone	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	۲.	•
Nervous System														_											-		-
Brain	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Respiratory System																			_				•			<u> </u>	
Lung	+	+	· +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+		
Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma												x					х		х								
Hepatocellular carcinoma, metastatic,																											
liver		X					.1		. 4.	.1	L.	ـــ		<u>д</u>	д	بد	ـــ	-	÷	ъ	Ŧ	L	Ŧ	L	ъ		
Nose Trachea	+ 	+	+ ·	- + 	· +	+	+	+	+	+ +	+	т +	+ +	+ +	+	т +	τ +	+	т +	τ +	+ +	+ +	+ +	+ +	+		
1 i uviiva	T	'	'		•	•		•	•	•	•	•	•	•	•	•		·	•	·	•	•	•	•	•		

Lesions in Male Mice

TABLE C2

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)

(continued)						_															_					-		
Number of Days on Study	·	3	3	3	7 3 0	3	3		3		3	3	3	7 3 3	3	7 3 3	3		3		3	3		7 3 4	7 3 4	3		
Carcass ID Number	ະ ເ ປ	8 9	1 8 1	2 1 1	2 7	2 8	3 5	7 9	8 5	0 2	1 0	1 4	1 5	1 6	2 0	2 3	3 0	3 1	7 7	8 6	9 4	0 4	1 2	3 7	1 3 8 1	3 9	Tota Tiss Tun	
General Body System None																												
Genital System Epididymis Preputial gland Prostate Seminal vesicle Testes		+ + + +	+ + +	+ + + +	+++++	+ + + +	++++++	+ + + +	++++++	+ + + +	+ + + + +	+ + + + + +	+++++	+ + + + + +	+++++	+ + + +	+++++	+++++	+ + + + +	+ + + +	+++++++	++++++	+ + +	+++++	+ + + + + +	+++++++	- 50	
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus		+++++++++++++++++++++++++++++++++++++++	+ + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + +	+ +	+ + + + + + +	+ +	+ + +	+ + +	+ + + + + + +		+++++	+++++	+ + + + + + +	+ + + +		+ + + + + + +	+ + + + + M	+ + + + + +	+ + + + + +	+ + + + + + +	•			- 50	
Integumentary System Mammary gland Skin Basal cell adenoma Tail, neurofibroma	- 							+																	ГМ +			
Musculoskeletal System Bone		+	+	+	+	+	+	+	+	+	 +	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		- 50	
Nervous System Brain	<u> </u>	+	+	+	+	+	+	+	+	+	· +	- +	+	+	+	+	+	+	+	+	+	+	+	+	 +		- 50	
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic,		+ x	+	+	+	+ X	+ X	+	+	+	+ X	 	+	+	+	+	+	+	+ X	+	+	+	+	+	 +		1	
liver Nose Trachea		+ +	+ +	+ +	+ +	+	+ +	+ +	+ +	+	· +	++	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	· +		1 - 50 - 50	

			_																							
Number of Days on Study	5 3 2	6 0 7	7 0 1	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	
Carcass ID Number	0 8 4 1	9	0 7 2 1	0 7 1 1	0 7 3 1	0 8 0 1		0 8 8 1	0 9 1 1	9 2	0 9 7 1	0 9 9 1	1 0 0 1	1 0 1 1	1 0 3 1	1 0 8 1	1 0 9 1	1 1 3 1		1 2 5 1		1 2 9 1	0 7 5 1	7 8	•	
Special Senses System Harderian gland Adenoma Lacrimal gland									•																	
Urinary System Kidney Urinary bladder	+	++	++	•	++	+++	+++	+++	++	++	++	+++	++	+ +	++	++	++	++		+ +				 + +	++	
Systemic Lesions Multiple organs Lymphoma malignant lymphocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)

.

-

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued) Number of Days on Study 8 1 2 2 2 3 7 8 0 1 1 1 1 2 2 3 3 7 8 9 0 1 3 3 3 Total Carcass ID Number 9 8 1 7 8 5 9 5 2 0 4 5 6 0 3 0 1 7 6 4 4 2 7 8 9 Tissues/ Tumors Special Senses System + X 1 Harderian gland 1 Adenoma Lacrimal gland + 1 Urinary System 50 + + + + + Kidney + + + + + + + + + + + + + + + 50 Urinary bladder + + + + + + + + + + + + + + ++ Systemic Lesions 50 Multiple organs + + + + + + + + + + + + + + + + + х х 3 х Lymphoma malignant lymphocytic

TABLE C2

	<u> </u>	_										- <u>-</u>		<u> </u>			<u> </u>									 	
Number of Days on Study	0	6		2	6	5 6 7	3	2	2	2	2	2		2		2	2	7 2 9	2								
Carcass ID Number	1 4 1 1		1 0	9 2	8 5	2 0 0 1	7 6	0 9	4 2	4 5	4 7	5 1	5 2	5 3	5 8	5 9	6 7	7 5	8 0	8 6	8 9	9 4	9 6	0 1	0 3		
Alimentary System											- <u></u>	<u> </u>	<u> </u>						<u> </u>	_						 	
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	+	+	+	+	+	+		
Gallbladder	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Squamous cell carcinoma, metastatic,																											
stomach						Х																					
Intestine large	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, cecum	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, colon	+	+	A		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine large, rectum	+	+	Α		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small	+	+	A			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, duodenum	+	+		+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, ileum	+	M	A	+	+	+	+	+	+	+	+	+	+	•		+	+	+	+	+	+	+	+	+	+		
Intestine small, jejunum	+	+	A	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+		
Liver	+		+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	. +		
Hepatoblastoma	Х						x								X						х						
Hepatocellular carcinoma Hepatocellular adenoma					x		л		х						х	v			x		x						
Hepatocellular adenoma, multiple					Λ				Λ		х	x			Λ		x		Λ		^		x		х		
Squamous cell carcinoma, metastatic,											Λ	Λ					Λ						Λ		Λ		
stomach						х																					
Mesentery					+	+					+																
Squamous cell carcinoma, metastatic,											-																
stomach						х																					
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Squamous cell carcinoma, metastatic,																											
stomach						Х																					
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+		
Stomach	+	+	Α	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+		
Stomach, forestomach	+	+	Α	+	+	+	÷	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Papilloma squamous																							Х				
Squamous cell carcinoma	X					Х																					
Stomach, glandular	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Cardiovascular System														-												 	
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Endocrine System		<u> </u>																								 <u> </u>	
Adrenal gland	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex	+	+	+	+	+	M		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adenoma	•			·																		x					
Adrenal gland, medulla	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+		
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adenoma																						х					
Parathyroid gland	· +	+	+	+	+	+	+	+	+	+	М	+	+	+	+	М	+	+	+	+	+	Μ	+	+	+		
Pituitary gland	+	+	Μ	i +	Μ	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+		
Thyroid gland			+	+	+			+	+							+	+	+	+				+				

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: 100 mg/kg

Lesions in Male Mice

TABLE C2

The second s

.

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

	-	_	_	_		~		_			_	-	_	_		_	_	_	_		_	_	_			
Norther of These on Standay	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2 9	3 0	3 0	3 0	3 0	3 0	3 0	3 0	_	3 0	3 0	3 0	3 3	3 3		3 3	3 3	3 3		3 3	3 3	3 4	3 4	3 4	-	
- <u></u>	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	2	2	
Carcass ID Number	0	4	5	6	7	7	7	8	8	8	8	9	4	5	6	6	6	7	7	8	0	9	9	0	0	Total
			0			4									3						6					Tissue
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
Nimentary System																										•
Esophagus	+	• -1	- +	+	+	+			+					+	+		+	.+	+	+	+	+	+	+	+	49
Gallbladder	+		- +	+	+	+	+	M	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Squamous cell carcinoma, metastatic, stomach									_																	1
Intestine large	+	• •	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, cecum	+	• - 1	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, colon	+	• -1	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, rectum	+	• •	- + 	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 40
Intestine small	+	• •	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, duodenum	+	• •	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 48
Intestine small, ileum Intestine small, jejunum	+		г т ∟	. +	+	+	+	+	++	+	++	++	T L	++	++	+	++	+ 	+ _⊥	т 	- T - L	+ -	+	++	++	48 49
Liver	T L		гт ∟ ⊥	· +	+	+	т 	+		+		•	+				+	т 	+ +	+	+	т -		- T - L	- -	49 50
Hepatoblastoma	т		гт	. т	т	т	т	т	x	т	x		т	т	т	т	т	Ŧ	т	Ŧ	т	т	Ŧ	т	т	5
Hepatocellular carcinoma				х					X		~				x										х	5
Hepatocellular adenoma				X					~			x		х					x			x	х		~	12
Hepatocellular adenoma, multiple Squamous cell carcinoma, metastatic,	Х	3	ζ	~			x	x	x	х	х				x		x	х			х			х		17
stomach Mesentery																										1 3
Squamous cell carcinoma, metastatic, stomach																										1
Pancreas Squamous cell carcinoma, metastatic,	+	• •	+ +	• +	+	ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
stomach																										1
Salivary glands	+		+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+		+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach, forestomach	+		+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	49
Papilloma squamous																		Х								2
Squamous cell carcinoma										_																2
Stomach, glandular	+		⊦ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Cardiovascular System Heart	4		+ +	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
											·															
Endocrine System																										
Adrenal gland	+		+ + 	• •	+	+	+	+	+	+	+			+		+	+	+	+	+	+	+	+	+	+	49
Adrenal gland, cortex	-		+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenoma Adrenal gland, medulla			L 1				1	-	,	. 1	د	.1	1		. 1.		د.	P 4	ب	ـ	1	L	-1	L	د	1 48
Islets, pancreatic				· +	+ 	+	++	+	++		++	++	+ -⊥	++	++	+	+		++		++	++	++	T L	++	48 50
Adenoma	1	•	רי ג		· т	т	т	т	т	T	т	т	Ť	т	т	т	т	т	т	т	Ŧ	т	Ŧ	X		3
Parathyroid gland	L.		∧ ⊦ +		. h /	ا	.	Ŧ	+	Ŧ	+	Ŧ	-	+	⊥	+	+	+	+	+	Ŧ	RA	[+	3 45
Pituítary gland	ר ו-		, 1 - 4	· +									+				+					+	. Ψ +		+	43 40
i nanai y Biana	т		. 7	-	141		141		141	- т	-т [.]	т т	- T		т.	141	- T	141	- T	- T	- T	- T	- T	- T	r	-10

Ļ

187

•*

																					_				
Number of Days on Study	0 0 1	0 6 4	1	-			3	2		2	2	2		2	7 7 2 2 9 9	2	7 2 9	2	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	-	
Carcass ID Number	4 1	9 7	1 0	1 9 2 1	8 5	0 0	7 6	0 9	4 2	4 5	4 7	5 1	5 2	5 3	55 89	6 7	7 5	8 0	8 6	8 9	9 4	9 6	0 1	0 3	
General Body System None																									
Genital System									<u> </u>		<u>.</u>				<u> </u>			<u> </u>	<u></u>						
Epididymis	+	+	+	+	+	+			+	+	+	+	+		+ -	+ +	- +	+	+	+	+	+		+	
Preputial gland							+						+						+				+		
Prostate Sominal variate	+	+	+						+			++	+	+		⊦ 4 ⊦ 4			+		+	+	+	+	
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	T '	+ +	- +	+	+	+	+	+	+	Ŧ	
Squamous cell carcinoma, metastatic, stomach						х																			
Testes	+	+	+	+	+		+	+	+	+	+	+	+	+	+ -	+ +	- +	+	+	+	+	+	+	+	
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+ + + + I	+ +	++	+ + + + M + + + +	+ + +	I M +	+	+ + +	+ + +	+	++++++	+++++	+ + + + + I	+	+ - + - + - + - + -		 - + - + - + - +	++++++	+++++	+ + + + + + +	+++++	+ + + + + + I	+++++	+++++++++++++++++++++++++++++++++++++++	
ntegumentary System																									
Mammary gland				(+																					
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	1	- +	+	+	+	+	+	+	+	
Musculoskeletal System	<u> </u>												-												
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ -+	- +	+	+	+	+	+	+	+	
Skeletal muscle			·			+																			
Diaphragm, squamous cell carcinoma,																									
metastatic, stomach						х																			

(continued)										_														_		
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	9	0	0	0	0	0	0	0	0	0	0	0	3	3	3	3	3	3	3	3	3	4	4	4	4	
	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	2	2	
Carcass ID Number	0	4	5	6	7	7	7	8	8	8	8	9	4	5	6	6	6	7	7	8	0	9	9	0	0	Total
	8	8	0	0			7																	4	7	Tissue
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
General Body System None																_										- <u> </u>
Genital System			_												<u> </u>					<u></u>	·	·		2		
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Preputial gland		+					+	+		+				+								+			+	13
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Squamous cell carcinoma, metastatic, stomach																										1
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hematopoletic System				-		<u> </u>			_							_										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	47
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Thymus	+	+	+	+	+	+	+	+	+	+	+	М	[+	+	+	+	+	+	+	+	+	+	+	+	+	44
Integumentary System																	-		·		-		· · ·	·		
Mammary gland	м	M	M	M	[M	M	(M	M	(M	M	I M	M	I M	(+	М	М	М	М	М	М	M	[+	M	I M	M	3
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	ł	+	+	+	+	50
Musculoskeletal System						-																				
Bone	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Skeletal muscle	•	•				•	•														,			,		1
Diaphragm, squamous cell carcinoma,																										-
metastatic, stomach																										1

· · ·																										
Number of Days on Study	0 0 1	0 6 4		2	6	5 6 7	3			2		2	7 2 9		7 2 9			7 2 9			7 2 9	7 2 9	7 2 9	-	7 2 9	<u></u>
Carcass ID Number	4 1	9 7	1 0	9 2	8 5	2 0 0 1	7 6	0 9	4 2	4 5	4	5 1	5 2	5 3	.5 8	5 9	6 7	7 5	8 0	8 6	8 9	9 4	9 6	0 1	0 3	<u></u>
Nervous System Brain	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	, +	+	
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic,	+	+	+	 +	+	+	+	+	+	+		+ x			+ x		+	+	+ x			+ x		* x		
liver Nose Trachea	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +		+ +			+ +	+ +			+ +				+ +	+ +	+ +	+ +	+ +	
Special Senses System Eye Harderian gland Adenoma							<u></u>	+ + X	<u>.</u>	<u> </u>											<u> </u>					
Urinary System Kidney Squamous cell carcinoma, metastatic, stomach Urinary bladder	+	+	+			+ X +			++	++	++	++	++	+	++	+++	++	+	+	+	+	++	+	+	+	· ·
Systemic Lesions Multiple organs Lymphoma malignant Lymphoma malignant lymphocytic Lymphoma malignant mixed	, +	+	+			+			, 	+	+	+	+	+ x		+	+	+	+	+	+	+	+	+ X		

Table C2

						_	_		_										_	_		_	_				
Number of Days on Study	7 2 9	7 3 0		7 3 3	7 3 4	7 3 4	3	7 3 4	3																		
Carcass ID Number	0 8	4 8	5 0	6 0	7 3	7 4	7 7	8 1	8 3	8 7	8 8	9 1	1 4 3 1	5 5	6 3	6 5	6 8	7 0	7 8	8 4	0 6	9 5	9 8	0 4		-) 7	Total Tissues, Tumors
Nervous System Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	50
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic,	+ X		+	+	+	+ x	+ X	+	+	+ X	-	+	+ X	+	+	+ X	+	+ x x		+ x	+	+	+	+		+	50 12 2 2
liver Nose Trachea	+ +	+ +	+	• + • +	+ +	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +	+ +	X + +	+ +	+ +		+ +	1 50 50							
Special Senses System Eye Harderian gland Adenoma																											1 1 1
Urinary System Kidney Squamous cell carcinoma, metastatic,	+	+	+	• +	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
stomach Urinary bladder	+	+	+	• +	+	+	+	+	+	+	+	+	÷	÷	÷	÷	+	+	+	+	+	+	+	+		+	1 50
Systemic Lesions Multiple organs Lymphoma malignant Lymphoma malignant lymphocytic Lymphoma malignant mixed	+	+		· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+		+	50 2 1 1

Number of Days on Study	7	3 2 3	: 1	l	-	9	4	5	0	5	6	7	8		1	7 2 9	2	2	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9		
Carcass ID Number	4 4	5 1		5 5	5	2 7	7 4	5 0	2 5 3 1	1 4	5 2		6 0	7 3	4	1 7		2 2	2 3	2 8	2 9		3 5	3 8	6	-	- <u>-</u> <u>-</u> <u>-</u> .
limentary System			_		_											_										_	
Esophagus	+	4		۲	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Gallbladder	Å	Ň	1.	F	+	+	+						Å	Å		+	+	+	+	+	+	+	+	+	+	+	
Intestine large		-	-											Â				+	+	+	+	+	+	+	+	+	
Intestine large, cecum														A		+		+	+	+	+	+	+	+	+	+	
Intestine large, colon														A			+	+	+	+	+	+	+	+	+	+	
Intestine large, rectum														A				+	+	M	+	+	+	+	+	+	
Intestine small														A				+	+	+	+	+	+	÷	+	+	
Intestine small, duodenum														Â				+	+	+	+	+	+	+	+	+	
Intestine small, ileum														A			+	+	+	+	+	+	+	+	+	+	
Intestine small, jejunum														A			+	+	+	+	+	+	+	+	÷		
Liver													+		+		+	+	+	+	+	+	+	+	+	+	
Hepatoblastoma				•		•	•	•		•	•	•			•	•	•	•	•				•	×		•	
Hepatocellular carcinoma								х																x			
Hepatocellular adenoma					x							x	х					х		х							
Hepatocellular adenoma, multiple Histiocytic sarcoma					••		x								x	x	x		x			x			x		
Mesentery											+						+										
Pancreas	Α	+		F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Salivary glands	+	+		۲	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach	+	A		ł	+	+	+	Α	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, forestomach	+	A	۱.	1	+	+	+	Α	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, glandular	Α	A	\	ł	+	+	+	Α	+	+	+	A	Α	A	+	+	+	+	+	+	+	+	Ŧ	+	+	+	
Cardiovascular System										-			+	+	+	+	+	+	+	+				+	+	+	
Heart	+	-1		F	+	+	+	+	+	+	+	Ŧ	•								Ŧ	+	F				
Heart	+			+ 	+	+	+	+	+	+	+	+	-									+					
Heart Endocrine System	+ +	+ 		⊦ 	+ 	+ +	+	+	+	+	+	+	, 		+		 +		+	 +	+	+	 +	+		 +	
Heart Endocrine System Adrenal gland	+	+ +		⊦ ⊦	+ + +	+ + +	+ + + +	+ + + +	+ + +	+ + +	+ + +	++++	, 	 + +	+++++++++++++++++++++++++++++++++++++++	+++	+++	++++	++++	 + +	+ +	+ + +	+ +	 + +	 + +	+++	
Heart Endocrine System Adrenal gland Adrenal gland, cortex	+ + + +	+ + + N	 1 -	⊦ ⊦	+ + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + + +	+ + + +	++++		+ + +	++++	++++	+ + + +	++++	+++++	+ + +	+ + + +	+ + + +	+ + +	 + +	 + + +	+++++	
Heart Endocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla	+ + + +	+ + N	 1 -	⊦ ⊦ ⊦	++++++	+ + + +	++++	+++++	+ + + +	+ + + +	++++	++++		+ + +	++++++	+++	+++++	+++++	++++	+ + +	+ + +	+ + + +	+++	+ + +	 + + +	++++	
Heart Endocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign	+ + + + A	-	 1 -	•	+ + ++++ +	+ + + + +	+ + + + +	+ + + + +	+ +++ +	+ + + + +	+ + + + +	+++++++	, +++++++++	+ + + +	+ +		-	 + + + + +	+++++++	+++++++	++++++++++++++++++++++++++++++++++++++	+ + + +	++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++	 + + + +	+ + + + +	
Heart Endocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Islets, pancreatic	+ + + + A	-	-	•	+ + + + + + +	+ + + + +	++++++	+ + + + +	+ + + + +	+ + + + +	+ + + + +	+++++	, + + + +	+ + +	+ +	+++++++++++++++++++++++++++++++++++++++	-	+ + + + +	++++++++	+++++++	+ + + +	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + +	 + + + +	+ + + +	
Heart Endocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Islets, pancreatic Adenoma		-1		+	+ 			+ + + + + +	•						+ + +		+				-	-	- + + + + + + +	+++ +++++++++++++++++++++++++++++++	 + + + + + +	+++++++++++++++++++++++++++++++++++++++	
Heart Endocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Islets, pancreatic Adenoma Parathyroid gland	М	- + []N	 1 N	+ 1	+ + + + + + + + + + + + + + + + + + + +	+		+ + + + + + + + + + + + + + + + + + + +	+	+	+	+	м	М	+++++	М	+	+	+	+	+	+	+	+	+ + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	
Heart Endocrine System Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Islets, pancreatic Adenoma	М	- + []N		+ 1		+	M		+	+	+ +	+++	M M		+++++	м +	++++	+ M	++	+	++	+	+	+	+ + + + + + + + + + + + + + + + + +	+++ + +++	

7 7 7 7 7 7 7 7 7 7 7 7777 7 777 7 7 7 777 7 Number of Days on Study 9 9 9 9 9 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 9 9 4 4 4 4 2 2 2 22 2 2 222 2 2 2 2 2 2 22 2 2 2 2 2 22 2 **Carcass ID Number** 7 7 7 5 2 6 6 7 7 1 1 3 3 4 4 5 5 2 2 3 4 6 2. 3 4 8 Total 78 24 78 9056 109 1 0 3 0 6 8 25 6 5 6 1 5 Tissues/ Tumors 1 1 1 1 1 1 1 Alimentary System Esophagus 51 Gallbladder M 42 Intestine large 44 Intestine large, cecum + + + 42 Intestine large, colon 43 + + + Intestine large, rectum Μ 39 + + + 4 M + + Intestine small 42 + Intestine small, duodenum 42 + + + + + + + + + + + + Intestine small, ileum 42 + + + Intestine small, jejunum 42 + + + + + + + + + + + + + + Liver 51 Hepatoblastoma 1 Hepatocellular carcinoma х х х х 3 Hepatocellular adenoma х х х хххх Х х 13 Hepatocellular adenoma, multiple х Х Х 14 Histiocytic sarcoma х 1 Mesentery 3 + Pancreas 50 + + Salivary glands 51 + + + + + + + + + + + + + + + ++ + + + + + + Stomach 47 + + + + + + + + + Stomach, forestomach 47 + + + + + Stomach, glandular + 44 + Cardiovascular System Heart + + + + 51 + + + + **Endocrine System** Adrenal gland 51 +Adrenal gland, cortex 51 + ++ + + + + + + + + + Adrenal gland, medulla 50 + + + Pheochromocytoma benign X 1 Islets, pancreatic 50 + + + + Adenoma Х х 2 Parathyroid gland 40 + M + + м + + + + +I + + Pituitary gland + Μ I + + I + Μ + 39 Μ Thyroid gland 51 + + Follicular cell, adenoma х 2

1 3 4 4 4 5 5 6 6 6 6 6 6 7 7 7 77 7 7 7 7777 Number of Days on Study 7 3 2 6 8 1 8 8 9 1 4 7 2 2 9 9 9 9 9 9 9 9 9 99 **Carcass ID Number** 5 6 5 2 7 5 5 1 5 1 6 7 2 1 1 2 2 2 2 3 3 4 366 4 1 34 7 4 0 34 2 1 0 34 7 8 2 3 8 9 35 8 25 1 **General Body System** Tissue NOS + **Genital System** Epididymis + + Preputial gland + Prostate + + + + + + + + + + Seminal vesicle + + + + + + + + + + + + + + + + Testes + + + + Α + + + ++ + + + + + + + + + + Hematopoietic System Bone marrow + A ++ + + + + + + + ++ + Lymph node + + + + + + + + + 4 + + + + Histiocytic sarcoma Lymph node, mandibular + M + + + M + + + + + + + + + + + + + + + + + + + Lymph node, mesenteric ++ + + + + + Α А + + + + + + + ++ + + + + + + + Spleen + + A + + + ++ + + + + + + ++ + +++ ++ + + Histiocytic sarcoma + + M + M + I M + + + A + I + + I M + + I + + + + Thymus **Integumentary System** Mammary gland Skin + + + + + + Musculoskeletal System Bone + + + + + + + + + ++ + **Nervous System** Brain **Respiratory System** Lung + + + + + + + + + + + хх хх Alveolar/bronchiolar adenoma х х хх х Х Х х Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic, metastatic х Nose ++ + + + + Trachea +

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: 200 mg/kg (continued)

.

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: 200 mg/kg (continued)

(continued)											··,																
Number of Days on Study	2	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0		7 3 3	7 3 3	7 3 3		7 3 3	7 3 4	7 3 4	3	7 3 4	
Carcass ID Number	2 6 6 1	8	2 7 2 1	5	2 7 6 1	2 7 7 1	2 7 8 1	2 1 5 1	2 1 6 1	2	4	1		2 5 7 1	8	9		2 2 5 1	6	1		9	1	0	4 3	0	Total Tissues/ Tumors
General Body System Tissue NOS									<u></u>																		1
Genital System Epididymis Preputial gland Prostate Seminal vesicle Testes	+ + + +		+++++++++++++++++++++++++++++++++++++++	+ + + +	++++++	++++++	+ + +	+ + + + + +	+++++++	+ + + + + + +	+ + + +	+ + + + +	+++++++	+ + + + +	++++++	+++++++	+++++++	+++++	+++++	+ + + +		+ + + + + +	+ + + +	+		+++++++++++++++++++++++++++++++++++++++	50 9 51 51 50
Hematopoietic System Bone marrow Lymph node Histiocytic sarcoma Lymph node, mandibular Lymph node, mesenteric Spleen Histiocytic sarcoma Thymus	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	· + · + · +	+ + + + + +	+ +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + +	+ +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + +	+ + + + + + +	+ + + + + + +	+ + + + + +	+ + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + + + + + + +	+ + + + + + + + +	+	+ M	M (+ +	+ + X + + X +	50 51 1 46 48 50 1 41
Integumentary System Mammary gland Skin																										им +	3 51
Musculoskeletal System Bone	+	- +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-+	• +	51
Nervous System Brain	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	50
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic,	+	+ + X		+	+ x		+	+	+	+	+ X		+ x			+ x	+	+ X	х	+ x		+	+ X	+	+ X	+ x	51 19 5 1
metastatic Nose Trachea	+ +	· + · +	• +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+	· +	1 51 51

Number of Days on Study	1 3 4 4 4 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7
Carcass ID Number	2 3 3 6 6 6 4 1 3 4 7 8 2 3 8 9 3 5 8 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Special Senses System None	· · ·
Urinary System Kidney Urethra Urinary bladder	+ + A + + + + + + + + + + + + + + + + +
Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant Lymphoma malignant histiocytic	. + + + + + + + + + + + + + + + + + + +

Individual Animal Tumor Pathology of Male Mice in the 2-Year Gavage Study of Coumarin: 200 mg/kg (continued)

7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	<u>,</u>
-		2 9	2 9	2 9	2 9	2 9	3 0	3	3 3	3 3	3 3	3 3	3 3	3 4	3 4	3 4	-									
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
6	6	7	7	7	7	7	1	1	3	3	4	4	5	5	5	2	2	2	3	4	6	`2	3	4	8	Total
6	8	2	5	6	7	8	5	6	2	4	1	5	7	8	9	0	5	6	1	0	9	1	0	3	0	Tissue
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
 -	 		 ⊦ +		+	+	 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
-	⊢ ⊣	⊢ -1	+ +	• +	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	1 48
									- ,			-								,	,		·			<u> </u>
-		+ 4	⊦ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	\mathbf{x}^{+}	51 1
																										1
	9 2 6 6 1 1	2 2 6 6 6 8 1 1	9 9 9 2 2 2 6 6 7 6 8 2 1 1 1 + + + + + +	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 9 9 9 9 9 0	9 9 9 9 9 9 0	9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 3 3 3 2	9 9 9 9 9 9 0 0 0 0 0 0 0 0 3 3 3 2 3 6 6 7 7 7 1 1 3 3 4 4 5 5 5 2 2 3 6 1	9 9 9 9 9 0 0 0 0 0 0 0 3	9 9 9 9 9 9 0 0 0 0 0 0 0 3	9 9 9 9 9 9 9 0 0 0 0 0 0 3	9 9 9 9 9 9 9 0 0 0 0 0 0 3	9 9 9 9 9 9 9 0 0 0 0 0 0 3	9 9 9 9 9 9 9 0 0 0 0 0 0 3											

197

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Gavage Study of Coumarin

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
Harderian Gland: Adenoma	<u></u>	<u> </u>		· · · · · · · · · · · · · · · · · · ·
Overall rates ^a	3/50 (6%)	1/50 (2%)	1/50 (2%)	0/51 (0%)
Adjusted rates ^b	6.7%	2.1%	2.3%	0.0%
Terminal rates ^c	2/43 (5%)	1/47 (2%)	0/42 (0%)	0/37 (0%)
First incidence (days)	680	729 (T)	723	_e
Life table tests	P=0.091N	P=0.280N	P=0.320N	P=0.150N
ogistic regression tests ^d	P = 0.071N	P=0.305N	P=0.305N	P=0.117N
Cochran-Armitage test ^d	P=0.071N			
fisher exact test ^d		P=0.309N	P=0.309N	P=0.118N
iver: Hepatocellular Adenoma				
Overall rates	26/50 (52%)	29/50 (58%)	29/50 (58%)	27/51 (53%)
Adjusted rates	56.5%	59.2%	67.4%	64.0%
erminal rates	23/43 (53%)	27/47 (57%)	28/42 (67%)	22/37 (59%)
First incidence (days)	680	607	567	476
ife table tests	P=0.155	P=0.526	P=0.293	P=0.231
ogistic regression tests	P = 0.519N	P=0.344	P=0.344	P=0.542
Cochran-Armitage test	P=0.519N		D	D 0 5 10
isher exact test		P=0.344	P=0.344	P = 0.542
iver: Hepatocellular Carcinoma	11/60 /00/20	11 (60 /000)	5 150 /1 00/ >	2151 ((0))
Overall rates	11/50 (22%)	11/50 (22%)	5/50 (10%)	3/51 (6%)
Adjusted rates	23.6%	22.0%	11.6%	7.5%
erminal rates	8/43 (19%)	8/47 (17%)	4/42 (10%)	2/37 (5%)
irst incidence (days)	541 B0.018N	532 B - 0 520N	636 B-0 100N	558 B0.045N
ife table tests	P = 0.018N	P = 0.520N	P = 0.109N	P = 0.045N
ogistic regression tests	P = 0.003N	P=0.505	P=0.099N	P = 0.011N
Cochran-Armitage test	P=0.006N	P=0.595N	P=0.086N	P=0.019N
üsher exact test		r =0.3951	1-0.0001	1-0.01914
Liver: Hepatocellular Adenoma or Carcinoma	35/50 (70%)	34/50 (68%)	31/50 (62%)	29/51 (57%)
Adjusted rates	71.4%	68.0%	70.4%	67.2%
Cerminal rates	29/43 (67%)	31/47 (66%)	29/42 (69%)	23/37 (62%)
First incidence (days)	541	532	567	476
ife table tests	P = 0.483N	P = 0.302N	P = 0.346N	P = 0.470N
ogistic regression tests	P = 0.080N	P = 0.500N	P = 0.263N	P = 0.122N
Cochran-Armitage test	P = 0.080N			
Fisher exact test		P=0.500N	P=0.263N	P=0.122N
Liver: Hepatoblastoma				
Overall rates	0/50 (0%)	0/50 (0%)	5/50 (10%)	1/51 (2%)
Adjusted rates	0.0%	0.0%`	11.3%	2.7%
Cerminal rates	0/43 (0%)	0/47 (0%)	4/42 (10%)	1/37 (3%)
First incidence (days)	- ` `	_ ``	1	729 (T)
ife table tests	P=0.196	_ f	P=0.033	P=0.470
ogistic regression tests	P=0.299	-	P=0.060	P=0.470
Cochran-Armitage test	P=0.248			
Fisher exact test		-	P=0.028	P=0.505

PEZO, URA

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Gavage Study of Coumarin (continued)

			00	200 mg/kg
iver: Hepatocellular Carcinoma or Hepatoblasto.				
Werall rates	11/50 (22%)	11/50 (22%)	9/50 (18%)	3/51 (6%)
Adjusted rates	23.6%	22.0%	20.2%	7.5%
erminal rates	8/43 (19%)	8/47 (17%)	7/42 (17%)	2/37 (5%)
irst incidence (days)	541	532	1	558
life table tests	P = 0.034N	P = 0.520N	P=0.438N	P=0.045N
ogistic regression tests	P = 0.004N	P = 0.505	P = 0.347N	P = 0.011N
Cochran-Armitage test	P = 0.012N	1 0.505	1 -0.57710	1 0.01110
isher exact test	1 = 0.01210	P=0.595N	P = 0.402N	P=0.019N
ung: Alveolar/bronchiolar Adenoma				
Overall rates	14/50 (28%)	8/50 (16%)	14/50 (28%)	24/51 (47%)
Adjusted rates	29.7%	17.0%	33.3%	58.3%
erminal rates	10/43 (23%)	8/47 (17%)	14/42 (33%)	20/37 (54%)
First incidence (days)	653	729 (T)	729 (T)	558
ife table tests	P<0.001	P = 0.087N	P = 0.549	P=0.012
ogistic regression tests	P = 0.004	P = 0.114N	P = 0.588N	P = 0.038
Cochran-Armitage test	P = 0.004	1	1 -0.20011	₄ = 0.050
isher exact test	1 -0.004	P=0.114N	P=0.588N	P=0.038
ung Alveolar/bronchiolar Carcinoma				
Dverall rates	1/50 (2%)	1/50 (2%)	2/50 (4%)	1/51 (2%)
Adjusted rates	2.2%	2.1%	4.8%	2.7%
Terminal rates	0/43 (0%)	1/47 (2%)	2/42 (5%)	1/37 (3%)
First incidence (days)	716	729(T)	729(T)	729(T)
life table tests	P = 0.530	P = 0.746N	P = 0.489	P = 0.722
ogistic regression tests	P = 0.579	P = 0.619	P = 0.332	P = 0.758N
Cochran-Armitage test	P = 0.597	1 -0.017	1 -0.352	1 - 0.75014
Fisher exact test	1 = 0.597	P=0.753N	P=0.500	P=0.748N
Lung: Alveolar/bronchiolar Adenoma or Carcinol	ma			
Overall rates	14/50 (28%)	9/50 (18%)	15/50 (30%)	25/51 (49%)
Adjusted rates	29.7%	19.1%	35.7%	60.8%
Cerminal rates	10/43 (23%)	9/47 (19%)	15/42 (36%)	21/37 (57%)
First incidence (days)	653	729 (T)	729 (T)	558
Life table tests	P<0.001	P=0.131N	P=0.463	P=0.007
ogistic regression tests	P=0.003	P = 0.171N	P = 0.500N	P = 0.025
Cochran-Armitage test	P = 0.003	1 = 0.1 / 111	1 -0.20014	· = · · · · · · · ·
Fisher exact test	1 0.000	P=0.171N	P=0.500	P=0.024
Pancreatic Islets: Adenoma				
Dverall rates	0/49 (0%)	0/50 (0%)	3/50 (6%)	2/50 (4%)
Adjusted rates	0.0%	0.0%	7.1%	5.4%
Cerminal rates	0/43 (0%)	0/47 (0%)	3/42 (7%)	2/37 (5%)
First incidence (days)	-	-	729 (T)	729 (T)
Life table tests	P=0.067	-	P=0.117	P = 0.206
ogistic regression tests	P = 0.067	_	P = 0.117 P=0.117	P = 0.206
Cochran-Armitage test	P=0.099		1 = 0.117	0.200
Fisher exact test	1 = 0.077	-	P=0.125	P=0.253

÷-

ie -

------ ----- -----

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg	
Stomach (Forestomach): Squamous Cell I		<u> </u>			
Overall rates	2/50 (4%)	8/50 (16%)	2/50 (4%)	0/51 (0%)	
Adjusted rates	4.7%	17.0%	4.8%	0.0%	
Ferminal rates	2/43 (5%)	8/47 (17%)	2/42 (5%)	0/37 (0%)	
First incidence (days)	729 (T)	729 (T)	729 (T)	_	
Life table tests	P=0.078N	P=0.064	P=0.686	P=0.272N	
Logistic regression tests	P=0.051N	P=0.048	P=0.695	P=0.233N	
Cochran-Armitage test	P = 0.051N				
Fisher exact test		P=0.046	P=0.691N	P=0.243N	
Stomach (Forestomach): Squamous Cell (Carcinoma				
Overall rates	0/50 (0%)	1/50 (2%)	2/50 (4%)	0/51 (0%)	
Adjusted rates	0.0%	2.1%	4.1%	0.0%	
Terminal rates	0/43 (0%)	1/47 (2%)	0/42 (0%)	0/37 (0%)	
First incidence (days)	-	729(T)	1	-	
Life table tests	P=0.638N	P=0.518	P = 0.235	_	
Logistic regression tests	P = 0.289N	P = 0.518	_		
Cochran-Armitage test	P = 0.611N				
Fisher exact test		P=0.500	P=0.247	-	
Stomach (Forestomach): Squamous Cell I	Papilloma or Squamous Cell	Carcinoma			
Overall rates	2/50 (4%)	9/50 (18%)	4/50 (8%)	0/51 (0%)	
Adjusted rates	4.7%	19.1%	8.7%	0.0%	
Terminal rates	2/43 (5%)	9/47 (19%)	2/42 (5%)	0/37 (0%)	
First incidence (days)	729 (T)	729 (T)	1	-	
Life table tests	P = 0.100N	P=0.039	P = 0.329	P = 0.272N	
Logistic regression tests	P=0.042N	P=0.039	P = 0.686	P = 0.272N	
Cochran-Armitage test	P = 0.064 N				
Fisher exact test		P=0.026	P=0.339	P=0.243N	
Testes: Adenoma					
Overall rates	3/49 (6%)	0/50 (0%)	0/50 (0%)	0/50 (0%)	
Adjusted rates	7.0%	0.0%	0.0%	0.0%	
Terminal rates	3/43 (7%)	0/47 (0%)	0/42 (0%)	0/37 (0%)	
First incidence (days)	729 (T)	-	-	-	
Life table tests	P=0.054N	P=0.106N	P=0.125N	P=0.149N	
Logistic regression tests	P≈0.046N	P=0.117N	P=0.117N	P=0.117N	
Cochran-Armitage test	P=0.046N				
Fisher exact test		P=0.117N	P=0.117N	P=0.117N	
All Organs: Malignant Lymphoma and H					
Overall rates	0/50 (0%)	3/50 (6%)	4/50 (8%)	4/51 (8%)	
Adjusted rates	0.0%	6.4%	9.2%	10.5%	
Terminal rates	0/43 (0%)	3/47 (6%)	3/42 (7%)	3/37 (8%)	
First incidence (days)	_	729 (T)	567	712	
Life table tests	P=0.047	P=0.138	P=0.062	P=0.047	
Logistic regression tests	P=0.083	P=0.121	P=0.063	P=0.066	
Cochran-Armitage test	P=0.083				
Fisher exact test		P=0.121	P=0.059	P=0.061	

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
All Organs: Malignant Lymphoma (Histic	xvtic. Lymphocytic. Mixed. or	• NOS)		
Overall rates	0/50 (0%)	3/50 (6%)	4/50 (8%)	3/51 (6%)
Adjusted rates	0.0%	6.4%	9.2%	7.9%
Terminal rates	0/43 (0%)	3/47 (6%)	3/42 (7%)	2/37 (5%)
First incidence (days)	-	729 (T)	567	712
Life table tests	P=0.111	P = 0.138	P=0.062	P=0.097
Logistic regression tests	P=0.175	P=0.138	P = 0.117	P=0.116
Cochran-Armitage test	P=0.169			
Fisher exact test		P=0.121	P=0.059	P=0.125
All Organs: Benign Neoplasms				
Overall rates	38/50 (76%)	38/50 (76%)	36/50 (72%)	39/51 (76%)
Adjusted rates	79.2%	77.6%	81.8%	86.6%
Terminal rates	33/43 (77%)	36/47 (77%)	34/42 (81%)	31/37 (84%)
First incidence (days)	653	607	567	476
Life table tests	P=0.056	P = 0.324N	P=0.500N	P=0.137
Logistic regression tests	P=0.208	P = 0.592N	P = 0.418	P=0.285
Cochran-Armitage test	P=0.541			
Fisher exact test		P = 0.592N	P=0.410N	P=0.570
All Organs: Malignant Neoplasms				
Overall rates	15/50 (30%)	14/50 (28%)	16/50 (32%)	8/51 (16%)
Adjusted rates	31.1%	28.0%	34.6%	20.2%
Terminal rates	10/43 (23%)	11/47 (23%)	12/42 (29%)	6/37 (16%)
First incidence (days)	541	532	1	558
Life table tests	P=0.174N	P=0.416N	P=0.458	P=0.164N
Logistic regression tests	P=0.061N	P = 0.500N	P = 0.500N	P=0.070N
Cochran-Armitage test	P = 0.061 N			
Fisher exact test		P = 0.500N	P = 0.500	P=0.069N
All Organs: Benign or Malignant Neopla				
Overall rates	42/50 (84%)	42/50 (84%)	42/50 (84%)	40/51 (78%)
Adjusted rates	85.7%	84.0%	89.3%	88.8%
Terminal rates	36/43 (84%)	39/47 (83%)	37/42 (88%)	32/37 (86%)
First incidence (days)	541	532	1	476
Life table tests	P=0.140	P=0.297N	P=0.486	P=0.278
Logistic regression tests	P=0.474N	P=0.572	P=0.517	P=0.589
Cochran-Armitage test	P=0.251N			
Fisher exact test		P=0.607N	P=0.607N	P = 0.323N

(T)Terminal sacrifice

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, epididymis, gallbladder, heart, kidney, larynx, liver, lung, nose, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

d Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

Not applicable; no neoplasms in animal group

f Value of statistic cannot be computed

TABLE C4a

Historical Incidence of Alveolar/Bronchiolar Neoplasms in Male B6C3F1 Mice Receiving Corn Oil by Gavage^a

		Incidence in Controls	<u> </u>
	Adenoma	Carcinoma	Adenoma or Carcinoma
			
Dverall Historical Incidence		·	
Dverall Historical Incidence Total	141/900 (15.7%)	34/900 (3.8%)	166/900 (18.4%)
	141/900 (15.7%) 5.7%	34/900 (3.8%) 3.6%	166/900 (18.4%) 5.9%

^a Data as of 17 December 1991.

TABLE C4b

Historical Incidence of Liver Neoplasms in Male B6C3F₁ Mice Receiving Corn Oil by Gavage^a

		Incidence in	Controls	
	Hepatoblastoma	Hepatocellular Adenoma	Hepatocellular Carcinoma	Hepatocellular Adenoma or Carcinoma
erall Historical Incide		249/901 (27.6%)	155/001 (17.2%)	370/001 (41 1%)
erall Historical Incide Total Standard deviation	ence 2/901 (0.2%) 0.7%	249/901 (27.6%) 15.0%	155/901 (17.2%) 5.8%	370/901 (41.1%) 15.5%

^a Data as of 17 December 1991.

TABLE C4c

Historical Incidence of Forestomach Neoplasms in Male B6C3F₁ Mice Receiving Corn Oil by Gavage^a

		Incidence in Contro	ols
	Squamous Cell Papilloma	Squamous Cell Carcinoma	Squamous Cell Papilloma or Squamous Cell Carcinoma
Overall Historical Incidence		<u>, , , , , , , , , , , , , , , , , , , </u>	
Total Standard deviation	27/902 (3.0%) 3.4%	4/902 (0.4%) 0.9%	31/902 (3.4%) 3.6%
Range	0%-14%	0%-2%	0%-14%

^a Data as of 17 December 1991.

and a second state of the
Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Gavage Study of Coumarina

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
Disposition Summary				
Animals initially in study	70	70	70	70
5-Month interim evaluation ^b	20	20	20	19
Early deaths				
Accidental deaths	1		1	
Moribund	1		6	3
Natural deaths	5	3	1	11
Survivors				
Terminal sacrifice	43	47	42	37
Animals examined microscopically	60	60	60	60
15-Month Interim Evaluation				
Alimentary System	(10)		(1)	(0)
Intestine small, ileum	(10)		(1)	(9)
Lymphoid tissue, inflammation, suppurative				
Intestine small, jejunum	(10)		(1)	(9)
Lymphoid tissue, hyperplasia, lymphoid	(10)	<i>(</i>)	1 (100%)	
Liver	(10)	(4)	(6)	(9)
Clear cell focus				2 (22%)
Fatty change	1 (10%)			0 /10001
Syncytial alteration	A 104 AL	1 (25%)	4 (67%)	9 (100%)
Vacuolization cytoplasmic	9 (90%)	1 (25%)	3 (50%)	1 (11%)
Centrilobular, hypertrophy	(10)			8 (89%)
Salivary glands	(10) (2007)			(9) A (AA%)
Infiltration cellular, lymphocyte	3 (30%)		(1)	4 (44%)
Stomach, glandular	(10)		(1)	(9)
Infiltration cellular, lymphocyte Mineralization			1 (100%)	1 (11%)
Cardiovascular System None				
Endocrine System				
Adrenal gland	(10)			(8)
Spindle cell, hyperplasia	3 (30%)			1 (13%)
General Body System None				
Genital System				
Epididymis	(10)			(9)
Infiltration cellular, lymphocyte	1 (10%)			
Preputial gland		(3) 3 (100%)		
Duct, dilatation		3 (100%)		
Prostate	(10)			(9)
Infiltration cellular, lymphocyte	2 (20%)			1 (11%)

-4

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
15-Month Interim Evaluation (con Hematopoietic System None	ntinued)			
Integumentary System Skin Alopecia Hemorrhage	(10) 2 (20%)	(1) 1 (100%)	(1) 1 (100%)	(9) 1 (11%)
Musculoskeletal System None				
Nervous System None				
Respiratory System Lung Bronchiole, dilatation, focal	(10)	(2)	(1) 1 (100%)	(9)
Special Senses System Eye Inflammation, diffuse, chronic Retrobulbar, infiltration cellular, lymphoo focal	(1) zyte, 1 (100%)			(1) 1 (100%)
Urinary System Kidney Nephropathy Pelvis, infiltration cellular, lymphocyte Urinary bladder Infiltration cellular, lymphocyte	(10) 5 (50%) (10) 2 (20%)			(9) 1 (11%) 2 (22%) (9) 4 (44%)
2-Year Study Alimentary System Esophagus Periesophageal tissue, edema Intestine large, cecum Hyperplasia, lymphoid	(49) (47) 3 (6%)	(49) (47)	(49) 1 (2%) (49) 5 (10%)	(51) (42)
Inflammation, chronic Necrosis, coagulative Intestine large, colon Inflammation, chronic Intestine small, ileum Hemorrhage Hyperplasia, lymphoid	(46) (48) 1 (2%) 1 (2%)	(50) (47)	(49) 1 (2%) (48)	1 (2%) 1 (2%) (43) (42) 1 (2%)

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
2-Year Study (continued)				
• • • •				
Alimentary System (continued)	(50)	(50)	(50)	(51)
Liver	(50)	(50)	(50)	(51)
Angiectasis	1 (201)	4 (901)	2 (10)	2 (4%)
Basophilic focus	1 (2%)	4 (8%) 7 (14%)	2 (4%)	3 (6%)
Clear cell focus	4 (8%)	7 (14%)	8 (16%)	9 (18%)
Congestion	1 (2%)		1 (2%)	7 (14%)
Developmental malformation				1 (2%)
Eosinophilic focus	6 (12%)	15 (30%)	13 (26%)	15 (29%)
Fatty change				1 (2%)
Inflammation, suppurative			1 (2%)	
Mixed cell focus	4 (8%)	3 (6%)	4 (8%)	1 (2%)
Necrosis, coagulative	3 (6%)	1 (2%)		8 (16%)
Syncytial alteration		6 (12%)	35 (70%)	47 (92%)
Vacuolization cytoplasmic	4 (8%)		8 (16%)	5 (10%)
Centrilobular, hypertrophy	1 (2%)	2 (4%)	23 (46%)	44 (86%)
Mesentery	(8)	(3)	(3)	(3)
Inflammation, granulomatous	1 (13%)			
Fat, hemorrhage				1 (33%)
Fat, inflammation, chronic	2 (25%)			1 (33%)
Fat, inflammation, suppurative	1 (13%)			
Fat, necrosis, coagulative	4 (50%)	2 (67%)	1 (33%)	2 (67%)
Fat, necrosis, liquifactive	2 (25%)			
Pancreas	(49)	(50)	(50)	(50)
Atrophy		3 (6%)	1 (2%)	1 (2%)
Degeneration		()	1 (2%)	
Infiltration cellular, lymphocyte		1 (2%)	3 (6%)	4 (8%)
Inflammation, granulomatous	1 (2%)			
Necrosis, coagulative	- ()	1 (2%)		
Polyarteritis		1 (2%)		
Salivary glands	(49)	(50)	(50)	(51)
Infiltration cellular, lymphocyte	13 (27%)	19 (38%)	14 (28%)	17 (33%)
Stomach, forestomach	(48)	(49)	(49)	(47)
Hemorrhage	1 (2%)	(17)	(17)	
Hyperkeratosis	2 (4%)	2 (4%)		
Hyperplasia, squamous	1 (2%)	2 (4 <i>%</i>) 3 (6%)	3 (6%)	
Ulcer	1 (2%)	5 (070)	1 (2%)	
Stomach, glandular		(48)	(49)	(AA)
	(46)	(48)	(47)	(44)
Infiltration cellular, lymphocyte	1 /00/>		1 (207)	1 (2%)
Ulcer	1 (2%)		1 (2%)	
Cardiovascular System				
Heart	(50)	(50)	(50)	(51)
Infiltration cellular, lymphocyte	1 (2%)		1 (2%)	1 (2%)
Inflammation, chronic	- \>		- ()	1 (2%)
Inflammation, chronic active		1 (2%)		- (*)
Mineralization				4 (8%)
Endocrine System				
Adrenal gland	(49)	(49)	(49)	(51)
Spindle cell, hyperplasia	9 (18%)	12 (24%)	6 (12%)	9 (18%)

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
2-Year Study (continued)				
Endocrine System (continued)	,			
Adrenal gland, cortex	(49)	(49)	(49)	(51)
Basophilic focus	(49)	(47)	(49)	
Clear cell focus	2 (694)	1 (20%)	1 (20%)	1 (2%)
	3 (6%)	1 (2%)	1 (2%)	1 (2%)
Cyst	1 (20)		1 (2%)	
Cytomegaly	1 (2%)	1 (201)	1 (20)	
Cytoplasmic alteration	1 (201)	1 (2%)	1 (2%)	
Hypertrophy	1 (2%)	1 (2%)	(50)	(50)
slets, pancreatic	(49)	(50)	(50)	(50)
Hyperplasia	1 (2%)	3 (6%)	1 (2%)	(20)
Pituitary gland	(42)	(46)	(40)	(39)
Fibrosis		1 (2%)		
Pars distalis, cyst	1 (2%)	1 (2%)		10.0
Thyroid gland	(49)	(50)	(50)	(51)
Infiltration cellular, lymphocyte		1 (2%)	1 (2%)	
Follicular cell, cyst	1 (2%)	2 (4%)	1 (2%)	1 (2%)
Follicular cell, hyperplasia	2 (4%)	6 (12%)	3 (6%)	2 (4%)
Follicular cell, hyperplasia, papillary				1 (2%)
General Body System	······			
Tissue NOS	(1)			(1)
Mediastinum, inflammation, suppurative	1 (100%)			(-)
		· · · · · · · ·		
Genital System				
Epididymis	(49)	(50)	(50)	(50)
Granuloma		1 (2%)		
Infiltration cellular, lymphocyte		1 (2%)		1 (2%)
Inflammation, chronic				1 (2%)
Preputial gland	(16)	(18)	(13)	(9)
Hyperplasia	1 (6%)			
Inflammation, suppurative	1 (6%)	1 (6%)	1 (8%)	
Duct, dilatation	14 (88%)	16 (89%)	12 (92%)	7 (78%)
Prostate	(49) ໌	(50)	(50)	(51)
Infiltration cellular, lymphocyte			1 (2%)	2 (4%)
Inflammation, suppurative				1 (2%)
Seminal vesicle	(49)	(50)	(50)	(51)
Dilatation	1 (2%)		1 (2%)	
Fibrosis	1 (2%)		- ()	
Inflammation, chronic	1 (2%)			
Testes	(49)	(50)	(50)	(50)
Atrophy	1 (2%)	1 (2%)	1 (2%)	(39)
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Hematopoietic System Bone marrow	(49)	(50)	(50)	(50)
	(49)	(50)	(50)	(50)
Hyperplasia, neutrophil	(40)	(50)	1 (2%)	(51)
Lymph node	(49)	(50)	(49)	(51)
Deep cervical, hyperplasia, plasma cell	1(2%)			
Mediastinal, hyperplasia, lymphoid	1 (2%)	(10)		
Lymph node, mandibular	(48)	(48)	(48)	(46)
Hyperplasia, lymphoid	1 (2%)		1 (2%)	

1250 (11)

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
2-Year Study (continued)				·····
Hematopoietic System (continued)				
Lymph node, mesenteric	(49)	(49)	(47)	(48)
Congestion	2 (4%)	1 (2%)	1 (2%)	3 (6%)
Hemorrhage	1 (2%)	- ()	- ()	
Hyperplasia, lymphoid	5 (10%)		2 (4%)	2 (4%)
Inflammation, granulomatous	1 (2%)			
Inflammation, suppurative	2 (4%)			
Spleen	(49) ໌	(50)	(50)	(50)
Amyloid deposition	í (2%)			
Angiectasis	1 (2%)			
Congestion	1 (2%)	1 (2%)		
Developmental malformation	1 (2%)			
Hematopoietic cell proliferation erythrocytic		1 (2%)		
Hyperplasia, lymphoid	4 (8%)	1 (2%)	3 (6%)	2 (4%)
Lymphocyte, atrophy		1 (2%)	· · ·	
Thymus	(47)	(45)	(44)	(41)
Inflammation, suppurative	í (2%)		- /	
Integumentary System		<u> </u>		
Skin	(49)	(50)	(50)	(51)
Alopecia	1 (2%)	4 (8%)	1 (2%)	1 (2%)
Inflammation, chronic active	1 (2%)	+ (070)	1 (270)	1 (2%)
Ulcer	× (270)			1 (2%)
Musculoskeletal System				
Bone	(49)	(50)	(50)	(51)
Metacarpal, inflammation, chronic	1 (2%)			
Nervous System				<u></u>
Brain	(49)	(50)	(50)	(50)
Meninges, fibrosis		1 (2%)	. /	
Respiratory System				
Lung	(50)	(50)	(50)	(51)
Congestion	()	()	x- 11	2 (4%)
Inflammation, suppurative	1 (2%)		1 (2%)	1 (2%)
Alveolar epithelium, hyperplasia	3 (6%)	1 (2%)	4 (8%)	5 (10%)
Alveolus, hemorrhage	- (***)	÷ (=/~)	2 (4%)	- ()
Bronchiole, epithelium, hyperplasia		2 (4%)	- ()	1 (2%)
Bronchiole, epithelium, necrosis		- (2 (4%)
Pleura, inflammation, suppurative			1 (2%)	- (.70)
Nose	(49)	(50)	(50)	(51)
Fungus	(17)	(~~)	(~~)	1 (2%)
Inflammation, suppurative				1 (2%)
Lumen, inflammation, suppurative				4 (8%)

Special Senses System

None

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Gavage Study of Coumarin (continued)

,	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
2-Year Study (continued)				
Urinary System				
Kidney	(49)	(50)	(50)	(49)
Ectopic tissue	1 (2%)	~ /		
Fibrosis				1 (2%)
Glomerulosclerosis	1 (2%)		1 (2%)	1 (2%)
Infiltration cellular, lymphocyte	5 (10%)	4 (8%)	4 (8%)	5 (10%)
Nephropathy	8 (16%)	12 (24%)	8 (16%)	2 (4%)
Collecting tubule, necrosis, coagulative	· · ·		1 (2%)	1 (2%)
Cortex, cyst	1 (2%)		4 (8%)	· · ·
Cortex, cyst multilocular	1 (2%)	1 (2%)	1 (2%)	
Glomerulus, inflammation, chronic				1 (2%)
Renal tubule, mineralization	1 (2%)			
Renal tubule, necrosis, coagulative	1 (2%)	2 (4%)	3 (6%)	
Renal tubule, pigmentation, hemosiderin	• •	1 (2%)		
Urethra				(1)
Inflammation, chronic active		•		1 (100%)
Urinary bladder	(49)	(50)	(50)	(48) `
Hemorrhage			1 (2%)	• •
Infiltration cellular, lymphocyte	2 (4%)	2 (4%)	4 (8%)	5 (10%)
Inflammation, chronic	1 (2%)			

Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site. Of the animals designated for the 15-month interim evaluation, only 5-10 per dose group were examined microscopically. a b

APPENDIX D SUMMARY OF LESIONS IN FEMALE MICE IN THE 2-YEAR GAVAGE STUDY OF COUMARIN

Table D1	Summary of the Incidence of Neoplasms in Female Mice	
	in the 2-Year Gavage Study of Coumarin	211
Table D2	Individual Animal Tumor Pathology of Female Mice	9 L L
	in the 2-Year Gavage Study of Coumarin	216
Table D3	Statistical Analysis of Primary Neoplasms in Female Mice	ΔIV
	in the 2-Year Gavage Study of Coumarin	ንለስ
Table D4a	Historical Incidence of Alveolar/Bronchiolar Neoplasms	&**¥
	in Female B6C3F, Mice Receiving Corn Oil by Gavage	DAA
Table D4b	Historical Incidence of Liver Neoplasms	4~~~
	in Female B6C3F, Mice Receiving Corn Oil by Gavage	244
Table D&c	Historical Incidence of Forestomach Neoplasms	ፈጭ
	in Female B6C3F, Mice Receiving Corn Oil by Gavage	ንፈል
Table D5	Summary of the Incidence of Nonneoplastic Lesions in Female Mice	69 9
	in the 2-Year Gavage Study of Coumarin	9 15
		4-05

TABLE D1

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Gavage Study of Coumarin^a

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
Disposition Summary				······································
Animals initially in study	70	70	70	70
15-Monsh inserim evaluation ^b	18	20	19	19
Early deaths				
Accidental deaths	4		1	2
Moribund	8	6	5	8
Natural deaths	7	5	3	13
Survivors				
Terminal sacrifice	33	39	42	28
Animals examined microscopically	60	60	60	60
15-Month Interim Evaluation				
Alimentary System				
Liver	(8)	(1)	(2)	(9)
Hepatocellular adenoma	Ì (13%)	. /		• •
Cardiovascular System None				
E ndocrine System None				
General Body System None				
Genital System None				· · · · · · · · · · · · · · · · · · ·
Hematopoietic System None	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
Integumentary System None	·····	<u></u>	· · · · · · · · · · · · · · · · · · ·	
 Musculoskeletal System				
None			<u> </u>	
Nervous System None				

TABLE D1

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
15-Month Interim Evaluation (c	continued)	· · · · · · · · · · · · · · · · · · ·	- <u>i-i</u>	
Respiratory System				
Lung	(8)	(1)	(1)	(9)
Alveolar/bronchiolar adenoma			1 (100%)	2 (22%)
Special Senses System None				
Urinary System None				
2-Year Study				
Alimentary System				
Gallbladder	(41)	(44)	(47)	(39)
Intestine large, cecum	(42)	(46)	(48)	(41)
Intestine small	(44)	(46)	(48)	(41)
Intestine small, ileum	(41)	(46)	(48)	(39)
Intestine small, jejunum	(41)	(46)	(48)	(41)
Sarcoma	18 AL		/ = • `	1 (2%)
Liver	(50) atia	(49)	(51)	(50)
Alveolar/bronchiolar carcinoma, metast	anc	1 (20%)		1 (2%)
Hemangiosarcoma Hepatoblastoma		1 (2%) 1 (2%)		
Hepatocellular carcinoma		3 (6%)	3 (6%)	1 (2%)
Hepatocellular adenoma	8 (16%)	18 (37%)	20 (39%)	10 (20%)
Hepatocellular adenoma, multiple	0 (10/0)	8 (16%)	9 (18%)	2 (4%)
Histiocytic sarcoma	1 (2%)	1 (2%)	(20,0)	- ()
Mesentery	(7)	(6)	(3)	(4)
Histiocytic sarcoma		1 (17%)	(-)	
Squamous cell carcinoma, metastatic, s	tomach	- (- **)	1 (33%)	
Pancreas	(48)	(48)	(48)	(45)
Salivary glands	(51)	(50)	(51)	(51)
Leiomyosarcoma, metastatic	1 (2%)			
Stomach, forestomach	(48)	(49)	(49)	(46)
Papilloma squamous	1 (2%)	5 (10%)	2 (4%)	2 (4%)
Squamous cell carcinoma		1 (2%)	1 (2%)	
Cardiovascular System	······································	<u>, , , , , , , , , , , , , , , , , , , </u>		
Heart	(51)	(50)	(51)	(51)
Endocrine System				
Adrenal gland	(49)	(47)	(48)	(51)
Spindle cell, adenoma		. ,	• •	1 (2%)
Adrenal gland, cortex	(49)	(47)	(47)	(51)
Alveolar/bronchiolar carcinoma, metast				1 (2%)
Spindle cell, adenoma		1 (2%)		
Adrenal gland, medulla	(49)	(47)	(48)	(50)
Pheochromocytoma benign	2 (4%)			

Table D1

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
2-Year Study (continued)	······································	······		
Endocrine System (continued)				
Islets, pancreatic	(49)	(48)	(48)	(47)
Adenoma	1 (2%)	2 (4%)	1 (2%)	()
Carcinoma		1 (2%)		
Pituitary gland	(45)	(45)	(45)	(48)
Neoplasm NOS	. ,		í (2%)	
Pars distalis, adenoma	4 (9%)	3 (7%)	4 (9%)	
Thyroid gland	(47)	(49)	(50)	(47)
Bilateral, follicular cell, carcinoma	1 (2%)			
Follicular cell, adenoma			1 (2%)	1 (2%)
General Body System				
Tissue NOS		(2)	(1)	
Posterior, fibrosarcoma			1 (100%)	
Genital System				
Ovary	(51)	(49)	(50)	(51)
Cystadenoma	2 (4%)	3 (6%)	4 (8%)	2 (4%)
Histiocytic sarcoma		1 (2%)		
Uterus	(50)	(49)	(49)	(51)
Hemangioma	1 (2%)			
Histiocytic sarcoma		1 (2%)		
Leiomyosarcoma	1 (2%)			
Polyp		1 (2%)		
Sarcoma			1 (2%)	
Sarcoma stromal				2 (4%)
Hematopoietic System				
Bone marrow	(51)	(48)	(49)	(51)
Lymph node	(49)	(49)	(49)	(50)
Mediastinal, histiocytic sarcoma		1 (2%)		
Lymph node, mandibular	(47)	(47)	(49)	(48)
Lymph node, mesenteric	(45)	(45)	(48)	(47)
Squamous cell carcinoma, metastatic, sto		(10)	1 (2%)	
Spleen	(50)	(48)	(48)	(48)
Thymus Alveolar/bronchiolar carcinoma, metasta	(43) tic	(44)	(49)	(42)
				1 (2%)
ntegumentary System	(51)			
Skin Fibroma	(51)	(49)	(51)	(51)
Fibrosarcoma	1 (2%)	1 (00)		
Hemangioma	1 (2%)	1 (2%)	1 (70%)	
Subcutaneous tissue, leiomyosarcoma	1 (2%)		1 (2%)	
Musculoskeletal System				
Bone	(52)	(50)	(51)	(51)
Vertebra, osteosarcoma	(52)	(50)	(51)	(51)
	(2)	1 (2%)	(1)	
Skeletal muscle				

ąć.

TABLE D1

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
2-Year Study (continued)		<u></u>		
Nervous System				
Brain	(49)	(49)	(50)	(49)
Meningioma malignant		1 (2%)		
Respiratory System	<u> </u>			
Lung	(51)	(49)	(49)	(51)
Alveolar/bronchiolar adenoma	2 (4%)	5 (10%)	7 (14%)	15 (29%)
Alveolar/bronchiolar adenoma, multiple				5 (10%)
Alveolar/bronchiolar carcinoma				7 (14%)
Nose	(50)	(50)	(51)	(50)
Special Senses System				· · · · ·
Harderian gland	(1)	(1)	(1)	(1)
Adenoma	1 (100%)	1 (100%)	1 (100%)	1 (100%)
			· · · · ·	·····
Urinary System		· · ·		
Kidney	(50)	(47)	(49)	(49)
Urinary bladder	(45)	(47)	(48)	(47)
Systemic Lesions				
Multiple organs ^c	(52)	(50)	(51)	(51)
Histiocytic sarcoma	í (2%)	1 (2%)		
Lymphoma malignant	4 (8%)	2 (4%)	1 (2%)	
Lymphoma malignant histiocytic	1 (2%)			1 (2%)
Lymphoma malignant lymphocytic		6 (12%)	6 (12%)	4 (8%)
Lymphoma malignant mixed		3 (6%)	1 (2%)	1 (2%)
Neoplasm Summary				
Total animals with primary neoplasms ^d				
15-Month interim evaluation	1		1	2
2-Year study	25	41	36	34
Fotal primary neoplasms	·			
15-Month interim evaluation	1		1	2
2-Year study	33	69	65	56
Fotal animals with benign neoplasms	<i>.</i>		-	-
15-Month interim evaluation	1	22	1	2
2-Year study	20	33	33	26
Total benign neoplasms	-		4	2
15-Month interim evaluation	1	47	1	2
2-Year study	23	47	50	39
Fotal animals with malignant neoplasms	0	19	13	14
2-Year study Total malignant neoplasms	8	17	15	14
2-Year study	10	22	14	17

Table D1

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
Neoplasm Summary (continued)				
Total animals with metastatic neoplasms				
2-Year study	1		1	1
Total metastatic neoplasms				
2-Year study	2		2	3 .
fotal animals with uncertain neoplasms				
benign or malignant				
2-Year study			1	
Total uncertain neoplasms				
2-Year study			1	

а Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site.

b Of the animals designated for the 15-month interim evaluation, only 5-10 per dose group were examined microscopically.

c d

feren in the second strategies in the second se

Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms

· · · · · · · · · · · · · · · · · · ·				A																		_							_		
Number of Days on Study	. ·			· 0	0) 0) 0 2 4	0	1	1 5 9		4 7 4	5 5 0		5 8 9	5 8 9	2	6 7 3		8		7 0 8	1	7 2 9	7 3 2							
						•						• .																			
			-	3	3	: 3	3	3	3	2	3	3	2	2	3	3	2	3	3	2	2	2	3	3	3	3	3	3	3	3	
Carcass ID Number			,	0	4	1	4	3	1	8	1	0			2			3	4	8	9	9	0	1	3	3	3	3	4	0	
				7	-				6	4	0					5		4	4					2				-	1	-	•
				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	<u> </u>	-	<u></u>		<u></u>			î																							
Alimentary System																															
Esophagus	•			4		+ +	+ -	- +	+	+	+							Α					+		+	+	+	+	+	+	
Gallbladder	• •	•		4	-	A A			+	+	+				+			A					+	+	+	+	+	+	+	+	
Intestine large				-		+ +		- A													-		+	+	+	+	+	+	+	+	
Intestine large, cecum			· •				1 4											Α					+	+	+	+	+	+	+	+	
Intestine large, colon		•		A	1													Α						+	+	+	+	+	+	+	
Intestine large, rectum			~	A	1	+ +		- A																+	+	+	+	+	Μ	+	
Intestine small				· 1		F A												Α						+	+	+	+	+	+	+	•
Intestine small, duodenum	•			~ -				A A															+	+	+	+	+	+	+	+	
Intestine small, ileum				A	۱ A	A A	V	Λ	. +	+	I	Α	+	Α	+	+	+	Α	Μ	+	Α	+	+	+	+	+	+	+	. ,+	+	
Intestine small, jejunum			•	A	۱.A	A A	A	A																+	+	+	+	+	+	+	
Liver				-		+ +	+ +	- +	+	+	+	Α	+	+	+	+	+	Α	+	+	+	+	+	+	÷	+	+	+	+	+	
Hepatocellular adenoma																				Х				Х				Х	Х	х	
Histiocytic sarcoma																			Х												
Mesentery																							+		+			+			
Pancreas				-		+ -1	- A	۰ +	+	+	+	Α	+	+	+	+	+	Α	Α	+	+	+	+	+	+	+	+	+	•+	+	
Salivary glands				H		+ 4	+ +	+ +	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	
Leiomyosarcoma, metastatic																	х														
Stomach				· - +		+ -	- +	- +	+	+	+	Α	+	+	+	+	+	Α	Α	+	Α	+	+	+	+	+	+	+	+	+	
Stomach, forestomach				4		+ +	- +	- +	+	+	+	Α						Α						+	+	+	+	+	+	+	
Papilloma squamous															х																
Stomach, glandular			•	H		⊦ A	1 +	- +	+	+	+	Α	+	Μ	+	+	+	Α	A	+	Α	+	+	+	+	+	+	+	+	+	
<u></u>							_		<u> </u>	- <u>-</u>																					<u> </u>
Cardiovascular System Heart				-				- +	+	+	+	4	+	+	+	+	+	A	+	+	+	+	+	Ŧ	+	+	+	Ŧ	+	+	
ittait				-		г т		r r	т	т	т	т	т	-1-	т	т	ч.	A	т	т	т	т	т	Ŧ	т	т	т	т	т	т	
Endocrine System														-		- <u></u>															
Adrenal gland			4						+	+	+	Α	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	
Adrenal gland, cortex					י ה -	 		- 4	+	4	+	A	+	÷.	+	+		M		+	+	+	+	+	+	÷	+	÷	+	+	
Adrenal gland, medulla				ب	י ב	יי			+	+	+	A	+	÷	+			M		+	+	+	+	+	÷	÷	, +	÷	+	_	
Pheochromocytoma benign				1	7		T	т	т	1.	т.	~		τ.	T.	1		141			T.	ч.	1.	τ.	Т.	1	т	Т.	-1-	T.	
									L	ــ	. د	۸	ъ	_لو	л.	ъ	ـ	٨	حد	Ŧ	ـد	ᆂ	ъ	л.		ъ	÷	ъ	بد	ъ	
Islets, pancreatic				٦		r 1		v +	т	т	т	A	т	т	т	т	т	A	т	T	т	т	T	т	Ŧ	т	Ŧ	+	Ŧ	+ X	
Adenoma Barathuraid aland							. .					14			14	17	N 4	14	34	ر	1 4	14				۰	J				
Parathyroid gland								- +																				+	+		
Pituitary gland				4			- 4	- +	+			А	+	īVI	+		+	(VI	÷	+	IVI	+	+	Ŧ		IMI	+	+	+	+	
Pars distalis, adenoma										X						X				,					X	,					
Thyroid gland				-		- 1	4	- +	+	+	+	A	+	+	+	+	+	A	A	+	+	+	+	+		+	+	+	+	+	
Bilateral, follicular cell, carci	noma																								х						

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: Vehicle Control

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

· Sunat

(continued) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 1 7 777 Number of Days on Study 2 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 2 2 3 3 3 2 2 2 2 22 3 3 3 3 3 **Carcass** ID Number 1 1 2 3 4 4 4 4 5 8 9 0 1 2 8 88 9 9 9 0 0 2 3 4 Total 09 3 9 8 0 1 2 7 0 2 6 2 4 196 369 1 2 7 50 **Tissues**/ 1 Tumors **Alimentary System** Esophagus 4 M 50 Gallbladder M + + 41 Intestine large 47 + + + 4 4 4 + 4 + 4 + + 4 + + + Intestine large, cecum 42 + + + ++ + Intestine large, colon + + + + + + + + 4 + + 4 + + + + 46 + Intestine large, rectum + + + Μ 42 M Intestine small + + + 4 + 44 Intestine small, duodenum + + + + 44 + + + + + + + + + Intestine small, ileum + + + + + + + 41 ++ + + ++ + + + + + + + + Intestine small, jejunum + + + + + + 41 + + + + + + + + + + + + + + + + + Liver 50 + + + + Hepatocellular adenoma хх 8 X Histiocytic sarcoma 1 Mesenterv 7 Pancreas 48 Salivary glands + + + + + + 51 Leiomyosarcoma, metastatic 1 Stomach 48 + Stomach, forestomach 48 + + + + + + + + + + + + + Papilloma squamous 1 Stomach, glandular 46 Cardiovascular System Heart 51 **Endocrine System** Adrenal gland + М 49 + Adrenal gland, cortex + + + + М + + + + + + + + + + + + + 49 Adrenal gland, medulla + + + M + + 49 + + + + + + + + + + + + + + + + + + Pheochromocytoma benign Х х 2 Islets, pancreatic + + + 49 + + + + + + Adenoma 1 Parathyroid gland + I + M + + + 35 + + + + + + + + ΜM + М + + + + Pituitary gland + + + + + + I + + ++ + + + + + + + M + + + + 45 Pars distalis, adenoma х 4 Thyroid gland + + I + + + 47 Bilateral, follicular cell, carcinoma 1

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: Vehicle Control

1

۰.

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

Number of Days on Study 0 0 0 1 5 6 7 5 5 8 2 7 8 8 9 0 2 2 4 2 9 7 4 0 7 9 9 3 3 3 4 8 Carcass ID Number 0 4 1 4 3 1 8 1 0 9 8 2 2 8 4 8 9 0 Carcass ID Number 0 4 1 4 3 1 8 1 0 9 8 2 2 8 3 4 8 9 7 2 5 5 7 6 4 0 3 7 3 2 5 8 4 4 5 5 1 <	7 7 7 7 7 7 7 7 7 7 7 1 2 2 2 2 2 2 2 2 3 4 9 9 9 9 9 9 9 9 9 2
Carcass ID Number 0 4 1 4 3 1 8 1 0 9 8 2 2 8 3 4 8 9 7 2 5 5 7 6 4 0 3 7 3 2 5 8 4 4 5 5 1 <th></th>	
General Body System NoneGenital System Ovary Ovary Uterus Uterus Leiomyosarcoma 	2 3 3 3 3 3 3 3 9 0 1 3 3 3 3 4 0 4 1 2 1 3 8 9 1 5 1 1 1 1 1 1 1 1 1
Genital SystemOvary $+ + + + + + + + + + + + + + + + + + + $	
Bone marrow $+ + + + + + + + + + + + + + + + + + + $	+ + + + + + + + + + X + + + + + + + + +
-	+ + + + + + + + + + + + + + + + + +
	+ + M + + + + + + + + + + + + + + + X X
Musculoskeletal System Bone + + + + + + + + + + + + + + + + + + +	+ + + + + + + + +
Nervous System Brain + + + + + + + + + + + + + + + A + + + A	+ + + + + + + + +
Respiratory SystemLung $+ + + + + + + + + + + + + + + + + + + $	

Table D2

والمعالة فقصاف والمعادية فالعلوم العاصيليني والمارية والمعتقف ومستشفاها والمستقد

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: Vehicle Control. (continued)

																_		_				-				
Number of Days on Study	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	3	7 3 2	7 3 2		7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	3	
Carcass ID Number	1 1	3 1 9 1	2 6		3 4 0 1	4	3 4 6 1		5 0	2 8 9 1	9 3	0 9	1 8	2 0	8 1	8 2		0	9 2	2 9 6 1	0 2	3 0 4 1	2 1	3 2	4 7	Total Tissue Tumos
General Body System None						<u> </u>																				
Genital System Ovary Cystadenoma Uterus Hemangioma Leiomyosarcoma Vagina	+		+ + X	+	+	+ +	++	++	++	++	++	++	++	+	++	++	++	++	++	++	++	++	++		+ X +	51 2 50 1 1 1
Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+ + + + +	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + +	+ + + + + +	+ + + + + +	+ + + + + + I	+ + + + + M	+++++++	+ + + + + + + +	+ + + + + + +	+ + + + + + +	+ + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	+ + + + + +	+ + + + + M	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + +	+ + + + + + +	+ + +	51 49 47 45 50 43
Integumentary System Mammary gland Skin Fibroma Fibrosarcoma Subcutaneous tissue, leiomyosarcoma	+ +	 + +	++	+++	++	+++	+ +	++	++	++	+++	++	+++	+++	++	+++	+++	++	+++	+++	++	++	+++	++	+++	47 51 1 1 1
Musculoskeletal System Bone Skeletal muscle Leiomyosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	52 2 1
Nervous System Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	49
Respiratory System Lung Alveolar/bronchiolar adenoma Nose Trachea	+ + +	 + + +	· +	++++	+ + +	+ + +	+ x + + +		+++		+ + +	++++	++++	+ + +	+ + +	+ + +	++++	+++++	+ + +	++++	+++	+++	++++	++++	+++++++++++++++++++++++++++++++++++++++	51 2 50 50

4*

.

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued)

Number of Days on Study	0 0 0 0 0 1 3 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7
Carcass ID Number	3 3 3 3 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3
Special Senses System Eye Harderian gland Adenoma	
Urinary System Kidney Urinary bladder	+ + + + + + + + A + + + + + A + + + + +
Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant Lymphoma malignant histiocytic	+ + + + + + + + + + + + + + + + + + +

A STATE A STATE A STATE OF A STAT

Table D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: Vehicle Control (continued) Number of Days on Study **Carcass** ID Number 1 1 2 3 4 4 4 4 5 8 9 0 1 2 8 8 8 9 9 9 0 0 2 3 4 Total 1 9 6 5 0 3 6 9 0 9 3 9 8 0 1 2 7 0 2 6 2 4 1 2 7 Tissues/ Tumors Special Senses System 1 Eye + Harderian gland + 1 Adenoma х 1 Urinary System Kidney + 50 + + + + 45 Urinary bladder A A + A + + + MA +A + + + + + + + + + + + + + + Systemic Lesions 52 Multiple organs + + Histiocytic sarcoma 1 4 Lymphoma malignant Lymphoma malignant histiocytic х 1

221

.

 TABLE D2

 Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 50 mg/kg

· · · · · · · · · · · · · · · · · · ·																													_
			5 6							7					7	7			7	7	7	7	7	7	7	7			
Number of Days on Study	. 9 5	-	2 3 2							1 5	2 2	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	3 0	3 2	3 2	3 2			
	. 3		3 3		3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	3	3	3	3			
arcass ID Number	. 9 1 1	e	5 0		9 (0	7		9	1	7		5	0	1	3	4		6	7	1	2	5	0	7 8 1	4			
limentary System																		1.									· <u> </u>		
Esophagus	+	-	+ -	۲	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+			
Gallbladder	M	[-	+ /	ł	+	+	Α	+	A	+	+	I	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+			
Intestine large	Α		+ /	ł	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, cecum	Α		+ /	1	+	+	Α	+	A	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, colon	Α		+ /	ł	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, rectum			+ 4									+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+			
Intestine small			+ /									+	+	+	+	+	+	+	+	+	+	+	+	·+	+	+			
Intestine small, duodenum	Α	•	+ 4	ł					Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine small, ileum	Α		+ /	ł	+	+	Α	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+,			
Intestine small, jejunum	Α		+ /	1	+									+	+	+	+	+	+	+	+	+	+	+	+	+			
Liver	+	•	+ -	F	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Hemangiosarcoma Hepatoblastoma																													
Hepatocellular carcinoma										х		X										1							
Hepatocellular adenoma											Х	Х				х		х		х	х		۰.,۰		·	х			
Hepatocellular adenoma, multiple																			х	• .		x			х				
Histiocytic sarcoma	X																												
Mesentery	+						+																					~	
Histiocytic sarcoma	X																							۰.					
Pancreas	A	•	+ -	F	+	+	+	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Pharynx Salimmu alanda				F																									
Salivary glands	+		+ ~	-	+ ·	+	+	+	+	+	+	+	+	+	+	- † -	+	+	+	+	- T	+	+	+	+	+			
Stomach	A		+ ~		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach, forestomach	Α		+ -	F	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	+	Ŧ	+	Ŧ		+	Ŧ	Ŧ	+	+	+			
Papilloma squamous																		х		х									
Squamous cell carcinoma									м					ı.	1.														
Stomach, glandular	A		+ -	-	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Cardiovascular System										_					_														
Heart	+		+ -	⊦ 	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
ndocrine System							_							_	_								. 7						
Adrenal gland			+ -		+		Α			+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Adrenal gland, cortex	Α	-	+ +	F	+	+	A	+	Α	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Spindle cell, adenoma				_						X															•				
Adrenal gland, medulla			+ -											+		+		+	+	+	+	+	+	+	+	+			
Islets, pancreatic Adenoma Carcinoma	А		+ -	F		+ x	+	+	Α	+	+	+	+	+	+ x		+	+	+ x	+	+	+	+	+	+	+			
Parathyroid gland		r 1	.				÷	м	м	л.	ـ	ъ	т	ъ	ـ	л.		+	ـ	ъ	т	Т	ᆂ	ᆂ	т	+			
Paratnyroid gland Pituitary gland																		+					т 	т _	+	т Т			
	+		т -	۳	Ŧ	T	141	1¥I	A	Ŧ	IVI	T	т	т	т	т	т	т	т	x	т	т	т	т	т	т			
Pars distalis, adenoma Thyroid gland			+ -	L	т	ъ	L.	.ر		ـــ	ـــ	<u>ь</u>	بر	Т	بد	<u>ـ</u> ـ	<u>т</u>	+	ъ		<u>ـ</u> ــ	<u>ь</u>	л.	т.		<u>н</u>			
	+		r -	r	T	T	T	T	А	-	+	- +	- +	- +	-	-	+	-	T.	Ť	- T		-+-		+	+			

Warmen and the art of a second state of the se

3.7

(continued) 7 7 7 7 7 7 7 7 77 7 7 7 777 7 7 7 7 7 7 7 7 7 Number of Days on Study 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 33 3 3 3 3 3 3 3 4 4 4 4 4 3 3 3 3 3 4 4 4 4 **Carcass** ID Number 0 1 5 5 6 6 8 9 9 9 9 0 0 1 1 2 5 6 7 7 8 0 0 0 1 Total 8 10 589 6 1 3 0 2 8 2 7 2 5 7 9 0 Tissues/ 4 3 4 4 9 3 1 1 1 1 1 1 1 1 1 1 1 1 1 Tumors 1 1 1 1 1 1 1 1 1 1 1 1 Alimentary System Esophagus 48 Gallbladder + + 44 Intestine large 47 Intestine large, cecum 46 + + + + + Intestine large, colon + + + + + 47 Intestine large, rectum 45 + + + + T Intestine small + + 46 Intestine small, duodenum + + + 46 + Intestine small, ileum + + + 46 + + + + + + + + + + + + + + + + + + + Intestine small, jejunum + 46 + 49 Liver + + + Hemangiosarcoma х 1 Hepatoblastoma х 1 Hepatocellular carcinoma 3 х хх Hepatocellular adenoma х х ххх хх х х 18 х Hepatocellular adenoma, multiple х х х х 8 Histiocytic sarcoma 1 Mesentery 6 + Histiocytic sarcoma 1 Pancreas 48 Pharynx 1 Salivary glands + 50 + + Stomach + + + + 49 + + + + ÷ + + + + + + ++ + + + + + ++ Stomach, forestomach + 49 + х х хх 5 Papilloma squamous Squamous cell carcinoma 1 Stomach, glandular + + + + + + + + + + + 48 + + ++ + + + + + + + + Cardiovascular System 50 Heart + + + + + + + + + + + + + ++ + + + **Endocrine System** Adrenal gland 47 + + + + + + + ++ + + + + + + + + + + + + + + + Adrenal gland, cortex 47 Spindle cell, adenoma 1 Adrenal gland, medulla 47 Islets, pancreatic 48 + + + + + Adenoma 2 Carcinoma 1 Parathyroid gland M + + M + + + ++ MM + + M + + MM + +38 + + + Pituitary gland 45 + + + + + + + + + M + + + + + + + + Pars distalis, adenoma Х X 3 Thyroid gland 49 + + + + + + + + + + + + + + + + +

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 50 mg/kg

223

(continued)																													
Number of Days on Study	2 . 9)	9	6 2 2	6 3 5		6 7 0		6 8 3	7 1 5	7 2 2	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9		7 3 0	7 3 2	7 3 2	_			
Carcass ID Number	9		6	8 0	3 8 9 1	0 0	6 7	7 4		5 1	5 7	6 3	6 5	7 0	7 1	8 3	8 4	9 2	9 6	9 7	0 1	1 2	5	6 0	-	4		 -	
General Body System Tissue NOS						_																+	+						· ·
Genital System Ovary Cystadenoma Histiocytic sarcoma Uterus Histiocytic sarcoma Polyp	-	+ <	+		++	+	+	+	A	+	+	+	+	++	+	+	++	+	+	+ x +		+	+	+	+	+		 	
Hematopoietic System Bone marrow Lymph node Mediastinal, histiocytic sarcoma Lymph node, mandibular Lymph node, mesenteric Spleen Thymus		K + M	++++++	+ M A	+ +	+ +	+	+ + +	A M M A A	+++++	+ + +	+ +	+	+ + + I +	+ + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + +	+ + + + + + + +	+ + + + + + + + +	++++++++++	++ ++++++++++++++++++++++++++++++++	+ + + + + + +	+ + + + + + +	+++++++++++++++++++++++++++++++++++++++	++ + + +++++	[+ + +	-		
Integumentary System Mammary gland Skin Fibrosarcoma		-			++		+ +	+ + X		++	++	+++	++	+ +	+++	++	+++	+ +	++	++	++	++	++	++	++	+++	•	 	
Musculoskeletal System Bone Vertebra, osteosarcoma	-	 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	 +	+			
Nervous System Brain Meningioma malignant		 F	+	+	+	+	+	+	A	+	+ x		+	+	+	+	+	+	+	+	+	+	+	+	+	+			

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)

Table D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)

										_														_		
Number of Days on Study	7	73	7 3	7 3	7 3	7 3	7 3	7	7 3	7	7 3	7 3	7 3		7 3	7 3	7 3	7 3	7 3	7 3		7 3		7 3		
dumeer of mays on Study	3 2	-	-	-	-			-	-	-					3 3			3 4	3 4	3 4	_	3 4			3 4	
				3										4	4		3		-		-	4	4	4	4	
Carcass ID Number	0	-	5	5	6		8	9	9		9				1				7		-	0	0	0	-	Total
	8 1	4 1	3 1	4 1	4 1	9 1	1 1		5 1						3 1							5 1			0 1	Tissu Tumo
General Body System Tissue NOS																										2
Genital System				·																		-				
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Cystadenoma Histiocytic sarcoma									х													Х				3
Uterus	.	Ŧ	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Histiocytic sarcoma	•	'			'	•	•	'	•	,	'	•		•	•	•	'	'			•	•	'	•	•	1
Polyp																х										1
Hematopoietic System											_						,				<u> </u>					
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Mediastinal, histiocytic sarcoma																										1
Lymph node, mandibular	+	M		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Lymph node, mesenteric	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		45
Spleen	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Thymus	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Integumentary System																										
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	++	+	+	+	+	+	+	+	+	+	48
Skin Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1
Musculoskeletal System										_					-											
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Vertebra, osteosarcoma			x																							1
Nervous System			_													_				_						<u> </u>
Brain Meningioma malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
																										1

225

• •	
Number of Days on Study	4 5 6 6 6 7 3 3 3 3 3 3 3 3 3 3 3
Carcass ID Number	3 3 3 4 3
Respiratory System Lung Alveolar/bronchiolar adenoma Nose Trachea	++++++A++++++++++++++++++++++++++++++
Special Senses System Eye Harderian gland Adenoma	
Urinary System Kidney Urinary bladder	A + + + A + A + + + + + + + + + + + + +
Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant Lymphoma malignant lymphocytic Lymphoma malignant mixed	+ + + + + + + + + + + + + + + + + + +

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 50 mg/kg (continued)

Number of Days on Study	7 3 2	7 3 2	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	
Carcass ID Number	0	4 1 4 1	3 5 3 1	3 5 4 1	4	9	3 8 1 1	-	-			4 0 3 1		4 1 1 1		0	2	8	3 7 2 1	7	-	5	4 0 7 1	-	4 1 0 1	Total Tissues Tumors
Respiratory System Lung Alveolar/bronchiolar adenoma Nose Trachea	+ + +	+ + +	++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ X + +			++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ X + +	+ + +	+++++	+ + +	+ + +	++++	+++++++++++++++++++++++++++++++++++++++	+ + +	49 5 50 49
Special Senses System Eye Harderian gland Adenoma	<u>. </u>	ľ				+ + X																				1 1 1 1
Urinary System Kidney Urinary bladder	+	+	` + +	++	+ M	+ +	+++	++	+ +	+ +	+ +	++	+ +	+ +	++	+++	+ +	+ +	+ +	+ +	++	+ +	+	+	+	47 47
Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant Lymphoma malignant lymphocytic Lymphoma malignant mixed	+	+	+	+ x		+	+ x		+	+	+	+	. +	+	+	+	+	+		+ x		+ x		+	+ X	1

227

2.

12.3

															-		_				_	-			_			
Number of Days on Study	0 0 3	0	07	e	5 8	ŝ	7	7 8	8	9	2		7 2 9		7 2 9	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2								
······································	• • •					4.		••••								_												_
Carcass ID Number	4 5 0 1	4	8	e	3 3	5 (6	· 2 (9 :	1	5 1	23	5	7	1	2		6	6 7	7			7					7 1	
<u>م الم الم الم الم الم الم الم الم الم ال</u>				•.				<i></i>						···	• •													
Nimentary System																												
Esophagus	÷	· - I			÷-	÷ +	+	÷	+	+	+	+	+	+	÷	+	+	÷	+	+	+	+	+	+	+	+	+	
Gallbladder	+				Å -							+	+	+	+	+	÷	+	+	+	+	+	÷	+	+	+	÷	
Intestine large	A	4		- 4	Á-			+ .		+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	
Intestine large, cecum	A	् न		- 4	٠ ۲	+ -		+ /		+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	
Intestine large, colon	Å	4	ا	÷ ./	Á -		+ ·		A	4	+	÷	+	+	+	+	+	+	+	+			÷	÷	÷.	+	÷	
Intestine large, rectum	A	י . ב	•		л - А -		Ļ.	+ /		÷	÷	+	÷	Ļ	÷.	۔ ب	÷	÷	Ť	- -		Ţ	Ť	т Т	Т.	т Т	т Т	
Intestine small	A .	. 1	1	-	ч. Ч.				A A		т _	т -	т _	T L	- -	т ,	т 	T J	5	۳ ر	-	- T	- T	т ,	+	-	T	
Intestine small, duodenum	A	. 1		-	-						T	т -	+	Ť	T	+	T	+	+	+	+	+	+	+	+	+	+	
	A	. 1		- 4	A -			+ 4		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, ileum	A	. 1		- 4	• •	r -	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Intestine small, jejunum	A			- 4	<i>.</i>	+ •	+ ·		A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Liver	+	-			+ -			+ :		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Hepatocellular carcinoma							X		X																			
Hepatocellular adenoma				2	κ 3	ĸ	2	x										х	х		х		х			Х		
Hepatocellular adenoma, multiple Mesentery						2	x			+		х				х								х	х			
Squamous cell carcinoma, metastatic, stomach										x																		
Pancreas	Α	. 4	- 4	- /	۰ ۱	+ •	+ -	+ 4	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Salivary glands	+	- +	• +	- 4	+ -	+ -	+ •	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach	+	-+	- +	- /	۰ ۱	+ •	+ •	+ 4	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Stomach, forestomach	+	4		- 4		+ -		+ 4		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Papilloma squamous	•			•	-	-				•	•	·	•	•	·	·	·	·		•	•	•	•	•	•	•	•	
Squamous cell carcinoma										x																		
Stomach, glandular	.1			_ ,		ь.	. .	+ 4			÷	ì	Ŧ	Ŧ	+	Ŧ	+	+	L.	L.	Ĺ.	ъ	Ĺ	ъ	<u>ــ</u>	ъ	ъ	
Stomacii, giandulai	. +	-1	- T	- F			т ·	τ <i>ι</i>	r %	Τ.,	.	T .	- T	Ŧ	T	*	7	Ŧ	т	Ŧ	т ,	т	T	т	Ŧ	Ŧ	т	
Cardiovascular System																												
•			:											÷														
Heart	+	+	+		- -	- -	T	T .	T	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	т	Ŧ	+	+	+	+	Ŧ	+	+	+	
Endocrine System			-			-			_																			
								÷		١ż						,									ì			
Adrenal gland																+ ·												
Adrenal gland, cortex																+												
Adrenal gland, medulla																+												
	A	+	- +	- /	/ -	+ -	+ •	+ 1	A	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	
Islets, pancreatic																												
Islets, pancreatic Adenoma										<u>т</u>	+	+	+	+	+	+	+	+	Μ	Μ	+	1	Ĺ.	+	M	+	Μ	
Islets, pancreatic Adenoma Parathyroid gland																												
Islets, pancreatic Adenoma Parathyroid gland																Μ	÷	+	+							M		
Islets, pancreatic Adenoma Parathyroid gland Pituitary gland																Μ	÷	+	+							M		
Islets, pancreatic Adenoma Parathyroid gland Pituitary gland Neoplasm NOS					+ +											М		+ x	+							M		
Islets, pancreatic Adenoma Parathyroid gland Pituitary gland	+	+	- 4	- + >	⊦ + ≮	+ -	+ ·	+ 1	A	+	+		+	M	М	м +		x		+	+	+	+	+	+	м +	+	

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 100 mg/kg

Table D2

continued)																										
	7	7	7	•	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
umber of Days on Study	3	3	3	3		3	3		3		3	3	3			3	3	3	3	3	3	3	3	3	-	
	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
Carcass ID Number	8	8	9	2	2	3	3	4	4	5	6	6	7	7	7	8	3	3	5	5	5	6	6	7	7	Total
	5	8	0	5	6	3	6	0	5	4	5	9	6	8	9	9	0	4	3	8	9	2	4	2	4	Tissu
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumo
Alimentary System					_				·		_			<u>.</u>				_								
Esophagus	+	+	+	+	+	М	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	50
Gallbladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	48
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	48
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine large, rectum	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	+	+	+	+	+	+	+	48
Intestine small	+	+	+	+	÷.	+	+	+	+	+	+	+	+	÷	+	+	+	÷	+	+	+	+	+	+	+	48
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	, +	+	÷	÷	+	÷	+	+	÷.	÷	+	+	+	+	+	48
Intestine small, ileum	÷	+	- -	÷	÷	÷	+	+	÷	+		+	÷	+	+	+	+	+	+	÷	÷		÷	_		48
Intestine small, jejunum	- T	+	+	т +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	т —	+	-	+	- -	+	48
Liver			т 	т 	т 		+	т Т	т 	+	- -	+			+		+	т _	т Т	т 		т Т			+	51
Hepatocellular carcinoma	т	Ŧ	x	т	т	т	т	т	т	т	т	т	Ŧ	т	T		т	т	.1	т	т	т	т	т	т	3
Hepatocellular adenoma	v	х			х			х			х					v	x	v		v	x		х			20
	л	Λ		Λ	Λ	x		л		v		v				Λ	Λ	Λ	•	Λ	Λ		л	x		
Hepatocellular adenoma, multiple						л				X		Х												л		9
Mesentery Squamous cell carcinoma, metastatic, stomach			+							+																3
Pancreas	<u>т</u>	-	Ŧ	Т	ш	ъ	т.	Ŧ	ъ	Т	т.	ъ	т	<u>т</u>	т	Ъ	Ŧ	Т	Т	Ŧ	<u>т</u>		-	т	л.	48
Salivary glands					т 	т 	+	+	т 	+	+	+	+	т -	+	Ŧ	Ŧ	- -	т 	т Т		- T	т 		- T	48 51
Stomach	- T	т 	Ť	- -	т 	T.	+	T	÷	т 	T.	+	т 	+		+	+	+	Ť	- T - L	- T	т -			T	49
Stomach, forestomach	Ţ	Ť	Ť	Ţ	Ť	Ţ		Ţ.	Ţ	т	T		Ţ						т	Ţ.			Ţ	Ţ	Ţ.,	
	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+ X	+	+	Ŧ	+	+ X		+	+	+	49
Papilloma squamous																Λ					л					2
Squamous cell carcinoma									•																	1
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Endocrine System																										
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Islets, pancreatic Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	48 1
Parathyroid gland	+	+	+	Μ	+	М	+	+	+	+	+	Μ	М	+	+	+	+	+	+	+	+	Ι	+	+	Μ	40
Pituitary gland	+	+	+	+	+	+	` +	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	45
Neoplasm NOS																										1
Pars distalis, adenoma	Х														х									х		4
Thyroid gland			+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+		+	50
Follicular cell, adenoma																										1

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued) 229

0 0 0 5 5 6 6 6 6 7 77 77 Number of Days on Study 0 0 7 6 8 7 7 8 9 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4046299 49 9 9 9 9 9 9 9 9 9 9 9 2 2 2 2 2 4 **Carcass ID Number** 5 4 8 6 5 4 2 6 5 2 3 3 4 4 5 6 6 7 8 8 8 2 3 4 5 7 57 7 0 9 56 9 2 6 7 7 7 9 7 4 3 1 1 3 1 6 1 6 2 1 **General Body System** Tissue NOS Posterior, fibrosarcoma **Genital System** Ovary + + Cystadenoma х Uterus + Μ + + Sarcoma Hematopoietic System Bone marrow + + + A + + + Α + ++ + + + + + + Lymph node + M + + + + A + + + + + ++ + + + + + + Lymph node, mandibular + M + + M + + + ++ + + + ++ + + + + + + + Lymph node, mesenteric + MA ++ A + + + + + + + + 4 + + Squamous cell carcinoma, metastatic, х stomach Spleen + M + A ++ A + + + + + + + + + + + + + + + + + + + Thymus Ι Α + + + + + + + **Integumentary System** Mammary gland + M + + + + + + + + + + + + + + + + + ++ + + + + + Skin + Hemangioma Musculoskeletal System Bone Skeletal muscle Nervous System Brain + + + + + + ++ + + + + + +**Respiratory System** Lung Α Alveolar/bronchiolar adenoma х х Nose + + + + + + ++ + + + Trachea Α + + + + + + + + + + + + + + + +

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 3 Number of Days on Study 3 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 3 3 3 3 4 **Carcass ID Number** 7 8 5 5 Total 8 89 2 2 3 34 4 5 6 6 7 7 3 3 5 6 6 7 7 9 89904389 Tissues/ 5 8 0 5 6 3 6 0 545 6 2424 Tumors **General Body System** Tissue NOS + 1 Posterior, fibrosarcoma Х 1 **Genital System** Ovary 50 + х Cystadenoma х х 4 Uterus + 49 + + + Sarcoma 1 Hematopoietic System Bone marrow 49 + + Lymph node + + + + 49 Lymph node, mandibular 49 ++ ++ Lymph node, mesenteric ÷ 4 + + 4 + 48 Squamous cell carcinoma, metastatic, stomach 1 Spleen 48 Thymus 49 + **Integumentary System** Mammary gland 50 + + + Skin 51 + Hemangioma х 1 **Musculoskeletal System** Bone 51 Skeletal muscle 4 1 **Nervous System** Brain 50 **Respiratory** System Lung 49 +Alveolar/bronchiolar adenoma х хх 7 Х Nose 51 + + + + Trachea 50

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

0 0 0 5 5 7 7 7 7 7 7 7777 77 77 777 6 6 6 6 Number of Days on Study 0 0 7 6 8 7 7 8 9 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 0 4 6 29 9 4 9 9 9 9 9 9 9 9 9 9 9 9 2 2 2 2 2 4 **Carcass ID Number** 5 8 6 5 26 5 2 3 3 5 6 6 7 8 88 23 4 57 4 4 4 4 9 4 35 691135 7 1 2 6 6 7 7 1 6 7 7 9 7 0 2 1 Special Senses System Eye + + X Harderian gland Adenoma Zymbal's gland **Urinary System** Kidney + + + Α + + + Α + + + + + + + + + + + + + + + + + Urinary bladder Α + Μ + + + Α + + + + + + + + + Systemic Lesions Multiple organs + + + + + + + ++ + + + + Lymphoma malignant х х Lymphoma malignant lymphocytic Lymphoma malignant mixed х

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

Lesions in Female Mice

Table D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 100 mg/kg (continued)

											•					_									
7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
8	8	9	2	2	3	3	4	4	5	6	6	7	7.	7	8	3	3	5	5	5	6	6	7	7	Total
5	8	0	5	6	3	6	0	5	4	5	9	6	8	9	9	0	4	3	8	9	2	4	2	4	Tissues/
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumors
														-											1 1 1
															+										1
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
																							·		
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
							х																		1
X					х											х							Х		6 1
-	3 2 4 8 5 1 	3 3 2 2 4 4 8 8 5 8 1 1 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3 & 3 & 3 & 3 \\ 2 & 2 & 2 & 3 \\ \hline 4 & 4 & 4 & 4 \\ 8 & 8 & 9 & 2 \\ 5 & 8 & 0 & 5 \\ 1 & 1 & 1 & 1 \\ \\ + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3	3 3																		

233

TABLE D2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 200 mg/kg

234

Number of Days on Study		4	3	2	5		6		5	2	9	0	1	1	1	6 3 7	5	7	8	8	0	0	1	1	2	7 2 9	2	đ	· · · · · · · · · · · · · · · · · · ·
Carcass ID Number		2 7		0 9	9 4	3 1	4 1	3 6	1 7	3 0	4 4.	0 1	5 1	0 8	4 8	5 3 2 1	2 8	1 2	9 5	1 5	9 8	5 2	2 6	4 5	0 7	1	4 3		
Nimentary System				·																									
Esophagus		+		• •	.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Gallbladder		- -	. A	Á	, _	Å	+	÷			•		÷	•		+	•	+	÷	Å	Å	Å	Å	÷	÷	+	÷		
Intestine large																+													
Intestine large, cecum																+										+			
Intestine large, colon																÷													
Intestine large, rectum																+												·	
Intestine small	•															+				-									
Intestine small, duodenum																+													
Intestine small, ileum																+													
Intestine small, jejunum																+													
Sarcoma		14	1		• •	11	'	'	'		•	••	•	•			x	•	'		'	••		•		•	•		
Liver		+		+	+	+	+	+	+	+	+	А	+	+	+	+		+	+	+	+	+	+	+	+	+	+		
Alveolar/bronchiolar carcinoma, metastatic		T		ſ	r	'		'	•		•				x	•		•	'	'	•	•	,	•	'	•	•		
Hepatocellular carcinoma																	Х												
Hepatocellular adenoma																							X						
Hepatocellular adenoma, multiple																			х										
Mesentery																					+								
Pancreas		+	· A	A	. +	A	+	+	+	+	+	Α	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+		
Salivary glands		+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach		+	· A	. +	• +	+	+	+	+	Α	+	Α	+	+	+	+	Α	+	+	+	+	+	Α	+	+	+	+		
Stomach, forestomach		+	· A	. +	• +	+	+	+	+	Á	+	Α	+	+	+	+	Α	+	+	+	+	+	Α	+	+	+	+		
Papilloma squamous																													
Stomach, glandular		A	A	A	. +	A	+	+	Ŧ	Α	+	A	+	+	+	+	Α	+	+	Α	+	Α	Α	+	+	+	+		
Cardiovascular System							_																						
Heart		+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	(+	+		
Endocrine System													_																
Adrenal gland		+	• +	+	+	+	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+		:
Spindle cell, adenoma																			·										
Adrenal gland, cortex		+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Alveolar/bronchiolar carcinoma, metastatic															x														
Adrenal gland, medulla																+								+	+	+	+		
Islets, pancreatic					+											+								+	+	+	+		
Parathyroid gland																+										+			
Pituitary gland																+													
		+	· M	[+	• +	+	+	+	+	+	+	Α	+	+	+	+	+	Μ	+	Α	+	+	+	+	+	+	+		
Thyroid gland Follicular cell, adenoma																													

(continued) Number of Days on Study Carcass ID Number 4 6 9 0 0 2 2 2 3 3 4 5 5 5 0 1 3 3 3 3 4 5 1 1 2 Total 9 0 1 0 3 0 2 4 3 4 0 5 6 7 6 6 5 7 8 9 2 8 3 8 5 Tissues/ Tumors **Alimentary System** Esophagus + 51 Gallbladder М 39 Intestine large + + 44 Intestine large, cecum + + + + + + + + 4 + 41 4 + + Intestine large, colon + 43 Intestine large, rectum + + I + + + + + + + 42 + + + 4 4 Intestine small + + + + + + + + 41 Intestine small, duodenum 38 + + + + + + + + + + + + + ++ + + + + + Intestine small, ileum + + + + 39 + + + + + + + + +Intestine small, jejunum + 41 4 + Sarcoma 1 Liver 50 Alveolar/bronchiolar carcinoma, metastatic 1 Hepatocellular carcinoma 1 Hepatocellular adenoma Х Х Х Х хх ХХ Х 10 Hepatocellular adenoma, multiple Х 2 Mesentery + 4 Pancreas 45 + + Salivary glands + + + + 51 + + + + + + + + + + + + + + + + Stomach + + + + + 46 + + Stomach, forestomach + + + 46 + Papilloma squamous Х X 2 Stomach, glandular 41 + + + Cardiovascular System Heart + + + + + + + + + + + + 51 **Endocrine** System Adrenal gland 51 Spindle cell, adenoma 1 Adrenal gland, cortex + 51 Alveolar/bronchiolar carcinoma, metastatic 1 Adrenal gland, medulla 50 + + + Islets, pancreatic + + + + + ++ + + + 47 + + + + + + + + + + + + + Parathyroid gland + + M ++ + + + + + 41 + + + + м + + + + + + + + + Pituitary gland + + + М + \pm + + Μ + + + + + + 48 + + + + Thyroid gland + + + + + 47 + + + + + + + ++ + + + + Follicular cell, adenoma х 1

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 200 mg/kg

235

.....

TABLE D2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 200 mg/kg

(continued) 0 1 2 2 66 6 66 7 7 7 7 77 2 2 2 3 4 4 5 6 6 6 7 Number of Days on Study 55 8 5 2901113 57 4 3 2 6 8 8 0 0 1 1 222 8 9 5 3 7 0 8 8 6 6 8 1 5 5 7 5 8 4 4 0 0 6 8 9 9 9 5 5 55 5 55 55 5 5 55 5 4 5 55 5 4 5 5 4 5 55 **Carcass ID Number** 2 5 093 4 3 1 3 4 0 5043 2 1 9 1 9 5 24 0 2 4 709 4 1 1 6 7 0 4 1 1 8 8 2 8 2 5 58 26 5 7 1 3 1 1 1 1 1 1 1 **General Body System** None **Genital System** Ovary + Cystadenoma Uterus + + + Sarcoma stromal Hematopoietic System Bone marrow Lymph node Α + Lymph node, mandibular + + + + + м + Μ + + + + + Μ + + + + + + + + + + +Lymph node, mesenteric + + + + + + + Α + + Μ + + + + + Μ + Α + + + + Spleen Α + + + + + + + Α + + + + Α + + + -+ + + + + + + + + Thymus + + + + + + M + M ++ + I + + M + Alveolar/bronchiolar carcinoma, metastatic х **Integumentary System** Mammary gland M ++ + + + ++ + +++ + + + + + + + Skin + + + + + + + + + + + + + Musculoskeletal System Bone +-+ + + + + + + + + **Nervous System** Brain Α + + + + + Α + **Respiratory System** Lung + + Alveolar/bronchiolar adenoma хх х х Alveolar/bronchiolar adenoma, multiple х х х Alveolar/bronchiolar carcinoma х Nose + + + + Α + + Trachea Μ + +

Table D2

A REFERENCES AND A REFERENCE

The second s

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 200 mg/kg (continued)

(continued)																											
Number of Days on Study	7 2 9	2	3	7 3 2	7 3 3	7 3 4	7 3 4	7 3 4	_																		
Carcass ID Number	4 9	6 0	9 1	0 0	3	2 0	2 2	2 4	3 3	3 4	4 0	5 5	5 6	5 7	0 6	1 6	3 5	3 7	3 8	3 9	4 2	5 8	1 3	5 1 8 1	2 5		Total Tissue Tumor
General Body System None						_																					
Genital System																											
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		51
Cystadenoma																									-		2
Uterus Sarcoma stromal	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X		+		51 2
Hematopoietic System		·												<u> </u>	·												<u></u>
Bone marrow	+	+	+	+	+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		51
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		48
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		47
Spleen	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	• +			48
Thymus Alveolar/bronchiolar carcinoma, metastatic	+	М	(+	+	+	М	: +	+	+	+	Ŧ	+	I	+	+	М	+	+	+	+	+	I	+	+	+		42 1
Integumentary System																											
Mammary gland	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+		50
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		51
Musculoskeletal System																											
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		51
Nervous System																											
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		49
Respiratory System																											
Lung	+	+	+	+	+	+		+	+		+	+			+	+	+	+		+	+	+	+	+	+		51
Alveolar/bronchiolar adenoma		v				х			Х	x		х	Х	х			X	X	Х		Х	x		X	•		15 5
Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma		Х		x			х			А	х				x					x		л					5 7
Nose	+	+	+		+	+			+	+		+	+	+			+	+	+			+	-	+	• +		50
Trachea	.+	+	+		+	+	+	+	+	+	+	+			+		+	+	+			· +			. <u>+</u>		50
										-	-	,								,	·		·				

237

-

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 200 mg/kg (continued)

Number of Days on Study	0 4 8	3			2 5 7		2 8 8	3 5 8	4 2 6	4 9 6	5 0 8	6 1 1	6 1 5	1	_		6 7 8	6 8 4	6 8 4	7 0 0	7 0 0	7 1 6	7 1 8	7 2 9	7 2 9	7 2 9	
Carcass ID Number	5 2 7 1	5	0	-	-	5 4 1 1	5 3 6 1	5 1 7 1	5 3 0 1	5 4 4 1	5 0 1 1	5 5 1 1	5 0 8 1	5 4 8 1	5 3 2 1	5 2 8 1	5 1 2 1	4 9 5 1	5 1 5 1	4 9 8 1	5 5 2 1	5 2 6 1	5 4 5 1	5 0 7 1	2 1	5 4 3 1	
Special Senses System Harderian gland Adenoma																									+ X		
Urinary System Kidney Urinary bladder		 		+ + \ +	- + - +	++							+		++			+ +			++					• +	
Systemic Lesions Multiple organs Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	-	 		+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	

Individual Animal Tumor Pathology of Female Mice in the 2-Year Gavage Study of Coumarin: 200 mg/kg (continued)

											-												· · · ·			
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	9	9	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	
	5	5	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
Carcass ID Number	4	6	9	0	0	2	2	2	3	3	4	5	5	5	0	1	3	3	3	3	4	5	1	1	2	Total
	9	0	1	0	3	0	2	4	3	4	0	5	6	7	6	6	5	7	8	9	2	8	3	8	5	Tissue
	1	1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.	1	1	1	1	1	1	Tumor
Harderian gland																										1
Adenoma																										1 1
Harderian gland Adenoma Urinary System																										1
Harderian gland Adenoma Urinary System Kidney		+		· +	 - +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	1 49
Harderian gland Adenoma Urinary System	+	++		· +	- + - M	+	+++	++	++	++	++	+++	+++	+++	++	++	+++	++	++	++	++	++		+++++++++++++++++++++++++++++++++++++++	+++	1
Harderian gland Adenoma Urinary System Kidney Urinary bladder Systemic Lesions	++	++	+++++++++++++++++++++++++++++++++++++++	 - +	- + - M	+	+++	+++	+++	++	++++	++	+++	++	++	++	++	++	++	+++	++	+++	 + +	++++	+++	1 49 47
Harderian gland Adenoma Urinary System Kidney Urinary bladder Systemic Lesions Multiple organs	++		+++++++++++++++++++++++++++++++++++++++			+ +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	++++++	+++++++	++++++	+++++++	+++++++	++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	 + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	1 49 47 51
Harderian gland Adenoma Urinary System Kidney Urinary bladder Systemic Lesions Multiple organs Lymphoma malignant histiocytic						• +	+	+++++++	+++++++	++++++++	++ + +	++++++	++++	++++	+ + + X		++++	++++++++	++++++++	+++++++	+++++++	++++++++	 - + 		•	1 49 47 51 1
Harderian gland Adenoma Urinary System Kidney Urinary bladder Systemic Lesions Multiple organs						+ (+ + X	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	+ + + X	+++++++++++++++++++++++++++++++++++++++	+++++++		•	+++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	 + + +	++++ ++	•	1 49 47 51

.

TABLE D3

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Gavage Study of Coumarin

	•	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg	
Liver: Hepatocellular Adenor	na	· · · · · · · · · · · · · · · · · · ·				
Dverall rates ^a		8/50 (16%)	26/49 (53%)	29/51 (57%)	12/50 (24%)	
adjusted rates ^b	`	23.4%	63.4%	62.9%	39.7%	
erminal rates ^c		7/33 (21%)	25/40 (63%)	25/42 (60%)	10/28 (36%)	
irst incidence (days)	· ·	694	722	564	684	-
ife table tests ^d		P=0.222	P=0.001	P<0.001	P=0.124	
ogistic regression tests ^d		P=0.525	P<0.001	P<0.001	P = 0.227	
Cochran-Armitage test ^d	+ .	P=0.525				
isher exact test ^d			P<0.001	P<0.001	P=0.227	
iver: Hepatocellular Carcin	oma					
verall rates	• .	0/50 (0%)	3/49 (6%)	3/51 (6%)	1/50 (2%)	
djusted rates		0.0%	7.3%	6.7%	2.8%	
erminal rates		0/33 (0%)	2/40 (5%)	1/42 (2%)	0/28 (0%)	
irst incidence (days)	, ,	_e	715	672	655	
ife table tests		P=0.465	P=0.162	P=0.162	P=0.484	
ogistic regression tests ochran-Armitage test	-	P=0.570N P=0.530	P=0.132	P=0.101	P=0.594	· ·
isher exact test		r=0.330	P=0.117	P=0.125	P=0.500	
iver Hepatoblastoma						
verall rates		0/50 (0%)	1/49 (2%)	0/51 (0%)	0/50 (0%)	
djusted rates		0.0%	2.5%	0.0%	0.0%	
erminal rates		0/33 (0%)	1/40 (3%)	0/42 (0%)	0/28 (0%)	
irst incidence (days)		-	729(T)	0,42 (070)	0/20 (0/0)	
ife table tests	1	P=0.601N	P=0.538	_f	_	•
ogistic regression tests		P = 0.601N	P=0.538	_	_	
ochran-Armitage test	•	P = 0.566N	1 -0.550	<u> </u>	_	
sher exact test		1-0.50014	P=0.495	-		
iver: Hepatoblastoma or He	patocellular Carcin	oma				
verall rates	•	0/50 (0%)	4/49 (8%)	3/51 (6%)	1/50 (2%)	
djusted rates		0.0%	9.7%	6.7%	2.8%	
erminal rates		0/33 (0%)	3/40 (8%)	1/42 (2%)	0/28 (0%)	
irst incidence (days)		-	715	672	655	•
ife table tests		P=0.533	P=0.094	P = 0.162	P=0.484	
ogistic regression tests		P = 0.502N	P=0.076	P=0.101	P=0.594	
ochran-Armitage test		P = 0.593N			1 0.051	
isher exact test		8	P=0.056	P=0.125	P=0.500	
iver: Hepatocellular Adenon	na or Carcinoma					
verall rates		8/50 (16%)	27/49 (55%)	31/51 (61%)	13/50 (26%)	
djusted rates		23.4%	64.3%	65.9%	41.4%	
erminal rates		7/33 (21%)	25/40 (63%)	26/42 (62%)	10/28 (36%)	
rst incidence (days)		694	715	564	655	
ife table tests		P=0.162	P<0.001	P<0.001	P=0.084	
ogistic regression tests		P = 0.447	P<0.001	P<0.001	P = 0.163	
ochran-Armitage test	•	P = 0.447				
isher exact test			P<0.001	P<0.001	P=0.163	

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg	
Lung: Alveolar/bronchiolar Adenoma					
Overall rates	2/51 (4%)	5/49 (10%)	7/49 (14%)	20/51 (39%)	
Adjusted rates	5.8%	11.8%	16.3%	64.2%	
Terminal rates	1/33 (3%)	3/40 (8%)	6/42 (14%)	17/28 (61%)	
First incidence (days)	708	673	694	684	
Life table tests	P<0.001	P=0.301	P=0.151	P<0.001	
Logistic regression tests	P<0.001	P=0.201	P = 0.072	P<0.001	
Cochran-Armitage test	P<0.001				
Fisher exact test	• • • • • • •	P=0.202	P=0.071	P<0.001	
Lung: Alveolar/bronchiolar Carcinoma					
Overall rates	0/51 (0%)	0/49 (0%)	0/49 (0%)	7/51 (14%)	
Adjusted rates	0.0%	0.0%	0.0%	22.3%	
Terminal rates	0/33 (0%)	0/40 (0%)	0/42 (0%)	5/28 (18%)	
First incidence (days)	_	- ` ´	- ` ´	615	
Life table tests	P<0.001	-	_	P=0.006	
Logistic regression tests	P<0.001		-	P=0.007	
Cochran-Armitage test	P<0.001				
Fisher exact test		-		P=0.006	
Lung: Alveolar/bronchiolar Adenoma or Car	cinoma				
Overall rates	2/51 (4%)	5/49 (10%)	7/49 (14%)	27/51 (53%)	
Adjusted rates	5.8%	11.8%	16.3%	81.5%	
Terminal rates	1/33 (3%)	3/40 (8%)	6/42 (14%)	22/28 (79%)	
First incidence (days)	708	673	694	615	
Life table tests	P<0.001	P=0.301	P=0.151	P<0.001	
Logistic regression tests	P<0.001	P=0.201	P=0.072	P<0.001	
Cochran-Armitage test	P<0.001				
Fisher exact test		P = 0.202	P=0.071	P<0.001	
Ovary: Cystadenoma					
Overall rates	2/51 (4%)	3/49 (6%)	4/50 (8%)	2/51 (4%)	
Adjusted rates	6.1%	7.5%	9.5%	6.2%	
Terminal rates	2/33 (6%)	3/40 (8%)	4/42 (10%)	1/28 (4%)	
First incidence (days)	729 (T)	729 (T)	729 (T)	637	
Life table tests	P = 0.519	P=0.588	P=0.453	P=0.644	
Logistic regression tests	P = 0.507	P=0.588	P=0.453	P=0.628	
Cochran-Armitage test Fisher exact test	P=0.556N	P=0.481	P=0.329	P=0.691N	
Pancreatic Islets: Adenoma or Carcinoma Overall rates	1/49 (2%)	3/48 (6%)	1/48 (2%)	0/47 (0%)	
Adjusted rates	3.0%	7.0%	2.4%	0.0%	
Terminal rates	1/33 (3%)	2/40 (5%)	1/42 (2%)	0/28 (0%)	
First incidence (days)	729 (T)	635	729 (T)	-	
Life table tests	P=0.225N	P=0.377	P = 0.707 N	P=0.533N	
Logistic regression tests	P = 0.208N	P = 0.298	P = 0.758	P = 0.508N	
Cochran-Armitage test	P = 0.208N				
Fisher exact test		P=0.301			

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
Pituitary Gland (Pars Distalis): Adenoma			<u> </u>	
Overall rates	4/45 (9%)	3/45 (7%)	4/45 (9%)	0/48 (0%)
Adjusted rates	11.0%	7.7%	10.8%	0.0%
Terminal rates	2/30 (7%)	3/39 (8%)	4/37 (11%)	0/26 (0%)
First incidence (days)	367 `	729 (Ť)	729 (Ť)	-
life table tests	P=0.082N	P=0.382N	P=0.541N	P=0.081N
ogistic regression tests	P=0.056N	P=0.500	P=0.645N	P=0.055N
Cochran-Armitage test	P=0.056N			
Fisher exact test		P=0.500N	P=0.643N	P=0.051N
Stomach (Forestomach): Squamous Cell Pa	pilloma			
Overall rates	1/52 (2%)	5/50 (10%)	2/51 (4%)	2/51 (4%)
Adjusted rates	2.4%	12.5%	4.8%	7.1%
Cerminal rates	0/33 (0%)	5/40 (13%)	2/42 (5%)	2/28 (7%)
First incidence (days)	589	729 (T)	729 (T)	729 (T)
Life table tests	P=0.552	P = 0.152	P=0.566	P=0.456
ogistic regression tests	P=0.548N	P=0.095	P=0.493	P=0.493
Cochran-Armitage test	P = 0.548N			
Fisher exact test		P=0.094	P=0.493	P=0.493
Stomach (Forestomach): Squamous Cell Ca	rcinoma			
Overall rates	0/52 (0%)	1/50 (2%)	1/51 (2%)	0/51 (0%)
Adjusted rats	0.0%	2.5%	2.3%	0.0%
Terminal rates	0/33 (0%)	1/40 (3%)	0/42 (0%)	0/28 (0%)
First incidence (days)	_	729(Ť)	694	-
ife table tests	P=0.636N	P=0.538	P=0.535	_ ·
ogistic regression tests	P=0.573N	P=0.538	P=0.419	-
Cochran-Armitage test	P=0.596N			
Fisher exact test		P=0.490	P=0.495	-
Stomach (Forestomach): Squamous Cell Pa	pilloma or Squamous Cell (Carcinoma		
Overall rates	1/52 (2%)	6/50 (12%)	3/51 (6%)	2/51 (4%)
Adjusted rates	2.4%	15.0%	7.0%	7.1%
Ferminal rates	0/33 (0%)	6/40 (15%)	2/42 (5%)	2/28 (7%)
First incidence (days)	589	729 (T)	694	729 (T)
Life table tests	P = 0.575	P=0.095	P=0.376	P=0.456
ogistic regression tests	P=0.578N	P=0.083	P=0.236	P=0.436
Cochran-Armitage test	P=0.505N			
Fisher exact test		P=0.050	P=0.301	P=0.493
All Organs: Malignant Lymphoma or Histic	cytic Sarcoma			
Dverall rates	6/52 (12%)	12/50 (24%)	8/51 (16%)	5/51 (10%)
Adjusted rates	15.6%	26.8%	18.5%	17.9%
Cerminal rates	3/33 (9%)	8/40 (20%)	7/42 (17%)	5/28 (18%)
First incidence (days)	550	495	672	729 (T)
ife table tests	P=0.367N	P = 0.200	P=0.550	P=0.598N
ogistic regression tests	P=0.251N	P=0.082	P=0.372	P=0.514N
Cochran-Armitage test	P=0.251N			
Fisher exact test		P=0.082	P=0.372	P=0.514N

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
All Organs: Malignant Lymphoma (Histio	cytic, Lymphocytic, Mixed, or	NOS)		
Overall rates	5/52 (10%)	11/50 (22%)	8/51 (16%)	5/51 (10%)
Adjusted rates	13.3%	25.3%	18.5%	17.9%
Terminal rates	3/33 (9%)	8/40 (20%)	7/42 (17%)	5/28 (18%)
First incidence (days)	550	635	672	729 (T)
Life table tests	P=0.496N	P=0.176	P=0.427	P=0.536
Logistic regression tests	P=0.465N	P=0.111	P=0.288	P=0.516
Cochran-Armitage test	P=0.362N			
Fisher exact test		P=0.073	P=0.265	P=0.617
All Organs: Benign Neoplasms				
Overall rates	20/52 (38%)	33/50 (66%)	34/51 (67%)	26/51 (51%)
Adjusted rates	50.9%	76.7%	72.3%	78.6%
Terminal rates	14/33 (42%)	30/40 (75%)	29/42 (69%)	21/28 (75%)
First incidence (days)	367	673	564	637
Life table tests	P = 0.044	P = 0.086	P = 0.096	P=0.051
Logistic regression tests	P = 0.079	P=0.032	P=0.007	P=0.067
Cochran-Armitage test	P=0.259			
Fisher exact test		P=0.005	P=0.004	P=0.140
All Organs: Malignant Neoplasms				
Overall rates	8/52 (15%)	19/50 (38%)	13/51 (25%)	14/51 (27%)
Adjusted rates	19.5%	40.2%	28.9%	42.4%
Terminal rates	3/33 (9%)	12/40 (30%)	10/42 (24%)	10/28 (36%)
First incidence (days)	474	495	672	615
Life table tests	P=0.138	P=0.059	P=0.330	P=0.073
Logistic regression tests	P=0.269	P=0.009	P=0.152	P=0.105
Cochran-Armitage test	P=0.269			
Fisher exact test		P=0.009	P=0.152	P=0.105
All Organs: Benign or Malignant Neoplas	ms			
Overall rates	25/52 (48%)	41/50 (82%)	37/51 (73%)	34/51 (67%)
Adjusted rates	56.5%	87.2%	77.1%	91.8%
Terminal rates	14/33 (42%)	34/40 (85%)	31/42 (74%)	25/28 (89%)
First incidence (days)	367	495	564	615
Life table tests	P = 0.019	P=0.062	P=0.226	P = 0.020
Logistic regression tests	P=0.025	P=0.002	P = 0.004	P = 0.012
Cochran-Armitage test	P=0.136			
Fisher exact test	• ••••••	P<0.001	P=0.009	P=0.044

(T)Terminal sacrifice

^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, clitoral gland, gallbladder, heart, kidney, larynx, liver, lung, nose, ovary, pancreas, parathyroid gland, pituitary gland, salivary gland, spleen, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

• Not applicable; no neoplasms in animal group

Value of statistic cannot be computed

TABLE D4a

Historical Incidence of Alveolar/Bronchiolar Neoplasms in Female B6C3F₁ Mice Receiving Corn Oil by Gavage^a

ļ

		Incidence in Controls	
	Adenoma	Carcinoma	Adenoma or Carcinoma
verall Historical Incidence			
verall Historical Incidence Total Standard deviation	40/899 (4.4%) 2.4%	19/899 (2.1%) 2.0%	58/899 (6.5%) 3.7%

^a Data as of 17 December 1991.

TABLE D4b

Historical Incidence of Liver Neoplasms in Female B6C3F₁ Mice Receiving Corn Oil by Gavage^a

		Incidence in Controls	
	Hepatocellular Adenoma	Hepatocellular Carcinoma	Hepatocellular Adenoma or Carcinoma
Overall Historical Incidence			
Total Standard deviation Range	94/898 (10.5%) 7.2% 2%–26%	41/898 (4.6%) 3.6% 0%14%	129/898 (14.4%) 8.1% 2%-34%

^a Data as of 17 December 1991.

TABLE D4c

Historical Incidence of Forestomach Neoplasms in Female B6C3F₁ Mice Receiving Corn Oil by Gavage^a

		Incidence in Contro	ols
	Squamous Cell Papilloma	Squamous Cell Carcinoma	Squamous Cell Papilloma or Squamous Cell Carcinoma
Overall Historical Incidence			
Total	27/901 (3.0%)	3/901 (0.3%)	30/901 (3.3%)
Standard deviation	2.9%	1.0%	3.3%
Range	0%-10%	0%4%	0%–10%

^a Data as of 17 December 1991.

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Coumarin^a

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
Disposition Summary			· · · · · · · · · · · · · · · · · · ·	
Animals initially in study	70	70	70	70
15-Month interim evaluation ^b	18	20	19	19
Early deaths				
Accidental deaths	4		1	2
Moribund	8	6	5	8
Natural deaths	7	5	3	13
Survivors				
Terminal sacrifice	33	39	42	28
Animals examined microscopically	60	60	60	60
15-Month Interim Evaluation				
Alimentary System				
Liver	(8)	(1)	(2)	(9)
Eosinophilic focus		1 (100%)	2 (100%)	
Infiltration cellular, lymphocyte	2 (25%)			2 (22%)
Necrosis, coagulative	1 (13%)			
Syncytial alteration				4 (44%)
Vacuolization cytoplasmic				3 (33%)
Centrilobular, hypertrophy				8 (89%)
Pancreas	(8)			(9)
Fibrosis	1 (13%)			
Infiltration cellular, lymphocyte				3 (33%)
Necrosis, coagulative	1 (13%)			
Salivary glands	(8)			(9)
Infiltration cellular, lymphocyte	3 (38%)			4 (44%)
Cardiovascular System None				
Endocrine System				
Adrenal gland	(8)			(9)
Spindle cell, hyperplasia	8 (100%)			9 (100%)
Pituitary gland	(8)			(9)
Pars distalis, cyst	1 (13%)			
General Body System None				
Genital System				
Очагу	(8)	(3)	(2)	(9)
Inflammation, suppurative	1 (13%)	1 (33%)	(-)	
Capsule, inflammation, chronic	- ()	1 (33%)		
Follicle, cyst		2 (67%)	2 (100%)	
Uterus	(8)	(6)	(2)	(9)
Hydrometra		1 (17%)	X-7	1 (11%)
Hyperplasia, cystic	6 (75%)	3 (50%)	2 (100%)	7 (78%)
Inflammation, suppurative	1 (13%)	1 (17%)		1 (11%)

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

ļ

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
	ntinued)	<u> </u>		
Hematopoietic System	,			
Lymph node	(8)			(9)
Pancreatic, inflammation, chronic active				ì (11%)
Lymph node, mesenteric Amyloid deposition	(8)			(9) 1 (11%)
Hyperplasia, lymphoid				1 (11%)
		·····		
Integumentary System				
Skin	(8)	(2)	(5) 3 (60%)	(9)
Alopecia	2 (25%)	2 (100%)	3 (60%)	4 (44%)
Hyperkeratosis	1 (13%)			
Musculoskeletal System None	· · · · · · · · · · · · · · · · · · ·			
Nervous System None				
Respiratory System		······	·····	
Lung	(8)	(1)	(1)	(9)
Alveolar epithelium, hyperplasia		1 (100%)		
Special Senses System None	- <u> </u>			
Urinary System		<u>, , , , , , , , , , , , , , , , , , , </u>		· · · · · · · · · · · · · · · · · · ·
Kidney	(8)			(9)
Pelvis, infiltration cellular, lymphocyte	4 (50%)			ົ້7 (78%) (ໃ
Urinary bladder Infiltration cellular, lymphocyte	(8) 4 (50%)			(9) 4 (44%)
			·····	
2-Year Study	•			
Alimentary System				
Intestine large, cecum	(42)	(46)	(48)	(41)
				1 (2%) (41)
Hyperplasia, lymphoid Intestine small, jejunum	(41)	(46)	(48)	

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
2-Year Study (continued)				
Alimentary System (continued)				
Liver	(50)	(49)	(51)	(50)
Angiectasis	1 (2%)		1 (2%)	(00)
Basophilic focus	2 (4%)	1 (2%)	- ()	4 (8%)
Clear cell focus	- (,	- ()	1 (2%)	2 (4%)
Congestion				3 (6%)
Cytoplasmic alteration	1 (2%)			
Developmental malformation	1 (2%)			
Eosinophilic focus	4 (8%)	20 (41%)	20 (39%)	9 (18%)
Fatty change		1 (2%)		1 (2%)
Hemorrhage	1 (2%)			- ()
Infarct			1 (2%)	
Infiltration cellular, plasma cell	1 (2%)		/	
Infiltration cellular, lymphocyte	6 (12%)	2 (4%)	1 (2%)	1 (2%)
Inflammation, chronic	1 (2%)	- (/	1 (2%)	1 (2%)
Inflammation, necrotizing	- ()	1 (2%)	- ()	- (-//)
Inflammation, suppurative		2 (4%)	2 (4%)	1 (2%)
Mineralization		- (,	- (,	3 (6%)
Mixed cell focus		1 (2%)	1 (2%)	
Necrosis, coagulative	2 (4%)	2 (4%)	2 (4%)	11 (22%)
Pigmentation	1 (2%)		- (,	(//)
Syncytial alteration			2 (4%)	19 (38%)
Bile duct, cyst			1 (2%)	
Centrilobular, hypertrophy				17 (34%)
Centrilobular, necrosis	1 (2%)			
Hepatocyte, hyperplasia			1 (2%)	
Mesentery	(7)	(6)	(3)	(4)
Cyst	1 (14%)			
Fat, necrosis, coagulative	5 (71%)	3 (50%)	2 (67%)	4 (100%)
ancreas	(48)	(48)	(48)	(45)
Atrophy	2 (4%)	2 (4%)	1 (2%)	2 (4%)
Hyperplasia			1 (2%)	
Infiltration cellular, lymphocyte	10 (21%)	4 (8%)	9 (19%)	7 (16%)
Inflammation, suppurative				1 (2%)
Necrosis, coagulative			1 (2%)	
harynx		(1)		
Cyst		1 (100%)		
Salivary glands	(51)	(50)	(51)	(51)
Infiltration cellular, lymphocyte	19 (37%)	14 (28%)	16 (31%)	21 (41%)
Stomach, forestomach	(48)	(49)	(49)	(46)
Hyperkeratosis		4 (8%)	1 (2%)	
Hyperplasia, squamous		2 (4%)	5 (10%)	
Inflammation, suppurative		2 (4%)		
Stomach, glandular	(46)	(48) ໌	(49)	(41)
Dilatation	- •			1 (2%)
Infiltration cellular, lymphocyte	1 (2%)			1 (2%)
Ulcer		1 (2%)		

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

ļ

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
2-Year Study (continued)				
Cardiovascular System				
-	(51)	(50)	(51)	(51)
Heart	(51)	(50)	(51)	(51)
Inflammation, chronic	1 (2%)		1 (20%)	
Inflammation, chronic active	1 (201)	1 (20%)	1 (2%)	2 (10%)
Mineralization	1 (2%)	1 (2%)		2 (4%)
Necrosis, zenkers			1 (201)	1 (2%)
Nuclear alteration			1 (2%)	
Artery, inflammation, chronic active			1 (2%)	1 (00)
Artery, mineralization				1 (2%)
Perivascular, inflammation, chronic		1 (2%)		
Endocrine System				
Adrenal gland	(49)	(47)	(48)	(51)
Corticomedullary junction, hemorrhage		1 (2%)	1 (2%)	. /
Corticomedullary junction, necrosis,		VV		
coagulative		1 (2%)		
Spindle cell, hyperplasia	34 (69%)	13 (28%)	23 (48%)	15 (29%)
Adrenal gland, cortex	(49)	(47)	(47)	(51)
Clear cell focus	(···)		1 (2%)	<u> </u>
Cytoplasmic alteration			1 (2%)	
Hyperplasia			2 (4%)	1 (2%)
Necrosis, coagulative		1 (2%)		
Vacuolization cytoplasmic	1 (2%)	- (-/-)		1 (2%)
Corticomedullary junction, necrosis,	1 (270)		•	- ()
coagulative		1 (2%)		
Adrenal gland, medulla	(49)	(47)	(48)	(50)
Hyperplasia	(0)	1 (2%)	1 (2%)	1 (2%)
Islets, pancreatic	(49)	(48)	(48)	(47)
Atrophy	(17)	1 (2%)	()	()
Parathyroid gland	(35)	(38)	(40)	(41)
Ectopic thymus	(33)	(~~)	(**)	1 (2%)
	1 (3%)			1 (270)
Hyperplasia Bituitory glond		(45)	(45)	(48)
Pituitary gland	(45) 1 (2%)	()	()	(48)
Pars distalis, cyst Pars distalis, hyperplasia	1 (270)	1 (2%)	1 (2%)	2 (4%)
Pars distalis, hyperplasia	(17)	(49)	(50)	(47)
Thyroid gland	(47)	(49)	(30)	(77)
Inflammation, suppurative		2 (4%)	1 (2%)	
C-cell, hyperplasia		2 (4%) 1 (2%)	1 (2%)	1 (2%)
Follicle, cyst				1 (270)
Follicle, dilatation	0 (10)	1 (2%)	1 (2%)	4 (00/)
Follicular cell, hyperplasia	2 (4%)	4 (8%)	6 (12%)	4 (9%)
General Body System				
Tissue NOS		(2)	(1)	
Hemorrhage		1 (50%)		
Abdominal, necrosis, coagulative		1 (50%)		
Posterior, abscess			1 (100%)	

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
2-Year Study (continued)				
Genital System				
•	(51)	(49)	(50)	(51)
Ovary Hematocyst	2 (4%)	1 (2%)	1 (2%)	2 (4%)
	1 (2%)	1 (2%)	1 (270)	- (110)
Inflammation, suppurative	1 (270)	1 (2%)	1 (2%)	
Pigmentation, ceroid Bilateral, corpus luteum, cyst			1 (270)	1 (2%)
	12 (25%)	14 (29%)	13 (26%)	6 (12%)
Follicle, cyst	13 (25%)	14 (25%)	13 (2070)	1 (2%)
Follicle, hematocyst	(50)	(40)	(49)	
Uterus	(50)	(49)	(49) 6 (12%)	(51)
Hydrometra	10 (20%)	9 (18%)	6 (12%)	11 (22%)
Hyperplasia, cystic	25 (50%)	23 (47%)	33 (67%)	22 (43%)
Inflammation, suppurative	2 (4%)	3 (6%)	2 (4%)	2 (4%)
Endometrium, hyperplasia, cystic	<i>(</i> 1)			1 (2%)
Vagina	(1)			
Hyperkeratosis	1 (100%)			
Inflammation, suppurative	1 (100%)			
Hematopoietic System				<u> </u>
Bone marrow	(51)	(48)	(49)	(51)
Hyperplasia, neutrophil	()	()	1 (2%)	()
Myelofibrosis			2 (4%)	
Lymph node	(49)	(49)	(49)	(50)
Mediastinal, hyperplasia, lymphoid	1 (2%)	()	(~)	
Lymph node, mandibular	(47)	(47)	(49)	(48)
Hyperplasia, lymphoid	2 (4%)	1 (2%)	3 (6%)	1 (2%)
Hyperplasia, plasma cell	2 (170)	1 (2%)		- (-/0)
Lymph node, mesenteric	(45)	(45)	(48)	(47)
Hyperplasia, histiocytic	(~)	()	()	1 (2%)
Hyperplasia, lymphoid	1 (2%)	4 (9%)	7 (15%)	1 (2%)
Hyperplasia, macrophage	1 (2%)	- (770)	(1570)	1 (270)
Hyperplasia, macrophage Hyperplasia, plasma cell	1 (270)	1 (2%)		
Inflammation, suppurative	1 (2%)	1 (2%)		
Necrosis	1 (2%)	1 (270)	1 (2%)	
Spleen	(50)	(48)	(48)	(48)
Angiectasis	1 (2%)	(10)	(40)	(10)
	1 (2%)			
Atrophy				
Congestion	1 (2%)	2 / 401	1 (00%)	
Developmental malformation	* !-	2 (4%)	1 (2%)	
Hematopoietic cell proliferation erythrocy	uc	2 (4%)	1 (2%)	1 /000
Hyperplasia, histiocytic	4 1000	E /10/01	((1001)	1 (2%)
Hyperplasia, lymphoid	4 (8%)	5 (10%)	6 (13%)	1 (2%)
Hyperplasia, plasma cell	A	1 (2%)		
Inflammation, suppurative	2 (4%)	1 (2%)	(10-	
Thymus	(43)	(44)	(49)	(42)
Atrophy	1 (2%)		1 (2%)	3 (7%)
Hyperplasia, lymphoid		2 (5%)		1 (2%)
Inflammation, suppurative		1 (2%)		
Necrosis, coagulative				2 (5%)

Vehicle Control 50 mg/kg 100 mg/kg 200 mg/kg 2-Year Study (continued) **Integumentary System** (50) 1 (2%) Mammary gland (47) (48) (50) Inflammation, necrotizing Duct, dilatation 1 (2%) Duct, hyperplasia 1 (2%) (51) 4 (8%) (51) 1 (2%) Skin (51) (49) 3 (6%) 3 (6%) Alopecia Foot, inflammation, suppurative 1 (2%) Subcutaneous tissue, inflammation, chronic active 1 (2%) 1 (2%) Musculoskeletal System (1) 1 (100%) Skeletal muscle (2) Inflammation, chronic active **Nervous System** (49) Brain (49) (49) (50) 1 (2%) Hypothalamus, compression 2 (4%) Meninges, infiltration cellular, lymphocyte Thalamus, compression 1 (2%) **Respiratory System** (49) (49) (51) (51) Lung ź (4%) í (2%) Congestion Foreign body 3 (6%) Hyperplasia, histiocytic 1 (2%) 3 (6%) 2 (4%) 2 (4%) Hyperplasia, lymphoid Infiltration cellular, lymphocyte 1 (2%) 1 (2%) Inflammation, suppurative 1 (2%) 3 (6%) Alveolar epithelium, hyperplasia 4 (8%) 4 (8%) 1 (2%) Alveolus, hemorrhage 1 (2%) 1 (2%) 2 (4%) 1 (2%) Alveolus, infiltration cellular, lymphocyte 1 (2%) Alveolus, inflammation, chronic Bronchiole, inflammation, suppurative 1 (2%) 1 (2%) 4 (8%) Bronchiole, epithelium, hyperplasia 3 (6%) Bronchiole, epithelium, necrosis Mediastinum, foreign body 1 (2%) 1 (2%) Peribronchial, inflammation, suppurative 1 (2%) Peribronchiolar, hemorrhage Pleura, inflammation, suppurative 1 (2%) 1 (2%) 1 (2%) Subpleura, mineralization 1 (2%) (50) 5 (10%) (50) (51) Nose (50) 2 (4%) Lumen, inflammation, suppurative Special Senses System (1) 1 (100%) (1) (1) Eye Cataract

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

I

Renal tubule, degeneration

Inflammation, suppurative

Infiltration cellular, lymphocyte

Urinary bladder

TABLE D5

200 mg/kg Vehicle Control 50 mg/kg 100 mg/kg 2-Year Study (continued) Urinary System (49) (49) (50) (47) Kidney í (2%) Glomerulosclerosis 2 (4%) 6 (12%) 8 (16%) 5 (11%) Infiltration cellular, lymphocyte 8 (16%) 1 (2%) Nephropathy 1 (2%) Artery, necrosis, fibrinoid 1 (2%) Collecting tubule, mineralization 1 (2%) Collecting tubule, necrosis, coagulative Collecting tubule, pigmentation, hemoglobin 1 (2%) 1 (2%) Cortex, cyst multilocular 1 (2%) Cortex, pigmentation, bile Pelvis, infiltration cellular, lymphocyte 2 (4%)

1 (2%)

14 (30%)

1 (2%)

(47)

1 (2%)

23 (48%)

(47)

16 (34%)

(48)

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Coumarin (continued)

Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site. b

Of the animals designated for the 15-month interim evaluation, only 5-10 per dose group were examined microscopically.

(45) 23 (51%)

÷.

े जन्म स्
APPENDIX E

SUMMARY OF LESIONS IN MALE RATS IN THE STOP-EXPOSURE GAVAGE STUDY OF COUMARIN

Table E1	Summary of the Incidence of Neoplasms in Male Rats	
	in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin	254
Table E2a	Individual Animal Tumor Pathology of Male Rats	
	in the 9-Month Stop-Exposure Gavage Study of Coumarin	260
Table E2b	Individual Animal Tumor Pathology of Male Rats	
	in the 15-Month Stop-Exposure Gavage Study of Coumarin	262
Table E3a	Statistical Analysis of Primary Neoplasms in Male Rats	
	in the 2-Year Gavage Study of Coumarin: 2-Year Vehicle Control	
	versus Stop-Exposure 100 mg/kg Groups	264
Table E3b	Statistical Analysis of Primary Neoplasms in Male Rats	
	in the 2-Year Gavage Study of Coumarin: 2-Year 100 mg/kg Group	
	versus Stop-Exposure 100 mg/kg Groups	268
Table E4	Summary of the Incidence of Nonneoplastic Lesions in Male Rats	
	in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin	271

253

Summary of the Incidence of Neoplasms in Male Rats in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin^a

ţ.

	Vehicle Control ^b	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
Disposition Summary			
Animals initially in study	80	40	30
9-Month interim evaluation	20	20	
15-Month interim evaluation	10		10
Early deaths			
Accidental deaths	2	1	3
Moribund	14	6	13
Natural deaths	6	4	2
Survivors			
Died last week of study		1	
Terminal sacrifice	28	8	2
Animals examined microscopically	80	40	30
9-Month Interim Evaluation	a contra di s		<u>,</u>
Alimentary System			
None			•
None			
Cardiovascular System None			
Endocrine System			
Thyroid gland Follicular cell, adenoma	(17) 1 (6%)	(18)	
General Body System None			
Genital System			
Testes	(17)	(18)	
Interstitial cell, adenoma		1 (6%)	
Hematopoietic System None			· · ·
Integumentary System None			
Musculoskeletal System None	·	,	

Lesions in Stop-Exposure Gavage Study Male Rats

Table E1

Summary of the Incidence of Neoplasms in Male Rats in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin (continued)

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
9-Month Interim Evaluation (continued) Nervous System None			
Respiratory System None			
Special Senses System None			·
Urinary System None			
15-Month Interim Evaluation Alimentary System None			
Cardiovascular System None			
Endocrine System Pituitary gland Pars distalis, adenoma	(7)		(10) 2 (20%)
General Body System None			
Genital System Testes Interstitial cell, adenoma	(7) 7 (100%)		(10) 10 (100%)
Hematopoietic System None		<u></u>	· · · · · · · · · · · · · · · · · · ·
Integumentary System None			
Musculoskeletal System None			

Summary of the Incidence of Neoplasms in Male Rats in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin (continued)

I.

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)	
15-Month Interim Evaluation Nervous System None	(continued)			<u> </u>
Respiratory System None				
Special Senses System None				
Urinary System None	an an <u>1997 - 19</u>			<u> </u>
2-Year Study	, , , , , , , , , , , , , , , , , , ,			·
Alimentary System				
Intestine large, cecum	(45)	(17)	(20)	
Intestine large, colon	(45)	(18)	(20)	
Intestine large, rectum	(45)	(18)	(20)	
Intestine small, duodenum	(46)	(18)	(20)	
Fibrosarcoma, metastatic	1 (2%)			
Intestine small, ileum	(45)	(17)	(20)	
Fibrosarcoma, metastatic	1 (2%)			
Intestine small, jejunum	(45)	(17)	(20)	
Fibrosarcoma, metastatic	1 (2%)			
Liver	(49)	(20)	(20)	
Fibrosarcoma, metastatic	1 (2%)			
Hepatocellular carcinoma	2 (4%)		1 (50%)	
Hepatocellular adenoma	(10)		1 (5%)	
Mesentery Fibrosarcoma, metastatic	(19) 1 (5%)	(7)	(4)	
Pancreas	(47)	(19)	(20)	
Adenoma	1 (2%)	1 (5%)	()	
Fibrosarcoma, metastatic	1 (2%)			
Pharynx	(1)			
Squamous cell papilloma	1 (100%)			
Stomach, forestomach	(48)	(19)	(19)	
Stomach, glandular	(47)	(18)	(20)	
Fibrosarcoma, metastatic	1 (2%)			
Tongue Squamous cell papilloma		(1) 1 (100%)		
Cardiovascular System	· · · · · · · · · · · · · · · · · · ·			
Heart	(49)	(20)	(20)	
Fibrosarcoma		1 (5%)		

Summary of the Incidence of Neoplasms in Male Rats in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin (continued)

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
2-Year Study (continued)			
Endocrine System			
Adrenal gland, cortex	(49)	(20)	(20)
Adrenal gland, medulla	(49)	(20)	(20)
Pheochromocytoma benign	9 (18%)	4 (20%)	1 (5%)
Islets, pancreatic	(47)	(19)	(20)
Adenoma	4 (9%)	1 (5%)	
Parathyroid gland	(41)	(19)	(18)
Adenoma	1 (2%)	1 (5%)	(20)
Pituitary gland	(48)	(20)	(20)
Pars distalis, adenoma	19 (40%)	4 (20%)	5 (25%)
Thyroid gland	(47)	(20)	(20)
C-cell, adenoma	1 (2%)		
C-cell, carcinoma	1 (2%) 1 (2%)		1 (5%)
Follicular cell, carcinoma	1 (270)		x (370)
General Body System			
Tissue NOS	(2)	(1)	
Adenocarcinoma	1 (50%)		
Fibrosarcoma	1 (50%)		
Genital System			
Epididymis	(45)	(20)	(20)
Preputial gland	(45)	(19)	(20)
Adenoma	2 (4%)	1 (5%)	
Carcinoma	1 (2%)	1 (5%)	
Seminal vesicle	(45)	(20)	(20)
Fibrosarcoma, metastatic	1 (2%)		
Testes	(45)	(20)	(20)
Interstitial cell, adenoma	38 (84%)	18 (90%)	15 (75%)
Hematopoietic System			
Bone marrow	(48)	(19)	(20)
Lymph node	(49)	(20)	(20)
Lymph node, mandibular	(48)	(20)	(20)
Lymph node, mesenteric	(43)	(20)	(20)
Spleen	(48)	(19)	(20)
Thymus	(47)	(20)	(19)
Sarcoma	1 (2%)		
Integumentary System			
Mammary gland	(45)	(20)	(16)
Fibroadenoma	3 (7%)	2 (10%)	
Skin	(49)	(20)	(20)
Basal cell adenoma	1 (2%)		
Squamous cell papilloma	1 (2%)		
Subcutaneous tissue, fibroma	2 (4%)		
Subcutaneous tissue, fibrosarcoma	1 (2%)		

Summary of the Incidence of Neoplasms in Male Rats in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin (continued)

I.

Lumbar, vertebra, sarcoma Skeletal muscle (1) Fibrosarcoma, metastatic 1 (Back, sarcoma 1 (Back, sarcoma 1 (Brain (47) Squamous cell carcinoma, metastatic Spinal cord Meninges, sarcoma (47) Respiratory System Lung (49) Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma (49) Nose (49) Polyp Special Senses System Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 ((20) (2%) (100%) (19)	1 (5%) (1) 1 (100%) (20) 1 (5%) (1) 1 (100%)	
Musculoskeletal System Bone (49) Chordoma 1 (Lumbar, vertebra, sarcoma 1 (Skeletal muscle (1) Fibrosarcoma, metastatic 1 (Back, sarcoma 1 (Back, sarcoma 1 (Back, sarcoma 1 (Brain (47) Squamous cell carcinoma, metastatic Spinal cord Meninges, sarcoma (47) Adenocarcinoma, metastatic 1 (Adenocarcinoma, metastatic 1 (Squamous cell carcinoma 2 (49) Polyp 2 Special Senses System 2 Ear 3 Basal cell adenoma 2 Zymbal's gland 3 Squamous cell carcinoma 2 Urinary System 2 Kidney	(19)	1 (5%) (1) 1 (100%) (20) 1 (5%) (1) 1 (100%)	
Chordoma 1 (Lumbar, vertebra, sarcoma Skeletal muscle (1) Fibrosarcoma, metastatic 1 (Back, sarcoma Mervous System Brain (47) Squamous cell carcinoma, metastatic Spinal cord Meninges, sarcoma Respiratory System Lung (49) Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma Nose (49) Polyp Special Senses System Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 ((19)	1 (5%) (1) 1 (100%) (20) 1 (5%) (1) 1 (100%)	
Lumbar, vertebra, sarcoma Skeletal muscle (1) Fibrosarcoma, metastatic 1 (Back, sarcoma Nervous System Brain (47) Squamous cell carcinoma, metastatic Spinal cord Meninges, sarcoma Respiratory System Lung (49) Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma Nose (49) Polyp Special Senses System Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 ((100%)	(1) 1 (100%) (20) 1 (5%) (1) 1 (100%)	
Skeletal muscle (1) Fibrosarcoma, metastatic 1 (Back, sarcoma 1 (Back, sarcoma 1 (Brain (47) Squamous cell carcinoma, metastatic Spinal cord Meninges, sarcoma (47) Respiratory System (49) Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma 1 (Vipp 2 Vipp 2 Vipp 2 Urinary System 2 Kidney (49) Fibrosarcoma, metastatic 1 ((19)	(1) 1 (100%) (20) 1 (5%) (1) 1 (100%)	
Fibrosarcoma, metastatic 1 (Back, sarcoma 1 (Back, sarcoma 1 (Brain (47) Squamous cell carcinoma, metastatic 1 (Spinal cord Meninges, sarcoma Respiratory System (49) Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma 1 (Nose (49) Polyp 9 Special Senses System (49) Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System (49) Kidney (49) Fibrosarcoma, metastatic 1 ((19)	1 (100%) (20) 1 (5%) (1) 1 (100%)	
Back, sarcoma Nervous System Brain (47) Squamous cell carcinoma, metastatic Spinal cord Meninges, sarcoma Respiratory System Lung (49) Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma Nose (49) Polyp Special Senses System Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 (47)	(19)	(20) 1 (5%) (1) 1 (100%)	
Brain (47) Squamous cell carcinoma, metastatic Spinal cord Meninges, sarcoma Respiratory System Lung (49) Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma Nose (49) Polyp Special Senses System Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 (1 (5%) (1) 1 (100%)	
Brain (47) Squamous cell carcinoma, metastatic Spinal cord Meninges, sarcoma Respiratory System Lung (49) Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma Nose (49) Polyp Special Senses System Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 (1 (5%) (1) 1 (100%)	
Spinal cord Meninges, sarcoma Respiratory System Lung (49) Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma 1 (Nose (49) Polyp (49) Special Senses System (49) Ear Basal cell adenoma Basal cell adenoma 2ymbal's gland Squamous cell carcinoma (49) Virinary System (49) Kidney (49) Fibrosarcoma, metastatic 1 ((1) 1 (100%)	7F.±
Meninges, sarcoma Respiratory System Lung (49) Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma 1 (Nose (49) Polyp (49) Special Senses System (49) Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System (49) Kidney (49) Fibrosarcoma, metastatic 1 (1 (100%)	• • ••
Respiratory System (49) Lung (49) Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma 1 (Nose (49) Polyp (49) Special Senses System (49) Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Virinary System (49) Kidney (49) Fibrosarcoma, metastatic 1 (
Lung (49) Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma 1 (Nose (49) Polyp (49) Special Senses System (49) Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System (49) Kidney (49) Fibrosarcoma, metastatic 1 ((20)	
Adenocarcinoma, metastatic 1 (Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma 1 (Nose (49) Polyp (49) Special Senses System 1 Ear 1 Basal cell adenoma 2 Zymbal's gland 3 Squamous cell carcinoma (49) Virinary System (49) Fibrosarcoma, metastatic 1 ((20)	
Alveolar/bronchiolar adenoma 1 (Fibrosarcoma 1 (Squamous cell carcinoma Nose (49) Polyp Special Senses System Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 ((20)	()	
Fibrosarcoma 1 (Squamous cell carcinoma 1 (Nose (49) Polyp 1 Special Senses System 1 Ear 1 Basal cell adenoma 1 Zymbal's gland 1 Squamous cell carcinoma 1 Urinary System (49) Fibrosarcoma, metastatic 1	2%)		
Squamous cell carcinoma Nose (49) Polyp Special Senses System Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 ((2%) (2%)		
Nose (49) Polyp Special Senses System Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 ((5%)	
Polyp Special Senses System Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 ((20)		
Ear Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 (()	1 (5%)	
Basal cell adenoma Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 (,,,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Zymbal's gland Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 ((1)	
Squamous cell carcinoma Urinary System Kidney (49) Fibrosarcoma, metastatic 1 (1 (100%)	
Urinary System Kidney (49) Fibrosarcoma, metastatic 1 ((1)	
Kidney(49)Fibrosarcoma, metastatic1 (1 (100%)	
Fibrosarcoma, metastatic 1 (
	(20)	(20)	
Kenai tudule, adenoma 1 (2%)		
Denel Aubula anonatara banian	(2%) 1	(5%) 2 (10%)	
Renal tubule, oncocytoma benign Jrinary bladder (45)		2 (10%) (20)	
Urinary bladder (45)	(20)	(20)	
Systemic Lesions	(20)		
Multiple organs ^c (49)			
Leukemia mononuclear 8 (Mesothelioma NOS 1 ((20)	(20) (25%) 4 (20%)	

Table E1

Summary of the Incidence of Neoplasms in Male Rats in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin (continued)

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)	
Neoplasm Summary	<u> </u>			
Total animals with primary neoplasms ^d				
9-Month interim evaluation	1	1		
15-Month interim evaluation	7		10	
2-Year study	46	18	17	
Total primary neoplasms				
9-Month interim evaluation	1	1		
15-Month interim evaluation	7		12	
2-Year study	105	43	37	
Total animals with benign neoplasms				
9-Month interim evaluation	1	1		
15-Month interim evaluation	7		10	
2-Year study	45	18	16	
Total benign neoplasms				
9-Month interim evaluation	1	1		
15-Month interim evaluation	7		12	
2-Year study	85	34	28	
Total animals with malignant neoplasms				
2-Year study	16	8	7	
Total malignant neoplasms				
2-Year study	19	8	9	
Total animals with metastatic neoplasms				
2-Year study	2		1	
Total metastatic neoplasms				
2-Year study	11		1	
Total animals with uncertain neoplasms				
benign or malignant				
2-Year study	1	1		
Total uncertain neoplasms				
2-Year study	3	3		

а Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site. b

Includes the 50 vehicle control animals from the 2-year core study. Number of animals with any tissue examined microscopically

с

d Primary neoplasms: all neoplasms except metastatic neoplasms TABLE E2a

······································		
	035556666667777777777	
Number of Days on Study	4 0 2 8 8 1 1 8 8 8 8 2 2 2 2 2 2 2 3 3	
	97038890008999999900	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Carcass ID Number	5 5 5 5 5 5 5 5 6 5 5 5 6 6 6 6 5 5	Total
	9889798909777000078	Tissues
	4 5 2 1 3 2 1 4 5 3 2 1 3 4 1 2 4 5 5 3	Tumors
Alimentary System		
Esophagus	+ + + + + + + + + + + + + + + + + + + +	20
Intestine large	+ A + A + + + + + + + + + + + + + + + +	17
Intestine large, cecum	+ A + A + + + + + + + + + + + + + + + +	17
Intestine large, colon	+ A + + + + + + + + + + + + + A + + + +	18
Intestine large, rectum	$M\dot{M} + + + + + + + + + + + + + + + + + + +$	18
Intestine small	+ + + + + + + + + + + + + + + + + + +	18
Intestine small, duodenum	+ + + A + + + + + + + + + + + + + + + +	18
Intestine small, ileum	+ A + A + + + + + + + + + + + + + + + +	18
Intestine small, jejunum	······································	17
Liver	+ + + + + + + + + + + + + + + + + + + +	20
Mesentery	+ + + + + + + +	7
Pancreas	+ A + + + + + + + + + + + + + + + + + +	19
Adenoma	X	1
Salivary glands	+ + + + + + + + + + + + + + + + + + + +	20
Stomach	+ A + + + + + + + + + + + + + + + + + +	19
Stomach, forestomach	+ A + + + + + + + + + + + + + + + + + +	19
Stomach, glandular	+ A + + + + + + + + + + + + + + + + + +	18
Tongue	+	1
Squamous cell papilloma	X	1
Cardiovascular System		
Blood vessel	+	1
Heart	+ + + + + + + + + + + + + + + + + + + +	20
Fibrosarcoma	X -	1
Endocrine System		
Adrenal gland	+ + + + + + + + + + + + + + + + + + + +	20
Adrenal gland, cortex	+ + + + + + + + + + + + + + + + + + +	20
Adrenal gland, medulla	+ + + + + + + + + + + + + + + + + + + +	20
Pheochromocytoma benign	X XX X	4
Islets, pancreatic	+ A + + + + + + + + + + + + + + + + + +	19
Adenoma	X	1
Parathyroid gland	+ + + + + + + + + + + + M + + + + + +	19
Adenoma	Х	1
Pituitary gland	+ + + + + + + + + + + + + + + + + + + +	20
Pars distalis, adenoma	X X X X X	4
Thyroid gland	+ + + + + + + + + + + + + + + + + + + +	20
General Body System		
Tissue NOS	+	1

Individual Animal Tumor Pathology of Male Rats in the 9-Month Stop-Exposure Gavage Study of Coumarin: 100 mg/kg

T

+: Tissue examined microscopically A: Autolysis precludes examination M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

TABLE E2a

Individual Animal Tumor Pathology of Male Rats in the 9-Month Stop-Exposure Gavage Study of Coumarin: 100 mg/kg (continued)

	0 3 5 5 5 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7	
Number of Days on Study	4 0 2 8 8 1 1 8 8 8 8 2 2 2 2 2 2 2 3 3 9 7 0 3 8 8 9 0 0 0 8 9 9 9 9 9 9 9 0 0	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Carcass ID Number	5 5 5 5 5 5 5 5 5 6 5 5 5 6 6 6 6 5 5	Total
	9 8 8 8 9 7 9 8 9 0 9 7 7 7 0 0 0 0 7 8	Tissues
	4 5 2 1 3 2 1 4 5 3 2 1 3 4 1 2 4 5 5 3	Tumors
Genital System		
Epididymis	+ + + + + + + + + + + + + + + + + + + +	20
Preputial gland	+ + M + + + + + + + + + + + + + + + + +	19
Adenoma	X	1
Carcinoma	X	1
Prostate	* * * * * * * * * * * * * * * * * * * *	20
Seminal vesicle Testes	+ + + + + + + + + + + + + + + + + + + +	20
Interstitial cell, adenoma	+ + + + + + + + + + + + + + + + + + +	20 18
Interstitiar cen, adenoma		18
Hematopoietic System		
Blood	+	1
Bone marrow	+ + + A + + + + + + + + + + + + + + + +	19
Lymph node	+ + + + + + + + + + + + + + + + + + + +	20
Lymph node, mandibular	+ + + + + + + + + + + + + + + + + + + +	20
Lymph node, mesenteric	+ + + + + + + + + + + + + + + + + + + +	20
Spleen Thymus	M + + + + + + + + + + + + + + + + + + +	19 20
	· · · · · · · · · · · · · · · · · · ·	20
Integumentary System	· · · · · · · · · · · · · · · · · · ·	
Mammary gland	+ + + + + + + + + + + + + + + + + + +	20
Fibroadenoma	X X	2
Skin	+ + + + + + + + + + + + + + + + + + + +	20
Musculoskeletal System		
Bone	+ + + + + + + + + + + + + + + + + + +	20
Nervous System		
Brain	+ A + + + + + + + + + + + + + + + + + +	19
Respiratory System		
Lung	+ + + + + + + + + + + + + + + + + + + +	20
Squamous cell carcinoma	X	1
Nose Trachea	+ + + + + + + + + + + + + + + + + + + +	20
	+ + + + + + + + + + + + + + + + + + + +	20
Special Senses System		
Eye	+	1
Urinary System		····
Kidney	+ + + + + + + + + + + + + + + + + + +	20
Renal tubule, adenoma	Х	1
Urinary bladder	+ + + + + + + + + + + + + + + + + + + +	20
Systemic Lesions		
Multiple organs	* + + + + + + + + + + + + + + + + + + +	20
Leukemia mononuclear	XX X XX	5
		5

TABLE E2b

Individual Animal Tumor Pathology of Male Rats in the 15-Month Stop-Exposure Gavage Study of Coumarin: 100 mg/kg

I

	0 0 0 2 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7 7	
Number of Days on Study	4 4 7 5 9 9 6 6 8 8 9 0 1 1 2 3 3 2 2 2	
	0 0 0 3 6 9 5 6 5 8 3 9 8 8 3 9 9 6 9 9	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. <u></u>
Carcass ID Number	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Total
	5 8 8 8 7 7 5 5 8 8 7 6 7 7 6 5 6 6 5 6	Tissues
1	4 4 1 5 3 4 1 5 2 3 2 5 1 5 3 3 2 1 2 4	Tumors
Limentary System		······································
Esophagus	+ M + + + + + + + + + + + + + + + + + +	19
Intestine large	+ + + + + + + + + + + + + + + + + + + +	20
Intestine large, cecum	+ + + + + + + + + + + + + + + + + + + +	20
Intestine large, colon	+ + + + + + + + + + + + + + + + + + + +	20
Intestine large, rectum	+ + + + + + + + + + + + + + + + + + + +	20
Intestine small	+ + + + + + + + + + + + + + + + + + + +	20
Intestine small, duodenum	+ + + + + + + + + + + + + + + + + + + +	20
Intestine small, ileum	+ + + + + + + + + + + + + + + + + + + +	20
Intestine small, jejunum	* * * * * * * * * * * * * * * * * * * *	20
Liver	+ + + + + + + + + + + + + + + + + + +	20
Hepatocellular adenoma	X	1
		4
Mesentery		-
Pancreas		20
Salivary glands	+ + + + + + + + + + + + + + + + + + + +	20
Stomach	+ + + + + + + + + + + + + + + + + + + +	20
Stomach, forestomach	+ + + + + + + + + + + + + + + + M + + +	19
Stomach, glandular	+ + + + + + + + + + + + + + + + + + + +	20
Cardiovascular System		
Blood vessel	·+	1
Heart	+ + + + + + + + + + + + + + + + + + + +	20
Endocrine System		
Adrenal gland	+ + + + + + + + + + + + + + + + + + +	20
Adrenal gland, cortex	+ + + + + + + + + + + + + + + + + + + +	20
Adrenal gland, medulla	+ + + + + + + + + + + + + + + + + + + +	20
Pheochromocytoma benign	Х	1
Islets, pancreatic	* + + + + + + + + + + + + + + + + + + +	20
Parathyroid gland	+ + + + M + + + + + + + + + + M + + + +	18
Pituitary gland	+ + + + + + + + + + + + + + + + + + + +	20
Pars distalis, adenoma	X XXX X	5
Thyroid gland	+ + + + + + + + + + + + + + + + + + + +	20
Follicular cell, carcinoma	x	1
General Body System None		
Genital System		
Epididymis	+ + + + + + + + + + + + + + + + + + + +	20
Preputial gland	+ + + + + + + + + + + + + + + + + + + +	20
Prostate		20 20
	+ + + + + + + + + + + + + + + + + + + +	20 20
Seminal vesicle	· · · · · · · · · · · · · · · · · · ·	
Testes	+ + + + + + + + + + + + + + + + + + +	20
Interstitial cell, adenoma	****	15

+: Tissue examined microscopically A: Autolysis precludes examination

~

.

M: Missing tissue I: Insufficient tissue

X: Lesion present Blank: Not examined

Table E2b

Individual Animal Tumor Pathology of Male Rats in the 15-Month Stop-Exposure Gavage Study of Coumarin: 100 mg/kg (continued)

	0 0 0 2 4 4 5 5 5 5 6 6 6 6 6 6 6 7 7 7	
Number of Days on Study	4 4 7 5 9 9 6 6 8 8 9 0 1 1 2 3 3 2 2 2 0 0 0 3 6 9 5 6 5 8 3 9 8 8 3 9 9 6 9 9	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Carcass ID Number	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Total
	5 8 8 8 7 7 5 5 8 8 7 6 7 7 6 5 6 6 5 6	Tissues
	4 4 1 5 3 4 1 5 2 3 2 5 1 5 3 3 2 1 2 4	Tumors
Hematopoietic System		
Bone marrow	* + + + + + + + + + + + + + + + + + + +	20
Lymph node	+ + + + + + + + + + + + + + + + + + + +	20
Lymph node, mandibular	+ + + + + + + + + + + + + + + + + + + +	20
Lymph node, mesenteric	+ + + + + + + + + + + + + + + + + + + +	20
Spleen	* + + + + + + + + + + + + + + + + + + +	20
Thymus	+ + + + M + + + + + + + + + + + + + + +	19
Integumentary System		
Mammary gland	M + M M + + + + + + + M + + + + + + + +	16
Skin	+ + + + + + + + + + + + + + + + + + + +	20
Musculoskeletal System		
Bone	+ + + + + + + + + + + + + + + + + + + +	20
Lumbar, vertebra, sarcoma	Х	1
Skeletal muscle	+	1
Back, sarcoma	х	1
Nervous System		
Brain	+ + + + + + + + + + + + + + + + + + + +	20
Squamous cell carcinoma, metastatic	Х	1
Spinal cord	+	1
Meninges, sarcoma	х	1
Respiratory System		
Lung	+ + + + + + + + + + + + + + + + + + + +	20
Nose	+ + + + + + + + + + + + + + + + + + + +	20
Polyp	Х	1
Trachea	+ + + + + + + + + + + + + + + + + + + +	20
Special Senses System		
Ear	+	1
Basal cell adenoma	Х	1
Eye	+	1
Zymbal's gland	+	1
Squamous cell carcinoma	Х	1
Urinary System		
Kidney	* * * * * * * * * * * * * * * * * * * *	20
Renal tubule, adenoma	XXX	2
Renal tubule, oncocytoma benign	x x	2
Urinary bladder	+ + + + + + + + + + + + + + + + + + + +	20
Systemic Lesions		
Multiple organs	+ + + + + + + + + + + + + + + + + + + +	20
Leukemia mononuclear	X X X X	4

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
Adrenal Medulla: Benign Pheochromocytoma		<u></u>	······
Overall rates ^a	9/49 (18%)	4/20 (20%)	1/20 (5%)
Adjusted rates ^b	27.2%	38.5%	50.0%
Terminal rates ^c	5/28 (18%)	3/9 (33%)	1/2 (50%)
First incidence (days)	573	680	729 (T)
Life table tests ^d	P=0.405	P=0.431	P=0.663
Logistic regression tests ^d	P=0.509N	P=0.499	P=0.465N
Cochran-Armitage test ^d	P=0.148N		
Fisher exact test ^a		P=0.560	P = 0.145N
Kidney (Renal Tubule): Adenoma (Single Sections)			
Overall rates	1/49 (2%)	1/20 (5%)	2/20 (10%)
Adjusted rates	3.6%	11.1%	53.1%
Terminal rates	1/28 (4%)	1/9 (11%)	1/2 (50%)
First incidence (days)	729 (T)	729 (T)	496
Life table tests	P = 0.011	P=0.491	P=0.025
Logistic regression tests	P=0.064	P=0.491	P=0.137
Cochran-Armitage test	P = 0.130		
Fisher exact test		P=0.499	P=0.199
Kidney (Renal Tubule): Adenoma (Single and Step Se	ections)		
Overall rates	1/49 (2%)	4/20 (20%)	2/20 (10%)
Adjusted rates	3.6%	38.1%	53.1%
Terminal rates	1/28 (4%)	3/9 (33%)	1/2 (50%)
First incidence (days)	729 (T)	619	496
Life table tests	P=0.001	P=0.008	P=0.025
Logistic regression tests	P=0.019	P=0.011	P=0.137
Cochran-Armitage test	P = 0.069		
Fisher exact test		P=0.023	P=0.199
Kidney (Renal Tubule): Benign Oncocytoma			
Overall rates	0/49 (0%)	0/20 (0%)	2/20 (10%)
Adjusted rates	0.0%	0.0%	16.4%
Terminal rates	0/28 (0%)	0/9 (0%)	0/2 (0%)
First incidence (days)	_e	-,	565
Life table tests	P=0.015	_f	P=0.036
Logistic regression tests	P = 0.031	-	P=0.076
Cochran-Armitage test	P = 0.030		
Fisher exact test		-	P=0.081
Liver: Hepatocellular Adenoma or Carcinoma			
Overall rates	2/49 (4%)	0/20 (0%)	1/20 (5%)
Adjusted rates	6.8%	0.0%	12.5%
Terminal rates	1/28 (4%)	0/9 (0%)	0/2 (0%)
First incidence (days)	720	-	618
Life table tests	P=0.395	P = 0.517N	P = 0.380
Logistic regression tests	P=0.531	P=0.506N	P=0.551
Cochran-Armitage test	P=0.634N		
Fisher exact test		P=0.501N	P=0.648

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin: 2-Year Vehicle Control versus Stop-Exposure 100 mg/kg Groups

Τ

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin: 2-Year Vehicle Control versus Stop-Exposure 100 mg/kg Groups (continued)

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
Aammary Gland: Fibroadenoma			
Overall rates	3/49 (6%)	2/20 (10%)	0/20 (0%)
Adjusted rates	8.9%	22.2%	0.0%
erminal rates	1/28 (4%)	2/9 (22%)	0/2 (0%)
First incidence (days)	622	729 (T)	- ` `
ife table tests	P=0.596	P=0.401	P=0.665N
ogistic regression tests	P=0.479N	P=0.447	P=0.395N
Cochran-Armitage test	P=0.312N		
risher exact test		P=0.453	P = 0.352N
ancreatic Islets: Adenoma			
Overall rates	4/47 (9%)	1/19 (5%)	0/20 (0%)
Adjusted rates	13.3%	6.3%	0.0%
erminal rates	3/28 (11%)	0/9 (0%)	0/2 (0%)
First incidence (days)	660	588	
ife table tests	P=0.373N	P = 0.588N	P = 0.672N
ogistic regression tests	P=0.207N	P=0.538N	P=0.455N
Cochran-Armitage test	P=0.140N		
isher exact test		P=0.551N	P=0.233N
Pituitary Gland (Pars Distalis): Adenoma			
Overall rates	19/48 (40%)	4/20 (20%)	5/20 (25%)
Adjusted rates	51.2%	44.4%	43.7%
Ferminal rates	11/28 (39%)	4/9 (44%)	0/2 (0%)
First incidence (days)	472	729 (T)	565
ife table tests	P=0.271	P=0.245N	P=0.176
ogistic regression tests	P=0.269N	P=0.131N	P = 0.404 N
Cochran-Armitage test	P=0.100N		
risher exact test		P=0.100N	P=0.194N
Preputial Gland: Adenoma			
Dverall rates	2/45 (4%)	1/19 (5%)	0/20 (0%)
Adjusted rates	7.1%	11.1%	0.0%
Cerminal rates	2/28 (7%)	1/9 (11%)	0/2 (0%)
First incidence (days)	729 (T)	729 (T)	_
life table tests	P=0.699	P=0.625	P=0.855N
ogistic regression tests	P=0.699	P=0.625	P=0.855N
Cochran-Armitage test	P=0.333N		
Fisher exact test		P=0.659	P=0.476N
Preputial Gland: Adenoma or Carcinoma			
Dverall rates	3/45 (7%)	2/19 (11%)	0/20 (0%)
Adjusted rates	10.7%	22.2%	0.0%
Ferminal rates	3/28 (11%)	2/9 (22%)	0/2 (0%)
First incidence (days)	729 (T)	729 (T)	_ ` `
ife table tests	P=0.555	P=0.377	P=0.764N
ogistic regression tests	P=0.555	P=0.377	P=0.764N
Cochran-Armitage test	P=0.286N		
Fisher exact test		P=0.468	P=0.325N

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin: 2-Year Vehicle Control versus Stop-Exposure 100 mg/kg Groups (continued)

I

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
Skin (Subcutaneous Tissue): Fibroma or Fibrosarcoma		<u> </u>	
Overall rates	3/49 (6%)	0/20 (0%)	0/20 (0%)
Adjusted rates	9.5%	0.0%	0.0%
Terminal rates	2/28 (7%)	0/9 (0%)	0/2 (0%)
First incidence (days)	609	-	-
Life table tests	P = 0.261N	P = 0.362N	P=0.634N
Logistic regression tests	P = 0.181N	P=0.332N	P=0.449N
Cochran-Armitage test	P = 0.137N		
Fisher exact test		P=0.352N	P=0.352N
Festes: Adenoma			
Overall rates	38/45 (84%)	18/20 (90%)	15/20 (75%)
Adjusted rates	100.0%	100.0%	100.0%
Terminal rates	28/28 (100%)	9/9 (100%)	2/2 (100%)
First incidence (days)	408	520	496
Life table tests	P<0.001	P = 0.040	P<0.001
Logistic regression tests	P=0.112	P=0.220	P=0.201
Cochran-Armitage test	P = 0.283N		•
Fisher exact test		P=0.432	P = 0.282N
All Organs: Mononuclear Cell Leukemia			
Overall rates	8/49 (16%)	5/20 (25%)	4/20 (20%)
Adjusted rates	22.4%	40.0%	65.8%
Terminal rates	3/28 (11%)	2/9 (22%)	1/2 (50%)
First incidence (days)	420	619	499
Life table tests	P=0.019	P=0.215	P=0.048
Logistic regression tests	P = 0.222	P=0.287	P=0.392
Cochran-Armitage test	P=0.366		
Fisher exact test		P = 0.302	P=0.481
All Organs: Benign Neoplasms			
Overall rates	45/49 (92%)	18/20 (90%)	16/20 (80%)
Adjusted rates	100.0%	100.0%	100.0%
Terminal rates	28/28 (100%)	9/9 (100%)	2/2 (100%)
First incidence (days)	408	520	496
Life table tests	P<0.001	P = 0.251	P<0.001
Logistic regression tests	P = 0.268	P=0.659	P=0.413
Cochran-Armitage test	P=0.129N		
Fisher exact test		P = 0.565N	P=0.163N
All Organs: Malignant Neoplasms			
Overall rates	17/49 (35%)	8/20 (40%)	7/20 (35%)
Adjusted rates	45.9%	65.7%	73.0%
Terminal rates	9/28 (32%)	5/9 (56%)	1/2 (50%)
First incidence (days)	420	619	253
Life table tests	P=0.007	P=0.264	P=0.015
Logistic regression tests	P=0.272	P=0.370	P=0.452
Cochran-Armitage test	P=0.508	B 6 1 10	D 0 501
Fisher exact test		P = 0.440	P=0.596

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin: 2-Year Vehicle Control versus Stop-Exposure 100 mg/kg Groups (continued)

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
ll Organs: Benign or Malignant Neoplasms			
overall rates	46/49 (94%)	18/20 (90%)	17/20 (85%)
djusted rates	100.0%	100.0%	100.0%
erminal rates	28/28 (100%)	9/9 (100%)	2/2 (100%)
ïrst incidence (days)	408	520	253
ife table tests	P<0.001	P=0.296	P<0.001
ogistic regression tests	P=0.102	P=0.761	P=0.200
Cochran-Armitage test	P=0.170N		
isher exact test		P=0.453N	P=0.229N

(T)Terminal sacrifice

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, epididymis, heart, kidney, larynx, liver, lung, nose, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

e Not applicable; no neoplasms in animal group

f Value of statistic cannot be computed

TABLE E3b

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin: 2-Year 100 mg/kg Group versus Stop-Exposure 100 mg/kg Groups

I.

	100 mg/kg (24-month exposure)	100 mg/kg (15-month exposure)	100 mg/kg (9-month exposure)
Adrenal Medulla: Benign Pheochromocytoma		···	
Overall rates ^a	0/50 (0%)	1/20 (5%)	4/20 (20%)
Adjusted rates ^b	0.0%	50.0%	38.5%
Terminal rates ^c	0/0 (0%)	1/2 (50%)	3/9 (33%)
First incidence (days)	_e	729 (T)	680
Life table tests ^d	P=0.711	-,	P=0.952
Logistic regression tests ^d	P=0.379	_f	P=0.579
Cochran-Armitage test ^d	P=0.002		
Fisher exact test ^a		P = 0.286	P=0.005
Kidney (Renal Tubule): Adenoma (Single Sections)			
Overall rates	1/50 (2%)	2/20 (10%)	1/20 (5%)
Adjusted rates	2.4%	53.1%	11.1%
Terminal rates	0/0 (0%)	1/2 (50%)	1/9 (11%)
First incidence (days)	496	496	729 (T)
Life table tests	P=0.341N	P=0.539	P=0.664N
Logistic regression tests	P=0.404	P=0.199	P=0.657
Cochran-Armitage test	P=0.301		
Fisher exact test		P=0.194	P=0.493
Kidney (Renal Tubule): Adenoma (Single and Step S	lections)		
Overall rates	5/50 (10%)	2/20 (10%)	4/20 (20%)
Adjusted rates	31.8%	53.1%	38.1%
Terminal rates	0/0 (0%)	1/2 (50%)	3/9 (33%)
First incidence (days)	426	496	619
Life table tests	P = 0.086N	P=0.378N	P=0.121N
Logistic regression tests	P=0.419	P=0.669	P=0.479
Cochran-Armitage test	P=0.224		
Fisher exact test		P = 0.684N	P = 0.226
Kidney (Renal Tubule): Benign Oncocytoma			
Overall rates	0/50 (0%)	2/20 (10%)	0/20 (0%)
Adjusted rates	0.0%	16.4%	0.0%
Terminal rates	0/0 (0%)	0/2 (0%)	0/9 (0%)
First incidence (days)	-	565	-
Life table tests	P=0.598	P=0.127	-
Logistic regression tests	P=0.461	P=0.070	-
Cochran-Armitage test	P=0.442		
Fisher exact test		P=0.079	-
Mammary Gland: Fibroadenoma			
Overall rates	0/50 (0%)	0/20 (0%)	2/20 (10%)
Adjusted rates	0.0%	0.0%	22.2%
Terminal rates	0/0 (0%)	0/2 (0%)	2/9 (22%)
First incidence (days)	_	_	729 (T)
Life table tests	P=0.604	-	-
Logistic regression tests	P=0.604	_	_
Cochran-Armitage test	P=0.029		
Fisher exact test		-	P=0.079

,-

TABLE E3b

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin: 2-Year 100 mg/kg Group versus Stop-Exposure 100 mg/kg Groups (continued)

	100 mg/kg	100 mg/kg (15-month exposure)	100 mg/kg (9-month exposure)
ammary Gland: Fibroadenoma or Adenoma			· · · · · · ·
verall rates	1/50 (2%)	0/20 (0%)	2/20 (10%)
djusted rates	14.3%	0.0%	22.2%
erminal rates	0/0 (0%)	0/2 (0%)	2/9 (22%)
irst incidence (days)	638	-	729 (T)
ife table tests	P=0.354N	P=0.567N	P=0.377N
ogistic regression tests	P=0.600N	P=0.579N	P=0.667N
ochran-Armitage test	P=0.140		
sher exact test		P=0.714N	P=0.194
tuitary Gland (Pars Distalis): Adenoma			
verall rates	6/50 (12%)	5/20 (25%)	4/20 (20%)
djusted rates	48.1%	43.7%	44.4%
erminal rates	0/0 (0%)	0/2 (0%)	4/9 (44%)
rst incidence (days)	485	565	729 (T)
fe table tests	P=0.060N	P=0.373	P=0.018N
ogistic regression tests	P=0.514	P=0.173	P = 0.461N
ochran-Armitage test	P=0.193		
sher exact test		P=0.161	P=0.304
reputial Gland: Adenoma or Carcinoma			
verall rates	1/47 (2%)	0/20 (0%)	2/19 (11%)
justed rates	3.1%	0.0%	22.2%
rminal rates	0/0 (0%)	0/2 (0%)	2/9 (22%)
rst incidence (days)	525	-	729 (T)
fe table tests	P = 0.541N	P = 0.665 N	P = 0.626N
gistic regression tests	P=0.403	P=0.669N	P=0.595
chran-Armitage test	P=0.143	B 0 701N	D 0 107
sher exact test		P=0.701N	P=0.197
estes: Adenoma			
verall rates	46/50 (92%)	15/20 (75%)	18/20 (90%)
djusted rates	100.0%	100.0%	100.0%
erminal rates	0/0 (0%) 207	2/2 (100%)	9/9 (100%)
rst incidence (days)	307 D <0.001N	496 B. 0.012N	520 B - 0 001N
fe table tests	P < 0.001N	P = 0.013N	P<0.001N
ogistic regression tests ochran-Armitage test	P = 0.352N	P = 0.321N	P=0.633N
sher exact test	P=0.323N	P=0.068N	P=0.556N
Demons Monorusion C-U I			
l Organs: Mononuclear Cell Leukemia verall rates	0/50 (0%)	4/20 (20%)	5/20 (25%)
djusted rates	0.0%	65.8%	40.0%
erminal rates	0/0 (0%)	1/2 (50%)	2/9 (22%)
rst incidence (days)	-	499	619
fe table tests	P=0.377	P=0.048	P = 0.450
gistic regression tests	P = 0.013	P = 0.006	P = 0.062
ochran-Armitage test	P<0.001	• •••••	
sher exact test		P=0.005	P=0.001

TABLE E3b

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Coumarin: 2-Year 100 mg/kg Group versus Stop-Exposure 100 mg/kg Groups (continued)

	100 mg/kg	100 mg/kg (15-month exposure)	100 mg/kg (9-month exposure)
All Organs: Benign Neoplasms		······································	
Overall rates	47/50 (94%)	16/20 (80%)	18/20 (90%)
Adjusted rates	100.0%	100.0%	100.0%
Terminal rates	0/0 (0%)	2/2 (100%)	9/9 (100%)
First incidence (days)	307 `	496	520
Life table tests	P<0.001N	P=0.018N	P<0.001N
Logistic regression tests	P=0.469N	P=0.754N	P=0.610N
Cochran-Armitage test	P=0.259N		
isher exact test		P=0.097N	P=0.444N
All Organs: Malignant Neoplasms			
Overall rates	5/50 (10%)	7/20 (35%)	8/20 (40%)
Adjusted rates	43.3%	73.0%	65.7%
erminal rates	0/0 (0%)	1/2 (50%)	5/9 (56%)
First incidence (days)	512	253	619`
life table tests	P = 0.248N	P=0.152	P=0.143N
ogistic regression tests	P=0.011	P=0.014	P = 0.200
Cochran-Armitage test	P = 0.002		
Fisher exact test		P=0.018	P=0.007
All Organs: Benign or Malignant Neoplasms			
Overall rates	47/50 (94%)	17/20 (85%)	18/20 (90%)
Adjusted rates	100.0%	100.0%	100.0%
Ferminal rates	0/0 (0%)	2/2 (100%)	9/9 (100%)
First incidence (days)	307 `	253	520
ife table tests	P<0.001N	P=0.030N	P<0.001N
Logistic regression tests	P=0.558N	P = 0.540	P=0.610N
Cochran-Armitage test	$P = 0.298N_{\odot}$		
Fisher exact test		P=0.222N	P = 0.444N

(T)Terminal sacrifice

¹ Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, bone marrow, brain, epididymis, heart, kidney, larynx, liver, lung, nose, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, testes, thyroid gland, and urinary bladder; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression tests regard these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

^e Not applicable; no neoplasms in animal group

¹ Value of statistic cannot be computed

Table E4

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin^a

	Vehicle Control ^b	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
Disposition Summary			
Animals initially in study	80	40	30
9-Manth interim evaluation	20	20	
15-manth interim evaluation	10		10
Early deaths			
Accidental deaths	2	1	3
Moribund	14	6	13
Natural deaths	6	4	2
Survivors	0	•	2
Died last week of study		1	
Terminal sacrifice	28	8	2
Terminal sacrifice	20	0	2
Animals examined microscopically	80	40	30
9-Month Interim Evaluation			
Alimentary System			
Liver	(17)	(18)	
Clear cell focus	1 (6%)	2 (11%)	
Fatty change	4 (24%)	~ (11/0)	
Inflammation, focal, chronic	4 (2470)	1 (6%)	
Necrosis, coagulative		11 (61%)	
Necrosis, multifocal			
Bile duct, hyperplasia	7 (41%)	6 (33%) 17 (94%)	
		17 (94%)	
Mesentery Est inflormation chronic	(1)	(1)	
Fat, inflammation, chronic	1 (100%)	1 (100%)	
Fat, necrosis, coagulative		1 (100%)	
Cardiovascular System			
Heart	(17)	(18)	
Cardiomyopathy	10 (59%)	9 (50%)	
Endocrine System			
Pituitary gland	(17)	(18)	
Pars distalis, hyperplasia	1 (6%)		
General Body System None			
Genital System			
Seminal vesicle	(17)	(18)	
Atrophy	1 (6%)	XX	
Testes	(17)	(18)	
Interstitial cell, hyperplasia	9 (53%)	14 (78%)	
Seminiferous tubule, atrophy	1 (6%)		

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
D-Month Interim Evaluation (continued Iematopoietic System None	d)		·
ntegumentary System one			
Iusculoskeletal System one			
ervous System			
Respiratory System Lung Hemorrhage Inflammation, granulomatous	(17) 2 (12%)	(18) 1 (6%)	
Special Senses System None	······		
J rinary System Gidney Nephropathy Jrinary bladder Calculus gross observation	(17) 17 (100%) (17)	(18) 18 (100%) (18) 2 (11%)	
15-Month Interim Evaluation Alimentary System Liver Basophilic focus Clear cell focus Fatty change Inflammation, chronic Necrosis, coagulative Bile duct, hyperplasia Hepatocyte, degeneration, granular Mesentery Fat, inflammation, chronic Fat, necrosis, coagulative Pancreas Inflammation, chronic	(7) 1 (14%) 1 (14%) 1 (14%) 1 (14%) 5 (71%) (3) 1 (33%) 2 (67%) (7)		(10) 9 (90%) 2 (20%) 10 (100%) 8 (80%) (1) 1 (100%) (10) 1 (10%)

.

TABLE E4 Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin (continued)

Lesions in Stop-Exposure Gavage Study Male Mice

Table E4

Summary of the Incidence of Nonneoplastic Lesions in Male Rats

in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin (continued)

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
15-Month Interim Evaluation (conti Cardiovascular System	nued)		
Heart	(7) 6 (86%)		(10)
Cardiomyopathy	6 (86%)		4 (40%)
Endocrine System			
Pituitary gland	(7) 1 (14%)		(10)
Pars distalis, hyperplasia Pars distalis, hypertrophy	1 (14%)		
General Body System None			
Genital System			
Preputial gland Inflammation, suppurative	(7) 1 (14%)		(10)
Testes	(7)		(10)
Atrophy			1 (10%)
Hematopoietic System			(10)
Spleen Ectopic tissue	(7) 1 (14%)		(10)
Integumentary System None		· · · · · · · · · · · · · · · · · · ·	
Musculoskeletal System None			
Nervous System None			
Respiratory System			
Nose Inflammation, suppurative	(7)		(10) 1 (10%)
Special Senses System None			·····

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
15-Month Interim Evaluation (contin	nued)		, <u> </u>
Urinary System	,		
Kidney	(7)		(10)
Hydronephrosis			1 (10%)
Nephropathy	7 (100%)		10 (100%)
2-Year Study ^b			
Alimentary System			
Intestine large, rectum	(45)	(18)	(20)
Inflammation, suppurative			1 (5%)
Intestine small, duodenum	(46)	(18)	(20)
Ulcer	1 (2%)		
Intestine small, jejunum	(45)	(17)	(20)
Necrosis, coagulative			1 (5%)
Liver	(49)	(20)	(20)
Basophilic focus	16 (33%)	2 (10%)	1 (5%)
Clear cell focus	5 (10%)	0 (100)	
Developmental malformation	2 (4%)	2 (10%)	
Eosinophilic focus	5 (10%)	2 (100%)	2 (1507)
Fatty change	4 (8%)	2 (10%)	3 (15%) 2 (10%)
Fibrosis	2 (102)	1 (5%)	2 (10%)
Hyperplasia Infiltration cellular, lymphocyte	2 (4%) 3 (6%)	1 (370)	
Inflammation, chronic	3 (070)	1 (5%)	
Mixed cell focus	4 (8%)	. (570)	1 (5%)
Necrosis, coagulative	1 (2%)	2 (10%)	3 (15%)
Bile duct, hyperplasia	41 (84%)	17 (85%)	14 (70%)
Hepatocyte, degeneration, granular			1 (5%)
Periductular, fibrosis			1 (5%)
Mesentery	(19)	(7)	(4)
Fat, hemorrhage	1 (5%)		
Fat, inflammation, chronic	2 (11%)	2 (29%)	
Fat, inflammation, suppurative			1 (25%)
Fat, necrosis, coagulative	12 (63%)	2 (29%)	3 (75%)
Pancreas	(47)	(19)	(20)
Atrophy	4 (9%)	1 (5%)	2 (10%)
Hyperplasia	4 10.01	1 (5%)	
Acinar cell, hyperplasia	1 (2%)		
Acinus, hyperplasia	2 (4%)	(10)	(10)
Stomach, forestomach	(48)	(19) 1 (5%)	(19)
Cyst epithelial inclusion Hyperkeratosis	2 (4%)	2 (11%)	
Hyperplasia	2 (470)	1 (5%)	1 (5%)
Inflammation, chronic		3 (16%)	3 (16%)
Inflammation, suppurative		1 (5%)	1 (5%)
Ulcer	7 (15%)	3 (16%)	5 (26%)
Stomach, glandular	(47)	(18)	(20)
Dilatation			1 (5%)
Inflammation, chronic		1 (6%)	
Mineralization		1 (6%)	2 (10%)
Ulcer	2 (4%)		2 (10%)

т

TABLE E4 Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin (continued)

Summary of the Incidence of Nonneoplastic Lesions in Male Rats

in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin (continued)

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
2-Year Study (continued)			
Cardiovascular System			
Blood vessel		(1)	(1)
Aorta, mineralization	(1)	(1) 1 (100%)	(1) 1 (100%)
Mesenteric artery, mineralization		1 (100%)	1 (100 %)
Heart	(49)	(20)	(20)
Cardiomyopathy	27 (55%)	11 (55%)	10 (50%)
Fibrosis	27 (3570)	1 (5%)	10 (50%)
Thrombosis		1 (5%)	
Endocrine System	w w w w.	·····	
Adrenal gland, cortex	(49)	(20)	(20)
Congestion		1 (5%)	
Adrenal gland, medulla	(49)	(20)	(20)
Basophilic focus	1 (2%)		
Congestion	1 (2%)		
Parathyroid gland	(41)	(19)	(18)
Hyperplasia	3 (7%)	4 (21%)	8 (44%)
Pituitary gland	(48)	(20)	(20)
Pars distalis, congestion		1 (5%)	
Pars distalis, cyst	1 (2%)	1 (5%)	
Pars distalis, hyperplasia		1 (5%)	
Pars intermedia, hemorrhage	1 (2%)		
Thyroid gland	(47)	(20)	(20)
C-cell, hyperplasia	5 (11%)		
Follicle, cyst	1 (2%)		
Follicular cell, cyst		1 (5%)	
General Body System			
None			
Genital System			
Preputial gland	(45)	(19)	(20)
Dilatation		1 (80()	1 (5%)
Hemorrhage	1 1000	1 (5%)	
Hyperplasia	1 (2%)		
Inflammation, chronic	$\frac{1}{7}$ (2%)	1 (501)	2 (10%)
Inflammation, suppurative	7 (16%)	1 (5%)	2 (10%)
Duct, dilatation Prostate	3 (7%)	(20)	(20)
	(45)	(20)	(20)
Hemorrhage Hyperplasia	1 (2%)	2 (10%)	1 (5%) 1 (5%)
Inflammation, chronic	1 (270)	2 (1070)	1 (5%)
Inflammation, suppurative	4 (9%)		x (570)
Testes	(45)	(20)	(20)
Atrophy		1 (5%)	1 (5%)
Infarct		- (577)	1 (5%)
	3 (7%)		- (- //)

Summary of the Incidence of Nonneoplastic Lesions in Male Rats

in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin (continued)

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
2-Year Study (continued)			
Hematopoietic System			
Bone marrow	(48)	(19)	(20)
Hyperplasia, mononuclear cell	1 (2%)	1 (5%)	(20)
Lymph node, mandibular	(48)	(20)	(20)
Congestion	1 (2%)	1 (5%)	
Hyperplasia, lymphoid	1 (2%)		1 (5%)
Hyperplasia, plasma cell	1 (2%)		
Lymph node, mesenteric	(43)	(20)	(20)
Congestion		í (5%)	
Spleen	(48)	(19)	(20)
Congestion	2 (4%)		
Developmental malformation	2 (4%)	1 (5%)	
Fibrosis			1 (5%)
Hypoplasia	1 (2%)		
Necrosis			1 (5%)
Pigmentation, hemosiderin	1 (2%)		
Integumentary System			
Mammary gland	(45)	(20)	(16)
Galactocele	2 (4%)	(-0)	(10)
Skin	(49)	(20)	(20)
Cyst epithelial inclusion	3 (6%)	(20)	1 (5%)
Hemorrhage	1 (2%)		1 (570)
Inflammation, chronic	2 (4%)		
Musculoskeletal System None			
Nervous System		· · · · · · · · · · · · · · · · · · ·	
Brain	(47)	(19)	(20)
Cerebellum, developmental malformation	1 (2%)		× /
Cerebellum, hemorrhage			1 (5%)
Cerebrum, hemorrhage			1 (5%)
Cerebrum, infarct			1 (5%)
Hypothalamus, compression	1 (2%)		
Respiratory System			· · · · · · · · · · · · · · · · · · ·
Lung	(49)	(20)	(20)
Emphysema	()	1 (5%)	()
Fibrosis		1 (5%)	
Foreign body		- (0,0)	3 (15%)
			1 (5%)
Hemorrage			* (* / * /
Hemorrhage Inflammation, suppurative	1 (2%)		1 (5%)

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 9- and 15-Month Stop-Exposure Gavage Study of Coumarin (continued)

	Vehicle Control	100 mg/kg (9-month exposure)	100 mg/kg (15-month exposure)
2-Year Study (continued)			۳۳۵ و ۱۹۹۵ و ۱۹۹۵ و بر ۱۹۹۵ <u>و او /u>
Respiratory System (continued)			
Nose	(49)	(20)	(20)
Fungus	4 (8%)	1 (5%)	2 (10%)
Inflammation, suppurative	13 (27%)	3 (15%)	3 (15%)
Metaplasia, squamous		- ()	1 (5%)
Necrosis, coagulative			1 (5%)
Trachea	(49)	(20)	(20)
Metaplasia, squamous			1 (5%)
Special Senses System Eye Inflammation, suppurative Posterior chamber, hemorrhage		(1) 1 (100%)	(1) 1 (100%)
Urinary System			
Kidney	(49)	(20)	(20)
Congestion	1 (2%)		
Nephropathy	48 (98%)	20 (100%)	20 (100%)
Cortex, cyst	1 (2%)		1 (5%)
Renal tubule, hyperplasia	1 (2%)		3 (15%)
Urinary bladder	(45)	(20)	(20)
Hyperplasia	1 (2%)	1 (50)	
Inflammation, suppurative		1 (5%)	1 (50)
Lumen, hemorrhage			1 (5%)

Incidences are expressed as the ratio of animals with lesions to the number of animals examined microscopically at the site. Includes the 50 vehicle control animals from the 2-year core study. a b

.

1

APPENDIX F GENETIC TOXICOLOGY

	WICHAGENEETI TEST TECTOCOL CONTROL CONT	280
CHINESE HA	mster Ovary Cell Cytogenetics Protocols	280
DROSOPHILA	MELANOGASTER TEST PROTOCOL	281
Mouse Per	ipheral Blood Micronucleus Test Protocol	282
RESULTS		282
Table F1	Mutagenicity of Coumarin in Salmonella typhimurium	284
Table F2	Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells	
	by Coumarin	286
Table F3	Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells	
	by Coumarin	287
Table F4	Induction of Sex-Linked Recessive Lethal Mutations in Drosophila melanogaster	
	by Coumarin	288
Table F5	Frequency of Micronuclei in Peripheral Blood Erythrocytes of Mice	
	in the 13-Week Gavage Study of Coumarin	289

279

GENETIC TOXICOLOGY

SALMONELLA MUTAGENICITY TEST PROTOCOL

Testing was performed as reported by Haworth *et al.* (1983). Coumarin was sent to the laboratory as a coded aliquot from Radian Corporation (Austin, TX). It was incubated with the Salmonella typhimurium tester strains (TA98, TA100, TA1535, and TA1537) either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver) for 20 minutes at 37° C. Top agar supplemented with *l*-histidine and *d*-biotin was added, and the contents of the tubes were mixed and poured onto the surfaces of minimal glucose agar plates. Histidine-independent mutant colonies arising on these plates were counted following incubation for 2 days at 37° C.

Each trial consisted of triplicate plates of concurrent positive and negative controls and at least five doses of coumarin. The high dose was limited by toxicity. All positive trials were repeated under the conditions that elicited the positive response.

In this assay, a positive response is defined as a reproducible, dose-related increase in histidineindependent (revertant) colonies in any one strain/activation combination. An equivocal response is defined as an increase in revertants that is not dose related, not reproducible, nor is of insufficient magnitude to support a determination of mutagenicity. A negative response is obtained when no increase in revertant colonies is observed following chemical treatment. There was no minimum percentage or fold increase required for a chemical to the judged positive (+) or weakly positive (+w).

CHINESE HAMSTER OVARY CELL CYTOGENETICS PROTOCOLS

Testing was performed as reported by Galloway *et al.* (1987). Coumarin was sent to the laboratory as a coded aliquot by Radian Corporation. It was tested in cultured Chinese hamster ovary (CHO) cells for induction of sister chromatid exchanges (SCEs) and chromosomal aberrations (Abs), both in the presence and absence of Aroclor 1254-induced male Sprague-Dawley rat liver S9 and cofactor mix. Cultures were handled under gold lights to prevent photolysis of bromodeoxyuridine-substituted DNA. Each test consisted of concurrent solvent and positive controls and of at least three doses of coumarin; the high dose was limited by toxicity. A single flask per dose was used, and tests yielding equivocal or positive results were repeated.

Sister Chromatid Exchange Test: In the SCE test without S9, CHO cells were incubated for 26 hours with coumarin in McCoy's 5A medium supplemented with fetal bovine serum, *l*-glutamine, and antibiotics. Bromodeoxyuridine (BrdU) was added 2 hours after culture initiation. After 26 hours, the medium containing coumarin was removed and replaced with fresh medium plus BrdU and Colcemid, and incubation was continued for 2 hours. Cells were then harvested by mitotic shake-off, fixed, and stained with Hoechst 33258 and Giemsa. In the SCE test with S9, cells were incubated with coumarin, serum-free medium, and S9 for 2 hours. The medium was then removed and replaced with medium containing serum and BrdU and no coumarin and incubation proceeded for an additional 26 hours, with Colcemid present for the final 2 hours. Harvesting and staining were the same as for cells treated without S9. All slides were scored blind and those from a single test were read by the same person. Fifty second-division metaphase cells were scored for frequency of SCEs/cell from each dose level.

Statistical analyses were conducted on the slopes of the dose-response curves and the individual dose points (Galloway *et al.*, 1987). An SCE frequency 20% above the concurrent solvent control value was chosen as a statistically conservative positive response. The probability of this level of difference occurring by chance at one dose point is less than 0.01; the probability for such a chance occurrence at two dose points is less than 0.001. An increase of 20% or greater at any single dose was considered

Genetic Toxicology

weak evidence of activity (+w); increases at two or more doses resulted in a determination that the trial was positive (+). A statistically significant trend ($P \le 0.05$) in the absence of any responses reaching 20% above background led to a call of equivocal.

Chromosomal Aberrations Test: In the Abs test without S9, cells were incubated in McCoy's 5A medium with coumarin for 12 hours; Colcemid was added and incubation continued for 2 hours. The cells were then harvested by mitotic shake-off, fixed, and stained with Giemsa. For the Abs test with S9, cells were treated with coumarin and S9 for 2 hours, after which the treatment medium was removed and the cells were incubated for 12 hours in fresh medium, with Colcemid present for the final 2 hours. Cells were harvested in the same manner as for the treatment without S9. The harvest time for the Abs test was based on the cell cycle information obtained in the SCE test: if cell cycle delay was anticipated, the incubation period was extended.

Cells were selected for scoring on the basis of good morphology and completeness of karyotype $(21 \pm 2 \text{ chromosomes})$. All slides were scored blind and those from a single test were read by the same person. One hundred first-division metaphase cells were scored at each dose level. Classes of aberrations included simple (breaks and terminal deletions), complex (rearrangements and translocations), and other (pulverized cells, despiralized chromosomes, and cells containing 10 or more aberrations).

Chromosomal aberration data are presented as percentage of cells with aberrations. Statistical analyses were conducted on both the dose response curve and individual dose points. For a single trial, a statistically significant ($P \le 0.05$) difference for one dose point and a significant trend ($P \le 0.015$) are considered weak evidence for a positive response (+w); significant differences for two or more doses indicate the trial is positive (+). A positive trend test in the absence of a statistically significant increase at any one dose results in an equivocal call (Galloway *et al.*, 1987).

Drosophila melanogaster Test Protocol

The assays for induction of sex-linked recessive lethal (SLRL) mutations were performed with adult flies as described by Valencia *et al.* (1989) and with larvae as described by Zimmering *et al.* (1989). Coumarin was supplied as a coded aliquot by Radian Corporation. It was assayed in the SLRL test by feeding for 3 days to adult Canton-S wild-type males no more than 24 hours old at the beginning of treatment. Because no response was obtained, coumarin was retested by injection into adult males.

To administer a chemical by injection, a glass Pasteur pipette is drawn out in a flame to a microfine filament, and the tip is broken off to allow delivery of the test solution. Injection is performed either manually, by attaching a rubber bulb to the other end of the pipette and forcing through sufficient solution (0.2 to 0.3 μ L) to slightly distend the abdomen of the fly, or by attaching the pipette to a microinjector which automatically delivers a calibrated volume. Flies are anesthetized with ether and immobilized on a strip of tape. Injection into the thorax, under the wing, is performed with the aid of a dissecting microscope.

Toxicity tests were performed to set concentrations of coumarin at a level that would induce 30% mortality after 72 hours of feeding or 24 hours after injection, while keeping induced sterility at an acceptable level. For the SLRL test, oral exposure was achieved by allowing Canton-S males to feed for 72 hours on a solution of coumarin in 5% sucrose. In the injection experiments, 24- to 72-hour old Canton-S males were treated with a solution of coumarin dissolved in 0.7% saline or peanut oil and allowed to recover for 24 hours. A concurrent saline or peanut oil control group was also included. For the larval feeding experiment, Canton-S females and males were mated and eggs were exposed in vials with standard cornmeal food containing coumarin in solvent (5% ethanol) or solvent alone (Valencia *et al.*, 1989). Adult emergent males were mated at approximately 24 hours of age with two successive harems of three to five *Basc* females to establish two single-day broods. In the adult

exposures, treated males were mated to three *Basc* females for 3 days and given fresh females at 2-day intervals to produce three matings of 3, 2, and 2 days (in each case, sample sperm from successive matings were treated at successively earlier post-meiotic stages). F_1 heterozygous females were mated with their siblings and then placed in individual vials. F_1 daughters from the same parental male were kept together to identify clusters. (A cluster occurs when a number of mutants from a given male results from a single spontaneous premeiotic mutation event, and is identified when the number of mutants from that male exceeds the number predicted by a Poisson distribution.) If a cluster was identified, all data from the male in question were discarded. Presumptive lethal mutations were identified as vials containing fewer than 5% of the expected number of wild-type males after 17 days; these were retested to confirm the response.

SLRL data were analyzed by simultaneous comparison with the concurrent and historical controls, using a normal approximation to the binomial test (Margolin *et al.*, 1983). A test result is considered positive if the P value is less than 0.01 and the mutation frequency in the tested group is greater than 0.10%, or if the P value is less than 0.05 and the frequency in the treatment group is greater than 0.15%. A test is considered to be inconclusive if (a) the P value is between 0.05 and 0.01 but the frequency in the treatment group is between 0.10% and 0.15% or (b) the P value is between 0.10 and 0.05 but the frequency in the treatment group is greater than 0.10%. A test is considered negative if the P value is greater than 0.10 or if the frequency in the treatment group is less than 0.10%.

MOUSE PERIPHERAL BLOOD MICRONUCLEUS TEST PROTOCOL

A detailed discussion of this assay can be found in MacGregor *et al.* (1990). Peripheral blood samples were obtained from male and female $B6C3F_1$ mice at the termination of the 13-week toxicity study. Smears were immediately prepared and fixed in absolute methanol, stained with a chromatin-specific fluorescent dye mixture of Hoechst 33258/pyronin Y (MacGregor *et al.*, 1983), and coded. Slides were scanned to determine the frequency of micronuclei in 10,000 normochromatic erythrocytes (NCEs) in each animal per dose group. The criteria of Schmid (1976) were used to define micronuclei, with the additional requirement that the micronuclei exhibit the characteristic fluorescent emissions of DNA (blue with 360 nm and orange with 510 nm UV illumination); the minimum size limit was approximately one-twentieth the diameter of the NCE cell.

Log transformation of the NCE data, and testing for normality by the Shapiro-Wilk test, and for heterogeneity of variance by Cochran's test, were performed before statistical analyses. The frequencies of micronucleated cells among NCEs were analyzed by analysis of variance using the SAS GLM procedure. The NCE data for each dose group was compared with the concurrent solvent control using Student's t-test.

RESULTS

Positive results were obtained with *in vitro* mutagenicity tests with coumarin, but no mutagenic responses were observed *in vivo*. Coumarin (33 to 3,333 μ g/plate) was tested for induction of gene mutations in *Salmonella typhimurium* strains TA98, TA100, TA1535, and TA1537 using a preincubation protocol with and without Aroclor 1254-induced male Sprague-Dawley rat and Syrian hamster liver S9; a positive response was obtained only in TA100 with S9 (Table F1; Haworth *et al.*, 1983).

In Chinese hamster ovary cells, coumarin induced sister chromatid exchanges in the absence, but not the presence, of Aroclor 1254-induced male Sprague-Dawley rat liver S9; the lowest effective dose was 100 μ g/mL (Table F2; Galloway *et al.*, 1987). In both SCE trials without S9, the increases in sister chromatid exchanges were significant, but did not correlate with dose. Coumarin was also tested for induction of chromosomal aberrations in Chinese hamster ovary cells with and without S9. A dose-related positive response was also observed, but only in the presence of S9 (Table F3;

Genetic Toxicology

Galloway et al., 1987). A significant increase in chromosomal aberrations was seen at the highest dose tested (1,600 μ g/mL) with S9; at this dose, 37% of cells showed chromosomal damage.

Coumarin did not induce sex-linked recessive lethal mutations in germ cells of male *Drosophila* melanogaster exposed either as adults, by feeding (70 ppm) or by injection (500 ppm), or as larvae, treated by feeding (194 and 200 ppm) (Table F4; Yoon *et al.*, 1985; Valencia *et al.*, 1989).

Peripheral blood erythrocytes of male and female mice administered coumarin at doses up to 300 mg/kg, for 13 weeks by gavage were examined for frequencies of micronuclei; no increases in micronucleated normochromatic erythrocytes were observed (Table F5).

				Reverta	nts/plate ^b		<u>.</u> .	
Strain Dose (µg/plate)	Dose		<u>.</u>	+10% ha	mster S9	+10% rat S9		
	(µg/plate)	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	
TA100	0	112 ± 9.1	108 ± 9.1	84 ± 1.2	114 ± 6.9	121 ± 12.7	106 ± 5.5	
	33	112 ± 7.4		104 ± 3.5		138 ± 2.3		
	100	130 ± 11.0	115 ± 10.7	116 ± 9.8	120 ± 11.6	152 ± 7.0	123 ± 5.4	
	333	107 ± 9.2	111 ± 8.2	143 ± 7.3		150 ± 4.1		
	1,000	125 ± 3.8	111 ± 7.3	196 ± 10.1	287 ± 20.8	186 ± 3.2	176 ± 3.8	
	2,000		118 ± 1.2		379 ± 18.6		198 ± 9.1	
	2,150	122 ± 11.1						
	2,500		62 ± 5.3^{c}		364 ± 12.7		196 ± 4.9	
	3.000				286 ± 16.5^{c}		$133 \pm 1.5^{\circ}$	
	3,333			188 ± 24.0^{c}		Toxic		
Trial sumn		Negative	Negative	Positive	Positive	Equivocal	Positive	
Positive co	ntrold	$1,890 \pm 51.6$	1,371 ± 29.9	$2,384 \pm 120.0$	$3,128 \pm 44.7$	859 ± 51.2	$1,547 \pm 31.0$	
				Reverta	nts/plate		۰.	
Strain Dose		-59		+10% hamster S9		+10% rat S9		
Strum	(µg/plate)			<u>10% nu</u>			140.57	
TA1535	0		± 1.2		2.0		± 0.7	
	33		± 5.2		: 1.0		± 1.2	
	100		± 2.5		: 0.7	11 :	± 1.0	
	333		± 3.2		: 1.8		± 0.3	
	1,000		± 5.0	9 ±	: 1.5	8 :	± 1.2	
	2,150 3,333	23	± 4.3	11 ±	2.8	10 :	± 0.6 ^c	
Trial sumn	2051	Nee	ative	Nega	tina		ative	
Positive co	•		± 35.3	145 ±			± 5.0	
TA1537	0	5	± 1.3	11 +	: 1.2	9 -	± 3.2	
	33		± 1.2	11 ±			± 2.2	
	100		± 0.7	9 ±			± 2.3	
	333		± 0.9	7 ±			± 0.9	
	1,000		± 0.9	/ <u>-</u> 9 ±			± 1.8	
	2,150		$\pm 0.5^{c}$	<i>, , ,</i>		,	_ 1.0	
	3,333	5	- 0.0	6 ±	: 1.5 ^c	9 :	± 2.5 ^c	
		 .		Negative		Negative		
Trial sumn	nary	Neg	gative	Neg	ative	Ne	gative	

ł.

TABLE F1 Mutagenicity of Coumarin in Salmonella typhimurium^a

Genetic Toxicology

Table F1

Mutagenicity of Coumarin in Salmonella typhimurium (continued)

	-	Revertants/plate							
Strain	Dose (µg/plate)	-\$9	<u> </u>	+10% rat S9					
TA98	0	14 ± 2.5	22 ± 2.9	30 ± 2.7					
	33	12 ± 0.3	27 ± 0.9	34 ± 8.5					
	100	15 ± 1.2	27 ± 2.6	30 ± 3.8					
	333	16 ± 2.3	36 ± 0.7	27 ± 2.9					
	1,000	12 ± 3.5	23 ± 1.8	24 ± 1.5					
	2,150	15 ± 1.9							
	3,333		11 ± 1.2^{c}	17 ± 3.2^{c}					
frial summ	nary	Negative	Negative	Negative					
Positive co	ntrol	$1,433 \pm 23.6$	$1,754 \pm 118.2$	477 ± 29.1					

a Study performed at EG&G Mason Research Institute. The detailed protocol and these data are presented in Haworth et al. (1983). Revertants are presented as mean \pm standard error from three plates. b

c

d

Slight toxicity The positive controls in the absence of metabolic activation were sodium azide (TA1535 and TA100), 9-aminoacridine (TA1537), 4-nitro-o-phenylenediamine (TA98). The positive control for metabolic activation with all strains was 2-aminoanthracene.

1	•	Q	1	2
	6	а	. 1	

TABLE F2

Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells by Coumarin^a

Compound	Dose (µg/mL)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hrs in BrdU	Relative SCEs/ Chromosome (%) ^b
S 9				• •		-	5 e	
Trial 1 Summary: Weak positive							· ·	
Dimethylsulfoxide		50	1,044	465	0.44	9.3	26.0	
Mitomycin-C	0.005	25	524	603	1.15	24.1	26.0	158.37
Coumarin	50 160 500	50 50 50	1,047 1,044 1,047	549 580 526	0.52 0.55 0.50	11.0 11.6 10.5	26.0 26.0 26.0	17.73 24.73* 12.79
							. •	$P = 0.020^{c}$
Trial 2 Summary: Positive				• .				
Dimethylsulfoxide		50	1,043	426	0.40	8.5	26.0	· .
Mitomycin-C	0.005	25	523	732	1.39	29.3	26.0	242.68
Coumarin	100 200 300	50 50 50	1,048 1,047 1,038	589 683 582	0.56 0.65 0.56	11.8 13.7 11.6	26.0 26.0 26.0	37.60* 59.72* 37.28* P<0.001
+89								
Trial 1 Summary: Negative								
Dimethylsulfoxide		100	2,094	1,029	0.49	10.3	26.0	
Cyclophosphamide	1.0	100	2,094	1,714	0.81	17.1	26.0	66.57
Coumarin	160 500 1,600	50 50 50	1,044 1,039 1,043	580 581 503	0.55 0.55 0.48	11.6 11.6 10.1	26.0 26.0 26.0	13.05 13.80 -1.86
								P=0.336

Positive (>20% increase over solvent control) ٠

a Study performed at Columbia University. SCE=sister chromatid exchange; BrdU=bromodeoxyuridine. ь

SCEs/chromosome of culture exposed to coumarin relative to those of culture exposed to solvent с

Significance of relative SCEs/chromosome tested by the linear regression trend test vs. log of the dose

TABLE F3

Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells by Coumarin^a

		-\$9					+S9		
Dose (µg/mL)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs	Dose (µg/mL)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs
Irial 1 – Harvest t Summary: Negative	ime: 14.0	hours			T rial 1 – Harvest Summary: Weak po) hours		
Dimethylsulfoxide	100	4	0.04	4.0	Dimethylsulfoxide	100	5	0.05	5.0
Mitomycin-C 0.15	100	41	0.41	27.0	Cyclophosphamide 15	100	30	0.30	26.0
Coumarin					Coumarin				
50.00	100	8	0.08	8.0	160	100	11	0.11	10.0
160.00	100	6	0.06	6.0	500	100	14	0.14	12.0
500.00	100	8	0.08	7.0	1,600	100	51	0.51	37.0*
				$P = 0.259^{b}$					P<0.001

Positive (P≤0.05)
 Study performed at Columbia University. Abs = aberrations.
 Significance of percent cells with aberrations tested by the linear regression trend test vs. log of the dose

:

TABLE F4

Route of		Incidence of	Incidence of	No. of Lethals/N	lo. of X Chro	mosomes Tested	
Exposure	Dose (ppm)	Deaths (percent)	Sterility (percent)	Mating 1	Mating 2	Mating 3	Total ^b
Feeding	70	11	0	2/3,114	2/3,073	0/2,909	4/9,096 (0.04%)
	0			1/3,280	1/3,240	1/2,996	3/9,516 (0.03%)
Injection	500	0	0	2/2,115	2/2,015	2/1,853	6/5,983 (0.10%)
,	0			0/1,895	3/1,844	0/1,623	3/5,362 (0.06%)
Larval feeding	200	51	2	6/3,532	1/3,349	0/000	7/6,881 (0.10%)
	0			3/3,437	1/2,345	0/000	4/5,782 (0.07%)
Larval feeding	194	44	0	1/2,593	0/2,548	0/000	1/5,141 (0.02%)
	0			2/2,660	5/2,659	0/000	7/5,319 (0.13%)

^a The adult treatments and the 200 ppm larval feeding studies were performed at University of Wisconsin, Madison. The 194 ppm larval feeding study was performed at Brown University. Detailed protocols and these data are presented in Yoon et al. (1985) and Valencia et al. (1989). Results were not significant at the 5% level (Margolin et al., 1983).
 ^b Combined total number of lethal mutations/number of X chromosomes tested for three mating trials
TABLE F5

Frequency of Micronuclei in Peripheral Blood Erythrocytes of Mice in the 13-Week Gavage Study of Coumarin^a

	Dose (mg/kg)	Mean Frequency of Micronuclei per 1,000 Erythrocytes ^b	Number of Mice Scored	
Males		<u>. </u>	·····	
	0	0.78 ± 0.12	9	
	75	0.83 ± 0.13	9	
	150	0.74 ± 0.08	10	
	300	0.67 ± 0.09	7	
Females				
	0	0.66 ± 0.11	10	
	75	0.59 ± 0.07	9	
	150	0.60 ± 0.09	10	
	300	0.65 ± 0.09	9	

a 10,000 normochromatic erythrocytes scored per animal. Smears were prepared from peripheral blood samples obtained by cardiac puncture of dosed and control animals at the termination of the 13-week study. Values are mean \pm standard error of the mean. Micronucleus frequency of each treated group compared to the concurrent b

control by Student's t-test. None of the dosed groups differed significantly from the control values.

290

. . .

·

an an an taon an Taonachta

.

. . . .

APPENDIX G ORGAN WEIGHTS

AND ORGAN-WEIGHT-TO-BODY-WEIGHT RATIOS

Table G1	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats	ንመን
	in the 13-Week Gavage Study of Coumarin	47 4
Table G2	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Male Rats	
	at the 9-Month Interim Evaluation in the Stop-Exposure Gavage Study	
	of Coumarin	293
Table G3	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Male Rats	
	at the 15-Month Interim Evaluation in the Stop-Exposure Gavage Study	
	of Coumarin	294
Table G4	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats	
	at the 15-Month Interim Evaluations in the 2-Year Gavage Study of Coumarin	295
Table G5	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice	
	in the 13-Week Gavage Study of Coumarin	296
Table G6	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice	
	at the 15-Month Interim Evaluations in the 2-Year Gavage Study of Coumarin	297

291

of Coumarin ^a	· .		· · · · · · ·	· .	1 (1) an ann 1 (1)	· · · · · · · · · · · · · · · · · · ·	
	Vehicle Control	19 mg/kg	38 mg/kg	75 mg/kg	150 mg/kg	300 mg/kg	
Male	<u>, , , , , , , , , , , , , , , , , , , </u>						
n	10	. 10	10	10	10	7	
Necropsy body wt	318 ± 8	321 ± 5	316 ± 7	$299 \pm 6^*$	280 ± 5**	242 ± 4**	
Brain							
Absolute	1.75 ± 0.06	1.82 ± 0.03	1.80 ± 0.03	1.76 ± 0.03	1.77 ± 0.02	1.71 ± 0.02	
Relative	5.51 ± 0.21	5.66 ± 0.08	5.70 ± 0.10	$5.91 \pm 0.12^*$	$6.33 \pm 0.12^{**}$	$7.08 \pm 0.07^{**}$	
Heart							
Absolute	1.018 ± 0.034	1.052 ± 0.042	1.060 ± 0.029	1.037 ± 0.036	1.024 ± 0.031^{b}	0.912 ± 0.021	
Relative	3.20 ± 0.07	3.27 ± 0.11	3.36 ± 0.10	3.47 ± 0.12	$3.63 \pm 0.09^{**b}$	$3.77 \pm 0.07^{**}$	
R. Kidney							
Absolute	1.10 ± 0.04^{b}	1.10 ± 0.04	1.14 ± 0.03	1.14 ± 0.04	1.21 ± 0.03	1.19 ± 0.03	
Relative	3.43 ± 0.06^{b}	3.41 ± 0.07	3.60 ± 0.07	$3.79 \pm 0.08^{**}$	$4.30 \pm 0.09^{**}$	$4.92 \pm 0.15^{**}$	
Liver	•					•	
Absolute	10.55 ± 0.40	11.16 ± 0.31	11.00 ± 0.36	11.16 ± 0.27	$11.96 \pm 0.35^{**}$	$11.86 \pm 0.22^*$	
Relative	33.2 ± 1.0	34.8 ± 0.8	34.8 ± 0.7	$37.3 \pm 0.8^{**}$	42.6 ± 0.9**	$49.0 \pm 0.8^{**}$	
Lungs							
Absolute	1.32 ± 0.03	1.36 ± 0.04	1.33 ± 0.05	1.29 ± 0.03	1.25 ± 0.03	1.25 ± 0.03	
Relative	4.17 ± 0.10	4.24 ± 0.12	4.22 ± 0.13	4.31 ± 0.11	4.46 ± 0.08	$5.18 \pm 0.11^{**}$	
R. Testis					۴.		
Absolute	1.40 ± 0.03	1.44 ± 0.02	1.45 ± 0.02	1.43 ± 0.03	1.41 ± 0.03^{b}	$1.29 \pm 0.05^*$	
Relative	4.40 ± 0.06	4.50 ± 0.05	4.59 ± 0.06	$4.79 \pm 0.10^{**}$	$5.01 \pm 0.12^{**b}$	$5.34 \pm 0.16^{**}$	
Thymus							
Absolute	0.251 ± 0.017	0.287 ± 0.023	0.261 ± 0.018	0.232 ± 0.013	0.211 ± 0.013^{b}	$0.127 \pm 0.011^{**}$	
Relative	0.787 ± 0.042	0.892 ± 0.062	0.826 ± 0.056	0.777 ± 0.044	0.759 ± 0.044^{b}	$0.526 \pm 0.047^{**}$	
Female							
n	10	10	10	10	10	6	
Necropsy body wt	191 ± 2	190 ± 3	186 ± 3	182 ± 3	183 ± 2	164 ± 5**	
Brain							
Absolute	1.74 ± 0.02	1.72 ± 0.02	1.72 ± 0.03	1.72 ± 0.02	1.69 ± 0.02	$1.64 \pm 0.02^*$	
Relative	9.14 ± 0.19	9.08 ± 0.13	9.26 ± 0.13	9.47 ± 0.17	9.23 ± 0.10	9.87 ± 0.18**	
Heart							
Absolute	0.701 ± 0.019	0.708 ± 0.022	0.695 ± 0.021	0.734 ± 0.021	0.722 ± 0.023	0.673 ± 0.028	
Relative	3.68 ± 0.10	3.73 ± 0.08	3.74 ± 0.08	$4.06 \pm 0.15^*$	$3.93 \pm 0.10^*$	$4.04 \pm 0.13^*$	
R. Kidney							
Absolute	0.673 ± 0.013	0.668 ± 0.015	0.674 ± 0.022	0.719 ± 0.037	0.732 ± 0.012	$0.812 \pm 0.031^{**}$	
Relative	3.53 ± 0.07	3.53 ± 0.08	3.62 ± 0.08	$3.98 \pm 0.24^*$	$3.99 \pm 0.05^{**}$	4.87 ± 0.09**	
Liver							
Absolute	6.09 ± 0.18	5.61 ± 0.17	5.81 ± 0.19	6.18 ± 0.13	$7.23 \pm 0.16^{**}$		
Relative	32.0 ± 0.9	29.6 ± 0.8	31.2 ± 0.6	34.1 ± 0.8	$39.5 \pm 0.8^{**}$	$51.2 \pm 1.8^{**}$	
Lungs							
Absolute	1.068 ± 0.019	1.008 ± 0.022	0.989 ± 0.044	1.039 ± 0.027	1.049 ± 0.021	1.000 ± 0.035	
Relative	5.61 ± 0.13	5.31 ± 0.06	5.31 ± 0.18	5.74 ± 0.18	5.71 ± 0.11	6.02 ± 0.21	
Thymus					0.040		
Absolute	0.245 ± 0.012	0.231 ± 0.008	0.235 ± 0.013	0.243 ± 0.028	0.219 ± 0.008	$0.121 \pm 0.012^{**}$	
Relative	1.28 ± 0.06	1.22 ± 0.03	1.27 ± 0.07	1.35 ± 0.17	1.20 ± 0.05	$0.73 \pm 0.08^{**}$	

ı.

TABLE G1 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 13-Week Gavage Study

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error).

b n=9

Table G2

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Male Rats at the 9-Month Interim Evaluation in the Stop-Exposure Gavage Study of Coumarin^a

	Vehicle Control	100 mg/kg	
n		18	
Necropsy body wt	460 ± 7	396 ± 8°°	
Brain			
Absolute	2.194 ± 0.022	$2.111 \pm 0.029^{\circ}$	
Relative	4.79 ± 0.08	$5.37 \pm 0.15^{\circ \circ}$	
L. Kidney			
Absolute	1.524 ± 0.022	1.533 ± 0.029	
Relative	3.33 ± 0.06	$3.88 \pm 0.06^{\circ \circ}$	
R. Kidney			
Absolute	1.453 ± 0.024	1.483 ± 0.025	
Relative	3.17 ± 0.07	$3.75 \pm 0.05^{\circ\circ}$	
Liver			
Absolute	16.841 ± 0.364	17.100 ± 0.392	
Relative	36.71 ± 0.80	$43.16 \pm 0.53^{\circ\circ}$	

 ^{°°} Significantly different (P≤0.01) from the control group by Williams' or Dunnett's test
 ^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error).

All the second

	Vehicle Control	100 mg/kg
1	7	10
Necropsy body wt	529 ± 3	462 ± 9**
Brain		
Absolute	2.086 ± 0.026	2.090 ± 0.023
Relative	3.94 ± 0.05	$4.54 \pm 0.09^{**}$
. Kidney		· · · · ·
Absolute	1.786 ± 0.040	1.900 ± 0.065
Relative	3.37 ± 0.08	$4.11 \pm 0.09^{**}$
R. Kidney		
Absolute	1.714 ± 0.034	1.860 ± 0.076
Relative	3.24 ± 0.07	$4.02 \pm 0.12^{**}$
Liver		· · · · · · · · · · · · · · · · · · ·
Absolute	17.686 ± 0.434	19.278 ± 0.772^{b}
Relative	33.41 ± 0.81	$42.19 \pm 1.13^{**b}$

TABLE G3

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Male Rats

at the 15-Month Interim Evaluation in the Stop-Exposure Gavage Study of Coumarina

** Significantly different (P≤0.01) from the control group by Williams' or Dunnett's test

а Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error). ь

n=9

Organ Weight Analyses

Table G4

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 15-Month Interim Evaluations in the 2-Year Gavage Study of Coumarin^a

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Male				
n	10	10	9	10
Necropsy body wt	527 ± 15	523 ± 11	$482 \pm 11^{\circ}$	454 ± 13**
Brain	•	•		
Absolute	2.100 ± 0.037	2.030 ± 0.045	2.067 ± 0.033^{b}	2.100 ± 0.037
Relative L. Kidney	4.01 ± 0.14	3.90 ± 0.13	4.29 ± 0.12^{b}	$4.64 \pm 0.10^{\circ \circ}$
Absolute	1.700 ± 0.037	1.900 ± 0.056	1.733 ± 0.055	1.860 ± 0.106
Relative R. Kidney	3.24 ± 0.08	$3.63 \pm 0.08^{\circ}$	$3.59 \pm 0.05^*$	$4.08 \pm 0.16^{\circ \circ}$
Absolute	1.700 ± 0.030	$1.910 \pm 0.050^{\circ}$	1.767 ± 0.044	1.860 ± 0.112
Relative Liver	3.25 ± 0.10	$3.65 \pm 0.07^{\circ}$	$3.67 \pm 0.05^{\circ}$	4.11 ± 0.18 **
Absolute	17.010 ± 0.536	18.840 ± 0.570	18.022 ± 0.485	20.230 ± 1.587
Relative	32.28 ± 0.61	36.01 ± 0.71	$37.42 \pm 0.44^{\circ}$	44.10 ± 2.42**
Female				
1	10	10	10	10
Necropsy body wt	302 ± 3	314 ± 9	304 ± 7	285 ± 9
Brain				
Absolute	1.900 ± 0.033	1.890 ± 0.028	1.950 ± 0.022	1.900 ± 0.033
Relative	6.31 ± 0.12	6.07 ± 0.19	6.44 ± 0.17	6.72 ± 0.18
. Kidney				
Absolute	0.970 ± 0.021	1.040 ± 0.034	1.060 ± 0.031	1.020 ± 0.036
Relative Kidaar	3.22 ± 0.07	3.32 ± 0.09	$3.49 \pm 0.08^{*}$	$3.59 \pm 0.11^{*3}$
R. Kidney Absolute	0.030 ± 0.030	1.000 ± 0.022	0.090 + 0.020	1.000 . 0.044
Relative	$\begin{array}{r} 0.930 \pm 0.030 \\ 3.08 \pm 0.09 \end{array}$	1.000 ± 0.033 3.20 ± 0.11	0.980 ± 0.020 3.23 ± 0.07	1.020 ± 0.044 $3.58 \pm 0.10^{\circ\circ}$
Liver	3.00 ± 0.09	5.20 ± 0.11	3.43 ± 0.07	5.38 ± 0.10 °
Absolute	8.670 ± 0.236	9.860 ± 0.286°	$10.410 \pm 0.361^{**}$	$11.810 \pm 0.563^{\circ}$
Relative	28.76 ± 0.75	$31.61 \pm 1.11^{\circ}$	$34.19 \pm 0.75^{**}$	$41.33 \pm 0.89^{\circ}$

 $^\circ~$ Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

°° P≤0.01 а

Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean \pm standard error). n=8 b

TABLE G5

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 13-Week Gavage Study of Coumarin^a

Male n Necropsy body wt 2 Brain 0. Absolute 0. Relative 1 Heart 0. Absolute 0. Relative 2 R. Kidney 2 Absolute 0. Relative 2 Liver ^c 3 Absolute 1 Relative 3 Lungs 4 Absolute 0. Relative 3 Absolute 0. Relative 3	hicle Control	19 mg/kg				
n Necropsy body wt 2 Brain Absolute (Relative Heart Absolute (Relative Absolute (Relative (C) Re		17 mg/kg	38 mg/kg	75 mg/kg	150 mg/kg	300 mg/kg
Necropsy body wt 2 Brain Absolute 0. Relative 1 Heart Absolute 0. Relative 3 R. Kidney Absolute 0. Relative 8 Liver ^c Absolute 1 Relative 3 Lungs Absolute 0. Relative 7 R. Testis Absolute 0.					· • • •	
Brain Absolute 0. Relative 1 Heart Absolute 0. Relative 3 R. Kidney Absolute 0. Relative 8 Liver ^c Absolute 1 Relative 3 Lungs Absolute 0. Relative 7 R. Testis Absolute 0.	10	10	10	10	10	8
Absolute0.Relative1Heart0.Relative0.Relative0.Relative0.Relative0.Liverc1Absolute1Relative2Lungs1Absolute0.Relative2Lungs2Absolute0.Relative2R. Testis0.	29.7 ± 0.8	28.8 ± 0.8	29.6 ± 0.7	29.0 ± 0.7	28.5 ± 0.5	$25.9 \pm 0.6^{**}$
Relative1Heart0.Relative0.Relative0.Absolute0.Relative8Liver ^c 1Absolute1Relative3Lungs1Absolute0.Relative2R. TestisAbsolute0.						
Heart Absolute 0. Relative 5 R. Kidney Absolute 0. Relative 8 Liver ^c Absolute 11 Relative 3 Lungs Absolute 0. Relative 7 R. Testis Absolute 0.	$.430 \pm 0.005$	0.432 ± 0.008	0.431 ± 0.006	0.431 ± 0.005	0.429 ± 0.002	0.440 ± 0.009
Absolute0.Relative5R. Kidney5Absolute0.Relative5Liver ^c 1Relative3Lungs1Absolute0.Relative3R. Testis4Absolute0.R. Testis0.	14.5 ± 0.3	15.1 ± 0.5	14.6 ± 0.2	14.9 ± 0.3	15.1 ± 0.2	$17.1 \pm 0.5^{**}$
RelativeSR. Kidney0.Absolute0.Relative8Liver ^c 1Relative3Lungs1Absolute0.Relative3R. TestisAbsolute0.	1		1			- 1 - T
R. Kidney Absolute 0. Relative 8 Liver ^c Absolute 1 Relative 3 Lungs Absolute 0. Relative 7 R. Testis Absolute 0.	$.155 \pm 0.005$	0.168 ± 0.007	0.165 ± 0.007	0.161 ± 0.007	0.168 ± 0.012	0.145 ± 0.007
Absolute 0. Relative 8 Liver ^c Absolute 1 Relative 3 Lungs Absolute 0. Relative 7 R. Testis Absolute 0.	5.23 ± 0.14	5.83 ± 0.23	5.56 ± 0.17	5.54 ± 0.17	5.87 ± 0.35	5.61 ± 0.25
Relative8Liver ^c 1Absolute1Relative3Lungs1Absolute0.Relative7R. Testis4Absolute0.			L			
Liver ^c Absolute 1 Relative 3 Lungs Absolute 0. Relative 7 R. Testis Absolute 0.	$.244 \pm 0.005$	0.250 ± 0.011	0.245 ± 0.008^{b}	0.245 ± 0.006	0.246 ± 0.006	$0.217 \pm 0.008^*$
Absolute1Relative3Lungs0.Relative0.Relative0.R. Testis0.Absolute0.	8.24 ± 0.12	8.63 ± 0.17	8.34 ± 0.15^{b}	8.46 ± 0.09	8.61 ± 0.13	8.37 ± 0.23
Relative3Lungs0.Absolute0.Relative7R. Testis0.Absolute0.						
Lungs Absolute 0. Relative 7 R. Testis Absolute 0.	1.08 ± 0.03	1.14 ± 0.05	1.17 ± 0.03	1.21 ± 0.04	$1.24 \pm 0.04^*$	$1.31 \pm 0.07^{**}$
Absolute0.Relative7R. Testis0.	36.5 ± 0.83	39.3 ± 0.89	$39.6 \pm 0.85^*$	$41.7 \pm 0.66^{**}$	$43.5 \pm 0.76^{**}$	$50.6 \pm 2.05^{**}$
Relative 7 R. Testis Absolute 0.						
R. Testis Absolute 0.	$.208 \pm 0.004$	0.210 ± 0.008	0.194 ± 0.006	0.195 ± 0.009	0.210 ± 0.009	0.202 ± 0.009
Absolute 0.	7.05 ± 0.20	7.30 ± 0.25	6.56 ± 0.17	6.75 ± 0.33	7.38 ± 0.33	7.82 ± 0.35
	$.120 \pm 0.004$	0.120 ± 0.003	0.114 ± 0.006	0.118 ± 0.002	0.117 ± 0.003	0.118 ± 0.004
	4.05 ± 0.16	4.18 ± 0.13	3.87 ± 0.21	4.09 ± 0.10	4.10 ± 0.10	$4.56 \pm 0.15^{\circ}$
Thymus						
	$.034 \pm 0.002$	0.036 ± 0.001	0.034 ± 0.002	0.035 ± 0.002	0.031 ± 0.002	0.032 ± 0.002
Relative	1.15 ± 0.07	1.26 ± 0.04	1.15 ± 0.06	1.21 ± 0.07	1.10 ± 0.08	1.22 ± 0.09
Female						
n	10	9	10	9	10	10
Necropsy body wt	22.4 ± 0.6	22.4 ± 0.6	22.4 ± 0.6	23.4 ± 0.8	22.6 ± 0.7	23.3 ± 0.8
Brain						
Absolute 0.	.445 ± 0.007	0.454 ± 0.005	0.445 ± 0.007	0.445 ± 0.007	0.444 ± 0.008	0.436 ± 0.008
Relative 20	0.00 ± 0.79	20.3 ± 0.51	20.00 ± 0.52	19.1 ± 0.48	19.8 ± 0.54	18.8 ± 0.48
Heart						
Absolute 0.	$.122 \pm 0.004$	0.132 ± 0.008	0.126 ± 0.004	0.138 ± 0.010	0.124 ± 0.008	0.117 ± 0.004
Relative	5.52 ± 0.29	5.89 ± 0.30	5.65 ± 0.20	5.86 ± 0.30	5.47 ± 0.29	5.02 ± 0.13
R. Kidney					*	
Absolute 0.	$.156 \pm 0.003^{b}$	0.165 ± 0.005	0.161 ± 0.006	0.169 ± 0.003	0.155 ± 0.005	0.160 ± 0.005
Relative	7.08 ± 0.22^{b}	7.38 ± 0.26	7.23 ± 0.28	7.26 ± 0.21	6.88 ± 0.18	6.87 ± 0.08
Liver ^c						1
	$.884 \pm 0.022$	0.940 ± 0.031	0.919 ± 0.026	0.978 ± 0.027	$1.003 \pm 0.034^*$	$1.210 \pm 0.070^{**}$
Relative	39.6 ± 1.0	41.9 ± 0.9	41.1 ± 0.7	41.8 ± 0.8	$44.4 \pm 0.9^{**}$	51.8 ± 2.3**
Lungs						
Absolute 0.	$.181 \pm 0.006$	0.193 ± 0.009	0.187 ± 0.008	0.197 ± 0.008	0.176 ± 0.009	0.182 ± 0.006
		8.63 ± 0.37	8.36 ± 0.33	8.47 ± 0.44	7.79 ± 0.33	7.84 ± 0.23
Thymus	8.11 ± 0.29					
	8.11 ± 0.29					
Relative	8.11 ± 0.29 .040 ± 0.002	0.042 ± 0.003	0.044 ± 0.003	$\begin{array}{r} 0.040 \ \pm \ 0.002^{d} \\ 1.68 \ \pm \ 0.06^{d} \end{array}$	$\begin{array}{r} 0.041 \ \pm \ 0.002^{b} \\ 1.84 \ \pm \ 0.05^{b} \end{array}$	0.040 ± 0.003 1.68 ± 0.10

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Organ weights are given in milligrams unless otherwise noted and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean \pm standard error).

^b n=9

^c, Liver weight is given in grams.

d n=8

Table G6

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice at the 15-Month Interim Evaluations in the 2-Year Gavage Study of Coumarin^a

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
Male				
n	10	10	10	9
Necropsy body wt	53.6 ± 0.8	50.6 ± 1.2	51.1 ± 1.8	$47.2 \pm 1.6^{\circ \circ}$
Brain				
Absolute	0.500 ± 0.000	0.500 ± 0.015	0.500 ± 0.000	0.489 ± 0.011
Relative L. Kidney	9.35 ± 0.14	9.94 ± 0.40	9.90 ± 0.40	$10.50 \pm 0.51^{\circ}$
Absolute	0.430 ± 0.021	0.400 ± 0.015	0.390 ± 0.010	0.389 ± 0.020
Relative R. Kidney	8.01 ± 0.37	7.93 ± 0.30	7.71 ± 0.35	8.35 ± 0.56
Absolute	0.400 ± 0.015	0.420 ± 0.013	0.420 ± 0.020	0.400 ± 0.017^{b}
Relative	7.45 ± 0.22	8.33 ± 0.27	8.20 ± 0.23	$8.74 \pm 0.51^{\circ \circ^{1}}$
Liver				
Absolute	2.420 ± 0.101	2.280 ± 0.101	2.380 ± 0.190	2.444 ± 0.153^{b}
Relative	45.08 ± 1.59	44.97 ± 1.34	46.23 ± 2.73	$54.23 \pm 3.76^{\circ b}$
Female				
n	8	10	10	9
Necropsy body wt	49.9 ± 1.7	44.3 ± 1.4°	45.9 ± 1.4°	$41.2 \pm 1.4^{\circ \circ}$
Brain				
Absolute	0.488 ± 0.013	0.480 ± 0.013	0.480 ± 0.013	0.500 ± 0.000
Relative	9.86 ± 0.46	10.98 ± 0.55	10.54 ± 0.39	$12.23 \pm 0.42^{\circ \circ}$
L. Kidney				
Absolute	0.288 ± 0.030	0.250 ± 0.017	0.260 ± 0.016	0.256 ± 0.018
Relative R Kidney	5.78 ± 0.57	5.67 ± 0.40	5.68 ± 0.33	6.29 ± 0.55
R. Kidney Absolute	0.250 ± 0.019	0.250 ± 0.017	0.290 ± 0.023	0.278 ± 0.015
Relative	0.230 ± 0.019 5.04 ± 0.40	0.230 ± 0.017 5.68 ± 0.40	0.290 ± 0.023 6.33 ± 0.51	0.278 ± 0.015 6.78 ± 0.40°
Liver	5.04 ± 0.40	5.00 ± 0.40	0.35 ± 0.51	0.78 ± 0.40°
Absolute	1.688 ± 0.069	1.660 ± 0.060	1.720 ± 0.055	1.756 ± 0.044
Relative	33.88 ± 1.14	$37.49 \pm 0.80^{\circ}$	$37.59 \pm 0.88^{\circ}$	$42.80 \pm 1.31^{\circ\circ}$

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

°° P≤0.01

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean \pm standard error). n=8 b

.

.

APPENDIX H HEMATOLOGY, CLINICAL CHEMISTRY, AND URINALYSIS RESULTS

Hematology Data for Rats in the 16-Day Gavage Study of Coumarin	300
Hematology, Clinical Chemistry, and Urinalysis Data for Rats	
in the 13-Week Gavage Study of Coumarin	301
Hematology and Clinical Chemistry Data for Male Rats	
at the 9-Month Interim Evaluation in the Stop-Exposure Gavage Study	
of Coumarin	305
Hematology and Clinical Chemistry Data for Male Rats	
at the 15-Month Interim Evaluation in the Stop-Exposure Gavage Study	
of Coumarin	30%
Hematology and Clinical Chemistry Data for Rats	
at the 15-Month Interim Evaluation in the 2-Year Gavage Study	
of Coumarin	307
Hematology Data for Mice in the 16-Day Gavage Study of Coumarin	309
Hematology Data for Mice in the 13-Week Gavage Study of Coumarin	310
Hematology and Clinical Chemistry Data for Mice	
at the 15-Month Interim Evaluation in the 2-Year Gavage Study	
of Coumarin	312
	Hematology, Clinical Chemistry, and Urinalysis Data for Rats in the 13-Week Gavage Study of Coumarin Hematology and Clinical Chemistry Data for Male Rats at the 9-Month Interim Evaluation in the Stop-Exposure Gavage Study of Coumarin Hematology and Clinical Chemistry Data for Male Rats at the 15-Month Interim Evaluation in the Stop-Exposure Gavage Study of Coumarin Hematology and Clinical Chemistry Data for Male Rats at the 15-Month Interim Evaluation in the Stop-Exposure Gavage Study of Coumarin Hematology and Clinical Chemistry Data for Rats at the 15-Month Interim Evaluation in the 2-Year Gavage Study of Coumarin Hematology Data for Mice in the 16-Day Gavage Study of Coumarin Hematology Data for Mice in the 13-Week Gavage Study of Coumarin Hematology and Clinical Chemistry Data for Mice at the 15-Month Interim Evaluation in the 2-Year Gavage Study of Coumarin Hematology and Clinical Chemistry Data for Mice at the 15-Month Interim Evaluation in the 2-Year Gavage Study

299

κ.,

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg	200 mg/kg	400 mg/kg
Male						· .
l	5	5	4	5	5	1
Platelets (10 ³ /µL) Capillary clotting	612.2 ± 43.2	676.5 ± 26.7 ^b	544.3 ± 81.8	677.2 ± 35.9	774.6 ± 21.7**	916.0 ^c
(min) Fibrinogen	2.20 ± 0.37	1.85 ± 0.28	1.63 ± 0.07	1.55 ± 0.25	1.60 ± 0.13	1.50 ^c
(mg/dL) Prothrombin	170 ± 5	158 ± 6^{b}	154 ± 2*	$150 \pm 6^*$	151 ± 6*	119 ^c
(sec)	12.3 ± 0.1^{b} thromboplastin tim	12.1 ± 0.1^{b}	14.5 ± 1.9 ^d	12.4 ± 0.3	12.8 ± 0.4	14.2 ^c
(sec)	26.8 ± 3.4	23.8 ± 2.0	28.2 ± 2.5	23.7 ± 2.7	23.1 ± 1.3	26.5 ^c
Female						• •
i	5	5	5	5	5	0 ^e
Platelets (10 ³ /µL) Capillary clotting	594.4 ± 83.0	521.6 ± 62.6	622.0 ± 25.2	520.8 ± 83.7	592.4 ± 87.9	
(min) Fibrinogen	1.75 ± 0.19	1.15 ± 0.20	1.70 ± 0.38	1.40 ± 0.17	1.70 ± 0.17	
(mg/dL) Prothrombin	136 ± 5	141 ± 4	139 ± 8	130 ± 13^{b}	135 ± 7	
(sec)	12.3 ± 0.1^{b} thromboplastin tim	12.2 ± 0.2^{b}	12.3 ± 0.2^{b}	12.1 ± 0.2^{b}	12.8 ± 0.5^{b}	
(sec)	33.8 ± 7.5	27.3 ± 2.1	24.7 ± 1.3	26.9 ± 2.2	$21.4 \pm 3.4^*$	

TABLE H1

Hematology Data for Rats in the 16-Day Gavage Study of Coumarin^a

* Significantly different (P \leq 0.05) from the control group by Dunn's or Shirley's test ** P \leq 0.01

^a Mean \pm standard error ^b n=4

n=4

^c No standard error calculated due to high mortality d

n=3

e No data measurements due to 100% mortality

Hematology, Clinical Chemistry, and Urinalysis Data for Rats in the 13-Week Gavage Study of Coumarin^a

	Vehicle Control	19 mg/kg	38 mg/kg	75 mg/kg	150 mg/kg	300 mg/kg
Male						
Hematology						
n	5	10	10	10	10	7
Hematocrit (%)						
Hemoelohin (e/di	47.0 ± 0.7	48.3 ± 0.7	47.3 ± 0.5	46.7 ± 0.4	46.3 ± 0.7	46.6 ± 0.9
Hemoglobin (g/dl	17.9 ± 0.4	18.0 ± 0.2	17.8 ± 0.2	17.6 ± 0.2	17.7 ± 0.2	18.1 ± 0.5
Erythrocytes (10 ⁶		0.05 . 0.10	0.05 . 0.00	0.14 . 0.07*	0.44 + 0.1000	0.07 . 0.0100
Mean cell volume	8.66 ± 0.16 : (fL)	8.95 ± 0.10	8.95 ± 0.08	$9.16 \pm 0.07^{\circ}$	$9.46 \pm 0.13^{\circ \circ}$	9.97 ± 0.21**
	54.2 ± 0.4	54.1 ± 0.3	$52.9 \pm 0.3^{\circ}$	$51.0 \pm 0.2^{**}$	$48.6 \pm 0.2^{\circ \circ}$	45.3 ± 0.4**
Mean cell hemog	100 (pg) 20.6 ± 0.1	$20.1 \pm 0.1^{\circ}$	$19.9 \pm 0.1^{**}$	$19.2 \pm 0.1^{**}$	18.4 ± 0.2**	$17.8 \pm 0.1^{**}$
Mean cell hemog	lobin concentration	(g/dL)	19.9 2 0.1		10.4 2 0.2	17.0 2 0.1
Platelets (10 ³ /µL)	38.0 ± 0.4	37.2 ± 0.4	37.6 ± 0.2	37.7 ± 0.1	38.2 ± 0.2	39.2 ± 0.3
Flatelets (10 /µL)	612.8 ± 14.7	564.3 ± 12.0	553.9 ± 18.4	616.0 ± 12.8	622.1 ± 19.2	917.0 ± 19.7*
Leukocytes (10 ³ /		(20) 0.20		5.01 . 0.10	()7 . 0)(0.24 + 0.51
Segmented neutro	6.64 ± 0.63 ophils ($10^3/\mu$ L)	6.29 ± 0.28	6.31 ± 0.22	5.81 ± 0.19	6.27 ± 0.26	8.34 ± 0.51
-	1.69 ± 0.06	1.87 ± 0.20	1.52 ± 0.12	1.50 ± 0.13	1.47 ± 0.09	3.06 ± 0.52
Lymphocytes (10	$^{7}/\mu$ L) 4.76 ± 0.53	4.33 ± 0.21	4.64 ± 0.19	4.13 ± 0.18	4.68 ± 0.27	5.05 ± 0.28
Monocytes (10 ³ /µ	L)					
Eosinophils (10 ³ /	0.10 ± 0.03	0.07 ± 0.02	0.10 ± 0.02	0.14 ± 0.03	0.05 ± 0.02	0.12 ± 0.04
	0.07 ± 0.03	0.01 ± 0.01	0.05 ± 0.03	0.02 ± 0.01	0.06 ± 0.02	0.09 ± 0.03
Activated partial	thromboplastin time 11.8 ± 0.2	e (sec) 11.8 ± 0.2	11.3 ± 0.2	11.3 ± 0.2	11.1 ± 0.2	13.3 ± 0.8
	11.0 ± 0.2	11.0 ± 0.2	11.5 ± 0.4	11.5 ± 0.2	11.1 ± 0.2	13.3 ± 0.8
Clinical Chemistry	_	10	10		10	-
n	5	10	10	10	10	7
Urea nitrogen (m	- /					
Creatinine (mg/dl	8.8 ± 0.6	8.9 ± 0.3	9.2 ± 0.4	8.5 ± 0.3	7.1 ± 0.5	8.9 ± 0.5
	0.86 ± 0.04	0.74 ± 0.03	$0.68 \pm 0.02^{**}$	0.74 ± 0.03	0.72 ± 0.02	0.73 ± 0.03
Sodium (mEq/L)	145 ± 1	146 ± 1	144 ± 1	145 ± 1	145 ± 1	142 ± 1
Potassium (mEq/		140 1 1	144 1	145 ± 1	145 ± 1	142 - 1
	5.9 ± 0.2	5.9 ± 0.2	5.6 ± 0.2	5.7 ± 0.1	5.9 ± 0.1	5.5 ± 0.2
Chloride (mEq/L	105 ± 1	106 ± 1	105 ± 0	105 ± 1	105 ± 0	105 ± 1
Calcium (mg/dL)						
Phosphorus (mg/o	10.56 ± 0.12	10.72 ± 0.17	10.52 ± 0.12	10.71 ± 0.13	10.60 ± 0.06	10.54 ± 0.14
	6.4 ± 0.2	6.2 ± 0.1	6.2 ± 0.1	6.3 ± 0.1	6.2 ± 0.1	6.4 ± 0.1
Total protein (g/o	$^{\text{iL}}$ 6.5 ± 0.1	6.7 ± 0.1	6.5 ± 0.1	6.6 ± 0.1	61 + 01	61 ± 01
	0.3 ± 0.1	0.7 ± 0.1	0.J ± 0.1	0.0 ± 0.1	6.4 ± 0.1	6.1 ± 0.1

•••	Vehicle Control	19 mg/kg	38 mg/kg	75 mg/kg	150 mg/kg	300 mg/kg
fale (continued)					· · · · ·	
linical Chemistry (continued)					· .
	5	10	10	10	10	7
Albumin (g/dL)			•	···· ,		
Anonini (Bar)	3.5 ± 0.0	3.6 ± 0.0	3.5 ± 0.0	3.6 ± 0.0	3.6 ± 0.1	3.2 ± 0.1
A/G ratio		•			ielt iv .	
T	1.1 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0
Total bilirubin	(mg/dL) 0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	$0.2 \pm 0.0^{**}$	$1.3 \pm 0.4^{**}$
Alanine aminot	ransferase (IU/L)	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.2 2 0.0	1.5 ± 0.4
	42 ± 3^{b}	43 ± 2	51 ± 6	48 ± 3	123 ± 24**	2,209 ± 750**
Aspartate amin	otransferase (IU/L)			• •		
T	67 ± 7	55 ± 1	57 ± 3	56 ± 2	80 ± 9	$985 \pm 357^*$
Lactate dehydro	452 ± 54	371 ± 25	417 ± 32	391 ± 27	357 ± 25	443 ± 47
Ornithine carba	moyltransferase (II					
	8 ± 3	4 ± 1	7 ± 2	4 ± 1	4 ± 1^{c}	$104 \pm 35^*$
Sorbitol dehydr	ogenase (IU/L)					
Chalinastanasa	8 ± 1	8 ± 1	11 ± 2	8 ± 1	$27 \pm 6^{**}$	$370 \pm 116^{**}$
Cholinesterase	(10/L) 933 ± 20	845 ± 20*	763 ± 15**	723 ± 17**	683 [°] ± 13**	853 ± 30**
	<i>700 - 20</i>	015 - 20	,			
rinalysis						7
	5	10	10	10	10	7
Specific gravity						
Specific Bravity	1.034 ± 0.006	1.041 ± 0.002	1.045 ± 0.000	1.044 ± 0.001	1.029 ± 0.003	1.029 ± 0.006
emale						
ematology	5	10	10	9	10	7
	U U			-		
Hematocrit (%	·					
· · · · · · · · · · · · · · · · · · ·	46.2 ± 0.3	47.8 ± 0.3	$48.0 \pm 0.3^*$	47.7 ± 0.6	47.1 ± 0.2	46.0 ± 0.9
Hemoglobin (g	(dL) 17.3 ± 0.2	17.6 ± 0.1	17.7 ± 0.2	17.5 ± 0.2	17.6 ± 0.2	17.7 ± 0.5
Erythrocytes (1		17.0 ± 0.1	17.7 ± 0.2	17.5 ± 0.2	17.0 ± 0.2	17.7 ± 0.5
	7.87 ± 0.04	$8.11 \pm 0.07^*$	$8.20 \pm 0.06^{**}$	8.28 ± 0.09**	$8.70 \pm 0.06^{**}$	9.25 ± 0.17**
Mean cell volu						
	58.6 ± 0.2	58.9 ± 0.3	58.6 ± 0.2	57.7 ± 0.2	$54.1 \pm 0.2^{**}$	$49.1 \pm 0.4^{**}$
Mean cell heme		217 4 0 1	21.6 ± 0.188	21.2 + 0.2**	20.2 ± 0.144	180 + 0.2**
Mean cell hem	22.0 ± 0.1 oglobin concentration	21.7 ± 0.1	$21.6 \pm 0.1^{**}$	$21.2 \pm 0.2^{**}$	$20.3 \pm 0.1^{**}$	$18.9 \pm 0.2^{**}$
HICHI CEN HEIM	37.5 ± 0.4	36.9 ± 0.2	36.8 ± 0.2	36.8 ± 0.2	37.4 ± 0.2	38.4 ± 0.4
Platelets (10 ³ /µ						—
	(638.4 ± 26.2)	583.9 ± 17.0	550.5 ± 15.7**	536.4 ± 20.9**	$566.4 \pm 24.5^*$	476.7 ± 80.4
Leukocytes (10	$^{\prime}/\mu L$)					
Leukocytes (10	5.08 ± 0.50	4.15 ± 0.21	3.81 ± 0.19	4.29 ± 0.19	5.66 ± 0.34	5.50 ± 0.38

\

Hematology, Clinical Chemistry, and Urinalysis Data for Rats in the 13-Week Gavage Study of Coumarin (continued)

1

Hematology, Clinical Chemistry, and Urinalysis Data for Rats in the 13-Week Gavage Study of Coumarin (continued)

	Vehicle Control	19 mg/kg	38 mg/kg	75 mg/kg	, 150 mg/kg	300 mg/kg
emale (continued)		<u></u>				
lematology (continu	ied)			,		
	5	10	10	9	10	7
Segmented neu	trophils (10 ³ /µL)					
Lymphocytes (1	1.01 ± 0.15	0.94 ± 0.10	0.77 ± 0.07	0.78 ± 0.13	1.16 ± 0.13	1.44 ± 0.22
Lymphocytes (1	3.93 ± 0.45	3.10 ± 0.17	2.96 ± 0.15	3.37 ± 0.17	4.30 ± 0.23	3.91 ± 0.28
Monocytes (10 ³	/μL)					
	0.09 ± 0.05	0.07 ± 0.02	0.06 ± 0.01	0.07 ± 0.02	0.11 ± 0.03	0.11 ± 0.05
Eosinophils (10						
	0.05 ± 0.03	0.03 ± 0.01	0.02 ± 0.01	0.05 ± 0.01	0.09 ± 0.02	0.02 ± 0.01
Activated partia	al thromboplastin ti	me (sec)	11.0 . 0.06	11.0 . 0.0	111	100 . 04
	11.6 ± 0.2	10.9 ± 0.4^{d}	11.0 ± 0.3^{c}	11.2 ± 0.2	11.1 ± 0.4^{c}	12.0 ± 0.4^{e}
Clinical Chemistry						
	5	10	9	10	10	7
Urea nitrogen (
_	8.3 ± 1.0	8.4 ± 0.5	8.0 ± 0.3	8.0 ± 0.5	6.8 ± 0.4	7.7 ± 1.0
Creatinine (mg						
	0.72 ± 0.04	0.76 ± 0.04	0.76 ± 0.03	0.69 ± 0.02	0.72 ± 0.02	0.81 ± 0.05
Sodium (mEq/I	•					
	144 ± 1	144 ± 1	144 ± 1	144 ± 1	143 ± 1	142 ± 1
Potassium (mE				CA	F () A1	F.F
	5.5 ± 0.2	5.6 ± 0.2	5.6 ± 0.1	5.7 ± 0.1	5.6 ± 0.1	5.5 ± 0.2
Chloride (mEq,		107 . 1	10(+ 1	104 1 1	104 + 000	102 . 1**
Coloinm (mald	107 ± 1	107 ± 1	106 ± 1	106 ± 1	$104 \pm 0^{\circ \circ}$	$103 \pm 1^{\circ \circ}$
Calcium (mg/dl	-) 10.42 ± 0.18	10.38 ± 0.08	10.38 ± 0.09	10.53 ± 0.13	10.74 ± 0.09	11.03 ± 0.12
Phosphorus (m		10.30 ± 0.08	10.30 ± 0.09	10.55 ± 0.13	10.74 ± 0.09	11.05 ± 0.12
r nospilorus (m	5.7 ± 0.3	5.6 ± 0.1	5.7 ± 0.3	5.9 ± 0.1	6.1 ± 0.1	$6.5 \pm 0.1^{\circ}$
Total protein (5.0 ± 0.1	J.1 I U.J	J.7 ± 0.1	0.1 ± 0.1	0.J ± 0.1*
Total bloten (6.3 ± 0.1	6.5 ± 0.1	6.5 ± 0.1	6.7 ± 0.1	$6.8 \pm 0.1^{**}$	6.6 ± 0.1*
Albumin (g/dL)		0.5 - 0.1	0.5 ± 0.1	U.I I U.I	0.0 I U.I	0.0 I 0.1
Arounni (g/uL)	3.5 ± 0.0	3.5 ± 0.0	3.6 ± 0.1	3.6 ± 0.1	3.8 ± 0.1**	3.6 ± 0.1
A/G ratio	5.5 ± 0.0	5.5 2 0.0	5.0 ± 0.1	5.0 ± 0.1	J.0 I 0.1	3.0 ± 0.1
	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0	1.2 ± 0.0
Total bilirubin		1.2 - 0.0	1.4 2 0.0	1.2 - 0.0	1.2 1 0.0	1.2 ± 0.0
- one one woll	0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.1	0.1 ± 0.0	$0.2 \pm 0.0^{\circ \circ}$	$1.1 \pm 0.5^{\circ}$
Alanine aminot	ransferase (IU/L)	J.I ± 0.0	V.2 - V.I	U.1 ± U.U	0.2 - 0.0	1.1 - 0.5
	59 ± 10	40 ± 3	37 ± 2	39 ± 3	50 ± 5^{c}	$1,672 \pm 923$
Aspartate amin	otransferase (IU/L)					_, /2/
	67 ± 4	63 ± 3	59 ± 2	61 ± 5	72 ± 10	360 ± 169^{e}
Lactate dehydro	ogenase (IU/L)					
,	371 ± 26	337 ± 26	344 ± 23	328 ± 26	295 ± 24	328 ± 53^{e}
Ornithine carba	moyltransferase (II					
	7 ± 3	4 ± 1	5 ± 1^{d}	4 ± 1^{c}	4 ± 1	78 ± 36
Sorbitol dehydr	ogenase (IU/L)					
	9 ± 1	8 ± 1	7 ± 0	8 ± 1	12 ± 2^{c}	$104 \pm 36^{\circ 6}$
Cholinesterase	(IU/L)					•
	$2,652 \pm 127$	2,178 ± 108*			$1,137 \pm 20^{\circ \circ}$	1,044 ± 37**

Hematology, Clinical Chemistry, and	l Urinalysis	Data for Ra	ats in the 13	B-Week Gavage Study
of Coumarin (continued)	•			

	Vehicle Control	19 mg/kg	38 mg/kg	75 mg/kg	150 mg/kg	300 mg/kg
Female (continued)					· ·	
Urinalysis n	5	10	10	10	10	7
Specific gravity	1.024 ± 0.006	1.028 ± 0.004	1.014 ± 0.003	1.025 ± 0.004	1.020 ± 0.003	1.023 ± 0.004

* Significantly different (P ≤ 0.05) from the control group by Dunn's or Shirley's test ** P ≤ 0.01 * Mean + standard error: A/G ratio = albumin/globulin ratio

Mean ± standard error; A/G ratio = albumin/globulin ratio b

n=4 c

n=9 d

n=8 e n=6

304

Hematology, Clinical Chemistry, and Urinalysis

Table H3

Hematology and Clinical Chemistry Data for Male Rats at the 9-Month Interim Evaluation in the Stop-Exposure Gavage Study of Coumarin^a

and a start of the	Vehicle Control	100 mg/kg	
Hematology	· · · · · · · · · · · · · · · · · · ·		
1	17	. 18	
Hematocrit (%)	38.4 ± 0.4	$35.3 \pm 0.4^{\circ \circ}$	
Hemoglobin (g/dL)	14.4 ± 0.1	$13.2 \pm 0.1^{**}$	
Erythrocytes (10 ⁶ /µL)	8.14 ± 0.09	8.28 ± 0.10	
Mean cell volume (fL)	47.2 ± 0.2	$42.7 \pm 0.2^{\circ \circ}$	
Mean cell hemoglobin (pg)	17.7 ± 0.1	$15.9 \pm 0.1^{**}$	
Mean cell hemoglobin concentration			
(g/dL)	37.4 ± 0.2	37.3 ± 0.2	
Platelets (10 ³ /µL)	555.1 ± 18.3	$620.1 \pm 14.3^{**}$	
Reticulocytes $(10^{6}/\mu L)$	0.17 ± 0.01	$0.26 \pm 0.01^{**}$	
Leukocytes $(10^{3}/\mu L)$	3.81 ± 0.31	4.03 ± 0.21	
Segmented neutrophils (10 ³ /µL)	1.03 ± 0.09	1.07 ± 0.08	
Lymphocytes $(10^{3}/\mu L)$	2.62 ± 0.22	2.66 ± 0.18	
Atypical lymphocytes (10 ³ /µL)	0.05 ± 0.01	0.15 ± 0.04	
Monocytes $(10^3/\mu L)$	0.01 ± 0.01	0.00 ± 0.00	
Eosinophils $(10^3/\mu L)$	0.05 ± 0.01	0.08 ± 0.01	
Nucleated erythrocytes (10 ³ /µL)	0.02 ± 0.01	0.03 ± 0.01	
Activated partial thromboplastin time (sec)	19 ± 1	18 ± 1	
Thromboplastin time (sec)	13 ± 0	13 ± 0	
Clinical Chemistry			
1	16	18	
Calcium (mg/dL)	11.44 ± 0.13	$11.83 \pm 0.09^{\circ}$	
Alkaline phosphatase (IU/L)	205 ± 4	$337 \pm 10^{**}$	
Alanine aminotransferase (IU/L)	81 ± 9	$406 \pm 51^{**}$	
Sorbitol dehydrogenase (IU/L)	20 ± 2^{b}	$30 \pm 2^{**}$	
Gamma-glutamyltransferase (IU/L)	0 ± 0	$1 \pm 1^{**}$	

° Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

°° P≤0.01

^a Mean ± standard error

b n=17

	Vehicle Control		100 mg/kg	
			••••	
	7		9	
ematology				
Hematocrit (%)	41.2 ± 0.9		$37.6 \pm 0.9^*$	
Hemoglobin (g/dL)	14.6 ± 0.3		$13.2 \pm 0.2^{**}$	
Erythrocytes $(10^6/\mu L)$	8.54 ± 0.19		8.54 ± 0.27	
Mean cell volume (fL)	48.6 ± 0.3	1 N	$44.1 \pm 0.6^{**}$	A A A A A A A A A A A A A A A A A A A
Mean cell hemoglobin (pg)	17.1 ± 0.2	1	$15.6 \pm 0.5^*$	1
Mean cell hemoglobin concentration	. 1	•		. /
(g/dL)	35.4 ± 0.3	4	35.3 ± 0.8	
Platelets (10 ³ /µL)	561.9 ± 26.8		873.4 ± 31.3**	
Reticulocytes $(10^6/\mu L)$	0.21 ± 0.03		0.25 ± 0.02	'
Leukocytes $(10^{3}/\mu L)$	3.40 ± 0.66		3.42 ± 0.33	
Segmented neutrophils $(10^3/\mu L)$	1.30 ± 0.39	.*	1.38 ± 0.19	· .
Lymphocytes (10 ³ /µL)	1.79 ± 0.15		1.80 ± 0.23	
Atypical lymphocytes $(10^3/\mu L)$	0.09 ± 0.03		0.11 ± 0.04	
Monocytes (10 ³ /µL)	0.01 ± 0.01		0.01 ± 0.01	
Eosinophils $(10^3/\mu L)$	0.04 ± 0.02		0.05 ± 0.02	
Nucleated erythrocytes (10 ³ /µL)	0.06 ± 0.04		0.03 ± 0.01	
Activated partial thromboplastin time (sec)	20.4 ± 0.9		18.1 ± 0.6	
Thromboplastin time (sec)	14.1 ± 0.2		$13.3 \pm 0.2^*$	
inical Chemistry				
Calcium (mg/dL)	11.29 ± 0.18		11.22 ± 0.15	
Alkaline phosphatase (IU/L)	165 ± 20		$246 \pm 17^*$	- · · · ·
Alanine aminotransferase (IU/L)	56 ± 4		$105 \pm 19^{**}$	
Sorbitol dehydrogenase (IU/L)	18 ± 1		$31 \pm 2^{**}$	
Gamma-glutamyltransferase (IU/L)	0 ± 0		$4 \pm 1^{**}$	

Hematology and Clinical Chemistry Data for Male Rats at the 15-Month Interim Evaluation in the Stop-Exposure Gavage Study of Coumarin^a

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test ** P≤0.01 ^a Mean \pm standard error

Hematology, Clinical Chemistry, and Urinalysis

$\mathbf{x}^{*} \sim \mathbf{x}^{*}$	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
Alale				····
Iematology				
L ,	10	10	. 8	10
Hematocrit (%)	40.5 ± 1.6	40.0 ± 0.5	39.7 ± 0.7	$37.1 \pm 0.8^{\circ \circ}$
Hemoglobin (g/dL)	14.4 ± 0.6	14.3 ± 0.1	$14.1 \pm 0.4^{\circ}$	$13.3 \pm 0.2^{\circ \circ}$
Erythrocytes $(10^6/\mu L)$	8.16 ± 0.37	8.27 ± 0.13	8.62 ± 0.20	8.27 ± 0.33
Mean cell volume (fL)	49.9 ± 0.7	48.3 ± 0.3	$46.3 \pm 0.4^{\circ \circ}$	45.4 ± 1.7°°
Mean cell hemoglobin (pg)	17.7 ± 0.2	17.4 ± 0.2	$16.3 \pm 0.2^{\circ \circ}$	$16.3 \pm 0.7^{\circ \circ}$
Mean cell hemoglobin concentration				
(g/dL)	35.5 ± 0.3	35.9 ± 0.4	35.4 ± 0.4	36.1 ± 1.0
Platelets $(10^3/\mu L)$	503.7 ± 24.4^{b}	559.3 ± 26.5	671.3 ± 26.6°°	712.3 ± 81.4°°
Reticulocytes (10 ⁶ /µL)	0.19 ± 0.02^{b}	0.20 ± 0.01	0.19 ± 0.02	0.24 ± 0.03
Leukocvtes $(10^{3}/\mu L)$	3.07 ± 0.34	3.02 ± 0.09	3.64 ± 0.35	3.48 ± 0.30^{b}
Segmented neutrophils $(10^3/\mu L)$	0.94 ± 0.09	0.87 ± 0.08	$1.61 \pm 0.23^{\circ}$	$2.12 \pm 0.60^{\circ}$
Lymphocytes (10 ³ /µL)	1.86 ± 0.28	1.95 ± 0.12	1.71 ± 0.16	1.86 ± 0.19
Atypical lymphocytes $(10^3/\mu L)$	0.09 ± 0.04	0.08 ± 0.02	0.19 ± 0.05	0.45 ± 0.34
Monocytes $(10^3/\mu L)$	0.00 ± 0.00	0.03 ± 0.01	0.04 ± 0.02	0.02 ± 0.01^{b}
Eosinophils $(10^3/\mu L)$	0.03 ± 0.01	0.03 ± 0.01	0.02 ± 0.01	0.02 ± 0.01
Nucleated erythrocytes $(10^3/\mu L)$	0.08 ± 0.05	0.02 ± 0.01	0.04 ± 0.01	0.05 ± 0.01^{b}
Activated partial thromboplastin				
time (sec)	20.8 ± 0.4	19.8 ± 0.6	$18.7 \pm 0.4^{\circ \circ}$	$18.8 \pm 0.6^{\circ \circ}$
Thromboplastin time (sec)	14.2 ± 0.3	13.9 ± 0.2	13.5 ± 0.3	13.6 ± 0.3
Clinical Chemistry				
1	10	10	10	8
Calcium (mg/dL)	11.10 ± 0.18	11.20 ± 0.20	11.60 ± 0.16	11.63 ± 0.18
Alkaline phosphatase (IU/L)	165 ± 11	152 ± 8	$247 \pm 19^{\circ}$	175 ± 21
Alanine aminotransferase (IU/L)	62 ± 10	81 ± 11	$131 \pm 20^{\circ \circ}$	75 ± 11°
Sorbitol dehydrogenase (IU/L)	23 ± 2	26 ± 2	$31 \pm 2^{\circ \circ}$	26 ± 3
Gamma-glutamyltransferase (IU/L		0 ± 0	$6 \pm 1^{\circ\circ}$	$1 \pm 1^{**}$

Table H5

Hematology and Clinical Chemistry Data for Rats at the 15-Month Interim Evaluation in the 2-Year Gavage Study of Coumarin^a

· · .

	Vehicle Control	25 mg/kg	50 mg/kg	100 mg/kg
emale			, · · · · · · · · · · · · · · · ·	
	9	10	10	10
ematology				•
Hematocrit (%)	38.7 ± 1.2	39.6 ± 0.6	38.8 ± 0.5	38.7 ± 0.6
Hemoglobin (g/dL)	13.8 ± 0.5	14.0 ± 0.2	13.8 ± 0.3	$13.6 \pm 0.2^*$
Erythrocytes (10 ⁶ /µL)	6.98 ± 0.33	7.34 ± 0.16	7.58 ± 0.10	$7.82 \pm 0.16^{**}$
Mean cell volume (fL)	56.2 ± 1.5	$54.1 \pm 0.6^*$	$51.2 \pm 0.5^{**}$	$49.6 \pm 0.5^{**}$
Mean cell hemoglobin (pg)	19.9 ± 0.4	19.1 ± 0.3	$18.2 \pm 0.3^{**}$	$17.3 \pm 0.2^{**}$
Mean cell hemoglobin concentratio	n			
(g/dL)	35.6 ± 0.4	35.3 ± 0.4	35.6 ± 0.4	35.0 ± 0.2
Platelets (10 ³ /µL)	523.3 ± 24.2	$445.3 \pm 14.1^*$	528.4 ± 30.9	564.0 ± 35.3
Reticulocytes $(10^{\circ}/\mu L)$	0.20 ± 0.02^{c}	0.21 ± 0.02	0.18 ± 0.01	0.18 ± 0.02
Leukocytes $(10^3/\mu L)$	$1.43 \pm 0.09^{\circ}$	1.65 ± 0.16	1.91 ± 0.22	$1.75 \pm 0.11^*$
Segmented neutrophils $(10^3/\mu L)$	0.80 ± 0.46	0.45 ± 0.06	0.73 ± 0.20	0.59 ± 0.08
Lymphocytes $(10^{3}/\mu L)$	2.14 ± 1.13	1.09 ± 0.10	1.08 ± 0.07	1.08 ± 0.07
Atypical lymphocytes (10 ³ /µL)	0.09 ± 0.06	0.04 ± 0.01	0.05 ± 0.01	0.04 ± 0.01
Monocytes $(10^3/\mu L)$	0.02 ± 0.02	0.01 ± 0.01	0.01 ± 0.00	0.00 ± 0.00
Eosinophils $(10^3/\mu L)$	0.09 ± 0.08	0.03 ± 0.01	0.03 ± 0.01	0.02 ± 0.01
Nucleated erythrocytes $(10^3/\mu L)$ Activated partial thromboplastin	0.01 ± 0.00^{c}	0.02 ± 0.01	0.02 ± 0.01	0.01 ± 0.00
time (sec)	17.0 ± 0.4	16.4 ± 0.1	16.6 ± 0.4	16.3 ± 0.3
Thromboplastin time (sec)	13.6 ± 0.1	13.4 ± 0.2	13.6 ± 0.2	13.3 ± 0.1
linical Chemistry				
Calcium (mg/dL)	10.89 ± 0.20	10.60 ± 0.16	11.00 ± 0.00	10.60 ± 0.31
Alkaline phosphatase (IU/L)	230 ± 9	257 ± 13	287 ± 38	264 ± 13
Alanine aminotransferase (IU/L)	47 ± 3	48 ± 2	47 ± 2^{b}	$62 \pm 4^{**}$
Sorbitol dehydrogenase (IU/L)	16 ± 1	16 ± 1	16 ± 1	$21 \pm 2^*$
Gamma-glutamyltransferase (IU/L)	0 ± 0^{c}	2 ± 1	1 ± 0^{b}	6 ± 1**

I.

TABLE H5

Hematology and Clinical Chemistry Data for Rats at the 15-Month Interim Evaluation in the 2-Year Gavage Study of Coumarin (continued)

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

^a Mean \pm standard error ^b n=9

n=9
 n=8

Table H6

Hematology Data for Mice in the 16-Day Gavage Study of Coumarina

	Vehicle Control	40 mg/kg	75 mg/kg	150 mg/kg	340 mg/kg	640 mg/kg
Male					<u>.</u>	
ı	5	5	4	5	4	0 ^b
Platelets (10 ³ /µL) Capillary clotting		$242.0 \pm 104.0^{\circ}$	191.3 ± 103.0 ^d	247.4 ± 45.5	289.8 ± 53.7	
(min)	1.6 ± 0.3	1.8 ± 0.3	2.0 ± 0.2	1.4 ± 0.3	2.2 ± 0.5	
Female						
n	5	5	5	5	4	0 ^b
Platelets (10 ³ /µL)	$255.0 \pm 74.3^{\circ}$	233.8 ± 69.2	289.5 ± 53.8 ^c	310.5 ± 42.8^{c}	306.3 ± 64.5	
Capillary clotting (min)	g 1.9 ± 0.4	2.1 ± 0.4	2.5 ± 0.4	1.8 ± 0.2	2.1 ± 0.3	

a Mean ± standard error

b No data measurements due to 100% mortality

c n=4d n=3

n=3

	Vehicle Control	19 mg/kg	38 mg/kg	75 mg/kg	150 mg/kg	300 mg/kg
fale						
¥.	10	10	10	10	10	8
Hematocrit (%)						
`	32.4 ± 1.0	32.7 ± 0.9	31.4 ± 0.7	30.6 ± 0.5	$29.1 \pm 1.0^*$	$28.7 \pm 0.9^{**}$
Hemoglobin (g/d	L)					
'	12.6 ± 0.4	12.8 ± 0.3	12.3 ± 0.3	12.1 ± 0.2	$11.2 \pm 0.5^*$	$11.3 \pm 0.4^*$
Erythrocytes (10				L		• •
· · · ·	6.15 ± 0.19	6.26 ± 0.16	6.07 ± 0.15	6.08 ± 0.11^{b}	5.86 ± 0.20	5.97 ± 0.20
Mean cell volum	· · /					
	52.7 ± 0.2	52.1 ± 0.2	$51.6 \pm 0.3^{**}$	$50.6 \pm 0.4^{**}$	$49.6 \pm 0.3^{**}$	47.9 ± 0.3**
Mean cell hemog		004 + 04	00.0 . 0.1	100 . 000	10.1 0.444	100 . 0
	20.5 ± 0.1	20.4 ± 0.1	20.3 ± 0.1	$19.9 \pm 0.2^*$	$19.1 \pm 0.4^{**}$	$19.0 \pm 0.1^{**}$
mean cell nemog	lobin concentration		20.2 . 0.2	20.4 1 0.2	20.5 . 0.0	20 4 . 0.2
Platelets (10 ³ /µL	39.0 ± 0.2	39.1 ± 0.4	39.3 ± 0.2	39.4 ± 0.2	38.5 ± 0.8	39.4 ± 0.3
riatelets (10"/#L) 417.7 ± 60.8	477.3 ± 63.8	478.3 ± 70.2	468.0 ± 62.9	499.0 ± 80.7	576.1 ± 90.5
Leukocytes (10 ³ /		411.3 ± 03.8	418.3 I 10.2	408.U I 02.9	477.0 2 80./	370.1 ± 90.3
LEUKOLYIGS (10 /	3.83 ± 0.57	3.22 ± 0.30	4.00 ± 0.37	3.62 ± 0.33^{b}	4.16 ± 0.55	3.59 ± 0.55
Segmented neutr		J.44 ± 0.30	4.00 £ 0.37	5.04 £ 0.55	4.10 T 0.33	5.57 ± 0.55
Segmented neur	0.50 ± 0.09	0.58 ± 0.10	0.68 ± 0.14	0.58 ± 0.08^{b}	0.73 ± 0.20	0.79 ± 0.19
Lymphocytes (10		0.50 2 0.10	0.00 - 0.14	0.00 - 0.00		5.77 ± 0.17
(10	3.25 ± 0.50	2.51 ± 0.23	3.15 ± 0.23	2.96 ± 0.25 ^b	3.24 ± 0.34	2.66 ± 0.41
Monocytes (10 ³ /						
· · · · _	0.05 ± 0.01	0.07 ± 0.02	0.07 ± 0.02	0.03 ± 0.01^{b}	0.08 ± 0.04	0.05 ± 0.01
Eosinophils (10 ³)	/µL)					. 1.
	0.02 ± 0.01	$0.06 \pm 0.01^*$	0.05 ± 0.02^{b}	0.05 ± 0.02^{b}	0.10 ± 0.05	$0.09 \pm 0.02^{\circ}$
Activated partial	thromboplastin time	e (sec)			•	
-	8.4 ± 1.7^{c}	9.7 ± 0.2^{b}	9.0 ± 1.1^{b}	8.9 ± 1.2^{b}	8.8 ± 1.2^{b}	9.8 ± 0.2

Hematology Data for Mice in the 13-Week Gavage Study of Coumarin^a

Table H7

Hematology Data for Mice in the 13-Week Gavage Study of Coumarin (continued)

		-				
	Vehicle Control	19 mg/kg	38 mg/kg	75 mg/kg	150 mg/kg	340 mg/kg
Female						
1	10	9	10	9	10	10
Hematocrit (%)						
	32.3 ± 0.9	32.2 ± 0.9	30.5 ± 0.8	31.0 ± 1.0	32.6 ± 0.4^{b}	29.2 ± 1.2
Hemoglobin (g/d						
	12.5 ± 0.3	12.5 ± 0.4	11.9 ± 0.3	12.0 ± 0.4	12.8 ± 0.2^{b}	11.1 ± 0.5
Erythrocytes (10	^γ /μL)				c to c och	
, Maan adl as here	6.08 ± 0.15	6.08 ± 0.18	5.85 ± 0.15	6.02 ± 0.20	6.40 ± 0.08^{b}	5.71 ± 0.28
Mean cell volum	53.2 ± 0.3	53.0 ± 0.3	52.2 ± 0.4	51.6 ± 0.3°°	50.8 ± 0.4°°	49.3 ± 0.4**
Mean cell hemog		33.0 ± 0.3	32.2 ± 0.4	$51.0 \pm 0.3^{\circ}$	JU.0 ± 0.4	47.3 ± 0.4**
mean cen nemoj	20.6 ± 0.2	20.5 ± 0.2	20.3 ± 0.1	$20.0 \pm 0.1^{\circ}$	$20.0 \pm 0.1^{\circ}$	$19.5 \pm 0.1^{\circ\circ}$
Mean cell hemore	globin concentration		2015 2 011	20.0 2 0.1	2010 2 011	17.5 1 0.1
	38.8 ± 0.3	38.7 ± 0.5	39.0 ± 0.3	38.7 ± 0.2	39.5 ± 0.3	39.5 ± 0.3°
Platelets (10 ³ /µL	.)					
	400.9 ± 56.3	419.9 ± 65.7	394.4 ± 32.7	389.8 ± 74.2	489.5 ± 81.2	523.5 ± 98.5
Leukocytes (10 ³ /						
	3.19 ± 0.39	3.77 ± 0.41	3.40 ± 0.49	2.91 ± 0.33	3.39 ± 0.36	2.87 ± 0.46
Segmented neutr	• • • •		A 4A A			
The Landson (1)	0.50 ± 0.10	0.74 ± 0.09	0.40 ± 0.07	0.43 ± 0.06	0.52 ± 0.06	0.43 ± 0.09
Lymphocytes (10	$5^{\prime}/\mu$ L) 2.55 ± 0.30	2.92 ± 0.33	2.86 ± 0.40	2.41 ± 0.28	2.75 ± 0.33	2.32 ± 0.36
Monocytes (10 ³ /		2.74 ± 0.33	2.00 ± 0.40	4.41 ± 0.20	2.13 E 0.33	4.34 ± 0.30
monocytes (10 /	0.07 ± 0.01	0.07 ± 0.02	0.10 ± 0.03	$0.03 \pm 0.01^{\circ}$	0.03 ± 0.01	$0.04 \pm 0.01^{\circ}$
Eosinophils (10 ³			2000 - 0000			
(10	0.06 ± 0.01	0.02 ± 0.01	0.05 ± 0.02	0.04 ± 0.01	0.08 ± 0.03	0.05 ± 0.01
Activated partial	thromboplastin tim	e (sec)				
•	9.5 ± 1.1	10.2 ± 0.2	9.3 ± 1.2^{b}	10.2 ± 0.3^{d}	9.4 ± 1.2^{b}	10.2 ± 0.1^{b}

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

°° P≤0.01

^a Mean \pm standard error

n = 9n = 6

 $d_{n=7}$

с. До ¹⁹⁴ ения — 4	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg
		· · · ·	• • • • • •	
Male				
Hematology			•.	
n	5	5	5	4
Hematocrit (%)	40.9 ± 0.3	38.6 ± 1.5	39.6 ± 0.3	$37.3 \pm 1.4^{**}$
Hemoglobin (g/dL)	13.9 ± 0.1	13.1 ± 0.4	13.6 ± 0.2	$12.8 \pm 0.5^*$
Erythrocytes $(10^6/\mu L)$	8.73 ± 0.07	8.38 ± 0.46	8.84 ± 0.08	8.58 ± 0.34
Mean cell volume (fL)	47.0 ± 0.3	46.2 ± 1.0	$44.8 \pm 0.4^*$	$43.5 \pm 0.3^{**}$
Mean cell hemoglobin (pg)	16.0 ± 0.2	15.7 ± 0.4	$15.4 \pm 0.1^*$	$15.0 \pm 0.1^{**}$
Mean cell hemoglobin concentra		15.7 ± 0.1	10.1 - 0.1	15.0 2 0.1
(a/dI)	34.1 ± 0.3	33.8 ± 0.3	34.3 ± 0.5	34.4 ± 0.2
Platelets $(10^3/\mu L)$	842.8 ± 9.9	901.4 ± 33.6	885.0 ± 40.0	$1,188.0 \pm 53.6^{**}$
Leukocytes $(10^{3}/\mu L)$	1.72 ± 0.35	1.36 ± 0.19	1.18 ± 0.16	1.45 ± 0.38
Reticulocytes $(10^6/\mu L)$	0.18 ± 0.03	0.24 ± 0.05	0.15 ± 0.04	0.24 ± 0.05
Segmented neutrophils $(10^3/\mu L)$	0.38 ± 0.07	0.31 ± 0.05	0.27 ± 0.05	0.39 ± 0.12
Lymphocytes $(10^3/\mu L)$	1.29 ± 0.28	1.02 ± 0.14	0.90 ± 0.11	1.03 ± 0.25
Atypical lymphocytes $(10^3/\mu L)$	0.01 ± 0.01	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Monocytes $(10^3/\mu L)$	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Eosinophils $(10^3/\mu L)$	0.02 ± 0.01	0.01 ± 0.01	0.01 ± 0.00	0.03 ± 0.02
Nucleated erythrocytes $(10^3/\mu L)$	0.02 ± 0.01	0.01 ± 0.00	0.00 ± 0.00	0.01 ± 0.01
Clinical Chemistry				
n	8	9	10	9
· · · · · · · · · · · · · · · · · · ·				
Alkaline phosphatase (IU/L)	48 ± 3	42 ± 1	45 ± 1	$39 \pm 2^{**}$
Alanine aminotransferase (IU/L)		50 ± 8	68 ± 17	83 ± 22
Sorbitol dehydrogenase (IU/L)	40 ± 1	40 ± 1	39 ± 3	37 ± 4
Gamma-glutamyltransferase (IU/	$L) \qquad 0 \pm 0$	0 ± 0	0 ± 0	1 ± 1

Hematology and Clinical Chemistry Data for Mice at the 15-Month Interim Evaluation in the 2-Year Gavage Study of Coumarin^a

Hematology, Clinical Chemistry, and Urinalysis

Table HS

Hematology and Clinical Chemistry Data for Mice at the 15-Month Interim Evaluation in the 2-Year Gavage Study of Coumarin (continued)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg	
Female		<u> </u>	<u> </u>		
n	8	10	10	9	
Hematology					
Hematocrit (%)	39.3 ± 0.7	37.8 ± 0.3	38.6 ± 0.5	38.1 ± 0.5	
Hemoglobin (g/dL)	13.8 ± 0.2	13.4 ± 0.1	13.6 ± 0.1	13.6 ± 0.1	
Erythrocytes (10 ⁶ /µL)	8.62 ± 0.16	8.39 ± 0.06	8.60 ± 0.10	8.62 ± 0.12	
Mean cell volume (fL)	45.8 ± 0.3	45.1 ± 0.4	45.0 ± 0.2	$44.1 \pm 0.2^{\circ \circ}$	
Mean cell hemoglobin (pg)	16.0 ± 0.2	16.0 ± 0.1	15.8 ± 0.1	15.8 ± 0.2	
Mean cell hemoglobin concentration	n				
(g/dL)	35.1 ± 0.3	35.5 ± 0.2	35.2 ± 0.3	35.6 ± 0.3	
Platelets $(10^3/\mu L)$	723.1 ± 16.1	792.1 ± 29.7	790.3 ± 39.9°	859.0 ± 28.6°°	
Reticulocytes (10 ⁶ /µL)	0.19 ± 0.02	0.18 ± 0.02	0.21 ± 0.02^{b}	0.17 ± 0.01	
Leukocytes (10 ³ /µL)	0.93 ± 0.15	1.13 ± 0.15	1.17 ± 0.17^{b}	0.88 ± 0.12	
Segmented neutrophils (10 ³ /µL)	0.21 ± 0.07	0.34 ± 0.06	0.30 ± 0.05^{b}	0.22 ± 0.05	
Lymphocytes (10 ³ /µL)	0.71 ± 0.10	0.77 ± 0.10	0.85 ± 0.13^{b}	0.64 ± 0.07	
Atypical lymphocytes (10 ³ /µL)	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00^{b}	0.01 ± 0.00	
Monocytes (10 ³ /µL)	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00^{b}	0.00 ± 0.00	
Eosinophils $(10^3/\mu L)$	0.00 ± 0.00	0.01 ± 0.00	0.01 ± 0.00^{b}	0.00 ± 0.00	
Nucleated erythrocytes $(10^3/\mu L)$	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00^{b}	0.00 ± 0.00	
Clinical Chemistry				-	
Alkaline phosphatase (IU/L)	110 ± 10	118 ± 10	102 ± 6	100 ± 6^{c}	
Alanine aminotransferase (IU/L)	31 ± 3	35 ± 5	41 ± 7	44 ± 9^{c}	
Sorbitol dehydrogenase (IU/L)	37 ± 2	37 ± 2	38 ± 1	39 ± 1	
Gamma-glutamyltransferase (IU/L		1 ± 1	0 ± 0	0 ± 0^{c}	

Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test
 P≤0.01
 Mean ± standard error
 n=9

c n=8

.

and a second In the second In the second
,

APPENDIX I CHIEMICAL CHARACTERIZATION AND DOSE FORMULATIONS

	NT AND CHARACTERIZATION OF COUMARIN	
Preparation	N AND ANALYSIS OF DOSE FORMULATIONS	317
Figure I1	Infrared Absorption Spectrum of Coumarin	318
Figure I2	Nuclear Magnetic Resonance Spectrum of Coumarin	319
Table I1	Preparation and Storage of Dose Formulations in the Gavage Studies	
	of Coumarin	320
Table I2	Results of Analysis of Dose Formulations Administered to Rats and Mice	
	in the 16-Day Gavage Studies of Coumarin	321
Table 13	Results of Analysis of Dose Formulations Administered to Rats and Mice	
	in the 13-Week Gavage Studies of Coumarin	322
Table 14	Results of Analysis of Dose Formulations Administered to Rats and Mice	
	in the 2-Year Gavage Studies of Coumarin	323
Table IS	Results of Referee Analysis of Dose Formulations Administered to Rats and Mice	
	in the 2-Year Gavage Studies of Coumarin	328

315

CHEMICAL CHARACTERIZATION AND DOSE FORMULATIONS

PROCUREMENT AND CHARACTERIZATION OF COUMARIN

Coumarin was obtained from Rhone Poulenc, Incorporated (Monmouth Junction, NJ) in two lots (lot 7971 and lot 5H2003). Lot 7971 was used throughout the 16-day and 13-week studies in rats and mice and lot 5H2003 was used throughout the 2-year studies in rats and mice. Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory, Midwest Research Institute (MRI; Kansas City, MO). MRI reports on analyses performed in support of the coumarin studies are on file at the National Institute of Environmental Health Sciences.

Both lots of the chemical, a white crystalline powder, were identified as coumarin by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. All spectra were consistent with the literature spectra of coumarin (*Sadtler Standard Spectra*), as shown in Figures I1 and I2.

The purity of both lots was determined by elemental analyses, Karl Fischer water analysis, titration of free acid, lactone hydrolysis and back titration, thin-layer chromatography (TLC), and gas chromatography. Titration of free acid was performed by dissolving a 5 g sample in methanol and titrating with standardized 0.1 N aqueous sodium hydroxide to the phenolphthalein endpoint. Lactone hydrolysis was performed with alcoholic potassium hydroxide and back-titration with sulfuric acid. Thin-layer chromatography was performed on Silica Gel 60 F-254 plates with two solvent systems: 1) toluene:acetone (90:10) and 2) petroleum ether:ethyl acetate (55:45). Plates were examined under shortwave (254 nm) and longwave (366 nm) ultraviolet light and a spray of 0.5% (w/v) potassium permanganate dissolved in 1 N sodium hydroxide. Gas chromatographic analysis was performed with a flame ionization detector (FID) with a nitrogen gas carrier at a flow rate of 70 cc/minute. Two systems were used for each lot:

A) 1% SP-1000 on 100/120 Supelcoport, with an oven temperature program of 50° C for 5 minutes, then 50° to 250° C at 10° C per minute
B) 20% SP-2100/0.1% Carbowax 1500 on 100/120 Supelcoport, with an oven temperature program of 50° C for 5 minutes, then 50° to 170° C at 10° C per minute.

Elemental analyses of both lots for carbon and hydrogen were in agreement with the theoretical values for coumarin. Karl Fischer water analysis of lot 7971 indicated $0.020 \pm 0.003\%$ water and $0.15 \pm 0.01\%$ water for lot 5H2003. For lot 7971 titration of the free acid indicated 0.298 ± 0.014 mEq of acid per g of sample. For lot 5H2003 free acid titration indicated 0.008 ± 0.001 mEq of acid per g of sample. Lactone hydrolysis for lot 7971 indicated a purity of $100.1 \pm 0.3\%$, and a purity of 97.2 $\pm 0.4\%$ for lot 5H2003. Thin-layer chromatography for both lots indicated only a major spot in each system. Gas chromatography of both lots indicated only a major peak and no impurities with a total area of $\geq 0.1\%$ relative to the major peak area. The overall purity of lot 7971 was determined to be greater than 99\%, and the overall purity of lot 5H2003 was determined to be 97\%.

Stability studies were performed by the analytical chemistry laboratory. Gas chromatography was performed using System A described above except with an oven temperature of 170° C and 0.5% docosane added as an internal standard. These studies indicated the coumarin was stable as a bulk chemical for at least 2 weeks when stored at temperatures up to 60° C. The stability of the bulk chemical was monitored periodically at the study laboratory with gas chromatography and free acid titration methods similar to those described above. No degradation of the bulk chemical was observed.

Chemical Characterization and Dose Formulations

Preparation and Analysis of Dose Formulations

The dose formulation suspensions were prepared by mixing coumarin in Mazola[®] corn oil to give the required concentrations (Table I1). The dose formulations were stored in the dark at room temperature. Dose formulations were prepared once for the 16-day studies, and every 2 weeks for the 13-week and 2-year studies. Formulations were discarded 21 days after the date of preparation.

Dose formulation stability analyses at the 5 mg/mL concentration were performed by the analytical chemistry laboratory. Aliquots were extracted with methanol, then decyl alcohol (1.9 mg/mL in methylene chloride) was added as an internal standard. After dilution with methylene chloride, gas chromatographic analysis was performed using System B described above, except with a carrier gas flow rate of 30 mL/minute and an oven temperature of 160° C. The stability of the dose formulations was confirmed for at least 3 weeks at room temperature when stored in the dark, as well as for at least 3 hours when exposed to air and light. The study laboratory also conducted and confirmed the stability of dose formulations.

Periodic analyses of the dose formulations of coumarin were conducted at the study laboratory and analytical chemistry laboratory using ultraviolet spectroscopy. In this procedure the samples were extracted with methanol; then after centrifugation the extracts were diluted with methanol, and the absorbance determined at 274 nm. During the 16-day studies all formulations were analyzed (Table I2). During the 13-week studies, the dose formulations were analyzed every 6 weeks (Table I3). During the 2-year studies, the dose formulations were analyzed every 6 to 10 weeks (Table I4). In the 2-year studies all dose formulations (154/154) were within 10% of the target concentrations. Periodic peroxide analyses of the corn oil vehicle by the study laboratory indicated that peroxide levels were within the acceptable limit of 10 mEq/kg. Results of the periodic referee analyses performed by the analytical chemistry laboratory were in agreement with the results obtained by the study laboratory (Table I5).

FIGURE I1 Infrared Absorption Spectrum of Coumarin

FIGURE I2 Nuclear Magnetic Resonance Spectrum of Coumarin

319

TABLE I1

Preparation and Storage of Dose Formulations in the Gavage Studies of Coumarin

16-Day Studies	13-Week Studies	2-Year Studies	
Preparation			
Country was mixed with corn oil while stirring.	Coumarin was mixed with corn oil while stirring; homogeneity was maintained with a magnetic stir plate on day 1 and a Polytron homogenizer for the remainder of the studies.	Coumarin was mixed with corn oil using a magnetic stir bar and stirrer, all doses were homogenized for 30 to 60 seconds before stirring with an homogenizer.	
Chemical Lot Number 7971	7971	5H2003	
Maximum Storage Time 14 days	Same as 16-day studies	21 days	
Storage Conditions Stored at room temperature in the dark.	Same as 16-day studies	Stored at room temperature in teflon sealed, amber serum bottles.	
Study Laboratory International Research and Development Corporation, Mattawan, MI	Same as 16-day studies	American Biogenics Corporation, Woburn, MA	
Referee Laboratory Midwest Research Institute, Kansas City, MO	Same as 16-day studies	Same as 16-day studies	

Table I2

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 16-Day Gavage Studies of Coumarin

Date Prepared	Date Analyzed	Target Concentration (mg/mL)	Determined Concentration ^a (mg/mL)	% Difference from Target
Rats ^b			•*	
5 January 1981	19 January 1981	2.5	2.40	-4
· · · · · · · · · · · · · · · · · · ·		5.0		+2
		10.0	. 11.4	+14
		20.0	20.0	0
		40.0	43.0	+8
Mice ^c				
5 January 1981	29 January 1981	4.0	4.05	+1
		7.5	7.55	+1
		15.0	15.0	0
		30.0	32.5	+8
		60.0	57.4	-4

a Results of duplicate analyses

b Rats: 2.5 mg/mL = 25 mg/kg, 5.0 mg/mL = 50 mg/kg, 10.0 mg/mL = 100 mg/kg, 20.0 mg/mL = 200 mg/kg, and 40.0 mg/mL = 400 mg/kg; dosing volume = 10 mL/kg. Mice: 4.0 mg/mL = 40 mg/kg, 7.5 mg/mL = 75 mg/kg, 15.0 mg/mL = 150 mg/kg, 30.0 mg/mL = 300 mg/kg, and c

60.0 mg/mL = 600 mg/kg; dosing volume = 10 mL/kg.

TABLE I3

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 13-Week Gavage Studies of Coumarin

. . .

1. . **.** .

4, 1

1.1

Date Prepared	Date Analyzed	Target Concentration ^a (mg/mL)	Determined Concentration ^b (mg/mL)	% Difference from Target
Rats			······	· · · · · · · · · · · · · · · · · · ·
3 April 1981	6 April 1981	1.9	1.93	+2
		3.8	3.87	+2
		7.5	7.61	+1
		15.0	15.1	+1
		30.0	30.4	+1
15 May 1981	22 May 1981	1.9	1.91	+1
	•	3.8	3.89	+2
		7.5	7.68	+2
		15.0	15.6	+4
		30.0	29.2	3
Mice			· · · · · ·	
6 April 1981	7 April 1981	1.9	1.84	-3
•••		3.8	3.65	-4
		7.5	7.65	+2
•		15.0	15.2	+1
	х.	30.0	29.7	-1
18 May 1981	22 May 1981	1.9	1.95	+3
•	-	.3.8	3.83	+1
		7.5	7.76	+3
		15.0	15.1	+1
		30.0	29.7	1

Mg/mL values: 1.9 mg/mL = 19 mg/kg, 3.8 mg/mL = 38 mg/kg, 7.5 mg/mL = 75 mg/kg, 15.0 mg/mL = 150 mg/kg, and 30.0 mg/mL = 300 mg/kg; dosing volume = 10 mL/kg. Results of duplicate analyses a b

<u>،</u> ۽

Table I4

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Gavage Studies of Coumarin

-

~

Date Prepared	Date Analyzed	Target Concentration (mg/mL)	Determined Concentration ^a (mg/mL)	% Difference from Target
Rats ^b				
4 September 1984	5 September 1984	5	5.16	+3
	•	10	10.7	+7
		20	19.9	-1
	14 September 1984 ^c	20	19.6	-2
	17 September 1984 ^c	5	5.14	+3
		10	9.94	-1
22 October 1984	24 October 1984	5	5.14	+3
		10	10.1	+1
		20	19.3	-4
17 December 1984	18, 19 December 1984	5	5.22	+4
	,	5	5.32	+6
	20, 21 December 1984	10	9.99	0
	20, 21 December 1904	10	9.78	-2
		20	20.4	+2
		20	20.9	+5
11 February 1985	12, 13 February 1985	5	5.04	+1
		5	4.94	-1
		10	10.1	+1
,		10	10.1	+1
		20	19.6	-2
		20	19.8	-1
	28 February 1985 ^c	5	4.85	-3
		10	9.77	-2
		20	19.8	-1
8 April 1985	9 April 1985	5	4.88	-2
		5	4.87	-3
		10	10.0	0
		10	10.0	0
		20 20	19.8 19.6	-1 -2
	05 A-11 40050	x.		
,	25 April 1985 ^c	5	5.33	+7
		10 20	10.9 21.4	+9 +7
2 June 1095	4 June 1095			
3 June 1985	4 June 1985	5 5	5.00 5.00	0 0
		5 10	10.0	0
		10	10.0	+2
		20	19.9	-1
		20	19.8	-1

TABLE I4

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Gavage Studies of Coumarin (continued)

Date Prepared	Date Analyzed	Target Concentration (mg/mL)	Determined Concentration (mg/mL)	% Difference from Target
Data (anotional)				······································
Rats (continued) 29 July 1985	30 July 1985	5	4.90	-2
2, buly 1,00	50 buly 1905	5	4.89	-2
		10	10.0	ō
		10	9.88	-1
		20	19.4	-3
		20	19.5	-3
	16 August 1985 ^c	5	5.07	+1
		10	10.3	+3
	,	20	21.3	+7
7 October 1985	8 October 1985	5	5.02	0
		5	5.03	+1
		10	9.99	0
	-	10	9.92	-1
		20	19.9	-1
		20	19.8	-1
2 December 1985	3 December 1985	5	4.75	-5
		5	4.79	-4
		5	4.71	6
		10	9.52	-5 -5
		10	9.49	-5
		20 20	19.6 19.0	-2 -5
	10 D			
	19 December 1985 ^c	5	5.09	+2
	•	10 20	9.63 19.2	-4 -4
				•
27 January 1986	28 January 1986	5	4.78	_4 .
		5	4.98	0
		10	9.39	-6
		10	9.16	-8
		20	20.0	0 **
		20	19.9	-1
31 March 1986	1 April 1986	5	4.56	-9
	• • •	5	4.72	-6
	· · ·	10 10	9.72	-3
		10	9.80	-2
		20 20	19.0 19.4	-3 -2 -5 -3
	17 April 1986 ^c	5	4.81	
	1/ April 1300		4.81 9.43	-4 -6
		10 20	9.43 19.5	0 3
		20	17.3	-5

,
Table I4

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Gavage Studies of Coumarin (continued)

Date Prepared	Date Analyzed	Target Concentration (mg/mL)	Determined Concentration (mg/mL)	% Difference from Target
Rats (continued)				
12 May 1986	13 May 1986	5	5.13	+3
-		5	5.14	+3
		10	10.0	0
		10	9.87	-1
		20	19.2	-4
		20	19.7	-2
7 July 1986	8 July 1986	5	4.94	-1
		5	4.96	-1
		10	10.0	0
		10	10.1	+1
		20	20.8	+4
	4	20	20.8	+4
18 August 1986	19 August 1986	5	5.02	0
10 August 1900	17 August 1760	5	5.06	+1
		10	9.48	-5
		20	19.3	-4
Mice ^d				
5 November 1984	7 November 1984	5	5.06	+1
		10	10.1	+1
	15 November 1984 ^c	5	4.91	-2
		10	10.2	+2
		20	19.5	-3
6 November 1984	7 November 1984	20	20.0	0
17 December 1984	18, 19 December 1984	5	5.22	+4
17 December 1904	10, 17 Detember 1704	5	5.32	+6
	20, 21 December 1984	10	9.99	0
		10	9.78	-2
×		20 20	20.4	+2
		20	20.9	+5
11 February 1985	12, 13 February 1985	5 5	5.04	+1
κ i		5	4.94	-1
		10	10.1	+1
		10	10.1	+1
		20	19.6	-2
		20	19.8	-1
	28 February 1985 ^c	5	4.85	-3
	-	10	9.77	-2
		20	19.8	-1

TABLE I4

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Gavage Studies of Coumarin (continued)

Date Prepared	Date Analyzed	Target Concentration (mg/mL)	Determined Concentration (mg/mL)	% Difference from Target
Mice (continued)				······································
8 April 1985	9 April 1985	5	4.88	-2
		5	4.87	-3
		10	10.0	0
	1. M. T	10	10.0	0
·		20 20	19.8 19.6	-1 -2
4 10	25 April 1985 ^c	5	5.33	+7
	•	10	10.9	+9
	,	20	21.4	+7
3 June 1985	4 June 1985	· 5	5.00	0
		5	5.00	0
		10	10.0	0
		10	10.2	+2
		20	19.9	-1
		20	19.8	-1
29 July 1985	30 July 1985	5	4.90	-2
	-	5	4.89	-2
		10	10.0	0
		10	9.88	-1
		20	19.4	-3
		20	19.5	-3
	16 August 1985 ^c	5	5.07	+1
		10	10.3	+3
		20	21.3	+7
7 October 1985	8 October 1985	.5	5.02	0
		5	5.03	+1
		10	9.99	0
		10	9.92	-1
	•	20	19.9	-1
		20	19.8	-1
	24 October 1985 ^c	5	4.87	-3
	24 October 1965	10	9.81 da ka	-2
3	. e	20	20.0	Ō
	0 D		475	
2 December 1985	3 December 1985	5	4.75 4.79	-5 -4
		5 10	4.79 9.52	-4 · -5
		10	9.32 9.49	-5
		20	19.6	-2
<i>i</i> .	4 N	20	19.0	-5

х. Х.,

TABLE I4

Results of Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Gavage Studies of Coumarin (continued)

ate Prepared	Date Analyzed	, Target Concentration (mg/mL)	Determined Concentration (mg/mL)	% Difference from Target
lice (continued)				
7 January 1986	28 January 1986	5	4.78	-4
		5	4.98	0
		10	9.39	-6
		10	9.16	8
		20	20.0	0
	-	20	19.9	-1
31 March 1986	1 April 1986	5	4.56	-9
	•	5	4.72	-6
		10	9.72	-3
		10	9.80	-2
		20	19.0	-5
		20	19.4	-3
	17 April 1986 ^c	5	4.74	-5
		10	9.50	5
		20	19.3	-4
2 May 1986	13 May 1986	5	5.13	+3
		5	5.14	+3
		10	10.0	0
		10	9.87	-1
		20	19.2	-4
		20	19.7	-2
July 1986	8 July 1986	5	4.94	-1
		5	4.96	-1
		10	10.0	0
		10	10.1	+1
	- 	20	20.8	+4
		20	20.8	+4
8 August 1986	19 August 1986	5	5.02	0
		5	5.06	+1
		10	9.48	5
		20	19.3	-4
4 October 1986	15 October 1986	5	5.09	+2
•		10	10.2	+2
		20	19.9	-1
	30 October 1986 ^c	5	5.09	+2
		10	9.81	-2
		20	18.8	-6

а Mean of duplicate analyses

b Rats: 5 mg/mL = 25 mg/kg, 10 mg/mL = 50 mg/kg, and 20 mg/mL = 100 mg/kg; dosing volume = 5 mL/kg. Animal room samples

c

d Mice: 5 mg/mL = 50 mg/kg, 10 mg/mL = 100 mg/kg, and 20 mg/mL = 200 mg/kg; dosing volume = 10 mL/kg.

TABLE 15 Results of Referee Analysis of Dose Formulations Administered to Rats and Mice in the 2-Year Gavage Studies of Coumarin

		Determined Conc		
Date Prepared	Target Concentration (mg/mL)	Study Laboratory ^a	Refer ce Laboratory ^b	
4 September 1984	20	19.9	19.9	
8 April 1985	10	10.0	9.96	
7 October 1985	5	5.03	5.26	
31 March 1986	10	9.72	10.2	
18 August 1986	5	5.02	4.97	· · · ·

a

Results of duplicate analyses Results of triplicate analyses b

APPENDIX J INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH-07 RAT AND MOUSE RATION

an tuacado do artícolo

Table J1	Ingredients of NIH-07 Rat and Mouse Ration	330
TABLE J2	Vitamins and Minerals in NIH-07 Rat and Mouse Ration	330
TABLE J3	Nutrient Composition of NIH-07 Rat and Mouse Ration	331
Table J4	Contaminant Levels in NIH-07 Rat and Mouse Ration	332

. +5

Ingredients ^b		Perce	nt by Weight	
Ground #2 yellow shelled corn		· · ·	24.50	
Ground hard winter wheat	A		23.00	
Soybean meal (49% protein)	1 a a a a a a a a a a a a a a a a a a a		12.00	
Fish meal (60% protein)			10.00	
Wheat middlings			10.00	·
Dried skim milk			5.00	
Alfalfa meal (dehydrated, 17% protein)			4.00	
Corn gluten meal (60% protein)	· · ·	;	3.00	
Soy oil			2.50	9
Dried brewer's yeast	. 93t.		2.00	
Dry molasses	2.25 - 42 2 3	Silve to Mr. 1	1.50	- (* 1)77,
Dicalcium phosphate			1.25	11
Ground limestone	and the state of the	100 B (100 B)	0.50	1
Salt	* *		0.50	
Premixes (vitamin and mineral)			0.25	

.

.

TABLE J1 Ingredients of NIH-07 Rat and Mouse Ration^a

^a NCI, 1976; NIH, 1978

^b Ingredients were ground to pass through a U.S. Standard Screen No. 16 before being mixed.

TABLE J2

Vitamins and Minerals in NIH-07 Rat and Mouse Ration^a

	Amount	Source	
Vitamins			
Α	5,500,000 IU	Stabilized vitamin A palmitate or	acetate
D ₃	4,600,000 IU	D-activated animal sterol	
K ₃	2.8 g	Menadione	
$d - \alpha$ -Tocopheryl acetate	20,000 IU		
Choline	560.0 g	Choline chloride	,
Folic acid	2.2 g		
Niacin	30.0 g		
d-Pantothenic acid	18.0 g	d-Calcium pantothenate	
Riboflavin	3.4 g	. •	
Thiamine	10.0 g	Thiamine mononitrate	
B ₁₂	4,000 μg		N 1 6
Pyridoxine	1.7 g	Pyridoxine hydrochloride	5 415 - U.S.
Biotin	140.0 mg	d-Biotin	Et General -
	1 A. V. 28C 0	123 B. 626	11 Jac - 14 T
Minerals	1 - F. 1. 19 - 19 - 19 - 19 - 19 - 19 - 19 -		
Iron	120.0 g	Iron sulfate	
Manganese	60.0 g	Manganous oxide	
Zinc	16.0 g	Zinc oxide	
Copper	4.0 g	Copper sulfate	1
Iodine	1.4 g	Calcium iodate	
Cobalt	0.4 g	Cobalt carbonate	

^a Per ton (2,000 lb) of finished product

TABLE J3 Nutrient Composition of NIH-07 Rat and Mouse Ration

	Mean 🛨 Standard		
Nutrient	Deviation	Range	Number of Samples
Protein (% by weight)	22.11 ± 0.49	21.1 - 23.1	23
Crude fat (% by weight)	5.58 ± 0.48	4.7 – 6.5	23
Crude fiber (% by weight)	3.46 ± 0.48	2.7 – 5.4	23
sh (% by weight)	6.45 ± 0.25	6.1 - 6.8	23
mino Acids (% of total dict)	,		
Arginine	1.308 ± 0.060	1.210 - 1.390	8
Cystine	0.306 ± 0.084	0.181 - 0.400	8
Glycine	1.150 ± 0.047	1.060 - 1.210	8
Histidine	0.576 ± 0.024	0.531 - 0.607	8
Isoleucine	0.917 ± 0.029	0.881 - 0.944	8
Leucine	1.946 ± 0.055	1.850 - 2.040	8
Lysine	1.270 ± 0.058	1.200 - 1.370	8
Methionine	0.448 ± 0.128	0.306 - 0.699	8
Phenylalanine	0.987 ± 0.140	0.665 - 1.110	8
Threonine	0.877 ± 0.042	0.824 - 0.940	8
Tryptophan	0.236 ± 0.176	0.107 - 0.671	8
Tyrosine	0.676 ± 0.105	0.564 - 0.794	8
Valine	1.103 ± 0.040	1.050 - 1.170	8
Essential Fatty Acids (% of total diet)			
Linoleic	2.393 ± 0.258	1.830 - 2.570	7
Linolenic	0.280 ± 0.040	0.210 - 0.320	7
litamins	· · · · · · · · · · · · · · · · · · ·		
Vitamin A (IU/kg)	$9,091 \pm 2,401$	5,600 - 15,000	23
Vitamin D (IU/kg)	$4,450 \pm 1,382$	3,000 - 6,300	4
a-Tocopherol (ppm)	37.95 ± 9.41	22.5 - 48.9	8
Thiamine (ppm)	20.30 ± 1.58	17.0 - 23.0	23
Riboflavin (ppm)	7.92 ± 0.87	6.10 - 9.00	8
Niacin (ppm)	103.4 ± 26.59	65.0 - 150.0	8
Pantothenic acid (ppm)	29.54 ± 3.60	23.0 - 34.0	8
Pyridoxine (ppm)	9.55 ± 3.48	5.60 - 14.0	8
Folic acid (ppm)	2.25 ± 0.73	1.80 - 3.70	8
Biotin (ppm)	0.254 ± 0.042	0.19 - 0.32	8
Vitamin B ₁₂ (ppb) Choline (ppm)	38.45 ± 22.01 $3,089 \pm 328.69$	10.6 - 65.0 2,400 - 3,430	8 8
Minerals		,	-
Calcium (%)	1.14 ± 0.10	0.95 - 1.41	23
Phosphorus (%)	0.92 ± 0.05	0.73 - 0.99	23
Potassium (%)	0.883 ± 0.078	0.772 - 0.971	6
Chloride (%)	0.526 ± 0.092	0.380 - 0.635	8
Sodium (%)	0.313 ± 0.390	0.258 - 0.371	8
Magnesium (%)	0.168 ± 0.010	0.151 - 0.181	8
Sulfur (%)	0.280 ± 0.064	0.208 - 0.420	8
Iron (ppm)	360.5 ± 100	255.0 - 523.0	8
Manganese (ppm)	92.0 ± 6.01	81.70 - 99.40	8
Zinc (ppm)	54.72 ± 5.67	46.10 - 64.50	8
Copper (ppm)	11.06 ± 2.50	8.090 - 15.39	8
Iodine (ppm)	3.37 ± 0.92	1.52 - 4.13	6
Chromium (ppm)	1.79 ± 0.36	1.04 - 2.09	8
Cobalt (ppm)	0.681 ± 0.14	0.490 - 0.780	4

Coumarin, NTP TR 422

والمحاوية التجارين الأنامحم مراجع والمراجع والمح

1.4.4.5

TABLE J4

Contaminant Levels in NIH-07 Rat and Mouse Ration

Contaminants	Mean ± Standard Deviation ^a	Range	Number of Samples
Arsenic (ppm)	0.76 ± 0.17	0.32 - 1.07	23
Cadmium (ppm)	<0.1		23
Lead (ppm)	0.53 ± 0.26	0.05 - 1.32	23
Mercury (ppm)	<0.05	•	23
Selenium (ppm)	0.35 ± 0.09	0.17 - 0.48	23
Aflatoxins (ppb)	<5.0	and the second	23
Nitrate nitrogen (ppm) ^D	14.96 ± 4.73	2.80 - 22.0	23
Nitrite nitrogen (ppm) ^{bc}	0.29 ± 0.58	<0.10 - 2.60	23
BHA (ppm)	2.61 ± 1.08	<2.00 - 5.00	23
BHT (ppm) ^d	1.91 ± 1.08	<1.00 - 4.00	23
Aerobic plate count (CFU/g) ^e	$38,337 \pm 42,308$	7,770 – 130,000	23
Coliform (MPN/g) ^f	16.22 ± 49.50	<3.00 - 240	23
E. coli (MPN/g) ^g	6.04 ± 8.57	<3.00 - 43.0	23
E. coli (MPN/g) ⁿ	3.04 ± 0.21	<3.00 - 4.00	23
Total nitrosoamines (ppb) ¹	7.47 ± 3.14	3.80 - 16.0	23
N-Nitrosodimethylamine (ppb) ¹	6.31 ± 2.93	2.80 - 15.0	23
N-Nitrosopyrrolidine (ppb) ¹	1.16 ± 0.56	<1.00 - 3.40	23
sticides	41°4		
a-BHC ^j	<0.01		23
B-BHC	<0.02		23
y-BHC	<0.02		23
s-BHC	<0.01		23
Heptachlor	< 0.01		23
Aldrin	<0.01		23
	<0.01		23
Heptachlor epoxide			23
DDE	<0.01 <0.01		23
DDD			23
DDT	< 0.01		23
HCB	< 0.01		23
Mirex	< 0.01	5	23
Methoxychlor	< 0.05		23
Dieldrin	< 0.01		23 23
Endrin	<0.01		
Telodrin	< 0.01		23
Chlordane	<0.05		23
Toxaphene	<0.1		23
Estimated PCB's	<0.2		23
Ronnel	<0.01		23
Ethion	<0.02		23
Trithion	<0.05		23
Diazinon	<0.1		23
Methyl parathion	<0.02		23
Ethyl parathion	<0.02		23
Malathion ^k	0.24 ± 0.66	0.05 - 3.20	23
Endosulfan 1	<0.01		23
Endosulfan 2	<0.01		23
Endosulfan sulfate	< 0.03	· .	23

Feed Analyses

TABLE J4

Contaminant Levels in NIH-07 Rat and Mouse Ration (continued)

^a For values less than the limit of detection, the detection limit is given for the mean.

^b Sources of contamination: alfalfa, grains, and fish meal

- ^c Includes one large value of 7.20 ppm obtained from the lot milled on 17 August 1983.
- ^d Sources of contamination: soy oil and fish meal

• CFU = colony forming unit

f MNP = most probable number

- ^g Excludes one high value of 240 MPN/g obtained from the lot milled on 14 September 1984.
- h Includes one value of 4.0 MPN/g obtained from the lot milled on 17 October 1984.

ⁱ All values were corrected for percent recovery.

- ^j BHC = hexachlorocyclohexane or benzene hexachloride
- ^k Nine lots contained more than 0.05 ppm, including one lot milled on 7 May 1985 that contained 3.20 ppm.

. .

16

5,4

APPENDIX K SENTINEL ANIMAL PROGRAM

Methods	• • • • • • • • • • • • • • • • • • • •	335
	Murine Virus Antibody Determinations for Rats and Mice	
	in the 2-Year Gavage Studies of Coumarin	337

SENTINEL ANIMAL PROGRAM

METHODS

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via serology on sera from extra (sentinel) animals in the study rooms. These animals and the study animals are subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Rats

During the 2-year study, 15 F344/N rats of each sex were maintained with the study animals to serve as sentinel animals. At 6, 12, and 18 months into the study, blood was drawn from five rats of each sex. Additional analyses were conducted at the final sacrifice (24 months) on samples collected from vehicle control animals. Blood collected from each animal was allowed to clot and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates (Bethesda, MD) for determination of antibody titers. The following tests were performed:

• . · . · ·

. .

Method of Analysis	Time of Analysis
Hemagglutination Inhibition	
KRV (Kilham rat virus)	6, 12, 18, and 24 months
H-1 (Toolan's H-1 virus)	6, 12, 18, and 24 months
	in the second of the second
ELISA	
Mycoplasma arthritidis	6, 12, and 18 months
Mycoplasma pulmonis	6, 12, 18, and 24 months
PVM (pneumonia virus of mice)	6, 12, 18, and 24 months
Sendai	6, 12, 18, and 24 months
RCV/SDA (rat coronavirus/sialodacryoadenitis virus)	
	6, 12, and 18 months
RCV (rat coronavirus)	24 months
CARB (cilia-associated respiratory bacillus)	24 months

Mice

11 12

During the 2-year study, 15 F344/N rats of each sex were maintained with the study animals to serve as sentinel animals. At 6, 12, and 18 months into the study, blood was drawn from five rats of each sex. Additional analyses were conducted at the final sacrifice (24 months) on samples collected from vehicle control animals. Blood collected from each animal was allowed to clot and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates (Bethesda, MD) for determination of antibody titers. The following tests were performed:

Method of Analysis	Time of Analysis
Hemagglutination Inhibition	
K (papovirus)	6, 12, 18, and 24 months
Polyoma virus	6, 12, 18, and 24 months
MVM (minute virus of mice)	6, 12, 18, and 24 months
Complement Fixation	
LCM (lymphocytic choriomeningitis virus)	6, 12, 18 months

Sentinel Animal Program

Mice (continued)

Method of Analysis	Time of Analysis
ELISA	
M. arthritidis	6, 12, 18, and 24 months
M. pulmonis	6, 12, 18, and 24 months
PVM	6, 12, 18, and 24 months
Sendai	6, 12, 18, and 24 months
MHV (mouse hepatitis virus)	6, 12, 18, and 24 months
Ectromelia virus	6, 12, 18, and 24 months
GDVII (mouse encephalomyelitis virus)	6, 12, 18, and 24 months
Reovirus 3	6, 12, 18, and 24 months
Mouse adenoma virus	6, 12, 18, and 24 months
Immunofluorescent Assay	
EDIM (Epizootic diarrhea of infant mice)	6, 12, 18, and 24 months
LCM	24 months

TABLE K1 Murine Virus Antibody Determinations for Rats and Mice in the 2-Year Gavage Studies of Coumarin

	Interval		Incidence of Antibody in Sentinel Animals	
Rats	6 months		10/10	PVM
	•		1/10	Possible M. arthritidis
	12 months		10/10	PVM
	18 months		10/10	PVM
		.*	1/10	KRV
	24 months		8/9	PVM
Mice	6 months		0/10	None positive
				-
	12 months	and the second second	0/10	None positive
	18 months		0/8	None positive
	24 months		0/10	None positive

337

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS **PRINTED AS OF SEPTEMBER 1993**

TR No. CHEMICAL

201	2,3,7,8-Tetrachlorodibenzo-p-dioxin (Dermal)
206	1,2-Dibromo-3-chloropropane
207	Cytembena
208	FD & C Yellow No. 6
209	2,3,7,8-Tetrachlorodibenzo-p-dioxin (Gavage)
210	1,2-Dibromoethane
211	C.I. Acid Orange 10
212	Di(2-ethylhexyl)adipate
213	Butyl Benzyl Phthalate
214	Caprolactam
215	Bisphenol A
216	11-Aminoundecanoic Acid
217	Di(2-Ethylhexyl)phthalate
219	2,6-Dichloro-p-phenylenediamine
220	C.I. Acid Red 14
221	Locust Bean Gum
222	C.I. Disperse Yellow 3
223	Eugenol
224	Tara Gum
225	D & C Red No. 9
226	C.I. Solvent Yellow 14
227	Gum Arabic
228	Vinylidene Chloride
229	Guar Gum
230	Agar
231	Stannous Chloride
232	Pentachloroethane
233	
234	Allyl Isothiocyanate
235	Zearalenone
236	D-Mannitol
237	
238	Ziram
239	Bis(2-chloro-1-Methylethyl)ether
240	Propyl Gallate
242	Diallyl Phthalate (Mice)
243	Trichlorethylene (Rats and Mice)
244	Polybrominated Biphenyl Mixture
245	Melamine
246	Chrysotile Asbestos (Hamsters)
247	•
248	4,4'-Methylenedianiline Dihydrochloride
249	Amosite Asbestos (Hamsters)
250	Benzyl Acetate
251	2,4- & 2,6-Toluene Diisocyanate
252	Geranyl Acetate
253	Allyl Isovalerate
253	Dichloromethane (Methylene Chloride)
255	1,2-Dichlorobenzene
257	Diglycidyl Resorcinol Ether
259	Ethyl Acrylate
261	Chlorobenzene
263	1.2-Dichloropropane
265	Monuron
267	
260	

- ichloropropene
- 271 HC Blue No. 1
- 272 Propylene
- ☆ U.S. GOVERNMENT PRINTING OFFICE: 1993 300-970/00001

TR No. CHEMICAL

- 273 Trichloroethylene (Four Rat Strains) 274 Tris(2-ethylhexyl)phosphate 275 2-Chloroethanol 276 8-Hydroxyquinoline 277 Tremolite 278 2,6-Xylidine 279 Amosite Asbestos 280 Crocidolite Asbestos 281 HC Red No. 3 282 Chlorodibromomethane 284 Diallylphthalate (Rats) C.I. Basic Red 9 Monohydrochloride 285 287 Dimethyl Hydrogen Phosphite 288 1,3-Butadiene 289 Benzene 291 Isophorone 293 HC Blue No. 2 Chlorinated Trisodium Phosphate 294 Chrysotile Asbestos (Rats) 295 Tetrakis(hydroxymethyl) phosphonium Sulfate & 296 Tetrakis(hydroxymethyl) phosponium Chloride 298 Dimethyl Morpholinophosphoramidate 299 C.I. Disperse Blue 1 300 3-Chloro-2-methylpropene 301 o-Phenylphenol 303 4-Vinylcyclohexene 304 Chlorendic Acid 305 Chlorinated Paraffins (C23, 43% chlorine) 306 Dichloromethane (Methylene Chloride) 307 Ephedrine Sulfate 308 Chlorinated Pariffins (C12, 60% chlorine) 309 Decabromodiphenyl Oxide Marine Diesel Fuel and JP-5 Navy Fuel 310 311 Tetrachloroethylene (Inhalation) 312 n-Butyl Chloride 313 Mirex 314 Methyl Methacrylate 315 Oxytetracycline Hydrochloride 316 1-Chloro-2-methylpropene 317 Chlorpheniramine Maleate 318 Ampicillin Trihydrate 319 1,4-Dichlorobenzene 320 Rotenone 321 Bromodichloromethane 322 Phenylephrine Hydrochloride 323 Dimethyl Methylphosphonate 324 Boric Acid 325 Pentachloronitrobenzene 326 Ethylene Oxide 327 Xylenes (Mixed) 328 Methyl Carbamate 329 1,2-Epoxybutane 330 4-Hexylresorcinol
- 331 Malonaldehyde, Sodium Salt
- 332 2-Mercaptobenzothiazole
- 333 N-Phenyl-2-naphthylamine
- 334 2-Amino-5-nitrophenol
- 335 C.I. Acid Orange 3

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS PRINTED AS OF SEPTEMBER 1993 (CONT.)

TR No. CHEMICAL

10

- 336 Penicillin VK
- 337 Nitrofurazone
- 338 Erythromycin Stearate
- 339 2-Amino-4-nitrophenol
- 340 Indinated Glycerol
- 341 Nitrofurantoin
- 342 Dichlorvos
- 343 Benzyl Alcohol
- 344 Tetracycline Hydrochloride
- 345 Rosamone
- 346 Chloroethane
- 347 D-Limonene
- 348 @-Methyldopa Sesquihydrate
- 349 Pentachlorophenol
- 350 Tribromomethane
- 351 p-Chloroaniline Hydrochloride
- 352 N-Methylolacrylamide
- 353 2,4-Dichlorophenol
- 354 Dimethoxane
- 355 Diphenhydramine Hydrochloride
- 356 Furosemide
- 357 Hydrochlorothiazide
- 358 Ochratoxin A
- 359 8-Methonypzoralen
- 360 N,N-Dimethylaniline
- 361 Hexachloroethane
- Son included of theme
- 362 4-Vinyl-1-Cyclohestene Diepostide
- 363 Bromoethane (Ethyl Bromide)
- 364 Rhodamine 6G (C.I. Basic Red 1)
- 365 Pentaerythritol Tetranitrate
- 365 Hydroquinone
- 367 Phenylbutazone
- 368 Naliditic Acid
- 369 Alpha-Methylbenzyl Alcohol
- 370 Benzofuran
- 371 Toluene
- 372 3,3-Dimethoxybenzidine Dihydrochloride
- 373 Succinic Anhydride
- 374 Glycidol
- 375 Vinyl Toluene
- 376 Allyl Glycidyl Ether
- 377 o-Chlorobenzalmalononitrile

- TR No. CHEMICAL
 - 378 Benzaldehyde
 - 379 2-Chloroacetophenone
 - 380 Epinephrine Hydrochloride
 - 381 d-Carvone
 - 382 Furfural
 - 385 Methyl Bromide
 - 386 Tetranitromethane
 - 387 Amphetamine Sulfate
 - 388 Ethylene Thiourea
 - 389 Sodium Azide
 - 390 3,3⁴-Dimethylbenzidine Dihydrochloride
 - 391 Tris(2-chloroethyl) Phosphate
 - 392 Chlorinated Water and Chloraminated Water
 - 393 Sodium Fluoride
 - 394 Acetaminophen
 - 395 Probenecid
 - 396 Monochloroacetic Acid
 - 397 C.I. Direct Blue 15
 - 398 Polybrominated Biphenyls
 - 399 Titanocene Dichloride
 - 401 2,4-Diaminophenol Dihydrochloride
 - 402 Furan
 - 403 Resorcinol
 - 405 Resolution
 - 405 C.I. Acid Red 114
 - 40% γ-Butyrolactone
 - 407 C.I. Pigment Red 3
 - 408 Mercuric Chloride
 - 409 Quercetin
 - 410 Naphthalene
 - 411 C.I. Pigment Red 23
 - 412 4,4-Diamino-2,2-Stilbenedisulfonic Acid
 - 413 Ethylene Glycol
 - 414 Pentachloroanisole
 - 415 Polysorbate 80
 - 416 o-Nitroanisole
 - 417 *p*-Nitrophenol

 - 418 p-Nitroaniline
 - 419 HC Hellow 4
 - 427 Turmeric Oleoresin
 - 434 1,3-Butadiene
 - 443 Oxazepam

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Central Data Management, NIEHS, P.O. Box 12233, MD A0-01, Research Triangle Parts, NC 27709.

DEPARTMENT OF HEALTH & HUMAN SERVICES

Public Health Service National Toxicology Program Central Data Management P.O. Box 12233, MD A0-01 Research Triangle Park, NC 27709

Official Business Penalty for Private Use - \$300

SPECIAL FOURTH-CLASS RATE POSTAGE AND FEES PAID DHHS/NIH Permit No. G-763

NIH Publication No. 93-3153 September 1993