NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 429

> TOXICOLOGY AND CARCINOGENESIS STUDIES OF DIETHYLPHTHALATE (CAS NO. 84-66-2) IN F344/N RATS AND B6C3F, MICE

> > (DERMAL STUDIES)

with

IDEIRMAL INITIATION/PROMOTION STUDY OF DIETHYLPHITHALATE AND DIMETHYLPHITHALATE (CAS NO. 131-11-3) IN MALE SWISS (CD-1°) MICE

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

FOREWORD

The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation.

The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease.

The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. The prechronic and chronic studies were conducted in compliance with Food and Drug Administration (FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjected to retrospective quality assurance audits before being presented for public review.

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection *per se* is not an indicator of a chemical's carcinogenic potential.

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge while supplies last from NTP Central Data Management, NIEHS, P.O. Box 12233, MD A0-01, Research Triangle Park, NC 27709 (919-541-3419).

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF DIETHYLPHTHALATE (CAS NO. 84-66-2) IN F344/N RATS AND B6C3F, MICE

(DERMAL STUDIES)

with

DERMAL INITIATION/PROMOTION STUDY OF DIETHYLPHTHALATE AND DIMETHYLPHTHALATE (CAS NO. 131-11-3) IN MALE SWISS (CD-1®) MICE

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

May 1995

NTP TR 429

NIH Publication No. 95-3356

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

Diethylphthalate/Dimethylphthalate, NTP TR 429

CONTRIBUTORS

National Toxicology Program

2

Evaluated and interpreted results and reported findings

C.J. Alden, Ph.D.
G.A. Boorman, D.V.M., Ph.D.
D.A. Bridge, B.S.
J.R. Bucher, Ph.D.
S.L. Eustis, D.V.M., Ph.D.
T.J. Goehl, Ph.D.
J.K. Haseman, Ph.D.
R.H. Herbert, D.V.M., Ph.D.
D.S. Marsman, D.V.M., Ph.D.
G.N. Rao, D.V.M., Ph.D.
B.A. Schwetz, D.V.M., Ph.D.
G.S. Travlos, D.V.M.
D.B. Walters, Ph.D.
K.L. Witt, M.S., Oak Ridge Associated Universities

Hazleton Laboratories America Inc. Conducted studies, evaluated pathology findings

G.W. Wolfe, Ph.D., Principal Investigator R.H. Cardy, D.V.M. M.R. Moore, Ph.D.

Experimental Pathology Laboratories, Inc.

Provided pathology quality assurance

J.F. Hardisty, D.V.M., Principal Investigator H.R. Brown, M.S., D.V.M. E. Gaillard, D.V.M., Ph.D.

Dynamac Corporation

Prepared pathology audits

S. Brecher, Ph.D., Principal Investigator

NTP Pathology Working Group

Evaluated slides, prepared pathology report on rats (4 April 1991)

R.M. Sauer, V.M.D., Chair PATHCO, Inc.
H.R. Brown, M.S., D.V.M. Experimental Pathology Laboratories, Inc.
J.R. Hailey, D.V.M. National Toxicology Program
M.P. Jokinen, D.V.M National Toxicology Program
A.W. Macklin, D.V.M., Ph.D. Burroughs Wellcome Research Laboratories
M.M. McDonald, D.V.M., Ph.D. National Toxicology Program

Evaluated slides, prepared pathology report on mice (14 April 1992)

P.K. Hildebrandt, D.V.M., Chair PATHCO, Inc.
R. Cattley, M.S., V.M.D., Ph.D. Chemical Industry Institute of Toxicology
E. Gaillard, D.V.M., Ph.D. Experimental Pathology Laboratories, Inc.
J.R. Hailey, D.V.M. National Toxicology Program
R.H. Herbert, D.V.M., Ph.D. National Toxicology Program
C.C. Shackelford, D.V.M., M.S., Ph.D. National Toxicology Program
K. Takahashi, D.V.M., M.Sc., Ph.D. National Toxicology Program

Biotechnical Services, Inc. *Prepared Technical Report*

D.D. Lambright, Ph.D., Principal Investigator J.R. Beverly, B.A. P. Chaffin, B.S.E. S.R. Gunnels, M.A. H.A. Lindsay, B.A. E.S. Rathman, M.S.

CONTENTS

and a transfer of the

٠.

•

• •

ABSTRACT	· · · · · · · · · · · · · · · · · · ·	5
EXPLANATION	OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	10
TECHNICAL RI	EPORTS REVIEW SUBCOMMITTEE	11
SUMMARY OF	TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS	12
INTRODUCTIO)N	13
MATERIALS AN	ND METHODS	21
RESULTS		33
DISCUSSION A	ND CONCLUSIONS	63
REFERENCES	•••••	65
Appendix A	Summary of Lesions in Male Rats in the 2-Year Dermal Study of Diethylphthalate	71
Appendix B	Summary of Lesions in Female Rats in the 2-Year Dermal Study of Diethylphthalate	109
Appendix C	Summary of Lesions in Male Mice in the 2-Year Dermal Study of Diethylphthalate	147
Appendix D	Summary of Lesions in Female Mice in the 2-Year Dermal Study of Diethylphthalate	185
Appendix E	Genetic Toxicology	227
Appendix F	Organ Weights and Organ-Weight-to-Body-Weight Ratios	241
Appendix G	Hematology and Clinical Chemistry Results	247
Appendix H	Chemical Characterization and Dose Formulation Studies	251
Appendix I	Ingredients, Nutrient Composition, and Contaminant Levels in NIH-07 Rat and Mouse Ration	269
Appendix J	Sentinel Animal Program	275

•

ABSTRACT

DIETHYLPHTHALATE

CAS No. 84-66-2

Chemical Formula: C₁₂H₁₄O₄ Molecular Weight: 222.26

Synonyms: 1,2-benzenedicarboxylic acid, diethyl ester; DEP; diethyl 1,2-benzenedicarboxylate; diethyl o-phthalate; diethyl phthalate; ethyl phthalate; o-benzenedicarboxylic acid diethyl ester; phthalic acid, diethyl ester; RCRA U088 Trade Names: Anozol; DPX-F5384; Estol 1550; Neantine; Palatinol A; Phthalol; Placidol E; Solvanol; Unimoll DA

DIMETHYLPHTHALATE

CAS No. 131-11-3

Chemical Formula: $C_{10}H_{10}O_4$ Molecular Weight: 194.19

Synonyms: 1,2-benzenedicarboxylic acid, dimethyl ester; dimethyl 1,2-benzenedicarboxylate; dimethyl benzene-o-dicarboxylate; dimethyl benzeneorthodicarboxylate; dimethyl o-phthalate; dimethyl phthalate; DMP; FIFRA 028002; methyl phthalate; o-dimethyl phthalate; phthalic acid, dimethyl ester; phthalic acid methyl ester; RCRA U102

Trade Names: Avolin; DMF (insect repellent); ENT 262; Fermine; Mipax; NTM; Palatinol M; Repeftal; Solvanom; Solvarone; Unimoll DM

Diethylphthalate and dimethylphthalate are used as phthalate plasticizers, in an extensive array of products. The chronic dermal toxicity of diethylphthalate was evaluated in male and female F344/N

the state of the second second

rats and $B6C3F_1$ mice in 2-year studies. In a series of special studies, the tumor initiation or promotion potential of diethylphthalate or dimethylphthalate was evaluated in male Swiss (CD-1[®]) mice by an

initiation/promotion model of skin carcinogenesis. The genetic toxicity of diethylphthalate and dimethylphthalate in *Salmonella typhimurium* and cultured Chinese hamster ovary cells was also evaluated.

4-WEEK STUDY IN F344/N RATS

Groups of 10 male and 10 female rats were dermally administered diethylphthalate at volumes of 0, 37.5, 75, 150, or 300 μ L (0, 46, 92, 184, or 369 μ g) applied neat, 5 days per week for 4 weeks. All male and female rats survived to the end of the study. No evidence of dermatotoxicity was observed, with no adverse clinical signs observed and no effects on weight gain or feed consumption. Relative liver weights of 300 μ L males and females and 150 μ L females were greater than those of controls. Relative kidney weights of 150 and 300 μ L males and 150 μ L females were greater than those of controls. No other adverse effects were observed in this study.

4-WEEK STUDY IN B6C3F, MICE

Groups of 10 male and 10 female mice were dermally administered diethylphthalate at volumes of 0, 12.5, 25, 50, or 100 μ L (0, 15, 31, 62, or 123 μ g) applied neat, five days per week for 4 weeks. One control female died before the end of the study; all other mice survived. No evidence of dermatotoxicity or other adverse clinical signs were observed, and no clear adverse effects on weight gain or feed consumption were seen. Absolute and relative liver weights of 25 and 100 μ L females were greater than those of the controls. Based on these 4-week study results, doses of 0, 35, and 100 μ L diethylphthalate were recommended for the 2-year mouse studies. A chronic study in male and female B6C3F₁ mice at 0, 35, and 100 μ L (applied neat, once per day, 5 days per week) was started and subsequently stopped after 32 weeks when significant body weight reductions were noted in treated animals (males and females, 100 μ L groups: 19% lower; males, 35 µL group: 12% lower; females, 35 μ L group: 10% lower than controls). Based on these body weight reductions, doses of 0, 7.5, 15, and 30 μ L in 100 μ L acetone were recommended for the restart of the 2-year mouse study.

2-YEAR STUDY IN F344/N RATS

Based upon the results of the 4-week study, doses of 0, 100, or $300 \,\mu\text{L}$ diethylphthalate (0, 123, or 369 μ g)

Diethylphthalate/Dimethylphthalate, NTP TR 429

were chosen for the 2-year rat study. Groups of 60 male and 60 female rats received the doses applied neat 5 days per week for 103 weeks and up to 10 animals per group were evaluated after 15 months.

Survival, Body Weights, and Clinical Findings Survival of dosed rats during the first 15 months was similar to that of controls. However, 2-year survival was significantly reduced in all groups of male rats (survival probabilities, males: $0 \ \mu L$, 8%; 100 μL , 12%; and 300 μL , 12%). The mean body weights of 300 μL males were slightly less than those of the controls throughout the study. No adverse clinical signs were observed, including no evidence of dermatotoxicity.

Pathology Findings

No morphological evidence of dermal or systemic toxicity was observed in male or female rats. Skin neoplasms were not observed in female rats and were only rarely observed in male rats. A high incidence of anterior pituitary adenoma occurred in all groups of male and female rats. The incidence of anterior pituitary adenomas in the 0, 100, and 300 μ L groups were: males, 39/44, 41/49, 41/49; females, 38/50, 33/49, 33/48. The incidence of this benign tumor in control males (84%) exceeded the historical control mean incidence [feed controls, (28.7%)] and range (12% to 60%). Anterior pituitary adenomas were considered a primary contributing factor in the increased mortality observed in all groups, regardless of treatment. A dose-related decreasing trend in the incidence of mammary gland fibroadenomas was observed in female rats (21/50, 12/48, 7/50). The incidence of mononuclear cell leukemia in male rats in this study was lower than the historical incidence and may be attributable to the shortened life span of male rats. Similarly, the incidence of interstitial cell tumors of the testes was markedly decreased in all groups of males (4/50, 3/50, 8/50), relative to historical control rates (90.1%; range 74%-98%). The incidence of fatty liver degeneration was notably lower in dosed rats than in controls (males: 26/50, 8/50, 4/51; females: 23/50, 11/50, 3/50).

2-YEAR STUDY IN B6C3F₁ MICE

Groups of 60 male and 60 female mice received doses of 0, 7.5, 15, or 30 μ L diethylphthalate (0, 9, 18, or 37 μ g) in 100 μ L acetone 5 days per week for 103 weeks with a 1 week recovery period, and up to 10 animals per group were evaluated after 15 months.

Diethylphthalate/Dimethylphthalate, NTP TR-429

Survival, Body Weights, and Clinical Findings Two-year survival of dosed mice was similar to that of controls: 43/50, 41/48, 46/50, and 43/50 (males), and 41/50, 38/51, 37/49, and 36/49 (females). Mean body weights of dosed male and female mice were similar to those of the controls throughout the study. No adverse clinical signs were observed in mice, including no gross evidence of dermatotoxicity. Feed consumption by male and female mice was similar to or up to 13% greater than that by controls.

Pathology Findings

No morphological evidence of dermal toxicity was observed in male or female mice. No skin neoplasms were observed in dosed male mice. In female mice receiving 30 μ L, one squamous cell carcinoma and one basal cell carcinoma were seen at the site of application. An increased incidence of liver neoplasms was observed in dosed male and female mice. The incidence of hepatocellular adenoma or carcinoma (combined) in B6C3F₁ mice in the 0, 7.5, 15, and 30 μ L groups were: (males) 9/50, 14/50, 14/50, and 18/50; (females) 7/50, 16/51, 19/50, and 12/50. The incidence of adenoma or carcinoma (combined) was increased in 30 μ L male mice and the incidences of adenoma and of adenoma or carcinoma (combined) were increased in 7.5 and 15 μ L females. A positive dose-related trend in the incidence of adenoma or carcinoma (combined) was also observed in male mice. The incidence of basophilic hepatic foci was increased in 15 μ L male mice (0/50, 1/50, 9/50, 3/50). The increased incidence of liver neoplasms in this study was considered equivocal because the incidence of hepatocellular neoplasms in control and dosed males was within the historical range and because there was no clear dose-response relationship in females. No other treatment-related findings were observed in this study.

1-YEAR INITIATION/PROMOTION

STUDY IN MALE SWISS (\mathbb{CD} -1[®]) MICE Groups of 50 male mice were dosed dermally with diethylphthalate or dimethylphthalate to study their effect as initiators and promoters. Diethylphthalate and dimethylphthalate were tested as initiators with and without the known skin tumor promoter 12-Otetradecanoylphorbol-13-acetate (TPA). Diethylphthalate and dimethylphthalate were tested as promoters with and without the known skin tumor initiator 7,12-dimethylbenzanthrancene (DMBA). Comparative control groups used during the study of Based on the incidence of skin neoplasms diagnosed histologically and the multiplicity of skin neoplasms, there was no suggestion that either diethylphthalate or dimethylphthalate was able to initiate skin carcinogenesis when chronically promoted by TPA. Further, there was no evidence that either diethylphthalate or dimethylphthalate was able to promote skin carcinogenesis in skin previously initiated with DMBA. High incidences of both squamous cell papillomas and squamous cell carcinomas occurred among the initiation/promotion control animals initiated with DMBA and promoted with TPA. All TPA-dosed groups had significantly greater incidences of dermal acanthosis, ulceration, exudation, and hyperkeratosis than controls.

GENETIC TOXICOLOGY

Neither diethylphthalate (10-10,000 μ g/plate) nor dimethylphthalate (33-6,666 μ g/plate) induced gene mutations in *Salmonella typhimurium* strains TA98, TA100, TA1535, or TA1537, with or without rat and hamster liver S9. In cultured Chinese hamster ovary cells, both diethylphthalate and dimethylphthalate induced sister chromatid exchanges in the presence of S9. Neither induced sister chromatid exchanges in the absence of S9. Neither chemical induced chromosomal aberrations, with or without S9, in cultured Chinese hamster ovary cells.

CONCLUSIONS

Under the conditions of these 2-year dermal studies, there was no evidence of carcinogenic activity* of diethylphthalate in male or female F344/N rats receiving 100 or 300 μ L. The sensitivity of the male rat study was reduced due to low survival in all groups. There was equivocal evidence of carcinogenic activity of diethylphthalate in male and female B6C3F₁ mice based on increased incidences of hepatocellular neoplasms, primarily adenomas.

In an initiation/promotion model of skin carcinogenesis, there was no evidence of initiating activity of diethylphthalate or dimethylphthalate in male Swiss (CD-1[®]) mice. Further, there was no evidence of

Diethylphthalate/Dimethylphthalate, NTP TR 429

promotion activity of diethylphthalate or dimethylphthalate in male Swiss (CD-1[®]) mice. The promoting activity of TPA following DMBA initiation was confirmed in these studies.

Minor dermal acanthosis was observed following dermal application of diethylphthalate in male and female F344/N rats dosed for 2 years and in male Swiss (CD-1[®]) mice dosed for 1 year.

* Explanation of Levels of Evidence of Carcinogenic Activity is on page 10. A summary of the Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appears on page 12.

	Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female B6C3F ₁ Mice	
Doses	0, 100, or 300 µL diethylphthalate applied dermally	0, 100, or 300 µL diethylphthalate applied dermally	0, 7.5, 15, or 30 μ L diethylphthalate per 100 μ L of acetone applied dermally	0, 7.5, 15, or 30 μ L diethylphthalate per 100 μ L of acetone applied dermally	
Body weights	High-dose group less than controls	Dosed groups similar to controls	Dosed groups similar to controls	Dosed groups similar to controls	
2-Year survival rates	4/50, 6/50, 6/51	30/51, 28/50, 23/50	43/50, 41/48, 46/50, 43/50	41/50, 38/51, 37/49, 36/49	
Nonneoplastic effects	Skin site of application: acanthosis (2/50, 5/50, 21/51); Liver: fatty degeneration (26/50, 8/50, 4/51)	Skin site of application: acanthosis (8/50, 18/49, 23/50); Liver: fatty degeneration (23/50, 11/50, 3/50)	<u>Liver:</u> basophilic foci (0/50, 1/50, 9/50, 3/50)	None	
Neoplastic findings	None	None	None	None	
Uncertain effects	None	None	Liver: hepatocellular adenoma (6/50, 11/50, 9/50, 12/50); hepatocellular adenoma or carcinoma (9/50, 14/50, 14/50, 18/50)	Liver: hepatocellular adenoma (4/50, 12/51, 14/50, 10/50); hepatocellular adenoma or carcinoma (7/50, 16/51, 19/50, 12/50)	
Level of evidence of carcinogenic activity	No evidence	No evidence	Equivocal evidence	Equivocal evidence	
Genetic toxicology Salmonella typhimuria	-	Negative in strains TA98	3, TA100, TA1535, and TA15	37 with and without S9	
Sister chromatid exchanges Cultured Chinese hamster ovary cells in vitro: Chromosomal aberrations		Positive with S9; negative without S9			
Cultured Chinese hamster ovary cells in vitro:		Negative with and without S9			

Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of Diethylphthalate

....

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence, including animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results (clear evidence and some evidence); one category for uncertain findings (equivocal evidence); one category for no observable effects (no evidence); and one category for experiments that cannot be evaluated because of major flaws (inadequate study). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Report series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following five categories is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to potency or mechanism.

- Clear evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a chemical-related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemical related.
- No evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing no chemical-related increases in malignant or benign neoplasms.
- Inadequate study of carcinogenic activity is demonstrated by studies that, because of major qualitative or quantitative limitations, cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. Such consideration should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- · adequacy of the experimental design and conduct;
- occurrence of common versus uncommon neoplasia;
- progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- combining benign and malignant tumor incidence known or thought to represent stages of progression in the same organ or tissue;
- latency in tumor induction;
- multiplicity in site-specific neoplasia;
- metastases;
- supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- · presence or absence of dose relationships;
- statistical significance of the observed tumor increase;
- concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- survival-adjusted analyses and false positive or false negative concerns;
- structure-activity correlations; and
- · in some cases, genetic toxicology.

Diethylphthalate/Dimethylphthalate, NTP TR 429

NATIONAL TOXICOLOGY PROGRAM BOARD OF SCIENTIFIC COUNSELORS TECHNICAL REPORTS REVIEW SUBCOMMITTEE

The members of the Technical Reports Review Subcommittee who evaluated the draft NTP Technical Report on diethylphthalate/dimethylphthalate on November 16, 1993, are listed below. Subcommittee members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, subcommittee members have five major responsibilities in reviewing NTP studies:

- · to ascertain that all relevant literature data have been adequately cited and interpreted,
- to determine if the design and conditions of the NTP studies were appropriate,
- to ensure that the Technical Report presents the experimental results and conclusions fully and clearly,
- to judge the significance of the experimental results by scientific criteria, and
- to assess the evaluation of the evidence of carcinogenic activity and other observed toxic responses.

Curtis D. Klaassen, Ph.D., Chair Department of Pharmacology and Toxicology University of Kansas Medical Center Kansas City, KS

Paul T. Bailey, Ph.D., Principal Reviewer Environmental and Health Sciences Laboratory Mobil Oil Corporation Princeton, NJ

Arnold L. Brown, M.D.* University of Wisconsin Medical School Madison, WI

Louise Ryan, Ph.D., Principal Reviewer Division of Biostatistics Harvard School of Public Health and Dana-Farber Cancer Institute Boston, MA

* Did not attend

Robert E. Taylor, M.D., Ph.D. Department of Pharmacology Howard University College of Medicine Washington, DC

Matthew J. van Zwieten, D.V.M., Ph.D., Principal Reviewer Department of Safety Assessment Merck Research Laboratories West Point, PA

Jerrold M. Ward, D.V.M., Ph.D. National Cancer Institute Frederick, MD

SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS

On November 16, 1993, the draft Technical Report on the toxicology and carcinogenesis studies of diethylphthalate/dimethylphthalate received public review by the National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, NC.

Dr. D.S. Marsman, NIEHS, introduced the toxicology and carcinogenesis studies of diethylphthalate and the initiation/promotion studies of diethylphthalate and dimethylphthalate. He discussed the uses of the chemical and the rationale for both studies, described the experimental designs, reported on survival and body weight effects, and commented on compoundrelated nonneoplastic lesions in male and female rats and male mice in the initiation/promotion study, and the compound-related neoplastic lesions in male and female mice in the 2-year studies. The proposed conclusions were no evidence of carcinogenic activity of diethylphthalate for male and female F344/N rats and equivocal evidence of carcinogenic activity of diethylphthalate for male and female B6C3F, mice. In an initiation/promotion model of skin carcinogenesis, there was no evidence of initiating or promoting activity of diethylphthalate or dimethylphthalate for male Swiss (CD-1[®]) mice.

Dr. Bailey, a principal reviewer, agreed with the proposed conclusions. He said the rationale for dermal application should be expanded since the main routes of exposure for humans appear to be ingestion and inhalation. Dr. Marsman said a 4-week diet study was done and a 2-year diet study was designed, but the dermal route was considered to be the most important route for humans. Dr. Bailey said a comment should be added in the discussion concerning the possibility of ingestion of diethylphthalate from grooming after dermal application. Dr. Marsman agreed that grooming might have resulted in systemic availability of chemical.

Dr. van Zwieten, the second principal reviewer, agreed with the proposed conclusions. He said a comment was needed as to why 4-week studies were done in rats and mice instead of the customary 13-week studies that might have better predicted doses for the first 2-year study in mice. Dr. Marsman said a 4-week prechronic regimen for dermal studies was preferred at the time these studies were initiated, and agreed that 13-week studies might have been more helpful in setting doses for the 2-year mouse studies. Dr. van Zwieten asked for discussion about whether an increased incidence of pituitary neoplasms might help explain the reduced survival in male rats. Dr. J.R. Hailey, NIEHS, commented that many of these neoplasms in males were quite large and could have contributed in an additive way to decreased survival along with nephropathy, which is much more severe in male rats.

Dr. Ryan, the third principal reviewer, had similar questions about choice of dermal exposure over other routes of exposure, and why 4-week instead of 13-week studies were done. She thought the dosefinding aspects for the 2-year studies to be less stringent than usual, expressing doubts that a maximum tolerated dose was reached for either rats or mice.

Dr. Ward asked whether there was evidence of peroxisome proliferation in the livers of animals in any of the studies. Dr. Marsman replied that this was not measured, although the hepatomegaly present could be suggestive of such an effect. Dr. R. David, Eastman Kodak Company, stated that they agreed with the proposed conclusions for rats but thought the proposed conclusions for mice should have been *no evidence* based in part on the incidence of hepatocellular neoplasms in treated male mice being within the historical control range, and on the lack of a dose response for liver neoplasms in female mice.

Dr. Bailey moved that the Technical Report on diethylphthalate and diethylphthalate/dimethylphthalate be accepted with the revisions discussed and with the conclusions as written for the 2-year studies for male and female rats, no evidence of carcinogenic activity, and for male and female mice, equivocal evidence of carcinogenic activity, as well as the conclusions that there was no evidence of initiating or promoting activity of diethylphthalate or dimethylphthalate in male Swiss (CD-1[®]) mice. Dr. Ward seconded the motion, which was accepted unanimously with five votes.

INTRODUCTION

DIETHYLPHTHALATE

CAS No. 84-66-2

Chemical Formula: $C_{12}\dot{H}_{14}O_4$ Molecular Weight: 222.26

Synonyms: 1,2-benzenedicarboxylic acid, diethyl ester; DEP; diethyl 1,2-benzenedicarboxylate; diethyl o-phthalate; diethyl phthalate; ethyl phthalate; o-benzenedicarboxylic acid diethyl ester; phthalic acid, diethyl ester; RCRA U088.
 Trade Names: Anozol; DPX-F5384; Estol 1550; Neantine; Palatinol A; Phthalol; Placidol E; Solvanol; Unimoll DA.

DIMETHYLPHTHALATE

CAS No. 131-11-3

Chemical Formula: C₁₀H₁₀O₄ Molecular Weight: 194.19

Synonyms: 1,2-benzenedicarboxylic acid, dimethyl ester; dimethyl 1,2-benzenedicarboxylate; dimethyl benzene-o-dicarboxylate; dimethyl benzeneorthodicarboxylate; dimethyl o-phthalate; dimethyl phthalate; DMP; FIFRA 028002; methyl phthalate; o-dimethyl phthalate; phthalic acid, dimethyl ester; phthalic acid methyl ester; RCRA U102.

Trade Names: Avolin; DMF (insect repellent); ENT 262; Fermine; Mipax; NTM; Palatinol M; Repeftal; Solvanom; Solvarone; Unimoll DM.

Chemical and Physical Properties

Diethylphthalate (DEP) and dimethylphthalate (DMP) are aromatic diesters of phthalic anhydride and ethanol or methanol, respectively. DEP is a colorless, oily liquid with a boiling point of 295° C

(Merck Index, 1983), a melting point of -40.5° C (Sax, 1984), and a density of 1.23 (Merck Index, 1983). DEP has an octanol/water partition coefficient of log K_{ow} = 2.47 (Hansch and Leo, 1979) and a vapor pressure of 1.65×10^{-3} mm Hg at 25° C (Howard *et al.*, 1985). DEP is soluble in alcohol, ether, acetone, and

benzene (Weast, 1986); miscible with vegetable oils (Lefaux, 1968), ketones, esters, and aromatic hydrocarbons; and partly miscible with aliphatic solvents (Hawley, 1981). DEP is slightly water soluble (1,080 mg/L at 25° C; Howard *et al.*, 1985).

DMP is a colorless to pale yellow, oily liquid with a slightly aromatic or ester odor at room temperature (Mackison et al., 1981; Merck Index, 1983; Worthing and Walker, 1987). DMP has a boiling point of 283.7° C, a melting point of 5.5° C, and a density of 1.20 (Merck Index, 1983). DMP has a calculated octanol/water partition coefficient of log $K_{w} = 2.12$ (Callahan et al., 1979) and a vapor pressure of less than 0.01 mm Hg at 20° C (Merck Index, 1983). DMP is soluble in petroleum oils, diethyl ether, most organic solvents (Worthing and Walker, 1987), mineral oil (0.34 g/100 g at 20° C; Merck Index, 1983), and in benzene (Weast, 1987); is miscible with alcohol, ether, and chloroform; and is insoluble in petroleum ether and paraffin hydrocarbons (Merck Index, 1983). DMP is moderately water soluble (0.43 g/dL; Merck Index, 1983).

USE AND HUMAN EXPOSURE

As phthalate plasticizers, DEP and DMP are used in a variety of plasticized, cellulose-based products such as safety glass, toothbrushes, and toys. Among the cosmetics reportedly containing DEP or DMP are bath preparations, eye shadows, perfumes and fragrances, hair sprays, wave sets, and nail polishes (concentration range: 0.1% to 50%) (Kamrin and Mayor, 1991). In addition, other nonplasticized products such as solvents, varnishes, dyes, perfumes, coating agents for foodstuffs, and insect repellants contain considerable amounts of DEP and/or DMP as primary ingredients or as carriers.

The diverse uses of DEP and DMP provide numerous routes for their entrance into the environment. DEP may enter the environment in air emissions, in aqueous effluent and solid waste products from manufacturing and processing plants, in vapor or particulate form during incineration of DEPcontaining plastics, or DEP may enter the environment directly during non-plasticizer use. Plastic materials containing DEP in waste disposal sites constitute the major reservoir of this compound in the environment. It is estimated that as much as 75% of the total environmental release of phthalates (including DEP and DMP) results from low-

temperature burning at disposal sites with the subsequent vaporization of the phthalates (ATSDR, 1993). Direct volatilization and leaching from these materials are also potential sources of transport into air, water, and soil. If released to water, DEP and DMP are expected to biodegrade with an aerobic biodegradation half-life estimated at approximately 1 day to greater than 2 weeks. In contrast, anaerobic biodegradation occurs very slowly or not at all. Diethylphthalate has accumulated and persisted in the sediments of Chesapeake Bay for over a century (Peterson and Freeman, 1982). Data collected on phthalates from field and laboratory studies indicate that bioaccumulation is possible by a variety of organisms. However, the phthalates are degraded by microbiota and metabolized by fish and animals. Thus, they are not expected to biomagnify and the highest concentrations would be expected at intermediate levels of the food chain (i.e., invertebrates) rather than at the top (Kayser et al., 1982). DMP (versus DEP) is more likely to degrade under anaerobic conditions and is less likely to bioconcentrate in fish.

The potential for human exposure to DEP and DMP is great. Exposure can occur directly through the production or use of a variety of consumer goods and indirectly through water supplies and the consumption of fresh and processed packaged foods containing the chemicals. The most probable routes of human exposure to DEP or DMP are occupational exposure via inhalation and dermal exposure by workers involved in the manufacture and use of these chemicals. A National Occupational Exposure 1990) estimated Survey (NIOSH, that 239,150 workers were potentially exposed to DEP and 57,910 workers were potentially exposed to DMP. The most probable routes of exposure to DEP or DMP by the general population are inhalation, ingestion, and dermal contact due to use of consumer products containing these chemicals. DEP has been identified as a suspected contaminant or environmental pollutant in a variety of foodstuffs: cranberries, baked potatoes, roasted filberts, oysters, clams, and fish (DeVault, 1985; McFall et al., 1985; Staples et al., 1985). DEP has been detected in adipose tissue of people (including children) (ATSDR, 1993). United States production of DEP in 1985 was approximately 7.8 million kg (USITC, 1985), and in 1988 had risen to 9.5 million kg An additional (Kamrin and Mayor, 1991). 0.2 million kg of DEP was imported (SRI, 1991).

Introduction

DMP has a reported U.S. production of approximately 3.5 million kg (USITC, 1985).

REGULATORY STATUS

In addition to the EPA's Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (Superfund) status, the Food and Drug Administration has classified both DEP and DMP as migratory, indirect food additives. The Occupational Safety and Health Administration has designated DEP and DMP as chemicals for study under an Interagency Testing Committee. The permissible threshold limit value-time weighted average level for DEP or DMP is 5 mg/m³ (ACGIH, 1991).

ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION Experimental Animals

The phthalate esters are readily absorbed from the gastrointestinal tract (International Labour Office, 1983), the peritoneal cavity, the lungs (USEPA, 1980), and the skin (Elsisi *et al.*, 1989). In rodents, DEP is absorbed following dermal exposure, with 24% of the dose excreted in the urine in the first 24 hours (Elsisi *et al.*, 1989). In a comparison with DMP and five other diester phthalates, skin absorption was inversely associated with length of the aliphatic side-chain, with absorption favoring the shorter-chain phthalates (i.e., DMP and DEP).

After oral administration of [¹⁴C]-labeled DEP or DMP to rats or mice, radioactivity was found in the blood and various tissues, as well as in the placenta and fetal tissues when given to pregnant dams (Singh et al., 1975). Maximum values for radioactivity were observed within 1 hour. Tissue radioactivity was highest in the kidneys, followed in decreasing order by the liver, fat, and spleen. After 24 hours, 90.9% of the administered dose of DMP had been excreted in the urine and 4.1% in the feces (loku et al., 1976). Studies with DEP and DMP have identified the major urinary metabolite to be the monoester. monoethylphthalate or monomethylphthalate, respectively, although some free acid was found (Hathway, 1972; Menzie, 1974). The monoesters were 4 times more toxic than the original substances. There is some suggestion that the phthalates with a short alcohol chain (such as DEP or DMP) have a higher

acute toxicity due to a more rapid cleavage to form the putative active metabolite monoesters (International Labour Office, 1983). Alternatively, some of the toxicity may also be due to the other cleavage products, ethanol or methanol, respectively, or their subsequent metabolites (Kozumbo and Rubin, 1991). Both hepatic and intestinal preparations from rats, ferrets, baboons, and humans were effective in hydrolyzing phthalates (including DEP and DMP) to their corresponding monoester derivatives (Lake *et al.*, 1977). Again, little of the free acid or of other metabolites were found and, in general, loss of the second alkyl residue or other modifications of the monoester are presumed to be minor.

Humans

In vitro models of dermal absorption suggest that both DEP and DMP are absorbed in both rats and humans, with human epidermal membranes somewhat less permeable than rats (Scott *et al.*, 1987). DMP when applied to human skin was absorbed and appeared in the blood. The compound was metabolized and excreted in the urine as monomethylphthalate and phthalic acid (Gleiberman *et al.*, 1978). Human cell preparations *in vitro* suggest that humans are similar to or more effective than rodents at hydrolyzing DEP or DMP to their monoesters (Lake *et al.*, 1977).

TOXICITY

Experimental Animals

The literature suggests that the acute toxicity of DEP and DMP are both low. Central nervous system effects and damage to the spleen and kidneys were seen in laboratory animals given high doses of DEP. Oral LD₅₀ values reported for DEP in rats, mice, guinea pigs, and rabbits are 8,600, 6,172, 8,600, and 1,000 mg/kg, respectively (Sax, 1984). Intraperitoneal LD_{so} values with DEP in rats and mice are 5,058 and 2,749 mg/kg, respectively. Oral LD₅₀ values reported for DMP in rats, mice, guinea pigs, rabbits, and chickens are 8,400, 6,800, 2,400, 4,400, and 8,500 mg/kg, respectively (Autian, 1973). Intraperitoneal LD_{50} values with DMP in rats and mice are 3,375 and 1,380 mg/kg, respectively. Dermal LD_{50} values for DMP in guinea pigs and rabbits were at or above 10,000 mg/kg.

1.1.1

đ

125

.4

۶Ĺ

- 1

In the liquid form, DEP is a mild irritant to guinea pig skin and rabbit eyes, and irritation to the respiratory passages and eyes of cats was seen following exposure to airborne DEP (BIBRA, 1989). Dermal absorption has been demonstrated in rats (Elsisi et al., 1989) and humans (Gleiberman et al., 1978); however, no detailed studies in animals have evaluated systemic effects following dermal applications of DEP or DMP. The most detailed subchronic study with DEP was a dietary study in which 15 male and 15 female CD rats were fed 0%, 0.2%, 1.0%, or 5.0% DEP for 16 weeks, with interim evaluations at 2 and 6 weeks (Brown et al., 1978). The estimated mean intake of DEP was 0, 150, 770, and 3,160 mg/kg per day for males and 0, 150, 750, and 3,710 mg/kg per day for females. Decreases in feed consumption and body weight gain were observed in groups of rats at 5.0%. No clinical signs of toxicity were observed. No significant dose- or time-related trends in urinalysis or hematology results were found. Increases in relative liver weights were observed in males receiving 5.0% and in all exposed females at 16 weeks.

DEP is thought to be a weak liver peroxisome proliferator (Moody and Reddy, 1978). Similar evaluations have not been made for DMP, although cholesterol-lowering effects have been observed in rats, a common finding in rats fed peroxisome proliferating chemicals (USEPA, 1980). Some increases in liver cytochrome P_{450} activity were observed after 5 days of intraperitoneal dosing with DMP, although the activities were lower than the activities induced by the confirmed peroxisome proliferator, dibutylphthalate (Walseth et al., 1982). In an in vitro study, DEP was not shown to affect the conjugating enzymes, N-acetyltransferase or cytochrome P_{450} ; however, DEP was shown to inhibit the uridine diphosphate glucuronyl transferase activity of rat liver microsomal preparations (Gollamudi et al., 1985).

Testicular toxicity has been observed for both DEP (Lamb *et al.*, 1987) and DMP, although not to the degree of the related testicular toxins, di(2-ethyl-hexyl)phthalate (NTP, 1982a) and dibutylphthalate (NTP, 1994). Dietary administration of DEP to rats for 16 weeks increased testicular weights (BIBRA, 1989), while DEP and DMP decreased serum and testicular testosterone concentrations (Oishi and Hiraga, 1980).

In a 2-year toxicity study, groups of 15 male and 15 female rats (strain not specified) were fed 0%,

0.5%, 2.5%, or 5.0% DEP in the diet. Other than growth retardation of animals in the 5.0% group, there were no other treatment-related effects on gross organ examination or histopathology (Food Research Laboratories, Inc., 1955). Similarly, a 2-year feeding study with DMP in female rats at levels of 2% to 8% in diet showed only slight growth effects at 4% and 8%, although there were some chronic nephritic changes reported at 8% (Patty's, 1981). Also in the chronic DEP study (Food Research Laboratories, Inc., 1955), dogs were fed DEP at levels of 0.5%, 1.5%, 2.0%, or 2.5% for one year. Problems were encountered with palatability of DEP in the diet, and as a result, the dogs received varying exposures to DEP before each dog attained stabilization at the highest dietary levels that could be tolerated. Accordingly, three dogs were maintained at 0.5%, one each at 1.5% and 2.0%, and three at 2.5%. No effects were noted at any of these levels.

Humans

In humans, DEP was not irritating to intact skin but was to broken skin or to the eyes. Effects on the liver have been seen in humans exposed to DEP through dialysis equipment (BIBRA, 1989). Although phthalates are generally thought to have low potential for inducing dermatitis, with unsuccessful attempts to induce skin sensitization, contact dermatitis has been reported from medical products containing DEP (Oliwiecki et al., 1991). Neuropathy has been associated with some phthalate acid esters. In a preliminary study of exposure of up to 250 workers to a vapor mixture of DEP, dibutylphthalate, and diethylhexylphthalate, no peripheral polyneuritis was observed in the population; however, no phthalates were detected in the blood before or after the phthalate exposure (ACGIH, 1991). When orally ingested at high doses, DMP is irritating to mucous membranes and the gastrointestinal tract and can cause central nervous system depression and hypotension (Merck Index, 1983; ACGIH, 1991).

CARCINOGENICITY Experimental Animals

Groups of 15 male and 15 female rats (strain not specified) were fed 0%, 0.5%, 2.5%, or 5.0% DEP in a 2-year feed study. No effects were observed at levels of 0.5% or 2.5% DEP, with 5.0% resulting in a small but significant decrease in the growth rate of the rats without any effect on feed consumption (Food Research Laboratories, Inc., 1955). The DEP

Introduction

study was considered by the EPA in their carcinogenicity assessment for lifetime exposure to DEP and was found inadequate as a design to measure carcinogenic effects.

While no adequate carcinogenicity studies were found for either DEP or DMP, the carcinogenic activity in rodents of agents structurally related to DEP or DMP has been extensively studied by the NTP. Related chemicals with equivocal or no evidence of carcinogenicity in rodents are: diallylphthalate (NTP, 1983, 1985), dimethylterephthalate (NCI, 1979a), phthalic anhydride (NCI, 1979b), and phthalamide (NCI, 1979c). Other related chemicals with positive evidence of carcinogenicity in rats and/or mice are: diethylhexylphthalate (NTP, 1982a), diethylhexyl adipate (NTP, 1982b), and butylbenzylphthalate (NTP, 1982c).

Humans

No information on human carcinogenicity was found in a search of the available literature.

Reproductive and Developmental Toxicity

Experimental Animals

In teratology studies, DEP was administered intraperitoneally on days 5, 10, and 15 of gestation to pregnant Sprague-Dawley rats at doses of 0.506, 1.012, and 1.686 mL/kg. The intermediate dose produced no resorption sites, but both high and low doses produced some resorptions (low dose = 3.6%, high dose = 44.4% of total implantations). All three doses produced decreased fetal weights. Skeletal malformations were also observed in dosed animals, with incidences up to 81%. No gross abnormalities were observed in any of the dose groups (Singh *et al.*, 1972).

In NTP teratology studies, DEP (at dietary doses of 0%, 0.25%, 2.5%, and 5.0%; NTP, 1988) or DMP (at doses of 0%, 0.2%, 1.0%, and 5.0%; NTP, 1989) were administered to pregnant CD rats during gestation days 6 through 15. In both studies, no treatment-related teratogenic effects were observed, even in doses producing maternal toxicity. In mice, dietary administration of DEP to males 7 days prior to mating and females 7 days prior to mating through 21 days after birth, affected paternal spermatogenesis as well as the live birth index (Lamb *et al.*, 1987).

DEP administered dermally to pregnant mice (gestation days 1 to 17) resulted in some fetal musculoskeletal lesions (Tanaka *et al.*, 1987). DMP administered in feed to pregnant mice did not induce fetal abnormalities at maternally toxic doses (Plasterer *et al.*, 1985).

Phthalate esters (in a saturated Ringers solution) have caused growth retardation and malformations in the central nervous system of chick embryos. The effects appeared related to solubilities of esters in water (Lee *et al.*, 1974).

Humans

No information on human reproductive and developmental toxicity was found in a search of the available literature.

GENETIC TOXICITY

There are little published mutagenicity data on DEP and DMP; most of the available data are derived from bacterial mutagenicity tests. Kozumbo et al. (1982), Seed (1982), and Agarwal et al. (1985) reported small increases in the number of mutant colonies for strains TA100 and/or TA1535 treated with DMP (maximum doses ranged from 2,000 to 4,000 μ g/plate) in the absence of S9 activation. In contrast, Zeiger et al. (1985) found no evidence of DMP-induced mutagenicity in several strains of Salmonella, including TA100 and TA1535, treated with up to 5,000 μ g/plate with and without S9. Although each of these Salmonella tests had slight protocol variations, all appeared to have been conducted adequately. Therefore, errors in protocol or data analyses probably do not account for the discrepancies. Differing results among laboratories are not totally unexpected when tests involve chemicals that produce very weak mutagenic responses, particularly when these responses occur at concentrations that also produce significant toxicity.

In tests with mammalian cells, DMP (at concentrations greater than 1,000 μ g/plate) was reported to induce sister chromatid exchanges but not chromosomal aberrations in Chinese hamster ovary cells treated *in vitro* in the presence of Aroclor 1254induced rat liver S9 (Loveday *et al.*, 1990).

DEP was reported to be nonmutagenic in several strains of *Salmonella typhimurium*, with and without S9 activation (Omori, 1976; Florin *et al.*, 1980;

Blevins and Taylor, 1982; Zeiger *et al.*, 1985). Maximum doses tested in these studies reached 10,000 μ g/plate. However, like DMP, positive responses in the *Salmonella* assay were reported at concentrations within the range tested in the studies that gave negative results. Seed (1982) reported weakly positive responses for DEP in the *Salmonella* assay (strain TA100) with and without S9, and Agarwal *et al.* (1985) found significant dose-related increases in revertant colonies in TA100 and TA1535 in the absence of S9. The mutagenic responses obtained with DEP in these laboratories were somewhat stronger than the responses observed after treatment of cells with DMP.

DEP was also tested for chromosomal effects in mammalian cells *in vitro*. It did not induce chromosomal aberrations in Chinese hamster lung fibroblasts treated in the absence of S9 activation (Ishidate and Odashima, 1977). In this assay, the maximum concentration of DEP tested was 250 μ g/mL.

As an indirect mechanism of genotoxicity, there is limited evidence that DEP is a weak inducer of hepatic peroxisome proliferation (Moody and Reddy, 1978). No information was found on the peroxisome proliferating activity of DMP. Of concern for DMP is the cleavage of the diester and release of the aliphatic alcohol, methanol. While *in vitro* assays have shown that liver homogenate-associated esterases hydrolyzed DMP to the monoester, a nonmutagenic compound in the *Salmonella* assay, methanol can be further metabolized to formaldehyde, a mutagenic compound in the *Salmonella* assay (Kozumbo and Rubin, 1991).

In conclusion, the published data indicate that DMP and DEP may be weakly mutagenic in *Salmonella* strains TA100 and/or TA1535, which mutate via basesubstitution, and that DMP may have potential for producing DNA damage in mammalian cells. However, because the *in vitro* data are sparse and no *in vivo* data are available for analysis, the mutagenic profile of these the phthalates must be considered incomplete.

STUDY RATIONALE

The phthalates, including DEP and DMP, are used extensively as solvents and plasticizers in industry and as components of cosmetic formulations. Phthalates

can account for over 40 percent of the final composition of finished plastic products, and leaching of phthalates from the items may be a significant source of human exposure (Autian, 1980). DEP and DMP may be used, at no specific concentration limits, in many items in contact with food. This may include acrylic plastic articles, adhesive components, and resinous and polymeric coatings of articles intended for use in producing, manufacturing, packing, processing, preparing, treating, packaging, transporting, or holding of food (CFR 21, Part 58; Castle et al. 1988, 1989, 1990). In the workplace, the most likely routes of exposure are through inhalation and dermal absorption. Cosmetic products containing phthalates may be applied to or come in contact with skin, eyes, hair, nails, mucous membranes, and respiratory epithelium (CIRP, 1985). DEP and DMP both exhibit considerable dermal absorption in rats (Elsisi et al., 1989). DEP, DMP, and other phthalate esters have become ubiquitous low- to moderate-level pollutants in the environment as a result of their widespread use.

Based on results of acute toxicity studies, DEP and DMP have been classified as practically nontoxic or relatively harmless. However, the subchronic and chronic toxicity of DEP or DMP have not been comprehensively evaluated. Previous NCI/NTP studies have examined the long-term effects of phthalates or phthalate-related compounds. The results of these studies have been both positive [di(2-ethylhexyl)phthalate (NTP, 1982a), diethylhexyl adipate (NTP, 1982b), and butylbenzyl phthalate (NTP, 1982c)] and negative [diallyl phthalate (NTP, 1983, 1985) and dimethyl terephthalate (NCI, 1979a)] for rodent carcinogenicity. Di(2-ethylhexyl)phthalate is nonmutagenic in vitro, and signal transduction, oncogene expression, and tumor promotion have all been suggested as alternative hypotheses to explain the hepatocarcinogenicity of di(2-ethylhexyl)phthalate. While most reports suggest that DEP and DMP are at most weakly mutagenic, other reports have suggested DMP is clastogenic, possibly secondary to formaldehyde, a putative oxidative product of the DMP-metabolite methanol (Kozumbo et al., 1982; Kozumbo and Rubin, 1991).

Based upon high exposure potential and lack of longterm toxicity or carcinogenicity information, DEP and DMP were nominated to the National Toxicology

Introduction

Program by the EPA. Due to high exposure concentrations via cosmetic applications and to workplace exposure, the dermal route was chosen for these studies. This report summarizes findings of two separate evaluations: 2-year dermal studies of DEP in male and female F344/N rats and B6C3F₁ mice, and a series of special 1-year studies examining the potential of DEP or DMP as either tumor initiators or tumor promoters in an initiation/promotion skin model using male Swiss (CD-1[®]) mice.

MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION

Diethylphthalate

Diethylphthalate (DEP) was obtained from Tennessee Eastman Company (Kingsport, TN) in one lot (84117), which was used throughout the 4-week dermal studies in rats and mice, the 2-year dermal studies in rats and mice, and the 1-year dermal initiation/promotion study in male mice. Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory, Midwest Research Institute (Kansas City, MO) (Appendix H). Reports on analyses performed in support of the DEP studies are on file at the National Institute of Environmental Health Sciences (NIEHS).

The chemical, a clear colorless liquid, was identified as DEP by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. The purity was determined by elemental analyses, Karl Fischer water analysis, titration of free acid, ester titration, thinlayer chromatography, and gas chromatography. Elemental analyses for carbon and hydrogen were in agreement with the theoretical values for DEP. Karl Fischer water analysis indicated $0.083\% \pm 0.003\%$ Free acid titration indicated less than water. 0.00006 mEq acid per gram of sample. Ester titration indicated a purity of $100.9\% \pm 0.3\%$. Thin-layer chromatography indicated one major spot. Gas chromatography indicated one major peak and no impurities with peak areas greater than 0.1% of the major peak. The overall purity was determined to be greater than 99%.

Stability studies were performed by the analytical chemistry laboratory using gas chromatography. These studies indicated that DEP was stable as bulk chemical for at least 2 weeks when stored protected from light at temperatures up to 60° C. During the 4-week, 1-year, and 2-year studies, the bulk chemical was stored in amber glass bottles at room temperature until 12 December 1986 after which dose formulations were stored at 4° to 5° C. The stability of the bulk chemical was monitored periodically by the

study laboratory using gas chromatography and free acid titration. No degradation of the bulk chemical was observed.

Dimethylphthalate

Dimethylphthalate (DMP) was obtained from Chemical Technical Industries (Orlando, FL) in one lot (C122883), which was used during the 1-year dermal initiation/promotion study in male mice. Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory. Reports on analyses performed in support of the DMP study are on file at the NIEHS.

The chemical, a clear colorless liquid, was identified as DMP by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. The purity was determined by elemental analyses, Karl Fischer water analysis, titration of free acid, ester titration, thinlayer chromatography, and gas chromatography. Elemental analyses for carbon and hydrogen were in agreement with the theoretical values for DMP. Karl Fischer water analysis indicated $0.039\% \pm 0.002\%$ water. Free acid titration indicated $0.00060 \pm$ 0.00004 mEq of acid per gram of sample. Ester titration indicated a purity of $99.2\% \pm 0.8\%$. Thinlayer chromatography indicated one major spot. Gas chromatography indicated one major peak, and no impurities with peak areas greater than 0.1% of the major peak. The overall purity was determined to be equal to or greater than 99%.

Stability studies were performed by the analytical chemistry laboratory using gas chromatography. These studies indicated that DMP was stable as bulk chemical for at least 2 weeks when stored protected from light at temperatures up to 60° C. During the 1-year study, the bulk chemical was stored in 1-gallon amber glass bottles at 4° C. The stability of the bulk chemical was monitored periodically by the study laboratory using gas chromatography and ester titration. No degradation of the bulk chemical was observed.

Diethylphthalate/Dimethylphthalate, NTP TR 429

7,12-Dimethylbenz(a)anthracene

7,12-Dimethylbenz(a)anthracene (DMBA) was obtained from the Eastman Kodak Company (Rochester, NY) in one lot (K-4) which was used during the 1-year initiation/promotion study in male mice. The lot was purified by the analytical chemistry laboratory and assigned lot number M111384.

The chemical, a light yellow powder, was identified as DMBA by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. The purity was determined by elemental analyses, Karl Fischer water analysis, thin-layer chromatography, and gas chromatography. Elemental analyses for carbon and hydrogen were in agreement with the theoretical values for DMBA. Karl Fischer water analysis indicated less than 0.4% water. Thin-layer chromatography indicated one major spot and one trace spot. Gas chromatography indicated one major peak with no impurities with peak areas greater than 0.1% of the major peak. The overall purity was determined to be greater than 99%.

Stability studies were performed by the analytical chemistry laboratory with gas chromatography. These studies indicated that DMBA was stable as bulk chemical for at least 2 weeks when stored protected from light at temperatures up to 60° C. In the 1-year study, the bulk chemical was stored in amber glass bottles at 4° C. The stability of the bulk chemical was monitored periodically by the study laboratory using ultraviolet spectroscopy and gas chromatography. No degradation of the bulk chemical was observed.

12-O-Tetradecanoylphorbol-13-acetate

12-O-Tetradecanoylphorbol-13-acetate (TPA) was obtained from Consolidated Midland Corporation (Brewster, NY) in one lot (031), from Pharmacia PL Biochemical (Milwaukee, WI) in three lots (UN2811, 411999, and OE511999), and from L.C. Services Corporation (Woburn, MA) in one lot (F-121). All five lots were used during the 1-year initiation/ promotion study. Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory.

Each lot of the chemical was identified as TPA by nuclear magnetic resonance spectroscopy and mass spectrometry. The purity of the five lots was determined by thin-layer chromatography and highperformance liquid chromatography. Thin-layer chromatography indicated one major spot for all five lots, and one (lot 411999) or two (lot 031) trace impurities. High-performance liquid chromatography indicated one major peak in all five lots. In addition, high-performance liquid chromatography of lots 031 and UN2811 indicated seven or 11 trace impurities with peak areas that were approximately 3% of the major peak, respectively. High-performance liquid chromatography indicated between two and five trace impurities in lots 411999, OE511999, and F-121 with peak areas that were approximately 1% of the major peak. The overall purity was determined to be 97% for lots 031 and UN2811 and 99% for lots 411999, OE511999, and F-121.

The stability of the chemical was determined using high-performance liquid chromatography. There was no decomposition in samples exposed to air and light at ambient temperature for up to 6 days. The study laboratory stored the chemical in sealed vials at -20° C.

PREPARATION AND ANALYSIS OF DOSE FORMULATIONS Diethylphthalate

DEP was applied neat in the 4-week rat and mouse studies, 1-year mouse study, and 2-year rat study. In the 2-year mouse study, the dose formulations were prepared by mixing DEP and acetone to give the required concentration (Table H1). Dose formulations were discarded 3 weeks after the date of preparation.

Dose formulation stability studies were performed by the analytical chemistry laboratory using highperformance liquid chromatography. The stability of the DEP dose formulations was confirmed for at least 3 weeks at room temperature when stored in the dark, and for at least 3 hours when exposed to light and air. Periodic analyses of the dose formulations of DEP were conducted by the study laboratory and analytical chemistry laboratory using reverse-phase high-performance liquid chromatography. During the 2-year mouse study, the dose formulations were analyzed at least once every 8 weeks (Table H2) and 91% (52/57) of the dose formulations analyzed were within 10% of the target concentrations. No formulation was greater than 21% from the target concentration. Results of the periodic referee analyses performed by the analytical chemistry laboratory were in agreement with the results obtained by the study laboratory (Table H4).

Dimethylphthalate

DMP was applied neat in the 1-year mouse study.

7,12-Dimethylbenz(a)anthracene

During the 1-year mouse study, the dose formulation was prepared by dissolving DMBA in acetone, with formulation analysis conducted prior to the beginning of the study (Table H3). Stability analyses of the dose formulations were performed by the analytical chemistry laboratory using high-performance liquid chromatography. The stability of the dose formulations was confirmed for up to 3 weeks at room temperature when stored in the dark, and for less than 3 hours when exposed to light and air. Confirmatory analysis of the dose formulation of DMBA was conducted by the study laboratory and analytical chemistry laboratory using ultraviolet spectroscopy. The dose formulation was found to be within 10% of the target concentration by both laboratories (Tables H3 and H4).

12-O-Tetradecanoylphorbol-13-acetate

For the 1-year mouse study, dose formulations were prepared every 2 weeks by dissolving TPA in acetone. The dose formulations were refrigerated in amber glass bottles and were discarded 3 weeks after the date of preparation. Stability analyses of the acetone solutions were conducted by the analytical chemistry laboratory using high-performance liquid chromatography. Stability of the formulation was established for at least 3 weeks when stored at 4° C in amber glass bottles. Periodic analyses of the dose formulations of TPA were conducted by the study laboratory using high-performance liquid chromatography. In the study, only 54% (7/13) of the formulations analyzed were within 10% of the target concentration, but no formulation was greater than 26% from the target concentration (Table H3). Results of periodic referee analyses performed by the analytical chemistry laboratory indicated good agreement with the results obtained by the study laboratory (Table H4).

4-WEEK STUDIES

The 4-week studies were conducted to evaluate the cumulative toxic effects of repeated exposure to DEP and to determine the appropriate dose levels to be used in the 2-year studies.

Male and female F344/N rats and $B6C3F_1$ mice were obtained from Simonsen Laboratories, Inc.

(Gilroy, CA). Upon receipt, rats and mice were approximately 29 days old. The animals were quarantined for 13 days before exposure began. At this time, five male and five female rats and mice were randomly selected for parasite evaluation and gross observation for evidence of disease. Groups of 10 male and 10 female rats were administered 0, 37.5, 75, 150, or 300 μ L DEP; groups of 10 male and 10 female mice were administered 0, 12.5, 25, 50, or 100 μ L DEP. Doses were applied to clipped interscapular skin five times per week. Clinical findings were recorded weekly. Animals were weighed initially and weekly thereafter. Further details of study design and animal maintenance are summarized in Table 2.

The right kidney, liver, right testis, and thymus of all surviving animals were weighed. A necropsy was performed on all animals. Tissues for microscopic examination were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned to a thickness of 4 to 6 μ m, and stained with hematoxylin and cosin. A complete histopathologic examination was performed on all animals. Table 2 lists the tissues and organs routinely examined.

2-Year Studies

Study Design

Groups of 60 male and 60 female rats were administered 0, 100, or 300 μ L DEP. An initial 2-year study in mice at doses of 0, 35, and 100 μ L (applied neat) was aborted due to marked body weight gain reductions. In a restart, groups of 60 male and 60 female mice were administered 0, 7.5, 15, or 30 μ L DEP dissolved in acetone for a total application volume of 100 μ L of solution. Doses were applied to clipped interscapular skin five times per week for 104 weeks (rats) or for 104 to 105 weeks (mice). Animals were clipped weekly or as needed. Ten male and 10 female rats and mice from each group were designated for interim evaluations after 15 months of chemical administration.

Source and Specification of Animals

Male and female F344/N rats were obtained from Frederick Cancer Research Facility (Frederick, MD). Male and female $B6C3F_1$ mice were obtained from Taconic Farms, Inc. (Germantown, NY). Animals were quarantined for 14 days before the beginning of the studies. Five male and five female rats and mice were randomly selected for parasite evaluation and gross observation of disease. Serology samples were collected for viral screening. Rats and mice were approximately 6 weeks old at the beginning of the studies. The health of the animals was monitored during the studies according to the protocols of the NTP Sentinel Animal Program (Appendix J).

Animal Maintenance

Rats and mice were housed individually. Feed and water were available *ad libitum*. Cages and racks were rotated every 2 weeks. Further details of animal maintenance are given in Table 2. Information on feed composition and contaminants is provided in Appendix I.

Clinical Examinations and Pathology

All animals were observed twice daily. Clinical findings were recorded initially and monthly thereafter. Animals were weighed at study initiation, weekly for the first 13 weeks, and monthly thereafter. At the 15-month interim evaluations blood for hematology and clinical chemistry (rats only) was collected from the retroorbital sinus of animals designated for clinical pathology studies. Automated determinations were performed using а Coulter[®] S+IV. The clinical pathology parameters measured are listed in Table 2. The brain, right kidney, and liver were weighed at the 15-month interim evaluations.

A necropsy was performed on all animals. At necropsy, all organs and tissues were examined for gross lesions, and all major tissues were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned, and stained with hematoxylin and eosin for microscopic examination. Complete histopathologic examinations were performed on all control and high-dose animals at the 15-month interim evaluation and on all animals at 2 years. Tissues examined are listed in Table 2.

Microscopic evaluations were completed by the study laboratory pathologist, and the pathology data were entered into the Toxicology Data Management System. The microscopic slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were evaluated by an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy, the slide and tissue counts were verified, and the histotechnique was evaluated. A quality assessment pathologist reviewed the cecum, forestomach, and mesenteric lymph nodes of male and female rats; the colon and liver of male rats; the clitoral gland of female rats; the liver of male and female mice; and the uterus and thyroid gland of female mice for accuracy and consistency of lesion diagnosis. An independent review of the proliferative lesions of the pituitary gland and testes of male rats was conducted to verify incidence values.

The quality assessment report and slides were submitted to the NTP Pathology Working Group (PWG) chair, who reviewed the potential target tissues and any other tissues for which a disagreement in diagnosis between the laboratory and quality assessment pathologist existed. Representative examples of potential chemical-related lesions, including neoplasms of the forestomach, large intestine, mesenteric lymph node, and clitoral gland from rats and the liver, uterus, thyroid gland, and forestomach from mice, and examples of disagreements in diagnosis between the laboratory and quality assessment pathologist, or lesions of general interest were presented by the chair to the PWG for review. The PWG consisted of the quality assessment pathologist and other pathologists experienced in rodent toxicologic pathology. This group examined the tissues without any knowledge of dose groups or previously rendered diagnoses. When the PWG consensus differed from the opinion of the laboratory pathologist, the diagnosis was changed. Thus, the final diagnoses represent a consensus of contractor pathologists and the PWG. Details of these review procedures have been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). For subsequent analyses of pathology data, the diagnosed lesions for each tissue type were evaluated separately or combined according to the guidelines of McConnell et al. (1986).

1-YEAR INITIATION/ PROMOTION STUDY

The 1-year study was conducted to evaluate the potential of dermally applied DEP or DMP to initiate tumorigenesis when followed by a strong promoter or to promote tumorigenesis following a known initiator. Initiators and promoters, as operationally defined in studies of this kind, have minimal activity as complete chemical carcinogens. However, exposure to an initiator (DMBA) followed subsequently by a tumor promoter (TPA) results in marked enhancement in carcinogenicity.

Male Swiss (CD-1[®]) mice were obtained from Charles River Breeding Laboratories (Kingston, NY). Upon receipt, the mice were 5 weeks old. The animals were quarantined for 12 days before dosing began. At the end of quarantine, five mice were evaluated for evidence of disease. The health of the animals was monitored during the study according to the NTP Sentinel Animal Program (Appendix J). Animals were approximately 7 weeks old at the beginning of the study.

Groups of 50 Swiss (CD-1[®]) male mice were dermally administered various initiation/promotion treatments. Chemicals were applied to the clipped interscapular skin. Animals were clipped weekly or as needed. All chemicals used as initiators were applied once during the first week of treatment. Promoters were generally applied three or five times per week from week 2 through the end of the study. Because of severe skin irritation in groups with acetone or TPA as promotion treatments, application of these chemicals was suspended at week 8 and decreased to two times per week when application resumed at week 10. All doses were applied at a volume of 0.1 mL. Mice in the vehicle control group received one dose of acetone as an initiator, followed by acetone as a promoter three times per week for 8 weeks, and twice per week for the remaining 44 weeks (Table 1). Initiators (acetone, DMBA, DEP, or DMP) were generally applied once during week 1 of the study. Promoters (acetone, TPA, DEP, or DMP) were generally applied three times per week for the first 8 weeks of the study and two times per week for the remaining 44 weeks.

Mice were housed individually with feed and water available *ad libitum*. Cages and racks were rotated every 2 weeks. Animals were observed twice daily. Clinical findings and body weights were recorded weekly for the first 13 weeks and monthly thereafter. Further details of animal maintenance are given in Table 2.

A complete necropsy was performed on all animals. Tissues for microscopic examination were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned to a thickness of 4 to 6 μ m, and stained with hematoxylin and eosin. A complete histopathologic examination was performed on animals from the acetone/ DMP and acetone/acetone groups. Table 2 lists the tissues and organs routinely examined.

Statistical Methods

Survival Analyses

The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses if they were found dead of other than natural causes or if they were missing; animals dying from natural causes were not censored. Statistical analyses for possible doserelated effects on survival used Cox's (1972) method for testing two groups for equality and Tarone's (1975) life table test to identify dose-related trends. All reported P values for the survival analyses are two sided.

Calculation of Incidence

The incidences of neoplasms or nonneoplastic lesions as presented in Tables A1, A5, B1, B5, C1, C5, D1, and D5 are given as the number of animals bearing such lesions at a specific anatomic site and the number of animals with that site examined microscopically. For calculation of statistical significance, the incidences of most neoplasms (Tables A3, B3, C3, and D3) and all nonneoplastic lesions are given as the numbers of animals affected at each site examined microscopically. However, when macroscopic examination was required to detect neoplasms in certain tissues (e.g., skin, intestine, harderian gland, and mammary gland) before microscopic evaluation, or when neoplasms had multiple potential sites of occurrence (e.g., leukemia or lymphoma), the denominators consist of the number of animals on which a necropsy was performed. Tables A3, B3, C3, and D3 also give the survival-adjusted neoplasm rate for each group and each site-specific neoplasm, i.e., the Kaplan-Meier estimate of the neoplasm incidence that would have been observed at the end of the study in the absence of mortality from all other competing risks (Kaplan and Meier, 1958).

Analysis of Neoplasm Incidences

The majority of neoplasms in these studies were considered to be incidental to the cause of death or not rapidly lethal. Thus, the primary statistical

TABLE 1

Design of the 1-Year Dermal Initiation/Promotion Study of Diethylphthalate and Dimethylphthalate in Male Swiss (CD-1®) Mice^a

-	Treatment ^b		
	Initiator ^c	Promoter ^d	Test Group
<u>.</u>	Acetone	Acetone ^e	Vehicle Control
t -	DMBA	TPA ^f	Initiation/Promotion Control
. '	DMBA	Acetone	DMBA Initiation Control
	DEP	Acetone	DEP Initiation Control
•	DMP	Acetone	DMP Initiation Control
	DEP	TPA	DEP Initiation
	DMP	ТРА	DMP Initiation
- ,	Acetone	ТРА	TPA Promotion Control
	Acetone	DEP ^g	DEP Promotion Control
	Acetone	DMP ^g	DMP Promotion Control
, , ,	DMBA	DEP	DEP Promotion
۰ ۰	DMBA	DMP	DMP Promotion

^a 50 mice per treatment group

^b DMBA = 7,12-dimethylbenz(a)anthracene, TPA = 12-O-tetradecanoylphorbol-13-acetate, DEP = diethylphthalate, and DMP = dimethylphthalate

^c Initiators were applied once during week 1 of the study, in a volume of 0.1 mL; DEP and DMP applied neat, DMBA applied in . solution with acetone, 0.5 mg/mL

^d Promoters were applied in a volume of 0.1 mL

^e Acetone promotion: 3 times per week for 8 weeks, then 2 times per week for 44 weeks

f TPA promotion: 0.05 mg/mL solution, 3 times per week for 8 weeks, then a 0.025 mg/mL solution, 2 times per week for 44 weeks

^g DEP and DMP promotion: 5 times per week for 52 weeks

method used was logistic regression analysis, which assumed that the diagnosed neoplasms were discovered as the result of death from an unrelated cause and thus did not affect the risk of death. In this approach, neoplasm prevalence was modeled as a logistic function of chemical exposure and time. Both linear and quadratic terms in time were incorporated initially, and the quadratic term was eliminated if it did not significantly enhance the fit of the model. The dosed and control groups were compared on the basis of the likelihood score test for the regression coefficient of dose. This method of adjusting for intercurrent mortality is the prevalence analysis of Dinse and Lagakos (1983), further described and illustrated by Dinse and Haseman (1986). When neoplasms are incidental, this comparison of the time-specific neoplasm prevalences also provides a comparison of the time-specific neoplasm incidences (McKnight and Crowley, 1984).

In addition to logistic regression, other methods of statistical analysis were used, and the results of these tests are summarized in the appendixes. These include the life table test (Cox, 1972; Tarone, 1975), appropriate for rapidly lethal neoplasms, and the Fisher exact test and the Cochran-Armitage trend test

Materials and Methods

(Armitage, 1971; Gart *et al.*, 1979), procedures based on the overall proportion of neoplasm-bearing animals.

Tests of significance included pairwise comparisons of each dosed group with controls and a test for an overall dose-response trend. Continuity-corrected tests were used in the analysis of neoplasm incidence, and reported P values are one sided. The procedures described in the preceding paragraphs were also used to evaluate selected nonneoplastic lesions. For further discussion of these statistical methods, refer to Haseman (1984).

Analysis of Nonneoplastic Lesion Incidences

Because all nonneoplastic lesions in this study were considered to be incidental to the cause of death or not rapidly lethal, the primary statistical analysis used was a logistic regression analysis in which lesion prevalence was modeled as a logistic function of chemical exposure and time. For lesions detected at the interim evaluations, the Fisher exact test was used, a procedure based on the overall proportion of affected animals.

Analysis of Continuous Variables

Two approaches were employed to assess the significance of pairwise comparisons between dosed and control groups in the analysis of continuous variables. Organ and body weight data, which have approximately normal distributions, were analyzed using the parametric multiple comparison procedures of Dunnett (1955) and Williams (1971, 1972). Hematology and clinical chemistry data, which have typically skewed distributions, were analyzed using the nonparametric multiple comparison methods of Dunn (1964) and Shirley (1977). Jonckheere's test (Jonckheere, 1954) was used to assess the significance of the dose-response trends and to determine whether a trend-sensitive test (Williams' or Shirley's test) was more appropriate for pairwise comparisons than a test that does not assume a monotonic dose-response trend (Dunnett's or Dunn's test). Average severity values were analyzed for significance using the Mann-Whitney U test (Hollander and Wolfe, 1973).

Historical Control Data

Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of neoplasm incidence. Consequently, neoplasm incidences from the NTP historical control database (Haseman *et al.*, 1984, 1985) are included in the NTP reports for neoplasms appearing to show compound-related effects.

Quality Assurance Methods

The 1-year and 2-year studies were conducted in compliance with Food and Drug Administration Good Laboratory Practice Regulations (21 CFR, Part 58). In addition, as records from the 2-year studies were submitted to the NTP Archives, they were audited retrospectively by an independent quality assurance contractor. Separate audits covering completeness and accuracy of the pathology data, pathology specimens, final pathology tables, and preliminary review draft of this NTP Technical Report were conducted. Audit procedures and findings are presented in the reports and are on file at NIEHS. The audit findings were reviewed and assessed by NTP staff so that all discrepancies had been resolved or were otherwise addressed during the preparation of this Technical Report.

GENETIC TOXICOLOGY

The genetic toxicities of DMP and DEP were assessed by testing the ability of the chemicals to induce mutations in various strains of *Salmonella typhimurium* and chromosomal aberrations in cultured Chinese hamster ovary cells. The protocols for these studies and the results are given in Appendix E.

The genetic toxicity studies of DMP and DEP are part of a larger effort by the NTP to develop a database that would permit the evaluation of carcinogenicity in experimental animals from the structure of the chemical and its responses in short-term *in vitro* and *in vivo* genetic toxicity tests. These genetic toxicity tests were originally developed to study mechanisms of chemical-induced DNA damage and to predict carcinogenicity in animals, based on the electrophilic theory of chemical carcinogenesis and the somatic mutation theory (Miller and Miller, 1977; Straus, 1981; Crawford, 1985).

There is a strong correlation between a chemical's potential electrophilicity (structural alert to DNA reactivity), mutagenicity in *Salmonella*, and carcinogenicity in rodents. The combination of electrophilicity and *Salmonella* mutagenicity is highly correlated with the induction of carcinogenicity in

rats and mice and/or at multiple tissue sites (Ashby and Tennant, 1991). Other *in vitro* genetic toxicity tests do not correlate well with rodent carcinogenicity (Tennant *et al.*, 1987; Zeiger *et al.*, 1990), although these other tests can provide information on the types of DNA and chromosome effects that can be induced by the chemical being investigated. Data from the NTP studies show that a positive response in *Salmonella* is currently the most predictive *in vitro* test for rodent carcinogenicity (89% of the *Salmonella* mutagens were rodent carcinogens), and that there is no complimentarity among the *in vitro* genetic toxicity tests. That is, no battery of tests that included the *Salmonella* test improved the predictivity of the *Salmonella* test alone. The predictivity for carcinogenicity of a positive response in bone marrow chromosome aberration or micronucleus tests is not yet defined.

Materials and Methods

TABLE 2

Experimental Design and Materials and Methods in the Dermal Studies of Diethylphthalate/Dimethylphthalate

4-Week Studies	2-Year Studies	1-Year Study	
Study Laboratory			
Hazleton Laboratories America, Inc. (Rockville, MD)	Hazleton Laboratories America, Inc. (Rockville, MD)	Hazleton Laboratories America, Inc. (Rockville, MD)	
Strain and Species			
Rats: F344/N Mice: B6C3F ₁	Rats: F344/N Mice: B6C3F ₁	Mice: Swiss (CD-1®)	
Animal Source			
Simonsen Laboratories (Gilroy, CA)	Rats: Frederick Cancer Research Facility (Frederick, MD) Mice: Taconic Farms, Inc. (Germantown, NY)	Charles River Breeding Laboratories (Kingston, NY)	
Size of Study Groups 10 males and 10 females	60 males and 60 females	50 males	
Time Held Before Studies 13 days	14 days	12 days	
Average Age When Studies Began 6 weeks	6 weeks	7 weeks	
Date of First Dose 5 September 1984	Rats: 6 February 1985 Mice: 23 December 1986	29 July 1985	
Duration of Dosing			
32-33 days	Rats: 104 weeks Mice: 104-105 weeks	55 weeks	
Date of Last Dose			
7-8 October 1984	Rats: 2 February 1987 Mice: 14-22 December 1988	11 August 1986	
Method of Sacrifice			
Carbon dioxide asphyxiation	Same as 4-week studies	Same as 4-week studies	
Necropsy Dates 7-8 October 1984	Rats: 9-10 February 1987 Mice: 21-29 December 1988	19-27 August 1986	
Average Age at Necropsy			
11 weeks	111 weeks	62 weeks	
Method of Animal Distribution	Animale were randomly accioned to	Randomly assigned to groups	
Animals were randomly assigned to groups by a computer generated randomization procedure	Animals were randomly assigned to groups by a computer generated randomization procedure	ivanuomiy assigned to groups	

TABLE 2 Experimental Design and Materials and Methods in the Dermal Studies of Diethylphthalate/Dimethylphthalate (continued)

4-Week Studies	2-Year Studies	1-Year Study	
Animals per Cage		······································	
	1	1	
Method of Identification			
loe clip	Toe clip	Toe clip	
Diet	·	•	
NIH-07 open formula meal Zeigler Brothers, Gardners, PA), wailable <i>ad libitum</i>	Same as 4-week studies	Same as 4-week studies	
eeders			
roducts, Inc., Garfield, NJ)	Same as 4-week studies	Same as 4-week studies	
Vater automatic watering system; available d libitum	Same as 4-week studies	Same as 4-week studies	
A	•		
Cages Polycarbonate (Lab Products Inc., Garfield, NJ); changed once a week, rotated every other week	Same as 4-week studies	Same as 4-week studies	
	• •		
Bedding BetaChips® (Northeastern Products Corp., Warrensburg, NY)	BetaChips® (Northeastern Products Corp., Warrensburg, NY); on 19 April 1988 changed to Sani-Chips (P.J. Murphy, Forest Products Corp., Montville, NJ) for mice	Same as 4-week studies	
Cage Filters	•		
Nonwoven polyester (Snow Filtration Co. Cincinnati, OH)	Same as 4-week studies	Same as 4-week studies	
N 1			
Racks Stainless steel (Lab Products Inc., Garfield, NJ); changed every other week	Same as 4-week studies	Same as 4-week studies	
Animal Room Environment Rats: Temperature: 22°-24° C Relative humidity: 32%-58% Fluorescent light: 12 hours/day Room air changes: minimum of 12 changes/hour	Rats: Temperature: 20°-25° C Relative humidity: 28%-74% Fluorescent light: 12 hours/day Room air changes: more than 12 changes/hour	Temperature: 19°-25° C Relative humidity: 32%-73% Fluorescent light: 12 hours/day Room air changes: more than 12 changes/hour	
Mice: Temperature: 23°-24° C Relative humidity: 28%-74% Fluorescent light: 12 hours/day Room air changes: minimum	Mice: Temperature: 19°-25° C Relative humidity: 23%-92% Fluorescent light: 12 hours/day Room air changes: more than		
of 12 changes/hour	12 changes/hour		

Materials and Methods

TABLE 2

Experimental Design and Materials and Methods in the Dermal Studies of Diethylphthalate/Dimethylphthalate (continued)

4-Week Studies	2-Year Studies	1-Year Study	
Doses Rats: 0, 37.5, 75, 150, or 300 µL DEP applied to clipped interscapular skin Mice: 0, 12.5, 25, 50, or 100 µL DEP applied to clipped interscapular skin	 Rats: 0, 100, or 300 μL DEP applied neat to clipped interscapular skin Mice: 0, 7.5, 15, or 30 μL DEP dissolved in acetone for a total volume of 100 μL of solution applied to clipped interscapular skin 	See Table 1	
Type and Frequency of Observation Animals observed twice daily; clinical findings, and weights recorded initially and weekly thereafter.	Animals observed twice daily; clinical findings recorded initially and then monthly; body weights recorded initially, weekly for the first 13 weeks and monthly thereafter.	Animals observed twice daily; clinical findings and body weights recorded weekly for the first 13 weeks and monthly thereafter.	
Necropsy Necropsy performed on all animals. Organs weighed were right kidney, liver, right testis, and thymus.	Necropsy performed on all animals. Organs weighed were brain, right kidney, and liver at the 15-month interim evaluations.	Necropsy performed on all animals.	
Clinical Pathology None	Blood samples were collected from the retroorbital sinus of rats and mice at the 15-month interim evaluations. <i>Hematology:</i> Hematocrit, hemoglobin, erythrocytes, mean cell volume, mean cell hemoglobin, mean cell hemoglobin concentration, leukocyte count and differential, and nucleated erythrocytes <i>Clinical chemistry (rats only):</i> urea nitrogen, creatinine, alkaline phosphatase, sorbitol dehydrogenase	None	

control, and other).

.

 TABLE 2

 Experimental Design and Materials and Methods in the Dermal Studies of Diethylphthalate/Dimethylphthalate (continued)

4-Week Studies	2-Year Studies	1-Year Study	
Histopathology Complete histopathologic examinations were performed on all animals. In addition to gross lesions and tissue masses, tissues examined included: adrenal gland, brain, clitoral gland (rats), esophagus, gallbladder (mice), heart, kidney, large intestine (colon, cecum, rectum), liver, lung, mammary gland, mandibular and mesenteric lymph nodes, nose, ovary, parathyroid gland, pituitary gland, preputial gland (rats),	Complete histopathologic examinations were performed on all control and high-dose animals at the 15-month interim evaluation and on all animals at 2 years. In addition to gross lesions and tissue masses, tissues examined included: adrenal gland, brain, clitoral gland (rats), esophagus, gallbladder (mice), heart, kidney, large intestine (colon, cecum, rectum), liver, lung, mammary gland, mandibular and mesenteric lymph	Complete histopathologic examinations were performed on all animals from the acetone/DMP and acetone/acetone groups. In addition to gross lesions and tissue masses, tissues examined included: adrenal gland, brain, esophagus, gallbladder, heart, kidney, large intestine (colon, cecum, rectum), liver, lung, mammary gland, mandibular and mesenteric lymph nodes, nose, pancreas, parathyroid gland, pituitary gland,	
prostate gland, salivary gland, seminal vesicle, skin (site of application, control, and other), small intestine (duodenum, jejunum, ileum), spleen, sternum, stomach, testis, thymus, thyroid gland, trachea, urinary	nodes, nose, ovary, parathyroid gland, pituitary gland, preputial gland (rats), prostate gland, salivary gland, seminal vesicle, skin (site of application, control, and other), small intestine (duodenum, jejunum, ileum), spleen,	prostate gland, salivary gland, seminal vesicles, skin (site of application, control and other), small intestine (duodenum, jejunum, ileum), spleen, sternum, stomach, testis, thymus, thyroid gland, trachea, and urinary	
bladder, and uterus.	sternum, stomach, testis, thymus, thyroid gland, trachea, urinary bladder, and uterus. For all other groups, gross lesions and tissue	bladder. For all other groups, in addition to gross lesions and tissue masses, tissues examined included lungs and skin (site of application,	

masses were examined.

RESULTS

4-WEEK STUDY OF DIETHYLPHTHALATE IN F344/N RATS

All male and female rats survived to the end of the study (Table 3). Final mean body weights of male and female rats were similar to those of controls. Feed consumption by dosed rats was similar to that by controls.

There were no clinical signs of toxicity, including no evidence of dermatotoxicity, related to chemical administration. Relative liver weights were greater than those of controls in 300 μ L males and in 150 and 300 μ L females (Table F1). Relative kidney weights were greater than those of controls in 150 and 300 μ L males and in 150 μ L females (Table F1).

Doses of 0, 100, or 300 μ L per day were recommended for the 2-year rat study on the basis of organ weights. 300 μ L was considered a reasonable maximum volume for rat studies involving daily skin application.

TABLE 3

Survival and Body Weights of Rats in the	4-Week Dermal Study	of Diethylphthalate
--	---------------------	---------------------

Dose S (µL)		Mean B	<u>Mean Body Weight^b</u>	(g)	Final Weight Relative to Controls (%)
	Survival ^a	Initial	Final	Change	
/íale	· ·				
0	10/10	116 ± 3	220 ± 5	103 ± 3 <	
37.5	10/10	114 ± 4	212 ± 6	98 ± 3	97
75	10/10	114 ± 3	215 ± 6	101 ± 4	98
150	10/10	114 ± 3	211 ± 4	97 ± 3	96
300	10/10	115 ± 3	209 ± 5	94 ± 4	95
emale		•			
0	10/10	93 ± 2	139 ± 3	47 ± 2	
37.5	10/10	91 ± 2	137 ± 2	46 ± 1	98
75	10/10	95 ± 2	139 ± 3	45 ± 3	100
150	10/10	93 ± 1	137 ± 2	44 ± 3	99
300	10/10	92 ± 2	135 ± 4	44 ± 3	97

^a Number of animals surviving at 4 weeks/number initially in group

^b Weights and weight changes are given as mean ± standard error. Differences from the control group were not significant by Williams' or Dunnett's test.

Diethylphthalate/Dimethylphthalate, NTP TR 429

2-YEAR STUDY OF DIETHYLPHTHALATE IN F344/N RATS

Based upon the results of the 4-week study, groups of 60 male and 60 female F344/N rats were administered diethylphthalate (DEP) at doses of 0, 100, or 300 μ L, 5 days per week for 103 weeks. Up to 10 rats per group were evaluated after 15 months of dosing.

Survival .

Estimates of the survival probabilities for male and female rats are shown in Table 4 and in the Kaplan-Meier curves in Figure 1. Prior to the 15-month interim evaluation, the average survival for dosed rats was similar to that of controls (95% or greater) with the majority of males and females designated for interim evaluation (9 to 10 per group) surviving to the 15-month evaluation. However, after 15 months, mortality was significantly increased in all groups regardless of treatment (particularly after week 73 in males and after week 89 in females). Thus, 2-year survival was significantly reduced in all groups, regardless of treatment (Table 4). Survival of male and female rats administered DEP was similar to controls, although a dose-related decrease was suggested throughout the second year in female rats (Figure 1).

Body Weights and Clinical Findings

Body weights of male and female control rats reflected mortality findings, with normal body weight gains through week 73 in male rats and through the majority of the study in female rats (Figure 2 and Tables 5 and 6). Throughout the study, DEP-dosed male rats experienced small to moderate, dose-related depressions in mean body weights. Male rats weighed approximately 2% to 5% less than controls in the 100 μ L group, and 4% to 9% less than controls in the 300 μ L group. The final mean body weights in the male rats represented only 5 or 6 animals but were considerably lower for all groups, with the largest decrease in the 300 μ L group (Table 5). Final mean body weights of females were similar to that of controls (Table 6).

Male and female rats (irrespective of treatment group, males more frequently than females) followed a rapid course of weight loss, loss of appetite, hypoactivity, emaciation, inactivity, and general deterioration of health (requiring moribund sacrifice). Otherwise, no adverse clinical signs were observed. In particular, no gross signs of significant dermatotoxicity at the site of application were apparent. However, dosed rats experienced an increased incidence of slight crusting of the skin at the site of application. One papillomatous growth was observed in one control and one 100 μ L male, and one carcinomatous growth in a 300 μ L female.

Organ weights or organ weight to body weight ratios of dosed rats evaluated at 15 months were not significantly different from controls (Table F2).

Hematology and Clinical Chemistry

At the 15-month interim evaluation, hematocrit values, hemoglobin concentrations, and erythrocyte counts in the 300 μ L female rats were significantly higher than those in controls (Table G1). These differences were minimal and not consistent between sexes, but would be consistent with hemoconcentrations resulting from dehydration. Other differences were minor, sporadic, and not considered treatment related.
TABLE 4

Survival of Rat	s in the	2-Year D	ermal Study	of Die	ethylphthalate
-----------------	----------	----------	-------------	--------	----------------

Dose (µL)	0	100	300
Male			
Animals initially in study	60	60	60
15-Month interim evaluation ^a	10	10	9
Moribund	31	38	26
Natural deaths	15	6	19
Animals surviving to study termination	4 ^e	6	6
Percent probability of survival at end of study ^b	8	12	12
Mean survival (days) ^c	585	597	594
Survival analysis ^d	P=0.640N	P=0.313N	P=0.545N
Female			
Animals initially in study	60	60	60
15-Month interim evaluation ^a	9	10	10
Moribund	12	12	
Natural deaths	9	10	10
Animals surviving to study termination	30	28	23 ^f
Percent probability of survival at end of study	59	56	47
Mean survival (days)	648	640	622
Survival analysis	P=0.162	P=0.835	P=0.202

^a Censored from survival analyses

^b Kaplan-Meier determinations based on the number of animals alive on the first day of terminal sacrifice

^c Mean of all deaths (uncensored, censored, and terminal sacrifice)

^d The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the dosed columns. A negative trend or a lower mortality in a dose group is indicated by N.

^e Includes one animal that died during the last week of the study.

f Includes two animals that died during the last week of the study.

FIGURE 2 Growth Curves for Male and Female Rats Administered Diethylphthalate Dermally for 2 Years

TABLE 5

Mean Body Weights and Survival of Male Rats in the 2-Year Dermal Study of Diethylphthalate

Weeks		0 μL		100 µL			300 µL	
on	Av. Wt.	"No. of	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1.	118	50	117	. 100	50	118	100	51
2	146	50	143	98	50	140	96	51
3 .	177	50	172	97	50	166	94	51
4	206	50	199	97	50	190	92	51
5	225	50	217	97	50	207	92	51
6	242	50	232	96	50	222	92	51
7	261	50	250	96	50	238	- 91	51
8	277	50	265	96	50	254	92	51
9	289	50	276	95	50	264	92	51
10	300	50	287	96	50	275	92	51
11	309	50	296	96	50	284	92	51
12	318	50	305	96	50	291	91	51
13	327	50	314	96	50	300	92	51
17	351	50	339	97	50	. 325	93	51
21	363	50	352	97	50	336	93	51
25	381	50	369	97	50	354	93	51
29	389	50	376	. 97	50	359	92	51
33	399	50	386	97	50	369	92	51
37 -	411	50	399	97	50	381	93	51
41	421	49	409	97	50	389	93	51
45	427	49 49	409	98	49	399	93	51
49	436	49	425	98	49	407	93	51
53	430	49	427	97	48	407	92	51
· 56	440	49	431	97	48	412	93	50
50 61	456	48	442	97	48	422	93	49
65	450	48	447	. 97	48	424	92	48
63 69	460	48	444	96	48	425	92	48
73	465	40	441	95	46	423	91	47
77	405	41	437	96	44	413	91	44
81	447	39	437	98	37	419	94	36
85	447	. 32	432	101	35	416	98	32
89	420	26	427	102	30	411	98	28
93 .	390	19	400	102	25	385	99	24
95 . 95	390	19	400	103	20	387	99	18
93 97	390	14	392	105	16	383	103	ʻ 15
97 99	374 400	. 14	399	100	14	373	93	15
101	400	7	373	91	13	364	89	11
101	410	5	358	85	10	361	86	9
105	373	5	365	98	6	346	93	6
103	313	5	202		~		·	
ean for v						207	~	,
-13	246		236	96		227	92 92	
4-52	398		386	97		369	93	
3-105	426		415	97		398	93	

TABLE 6

Mean Body Weights and Survival of Female Rats in the 2-Year Dermal Study of Diethylphthalate

Weeks	(θμL		100 µL			300 µL	
on Study	Av. Wt. (g)	No. of Survivors	Av. Wt. (g)	Wt. (% of controls)	No. of Survivors	Av. Wt. (g)	Wt. (% of controls)	No. of Survivors
							·	·····
1	97	51	97	99	50	98	101	50
2	114	51	110	97	50	109	96	50
3	128	51	126	98	50	121	95	50
4	140	51	136	97	50	132	94	50
5	148	51	143	96	50	139	94	50
6	156	51	148	95	50	145	93	50
7	162	51	156	96	50	152	94	50
8	167	51	161	96	50	156	93	50
9	173	51	166	96	50	161	93	50
10	177	51	169	95	50	163	92	50
11	181	51	172	95	50	167	92	50
12	184	51	175	96	50	170	93	50
13	187	51	180	96	50	174	93	50
17	197	51	188	96	50	183	. 93	50
21	201	51	195	97	50	186	93	50
25	209	51	203	97	50	194	93	50
29	214	51	207	97	50	200	94	50
33	222	51	213	96	50	207	93	50
37	230	51	223	97	. 50	218	95	50
41	238	51	230	97	50	225	95	50
45	248	51	242	98	50	237	96	50
49	251	50	248	99	50	242	96	50
53	255	50	249	98	50	246	97	49
56	261	50	255	98	50	250	96	48
61	268	50	263	98	49	258	96	48
65.	275	50	270	98	48	263	96	47
69	281	48	275	98	48	271	97	47
73	289	48	281	97	47	277	96	46
77	294	48	286	97	47	279	95	45
81	299	45	288	97	44	283	95	41
85	303	42	297	98	40	283	93	37
89	305	40	303	99	39	290	95	34
93	297	40	295	99	38	291	98	31
95	300	37	298	99	33	288	96	29
97	299	37	294	99	33	286	96	29
99	303	35	302	100	30	292	96	26
101	296	35	296	100	30	289	98	25
103	291	34	293	101	29	289	99	24
105	288	32	291	101	29	286	99	24
ean for w								
13	155		149	96		145	94	
-52	223		217	97		210	94	
3-105	288		284	99		278	97 '	· · ·

Diethylphthalate/Dimethylphthalate, NTP TR 429

Pathology Findings

This section describes the statistically significant and biologically noteworthy changes in the incidences of neoplasms and nonneoplastic lesions of the skin, pituitary gland, mammary gland, and testes. Summaries of the incidences of nonneoplastic lesions and neoplasms, the individual animal tumor diagnoses, the statistical analyses of the primary neoplasms that occurred with an incidence of at least 5% in at least one group, and the historical control incidences for the biologically significant neoplasms mentioned in this section are presented in Appendix A for males and Appendix B for females.

In this study, no statistically significant treatmentrelated positive trends were identified for neoplasms in male rats. The statistically significant increases noted in female rats appeared to be spurious and within historical control values. The combined incidence of benign or malignant neoplasms in all

organs in female rats was decreased in dosed groups. No neoplasms or nonneoplastic lesions occurred with significant incidence in animals at the interim evaluation.

Skin, Site of Application: Skin neoplasms were not observed in female rats and were only rarely observed in male rats (Tables A1 and B1). There were no significant dose-related trends in the incidence of neoplasms at the site of application (Tables A3 and B3). A treatment-related, increased incidence of minimal to mild epidermal acanthosis was observed in dosed males and females at the site of application (Tables 7, A5, and B5). This lesion was considered to be a subtle adaptive response to local irritation. In a few animals, minimal hyperkeratosis was associated with the acanthotic lesions. Acanthosis was also detected in male rats at the 15-month interim evaluation (Tables 7, A5, and B5).

TABLE 7

Incidences of Skin Lesions of Rats in the 2-Year Dermal Study of Diethylphthalate

Dose (µL)		0	· · · · ·	100		300	۰ ۲۰۰۰ - ۲۰۰۰	
15-Month Interim Evalu	ation					· · · · · · · · · · · · · · · · · · ·		
			5 A.	· · ·		•	•	
Male Skin, site of application ^a Acanthosis ^b	· ,	10 0	• •	5 5** (1.0) ^c		9 6** (1.0)		
Female Skin, site of application Acanthosis		d	•	2 ^{- 1} 				•
			· · ·	•	•			
2-Year Study	•		•			• • • • •	· · ·	
Male						,		
Skin, site of application Acanthosis	τ	50 2 (1.5)	 i	50 5 (1.4)		51 21** (1.1)	•	•
Female			*					
Skin, site of application Acanthosis	· ,	50 8 (1.4)		49 18* (1.1)	:	50 23** (1.1)		

Average severity grade of lesion in affected animals: 1 = minimal, 2 = mild, 3 = moderate

Skin not examined microscopically in this group

Pituitary Gland: Adenomas of the pars distalis of the pituitary gland occurred at an unusually high incidence in all groups, including the controls (male: 39/44, 41/49, 41/49; female: 38/50, 33/49, 33/48; Tables A1 and B1). Historical control values for F344/N rats in feed studies are considerably lower (male feed controls: 29%; range 12%-60%; female feed controls, 54%; range 30%-74%; Tables A4a and B4a). The higher incidence and early onset of this neoplasm observed in all groups of male rats was likely contributory to the poor survival of male rats in this study. The incidence of pituitary gland carcinomas at this site was unaffected by treatment.

Mammary Gland: A significant decrease in the incidence of fibroadenomas of the mammary gland occurred in dosed female rats and followed a negative trend (21/50, 12/48, 7/50; Table B3). The biological significance of this decrease is uncertain since neither the incidences of hyperplasia (9/50, 9/48, 9/50; Table B5) nor other mammary gland neoplasms (adenomas or carcinomas) were affected by treatment. The incidence of fibroadenomas in the historical control database was similar to the incidence in

controls in this study (female feed controls: 38.6%; range 8%-58%; Table B4b).

Other: The incidence of mononuclear cell leukemia in control and dosed male rats (9/50, 12/50, 13/51; Table A3) was distinctly lower than the historical incidence of mononuclear cell leukemia: (male feed controls: 49%; range 32%-62%; Table A4b). This may be attributable to the shortened lifespan of male rats. Similarly, the incidence of testicular adenomas in both control and dosed male rats (4/50, 3/50, 9/50; Table A1) was also markedly lower than the historical control incidence (feed controls: 90%; range 74%-98%; Table A4c). Spontaneous pituitary adenomas of rats have been shown to elevate plasma prolactin concentrations, hormonal effects which may alter the development of testicular proliferative lesions (van Nesselrooij *et al.*, 1992).

In the liver, the incidence of fatty degeneration was notably decreased in both male (26/50, 8/50, 4/51; Table A5) and female (23/50, 11/50, 3/50; Table B5) rats. These decreased incidences were dose-related and may be attributable to the hypolipidemic action of this chemical.

4-WEEK STUDY OF DIETHYLPHTHALATE IN B6C3F₁ MICE

All male mice and all but one of the female (control) mice survived to the end of the study (Table 8). Final mean body weights of male mice were similar to controls. Final mean body weights of dosed female mice were 5% to 7% greater than that of controls. Feed consumption by dosed mice was similar to that by controls.

There were no clinical signs of toxicity, including no evidence of dermatotoxicity, related to chemical administration. Absolute and relative liver weights of 25 and 100 μ L female mice were greater than those of controls (Table F3).

Based on the 4-week study results, doses of 0, 35, and 100 μ L DEP were recommended for the 2-year mouse studies. A chronic study in male and female B6C3F₁ mice at 0, 35, and 100 μ L (applied neat, once per day, 5 days per week) was started and subsequently stopped after 32 weeks when significant body weight differences were noted in dosed animals (35 μ L males and females, 12% and 10% lower than controls; 100 μ L males and females, 19% lower than controls). Based on these body weight differences, doses of 0, 7.5, 15, and 30 μ L in 100 μ L acetone were chosen for the restart of the 2-year mouse study.

TABLE 8

Survival and Body Weights of Mice in the 4-Week Dermal Study of Diethylphthalate

			<u>Mean Body Weight^b (g</u>	()	Final Weight		
Dose (µL)	Survival ^a	Initial	Final	Change	Relative to Controls (%)		
Male			 .				
0	10/10	20.6 ± 0.4	26.5 ± 0.5	5.9 ± 0.4	• .		
12.5	10/10	21.1 ± 0.5	26.2 ± 0.5	5.2 ± 0.7	99		
25	10/10	21.4 ± 0.4	25.7 ± 0.5	4.3 ± 0.6	97		
50	10/10	21.1 ± 0.5	26.5 ± 0.5	5.5 ± 0.5	100		
100	10/10	21.2 ± 0.6	26.0 ± 0.7	4.8 ± 0.3	98		
Female			,				
0	9/10 ^c	15.9 ± 0.3	21.0 ± 0.5	5.3 ± 0.5			
12.5	10/10	16.0 ± 0.2	22.1 ± 0.3	6.1 ± 0.4	105		
25	10/10	16.5 ± 0.2	$22.3 \pm 0.3^*$	5.9 ± 0.2	106		
. 50	10/10	16.4 ± 0.2	$22.4 \pm 0.3^*$	6.0 ± 0.3	107		
100	10/10	16.4 ± 0.2	$22.3 \pm 0.3^*$	5.9 ± 0.3	106		

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test.

^a Number of animals surviving at 4 weeks/number initially in group

^b Weights and weight changes are given as mean \pm standard error.

^c Week of death: 3

2-Year Study of Diethylphthalate

IN $B6C3F_1$ Mice

Based upon the results of the 4-week study, groups of 60 male and 60 female $B6C3F_1$ mice were administered diethylphthalate (DEP) at doses of 0, 7.5, 15, or 30 μ L in 100 μ L acetone, 5 days per week for 103 weeks. Up to 10 mice per group were evaluated after 15 months of dosing.

Survival

Estimates of the survival probabilities for male and female mice are shown in Table 9 and in the Kaplan-Meier curves in Figure 3. Survival of dosed mice at the 15-month interim evaluation and after 2 years was similar to that of the controls.

Body Weights and Clinical Findings

The mean body weights of male and female mice administered DEP were similar to the controls throughout the study (Tables 10 and 11 and Figure 4).

No clinical signs of toxicity were observed in mice, including no gross evidence of dermatotoxicity. The only notable clinical observation resulting from exposure to DEP was an increased incidence of scaly skin at the site of application in 48% of the males and 70% of the females in the 30 μ L groups. Feed consumption by male and female mice was similar to or up to 13% greater than that by controls.

Minor increases in relative kidney weights were observed in 15 and 30 μ L female mice at the 15-month interim evaluation (Table F4).

Hematology

Only minor, sporadic hematology differences were observed (Table G2). None were considered treatment related.

TABLE 9

Survival of Mice in the 2-Year Dermal Study of Diethylphthalate

Dose (µL)	0	7.5	15	30
Лаје			. <u> </u>	
nimals initially in study	60	60	60	60
5-Month interim evaluation ^a	10	10	10	10
Accidental deaths ^a	0	1	0	0
fissing ^a	0	1	0	0
Aoribund	2	3	2	1
latural deaths	5	. 4	2	6
nimals surviving to study termination	43	41	46	43
ercent probability of survival at end of study ^b	86	86	92	86
lean survival (days) ^c	668	643	:680	671
urvival analysis ^d P=	=0.980N	P=0.863	P=0.486N	P=1.000N
• · · ·			:	
emale				
animals initially in study	60	60	60	60
5-Month interim evaluation ^a	10	9	10	10
atural deaths	5 .	8	7	5
foribund kills	4	5	5	8
ccidental deaths ^a	0	0	0	1
fissing ^a	0	0	1	0
nimals surviving to study termination	41	38 ^e	37 ^e	36
ercent probability of survival at end of study	82	75	. 76	74
Mean survival (days)	666	651	650	657
urvival analysis	P=0.507	P=0.439	P=0.514	P=0.433

a Censored from survival analyses

b Kaplan-Meier determinations based on the number of animals alive on the first day of terminal sacrifice

c Mean of all deaths (uncensored, censored, and terminal sacrifice)

d The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the dosed columns. A negative trend or a lower mortality in a dose group is indicated by N. e Includes one animal that died during the last week of the study.

1.0

0.9

0.8

0.7

ò

MALE MICE 0 MICROLITERS 0 7.5 MICROLITERS 15 MICROLITERS 30 MICROLITERS

15

30

PROBABILITY OF SURVIVAL

.,

-

TABLE 10

Mean Body Weights and Survival of Male Mice in the 2-Year Dermal Study of Diethylphthalate

Weeks	0	μL		7.5 μĽ			15 µL			30 µL	
on	Av. Wt.	No. of	Av. Wt.	W1. (% of	No. of	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	21.7		21.2	98	60	21.2	98	60	21.1		60
2	22.7	60	22.3	98	60	22.3	98	60	22.2	98	60
3	23.6	60	23.4	99	60	23.3	99	60	23.3	99	60
4	23.8	60	23.7	100	60	23.4	98	60	23.5	99	60
5	24.6	60	24.4	99	59	24.1	98	60	24.2	98	60
6	25.3	60	24.8	98	59	24.9	98	60	25.1	99	60
7	26.0	60	25.4	98	59	25.4	98	60	25.6	99	60
8	26.6	60	26.3	99	59	26.2	99	60	26.3	99	60
9	27.1	60	26.7	99	59	26.5	98	60	26.4	97	60
10	27.6	60	27.3	99	59	27.0	98	60	27.0	98	60
11	28.2	60	27.8	99	59	27.6	98	60	27.5	98	60
12	28.7	60	28.2	98	59	28.0	98	60	28.1	98	60
13	29.3	60	28.8	98	59	28.6	98	60	28.5	97	60
17	30.7	60	30.4	99	59	30.3	. 99	60	29.8	97	60
21	32.1	60	31.6	98	59	31.6	98	60	31.1	97	60 ·
25	33.7	60	33.1	.98	58	33.1	98	60	32.6	97 (60
29	34.4	60	33.9	99	58	33.6	98	60	33.5	97	60
33	34.4	60	33.8	98	58	33.6	98	60	33.3	97	60
37	35.9	60	35.4	99	58	35.0	98	60	34.7	97	60
41	36.7	60	36.3	99	58	36.1	98	60	35.9	98	60
45	37.2	60	36.7	99	58	36.6	98	60	36.1	97	60
49	37.4	60	36.8	98	58	36.5	98	60	36.3	97	60
53	38.0	60	37.1	-98	58	37.1	98	60	37.1	98	60
57	38.2	60	37.4	98	57	37.3	98	60	37.1	97	60
61	39.5	60	38.7	98	56	38.5	98	60	38.3	97	60
65 ^a	39.3	59	38.2	97	56	38.3	98	60	38.2	97	60
69	39.2	49	38.7	99	46	37.9	97	50	38.3	98	50
73	39.4	49	38.7	98	46	38.2	97	50	38.1	97	50
77	39.5	49	39.4	100	46	38.8	98	50	38.6	98	49
81	39.2	47	38.6	99	46	38.2	97	50	37.9	97	48
85	38.5	47	37.9	98	45	37.4	97	. 50	37.3	97	47
89	38.2	47	38.1	100	43	37.4	98	50	37.4	98	47
93	37.6	45	37.0	98	43	36.3	97	49	36.6	97	46
97	37.6	45	37.2	99	43	36.1	96	48	36.5	97	46
101	37.2	44	36.8	99	42	35.7	96	47	36.2	97	44
105	37.6	43	37.0	98	41	35.8	95	46	36.4	97	43
Mean for	weeks										
1-13	25.8		25.4	98		25.3	98		25.3	98	
14-52	34.7		34.2	99		34.0	-98		33.7	97	
53-105	38.5		37.9	- 98		37.4	97		37.4	97	

^a Interim evaluation occurred during week 65.

46

Mean Body Weights and Survival of Female Mice in the 2-Year Dermal Study of Diethylphthalate

Weeks	0	μL		7.5 μL			15 μL			30 μL	
on .	Av. Wt.	No. of	Av. Wt.	W1. (% of	No. of	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	17.1	60	17.0	99	60	17.2	101	60	17.1	100	60
2	18.4	60	18.4	100	60	18.6	101	60	18.2	99	60
3	19.6	60	19.4	99	60	19.9	102	60	19.6	100	60
4	20.1	60	19.6	98	60	20.2	101	60	20.2	101	60
5	20.7	60	20.6	100	60	21.2	102	60	21.0	101	60
6	21.4	60	21.4	100	60	21.7	101	60	22.0	103	60
7	21.9	60	21.7	99	60	22.2	101	60	22.3	102	60
8	22.3	60	22.3	100	60	22.9	103	60	22.6	101	60
9	23.2	60	22.9	99	60	23.3	100	60	22.9	99	60
10	23.5	60	23.1	98	60	23.7	101	60	23.3	99	60
11	24.0	60	23.4	98	60	24.1	100	60	24.0	100	60
12	24.2	60	23.8	98	60	24.5	101	60	24.4	101	60
13	24.8	60	24.5	99	60	25.1	101	60	24.9	100	60
17	26.2	60	26.0	99	60	26.4	101	60	26.2	100	60
21	28.0	60	27.4	98	60	28.1	100	60	27.6	99	60
25	29.6	60	29.2	99	60	29.7	100	60	29.2	99	60
29	30.2	59	30.2	100	60	30.6	101	59	30.4	101	60
33	30.9	59	30.4	98	60	30.7	99	59	30.5	99	60
37	32.2	59	31.7	- 98	60	32.3	100	59	31.8	99	59
41	33.4	59	33.0	99	59	33.3	100	59	32.7	98	59
45	33.8	59	33.3	99	59	33.8	100	59	33.5	99	59
49	34.1	59	33.7	99	59	34.3	101	59	33.9	99	59
53	34.9	59	34.6	99	59	35.2	101	59	34.7	99	59
57	35.4	59	34.9	99	58	35.3	100	59	34.8	98	59
61	36.6	59	36.1	99	58	36.8	101	58	36.1	99	59
65 ^a	36.3	59	35.9	99	58	36.1	99	58	36.1	99	59
69 ·	36.9	49	36.2	98	49	37.0	100	48	36.4	99	48
73	37.0	49	37.0	100	47	37.2	100	48	37.1	100	48
77 77	37.9	49	37.9	100	46	38.4	101	47	37.9	100	47
81	37.5	- 49	37.8	101	45	38.0	101	47	37.7	101	47
85	37.1	49	37.7	102	44	37.5	101	44	37.5	101	47
89	36.9	48	37.4	102	43	37.0	101	44	37.4	101	47
93	36.4	47	36.4	101	43	36.4	100	42	36.5	101	44
97	36.0	44	36.3	100	42	35.9	100	40	36.6	102	42
101	35.8	43	35.9	100	39	36.1	100	38	36.7	102	39
101	36.1	43	36.0	100	38	36.2	101	37	36.9	102	36
Maan for	walk										
Mean for			21.4	99		21.9	101		21.7	100	
1-13	21.6		21.4 30.5	99 99		21.9 31.0	101		30.6	99	
14-52	30.9 36 5		30.5 36.4	99 100		36.7	100		36.6	100	
53-105	36.5		30.4	100		30.7	101		30.0	100	

.

^a Interim evaluation occurred during week 65.

Pathology Findings

This section describes the statistically significant and biologically noteworthy changes in the incidences of neoplasms and nonneoplastic lesions of the skin and liver. Summaries of the incidences of nonneoplastic lesions and neoplasms, the individual animal tumor diagnoses, the statistical analyses of the primary neoplasms that occurred with an incidence of at least 5% in at least one group, and the historical control incidences for the biologically significant neoplasms mentioned in this section are presented in Appendix C for male mice and Appendix D for female mice.

Skin, Site of Application: No skin neoplasms were observed in dosed male mice. In female mice receiving 30 μ L, one squamous cell carcinoma and one basal cell carcinoma were seen at the site of application (Table D1). The significance of these two neoplasms of differing biology is questionable. No morphological evidence of dermal toxicity was observed in male or female mice.

Liver: The incidences of hepatocellular adenomas in 7.5 and 15 μ L females were greater than that in controls, but no significant dose-related trend was observed for either sex (Tables 12, C3, and D3). No significant increase in the incidence of hepatocellular carcinomas was observed in either male or female mice. The combined incidence of hepatocellular adenomas or carcinomas in 30 μ L male mice was higher than that of controls (Tables 12 and C3). A positive dose-related trend of hepatocellular adenomas or carcinomas combined was also observed in male mice. The combined incidence of hepatocellular adenomas or carcinomas in 7.5 and 15 μ L female mice was higher than that of controls with no dose-related trend (Tables 12 and D3).

Because the NTP's $B6C3F_1$ mouse historical database contains only two dermal studies using acetone as the

vehicle control, historical data from control mice in feed studies were also used for comparison. These data suggest that the seemingly higher incidences of liver neoplasms observed in male mice in this study may reflect an unusually low control incidence of hepatocellular adenomas (male mice historical feed controls, adenoma: 24%, range 4%-60%; adenoma or carcinoma (combined): 36%, range 10%-68%; Table C4). Female mouse historical data are similar to the control females in this study (female mice feed control, adenomas: 12%, range 0%-33%; adenoma or carcinoma (combined): 17%, range 3%-42%; Table D4). Because the incidence of hepatocellular neoplasms in the 30 μ L male mice was similar to the historical control mean, and because there was no dose response for liver neoplasms in female mice, these marginal increases were considered to be uncertain findings, providing only equivocal evidence of carcinogenic activity.

Some nonneoplastic proliferative lesions were identified. In particular, an increased incidence of basophilic foci was noted in 15 μ L male mice (Table 12). The incidence of basophilic foci in female mice was not significantly greater than in controls (Table 12). As in the case of liver neoplasms, no dose-related trends were apparent. No increased incidence of neoplasms or nonneoplastic lesions was noted in male or female mice at the 15-month interim evaluation.

Female mice, but not male mice, had antibodies to Reovirus-3 at 18 months. Further, neither males nor females were positive for Reovirus-3 at 24 months, indicating that this was not a widespread infection in the colony. Experimental infections of young mice with Reovirus-3 may cause various lesions including hepatitis. However, there are no known pathologic changes associated with natural infections of Reovirus-3 (NRC, 1991).

Dose (µL)	0	7.5	15	30
Male		· · ·	- <u>-,</u>	. <u></u>
16 March Interim Durch and			· · · ·	. •
15-Month Interim Evaluation		۹.,	· · · · ·	•
Liver ^a	10	3	1	10
Hepatocellular Adenoma ^b	1	2	1	2
Hepatocellular Carcinoma	0	0	0	1
Trepatocomunit Coromoniu				· · ·
<u>.</u> .	• · ·			
2-Year Study				· · ·
	•			
Liver	50	50	50	50
Basophilic Focus	0	1	9**	3
Eosinophilic Focus	1	0	0	2
Clear Cell Focus	2	3	2	3
Mixed Cell Focus	0	0	1	0
Hepatocellular Adenoma	· · · ,		· 、	
Overall rate ^c	6/50 (12%)	11/50 (22%)	9/50 (18%)	12/50 (24%)
Adjusted rate ^d	14.0%	26.0%	19.6%	27.9%
Terminal rate ^e	6/43 (14%)	10/41 (24%)	9/46 (20%)	12/43 (28%)
First incidence (days)	730 (T)	576	730 (Ť)	730 (T)
Logistic regression test ^f	P=0.140	P=0.118	P=0.337	P=0.094
Hepatocellular Carcinoma		•		•
Overall rate	4/50 (8%)	4/50 (8%)	6/50 (12%)	7/50 (14%)
Adjusted rate	9.0%	8.9%	12.8%	14.6%
Terminal rate	3/43 (7%)	1/41 (2%)	5/46 (11%)	3/43 (7%)
First incidence (days)	635	576	714	556
Logistic regression test	P=0.170	P=0.623N	P=0.369	P=0.257
Hepatocellular Adenoma or Carcin	noma ^g			· · ·
Overall rate	9/50 (18%)	14/50 (28%)	14/50 (28%)	18/50 (36%)
Adjusted rate	20.4%	31.7%	29.8%	38.1%
Terminal rate	8/43 (19%)	11/41 (27%)	13/46 (28%)	14/43 (33%)
First incidence (days)	635	576	714	556
		P=0.144	P=0.206	P=0.034

TABLE 12

Incidences of Neoplasms and Nonneoplastic Lesions of the Liver of Mice in the 2-Year Dermal Study of Diethylphthalate

TABLE 12

Incidences of Neoplasms and Nonneoplastic Lesions of the Liver of Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

Dose (µL)	0	7.5	15	30
Female		<u> </u>		
15-Month Interim Evaluation				
Liver	10	4	3	10
Hepatocellular Adenoma	3	0	0	1
Hepatocellular Carcinoma	0	0	0	1
2-Year Study				
Liver	50	51	50	50
Basophilic Focus	2	3	6	2
Clear Cell Focus	1 .	1	3	1
Eosinophilic Focus	1	4	3	3
Mixed Cell Focus	1	1	1	1
Hepatocellular Adenoma				
Overall rate	4/50 (8%)	12/51 (24%)	14/50 (28%)	10/50 (20%)
Adjusted rate	9.8%	30.6%	35.5%	24.8%
Terminal rate	4/41 (10%)	11/38 (29%)	12/37 (32%)	7/36 (19%)
First incidence (days)	730 (T)	675	586	456
Logistic regression test	P=0.127	P=0.017	P=0.006	P=0.075
Hepatocellular Carcinoma				
Overall rate	4/50 (8%)	5/51 (10%)	6/50 (12%)	3/50 (6%)
Adjusted rate	8.8%	11.7%	14.4%	7.1%
Terminal rate	2/41 (5%)	2/38 (5%)	2/37 (5%)	0/36 (0%)
First incidence (days)	591	560	644	645
Logistic regression test	P=0.297N	P=0.603	P=0.457	P=0.484N
Hepatocellular Adenoma or Carc	inoma ^h			
Overall rate	7/50 (14%)	16/51 (31%)	19/50 (38%)	12/50 (24%)
Adjusted rate	15.8%	37.8%	45.0%	28.6%
Terminal rate	5/41 (12%)	12/38 (32%)	14/37 (38%)	7/36 (19%)
First incidence (days)	591	560	586	456
Logistic regression test	P=0.231	P=0.029	P=0.005	P=0.161

** Significantly different (P≤0.01) from the control group by logistic regression

(T) Terminal sacrifice

^a Number of animals with liver examined microscopically

^b Number of animals with lesion

^c Number of animals with neoplasm per number of animals with liver examined microscopically

^d Observed incidence of animals surviving until the end of the study

Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for incurrent mortality
In the control column are the P values associated with the trend test. In the dosed group columns are the P values corresponding to pairwise comparisons between the controls and the dosed group. The logistic regression analysis regards these lesions as nonfatal. A negative trend or a lower incidence in a dose group is indicated by N.

^g Historical incidence for 2-year study with untreated control groups (mean \pm standard deviation): (Feed) 531/1,466

 $(36.2\% \pm 14.1\%)$; range 10%-68%; (Dermal, Acetone) 32/100 (32.0% ± 19.8%); range 18%-46% h Historical incidence: (Feed) 247/1 462 (16.9% ± 10.7%); range 3% 42%; (Dermal Acetone) 17/1

^h Historical incidence: (Feed) 247/1,462 (16.9% ± 10.7%); range 3%-42%; (Dermal, Acetone) 17/100 (17.0% ± 4.2%); range 14%-20%

1-YEAR INITIATION/PROMOTION STUDY OF DIETHYLPHTHALATE AND DIMETHYLPHTHALATE IN SWISS (CD-1[®]) MICE

Survival

A high incidence of mice in all TPA treated groups developed severe skin lesions which progressed to ulceration between days 25 and 60 of exposure. The TPA exposure concentrations and dosing regimen were adjusted to 0.025 mg/mL, two times per week at week 10. For TPA treated mice where ulcerative skin lesions persisted, an early, aggressive moribund sacrifice was conducted during weeks 20 and 21.

Estimates of the survival probabilities for male Swiss $(CD-1^{\textcircled{b}})$ mice are shown in Table 13 and the Kaplan-Meier curves in Figures 5a and 5b. Survival was significantly decreased in those mice treated with TPA and varied from 29% to 51% lower than that of the vehicle controls (acetone/acetone). Survival in other groups was similar to vehicle controls.

Body Weights and Clinical Findings

Concomitant body weight depressions occurred in most groups treated with TPA (Table 13, and Figures 6a and 6b). The most severe depression occurred in the initiation/promotion controls (DMBA/TPA). Mean body weights of mice treated only with either DEP or DMP (initiation controls or promotion controls) were similar to that of the vehicle controls (Table 13, and Figures 6a and 6b).

Skin at the site of application was examined for macroscopic changes before the beginning of the promotion regime and at weekly intervals thereafter. Macroscopic lesions generally appeared earlier and were more severe in groups treated with TPA. In these groups, skin irritation was evident at the site of application by 25 days of exposure, which subsequently developed into a severe life-threatening chronic exudative ulcerative dermatitis. These lesions persisted despite suspension of treatment. Irritation and ulceration at the site of application were also evident in promotion control mice treated with DEP or DMP. However, in general, the incidence was lower and length of the latency period increased.

Mice in groups receiving TPA also developed papillomatous nodular lesions within the site of application and in the adjacent skin. This was most prevalent in the positive controls (DMBA/TPA), but was also observed in other groups.

. . ·

TABLE 13

Survival and Mean Body Weights of Male Mice in the 1-Year Initiation/Promotion Dermal Study of Diethylphthalate/Dimethylphthalate^a

		· · · ·	Mean Body Weight	t (a)	Final Weight Relative to
Group	Survival ^b	Initial	Final	Change	Vehicle Control (%
DMP Initiation					
Acetone/Acetone	35/50	32.0	49.4	17.4	·
DMBA/Acetone	38/50	32.2	48.8	16.6	. 99
DMP/Acetone	38/50	32.2	47.9	15.7	97
DMP/TPA	13/50	32.5	46.7	14.2	95
DMP Promotion		·			
Acetone/Acetone	35/50	32.0	49.4	17.4	
Acetone/TPA	18/50	32.1	- 48.3	16.2	98
Acetone/DMP	40/50	32.6	47.3	14.7	96
DMBA/DMP	36/50	32.2	48.7	16.5	99
DEP Initiation	·			×	·
Acetone/Acetone	35/50	32.0	49.4	17.4	
DMBA/Acetone	38/50	32.2	48.8	16.6	99
DEP/Acetone	35/50	32.4	48.4	16.0	98
DEP/TPA	14/50	32.3	46.1	13.8	93
DEP Promotion					
Acetone/Acetone	35/50	32.0	49.4	17.4	
Acetone/TPA	18/50	32.1	46.2	14.1	94
Acetone/DEP	38/50	32.2	51.6	19.4	104
DMBA/DEP	42/50	32.6	47.6	15.0	96
Initiation/Promotio	n Control				
Acetone/Acetone	35/50	32.0	49.4	17.4	
DMBA/TPA	10/50	32.0	41.6	9.6	84

a TPA = 12-O-tetradecanoylphorbol-13-acetate DMBA = 7,12-dimethylbenz(a)anthracene DMP = dimethylphthalate DEP = diethylphthalate
b Number of animals surviving at 1 year/number initially in group

FIGURE 5b Kaplan-Meier Survival Curves for Male Mice in the 1-Year Initiation/Promotion Study

FIGURE 6b Growth Curves for Male Mice in the 1-Year Initiation/Promotion Study

Pathology Findings

This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplasms and nonneoplastic lesions of the skin and urinary bladder. Skin at the site of application and adjacent to the site of application was examined microscopically. All skin masses were counted and a maximum of five masses per animal were selected and identified for histopathologic examination. Lesions described below and considered to be related to chemical treatment include cutaneous neoplasms (squamous cell papillomas, squamous cell carcinomas, keratoacanthomas, and sebaceous gland adenomas) and ulcerative dermatitis (acanthosis, hyperkeratosis, ulceration, subacute inflammation, and exudation).

Skin, Site of Application: Acanthosis was the predominant and most consistently occurring lesion and varied from focally marked epidermal thickening and folding to irregular epidermal thickening involving

the entire surface of the section. These lesions were present in all groups but were considerably more prevalent in those groups promoted with TPA (Table 14). Almost invariably, acanthosis was accompanied by variable hyperkeratosis. While some acanthomatous lesions lacked ulceration, ulceration was also a common finding (Table 14). Often these acanthomatous, ulcerative lesions extended beyond the site of application. Ulceration within the site of application was accompanied by intense, subacute inflammation that extended deeply into the dermis. Superficially, the ulcers were covered by a coagulum composed of serofibrinous exudate, erythrocytes, dead leukocytes and necrotic cellular debris. Polymorphonuclear leukocytes predominated toward the surface (superficial dermis) of the ulcers, while mononuclear leukocytes predominated in the deeper more fibrotic portions. Occasional abscesses developed within the dermis or within the subcutis.

TABLE 14

Incidences of Skin Lesions of Male Mice in the 1-Year Initiation/Promotion Dermal Study of Diethylphthalate/Dimethylphthalate^a

	Acanthosis	Ulceration	Exudate	Hyperkeratosis	
Vehicle Control					
Acetone/Acetone	8/50	2/50	4/50	1/50	
Initiation Controls		2 2			
Acetone/DEP	9/50	5/50	8/50	6/50	
Acetone/DMP	11/49	6/49	7/49	4/49	
Promotion Controls			,		
DEP/Acetone	. 14/49	6/49	11/49	8/49*	
DMP/Acetone	9/50	3/50	5/50	1/50	
				•	
DEP or DMP Initiation		-		04/601	
Acetone/TPA	47/50*	23/50*	25/50*	34/50*	
DEP/TPA	43/49*	25/49*	32/49*	31/49*	
DMP/TPA	47/49*	27/49*	30/49*	34/49*	
DEP or DMP Promotion			· · ·	• .	
DMBA/Acetone	18/50*	7/50	10/50	13/50*	
DMBA/DEP	6/50	5/50	5/50	5/50	
DMBA/DMP	7/50	3/50	2/50	2/50	
Initiation/Promotion Control		•			
DMBA/TPA	46/49*	22/49*	32/49*	40/49*	

* Significantly different (P≤0.05) from the vehicle control group (acetone/acetone) by logistic regression

^a Incidences are for lesions which occurred at the site of application

In addition to the site of application, similar nonneoplastic lesions were observed in the skin adjacent to the site of application. The pattern of occurrence was similar to that at the site of application, the incidence of lesions being considerably greater for the TPA treated groups and less among the other treatment groups (Table 14). The incidence of nonneoplastic lesions in the control skin was negligible.

Cutaneous neoplasms that developed at the site of application were primarily squamous cell papillomas and squamous cell carcinomas. Squamous cell papillomas, often multiple, were the most prevalent of the skin neoplasms. Typical squamous cell papillomas were exophytic, arborizing, polypoid proliferations of the acanthotic, hyperkeratotic epidermis supported by a core of fibrovascular tissue that was contiguous with the subjacent dermis. The squamous epithelial cells were orderly in arrangement; however, the thickness of the epithelium varied. In most instances, the squamous cell papillomas were pedunculated arising from a single stalk, but occasionally were more broad based or sessile.

The highest incidence of both squamous cell papillomas and squamous cell carcinomas occurred among the initiation/promotion control animals initiated with DMBA and promoted with TPA. Rarely were squamous cell carcinomas observed in any other group (Table 15). Squamous cell carcinomas were generally well differentiated, consisting of proliferating nests or anastomosing cords of neoplastic squamous epithelium, which projected into the dermis. Often, nests of neoplastic cells had central concentrically arranged (keratin pearl) keratinization. Individual cell keratinization was also demonstrable. Cellular and nuclear atypia were often present and the cells in some areas of the neoplasms were spindle shaped.

Among the five control groups (vehicle control, DEP initiation control, DMP initiation control, DEP promotion control, or DMP promotion control), only one skin squamous cell papilloma and one squamous cell carcinoma were observed (Table 15). TPA, used in this study due to its demonstrated activity as a skin tumor promoter, induced a minor increase in the incidence of squamous cell papillomas. DMBA, used in this study as an initiator, also demonstrated some evidence of complete carcinogenicity, inducing nonsignificant increased incidences of both benign and malignant skin neoplasms (Table 15). The incidence of squamous cell papillomas, squamous cell carcinomas, and of squamous cell papillomas and carcinomas combined were significantly greater in the initiation/promotion control group than in either the DMBA initiation control group or the TPA promotion control group.

In contrast to the initiation/promotion control, no evidence of either initiating or promoting activity was observed for either DEP or DMP in this study. Only rarely were squamous cell carcinomas observed in the DEP or DMP initiation groups (Table 15). Of the groups initiated with either DEP or DMP, only those promoted with TPA developed increased incidences of squamous cell papillomas. Likewise, among the groups initiated with DMBA and promoted with either DEP or DMP, the incidence of squamous cell papillomas was low. No squamous cell carcinomas were detected in these groups, despite their rare occurrence in initiation controls.

Other: In DMP treated mice, the incidences of neoplasms in the DMP initiation control group and the DMP promotion control group were similar to those of the vehicle control. At skin sites other than the site of application, significantly fewer incidences of dermal acanthosis, exudation, and ulceration were observed in the DMP promotion control than in the vehicle control (Table 14). Microscopic calculi were more frequently detected in the urinary bladder of DMP promotion control mice (6/46) than in that of the vehicle controls (0/47). No other dose-related lesions were observed in DMP initiation control or DMP initiation control groups.

Based on the incidence of skin neoplasms diagnosed histologically and the multiplicity of skin neoplasms, there was no suggestion that either DEP or DMP was able to initiate skin carcinogenesis when chronically promoted by TPA. Sensitivity for detection of initiation effects may have been decreased by the lower survival among TPA treated mice. Further, there was no evidence that either DEP or DMP was able to promote skin carcinogenesis in skin previously initiated with DMBA.

TABLE 15

Incidences of Skin Neoplasms	of Male Mice in the 1-Year	· Initiation/Promotion Dermal Study
of Diethylphthalate/Dimethylph	nthalate ^a	

an a	Squamous Cell Papilloma	Squamous Cell Carcinoma	Squamous Cell Papilloma or Squamous Cell Carcinoma	•
	. «		- -	
Vehicle Control				
Acetone/Acetone	0/50	0/50	0/50	
Initiation Controls	•	•		
Acetone/DEP	0/50	0/50	0/50	· .
Acetone/DMP	0/49	0/49	0/49	
Promotion Controls		, <u> </u>		
DEP/Acetone	1/50	0/50	1/50	•
DMP/Acetone	0/50	0/50	0/50	
DEP or DMP Initiation				•
Acetone/TPA	5/50*	0/50	5/50*	: •
DEP/TPA	3/49*	0/49	3/49*	
DMP/TPA	3/49*	1/49	4/49*	
DEP or DMP Promotion			· · ·	
DMBA/Acetone	1/50	2/50	3/50	
DMBA/DEP	2/50	0/50	2/50	
DMBA/DMP	1/50	0/50	1/50	
Initiation/Promotion Control			·	
DMBA/TPA	23/49*	7/49*▲□	25/49*	

Significantly different (P \leq 0.05) from the vehicle control group (acetone/acetone) by logistic regression Significantly different (P \leq 0.05) from the promotion control group (DMBA/acetone) by logistic regression *

۸

□ a Significantly different (P≤0.05) from the initiation control group (acetone/TPA) by logistic regression

Incidences are for lesions which occurred at the site of application

GENETIC TOXICOLOGY

Diethylphthalate (10 to 10,000 μ g/plate) was tested by two laboratories for induction of gene mutations in *Salmonella typhimurium* strains TA98, TA100, TA1535, and TA1537 (Table E4; Zeiger *et al.*, 1985). Testing was performed using a preincubation protocol with and without Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9. High dose was limited by toxicity to 3,333 μ g/plate in the first laboratory, but reached the maximum concentration (10,000 μ g/plate) permitted by the testing protocol in the second laboratory. Negative results were obtained with diethylphthalate at both laboratories in all four tester strains.

In cytogenetic tests with cultured Chinese hamster ovary cells, diethylphthalate induced sister chromatid exchanges in the presence of Aroclor 1254-induced rat liver S9 (Table E5) but not chromosomal aberrations, with or without S9 (Table E6). Significant increases in sister chromatid exchanges were obtained at concentrations of 167 to 750 μ g/mL diethylphthalate. Cell cycle delay, indicative of chemicalrelated toxicity, was observed only at the 750 μ g/mL level. The small dose-related increase in chromosomal aberrations observed in the one trial without S9 was insufficient for a positive call because no single dose was significantly elevated above the control, and the trend test P value was not less than 0.003.

Dimethylphthalate (33 to 6,666 μ g/plate) did not induce gene mutations in *Salmonella typhimurium* strains TA98, TA100, TA1535, or TA1537, when tested in a preincubation protocol with and without Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9 (Table E1; Zeiger *et al.*, 1985).

In cytogenetic tests with cultured Chinese hamster ovary cells, dimethylphthalate induced sister chromatid exchanges in the presence, but not the absence, of Aroclor 1254-induced male Sprague-Dawley rat liver S9 (Table E2; Loveday *et al.*, 1990). Except for the positive response noted at 151 μ g/mL in the first trial with S9, concentrations above 1,000 μ g/mL were necessary to induce an increase in sister chromatid exchanges. The increases in sister chromatid exchanges observed after treatment with dimethylphthalate, although small, were well correlated with dose. Dimethylphthalate was less toxic to Chinese hamster ovary cells than was diethylphthalate in these studies.

No induction of chromosomal aberrations was observed in Chinese hamster ovary cells treated with dimethylphthalate with or without S9 (Table E3; Loveday *et al.*, 1990). Two trials were conducted with S9, one using the standard 12-hour incubation period and the second using an extended incubation time of 20.5 hours to ensure that harvested Chinese hamster ovary cells were exposed to dimethylphthalate for at least one complete cell cycle. No significant increase in chromosomal aberrations was noted in either trial, where the highest dose tested was 5,100 μ g/mL.

In conclusion, neither dimethylphthalate nor diethylphthalate induced mutations in Salmonella or chromosomal aberrations in Chinese hamster ovary cells. However, both chemicals induced sister chromatid exchanges in Chinese hamster ovary cells in the presence of S9. A comparative evaluation of in vitro genetic toxicity and rodent bioassay test results by the NTP showed that, although the positive sister chromatid exchange test might indicate a potential for in vivo DNA damage, this endpoint is highly sensitive and does not correlate well with carcinogenic effects in rodents (Tennant et al., 1987; Zeiger et al., 1990). Only 64% of chemicals which induced sister chromatid exchanges in vitro were also carcinogenic in rats and/or mice. Thus, positive results in the sister chromatid exchange test have a low positive predictivity for carcinogenicity in rodents. The negative results obtained in the other in vitro genetic toxicity tests with dimethylphthalate and diethylphthalate do not further aid in classifying the chemicals as to their activity in the rodent bioassay. In the NTP evaluation of in vitro genetic toxicity tests, only about 50% of the nonmutagens were also found to be noncarcinogens.

DISCUSSION AND CONCLUSIONS

Diethylphthalate (DEP) and dimethylphthalate (DMP) are phthalate plasticizers used in the manufacture of a variety of products such as vinyl swimming pools, vinyl seats, safety glass, toothbrushes, toys, and clothing. DEP is also used in cosmetics such as eye shadows, perfumes and fragrances, hair sprays, and nail polishes. Additionally, DEP and DMP are primary ingredients or carriers in the manufacture of nonplasticized products such as solvents, varnishes, dyes, perfumes, coating agents for foodstuffs, and insecticides. Because of the high exposure potential and lack of long-term toxicity or carcinogenicity information, the U.S. Environmental Protection Agency nominated DEP to the NTP for testing.

This report presents no evidence for chronic toxicity or carcinogenicity at the site of application by DEP (104 weeks in rats and mice) or DMP (52 weeks in mice). These studies also included examination of both DEP and DMP for activity as initiators or promoters in a dermal initiation/promotion protocol. DEP and DMP were negative for skin carcinogenesis despite recent evidence suggesting that a related phthalate, diethylhexylphthalate, activates growthregulatory signal transduction pathways in hepatic epithelial cells leading to the induction of the immediate-early nuclear proto-oncogenes *fos* and *jun*, potentially through a pathway involving protein kinase C (Ledwith *et al.*, 1993).

Systemically, however, the marginal increase in hepatocellular neoplasms induced by DEP in male and female mice merits further consideration. Previous studies have demonstrated the positive hepatocarcinogenicity of the related chemicals di(2-ethylhexyl)phthalate (DEHP; NTP, 1982a) and di(2-ethylhexyl)adipate (DEHA; NTP, 1982b). The route of chemical exposure (dermal) in the current DEP and DMP studies differed from the DEHP and DEHA feed studies. Doses of DEP and DMP administered to rats and mice in these studies were limited primarily by volume considerations and not systemic toxicity. The highest mouse dermal exposure was 30 μ L per day (approximately 1.3 g/kg body weight per day). Estimates from dermal toxicokinetic studies suggest that approximately 20% of the applied dose may have been absorbed daily (Elsisi *et al.*, 1989). Previous DEHP feed studies (positive for hepatocarcinogenicity in male and female mice at 0.6%, and male and female rats at 1.2%; NTP, 1982a) and in DEHA feed studies (positive in male and female mice at 2.5%; NTP, 1982b) used similar daily dietary dosages (e.g., DEHP mice: 1.3 to 1.8 g/kg body weight per day). Unlike dermal studies, rapid, extensive absorption of phthalates occurs through the oral route of exposure (International Labour Office, 1983). The site of application was not occluded, so a portion of the dose administered may have been ingested during grooming.

DEP is considered a weak peroxisome proliferator (Moody and Reddy, 1978, 1982). Many peroxisome proliferators have induced hepatocellular neoplasia in long-term rodent studies; however, the mechanism of action of this class of chemicals is still poorly understood (Conway et al., 1989). Neither peroxisome proliferation nor enhanced hepatocellular replication were estimated in this study, two physiological responses associated previously with the hepatocarcinogenic activity of peroxisome proliferators in rodents. Hepatomegaly and hepatocellular hypertrophy were observed in the higher dose groups of rats and mice in the 4-week studies. These effects are often a component of other pleiotropic responses induced by peroxisome-proliferating chemicals such as proliferation of smooth endoplasmic reticulum, induction of microsomal enzymes, peroxisome proliferation, and enhanced cell replication. Liver weight increases were not observed at lower doses in the 4-week studies or in any dose group at the 15-month interim evaluation of the 2-year studies.

The induction of hepatic neoplasms in rats by peroxisome proliferators has been associated with the promotion of altered basophilic foci (Cattley *et al.*, 1991). An increased incidence of basophilic foci was observed in male mice in the 2-year study; however, no dose-related trend was apparent and no statistically significant increased incidence was observed in female mice. Altered hepatic foci incidence values are an insensitive measure of liver foci increases and the preferred method, stereological evaluation, has been employed frequently in initiation/promotion models of hepatocarcinogenesis (Cattley and Popp, 1989). It is also unknown whether basophilic foci observed in mice possess an important biologic role in neoplasm progression, as has been suggested for the rat following peroxisome proliferator exposure (Marsman and Popp, 1994).

With no significant effect of DEP on survival or body weight of female rats, the decreased incidence of mammary gland fibroadenomas may be an effect attributable to chemical treatment. Hormonal alterations have been implicated in the reproductive toxicity of several other phthalates (testicular germinal atrophy, ovarian follicular cysts; Heindel and Powell, 1992) and in the testicular carcinogenicity of several other peroxisome proliferators (Fitzgerald et al., 1981; Biegel et al., 1992). However no reports of peroxisome proliferator-induced effects on mammary gland fibroadenomas were found in the literature. The potent peroxisome proliferator and adrenal steroid hormone, dehydroxyepiandrosterone (DHEA), is known to have anticarcinogenic properties in addition to its carcinogenic properties (Rao et al., 1992).

CONCLUSIONS

Under the conditions of these 2-year dermal studies, there was no evidence of carcinogenic activity* of diethylphthalate in male or female F344/N rats receiving 100 or 300 μ L. The sensitivity of the male rat study was reduced due to low survival in all groups. There was equivocal evidence of carcinogenic activity of diethylphthalate in male and female B6C3F₁ mice based on increased incidences of hepatocellular neoplasms, primarily adenomas.

In an initiation/promotion model of skin carcinogenesis, there was no evidence of initiating activity of diethylphthalate or dimethylphthalate in male Swiss $(CD-1^{\textcircled{B}})$ mice. Further, there was no evidence of promotion activity of diethylphthalate or dimethylphthalate in male Swiss $(CD-1^{\textcircled{B}})$ mice. The promoting activity of TPA following DMBA initiation was confirmed in these studies.

Minor dermal acanthosis was observed following dermal application of diethylphthalate in male and female F344/N rats dosed for 2 years and in male Swiss (CD-1[®]) mice dosed for 1 year.

 Explanation of Levels of Evidence of Carcinogenic Activity is on page 10. A summary of the Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appears on page 12.

REFERENCES

Agarwal, D.K., Lawrence, W.H., Nunez, L.J., and Autian, J. (1985). Mutagenicity evaluation of phthalic acid esters and metabolites in Salmonella typhimurium cultures. J. Toxicol. Environ. Health 16, 61-69.

Agency for Toxic Substances and Disease Registry (ATSDR) (1993). Toxicological profile for diethyl phthalate, U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, draft version.

American Conference of Governmental Industrial Hygienists (ACGIH) (1991). Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices for 1991-1992. Cincinnati, OH.

Armitage, P. (1971). Statistical Methods in Medical Research, pp. 362-365. John Wiley and Sons, New York.

Ashby, J., and Tennant, R.W. (1991). Definitive relationships among chemical structure, carcinogenicity, and mutagenicity for 301 chemicals tested by the U.S. NTP. *Mutat. Res.* 257, 229-306.

Autian, J. (1973). Toxicity and health threats of phthalate esters: Review of the literature. *Environ. Health Perspect.* 4, 3-26.

Autian, J. (1980). Plastics. In Casarett and Doull's Toxicology: The Basic Science of Poisons, (J. Doull, C.D. Klaassen, and M.O. Amdur, Eds.), 2nd ed., pp. 531-556. Macmillan Publishing Co., Inc., New York.

Biegel, L.B., Hurtt, M.E., Frame, S.R., Applegate, M., O'Connor, J.C., and Cook, J.C. (1992). Comparison of the effects of Wyeth-14,643 in Crl:CD BR and Fisher-344 rats. *Fundam. Appl. Toxicol.* 19, 590-597.

Blevins, R.D., and Taylor, D.E. (1982). Mutagenicity screening of twenty-five cosmetic ingredients with the Salmonella/microsome test. J. Environ. Sci. Health. A17, 217-239.

Boorman, G.A., Montgomery, C.A., Jr., Eustis, S.L., Wolfe, M.J., McConnell, E.E., and Hardisty, J.F. (1985). Quality assurance in pathology for rodent carcinogenicity studies. In *Handbook of Carcinogen Testing* (H.A. Milman and E.K. Weisburger, Eds.), pp. 345-357. Noyes Publications, Park Ridge, NJ.

The British Industrial Biological Research Association (BIBRA) Working Group (1989). Diethyl phthalate: Toxicity profile.

Brown, D., Butterworth, K.R., Gaunt, I.F., Grasso, P., and Gangolli, S.D. (1978). Short-term oral toxicity study of diethyl phthalate in the rat. *Food Cosmet. Toxicol.* 16, 415-422.

Callahan, M.A., Slimak, M.A., and Gabel, N.W. (1979). Water-related environmental fate of 129 priority pollutants. EPA-440/4 79-029a. Vol. I, pp. 94-95. U.S. Environmental Protection Agency, Washington, DC.

Castle, L., Mercer, A.J., Startin, J.R., and Gilbert, J. (1988). Migration from plasticized films into foods: 3. Migration of phthalate, sebacate, citrate and phosphate esters from films used for retail food packaging. *Food Addit. Contam.* 5, 9-20.

Castle, L., Mayo, A., and Gilbert, J. (1989). Migration of plasticizers from printing inks into foods. *Food Addit. Contam.* 6, 437-443.

Castle, L., Gilbert, J., and Eklund, T. (1990). Migration of plasticizer from poly(vinyl chloride) milk tubing. *Food Addit. Contam.* 7, 591-596.

Cattley, R.C., and Popp, J.A. (1989). Differences between the promoting activities of the peroxisome proliferator Wy-14,643 and phenobarbital in rat liver. *Cancer Res.* 49, 3246-3251.

Cattley, R.C., Marsman, D.S., and Popp, J.A. (1991). Age-related susceptibility in the carcinogenic effect of the peroxisome proliferator Wy-14,643 in rat liver. *Carcinogenesis* 12, 469-473.

Diethylphthalate/Dimethylphthalate, NTP TR 429

Code of Federal Regulations (CFR) 21, Part 58.

Conway, J.G., Cattley, R.C., Popp, J.A., and Butterworth, B.E. (1989). Possible mechanisms in hepatocarcinogenesis by the peroxisome proliferator di(2ethylhexyl)phthalate. *Drug Metab. Rev.* 21, 65-102.

Cosmetic Ingredient Review Panel (CIRP) (1985). Final report on the safety assessment of dibutyl phthalate, dimethyl phthalate, and diethyl phthalate. J. Am. Coll. Toxicol. 4, 267-303.

Cox, D.R. (1972). Regression models and life-tables. J. R. Stat. Soc. B34, 187-220.

Crawford, B.D. (1985). Perspectives on the somatic mutation model of carcinogenesis. In Advances in Modern Environmental Toxicology: Mechanisms and Toxicity of Chemical Carcinogens and Mutagens (M.A. Mehlman, W.G. Flamm, and R.J. Lorentzen, Eds.), pp. 13-59. Princeton Scientific Publishing Co. Inc., Princeton, NJ.

DeVault, D.S. (1985). Contaminants in fish from Great Lakes harbors and tributary mouths. Arch. Environ. Contam. Toxicol. 14, 587-594.

Dinse, G.E., and Haseman, J.K. (1986). Logistic regression analysis of incidental-tumor data from animal carcinogenicity experiments. *Fundam. Appl. Toxicol.* 6, 44-52.

Dinse, G.E., and Lagakos, S.W. (1983). Regression analysis of tumour prevalence data. *Appl. Statist.* **32**, 236-248.

Dunn, O.J. (1964). Multiple comparisons using rank sums. *Technometrics* 6, 241-252

Dunnett, C.W. (1955). A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50, 1096-1121.

Elsisi, A.E., Carter, D.E., and Sipes, I.G. (1989). Dermal absorption of phthalate diesters in rats. *Fundam. Appl. Toxicol.* **12**, 70-77.

Fitzgerald, J.E., Sanyer, J.L., Schardein, J.L., Lake, R.S., McGuire, E.J., and de la Iglesia, F.A. (1981). Carcinogen bioassay and mutagenicity studies with the hypolipidemic agent gemfibrozil. *JNCI* 67, 1105-1116. Florin, I., Rutberg, L., Curvall, M., and Enzell, C.R. (1980). Screening of tobacco smoke constituents for mutagenicity using the Ames' test. *Toxicology 15*, 219-232.

Food Research Laboratories, Inc. (1955). Toxicological studies of diethyl phthalate. Laboratory No. 67567. Celanese Corp. of America. Summit Research Laboratories, Summit, NJ.

Galloway, S.M., Armstrong, M.J., Reuben, C., Colman, S., Brown, B., Cannon, C., Bloom, A.D., Nakamura, F., Ahmed, M., Duk, S., Rimpo, J., Margolin, B.H., Resnick, M.A., Anderson, B., and Zeiger, E. (1987). Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. *Environ. Mol. Mutagen.* 10 (Suppl. 10), 1-175.

Gart, J.J., Chu, K.C., and Tarone, R.E. (1979). Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62, 957-974.

Gleiberman, S.E., Kotova, I.A., Nikolaev, G.M., and Iurchenko, V.V. (1978). Pharmacokinetics of dimethylphthalate [in Russian]. *Med. Parazitol. Parazit. Bolezni.* 47, 58-63.

Gollamudi R., Lawrence, W.H., Rao, R.H., and Autian, J. (1985). Effects of phthalic acid esters on drug metabolizing enzymes of rat liver. J. Appl. Toxicol. 5, 368-371.

Hansch, C. and Leo, A.J., Eds. (1985). Constants for Substituent Correlation Analysis in Chemistry and Biology., John Wiley and Sons, New York

Haseman, J.K. (1984). Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. *Environ. Health Perspect.* 58, 385-392.

Haseman, J.K., Huff, J., and Boorman, G.A. (1984). Use of historical control data in carcinogenicity studies in rodents. *Toxicol. Pathol.* 12, 126-135.

Haseman, J.K., Huff, J.E., Rao, G.N., Arnold, J.E., Boorman, G.A., and McConnell, E.E. (1985). Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. JNCI 75, 975-984.

66

References

Hathway, D.E. (1972). Biotransformations. Part 12: Other Compounds. In Foreign Compound Metabolism in Mammals. Volume 2: A Review of the Literature Published in 1970 and 1971, p. 315. The Chemical Society, London.

Hawley, G.G., Ed. (1981). The Condensed Chemical Dictionary, 10th ed. Van Nostrand Reinhold Company, New York.

Heindel, J.J., and Powell, C.J. (1992). Phthalate ester effects on rat Sertoli cell function *in vitro*: Effects of phthalate side chain and age of animal. *Toxicol. Appl. Pharmacol.* 115, 116-123.

Hollander, M., and Wolfe, D.A. (1973). Nonparametric Statistical Methods, pp. 120-123. John Wiley and Sons, New York.

Howard, P.H., Banerjee, S., and Robillard, K.H. (1985). Measurement of water solubilities, octanol/ water partition coefficients and vapor pressures of commercial phthalate esters. *Env. Tox. Chem.* 4, 653-661.

International Labour Office (1983). Encyclopedia of Occupational Health and Safety, Vol. I and II. International Labour Office, Geneva, Switzerland.

Ioku, T., et al. (1976). [In Japanese]. Yakuri To Chiryo 4, 510-514.

Ishidate, M., Jr., and Odashima, S. (1977). Chromosome tests with 134 compounds on Chinese hamster cells in vitro: A screening test for chemical carcinogens. *Mutat. Res.* 48, 337-354.

Jonckheere, A.R. (1954). A distribution-free k-sample test against ordered alternatives. *Biometrika* 41, 133-145.

Kamrin, M.A., and Mayor, G.H. (1991). Diethyl phthalate: A perspective. J. Clin. Pharmacol. 31, 484-489.

Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation of incomplete observations. J. Am. Stat. Assoc. 53, 457-481.

Kayser, R.D., Sterling, D., and Viviani, D., Eds. (1982). Intermediate Priority Pollutant Guidance Documents. U.S. Environmental Protection Agency, Washington, DC.

Kozumbo. W.J., and Rubin. R.J. (1991). Mutagenicity and metabolism of dimethyl phthalate and its binding epidermal and to hepatic macromolecules. Toxicol. Environ. Health J. 33, 29-46.

Kozumbo, W.J., Kroll, R., and Rubin, R.J. (1982). Assessment of the mutagenicity of phthalate esters. *Environ. Health Perspect.* 45, 103-109.

Lake, B.G., Phillips, J.C., Linnell, J.C.J., and Gangolli, S.D. (1977). The *in vitro* hydrolysis of some phthalate diesters by hepatic and intestinal preparations from various species. *Toxicol. Appl. Pharmacol.* **39**, 239-248.

Lamb, J.C., IV, Chapin, R.E., Teague, J., Lawton, A.D., and Reel, J.R. (1987). Reproductive effects of four phthalic acid esters in the mouse. *Toxicol. Appl. Pharmacol.* 88, 225-269.

Ledwith, B.J., Manam, S., Troilo, P., Joslyn, D.J., Galloway, S.M., and Nichols, W.W. (1993). Activation of immediate-early gene expression by peroxisome proliferators in vitro. *Mol. Carcinog.* 8, 20-27.

Lee H.-Y., Kalmus, G.W., and Levin, M.A. (1974). Effects of phthalate esters (plasticizers) on chick embryos and chick embryonic cells. *Growth* 38, 301-312.

Lefaux, R. (1968). *Practical Toxicology of Plastics* (P.P. Hopf, Ed.), pp. 136. CRC Press, Cleveland, OH.

Loveday, K.S., Anderson, B.E., Resnick, M.A., and Zeiger, E. (1990). Chromosome aberration and sister chromatid exchange tests in Chinese hamster ovary cells in vitro. V: Results with 46 chemicals. *Environ. Mol. Mutagen.* 16, 272-303.

McConnell, E.E., Solleveld, H.A., Swenberg, J.A., and Boorman, G.A. (1986). Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. JNCI 76, 283-289.

McFall, J.A., Antoine, S.R., and DeLeon, I.R. (1985). Base-neutral extractable organic pollutants in biota and sediments from Lake Ponchartrain. *Chemosphere* 14, 1561-1569.

McKnight, B., and Crowley, J. (1984). Tests for differences in tumor incidence based on animal carcinogenesis experiments. J. Am. Stat. Assoc. 79, 639-648. Mackison, F.W., Stricoff, R.S., and Partridge, L.J., Jr., Eds. (1981). NIOSH/OSHA - Occupational Health Guidelines for Chemical Hazards. DHHS (NIOSH) Publication No. 81-123 (3 vols.). U.S. Government Printing Office, Washington, DC.

Maronpot, R.R., and Boorman, G.A. (1982). Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. *Toxicol. Pathol.* **10**, 71-80.

Marsman, D.S., and Popp, J.A. (1994). Biological potential of basophilic hepatocellular foci and hepatic adenoma induced by the peroxisome proliferator, Wy-14,643. *Carcinogenesis* 15, 111-117.

Menzie, C.M. (1974). Metabolism of pesticides, an update. Special Scientific Report, Wildlife No. 184. U.S. Department of the Interior, Fish, Wildlife Service, Washington, DC.

The Merck Index (1983). 10th ed. (M. Windholz, Ed.), Merck and Company, Rahway, N.J.

Miller, J.A., and Miller, E.C. (1977). Ultimate chemical carcinogens as reactive mutagenic electrophiles. In *Origins of Human Cancer* (H.H. Hiatt, J.D. Watson, and J.A. Winsten, Eds.), pp. 605-627. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Moody, D.E., and Reddy, J.K. (1978). Hepatic peroxisome (microbody) proliferation in rats fed plasticizers and related compounds. *Toxicol. Appl. Pharmacol.* **45**, 497-504.

Moody, D.E., and Reddy, J.K. (1982). Serum triglyceride and cholesterol contents in male rats receiving diets containing plasticizers and analogues of the ester 2-ethylhexanol. *Toxicol. Lett.* **10**, 379-383.

National Cancer Institute (NCI) (1976). Guidelines for Carcinogen Bioassay in Small Rodents. Technical Report Series No. 1. NIH Publication No. 76-801. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. National Cancer Institute (NCI) (1979a). Bioassay of Dimethyl Terephthalate for Possible Carcinogenicity (CAS No. 120-61-6). Technical Report Series No. 121. NIH Publication No. 79-1376. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

National Cancer Institute (NCI) (1979b). Bioassay of Phthalic Anhydride for Possible Carcinogenicity (CAS No. 85-44-9). Technical Report Series No. 159. NIH Publication No. 79-1715. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

National Cancer Institute (NCI) (1979c). Bioassay of Phthalamide for Possible Carcinogenicity (CAS No. 88-96-0). Technical Report Series No. 161. NIH Publication No. 79-1717. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

National Institute for Occupational Safety and Health (NIOSH) (1990). National Occupational Exposure Survey (NOES) (1981-1983), unpublished provisional data as of January 1, 1990. NIOSH, Cincinnati, OH.

National Institutes of Health (NIH) (1978). Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

National Research Council (NRC) (1991). Companion Guide to Infections Diseases of Mice and Rats. pp. 43.

National Toxicology Program (NTP) (1982a). Carcinogenesis Bioassay of Di(2-Ethylhexyl)Phthalate (CAS No. 117-81-7) in F344 Rats and $B6C3F_1$ Mice (Feed Study). Technical Report Series No. 217. NIH Publication No. 82-1773. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC, and Bethesda, MD.

References

National Toxicology Program (NTP) (1982b). Carcinogenesis Bioassay of Di(2-Ethylhexyl)Adipate (CAS No. 103-23-1) in F344 Rats and $B6C3F_1$ Mice (Feed Study). Technical Report Series No. 212. NIH Publication No. 81-1768. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC, and Bethesda, MD.

National Toxicology Program (NTP) (1982c). Carcinogenesis Bioassay of Butyl Benzyl Phthalate (CAS No. 85-68-7) in F344/N Rats and $B6C3F_1$ Mice (Feed Study). Technical Report Series No. 213. NIH Publication No. 82-1769. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC, and Bethesda, MD.

National Toxicology Program (NTP) (1983). Carcinogenesis Bioassay of Diallyl Phthalate (CAS No. 131-17-9) in $B6C3F_1$ Mice (Gavage Study). Technical Report Series No. 242. NIH Publication No. 83-1798. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC, and Bethesda, MD.

National Toxicology Program (NTP) (1984). Final report: Diethyl phthalate: Reproduction and fertility assessment in CD-1 mice when administered in the feed. National Toxicology Program and National Institute of Environmental Health Sciences.

National Toxicology Program (NTP) (1985). Toxicology and Carcinogenesis Studies of Diallylphthalate (CAS No. 131-17-9) in F344/N Rats (Gavage Studies). Technical Report Series No. 284. NIH Publication No. 85-2540. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.

National Toxicology Program (NTP) (1988). Developmental Toxicity Evaluation of Diethyl Phthalate (Cas No. 84-66-2) Administered to CD Rats on Gestational Days 6 Through 15. Final Report Prepared by Research Triangle Institute under NIEHS Contract No. N01-E5-55080; NTP-86-CTER-104. National Toxicology Program (NTP) (1989). Developmental Toxicity Evaluation of Dimethyl Phthalate (Cas No. 131-11-3) Administered to CD Rats on Gestational Days 6 Through 15. Final Report Prepared by Research Triangle Institute under NIEHS Contract No. N01-E5-55080; NTP-86-CTER-105.

National Toxicology Program (NTP) (1994). Toxicity Studies of Dibutyl Phthalate (CAS No. 84-74-2) Administered in Feed to F334/N Rats and B6C3F₁ Mice. Toxicity Report Series No. 30. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.

Oishi, S., and Hiraga, K. (1980). Testicular atrophy induced by phthalic acid esters: effect on testosterone and zinc concentrations. *Toxicol. Appl. Pharmacol.* 53, 35-41.

Oliwiecki, S., Beck, M.H., and Chalmers, R.J.G. (1991). Contact dermatitis from spectacle frames and hearing aid containing diethyl phthalate. *Contact Dermatitis* 25, 264-265.

Omori, Y. (1976). Recent progress in safety evaluation studies on plasticizers and plastics and their controlled use in Japan. *Environ. Health Perspect.* 17, 203-209.

Patty's Industrial Hygiene and Toxicology (1981). 3rd ed. (G.D. Clayton and F.E. Clayton, Eds.), Vol. 2A, pp. 2259-2412. John Wiley and Sons, New York.

Peterson, J.C., and Freeman, D.H. (1982). Phthalate ester concentration variations in dated sediment cores from the Chesapeake Bay. *Environ. Sci. Tech.* 16, 464-469.

Plasterer, M.R., Bradshaw, W.S., Booth, G.M., Carter, M.W., Schuler, R.L., and Hardin, B.D. (1985). Developmental toxicity of nine selected compounds following prenatal exposure in the mouse: Naphthalene, *p*-nitrophenyl, sodium selenite, dimethyl phthalate, ethylenethiourea, and four glycol ether derivatives. J. Toxicol. Environ. Health 15, 25-38.

Rao, M.S., Subbarao, V., Yeldandi, A.V., and Reddy, J.K. (1992). Inhibition of spontaneous testicular Leydig cell tumor development in F-344 rats by dehydroepiandrosterone. *Cancer Lett.* 65, 123-126.

Diethylphthalate/Dimethylphthalate, NTP TR 429

Sadtler Standard Spectra. Sadtler Research Laboratories, Philadelphia, PA.

Sax, N.I., Ed. (1984). Dangerous Properties of Industrial Materials, 6th ed. Van Nostrand Reinhold Company, New York.

Scott, R.C., Dugard, P.H., Ramsey, J.D., and Rhodes, C. (1987). In vitro absorption of some o-phthalate diesters through human and rat skin. Environ. Health Perspect. 74, 223-227.

Seed, J.L. (1982). Mutagenic activity of phthalate esters in bacterial liquid suspension assays. *Environ. Health Perspect.* **45**, 111-114.

Shirley, E. (1977). A non-parametric equivalant of Williams' test for contrasting increasing dose levels of a treatment. *Biometrics* 33, 386-389.

Singh, A.R., Lawrence, W.H., and Autian, J. (1972). Teratogenicity of phthalate esters in rats. J. Pharm. Sci. 61, 51-55.

Singh, A.R., Lawrence, W.H., and Autian, J. (1975). Maternal-fetal transfer of ¹⁴C-di-2-ethylhexyl phthalate and ¹⁴C-diethyl phthalate in rats. *J. Pharm. Sci.* 64, 1347-1350.

Stanford Research Institute (SRI) Production (1991). Directory of chemical producers: United States of America. SRI International, 885. Menlo Park, CA

Staples, C.A., Werner, A.F., and Hoogheem, T.J. (1985). Assessment of priority pollutant concentrations in the United States using STORET database. *Environ. Toxicol. Chem.* 4, 131-142.

Straus, D.S. (1981). Somatic mutation, cellular differentiation, and cancer causation. JNCI 67, 233-241.

Tanaka, C., Siratori, K., Ikegami, K., and Wakisaka, Y. (1987). A teratological evaluation following dermal application of diethyl phthalate to pregnant mice [in Japanese]. Oyo Yakuri (Pharmacometrics) 33, 387-392.

Tarone, R.E. (1975). Tests for trend in life table analysis. *Biometrika* 62, 679-682.

Tennant, R.W., Margolin, B.H., Shelby, M.D., Zeiger, E., Haseman, J.K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R. (1987). Prediction of chemical carcinogenicity in rodents from *in vitro* genetic toxicity assays. *Science* 236, 933-941 U.S. Environmental Protection Agency (USEPA) (1980). Ambient Water Quality Criteria Document: Phthalate esters. (EPA-440/5-80-067), p. C12. U.S. Environmental Protection Agency, Washington, DC.

U.S. International Trade Commission (USITC) (1985). Synthetic Organic Chemicals: United States Production and Sales, 1984. USITC Publication 1745. U.S. Government Printing Office, Washington, DC.

van Nesselrooij, J.H.J., Kuper, C.F., and Bosland, M.C. (1992). Correlations between presence of spontaneous lesions of the pituitary (adenohypophysis) and plasma prolactin concentration in aged Wistar rats. Vet. Pathol. 29, 288-300.

Walseth, F., Toftgård, R., and Nilsen, O.G. (1982). Phthalate esters I: Effects of cytochrome P-450 mediated metabolism in rat liver and lung, serum enzymatic activities and serum protein levels. *Arch. Toxicol.* 50, 1-10.

Weast, R.C., Ed. (1986). CRC Handbook of Chemistry and Physics, 67th ed. CRC Press, Inc., Boca Raton, FL.

Weast, R.C., Ed. (1987). CRC Handbook of Chemistry and Physics, 68th ed. CRC Press, Inc., Boca Raton, FL.

Williams, D.A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose control. *Biometrics* 27, 103-117.

Williams, D.A. (1972). The comparison of several dose levels with a zero dose control. *Biometrics* 28, 519-531.

Worthing, C.R., and Walker, S.B., Eds. (1987). The Pesticide Manual. A World Compendium, 8th ed. The British Crop Protection Council, Thornton Heath, UK.

Zeiger, E., Haworth, S., Mortelmans, K., and Speck, W. (1985). Mutagenicity testing of di(2-ethylhexyl)phthalate and related chemicals in Salmonella. Environ. Mutagen. 7, 213-232.

Zeiger, E., Haseman, J.K., Shelby, M.D., Margolin, B.H., and Tennant, R.W. (1990). Evaluation of four in vitro genetic toxicity tests for predicting rodent carcinogenicity: Confirmation of earlier results with 41 additional chemicals. *Environ. Mol. Mutagen.* 16 (Suppl. 18), 1-14.

70
·

۰. -

APPENDIX A SUMMARY OF LESIONS IN MALE RATS IN THE 2-YEAR DERMAL STUDY OF DIETHYLPHITHALATE

TABLE A1	Summary of the Incidence of Neoplasms in Male Rats	
	in the 2-Year Dermal Study of Diethylphthalate	72
TABLE A2	Individual Animal Tumor Pathology of Male Rats	
	in the 2-Year Dermal Study of Diethylphthalate	76
TABLE A3	Statistical Analysis of Primary Neoplasms in Male Rats	
	in the 2-Year Dermal Study of Diethylphthalate	94
TABLE A4a	Historical Incidence of Pituitary Gland (Pars Distalis) Adenomas	
	in Untreated Male F344/N Rats	97
TABLE A4b	Historical Incidence of Leukemia in Untreated Male F344/N Rats	98
TABLE A4c	Historical Incidence of Adenomas of the Testis	
	in Untreated Male F344/N Rats	99
TABLE A5	Summary of the Incidence of Nonneoplastic Lesions in Male Rats	
	in the 2-Year Dermal Study of Diethylphthalate	100

71

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Dermal Study of Diethylphthalate^a

	0 μL	100 µL	300 µL
Disposition Summary		······································	
Animals initially in study	60	60	60
15-Month interim evaluation	10	10	9
Early deaths	**	***	
Moribund	31	38	26
Natural deaths	15	6	19
Survivors	10	v	17
Died last week of study	1		
Terminal sacrifice	3	6	6
	5	Ŷ	U .
Animals examined microscopically	60	56	60
	· · · · · · · · · · · · · · · · · · ·	· ·	
15-Month Interim Evaluation			
Endocrine System			
Adrenal gland, medulla	(10)		(9)
Pheochromocytoma benign	1 (10%)		(0)
Islets, pancreatic			
Adenoma	(1) 1 (100%)		
Pituitary gland	(10)		(9)
Pars distalis, adenoma	4 (40%)		5 (56%)
Thyroid gland	(10)		(9)
C-cell, adenoma	1 (10%)		
Cardiovascular System General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System			
General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System			
General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System 			
General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System 2-Year Study Alimentary System			
General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System 	(41)	(47)	(44)
General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System 2-Year Study Alimentary System		(47)	(44) 2 (5%)
General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System 	(41) (50)	(47) (50)	
General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System 	(50)		2 (5%)
General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System 	(50) 1 (2%)	(50)	2 (5%) (51)
General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System	(50) 1 (2%) (4)	(50) (3)	2 (5%) (51) 1 (2%)
General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System	(50) 1 (2%)	(50) (3) (50)	2 (5%) (51) 1 (2%) (1)
General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System	(50) 1 (2%) (4) (50)	(50) (3)	2 (5%) (51) 1 (2%) (1)
General Body System Genital System Hematopoietic System Integumentary System Musculoskeletal System Nervous System Respiratory System Special Senses System Urinary System	(50) 1 (2%) (4)	(50) (3) (50)	2 (5%) (51) 1 (2%) (1)

	ΟμL	100 μL	300 µL	
2-Year Study (continued)				
Alimentary System (continued)				
Salivary glands	(48)	(50)	(50)	
Fibrosarcoma		1 (2%)		
Stomach, forestomach	(49)	(50)	(50)	
Papilloma squamous	2 (4%)	2 (4%)	3 (6%)	
Cardiovascular System				
Heart	(50)	(50)	(50)	
Endocrine System				
Adrenal gland, cortex	(49)	(50)	(50)	
Adenoma	(**)	1 (2%)	(50)	
Adrenal gland, medulla	• (49)	(50)	(48)	
Pheochromocytoma malignant	()	1 (2%)	1 (2%)	
Pheochromocytoma benign	14 (29%)	8 (16%)	8 (17%)	
Pheochromocytoma benign, multiple		1 (2%)		
slets, pancreatic	(49)	(50)	(49)	
Adenoma	6 (12%)	10 (20%)	7 (14%)	
Adenoma, multiple		1 (2%)		
Carcinoma		1 (2%)		
Parathyroid gland	(47)	(49)	(48)	
Carcinoma, metastatic			1 (2%)	
Pituitary gland	(44)	(49)	(49)	
Pars distalis, adenoma	39 (89%)	41 (84%)	41 (84%)	
Pars distalis, carcinoma		(50)	1 (2%)	
Thyroid gland	(48)	(50)	(48)	
C-cell, adenoma	2 (4%)	2 (4%)	2 (4%)	
C-cell, carcinoma	1 (207)	1 (2%)	2 (4%)	
Follicular cell, adenoma Follicular cell, carcinoma	1 (2%) 1 (2%)	1 (2%)	1 (2%)	
		• · ·		
General Body System Fissue NOS	(4)	(3)	(1)	
Fibroma	(7)	(9)	1 (100%)	
Fibrosarcoma	1 (25%)	1 (33%)	x (10070)	
Hemangiosarcoma	1 (25%)			
Genital System				
Epididymis	(48)	(48)	(50)	
Preputial gland	(34)	(48)	(45)	
Adenoma	(57)	1 (2%)	(72)	
Carcinoma	1 (3%)	1 (2%)	2 (4%)	
Prostate	(48)	(50)	(49)	
Seminal vesicle	(48)	(50)	(49)	
Testes	(50)	(50)	(50)	
Bilateral, interstitial cell, adenoma	. ,		1 (2%)	
Interstitial cell, adenoma	4 (8%)	3 (6%)	8 (16%)	

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μL	100 µL	300 µL	
2-Year Study (continued)	<u> </u>	N.		
Iematopoietic System				
Bone marrow	(49)	(49)	(48)	
ymph node	(50)	(50)	(50)	
Mediastinal, carcinoma, metastatic		1 (2%)	(50)	
ymph node, mandibular	(48)	(50)	(49)	
ymph node, mesenteric	(44)	(50)	(46)	
pleen	(50)	(50)	(50)	
Sarcoma	.,		1 (2%)	
hymus	(35)	(37)	(35)	
ntegumentary System	<u></u>		<u></u>	· · · · ·
Aammary gland	(44)	(38)	. (43)	·
Fibroadenoma	(**)	1 (3%)	· ()	
Fibroma	2 (5%)	1 (3%)		
Sarcoma	2 (570)	1 (3%)		
kin	(49)	(50)	(51)	
Keratoacanthoma	1 (2%)	1 (2%)	()	
Face, papilloma	- ()	- ()	1 (2%)	
Lip, papilloma			1 (2%)	
Other, fibroma		1 (2%)		
Thoracic, keratoacanthoma			1 (2%)	
kin, control and site of application-no mass	(50)	(50)	(51)	
Basal cell adenoma	1 (2%)		· ·	
Ausculoskeletal System Ione				
lervous System				
Brain	(50)	(50)	(50)	
Astrocytoma malignant	1 (2%)	(50)	(50)	
	1 (270)			
espiratory System				
ung	(50)	(50)	(51)	
Alveolar/bronchiolar adenoma			1 (2%)	
Carcinoma, metastatic		1 (2%)	(10)	
lose	(50)	(50)	(49)	
Adenoma		1 (201)	1 (2%)	
Carcinoma, metastatic		1 (2%)	· .	
pecial Senses System				
Car	(1)	(2)	(3)	
Papilloma	.,	1 (50%)	2 (67%)	
Zymbal's gland	*	(3)		

74

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	ΟμL	100 µL	300 μL	
2-Year Study (continued)		ининин и и и и и и и и и и и и и и и и		
Urinary System				
Kidney	(50)	(50)	(51)	
Lipoma	1 (2%)			
Renal tubule, adenoma	1 (2%)	1 (2%)	1 (2%)	
Urethra	(1)			
Transitional epithelium, carcinoma Urinary bladder	1 (100%) (48)	(50)	(47)	
Carcinoma	(40)	(50)	(47) 1 (2%)	
Systemic Lesions				
Multiple organs ^b	(50)	(50)	(51)	
Leukemia mononuclear	9 (18%)	12 (24%)	13 (25%)	
Lymphoma malignant histiocytic	1 (2%)			
Lymphoma malignant lymphocytic Mesothelioma benign	1 (2%) 2 (4%)			
Mesothelioma malignant	2 (470)	1 (2%)		
		- (-/-)		
Neoplasm Summary				
Total animals with primary neoplasms ^c				
15-Month interim evaluation	6		5	
2-Year study	46	49	50	
Total primary neoplasms				
15-Month interim evaluation	7		5	
2-Year study	95	101	104	
Total animals with benign neoplasms 15-Month interim evaluation	(5	
2-Year study	6 45	47	3 47	
Total benign neoplasms	4.J	47	47	
15-Month interim evaluation	7		5	
2-Year study	80	78	80	
Total animals with malignant neoplasms				
2-Year study	17	21	23	
Total malignant neoplasms	•			
2-Year study	17	23	24	
Total animals with metastatic neoplasms				
2-Year study		1	1	
Total metastatic neoplasms		2		
2-Year study		3	1	

^a Number of animals examined microscopically at the site and the number of animals with neoplasm
 ^b Number of animals with any tissue examined microscopically
 ^c Primary neoplasms: all neoplasms except metastatic neoplasms

Diethylphthalate/Dimethylphthalate, NTP TR 429

TABLE A2

				2	3	4	5	5	5	5	5	5	5	5	5	5 4	র্ব	5	5	5	5	5	5	5	5	6	6				
Number of Days on Study				6								2										9		9							
in buy				4		8						8									~	-	~								
,	. ,				<u>.</u> 0	0						0			,						•	•									_
Carcass ID Number				2								1											-	1	4	2				• .	ć
· · ·				6								1、											5	8	7	7	3				
· · · ·				1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1			-	
limentary System	****																						<u> </u>	••••••						• •	,
Esophagus				+	+	+	+	+	+	+	+	+	+	+	+	+ .	+ -	+ +	- +	+	+	+	+	+	+	+	+			,	
Intestine large				+	• +	+	+	+	+	+	+	÷	+	+	+	+ •	+ -	- -	. +	+	+	+	+	+	+	+	+				
Intestine large, cecum				А	. +	+	+	+	+	+	÷	+	+	÷	+	÷.												÷ 1			
Intestine large, colon				Α	. +	+	+	+	+	+	+	+	+						- +									۰.		•	
Intestine large, rectum				A	. +	+	+	+	+	+	+	+	+	+	+				- +											1	
Intestine small		•										+										•						· · ·	•	· · ·	
Intestine small, duodenum			14			+		+				+				: + ·			- +			÷	+	+	+	+	+	·	:	÷. •	•-
Intestine small, ileum						+	-	+				+										+	+	+	+			*	:		
Intestine small, jejunum				A	. +	+	, +	+	+			+											+	A	, +	+	+	, 1		. *	
Liver				- -		+	4		÷			+							- +			- -	+	4	, +	+	·	٠,		• .	
Hepatocellular adenoma				•	·	'	,	,	,	'	•	,	,	•	•	•	,		'	,	'	•	'	1	•			•	3	÷.,	
Mesentery					+										•							·			-					•	
Pancreas				L	. т	+	т	Ъ	ب	л	ш	Ъ	<u>ـ</u> ـ	Ŧ		با	.			<u>т</u>	1	T L	Ŧ	-	-	1				• .	
Acinus, adenoma							T	т	т	т	- T -	т	T .	т	Ŧ	т.	т -	г. т		т	т	т	т	т		Ŧ	. т				
Salivary glands					4	Ъ	4		-		+	+	14	т	i.		i.			,					-			1			
Stomach				- T	· T	T	т	+	т												Ţ	Ţ	Ţ	- -	Ť	т ^и	+			. ; ·	
				+	* +	+	+	+	+			+ +				+ •			• +		+	+	+	+	+-	- 1	+				
Stomach, forestomach				+	**	+	+	Ŧ	.	.+	+	+	ĮVI	+	+	+ -	+ ~	r 1	- +	Ť	+	+	at i	· †	-17	- 1 -	+	÷		,	
Squamous cell papilloma	•							÷														x									
Stomach, glandular	•			+		+	+	+	+	+	+	÷	IVI	+	+	+ •	+ -	1	• +	+	+	+	+	+	+	<u>+</u>	+		,	,	
Cardiovascular System																													•		×
Blood vessel	-			,						,										+			+				+				
Heart		·	~	+	+	+	+	+	+	+	÷	+	+	÷	+	+ .	+ -	+ +	- +	+	. +	+	+	+	+	+	+		•		
Endocrine System				•													·							,				, , , , ,		· .	
Adrenal gland				+	· +	+	+	+	+	+	+	+	+	÷	+				- +		+	+	+	+	+	+	+	۰.	•		
Adrenal gland, cortex				÷	+	+	+	+	+	+	+	+	+	+	+	+ -	+ 1	1 +	• +	+	+	+	+	+	+	+	4	э. •			
Adrenal gland, medulla				+	+	+	+	+	+	+	+	+	+	÷	+1	+ •	+ 1	1 +	• +	+	+	+	+	+	+	+	+				
Pheochromocytoma benign													X	Х						Х			Х	Х	6 -	х					
Islets, pancreatic	3		·	+	+	+	, +	+	+	+	+	+	+	+	+	+ -	+ +	- +	- +	+	+	+	. +	+	+	+	+			, • .	
Adenoma			. '		. .												X.						•	••					,		
Parathyroid gland						+						M							- +		+	+	+	+	+	+	+				
Pituitary gland	. •			. N	1 +			М																					, ,		
Pars distalis, adenoma				•			X					X							X			Х	Х	Х	х	Х	Х	,			
Thyroid gland				Ą	. +	+	+	+	+	+	+	М	+	+	+	+ •	+ -	+ +	- +	+	+	+	+	+	+	+	+	:			
C-cell, adenoma																						۰,					х		•	,	
Follicular cell, adenoma																									5						
Follicular cell, carcinoma																			*					. •	,						
General Body System											<u> </u>						•	_			ì									,	
Tissue NOS				+									+																*		
Fibrosarcoma										•																					
Hemangiosarcoma																															

Individual

+: Tissue examined microscopically A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue

X: Lesion present Blank: Not examined

Individual Animal Tumor Pathology of Male Rats in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 Number of Days on Study 5 5 6 7 7 7 8 8 8 99 0 2 2 2 3 3 44 0 3 3 3 3 3 6 996 3 4 0 1 7 6 4 1 2 8 1 1 9 9 0 4 4 4 5 6 2 0 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 **Carcass ID Number** 3 34 4 5 1 5 3 4 5 3 3 3 3 2 2 4 5 Total 4 1 4 6 4 1 1 0 4 5 0 9 48 5 5 6 0 3 1 8 7 6 2 7 1 2 5 0 3 6 4 Tissues/ Tumors **Alimentary System** Esophagus 50 Intestine large 50 Intestine large, cecum 40 Α Α Δ Intestine large, colon 41 Α Α A Α + 1 M ц. M Intestine large, rectum + Α 46 Α Intestine small 50 + Intestine small, duodenum 47 Intestine small, ileum 44 Intestine small, jejunum 42 Α A A Α Liver 50 Hepatocellular adenoma х 1 Mesentery 4 Pancreas 50 + + Acinus, adenoma 1 48 Salivary glands + M + + + Stomach 49 4 + + + + 4 + + + + + 49 Stomach, forestomach + + + + + + + + + Squamous cell papilloma х 2 Stomach, glandular + + + +49 ÷4-+ + + + + + + + + 4 + + + + **Cardiovascular System** Blood vessel 13 Heart 50 **Endocrine System** Adrenal gland 49 Adrenal gland, cortex 49 Adrenal gland, medulla 49 + + ++ + Pheochromocytoma benign Х х x хх 14 X X Х Islets, pancreatic 49 + + + + ++ ++ Adenoma х х 6 X х х Parathyroid gland + 47 + + + + + + + + ++ Pituitary gland Μ + + + + + + + + + + + I + + + 44 39 Pars distalis, adenoma х ХХ Х Х Х Х х Х х Х х ххх XXXXX Х Thyroid gland 48 + + + + + + + + ++ + + ++ + + + ++ + + + + C-cell, adenoma 2 x Follicular cell, adenoma Х 1 Follicular cell, carcinoma Х 1 **General Body System Tissue NOS** + 4 + Fibrosarcoma х 1 Hemangiosarcoma х 1

Diethylphthalate/Dimethylphthalate, NTP TR 429

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued) 2 3 4 5 5 5 5 5 55 5 5 5 55 5 5 5 5 5 5 5 5 6 6 Number of Days on Study 9 7 2 2 2 4 6 0 0 2 4 6.677 8 8 8 9 9 9 9 9 0 1 4 9 8 2 2 0 4 7 8 8 9 8 8 1 8 2 3 7 1 4 6 7 8 0 9 0 **Carcass ID Number** 2 3 2 3 5 5 5 3 1 5 4 2 4 1 1 2 2 2 5 5 2 1 4 2 1 6 8 1 4 3 1 7 0 1 2 9 2 3 9 2 8 4 9 9658773 **Genital System** Coagulating gland Epididymis + + + 4 T Penis Preputial gland M M M M M +МММММ Carcinoma х Prostate M М + + + + Seminal vesicle A М + + + + + + + + + + + + + + + Testes + + + + + Interstitial cell, adenoma X **Hematopoietic System** Bone marrow A + Lymph node + Lymph node, mandibular Lymph node, mesenteric A + ĩ M + + Μ Spleen + + 4 + 4 + + + + Thymus + Μ Μ + Μ + M + I Μ + + м + + + 4 **Integumentary System** Mammary gland M + M + +Fibroma Skin + Keratoacanthoma х Skin, control + + Skin, site of application-no mass + + + Basal cell adenoma **Musculoskeletal System** Bone Μ Skeletal muscle **Nervous System** Brain Astrocytoma malignant Х **Respiratory System** Lung Nose + + Trachea A -+ + + **Special Senses System** Ear Eye 4 + + +

Individual Animal Tumor Pathology of Male Rats in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued)

THOTATOORSE ATTITUST I GETTOL L'ACTIOLOGY	À QU INTERIO	- 10	100.0				H - 1		4 4	~ ~1	4410						J	-1					-	2 (0	ommucu	,
· · · · · · · · · · · · · · · · · · ·	6	6	6	6	6	6	6	6	6	6	6	6	6	6 6	5 6	6	6	7	7	7	7	7	7	7		
umber of Days on Study	2	2	2	3	3	4	4	5	5	6	7	7	7	88	3 8	9	9	0	0	3	3	3	3	3		
	- 6	9	9	_	6	4		ĩ		8	1			0 1				-				4		5		
			_	<u> </u>		-		<u> </u>		<u> </u>	<u>+</u>		-						1	_	-	-	т 			
	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () (0	0	0	0	0	0	0	0	0		· ·
Carcass ID Number	3	3	4	4	5	1.	5	4	3	4	5	1	4	3 6	53	3	4	1	1	3	2	2	4	5	To	otal
	2	7	1	2										6 (0		6	4	Ti	ssues/
		1	1	1										1 1									1	1	Т	imors
Genital System											<u> </u>	. <u>.</u>				<u>.</u>										
Coagulating gland																		+							1	· ·
Epididymis	· A	+	-	-	+	<u>н</u>	+	+	+	+	+	Ŧ	+	+ •	L L	L .				-		-	. .	+	48	
Penis		•				'		1	'	+		•	•			- -			'	+		. '	'	'	6	
	-		-	ſ	3.4	r 11.4		ь	4		+		<u>т</u>					ı	i				-	т	34	
Preputial gland Carcinoma	Ŧ	Ŧ	Ŧ	-	IVI	[M	Ŧ	Ŧ	Ŧ	Ŧ	+	+	Ŧ	+ •	r 7	+ -1	- 7	• +	+	+	-	+		+		
															. [,] .										1	
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -	+ +			• +	+	+	• +	+	+	+	48	
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+			+ +					-		+		+	4	
Testes	+	+	+			+	+	+	+		+	+	+	+ •	+ +	+ +	- 1	• +	+	+			• +	+	5	
Interstitial cell, adenoma				Х				٠		х									,		Х				4	4 · ·
Hematopoietic System																										
Bone marrow	+	+	+	+	. +	÷ +	+	+	+	+	+	÷	+	+ •	+ -	⊢ ⊣	+ -1	- +	+	+	+ -	+	• +	+	. 49	9.
Lymph node	+	+	+	+	+	+	+	+	+	+	+	+	+	+ •	+ +	+ +		• +	+	+	+	+	• +	+	50	0
Lymph node, mandibular	M	[+]	+	M	[+	+	+	+	+	+	+	+	+	+ •	+ -		+ 4	- +	+	+	+	+	• •	+	4	8
Lymph node, mesenteric		÷	_	. <u>.</u>			÷	+	÷	÷	÷	÷			+ -		 		+	, L		Ň	(_	+	4	
Spleen	т 1	т 	1		т 	т _	+	÷	+	+	+	+		+ ·		। ⊓ ⊢ –∣			т 	- +				+	5	
Thymus	т 	M	T L	- T	т -	т 	•							+ 1	-							т 			3	
	т 	141		· T	+			IVI	т 		+	т —	141	т . 	VI ~			- T			<u>і</u> т		. T			J
Integumentary System																										
Mammary gland	+	+	M	1+	+	+	+	Μ	+	+	+	Μ	+	+ •	+ -	⊢ ⊣	+ -1	• +	+	+	• +	+	• +	+	4	4
Fibroma														x											2	2
Skin	м	(+	+	+	+	. +	+	+	+	+	+	+	+	+ •	+ -	È d	+ -	- +	+	+	• +	• +	• +	+	4	
Keratoacanthoma				-	-	-	-		-			-													1	1
Skin, control	+	-			· +	. . .	+	+	+	+	+	+	+	+ ·	+ -	+ +	L							+	5	
Skin, site of application-no mass		т 1		т -	т 1	т 	т 	+	т 	т 	T L	+				┡┥				- +		 - +	1		5	
Basal cell adenoma	т	т	+	· T	T	+	т	т	т	т	т	т	T				- 1	- 7	· •	Т	• т	· T	· •	T	1	
															x											L
Musculoskeletal System																										
Bone	+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+ -	+ -	+ +	- +	+	• +	- +	• +	• +	• +	4	
Skeletal muscle																				+	-				1	1
Nervous System	· · · · · · · · · · · · · · · · · · ·	_								_										_						
Brain	+	+	+	• +	+	· +	+	+	+	+	+	+	+	+	+ •	+ -	+ +	+	• +	· 4	- +	• +	- +	+	5	0
Astrocytoma malignant																									1	1
Respiratory System																			_							
Lung	+	. . .	Ļ		-	. .	+		+	+	+	+	+	+	÷ •	+ -	+ -	1	5	0
Nose	т 					۔ سرب	+	÷		+	÷	÷		÷	÷.	+ -	+ -			، د.		، د .	، د			0
Trachea	+	- - +	+	• +	+	· +	+	+	+	+	+	+	+	+	+ ·	+ -	+ -	⊢ न ⊢ न	- -	- - +		- 4	- +	+ +		9
Special Sources Suptom	-	—																		_						
Special Senses System Ear																						4	-			1
	ъ	г э					ц			J.	_L_	L	-	+	т.	L.	L	L .I	I					- +		3
Eye	IM	1 +	1	- +	· +	- +	-	+	+	T	+	+	T	Τ.	т '	r •	г "	r 1			- 1	- 1		- +	- 4	0

Diethylphthalate/Dimethylphthalate, NTP TR 429

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued)

														•												
	2	3	4	5	5	5	5	5 :	5 5	5	5	5	5	5	5	5	5	5	5	5	5	5	6	6		
	6	9	7	0	0	2	2.	2 2	24	- 4	6	6	7	7	8	8	8	9	9	9	9	9	0	1		
	4	9	8	2	2	0	4	7 8	88	9	8	8	1	8	2	3	7	1	4	6	7	8	0	9		
·	. 0	0	0	0	0	0	0	0 (0 0	0	• 0	0.	0	0	0	0	0	0	0	0	0	0	Ó	0	`	
	2	3	2	3	5	5	5	3	1 5	4	2	4	1	1	2	2	2	5	5	2	1	4	2	1		
•	6	8	1	4	3	1	7	0.	1 2	9	2	3	9	2	8	4	9	9	6	5	8	7	7	3		
·	1	1	1	1	1	1	1	1	1 1	1	1	1	1	ī	1	1	1	1	1	1	ĩ	1	1	1		
					_	_																				
	+	+	+	+	+	+	+	+	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+		
•																						Х				
																									* · ·	
•																		+								
																		x								
	4	• +	+	÷	+	+	+	+	+ +	+ +	M	+	+	.+	+	м	+	+	+	+	+	+	+	+		
		` 																						, 		
																						•				
	+	• +	+	+	+	+	+	+	+ +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
						Х									х				х		Х	•				
									2	۲.																
									x															~		
		- 6 4 0 2 6 1 1 +	0 0 2 3 6 8 1 1 + + + +	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				

Individual Animal Tumor Pathology of Male Rats in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued)

						•					•															
	 6	6	6	6	6	6	6、	6	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	
Number of Days on Study	2	2	2	3	3	4	4	5	5	6	7	7	7	8	8	8	9	9	0	0	3	3	3	3	3	
	6	9	9	6 .	6	4	6	1	2	8	1	3	4	0	1	7	1	9	2	9	0	4	4	4	5	
**************************************	 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	3	3	4	4.	5 :	1	5	4	3	4	5	1	4	3	6	3	3	4	1	1	3	2	2	4	5	Total
•	2.	7	1	2	0	4	5	0	9	4	8	5.	5	6	0	3	1	8	7	6	5	0	3	6	4	Tissues/
	1	1	1	1	1	1	1 '	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.	1	1	1	Tumors
Urinary System	 					_				_															,	
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	50
Lipoma																										1
Renal tubule, adenoma														х												1
Urethra																										. 1
Transitional epithelium, carcinoma																										1
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	48
Systemic Lesions	 · · ·					_								,												
Multiple organs	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear									х			х				х						Х		Х		9
Lymphoma malignant histiocytic																			•							1
Lymphoma malignant lymphocytic																		Х	,							1
Mesothelioma benign			Х																							2

'	3	3	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6			
Number of Days on Study							4				5					9				1					4	,		
		9					2							-	4			-		-	0		9					
n	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Carcass ID Number	3	3	5	6	5	7	6	5	4	5	4	6	6	3	5	5	6	3	5	4	3	4	7	7.	7			
	4	5	3	4	9	0	2	5	7	0	6	1	8	1	6	7	9	6	2	4	3	3	4	7	9			
													1															
Limentary System				-						·													,					
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	,		
Intestine large	÷	+	+	+	÷	÷	÷	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1		
Intestine large, cecum	+	+	+	+	+	+	+	+					+	+	•	+	<u>_</u>	+	+	+	+	÷	+	+			• .•	
Intestine large, colon	+	+	, +	+	+	+	+	+	÷	+			+				+	+	+	<u>_</u>	÷.		+	4				
Intestine large, rectum	+	4	+	4	÷.	4	4	+	- -	•	-		+					т -	т Т	+	-	-	-	т —	Ť			
Intestine small	, +			, ,	÷	ц.		, _	+	, _			+						+		+		Т	، ــــ	т 			
Intestine small, duodenum	-	+	т 	+ +	т Т	- -	- -	т -	+	+			+									т Т	т 	т 	- <u>-</u>			
Intestine small, ileum	т 	-T-	+	т ⊥	т 	+	т 	т 					+								т +	т -	+ +	Ŧ	.			
Intestine small, jejunum	т А	т 	- -	т 								-	+	-								•	·+ +	,	•		•	
Liver		T I	т 	T	T	T							+				+ +						- T -+					
Mesentery		Ŧ	Ŧ	Ŧ	т	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	T	Ŧ	Ŧ	Ŧ	+	+	Ŧ	Ŧ	Ŧ	Ŧ	-1-	+	4.	+		•	
Pancreas										+							+				,							· •
Fibrosarcoma	Ŧ	Ŧ	. +	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	*	Ŧ	Ť	+	+	+	Ŧ		Ŧ	+	4-	+	Ŧ	Ŧ	+	`		
																		Х										
Pharynx						+																						
Papilloma						X																						
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+			. '
Fibrosarcoma																								X				
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	.+	+			
Squamous cell papilloma													х															
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Tooth																												
Cardiovascular System																												
Blood vessel										,						+		+	+									•
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+			
Endocrine System																						_						
Adrenal gland	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+			
Adenoma																									,			
Adrenal gland, medulla	+	+	+	+	÷	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ			
Pheochromocytoma malignant														Х										× .				
Pheochromocytoma benign																				X				•				
Pheochromocytoma benign, multiple																								· .				
Islets, pancreatic	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				+	+	+			
Adenoma																					x							
Adenoma, multiple																						•						
Carcinoma																												
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+			
Pituitary gland													+														•	
Pars distalis, adenoma													x				x								X	•		
Thyroid gland													+															
C-cell, adenoma		•	'	,	,	•	•	•	,	•	•		•	•	•	•	•	•	•	,	•	•	•	•				
C-cell, carcinoma																												

Lesions in Male Rats

															_		_	_			_					
					6																			7		
Number of Days on Study	5	5	5														1			3		3	3	3	3	
	2	3	4	4	4	5	5	6	8	3	7	2	1	1	4	6	8	8	3	4	4	4	4	5	5	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Carcass ID Number	7	7	4	7	7	3	4	3	8	4	4	5	3	7	5	6	5	6	6	3	4	6	7	4	6	Total
	1	6	2	2	8	8	8	2	0	0	9	8	7	5	1	3	4	7	5	9	5	6	3	1	0	Tissues
	1	1	1	1	1	1																		1	1	Tumor
Alimentary System			_																							
Esophagus	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+		+		•		+	+	+	+	+	+	+	+	47
Intestine large, colon	+	+	+	+	+	+	+	+		+	+	+			+			+		+	+	+	+		+	47
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+		+	+					+		+	+	+	+	+	+	47
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+						+		+	+	+	+	+	+	50
Intestine small, duodenum	, +	+	· +	•	+	+	÷	+	+	+	+	, +		+		+			+		+	+	+	÷	+	49
Intestine small, ileum	, +	, +	+	, +	, +	, +	, +	+	+	+		, +					Å			+	+	+	+	+	+	46
Intestine small, jejunum	-	+	-	-	. .	+	+		+				+									+	+	+		46
Liver	т 	т 	т +	+	Т	т -	+						+											+		50
Mesentery	Ŧ	7	· T	1	-7	T	+	Г	Ŧ	1	Ŧ	•	r	1	'	7	'	r.	'	'	ľ	. '		'	'	3
Pancreas			1		+			-1	-		+	-	+	т	т.		Т	т		L.	1	л.	+		т	50
Fibrosarcoma	т	т	т	т	т	т	т	т	т	т	т	т	Ŧ	т	т	т	т	.1.	Ŧ	.1.	т	т	f-	-1-	•	1
																										1
Pharynx																										1
Papilloma Selimente																										
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Fibrosarcoma																										1
Stomach	+	+	• +	+	• +	+	+	+	+				+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	÷	+	+	+	+	+	+	50
Squamous cell papilloma																										2
Stomach, glandular	+	+	• +	+	• +	+	+	+	+	÷		+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Tooth											+							_								1
Cardiovascular System																			•							_
Blood vessel			+					+					+			+		+								8
Heart	+	÷	• +	+	• +	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System												<u> </u>														
Adrenal gland	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma																							Х			1
Adrenal gland, medulla	+	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma malignant																										1
Pheochromocytoma benign		Х	Х	:												х	х		х				Х		Х	8
Pheochromocytoma benign, multiple				Х	C I																					1
Islets, pancreatic	+	+	- +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma	X			Х	C I	Х			х	х								х		Х		Х			Х	10
Adenoma, multiple																							х			1
Carcinoma																х										1
Parathyroid gland	+	-	- +	• 4	- +-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pituitary gland	+		+	- 4	- +	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+		+		+	49
Pars distalis, adenoma	x	: >			c x	x	x			х	x	х	х				x		х		X	x	x	x		41
Thyroid gland			- +						+	+	-		+	+	+		+								+	50
C-cell, adenoma	-			-		X				x																2
C-cell, carcinoma	Х																									1
Follicular cell, carcinoma	-													х												1

Diethylphthalate/Dimethylphthalate, NTP TR 429

١

		2	4	4	<i>c</i>	~	r	~	~	~	_	~	~		~	-	~	-	~		-	~					
Number of Days on Study													5 6												6		
tumber of Days on Study			6										о 0									2					
	1	- 1					-	_												_				_		<u> </u>	
Samaga ID Number													1			1		1	1		1	1	1	1	1		
Carcass ID Number	3	3	່ວ	6	2	7	6	2	4	5	4	6	6	3	5	5	6	3	5	4	3	4	7	7	7	• •	
	4	5 1	3	4	9 1	0 1	2	5	7	0 1	6 -1	1 1	8 1	1 1	6 1	7 1	9 1	6 1	2 1	4	3 1	3	4 1	7 1			
General Body System							~					_									_	_					
Tissue NOS																					•						
Fibrosarcoma	+															+									,		
enital System		_								,					,											<u></u>	
Coagulating gland																											
Epididymis					. 1		J.		J.	Ŧ	L		Ŀ												. ,		
Penis	+	+	- +	+	Ŧ	Ŧ	Ŧ	+	Ŧ	1	+	A	+	+	+	Ŧ	+	Ŧ	+	+	Ŧ	+	+	+	+	• •	÷ .
									,		.,	۸4	N 4	١ 4			+	,	,	N 4							
Preputial gland Adenoma	+	+	- +	+	+	+	Ŧ	+	+	+	+	IVI	М	IVI	+	+	+	+	+	IVI	+	+	+	÷	+		1
Carcinoma			,																						· .	·	
Prostate	+	+	• +	• +		+					+				+		+	+	+	+	+	+	+	+	+		
Seminal vesicle	+	+	• +	• +	.+	+			+	·+-	+				+			+	+	+	+	+	+	+	+		
Testes	+	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	÷	+	+	+		
Interstitial cell, adenoma																					_	•			•		
lematopoietic System																											
Bone marrow	+	+	• +	• +	+	+	Ŧ	+	+	+	+	М	+	+	+	+	+	+	+	÷	+	+	+	+	÷		
Lymph node	+	+	• +	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	
Mediastinal, carcinoma, metastatic																									•		
Lymph node, mandibular	+	+	• +	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<i>,</i> +	+	÷.,	
Lymph node, mesenteric	+	+	• +	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	·+	+	+		·
Spleen	+	+			+									+	+	+	+	+	+	+	+	+	+	+	+		
Thymus	М	[+	M	1+	I	+	+	Μ	÷	Ι	+	; +	M	+	+	+	+	+	+	+	+	I	I	+	+		
itegumentary System		_				-	•								_										-		
Mammary gland	+	+	- +	M	(+	Μ	+	╋	·+	М	+	+	Μ	+	+	М	+	+	+	Μ	+	+	+	+	+		
Fibroadenoma						•.											х									•	
Fibroma																											
Sarcoma																	х									,	
Skin	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Keratoacanthoma									Х															÷			•
Other, fibroma																											
Site of application-mass, adenoma																				,					•		
Skin, control	+	.+	• +	+	·+-	+	+	+	+	+	+	+	≁	+	+	+	+	+	+	+	+	+	+	+	+		
Skin, site of application-no mass	+	+	• +	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	.*	•
Iusculoskeletal System					<u> </u>		_																				
Bone	· +	+	• +	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	.+	+		
Skeletal muscle																											
lervous System																								·	. '		
																										-	

Individual Animal Tumor Pathology	or mai	e 1	< 81	ts i	In	une	2	-¥€	ar	- D	er	ma	. No	stu	ay	Oľ	D	iet	ny.	ph	n an		ite:	: 1	.00	μ1	⊿ (con	tinued)
	6	6	6	6	6	5 6	6	56	5 (6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7		
Number of Days on Study	5	5	5	5	5	56	6	56	5 (6	7	8	9	0	0	0	1	1	1	2	3	3	3	3	3	3		
•	2	3														4								4	5	5		
· · · · · · · · · · · · · · · · · · ·	1			- 1	1		_	1		1	•	1			1		1	1	4		-	4			1			
Carcass ID Number	. 1	1											5			1 5				1 6			1 6			1 6		Total
Carcass ID Number	-		4																									
	1	6														1 1												Tissues Tumor
<u></u>		1				 				1	1	1	1	.	1			1			1	1	1	1		1		
General Body System																												
Tissue NOS																									+			3
Fibrosarcoma			•																						Х			1
Genital System			_			_							_															
Coagulating gland												+																1
Epididymis	+	• +	- +	+ +	+ •	+	+ •	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	- +	• +	+	-	48
Penis																	+											2
Preputial gland	+	• +	• -	⊢ ⊣	+ •	+ -	+ -	+ -	+	+	+	+	+	+	+	+		+	+	+	+	+	+	- +	• +	+	-	46
Adenoma																										X	ζ	1
Carcinoma								2	x																			1
Prostate	+			⊢ -	<u>ب</u>	+ -	+ •	+ •		+	+	+	+	+	+	+	+	+	+	+	+	+		- +			-	50
Seminal vesicle	+	. 4		+ -	+ .	+ .	+ -	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	- +	• +	· -+	-	50
Testes	-			⊢ –	+ .	+ .	+ ·	+ -	+	+	+	+	+	+	+		+	+	+	+	+	+	• +	+	- +	• 4	-	50
Interstitial cell, adenoma	•			•	•	•		•	•	•		•	·	•	x	•	x		•		•		X					3
Hematopoietic System																												
	,																											40
Bone marrow	+	- +		+ -	+ ·	+ ·	+ ·									+			+	+	+	+	• +	- +		• +		49 50
Lymph node	-+	1		+ -	t ·	+ •	+ •	+ -			+	+	+	+	+	+	+	+	+	+	+	+	1	+	- +	- +	-	50
Mediastinal, carcinoma, metastatic					_					X																		1
Lymph node, mandibular	+			+ -	+ ·	+ -	+				+			+	+	+	+		+		+	• +	• +	- +	+	• +	-	50
Lymph node, mesenteric	-			+ -	+	+ •	+ •			+	+	+	+	+	+	+	+		+		+	+	+		- +		F	50
Spleen	+	+		+ -	-							+	+		+	+	+		+		+	+				• -1	-	50
Thymus	ł		- I	ľ	M	+ •	+]	м -	+	M	+	+	+	+	+	+	+	+	M	[+]	+	+	• +		- +	+	+	37
ntegumentary System																												
Mammary gland	+	1	- 1	vî -	+	+ :	+ •	+ 1	М	+	Μ	+	+	+	+	Μ	+	Μ	+	+	+	N	1 +	1	1	1	F	38
Fibroadenoma																												1
Fibroma																					Х							1
Sarcoma																												1
Skin	4			+ -	+	+ •	+ -	+ •	÷	÷	+	+	+	+	+	+	+	÷	+	+	+	• +	1		+	• - +	F	50
Keratoacanthoma																												1
Other, fibroma							2	х																				1
Site of application-mass, adenoma								_																		>	ζ.	1
Skin, control	-	- 4		+ •	+ -	+ -	+	+ •	+	+	+	+	+	+	+	+	+	+	+	+	• +			+ -	1		_	50
Skin, site of application-no mass	-		+ -	+ -	÷	+	+	+ -	+	+	+	+	+	+	+	+	+		+			· -		+ +			÷	50
<u> </u>			-																									
Musculoskeletal System																												40
Bone Skeletal muscle	-			+ ·	t	+	Ŧ	+	+	+	+	+	+	++	+	+	+	+	+	• +	• +	1		r -			F	49 1
Nervous System			_																							-		
Brain	- 1	L -	L		±	+	т.	<u>т</u>	Ŧ	-	ᆂ	ᆂ	н.	L	.د	ال م	L	ـ .	+	1	ب		L -	L -	L J	L -	F	50
Bram		r -		T	т	Ŧ	Ŧ	т	Ŧ	Ŧ	т	т	т	т	т	т	T	• т	Т	· •			г -	г -	г -		т	50

Diethylphthalate/Dimethylphthalate, NTP TR 429

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the 2-Year Dermal Study of Diethylphthalate: 100 µL (continued) 3 3 Number of Days on Study 0 0 1. **Carcass ID Number** 7 7 Ô. 3 3 4 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 **Respiratory System** Lung Carcinoma, metastatic Nose Carcinoma, metastatic Trachea + + + + + + .+ + + + + + + + + + + + + Special Senses System Ear + Papilloma Eye + Zymbal's gland Carcinoma **Urinary System** Kidney Renal tubule, adenoma Urinary bladder Systemic Lesions Multiple organs + + + + + + хх Leukemia mononuclear х х Mesothelioma malignant х

Lesions in Male Rats

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the 2-Year Dermal Study of Diethylphthalate: 100 µL (continued) 6 66 6 66 6 6 6 66 6 7 7 7 7 7 7 7 7 7 7 7 7 7 Number of Days on Study 5 5 5 5 5 6 6 6 6 7 8 9 0 0 0 1 1 1 2 3 3 3 3 3 3 2 3 4 4 4 5 5 6 8 3 7 2 1 1 4 6 8 8 3 4 4 4 4 5 5 1 **Carcass ID Number** 7 7 4 7 7 3 4 3 8 4 4 5 3 7 5 6 5 6 6 3 4 6 7 4 6 Total 1 6 2 2 8 8 8 2 0 0 9 8 7 5 1 3 4 7 59 5 6 3 1 0 Tissues/ Tumors **Respiratory System** Lung 50 Carcinoma, metastatic 1 X Nose 50 + Carcinoma, metastatic х 1 Trachea 50 + + + Special Senses System 2 Ear + Papilloma х 1 43 Eye Zymbal's gland 3 + Carcinoma х 1 **Urinary System** Kidney 50 Renal tubule, adenoma 1 X Urinary bladder 50 + 4 + + Systemic Lesions Multiple organs 50 + + + + ++ + Leukemia mononuclear х Х х х х ххх 12 Mesothelioma malignant 1

Individual Animal Tumor Pathology of Male Rats in the 2-Year Dermal Study of Diethylphthalate: 300 µL 34 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 Number of Days on Study 9 1 3 8 1 1 2 3 3 3 3 3 4 4 5 6 6 8 8 9 0 1 1 2 3 1 3 7 6 2 9 8 3 4 4 5 8 2 9 9 2 3 0 2 6 7 2 56 2 2 2 2 2 2 2 2 •2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 **Carcass ID Number** 9 5 5 9 8 9 9 7 8 6 8 6 7 6 5 6 0 9 7 6 8 9 8 7 8 0 0 32 7 5 8 8 5 0 2 5 0 4 9 6 0 9 4 7 6 7 7 9 1 **Alimentary System** Esophagus + + + + Intestine large Α A + + + + + + + Intestine large, cecum Α Α + + Å Α + + + + + + A А + + Intestine large, colon Α À Ä 4 + + + Α + 4 + Adenocárcinoma Intestine large, rectum Α A Intestine small A A 4 + + Intestine small, duodenum А A + + 4 + +Intestine small, ileum Α A Α + Α + Μ ++ + + A + A A A Intestine small, jejunum A A А + Μ Α Α + + + + Α A А + Liver + Hepatocellular adenomá Mesentery Pancreas А Salivary glands + + Stomach A Stomach, forestomach А +Squamous cell papilloma х х Stomach, glandular Α + 4 **Cardiovascular System** Blood vessel Heart + **Endocrine System** Adrenal gland + Adrenal gland, cortex + + Adrenal gland, medulla ÷ + Μ + M + + + Pheochromocytoma malignant Pheochromocytoma benign х Islets, pancreatic A + Adenoma х Parathyroid gland 4 Carcinoma, metastatic Pituitary gland + + + M + + + + + + + 4 + + + + + ++ + + + + + Pars distalis, adenoma Х X ххх ххх х хх х x X х Х х х х Pars distalis, carcinoma х Thyroid gland A х C-cell, adenoma X х C-cell, carcinoma Follicular cell, carcinoma **General Body System Tissue NOS** Fibroma

88

Individual Animal Tumor Patholo	By OI IV														•				-,	E				-		,	commucu)
	6	6	6	6	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	4	4	4	4	5	5	5	6	6	6	8	9	9	0	0	0	1	2	2	3	3	3	3	3	3	
	7	1	5	5	7	0	0	4	5	7	8	9	9	9	0	8			2	8	4	4	5	5	5	5	
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Carcass ID Number	8			_	6															29	_	_	5	_	5		Total
	5				3										6			1				3	-	-	7	-	Tissues
	-				1																	_		-		-	Tumor
Alimentary System				-	_						•					_	<u>_</u>										
Esophagus	L.	<u>ــ</u>	س	ъ	т	ъ	<u>ــ</u> ـ	т	т	Т	Ŧ	<u>ـ</u> ــ	т	Т	Ŧ	л.	-	Ŧ	т	Т	ᆂ	<u>т</u>	т	Ŧ		Ŧ	50
Intestine large	т 	- -	т -	т -	Ť		т 	т т	+	т _	Ť	т 	Ť	+	- -	+	+	т _	Ŧ	т 			Ŧ	Ť	- -	т т	
Intestine large, cecum	Ă	т _	+	т —	т -	Ŧ	- -	+ +	+	+	+	+		+	+			+	Ŧ	+	+	Ŧ	Ŧ	Ŧ	T	+.	40
Intestine large, colon		. +		Ţ.	- -	Ţ	+															Ţ	Ţ	Ţ	Ţ	T .	
Adenocarcinoma	л	T	т	+	+	т	т	+	+	+	+	Ŧ	т	т	+	x	т	т	т	т	т	+	+	т	т	т	. 44 2
Intestine large, rectum	•							,							М	_											44
Intestine small		. + +				+												+					+	+	+	+	
				+			+								+			+	+	+	+	Ť	+	+	+	+	48
Intestine small, duodenum		. +		+		+						+					+	+	+	+	+	+	+	+	+	+	47
Intestine small, ileum		. +			+									+	+		+		+	+	+	+	+	+	+	+	40
Intestine small, jejunum		. +																+					+	+	+	+	40
Liver	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Hepatocellular adenoma		Х																									1
Mesentery																											1
Pancreas	+	+	+	+	+	+	+	•			+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	50
Salivary glands	+	+	+	+			+								+	•		+			+	+	+	+	+		50
Stomach	+	+	+	+	+	+	+													+		+	+	+			50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	50
Squamous cell papilloma														Х													3
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Cardiovascular System								•																			
Blood vessel													+					+									2
Heart	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																											
Adrenal gland	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ `	50
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Pheochromocytoma malignant				•																				Х			1
Pheochromocytoma benign												Х				х		Х	х				х				8
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenoma			Х			Х						Х							х					Х			7
Parathyroid gland	+	M	[+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	48
Carcinoma, metastatic										х																	1
Pituitary gland	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	I	+	+	+	+	+	49
Pars distalis, adenoma		X					х							х			х	х	Х	х						х	41
Pars distalis, carcinoma																											1
Thyroid gland	+	M	i +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	48
C-cell, adenoma																											2
C-cell, carcinoma						х																					2
Follicular cell, carcinoma										х																	1
General Body System													-										_				
Tissue NOS																				+							1
Fibroma																				х							1

Individual Animal Tumor Pathology	y of N	fal	e R	late	s in	th	le 2	-Ye	ear	De	rm	al	Stu	ıdy	of	Die	eth	ylp	htl	hal	lat	e:	30	01	иL	(00)	ntii	iued	i) '
		3	4	4	4	5	5	5 5	55	5	5	5	5	5	5	5			5	5	6	6	6	6	6	_		_	
lumber of Days on Study		9	1	3	8	1	1	2 3	33	3	3	.3	4	4	5	6 (68	3 8	s . ş		0	1	1	2.	3			. •	
		1	3	7	6	2				4			2				3 () 2			7	2							
· · · · · · · · · · · · · · · · · · ·		~	2	2	2	2	2	2 2	, ,	2		2		2	2		3 2					2	2		2				•
Carcass ID Number		9		5		8	2	22 86				2 6	7									2 9	2		2 8				. •
		ó	0	3			7	4 5			5	0	2	9			0 9			7		, 7	7	, 0	1				
4			-			1	-		1		-	1	1		1							1	1	1	1				
	<u> </u>					•																				_			
Genital System Epididymis		÷		Т	+.	Ŧ		<u>ь</u>	<u>ц</u>			1		4			1 .									•			
Penis	•	Ŧ		Ŧ	Т·,	Τ.	Ŧ	Τ -	т т	- +	· +	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+ .	+		Ŧ	Ŧ	+	+	Ŧ	+	. •			
					,	, ·			ar i	,	,				м									<i>.</i> .	., '				
Preputial gland Carcinoma		+		+	Ŧ	+	M	+ r	VI +	- +	+	· M	+ X	+	Μ	+	+ 1	M -		t	+	+	+ X	+.	•+			·	
Prostate		,													M								Â.		17				
		 +	۰.	+	+	+	+	+ -	+ +	- +	• +	+			M		+ ·	+ -	F	+	+	+	+	+	+		•,•	*	
Seminal vesicle		Α	• +	+	+.	+ -	+	+ -	+ +	+	+	+	+		Μ		+ •	+ -	+ -	+	+	+	+	+	+	•			
Testes		+		+	+	+	+	+ -	+ +	• +	+	. +	+	+.	+	+	+ •	+ -	+ -	+	+	+	+	+	+		• •		
Bilateral, interstitial cell, adenoma																		. •		1	i ·	÷				÷	,		
Interstitial cell, adenoma			•				Х															• :							
lematopoietic System	· •																•											_	
Bone marrow		· +		Α	+	÷	+	+ -	+ +	· +	+	+	+	+	+	+	+ -	+ -	+ -	ŧ.	+	+	+	+	+				
Lymph node		+		+	+	+	+	+ -	+ +	· +	+	+	+	+	+ ·	+	+ •	+ -	⊦ -	+	+	+	+	+	+.	۰.			
Lymph node, mandibular		+			+	+	+	+ -	 + .+		· +	+	+	+	+	+ .	+ .	+ -		÷	+.	+	+	+	+			•	
Lymph node, mesenteric		Å			+	+	+		. т т	, _	, 	, +	+	M	+			+ -		+	+	+	+	+	+				
Spleen			· +	+	+ +	4	т. Т.	+ - + -	. T L .	т 	т 	т . д	г Т	-T- 141	1	- -		 -		Ļ		+	це . ц	4 -	- 171. 		· . ·		
-		А	+	Ŧ		+	т	T "	r +	+-	+	Ť	+	Ŧ	т	r	т ·	τ		٣	Ŧ	т	т	Ŧ	т.				
Sarcoma						X	T	, .		<i>.</i> .	:	R /	34	λ.				1			•		N 4						
Thymus		+		A	+	+.	1	+ 1	VI . IV	1 +	+	M	- IM	M	+	+	+ ·	+ -		+ .	11	+	M	+	+				
ntegumentary System						_															-			-				,	
Mammary gland		.+		Μ	Μ	+	+ 3	м -	+ +	· M	1+	+	+	+	Μ	+	+ •	+ -	⊦ -	+	+	+	+	+ :	+				
Skin		+	+					+ -		. +			+	+	+	+	+ •	+ -	⊢ -	+	+	+	+	+	+			• *	
Face, papilloma																								, I					
Lip, papilloma	· ·	-				х																				۰.			
Thoracic, keratoacanthoma						~																				•	• •		
																								· .			·		
Skin, control		+						+ -					+	+	+	+	+ ·	+ -		+	+	- T -	+	+	.+				
Skin, site of application-no mass		+	+	.+	+	+	+	+ -	+ +	- +	• +	+	+	+	+	+	+ •	+ -	F -	+ .	+	+ .	.+	+	+				
Ausculoskeletal System																										. 5		·. ·	
Bone		+		+	+	+	+	+ -	+ . +	- +	• +	+	+	+	+	+	+ ·	+ •	⊦ -	ł	+	+	+	+	+			• •	
Skeletal muscle																+								÷		•	•	· .	
Jervous System																	. 1												
-				ı	· ·	L		т.	ì	а	,	+	,	_	-1	L L				_	+	т	т	÷.					
Brain	·	+		+	+	π.	т	- T -		- +	+	+	+	+	т	·г	т '	τ.	r	F	T	т [.]	+	+			`.		
Respiratory System																													• •
Lung		· +	+	+	+	+	+	+ •	+ +	- +	+	+	+	+	+	+	+	+ •	+ •	+	+	+	+	+	+				
Alveolar/bronchiolar adenoma															•						۰.				۰.				
Nose		+		м	+	+	+	+	+ +	- 4	• +	+	+	+	+	+	+	+ •	+ -	÷	+	+	+	+	+				
Adenoma					·	•		•				•	•		• •	-	-												
Trachea		+		+	+	+	+	+ -	+ +	- +	. +	+	+	+	+	+	+	+ •	+ •	+	+	+	+	+	÷	,	•		
······									<u> </u>	<u>.</u>								•							÷				
Special Senses System Ear	•																								•	· · · .		•	
Papilloma E																				,				,	~·.	•	÷ ,		
Eye							+	-	+ +	-	+			+	+	+	+	+ •	÷ •	+	+	+	+	+	+			-'	

Individual Animal Tumor Pathology of Male Rats in the 2-Year Dermal Study of Diethylphthalate: 300 µL (continued) 6 6 6 6 6 66 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 Number of Days on Study 3 4 4 4 4 5 5 5 6 6 6 8 9 9 0 0 2 0 1 2 3 3 3 3 3 3 7 5 7 0 0 4 5 7 8 9 9 9 0 15 8 2 8 8 8 4 4 5 5 5 5 2 5 **Carcass ID Number** 9 6 7 8 5 5 8 6 8 6 9 6 7 7 7 8 7 6 9 7 9 5 5 5 5 Total 1 1 3 3 9 2 3 2 1 8 5 8 5 6 6 9 2 1 4 4 0 3 4 6 7 8 Tissues/ Tumors **Genital System** Epididymis 50 Penis 2 Preputial gland 45 Carcinoma 2 Prostate 49 Seminal vesicle + 49 + + + + + Testes + + 50 + + + + Bilateral, interstitial cell, adenoma х 1 Interstitial cell, adenoma х х хх ххх 8 **Hematopoietic System** Bone marrow 48 + Μ + + + + Lymph node 50 + + + + + + + ++ + + + + + + Lymph node, mandibular 49 ++ + + + ++ + + + + + + + + + ++ + + + + + + + Lymph node, mesenteric 46 + + +I + + + + + + + + + + + + + + + + + + + Spleen + + 50 Sarcoma 1 Thymus 35 **Integumentary System** Mammary gland 43 Μ М + + + + + + Skin 51 + + +:+ + + + Face, papilloma x 1 Lip, papilloma 1 Thoracic, keratoacanthoma х 1 Skin, control 50 + + Skin, site of application-no mass 51 + + ++ + + + + + + + + + + +**Musculoskeletal System** 49 Bone + M + + Skeletal muscle 1 **Nervous System** Brain + + 50 + + + **Respiratory System** 51 Lung Alveolar/bronchiolar adenoma 1 х Nose 49 Adenoma X 1 Trachea 50 + + + Special Senses System 3 Ear + + + Papilloma х Х 2 42 Eye + + +++ + + + + + + + + + + +

Individual Animal Tumor Pathology of Male Rats in the 2-Year Dermal Study of Diethylphthalate: 300 µL (continued) 3 4 Number of Days on Study 5. 1 1 Carcass ID Number 2 9 0 3 2 0 1 1 1 1 1 1 1 1 1 Urinary System Kidney Renal tubule, adenoma Urinary bladder Carcinoma Systemic Lesions Multiple organs + + + + + ÷ ÷ + ++ + + + Leukemia mononuclear хх х х х х хх

Lesions in Male Rats

TABLE A2

Individual Animal Tumor Pathology of Male Rats in the 2-Year Dermal Study of Diethylphthalate: 300 µL (continued) Number of Days on Study 3 3 3 4 4 4 4 5 3 3 3 7 1 5 5 0 4 5 2. 2 2 **Carcass ID Number** 8.956 9 5 5 5 5 Total 5 6 1 1 3 3 9 2 3 2 1 8 5 8 6 9 2 1 4 4 0 3 4 6 7 8 Tissues/ Tumors Urinary System Kidney + Renal tubule, adenoma х Urinary bladder + + + Carcinoma х Systemic Lesions Multiple organs + + + + + + Leukemia mononuclear Х хх Х х

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Dermal Study of Diethylphthalate

	•	0 µL	100 µL	300 µL	
Adrenal Medulla: Benign Pheochromo		· · · ·		· · · ·	
Overall rate ^a	*	14/49 (29%)	9/50 (18%)	8/48 (17%)	
Adjusted rate ^b		75.8%	61.3%	50.0%	
Cerminal rate ^c		2/4 (50%)	2/6 (33%)	1/6 (17%)	
First incidence (days)		548	616	534	
ife table test ^d		P=0.056N	P=0.052N	P=0.046N	
ogistic regression test ^d		P=0.083N	P=0.093N	P=0.083N	
Cochran-Armitage test ^d		P=0.130N		· · ·	
Fisher exact test ^d			P=0.157N	P=0.123N	
drenal Medulla: Benign or Malignar	at Pheochromocy	toma			
Overali rate		14/49 (29%)	10/50 (20%)	9/48 (19%)	
Adjusted rate	•	75.8%	62.3%	60.0%	
Ferminal rate	• 1 F	2/4 (50%)	2/6 (33%)	2/6 (33%)	
First incidence (days)		548	580	534	· · ·
life table test		P=0.084N	P=0.084N	P=0.067N	
ogistic regression test	1	P=0.127N	P=0.150N	P=0.123N	•
Cochran-Armitage test		P=0.188N			:
Fisher exact test			P=0.224N	P=0.185N	
ancreatic Islets: Adenoma					
Overall rate		6/49 (12%)	11/50 (22%)	7/49 (14%)	
Adjusted rate	•	48.4%	78.0%	41.1%	2
Ferminal rate		1/4 (25%)	4/6 (67%)	1/6 (17%)	
First incidence (days)		571	620 [°]	533	·
Life table test	-	P=0.416N	P=0.343	P=0.562N	
ogistic regression test	· * ·	P=0.490N	P=0.248	P=0.565	
Cochran-Armitage test		P=0.568			
Fisher exact test	× .		P=0.154	P=0.500	
Pancreatic Islets: Adenoma or Carcin	oma				
Overall rate	-	6/49 (12%)	12/50 (24%)	7/49 (14%)	
Adjusted rate	.*	48.4%	80.2%	41.1%	
Ferminal rate		1/4 (25%)	4/6 (67%)	1/6 (17%)	•
First incidence (days)		571	620	533	
life table test		P = 0.382N	P=0.287	P=0.562N	
ogistic regression test	. · · · ·	P=0.458N	P=0.181	P=0.565	
Cochran-Armitage test		P=0.551N			
Fisher exact test	•		P=0.104	P=0.500	
Pituitary Gland (Pars Distalis): Aden	oma				,
Overall rate		39/44 (89%)	41/49 (84%)	41/49 (84%)	· .
Adjusted rate		100.0%	96.9%	100.0%	
Terminal rate		3/3 (100%)	5/6 (83%)	5/5 (100%)	. *
First incidence (days)		478	304	391	ć * .
Life table test		P=0.371N	P = 0.212N	P=0.318N	
Logistic regression test		P=0.354N	P=0.348N	P=0.368N	•
Cochran-Armitage test		P=0.351N			2
Fisher exact test			P=0.350N	P=0.350N	

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	Ο μL	100 µL	300 μL	
Pituitary Gland (Pars Distalis): Adenoma or	Carcinoma			
Overall rate	39/44 (89%)	41/49 (84%)	42/49 (86%)	
Adjusted rate	100.0%	96.9%	100.0%	
erminal rate	3/3 (100%)	5/6 (83%)	5/5 (100%)	
First incidence (days)	478	304	391	
ife table test	P=0.423N	P = 0.212N	P=0.364N	
ogistic regression test	P=0.473N	P=0.348N	P=0.478N	
Cochran-Armitage test	P=0.470N			
isher exact test		P=0.350N	P=0.458N	
kin: Keratoacanthoma or Papilloma		· .		,
Dverall rate	2/50 (4%)	1/50 (2%)	3/51 (6%)	
Adjusted rate	12.3%	2.4%	25.2%	•
Cerminal rate	0/4 (0%)	0/6 (0%)	1/6 (17%)	
First incidence (days)	598	553	512	. ·
ife table test	P=0.436	P=0.437N	P=0.623	
ogistic regression test	P=0.381	P = 0.504N	P=0.527	
Cochran-Armitage test	P=0.378		· · · · · · ·	
Fisher exact test		P=0.500N	P=0.509	
Stomach (Forestomach): Squamous Cell Pap	illoma		1	
Overall rate	2/50 (4%)	2/50 (4%)	3/51 (6%)	
Adjusted rate	7.6%	5.3%	11.8%	
Terminal rate	0/4 (0%)	0/6 (0%)	0/6 (0%)	
First incidence (days)	594	560	413	
life table test	P=0.447	P=0.659N	P=0.565	
Logistic regression test	P=0.416	P=0.682	P=0.496	
Cochran-Armitage test	P=0.428	D	D	
Fisher exact test		P=0.691N	P=0.509	
Festes: Adenoma				
Overall rate	4/50 (8%)	3/50 (6%)	9/50 (18%)	
Adjusted rate	34.7%	30.8%	69.1%	
Cerminal rate	1/4 (25%)	1/6 (17%)	3/6 (50%)	
First incidence (days)	578	701 D. 0.01001	519 D. 0.000	
Life table test	P=0.124	P≈0.319N	P=0.283	
Logistic regression test	P=0.067	P=0.395N	P=0.164	
Cochran-Armitage test Fisher exact test	P=0.052	P=0.500N	P=0.117	
Thyroid Gland (C-cell): Adenoma or Carcino Overall rate	oma 2/48 (4%)	3/50 (6%)	4/48 (8%)	
Adjusted rate	12.6%	14.5%	12.8%	
Terminal rate	0/4 (0%)	0/6 (0%)	0/6 (0%)	
First incidence (days)	619	652	538	
Life table test	P=0.318	P=0.606	P=0.385	
Logistic regression test	P=0.287	P=0.551	P=0.330	
Cochran-Armitage test	P=0.285			
Fisher exact test	,	P = 0.520	P=0.339	

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μL	100 µL	300 µL
All Organs: Mononuclear Cell Leukemia		- <u> </u>	
Overall rate	9/50 (18%)	12/50 (24%)	13/51 (25%)
Adjusted rate	65.1%	77.9%	53.4%
Terminal rate	2/4 (50%)	4/6 (67%)	1/6 (17%)
First incidence (days)	520	490	413
Life table test	P=0.381	P=0.579	P=0.393
ogistic regression test	P=0.260	P=0.381	P=0.256
Cochran-Armitage test	P=0.252		
Fisher exact test		P=0.312	P=0.252
ll Organs: Benign Neoplasms			
Dverall rate	45/50 (90%)	47/50 (94%)	47/51 (92%)
Adjusted rate	100.0%	100.0%	97.8%
ferminal rate	4/4 (100%)	6/6 (100%)	5/6 (83%)
First incidence (days)	478	304	391
ife table test	P=0.346N	P=0.211N	P=0.313N
ogistic regression test	P=0.517	P = 0.400	P=0.532
Cochran-Armitage test	P=0.487		
Tisher exact test		P=0.357	P=0.487
All Organs: Malignant Neoplasms		• .	•
Dverall rate	17/50 (34%)	21/50 (42%)	23/51 (45%)
Adjusted rate	89.5%	85.9%	79.4%
Terminal rate	3/4 (75%)	4/6 (67%)	3/6 (50%)
First incidence (days)	520	304	413
life table test	P=0.353	P=0.522N	P=0.380
ogistic regression test	P=0.181	P=0.312	P=0.180
Cochran-Armitage test	P=0.177		
Visher exact test		P=0.268	P=0.174
All Organs: Benign or Malignant Neoplasms	· , 5		
Overall rate	46/50 (92%)	49/50 (98%)	50/51 (98%)
Adjusted rate	100.0%	100.0%	100.0%
Cerminal rate	4/4 (100%)	6/6 (100%)	6/6 (100%)
First incidence (days)	478	304	391
life table test	P=0.425N	P=0.243N	P=0.389N
ogistic regression test	P=0.176	P=0.183	P=0.197
Cochran-Armitage test	P=0.154		
Fisher exact test		P=0.181	P=0.175

^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, pancreatic islets, pituitary gland, skin, stomach, testes, and thyroid gland; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

TABLE A4a

Historical Incidence of Pituitary Gland (Pars Distalis) Adenomas in Untreated Male F344/N Rats^a

	Incidence in Controls	
Overall Historical Incidence: Dermal (Acetone)		· · · · · · · · · · · · · · · · · · ·
Total	24/50 (48.0%)	· · · · · · · · · · · · · · · · · · ·
Overall Historical Incidence: Feed		
Total Standard deviation Range	382/1,332 (28.7%) 11.1% 12%-60%	· .
Overall Historical Incidence: Inhalation		
Total Standard deviation Range	226/390 (58.0%) 8.9% 45%-68%	· · · · · · · · · · · · · · · · · · ·
Overall Historical Incidence: Water Gavage		• • • • • • • •
Total Standard deviation Range	116/363 (32%) 7.7% 24%-43%	· .
Overall Historical Incidence: Corn Oil Gavage		
Total Standard deviation Range	344/1,046 (32.9%) 9.1% 18%-49%	

^a Data as of 31 March 1993

TABLE A4b

Historical Incidence of Leukemia in Untreated Male F344/N Rats^a

	Incidence in Control	ls	
Overall Historical Incidence: Dermal (Ace	tone)		
Total	16/50 (32.0%)		
Overall Historical Incidence: Feed		•	
Total Standard deviation Range	661/1,353 (48.9%) 8.8% 32%-62%		
Overall Historical Incidence: Inhalation		·	
Total Standard deviation Range	208/399 (52.1%) 10.9% 34%-66%		
Overall Historical Incidence: Water Gavag	ge		
Total Standard deviation Range	173/367 (47.1%) 9.2% 34%-56%		
Overall Historical Incidence: Corn Oil Ga	vage		
Total Standard deviation Range	253/1,070 (23.6%) 10.6% 4%-46%		

^a Data as of 31 March 1993; includes data for lymphocytic, monocytic, mononuclear, or undifferentiated cell type leukemias

98

TABLE A4c

Historical Incidence of Adenomas of the Testis in Untreated Male F344/N Rats^a

		Incidence in Controls	
Overall Historical Incidence:	Dermal (Acetone)		· · · · · · · · · · · · · · · · · · ·
Total		44/50 (88.0%)	
Overall Historical Incidence:	Feed		
Total Standard deviation Range		1,216/1,350 (90.1%) 5.8% 74%-98%	
Overall Historical Incidence:	Inhalation		
Total Standard deviation Range		270/399 (67.7%) 7.8% 58%-78%	
Overall Historical Incidence:	Water Gavage		
Total Standard deviation Range		313/366 (85.5%) 6.7% 73%-92%	
Overall Historical Incidence:	Corn Oil Gavage		
Total Standard deviation Range		933/1,062 (87.9%) 5.8% 76%-94%	

^a Data as of 31 March 1993

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Dermal Study of Diethylphthalate^a

· · ·	0 μL	100 µL	300 µL	
Disposition Summary		۰		
Animals initially in study	60	60	60	
15-Month interim evaluation	10	10	. 9	:
Early deaths				
Moribund	31	38	26	
Natural deaths	15	6	19	
Survivors				•.
Died last week of study	1			
Terminal sacrifice	· 3	6	6	
Animals examined microscopically	60	56	60	
15-Month Interim Evaluation	× .			
Alimentary System				
Liver	(10)	,	(9)	
Degeneration, cystic, focal	(**)		1 (11%)	•
Degeneration, fatty, focal	1 (10%)		1 (11%)	
Focal cellular change	1 (10%)			*
Inflammation, granulomatous, focal	8 (80%)		7 (78%)	
Bile duct, hyperplasia	10 (100%)		9 (100%)	
Centrilobular, degeneration, fatty			1 (11%)	• •
Pancreas	(10)		(9) ໌	
Acinus, atrophy	3 (30%)		3 (33%)	
Acinus, hyperplasia, focal	1 (10%)			
Cardiovascular System	:		· · · · · · · · · · · · · · · · · · ·	
Heart	(10)		(9)	
Cardiomyopathy	8 (80%)		8 (89%)	
Endocrine System				
Adrenal gland, cortex	(10)		(9)	
Degeneration, fatty, focal	1 (10%)			· · ·
Hyperplasia, focal	1 (10%)			
Pituitary gland	(10)		(9)	
Pigmentation, hemosiderin	1 (10%)			х.
Pars distalis, cyst	1 (10%)			· ,
Pars distalis, hyperplasia, focal	2 (20%)		4 (44%)	
General Body System			<u>.</u>	······
Tissue NOS			(1)	-
Hemorrhage		*	1 (100%)	•
Inflammation, proliferative			1 (100%)	

^a Number of animals examined microscopically at the site and the number of animals with lesion

Lesions in Male Rats

TABLE A5

	O µL	100 µL	300 µL	
5-Month Interim Evaluation (continued))		· · · · ·· · · · · · · · · · · · · · ·	
Genital System	,			
Preputial gland	(10)		(9)	
Duct, inflammation, suppurative	1 (10%)			
Prostate	(10)		(9)	
Hyperplasia, focal	1 (10%)			
Testes	(10)		(9)	
Unilateral, atrophy			2 (22%)	
Hematopoietic System				
Spleen	(10)		(9)	
Pigmentation, hemosiderin	10 (100%)		9 (100%)	
Integumentary System			······································	
Mammary gland	(10)		(9)	
Hyperplasia, cystic			1 (11%)	
Duct, pigmentation	1 (10%)			
Skin	(10)	(6)	(9)	
Other, inflammation, acute	(10)	1 (17%)		
Skin, control Acanthosis	(10) 1 (10%)		(9)	
Skin, site of application-no mass	(10%)	(5)	(9)	
Acanthosis		5 (100%)	6 (67%)	
Respiratory System		<u> </u>	······································	
Lung	(10)		(9)	
Congestion	1 (10%)			
Nose	(10)		(9)	
Fungus	1 (10%)		2 (22%)	
Infiltration cellular, lymphocyte, diffuse	1 (10%)			
Infiltration cellular, mixed cell			1 (11%)	
Nasolacrimal duct, exudate	1 (10%)		1 (11%)	
Nasolacrimal duct, inflammation, suppurative	1 (10%)			
Special Senses System				
Eye	(2)			
Cataract	1 (50%)			
Anterior chamber, hemorrhage Retina, atrophy	1 (50%) 2 (100%)			
		<u>. </u>		
Urinary System Kidney	(10)		(9)	
			9 (100%)	
Nephropathy	10 (100%)		9][[0]%]	

Ċ,

TABLE A5

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	100 µL	300 μL	
5-Month Interim Evaluation (contin	ued)			
Systems Examined With No Lesions Ob	-			
Musculoskeletal System				
Nervous System				
	·	, 		
2-Year Study				
Alimentary System		•	•	
Esophagus	(50)	(49)	(50)	
Hyperkeratosis	4 (8%)	3 (6%)	4 (8%)	
Necrosis	1 (2%)			
Intestine large, cecum	(40)	(47)	(41)	
Congestion	1 (3%)			
Edema	1 (3%)		1 (2%)	
Ulcer	- ()	· · · · ·	3 (7%)	
Serosa, necrosis, focal	1 (3%)			
ntestine large, colon	(41)	(47)	(44)	
Edema	1 (2%)		2 (5%)	
Parasite metazoan	3 (7%)	1 (2%)	1 (2%)	
Ulcer			1 (2%)	
Muscularis, degeneration, focal	1 (2%)		. ,	•
Muscularis, necrosis, focal	- ()	1 (2%)		
Serosa, necrosis, focal	1 (2%)			
intestine small, duodenum	(47)	(49)	(47)	
Ulcer			1 (2%)	
Mucosa, erosion, focal	3 (6%)	2 (4%)		
ntestine small, ileum	(44)	(46)	(40)	•
Hemorrhage, focal	1 (2%)			
Mucosa, necrosis	1 (2%)			
ntestine small, jejunum	(42)	(46)	(40)	
Intussusception	1 (2%)			
liver	(50)	(50)	(51)	
Angiectasis		1 (2%)		
Basophilic focus	1 (2%)			
Clear cell focus	4 (8%)		1 (2%)	
Degeneration, cystic, focal	2 (4%)	3 (6%)	1 (2%)	
Degeneration, fatty	26 (52%)	8 (16%)	4 (8%)	
Eosinophilic focus	2 (4%)	1 (2%)	A //A.	
Fibrosis, focal			2 (4%)	
Hematopoietic cell proliferation	1 (2%)		1 (2%)	
Hepatodiaphragmatic nodule	2 (4%)	1 (2%)	1 (2%)	
Inflammation, chronic, focal	9 (18%)	11 (22%)	12 (24%)	
Necrosis	1 (2%)	3 (6%)	6 (12%)	
Bile duct, hyperplasia	43 (86%)	42 (84%)	38 (75%)	
Hepatocyte, atrophy	1 (2%)			
Hepatocyte, hyperplasia, focal	2 (4%)		1 (00/)	
Serosa, inflammation, necrotizing			1 (2%)	
Mesentery	(4)	(3)	(1)	
Fat, granuloma	2 (50%)	2 (67%)	1 (100%)	

102

Lesions in Male Rats

TABLE A5

	ΟμL	100 µL	300 µL	
2-Year Study (continued)				
Alimentary System (continued)				
Pancreas	(50)	(50)	(50)	
Accessory spleen	1 (2%)	(50)	(30)	
Cytoplasmic alteration, focal	1 (2%)	1 (2%)	1 (2%)	
Edema	1 (270)	1 (270)	2 (4%)	
Fibrosis	1 (2%)		2 (470)	
Acinus, atrophy	14 (28%)	17 (34%)	23 (46%)	
Interlobular, inflammation, chronic	14 (2010)	1 (2%)	25 (4070)	
Salivary glands	(48)	(50)	(50).	
Concretion	(40)	(50)	1 (2%)	
Stomach	(49)	(50)	(50)	
Muscularis, necrosis	(4))	(50)		
Muscularis, necrosis, focal	2 (4%)	3 (6%)	1 (2%) 1 (2%)	-
Serosa, inflammation, necrotizing	2 (470)	3 (6%) 1 (2%)	1 (2%)	
Serosa, inflammation, suppurative		1 (270)	1 (2%)	
Serosa, necrosis, focal		1 (2%)	1 (2%)	
Stomach, forestomach	(49)		(50)	
Acanthosis	25 (51%)	(50) 21 (42%)	24 (48%)	
Edema	13 (27%)		10 (20%)	
Hyperkeratosis		9 (18%) 20 (40%)	• •	
Ulcer	25 (51%)	20 (40%) 13 (26%)	24 (48%) 8 (16%)	
Muscularis, necrosis	13 (27%)	13 (26%)	8 (16%)	
Serosa, inflammation, suppurative	2 (4%)	1 (20%)		
Serosa, inflammation, supportative		1 (2%) 1 (2%)		
Serosa, necrosis, focal	1 (20%)	1 (2%)		
Stomach, glandular	1 (2%)	(50)	(40)	
Dilatation	(49)	(50)	(49)	
Fibrosis	1 (2%)	1 (20%)		
	1 (20%)	1 (2%)		
Foreign body	1 (2%)	1 (20%)		
Epithelium, degeneration		1 (2%)		
Epithelium, hyperplasia	11 (22%)	1 (2%)	A (90)	
Mucosa, degeneration	11 (22%)	5 (10%)	4 (8%)	
Mucosa, erosion, focal	1 (2%)	2 (4%)	1 (2%)	
Muscularis, necrosis, focal Tooth	1 (2%)	(1)		
		(1)		
Inflammation, suppurative		1 (100%)		
Cardiovascular System				
Blood vessel	(13)	(8)	(2)	
Degeneration	13 (100%)	(8) 7 (88%)	(2)	
Heart	(50)	7 (88%) (50)	2 (100%)	
Abscess		(50)	(50)	
Cardiomyopathy	1 (2%) 45 (90%)	11 (990/1)	14 (990%)	
Atrium, dilatation	45 (90%) 1 (2%)	44 (88%)	44 (88%)	
Atrium, thrombus	1 (2%)	5 (100/)	2 (601)	
	6 (12%) 1 (2%)	5 (10%)	3 (6%)	
Myocardium, necrosis	1 (2%)	1 (201)		
Myocardium, necrosis, focal		1 (2%)		

	0 μL	100 µL	300 µL
2-Year Study (continued)	······································		
Endocrine System	-		
Adrenal gland, cortex	(49)	(50)	
Angiectasis		(50)	(50)
Cytoplasmic alteration, focal	1 (2%)	1 (2%)	
Degeneration	7 (14%)	1 (2%)	1 (OP)
Degeneration, fatty, focal		3 (6%)	1 (2%)
Hyperplasia, focal	20 (41%)	21 (42%)	15 (30%)
Hypertrophy, focal	5 (10%)	9 (18%)	8 (16%)
Metaplasia, osseous, focal			1 (2%)
Adrenal gland, medulla	(49)	(50)	1 (2%)
Hyperplasia, focal		(50)	(48)
Islets, pancreatic	21 (43%)	25 (50%)	14 (29%)
Hyperplasia	(49)	(50)	(49)
	1 (2%)	(40)	2 (4%)
Parathyroid gland	(47)	(49)	(48)
Hyperplasia, focal	1 (2%)	00 11100	1 (2%)
Hypertrophy Bitwitters also d	32 (68%)	30 (61%)	19 (40%)
Pituitary gland	(44)	(49)	(49)
Angiectasis	, , ,	1 (2%)	1 (2%)
Cyst		2 (4%)	
Hemorrhage	·		2 (4%)
Pigmentation	1 (2%)		1 (2%)
Pars distalis, cyst		·	1 (2%)
Pars distalis, hyperplasia, focal	2 (5%)	3 (6%)	6 (12%)
Thyroid gland	(48)	(50)	(48)
C-cell, hyperplasia	7 (15%)	7 (14%)	8 (17%)
Follicular cell, hyperplasia	1 (2%)		
General Body System			
Tissue NOS	(4)	(3)	(1)
Inflammation, suppurative	1 (25%)	(9)	
initialization, supportante	1 (25,70)	·	
Genital System		۶	
Coagulating gland	(1)	(1)	•
Inflammation	1 (100%)		,
Inflammation, suppurative		. 1 (100%)	
Epididymis	(48)	(48)	(50)
Degeneration, focal	35 (73%)	38 (79%)	31 (62%)
Fibrosis	20 (42%)	20 (42%)	11 (22%)
Penis	(6)	(2)	(2)
Inflammation, acute	3 (50%)	2 (100%)	
Thrombus	1 (17%)	= (10070)	
Preputial gland	(34)	(46)	(45)
Abscess	2 (6%)	1 (2%)	2 (4%)
Abscess, acute	~ (0,0)	1 (2%)	
Ectasia	4 (12%)	1 (2%)	4 (9%)
Fibrosis	21 (62%)	23 (50%)	24 (53%)
Hyperplasia	21 (0270)	25 (5070)	1 (2%)
Inflammation, chronic		5 (11%)	3 (7%)
mnammation, enrome		J (JI /0)	5 (10)

Lesions in Male Rats

TABLE A5

	ΟμL	100 µL	300 µL.	
2-Year Study (continued)				
Genital System (continued)				
Prostate	(48)	(50)	(49)	
Cyst	(40)	(50)	1 (2%)	
Hyperplasia, focal			3 (6%)	
Inflammation, chronic	1 (2%)	1 (2%)	2 (4%)	
Inflammation, suppurative	29 (60%)	25 (50%)	27 (55%)	
Seminal vesicle	(48)	(50)	(49)	
Atrophy	15 (31%)	13 (26%)	12 (24%)	
Depletion	17 (35%)	21 (42%)	10 (20%)	
Hyperplasia	1 (2%)	21 (42%)	10 (20%)	
Inflammation, suppurative		A (90%)	1 (2%)	
Testes	2 (4%) (50)	4 (8%) (50)	1 (2%) (50)	
Hypoplasia	1 (2%)	(50) 1 (2%)	(50) 1 (2%)	
Polyarteritis	3 (6%)	4 (8%)	4 (8%)	
Interstitial cell, hyperplasia	4 (8%)	1 (2%)	3 (6%)	
Seminiferous tubule, atrophy	23 (46%)	31 (62%)	20 (40%)	
Seminiferous tubule, degeneration	14 (28%)	8 (16%)	8 (16%)	
	14 (20%)	3 (1070)	3 (10%)	
Hematopoietic System			· · · · · · · · · · · · · · · · · · ·	
Bone marrow	(49)	(49)	(48)	
Hypoplasia	6 (12%)	6 (12%)	3 (6%)	
ymph node	(50)	(50)	(50)	
Hemorrhage	1 (2%)	()	()	
Mediastinal, angiectasis	- (-//)	2 (4%)		
Mediastinal, hemorrhage	2 (4%)	- ()	1 (2%)	
Lymph node, mandibular	(48)	(50)	(49)	
Hyperplasia		1 (2%)		
Lymph node, mesenteric	(44)	(50)	(46)	
Angiectasis		1 (2%)	(,	
Congestion		1 (2%)		
Hemorrhage	3 (7%)	1 (2%)		
Inflammation, granulomatous			1 (2%)	
Spleen	(50)	(50)	(50)	
Congestion	3 (6%)	(30)	3 (6%)	
Depletion lymphoid	1 (2%)		5 (0,0)	
Fibrosis	4 (8%)	4 (8%)	4 (8%)	
Hematopoietic cell proliferation	8 (16%)	9 (18%)	7 (14%)	
Infarct	0 (10/0)	1 (2%)	2 (4%)	
Pigmentation, hemosiderin	16 (32%)	14 (28%)	14 (28%)	
Capsule, hyperplasia	20 (00/0)	1 (2%)		
Capsule, hyperplasia, focal		1 (2%)		
Thymus	(35)	(37)	(35)	
Depletion lymphoid	5 (14%)	4 (11%)	7 (20%)	
Hemorrhage	1 (3%)	- (11 <i>1</i> 0)	. (2070)	
Hyperplasia, pseudoepitheliomatous	- (5%)	2 (5%)		
>Lbusin' beencebunctioningtons		2 (370)		
.

TABLE A5

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

· · · · ·	θ μL	100 μL	300 µL	
2-Year Study (continued)				
Integumentary System				•
Mammary gland	(44)	(20)		· · · · · · · · · · · · · · · · · · ·
Abscess	(44)	(38)	(43)	
Galactocele	1 (2%)	- + /0 <i>0</i> /		
	1 (20)	1 (3%)		
Hyperplasia Lactation	1 (2%)	3 (8%)	2 (5%)	
	39 (89%)	.37 (97%)	40 (93%)	
Duct, ectasia	1 (2%)		<i>(</i> --)	
Skin Abdominel adama	(49)	(50)	(51)	
Abdominal, edema		1 (2%)		
Abdominal, exudate	1 (07)	1 (2%)		
Abdominal, inflammation, suppurative	1 (2%)			
Abdominal, subcutaneous tissue, edema		1 /001	1 (2%)	
Foot, hemorrhage	1 (00)	1 (2%)		
Other, cyst epithelial inclusion	1 (2%)			
Other, inflammation, suppurative	3 (6%)		1 (2%)	•
Prepuce, hyperkeratosis	1 (2%)	. ,		
Prepuce, inflammation	1 (2%)			
Skin, control	(50)	(50)	(50)	
Cyst epithelial inclusion		1 (2%)		
Skin, site of application-no mass	(50)	(50)	(51)	
Acanthosis	2 (4%)	5 (10%)	21 (41%)	
Cyst epithelial inclusion	3 (6%)			
Exudate	4	1 (2%)		
Hyperkeratosis	•	- mark	2 (4%)	
Inflammation, suppurative	1 control 5	1 (2%)	1 (2%)	
Proliferation connective tissue	1 (2%)	1 (2%)		
Musculoskeletal System		e		
Bone	(49)	(49)	(49)	
Fibrous osteodystrophy	22 (45%)	19 (39%)	11 (22%)	,
Hyperostosis		1 (2%)	1 (2%)	
Hypoplasia	1 (2%)			
Skeletal muscle	(1)	(1)	(1)	
Degeneration, focal	1 (100%)			
Diaphragm, inflammation, proliferative			1 (100%)	
Diaphragm, necrosis, focal	· .	1 (100%)		
	·			
Nervous System		۰ ۲۰ ۰		
Brain	(50)	(50)	(50)	
Compression	5 (10%)	8 (16%)	9 (18%)	
Hemorrhage	1 (2%)		1 (2%)	
Hydrocephalus		1 (2%)	1 (2%)	
Infarct	1 (2%)	1 (2%)		

• ,

.

TABLE A5

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	100 µL	300 μL	
-Year Study (continued)				
Respiratory System	•			
ung	(50)	(50)	(51)	
Atelectasis	2 (4%)		(51)	
Congestion	17 (34%)	1 (2%) 12 (26%)	18 (35%)	
Edema	17 (3470)	13 (26%)		
	1 (201)	1 (201)	1 (2%)	
Hemorrhage	1 (2%)	1 (2%)	2 (4%)	
Infiltration cellular, histiocyte	1 (2%)	3 (6%)	1 (2%)	
Inflammation, acute	00 (110)	1 (2%)	14 (000)	
Inflammation, chronic	22 (44%)	14 (28%)	11 (22%)	
Alveolar epithelium, hyperplasia			1 (2%)	
Alveolar epithelium, hyperplasia, focal		1 (2%)		
lose	(50)	(50)	(49)	
Exudate		1 (2%)		•
Fibrosis, focal		1 (2%)		
Foreign body	3 (6%)	5 (10%)	•	
Fungus	3 (6%)	4 (8%)	5 (10%)	-
Inflammation, chronic	4 (8%)	5 (10%)	5 (10%)	
Inflammation, suppurative	7 (14%)	2 (4%)	7 (14%)	
Nasolacrimal duct, inflammation, chronic			1 (2%)	
Nasolacrimal duct, inflammation, suppurative	1 (2%)	1 (2%)	2 (4%)	
Submucosa, olfactory epithelium, glands, hypertrophy			1 (2%)	
Special Senses System				
lar	(1)	(2)	(3)	
Hyperkeratosis	1 (100%)			
Ulcer			1 (33%)	
Eye	(43)	(43)	(42)	
Cataract	42 (98%)	43 (100%)	42 (100%)	
Hemorrhage	4 (9%)	4 (9%)	1 (2%)	
Synechia	1 (2%)			
Anterior chamber, inflammation, suppurative	· ·	1 (2%)	1 (2%)	
Cornea, inflammation	5 (12%)	4 (9%)	- ,	
Retina, atrophy	34 (79%)	35 (81%)	34 (81%)	
Zymbal's gland		(3)		
Abscess		2 (67%)		
Jrinary System	<u></u>		<u></u>	
Lidney	(50)	(50)	(51)	
Inflammation, suppurative	1 (2%)			
Nephropathy	50 (100%)	50 (100%)	51 (100%)	
Pelvis, dilatation	1 (2%)	2 (4%)		
Pelvis, epithelium, hyperplasia	29 (58%)	28 (56%)	21 (41%)	
	1 (2%)	20 (3070)	(/0)	
Pelvis enithelium inflammation				
Pelvis, epithelium, inflammation Pelvis, epithelium, mineralization	1 (270)	2 (19%)	1 (2%)	
Pelvis, epithelium, inflammation Pelvis, epithelium, mineralization Renal tubule, mineralization	1 (2%)	2 (4%)	1 (2%)	

Diethylphthalate/Dimethylphthalate, NTP TR 429

TABLE A5

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	٠.	100 µL	300 µL
P-Year Study (continued)	<u></u>			
Jrinary System (continued)			•	·
Jrinary bladder	(48)		(50)	(47)
Hemorrhage	1 (2%)			
Inflammation, chronic	1 (2%)			1 (2%)
Inflammation, suppurative	1 (2%)			· · ·
Necrosis	1 (2%)	,		
Mucosa, hyperplasia	2 (4%)	,		1 (2%)

APPENDIX B SUMMARY OF LESIONS IN FEMALE RATS IN THE 2-YEAR DERMAL STUDY OF DIETHYLPHTHALATE

TABLE B1	Summary of the Incidence of Neoplasms in Female Rats	
	in the 2-Year Dermal Study of Diethylphthalate	110
TABLE B2	Individual Animal Tumor Pathology of Female-Rats	
	in the 2-Year Dermal Study of Diethylphthalate	114
TABLE B3	Statistical Analysis of Primary Neoplasms in Female Rats	
	in the 2-Year Dermal Study of Diethylphthalate	132
TABLE B4a	Historical Incidence of Pituitary Gland (Pars Distalis) Adenomas	
	in Untreated Female F344/N Rats	138
TABLE B4b	Historical Incidence of Mammary Gland Fibroadenomas	
	in Untreated Female F344/N Rats	139
TABLE B5	Summary of the Incidence of Nonneoplastic Lesions in Female Rats	
	in the 2-Year Dermal Study of Diethylphthalate	140

 \sim

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Dermal Study of Diethylphthalate^a

60 9 12 9	60 10 12 10	60 10 17 10	
9 12 9	10 12	10 17	• • • •
9 12 9	10 12	10 17	• •
9	12	17	•
9			
9		10	
		2	
30	28	21	1.1
60	52	60	
		<u> </u>	
(0)	(2)	(10)	
(3)	(2)		
1 (11/0)		1 (10/0)	
			<u> </u>
(9)	(1)	(10)	
4 (44%)		2 (20%)	
·		·	
(9)	(2)		,
1 (11%)		1 (10%)	
			· · ·
(9)	(1)	(10)	
2 (22%)			
(0)	(2)	(10)	
1 (11%)	(2)	1 (10%)	
	$ \begin{pmatrix} (9) \\ 1 (11\%) \\ (9) \\ 4 (44\%) \\ (9) \\ 1 (11\%) \\ (9) \\ 2 (22\%) \\ (9) $	$ \begin{pmatrix} 9 \\ 1 \\ (11\%) \end{pmatrix} $ $ \begin{pmatrix} 9 \\ 4 \\ (44\%) \end{pmatrix} $ $ \begin{pmatrix} 1 \\ 1 \\ (44\%) \end{pmatrix} $ $ \begin{pmatrix} 9 \\ 1 \\ (11\%) \end{pmatrix} $ $ \begin{pmatrix} 2 \\ 2 \\ (2) \\ (1) \\ (2) \\ (2) \\ (1) \end{pmatrix} $ $ \begin{pmatrix} 9 \\ 2 \\ (22\%) \end{pmatrix} $ $ \begin{pmatrix} 9 \\ 1 \\ (11\%) \end{pmatrix} $ $ \begin{pmatrix} 2 \\ (2) \\ (2) \\ (2) \\ (2) \end{pmatrix} $	$ \begin{pmatrix} 9 \\ 1 (11\%) \\ (11\%) \\ (9) \\ 4 (44\%) \\ (1) \\ (10) \\ 2 (20\%) \\ (1) \\ (10) \\ 2 (20\%) \\ (1) \\ (10) \\ 1 (10\%) \\ (10) \\ (1$

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	ΦµL	100 µL	300 µL	
2-Year Study				
Alimentary System				
Intestine large, colon	(49)	(47)	(48)	
Liver	(50)	(50)	(50)	
Hepatocellular adenoma	1 (2%)	1 (2%)	()	
Mesentery	(3)	(3)	(1)	
Pancreas	(50)	(50)	(50)	
Adenoma			1 (2%)	
Salivary glands	(50)	(50)	(50)	
Stomach, forestomach	(50)	(50)	(50)	
Papilloma squamous			1 (2%)	
Stomach, glandular	(50)	(50)	(50)	
Cardiovascular System				
Heart	(50)	(50)	(50)	
Endocrine System				
Adrenal gland, cortex	(51)	(50)	(50)	
Adenoma	4 (8%)	4 (8%)	6 (12%)	
Adenoma, multiple			1 (2%)	
Adrenal gland, medulla	(49)	(50)	(50)	
Pheochromocytoma malignant	1 (2%)	1 (2%)		
Pheochromocytoma benign	3 (6%)	1 (2%)	1 (2%)	
slets, pancreatic	(50)	(50)	(50)	
Adenoma	3 (6%)	1 (2%)	3 (6%)	
Carcinoma	2 (4%)	3 (6%)		
Parathyroid gland	(45)	(50)	(47)	
Adenoma Pipuitory alond	(50)	(40)	1 (2%)	
Pituitary gland	(50) 29 (76 <i>m</i>)	(49) 22 (67%)	(48)	
Pars distalis, adenoma Pars distalis, carcinoma	38 (76%)	33 (67%) 2 (4%)	33 (69%) 1 (2%)	
Pars intermedia, adenoma	2 (4%) 1 (2%)	2 (470)	1 (270)	
Thyroid gland	(50)	(50)	(50)	
Adenoma	1 (2%)	(30)	(50)	
C-cell, adenoma	1 (2/0)		1 (2%)	
C-cell, carcinoma	6 (12%)	5 (10%)	2 (4%)	
Follicular cell, carcinoma	3 (6%)	1 (2%)	1 (2%)	
General Body System				_
Tissue NOS	(2)	(2)	(2)	
Basosquamous tumor malignant		1 (50%)	• •	
Fibrosarcoma	1 (50%)			
Sarcoma			1 (50%)	
Genital System				
Clitoral gland	(44)	(39)	(40)	
Adenoma	5 (11%)		2 (5%)	
Carcinoma	2 (5%)	1 (3%)	2 (5%)	

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	100 µL	300 µL
2-Year Study (continued)			9 Min - Marine Marine Marine - San
Genital System (continued)			$\mathbf{e}_{\mathbf{r}} = \mathbf{e}_{\mathbf{r}} + \mathbf{e}_{\mathbf{r}} + \mathbf{e}_{\mathbf{r}}$
Ovary	(50)	(50)	(50)
Carcinoma	()	(50)	1 (2%)
Uterus	(50)	(50)	(50)
Leiomyoma	()		1 (2%)
Polyp stromal	2 (4%)	3 (6%)	6 (12%)
Sarcoma stromal			1 (2%)
Schwannoma malignant	1 (2%)		1 (2%)
Homotopoistic Sustan			unan en
Hematopoietic System	(50)	(50)	(50)
Lymph node	(50)	(50)	(50)
Lymph node, mandibular	(50)	(50)	(50)
Lymph node, mesenteric	(50)	(50)	(50)
Spleen	(51)	(50)	(50)
Hemangiosarcoma		1 (2%)	
Thymus	(44)	(43)	(42)
Integumentary System			
Mammary gland	(50)	(48)	(50)
Adenocarcinoma	5 (10%)	3 (6%)	3 (6%)
Adenoma	1 (2%)	- ()	
Fibroadenoma	20 (40%)	11 (23%)	7 (14%)
Fibroadenoma, multiple	1 (2%)	1 (2%)	
Fibroma			1 (2%)
Musculoskeletal System	4		· · · ·
Bone	(48)	(49)	(50)
Osteosarcoma	1 (2%)	· .	
Nervous System	۰. 		
Brain	(50)	(50)	(50)
Carcinoma, metastatic	1 (2%)	2 (4%)	
Descionter Custom			
Respiratory System		(50)	1500
Lung	(50)	(50)	(50)
Alveolar/bronchiolar adenoma	1 (2%)		
Alveolar/bronchiolar carcinoma Trachea	1 (2%) (50)	(50)	(50)
		· ·	
Special Senses System Zymbal's gland	(1)	(1)	(1)
ZATODALS PLATIC	(1)	(1)	(1)

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

		·····	
	0 μL	100 µL	300 µL
2-Year Study (continued)			nan gana kana kana kana kana kana kana k
Urinary System			
Kidney	(51)	(50)	(50)
Carcinoma	()	1 (2%)	
Urinary bladder	(48)	(47)	(49)
Papilloma	1 (2%)		1 (2%)
Systemic Lesions	·		m
Multiple organs	(51)	(50)	(50)
Leukemia monocytic	1 (2%)	(
Leukemia mononuclear	17 (33%)	15 (30%)	16 (32%)
Neoplasm Summary	-	<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · · · · · · · · · · · · · · · ·
Total animals with primary neoplasms ^c			
15-Month interim evaluation	7		3
2-Year study	51	48	46
Total primary neoplasms			
15-Month interim evaluation	7		3
2-Year study	126	90	95
Total animals with benign neoplasms			
15-Month interim evaluation	6		2
2-Year study	47	41	39
Total benign neoplasms			
15-Month interim evaluation	6		2
2-Year study	82	55	66
Total animals with malignant neoplasms			_ ·
15-Month interim evaluation	1		1
2-Year study	32	27	23
Total malignant neoplasms	_		_
15-Month interim evaluation	1	<u> </u>	1
2-Year study	44	35	29
Total animals with metastatic neoplasms		2	
2-Year study	1	2	
Total metastatic neoplasms		2	
2-Year study	1	2	

а Number of animals examined microscopically at the site and the number of animals with neoplasm

b

Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms с

Individual Animal Tumor Pathology of Female Rats in the 2-Year Dermal Study of Diethylphthalate: 0 µL 3 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 Number of Days on Study 3 5 6 5 5 5 6 6 6 9 1 5 5 5 7 8 0 2 1 3 3 3 3 3 3 1 8 5 1 2 5 2 9 9 3 2 0 5 6 9 3 5 7 0 4 1 4 4 4 4 0 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 **Carcass ID Number** 6 0 1 0 7 0 Ò 8 .9 7 2 8 8 1 7 1 8 7 9 1 0 7 7 7 7 5 3 7 7 2 8 9 3 5 0 3 9 7 8 6 1 5 2 4 6 9 1 2 3 8 1. 1 **Alimentary System** Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, jejunum A Liver + Hepatocellular adenoma х Mesentery Pancreas Salivary glands Stomach + Stomach, forestomach + Stomach, glandular + +**Cardiovascular System** Heart + + ++ + + + + + ++ + +**Endocrine System** Adrenal gland + + Adrenal gland, cortex + Adenoma x Adrenal gland, medulla Pheochromocytoma malignant Pheochromocytoma benign Islets, pancreatic + Adenoma Carcinoma х Parathyroid gland + + M + M + 4 M + Pituitary gland + + + + + ++ +++ + + + ххх ххх Pars distalis, adenoma хх Х х X Х Х х Х х X X Pars distalis, carcinoma х Pars intermedia, adenoma Thyroid gland Adenoma х х C-cell, carcinoma х Follicular cell, carcinoma х **General Body System Tissue NOS** + Fibrosarcoma

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

TABLE B2

							_				_																
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
umber of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	
Carcass ID Number	7	8	8	8			8			9			9		9									1			Total
	9							0										-									Tissue
	-							1																			Tumor
limentary System	<u> </u>																										<u> </u>
Esophagus				L		,									,						,			,		,	50
		- -	.		- -	Ť	Ţ	Ť.	.	Ť	.	Ť	T .	+	-	T	Ť.	T	Ť	Ŧ	-	- *	+	+	Ť	+	
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	48
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	·+	48
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatocellular adenoma																											1
Mesentery																											3
Pancreas	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary glands		Ļ	÷	_	, 			÷	, 	, ,		+	+	+	+		+	+	+	+	_	+	_		+		50
Stomach	т 1		- T	T 1	T	т -	+	T	+	+	+	+	+	+		T I			+		т 1	т 1	т 1	т 1			50
	+	Ţ	+	Ţ	Ť	Ţ	Ť	T	+	+	+	Ť.	- -	÷	Ţ	+	T	+		+	+		+		т ,	+	50
Stomach, forestomach Stomach, glandular	+ +	++	++	++	++	+ +	++	++	++	++	++	++	++	++	+ +	++	+ +	++	++	++	++	++	++	++	++	++	50 50
···	· · · · ·				<u> </u>														<u> </u>			·		· · ·	·		
Cardiovascular System Heart	+	т	+		,	L.		+		+	,		а		Ŀ		т		1.	,	L		1	,			50
			1		.1	, 	т [.]	-	т		т	,	-F	,	1- 	1	1-		,			т	'			-1	
Indocrine System																											-
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	51
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	51
Adenoma										Х			х													х	4
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	49
Pheochromocytoma malignant																		х									1
Pheochromocytoma benign								х							х		х										3
Islets, pancreatic	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma	Х							х																			3
Carcinoma								•-											х								2
Parathyroid gland	+	-	-	+	Ŧ	+	1	+	Ŧ	+	м	4	÷	-	4	Ъ	-	Ŧ		м	4	+	-	<u>۲</u>	+	÷	45
Pituitary gland							т ⊥		T L																		50
Pars distalis, adenoma				+		x	Ť	+	Ť	x		+								Ŧ	+					+ x	38
•	л	Λ	Λ		Λ	Λ	Λ		Λ	л		Λ	Λ	Λ	Λ	Λ		Λ	Λ		Λ	Λ	^		. ^	Λ	
Pars distalis, carcinoma								v																			2
Pars intermedia, adenoma								X									_										1
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma				х																							1
C-cell, carcinoma							х	Х												х							6
Follicular cell, carcinoma					х																						3
General Body System																											
Tissue NOS										+																	2
Fibrosarcoma										Х																	1

Individual Animal Tumor Pathology of Female Rats in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued) 3 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 Number of Days on Study 3 5 6 5 5 5 6 66 9 1 5 5 5 78 0 1 2 3 3 3 3 3 3 3 1 8 5 1 2 5 2 9 9 32 0 5 6 935 7 4 0 1 4 4 4 0 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 ·0 1 1 0 0 0 0 **Carcass ID Number** 6 0 1 0 7 0 0 8 9 7 2 8 8 1 7 1 8 7 9 1 0 7 7 7 7. 5 3 7 7 6 2 8 9 3 5 0 1 3 9 7 5 2 4 8 6 9 1 2 3 8 1. 1 **Genital System** Clitoral gland $\frac{+}{x}$ + M X + M M M ++ М + + + + + + Adenoma х Carcinoma Ovary + + + + + Uterus + Polyp stromal х Schwannoma malignant х Vagina + Hematopoletic System Bone marrow Lymph node . Lymph node, mandibular Lymph node, mesenteric Spleen Thymus MI м **Integumentary System** Mammary gland Μ + ++ + Adenocarcinoma х х Adenoma х х Fibroadenoma Х х х X Fibroadenoma, multiple х Skin + + + ++ + + Skin, control + + + + Skin, site of application-no mass + + + + + + + + + + + + + ÷ **Musculoskeletal System** Bone Osteosarcoma **Nervous System** Brain Carcinoma, metastatic х **Respiratory System** Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Nose + + Trachea + + + + + + + + + + + **Special Senses System** Ear Eye + + Zymbal's gland

· · ·

Individual Animal Tumor Patholo	gy or r		201100	: 102	aus	ппп	um	e 4	- 10	eal	Ш	eri	KII SU	19	uuu	uy o			eun	IA1	DERIG	KU SU	1810	C:	Ψį	ull (c	continued)
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	•
5 5	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	
																			_	-			-				
· · · · ·		0		0						0			0		0												
Carcass ID Number	7	8	8	8	8	8	8	9	9	9	9	9	9	9	9	0	0	0	0	0	1	1	1	1	1	1	Total
	. 9	0	4	5	6	7	8	0	1	2	4	5	6	7	9	0	1	4	5	6	8	0	1	2	3	4	Tissues/
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumors
Genital System					-																						
Clitoral gland	M	· +	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Adenoma	141			•	•			•		x	'	'		•	•	'	'	'	x	•	•	1	'	'		'	5
Carcinoma										Λ					х				Λ		х						2
																											50 ·
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Polyp stromal							х																				2
Schwannoma malignant																											1
Vagina																											1
Hematopoietic System		_					_										-										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	48
Lymph node	, 	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	50
Lymph node, mandibular	т 1	- ب	-	1	, ,		, ,	+		, ,		_	÷	+	+	÷		÷	+	÷	Ļ	۔ لد	÷		<u>_</u>	+	50
	т 1	- T	т 1	т -	T	т 1	т	T	T	T	T	т	T		T L	T	T J	т т	T	T	T	T	Ť	Ţ	+	+ +	50
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ť	+	+	+	+		-	
Spleen	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Thymus	+	+	+	+	+	+	+	+	М	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Integumentary System																											
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenocarcinoma					x	-		-	·			·		·	-		•				x					x	5
Adenoma																											1
Fibroadenoma	х		х			х		x	v	v				х		х	v			x	x	х	x		Y	x	20
	л		л			л		Λ	л	Λ				л		л	Λ			Λ	Λ	Λ	Λ		Λ	Λ	20
Fibroadenoma, multiple																											
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Skin, control	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		÷	50
Skin, site of application-no mass	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Musculoskeletal System													-														
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	48
Osteosarcoma								X																			1
Nervous System																					-		,				
Brain											,	,		5				L			ц					т	50
	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	Ŧ	+	+	+	+	+	+	+	+	
Carcinoma, metastatic															_					_		_			_		1
Respiratory System																											
Lung	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma			Х																								1
Alveolar/bronchiolar carcinoma			-											х													1
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Trachea	+	· +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Enorial Congos Surfa-	·····												-														
Special Senses System Ear				+																							1
Eve															5	ر		+			л.		.1	.1		Ŧ	46
	+			• +	+	+	+	+	+	Ŧ	Ŧ	+	+	Ŧ	Ŧ	+	+	+	+	+	+	+	-1-	+	+	7	
Zymbal's gland		+	•																								1

Individual Animal Tumor Pathology of Female Rats in the 2-Year Dermal Study of Diethylphthalate: 0 (continued)

Diethylphthalate/Dimethylphthalate, NTP TR 429

TABLE B2

Individual Animal Tumor Pathology of Female Rats in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued) 3. 4 4 5 5 5 5 5,55666666 7 .7 7 7 7 7 777 Number of Days on Study 3 5 6 5 5 5 6 66 9 1 5 5 5 7 8 0 1 2 3 3 3 3 3 3, 1 8 51 2 5 2 9 9 3 2 0 5 6 9 3 5 7 4 0 1 4 4 4 4 0 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 .0 0 1 1 0 0 0 0 **Carcass ID Number** 6 0 0 7 0 0 8 9 7 2 8 8 1 7 1 8 7 9 1 0 7 7 77 1 5 3 7 · 7 6 28 9 3 5 0 1 3 9 7 5 2 4 8 6 9 1 2 3 8 . • 1 1 1 1 1 1 1 ·1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 **Urinary System** Kidney + + + + + + + + + + + + + + Urinary bladder + + + + A+ + + ł + + + + Papilloma Systemic Lesions Multiple organs + 4 + 4 Х Leukemia monocytic х \mathbf{X}^{-1} Leukemia mononuclear Х х ххх х ХХ Х

Individual Animal Tumor Pathology of Female Rats in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued) 7 Number of Days on Study 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 **Carcass ID Number** 7 8 8 8 8 8 8 9 9 99 99 9 90000 0 1 1 1 1 1 1 Total 9 0 4 5 6 7 8 0 1 2 4 5 6 7 9 0 1 4 5 6 8 0 1 2 3 4 Tissues/ Tumors **Urinary** System 51 Kidney + + + + + + + + + + + + + + + + + Urinary bladder 48 + + + + + + + + + + + I + + + + + + + + + Papilloma х 1 Systemic Lesions Multiple organs 51 + + + + + + + + + + + + + + + + Leukemia monocytic 1 Leukemia mononuclear х 17 ХХ ххх

Individual Animal Tumor Pathology of Female Rats in the 2-Year Dermal Study of Diethylphthalate: 100 µL

			4	4	4	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7			
Number of Days on Study								5			7	7		4		5		5			7	8	1	3	3	3	3			
			9					5										5						-		4				,
			1	2	2	2	2	2	1	1	2	2	2	2	1	2	1	2	2	2	2	2	2	2	2	2	2			
Carcass ID Number			9		1			3		9									0											
			4					4				5	ò	5																
								1																						
limentary System																											_			
Esophagus			т	-	-	Ľ	Ŧ	.1	1.										L					,						
Intestine large			-	-		-					+						+				+	T	+	+	-	+	+			
			+	+	+	+		+			+					+					+	+	+	+	+	+	+			
Intestine large, cecum			A		+	+	A				A				,	+	+		A		+	+	+	+	+	• +	+			
Intestine large, colon			+	-	+	,		+			+						+			+	+	+	+	+	+	+	+			
Intestine large, rectum			-	+	+	+	A				+				+	+	+		+	+	+	+	+	+	+	+	+			
Intestine small				+	+	+	Α			•	+			+			+			+	+	+	+	+	.+-	+	+			
Intestine small, duodenum								+													+	+	+	+	+	+	+			
Intestine small, ileum		,	M	. +	+	+	+	A									+				+	+	+	+	+	+	+			
Intestine small, jejunum			+	+	+	+	+	+			A						+				+	+	+	+	+	+	+			
Liver			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ ·	+	+	+	+	+	+			
Hepatocellular adenoma																														
Mesentery									+						+								+						•	•
Pancreas			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷			
Salivary glands			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach, forestomach			+	+	+	+	+	+	+	+	+	+	+	+	+						+	+	+	+	+	+	+			
Stomach, glandular	•		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Cardiovascular System						2					6 8.																			
Blood vessel			+															+												
Heart			+	+	+	+	+	+	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	. +	+	÷	+			
Endocrine System		•••••••			į																						-	_		
Adrenal gland			·+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Adrenal gland, cortex			+	+	+			+						+	+	+	+	+	+	+	+	+	+	+	+.	+	+			
Adenoma	-								x																	x				
Adrenal gland, medulla			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	·+	+			
Pheochromocytoma malignant							X																							
Pheochromocytoma benign											•																			
Islets, pancreatic			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Adenoma				· ·	•																									
Carcinoma			•						•																					
Parathyroid gland			+	+	+	+	+	+	+	+	+	+	+	+	+	4	+	+	+	+	+	÷	+	+	+	+	+			
Pituitary gland			+	+	+	+	+	+	+		+						+			+	+	+	+	М	+	+	+			
Pars distalis, adenoma			•	-	x	-		x		•	,		x	-		•	x					x			x	•	x	1		
Pars distalis, carcinoma				**				42	~ •		х	- *					~						< T							
Thyroid gland			+	+	+	+	+	+	+	+	4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
C-cell, carcinoma	*		т		x			'	. 1	•	•	'	x	•	1	•	•			•	·	'	·	'	,	•	·			
Follicular cell, carcinoma				·	~~																									÷
					÷									a					-											
General Body System																				1										
Tissue NOS																		+		+										
Basosquamous tumor malignant																				X										

umber of Days on Study arcass ID Number imentary System Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small, duodenum Intestine small, duodenum Intestine small, ileum Intestine small, ileum Intestine small, ileum Intestine small, jejuňum Liver Hepatocellular adenoma	3 4 2 3 0 1	3 5 1 9 2 1	3 5 1 9 5	3 5 1 9 7 1	3 5 1 9 8 1	3 5 2 0 0 1	3 5 2 0 1 1	3 5 2 0 2	3 5 2 0 6 1 +	3 5 2 0 7 1	3 5 2 0 8	3 5 2 1 8	3 5 2 1 9	7 7 3 3 5 5 2 2 2 2 0 1 1 1	3 3 5 5 2 2 2 2 1 2	3 3 5 5 2 2 2 2 2 4	3 3 5 5 2 2 2 2 4 5	3 3 5 5 2 2 2 2 5 7	3 2 5 2 2 2 7 1	3 5 2 2 8	3 5 2 3 3	3 5 2 3 6	3 5 2 3 7	3 5 2 3 8	3 5 2 3 9	Total Tissue
imentary System Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, ileum Intestine small, jejuňum Liver Hepatocellular adenoma	4 2 .3 0 1	5 1 9 2 1	5 1 9 5 1	5 1 9 7 1	5 1 9 8 1	5 2 0 0 1	5 2 0 1 1	5 2 0 2 1	5 2 0 6 1 +	5 2 0 7 1	5 2 0 8	5 2 1 8	5 2 1 9	5 5 2 2 2 2 0 1	5 5 2 2 2 2	5 5 2 2 2 2 2 4	5 5 2 2 2 2 4 5	5 5 2 2 2 2 5 7	5 : 2 : 2 : 7 :	5 2 2 8	5 2 3 3	5 2 3 6	5 2 3 7	5 2 3 8	5 2 3 9	
imentary System Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	2 3 0 1	1 9 2 1	1 9 5 1	1 9 7 1	1 9 8 1	2 0 0 1	2 0 1 1	2 0 2 1	2 0 6 1	2 0 7 1	2 0 8	2 1 8	2 1 9	2 2 2 2 0 1		2 2 2 2 2 4	2 2 2 2 4 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 8	2 3 3	2 3 6	2 3 7	2 3 8	2 3 9	
imentary System Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	.3 0 1	9 2 1	9 5 1	9 7 1	9 9 8	0 0 1	0 1 1	0 2 1	0 6 1 +	0 7 1	0 8	1 8	1 9	2 2 0 1	2 2	22 24	2 2	2 2	2 : 7 i	2 8	3 3	3 6	3 7	3 8	3 9	
imentary System Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	0	2	5	7	8	0	1	2	6 1 +	7 1	8	8	9	0 1	2	24	4 5	5 7	78	8	3	6	7	8	9	
Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	1	1	1	1	1	1	1	1	1 +	1																Tissue
Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma									+		1	1				1		1 -								
Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	+ + + + + + + + + + + + + + + + + + + +	·	- M - + - +	1 - - - - -	 ⊦ + ⊦ +	- + - +	 	 + +		 							. 1	1]	1]	I	1	1	1	1	1	Tumo
Esophagus Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	+ + + + + + + + + + + + + + + + + + + +	• • • • • • • •	- M - + - +	1 - 1 	► + ⊦ + ► +	· 4 · 4	⊦ + ⊦ +	+ +		-L-																
Intestine large Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	+ + + + + + + + +	• • • • • • • •	- + +	• + • +		- 4 - 4	┝╶╈	+			_	+	+	+ -	L _	<u>ь</u> .	ь.	ц.	1	ъ	<u>т</u>	т	н.	ъ	+	49
Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	- + + + + + + + +	· · · · · · · · · ·	- + - +	• •	- 7 - +		г т		1.		+		+ +	т : 	г - L .	г 	г -		т т	Ŧ	T	т 	T L	T	т т	49
Intestine large, colon Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	+++++++	· + + + + + + + + + + + + + + + + + + +	- + - +		- T				- T	T	T			7 		ר ד ו	г -	т :	τ ·	Ţ	Ť	Ţ	Ť	- T	T	49
Intestine large, rectum Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	+ + + + + +	· + · + · +	- +					· • •	+	+	+	+	+		+ -	۳ ٦	г -	+ ·	+ •	+	+	+	+	+	+	
Intestine small Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	+ + + + +	 	- +		+ +	• 1	+ +	+		+				+ •	+ -	+ +		+ •	+ ·	+	+	+	+	+	: †	47
Intestine small, duodenum Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	+ + + +	• + • +			+ +		- +	+	+	+	+		+	+ •	+ •	+ +		+ •	+ •	+	+	+	+	+	+	47
Intestine small, ileum Intestine small, jejunum Liver Hepatocellular adenoma	+ + +	े न - न	- +		+ +		+ +	+	+	+	+	+	+	+ •	+ -	+ +	•	+ •	+	+	+	+	+	+	+	49
Intestine smäll, jejunum Liver Hepatocellular adenoma	+ + +		- +	• -	+ +		+ +	+	+	+	+			+ •	+ -	+ -	+ -	+ •	+ ·	+	+	+	+	+	+	49
Liver Hepatocellular adenoma	+ +		- +	• +	+ +		+ +	+	+	+	+	+	+	+ •	+ -	+ +	+ -	+ •	+	+	+	+	+	+	+	44
Hepatocellular adenoma	+	- 1	- +	• -	+ +		+ +	+	+	+	+	+	+	+ -	÷ -	∔ ⊣	+ -	+ -	+ -	+	+	+	+	+	+	46
		1	- +		⊦ ∔	i	÷ +	+	+	ŧ	÷	+	+	+ •	+ -	+ +	+ -	+ •	+ -	÷	+	+	+	+	+	50
																					Х					1
Mesentery																										3
Pancreas	+	· -	+ +	• +	+ +		+ +	+	+	+	+	+	+	+ -	+ -	+ -	+ -	+ •	+	+	+	+	+	+	+	50
Salivary glands	+	I	- +				- +	+	+	+	+	+	+	+ -	+ -	+ -	+ •	+ -	+	+	+	+	+	+	+	50
Stomach	+	. 4			 				÷	÷	÷	÷	+	+ -			• •	+ .	+ .	+	÷.	÷	÷	+	+	50
Stomach, forestomach	⊥		. <u>.</u>		 				+	, ⊥	÷	+		+ -		+ +					+	, 			+	50
Stomach, glandular	т 	ר : ער			r → ⊦ +			· +		Ť	·			+ -								Ť	т 1			50
	т 				г т 	· · ·	г т 	т —	т	T	т —	<u>т</u>	–	т ·					т . 		<u> </u>					
ardiovascular System		•																								
Blood vessel																										2
Heart	+		- +	• •	+ +	• •	+ ;+	+	+	+	+	+	+	+ •	+ -	+ +	+ -	+ •	+	+	+	+	+	+	+	50
ndocrine System																										
Adrenal gland	+		- +		+ +	- 4	+ +	+	+	+	+	+	+	+ •	+ -	+ -	+ -	+ •	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+	- - -	- +	• 4	+ +	• 4	+ +	+	+	+	+	+	+	+ -	+ -	+ +	+ •	+ •	+ -	+	+	+	+	+	+	50
Adenoma									х																х	4
Adrenal gland, medulla	+		⊢ ∔		⊦ +	- 4	. +	+		+	+	+	+	+ •	+ -	+ -	÷.	+ -	+	+	+	+	+	+		50
Pheochromocytoma malignant	•		•			'		•		'	'	'			·	· ·		'	'	'	'	'	•	'	,	1
Pheochromocytoma benign																		,	x							1
Islets, pancreatic	<u>т</u>		. í		ь <u>т</u>				<u>т</u>				т		L		+ -						Т		-	50
	т	· 7			г т	- 1		+	T	Ŧ	т	+	т	+ .		F 7		÷ .			+	+	T	+	T	
Adenoma			v				,				v								-	X						1
Carcinoma			X			X					X															3
Parathyroid gland	+	• •	+ +		+ +		+ +	+	+	+	+	+	+	+ •	+ -	+ +	+ -	+ •	+	+	+	+	+	+	+	50
Pituitary gland	+	· - I	+ +		+ +		+ +	+	+	+	+	+	+	+ •	+ -	+ +	+ -	+ •	+	+	+	+	+	+	+	49
Pars distalis, adenoma		>	C	2	K	>	ΥX	X		х	Х		Х	X	K 2]	X	Х	х		х	Х		33
Pars distalis, carcinoma																2	X									2
Thyroid gland	· +	• •	+ +	• -	+ +		+ +	+	+	+	+	+	+	+ •	+ -	+ -	+ -	+ •	+	+	+	+	+	+	+	50
C-cell, carcinoma					Х	C										2	x			х						5
Follicular cell, carcinoma														Х												1
eneral Body System		_		_										-												<u></u>
Tissue NOS Basosquamous tumor malignant																										

Diethylphthalate/Dimethylphthalate, NTP TR 429

TABLE B2

		A	Å	A	5	5	5		5 6			~	~	6	~	~	~	-	~	~	~~	4	~		~		<u> </u>	
Number of Dave State							5 :								0	0							7					
Number of Days on Study				9			5 (4					7			1	3	3	3	3			
		9	4	· 4	5	1	5 1	78	83	3 4	0	0	5	0	4	5	9	3	5	7	3	3	4	4	4			
		. 1	2	2	.2	2	2	1 :	1 2	2 2	2	2	1	2	1	2	2	2	2	2	2	2	2	2	2		_	-
Carcass ID Number	•	9	1	1					9 0				9	2	9	2		1			1	3	1	1	-			
·.		4	4 1	1 1			4 1												7 1		2 1	1 1	3 1	6 1				1
Genital System						· · ·																						
Clitoral gland		M	M	м	м	+	+]	мι	MN	N 1	л 4	. +	+	+	+	+	м	м	- f	м	+	+	+	+	+			
Carcinoma						•	• •				. ,	,	•	•	'	,	1.4	1.4	•		,	,	'	•				
Ovary		+	+	+	+	+	+ -	+ .	+ -	+ -	F +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+		:	
Uterus		+	÷+	+	·+ ·	+			÷		+	. <u>+</u>	+	+	+	+	+	+	+	+	4	+	÷	+	÷			
Polyp stromal						,	•			•		•	·	•		,		•				•	•	•	•			
Hematopoietic System	·			~							<u>.</u>	. ·																
Bone marrow		+	+	+	+	+	M	+ •	+ -	+ -	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	·+			
Lymph node		+	+	+	+		+		-	+ -	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+ ·		٠	
Lymph node, mandibular		+	+	+	+					+ -		+	+	+	+	+	+	+	+	+	+	+	+	+	+-			
Lymph node, mesenteric	۰.	+	+	+	+	+	÷ ·	+ •	+ -	+ -	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+			
Spleen		+	+	+	+	+	+	+ .	+ -	+ -	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	. +			
Hemangiosarcoma																												•
Thymus		+	+	+	+	+	+ ·	+ •	+ -	+ -	+ +	· +	+	+	+	Μ	+	+	+	+	+	Μ	+	M	+			
Integumentary System	• •					,				•																		
Mammary gland		+	M	+	+	+	+ -	+ ·	+ -	+ 1	A +	+	+	+	+	+	+	+	+	÷	+	+	+	+	+			
Adenocarcinoma													х						Х					х				
Fibroadenoma														Х			х		х									
Fibroadenoma, multiple																					X					•		
Skin		+	Μ	+	+	+	+	+ •	+ -	+ -	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Skin, control		÷	M	+	+	÷	+ ·	+ ·	+ -	+ •	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+			
Skin, site of application-no mass		÷	M	+	+	+	+	+ •	+ -	+ -	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	-		
Musculoskeletal System	•			-																								.*
Bone		+	• +	+	+	+	M	+	+ -	+ •	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+			
Nervous System	·																-										•	
Brain		·. +	+	+	+	+	+ ;	+			+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	•		
Carcinoma, metastatic									2	x																		
Respiratory System					, *													•										
Lung		+	+	+	+	+	+	+	+ •	+ -	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+			
Nose			· M		+	+	+ ·	+	+ -	+ -	+ +	• +	+	+	+	+	+	+	+	+	+	÷	+	+	+			
Trachea		+	+	+	+	+	+	+	+ •	+ •	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+			
Special Senses System																		•					-					
Ear																												
Eye				+				+	+	•	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+			
Zymbal's gland																												•
Carcinoma																												

Individual Animal Tumor Pathology of Female Rats in the 2-Year Dermal Study of Diethylphthalate: 100 µL (continued) 7 77 Number of Days on Study 3 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5.5 5 5 5 5 5 4 2 1 1 1 1 2 **Carcass ID Number** 3 9 9 9 9 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2 3 3 3 3 3 Total 8 8 9 0 2 4 5 7 8 3 7 8 9 Tissues/ 0 2 5 7 8 0 1 2 6 7 1 6 1 1 1 Tumors 1 **Genital System** Clitoral gland 39 Carcinoma 1 X Ovary 50 + + + 50 Uterus + ÷ ++ + Polyp stromal х х Х 3 **Hematopoietic System** Bone marrow 49 + Lymph node 50 + Lymph node, mandibular 50 + + Lymph node, mesenteric-50 + + + + + + + + + + + + 4 Spleen 50 + + + + + + + + + + + + + ++ + Hemangiosarcoma х 1 Thymus + M M + + M 43 + ÷ + + + + ++ M ++ + + + ++ **Integumentary System** Mammary gland 48 Adenocarcinoma 3 х хх ххх 11 Fibroadenoma Х х Fibroadenoma, multiple 1 Skin 49 + + + + + + + + + 49 Skin, control + + + + + + + + + + + Skin, site of application-no mass 49 + + + + + + + + +-+ +-+ + + + + + + + + **Musculoskeletal System** Bone 49 + + + + + + + + **Nervous System** 50 Brain + х 2 Carcinoma, metastatic **Respiratory System** Lung 50 Nose 49 + Trachea 50 + + + Special Senses System Ear 1 44 Eye + \mathbf{x}^{+} Zymbal's gland 1 Carcinoma 1

Diethylphthalate/Dimethylphthalate, NTP TR 429

TABLE B2

Individual Animal Tumor	Pathology of Fen	nal	e R	lats	in	th	ie 2	2-Y	'ea	r I)er	m	ul S	Stu	dy	of	Di	etl	ıyl	phi	tha	la	te:	10	00	μL	(conti	inued)
	4	4	4	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7			
Number of Days on Study	1	: 3	9	4	5	5	6	6	7	7	0	4	4	5	5	5	5	7	7	8	1	3	3	3	3			·
	5	4	4	5	1	5	7	8	3	4	0	0	5	0	4	5	9	3	5	7	3	3	4	4	4			
	1	2	2	2	2	2	1	1	2	2	2	2	1	2	1	2	2	2	2	2	2	2	2	2	2			
Carcass ID Number	9	1	1	1	3	3	9	9	0	3	4	0	9	2	9	2	0	1	1	0	1	3	1	1	2			
	4	4	1	5	2	4	1	6	3	5	0	5	9	3	3	6	4	0	7	9	2	1	3	6	9			
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Urinary System																					•••••							
Kidney	-	+ +	• +	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Carcinoma										Х																		
Urinary bladder	-	+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	[+	+	+			
Systemic Lesions	×																		_									
Multiple organs	-	+ +	- +	+	+	+	+	+	÷	÷	+	+	+	+	+	+	+	4	+	+	+	+	+	+	+			
Leukemia mononuclear				х			х	х			х		X	X		X		X	x									,

Lesions in Female Rats

TABLE B2

Individual Animal Tumor Pathology of Female Rats in the 2-Year Dermal Study of Diethylphthalate: 100 µL (continued)

Number of Days on Study	-	7 3 5	-	-	7 3 5	7 , 3 5	7 3 5	7 3 5																		
Carcass ID Number	0	9	5	1 9 7 1	1 9 8 1	2 0 0 1	2 0 1 1	2 0 2 1	2 0 6 1	2 0 7 1	2 0 8 1	2 1 8 1	2 1 9 1	2 2 0 1	2 2 1 1	2 2 2 1	2 2 4 1	2 2 5 1	2 2 7 1	2 2 8 1	2 3 3 1	2 3 6 1	2 3 7 1	2 3 8 1	2 3 9 1	Total Tissues/ Tumors
Urinary System Kidney Carcinoma Urinary bladder	+	 	⊦ ⊣	- +	- + - I	+ + +	+	++	++	+ +	+ +	++	+ +	++	+ +	++	+	++	+ I	+ +	•		•		++	50 1 47
Systemic Lesions Multiple organs Leukemia mononuclear	+		⊦ +	- +	• +	+ X	+	+	+ X	+	+	+ X	+	+ x	+	+	+	+	+	÷	+ X	+	+ X	+	+	50 15

Individual Animal Tumor Pathology of Female Rats in the 2-Year Dermal Study of Diethylphthalate: 300 µL

		 2	. 3	4	4	5	5	5	<	5	5	5	5	5	6	5	4	4	<i>c</i>	6	2	1	4	6	7			
Number of Deem on Charl																												
Number of Days on Study			-			2		4				8			9		_	2	-	-		5	7	8	8	8		
		4	7	0	9	0	1	3	9	9	9	4	5	8	1	5	1	6	8	9	7	8	5	0	7	9		
, · · · · · · · · · · · · · · · · · · ·		 3	3	3	2	3	2	3	3	3	3	3	2	3	3	2	2	2	2	3	2	2	3	3	3	2		
Carcass ID Number			2			2											-					3	-	_	5	-		
		7				5																			-	-		
						1																~						
A12		 	•••••																									
Alimentary System Esophagus		-1		F			L,												,	,								
Intestine large		. <u>`</u>	Ţ	Ţ	+	Ť	+	Ť	+	+	+	+	Ť	Ţ	Ť	+	+	+	+	+	+	*	+	+	+	+		
	•	+	+	+	+	+	+	+	+	+	+			+			+		+	÷	+	+	+	+	+	+		
Intestine large, cecum		+	+	+	+	+	+					+								+	+	A	+	+	+	+		
Intestine large, colon		. +	+	+	+	+	+	+		А				+					+	+	+	+	+	+	+	+		
Intestine large, rectum		+	+	+	+	+	+	+	+	Α	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+		
Intestine small		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Intestine small, duodenum		+	°+	+	÷	+	+	+	+	Α	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+		
Intestine small, ileum		М	+	+	+	+	+	+	+	Α	+	Α	Α	+	+	Α	+	+	+	+	Α	А	+	+	+	+		
Intestine small, jejunum		+	+	+	+	+						+										-		+	+	+		
Liver				÷		, ⊥		+				÷							, +	+	+	+			+			
Mesentery		, T	Ŧ	Ŧ	т	Τ,	T	т	Ŧ	Ŧ	Ŧ	Ŧ	т	· · ·	т	т	Ŧ	т	т	т	T	т	Ŧ	Ŧ	т	т		
•															· .							÷						
Pancreas		+	+	+	+	+	·+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+		
Adenoma																												
Salivary glands		+	`+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Stomach		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+		
Stomach, forestomach		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		•
Squamous cell papilloma																							х					
Stomach, glandular		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Tooth										+																		
Cardiovascular System																												
Heart		+	+	+	+	+	÷	+	+	t	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Endocrine System		 	********		-																							
Adrenal gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adrenal gland, cortex		+	+	+	+	+	+-	+	+	+	+	+	+	+	+	+	+-	+	+	+	+	+	+	+	+	+		
Adenoma					-					x	-												x		x			
Adenoma, multiple					4																							
			L.				+		л		ь.	л.						L	ı.	1			-	+		4		
Adrenal gland, medulla		Ŧ	Ŧ	+	+	+	+	+	.	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	-	Ŧ	Ŧ	+	Ŧ	Ŧ	т	Ŧ	т.,	Ť		
Pheochromocytoma benign																										· .		
Islets, pancreatic	. ,	+	+	+	+	+.	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adenoma													<u>.</u>															
Parathyroid gland		м	+	+	+	+	+	+	+		+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adenoma			•							х																	· .	
Pituitary gland		+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Pars distalis, adenoma				Х				Х		Х	Х	Х	х	Х	Х				х		Х		Х	X				
Pars distalis, carcinoma																												
Thyroid gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+		
C-cell, adenoma						·	,		,	•	•		•	•	-	•	·			,	•		·	÷				
C-cell, carcinoma																							x					
Follicular cell, carcinoma											x							-					л					
General Body System		 							<i>.</i>															- ,				
Tissue NOS						+								+														
Sarcoma						т								x														
Jaicoma														~			-											

	7	- 1	17	- 7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	Ó		-		-	3		3	3	3	3	3	3	3	3	3	3	3		3	3	2	2	3		
tumber of ways on Study	-) 4	-	-	-	-	4	4	4	4	4	4				5				5	5	5	5	-	
	2		3 3	3	2	3	~	2	2	2	2	~	2	~	3	2		~	~	2	2	3	2	~	2	
Carcass ID Number	3	-		-			3 3	3	3	3 4	3 4	3 4	3		3 4			3		3	3	-	3	3	-	Tratal
	5	0					3 8																			Total Tissues
	4						1																			Tumors
Ali		_															_				_	_				
Alimentary System															•											50
Esophagus	+		+ +	• •	⊢ +	• +	• +	+	+		+				+		+	+	+	+	+	+	+	+	+	50 50
Intestine large	+		+ +		+ +	• +		+	+		+	+			+		+		+		+	+	+	+	+	50
Intestine large, cecum	+		+ +		+ +	• +	• +	+	+	+	+	+		+	+			+	+	+	+	+	+	+	+	46
Intestine large, colon	+	•	+ +		+ +	• +	• +	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+		+	48
Intestine large, rectum	+	• •	+ +	• -	+ +	• +		+	+		+	+		+		+	+	+	+	+	+	+	+	+	+	48
Intestine small	+	• •	+ +		+ +	• +			+		+		+		+				+	+		+	+	+	+	50
Intestine small, duodenum	+	• •	+ +		+ +	• +		+	+	+	+	+		+		+	+	+	+	+	+	+	+	+	+	48
Intestine small, ileum	+	• •	+ +		+ +	+	· .+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	43
Intestine small, jejunum	+	• -	+ +		+ +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Liver	+	• •	+ +		+ +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Mesentery																								+		1
Pancreas	+	• •	+ +		+ +	+ +	• +	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma									Х																	1
Salivary glands	+		+ +		+ +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+		+ +		+ +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+		+ +		+ +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Squamous cell papilloma																										1
Stomach, glandular	+		+ +		+ +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Tooth																										1
Cardiovascular System						-						_														
Heart	+	• •	+ +		+ +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System		-																				_				
Adrenal gland	+		+ +		+ +		• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex	+		+ +		+ +	• +	• +				+	+		+					+			+	+	+	+	50
Adenoma			• •		X		·					•			x			x								6
Adenoma, multiple					• •																х					1
Adrenal gland, medulla	+		+ +		L 1		. +	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	50
Pheochromocytoma benign	•							,			•	'	'		•	x			'	'	•	'	'	•	•	1
Islets, pancreatic	-			L .	ц	• +	. т	+	<u>т</u>	Т	ᆂ	Т	т	<u>т</u>	+			1	ъ	+	+	Ъ	-	+	+	50
Adenoma	т		т 1		гт	- т	τ	x		т	т	т	т	т	т	т	т	т	т	т	т	т	x		x	3
Parathyroid gland	-		LЦ	L _	LЦ	. R.	1 +			Т	ᆂ	+	ъ	Т	<u>т</u>	Т	Ъ	т		<u>т</u>	Ŧ	Т				47
Adenoma	т		т		гт	- 14	1 T	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	1
	ъ			,																						48
Pituitary gland		1.					; +								x											33
Pars distalis, adenoma		,		• •			K	A	А	Λ	Λ	л		А	Λ	л	~	л		Λ	л	л	Λ	Λ	л	
Pars distalis, carcinoma			X													,	i									1
Thyroid gland	+		+ +		+ +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
C-cell, adenoma																					v	Х				1
C-cell, carcinoma																					Х					2 1
Follicular cell, carcinoma												_					_			-						1
General Body System																										2
Tissue NOS																										2
Sarcoma																										1

Individual Animal Tumor Pathology of Female Rats in the 2-Year Dermal Study of Diethylphthalate: 300 µL (continued) 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 Number of Days on Study 6 8 5 4 3 2 4 4 4 6 8 8 8 9 9 1 23 3 5 5 7 8 8 8 4 7 0 9 0 1 3 9 9 9 4 58151 6 8 9 7 8 50 79 3 3 3 3 3 3 3 3 3 3 3 3 3 -3 3 3 3 3 3 3 3 3 3 3 3 **Carcass ID Number** 2 5 5 5 4 5 4 2 2 3 1 1 2 1 1 5 1 2 2 2 3 4 5 5 1 7 1 5 6 5 4 4 8 1 3 6 0 1 5 4 6 1 6 8 3 2 1 0 2 8 1 **Genital System** Clitoral gland + ++ Adenoma Carcinoma Ovary Carcinoma Uterus Leiomyoma x Polyp stromal х х Sarcoma stromal х Schwannoma malignant X Vagina +Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen + + Thymus Μ Μ + **Integumentary System** Mammary gland Adenocarcinoma Fibroadenoma х х х Fibroma х Skin + + + + + + + Skin, control + + + + + + + + Skin, site of application-no mass + + + + + + + + + + + + + + ++ + + Musculoskeletal System Bone Skeletal muscle + **Nervous System** Brain + + ++ + **Respiratory System** Lung + Nose + + Trachea **Special Senses System** Eye + + + + +Zymbal's gland +

Individual Animal Tumor Pathology of Female Rats in the 2-Year Dermal Study of Diethylphthalate: 300 µL (continued) 7 Number of Days on Study 0 2 3 4 5 5 55 6 9444 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 3 **Carcass ID Number** 5 Total 3 6 1 1 2 3 3 3 4 4 4 4 4 4 4 1 2 2 3 3 3 3 5 5 4 0 79 2 78 9 0 2 3 4 5 8 9 3 2 79 0 3 5 6 7 9 Tissues/ 1 Tumors 1 1 1 1 **Genital System** Clitoral gland 4Ò + Adenoma 2 х x 2 Carcinoma x Ovary + + +50 Carcinoma 1 Uterus 50 Leiomyoma 1 Polyp stromal х х хх 6 Sarcoma stromal 1 Schwannoma malignant 1 Vagina 1 **Hematopoietic System** 49 Bone marrow Lymph node 50 50 Lymph node, mandibular 50 Lymph node, mesenteric ц. + Spleen + + + + + + 50 + + + +++ + + + + + + + + + Thymus + M + 42 + Μ + ММ + + Μ + + + + + **Integumentary System** Mammary gland 50 Adenocarcinoma х х х 3 7 Fibroadenoma х х х х Fibroma 1 Skin 50 50 Skin, control 50 Skin, site of application-no mass ++ + + **Musculoskeletal System** 50 Bone + + +++ + + + + Skeletal muscle 1 Nervous System 50 Brain + + ++ + + + ++ + + + + + + + + + + + + + **Respiratory System** 50 Lung + Nose 50 + + + 50 Trachea + + + + + + + + + + **Special Senses System** 39 Eye + I 1 Zymbal's gland

Individual Animal Tumor Pathology of Female Rats in the 2-Year Dermal Study of Diethylphthalate: 300 µL (continued)

······································		3	3 4	4 4	4	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6			
Number of Days on Study		4	6 3	38	8 :	2 4	4	4	4	5	6	8	8	8	9	9	1	2	3	3	5	5	7	8	8	8			
· · ·		4	7 (0 9	9 (0	1	3	9	9	9	4	5	8	1	5	1	6	8	9	7	8	5	0	7	9			
	. :	3	3 3	3 3	3	3 :	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3			
Carcass ID Number		4	2 :	5 4	4	2 :	5	2	5	3	1	1	2	5	1	1	5	1	2	2	2	3	4	5	5	1	•		
		7	1 :	5 6	6	5 4	4	4	8	1	3	6	0	1	5	4	6	1	6	8	3	2	1	0	2	8			
		1	1 :	1 3	1	1 :	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Urinary System				_																				·					_
Kidney	• .	+	+ •	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Urinary bladder		+	+ •	+ •	+	+ -	+	+	+	+	+	+	+	Μ	·+	+	+	+	+	+	+	+	+	+	+	+			
Papilloma						2	x																					,	
Systemic Lesions								-	<u> </u>																·				· .
Multiple organs		+	+ •	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Leukemia mononuclear		х	х	2	х								Х							X	Х		X		X	X		•	

Individual Animal Tumor	Pathology of	Fema	ale	Ra	ts	in	the	e 2	-¥	ear	\mathbb{D})er	ma	1 S	stu	dy	of	Di	etk	ıyI]	phi	tha	la	le:	30	00	μL (continued)
		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study		0	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
		6	9	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	
		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Carcass ID Number		3	6	1	1	2	3	3	3	4	4	4	4	4	4	4	5	1	2	2	3	3	3	3	5	5	Total
		4	0	7	9	2	7	8	9	0	2	3	4	5	8	9	3	2	7	9	0	3	5	6	7	9	Tissues/
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.	1	1	1	1	1	Tumors
Urinary System																											
Kidney		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	50
Urinary bladder		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Papilloma																											1
Systemic Lesions	·····			- <u>-</u>				-																			
Multiple organs		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	50
Leukemia mononuclear		х	х						х	х	х										х	х					16

.

 TABLE B3

 Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Dermal Study of Diethylphthalate

	0 µL	100 µL	300 μL
	· ···· ····		
drenal Cortex: Adenoma			
Overall rate ^a	4/51 (8%)	4/50 (8%)	7/50 (14%)
djusted rate ^b	12.8%	12.7%	25.0%
erminal rate ^c	3/30 (10%)	3/28 (11%)	4/23 (17%)
irst incidence (days)	730	567	559
ife table test ^d	P=0.099	P = 0.607	P=0.143
ogistic regression test ^d	P=0.129	P=0.610	P=0.173
Cochran-Armitage test ^d	P=0.184		
isher exact test ^d		P=0.631	P=0.251
dropol Modullos Derion Photochromosytomo			
drenal Medulla: Benign Pheochromocytoma	250 (601)	1/50 (20%)	1/50 (20%)
Overall rate	3/50 (6%)	1/50 (2%)	1/50 (2%)
djusted rate	10.0%	3.6%	4.3%
erminal rate	3/30 (10%)	1/28 (4%)	1/23 (4%)
irst incidence (days)	734 (T)	734 (T)	734 (T)
ife table test	P = 0.354N	P=0.329N	P=0.403N
ogistic regression test	P = 0.354N	P=0.329N	P=0.403N
Cochran-Armitage test	P = 0.272N		× ' •
sher exact test		P=0.309N	P=0.309N
drenal Medulla: Benign or Malignant Pheoch	romocytoma		n i na star star star star star star star sta
verall rate	4/50 (8%)	2/50 (4%)	1/50 (2%)
		5.7%	4.3%
djusted rate	13.3%		
erminal rate	4/30 (13%)	1/28 (4%)	1/23 (4%)
irst incidence (days)	734 (T)	551 D. 0.2(7)	734 (T)
ife table test	P=0.217N	P = 0.367N	P = 0.265N
ogistic regression test	P=0.189N	P=0.355N	P=0.265N
Cochran-Armitage test	P = 0.151N		D 0 101N
isher exact test		P=0.339N	P=0.181N
litoral Gland: Adenoma			an an tao amin'ny fisiana amin'ny fisiana. Ny INSEE dia mampiasa amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fi
Overall rate	5/44 (11%)	0/39 (0%)	2/40 (5%)
djusted rate	15.2%	0.0%	8.7%
erminal rate	3/29 (10%)	0/28 (0%)	2/23 (9%)
irst incidence (days)	650	_e	734 (T)
life table test	P=0.325N	P=0.042N	P=0.330N
ogistic regression test	P = 0.309N	P=0.042N	P=0.312N
Cochran-Armitage test	P = 0.263N		
ïsher exact test		P=0.037N	P=0.258N
<u>,</u>		2 2	and the second second second second
Clitoral Gland: Carcinoma	7111 150L	1/39 (3%)	2/40 (5%)
Overall rate	2/44 (5%)		8.7%
adjusted rate	6.9%	3.6%	
Cerminal rate	2/29 (7%)	1/28 (4%)	2/23 (9%) 724 (T)
First incidence (days)	734 (T):	734 (T)	734 (T)
ife table test	P=0.509.	P=0.512N	P = 0.610
ogistic regression test	P = 0.509	P=0.512N	P=0.610
Cochran-Armitage test	P=0.567	4	
lisher exact test		P=0.546N	P=0.655

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	ΟµL	100 µL	300 μL
Clitoral Gland: Adenoma or Carcinoma			
Overall rate	7/44 (16%)	1/39 (3%)	4/40 (10%)
Adjusted rate	21.7%	3.6%	17.4%
Ferminal rate	5/29 (17%)	1/28 (4%)	4/23 (17%)
First incidence (days)	650	734 (T)	734 (T)
Life table test	P=0.452N	P=0.040N	P=0.415N
ogistic regression test	P = 0.446N	P=0.042N	P=0.409N
Cochran-Armitage test	P=0.357N		
isher exact test		P=0.042N	P=0.318N
ammary Gland: Carcinoma			
Overall rate	5/51 (10%)	3/50 (6%)	3/50 (6%)
adjusted rate	15.1%	9.0%	13.0%
erminal rate	4/30 (13%)	1/28 (4%)	3/23 (13%)
irst incidence (days)	465	645	734 (Ť)
ife table test	P=0.469N	P=0.397N	P=0.492N
ogistic regression test	P=0.393N	P=0.368N	P=0.427N
ochran-Armitage test	P=0.347N		
isher exact test		P=0.369N	P=0.369N
Aammary Gland: Adenoma or Carcinoma			
Overall rate	6/51 (12%)	3/50 (6%)	3/50 (6%)
djusted rate	17.8%	9.0%	13.0%
erminal rate	4/30 (13%)	1/28 (4%)	3/23 (13%)
irst incidence (days)	465	645	734 (T)
ife table test	P=0.359N	P=0.285N	P=0.377N
ogistic regression test	P=0.288N	P=0.255N	P=0.314N
Cochran-Armitage test	P=0.243N		
üsher exact test		P = 0.254N	P=0.254N
ammary Gland: Fibroadenoma			
Overall rate	21/51 (41%)	12/50 (24%)	7/50 (14%)
Adjusted rate	58.6%	36.8%	24.4%
erminal rate	16/30 (53%)	8/28 (29%)	4/23 (17%)
irst incidence (days)	331	650 D 0 07001	585 D. 0.015N
ife table test	P=0.016N	P=0.079N	P=0.015N
ogistic regression test	P=0.005N	P=0.057N	P=0.004N
Cochran-Armitage test üsher exact test	P=0.003N	P=0.051N	P=0.002N
Aammary Gland: Fibroma, Fibroadenoma,	or Adenoma		
Dverall rate	22/51 (43%)	12/50 (24%)	8/50 (16%)
Adjusted rate	59.9%	36.8%	26.2%
Ferminal rate	16/30 (53%)	8/28 (29%)	4/23 (17%)
First incidence (days)	331	650	549
Life table test	P=0.023N	P=0.058N	P = 0.022N
ogistic regression test	P=0.006N	P = 0.038N	P=0.004N
Cochran-Armitage test	P=0.003N		
Fisher exact test		P=0.034N	P=0.003N

~

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μL	100 µL	300 µL
Mammary Gland: Fibroma, Fibroadenoma, Ade	nome or Carcinome	<u> </u>	<u> </u>
Dverall rate	25/51 (49%)	14/50 (28%)	11/50 (22%)
Adjusted rate	66.3%	41.6%	11/50 (22%) 37.8%
'erminal rate	18/30 (60%)	9/28 (32%)	7/23 (30%)
irst incidence (days)	331	645	549
ife table test	P = 0.043N	P = 0.047N	P = 0.035N
ogistic regression test	P = 0.0431 P = 0.010N	P = 0.027N	P = 0.005N
ochran-Armitage test	P = 0.006N	1 -0.02/11	1 -0.00/14
isher exact test	1 -0.00014	P=0.024N	P=0.004N
ancreatic Islets: Adenoma	•		
Verall rate	3/50 (6%)	1/50 (2%)	3/50 (6%)
djusted rate	9.2%	3.6%	13.0%
erminal rate	2/30 (7%)	1/28 (4%)	3/23 (13%)
irst incidence (days)	679	734 (T)	734 (T)
ife table test	P=0.422	P = 0.341N	P=0.534
ogistic regression test	P = 0.427	P = 0.333N	P = 0.544
ochran-Armitage test	P = 0.541	1 0.0001	1 0.011
isher exact test		P=0.309N	P=0.661N
ancreatic Islets: Carcinoma	· · ·	· · ·	
verall rate	2/50 (19%)	3/50 (6%)	0/50 (0%)
	2/50 (4%) 6.7%	10.7%	0.0%
djusted rate erminal rate	· 2/30 (7%)	3/28 (11%)	0/23 (0%)
	· · ·		0/23 (070)
rst incidence (days)	734 (T) B-0.226N	734 (T) P=0.468	P = 0.298N
ife table test	P=0.226N P=0.226N	P = 0.468	P = 0.298N
ogistic regression test		r=0.408	1 -0.23814
ochran-Armitage test	P=0.165N	P=0.500	P=0.247N
isher exact test		r=0.300	F = 0.247
ancreatic Islets: Adenoma or Carcinoma			
verall rate	5/50 (10%)	4/50 (8%)	3/50 (6%)
djusted rate	15.7%	14.3%	13.0%
erminal rate	4/30 (13%)	4/28 (14%)	3/23 (13%)
irst incidence (days)	679	734 (T)	734 (T)
ife table test	P=0.463N	P=0.551N	P=0.509N
ogistic regression test	P=0.469N	P=0.566N	P=0.508N
ochran-Armitage test	P=0.315N	D 0 5001	D 00001
isher exact test		P=0.500N	P=0.357N
ituitary Gland (Pars Distalis): Adenoma			
Overall rate	38/50 (76%)	33/49 (67%)	33/48 (69%)
djusted rate	87.9%	76.0%	93.8%
erminal rate	25/30 (83%)	18/28 (64%)	21/23 (91%)
irst incidence (days)	458	434	430
ife table test	P=0.316	P=0.400N	P=0.360
ogistic regression test	P=0.417N	P=0.240N	P=0.443N
Cochran-Armitage test	P=0.303N	B	D 0 00057
Fisher exact test		P=0.232N	P=0.282N

,

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	ΟµL	100 µL	300 µL
Pituitary Gland (Pars Distalis): Adenoma or	Carcinoma	· .	
Overall rate	40/50 (80%)	35/49 (71%)	34/48 (71%)
Adjusted rate	88.6%	78.9%	94.0%
Terminal rate	25/30 (83%)	19/28 (68%)	21/23 (91%)
First incidence (days)	458	434	430
Life table test	P=0.363	P=0.413N	P=0.403
ogistic regression test	P=0.332N	P=0.231N	P=0.370N
Cochran-Armitage test	P=0.220N		
Fisher exact test		P=0.224N	P=0.206N
Thyroid Gland (C-cell): Carcinoma			
Overall rate	6/50 (12%)	5/50 (10%)	2/50 (4%)
Adjusted rate	18.9%	14.8%	7.6%
Ferminal rate	5/30 (17%)	3/28 (11%)	1/23 (4%)
First incidence (days)	656	494	675
Life table test	P=0.186N	P=0.543N	P=0.231N
ogistic regression test	P=0.132N	P=0.514N	P=0.204N
Cochran-Armitage test	P=0.107N		
Fisher exact test		P=0.500N	P=0.134N
Thyroid Gland (C-cell): Adenoma or Carcino	ma		•
Overall rate	6/50 (12%)	5/50 (10%)	3/50 (6%)
Adjusted rate	18.9%	14.8%	11.8%
Terminal rate	5/30 (17%)	3/28 (11%)	2/23 (9%)
First incidence (days)	656	494	675
Life table test	P=0.325N	P=0.543N	P = 0.382N
Logistic regression test	P=0.252N	P=0.514N	P=0.354N
Cochran-Armitage test	P=0.205N		
Fisher exact test		P=0.500N	P = 0.243N
Thyroid Gland (Follicular Cell): Carcinoma			
Overall rate	3/50 (6%)	1/50 (2%)	1/50 (2%)
Adjusted rate	7.3%	3.6%	2.4%
Terminal rate	1/30 (3%)	1/28 (4%)	0/23 (0%)
First incidence (days)	465	734 (T)	569
Life table test	P=0.320N	P=0.326N	P=0.352N
Logistic regression test	P=0.187N	P=0.260N	P=0.165N
Cochran-Armitage test Fisher exact test	P=0.272N	P=0.309N	P=0.309N
W14		·	
Uterus: Stromal Polyp Overall rate	2/51 (4%)	3/50 (6%)	6/50 (12%)
Adjusted rate	6.7%	10.7%	22.0%
Terminal rate	2/30 (7%)	3/28 (11%)	4/23 (17%)
First incidence (days)	734 (T)	734 (T)	367
Life table test	P=0.042	P = 0.468	P=0.073
Logistic regression test	P=0.065	P=0.468	P=0.114
Cochran-Armitage test	P = 0.086		
Fisher exact test		P=0.491	P=0.128

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

· · · · · ·	0 μL	100 µL	300 µL
Uterus: Stromal Polyp or Stromal Sarcoma	· · ·		
Overall rate	2/51 (4%)	3/50 (6%)	7/50 (14%)
Adjusted rate	6.7%	10.7%	23.7%
Terminal rate	2/30 (7%)	3/28 (11%)	4/23 (17%)
First incidence (days)	734 (T)	734 (T)	367
Life table test	P=0.020	P=0.468	P=0.043
Logistic regression test	P=0.037	P=0.468	P=0.078
Cochran-Armitage test	P=0.043		
Fisher exact test		P=0.491	P=0.075
All Organs: Leukemia (Monocytic or Mononuclear Cell)	, <i>k</i>		
Overall rate	17/51 (33%)	15/50 (30%)	16/50 (32%)
Adjusted rate	39.4%	38.1%	44.8%
Ferminal rate	6/30 (20%)	6/28 (21%)	5/23 (22%)
First incidence (days)	458	545	344
ife table test	P=0.351	P=0.510N	P=0.398
ogistic regression test	P=0.447N	P=0.425N	P=0.448N
Cochran-Armitage test	P=0.524N		
Fisher exact test	· · ·	P=0.442N	P=0.528N
		••••	
All Organs: Benign Neoplasms	:.		1 N
Overall rate	47/51 (92%)	41/50 (82%)	40/50 (80%)
Adjusted rate	97.9%	90.9%	94.9%
Ferminal rate	29/30 (97%)	24/28 (86%)	21/23 (91%)
First incidence (days)	331	434	367
Life table test	P=0.340	P=0.381N	P = 0.404
Logistic regression test	P = 0.129N	P=0.112N	P=0.098N
Cochran-Armitage test	P=0.086N		
risher exact test	1 0.0001.	P=0.110N	P=0.069N
isner canet test			- ··· .
All Organs: Malignant Neoplasms			
Dverall rate	32/51 (63%)	27/50 (54%)	24/50 (48%)
Adjusted rate	70.3%	64.1%	61.2%
Ferminal rate	17/30 (57%)	14/28 (50%)	9/23 (39%)
First incidence (days)	458	494	344
Life table test	P=0.429N	P=0.377N	P=0.435N
Logistic regression test	P = 0.076N	P = 0.235N	P=0.081N
	P = 0.096N		
Cochran-Armitage test	1 -0.03011	P=0.245N	P=0.098N
Fisher exact test		1 - 0.21511	

Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	Ο μL	100 µL	300 μL	
All Organs: Benign or Malignant Neoplasms	<u> </u>	<u> </u>	<u></u>	<u> </u>
Overall rate Adjusted rate	51/51 (100%) 100.0%	48/50 (96%) 100.0%	47/50 (94%) 95.9%	
Terminal rate	30/30 (100%) 331	28/28 (100%) 434	21/23 (91%) 344	
First incidence (days) Life table test	P=0.173	P=0.539	P=0.215	•
Logistic regression test Cochran-Armitage test	P = 0.124N P = 0.109N	P=0.218N	P=0.104N	
Fisher exact test		P=0.243N	P=0.118N	

(T)Terminal sacrifice

Number of neoplasm bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, clitoral gland, mammary gland, pancreatic islets, pituitary gland, thyroid gland, and uterus; for other tissues, denominator is number of animals necropsied.

b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

с Observed incidence at terminal kill

d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N. е

Not applicable; no neoplasms in animal group

• • •

TABLE B4a

Historical Incidence of Pituitary Gland (Pars Distalis) Adenomas in Untreated Female F344/N Rats^a

		Incidence in Controls		
Overall Historical Incidence:	Dermal (Acetone)		<u></u>	
Total		19/47 (40.4%)	× .	
Overall Historical Incidence:	Feed		• • • • •	
Total Standard deviation Range		725/1,345 (53.9%) 11.3% 30%-74%		
Overall Historical Incidence:	Inhalation			
Total Standard deviation Range		229/395 (58.0%) 3.4% 53%-62%	• • • •	
Overall Historical Incidence:	Water Gavage	· · · · · ·	and the second second	
Total Standard deviation Range	· ·	170/365 (46.6%) 6.7% 39%-58%		
Overall Historical Incidence:	Corn Oil Gavage		1. 1. 1999	
Total Standard deviation Range	·	513/1,054 (48.7%) 9.8% 27%-63%	· ·	

^a Data as of 31 March 1993

. '

TABLE B4b

Historical Incidence of Mammary Gland Fibroadenomas in Untreated Female F344/N Rats^a

	Incidence in Controls		
Overall Historical Incidence: Dermal (Acetone)			
Total	20/50 (40.0%)		
Overall Historical Incidence: Feed			
Total Standard deviation Range	521/1,351 (38.6%) 13.1% 8%-58%		
Overall Historical Incidence: Inhalation			
Total Standard deviation Range	98/400 (24.5%) 5.5% 16%-32%		
Overall Historical Incidence: Water Gavage			
Total Standard deviation Range	143/368 (38.9%) 13.6% 16%-53%		
Overall Historical Incidence: Corn Oil Gavage			
Total Standard deviation Range	387/1,070 (36.2%) 10.2% 18%-56%		

^a Data as of 31 March 1993

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Dermal Study of Diethylphthalate^a

	0 μL	100 μL	2001
	υ μL	100 µL	300 µL
Disposition Summary			-
Animals initially in study	60	60	60
15-Month interim evaluation	9	10	10
Early deaths	,	10	10
Moribund	12	12	17
Natural deaths	9	10	10
Survivors		10	10
Died last week of study			2
Terminal sacrifice	. 30	28	21
Animals examined microscopically	60	52	60
15-Month Interim Evaluation	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>
Alimentary System		•	
Liver	(9)	(2)	(10)
Hepatodiaphragmatic nodule	1 (11%)	(-)	(10)
Inflammation, granulomatous, focal	5 (56%)	1 (50%)	2 (20%)
Necrosis, focal	0 (00,0)	1 (50%)	2 (2070)
Bile duct, hyperplasia	6 (67%)	1 (50%)	7 (70%)
Pancreas	(9)	1 (5076)	(10)
Acinus, atrophy	1 (11%)	· .	2 (20%)
Cardiovascular System		· ·	
Heart	(9)	(1)	(10)
Cardiomyopathy	Á (44%)	1 (100%)	7 (70%)
· ,			
		· · · · · · · · · · · · · · · · · · ·	
Endocrine System			
Adrenal gland, cortex	· (9)		(10)
Hyperplasia, focal	3 (33%)		
Pituitary gland	(9)	(1)	(10)
Pars distalis, cyst	1 (11%)		
Pars distalis, hyperplasia, focal	3 (33%)	1 (100%)	1 (10%)
Hematopoietic System			
Spleen	(0)	(2)	(10)
Necrosis, focal	(9)	(2) 1 (50%)	(10)
Pigmentation, hemosiderin	8 (89%)	2 (100%)	10 (100%)
Thymus	(9)	2 (10070)	(10)
Cyst	1 (11%)		(**)
			· · · · · · · · · · · · · · · · · · ·
Integumentary System Mammary gland	(0)	(1)	(10)
Mammary gland Hyperplasia, cystic	(9) 7 (78%)	(1) 1 (100%)	(10) 5 (50%)
ripperplasia, cystic	1 (1070)	1 (100%)	5 (50 /0)

^a Number of animals examined microscopically at the site and the number of animals with lesion

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μL	100 µL	300 µL	
5-Month Interim Evaluation (continue	d)		•	
Nervous System	*			
Brain	(9)	,	(10)	
Cerebrum, compression	1 (11%)			
Respiratory System				
Lung	(9)		(10)	
Atelectasis, focal	1 (11%)			
Alveolus, infiltration cellular, histiocyte	1 (11%)			
Vose	(9)	(1)	(10)	
Exudate			1 (10%)	
Foreign body			2 (20%)	
Inflammation, suppurative		1 (100%)		
Nasolacrimal duct, exudate	2 (22%)			
Special Senses System				
Eye	(1)	•		
Cataract	1 (100%)			
Retina, atrophy	1 (100%)			
Retrobulbar, hemorrhage	1 (100%)			
Urinary System	······································			
Kidney	(9)	(1)	(10)	
Nephropathy	5 (56%)	1 (100%)	8 (80%)	
Cortex, mineralization, focal	3 (33%)		2 (20%)	
Pelvis, epithehum, hyperplasia	3 (33%)		5 (50%)	
Pelvis, epithelium, mineralization, focal	3 (33%)		4 (40%)	
Systems Examined With No Lesions Obso	erved	<u>, , , , , , , , , , , , , , , , , , , </u>		
General Body System				
Genital System				
Musculoskeletal System				
		·····		
2-Year Study				
Alimentary System				
Esophagus	(50)	(49)	(50)	
Hyperkeratosis	1 (2%)	3 (6%)		
Intestine large, cecum	(48)	(45)	(46)	
Ulcer			1 (2%)	
Intestine large, colon	(49)	(47)	(48)	
Edema		2 (4%)	2 (4%)	
Parasite metazoan	1 (2%)	3 (6%)	2 (4%)	
		(49)	(48)	
Intestine small, duodenum	(49)	(45)		
	(49)	1 (2%)	1 (2%)	
- - -

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	100 µL	300 µL	
2-Year Study (continued)				
Alimentary System (continued)	•			
Intestine small, ileum	(46)	(44)	(43)	
Mucosa, atrophy	1 (2%)	()		
Intestine small, jejunum	(46)	(46)	(46)	
Mucosa, atrophy	1 (2%)	(10)		
Liver	(50)	(50)	(50)	
Angiectasis	1 (2%)	4 (8%)	1 (2%)	
Basophilic focus	16 (32%)	11 (22%)	6 (12%)	
Clear cell focus	2 (4%)	3 (6%)	3 (6%)	
Congestion	- (())	1 (2%)		•
Degeneration, fatty	23 (46%)	11 (22%)	3 (6%)	
Eosinophilic focus	25 ((0)5)	1 (2%)	2 (0,0)	
Hematopoietic cell proliferation		- (=,0)	1 (2%)	
Hepatodiaphragmatic nodule	7 (14%)	10 (20%)	3 (6%)	- -
Infiltration cellular, histiocyte, focal	(((,,,)))	10 (20,0)	1 (2%)	
Inflammation, chronic, focal	25 (50%)	24 (48%)	27 (54%)	
Mitotic alteration	25 (5070)	1 (2%)	27 (3170)	
Mixed cell focus	1 (2%)	1 (270)	2 (4%)	
Necrosis	2 (4%)	3 (6%)	2 (4%)	
Pigmentation, focal	2 (470)	3 (070)	1 (2%)	
Bile duct, hyperplasia	27 (54%)	27 (54%)	28 (56%)	
Hepatocyte, hyperplasia	21 (3470)	27 (3470)	1 (2%)	
Periportal, infiltration cellular, mixed cell	<u>.</u>	1 (2%)	(270)	
Subserosa, angiectasis		1 (2%)		
Mesentery	(3)	(3)	(1)	
Hemorrhage	(3)	1 (33%)	(-)	
Polyarteritis		1 (3570)	1 (100%)	,
Fat, granuloma	2 (67%)	1 (33%)	. (100/0)	~
Pancreas	(50)	(50)	(50)	
Cytoplasmic alteration, focal	(50)	1 (2%)	2 (4%)	
Edema		1 (2%)	~(///)	
Fibrosis	1 (2%)	1 (270)		
	1 (270)		1 (2%)	
Fibrosis, focal Inflammation, focal			1 (2%)	
	9 (18%)	16 (32%)	14 (28%)	
Acinus, atrophy Stomach, forestomach	(50)	(50)	(50)	
Acanthosis	16 (32%)	13 (26%)	11 (22%)	
Cyst epithelial inclusion	10 (5270)	15 (2070)	1 (2%)	
Edema	6 (12%)	4 (8%)	6 (12%)	
Hemorrhage	2 (4%)	4 (670)	1 (2%)	
	14 (28%)	11 (22%)	8 (16%)	•
Hyperkeratosis Ulcer	7 (14%)	4 (8%)	4 (8%)	
Serosa, inflammation, proliferative	1 (2%)	. (0,0)		
· · · · ·		(50)	(50)	,
Stomach, glandular	(50)	1 (2%)	2 (4%)	
Ulcer	1 (2%)	1 (2%)	2 (4%)	
Mucosa, erosion, focal	1 (2%)	1 (270)	(1)	
Tooth Inflammation, suppurative			1 (100%)	

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	100 µL	300 µL	
2-Year Study (continued)				
Cardiovascular System				
Blood vessel		(2)		
Polyarteritis		1 (50%)		
Heart	(50)	(50)	(50)	
Abscess		· ·	1 (2%)	
Cardiomyopathy	43 (86%)	33 (66%)	31 (62%)	
Atrium, thrombus		2 (4%)	3 (6%)	
Myocardium, mineralization, focal			1 (2%)	
Endocrine System				
Adrenal gland, cortex	(51)	(50)	(50)	
Angiectasis	1 (2%)		· · ·	
Degeneration, fatty, focal	15 (29%)	8 (16%)	9 (18%)	
Hematopoietic cell proliferation	1 (2%)	. ,	. ,	
Hyperplasia, focal	10 (20%)	12 (24%)	8 (16%)	
Hypertrophy, focal			1 (2%)	
Thrombus		1 (2%)		
Adrenal gland, medulla	(49)	(50)	(50)	
Hyperplasia, focal	1 (2%)	3 (6%)	5 (10%)	
Islets, pancreatic	(50)	(50)	(50)	
Cytomegaly		1 (2%)		
Hyperplasia	2 (4%)			
Parathyroid gland	(45)	(50)	(47)	
Hypertrophy	7 (16%)	4 (8%)	2 (4%)	
Pituitary gland	(50)	(49)	(48)	
Angiectasis	4 (8%)	6 (12%)	3 (6%)	
Hemorrhage	1 (2%)	< (10 7)	1 (2%)	
Pars distalis, hyperplasia, focal	4 (8%)	6 (12%)	8 (17%)	
Thyroid gland	(50)	(50)	(50)	
Ultimobranchial cyst C-cell, hyperplasia	8 (16%)	1 (2%) 6 (12%)	6 (12%)	
Follicle, dilatation	8 (1070)	3 (6%)	4 (8%)	
Follicular cell, hyperplasia		3 (070)	2 (4%)	
General Body System	Negocount.Annig. Alexant scannant, laborcoo	ан <u>аан</u> аанын антар алар алар алар алар алар алар алар а	al account (1994)	
Tissue NOS	(2)	(2)	(2)	
Abscess	1 (50%)		1 (50%)	
Genital System				
Clitoral gland	(44)	(39)	(40)	
Cyst		1 (3%)		
Ectasia	6 (14%)	2 (5%)	5 (13%)	
Fibrosis	3 (7%)	1 (3%)	3 (8%)	
Granuloma	1 (2%)			
Hyperplasia		1 (3%)		
Inflammation, chronic	1 (2%)	2 (5%)		
Inflammation, suppurative	3 (7%)	2 (5%)	1 (3%)	

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μL	100 µL	300 µL	
2-Year Study (continued)				
Genital System (continued)				
Ovary	(50)	(50)	(50)	
Atrophy	(50)	(50)	(50)	
Cyst	1 (2%)	1 (2%)	2 (4%)	
Uterus	1 (2%)	1 (2%)	4 (8%)	
Dilatation	(50) 1 (2%)	(50)	(50)	
Inflammation	1 (2%)	2 (4%)	1 (2%)	
Endometrium, atrophy	22 (16%)	24 (48%)	1 (2%) 15 (20%)	
Vagina	23 (46%)	24 (48%)	15 (30%)	
Exudate	(1)		(1) 1 (100%)	
Exudate		•	1 (100%)	
Hematopoietic System			······································	
Bone marrow	(48)	(49)	(49)	
Hypoplasia	1 (2%)	1 (2%)	1 (2%)	
Lymph node, mandibular	(50)	(50)	(50)	
Hyperplasia	1 (2%)			
Spleen	(51)	(50)	(50)	1
Congestion	()	1 (2%)	()	
Fibrosis	-	- ()	2 (4%)	
Hematocyst	1 (2%)		- ()	·
Hematopoietic cell proliferation	30 (59%)	26 (52%)	22 (44%)	
Hyperplasia, lymphoid	1 (2%)			
Infarct		1 (2%)		
Pigmentation, hemosiderin	16 (31%)	19 (38%)	17 (34%)	
Capsule, hyperplasia			1 (2%)	
Thymus	(44)	(43)	(42)	
Congestion		1 (2%)		
Cyst	1 (2%)	1 (2%)	1 (2%)	
Depletion lymphoid	2 (5%)	2 (5%)	1 (2%)	
Integumentary System			(40)	
Mammary gland	(50)	(48)	(50)	•
Hyperplasia	9 (18%)	9 (19%)	9 (18%)	-
Lactation	44 (88%)	42 (88%)	43 (86%)	
Skin	(50)	(49)	(50)	
Other, acanthosis	2 (4%)		1 (2%)	
Other, hyperkeratosis		1 (201)	1 (2%)	
Other, inflammation, chronic	(50)	1 (2%)	(50)	
Skin, control	(50)	(49)	(50)	
Acanthosis	3 (6%)	(49)	(50)	
Skin, site of application-no mass	(50) 8 (16%)	(49) 18 (37%)	(30) 23 (46%)	
Acanthosis	8 (16%)	18 (37%)	23 (40%) 1 (2%)	
Inflammation, chronic Ulcer	1 (20%)		1 (270)	
	1 (2%)			

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	O µL	100 µL	300 µL	
2-Year Study (continued)	**** <u>*</u>		<u> </u>	
Musculoskeletal System				
Bone	(48)	(49)	(50)	
Fibrous osteodystrophy	1 (2%)		1 (2%)	•
Hyperostosis	1 (2%)		1 (2%)	
Osteopetrosis		2 (4%)	- (-//)	
Nervous System	<u></u>	· <u></u>		
Brain	(50)	(50)	(50)	
Compression	(30) 7 (14%)	5 (10%)	9 (18%)	
Hemorrhage, focal	, (1+70)	1 (2%)	> (10,0)	
Hydrocephalus		1 (2%)		•
Decei-and Cardon			<u></u>	
Respiratory System	(50)	(50)	(50)	
Lung Atelectasis	(50)	(50)	(50)	
	19 (3601)	15 (20%)	1 (2%)	
Congestion Hemorrhage	18 (36%) 1 (2%)	15 (30%) 1 (2%)	14 (28%)	
Infiltration cellular, histiocyte	1 (2%)	1 (2%)	2 (19%)	
Inflammation, chronic	2 (4%) 8 (16%)	1 (2%) 7 (14%)	2 (4%) 4 (8%)	
Alveolar epithelium, hyperplasia	1 (2%)	/ (1470)	1 (2%)	
Nose	(51)	(49)	(50)	л
Foreign body	(31)	1 (2%)	2 (4%)	
Fungus	3 (6%)	1 (270)	1 (2%)	
Inflammation, chronic	10 (20%)	18 (37%)	16 (32%)	
Inflammation, suppurative	3 (6%)	1 (2%)	2 (4%)	
Nares, ulcer	1 (2%)	- (=/0)	2(110)	
Nasolacrimal duct, inflammation, suppurative	- (-//)	4 (8%)	2 (4%)	
Trachea	(50)	(50)	(50)	
Glands, dilatation			1 (2%)	
Special Senses System	······································			<u>.</u>
Eye	(46)	(44)	(39)	
Cataract	46 (100%)	44 (100%)	39 (100%)	
Hemorrhage	5 (11%)		2 (5%)	
Inflammation	1 (2%)			
Inflammation, chronic		1 (2%)		•
Phthisis bulbi		1 (2%)		
Cornea, hyperplasia, squamous, focal		1 (2%)		
Cornea, inflammation	2 (4%)	4 (9%)	3 (8%)	
Retina, atrophy	40 (87%)	38 (86%)	32 (82%)	
Zymbal's gland	(1)	(1)	(1)	
Abscess		1 (100%)		
Cyst	1 (100%)		1 (100%)	

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μL	100 µL	300 μL
2-Year Study (continued)	· · · · · · ·		·
	· · · · · · · · · · · · · · · · · · ·		•
Urinary System	/// A \		(50)
Kidney		(50)	(50)
Hydronephrosis	1 (2%)	1 (00)	2 (10)
Inflammation, suppurative		1 (2%)	2 (4%)
Nephropathy	47 (92%)	45 (90%)	47 (94%)
Collecting tubule, casts	· · · · · ·	1 (2%)	the second second second
Medulla, necrosis	· · ·	· · ·	1 (2%)
Pelvis, dilatation	3 (6%)	3 (6%)	
Pelvis, epithelium, hyperplasia	19 (37%)	23 (46%)	21 (42%)
Pelvis, epithelium, mineralization	14 (27%)	16 (32%)	13 (26%)
Perirenal tissue, inflammation, suppurative	1 (2%)	1 (2%)	and an
Proximal convoluted renal tubule, necrosis	1 (2%)	1 (2%)	2 (4%)
Proximal convoluted renal tubule, pigmentation	1 (2%)	2 (4%)	
Renal tubule, mineralization	2 (4%)	2 (4%)	2 (4%)
Renal tubule, necrosis		1 (2%)	
Urinary bladder	(48)	(47)	(49)
Inflammation, chronic	1 (2%)	· · ·	
Lumen, hemorrhage		1 (2%)	

APPENDIX C SUMMARY OF LESIONS IN MALE MICE IN THE 2-YEAR DERMAL STUDY OF DIETHYLPHITHALATE

TABLE C1	Summary of the Incidence of Neoplasms in Male Mice	
	in the 2-Year Dermal Study of Diethylphthalate	148
TABLE C2	Individual Animal Tumor Pathology of Male Mice	
	in the 2-Year Dermal Study of Diethylphthalate	152
TABLE C3	Statistical Analysis of Primary Neoplasms in Male Mice	
	in the 2-Year Dermal Study of Diethylphthalate	174
TABLE C4	Historical Incidence of Liver Neoplasms	
	in Untreated Male B6C3F ₁ Mice	.178
TABLE C5	Summary of the Incidence of Nonneoplastic Lesions in Male Mice	·
	in the 2-Year Dermal Study of Diethylphthalate	179

×

₹Ē.

TABLE C1

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Dermal Study of Diethylphthalate^a

Disposition Summary Animals initially in study 15-Month interim evaluation Early deaths Accidental deaths Moribund Natural deaths Survivors	60 10	60 10	60	
Animals initially in study 15-Month interim evaluation Early deaths Accidental deaths Moribund Natural deaths	10			
15-Month interim evaluation Early deaths Accidental deaths Moribund Natural deaths	10			
Early deaths Accidental deaths Moribund Natural deaths		10		60 ,
Accidental deaths Moribund Natural deaths	e e e e e e e e e e e e e e e e e e e		10	10
Moribund Natural deaths	_			
Natural deaths		1		
	2	3	2	1
SULVIVOIS	5	. 4	2	6.
Torminal equifies	40	44	· · · · · · · · · · · · · · · · · · ·	10
Terminal sacrifice Missing	43	41	46	43
viissing		1		,
Animals examined microscopically	60	53	60	60
15-Month Interim Evaluation				annan an a
1				*
Alimentary System	(10)			
Liver	. (10)	(3)	(1)	(10)
Hepatocellular carcinoma	1 (10/7)	0 (2 0 00)		1 (10%)
Hepatocellular adenoma	1 (10%)	2 (67%)	4 (40000)	1 (10%)
Hepatocellular adenoma, multiple			1 (100%)	1 (10%)
Respiratory System		·	•	
Lung	(10)			. (10)
Alveolar/bronchiolar adenoma	1 (10%)			1 (10%)
Special Senses System	· · · · · · · · · · · · · · · · · · ·	. <u></u>		· · · · · · · · · · · · · · · · · · ·
Harderian gland	(1)			
Adenoma	1 (100%)			
Systems Examined With No Neoplasms O Cardiovascular System	Dbserved			_
	· ·		. •	
Endocrine System				
General Body System				
Genital System				
Hematopoietic System				• • •
Integumentary System				
Musculoskeletal System				•
Nervous System				
Urinary System	•			· · ·
		<u> </u>	بور	·
2-Year Study				
Alimentary System				
Intestine small, duodenum	(47)	(49)	(48)	(46)
Intestine small, jejunum	(47)	(49)	(48)	(46)
Intestine small, ilcum	(47)	(48)	(48)	(46)

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	7.5 µL	15 μL	30 µL
2-Year Study (continued)				
Alimentary System (continued)				
Liver	(50)	(50)	(50)	(50)
Adenoma, multiple	1 (2%)	(30)	(50)	(50)
Hemangiosarcoma	1 (270)	1 (2%)		1 (2%)
Hemangiosarcoma, multiple	1 (2%)	1 (270)		1 (2%)
Hepatocellular carcinoma	3 (6%)	3 (604)	5 (10%)	4 (8%)
Hepatocellular carcinoma, multiple	1 (2%)	3 (6%) 1 (2%)	1 (2%)	3 (6%)
Hepatocellular adenoma	5 (10%)		7 (14%)	9 (18%)
Hepatocellular adenoma, multiple		9 (18%) 2 (4%)		
Histiocytic sarcoma	1 (2%)	2 (4%)	2 (4%)	3 (6%)
	(2)	1 (2%)		
Mesentery	(2)	(2)	(2)	
Hemangioma	(50)	1 (50%)	(50)	(50)
Andreas	(50)	(49)	(50)	(50)
Acinus, carcinoma	,			1 (2%)
Cardiovascular System				·····
Heart	(50)	(50)	(50)	(50)
Hepatocellular carcinoma, metastatic, liver				1 (2%)
Endocrine System			<u></u>	
Adrenal cortex	(50)	(40)	(40)	(50)
Adenoma	(50)	(49)	(49)	(50)
	6 (12%)	3 (6%)	2 (4%)	2 (4%)
Hepatocellular carcinoma, metastatic, liver Capsule, adenoma	3 (6%)	1 (2%)		2 (4%)
Adrenal medulla		2 (4%)	(40)	
Pheochromocytoma benign	(50)	(50)	(49)	(50)
	(40)	(47)	1 (2%)	(40)
Pituitary gland	(48)	(47)	(48)	(49)
Histiocytic sarcoma, metastatic	(50)	1 (2%)	(50)	(50)
Ihyroid gland Follicular cell, adenoma	(50) 2 (4%)	(50)	(50) 3 (6%)	(50)
	2 (4%)	1 (2%)	3 (6%)	
General Body System				
Fissue NOS	(3)	(1)	(2)	(1)
Hemangioma				1 (100%)
Lipoma	1 (33%)		1 (50%)	
Genital System				<u></u>
Epididymis	(50)	(49)	(50)	(50)
Sarcoma	1 (2%)	1)	()	~~/
Penis	(1)	(1)		
Prostate	(50)	(49)	(50)	(50)
Testes	(50)	(49)	(50)	(50)
Interstitial cell, adenoma	(50)	1 (2%)	1 (2%)	(~~)

× *

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μL		7.5 μL	•	15 μL	**	30 µL	
2-Year Study (continued)			<u></u>					
Hematopoietic System								,
Lymph node	(7)		(1)					
Mediastinal, alveolar/bronchiolar carcinoma,	(2)	•	(1)				(1)	
metastatic, lung	1 (50%)						•	
Lymph node, mandibular	(44)		(47)		(47)		(49)	
Lymph node, mesenteric	(47)		(50)		(47)		(50)	
Hemangiosarcoma	()		(00)		1 (2%)	,	(30)	
Spleen	(50)		(50)		(50)		(50)	
Hemangiosarcoma	4 (8%)		(00)		5 (10%)		1 (2%)	
Hemangiosarcoma, multiple	2 (4%)				. ()		1 (2%)	
Thymus	(29)	÷ .	(39)		(37)		(32)	•
Hemangiosarcoma	1 (3%)		()				(32)	
	2000 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	2713 	н.	· .	· · ·		· · · · · · · · · · · · · · · · · · ·	
Integumentary System						. ·	· · · ·	ч
Skin	(50)		(50)		(50)		(50)	
Hemangiosarcoma	1 (2%)		(30)		(30)	·	(50)	
Subcutaneous tissue, hemangiosarcoma	1 (2%)		•					
Subcutaneous tissue, paraganglioma benign	1 (2%)							
buterineous insue, paragangnoma tempi	1 (270)		•	,				•
Musculoskeletal System			· ·	********		,		
Bone	(50)		(40)		(50)		(50)	
Vertebra, osteosarcoma	(50)		(48)		(50)		(50)	
Skeletal muscle			(1)		1 (2%)		(1)	
Diaphragm, carcinoma, metastatic, pancreas			(1)		(1)		(1) 1 (100%)	,
Dupinigui, carentonia, inclastatic, panereas		,				2	1 (10070)	•
Nervous System		,					;	
Brain	(50)	1	(50)	1 X	(50)		(50)	
Histiocytic sarcoma, metastatic	(50)		1 (2%)		(30)	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	(50)	
Thereby the barconia, metastatic			1 (270)				,	' .
Descriptory Sustam								
Respiratory System	(50)		(50)		(50)		(50)	
Lung Alveolar/bronchiolar adenoma	(50)	•	(50)		(50)		(50) 5 (10%)	
	5 (10%)		1 (2%)		6 (12%)		5 (10%)	
Alveolar/bronchiolar adenoma, multiple	C (100)		1 (2%)		1 (2%)	•	1(2%)	
Alveolar/bronchiolar carcinoma	5 (10%)		5 (10%)		4 (8%)		3 (6%)	
Alveolar/bronchiolar carcinoma, multiple			1 (2%)				1 (201)	
Carcinoma, metastatic, liver							1 (2%)	
Carcinoma, metastatic, pancreas	1 (00/)						1 (2%)	
Hemangiosarcoma	1 (2%)		2 (102)		2 (4%)		4 (8%)	
Hepatocellular carcinoma, metastatic, liver	1 (2%)		2 (4%)					
Nose	(50)		(49)		(50)		(50)	
Spacial Sansas Suctor		,						
Special Senses System Harderian gland			(2)		(3)			
					3 (100%)			

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μ L	7.5 μL	15 µL	30 µL
2-Year Study (continued) Urinary System		аланан ал алан ал	<u></u>	
Kidney	(50)	(50)	(50)	(50)
Systemic Lesions				· · ·
Multiple organs ^b	(50)	(50)	(50)	(50)
Histiocytic sarcoma		1 (2%)		
Lymphoma malignant histiocytic				1 (2%)
Lymphoma malignant lymphocytic	1 (2%)	1 (2%)		1 (2%)
Lymphoma malignant mixed	2 (4%)	2 (4%)		1 (2%)
Neoplasm Summary	<u></u>			
Total animals with primary neoplasms ^c				
15-Month interim evaluation	3	`2	1	3
2-Year study	27	26	33	29
Total primary neoplasms		ь.		. 1
15-Month interim evaluation	3	2	1,	4
2-Year study	49	38	44	41
Total animals with benign neoplasms	· · ·			1
15-Month interim evaluation	3	2	1	3
2-Year study	16	18	23	20
Total benign neoplasms				
15-Month interim evaluation	3	2	1	3
2-Year study	25	23	27	23
Total animals with malignant neoplasms				
2-Year study	19	14	15	16
Total malignant neoplasms				
2-Year study	24	15	17	18
Total animals with metastatic neoplasms		•		
2-Year study	2	3	2	5
Total metastatic neoplasms				
2-Year study	2	5	2	8

^a Number of animals examined microscopically at the site and the number of animals with neoplasm

^b Number of animals with any tissue examined microscopically

^c Primary neoplasms: all neoplasms except metastatic neoplasms

Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylphthalate: 0 µL 5 7 7 4 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 Number of Days on Study 3 3 5 2 39 1 3 1680506 0 0 0 0 0 0000 0 0 0 1 1 1 1 1 1 0.0 **Carcass ID Number** 1 5 3 4 5 5 5 5 4 1 4 1 1 1 1 1 1 1 2 2 2 2 2 2 5 2 1 2 0 -3 9 8 2 4 5 6 7 8 9 0 1 3 4 5 1 2 3 4 5 6 1 **Alimentary System** Esophagus Gallbladder A M Intestine large, colon Α Intestine large, rectum A Α + Intestine large, cecum Α Α + + Intestine small, duodenum Α A + + А Intestine small, jejunum + Α Α + A + Intestine small, ileum + Α Α + А + + Liver + + + Adenoma, multiple х Hemangiosarcoma, multiple х Hepatocellular carcinoma х Х Hepatocellular carcinoma, multiple х Hepatocellular adenoma х х Hepatocellular adenoma, multiple х Mesentery Pancreas Salivary glands Stomach, forestomach Stomach, glandular I + + + + + + + + + + **Cardiovascular System** Heart + + + + + + + + + + + + **Endocrine System** Adrenal cortex + Adenoma Capsule, adenoma х Adrenal medulla + Islets, pancreatic + Parathyroid gland + М Pituitary gland Μ + + + Thyroid gland + + + Follicular cell, adenoma х х **General Body System** Tissue NOS + + + Lipoma х **Genital System** Coagulating gland Epididymis Sarcoma 1 х Penis

+: Tissue examined microscopically

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined Ĺ

A: Autolysis precludes examination

	7	7	7	7	7	7	7	7	7	7	7	.7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3		3	3		3			3	3			3	3	3	3	3	3	3	3	3	3	3	3	3	
and of Days of Stady							2								7									8		
	0	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	<u></u>
Carcass ID Number	5	5	5	6		2	2	2	4	4	4	4			3		3	4		5	3	3	3	3		Total
	7	8	9		6				1		4				3							_	_			Tissues
	•	-	-												1											Tumor
Limentary System																										<u> </u>
Esophagus	т		Т	Т	Т	+	т	Т	+	Ŧ	Ŧ	ъ	-	Ŧ	· +	Ŧ	+	ъ	Ŧ	Ŧ	<u>н</u>	+	+	Ŧ	+	50
Gallbladder	T L	T	т 	т 	Ŧ	т 	т 1	т 	T T	т 	+	+			+								- -	M		44
Intestine large, colon	т 	т 1	+	т +	+	+	+	+	+	+		+		+		+		+	+	+					+	47
Intestine large, rectum	т 	т 1	÷							+		+				+		+	+	+		+	т -	י ב	, ,	47
	т -	т		- T	т 		Ţ	- -	+	т 	+	+	+	+		+	+	+	+	+			т 	т 	+	47
Intestine large, cecum	т 	- T	+	+	+	+	+	+		+	+	+	+	+		+	+	+	+	+		- -	т 	+		47
Intestine small, duodenum	+	+	+++						++						++				++			+	т Т		+	47
Intestine small, jejunum	+	+	+	+	+	+	+	+	++	++	+	++	++	++		+	++	+	++	+	+	7 	7 _		+	47
Intestine small, ileum Liver	+	+	+	++	++		+	+		,					++				++		•	++	+		++	47 50
	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	T	т	+	+	Ŧ	т	Ŧ	Ψ.	Ŧ	т	т	30 1
Adenoma, multiple Hemangiosarcoma, multiple																										1
							x																			3
Hepatocellular carcinoma Hepatocellular carcinoma, multiple							л																			. 1
			v						х												x					5
Hepatocellular adenoma			Х						л												л					1
Hepatocellular adenoma, multiple																				•						2
Mesentery																									,	50
Pancreas Solitore clonds	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	50
Salivary glands		· +	· +	+	+	- -	+	+++				++	++			+		++					+		+ +	50
Stomach, forestomach Stomach, glandular	+	- +	· +	+	+	+	+								+				+				+		- -	· 49
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System						_					_															
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma								Х	X						Х						Х					6
Capsule, adenoma									Х														Х			3
Adrenal medulla	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Islets, pancreatic	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. 50
Parathyroid gland	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pituitary gland	+	· +	• +	+	+	+	+	+	+	Μ	i +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Thyroid gland	+	• +	• +	+	· +	+	+	+	+	+	+	+	÷	+	·+	+	+	+	+	+	+	+	+	+	+	50
Follicular cell, adenoma																										2
General Body System																										
Tissue NOS																										3
Lipoma																										1
Genital System																										
Coagulating gland																										1
Epididymis	+	• +	- +	• +	+	• +	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	• +	+	• +	+	+	50
Sarcoma																										1
Penis			+	-																						1

Diethylphthalate/Dimethylphthalate, NTP TR 429

154

TABLE C2

Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued)

	Δ	5	5	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Sumber of Days on Study		3			3																		2		3	
dumber of Days on Study	3	-	-	_				-			3				3			3		3	3	3	3	_		
	1	6	8	U	Э	U	0	U	U	U	U	0	0	U	0	U	0	U	U	Ţ	1	1	Ţ	I	Ţ	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number													1							2	2	2	2	2	5	
													8													
													1													
Genital System (continued)		_	-																							,
Preputial gland																										
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Seminal vesicle		+	+	+									+										+	+	+	
Testes	, 	- -	_	, 					+						+				, 		- -	, 	- -	, 1		
		т	т	т	Ŧ	т ——	т	-	т	т	- -	т	т	т —	т	т	т	т	т	т	Ŧ	т	т		т	
Hematopoietic System			_																			_				
Bone marrow	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Lymph node									+																	
Mediastinal, alveolar/bronchiolar carcinoma, metastatic, lung									x																	
Lymph node, mandibular	+	τ	I	+	Ι	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	
Lymph node, mesenteric					M								+													
Spleen													+												+	
Hemangiosarcoma	,	x		'	,		•	•	'	•	'	T	T	•	1			1	1.			'	T	1	٢.	
Hemangiosarcoma, multiple		Δ													x									x		
Thymus	-	м	· _	т	ъ	м	щ	м	м	-	т.	м	м	м	_	4	м	Т	м		-		Т		м	
Hemangiosarcoma	т	IVI	. т	T	т	IAT	т	IVI	IVI	T	T	141	IVI	141	IVI	т	141	т	INT	т	т	Ŧ	T	т	IVI	
															_				_							
Integumentary System											_															
Mammary gland	М	M	M	M	M	+	М	Μ	М	Μ	М	М	М	М	М	Μ	М	М	Μ	Μ	M	Μ	i M	l M	M	
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	
Hemangiosarcoma		Х																								
Subcutaneous tissue, hemangiosarcoma																						Х				
Subcutaneous tissue, paraganglioma																										
benign																									•	
Musculoskeletal System															<u> </u>				-				·			
Bone	+	+	+	+	+	+	+	+	+	+	ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Nervous System						_		_	_	-	_		-	_												
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Respiratory System											_	_		_	_	_				_						
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	÷÷	
Alveolar/bronchiolar adenoma	•					•			x			x			x	•				•			•	x		
Alveolar/bronchiolar carcinoma									x			x									х				-	
Hemangiosarcoma																							х			
Hepatocellular carcinoma, metastatic,																							~ `	•		
liver														х												
Nose	<u>ـ</u> ـ				-	Ŧ	т	Т	Т	ъ	Т		⊥	+	+	-	ـد	-	Ŧ	L			L	بد .	. .	
Trachea	т	۳ د .	ד د .	т 	т 	т -	т "	т -	т	ு ட	т -	т д	ᅮ	 بد	- ب	- بد	⊤ بر	구	т Д	۳ د	т 	۳ د	۳ د .	ب د.	т 	
TIGUICA	+		1	-	т	-	+	T	+	T	Ŧ	T	T	Ŧ	T	T	T	т	T			- *	- T	· •	· •	

None

Individual Animal Tumor Pathology of	1120020								ап т		I HAAG	60 A	Ju		01				K						. (001	(initiaca)
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	1	1	1	1	2	2	2	2	2	2	2	2	7	7	7	7	7	7	7	7	8	8	8	8	8	
· · · · · · · · · · · · · · · · · · ·	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Carcass ID Number	5	5	5	6	2	2	2	2	4	4	4	4	3	3	3		3	4 '	4	5	3	3	3	3	4	Total
	7														3											Tissue
	1														1											Tumor
Genital System (continued)													-	•												
Preputial gland																		+								1
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	50
lematopoietic System							_																			
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	50
Lymph node Mediastinal, alveolar/bronchiolar			+																							2
carcinoma, metastatic, lung																										1
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	T	+	+	+	+	+	+	44
Lymph node, mesenteric	+	+	+	+	÷	+	+		÷		+		+	+			+				+			+	÷.	47
Spleen	+	÷	+	+	÷				•	-	+				+		+				+					50
Hemangiosarcoma		x		'	x				'	•	•	'		•		'	•	•	'	,	×		•	'	•	4
Hemangiosarcoma, multiple					~																					2
Thymus	м		м	м	+	м	+	т	ъ	Т		-	м	+	м	ъ	ъ	+	+	м	Ŧ	+	м	м	м	29
Hemangiosarcoma	141	т	141	141	Т	141	-1-	т	т	т	т	т	141	т	141		x	т	т	141	т	т	141		141	1
Integumentary System							_																			
Mammary gland	Μ	Μ	M	Μ	Μ	Μ	+	Μ	М	Μ	М	Μ	Μ	Μ	М	М	М	Μ	Μ	Μ	М	Μ	Μ	Μ	Μ	2
Skin	·+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma																										1
Subcutaneous tissue, hemangiosarcoma																										1
Subcutaneous tissue, paraganglioma																										
benign															х											1
Musculoskeletal System							_									-										
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Vervous System																										
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma						х																				5
Alveolar/bronchiolar carcinoma	Х				х																					5
Hemangiosarcoma																										1
Hepatocellular carcinoma, metastatic,																										_
liver										••																1
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50

None

Diethylphthalate/Dimethylphthalate, NTP TR 429

٠.

156

TABLE C2

					5				7		77				7															
iumber of Days on Study				3 6	5 8	2 0	3 5	9 0	1 6	3 0	33 00	0		3 0	3	3.	3. 1	-	3 1	3.				•						
arcass ID Number	•		0 4	0	0 5	0 3	0 1	0			00		0	0 1	0 1	0 2		0 5	0 5	0 5	0 ^{°°} 2	0 2	0 2	0 2	0	0 5:				
			2 1	1 1	2 1	0 1	3 1	9 1	8 1	2 1	4 5 1 1	6		8 1	9 1	0 1	1	3 1	4	5 1	1	2 1	3 1	4 1		6	•		••••	
Jrinary System Kidney Urinary bladder			+++	+ +	+++	+	+++	+ +	+++++	+++	+ +		+ + + +	++	++	+++	+ +	++	+++	++	+++	++	++	++	++	++	· ,	<u>ر ۲</u> ۱۰۰۰ ۲۰۰۰ -	· .	
ystémic Lesions Multiple organs Lymphoma malignant lymphocytic Lymphoma malignant mixed		•	+	+	+	+	+	+	+	+	-+ -		+ +	+	+	+	+	+	+	+	+	+	+	+	+	· · · ·			•	
· · · · · · · · · · · · · · · · · · ·	•				·			·										·			•							-		
							-				•																	. •		
					-																									
								. .												• .							•	. ,	•	
·																														
																												•		
																													•	
	•																				•							•	×	
									•									•						•						

Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued) Number of Days on Study 0 **Carcass ID Number** 5 5 5 6 2 2 2 2 4 4 4 4 3 3 3 3 3 4 4 5 3 3 3 4 Total 7 8 9 0 6 7 8 9 1 3 4 5 1 2 3 4 5 6 7 0 6 7 8 9 0 Tissues/ Tumors **Urinary System** Kidney 50 + Urinary bladder + + + + 50 + + + + + + + + + + + + ++ + + ++ + Systemic Lesions Multiple organs + + + + + + + + + + + + + + + + 50. + Lymphoma malignant lymphocytic \mathbf{X}^{\cdot} 1 Lymphoma malignant mixed 2 Х х

ndividual Animal Tumor Pathology	or ma	ne	141				110	-	IE	ar	De	rm	al	Stu	lay	01	D	iet	nyı	pn	tn		te:	7.	.ə f	μL		· ·	
· · · · · · · · · · · · · · · · · · ·	· · · ·	0	1	3	ż	5	5	5	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7			
lumber of Days on Study				7	9	7	9	9	8		3	3	3	3					3		3	3	3	3	3	3			
		9	5	8	7	6	0	0			0	0	0	0				1							6				
		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
arcass ID Number		5	7	3	4	4	4	7	3	7	5	5	5	5	6	5	5	5	5	5	4	4	4	4	5	6			
		3	3	6	3	0	1	9	1	7	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1			
	, <u>,</u> ;									1																			
limentary System					_																								
Esophagus		+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		•	
Gallbladder		+	+	+	+	+	. +	+	Å	Å	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, colon		+	4	+	÷	+	+	4		+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +			
Intestine large, rectum		+	+	+	+	+				+	+	+		, _	+	4	+		_	+	, +	, +	, +	ہ. ــــــــــــــــــــــــــــــــــــ	÷.				
Intestine large, cecum		+	÷	+	+	- -	÷	4	A		+	4	4	1	4		+		, _	÷	<u>_</u>	-	÷.	1	÷.	. +			
Intestine small, duodenum			+	+	+		<u> </u>	, 1	-	+			+	+	+	+	+	т. 	+	+	÷	1		1		· 1			
Intestine small; jejunum		T L	Ŧ	Ŧ	- -	- -				+			+		+		+	т 	- -	Ŧ	Ť	- -	·+ -	т. "т.	- -	т 			
Intestine small, ileum		т 1	т Т	т 	т 	т 	т. 	· +		M		+	T L			+	T	т 	т 	т 	т _	T	т 	т. -	т .ь	+			
Liver		T	Ŧ	Ţ	Ţ	-	Ţ	· +					+	++	+	•	+	*	T	+	+	+	Ť	- T	· T	+			
Hemangiosarcoma		т	Ŧ	Ŧ	+	Ŧ	Ŧ	्र 🕇	Ŧ	ሞ	+	÷	Ŧ	+	+	+	+	Ŧ	+	+	Ŧ	+	+	Ŧ	Ŧ	+			
						x				x							v												
Hepatocellular carcinoma						Λ				л							х												
Hepatocellular carcinoma, multiple						72	Х															**							
Hepatocellular adenoma						х					X	Х				х						х	·						
Hepatocellular adenoma, multiple													х								• •	÷	· .•			,		• •	
Histiocytic sarcoma				х																								•	
Mesentery																								+				•	
Hemangioma																								X		-			•
Pancreas	-	t	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Salivary glands	•	+	+	+	Ŧ	+	+	+	+	·+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		*	
Stomach, forestomach	-	+	+	+	+	+	+	+	+	.+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Stomach, glandular	•	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			,
ardiovascular System											,						÷						41	, ,					
Heart		ł	+	+	+	+	+	+	+	ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
ndocrine System		,																			,	-		for some some some some some som			-	•	
Adrenal cortex		+	+	+	+		+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Adenoma																										х			
Hepatocellular carcinoma, metastatic,																													
liver										х																			
Capsule, adenoma										-															х				
Adrenal gland									+																-				
Adrenal medulla		+	+	+	+	.+	+	+	- -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Islets, pancreatic		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Parathyroid gland								+			+	<u> </u>	+	+	+	+	+	, +	+	+	÷	+	+	+	4	+			•
Pituitary gland			+	- -				- - +			1	1	1	1	+	ــــ	+	+		+	÷	, ,		1	+	, M			
Histiocytic sarcoma, metastatic		•	•	x		F .	-1-	а г	ч г .	.д.		л.					'		•	•	•		•		•	÷**			
		Ŧ	+		<u>ــ</u>	<u></u>	L	L	L	+	<u>т</u>	. د.	ᅭ		• ـد	. L.	L	-L.	Ł		ъ	_	<u>"</u> г	ъ	+				
Thyroid gland Follicular cell, adenoma	,	T	Ŧ	Ŧ	т	T	Ŧ	+	Ŧ	Ŧ	T	Ŧ	π	т	Ŧ	Ŧ	т	T	т	-	т	Τ.	т	т	т				

1	1	-7	- 7	-7	-7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	-7	7	
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
6	6	6	6	6	6	6	7	7	7	7	7	7	7	8	8	8	8	8	8	8	8	8	8	8	
1	1	1	1	1	1														1	1	1	1	1	1	
6																									Total
																									Tissues
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	`+	+	+	+	50
+	M	M	[+	+	+	+	+	Μ	(+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	·+	+	+	+	+	+	+	+	+	+	49
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
·+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
+	+	+	+	+	+	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
			Х																						1
																									3
																									1
÷			Х	:						Х								х				Х		•	9
			·								Х														2
																									1
				+																					2
																									1
+	+	+	+	• +	+	• +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
+	+	+	- +	• +	+	• +		· +	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	49
+	+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
+	+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
									_																
+	+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
																_									
+	+	+	· +	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
			Х	2																Х					3
																									· 1
v																									2
л												+													2
т	4	L	<u>ь</u>	ı		. <i>_</i>	L.		J.	-	4		-	+	+	+	+	+	+	+	+	ъ	-	+	50
	•			-							•	•			· ·	•		•	•		•	•		•	49
т 	T L	т 								- -	+ -	- -	т –	т -	τ -	т Т		т —	т Т	т -	- -	- -		т - т	48
+	۲ د	ا بر .								- T	т 	- -	т 	т -	Ť	Ť	т 	Ť	т -	- -	+ +	т —	- -	- -	40
т	-1	-	1	-1	Т	1	1	-	Ŧ	7	T	T	т.	т	T	L.	T	T	1	Ŧ		1.		΄.	1
т	ب	د .		<u>ــــــــــــــــــــــــــــــــــــ</u>				.		. .	Ŧ	+	Ŧ	+	+	+	+	+	+	+	+	+	+	· +	50
T V		Ŧ	1	-	1	T	т	т	1	т	T	1.	T		,	1	1.		r		•		•	•	1
	3 6 1 6 2 1 +++++++++++++++++++++++++++++	$\begin{array}{c} 3 & 3 \\ 6 & 6 \\ 1 & 1 \\ 6 & 6 \\ 2 & 4 \\ 1 & 1 \\ + & + \\$	$\begin{array}{c} 3 & 3 & 3 \\ 6 & 6 & 6 \\ \hline 1 & 1 & 1 & 1 \\ 6 & 6 & 6 \\ 2 & 4 & 5 \\ 1 & 1 & 1 & 1 \\ \\ + & + & + \\ + & + & + \\ + & + & + \\ + & + &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 6 7 7 7 7 7 3 3 3 3 2 4 5 1 2 4 5 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + + + + + + + M M + + + + + + + + + + + + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 $	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6 6 6 6 7						

	•	-	-	3		5	5	5	6	7	7 ·	7	7 7	77	7	7	7	7	7	7	7	7	7	7	7			
Number of Days on Study		2 9	-	7 8			9 0	9 0		_			33 00	33)0		3	3 1	3 1	3 1	3 6	3 6	3 [·] 6	3	3 6				
	<u>.</u>								1							1	1	<u>.</u>			1	1	1	1			<u> </u>	
arcass ID Number		6	7				4	7		7			5 5		-	5	5	5	_			4	-	5	-			
•		3) 0 1			3 1											
enital System	- 																	-	<u> </u>							<u> </u>		
Epidídymis Penis		+	+	• +	+ - +	+	+	+	+	+	+	+	+ -	+ +	+	+	+	+	+	+	+	+	+	+	+			
Preputial gland					'																							
Prostate		+	+	+	• +	+	+	+	+	+	+	+	÷ -	+ +	• +	+	+	+	+	+	+	+	+	+	+		.•	
Seminal vesicle		+	+	+	• -+	+	+	+	+	+	+	+	+ -	+ +	+	+	+	+	+	+	+	+	+	+	+		~	
Testes		+	+	+	• +	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+		:	•
Interstitial cell, adenoma															•						_		x				-	
ematopoietic System				•			:					•••	•								·						÷	-
Bone marrow Lymph node		. M	+	+	• +	+	+	+	+	+	+	, †	+ -	+ +	+	+	+	+	+	+	+	+	+	+	+			
Lymph node, mandibular		<u>ـ</u>					1	.L:	+			<u>т</u>	۰: بالله	ц	. .	-	L.	1	ъ	т	L		л.	Ъ				
Lymph node, mesenteric		+	+	.		. +	+	т 4	+	+	+	н. 4	+ -	+ -+	т 	-	+	+	т. -	+	4	т +	-	+	т +			
Spleen	÷ .	+	+	+	• -+	+	+	+	·+.	+	+	+	+ -	+ +	· +	+	+	+	+	+	+	+	+	+	+			,
Thymus		. +	+	+	- +	+			+			+ '	+ -	+ +	+	+	+	+			M	+	+	+	÷			· .
itegumentary System					·			,	•									-						-				
Mammary gland		M	M	[M	1 M	ΙM	M	M	M	М	М	M	M	MN	ſМ	М	+	М	М	+	+ '	М	М	М	М			
Skin		+	+	· +	• +	÷	+	+	+	+	+	+.	+ -	+ +	+	÷	+	+	+	+	+	,+ ,	+	+	+		۰.	
lusculoskeletal System																												· ·
Bone		М	+	+		+	+	+	+.	+	+	+	+ -	+ +	+	+	+	+	+	+	+	+	+	+	+			
Skeletal muscle					+																		۰.					
ervous System			-											,				-			•	•						. <u>.</u>
Brain		+	+			+	+	+	+	+	+	+	+ -	+ +	+	+	+	+	+	÷	+	+	+	+	+			
Histiocytic sarcoma, metastatic			-						_				-			•						•,						
espiratory System												,						•	·									
Alveolar/bronchiolar adenoma		Ť	+	· •	• 1	-	Ŧ	+	+	Ŧ	Ŧ	-T -	τ -	r 1	* +	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ		Τ.	Ŧ	+ x			
Alveolar/bronchiolar adenoma,																									A.	1		
multiple												х																
Alveolar/bronchiolar carcinoma																					х			•	Х			
Alveolar/bronchiolar carcinoma,																												
multiple																		х										
Hepatocellular carcinoma, metastatic,																												
liver			.,			X	,			X									,									
Nose Trachea	,	+	+	· + · +	- + - +	· + · +	· +	++	++	+ · +	+ +	+	+ ·	+ +	- + - +	+	++	++	+ +	++	++	++	++	++	<u>+</u> +			
pecial Senses System																												
Eye							Ŧ																					
Harderian gland		,					+	÷			·,							• .		•	÷.,							
Adenoma								х																				

Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylphthalate: 7.5 µL (continued) 7 7 7 7.7 Number of Days on Study 3 3 3. 3 6 6 6 6 6 6 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 1 1 1 1 1 -1 **Carcass ID Number** 6 6 6 7 7 7 7 3 3 3 3 3 3 3 4 4 4 6 6 6 6 7 7 78 Total 3 45 7 9 2 5 2 4 5 1 2 4 5 2 8 4 6 7 8 9 0 680 Tissues/ 1 1 1 1 1 1 Tumors **Genital System** Epididymis 49 Penis 1 Preputial gland 1 Prostate 49 + + ++ Seminal vesicle 49 + + + +++ ++ + + + + ++ + Testes 49 + + + + + + Interstitial cell, adenoma 1 Hematopoietic System Bone marrow 48 + + Lymph node 1 Lymph node, mandibular 47 +Lymph node, mesenteric 50 + + + + Spleen 50 + 4 + + + ++ 1 + ++ + -++ + + + + + + + Thymus + + M + + Μ + + + I + M M + + M + M39 + + + + + + **Integumentary System** Mammary gland **M M M M M M M M M M M M M M M M** 3 мммммм Skin 50 + + + + + + + + + + **Musculoskeletal System** Bone 48 + + Skeletal muscle 1 **Nervous System** 50 Brain + + Histiocytic sarcoma, metastatic 1 **Respiratory System** 50 Lung Alveolar/bronchiolar adenoma 1 Alveolar/bronchiolar adenoma, multiple 1 Alveolar/bronchiolar carcinoma х х х ۰5 Alveolar/bronchiolar carcinoma, multiple 1 Hepatocellular carcinoma, metastatic, 2 liver Nose 49 + 50 Trachea + + Special Senses System Eye 1 2 Harderian gland 2 Adenoma

Diethylphthalate/Dimethylphthalate, NTP TR 429

162

TABLE C2

Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylphthalate: 7.5 µL (continued)

														-					-							•		
Number of Days on Study		1 6		3 9														7 3	•	-	7 3	•	7 3	7 3	7 3			
	9	5	8	7	6	0	0	0	7	0	0	0	0	0	1	1	1	1	1	6	6	6	6	6	6			
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Carcass ID Number	6	7	3	4	4	4	7	3	7	5	5	5	5	6	5	5	5	5	5	4	4	4	4	5	6			•
	3	3	6	3	0	1	9	1	7	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1			
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Urinary System																												• • • •
Kidney	+	• +	• +	+	+	+	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+			
Urinary bladder	+	• +	+	+	+	+	+	+	+	+	+	+	•+	+	+	+	+	+	+	+	+	+	+	÷	+			
Systemic Lesions				_		-														_							, e	
Multiple organs	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		•	
Histiocytic sarcoma			Х																									
Lymphoma malignant lymphocytic				Х																								
Lymphoma malignant mixed								Х																				

Lesions in Male Mice

TABLE C2

Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylphthalate: 7.5 µL (continued)

······································	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	6	6	6	6	6	6	6	7	7	7	7	7	7	7	8	8	8	8	8	8	8	8	8	8	8	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Carcass ID Number	6	6	6	7	7	7	7	3	3	3	3	3	3	3	4	4	4	6	6	6	6	7	7	7	8	Total
	2	4	5	1	2	4	5	2	3	4	5	7	8	9	2	4	5	6	7	8	9	0	6	8	0	Tissues/
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumors
Urinary System										~			_					_						_		
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	50
Urinary bladder	+	+	+	+	+	+	÷		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Systemic Lesions											_										_					
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	·+	+	+	+	+	+	50
Histiocytic sarcoma																										1
Lymphoma malignant lymphocytic																										1
Lymphoma malignant mixed				Х																						2

Diethylphthalate/Dimethylphthalate, NTP TR 429

TABLE C2

Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylphthalate: 15 µL 6 6 6 7 Number of Days on Study 3 6 9 1 3 3 3 3 3 3 3 3 31 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 1 1 1 2 2 2 2 2 2 2 2 Ż 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 **Carcass ID Number** 7 6 7 9 5 5 5 5 6 6 6 6 6 7 9 9 9 9 9 8 8 8 8 9 9 3 6 4 7 6 7 8 9 0 7. 8 9 5 6 0 1 2 3 4 6 7 8 9 0 6 1 1 1 1 1 1 1 1 **Alimentary System** Esophagus + Gallbladder М м A Intestine large, colon Α 4 Α 4 Intestine large, rectum Α Α + + 4 Intestine large, cecum A Intestine small, duodenum A A Intestine small, jejunum A + Α Intestine small, ileum A + A + Liver + ÷ Hepatocellular carcinoma X X X х Hepatocellular carcinoma, multiple Hepatocellular adenoma х х Hepatocellular adenoma, multiple Mesentery Pancreas Salivary glands Stomach, forestomach Stomach, glandular **Cardiovascular System** Heart + + + + + + + 4 + + + + + + + + + + + + + + + + + **Endocrine System** Adrenal cortex Adenoma Adrenal gland Adrenal medulla Pheochromocytoma benign Х Islets, pancreatic Parathyroid gland Pituitary gland Thyroid gland + Follicular cell, adenoma х **General Body System** ۰. Tissue NOS + + х Lipoma **Genital System** Epididymis Prostate Seminal vesicle Testes Interstitial cell, adenoma

Lesions in Male Mice

TABLE C2

•	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3			3			3						3			3	3				3		3			
rumber of Days on Brudy		-					6																-		-	
	<u> </u>																									
							2																			.
Carcass ID Number	-	9					7						7													Total
							5																			Tissues
	1	1	1	<u> </u>	1	-	1	1	1	1	1 	1	1	1	1	ł	1	1 	1	1	1	1	1	1	1	Tumor
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Gallbladder	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small, duodenum	+	+	+	+		+			+				+			+		+		+	+	+	+	+	+	48
Intestine small, jejunum	+	+	+		+																	+	+			48
Intestine small, ileum	+	+		+									+									+	+	+	+	48
Liver	· ·	+			+																	+	+	+	+	50
Hepatocellular carcinoma	•	•.			'	•	•		'	•	x	•	•	•	•	•	•		•	'	•	•	•	•	•	5
Hepatocellular carcinoma, multiple			х								л															1
		v	X										х				x							x		7
Hepatocellular adenoma		Λ	л		v								Λ				л			v				Λ		2
Hepatocellular adenoma, multiple					х															х						
Mesentery																										2
Pancreas	+	+	+	+	+	+	+	+	+	+		+	+	+		+	+				+		+	+	+	50
Salivary glands	+	+	+	+	+	+							+													50
Stomach, forestomach	+	+	+	+	+	+	+																+	1		50
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cardiovascular System									,																	
Heart	+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																		_					_			
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	49
Adenoma																										2
Adrenal gland																		+								2
Adrenal medulia	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	Ŧ		+	+	+	+	+	+	+	- 49
Pheochromocytoma benign		•	'	•	'	'	•	•		'	'	•	•	•	•	141	•	•	1	'	'		'	•	•	1
Islets, pancreatic		ъ	L.		ᆂ	۰	ᆂ	ᆂ		т.	ъ	ъ	ъ	+	+	+	+	ᆂ	ъ	ъ	ъ	Ŧ	Ъ	Ŧ	+	50
	+	- T	T	-	<u>т</u>		T	T	T _1	T L	- T-	T	+					T	T	- Τ .ι	T	T L	T	- T	т ⊥	
Parathyroid gland	+	+	+	+	+	+	+																			
Pituitary gland	+	+	+	+	+	+	+		+				+								+		+			48
Thyroid gland Follicular cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+ X		+	+	+	+	+	+ X	+	+	+	+	+	+	50 3
			-																							-
General Body System Tissue NOS																										2
Lipoma				_							_											_				1 ·
Genital System																										
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Testes	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Interstitial cell, adenoma							х																			1

Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylphthalate: 15 µL (continued) 7 7 7 7 7 6 6 6 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 Number of Days on Study 3 6 9 1 3 .3 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 Ź 2 2 2 **Carcass ID Number** 7 9 7 7 9 5 5 5 56 9 9 6 6 6 6 6 9 9 8 8 8 899 6 3 4 7 6 7 8 9 · 0 6 7 89 0 1 2 3 4 5 6 7 8906 1 Hematopoietic System Bone marrow + + + + + 4 4 + Lymph node, mandibular + + + + + + + + + + Lymph node, mesenteric + + + ММ + Hemangiosarcoma х Spleen + + + + Hemangiosarcoma хх х x Thymus IIMI + M + M+ + + + + + + M ++ + + Integumentary System Mammary gland M M M M M M M M M M M M M M M H H M M M M M M M Skin 4 1 + 4 +4 + + +` 4 + + + + + + + + + 4 + + + + + **Musculoskeletal System** Bone Vertebra, osteosarcoma Skeletal muscle + **Nervous System** Brain + + + + + + + + + + + + + + + + + + + **Respiratory System** Lung + хх х Alveolar/bronchiolar adenoma х Alveolar/bronchiolar adenoma, multiple х х Alveolar/bronchiolar carcinoma Hepatocellular carcinoma, metastatic, liver х Nose 4 Trachea 4 + Special Senses System Ear + Harderian gland + х Adenoma **Urinary System** Kidney + + + + + + + + + + Urinary bladder +Systemic Lesions Multiple organs

Individual Animal Tumor Pathology	of Male	: №	lic	e ii	n tl	he	2-3	lea	ar I	De	rm	al	Stı	ıdy	y Oî	D	iet	hyl	lph	th	ala	te:	1	5,	L(contir	nued)
· · · · · · · · · · · · · · · · · · ·	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
	2	2	2	6	6	6	6	6	6	6	6	6	7	7	7	7	8	8	8	8	8	8	8	8	8		
· · · · · · · · · · · · · · · · · · ·	2	2	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		- <u></u>
Carcass ID Number		9					7																				Total
							5																		5		Tissues/
							1																		-		Tumors
Hematopoietic System				<u>.</u>		_																					
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Lymph node, mandibular	+	+	+	+	+	+	+									+	+	÷	÷	+	+	+	+	+	÷		47
Lymph node, mesenteric	+	+	+	+	+	+				÷			+			+			+		+	+	+		÷		47
Hemangiosarcoma	•	•	'	'	'	'		'	•	·	•	•	'	'	'	'	'	'	,	•	•	•	'	•	•		1
Spleen	<u>ـ</u>	т.		+	+	+	+		Т	ـــ	Ъ	-	-	ъ	Ъ	Т	1	т.	+	-	-	-	+	+	ъ		50
Hemangiosarcoma	F	F	т	т	т	x		т	Ŧ	т	т	т	т	Т.	Т.	т	т	ч.	ч	т			Т	.1	1		5
	T							×.		•									•	•			ъ				37
Thymus		+	+	+	+	+	+	M	+	M	. +	+	+	+	+	+	+	+	M	IVI.	+	+	IVI.	. + 	+		
Integumentary System					1					÷ -																	_
Mammary gland							M																				3
Skin	+	+	+	+	+	+	+	+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Musculoskeletal System																											
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	•	50
Vertebra, osteosarcoma																					Х						1
Skeletal muscle																											1
Nervous System		~												-	-	<u> </u>							<u> </u>				
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	+	+	+	+	+	+	+	+	+	+	+		50
Respiratory System	<u></u>							<u> </u>												_							
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Alveolar/bronchiolar adenoma		х																		х							6
Alveolar/bronchiolar adenoma,																											
multiple																											1
Alveolar/bronchiolar carcinoma														х		x		х									4
Hepatocellular carcinoma, metastatic,																											-
liver											х																2
Nose	т	-	<u>т</u>	ـ	-	ᆂ	+	-	+	+				+	+	Т	+	Т	т.	ᆂ	Ъ	т.	L.	L	• +		50
Trachea	+	+	+	+	+	+	+	+		+	+	+	+	+			+	+	+	+	+	+	+		+		50
Special Senses System															<u> </u>										_		
Ear																											1
Harderian gland	ц.																	+									3
	+																										3
Adenoma	X																	Х				_					
Urinary System		,										,	,														50
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	• +		50
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +		50
Systemic Lesions																											
Multiple organs	+	+	+	+	+	+	+	+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	· +	• +		50

 TABLE C2
 Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylohthalate: 15 "I."

Diethylphthalate/Dimethylphthalate, NTP TR 429

TABLE C2

Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylphthalate: 30 µL

· ·		5	5	5	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7			
Number of Days on Study		1	5	7	4	7	9			3					3		3	3	3		3	3	3			3.		•	· , ·
standor of Days on Stady		2		, 7	4	, 5	8	7.			0			1	1		1				3 1	2	3 2	י כ ר	3 2	ວ ; າ			
			Ŭ	<u> </u>						v	· ·	v				1	1	T		<u> </u>	T	~	4	2		<u> </u>		_	
		3	3	3	3	4	3	4	4	4	4	4	3	3	3	3	3	3	3	3	3	3	3	3	3	4			
Carcass ID Number		8	7	8	9	0	7	0	0	0	0	1	8	8	8	8	9	9	9	9	9	8	8	8	9	0	•	•	.~
	,							2																					
. ,								1																					
Alimentary System	4. 1											-						····						;		· · · · ·			
Esophagus		L	÷	÷		<u>а</u> .	+	⊥	-		_	<u>ــــ</u>	т.	л.	L.	т	+	-	-	L.		-		L	Т	Ļ			
Gallbladder								Å	<u>.</u>	+	+	+	1	1	- -	т. Т	т 	т Т	- -	1	т Т	-	+	- -	т 	т +			
Intestine large, colon							_	A					+	+	+	T	T	+	-	T	T	T	Ţ	т 1	T	Ţ		·	
Intestine large, rectum												-	-	T	T	T	+	-	т ,	T	T	+	-	1		- T	•	• •	
Intestine large, cecum								A		+.		+	+	+	Ť	Ŧ	Ţ	+	+	Ť	*	*	+	+	*		•		•
												+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•		
Intestine small, duodenum								+							+		+	+	+	+	+	+	+	+.	+	+		·· ·,	
Intestine small, jejunum								+							+				+	+	+	+	+.	+	+	+			
Intestine small, ileum								+												+	+	+	+	+	+	+			
Liver		+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Hemangiosarcoma																										х			
Hemangiosarcoma, multiple															х										•			÷.	
Hepatocellular carcinoma			х	х		х																•		Х			• `		
Hepatocellular carcinoma, multiple					х																							•••	
Hepatocellular adenoma												Х	х		X								1	-		Х			
Hepatocellular adenoma, multiple																			X					Х		ć			
Pancreas		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	ł			
Acinus, carcinoma					х										,													. '	•
Salivary glands		+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+			÷ 1
Stomach, forestomach		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. •		
Stomach, glandular		+	+	+	+	+	+	+	+	+	+	+	·+	+	+	+	+	+	+	+	+	+	4	+	+	4		1-a	
Tooth																												:	
Cardiovascular System		_	Ċ.						÷				·	·					-÷	ý				<u></u>	~		. •	<u> </u>	
Heart		+	+	+	+	4	Ŧ	Ŧ	+	+	+	4	+	+	+	+	+	4	+	+	+	+	- 1	+	+	+			
Hepatocellular carcinoma, metastatic,		T.	.1	.1		.1	,	•	1		£	.1	1	•	'	,	r	ç	۰.	`	,	,	•	1		,			
liver					x																			•				,	
			,									-												•				·	
Endocrine System														÷													1		
Adrenal cortex		Ŧ	Ŧ	+	+	+	+	+	Ŧ	Ŧ	+	+	ᠥ	+	+	Ψ.	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	+	4-	T -	τ. v	۰.		
Adenoma											Х															X			
Capsule, adenoma																										·	÷.,		
Adrenal gland																												•	
Adrenal medulla		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	,		
Islets, pancreatic				+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Parathyroid gland		+	+	+	+		+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	`	•	
Pituitary gland		+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+			
Thyroid gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+`.			
General Body System	, in the second s					-																	,				,		•
Tissue NOS																						+							
Hemangioma																						x						•	
Genital System					_										÷							······						. 2	
Coagulating gland						+																						•	
Epididymis		+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			

Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylphthalate: 30 µL (continued) 7 Number of Days on Study 2 2 2 7 7 77 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 . 4 4 4 3 3 3 3 3 3 3 3 4 4 4 4 4 3 3 3 4 4 4 4 4 4 7 **Carcass ID Number** 0 0 0 7 .7 7 7 7 7 8 1 1 1 1 1 9 9 9 0 1 1 1 1 2 Total 2 7 9 2 3 5 7 9 7 Tissues/ 3 4 - 5 3 4 6 8 0 1 4 8 0 6 8 9 0 1 1 1 1 Tumors .1 .1 **Alimentary System** Esophagus 50 Gallbladder 42 м + м M Intestine large, colon 48 Intestine large, rectum 47 м + + + Intestine large, cecum 46 + Intestine small, duodenum 46 Intestine small, jejunum + + 4 46 Intestine small, ileum + 46 Liver 50 Hemangiosarcoma 1 Hemangiosarcoma, multiple 1 Hepatocellular carcinoma 4 Hepatocellular carcinoma, multiple Х Х 3 Hepatocellular adenoma 9 х ХХ х х Hepatocellular adenoma, multiple х 3 Pancreas 50 + + Acinus, carcinoma 1 Salivary glands 50 +Stomach, forestomach 48 + Stomach, glandular + + + + + + + + 48 Tooth 1 Cardiovascular System Heart 50 Hepatocellular carcinoma, metastatic, liver 1 **Endocrine System** Adrenal cortex 50 Adenoma 2 Capsule, adenoma Х 2 X Adrenal gland 1 Adrenal medulla 50 Islets, pancreatic 50 Parathyroid gland 49 Pituitary gland 49 Thyroid gland 50 + + + + + + + + + + + + **General Body System** Tissue NOS 1 Hemangioma 1 **Genital System** 1 Coagulating gland Epididymis 50 + + ++ + + +

Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylphthalate: 30 #L (continued)

Individual Animal Tumor Pathology o		-												•				•	~							`		
	5	5	5	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7			
Number of Days on Study	1	5	7	4	7	9	0	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3			
- ·	2	6	7	4	5	8	7								1										2			
															3													
Carcass ID Number	8														8													
															5													
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Genital System (continued)				·····												·					~~~~~							
Preputial gland			+																									
Prostate	L			+	1							Ł	+	а	+	L					-							
Seminal vesicle																			Ţ	T	Ŧ	· ·	- -	· •				
	+			+											+			+			+	+	+	+	-+-			
Testes	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	t	t	+	+	+	+	+			
Hematopoietic System											~~~~														_			
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Lymph node						+																						
Lymph node, mandibular	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		•	
Lymph node, mesenteric	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Hemangiosarcoma																												
Hemangiosarcoma, multiple					х																							
Thymus	+	M	I	М			I	+	+	м	+	м	+	+	+	+	+	+	4	+	+	+	+	м	M			
																							~					
integumentary System																										•		
Mammary gland	M	í M	ΙM	M	М	Μ	÷	М	М	М	М	М	М	М	М	М	М	М	Μ	М	Μ	М	Μ	M	M			
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		·	
Musculoskeletal System	·······	-							-																			
					,		, í				,			,				L	-		а.			+	Ļ			
Bone	, †	+	+	- T -	Ť	Ť	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	T	Ŧ	Ŧ	-1-	т	т	Ŧ	Ŧ	T	Ŧ	т	т			
Skeletal muscle				+																								
Diaphragm, carcinoma, metastatic,																												
pancreas				Х																								
Nervous System																												
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	.+	+	+	÷	+			
																	_					_						
Respiratory System				1	.1								J.	L	+	L	ر ر	J.	J.	L,	+	,L	. 1.	.1.	.د.			
Lung	+	+	+	Ŧ	+	+	+	+	+	+	+	+	t V	+	Ŧ	+	•	+	Ŧ	+	+	- T*	Ŧ	Ŧ	+ X			
Alveolar/bronchiolar adenoma												X	Х				Х								л			
Alveolar/bronchiolar adenoma,																												
multiple																												
Alveolar/bronchiolar carcinoma																x					х							
Carcinoma, metastatic, liver				Х																								
Carcinoma, metastatic, pancreas				X																								
Hepatocellular carcinoma, metastatic,																												
liver			X		Х																		Х				•	
Nose	-+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷			
Trachea								r.,					÷.											-	1			

None

		-	-	_	_	-		_	_				_	-	_	_	_		-		_				_	
	7	7	7	7	7	7	7	7	7	7	7	7	7		7			7	7		7	7	7	7	•	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	-					3	3	3	3	3	3	3	-	
	2	2	2	7	7	7	7	7	7	7	7	7	7	7	7	7	8	8	8	8	8	8	8	8	8	
	4	4	4	3	3	3	3	3	3	3	3	4	4	4	4	4	3	3	3	4	4	4	4	4	4	
Carcass ID Number	0	0	0	7	7	7	7	7	7	7	8	1	1	1	1	1	9	9	9	0	1	1	1	1	2	Total
	3	4	5	2	3	4	6					1	2	3	4	5	7	8	9	0	6	7	8	9	0	Tissue
	1			1																						Tumor
Genital System (continued)			_																							
Preputial gland																										1
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	50
Seminal vesicle	+	+	+			+			+						+				+			+	+	+	+	50
Testes	+	+	+	+		+			+						+								+			50
Hematopoietic System				_						_		<u>.</u>														<u></u>
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•		•	•	•	•	1
Lymph node, mandibular	ـد	<u>ـ</u> د	⊥	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	⊥	Ŧ	+	+	49
Lymph node, mesenteric	بد	÷	÷	÷	÷	+	1		+		+	+				+			+	<u> </u>	, ,	+	÷	+	+	50
Spleen	т	T	T	+	т .⊥		т 1				+				+ +						т 	т Т	+			50
Hemangiosarcoma	Ŧ	Ŧ	т		x	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	-	т	Ŧ	Ŧ	-	т	т	Ŧ	т	т	т	т	Ŧ	Ŧ	1
					л																					
Hemangiosarcoma, multiple														••				Ŧ		м						1 32
Thymus	+	+	+	+	+	+	M	IVI		+	+	+	IVI	IVI	IVI	+	+	1	+	IVI	+	+	IVI	+	+	
Integumentary System																										
Mammary gland																									Μ	1
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	50
Musculoskeletal System						<u> </u>																				
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Skeletal muscle																										1
Diaphragm, carcinoma, metastatic,																										
pancreas																										1
Nervous System																-				_						
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	÷	+	+	+	+	+	+	+	50
Respiratory System																						<u> </u>	_			
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma		x																								5
Alveolar/bronchiolar adenoma,		-																								-
multiple							х																			1
Alveolar/bronchiolar carcinoma			х																							3
Carcinoma, metastatic, liver																										1
Carcinoma, metastatic, nver																										1
Hepatocellular carcinoma, metastatic,																										•
liver																		х								4
Nose	_1_	.	L.	т	л.	-	Ŧ	Ъ	т	بلہ	Ŧ	Т	-	ъ	Т		+	+	ъ	-	+	+	+		+	50
	+	т 	+	+ .+	+	т 	T L	+ -	+	-T -L	- -	т 	т 	+ +	- -	- -	л Т	Ť	т	т 	т 	т _	- -	т -	т 	
Trachea	+	Ť	+	- +	+	+	+	+	+	+	+	+	+	+	+	T	+	T	+	Ŧ	+	T	-	– –	T	47

None

	<u> </u>			• •	<u>.</u>	<u> </u>						:					-		lph				\$		<u></u>		
Number of Days on Study	2 N.X. X	· ·		5 1 2	5 5 5 7 6 7	6 4 4	6 7 5	6 9 8	7 0 7	7 7 3 3 0 0	7 3 0	7 3. 0	7 3 1	7 (3 (1 (77 333 11	7 3 1	7 3 1	7 3 1	7 [.] 3 1	7 3 1	-7 3 2	7 3 2	7 3 2	7 3 : 2	7 3 2	•	., .
Carcass ID Number		* * * * *		3 8 7 1	3 3 7 8 1 2 1 1	3 9 6	4 0 8 1	3 7 5 1	4 0 2 1	4 4 0 0 6 7 1 1	4 0 9 1	4 1 0 1	3 8 1 1	3 2 8 8 3 4 1 2	3 3 8 8 4 5 1 1	3 9 1	3 9 2 1	3 9 3 1	3 9 4 1	3 9 5 1	3 8 6 1	3 8 8 1	3 8 9 1	3 9 0 1	4 0 1 1		
Urinary System Kidney Urinary bladder			·.	+ + +	+ - + -	+ + + +	+	. +	+	+ + + +	- +	++	+	+ +		 + +	• + • +	+ +	+ +	+ +	++	+ +	++	++	+ + ;+	· ·	
Systemic Lesions Multiple organs Lymphoma malignant hi Lymphoma malignant ly Lymphoma malignant m	mphocytic	;	k 17	+	+ -	••••••••••••••••••••••••••••••••••••••	 +	+ X	+ X	+ 1	- +	+	+	+ ·	 + -	+ +		+	+	+	+	+	+	+	, + , , ,		

Lesions in Male Mice

TABLE C2

Individual Animal Tumor Pathology of Male Mice in the 2-Year Dermal Study of Diethylphthalate: 30 µL (continued) •7 Number of Days on Study 3 3 3 3 3 3 3 3 $3=3\times 3$ 3 3 3 2 2 2 7 7 7 7 7 7 7 7 7.7 8 8 8 3 3 4 4 4 3 3 3 3 3 3 ⁻4 4 4 **Carcass ID Number** 0 0 0 7 7 7 7 Total Tissues/ 3 4 5 2 3 4 8 9 0 Tumors 1 1 1 1 1 1 1 1 Urinary System Kidney + + Urinary bladder + + + + + + + Systemic Lesions Multiple organs Lymphoma malignant histiocytic х Lymphoma malignant lymphocytic Lymphoma malignant mixed

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Dermal Study of Diethylphthalate

·	• . •	0 μL	7.5 μL	15 μL	30 µL	
drenal Cortex: Adenoma					· · · ·	•
werall rate ^a	and the second second	8/50 (16%)	5/50 (10%)	2/49 (4%)	4/50 (8%)	۰. ۱
djusted rate ^b	4.15	18.6%	12.2%	4.4%	9.3%	
erminal rate ^c		8/43 (19%)	5/41 (12%)	2/45 (4%)	4/43 (9%)	. •
				730 (T)	730 (T)	
irst incidence (days) ife table test ^d		730 (T) B=0.110N	730 (T) P=0.306N	P = 0.040N	P = 0.177N	• • .
	· ·	P = 0.110N		P=0.040N	P = 0.175N	
ogistic regression test ^d		P = 0.110N	P = 0.306N	F=0.04014	r-0.1/31	
ochran-Armitage test ^d		P=0.120N	D 0.000	D -0.040N	D_0 179N	
isher exact test ^d			P=0.277N	P=0.049N	P=0.178N	
arderian Gland: Adenoma					· · · ·	
verall rate		0/50 (0%)	2/50 (4%)	3/50 (6%)	0/50 (0%)	· .
djusted rate	·	0.0%	4.4%	6.5%	0.0%	•
erminal rate	· · · ·	0/43 (0%)	0/41 (0%)	3/46 (7%)	0/43 (0%)	4 - C
rst incidence (days)	4	_e	590	730 (T)		
		P=0.523N	P=0.229	P = 0.134		
fe table test		P = 0.525N	P = 0.296	P = 0.134	_	1.1
ogistic regression test			r0.290	1-0.154	-	
ochran-Armitage test sher exact test		P=0.531N	P=0.247	P=0.121	_	
ver: Hepatocellular Adeno	ma			· · · · · · · · · · · · · · · · · · ·	10/50 (04/2)	
verall rate		6/50 (12%)	11/50 (22%)	9/50 (18%)	12/50 (24%)	
djusted rate		14.0%	26.0%	19.6%	27.9%	<i>.</i>
erminal rate	· · · · · ·	6/43 (14%)	10/41 (24%)	9/46 (20%)	12/43 (28%)	
rst incidence (days)		730 (T)	576	730 (T)	730 (T)	
fe table test		P=0.133	P=0.121	P=0.337	P=0.094	
gistic regression test	. · ·	P=0.140	P=0.118	P=0.337	P=0.094	
ochran-Armitage test		P=0.123			•	
sher exact test	· .		P=0.143	P=0.288	P=0.096	
ver Heneteeelluler Corgin					• .	
iver: Hepatocellular Carcin verall rate		4/50 (8%)	4/50 (8%)	6/50 (12%)	7/50 (14%)	
		9.0%	8.9%	12.8%	14.6%	
djusted rate	÷.	3/43 (7%)	1/41 (2%)	5/46 (11%)	3/43 (7%)	
erminal rate		635	576	714	556	
rst incidence (days)		P=0.186	P=0.616	P = 0.414	P=0.277	
fe table test			P = 0.623N	P = 0.369	P = 0.257	
ogistic regression test		P = 0.170	r=0.0251N	r0.309	1-0.257	
ochran-Armitage test		P=0.165	D 0 (10)	D 0.270	B-0.262	
sher exact test			P=0.643N	P=0.370	P=0.262	
ver: Hepatocellular Adeno	oma or Carcinoma					
verall rate		9/50 (18%)	14/50 (28%)	14/50 (28%)	18/50 (36%)	
djusted rate	•	20.4%	31.7%	29.8%	38.1%	
erminal rate		8/43 (19%)	11/41 (27%)	13/46 (28%)	14/43 (33%)	
irst incidence (days)	•	635	576	714	556	
ife table test	. •	P=0.049	P=0.148	P=0.225	P=0.044	•
		P = 0.049	P = 0.144	P = 0.206	P=0.034	. •
ogistic regression test		P = 0.040	4 -0.177	1		
ochran-Armitage test		1 0.050	P-0171	P=0.171	P=0.035	
isher exact test			P = 0.171	1	1 - 0.055	

174 :

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	Ο μ I .	7.5 µL	15 μL	30 µL
Lung: Alveolar/bronchiolar Adenoma			<u></u>	<u></u>
Overall rate	5/50 (10%)	2/50 (4%)	7/50 (14%)	6/50 (12%)
Adjusted rate	11.6%	4.9%	14.9%	14.0%
Ferminal rate	5/43 (12%)	2/41 (5%)	6/46 (13%)	6/43 (14%)
First incidence (days)	730 (T)	730 (T)	714	730 (T)
Life table test	P=0.274	P=0.236N	P=0.428	P=0.500
ogistic regression test	P=0.275	P=0.236N	P=0.427	P=0.500
Cochran-Armitage test	P=0.262			
isher exact test		P=0.218N	P=0.380	P=0.500
ung: Alveolar/bronchiolar Carcinoma				
Overall rate	5/50 (10%)	6/50 (12%)	4/50 (8%)	3/50 (6%)
Adjusted rate	11.6%	14.6%	8.7%	7.0%
Ferminal rate	5/43 (12%)	6/41 (15%)	4/46 (9%)	3/43 (7%)
First incidence (days)	730 (T)	730 (T)	730 (T)	730 (T)
life table test	P=0.212N	P=0.466	P=0.458N	P=0.356N
ogistic regression test	P=0.212N	P=0.466	P=0.458N	P=0.356N
Cochran-Armitage test	P = 0.226N			
fisher exact test		P=0.500	P = 0.500N	P=0.357N
ung: Alveolar/bronchiolar Adenoma or Care	cinoma			
Dverall rate	8/50 (16%)	7/50 (14%)	10/50 (20%)	9/50 (18%)
Adjusted rate	18.6%	17.1%	21.3%	20.9%
Ferminal rate	8/43 (19%)	7/41 (17%)	9/46 (20%)	9/43 (21%)
First incidence (days)	730 (T)	730 (T)	714	730 (T)
Life table test	P=0.395	P=0.540N	P=0.459	P=0.500
ogistic regression test	P=0.393	P=0.540N	P=0.460	P=0.500
Cochran-Armitage test	P=0.375			
risher exact test		P=0.500N	P=0.398	P=0.500
Spleen: Hemangiosarcoma				
Overall rate	6/50 (12%)	0/50 (0%)	5/50 (10%)	2/50 (4%)
Adjusted rate	13.4%	0.0%	10.3%	4.4%
Cerminal rate	5/43 (12%)	0/41 (0%)	3/46 (7%)	1/43 (2%)
First incidence (days)	536	_	663	675
life table test	P=0.225N	P = 0.022N	P = 0.455N	P=0.138N
ogistic regression test	P=0.238N	P=0.017N	P=0.589N	P=0.141N
Cochran-Armitage test	P=0.234N			
Fisher exact test		P=0.013N	P=0.500N	P=0.134N
Thyroid Gland (Follicular Cell): Adenoma				
Overall rate	2/50 (4%)	1/50 (2%)	3/50 (6%)	0/50 (0%)
Adjusted rate	4.4%	2.4%	6.5%	0.0%
Cerminal rate	1/43 (2%)	1/41 (2%)	3/46 (7%)	0/43 (0%)
First incidence (days)	558	730 (T)	730 (T)	-
Life table test	P = 0.236N	P = 0.516N	P = 0.528	P = 0.240N
ogistic regression test	P = 0.245N	P = 0.477N	P=0.412	P = 0.272N
Cochran-Armitage test	P=0.242N	D 0 50057	D 0 500	B-0.047N
Fisher exact test		P=0.500N	P=0.500	P = 0.247N

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μL	7.5 μL	15 μL	30 µL	×
All Organs: Hemangiosarcoma			·		· · · ·
Overall rate	10/50 (20%)	. 1/50 (2%)	6/50 (12%)	4/50 (8%)	
Adjusted rate	21.9%	2.4%	12.1%	9.0%	
erminal rate	8/43 (19%)	1/41 (2%)	3/46 (7%)	3/43 (7%)	
First incidence (days)	536	730 (T)	633	675	
life table test	P=0.140N	P = 0.008N	P = 0.179N	P = 0.080N	
ogistic regression test	P = 0.153N	P = 0.005N	P = 0.337N	P = 0.080 N	
Cochran-Armitage test	P=0.146N	1 0.00511	1 0.55711	1 0.00011	
Fisher exact test		P=0.004N	P=0.207N	P=0.074N	
All Organs: Hemangioma or Hemangiosarcon	18	· · · ·			· .
Overall rate	10/50 (20%)	2/50 (4%)	6/50 (12%)	5/50 (10%)	
Adjusted rate	21.9%	4.9%	12.1%	11.3%	
Ferminal rate	8/43 (19%)	2/41 (5%)	3/46 (7%)	4/43 (9%)	
irst incidence (days)	536	730 (T)	633	675	
Life table test	P=0.206N	P=0.021N	P=0.179N	P=0.137N	·
ogistic regression test	P=0.222N	P = 0.016N	P=0.337N	P=0.138N	
Cochran-Armitage test	P=0.216N		÷	: . · ·	
Fisher exact test		P=0.014N	P=0.207N	P=0.131N	•
ll Organs: Malignant Lymphoma (Histiocyti	c, Lymphocytic, or Mixed	· · · · · · · · · · · · · · · · · · ·		· · · .	
Overall rate	3/50 (6%)	3/50 (6%)	0/50 (0%)	3/50 (6%)	•
adjusted rate	7.0%	6.7%	0.0%	6.7%	
ferminal rate	3/43 (7%)	1/41 (2%)	0/46 (0%)	1/43 (2%)	
First incidence (days)	730 (T)	397	-	698	
life table test	P=0.511N	P=0.638	P=0.110N	P=0.659N	
ogistic regression test	P=0.553N	P = 0.627N	P=0.110N	P=0.660N	
Cochran-Armitage test	P=0.523N				
Fisher exact test		P=0.661N	P=0.121N	P = 0.661N	
All Organs: Benign Neoplasms					
Overall rate	16/50 (32%)	18/50 (36%)	23/50 (46%)	20/50 (40%)	
adjusted rate	36.2%	40.7%	48.9%	46.5%	
Ferminal rate	15/43 (35%)	15/41 (37%)	22/46 (48%)	20/43 (47%)	
First incidence (days)	558	576	714	730 (T)	
Life table test	P=0.237	P = 0.356	P=0.168	P = 0.261	
ogistic regression test	P=0.245	P=0.363	P = 0.148	P = 0.275	
Cochran-Armitage test	P=0.209		2.		
Fisher exact test		P=0.417	P=0.109	P = 0.266	
All Organs: Malignant Neoplasms					
Overall rate	19/50 (38%)	14/50 (28%)	15/50 (30%)	16/50 (32%)	
Adjusted rate	41.1%	29.7%	30.0%	32.7%	
Cerminal rate	16/43 (37%)	8/41 (20%)	11/46 (24%)	10/43 (23%)	
First incidence (days)	536	378	633	556	
Life table test	P = 0.356N	P = 0.265N	P = 0.209N	P = 0.346N	
ogistic regression test	P=0.376N	P=0.166N	P=0.343N	P = 0.356N	
Cochran-Armitage test	P=0.379N	D 01001	D 00/201	D 0 220N	
Fisher exact test		P = 0.198N	P = 0.263N	P = 0.338N	

176

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	7.5 μL	15 µL	30 µL	
All Organs: Benign or Malignant Neoplasms					· · ·
Overall rate	27/50 (54%)	26/50 (52%)	33/50 (66%)	29/50 (58%)	
Adjusted rate	58.5%	54.2%	66.0%	59.2%	•
Terminal rate	24/43 (56%)	19/41 (46%)	29/46 (63%)	23/43 (53%)	
First incidence (days)	536	378	633	556	:
Life table test	P=0.361	P=0.553	P=0.288	P=0.434	
Logistic regression test	P=0.293	P=0.516N	P=0.152	P=0.417	
Cochran-Armitage test	P=0.289				•
Fisher exact test		P=0.500N	P=0.154	P = 0.420	

(T)Terminal sacrifice

Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, liver, lung, spleen, and thyroid gland; for other tissues, denominator is number of animals necropsied.

Ь Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality с

Observed incidence at terminal kill

d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N. . ż

e Not applicable; no neoplasms in animal group
Historical Incidence of Liver Neoplasms in Untreated Male B6C3F₁ Mice^a

•	· · · ·	Incidence in Controls	· · · ·	
	Hepatocellular Adenoma	Hepatocellular Carcinoma	Hepatocellular Adenoma or Carcinoma	· .
Overall Historical Incidence: Dermal	(Acetone)	· · · · · · · · · · · · · · · · · · ·		
Total Standard deviation Range	24/100 (24.0%) 17.0% 12%-36%	10/100 (10.0%) 2.8% 8%-12%	32/100 (32.0%) 19.8% 18%-46%	
Overall Historical Incidence: Feed			· .	- -
Total Standard deviation Range	347/1,466 (23.7%) 13.6% 4%-60%	241/1,466 (16.4%) 7.0% 3%-29%	531/1,466 (36.2%) 14.1% 10%-68%	
Overall Historical Incidence: Inhalat	ion			·
Total Standard deviation Range	120/673 (17.8%) 11.0% 4%-38%	136/673 (20.2%) 5.9% 9%-29%	241/673 (35.8%) 12.1% 11%-56%	•
Overall Historical Incidence: Water	Gavage			•
Total Standard deviation Range	40/315 (12.7%) 5.2% 4%-18%	39/315 (12.4%) 6.1% 6%-24%	74/315 (23.5%) 7.2% 14%-36%	
Overall Historical Incidence: Corn O	Dil Gavage			
Total Standard deviation	265/951 (27.9%) 14.6%	163/951 (17.1%) 5.7%	388/951 (40.8%) 15.1%	

^a Data as of 31 March 1993

.

Lesions in Male Mice

TABLE C5

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Dermal Study of Diethylphthalate^a

	ΟμL	7.5 μL	15 μL	30 µL
Disposition Summary			<u></u>	
Animals initially in study	60	60	60	60
5-Month interim evaluation	10	10	10	10
Early deaths				
Accidental deaths		1		
Moribund	2	3	2	1
Natural deaths	5	4	2	6
Survivors				
Terminal sacrifice	43	41	46	43
Missing		1		
Animals examined microscopically	60	53	60	60
15-Month Interim Evaluation				
Alimentary System				
Liver	(10)	(3)	(1)	(10)
Necrosis, focal	()	1 (33%)	(•)	(~~)
Pancreas	(10)	1 (00/0)		(10)
Atrophy, focal	(10)			1 (10%)
Hypertrophy, focal	1 (10%)			
			· · · · · · · · · · · · · · · · · · ·	
Endocrine System	(10)			(10)
Adrenal cortex	(10)			(10)
Hypertrophy, focal	5 (50%)			4 (40%)
Capsule, hyperplasia	8 (80%)			10 (100%)
Pituitary gland	(10)			(10)
Cyst	1 (1001)			1 (10%)
Pars distalis, hyperplasia, focal	1 (10%)			
Nervous System		· ·		······································
Brain -	(10)			(10)
Mineralization, focal	`10́ (100%)			8 (80%)
Respiratory System	<u></u>			<u></u>
Lung	(10)			(10)
Adenomatosis, focal	(10) 1 (10%)	1. Sec. 19		(10) 1 (10%)
Inflammation, chronic, focal	1 (10%)			1 (1070)
	. (1070)			
Urinary System				
Kidney	(10)			(10)
Nephropathy	9 (90%)			7 (70%)
Renal tubule, mineralization, focal	10 (100%)			9 (90%)

^a Number of animals examined microscopically at the site and the number of animals with lesion

.

Ç

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

		0 μL	7.5 μL	15 µL	30 µL
	· · · .	· · · · · · · · · · · · · · · · · · ·			
15-Month Interim Evaluati	(continued)				
Systems Examined With No L	• •				
	esionis Observ	eu			
Cardiovascular System	5 <u>1</u>				
General Body System					-
Genital System					· ·
Hematopoietic System					
Integumentary System					
Musculoskeletal System		-9			
Special Senses System		• •			
					· · · · · · · · · · · · · · · · · · ·
2-Year Study		• • •			
Alimentary System			· ·		
Intestine small, jejunum	÷	-(47)	(49)	(48)	(46)
Hyperplasia, lymphoid		2 (4%)			
Intestine small, ileum		(47)	(48)	(48)	(46)
Congestion		1 (2%)	(10)		
Hyperplasia, lymphoid		1 (2%)	1 (2%)	1 (2%)	
Liver		(50)	(50)	(50)	(50)
Basophilic focus	a ser a	(30)	1 (2%)	9 (18%)	3 (6%)
Clear cell focus		2 (4%)	2 (4%)	2 (4%)	3 (6%)
Clear cell focus, multiple	· ·	2 (1)0)	1 (2%)	- (,	
Cyst			1 (2%)		
Eosinophilic focus		1 (2%)	- ()		2 (4%)
Hematopoietic cell proliferation		1 (2%)			
Hemorrhage, focal	·.,	- ()			1 (2%)
Infarct	2 ¹⁷	1 (2%)			• •
Inflammation, chronic, focal		- ()	1 (2%)		3 (6%)
Inflammation, granulomatous				1 (2%)	• • •
Mixed cell focus				1 (2%)	
Necrosis, focal		4 (8%)		2 (4%)	3 (6%)
Bile duct, hyperplasia, focal				1 (2%)	· · · ·
Centrilobular, necrosis		1 (2%)			
Sinusoid, dilatation		1 (2%)			-
Vein, dilatation		1 (2%)			-
Mesentery		(2)	(2)	(2)	
Hemorrhage	, ,			1 (50%)	
Fat, necrosis		2 (100%)	1 (50%)	1 (50%)	
Pancreas		(50)	(49)	(50)	(50)
Cyst				1 (2%)	, , ····
Edema			1 (2%)		· · · ·
Hemorrhage		1 (2%)			
Inflammation, chronic	•			1 (2%)	
Vacuolization cytoplasmic			1 (2%)		• • • • •
Duct, ectasia		1 (2%)			· · · · · · · · · · · · · · · · · · ·
Stomach, forestomach	-	(50)	(50)	(50)	(48)
Hyperkeratosis, focal		1 (2%)			
Hyperplasia, squamous				1 (2%)	

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	7.5 µL	15 μL	30 µL
2-Year Study (continued)				· · · · ·
Alimentary System (continued)			· .	
Stomach, glandular	(49)	(50)	(50)	(48)
Erosion	(17)	(50)	(50)	2 (4%)
Inflammation, focal, subacute			1 (2%)	2 (170)
Footh			- (=//)	(1)
Abscess				1 (100%)
Cardiovascular System			- <u></u> **	
Heart	(50)	(50)	(50)	(50)
Cardiomyopathy	2 (4%)	2 (4%)	()	1 (2%)
Polyarteritis	- ()	1 (2%)		- ()
Endocrine System				
Adrenal cortex	(50)	(49)	(49)	(50)
Atrophy		1 (2%)		
Hyperplasia	•		2 (4%)	
Hyperplasia, focal	20 (40%)	23 (47%)	21 (43%)	18 (36%)
Hypertrophy			2 (4%)	2 (4%)
Hypertrophy, focal	13 (26%)	10 (20%)	4 (8%)	9 (18%)
Necrosis				1 (2%)
Capsule, hyperplasia	45 (90%)	44 (90%)	43 (88%)	38 (76%)
Extra adrenal tissue, necrosis	1 (2%)			
Adrenal gland		(2)	(2)	(1)
Corticomedullary junction, degeneration			1 (50%)	1 (100%)
Corticomedullary junction, pigmentation		2 (100%)	1 (50%)	
Adrenal medulla	(50) ·	(50)	(49)	(50)
Degeneration	1 (2%)			
Fibrosis			1 (2%)	
Hyperplasia			1 (2%)	
Hyperplasia, focal				1 (2%)
slets, pancreatic	(50)	(49)	(50)	(50)
Hyperplasia	1 (2%)			
Pituitary gland	(48)	(47)	(48)	(49)
Cyst	1 (2%)	1 (2%)	1 (2%)	2 (4%)
Pars distalis, hyperplasia, focal	1 (2%)		1 (2%)	•
Thyroid gland	(50)	(50)	(50)	(50)
Hyperplasia			1 (2%)	
Inflammation, chronic, focal			1 (2%)	
Follicle, cyst		1 (2%)	2 (4%)	
Follicular cell, hyperplasia	7 (14%)	9 (18%)	6 (12%)	13 (26%)

None

	0 μL	7.5 μL	15 μL	30 μL
2-Year Study (continued)	· · · · · · · · · · · · · · · · · · ·		• <u></u>	· .
Genital System				
Coagulating gland	(1)			(1)
Inflammation	1 (100%)			(4)
Inflammation, suppurative	()			1 (100%)
Epididymis	(50)	(49)	(50)	(50)
Granuloma sperm	2 (4%)		1 (2%)	1 (2%)
Inflammation, chronic, focal			1 (2%)	- ()
Mineralization		1 (2%)		
Fat, necrosis			2 (4%)	•
Head, inflammation, chronic		-	1 (2%)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Penis	(1)	(1)		
Inflammation, suppurative	· •	í (100%)		· · · · ·
Preputial gland	(1)	(1)	· / .	· · (1) · · ·
Cyst	.,			1 (100%)
Dilatation	1 (100%)	1 (100%)		
Prostate	(50)	(49)	(50)	(50)
Inflammation, chronic				1 (2%)
Inflammation, subacute	1 (2%)		1 (2%)	1 (2%)
Seminal vesicle	(50)	(49)	(50)	(50)
Inflammation, chronic		1 (2%)		
Testes	(50)	(49)	(50)	(50)
Atrophy			1 (2%)	
Giant cell		2 (4%)		2 (4%)
Hypospermia			1 (2%)	
Interstitial cell, hyperplasia, focal		1 (2%)	1 (2%)	
Seminiferous tubule, degeneration	2 (4%)	5 (10%)	2 (4%)	5 (10%)
Seminiferous tubule, mineralization	. ,	1 (2%)	1 (2%)	1 (2%)
Tunic, mineralization	1 (2%)			
Hematopoietic System				
Bone marrow	(50)	(48)	(50)	(50)
Sternal, myelofibrosis	1 (2%)			
Lymph node, mesenteric	(47)	(50)	(47)	(50)
Congestion		1 (2%)	1 (2%)	· · ·
Hematopoietic cell proliferation		:	1 (2%)	
Hemorrhage		4	1 (2%)	$(\mathbf{x}_{i},\mathbf{y}_{i}) \in \{1,\dots,n_{i}\} \in \{1,\dots,n_{i}\}$
Inflammation, chronic		•	,	1 (2%)
Sinus, congestion	2 (4%)		*	
Spleen	(50)	(50)	(50)	(50)
Fibrosis, focal	1 (2%)	•	*. · · • <u>+</u>	a de la companya de l
Hematopoietic cell proliferation	45 (90%)	45 (90%)	46 (92%)	47 (94%)
Hyperplasia, lymphoid	1 (2%)	2 (4%)	2 (4%)	1 (2%)
Capsule, inflammation			1 (2%)	

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μL	7.5 μL	15 μL	30 µL
-Year Study (continued)				
ntegumentary System				
kin	(50)	(50)	(50)	(50)
Acanthosis	1 (2%)			
Edema	- ()			1 (2%)
Exudate	2 (4%)			- ()
Inflammation, chronic, focal	-()		"1 (2%)	
Pigmentation, melanin	1 (2%)		8-()	
Ulcer	1 (2%)			
Control, edema	(270)		1 (2%)	
Control, infiltration cellular, focal, mast			1 (270)	
cell			1 (2%)	•
Head, exudate		1 (2%)	1 (270)	
Subcutaneous tissue, granuloma		1 (270)	1 (2%)	
lusculoskeletal System				
one	(50)	(48)	(50)	(50)
Femur, fracture			1 (2%)	
celetal muscle		(1)	(1)	(1)
Diaphragm, inflammation, chronic			1 (100%)	
ervous System				
rain	(50)	(50)	(50)	(50)
Hemorrhage	(50)	2 (4%)	(50)	(50)
Mineralization, focal	40 (80%)	41 (82%)	46 (92%)	41 (82%)
espiratory System	<u> </u>		,	<u> </u>
ung	(50)	(50)	(50)	(50)
Adenomatosis, focal	(30)	1 (2%)	1 (2%)	(50)
Congestion	1 (2%)	1 (2%)	2 (4%)	6 (12%)
Hemorrhage, focal	1 (270)	1 (270)	2 (470)	1 (2%)
Inflammation, chronic				1 (2%)
Inflammation, chronic, focal	2 (10%)	1 (2%)	2 (10%)	1 (2%)
Necrosis, focal	2 (4%) 1 (2%)	1 (2%)	2 (4%)	· (270)
Alveolar epithelium, hyperplasia, focal	2 (4%)		4 (8%)	6 (12%)
Alveolus, infiltration cellular, histiocyte	2 (4%) 2 (4%)	3 (6%)	1 (2%)	0 (1270)
Peribronchial, hyperplasia, lymphoid	2 (4%) 3 (6%)	2 (4%)	1 (2%)	5 (10%)
renoroneman, hyperplasia, lymphold	3 (0%)	2 (4%)	1 (270)	
pecial Senses System				
			(1)	
pecial Senses System Car Ulcer			(1) 1 (100%)	
ar		(1) 1 (100%)	(1) 1 (100%)	

۰.

۰.,

÷

.

• • .

. .

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	7.5 μL	15 μL	30 µL
Vor Ctude (· · · ·		
2-Year Study (continued)		<i>x</i> . * *	: ·	
Urinary System			:	
Kidney	(50)	(50)	(50)	(50)
Amyloid deposition	1 (2%)			
Hyperplasia, tubular			1 (2%)	
Infiltration cellular, lymphocyte			1 (2%)	
Inflammation, suppurative	a the second			1 (2%)
Metaplasia, focal, osseous		· .	1 (2%)	1 (2%)
Nephropathy	40 (80%)	41 (82%)	44 (88%)	37 (74%)
Capsule, inflammation, chronic			1 (2%)	
Cortex, atrophy, focal		2 (4%)	1 (2%)	1 (2%)
Cortex, cyst	3 (6%)		2 (4%)	4 (8%)
Cortex, metaplasia, focal, osseous		1 (2%)		
Pelvis, dilatation			2 (4%)	
Perirenal tissue, necrosis	· · · ·		1 (2%)	the track of the
Renal tubule, mineralization, focal	37 (74%)	40 (80%)	33 (66%)	. 29 (58%)
Jrinary bladder	(50)	(49)	(50)	(50)
Hemorrhage, focal				1 (2%)
Inflammation, chronic				²² 1 (2%)

÷.,

APPENDIX D SUMMARY OF LESIONS IN FEMALE MICE IN THE 2-YEAR DERMAL STUDY OF DIETHYLPHTHALATE

-19 ^{- N}-

TABLE D1	Summary of the Incidence of Neoplasms in Female Mice	
	in the 2-Year Dermal Study of Diethylphthalate	187
TABLE D2	Individual Animal Tumor Pathology of Female Mice	
	in the 2-Year Dermal Study of Diethylphthalate	192
TABLE D3	Statistical Analysis of Primary Neoplasms in Female Mice	
	in the 2-Year Dermal Study of Diethylphthalate	214
TABLE D4	Historical Incidence of Liver Neoplasms	
	in Untreated Female B6C3F, Mice	219
TABLE D5	Summary of the Incidence of Nonneoplastic Lesions in Female Mice	
	in the 2-Year Dermal Study of Diethylphthalate	220

...

.

.

,

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Dermal Study of Diethylphthalate^a

	0 µL	7.5 μL	15 μL	30 μL
Disposition Summary		1. 1998,	· · · · · · · · · · · · · · · · · · ·	
Animals initially in study	60	60	60	60
15-Month interim evaluation	10	9	10	10
Early deaths				
Accidental deaths				1
Moribund	4	5	5	8
Natural deaths	5	8	7	5
Survivors				
Died last week of study		1	1	
Terminal sacrifice	41	37	36	36
Missing			1	
Animals examined microscopically	60	55	53	60
15-Month Interim Evaluation	<u></u>	. <u></u>	<u></u>	
Alimentary System				
Liver	(10)	(4)	(3)	(10)
Hepatocellular carcinoma	X =- y		X - y	1 (10%)
Hepatocellular adenoma	3 (30%)			1 (10%)
······				
Integumentary System				
Skin	(10)			(10)
Abdominal, mast cell tumor benign	1 (10%)			
Systemic Lesions				
Multiple organs ^b	(10)	(4)	(3)	(10)
Lymphoma malignant lymphocytic	1 (10%)			1 (10%)
Systems Examined With No Neoplasm Cardiovascular System Endocrine System General Body System Genital System Hematopoietic System	as Observed			

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

2-Year Study Alimentary System (47) (41) (44) (45) Galibadder (48) (45) (42) (59) Leionyona 12(2%) (48) (46) (48) (46) Intestine small, duodenum (47) (45) (48) (46) (46) Adenocarcinoma (47) (44) (49) (47) (46) (47) (46) (47) (46) (47) (47) (46) (47) (47) (46) (47) (47) (46) (47) (47) (46) (47) (47) (46) (47) (47) (46) (47) (47) (47) (47) (47) (47) (47) (47) (47) (47) (47)		0 µL	7.5 μL	15 μL	30 µL
Altmentary System Galibladder Galibladder (df) (d1) (d4) (d3) (d3) (d5) (d4) (d3) (d3) IC276) Intestine small, foundmum (d7) (d5) (d4) (d4) (d4) Adenocarcinoma (d7) (d4) (d9) (d7) Ications small, Icum (d7) (d8) (d8) (d8) Ications small, Icum (d7) (d8) (d8) (d8) Ications small, Icum (d7) (d8) (d8) (d8) Ications small, Icum (d7) (d8) (d8) Ications small, Icum (d7) (d8) (d8) Ications (d8) (d8) (d8) (d8) Ications (d8) (d8) (d8) (d8) Ications (d8) (d8) (d8) (d8) (d8) Sumous cell actionana, multiple Ications (d8) (d9) (d1) (d8) (d9) Sumous cell actionana (d9) (d1) (d9) Cardiovascular System Icat (d9) (d1) (d9) (d9) Cardiovascular System Icat (d9) (d8) (d9) Cardiovascular Coll actionana (d9) (d8) Icat (d8) (d8) (d9) Cardiovascular Coll actionana (d9) (d8) Icat (d8) (d8) (d9) Cardiovascular Coll actionana (d9) (d8) Icat (d8) (d8) (d9) Icat (d8) (d8) (d8) (d9) Icat (d8) (d8) (d8) (d9) Icat (d8	2-Year Study	· · ·	·····	<u> </u>	
Galibladder (47) (41) (44) (45) Leionyora (48) (45) (46) (50) Leionyora (47) (45) (46) (43) Intestine small, jounum (47) (45) (46) (43) Intestine small, jounum (47) (44) (49) (47) Adencarcinoma (47) (44) (49) (47) Intestine small, found (47) (44) (49) (47) Adencarcinoma (47) (44) (49) (47) Intestine small, found (47) (44) (49) (47) Intestine small, found (47) (44) (49) (47) Intestine small, found (48%) 5 (10%) 6 (12%) 2 (4%) Hepatocellular acterinoma 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hepatocellular acterinoma 1 (2%) 1 (2%) 1 (2%) 1 (2%) Antreas accona a (50) (51) (50) (50) (50) Stanza glands (50) (51) (50) (50)	-				
Intestine small, duodenum (48) (47) (48) (49) (40) Intestine small, jojunum (48) (44) (50) (48) (44) Intestine small, jojunum (48) (44) (50) (40) (41) Intestine small, jojunum (47) (44) (49) (47) (44) (49) (47) Intestine small, licum (47) (44) (49) (47) (44) (49) (47) Intestine small, licum (47) (44) (49) (47) (44) (49) (47) Hemangiosarcoma, mutationa 1 (2%)		(47)	(41)		
Leionyona (2%) (4%) (4%) (4%) (4%) (4%) (4%) (4%) (4					
Intestine small, duodenum (47) (45) (48) Adenocarcinoma (47) (44) (50) (49) Intestine small, licum (47) (44) (50) (50) Intestine small, licum (47) (44) (49) (47) Liver (50) (51) (50) (50) (50) Hemangiosarcoma 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hemangiosarcoma, mutatsatic, spleen 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hepatocellular carcinoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocellular denoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocollaropicoarcinoma 1 (2%) 3 (6%) 1 (2%) 1 (2%) Salvary glands (50) (51) (50) (49) Salvary glands (50) (51) (50) (49) Squamous cell papilloma 1 (2%) 2 (4%) 1 (2%) Squamous cell papilloma 1 (2%) 1 (2%) 1 (2%) Adrenal medula (50) (51) (50) ((40)	(45)		(30)
Intestine small, jejunum (49) (40) (50) (68) Mesonacrinoma (47) (44) (2%) (47) Liver (50) (51) (50) (50) Hemangiosarcoma, metastatic, spleen (2%) (2%) Hemangiosarcoma, metastatic, spleen (2%) (2%) (12%) Hepatocellular carcinoma, multiple (2%) (24%) (12%) (12%) Hepatocellular adenoma, multiple (2%) (24%) (12%) (12%) Hepatocellular adenoma, multiple (2%) (24%) (12%) (2%) Hepatocellular adenoma, multiple (2%) (24%) (12%) Hepatocellular adenoma, multiple (2%) (24%) (2%) (49) Sumach, forestomach (50) (51) (50) (49) Squamous cell carcinoma (2%) (21% (50) (49) Squamous cell papilloma (2%) (24%) (10%) Squamous cell papilloma (2%) (50) (51) (50) (50) Factoreal science (50) (51) (50) (50) Adenoma (24%) (1) (2%) (50) (50) Adenoma (24%) (1) (2%) (50) (50) Adenoma (48) (50) (51) (50) (50) Adenoma (48) (50) (51) (50) (50) Adenoma (24%) (2%) (51) (50) (50) Adenoma (48) (50) (51) (50) (50) Phochromocytoma benign (48) (50) (51) (50) (49) Adenal inedulia (50) (51) (50) (50) Phochromocytoma benign (48) (50) (51) (50) (49) Carcinoma (24%) (48) (50) (49) Phochromocytoma benign (49) Phochromocytoma benign (49) Phochromocytoma benign (49) Phochromocytoma benign (49) (48) (50) (49) Phochromocytoma benign (49) Pholicular cell, adenoma (50) (51) (50) (50) Pholicular cell, adenoma (50) (51) (50) (50) Pholicular cell, adenoma (50) (51) (50) (50) Pholicular cell, adenoma (49) (48) (50) (49) Pholicular cell, adenoma (49) (48) (50) (49) Pholicular cell, adenoma (50) (51) (50) (50) Pholicular cell, adenoma (2%) (51) (50) (50) Pholicular cell, adenoma (49) (48) Carcinoma (49) (48) (50) (49) Pholicular cell, adenoma (49) (48) Pholicular cell, adenoma (40) (50) (51) (50) (50) Pholicular cell, carcinoma (2%) (51) (50) (50) Pholicular cell, adenoma (50) (5		(17)	(45)		(40)
Adenocarcinoma (4) (4) (4) Liver (50) (51) (50) (59) Hemangiosarcoma 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hemangiosarcoma, metastatic, spleen 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hepatocellular carcinoma, multiple 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hepatocellular carcinoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 1 (2%) 1 (2%) 1 (2%) Shivary glands (50) (51) (50) (49) 50 Somach, forestomach (50) (51) (50) (50) 50 Squamous cell appilloma 1 (2%) 2 (4%) 1 (100%) 1 (100%) Cardiovascular System 1 (2%) 1 (2%) 1 (2%) 1 (2%) Adrenal medula (50) (51) (50) (50) (50)					
Intestine small, ileum (47) (44) (49) (47) (47) Liver (50) (51) (50) (50) (50) Hemangiosarcoma metastatic, spleen 1 (2%) Hepatocellular carcinoma multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) (50) (50) Salivary glands (50) (51) (50) (49) Squamous cell carcinoma 2 (4%) (51) (50) (49) Squamous cell papilloma 1 (2%) Squamous cell papilloma 1 (2%) 2 (4%) 1 (2%) Endocrine System Hepatocholangiocarcinoma, metastatic, liver 1 (2%) Endocrine System Hepatocholangiocarcinoma 2 (4%) (51) (50) (50) Adenoma 1 (2%) (51) (50) (50) Adenoma 1 (2%) (51) (50) (50) Folicular cell, aenoma 1 (2%) (51) (50) Folicular cell, aenoma 1 (2%) (51) (50) Folicular cell, aenoma 1 (2%) (50) (50) Folicular cell,		(40)	(+++)		(48)
Liver (50) (51) (50) (50) (50) (50) (50) (50) (50) (50		(47)	(44)		(47)
Hemangiona 1 (2%) (4) (5) (5) Hemangiosarcoma, metastatic, spleen 1 (2%) 1 (2%) 1 (2%) Hepatocellular carcinoma, multiple 1 (2%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocellular adenoma, multiple 1 (2%) 1 (2%) 1 (2%) 1 (2%) Patercas (49) (51) (50) (50) (50) (50) Solvary glands (50) (51) (50) (50) (50) (50) Squamous cell appilloma 1 (2%) 2 (4%) 2 (4%) 1 (100%) Squamous cell papilloma 1 (2%) 1 (2%) 1 (2%) 1 (2%) Heard (50) (51) (50) (50) (50) Heard (50) (51) (50) (50) <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Hemangiosarcoma 1 (2%) 1 (2%) Hemangiosarcoma, metastatic, spleen 1 (2%) 1 (2%) Hepatocellular carcinoma 4 (8%) 5 (10%) 6 (12%) 2 (4%) Hepatocellular carcinoma 3 (6%) 10 (20%) 13 (26%) 9 (18%) Hepatocellular actenoma 3 (6%) 10 (20%) 13 (26%) 9 (18%) Hepatocellular actenoma 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocellular actenoma 3 (6%) 1 (2%) 1 (2%) 1 (2%) Hepatocellular actenoma 1 (2%) 3 (6%) 1 (2%) 1 (2%) Pancreas (9) (51) (50) (50) (50) Squamous cell carcinoma 1 (2%) 2 (4%) 2 (4%) 1 (100%) Squamous cell papilloma 1 (2%) 2 (4%) 1 (100%) 1 (100%) Cardiovascular System 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) Heat (50) (51) (50) (50) (50) (50) (50) Adrenal cortex (50) (51) (50) (50) (50) ((51)	(30)	(50)
Hemangiosarcoma, metastatic, spleen 1 (2%) Hepatocellular carcinoma, multiple 1 (2%) Hepatocellular carcinoma, multiple 1 (2%) Hepatocellular actinoma, multiple 1 (2%) Hepatocellular actinoma 1 (2%) Pancreas (49) Salivary glands (50) Sounach, forestomach (50) Squamous cell papilloma 1 (2%) Squamous cell papilloma 1 (2%) Heant (50) Heant denoma 2 (4%) Heant denoma 2 (4%) Heant denoma 2 (4%) Heant denoma 2 (4%) Adrenal cortex (50) (50) (51		1 (270)	1 (2%)	1 (2%)	• •
Hepatocellular carcinoma 4 (8%) 5 (10%) 6 (12%) 2 (4%) Hepatocellular carcinoma, multiple 1 (2%) 1 (2%) 1 (2%) 1 (2%) Hepatocellular adenoma 3 (6%) 10 (20%) 13 (26%) 9 (18%) Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Histocytic sarcoma 1 (2%) 3 (6%) 1 (2%) 1 (2%) Pancreas (49) (51) (50) (50) (50) Salivary glands (50) (51) (50) (50) Squamous cell carcinoma 2 (4%) 2 (4%) 2 (4%) Squamous cell carcinoma 2 (4%) 2 (4%) 1 (100%) Cardiovascular System 1 (2%) 1 (100%) 1 (100%) Heat (50) (51) (50) (50) Adtrenal cortex (50) (51) (50) (50) Adtrenal medulla (50) (51) (50) (50) Adtrenal cortex (50) (51) (50) (50) Carcinoma 2 (4%) 1 (2%) 1 (2%) 1 (2%)			1 (270)	1 (270)	1 (2%)
Hepatocellular carcinoma, multiple 1 (2%) 1 (2%) 1 (2%) 9 (18%) Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) 9 (18%) Hepatocholangiocarcinoma 1 (2%) 2 (4%) 1 (2%) 1 (2%) Patcreas (49) (51) (50) (49) Solivary glands (50) (51) (50) (49) Squamous cell papilloma 1 (2%) 2 (4%) 2 (4%) Squamous cell papilloma 1 (2%) 2 (4%) 2 (4%) Squamous cell papilloma 1 (2%) 2 (4%) 1 (100%) Squamous cell papilloma 1 (2%) 1 (2%) 1 (100%) Cardiovascular System (50) (51) (50) (50) Hepatocholangiocarcinoma, metastatic, liver 1 (2%) 1 (2%) 1 (2%) Addrenal cortex (50) (51) (50) (50)		4 (8%)	5 (10%)	6 (12%)	
Hepatocellular adenoma $3 (6\%)$ $10 (20\%)$ $13 (26\%)$ $9 (18\%)$ Hepatocellular adenoma, multiple $1 (2\%)$ $2 (4\%)$ $1 (2\%)$ $1 (2\%)$ Histicoytic sarcoma $3 (6\%)$ $1 (2\%)$ $1 (2\%)$ $1 (2\%)$ Histicoytic sarcoma $3 (6\%)$ $1 (2\%)$ $1 (2\%)$ Pancreas (49) (51) (50) (49) Salivary glands (50) (51) (50) (49) Squamous cell carcinoma $2 (4\%)$ $2 (4\%)$ $2 (4\%)$ Squamous cell papilloma $1 (2\%)$ $2 (4\%)$ $1 (100\%)$ Squamous cell papilloma $1 (2\%)$ $2 (4\%)$ $1 (100\%)$ Squamous cell papilloma $1 (2\%)$ $1 (2\%)$ $1 (100\%)$ Heart (50) (51) (50) (50) Heart elsystem $1 (2\%)$ $1 (2\%)$ $1 (2\%)$ Adrenal medulla (50) (51) (50) (50) Adrenal medulla (50) (51) (50) (49) Carchovscubar benign $4 (8\%)$ $4 (8\%)$ $4 (8\%)$. (0,2)	0 (10/0)	0 (12/0)	
Hepatocellular adenoma, multiple 1 (2%) 2 (4%) 1 (2%) 1 (2%) Hepatocholangiocarcinoma 1 (2%) 3 (6%) 1 (2%) 1 (2%) Pancreas (49) (51) (50) (49) Salivary glands (50) (51) (50) (49) Squamous cell papilloma 2 (4%) 2 (4%) 2 (4%) Squamous cell papilloma 1 (2%) 2 (4%) 2 (4%) Squamous cell papilloma 1 (2%) 2 (4%) 1 (10%) Squamous cell papilloma 1 (2%) 2 (4%) 1 (10%) Cardiovascular System (1) 1 (2%) 1 (10%) Heart (50) (51) (50) (50) Heart cortex (50) (51) (50) (50) Adrenal cortex (50) (51) (50) (50) Adrenal medula (50) (51) (50) (50) Pheochromozytoma bengn 4 (8%) 1 (2%) 1 (2%) Lates, pancreatic (50) (51) (50) (49) Caroinoma 2 (4%) (50) (49)		3 (6%)	10 (20%)	13 (26%)	
Hepatocholangiocarcinoma 1 (2%) Histicoytic sarcoma 3 (6%) 1 (2%) Pancreas (49) (51) (50) (49) Salivary glands (50) (51) (50) (50) Somach, forestomach (50) (51) (50) (49) Squamous cell carcinoma 2 (4%) 2 (4%) 2 (4%) Squamous cell papilloma 1 (2%) 2 (4%) 1 (100%) Squamous cell papilloma 1 (2%) 2 (4%) 1 (100%) Squamous cell papilloma 1 (2%) 1 (2%) 1 (2%) Hearat (50) (51) (50) (50) Hearat posteriona, metastatic, spleen 1 (2%) 1 (2%) 1 (2%) Hepatocholangiocarcinoma, metastatic, liver 1 (2%) 1 (2%) 1 (2%) Capsule, adenoma 2 (4%) 1 (2%) 1 (2%) 1 (2%) Adrenal medulla (50) (51) (50) (50) (50) Phochromocytoma benign 4 (8%) 4 (8%) 1 (2%) 1 (2%) Phochromocytoma benign 4 (8%) 4 (8%) 1 (2%) 1 (2%) </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Histocytic sarcoma $3 (6\%)$ 1 (2%) Pancreas (49) (51) (50) (49) Salivary glands (50) (51) (50) (49) Squanous cell carcinoma 2 (4%) 2 (4%) 2 (4%) Squamous cell papilloma 1 (2%) 2 (4%) 2 (4%) Tongue (1) 2 (4%) 2 (4%) 1 (100%) Squamous cell papilloma 1 (2%) 1 (100%) 50) (51) (50) Cardiovascular System (50) (51) (50) (50) (50) (50) Heart (50) (51) (50) (50) (50) (50) (50) Heatal cortex (50) (51) (50) (50) (50) (50) Adrenal meduila (50) (51) (50) (50) (50) (50) Pheochronozytoma benign 4 (8%) (50) (49) (48%) (50) (49) Carenal meduila (50) (51) (50) (49) (2%) (48%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) </td <td></td> <td>1 (2%)</td> <td>- ()</td> <td></td> <td>- ()</td>		1 (2%)	- ()		- ()
Pancreas (49) (51) (50) (49) Salivary glands (50) (51) (50) (50) Stomach, forestomach (50) (51) (50) (50) Squamous cell carcinoma 2 (4%) Squamous cell papilloma 1 (2%) Tongue (1) Squamous cell papilloma 1 (2%) Cardiovascular System Heart (50) (51) (50) (50) Hemangiosarcoma, metastatic, spleen 1 (2%) Heart 1 (2%) Endocrine System Adrenal cortex (50) (51) (50) (50) Adenoma 2 (4%) 1 (2%) 1 (2%) Endocrine System Adrenal cortex (50) (51) (50) (50) Pheochromocytoma benign 4 (8%) Salets, pancreatic (50) (51) (50) (50) Pheochromocytoma benign 4 (8%) Islets, pancreatic (50) (51) (50) (49) Carcinoma 2 (4%) Pituitary gland (49) (48) (50) (49) Carcinoma 1 (2%) 4 (8%) 4 (8%) 1 (2%) Folicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) F			3 (6%)	1 (2%)	
Salivary glands (50) (51) (50) (50) Stomach, forestomach (50) (51) (50) (49) Squamous cell carcinoma 2 (4%) 2 (4%) 2 (4%) Tongue (1) 2 (4%) 1 (100%) Squamous cell papilloma 1 (2%) 2 (4%) 1 (100%) Cardiovascular System 1 (2%) 1 (100%) 1 (100%) Heart (50) (51) (50) (50) Hepatocholangiocarcinoma, metastatic, spleen 1 (2%) 1 (2%) 1 (2%) Endocrine System 1 (2%) 1 (2%) 1 (2%) 1 (2%) Adrenal cortex (50) (51) (50) (50) Adrenal medulla (50) (51) (50) (50) Adrenal medulla (50) (51) (50) (49) Carcinoma 2 (4%) (51) (50) (49) Photchromocytoma benign 4 (8%) (50) (49) Carcinoma 2 (4%) (50) (49) Pituitary gland (49) (48) (50) (50)		(49)	(51)		(49)
Stomach, forestomach, foreflexible, and forestomach, forestomach, forestomach, forestomach	Salivary glands			(50)	
Squamous cell carcinoma 1 (2%) 2 (4%) Squamous cell papilloma 1 (2%) 2 (4%) Tongue (1) 1 (100%) Squamous cell papilloma 1 (2%) 1 (100%) Cardiovascular System Heart (50) (51) (50) (50) Hepatocholangiocarcinoma, metastatic, liver 1 (2%) 1 (2%) 1 Endocrine System Adrenal cortex (50) (51) (50) (50) Adrenal medulla (50) (51) (50) (50) Adrenal medulla (50) (51) (50) (49) Carcinoma 2 (4%) 1 (2%) (49) Phochromocytoma benign 4 (8%) (50) (49) Carcinoma 2 (4%) 1 (2%) 1 (2%) Pituitary gland (49) (48) (50) (49) Provid gland (50) (51) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%)					
Squamous cell papilloma 1 (2%) 2 (4%) Tongue (1) Squamous cell papilloma 1 (100%) Cardiovascular System 1 (100%) Heart (50) (51) (50) (50) Hemangiosarcoma, metastatic, spleen 1 (2%) 1 (2%) 1 (2%) Endocrine System 1 (2%) 1 (2%) 1 (2%) Adrenal cortex (50) (51) (50) (50) Adadoma 2 (4%) 1 (2%) 1 (2%) Adrenal medulla (50) (51) (50) (50) Pheochromocytoma benign 4 (8%) (50) (49) Carcinoma 2 (4%) 1 (2%) 1 (2%) Chroing gland (49) (48) (50) (49) Pars distatis, adenoma 6 (12%) 4 (8%) 1 (2%) 1 (2%) Thyroid gland (50) (51) (50) (50) (50) Follicular cell, actinoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) General Body System 1 (2%) 1 (2%) 1 (2%) 1 (2%)					
Tongue (1) Squamous cell papilloma 1 (100%) Cardiovascular System Heart (50) (51) (50) (50) Hemangiosarcoma, metastatic, spleen 1 (2%) 1 (2%) 1 (2%) Endocrine System Adrenal cortex (50) (51) (50) (50) Adenoma 2 (4%) 1 (2%) 1 (2%) Adrenal medulla (50) (51) (50) (50) Pheochromocytoma benign 4 (8%) 1 (2%) (48) (50) (49) Carcinoma 2 (4%) (51) (50) (49) (49) (48) (50) (49) Pituitary gland (49) (48) (50) (49) (50) <td< td=""><td></td><td>1 (2%)</td><td></td><td>· · ·</td><td>2 (4%)</td></td<>		1 (2%)		· · ·	2 (4%)
Squamous cell papilloma 1 (100%) Cardiovascular System (50) (51) (50) (50) Heatt (50) (51) (50) (50) (50) Hemangiosarcoma, metastatic, spleen 1 (2%) 1 (2%) 1 (2%) Endocrine System 1 (2%) 1 (2%) 1 (2%) Adrenal cortex (50) (51) (50) (50) Pheochromocytoma benign 4 (8%) (50) (50) (50) Pheochromocytoma benign 4 (8%) (50) (49) Carsinoma 2 (4%) (50) (49) Pars distatis, adenoma 6 (12%) 4 (8%) 4 (8%) 1 (2%) Thyroid gland (50) (51) (50) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) Follicular cell, acerioma 1 (2%) 5 (10%)				• n.	
Cardiovascular System (50) (51) (50) (50) Heart (50) (51) (50) (50) Hepatocholangiocarcinoma, metastatic, liver 1 (2%) 1 (2%) Endocrine System (50) (51) (50) (50) Adrenal cortex (50) (51) (50) (50) Adrenal cortex (50) (51) (50) (50) Adrenal medula (50) (51) (50) (50) Adrenal medula (50) (51) (50) (50) Pheochromocytoma benign 4 (8%) (50) (49) Carcinoma 2 (4%) (50) (49) Pituitary gland (49) (48) (50) (49) Pars distalis, adenoma 6 (12%) 4 (8%) 4 (8%) 1 (2%) Thyroid gland (50) (51) (50) (50) Follicular cell, carcinoma 1 (2%) 1 (2%) 1 (2%) General Body System 1 (2%) (1) (1) (2) (1)	Squamous cell papilloma				1 (100%)
Heart (50) (51) (50) (50) (50) Hemangiosarcoma, metastatic, spleen 1 <td></td> <td></td> <td></td> <td>··· · · · · · · · · · · · · · · · · · ·</td> <td></td>				··· · · · · · · · · · · · · · · · · · ·	
Hemangiosarcoma, metastatic, spleen 1 (2%) Hepatocholangiocarcinoma, metastatic, liver 1 (2%) Endocrine System	-				
Hepatocholangiocarcinoma, metastatic, liver 1 (2%) Endocrine System Adrenal cortex (50) (51) (50) (50) Adrenal cortex 2 (4%) 1 (2%) 1 (2%) 1 (2%) Adrenal cortex 50) (51) (50) 1 (2%) Adrenal cortex 1 (2%) 1 (2%) 1 (2%) Adrenal medulla (50) (51) (50) (50) Pheochromocytoma benign 4 (8%) 1 (2%) (49) Carcinoma 2 (4%) 1 (2%) (48) (50) (49) Carcinoma 2 (4%) 1 (2%) 1 (2%) 1 (2%) 1 (2%) Pituitary gland (49) (48) (50) (49) 1 (2%) Thyroid gland (50) (51) (50) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) 1 (2%) General Body System 1 (1) (1) (2) (1)		(50)	(51)		(50)
Endocrine System Adrenal cortex (50) (51) (50) (50) Adrenal cortex $2(4\%)$ $1(2\%)$ $1(2\%)$ Capsule, adenoma $1(2\%)$ $1(2\%)$ Adrenal medulla (50) (51) (50) (50) Pheochromocytoma benign $4(8\%)$ (50) (50) (49) Sets, pancreatic (50) (51) (50) (49) Carcinoma $2(4\%)$ $2(4\%)$ (48) (50) (49) Pars distalis, adenoma $6(12\%)$ $4(8\%)$ $4(8\%)$ $1(2\%)$ Thyroid gland (50) (51) (50) (50) Follicular cell, adenoma $1(2\%)$ $5(10\%)$ $1(2\%)$ $1(2\%)$ General Body System $1(2\%)$ $1(2)$ $1(1)$ (1) (1) (2) (1)				1 (2%)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Adrenal cortex (50) (51) (50) (50) Adenoma 2 (4%) 1 (2%) 1 (2%) Capsule, adenoma 1 (2%) 1 (2%) Adrenal medulla (50) (51) (50) (50) Adrenal medulla (50) (51) (50) (50) Pheochromocytoma benign 4 (8%) (50) (49) Islets, pancreatic (50) (51) (50) (49) Carcinoma 2 (4%) 2 (48) (50) (49) Pars distalis, adenoma 6 (12%) 4 (8%) 4 (8%) 1 (2%) Thyroid gland (50) (51) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) Follicular cell, carcinoma 1 (2%) 1 (2%) 1 (2%) 1 (2%) General Body System 1 (1) (1) (2) (1)	Hepatocholangiocarcinoma, metastatic, liver	1 (2%)	·		
Adrenal cortex (50) (51) (50) (50) Adenoma 2 (4%) 1 (2%) 1 (2%) Capsule, adenoma 1 (2%) 1 (2%) Adrenal medulla (50) (51) (50) (50) Adrenal medulla (50) (51) (50) (50) Pheochromocytoma benign 4 (8%) (50) (49) Islets, pancreatic (50) (51) (50) (49) Carcinoma 2 (4%) 2 (48) (50) (49) Pars distalis, adenoma 6 (12%) 4 (8%) 4 (8%) 1 (2%) Thyroid gland (50) (51) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) Follicular cell, carcinoma 1 (2%) 1 (2%) 1 (2%) 1 (2%) General Body System 1 (1) (1) (2) (1)	Endocrine System				
Adenoma 2 (4%) 1 (2%) 1 (2%) Capsule, adenoma 1 (2%) 1 (2%) Adrenal medulla (50) (51) (50) (50) Pheochromocytoma benign 4 (8%) 1 (2%) 1 (2%) Islets, pancreatic (50) (51) (50) (49) Carcinoma 2 (4%) 1 (2%) 1 (2%) Pituitary gland (49) (48) (50) (49) Pars distalis, adenoma 6 (12%) 4 (8%) 4 (8%) 1 (2%) Thyroid gland (50) (51) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) General Body System 1 (2%) (1) (1) (2) (1)		(50)	(51)	(50)	(50)
Capsule, adenoma 1 (2%) Adrenal medulla (50) (51) (50) Pheochromocytoma benign 4 (8%) Islets, pancreatic (50) (51) (50) Carcinoma 2 (4%) (49) (48) (50) (49) Pituitary gland (49) (48) (50) (49) Pars distalis, adenoma 6 (12%) 4 (8%) 4 (8%) 1 (2%) Thyroid gland (50) (51) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) General Body System 1 (1) (1) (2) (1)			(34)		1 (2%)
Adrenal medulla (50) (51) (50) (50) Pheochromocytoma benign 4 (8%) 1 1 1 Islets, pancreatic (50) (51) (50) (49) Carcinoma 2 (4%) 7 7 1 1 Pituitary gland (49) (48) (50) (49) Pars distalis, adenoma 6 (12%) 4 (8%) 4 (8%) 1 (2%) Thyroid gland (50) (51) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) Follicular cell, carcinoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) General Body System 1 1 (2) (1)	*	- (10)	1 (2%)	x (<i>w</i> /v)	- (2/0)
Pheochromocytoma benign 4 (8%) Islets, pancreatic (50) (51) (50) (49) Carcinoma 2 (4%) (49) (48) (50) (49) Pituitary gland (49) (48) (50) (49) Pars distalis, adenoma 6 (12%) 4 (8%) 4 (8%) 1 (2%) Thyroid gland (50) (51) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) Follicular cell, carcinoma 1 (2%) 5 (10%) 1 (2%) 1 (2%)		(50)		(50)	(50)
Islets, pancreatic (50) (51) (50) (49) Carcinoma 2 (4%) (49) (48) (50) (49) Pituitary gland (49) (48) (50) (49) Pars distalis, adenoma 6 (12%) 4 (8%) 4 (8%) 1 (2%) Thyroid gland (50) (51) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) Follicular cell, carcinoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) General Body System 1 (1) (1) (2) (1)			., ()	<u> </u>	X -7
Carcinoma 2 (4%) Pituitary gland (49) (48) (50) (49) Pars distalis, adenoma 6 (12%) 4 (8%) 4 (8%) 1 (2%) Thyroid gland (50) (51) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) Follicular cell, carcinoma 1 (2%) 5 (10%) 1 (2%) 1 (2%)			(51)	(50)	(49)
Pituitary gland (49) (48) (50) (49) Pars distalis, adenoma 6 (12%) 4 (8%) 4 (8%) 1 (2%) Thyroid gland (50) (51) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) Follicular cell, carcinoma 1 (2%) 1 (2%) 1 (2%) General Body System Tissue NOS (1) (1) (2) (1)		· ·	()	()	
Pars distalis, adenoma 6 (12%) 4 (8%) 4 (8%) 1 (2%) Thyroid gland (50) (51) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) Follicular cell, carcinoma 1 (2%) 1 (2%) 1 (2%) General Body System Tissue NOS (1) (1) (2) (1)			(48)	(50)	(49)
Thyroid gland (50) (51) (50) (50) Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) Follicular cell, carcinoma 1 (2%) 1 (2%) 1 (2%) General Body System Tissue NOS (1) (1) (2) (1)					
Follicular cell, adenoma 1 (2%) 5 (10%) 1 (2%) 1 (2%) Follicular cell, carcinoma 1 (2%) 1 (2%) 1 (2%) General Body System (1) (1) (2) (1)					
Follicular cell, carcinoma 1 (2%) General Body System					
Tissue NOS (1) (1) (2) (1)					
Tissue NOS (1) (1) (2) (1)	General Rody System		<u> </u>		
		(1)	(1)	(2)	(1)
		(+) 1 (100%)	(<i>ኦ)</i> 1 (1በበ%)	2 (100%)	(4)
	i romangiosar coma	1 (10070)	1 (10070)	2 (10070)	

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μL	7.5 μL	15 μL	30 µL
· · · · ·	· · · · ·	······		
2-Year Study (continued)				
Genital System				
Dvary	(49)	(51)	(49)	(49)
Cystadenoma	3 (6%)	4 (8%)	2 (4%)	2 (4%)
Granulosa cell tumor malignant	1 (2%)		1 (2%)	
Hemangiosarcoma				1 (2%)
Histiocytic sarcoma		1 (2%)		
Luteoma			1 (2%)	
Teratoma malignant	1 (2%)			
Jterus	(50)	(51)	(49)	(50)
Hemangiosarcoma			1 (2%)	
Polyp	3 (6%)		1 (2%)	
Polyp, multiple		1 (2%)		
Sarcoma stromal	1 (2%)		,	
Cervix, histiocytic sarcoma	. ,	2 (4%)	1 (2%)	· .
Cervix, leiomyosarcoma			1 (2%)	
· · · · · · · · · · · · · · · · · · ·	٩	•		<u></u>
Hematopoietic System				
Bone marrow	(50)	(51)	(50)	(50)
ymph node	(7) (7)	. (7)	(5)	(7)
Sarcoma, metastatic, tissue NOS		1 (14%)		
Axillary, sarcoma, metastatic, tissue NOS		1 (14%)		
Mediastinal, histiocytic sarcoma		1 (14%)		
Lymph node, mandibular	(46)	(47)	(47)	(47)
Histiocytic sarcoma	(10)	1 (2%)		(1)
Lymph node, mesenteric	(49)	(45)	(48)	(50)
Histiocytic sarcoma	(45)		(48)	(50)
Spleen	(50)	1 (2%)	(50)	(50)
Hemangiosarcoma	(50)	(51)		
			3 (6%)	2 (4%)
Hemangiosarcoma, multiple	(41)	(40)		1 (2%)
Thymus	(41)	(40)	(35)	(45)
Hepatocholangiocarcinoma, metastatic, liver	1 (2%)			
Integumentary System				
Mammary gland	(49)	(46)	(50)	(44)
Carcinoma	1 (2%)	()	(39)	(**)
Skin	(50)	(51)	(50)	(50)
Basal cell carcinoma	(50)	(51)	(50)	
				1 (2%)
Squamous cell carcinoma	1. (20)	0 (101)		1 (2%)
Subcutaneous tissue, fibrosarcoma	1 (2%)	2 (4%)		1 (2%)
Subcutaneous tissue, fibrous histiocytoma		1 (2%)		
Subcutaneous tissue,				
Hepatocholangiocarcinoma, metastatic,		*		
liver	1 (2%)			
Subcutaneous tissue, sarcoma		2 (4%)		1 (2%)
Musculoskeletal System				
	(50)	(51)	(50)	(50)
Bone	(50)	(51)	(50)	(50)
Vertebra, osteosarcoma	<i>(</i> 1)	(4)	<i>(</i> 4)	1 (2%)
Skeletal muscle	(1)	(1)	(1)	(4)

÷.,

TABLE D1

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μL	7.5 μL	15 µL	30 µL
2-Year Study (continued)				
Nervous System				
Brain	(50)	(51)	(50)	(50)
Respiratory System	in an		* *	
ung	(50)	(51)	(50)	(50)
Adenocarcinoma, metastatic, harderian gland		· ·	1 (2%)	
Alveolar/bronchiolar adenoma	2 (4%)	6 (12%)	4 (8%)	1 (2%)
Alveolar/bronchiolar carcinoma	2 (4%)	3 (6%)	1 (2%)	1 (2%)
Alveolar/bronchiolar carcinoma, multiple			1 (2%)	
Carcinoma, metastatic, mammary gland	1 (2%)			9
Hepatocellular carcinoma, metastatic, liver	2 (4%)	4 (8%)	3 (6%)	
Hepatocholangiocarcinoma, metastatic, liver	1 (2%)			
Histiocytic sarcoma		1 (2%)	1 (2%)	• • • •
Osteosarcoma, metastatic, bone				1 (2%)
Teratoma malignant, metastatic	1 (2%)			
Vose	(50)	(50)	(50)	(50)
Special Senses System Ear	· · · ·	(1)	(1)	• • • • •
Fibrosarcoma	·	(1) 1 (100%)	(1) 1 (100%)	
	(1)		(5)	
Harderian gland Adenocarcinoma	(1)	(1)	1 (20%)	
Adenoma	1 (100%)	1 (100%)	4 (80%)	
	1 (100%)	1 (100%)	4 (80%)	
Urinary System				
Sidney	(50)	(51)	(50)	(50)
Histiocytic sarcoma		1 (2%)		
Jreter	(1)	(1)		
Jrinary bladder	(49)	(47)	(49)	(48)
Systemic Lesions				
Multiple organs	(50)	(51)	(50)	(50)
Histiocytic sarcoma	(~~)	3 (6%)	1 (2%)	
Leukemia lymphocytic	1 (2%)	- (570)	- ()	
Lymphoma malignant histiocytic	* (****)	1 (2%)		,
Lymphoma malignant lymphocytic	1 (2%)	3 (6%)	2 (4%)	1 (2%)
Lymphoma malignant mixed	5 (10%)	8 (16%)	5 (10%)	6 (12%)
Lymphoma malignant undifferentiated cell	5 (1070)	1 (2%)	1 (2%)	0 (12/0)
		1 14/01	* */01	,

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	7.5 μL	15 μL	30 µL
Neoplasm Summary				
Total animals with primary neoplasms ^c				
15-Month interim evaluation	5		3	
2-Year study	31	41	38	28
Total primary neoplasms	- ·			
15-Month interim evaluation	5		3	
2-Year study	50	69	62	39
Total animals with benign neoplasms				
15-Month interim evaluation	4		1	
2-Year study	20	26	26	16
Total benign neoplasms				
15-Month interim evaluation	4		1	
2-Year study	28	34	33	19
Total animals with malignant neoplasms				
15-Month interim evaluation	1 .		2	
2-Year study	17	27	23	18
Total malignant neoplasms				
15-Month interim evaluation	1		2	
2-Year study	22	35	29	20
Total animals with metastatic neoplasms				
2-Year study	5	5	5	2
Total metastatic neoplasms				
2-Year study	8	6	5	2

Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms а

b

c

	1	5	6	6	6	6	6	7	7	7	7	7	7	-	7	7	7	7	7	7	-	-	~					
Number of Days on Study	9		2	6	-	6	7	2	.2	.7	2	2	2	2	3	1 2	1	1	1	3	1	1	1	2	7			
							5			0	0	0	0	0	-	9 0	3 0 [2	2	2	3 2	3 2	2	2	3 2			
	0	0	1	0	0	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	1	1	1	1			
arcass ID Number	8	7	0		7		1				9									8		1	1	1				
	8	6		7		6	-		.1						8	9	0	6	7	9	0	1	2	3	4			
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
limentary System										_																,		
Esophagus	+	+	+	+	+	+	÷	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+		÷.,	
Gallbladder	+	Α	+	A		+	+	+	1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, colon		A			+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	`+	+		•••	
Intestine large, rectum							+	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Intestine large, cecum Intestine small, duodenum	+	A					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.			
Intestine small, jejunum	+				+					+	+	+	.+	+	+	+	+	+	+	+	+	+	+	+	.+		. •	
Intestine small, ileum		A A			+	+ _	+++	++			++	+ +	+	+ +	++	+ -	+ +	+ +	+	+	+	+	.+ 	+	+			
Liver	· +	A +	· ·	A +	+ +	- <u>-</u> -	· _	+	A +	+	+ +	+ +	+	+	+ +	τ +	+ +	++	т. +	+ +	+	+	+	+	+	·		
Hemangioma	'	•	'	'	•		т	1	•		'	•	7	Т. ·	-	•	-		+	-	Ŧ	т	-		Ť			
Hepatocellular carcinoma		X	x																			•		x				÷
Hepatocellular adenoma														х														
Hepatocellular adenoma, multiple																										•		
Hepatocholangiocarcinoma		х								,												•						
Pancreas	+	+	+	+	+	+	+	Ŧ	+	+	÷	+	+	+	I	+	+	+	+	+	+	+	+	+	+			
Salivary glands	+	+	+	+	÷	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	•		
Stomach, forestomach	, +	+	+	+	÷	+	÷	+	+	+	+	+	+	÷	+	+	÷	+	+	+	+	+	+	+	+			
Squamous cell papilloma Stomach, glandular	.+	+	+	+	+	.+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
	·										<u> </u>			_		· ·		-									<u> </u>	
Cardiovascular System													· ,			2												
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. 1	+			
Hepatocholangiocarcinoma, metastatic, liver		x																,										•
Endocrine System																		·				· · ·				-	<u> </u>	
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	÷	+	+	+			
Adenoma	. •	•	,	•	•	•	,	'		'	•			ż	'	x			•	'	•	'	·	•				
Adrenal gland	+		+					.+	+	+	+	+	+	+	+	_	+		+	+		+	+	+	+			
Adrenal medulla	. +	+	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	÷	+	+	+	÷	+	∔	+			
Pheochromocytoma benign				х						Х											\mathbf{X}^{\dagger}							
Islets, pancreatic	+	+	+	+	+	+	+	<u>,</u> +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Carcinoma															х													
Parathyroid gland	+	+	+	Μ	+	+	+	Μ	+	+	+	+	+	+ .		+	+	+	+	+	+	+	+	+	+			. '
Pituitary gland	+	+	+	+	+	+		+	I	+	+	+	+	+			+	+	+	+	+	+	+	+	+		,	
Pars distalis, adenoma							Х					X				x							•		X			
Thyroid gland Follicular cell, adenoma	+	+	+	+	+	+	+ X	, +	+	+	+	+	+	, +	+	+	+	+	+	+	+	+	+	+	+			
General Body System	<u> </u>			_										÷							~						•	
Tissue NOS													+														•	
Hemangiosarcoma													х															
					_			_				-	. <u> </u>				-											
+: Tissue examined microscopically	•			•		•		M										•							ent			
A: Autolysis precludes examination				•			1:	Ins	utti	cier	it ti	ssu	e							RI	ıПК	: r	UOL	exa	min	ea		
					4				1																			

1

	_			-	_	-	-	-	-	-		-	-		·	_	-	_		÷	_	-	_	-	_	
						7						7			7							7	7	7	•	
umber of Days on Study	3	3	3	3	3	3		3	3	3	3	3						3		3	3	3	3	3	3	
· · · ·	2	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	7	7	7	8	8	8	8	
· · · · · · · · · · · · · · · · · · ·	1	0	0	0	0	' 0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	1	1	1	1	
arcass ID Number	1	7	7	7	8	8	8	8	8	9	9	9	9	9	0	0	0	0	7	7	8	1	1	1	2	Total
	5	2	3	4	1	2				1	2	3		5		3	4		8		0	6	7	9	0	Tissue
	1	1	1	1	1	1	1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
limentary System			• •				· ·															-				·
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Gallbladder	+	+	+	+	+	+	+	+	+	+	+	+	·+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine large, colon	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Intestine large, rectum	+	+	+	+	+	+		+			·+				+				+	+	+	+	+	+	+	48
Intestine large, cecum	+	+	+	+	+	+	+	+							+		-	+	+	+	+	+	+	+	+	48
Intestine small, duodenum	+	+	÷	+	+	+	+	+	+	+	+				+			+	+	+	+	÷	+	+	÷	47
Intestine small, jejunum		-	_	+	+				+						÷				+			+		+	_	48
Intestine small, ileum	, 1	Ļ	Ļ		Ļ	÷	Ļ	÷	Т.	, 	+	, 	+		+		+	Ļ	، بد	÷	Ļ	÷	÷	÷	÷	47
Liver	+ +	+	+	+	T	+	+	- -	т +	Ť		+			+			Ť	T	т 1	T	+	+	+	T L	50
	Ŧ	Ŧ	Ŧ			Ŧ	Ŧ	Ŧ	T	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т	Ŧ	30 1
Hemangioma				Х							v															4
Hepatocellular carcinoma											X															-
Hepatocellular adenoma											Х			Х												3
Hepatocellular adenoma, multiple																						Х				1
Hepatocholangiocarcinoma																										1
Pancreas	+	+	+	+	+	+	+	+	+						+				+	+	+	+	+	+	+	49
Salivary glands	+	+	+	. +	+	+	+	+	+	+	+	+			+			+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	+	+	50
Squamous cell papilloma													Х													1
Stomach, glandular	+	+	+	+	+	+	. +	÷÷	+	+	+	+	+	+	+	+	÷	+	+	+	÷	. +	+	+	+	50
Cardiovascular System														-												
Heart	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	÷	+	+	+	+	+	50
Hepatocholangiocarcinoma, metastatic,													:													
liver																										1
Indocrine System																	-									
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma																										2
Adrenal gland	+	• +	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+		+	+	+		+		38
Adrenal medulla			. +	+	+	+	+	+	4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign	•				•		•	•		·	•	•	•	•	•	•	•	•		•	•	•	•	x		4
Islets, pancreatic	+	. .	-	+	+	+	+	` ⊥	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	·+	+			50
Carcinoma			T	1	•		'	x		•	•	'	•	. '	•	•	'	'		'	•				•	2
	.4	. ,		.1	4		л.			. 1	_		N /		<u>ــــــــــــــــــــــــــــــــــــ</u>	Ŧ	.	L	. ب	ц.	.т.		т		л.	47
Parathyroid gland	+	• +	+	+	+	+	+	+	+	+	+	· †	171	+	+	T 1	+	+	E.	t		+	+	+	+	
Pituitary gland	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	49
Pars distalis, adenoma		,																			X					6
Thyroid gland	+	• +	• +	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Follicular cell, adenoma								. .																		· 1
General Body System															,											
Tissue NOS																										1
Hemangiosarcoma																										1

Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylahthalate: 0 "I. (continued)

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylphthalate: 0 #L (continued)

ς

						_							*****		_		_	_				_			<u>`</u>		_1
	1	5	6	6			6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		
Number of Days on Study	9	9	2	2 6	6	6	7	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	· ,	
	3	1	0) 2	3	5	5	4	7	0	0	0	0	0	0	0	0	2	2	2	2	2	2	2	2		
	<u> </u>	0	1	0	0	1	1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	1		1			
Carcass ID Number	8			-	-		_	9			9	-		0									1	1	-		
	-					-						-							8		9	1	1	_	1		
	8						8 1								8							1	2		4	,	
	ـ ــــــ				1	1		1	1	1		1	1	1	1	1	1	1	1	1	1	1	<u> </u>		1		
Genital System																								2	, •		`
Ovary	+	- +	+ +	+ +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Cystadenoma																х							Х				
Granulosa cell tumor malignant																											•
Teratoma malignant	X																										
Uterus	+	4		F 4	- +	+	+	- i -	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+		•
Polyp				Х	ζ.	x									•		•		x		•	·	•		•		•
Sarcoma stromal				-	x														••								
Hematopoietic System				_																							
								,		•	,				,	•				,							
Bone marrow	+	+		r +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Lymph node			-	ŀ			+				-		+		+	+					+					• .	•
Lymph node, mandibular	+	+	- N	1 + N	- +	+	+	+	+	+	I	+	+	+	+	+	+	+	+	+	+	+	+	+	· +		
Lymph node, mesenteric	+	4	1	F A	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	4	+	+	+	+	+	+		
Spleen	+	+		+ +	- +	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+	+	+		
Thymus	+	+	- N	1 +	M	II	Μ	+	I	+	+	÷.	+	+	Μ	+	+	+	+	+	+	+	+	+	+	۰.	
Hepatocholangiocarcinoma, metastatic,																									,		
liver		Х	C																								
						_		·····		*****						_											
Integumentary System				-																				Ś			
Mammary gland	+	+		- N	1 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		•
Carcinoma							Х																				•••
Skin	+	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Subcutaneous tissue, fibrosarcoma																								,			•
Subcutaneous tissue,																											
hepatocholangiocarcinoma,																									•		
metastatic, liver		Х	K.																			•					
Musculoskeletal System																	-		· ·	_		,					
Bone	т	L		L .J	ı	Т	Ъ	ъ	Ъ	Ъ	-	т	-	Ъ	т		д	Ŧ	-L-	<u>i</u> -	L .	Ŧ	_	ـ	<u>ـ</u>		
Skeletal muscle	F	'	- 1		т	1	т	+	-	r	'	3	1	т	Т.	· F	'	-1	1	•	1		'	'	'		
								T		-																	
Nervous System																											· ·
Brain	+	+		+ +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Respiratory System																				÷		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Lung	+	4		г ч	.	+	+	- h	+	+	+	+	+	+	+	4	+	+	+	+	+	+	+	+	+		$f_{\rm eff}(x) = 0$
Alveolar/bronchiolar adenoma	F	'	7	, 1	ſ	,	. '	1	,	'	1	•	٠	•	'	•	'	'	'	'	,	•	'	'	'		
Alveolar/bronchiolar carcinoma									х	•		•						х								•	
							v		Λ									Δ									
Carcinoma, metastatic, mammary gland							х					:											•	, `			•
Hepatocellular carcinoma, metastatic,			-	-																							
			2	۲.																							
liver																											
liver Hepatocholangiocarcinoma, metastatic,																											
liver Hepatocholangiocarcinoma, metastatic, liver		X	ζ.																								
liver Hepatocholangiocarcinoma, metastatic,	X		٢																								
liver Hepatocholangiocarcinoma, metastatic, liver	. X .∔			⊦ -1	- +	• +	+	+	+	+	+	+	÷	+	÷	+	+	+	+	+	+	+	+	+	.+		•
liver Hepatocholangiocarcinoma, metastatic, liver Teratoma malignant, metastatic				+ +	- +	• + • +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + +	+ +	+ +	+ +	+ +	+ +		

Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued) Number of Days on Study 1 1 **Carcass ID Number** 1 2 Total 9 0 Tissues/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Tumors **Genital System** Ovary + M Cystadenoma х Granulosa cell tumor malignant х Teratoma malignant Uterus Polyp Sarcoma stromal Hematopoietic System Bone marrow + + Lymph node Lymph node, mandibular Lymph node, mesenteric + Spleen + Thymus M Ĩ + MHepatocholangiocarcinoma, metastatic, liver **Integumentary System** Mammary gland Carcinoma Skin + Subcutaneous tissue, fibrosarcoma х Subcutaneous tissue, hepatocholangiocarcinoma, metastatic, liver **Musculoskeletal System** Bone + + Skeletal muscle Nervous System Brain + + + + + **Respiratory System** Lung х Alveolar/bronchiolar adenoma х Alveolar/bronchiolar carcinoma Carcinoma, metastatic, mammary gland Hepatocellular carcinoma, metastatic, х liver Hepatocholangiocarcinoma, metastatic, liver Teratoma malignant, metastatic Nose Trachea

Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued)

	. *														•	• `										1.1			
	۰.		• 1	5	6	6	6	6	6 · 7	17	7	7	7	7	7	7	7 7	7 7	1 7	, 7		, ,	7 7	7 7	, ·	7		•	
	,		9	9	2	6	6	6	7 2	2	3	3	3	3	3	3	3 3	3 3	3 3	3	1 3	3	3 3	3 3	3 (3			•
			. 3	1	0	2	3	5	5 4	7	0	0	0	0	0	0	0 () 2	2 2				2 2	2 2	2 2	2			
			0	0	1	0	0	1	1 0	0	0	0	0	1	1	1	1 1	1 · () () 0) (): -1	h 1	1 1	1	1			
			8	7	0	7	7	0	1 9	7	9	9	9	0	0	0	0 1		2 5	2 8) 1	 I 1	1 1		-	,		
			8	6	1	7	5	6	8 0		6	7	é	ň	ř	Q i	0 6			, 0		1		, i	2	4			•
			1	1	1	1	1	1	1 1	′.* 1	1	í	1	1	1	1 .	, y y			1			L 4	6 . 1 1		1			
		.`	L	1	1	1	I	L	r 1	. <u>.</u>	1	r	T	. L	T	1	1 .	r 1					L .	L 1	L .	1			
•									.*								~ .									• •			
	1																												
																								-					
																										,			· ,
			+	+	+	+	+	+	+ -	+ +	+	+	+	+	+	+	+ •	+ -	+ -	+ +	+ •	+ •	+	+ •	+	+			
				•				·		÷																		•	
			+	A	+	+	+	+	+ -	+ +	+	+	+	+	+	+	+ •	+ -	+ -	+ +	+ •	+ •	+ .	+ •	+	+			,
																									·		·		
·			•						•													•						۰.	
			+	+	+	+	+	+	+ -	+ +	+	+	+	+	+	+	+ •	+ •	+ -	+ +	+ •	+ •	+ -	+ •	+	+ '			
							•		ં ર	ĸ																			
cvtic									2	K															۰.				
						x								Y		x					. · •	x					· .		
	cytic	cytic	cytic	3 0 8 8 1 + + + +	9 9 3 1 0 0 8 7 8 6 1 1 + + + A + +	9 9 2 3 1 0 0 0 1 8 7 0 8 6 1 1 1 1 + + + + A + + + +	$\begin{array}{r} 9 & 9 & 2 & 6 \\ 3 & 1 & 0 & 2 \\ \hline 0 & 0 & 1 & 0 \\ 8 & 7 & 0 & 7 \\ 8 & 6 & 1 & 7 \\ 1 & 1 & 1 & 1 \\ \hline \\ + & + & + \\ + & A & + & + \\ + & A & + & + \\ + & + & + & + \\ \end{array}$	9 9 2 6 6 3 1 0 2 3 0 0 1 0 0 8 7 0 7 7 8 6 1 7 5 1 1 1 1 + + + + + + A + + + + + + + + + + + + +	9 9 2 6 6 6 3 1 0 2 3 5 0 0 1 0 0 1 8 7 0 7 7 0 8 6 1 7 5 6 1 1 1 1 1 1 + + + + + + + A + + + + + + + + + + cytic	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 9 2 6 6 6 7 2 2 3 1 0 2 3 5 5 4 7 0 0 1 0 0 1 1 0 0 8 7 0 7 7 0 1 9 7 8 6 1 7 5 6 8 9 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + + + A + + + + + + + + + x cytic X	9 9 2 6 6 6 7 2 2 3 3 1 0 2 3 5 5 4 7 0 0 0 1 0 0 1 1 0 0 0 8 7 0 7 7 0 1 9 7 9 8 6 1 7 5 6 8 9 1 6 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + + + + A + + + + + + + + + + + + + + + + + + +	9 9 2 6 6 6 7 2 2 3 3 3 1 0 2 3 5 5 4 7 0 0 0 0 1 0 0 1 1 0 0 0 0 8 7 0 7 7 0 1 9 7 9 9 8 6 1 7 5 6 8 9 1 6 7 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + + + + + A + + + + + + + + + + + + + + + + + + +	9 9 2 6 6 6 7 2 2 3 3 3 3 1 0 2 3 5 5 4 7 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 8 7 0 7 7 0 1 9 7 9 9 9 8 6 1 7 5 6 8 9 1 6 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + + + + + + A + + + + + + + + + + + + + + + + + +	9 9 2 6 6 6 7 2 2 3 3 3 3 3 1 0 2 3 5 5 4 7 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 9 7 9 9 9 0 8 6 1 7 5 6 8 9 1 6 7 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + + + + + + + + + + +	9 9 2 6 6 6 7 2 2 3 3 3 3 3 3 1 0 2 3 5 5 4 7 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 8 7 0 7 7 0 1 9 7 9 9 9 0 0 8 6 1 7 5 6 8 9 1 6 7 8 0 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + + + + + + + + + + +	9 9 2 6 6 6 7 2 2 3 3 3 3 3 3 3 3 1 0 2 3 5 5 4 7 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 8 7 0 7 7 0 1 9 7 9 9 9 0 0 0 8 6 1 7 5 6 8 9 1 6 7 8 0 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + + + + + + + + + + +	9 9 2 6 6 6 7 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 9 2 6 6 6 7 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 9 2 6 6 6 7 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 9 2 6 6 6 7 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 9 2 6 6 6 7 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 9 2 6 6 6 7 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 9 2 6 6 6 7 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 9 2 6 6 6 7 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Lesions in Female Mice

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylphthalate: 0 µL (continued)

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	.3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	2	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	7	7	7	8	8	8	8	
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	1	1	1	1	
Carcass ID Number	1	7	7	7	8	8	8	8	8	9	9	9	9	9	0	0	0	0	7	7	8	1	1	1	2	Total
	5	2	3	4	1	2	3	4	5	1	2	3	4	5	2	3	4	5	8	9	0	6	7	9	0	Tissues,
	1	.1	1	1	1	1	1	.1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	1	1	Tumors
Special Senses System																									·	
Eye																								+		1
Harderian gland																								+		1 ·
Adenoma																								X		. 1
Urinary System	 																									
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Ureter																										1
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	49
Systemic Lesions	 																									·····
Multiple organs	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia lymphocytic																										1
Lymphoma malignant lymphocytic																										1
Lymphoma malignant mixed														х												5

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylphthalate: 7.5 µL 2 3 4 4 5 5 556 6 6 6 7 7 7 7 7 7 7 7 7 7 7 77 Number of Days on Study 7688 0 9 6 7 7 8 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 3 5 1 4 9 0 3 7 8,582 8 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 2 1 2 1 1 2 2 2 2 2 1 1 1 1 2 **Carcass ID Number** 9 8 2 0 0 2 9 1 9 1 3 3 0 9 9 2 2 2 2 2 9 9 9 9 0 7 5 2 6 5 6 3 5 4 8 3 5 1 1 2 1 2 3 4 5 6 7 8 9 0 1 **Alimentary System** Esophagus + Gallbladder M M Intestine large, colon A A + A + Intestine large, rectum Α + A + + A м Intestine large, cecum + Α A A + A м + + Intestine small, duodenum A Α + Α A A + + + Intestine small, jejunum + + Α A Α + A Α Α + A + 4 4 Intestine small, ileum + A A A + А А Α + Liver + + + 1 + 1 -Hemangiosarcoma Hepatocellular carcinoma хх х х Hepatocellular adenoma х х х Hepatocellular adenoma, multiple X Histiocytic sarcoma X x X Pancreas + Salivary glands Stomach, forestomach Squamous cell carcinoma Stomach, glandular + **Cardiovascular System** Heart + + + + + + + ÷ + + + + + **Endocrine System** Adrenal cortex Capsule, adenoma Adrenal gland Adrenal medulla + Islets, pancreatic + Parathyroid gland Pituitary gland Pars distalis, adenoma х Thyroid gland + + х Follicular cell, adenoma х х Follicular cell, carcinoma **General Body System** Tissue NOS Hemangiosarcoma **Genital System** Ovary + Cystadenoma х Histiocytic sarcoma х

Lesions in Female Mice

ndividual Animal Tumor Patholog			_						_																		
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
umber of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Ś	3	• • •
	2	2	2	2	2	6	6	6	6	6	7	7	7	7	7	7	7	8	8	8	8	. 8	8	8	8	8	
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Carcass ID Number	0	0	0	1	2	0	0	0	2	3	1	1	1	1	3	3	3	1	1	1	2	3	3	3	3	4	Total
	7	8	9	0	8	2	3	4			1		3						7				7	8	9		Tissues
										1																	Tumor
limentary System	<u></u>	<u> </u>					i																				
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	+	+	+	÷	51
Gallbladder		+	, +	+	÷	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	M	+ 1	+	+	41
Intestine large, colon		+	+	+	+	+	+	÷	÷		÷	+	+	+	+	+	÷	÷	+	+	+	+	+	+	+	+	48
Intestine large, rectum			, -	, -			÷	Ļ.	, ,		, ,		÷	Ļ	, -	÷	÷			÷	÷	÷	Ļ	÷	÷	÷	47
Intestine large, cecum	, 		т -	1	т - ш	т Т	т —	Ŧ	т Т	1	т 	-	Ľ.	т Т	1	1	- -	-	1	т -	т —	÷	1			4	45
Intestine small, duodenum	т 	т - т	т 	т 	T L	т 	Ť	т .ь	т 	т -	т _	+	т -	+	т. 	Ť	т т	т 	+	т 	т .ь		- T - L	т 	т 	Ŧ	45
Intestine small, jejunum	т 1			Ť	т 	Ţ	- -	Ţ	Ţ	Ť	- -	Ţ	T	- -	Ţ	Ť	Ţ	Ţ	Ť	Ţ	Ţ	- -			T	- T	44
			+	Ţ	.	.	Ţ	.	+	Ţ	+	Ť	Τ.	+	Ţ.	Ţ.	Ţ	т	Ţ	.	+	Ţ	Ť	-	Ţ	T	44
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44 51
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Hemangiosarcoma														Х													1
Hepatocellular carcinoma					Х																			-		• •	5
Hepatocellular adenoma			Х		х			х			х								Х				Х				10
Hepatocellular adenoma, multiple																				•	Х						2
Histiocytic sarcoma																											3
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Salivary glands	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	` +	+	51
Squamous cell carcinoma													Х														2
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Cardiovascular System																											
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	51
Endocrine System										_	-		<u> </u>														
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Capsule, adenoma				x																							1
Adrenal gland	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	42
Adrenal medulla	-	+	+	. .	÷	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	. +	· +	51
Islets, pancreatic	+	.		+	+	+	+	+	+	÷	+	+	+	÷	+	÷	+	÷	+	÷	+	+		. <u>+</u>		· +	51
Parathyroid gland	, 						÷		÷	ī	+	Ň		+	+	+	÷	+	_	+							48
Pituitary gland	, +			I	+	+	+	+	Ľ.	+	+	+		+		+	+	+	+	+	_	+				• +	48
Pars distalis, adenoma	r		X	-	1	x		1	1	r		.1	1	1	x		•	'			'	•	'	'		'	4
Thyroid gland	-	. +			+				-	L	1	+	4	1		+	т	4		<u>т</u>			<u>ь</u>			• +	51
Follicular cell, adenoma	+ X		- +	- +	Ŧ	Ŧ	+	+	Ŧ	т	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	т	+	+	+	т	+ X		Ŧ	+	Ť	5
Follicular cell, carcinoma	^	•													х							^					1
General Body System									•								_		_		_				_		
Tissue NOS																									+		1
Hemangiosarcoma																									x		1
Genital System								-		<u> </u>										<u> </u>					<u> </u>		
Ovary	L		د	+	+	+	+	+	+	+	÷	+	+	Ŧ	+	+	+	+	+					- +	51
Cystadenoma				x	. '	•		•		•	•	×	•		•		•	x	•	•	'	•			•	,	4
l vstadenoma																											-

TABLE D2 Individual Anim м ПЪФ-49 Я-Я 48--П **Α Π**Γ ÷ 9 É T - --.

 TABLE D2

 Individual Animal Tumor Pathology of Fe
 5 6 TN - 41- 1-1 41- 1 do Miz 1.04.1 . . 41 2 V. n

· ·	2	2	*		¢	5	5	5	6	6	6	6	7	7	7	7	~	~	7	-	~~	-	7	~	-	_		
Number of Dava on Study																						7						
Number of Days on Study	7		8												3					3	3	3		3				
·	3	2	1	4	9	U	3.	1	ð٠	3	8	2	8.	U	0	0	0	0	0	0	1	1	1	1	1			
•	1	1	2	2	2	2	1.	2	1	2	2	2	2	1	1	2	2	2	2	2	1	1	1	1	2			
Carcass ID Number	9	8	2	0	0	2	9	1	9	1	3	3	0	9	9	2	2	2	2	2	9	9	9	9	0	۰.	,	
	5	2	7	6	5	6 -	3	5	4	8	3.	5 :	1	1	2	1	2	3	4	5	6	7	8	9	0			
	, 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Genital System (continued)					•			·	, *									-							<u> </u>		· ·	
Uterus	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	4	+	+	+			
Polyp, multiple	•			•	•		·	•	•	•	•	•	•	·	•	•	•	•	·		·	•	•	x	٠.			
Cervix, histiocytic sarcoma				х																		x			•			
Hematopoietic System														-		-	······				<u>.</u>							
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+:			
Lymph node		•	•	•	:	•	•	÷	·	4	+	+	•	•		•	+	•	•		•	•	•	•	• `.		• •	
Sarcoma, metastatic, tissue NOS								•		x	•	•					•										-	
Axillary, sarcoma, metastatic,																									· .	*	-	
tissue NOS										x													•					
Mediastinal, histiocytic sarcoma										~ ~							x		,									
Lymph node, mandibular	+	+	I	+	+	I	+	м	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	. '	,	
Histiocytic sarcoma			-,			-									-	-	x				-			•	-	``	.	
Lymph node, mesenteric	+	+	I	+	М	М	+	+	+	+	М	+	+	+	+	+		+	М	+	+	+.	+	+	М			
Histiocytic sarcoma												•					х										· •	÷
Spleen	-+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Thymus	+	÷	÷	I	1	I	М	+	÷	+	М	M	+	+	+	+	М	4	+	+	+	+	+	+	М			•
Integumentary System					<u> </u>														~~									
Mammary gland	,		М	ı.		м			1.				Ŀ	1	,	v	+		-			-	3.4		+ '	~ ′	·	۶.
Skin			+		+		+ +		- -	т -	T	т 	т 	т 	т 	1¥1	т 	т 	т _	т 	т 		141	т ц`	÷.			· .
Subcutaneous tissue, fibrosarcoma	т	Ŧ	Ŧ	т	x	т	т	Ŧ	т	т.	т	Ŧ	Ţ	Ŧ	T .	Ŧ	т	т	Ŧ	Ŧ	т. 	т	Ŧ	Ŧ	т,			
Subcutaneous tissue, fibrous					7															•								
histiocytoma																											•	
Subcutaneous tissue, sarcoma		х								х										۰.					17	4	•	
Musculoskeletal System	. ~			<u>.</u>						-										-	i			<u> </u>				
Bone	1		1	-		L	1		л.	ъ	. د	4	ـد.	<u>ــ</u>	÷	L.	ىد	ـ	ـ	ـ	<u>ب</u> د	ً.	Т.	` ب	 ـــــــــــــــــــــــــــــــــــ			
Skeletal muscle	+		т	T,	Ţ	т	т	т	7-	ч.	т	Ŧ	Τ.	Ţ	Т	T.	Ŧ				T	-	Ŧ	1	1		,	
																					_						•.	
Nervous System			÷																						. •			
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+_	+	+		ŕ	
Respiratory System																_						<i>.</i>					۰.	
Lung	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+			
Alveolar/bronchiolar adenoma						Х														ъ.	1 .			·		•!		
Alveolar/bronchiolar carcinoma			Х		х							х								~								
Hepatocellular carcinoma, metastatic,																						•					• •	
liver						х	Х						х														•	
Histiocytic sarcoma							•										x										•	
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		-	
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		<u>ر، ا</u>	_
Special Senses System																							-				· .	
Ear																												· .
Fibrosarcoma																											۰.۰	
Harderian gland																+						•					1	•
Adenoma																Х								v				

Lesions in Female Mice

TABLE D2

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3						-	-	3		3	3	3		
	2	-	2	2	2	-	6			-	-	7	-					8						-	8	-	
····	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Carcass ID Number	0	0	0	1	2	0	0	0	2	3	1				3	3	3	1	1	1	2	3	3	3	3	4	Total
	7∙	8	9	0	8	2	3	4	9	0	1	2	3	4	1	2	4	6	7	9	0	6	7	8	9	0	Tissues
																1									1	1	Tumor
Genital System (continued)												_		_							_						
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- 51
Polyp, multiple																											1
Cervix, histiocytic sarcoma																											2
lematopoietic System		·		_												<u> </u>				_						· · ·	
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Lymph node																							+	+			7
Sarcoma, metastatic, tissue NOS																											1
Axillary, sarcoma, metastatic,																											
tissue NOS																											1
Mediastinal, histiocytic sarcoma																											1
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	47
Histiocytic sarcoma																											1
Lymph node, mesenteric	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Histiocytic sarcoma																											1
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	I	+	M	+	+	+	+	+	+	+	M	40
ntegumentary System																		_									
Mammary gland	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	46
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Subcutaneous tissue, fibrosarcoma																			х								2
Subcutaneous tissue, fibrous																											
histiocytoma																					х						1
Subcutaneous tissue, sarcoma																											2
Musculoskeletal System													•														
Bone	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Skeletal muscle																											1
Nervous System	/																										
Brain	+	• +	• +	· +	+	+	+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	51
Respiratory System					-																						
Lung	+	• +	• +	• +	• +			+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	51
Alveolar/bronchiolar adenoma						Х	х	х							X						х						6
Alveolar/bronchiolar carcinoma																											3
Hepatocellular carcinoma, metastatic,					v																						4
liver Histografic sarcoma					Х	•																					4 1
Histiocytic sarcoma Nose							4		л.		۶A	+	L.		.ب	L	L.	.	4	. ئە	4	Т	_	L	L	<u>ــ</u>	50
Trachea	+ +	· +	+ +	- +	• +	· +	+	+	+	+ +	+	. . +	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +	51
Special Senses System														-													
Ear																					+						1
Fibrosarcoma																					x						1
Harderian gland																											1
Adenoma	•																										1

TABLE D2

2 3 Number of Days on Study 8 1 3 3 3 3 3 3 3 3 3 3 3 0 0 1 1 1 1 3 3 0 9 9 2 2 2 2 2 9 9 **Carcass ID Number** 9 0 2 7 6 5 6 3 5 4 8 3 5 1 1 2 1 2 3 4 5 6 7 8 9 0 **Urinary System** Kidney + + Histiocytic sarcoma X Ureter Urinary bladder + + + A A + + + A + A + + + + + + + + + + + + + + + Systemic Lesions Multiple organs + X X Histiocytic sarcoma х х Lymphoma malignant histiocytic Lymphoma malignant lymphocytic х х х х Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type .

Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylphthalate: 7.5 µL (continued)

Lesions in Female Mice

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylphthalate: 7.5 µL (continued) 7 7 7 7 7 7 777 7 7 Number of Days on Study 2 2 2 2 2 2 6 6 6 6 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 **Carcass ID Number** 0 0 0 1 2 0 0 0 2 3 1 1 1 1 3 3 3 1 1 1 2 3 3 3 4 Total 7 8 9 0 8 2 3 4 9 0 1 2 3 4 1 2 4 6 7 9 0 6 7 8 9 0 Tissues/ Tumors **Urinary System** Kidney 51 + + 4. 4 + + + Histiocytic sarcoma 1 Ureter 1 Urinary bladder 47 + Systemic Lesions Multiple organs 51 + + + + + Histiocytic sarcoma 3 Lymphoma malignant histiocytic 1 Lymphoma malignant lymphocytic Х 3 Lymphoma malignant mixed х x ххх 8 Lymphoma malignant undifferentiated cell type х 1

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylphthalate: 15 µL 1 3 5 5 5 5 6 6 6 6 6 6 7 7 .7 7 7 7 7 7 7 Number of Days on Study 9 9 2 6 8 8 3 4 56 7 7 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 8 3 6 2 4 3 1 3 5 8 0 0 0 0 0 2 2 0 0 0 0 1 3 **Carcass ID Number** 4 3 1 2 1 2 3 1 1 6 2 4 4 1 1 1 2 5 5 5 5 5 5 2 2 0 9 5 4 2 7 2 1 902936 7 8 0 1 2 3 4 5 9 68 **Alimentary System** Esophagus Gallbladder Intestine large, colon Α Intestine large, rectum A Intestine large, cecum Leiomyoma Intestine small, duodenum Intestine small, jejunum Adenocarcinoma Intestine small, ileum Liver Hemangiosarcoma X Hepatocellular carcinoma ххх х Hepatocellular adenoma x х х ххх x Hepatocellular adenoma, multiple x Histiocytic sarcoma Х Pancreas Salivary glands Stomach, forestomach Stomach, glandular **Cardiovascular System** Heart + Hemangiosarcoma, metastatic, spleen х **Endocrine System** Adrenal cortex Adenoma Adrenal gland Adrenal medulla Islets, pancreatic Parathyroid gland Pituitary gland Pars distalis, adenoma Thyroid gland Follicular cell, adenoma х **General Body System Tissue NOS** + ┾ Hemangiosarcoma х х **Genital System** Ovary Cystadenoma Granulosa cell tumor malignant х Luteoma

Lesions in Female Mice

TABLE D2

	_	÷	~	~	_	~	-	-	~	~	-	~	~	-	~	-	-	-	~	-	~	~	-	-	-	
		7	•	7	7		7																7	7	· · ·	
Number of Days on Study	3			3	3	3															3		3	3		-
	2	2	2	2	2	2	2	6	6	6	6	6	6	6	6	6 (6 (6	6	8	8	8	8	8	8	
	. 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Carcass ID Number	3	3	3	3	5	5	5	2	2	2	2	4	4	4	4	4	4	4	5	1	1	3	3	3	3	Total
	0	6	7	8	6	7	8	1	2	3	5	1	4	5	6	7 3	8	9	0	3	4	1	3	4	5	Tissues
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumors
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	50
Gallbladder	+	+	+	+	Ń												+					+	+	+	+	44
Intestine large, colon	, +	+		+			+										+					+	+	+	+	49
Intestine large, rectum	, +	, _	+	+	+			+					+									+	+	+	+	48
Intestine large, cecum	, +	+	+				+						+				+						+			48
Leiomyoma		'			'	•		1		'	,	•	1	•	ſ	•	'	'	•	•	'	•	'		'	1
	L.	-		Т	+		-	. L.		Т	Ĺ.		ь	<u>т</u>	1	_	<u>т</u>	т	-		Т	-	`	1	-	48
Intestine small, duodenum			+				+				+		+				+				- ,	+	.+	T		
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	Ŧ	+	+	Ŧ	+	+	+	Ŧ	+	Ŧ	+	+	+	+	+	. 50
Adenocarcinoma															4											1
Intestine small, ileum	+	+	+	+	+	+	+	+	+			+					+		+	+	+	+	+	+	+	49
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma																										1
Hepatocellular carcinoma								Х											Х							6
Hepatocellular adenoma					Х	Х			Х	х												х		х		13
Hepatocellular adenoma, multiple																										1
Histiocytic sarcoma																										1
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	50
Salivary glands	+	+	+	+	+																			+	+	50
Stomach, forestomach	+	+		+			+							•												50
Stomach, glandular	• +	+			+																					50
Cardiovascular System		-											·													
Heart	+	÷	+	+	+	Ŧ	+	+	Ŧ	+	+	+	+	÷	+	+	+	+	Ŧ	+	+	+	+	+	+	50
Hemangiosarcoma, metastatic, spleen	•	•		•	•		•	•		•	•		•	•	•	•	•	•	•	•	•		•		•	1
Endocrine System																<u>.</u>								_		
Adrenal cortex	<u>ـ</u> ـ	+	+	-	+	Ŧ	L	بد	Ъ	Ъ	+	Ŧ	Ŧ	+	+	Ŧ	Ŧ	-	Ŧ	+	+	+	+	+	÷	50
Adenoma	т	т	т	X		т	т	т.	т	т	Т.	т	т	T	4	т	Т.	Т	т			Ŧ	4.		т	1
•	,	,	,	Â	,	,	,	,	,	,	,	,	,	,	,	,	,	,		,	,			,	,	46
Adrenal giand	+	+	+	+	+	+	+	+	+			+		+	+	+	+	+	+	+	+	+		+	- <u>+</u> -	
Adrenal medulla	+	+	+		+	+	+				+					+				+	+	+	+		+	50
Islets, pancreatic	+	+	+				+																		*	50
Parathyroid gland	+		+				÷																			47
Pituitary gland			+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	.+	+	50
Pars distalis, adenoma	х											Х														4
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Follicular cell, adenoma																								•		. 1
General Body System																										
Tissue NOS																										2
Hemangiosarcoma																									•	2
Genital System					÷						<u>_</u>															
Ovary	+	. +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Cystadenoma	x			'		•	'	•	•	x	•		•	•	•	•	•	•	•	•	,	•		•	•	2
Granulosa cell tumor malignant	~	•								23																1
Luteoma																х										1
Luttoma																Λ						•				Ť

~-----

2

TABLE D2

Individual Animal Tumor Pathology of	Fem	ale	M	lice	e in	n tl	ne 2	2-}	lea	r I)er	ma	al S	stu	dy (of	Di	eth	ŊIJ	phi	tha	lat	te:	15	5μI	(cont	inued
	1	3	5	5	5	5	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7		
Number of Days on Study	9	9	2	6	8	8	3	4	5.	6	7	7	0	3		3	3	3	3	3	3	3	3	3	3		
	3	3	1	8	3	6	2	4	3	1	3	5	8	0	0	0	0	0	0	0	0	0	1	2	2		
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
Carcass ID Number	4	3											4							5	5	5	5	2	2		
	0	9 1											3 1				0			3		-	-	6	-		
								-	<u> </u>			-							<u> </u>			-	-				
Genital System (continued) Uterus		R /																,		,				15			
·	+	IV.	[+	+	+	+	+	+	+	+	+	+	Ŧ		+	+	+	+	+	+	+	+	+	÷	+		
Hemangiosarcoma														Х													
Polyp Convin histionatic company						v																					
Cervix, histiocytic sarcoma Cervix, leiomyosarcoma					х	х																					
													-			_				_					,		
Hematopoietic System Bone marrow	J.	Ļ	. 1		д	<u>д</u>	.1	ı.	. т	بل	L	ъ	.د.	L.	Ŧ		÷	L.		L	L.	ــ ـ	ж	_L	+		
Lymph node	+	+	+	+	+	+	Ŧ	+	+	Ŧ	+	+	+	Ŧ	Ŧ	++	-	т	+	Ŧ	÷	÷	Ŧ	Ť	Ŧ		
Lymph node, mandibular	ىد.	L	·I	++	بد	L	I	Ł		.د.	Ъ	٦	+	Ŧ	+			Ŧ	Ŧ	Ŧ	- L -	Ł	м	Ŧ	Ŧ		
Lymph node, mesenteric		- -	· 1	т 	- -	- -	r		т - т	т -		- -	+	Ť		+	т —	т 	- -	-	+	+ +			- -		
Spleen	т +	- -	· +	т -	- -	- -	т Т	- -	- -	- +	+	+	+	+		+	+	+	+	+	+	+	+	+	- +		
Hemangiosarcoma	'	•	•	'	•	'		'			'	x				•		x	•	•	x	•	•	'			
Thymus	+	+	+	Μ	M	I	+	+	+	М	М		+	+	+	+	+		М	+		М	+	+	+		
Integumentary System					<u></u>					÷																	
Mammary gland	+	-		+	+	+	-	+	+	+	+	+	+	+	+	4	+	+	+	+	+	+	+	+	+		
Skin	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Musculoskeletal System					<u></u>				_		_			·		-	_	_	_	_							_
Bone	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Skeletal muscle	•		'	•	'	•	•	•	'	'	•	•	r	•	'		•	•	•		'	•	'	•			
Nervous System												-															
Brain	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+.	+	+	+	+	+		
Spinal cord			•		•	•		•	·	•	•	+		•	•	•			•	•	•		+		•		
Respiratory System	-				_										-											······	
Lung	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Adenocarcinoma, metastatic,																											
harderian gland																											
Alveolar/bronchiolar adenoma			Х													х											
Alveolar/bronchiolar carcinoma																											
Alveolar/bronchiolar carcinoma,																											
multiple							Х																				
Hepatocellular carcinoma, metastatic,																											
liver											Х																
Histiocytic sarcoma						X																					
Nose Trachea	+	· + · -	· + - +	· + · +	· + · +	· + · +	· + · +	++	· + · +	+++	+++	++++	+++	++	++	++	+++	++	++	++	++	++	++	+++++++++++++++++++++++++++++++++++++++	++		
														•							•			•			
Special Senses System Ear			_																								
Fibrosarcoma		4																									
Eye		1	•																								

ndividual Animal Tumor Pathology o		100)ji 4		A A A		11 42		<i>6</i> -1	1 69	1 2						01		~~		8,44	~					<u>дала (</u> ч	continueu
4	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		7	
umber of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		3	
	2	2	2	2	2	2	2	6	6						6						8	8	8	8		8	
	3	3	_	-	-	_							3	3	3			3	3	3	3	3	3	-	; ;		
Carcass ID Number	3	3	3	3	5	5	5	2	2	2	2	4	4	4	4	4	4	4	5	1	1	3	- 3	3	5	3	Total
	0	6	7	8	6	7	8	1	2	3	5	1	4	5	6	7	8	9	0	3	4	1	- 3	4		5	Tissues
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	Tumor
Genital System (continued)		~																									
Uterus	+	+	4		- +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	⊦	+	49
Hemangiosarcoma																											1
Polyp												x															1
Cervix, histiocytic sarcoma												- 11															1
Cervix, leiomyosarcoma																											1
lematopoietic System																											
Bone marrow	+	4	- 4	+ -1	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• - +	+	ŀ	+	50
Lymph node							+					+															5
Lymph node, mandibular	+	+		+ +		• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• -+	+	⊦	+	47
Lymph node, mesenteric	+	-+		+ +	- +	• +	+	+	+	+	+	+	+	+	+	+	÷	+	+	Μ	(+	+	• +		+	+	48
Spleen	+	-4				- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4	4	F	+	50
Hemangiosarcoma	•				•	•	•	•	•	•	•	•	•	·	,	,	•	•	,	•	•				•		3
Thymus	L L	د .	- 4	LJ	+	• +	+	+	<u>ـ</u>	-	+	.	+	+	+	м	L.	м	м	Ъ	м	N			L	-	35
		-		г ¬	- T	т —	т	т	т —	т 	Τ	T	Ŧ	т	T	141	т	141	. 191	т	141				г	т 	
ntegumentary System																											
Mammary gland	+	- 4	• -	+ -1	- 4	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		- 4	ŀ	+	50
Skin	+	- +		+ +		- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• 1		ł	+	50
Musculoskeletal System			<u> </u>		·																						
Bone	+			+ -		- 4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		1	F	+	50
Skeletal muscle																					+						1
Nervous System				_		_												·									
Brain	+			⊢ -	+ +	- +	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+			ł	+	50
Spinal cord				•				•	•	•	•	•	,		•	•		·	•	•						•	2
Respiratory System																				_							·····
Lung	+		+ -	+ +	۲ - ۱	- +	+	+	• +	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	50
Adenocarcinoma, metastatic,																											
harderian gland													Х														1
Alveolar/bronchiolar adenoma																x										x	4
Alveolar/bronchiolar carcinoma				,	c																						i
Alveolar/bronchiolar carcinoma,				1	•																						-
multiple																											1
																											T
Hepatocellular carcinoma, metastatic,								~	,																		2
liver								Х	•										Х								3
Histiocytic sarcoma																											1
Nose	+	• •	+ •	+ •	+ -	+ +	• +	• +	- +	+	• +	+	+	_,∔	+	+	+	+	+	+	• +	· - f		+ -	ł	+	50
Trachea	-+		+ •	+ •	+ +	+ +	• +	• +	- +	+	• +	+	+	+	+	+	+	+	+	+	+			+ -	+	+	50
Special Senses System																											
Ear																											1
Fibrosarcoma																					,						1
Eye													+														1

TABLE D2

 Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylphthalate:
 15 μL (continued)

 1
 3
 5
 5
 5
 6
 6
 6
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 <

Carcass ID Number	4	3	1	2	1	2	3	1	1	6	4	2	4	1	1	1	2	5	5	5	5	5	5	2	2		
	0	9	5	4.	2	7	2	1	9	0	2	9	3	6	7	8	0	1	2	3	4	5	9	6	8		
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
Special Senses System (continued)																										 	
Harderian gland																							+		+		
Adenocarcinoma																											
Adenoma																							Х		х		
Urinary System																					_					 	
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Urinary bladder	+	М	+	+	+	+	+	+	+	+	ł	+	+	+	+	+	+	• •	+	+	+	+	+	+	+		
Systemic Lesions									.																	 	
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	+	• +	· +	+	+	• +	+	+	+		
Histiocytic sarcoma						х																					
Lymphoma malignant lymphocytic																X											
Lymphoma malignant mixed				Х					Х				Х									X					
Lymphoma malignant undifferentiated																											
cell type										х																	

Lesions in Female Mice

TABLE D2																											· *.
Individual Animal Tumor Pathology of	Fem	ale	• ₪	lice	e ir	1 tl	1e :	2-}	Yea	ir I	Dei	•ma	al S	Stu	dy	of	Di	iet	hyl	ph	tha	ala	te:	1:	5μ	L ((ontinuèc
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	-	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
	2	2	2	2	2	2	2	6	6	6	6	6	6	6	6	6	6	6	6	8	8	8	8	8	8		
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	-	
Carcass ID Number	3	3	3	3	5	5	5	2	2	2	2	4	4	4	4	4	4	4	5	1	1	3	3	3	3		Total
	0	6	7	8	6	7	8	1	2	3	5	1	4	5	6	7	8	9	0	3	4	1	3	4	5		Tissue
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		Tumo
Special Senses System (continued)															•					• .							• •
Harderian gland						+							+								+					•	5
Adenocarcinoma													Х														1
Adenoma						Х															х					•	4
Urinary System																-						• • • •					× .
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		49
Systemic Lesions						_														_					•		•
Multiple organs	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+		50
Histiocytic sarcoma																											· 1
Lymphoma malignant lymphocytic						Х																					2
Lymphoma malignant mixed						•	Х																			,	5
Lymphoma malignant undifferentiated																							- 1				1 A
cell type					•																						1

TABLE D2

Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylphthalate: 30 µL 2 4 7~ Number of Days on Study 2 3 3 4 2 3 3 3 3 3 3 0 1 **Carcass ID Number** 3. 6 6 8 1 2 0 1 1 **Alimentary System** Esophagus Gallbladder Intestine large, colon Intestine large, rectum Intestine large, cecum Intestine small, duodenum Intestine small, jejunum Α + Intestine small, ileum A A Liver Hemangiosarcoma, metastatic, spleen х Hepatocellular carcinoma Х Х Hepatocellular carcinoma, multiple x Hepatocellular adenoma х х X х Hepatocellular adenoma, multiple х Mesentery Pancreas Salivary glands ++Stomach, forestomach Squamous cell papilloma Stomach, glandular Tongue Squamous cell papilloma Cardiovascular System Heart **Endocrine System** Adrenal cortex Adenoma Adrenal gland Adrenal medulla Islets, pancreatic Parathyroid gland Pituitary gland Pars distalis, adenoma Thyroid gland Follicular cell, adenoma Х **General Body System** Tissue NOS **Genital System** Ovary Cystadenoma Hemangiosarcoma X Uterus ÷ ++ ++ +

Lesions in Female Mice

TABLE D2

,

						_								_			_			_	_	-	_			
7	7	7	'	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
1	1	1		1	1	1	1	1	2	2	2	2	2	6	6	6	7	7	7	7	7	7	7	8	8	
4	4	4	ļ	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
6	7	7	1	7	7	7	7	7	3	3	3	3	4	3	3	3	4	4	4	5	5	5	5	5	5	Total
9	0) 1		5	6	7	8	9	6	7	8	9	0	1	4	5	3	4	5	1	2	3	5	7	9	Tissues
1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tumor
																_		_	_		_	_	_			
+	-	⊦ -	ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	50
+	-	+ -	+	+	+	+	+	+															+	+	+	45
+	-	+ -	ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
+	-	F -	ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
+	-		ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
· +	-	+ -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
+		⊦ -																					+			48
+	_		+	+	+	+	+							+						+	+	+	+	- +	+	47
+	_	F⁄-	+	+	+		+						•				· · ·			+	+	+	+	+	+	50
		1	-			•	•	•	•	•	•	•	•	•	•	•	•	•	·		•		•		•	1 2
																								•		
	_	-																							•••	1
Х	. 2	K								х										х					Х	
																										1
									+																	3
+	-	+ -	ł	+'	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	49
+	-	+ -	t	+	+	+	+			+	+	•	•		•		•			+	+	+	+	+	+	50
+	-	+ -	+	+	+	+	+	+	.+	+	+	+	+	+	+	+	+			+	+	+			+	
														•												2
+	-	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
																										1
Х						_																				1
+	-	+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	50
						-				_																····
+		÷ •	ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· +	• +	• +	50
													Х													1
+					+	+	+	+	+	+	+	+			+	+	+	+	+		+	+	• +	• +	• +	39
+		+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	50
+		+ •	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	• +	49
. +			•		+								+	+	+	+	+	+	+	+	+	+	• +	• +	• +	50
+		+ •	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	• +	• +	49
																							X	<u> </u>		1
+		+ •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			• `+	
						-		•							•					-	-				-	1
					-											·,		-							<u> </u>	1
·																_		_					-			<u></u>
+		+	+	+.	+	+	+	+	• +	+	• +	+	+	+	+	+	+	+	+	+	+	-+	+		- +	49
•		•	•	• :	•	·	•				•	•	•	•	•	•	•	•	•						•	2
				•									•													1
	3 1 4 6 9 1 + + + + + + + + + + + + +	3 3 1 1 4 4 6 7 9 0 1 1 + - + - + - + - + - + - + - + -	$\begin{array}{c} 3 & 3 & 3 \\ 1 & 1 & 1 \\ 4 & 4 & 4 \\ 6 & 7 & 7 \\ 9 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$ $\begin{array}{c} + & + & - \\ + & - & - \\ + & - & - & - \\ + & - & - \\ + & - & - \\ + & - & - \\ + & - & - \\ + & - & - $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3	3 3	3 3	3 3	3 3	3 3	3 3	1 1 1 1 1 1 2 2 2 2 6 6 7							

Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylphthalate: 30 µL (continued)

morvioual Annual Tumor Pathology of																										``		
	2	2	1 -5	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7			
Number of Days on Study	4	1 3	52	: 3	3	4	4	4	9	9	9	1	1	2	3	3	3	3	3	3	3	3	3	3	3			
	, 7	1 6	51	3	.6	5	5	8	1	3	3	2	2	5	0	0	0	0	0	0	0	0	0	1	1			
	4		1 4		. 4	4	4	4	4	4	4	4	4	4	Δ	Λ	4	4	4	4	4	4	4	4	•			
Carcass ID Number	7						8				5					4	•	4	5				6	•	•		-	
	3		1 8				Ō																					
				1	1	1	ĭ	1	1	1	1	1	1	1	1	í	1	1	1	1	1	1	1	1	1			
																_	<u> </u>	<u> </u>										
Hematopoietic System																												•
Bone marrow	-	+ •	+ +	F -		- +	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Lymph node			-	٢	+	•		+					+	+								+						
Lymph node, mandibular	4	۱۶	ŀ	1 -	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Lymph node, mesenteric	. 4	+ -	+ +	+ +	- +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷			•
Spleen	-	+ -	+ +		- 4	- +	+	+	+	+	+	+	+	+	+	4	+	+	+	+	+	+	+	+	+			
Hemangiosarcoma						X				·		x			,	,		•	,	•	'							
Hemangiosarcoma, multiple							x					**			•													
Thymus		т			. ,		M											,	,			í		· . ·				
		- 1	1		- +	• +	M	+	+	+	IVI	+	+	+	M	+	+	+	+	+	+	+	+	+	+			
Integumentary System		_																ų								•		
Mammary gland	4	- -	+ +		+	- +	+	+	+	+	+	М	М	Α	+	+	+	+	4	+	+	+	+	+	+			
Skin	بر		• •				-	- 1 -	+		+	+		+		+	+		+	+	+	+	_		÷			
Basal cell carcinoma	. '		•		•	•	•	'	•	•	•	•	•	•	,	1	'	'	•	,	'	'	'	'	'			
Squamous cell carcinoma	,																											• .
																												•
Subcutaneous tissue, fibrosarcoma				_	-			х																				
Subcutaneous tissue, sarcoma				>	2																							-
Musculoskeletal System							i																				~	
Bone	L	L .	+ +				+	+	Ŧ	-	- k -	+	Ŧ	4	1		+	+	-	+	+	+		+	+			
Vertebra, osteosarcoma	.,		κ.		'	'		'	•	'	,	•		•		'	'		•		,	,	,	. '				
Skeletal muscle		-																								,		
			+	-	+	-	Ť	+													_					• .	•	
Nervous System															_												. ·	• •
Brain	4	⊢ -	+ +		- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			4
Spinal cord	+	۴					+	-																				
Defendance Constant					·																	<i>;</i>						
Respiratory System											,		,	,		,	,	,		,	,	,	,	,	,			
Lung	1		r 1	۳ ٦	- +	· +	+	+	+	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	+	+	+	+	+	+	+	Ŧ	Ŧ	+			
Alveolar/bronchiolar adenoma																					•							•
Alveolar/bronchiolar carcinoma																х					•		÷.		•			
Osteosarcoma, metastatic, bone		2	K.																			, .				•		
Nose	H	۴ -	+ +	+ +	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			
Trachea	, i	÷ ۲	+ +	+ -	- +	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		·	• *
Special Senses System																												
																								· ~ `	1			÷
None																												
Urinary System																		-										
Kidney	2	L -	t d	۲	L L	بد .	ـــ	Ŧ	Ŧ	Ŧ	+	·+	+	Ŧ	÷	Ŧ	÷	+	+	+	+	+	+	+	+			2
Urinary bladder		, 	. – + –		- A	، + ،	· +	+	+	+	+	+	+	+	+	+	+	+	+	Ņ	+	+	+	+	+		,	
																											<u> </u>	
																										· · · ·		
Systemic Lesions														5		r	5		.1	.1			. ب	. ئە	.1			
Systemic Lesions Multiple organs	4	+ •	+ +	+ -	⊦ - •		+	+	+	+	+	+	+	+	+	Ŧ	+	+	+	+	+	+	+	+	+		;	
Systemic Lesions	4	+ •	+ +	+ -	⊢ H X		+	+	+ x	+	+	+	+	+ X	+	Ŧ	+	+	+	+	+		+		+ x		Ĵ.	

Individual Animal Tumor Pathology of Female Mice in the 2-Year Dermal Study of Diethylphthalate: 30 µL (continued)

	7	-	7 '	7	7	7	- 7	7	7	7	7	7	7	7	7	7	7	7	7	~	~	7	~		7	7	7		
umber of Days on Study																		-									•		
umber of Days on Study	3					3	3		3	3	3	3	3	3	3	3	3			•3	3	3	3			3			
	1	1	L	1	1	1	1	1	1	2	2	2	2	2	6	6	6	7	7	7	7	7	7		7	8	8		
	4	2	1	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	. 4	4	4	4		
Carcass ID Number	6	2	7	7	7	7	7	7	7	3	3	3	3	4	3	3	3	4	4	4	5	5	5	4	5	5	5	Total	I
	9	(5		7									4						2				7	-	Tissu	
	-			-												1										-	-	Tumo	
				-	-	-	-	-	-	-	-	-		-				<u> </u>			-	-				_	-	1000	
Iematopoietic System																												50	
Bone marrow	+		t	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	· -	+ •	÷	+	+	50	
Lymph node											+			•	_													7	
Lymph node, mandibular	+	• •	ł	+	+	+	+	+	+	+	+	+	+	+	Ι	+	+	+	+	+	+	+		+ •	+	+	+	47	
Lymph node, mesenteric	+	• •	ŧ-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· - I	+ •	+	+	+	50	
Spleen	+		ł	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· - I	+ •	+	+	+	50	
Hemangiosarcoma																												2	
Hemangiosarcoma, multiple																											·	1	
Thymus	Ŧ		Ŧ.	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-		L .	+	+	+	45	
inymus					-	141	т	Т	-1-	-	-	. T	Ŧ	-1-	т		т	т	•	-	1				T	_	т.		
Integumentary System																													
Mammary gland	M	1 .	ł	+	+	+	Μ	+	+	+	+	+	+	+	+			+				+		N.	+	+	+	44	
Skin	+	•	+-	+	+	· +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		⊦ ·	+	+	+	50	
Basal cell carcinoma																	Х											1	
Squamous cell carcinoma																					X							1	
Subcutaneous tissue, fibrosarcoma																												1	
Subcutaneous tissue, arcoma																												1	
																												*	
Musculoskeletal System																													
Bone	+		≁	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	+	+	+	50	
Vertebra, osteosarcoma																												1	
Skeletal muscle																												4	-
Nervous System																													
-																												=	
Brain	+	• •	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	50	
Spinal cord																												2	
Respiratory System																													
Lung	+		╋	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+ -	+	+	+	50	
Alveolar/bronchiolar adenoma												Х																1	
Alveolar/bronchiolar carcinoma																												1	
Osteosarcoma, metastatic, bone																												1	
					,			,													÷.,								
Nose			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		+ ·	+	+	+	50	
Trachea	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+-	+	+	+	+	+	• +		+	+	+	+	50	
Special Senses System None																													
Urinary System			-																										
Kidney			,																					ı.			_	50	
Urinary bladder	+	_	т т	Ť	T	т	-	T	T	T	т ,	- T	Ţ	T	T	т 	т -	т ,	т ,	т ,	-† ,	- 1		r L	т _	T	т -	· 48	
	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +		+	+	+	+	48	
Systemic Lesions																											_		
Multiple organs	-+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	50	
																												1	
Lymphoma malignant lymphocytic																													
Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Dermal Study of Diethylphthalate

	0 μL	7.5 μL	15 μL	30 µL
Adrenal Medulla: Benign Pheochromocytoma			•	······································
Dverall rate ^a	4/50 (8%)	0/51 (0%)	0/50 (0%)	0/50 (0%)
Adjusted rate ^b	9.3%	0.0%	0.0%	0.0%
erminal rate ^c	3/41 (7%)	0/38 (0%)	0/37 (0%)	0/36 (0%)
irst incidence (days)	662	_e	-	-
ife table test ^d	P = 0.026N	P=0.076N	P=0.081N	P=0.082N
ogistic regression test ^d	P = 0.022N	P=0.066N	P=0.067N	P=0.065N
Cochran-Armitage test ^d	P = 0.020N	1 0.0001		
Fisher exact test		P=0.056N	P=0.059N	P=0.059N
larderian Gland: Adenoma				- · ·
overall rate	1/50 (2%)	1/51 (2%)	4/50 (8%)	0/50 (0%)
djusted rate	2.4%	2.6%	10.8%	0.0%
'erminal rate	1/41 (2%)	1/38 (3%)	4/37 (11%)	0/36 (0%)
irst incidence (days)	730 (T)	730 (T)	730 (T)	🚽 🗋 🦾 👘 👘
ife table test	P=0.488N	P=0.745	P=0.150	P=0.526N
ogistic regression test	P=0.488N	P=0.745	P = 0.150	P=0.526N
Cochran-Armitage test	P=0.447N	•		19 - C C C C C C C C
isher exact test		P=0.748N	P=0.181	P=0.500N
larderian Gland: Adenoma or Carcinoma				and a state of the
Overall rate	1/50 (2%)	1/51 (2%)	5/50 (10%)	0/50 (0%)
djusted rate	2.4%	2.6%	13.5%	0.0%
erminal rate	1/41 (2%)	1/38 (3%)	5/37 (14%)	0/36 (0%)
irst incidence (days)	730 (T)	730 (T)	730 (T)	_
ife table test	P=0.522N	P=0.745	P=0.081	P=0.526N
ogistic regression test	P=0.522N	P=0.745	P=0.081	P=0.526N
Cochran-Armitage test	P=0.477N			
isher exact test		P=0.748N	P=0.102	P=0.500N
iver: Hepatocellular Adenoma	•		• • • •	e e e e e e e e e e e e e e e e e e e
Dverall rate	4/50 (8%)	12/51 (24%)	14/50 (28%)	10/50 (20%)
djusted rate	9.8%	30.6%	35.5%	24.8%
erminal rate	4/41 (10%)	11/38 (29%)	12/37 (32%)	7/36 (19%)
irst incidence (days)	730 (T)	675	586	456
ife table test	P=0.089	P=0.019	P=0.005	P=0.051
ogistic regression test	P=0.127	P=0.017	P=0.006	P=0.075
Cochran-Armitage test	P=0.137			· · ·
isher exact test		P=0.030	P=0.009	P=0.074
iver: Hepatocellular Carcinoma				• • • •
Overall rate	4/50 (8%)	5/51 (10%)	6/50 (12%)	3/50 (6%)
Adjusted rate	8.8%	11.7%	14.4%	7.1%
erminal rate	2/41 (5%)	2/38 (5%)	2/37 (5%)	0/36 (0%)
first incidence (days)	591	560	644	645
life table test	P=0.450N	P = 0.449	P=0.313	P = 0.539N
ogistic regression test	P≕0.297N	P=0.603	P=0.457	P=0.484N
Cochran-Armitage test	P=0.405N			
Fisher exact test		P≈0.513	P=0.370	P=0.500N

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	7.5 μL	15 μL	30 μL	
Liver: Hepatocellular Adenoma or Carcinoma	·····	······		·	. ,
Overall rate	7/50 (14%)	16/51 (31%)	19/50 (38%)	12/50 (24%)	
Adjusted rate	15.8%	37.8%	45.0%	28.6%	
Terminal rate	5/41 (12%)	12/38 (32%)	14/37 (38%)	7/36 (19%)	
First incidence (days)	591	560	586	456	
Life table test	P=0.171	P=0.022	P=0.004	P=0.116	
Logistic regression test	P=0.231	P=0.029	P=0.005	P = 0.161	
Cochran-Armitage test	P=0.235				
Fisher exact test		P=0.032	P=0.006	P=0.154	
Lung: Alveolar/bronchiolar Adenoma					
Overall rate	2/50 (4%)	6/51 (12%)	4/50 (8%)	1/50 (2%)	
Adjusted rate	4.9%	15.0%	10.0%	2.8%	1.4
Terminal rate	2/41 (5%)	5/38 (13%)	3/37 (8%)	1/36 (3%)	
First incidence (days)	730 (T)	560	521	730 (T)	
Life table test	P=0.280N	P=0.114	P=0.298	P=0.545N	
Logistic regression test	P=0.238N	P=0.128	P=0.341	P=0.545N	
Cochran-Armitage test	P=0.236N				
Fisher exact test		P=0.141	P=0.339	P=0.500N	4.50
Lung: Alveolar/bronchiolar Carcinoma				· ·	· .
Overall rate	2/50 (4%)	3/51 (6%)	2/50 (4%)	1/50 (2%)	
Adjusted rate	4.8%	6.5%	4.9%	2.8%	:
Terminal rate	1/41 (2%)	0/38 (0%)	1/37 (3%)	1/36 (3%)	
First incidence (days)	727	481	632	730 (T)	
Life table test	P=0.341N	P=0.474	P=0.656	P==0.548N	
Logistic regression test	P=0.308N	P=0.569	P=0.691	P=0.539N	
Cochran-Armitage test	P=0.315N				
Fisher exact test		P=0.509	P=0.691N	P=0.500N	
Lung: Alveolar/bronchiolar Adenoma or Carci	inoma			. •	2
Overall rate	4/50 (8%)	9/51 (18%)	6/50 (12%)	2/50 (4%)	
Adjusted rate	9.5%	20.6%	14.7%	5.6%	· .
Terminal rate	3/41 (7%)	5/38 (13%)	4/37 (11%)	2/36 (6%)	
First incidence (days)	727	481	521	730 (T)	
Life table test	P=0.192N	P=0.102	P=0.317	P=0.401N	
Logistic regression test	P=0.145N	P=0.143	P=0.370	P=0.393N	
Cochran-Armitage test	P=0.149N				
Fisher exact test		P=0.125	P=0.370	P=0.339N	
Ovary: Cystadenoma					
Overall rate	3/49 (6%)	4/51 (8%)	2/49 (4%)	2/49 (4%)	
Adjusted rate	7.5%	10.5%	5.4%	5.4%	
Terminal rate	3/40 (8%)	4/38 (11%)	2/37 (5%)	1/36 (3%)	
First incidence (days)	730 (T)	730 (T)	730 (T)	725	
Life table test	P=0.365N	P=0.472	P=0.536N	P=0.550N	
Logistic regression test	P=0.359N	P=0.472	P=0.536N	P=0.540N	
Cochran-Armitage test	P=0.324N				
Fisher exact test		P=0.523	P=0.500N	P=0.500N	

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

Pituitary Gland (Pars Distal	is): Adonoma	· · · · · · · · · · · · · · · · · · ·		· · · · ·	
Overall rate	is). Auchoma	6/49 (12%)	4/48 (8%)	4/50 (8%)	1/49 (2%)
Adjusted rate		13.9%	10.6%	4/30 (8%)	2.9%
ferminal rate	•	4/41 (10%)	3/36 (8%)	3/37 (8%)	1/35 (3%)
First incidence (days)	*	675	682	521	730 (T)
life table test	÷ -	P = 0.068N	P = 0.445N	P = 0.436N	P = 0.088N
ogistic regression test	a ser à la companya de la companya d	P = 0.003N P=0.047N	P = 0.237N	P = 0.362N	P = 0.066N
Cochran-Armitage test		P = 0.045N	1 = 0.23714	1 -0.5021	1 -0.00014
isher exact test		1 -0.04514	P=0.383N	P=0.357N	P=0.056N
isher exact test	•		1-0.36510	1 -0.55714	1 -0.05014
kin (Subcutaneous Tissue):	Fibrosarcoma or				e e station production de
Overall rate	1 X / X / X / Z	1/50 (2%)	4/51 (8%)	0/50 (0%)	2/50 (4%)
djusted rate		2.4%	8.8%	0.0%	4.4%
erminal rate		1/41 (2%)	1/38 (3%)	0/37 (0%)	0/36 (0%)
irst incidence (days)		730 (T)	365	-	633
ife table test		P=0.595N	P=0.172	P=0.520N	P=0.475
ogistic regression test		P=0.579N	P=0.229	P = 0.520N	P=0.510
Cochran-Armitage test		P=0.580N	• •		
isher exact test			P=0.187	P = 0.500N	P = 0.500
pleen: Hemangiosarcoma	· ·				and the second
overall rate		0/50 (0%)	0/51 (0%)	3/50 (6%)	3/50 (6%)
djusted rate		0.0%	0.0%	7.8%	6.9%
erminal rate	•	0/41 (0%)	0/38 (0%)	2/37 (5%)	0/36 (0%)
irst incidence (days)		_		675	645
ife table test		P=0.032	·	P=0.105	P=0.113
ogistic regression test		P=0.034	- 11-1 	P=0.113	P=0.125
Cochran-Armitage test	,	P=0.034	н. 19		
isher exact test		· ·	_	P=0.121	P=0.121
hund Cland (Fallianian C	ll). Adamama			· · · · ·	
hyroid Gland (Follicular Co	en): Adenoma	1/50 (207)	5/51 (100%)	1/50 (207)	1/50 (2%)
Overall rate		1/50 (2%) 2.3%	5/51 (10%) 12.8%	1/50 (2%) 2.7%	2.8%
djusted rate				2.7% 1/37 (3%)	1/36 (3%)
erminal rate		0/41 (0%) 675	4/38 (11%) 718	· · /	730 (T)
irst incidence (days)		P = 0.358N	P = 0.091	730 (T) P=0.735	P=0.741
ife table test ogistic regression test	· ·	P = 0.330N	P = 0.091 P = 0.090	P = 0.753 P = 0.762	P = 0.762N
0 0		P = 0.330N P = 0.315N	1 -0.090	1 -0.702	1 -0.70411
ochran-Armitage test ísher exact test		1 -0.31514	P=0.107	P=0.753N	P=0.753N
		:, ·			· · ·
hyroid Gland (Follicular Co	ell): Adenoma or		6/51 (100/)	1/50 (207)	1/50 (2%)
Overall rate	· .	1/50 (2%) 2 2%	6/51 (12%) 15 4%	1/50 (2%) 2.7%	1/50 (2%) 2.8%
djusted rate		2.3%	15.4%	2.7%	
erminal rate		0/41 (0%)	5/38 (13%)	1/37 (3%) 720 (T)	1/36 (3%) 730 (T)
irst incidence (days)		<u>.</u> 675 B0 309N	718 P-0.050	730 (T) P=0.735	730 (T) P=0.741
ife table test		P = 0.308N	P = 0.050		P = 0.762N
ogistic regression test		P = 0.281N	P=0.048	P=0.762	1 -0.70214
Cochran-Armitage test	• .	P = 0.265N	P-0.050	P=0.753N	P=0.753N
	*	r=0.203N	P=0.059	P=0.753N	P=0.753N

216

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	7.5 μL	15 µL	30 µL	
	<u>·</u> ·	<u> </u>	<u> </u>		
Uterus: Stromal Polyp			· · · · ·		
Overall rate	3/50 (6%)	1/51 (2%)	1/50 (2%)	0/50 (0%)	
Adjusted rate	6.6%	2.6%	2.7%	0.0%	
Terminal rate	1/41 (2%)	1/38 (3%)	1/37 (3%)	0/36 (0%)	
First incidence (days)	662	730 (T)	730 (T)	-	
Life table test	P = 0.088N	P=0.334N	P = 0.352N	P=0.143N	
ogistic regression test	P=0.074N	P=0.296N	P=0.302N	P = 0.117N	
Cochran-Armitage test	P=0.073N				
Fisher exact test		P=0.301N	P=0.309N	P=0.121N	
Uterus: Stromal Polyp or Stromal Sarcoma			•		
Overall rate	4/50 (8%)	1/51 (2%)	1/50 (2%)	0/50 (0%)	
Adjusted rate	8.7%	2.6%	2.7%	0.0%	
Terminal rate	1/41 (2%)	1/38 (3%)	1/37 (3%)	0/36 (0%)	,
First incidence (days)	662	730 (T)	730 (T)	-	
Life table test	P=0.044N	P=0.207N	P = 0.224N	P=0.081N	
Logistic regression test	P=0.035N	P=0.166N	P = 0.172N	P=0.059N	
Cochran-Armitage test	P=0.034N			,	· · ·
Fisher exact test		P=0.175N	P=0.181N	P=0.059N	
All Organs: Hemangiosarcoma					•
Overall rate	1/50 (2%)	2/51 (4%)	4/50 (8%)	4/50 (8%)	
Adjusted rate	2.4%	5.3%	10.5%	9.2%	
Ferminal rate	1/41 (2%)	2/38 (5%)	3/37 (8%)	0/36 (0%)	
First incidence (days)	730 (T)	730 (T)	675	645	
Life table test	P=0.100	P = 0.473	P=0.151	P=0.164	
Logistic regression test	P = 0.111	P = 0.473	P = 0.158	P=0.185	
Cochran-Armitage test	P = 0.112		1 11-1		
Fisher exact test		P=0.508	P=0.181	P=0.181	
All Organs: Hemangioma or Hemangiosarcoma			. •		
Overall rate	2/50 (4%)	2/51 (4%)	4/50 (8%)	4/50 (8%)	
Adjusted rate	4.9%	5.3%	10.5%	9.2%	
Cerminal rate	.2/41 (5%)	2/38 (5%)	3/37 (8%)	0/36 (0%)	
First incidence (days)	730 (T)	730 (T)	675	645	
Life table test	P=0.184	P=0.667	P=0.291	P=0.305	
Logistic regression test	P = 0.205	P = 0.667	P = 0.300	P = 0.343	
Cochran-Armitage test	P = 0.207	1 -0.007	1 -0.500	1 -0.545	
Fisher exact test	1 -0.207	P=0.684N	P=0.339	P=0.339	
All Organs: Histiocytic Sarcoma					
Overall rate	0/50 (0%)	3/51 (6%)	1/50 (2%)	0/50 (0%)	1.10
Adjusted rate	0.0%	7.2%	2.2%	0.0%	
Ferminal rate	0.0% 0/41 (0%)		2.2% 0/37 (0%)	0.0% 0/36 (0%)	
First incidence (days)	0/41 (0%)	2/38 (5%) 484	586	-	
	- D_0.297N		P=0.483		:
Life table test Logistic regression test	P=0.387N P=0.363N	P=0.113 P=0.139	P = 0.483 P = 0.527	_	
Cochran-Armitage test	P = 0.368N	1 -0.137	1 -0.521		
Fisher exact test	1 -0.5001	P=0.125	P=0.500	_	
Pisiter exact test	•	1 =0.125	1 -0.500		

ade e piette

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 μL	7.5 μL	15 μL	30 µL	
All Organs: Malignant Lymphoma (Histiocytic,	Lymphocytic, Mixed, o	or Undifferentiated	Cell Type)	· · · ·	
Overall rate	6/50 (12%)	13/51 (25%)	8/50 (16%)	7/50 (14%)	
Adjusted rate	13.7%	30.4%	19.1%	17.0%	
Terminal rate	4/41 (10%)	9/38 (24%)	4/37 (11%)	3/36 (8%)	
irst incidence (days)	662	273	568	636	
ife table test	P = 0.512N	P = 0.052	P = 0.313	P=0.419	
ogistic regression test	P = 0.429N	P = 0.074	P = 0.383	P = 0.488	
Cochran-Armitage test	P = 0.431N	1 0.071	1 -0.505	1 -0.400	
isher exact test	1 0.10111	P=0.069	P=0.387	P=0.500	,
ll Organs: Benign Neoplasms					
Overall rate	20/50 (40%)	26/51 (51%)	26/50 (52%)	16/50 (32%)	
djusted rate	44.3%	61.8%	62.9%	39.5%	•
erminal rate	16/41 (39%)	22/38 (58%)	02.9% 22/37 (59%)	39.3% 12/36 (33%)	
irst incidence (days)	662	560	521	456	
ife table test	P = 0.299N	P=0.101	P = 0.081	P = 0.433N	
ogistic regression test	P = 0.166N	P = 0.093	P = 0.115	P = 0.289N	
Cochran-Armitage test	P = 0.152N	r 0.095	r -0.115	r =0.2091	
isher exact test	1 -0.1524	P=0.182	P=0.158	P=0.266N	
ll Organs: Malignant Neoplasms				· .	
Overall rate	17/50 (34%)	27/51 (53%)	23/50 (46%)	18/50 (36%)	
diusted rate	34.5%	53.8%	47.9%	37.5%	
erminal rate	9/41 (22%)	15/38 (39%)	12/37 (32%)	6/36 (17%)	
irst incidence (days)	193	273	393	456	
ife table test	P = 0.531N	P = 0.042	P = 0.117	P=0.389	
ogistic regression test	P = 0.250N	P = 0.108	P = 0.349	P = 0.437N	
ochran-Armitage test	P = 0.407N	1 -0.100	1-0.547	1 -0.13/11	
isher exact test	1-0.40721	P=0.043	P=0.154	P=0.500	• • •
ll Organs: Benign or Malignant Neoplasms					
Overall rate	31/50 (62%)	41/51 (80%)	38/50 (76%)	28/50 (56%)	
djusted rate	62.0%	81.9%	77.6%	58.3%	
erminal rate	22/41 (54%)	29/38 (76%)	26/37 (70%)	16/36 (44%)	
irst incidence (days)	193	273	393	456	۰.
ife table test	P = 0.372N	P=0.033	P=0.067	P=0.555	-
ogistic regression test	P = 0.076N	P = 0.064	P = 0.118	P = 0.217N	
ochran-Armitage test	P = 0.129N	1 -0.004	1 -0.110	0.21/11	
isher exact test	1 -0.12714	P=0.034	P=0.097	P=0.342N	

(T)Terminal sacrifice

^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, liver, lung, ovary, pituitary gland, skin, spleen, thyroid gland, and uterus; for other tissues, denominator is number of animals necropsied.

^b Kaplan-Meier estimated neoplasm incidence at the end of the study after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the controls and that dosed group. The life table analysis regards neoplasms in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. For all tests, a negative trend or a lower incidence in a dose group is indicated by N.

^e Not applicable; no neoplasms in animal group

Historical Incidence of Liver Neoplasms in Untreated Female B6C3F1 Mice^a

		Incidence in Controls	
	Hepatocellular Adenoma	Hepatocellular Carcinoma	Hepatocellular Adenoma or Carcinoma
Overall Historical Incidence: De	ermal (Acetone)		
Total	12/100 (12.0%)	6/100 (6.0%)	17/100 (17.0%)
Standard deviation	5.7%	2.8%	4.2%
Range	8%-16%	4%-8%	14%-20%
Overall Historical Incidence: Fe	ed		
Total	176/1,462 (12.0%)	89/1,462 (6.1%)	247/1,462 (16.9%)
Standard deviation	8.2%	5.4%	10.7%
Range	0%-33%	0%-20%	3%-42%
Overall Historical Incidence: In	halation		
Total	56/657 (8.5%)	57/657 (8.7%)	111/657 (16.9%)
Standard deviation	6.2%	4.8%	8.7%
Range	0%-22%	0%-16%	3%-31%
Overall Historical Incidence: W	ater Gavage		
Total	13/315 (4.1%)	8/315 (2.5%)	21/315 (6.7%)
Standard deviation	3.2%	2.1%	4.2%
Range	2%-10%	0%-6%	2%-12%
Overall Historical Incidence: Co	orn Oil Gavage		
Total	97/948 (10.2%)	42/948 (4.4%)	133/948 (14.0%)
Standard deviation	7.1%	3.5%	8.0%
Range	2%-26%	0%-14%	2%-34%

^a Data as of 31 March 1993

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Dermal Study of Diethylphthalate^a

	0 µL	7.5 μL	15 µL	30 µL
·	······			
Disposition Summary	• .			
Animals initially in study	60	60	60	60
15-Month interim evaluation	10	9	10	10
Early deaths			*	
Accidental deaths				1
Moribund	4	5	5	8
Natural deaths	5	8	7	5
Survivors		•		
Died last week of study		1	1	· · · · · · ·
Terminal sacrifice	41	37	36	36
Missing	,		1.	the set of the set
0			. –	
Animals examined microscopically	60	55	53	60
	- 			
15-Month Interim Evaluation		- · · ·	· · · ·	
Alimentary System				·
Liver	(10)	(4)	(3)	(10)
Clear cell focus	1 (10%)		المراجع الأيهية الإلام	
Inflammation, chronic, focal	8 (80%)	4 (100%)	3 (100%)	4 (40%)
Pancreas	(10)			(10)
Edema				1 (10%)
Necrosis, focal	1 /100%			
	1 (10%)	•		
Endocrine System Adrenal cortex	(10)			(10)
Endocrine System Adrenal cortex Capsule, hyperplasia	(10) 10 (100%)			10 (100%)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland	(10) 10 (100%) (10)			10 (100%) (9)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration	(10) 10 (100%) (10) 10 (100%)			10 (100%) (9) 9 (100%)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland	(10) 10 (100%) (10)			10 (100%) (9) 9 (100%) (10)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst	(10) 10 (100%) (10) 10 (100%) (10)			10 (100%) (9) 9 (100%) (10) 1 (10%)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland	(10) 10 (100%) (10) 10 (100%) (10) (10)			10 (100%) (9) 9 (100%) (10) 1 (10%) (10)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal	(10) 10 (100%) (10) 10 (100%) (10) (10) 1 (10%)			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland	(10) 10 (100%) (10) 10 (100%) (10) (10)			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%) (10)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland Infiltration cellular, lymphocyte	(10) 10 (100%) (10) 10 (100%) (10) (10) 1 (10%) (10)			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland	(10) 10 (100%) (10) 10 (100%) (10) (10) 1 (10%)			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%) (10)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland Infiltration cellular, lymphocyte C-cell, hyperplasia	(10) 10 (100%) (10) 10 (100%) (10) (10) 1 (10%) (10)			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%) (10)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland Infiltration cellular, lymphocyte C-cell, hyperplasia Genital System	(10) 10 (100%) (10) 10 (100%) (10) (10) 1 (10%) (10) 1 (10%)			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%) (10) 1 (10%)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland Infiltration cellular, lymphocyte C-cell, hyperplasia Genital System Ovary	(10) 10 (100%) (10) 10 (100%) (10) 1 (10%) 1 (10%) (10) 1 (10%)			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%) (10) 1 (10%)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland Infiltration cellular, lymphocyte C-cell, hyperplasia Genital System Ovary Cyst	$(10) \\ 10 (100\%) \\ (10) \\ 10 (100\%) \\ (10) \\ (10) \\ 1 (10\%) \\ (10) \\ 1 (10\%) \\ 1 (10\%) \\ (10) \\ 4 (40\%) $			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%) (10) 1 (10%)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland Infiltration cellular, lymphocyte C-cell, hyperplasia Genital System Ovary Cyst Hematocyst	$(10) \\ 10 (100\%) \\ (10) \\ 10 (100\%) \\ (10) \\ (10) \\ 1 (10\%) \\ (10) \\ 1 (10\%) \\ (10) \\ 1 (10\%) \\ (10) \\ 4 (40\%) \\ 1 (10\%) \\ (10\%) \\ (10) \\ (1$			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%) (10) 1 (10%) (10) 2 (20%)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland Infiltration cellular, lymphocyte C-cell, hyperplasia Genital System Ovary Cyst Hematocyst Uterus	$(10) \\ 10 (100\%) \\ (10) \\ 10 (100\%) \\ (10) \\ (10) \\ 1 (10\%) \\ (10) \\ 1 (10\%) \\ (10) \\ 1 (10\%) \\ (10) \\ (1$			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%) (10) 1 (10%) (10) 2 (20%) (10)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland Infiltration cellular, lymphocyte C-cell, hyperplasia Genital System Ovary Cyst Hematocyst	$(10) \\ 10 (100\%) \\ (10) \\ 10 (100\%) \\ (10) \\ (10) \\ 1 (10\%) \\ (10) \\ 1 (10\%) \\ (10) \\ 1 (10\%) \\ (10) \\ 4 (40\%) \\ 1 (10\%) \\ (10\%) \\ (10) \\ (1$			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%) (10) 1 (10%) (10) 2 (20%)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland Infiltration cellular, lymphocyte C-cell, hyperplasia Genital System Ovary Cyst Hematocyst Uterus Endometrium, hyperplasia, cystic	$(10) \\ 10 (100\%) \\ (10) \\ 10 (100\%) \\ (10) \\ (10) \\ 1 (10\%) \\ (10) \\ 1 (10\%) \\ (10) \\ 1 (10\%) \\ (10) \\ (1$			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%) (10) 1 (10%) (10) 2 (20%) (10)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland Infiltration cellular, lymphocyte C-cell, hyperplasia Genital System Ovary Cyst Hematocyst Uterus Endometrium, hyperplasia, cystic	$(10) \\ 10 (100\%) \\ (10) \\ 10 (100\%) \\ (10) \\ (10) \\ 1 (10\%) \\ (10) \\ 1 (10\%) \\ (10) \\ 4 (40\%) \\ 1 (10\%) \\ (10) \\ 10 (100\%) \\ (1$			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%) (10) 1 (10%) (10) 2 (20%) (10) 10 (100%)
Endocrine System Adrenal cortex Capsule, hyperplasia Adrenal gland Corticomedullary junction, degeneration Parathyroid gland Cyst Pituitary gland Pars distalis, hyperplasia, focal Thyroid gland Infiltration cellular, lymphocyte C-cell, hyperplasia Genital System Ovary Cyst Hematocyst Uterus Endometrium, hyperplasia, cystic	$(10) \\ 10 (100\%) \\ (10) \\ 10 (100\%) \\ (10) \\ (10) \\ 1 (10\%) \\ (10) \\ 1 (10\%) \\ (10) \\ 1 (10\%) \\ (10) \\ (1$			10 (100%) (9) 9 (100%) (10) 1 (10%) (10) 2 (20%) (10) 1 (10%) (10) 2 (20%) (10)

^a Number of animals examined microscopically at the site and the number of animals with lesion

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	7.5 μL	15 μL	30 µL
15-Month Interim Evaluation (continue	ed)			
Nervous System				
Brain	(10)			(10)
Mineralization, focal	4 (40%)			4 (40%)
Respiratory System		<u></u>		、
Lung	(10)			(10)
Inflammation, chronic, focal	1 (10%)			4 (40%)
Urinary System			i yana yana ya	· · · · · · · · · · · · · · · · · · ·
Kidney	(10)			(10)
Nephropathy	2 (20%)			4 (40%)
Cortex, cyst	1 (10%)			
Renal tubule, mineralization, focal				1 (10%)
Systems Examined With No Lesions Obse	erved	······································	<u></u>	<u> </u>
Cardiovascular System	2			
General Body System				
Scheral Body System				
		·		
Integumentary System Musculoskeletal System		·		
Integumentary System		· ·		
Integumentary System Musculoskeletal System				
Integumentary System Musculoskeletal System Special Senses System 				
Integumentary System Musculoskeletal System Special Senses System 				
Integumentary System Musculoskeletal System Special Senses System 	(48)	(44)	(50)	(48)
Integumentary System Musculoskeletal System Special Senses System 			1 (2%)	*
Integumentary System Musculoskeletal System Special Senses System 	(47)	(44) (44)		(48) (47)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess			1 (2%)	(47)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia	(47)		1 (2%) (49)	*
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia, lymphoid	(47) 1 (2%)	(44)	1 (2%) (49) 1 (2%)	(47) 1 (2%)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia, lymphoid Liver	(47) 1 (2%) (50)	(44) (51)	1 (2%) (49) 1 (2%) (50)	(47) 1 (2%) (50)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia, lymphoid	(47) 1 (2%) (50) 2 (4%)	(44)	1 (2%) (49) 1 (2%) (50) 6 (12%)	(47) 1 (2%) (50) 2 (4%)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia, lymphoid Liver Basophilic focus	(47) 1 (2%) (50)	(44) (51) 3 (6%)	1 (2%) (49) 1 (2%) (50)	(47) 1 (2%) (50)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia Hyperplasia, lymphoid Liver Basophilic focus Clear cell focus	(47) 1 (2%) (50) 2 (4%) 1 (2%)	(44) (51) 3 (6%) 1 (2%) 1 (2%)	$ \begin{array}{c} 1 (2\%) \\ (49) \\ 1 (2\%) \\ (50) \\ 6 (12\%) \\ 3 (6\%) \\ 1 (2\%) \end{array} $	(47) 1 (2%) (50) 2 (4%) 1 (2%)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia Hyperplasia, lymphoid Liver Basophilic focus Clear cell focus, multiple Cyst Eosinophilic focus	(47) 1 (2%) (50) 2 (4%) 1 (2%) 1 (2%)	(44) (51) 3 (6%) 1 (2%) 1 (2%) 4 (8%)	1 (2%) (49) (50) 6 (12%) 3 (6%)	(47) 1 (2%) (50) 2 (4%)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia lymphoid Liver Basophilic focus Clear cell focus Clear cell focus, multiple Cyst Eosinophilic focus Hematopoietic cell proliferation	(47) 1 (2%) (50) 2 (4%) 1 (2%)	(44) (51) 3 (6%) 1 (2%) 1 (2%)	$ \begin{array}{c} 1 (2\%) \\ (49) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ (50) \\ 6 (12\%) \\ 3 (6\%) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ 3 (6\%) \\ \end{array} $	(47) 1 (2%) (50) 2 (4%) 1 (2%)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia, lymphoid Liver Basophilic focus Clear cell focus Clear cell focus, multiple Cyst Eosinophilic focus Hematopoietic cell proliferation Hepatodiaphragmatic nodule	(47) 1 (2%) (50) 2 (4%) 1 (2%) 1 (2%)	(44) (51) 3 (6%) 1 (2%) 1 (2%) 4 (8%) 3 (6%)	$ \begin{array}{c} 1 (2\%) \\ (49) \\ 1 (2\%) \\ (50) \\ 6 (12\%) \\ 3 (6\%) \\ 1 (2\%) \end{array} $	(47) 1 (2%) (50) 2 (4%) 1 (2%)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia lymphoid Liver Basophilic focus Clear cell focus, multiple Cyst Eosinophilic focus Hematopoietic cell proliferation Hepatodiaphragmatic nodule Inflammation, acute, focal	(47) 1 (2%) (50) 2 (4%) 1 (2%) 1 (2%) 1 (2%)	(44) (51) 3 (6%) 1 (2%) 1 (2%) 4 (8%) 3 (6%) 1 (2%)	$ \begin{array}{c} 1 (2\%) \\ (49) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ (50) \\ 6 (12\%) \\ 3 (6\%) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ 3 (6\%) \\ \end{array} $ $ 1 (2\%) \\ \end{array} $	(47) 1 (2%) (50) 2 (4%) 1 (2%) 3 (6%)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia lymphoid Liver Basophilic focus Clear cell focus Clear cell focus, multiple Cyst Eosinophilic focus Hematopoietic cell proliferation Hepatodiaphragmatic nodule Inflammation, acute, focal Inflammation, chronic, focal	(47) 1 (2%) (50) 2 (4%) 1 (2%) 1 (2%) 1 (2%) 7 (14%)	(44) (51) 3 (6%) 1 (2%) 1 (2%) 4 (8%) 3 (6%) 1 (2%) 9 (18%)	$ \begin{array}{c} 1 (2\%) \\ (49) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ (50) \\ 6 (12\%) \\ 3 (6\%) \\ 1 (2\%) \\ 3 (6\%) \\ 1 (2\%) \\ 1 (2\%) \\ 10 (20\%) \\ \end{array} $	(47) 1 (2%) (50) 2 (4%) 1 (2%) 3 (6%) 6 (12%)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia lymphoid Liver Basophilic focus Clear cell focus, multiple Cyst Eosinophilic focus Hematopoietic cell proliferation Hepatodiaphragmatic nodule Inflammation, acute, focal Inflammation, chronic, focal Mixed cell focus	(47) 1 (2%) (50) 2 (4%) 1 (2%) 1 (2%) 1 (2%) 7 (14%) 1 (2%)	 (44) (51) 3 (6%) 1 (2%) 4 (8%) 3 (6%) 1 (2%) 9 (18%) 1 (2%) 	$ \begin{array}{c} 1 (2\%) \\ (49) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ (50) \\ 6 (12\%) \\ 3 (6\%) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ 3 (6\%) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ 10 (20\%) \\ 1 (2\%) \\ \end{array} $	(47) 1 (2%) (50) 2 (4%) 1 (2%) 3 (6%) 6 (12%) 1 (2%)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia lymphoid Liver Basophilic focus Clear cell focus, multiple Cyst Eosinophilic focus Hematopoietic cell proliferation Hepatodiaphragmatic nodule Inflammation, acute, focal Inflammation, chronic, focal Mixed cell focus	(47) 1 (2%) (50) 2 (4%) 1 (2%) 1 (2%) 1 (2%) 7 (14%)	 (44) (51) 3 (6%) 1 (2%) 4 (8%) 3 (6%) 1 (2%) 9 (18%) 1 (2%) 6 (12%) 	$ \begin{array}{c} 1 (2\%) \\ (49) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ (50) \\ 6 (12\%) \\ 3 (6\%) \\ 1 (2\%) \\ 3 (6\%) \\ 1 (2\%) \\ 1 (2\%) \\ 10 (20\%) \\ \end{array} $	(47) 1 (2%) (50) 2 (4%) 1 (2%) 3 (6%) 6 (12%)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia lymphoid Liver Basophilic focus Clear cell focus, multiple Cyst Eosinophilic focus Hematopoietic cell proliferation Hepatodiaphragmatic nodule Inflammation, acute, focal Inflammation, chronic, focal Mixed cell focus Necrosis, focal Centrilobular, degeneration	(47) 1 (2%) (50) 2 (4%) 1 (2%) 1 (2%) 1 (2%) 7 (14%) 1 (2%)	 (44) (51) 3 (6%) 1 (2%) 4 (8%) 3 (6%) 1 (2%) 9 (18%) 1 (2%) 6 (12%) 1 (2%) 	$ \begin{array}{c} 1 (2\%) \\ (49) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ (50) \\ 6 (12\%) \\ 3 (6\%) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ 3 (6\%) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ 10 (20\%) \\ 1 (2\%) \\ \end{array} $	(47) 1 (2%) (50) 2 (4%) 1 (2%) 3 (6%) 6 (12%) 1 (2%)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia lymphoid Liver Basophilic focus Clear cell focus, multiple Cyst Eosinophilic focus Hematopoietic cell proliferation Hepatodiaphragmatic nodule Inflammation, acute, focal Inflammation, chronic, focal Mixed cell focus Necrosis, focal Centrilobular, degeneration Centrilobular, hypertrophy	(47) 1 (2%) (50) 2 (4%) 1 (2%) 1 (2%) 1 (2%) 7 (14%) 1 (2%)	 (44) (51) 3 (6%) 1 (2%) 4 (8%) 3 (6%) 1 (2%) 9 (18%) 1 (2%) 6 (12%) 	$ \begin{array}{c} 1 (2\%) \\ (49) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ (50) \\ 6 (12\%) \\ 3 (6\%) \\ 1 (2\%) \\ 3 (6\%) \\ 1 (2\%) \\ 10 (20\%) \\ 1 (2\%) \\ 3 (6\%) \\ \end{array} $	(47) 1 (2%) (50) 2 (4%) 1 (2%) 3 (6%) 6 (12%) 1 (2%)
Integumentary System Musculoskeletal System Special Senses System 2-Year Study Alimentary System Intestine small, jejunum Hyperplasia, lymphoid Intestine small, ileum Abscess Hyperplasia Hyperplasia lymphoid Liver Basophilic focus Clear cell focus, multiple Cyst Eosinophilic focus Hematopoietic cell proliferation Hepatodiaphragmatic nodule Inflammation, acute, focal Inflammation, chronic, focal Mixed cell focus Necrosis, focal Centrilobular, degeneration	(47) 1 (2%) (50) 2 (4%) 1 (2%) 1 (2%) 1 (2%) 7 (14%) 1 (2%)	 (44) (51) 3 (6%) 1 (2%) 4 (8%) 3 (6%) 1 (2%) 9 (18%) 1 (2%) 6 (12%) 1 (2%) 	$ \begin{array}{c} 1 (2\%) \\ (49) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ (50) \\ 6 (12\%) \\ 3 (6\%) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ 3 (6\%) \\ \end{array} $ $ \begin{array}{c} 1 (2\%) \\ 10 (20\%) \\ 1 (2\%) \\ \end{array} $	(47) 1 (2%) (50) 2 (4%) 1 (2%) 3 (6%) 6 (12%) 1 (2%)

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	θμL	7.5 μL	15 μL	30 µL
2-Year Study (continued)				
limentary System (continued)			·	
Mesentery				(3)
Fat, necrosis				2 (67%)
ancreas	(49)	(51)	(50)	(49)
Abscess	· *	1 (2%)		
Cyst	1 (2%)			,
Cytoplasmic alteration, focal		1 (2%)	1 (2%)	
Edema	•		1 (2%)	
Necrosis, focal	·		1 (2%)	•
Polyarteritis	й. Г	1 (2%)		
Duct, ectasia	1 (2%)			1 (2%)
alivary glands	(50)	(51)	(50)	(50)
Inflammation, chronic	1 (2%)			
tomach, glandular	(50)	(51)	(50)	(50)
Erosion	1 (2%)	1 (2%)	-	. · · · · · · · · · · · · · · · · · · ·
Ulcer	• -	1 (2%)	· · · ·	
Epithelium, hyperplasia		1 (2%)	. · · · · · · ·	
Muscularis, mineralization		1 (2%)		•
				. •
· · · · · · · · · · · · · · · · · · ·				
Cardiovascular System				
leart	(50)	(51)	(50)	(50)
Cardiomyopathy	1 (2%)	1 (2%)	2 (4%)	
Thrombosis	1 (2%)			
Atrium, thrombosis			· · ·	1 (2%)
Myocardium, necrosis, focal	1 (2%)			
				<u></u>
Endocrine System				
Adrenal cortex	(50)	(51)	(50)	(50)
Accessory adrenal cortical nodule				1 (2%)
Cyst	2 (4%)	1 (2%)		1 (2%)
Hematopoietic cell proliferation	1 (2%)		1 (2%)	1 (2%)
Hyperplasia, focal	1 (2%)		5 (10%)	3 (6%)
Hypertrophy, focal	2 (4%)	2 (4%)		
Pigmentation		1 (2%)		· · · ·
Capsule, hyperplasia	47 (94%)	51 (100%)	50 (100%)	48 (96%)
Adrenal gland	(38)	(42)	(46)	(39)
Corticomedullary junction, congestion	5 (13%)	6 (14%)	3 (7%)	7 (18%)
Corticomedullary junction, degeneration	31 (82%)	39 (93%)	44 (96%)	37 (95%)
Corticomedullary junction, hemorrhage	3 (8%)	3 (7%)	7 (15%)	2 (5%)
Corticomedullary junction, pigmentation	13 (34%)	14 (33%)	8 (17%)	13 (33%)
Adrenal medulla	(50)	(51)	(50)	(50)
	1 (2%)	(31)		1 (2%)
	(47)	(48)	(47)	(50)
Hyperplasia, focal	(7)	(-0)	4 (9%)	(39)
arathyroid gland				(40)
Parathyroid gland Cyst	1 (2%)	(48)	(50)	
Parathyroid gland Cyst Pituitary gland		(48)	(50)	(49)
Parathyroid gland Cyst Pituitary gland Angiectasis	1 (2%) (49)		1 (2%)	(49)
Parathyroid gland Cyst Pituitary gland Angiectasis Cyst	1 (2%) (49) 1 (2%)	(48) 2 (4%)		(49)
Parathyroid gland Cyst Pituitary gland Angiectasis	1 (2%) (49)		1 (2%)	(49) 7 (14%)

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

		, ⁻	· ·	
	O µL	7.5 µL	15 µL	30 µL
2-Year Study (continued)				· · · · · · · · · · · · · · · · · · ·
Endocrine System (continued)				
Thyroid gland	(50)	(51)	(50)	(50)
C-cell, hyperplasia	4 (8%)	2 (4%)	1 (2%)	2 (4%)
Follicle, cyst	1 (2%)	2 (470)	4 (8%)	1 (2%)
Follicle, dilatation	1 (270)		+ (670)	1 (2%)
Follicle, necrosis				1 (2%)
Follicular cell, hyperplasia	9 (18%)	12 (24%)	5 (10%)	8 (16%)
General Body Systèm None				2
			,e	·
Genital System	(40)	(51)	(40)	(40)
Ovary	(49)	(51)	(49) 42 (860)	(49) 27 (76%)
Atrophy Congestion	38 (78%) 1 (2%)	36 (71%)	42 (86%)	37 (76%)
Cyst	1 (2%) 17 (35%)	23 (45%)	20 (41%)	14 (29%)
Cyst dermoid	17 (35%)	23 (43%)	20 (41%)	1 (2%)
Hematocyst	6 (12%)	16 (31%)	6 (12%)	15 (31%)
Pigmentation	1 (2%)	10 (5170)	0 (12%)	1 (2%)
Uterus	(50)	(51)	(49)	(50)
Dilatation	(50)	3 (6%)	2 (4%)	1 (2%)
Endometrium, hyperplasia, cystic	49 (98%)	49 (96%)	47 (96%)	50 (100%)
Hematopoietic System	<u></u>			····
Bone marrow	(50)	(51)	(50)	(50)
Sternal, myelofibrosis	45 (90%)	45 (88%)	43 (86%)	46 (92%)
Lymph node	(7)	(7)	(5)	(7)
Hyperplasia, lymphoid	í (14%)			1 (14%)
Hemal, necrosis		1 (14%)		
Mediastinal, pigmentation		、 ,		1 (14%)
Pancreatic, hyperplasia, lymphoid			1 (20%)	
Pancreatic, inflammation, chronic	1 (14%)			
Pancreatic, lymphatic, ectasia				1 (14%)
Renal, pigmentation				1 (14%)
Thoracic, hyperplasia	1 (14%)			
Lymph node, mandibular	(46)	(47)	(47)	(47)
Hyperplasia, lymphoid	1 (2%)	· · · .	2 (4%)	
Inflammation, chronic	1 (2%)			
Lymph node, mesenteric	(49)	(45)	(48)	(50)
Fibrosis, focal	1 (2%)			
Hematopoietic cell proliferation	1 (2%)			
Hyperplasia	1 (2%)			
Hyperplasia, lymphoid	1 (2%)		2 (4%)	
Inflammation, chronic	1 (2%)			

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

· · · · · · · · · · · · · · · · · · ·	0 μL	7.5 μL	15 μL	30 µL
2-Year Study (continued)	······································	·······	<u></u>	
Hematopoietic System (continued)				
spleen	(50)	(51)	(50)	(50)
Hematopoietic cell proliferation	43 (86%)	44 (86%)	47 (94%)	43 (86%)
Hyperplasia, lymphoid	6 (12%)	1 (2%)	3 (6%)	3 (6%)
Hyperplasia, reticulum cell	0 (1270)	1 (270)	5 (070)	1 (2%)
Infarct	1 (2%)		•	1 (270)
Capsule, fibrosis	1 (2%)			
			· ·,	-
Vein, dilatation	1 (2%)	(40)	(25)	(45)
hymus	(41)	(40)	(35)	(43)
Hyperplasia, lymphoid		•	1 (3%)	
ntegumentary System			······································	
Aammary gland	(49)	(46)	(50)	(44)
Hyperplasia	1 (2%)	1 (2%)	3 (6%)	2 (5%)
kin	(50)	(51)	(50)	(50)
Acanthosis, focal	(20)	1 (2%)	()	
Cyst epithelial inclusion		(= (=/0)	1 (2%)	
Edema		1 (2%)	1 (2%)	+
Exudate	• •	1 (2%)		· · · · · · · · · · · · · · · · · · ·
Control, edema		1 (200)	1 (2%)	• •
Site of application-no mass, exudate		1 (2%)	1 (270)	
Site of application-no mass, ulcer	1 (2%)	1 (270)		
Subcutaneous tissue, control, inflammation	1 (270)		1 (2%)	
			, 	
Ausculoskeletal System				1
Bone	(50)	(51)	(50)	(50)
Vertebra, fracture				1 (2%)
skeletal muscle	(1)	(1)	(1)	(4)
Hemorrhage, focal	• •		1 (100%)	
Abdominal, pigmentation			· ·	1 (25%)
Diaphragm, pigmentation			•	1 (25%)
	······································			
Nervous System	(70)	(51)	(50)	(50)
Brain	(50)	(51)	(50)	(50)
Compression	1 (2%)	1 (0.00)	1 (2%)	1 (2%)
Hemorrhage		1 (2%)		1 (2%)
Hydrocephalus		1 (2%)	ac (2021)	21 (6201)
Mineralization, focal	38 (76%)	34 (67%)	36 (72%)	31 (62%)
Brain stem, hemorrhage			1 (2%)	(7)
Spinal cord			. (2)	(2) 1 (50%)
Hemorrhage			1 (50%)	1 (\$119%)

.

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

	0 µL	7.5 μL	15 μL	30 µL
2-Year Study (continued)	· ••••			
Respiratory System				
Lung	(50)	(51)	(50)	(50)
Adenomatosis, focal	1 (2%)	()	1 (2%)	
Congestion	4 (8%)	5 (10%)	2 (4%)	2 (4%)
Hemorrhage, focal	1 (2%)	- ()	1 (2%)	1 (2%)
Hyperplasia	- (-/-)		- (-/-)	1 (2%)
Infarct				1 (2%)
Infiltration cellular, multifocal, lymphocyte				1 (2%)
Infiltration cellular, histiocyte			1 (2%)	- ()
Inflammation, chronic, focal		2 (4%)	1 (2%)	
Alveolar epithelium, hyperplasia, focal		2((()))	1 (2%)	4 (8%)
Alveolus, infiltration cellular, histiocyte	1 (2%)	2 (4%)	1 (2%)	3 (6%)
Peribronchial, hyperplasia, lymphoid	28 (56%)	15 (29%)	11 (22%)	15 (30%)
Nose	(50)	(50)	(50)	(50)
Hemorrhage	(30)	(50)	(50)	1 (2%)
Trachea	(50)	(51)	(50)	(50)
Inflammation, chronic	1 (2%)	(01)	(20)	(00)
	· (270)			
Special Senses System			· .	
Eve	(1)		(1)	
Cornea, inflammation, subacute	(1)		1 (100%)	
Cornea, necrosis	1 (100%)		1 (10070)	
	1 (100 %)	·	*	•
Urinary System				
Kidney	(50)	(51)	(50)	(50)
Metaplasia, focal, osseous	()	1 (2%)		1 (2%)
Metaplasia, osseous	2 (4%)	- ()		- ()
Nephropathy	7 (14%)	18 (35%)	15 (30%)	6 (12%)
Capsule, inflammation, focal	(2000)	1 (2%)	()	- ()
Cortex, atrophy, focal	2 (4%)	4 (8%)	3 (6%)	3 (6%)
Cortex, cyst	- ()	1 (2%)	- ()	
Cortex, metaplasia, focal, osseous		1 (2%)		
Pelvis, crystals	1 (2%)	- (-/-)		
Pelvis, dilatation	1 (2%)	2 (4%)	1 (2%)	2 (4%)
Proximal convoluted renal tubule,	- (=/0)	- ()	- (=/~)	-()
cytoplasmic alteration		2 (4%)	1 (2%)	
Renal tubule, mineralization, focal	1 (2%)	2 (4%) 2 (4%)	3 (6%)	1 (2%)
Urinary bladder	(49)	(47)	(49)	(48)
verman vermetter	(77)	(**)	(19)	
Infiltration cellular, focal, lymphocyte	e			1 (2%)

•

: ,

.

APPENDIX È GENETIC TOXICOLOGY

	A TYPHIMURIUM MUTAGENICITY TEST PROTOCOL	228 228
RESULTS .		229
TABLE E1	Mutagenicity of Dimethylphthalate in Salmonella typhimurium	231
TABLE E2	Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells	
·	by Dimethylphthalate	233
TABLE E3	Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells	
	by Dimethylphthalate	235
Table E4	Mutagenicity of Diethylphthalate in Salmonella typhimurium	236
Table E5	Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells	
	by Diethylphthalate	238
Table E6	Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells	
	by Diethylphthalate	240

227

GENETIC TOXICOLOGY

SALMONELLA TYPHIMURIUM MUTAGENICITY TEST PROTOCOL

Testing was performed as reported by Zeiger *et al.* (1985). Dimethylphthalate and diethylphthalate were sent to the laboratories as coded aliquots from Radian Corporation (Austin, TX). They were incubated with the *Salmonella typhimurium* tester strains (TA98, TA100, TA1535, and TA1537) either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver) for 20 minutes at 37° C. Top agar supplemented with *l*-histidine and *d*-biotin was added, and the contents of the tubes were mixed and poured onto the surfaces of minimal glucose agar plates. Histidine-independent mutant colonies arising on these plates were counted following incubation for 2 days at 37° C.

Each trial consisted of triplicate plates of concurrent positive and negative controls and at least five doses of dimethylphthalate or diethylphthalate. The high dose of dimethylphthalate was limited by toxicity; the high dose of diethylphthalate was 10,000 μ g/plate. All trials were repeated.

In this test, a positive response is defined as a reproducible, dose-related increase in histidine-independent (revertant) colonies in any one strain/activation combination. An equivocal response is defined as an increase in revertants which is not dose-related, not reproducible, or is not of sufficient magnitude to support a determination of mutagenicity. A negative response is obtained when no increase in revertant colonies is observed following chemical treatment. No minimum percentage or fold increase is required for a chemical to be judged positive or weakly positive.

CHINESE HAMSTER OVARY CELL CYTOGENETICS TEST PROTOCOLS

Testing was performed as reported by Galloway *et al.* (1987) and by Loveday *et al.* (1990). Dimethylphthalate and diethylphthalate were sent to the laboratories as coded aliquots by Radian Corporation. They were tested in cultured Chinese hamster ovary (CHO) cells for induction of sister chromatid exchanges (SCEs) and chromosomal aberrations (Abs), both in the presence and absence of Aroclor 1254-induced male Sprague-Dawley rat liver S9 and cofactor mix. Cultures were handled under gold lights to prevent photolysis of bromodeoxyuridine-substituted DNA. Each test consisted of concurrent solvent and positive controls and of at least three doses of dimethylphthalate or diethylphthalate. The high dose of dimethylphthalate was $5,100 \mu g/mL$; the high dose of diethylphthalate was 750 $\mu g/mL$. A single flask per dose was used, and tests yielding equivocal or positive results were repeated.

Sister Chromatid Exchange Test: In the SCE test without S9, CHO cells were incubated for 26 hours with dimethylphthalate or diethylphthalate in McCoy's 5A medium supplemented with fetal bovine serum, *l*-glutamine, and antibiotics. Bromodeoxyuridine (BrdU) was added 2 hours after culture initiation. After 26 hours, the medium containing dimethylphthalate or diethylphthalate was removed and replaced with fresh medium plus BrdU and Colcemid, and incubation was continued for 2 to 3 hours. Cells were then harvested by mitotic shake-off, fixed, and stained with Hoechst 33258 and Giemsa. In the SCE test with S9, cells were incubated with dimethylphthalate or diethylphthalate, serum-free medium, and S9 for 2 hours. The medium was then removed and replaced with medium containing serum and BrdU and no dimethylphthalate or diethylphthalate, and incubation proceeded for an additional 26 to 27 hours, with Colcemid present for the final 2 hours. Harvesting and staining were the same as for cells treated without S9. All slides were scored blind and those from a single test were read by the same person. Fifty second-division metaphase cells were scored for frequency of SCEs/cell from each dose level. Because significant chemical-induced cell cycle delay was seen with diethylphthalate, incubation time was lengthened for the 750 μ g/mL dose to ensure a sufficient number of scorable (second-division metaphase) cells.

Genetic Toxicology

Statistical analyses were conducted on the slopes of the dose-response curves and the individual dose points (Galloway *et al.*, 1987). An SCE frequency 20% above the concurrent solvent control value was chosen as a statistically conservative positive response. The probability of this level of difference occurring by chance at one dose point is less than 0.01; the probability for such a chance occurrence at two dose points is less than 0.001. An increase of 20% or greater at any single dose was considered weak evidence of activity; increases at two or more doses resulted in a determination that the trial was positive. A statistically significant trend ($P \le 0.05$) in the absence of any responses reaching 20% above background led to a call of equivocal.

Chromosomal Aberrations Test: In the Abs test without S9, cells were incubated in McCoy's 5A medium with dimethylphthalate for 8.5 hours or diethylphthalate for 13.5 hours; Colcemid was added and incubation continued for 2 hours. The cells were then harvested by mitotic shake-off, fixed, and stained with Giemsa. For the Abs test with S9, cells were treated with dimethylphthalate or diethylphthalate and S9 for 2 hours, after which the treatment medium was removed and the cells were incubated for approximately 10 hours in fresh medium, with Colcemid present for the final 2 hours. Harvesting and staining were the same as for cells treated without S9. The harvest time for the Abs test with dimethylphthalate was based on the cell cycle information obtained in the SCE test: because some cell cycle delay was anticipated, the incubation period for the second trial with S9 was extended from the normal period of 12 to 14 hours.

Cells were selected for scoring on the basis of good morphology and completeness of karyotype $(21 \pm 2 \text{ chromosomes})$. All slides were scored blind and those from a single test were read by the same person. For the SCE test, 50 second-division metaphase cells were scored for frequency of SCE per cell from each dose level; 200 first-division metaphase cells were scored at each dose level for the Abs test. Classes of aberrations included simple (breaks and terminal deletions), complex (rearrangements and translocations), and other (pulverized cells, despiralized chromosomes, and cells containing 10 or more aberrations).

Chromosomal aberration data are presented as percentage of cells with aberrations. Statistical analyses were conducted on both the dose response curve and individual dose points. For a single trial, a statistically significant ($P \le 0.05$) difference for one dose point and a significant trend ($P \le 0.015$) are considered weak evidence for a positive response; significant differences for two or more doses indicate the trial is positive (Galloway *et al.*, 1987).

RESULTS

Dimethylphthalate: Dimethylphthalate (33 to 6,666 μ g/plate) did not induce gene mutations in Salmonella typhimurium strains TA98, TA100, TA1535, or TA1537, when tested in a preincubation protocol with and without Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9 (Table E1; Zeiger et al., 1985).

In cytogenetic tests with cultured Chinese hamster ovary cells, dimethylphthalate induced sister chromatid exchanges in the presence, but not the absence, of Aroclor 1254-induced male Sprague-Dawley rat liver S9 (Table E2; Loveday *et al.*, 1990). Except for the positive response noted at 151 μ g/mL in the first trial with S9, concentrations above 1,000 μ g/mL were necessary to induce an increase in SCEs. The increases in SCEs observed after treatment with dimethylphthalate, although small, were well-correlated with dose. Dimethylphthalate was less toxic to CHO cells than was diethylphthalate in these studies.

No induction of chromosomal aberrations was observed in CHO cells treated with dimethylphthalate with or without S9 (Table E3; Loveday *et al.*, 1990). Two trials were conducted with S9, one using the standard 12 hour incubation period and the second using an extended incubation time of 20.5 hours to ensure that

harvested CHO cells were exposed to dimethylphthalate for at least one complete cell cycle. No significant increase in Abs was noted in either trial, where the highest dose tested was 5,100 μ g/mL.

Diethylphthalate: Diethylphthalate (10 to 10,000 μ g/plate) was tested by two laboratories for induction of gene mutations in Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537, (Table E4; Zeiger et al., 1985). Testing was performed using a preincubation protocol with and without Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver S9. High dose was limited by toxicity to 3,333 μ g/plate in the first laboratory, but reached the maximum concentration (10,000 μ g/plate) permitted by the testing protocol in the second laboratory. Negative results were obtained with diethylphthalate at both laboratories in all four tester strains.

In cytogenetic tests with cultured Chinese hamster ovary cells, diethylphthalate induced sister chromatid exchanges in the presence of Aroclor 1254-induced rat liver S9 (Table E5) but not chromosomal aberrations, with or without S9 (Table E6). Significant increases in SCEs were obtained at concentrations of 167 to 750 μ g/mL diethylphthalate; cell cycle delay, indicative of chemical-related toxicity, was observed only at the 750 μ g/mL level. The small dose-related increase in chromosomal aberrations observed in the one trial without S9 was insufficient for a positive call because no single dose was significantly elevated above the control, and the trend test P value was not less than 0.003.

In conclusion, neither dimethylphthalate nor diethylphthalate induced mutations in Salmonella or chromosomal aberrations in CHO cells. However, both chemicals induced SCEs in CHO cells in the presence of S9. A comparative evaluation of *in vitro* genetic toxicity and rodent bioassay test results by the NTP showed that, although the positive SCE test might indicate a potential for *in vivo* DNA damage, this endpoint is highly sensitive and does not correlate well with carcinogenic effects in rodents (Tennant *et al.*, 1987; Zeiger *et al.*, 1990). Only 64% of chemicals which induced SCEs *in vitro* were also carcinogenic in rats and/or mice. Thus, positive results in the SCE test have a low positive predictivity for carcinogenicity in rodents. The negative results obtained in the other *in vitro* genetic toxicity tests with dimethylphthalate and diethylphthalate do not further aid in classifying the chemicals as to their activity in the rodent bioassay. In the NTP evaluation of *in vitro* genetic toxicity tests, only about 50% of the nonmutagens were also found to be noncarcinogens.

Genetic Toxicology

				Revertan	ts/plate ^b		
Strain	Dose	S	9	<u>+10% ha</u>	mster S9	<u>+10% r</u>	at S9
(4	ıg/plate)	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2
TA100	0	111 ± 6.0	156 ± 4.5	141 ± 12.7	144 ± 8.6	135 ± 9.7	131 ± 4.7
	33	117 ± 8.1	147 ± 10.8				
	100	116 ± 9.8	146 ± 12.3	142 ± 11.9	134 ± 6.4	125 ± 10.8	145 ± 8.5
	333	134 ± 2.6	146 ± 4.2	137 ± 14.5	126 ± 9.4	120 ± 8.7	120 ± 3.8
	1,000	131 ± 6.1	148 ± 7.5	131 ± 12.5	136 ± 2.3	122 ± 9.1	118 ± 6.8
	2,166	124 ± 5.0					
	3,000		$149 \pm 10.4^{\circ}$				
	3,333	*		140 ± 6.0	114 ± 11.8^{c}	114 ± 6.3	99 ± 3.2^{c}
	5,000			4	98 ± 10.7^{c}		$90 \pm 8.0^{\circ}$
	6,666	•		Toxic		$86 \pm 0.5^{\circ}$	
Trial sum Positive c		Negative 1,066 ± 8.1	Negative 1,484 ± 57.2	Negative 1,096 ± 36.8	Negative 1,535 ± 35.7	Negative 698 ± 12.9	Negative 983 ± 96.5
		*		4		v	•
TA1535	0	21 ± 2.6	28 ± 0.7	12 ± 1.7	10 ± 2.7	14 ± 0.7	12 ± 0.9
	33	27 ± 4.1	26 ± 3.2			ι.	
	100	25 ± 2.7	23 ± 3.4	11 ± 1.5	7 ± 1.5	12 ± 0.9	10 ± 1.7
	333	17 ± 1.7	29 ± 1.2	10 ± 1.5	13 ± 1.9	12 ± 1.5	13 ± 1.5
	1,000	25 ± 5.5	34 ± 3.9	16 ± 2.3	11 ± 1.7	12 ± 0.7	12 ± 1.2
	2,166	26 ± 2.9					
	3,000		$32 \pm 1.9^{\circ}$		÷		4
	3,333			9 ± 0.0	$\frac{8 \pm 1.0^{\circ}}{10^{\circ}}$	12 ± 3.2	11 ± 3.8
	5,000				Toxic	10 100	9 ± 1.7°
	6,666			Toxic		10 ± 1.0^{c}	4 -
Trial sum	mary	Negative	Negative	Negative	Negative	Negative	Negative
Positive c	ontrol	853 ± 17.0	$1,057 \pm 7.5$	75 ± 9.3	88 ± 5.3	59 ± 6.7	68 ± 2.7
TA1537	0	5±0.9	5 ± 1.2	8 ± 0.7	8 ± 2.1	6 ± 0.0	7 ± 0.9
4 CYT 39	33	5 ± 0.9 5 ± 2.0	5 ± 1.2 5 ± 1.3	0 4 0.7	0 - 4.1	0 1 0.0	/ ± 0,9
	100	11 ± 2.0	5 ± 1.3 6 ± 1.0	6 ± 0.3	5 ± 0.3	9 ± 0.7	9 ± 1.2
	333	5 ± 1.2	10 ± 1.5	8 ± 0.9	10 ± 0.3	8 ± 0.3	8 ± 0.7
	1,000	6 ± 1.5	6 ± 0.6	5 ± 0.9	7 ± 0.7	6 ± 1.8	7 ± 1.2
	2,166	7 ± 1.3	ViV	5 - 0.7			
	3,000		4 ± 1.5^{c}				
	3,333			7 ± 1.5	4 ± 1.7^{c}	6 ± 1.3	6 ± 1.7^{c}
	5,000				5 ± 0.7^{c}		Toxic
	6,666			$3 \pm 0.7^{\circ}$		$6 \pm 2.3^{\circ}$	· · · · · · ·
Trial sum	mary	Negative	Negative	Negative	Negative	Negative	Negative
Positive c	ontrol	623 ± 104.6	225 ± 23.2	92 ± 5.2	120 ± 9.4	46 ± 5.9	67 ± 5.9

Table E1

Mutagenicity of Dimethylphthalate in Salmonella typhimurium^a

A REAL PROPERTY AND A REAL

	:	Revertants/plate										
Strain	Dose	-8	9	+10% ha	mster S9	+10% r	at S9					
:	(µg/plate)	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2					
	<u> </u>											
TA98	0	19 ± 0.9	16 ± 2.2	27 ± 5.3	26 ± 2.0	22 ± 1.3	30 ± 2.0					
	33	17 ± 2.9	19 ± 3.5									
	100	18 ± 1.9	18 ± 4.4	28 ± 2.3	31 ± 0.3	21 ± 2.5	27 ± 1.0					
	333	14 ± 1.9	17 ± 2.5	25 ± 3.1	26 ± 1.2	23 ± 4.8	23 ± 1.5					
	1,000	16 ± 1.2	19 ± 1.5	32 ± 4.4	27 ± 2.2	20 ± 4.6	25 ± 3.9					
	2,166	14 ± 1.0		•	,		e 9					
	3,000		19 ± 1.7									
	3,333			23 ± 5.0	28 ± 2.7	18 ± 2.0	19 ± 2.3^{c}					
	5,000				18 ± 3.8^{c}		15 ± 3.5^{c}					
	6,666			14 ± 2.6^{c}	• • •	15 ± 1.2^{c}						
Trial sur	nmary	Negative	Negative	Negative	Negative	Negative	Negative					
Positive	control	$1,282 \pm 67.1$	$1,245 \pm 60.7$	848 ± 14.1	1,366 ± 32.3	415 ± 16.3	747 ± 20.9					

TABLE E1

Mutagenicity of Dimethylphthalate in Salmonella typhimurium (continued)

^a High dose was limited by toxicity. The detailed protocol and these data are presented in Zeiger *et al.* (1985). Study conducted at EG&G Mason Research Institute.

^b Revertants are presented as mean \pm standard error from three plates.

^c Slight toxicity

^d The positive controls in the absence of metabolic activation were sodium azide (TA1535 and TA100), 9-aminoacridine (TA1537), and 4-nitro-o-phenylenediamine (TA98). The positive control for metabolic activation with all strains was 2-aminoanthracene.

. .

Genetic Toxicology

4

TABLE E2

Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells by Dimethylphthalate^a

Compound	Dose (µg/mL)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hrs in BrdU	Relative Change of SCEs, Chromosome ^b (%)
-S9			·····	<u></u>				
Summary: Negative	•							
Dimethylsulfoxide		50	1,025	372	0.36	7.4	26.5	
Mitomycin-C	0.002 0.010	50 10	1,036 208	585 222	0.56 1.06	11.7 22.2	26.5 26.5	55.59 194.09
Dimethylphthalate	50 151 500	50 50 50	1,037 1,030 1,039	369 388 407	0.35 0.37 0.39	7.4 7.8 8.1	26.5 26.5 26.5	-1.95 3.79 7.94
				4	P=0.103 ^c			•
+\$9	•••			· · ·		• •	· .	
Trial 1 Summary: Equivocal					· .		, . *	
Dimethylsulfoxide	-	50	1,039	437	0.42	8.7	26.0	·
Cyclophosphamide	0.5 2.5	50 10	1,047 210	605 285	0.57 1.35	12.1 28.5	26.0 26.0	37.39 222.68
Dimethylphthalate	151 500 1,510	50 50 50	1,045 1,040 1,045	528 465 413	0.50 0.44 0.39	10.6 9.3 8.3	26.0 26.0 26.0	20.13* 6.31 6.04
		,			P=0.927			

Diethylphthalate/Dimethylphthalate, NTP TR 429

TABLE E2

Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells by Dimethylphthalate (continued)

Compound	Dose (µg/mL)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hrs in BrdU	Relative Change of SCEs/ Chromosome (%)
+S9 (continued)	t transfer a				-			
Trial 2 Summary: Weak positive					•.			
Dimethylsulfoxide		50	1,047	424	0.40	8:5	26.0	
Cyclophosphamide	0.5 2.5	50 10	1,046 209	1,008 589	0.96 2.81	20.2 58.9	26.0 26.0	137.97 595.92
Dimethylphthalate	248 414 1,240	50 50 50	1,036 1,047 1,050	410 478 530	0.39 0.45 0.50	8.2 9.6 10.6	26.0 26.0 26.0	-2.28 12.74 24.64*
					P<0.001	н 1910 1910 — Ф.		17. 1919 - Angeler A.
Trial 3 Summary: Positive								
Dimethylsulfoxide	*	50	1,048	428	0.40	. 8.6	26.0	
Cyclophosphamide	0.4 2.5	50 10	1,051 210	674 382	0.64 1.81	13.5 38.2	26.0 26.0	57.03 345.42
Dimethylphthalate	494 988 1,980 2,960	50 50 50 50	1,050 1,045 1,047 1,042	402 503 540 562	0.38 0.48 0.51 0.53	8.0 10.1 10.8 11.2	26.0 26.0 26.0 26.0	-6.25 17.86 26.29* 32.06*
			-j=		P<0.001			

* Positive response (≥20% increase over solvent control)

^a Study performed at Bioassay Systems Corporation. SCE = sister chromatid exchange; BrdU = bromodeoxyuridine. A detailed description of the SCE protocol and these data are presented by Loveday et al. (1990).

b SCEs/chromosome in treated cells versus SCEs/chromosome in solvent control cells

^c Significance of relative SCEs/chromosome tested by the linear regression trend test vs. log of the dose.

234

TABLE E3

Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells by Dimethylphthalate^a

		-\$9					<u>+S9</u>		
Dose (µg/mL)	Total Cells	No. of Abs	Abs/ Cell	Cells with Abs (%)	Dose (µg/mL)	Total Cells	No. of Abs	Abs/ Cell	Cells with Abs (%)
Harvest time: 10.5 Summary: Negativ					Trial 1 - Härvest ti Summary: Negative		hours		
Dimethylsulfoxide					Dimethylsulfoxide				
	200	3	0.02	1.5		200	11	0.06	5.0
Mitomycin-C					Cyclophosphamide				
0.75 5.00		30 18	0.15 0.36	10.5 26.0	50	50	57	1.14	46.0
Dimethylphthalate				• .	Dimethylphthalate				
150 498 1,500	200 200 200	5 2 0	0.03 0.01 0.00	1.0 1.0 0.0	498 1,500 4,980	200 200 200	11 14 21	0.06 0.07 0.11	5.5 6.5 8.5
				P=0.935 ^b					P=0.068
					Trial 2 - Harvest ti Summary: Negative		hours ^c		
					Dimethylsulfoxide				
						200	. 5	0.03	2.0
					Cyclophosphamide				
, ,					50	10	87	8.70	100.0
					Dimethylphthalate				
					3,060 4,080 5,100	200 200 200	7 33 19	0.04 0.17 0.10	3.0 2.5 5.5
									P=0.042

a Study performed at Bioassay Systems Corporation. Abs = aberrations. A detailed presentation of the protocol and these data are found in Loveday et al. (1990). b

Significance of percent cells with aberrations tested by the linear regression trend test vs. log of the dose.

¢ Because of significant chemical-induced cell cycle delay, incubation time prior to addition of Colcemid was lengthened to provide sufficient metaphase cells at harvest.

TABLE E4

Mutagenicity of Diethylphthalate in Salmonella typhimurium^a

	•			Revertan	ts/plate ^b		<u>.</u>	
Strain	Dose	-59)	+10% har	nster S9	+10%	rat S9	
	(µg/plate)	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	
Study of	conducted at	EG&G Mason	Research Instit	ute	· · · · · · · · · · · · · · · · · · ·	e publica da		
TA100	0	105 ± 1.2	114 ± 3.3	116 ± 4.4	105 ± 7.2	113 ± 9.9	129 ± 6.0	
	10	100 ± 10.4	130 ± 5.9		108 ± 8.4		127 ± 1.2	
	33	106 ± 9.7	127 ± 5.3	114 ± 5.3	114 ± 8.6	114 ± 10.9	126 ± 4.6	
	100	123 ± 3.8	126 ± 1.2	102 ± 11.6	126 ± 6.7	104 ± 1.5	130 ± 5.0	
	333	115 ± 7.5	128 ± 0.9	87 ± 4.7	117 ± 4.9	117 ± 5.8	130 ± 1.7	
		115 ± 7.5	128 ± 0.9 144 ± 5.8 ^c	0/ ± 4./	11/ - 4.9	11, ± 5.0	150 2 1.7	
	667	m	144 I 3.8	100 000	00 L 20C	117 570	136 ± 4.7^{c}	
	1,000	Toxic		$102 \pm 8.0^{\circ}$	98 ± 3.0 ^c	117 ± 5.2^{c}	130 ± 4.7	
	3,333			Toxic	•	Toxic		
Frint		Negative	Equivocal	Negative	Negative	Negative	Negative	
LIIAI SU Donisia	mmary control ^d	$1,356 \pm 8.4$	$1,463 \pm 26.3$	$1,230 \pm 70.8$	$2,668 \pm 64.9$	$1,092 \pm 42.8$	$1,416 \pm 7.7$	
USILIVE	wintor	1,330 I 0.4	1,703 ± 20.5	1,400 ± /0.0	2,000 ± 04.7	1,074 - 72.0	1,710 ± 1.1	
TA153	E O	20 ± 2.7	49 ± 3.3	11 ± 2.8	14 ± 3.0	11 ± 0.7	12 ± 0.3	
[A155;	, .			11 ± 2.0		11 ± 0.7	12 ± 0.9 12 ± 0.9	
	10	23 ± 1.5	43 ± 3.8	10 . 00	12 ± 1.0	0,06		
	33	24 ± 3.9	46 ± 2.6	10 ± 0.3	14 ± 3.7	9 ± 0.6	10 ± 1.5	
	100	23 ± 2.2	49 ± 0.3	11 ± 1.7	14 ± 3.8	10 ± 2.4	18 ± 2.1	
	333	21 ± 2.7	49 ± 7.0	11 ± 0.9	11 ± 0.0	11 ± 0.9	20 ± 0.6	
	667		$47 \pm 0.7^{\circ}$	· · · · *	1		,	
	1,000	Toxic	1 () () () () () () () () () (8 ± 1.0^{c}	10 ± 2.2^{c}	$10 \pm 3.1^{\circ}$	13 ± 1.2^{c}	
	3,333	· · ·		Toxic		Toxic		
frial su	mmary	Negative	Negative	Negative	Negative	Negative	Negative	
	control	$1,127 \pm 38.8$	$2,216 \pm 19.6$	116 ± 7.9	251 ± 0.6	99 ± 12.4	61 ± 5.4	
obitive		-,	-,				. • •	
ГА153 [.]	7 0	8 ± 0.9	5 ± 1.7	7 ± 0.9	9 ± 1.9	6 ± 0.9	7 ± 1.9	
IALSS	10	4 ± 0.3	7 ± 0.7	/ 2 0.0	10 ± 1.8		11 ± 1.8	
-			5 ± 1.2	12 ± 0.9	9 ± 1.0	11 ± 1.5	9 ± 0.3	
	33 100 ¹	7 ± 1.8		12 ± 0.9 9 ± 1.2	5 ± 0.3	11 ± 1.5 10 ± 2.3	10 ± 1.5	
	100	8 ± 0.5	5 ± 1.0		3 ± 0.3 10 ± 0.9	10 ± 2.5 8 ± 1.2	6 ± 2.7	
	333	6 ± 1.2	7 ± 2.6	9 ± 2.4	10 ± 0.9	0 I 1.2	0 2 4.7	
	667		6 ± 1.2^{c}	c + n ⁰	10 . 0.56	7.0/	7 ± 1.3^{c}	
	1,000	Toxic	· · ·	$6 \pm 1.9^{\circ}$	10 ± 3.5^{c}	7 ± 0.6	1 ± 1.5^{-1}	
	3,333			$5 \pm 0.0^{\circ}$	· · ·	5 ± 1.2^{c}	••	
Trial as		Necetive	Negative	Negative	Negative	Negative	Negative	
	immary	Negative	161 ± 19.7	111 ± 7.2	206 ± 16.5	119 ± 11.0	137 ± 4.0	
POSILIVE	e control	301 ± 102.6	101 ± 19./	•	200 - 10.5	11/ - 11.0	137 - 4.0	
	;	· · · · · · · · ·	· · ·		~ ~ ~	26 20	20 07	
TA98	0	21 ± 5.6	18 ± 2.4	27 ± 1.5	30 ± 1.5	26 ± 2.0	38 ± 0.7	
v	. 10	16 ± 3.0	22 ± 0.9		29 ± 0.7	<u>.</u>	34 ± 4.3	
	33	22 ± 1.0	17 ± 0.9	30 ± 1.7	28 ± 5.5	34 ± 1.2	33 ± 4.4	
	100	23 ± 0.6	23 ± 1.7	26 ± 2.0	29 ± 2.6	29 ± 5.4	28 ± 2.1	
	333	15 ± 0.3	20 ± 1.7	26 ± 2.3	27 ± 2.0	29 ± 3.9	29 ± 6.2	
	667	-	16 ± 3.7					
	1,000	Toxic		22 ± 5.1^{c}	27 ± 2.3^{c}	30 ± 3.2^{c}	30 ± 0.3	
	3,333		· · · ·	27 ± 2.3^{c}		12 ± 1.5^{c}		
,				•	Nostin	. '	Negativa	
	ummary	Negative	Negative	Negative	Negative	Negative	Negative	
Positive	e control	$1,492 \pm 27.5$	1,548 ± 23.9	$1,252 \pm 62.4$	$2,265 \pm 15.9$	$1,119 \pm 59.7$	994 ± 61.7	

236

Genetic Toxicology

TABLE E4

Mutagenicity of Diethylphthalate in Salmonella typhimurium ((continued)	

		 		Revertar	its/plate	<u> </u>			
Strain	Dose	-5	89	<u>+10% ha</u>	mster S9	+10% rat S9			
((µg/plate)	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2		
Study c	onducted at	Case Western	Reserve Univers	ity					
ГА100	0	105 ± 6.7	106 ± 2.9	132 ± 9.2	155 ± 11.6	138 ± 7.5	178 ± 33.8		
	100	99 ± 6.1	118 ± 7.3	137 ± 5.2	171 ± 5.2	151 ± 4.3	174 ± 12.2		
	333	103 ± 13.3	123 ± 10.8	132 ± 2.9	160 ± 4.5	141 ± 8.3	193 ± 18.7		
	1,000	81 ± 2.4	90 ± 11.0	127 ± 18.1	164 ± 8.1	140 ± 2.6	170 ± 6.5		
	3,333	90 ± 4.4	105 ± 5.2	133 ± 2.9	189 ± 16.8	139 ± 4.5	174 ± 9.2		
	10,000	67 ± 3.5	83 ± 5.0	132 ± 6.0	151 ± 3.0	161 ± 3.5	172 ± 8.3		
Frial sun	nmary	Negative	Negative	Negative	Negative	Negative	Negative		
Positive	control	659 ± 23.0	566 ± 22.8	2,281 ± 69.4	3,024 ± 210.7	1,044 ± 14.7	1,684 ± 89.9		
FA1535	0	4 ± 1.2	4 ± 0.9	4 ± 0.9	5 ± 0.3	5 ± 0.7	6 ± 0.7		
	100	5 ± 1.0	5 ± 1.5	4 ± 0.3	5 ± 0.5 5 ± 0.6	3 ± 0.7 3 ± 0.6	3 ± 0.9		
	333	3 ± 0.3	4 ± 0.6	4 ± 0.3 4 ± 0.9	5 ± 0.0 5 ± 0.9	5 ± 0.0 5 ± 0.0	5 ± 0.9 5 ± 0.7		
	1,000	2 ± 0.3	4 ± 0.0 4 ± 1.2	4 ± 0.7 3 ± 0.7	6 ± 1.2	5 ± 0.0 2 ± 0.6	6 ± 2.0		
	3,333	2 ± 0.3 2 ± 0.3	4 ± 1.2 3 ± 1.0	1 ± 0.0	3 ± 0.9	4 ± 0.9	0 ± 2.0 7 ± 1.2		
	10,000	1 ± 0.3	2 ± 0.6	1 ± 0.0 2 ± 0.0	3 ± 0.5 3 ± 0.6	4 ± 0.6	4 ± 0.7		
Frial sur	nmary	Negative	Negative	Negative	Negative	Negative	Negative		
ositive	control	296 ± 6.6	609 ± 19.2	79 ± 2.7	91 ± 8.4	28 ± 5.7	66 ± 8.8		
FA1537	0	10 ± 4.7	7 ± 1.7	10 ± 0.7	12 ± 1.7	18 ± 3.1	9 ± 1.8		
	100	8 ± 0.6	$3 \pm .1.5$	$6.\pm 0.3$	5 ± 1.5	16 ± 0.9	9 ± 1.0	•	
	333	9 ± 0.9	6 ± 0.3	5 ± 0.0	8 ± 1.2	13 ± 1.0	6 ± 0.6		
	1,000	7 ± 0.7	3 ± 1.2	7 ± 0.0	7 ± 0.7	14 ± 0.9	7 ± 2.6		
	3,333	4 ± 2.0	3 ± 0.9	6 ± 0.9	8 ± 1.0	11 ± 2.1	8 ± 1.7		
	10,000	5 ± 0.3	2 ± 1.2	5 ± 1.5	5 ± 0.3	10 ± 0.7	6 ± 0.7		
frial sur	nmary	Negative	Negative	Negative	Negative	Negative	Negative		
Positive	control	788 ± 169.0	1,206 ± 432.4	675 ± 15.3	284 ± 16.5	121 ± 4.1	49 ± 5.5		
FA98	0	17 ± 4.1	17 ± 2.0	21 ± 3.8	25 ± 6.7	21 ± 0.0	23 ± 2.7		
	100	19 ± 3.8	17 ± 2.0 13 ± 3.0	27 ± 0.0 27 ± 1.8	25 ± 3.2 27 ± 3.2	26 ± 2.0	26 ± 1.5		
	333	19 ± 3.8	15 ± 0.7 18 ± 0.7	26 ± 1.0	27 ± 5.2 24 ± 6.4	20 ± 2.0 22 ± 2.6	17 ± 4.1		
	1,000	19 ± 3.0 18 ± 3.4	13 ± 3.5	29 ± 3.8	24 ± 6.7	25 ± 1.5	25 ± 1.2	. •	
	3,333	10 ± 0.4 17 ± 0.3	15 ± 5.5 16 ± 1.5	17 ± 1.5	20 ± 0.7	25 ± 1.5 21 ± 1.2	19 ± 2.1		
	10,000	21 ± 3.5	10 ± 1.5 18 ± 2.2	24 ± 0.7	19 ± 5.0	19 ± 1.5	19 ± 2.1 18 ± 1.7		
Frial sur	nmary	Negative	Negative	Negative	Negative	Negative	Negative		
	control	430 ± 13.0	369 ± 9.0	$1,725 \pm 61.8$	$2,390 \pm 167.8$	844 ± 78.7	577 ± 25.6		

^a The detailed protocol and these data are presented in Zeiger et al. (1985).

^b Revertants are presented as mean \pm standard error from three plates.

^c Slight toxicity

^d The positive controls in the absence of metabolic activation were sodium azide (TA1535 and TA100), 9-aminoacridine (TA1537), and 4-nitro-o-phenylenediamine (TA98). The positive control for metabolic activation with all strains was 2-aminoanthracene.

•• •

× :

Diethylphthalate/Dimethylphthalate, NTP TR 429

۰.

TABLE E5

Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells by Diethylphthalate^a

Compound	Dose (µg/mL)	Total Cells	No. of Chromo- somes		SCEs/ Chromo- some			Relative nange of SCEs/ Chromosome ^b (%)
-S9	, , , , , , , , , , , , , , , , , , , 	· · ·						
Summary: Negative								
Dimethylsulfoxide		50	1,044	392	0.37	7.8	26.0	
Mitomycin-C	0.001	50	1,046	549	0.52	11.0	26.0	39.78
momyour-C	0.001	10	210	182	0.32	18.2	26.0	130.82
Diethylphthalate	5	50	1,045	417	0.39	8.3	26.0	6.28 11.22
	17 50 La	50 50	1,043 1,045	436 377	0.41 0.36	8.7 7.5	26.0 26.0	11.33 -3.92
+89				1	P=0.598 ^c			
		1999 - A.			•. o ·			
Frial 1 Summary: Positive	· · · · · · ·					. · · ·	17 M	•
Dimethylsulfoxide		50 4	1,047	359	0.34	7.2	26.0	
Cyclophosphamide				675	0.64	13.5	26.0	87.84
~	0.500	10	208	204	0.98	20.4	26.0	186.04
Diethylphthalate	50	50	1,044	412	0.39	8.2	26.0	15.09
·····/ ······	167	50	1,045	465	0.44	9.3	26.0	29.77*
	500	50	1,043	588	0.56	11.8	26.0	64.42*
					P<0.001			

238 -

TABLE E5

Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells by Diethylphthalate (continued)

Compound	Dose (µg/mL)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hrs in BrdU	Relative Change of SCEs/ Chromosome (%)
+\$9 (continued)								
Trial 2 Summary: Positive								
Dimethylsulfoxide		50 50	1,048 1,050	395 445	0.38 0.42	7.9 8.9	26.0 31.0 ^d	
Cyclophosphamide	0.125 0.500	50 10	1,048 211	650 213	0.62 1.00	13.0 21.3	26.0 26.0	46.35 138.19
Diethylphthalate	167 500 750	50 50 50	1,053 1,049 1,047	513 561 710	0.48 0.53 0.67	10.3 11.2 14.2	26.0 26.0 31.0 ^d	14.95 26.19* 60.01*
					P<0.001			

* Positive response (≥20% increase over solvent control)

^a Study performed at Sitek Research Laboratories. SCE = sister chromatid exchange; BrdU = bromodeoxyuridine. A detailed description of the SCE protocol is presented by Galloway *et al.* (1987).

^b SCEs/chromosome in treated cells versus SCEs/chromosome in solvent control cells

^c Significance of relative SCEs/chromosome tested by the linear regression trend test vs. log of the dose.

^d Because of chemical-induced delay in the cell-division cycle, harvest time was extended to maximize the proportion of second-division metaphase cells available for analysis.

TABLE E6

Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells by Diethylphthalate^a

			-S9			· .			+59			
	Dose (µg/mL)	Total Cells	No. of Abs	Abs/ Cell	Cells with Abs (%)		Dose (µg/mĽ)	Total Cells	No. of Abs	Abs/ Cell	Cells with Abs (%)	
· ·		······	· · ·				i		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
	time: 15.5 l y: Negative						time: 12.5 y: Negative					
Dimethy	lsulfoxide		•			Dimethy	Isulfoxide		*			
•		200	1	0.01	0,5	the sta		200	3	0.02	1.5	
Mitomy	cin-C			94 <u>-</u>		Cycloph	osphamide	•			• • •	
	0.4	25	13	0.52	36,0		20	25	15	0.60 ,	40.0	· .
Diethylp	ohthalate					Diethylp	ohthalate	, , , , , , , , , , , , , , , , , , ,				•
	70	200	0 %.	0.00	0.0		70	200	. 2	0.01	· 1.0	
	151	200	1	0.01	0.5		151	200	2	0.01	1.0	
-	324	200	5	0.03	2.5		324	200	1	0.01	0.5	
					P=0.014 ^b						P=0.830	

Study performed at Sitek Research Laboratories. Abs = aberrations. A detailed presentation of the protocol is found in Galloway *et al.* (1987). Significance of percent cells with aberrations tested by the linear regression trend test vs. log of the dose. a

b

APPENDIX F ORGAN WEIGHTS

AND ORGAN-WEIGHT-TO-BODY-WEIGHT RATIOS

Table F1	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 4-Week Dermal Study of Diethylphthalate	242
TABLE F2	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats	
	at the 15-Month Interim Evaluation in the 2-Year Dermal Study	н сi,
	of Diethylphthalate	243
TABLE F3	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice	
	in the 4-Week Dermal Study of Diethylphthalate	244
TABLE F4	Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice	
	at the 15-Month Interim Evaluation in the 2-Year Dermal Study	
	of Diethylphthalate	245

				`	
	0 µL	37.5 μL	75 µL	150 μL	300 µL
Male		-			
n _	10	10	10	10	10
Necropsy body wt	235 ± 5	229 ± 7	226 ± 9	222 ± 4	220 ± 5
R. Kidney					
Absolute	1.146 ± 0.035	1.107 ± 0.035	1.085 ± 0.028	1.189 ± 0.028	1.165 ± 0.023
Relative	4.87 ± 0.11	4.84 ± 0.06	4.85 ± 0.20	$5.35 \pm 0.07*$	$5.29 \pm 0.09^*$
Liver			•	•	· ·
Absolute	12.103 ± 0.408	11.982 ± 0.479	12.063 ± 0.651	12.137 ± 0.276	12.549 ± 0.351
Relative	51.41 ± 1.10	52.35 ± 1.24	52.99 ± 1.42	54.64 ± 1.00	$56.92 \pm 0.85^{**}$
R. Testis					
Absolute	1.377 ± 0.016	1.335 ± 0.029	1.343 ± 0.024	1.343 ± 0.016	1.353 ± 0.021
Relative	5.87 ± 0.08	5.86 ± 0.10	6.02 ± 0.26	6.05 ± 0.07	6.15 ± 0.07
Thymus	0.400 / 0.001	0.399 ± 0.016	0.389 ± 0.013	0.384 ± 0.015	0.393 ± 0.011
Absolute Relative	$\begin{array}{r} 0.423 \pm 0.021 \\ 1.80 \pm 0.09 \end{array}$	0.399 ± 0.018 1.76 ± 0.11	0.389 ± 0.013 1.73 ± 0.04	0.384 ± 0.013 1.73 ± 0.07	0.393 ± 0.011 1.79 ± 0.05
Relative	1.60 ± 0.09	1.70 ± 0.11	1.75 ± 0.04	1.75 2 0.07	1
Female	•	r			
n	10	10	10	10	10
Necropsy body wt	144 ± 2	142 ± 3	145 ± 3	141 ± 2	138 ± 3
יייי דעינע					. <u>,</u>
R. Kidney Absolute	0.755 ± 0.020	0.732 ± 0.019	0.791 ± 0.011	0.801 ± 0.023	0.753 ± 0.017
Relative	0.755 ± 0.020 5.26 ± 0.13	5.16 ± 0.10	5.46 ± 0.08	$5.69 \pm 0.11^{\circ}$	5.46 ± 0.09
Liver	5.20 ± 0.15	5.10 2 0.10	J.70 ± 0.00	J.U V.AI	5.40 2, 0.07
Absolute	6.422 ± 0.167	6.566 ± 0.201	6.823 ± 0.225	6.810 ± 0.143	6.578 ± 0.139
Relative	44.65 ± 0.80	46.28 ± 1.10	46.92 ± 1.05	$48.41 \pm 0.85^*$	$47.69 \pm 0.55^*$
Thymus					
Absolute	0.317 ± 0.009	0.323 ± 0.012	0.306 ± 0.015	0.308 ± 0.014	0.312 ± 0.011

TABLE F1

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats in the 4-Week Dermal Study of Diethylphthalate^a

* Significantly different (P \leq 0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error).

TABLE	F2
-------	----

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Rats at the 15-Month Interim Evaluation in the 2-Year Dermal Study of Diethylphthalate^a

	Ο μL	100 μL	300 μL	
Male			44999997 Tuesda and a second	
1	10	10	9	
Necropsy body wt	436 ± 11	419 ± 18	406 ± 9	
Brain		· · ·		
Absolute	2.048 ± 0.020	1.987 ± 0.044	$1.936 \pm 0.022^*$	
Relative	4.72 ± 0.12	4.84 ± 0.28	4.78 ± 0.09	
R. Kidney	1 + 1 &	THE FLORE CONTROL		
Absolute	1.666 ± 0.054	1.700 ± 0.061	1.687 ± 0.050	
Relative	3.83 ± 0.13	4.13 ± 0.25	4.17 ± 0.15	
Liver				
Absolute	15.139 ± 0.643	15.491 ± 0.670	15.026 ± 0.450	•
Relative	34.69 ± 1.14	37.72 ± 2.59	37.07 ± 1.08	
Female				
n	8	10	10	
Necropsy body wt	268 ± 6	261 ± 8	263 ± 9	
Brain	•			
Absolute	1.873 ± 0.019	1.839 ± 0.029	1.875 ± 0.017	
Relative	7.00 ± 0.15	7.11 ± 0.24	7.20 ± 0.24	
R. Kidney				
Absolute	1.074 ± 0.027	1.079 ± 0.035	1.109 ± 0.028	
Relative	4.02 ± 0.12	4.17 ± 0.17	4.25 ± 0.14	
Liver				
Absolute	9.573 ± 0.175	9.699 ± 0.317	9.728 ± 0.279	
Relative	35.78 ± 0.83	37.48 ± 1.53	37.20 ± 1.06	

* Significantly different (P \leq 0.05) from the control group by Williams' or Dunnett's test

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error).

				· · ·	<u> </u>
	0 'µL	12.5 μL	25 μL	50 µL	100 µL
Male			<u></u>		
n	10	10	10	10	10
Necropsy body wt	26.8 ± 0.6	27.1 ± 0.6	26.1 ± 0.5	26.8 ± 0.4	26.5 ± 0.6
R. Kidney					
Absolute	0.334 ± 0.007	0.310 ± 0.013	0.313 ± 0.010	0.344 ± 0.014	0.340 ± 0.014
Relative	12.50 ± 0.33	11.45 ± 0.40	11.98 ± 0.31	12.81 ± 0.42	12.81 ± 0.34
Liver			·		
Absolute	1.683 ± 0.053	1.746 ± 0.060	1.702 ± 0.048	1.721 ± 0.025	1.716 ± 0.056
Relative	62.78 ± 1.07	64.34 ± 1.12	65.04 ± 0.86	64.37 ± 0.72	64.76 ± 1.06
R. Testis					
Absolute	0.118 ± 0.003	0.114 ± 0.004	0.115 ± 0.004	0.118 ± 0.003	0.116 ± 0.003
Relative	4.44 ± 0.20	4.21 ± 0.18	4.41 ± 0.16	4.40 ± 0.12	4.38 ± 0.13
Thymus					
Absolute	0.054 ± 0.003	0.055 ± 0.002	0.052 ± 0.003	0.053 ± 0.003	0.055 ± 0.003
Relative	2.02 ± 0.14	2.05 ± 0.08	1.99 ± 0.14	1.98 ± 0.14	2.06 ± 0.12
Female			,		
2 011110	•		,		
n	9	10	10	10	10
Necropsy body wt	21.9 ± 0.5	22.4 ± 0.4	23.1 ± 0.3	22.5 ± 0.3	22.7 ± 0.3
R. Kidney					,
Absolute	0.231 ± 0.011	0.231 ± 0.006	0.247 ± 0.008	0.230 ± 0.007	0.229 ± 0.007
Relative	10.60 ± 0.51	10.35 ± 0.25	10.71 ± 0.32	10.24 ± 0.29	10.07 ± 0.23
Liver					
Absolute	1.365 ± 0.056	1.493 ± 0.038	$1.569 \pm 0.037^*$	1.491 ± 0.057	$1.562 \pm 0.037^*$
Relative	62.30 ± 1.48	66.76 ± 1.12	$67.93 \pm 1.00*$	66.27 ± 1.62	68.77 ± 1.09**
Thymus					
Absolute	0.072 ± 0.004	0.074 ± 0.004	0.084 ± 0.006	0.071 ± 0.005	0.074 ± 0.004
Relative	3.29 ± 0.20	3.29 ± 0.16	3.67 ± 0.29	3.16 ± 0.23	3.25 ± 0.16

TABLE F3

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 4-Week Dermal Study of Diethylphthalate^a

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean \pm standard error).

TABLE F4

Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice at the 15-Month Interim Evaluation in the 2-Year Dermal Study of Diethylphthalate^a

	0 μL	7.5 μL	15 μL	30 µĽ
Male				······································
n	10	10	10	10
Necropsy body wt	39.9 ± 0.9	37.6 ± 0.9	40.8 ± 0.6	37.8 ± 0.9
Brain				
Absolute	0.468 ± 0.005	0.456 ± 0.004	0.462 ± 0.003	0.456 ± 0.004
Relative	11.79 ± 0.27	12.20 ± 0.33	11.34 ± 0.13	12.12 ± 0.34
R. Kidney				
Absolute	0.410 ± 0.009 ,	0.402 ± 0.008	0.390 ± 0.011	$0.373 \pm 0.007^{**}$
Relative	10.30 ± 0.12	10.73 ± 0.24	9.56 ± 0.22	9.89 ± 0.20
Liver				
Absolute	1.752 ± 0.070	1.709 ± 0.051	1.771 ± 0.078	1.748 ± 0.142
Relative	44.00 ± 1.60	45.50 ± 0.97	43.40 ± 1.71	46.29 ± 3.80
Female			•	
n	10	9	10	10
Necropsy body wt	39.1 ± 0.5	36.5 ± 1.1	37.5 ± 0.8	$36.0 \pm 0.9^*$
Brain				
Absolute	0.473 ± 0.004	0.473 ± 0.003	0.478 ± 0.005	0.472 ± 0.006
Relative	12.11 ± 0.18	13.06 ± 0.33	12.80 ± 0.35	$13.16 \pm 0.33^*$
R. Kidney				
Absolute	0.273 ± 0.004	0.271 ± 0.009	0.286 ± 0.005	0.272 ± 0.011
Relative	7.00 ± 0.16	7.44 ± 0.15	$7.64 \pm 0.15*$	7.55 ± 0.22*
Liver				
Absolute	1.623 ± 0.051	1.500 ± 0.060	1.551 ± 0.039	1.536 ± 0.030^{b}
Relative	41.49 ± 1.13	41.22 ± 1.50	41.47 ± 1.25	43.31 ± 0.80^{b}

* Significantly different (P≤0.05) from the control group by Williams' or Dunnett's test

** P≤0.01

^a Organ weights and body weights are given in grams; organ-weight-to-body-weight ratios are given as mg organ weight/g body weight (mean ± standard error).

^b n=9

246

APPENDIX G HEMATOLOGY AND CLINICAL CHEMISTRY RESULTS

TABLE G1	Hematology and Clinical Chemistry Data for Rats	
	at the 15-Month Interim Evaluation in the 2-Year Dermal Study	
	of Diethylphthalate	248
TABLE G2	Hematology Data for Mice at the 15-Month Interim Evaluation	
	in the 2-Year Dermal Study of Diethylphthalate	249

247

Diethylphthalate/Dimethylphthalate, NTP TR 429

	0 µL	100 µL	300 µL
	· · ·	······································	<u>_</u>
Male			
1	10	10	9
Hematology			•
Hematocrit (%)	41.0 ± 1.7	39.1 ± 1.1	38.3 ± 1.5
Hemoglobin (g/dL)	16.1 ± 0.6	15.6 ± 0.4	15.6 ± 0.3
Erythrocytes $(10^6/\mu L)$	8.00 ± 0.33	7.38 ± 0.30	7.49 ± 0.28
Mean cell volume (fL)	51.2 ± 0.2	53.3 ± 1.1	51.1 ± 0.3
Mean cell hemoglobin (pg)	20.2 ± 0.2	21.3 ± 0.6	21.1 ± 1.1
Mean cell hemoglobin concentration (g/dL)	39.4 ± 0.4	40.0 ± 0.4	41.3 ± 2.3
Leukocytes $(10^{3}/\mu L)$	8.82 ± 0.71	7.85 ± 0.66	8.20 ± 0.45
Segmented neutrophils $(10^3/\mu L)$	2.50 ± 0.18	2.57 ± 0.33	2.69 ± 0.18
Lymphocytes $(10^3/\mu L)$	6.08 ± 0.60	5.07 ± 0.36	5.32 ± 0.30
Monocytes $(10^3/\mu L)$	0.03 ± 0.02	0.05 ± 0.02	0.04 ± 0.02
Eosinophils $(10^3/\mu L)$	0.16 ± 0.05	0.17 ± 0.04	0.13 ± 0.04
Nucleated erythrocytes $(10^3/\mu L)$	0.07 ± 0.03	0.08 ± 0.03	0.10 ± 0.05
Clinical Chemistry			
Urea nitrogen (mg/dL)	22.0 ± 1.1	23.2 ± 1.4	22.7 ± 0.9
Creatinine (mg/dL)	0.56 ± 0.03	0.60 ± 0.03	0.53 ± 0.04
Alkaline phosphatase (IU/L)	238 ± 12	231 ± 15	255 ± 10
Sorbitol dehydrogenase (IU/L)	19 ± 1	19 ± 1	19 ± 1
	· · · ·	· ·	
	· · ·	· · ·	
female			
]	8	10	10
	, e '		
lematology	1 + 2	· , *	
Hematocrit (%)	40.7 ± 0.4	41.2 ± 0.7	$43.2 \pm 1.0^*$
Hemoglobin (g/dL)	15.3 ± 0.2	15.6 ± 0.3	$16.4 \pm 0.4^*$
Erythrocytes $(10^6/\mu L)$	7.59 ± 0.10	7.74 ± 0.12	$7.99 \pm 0.20^*$
Mean cell volume (fL)	53.6 ± 0.2	53.2 ± 0.4	54.0 ± 0.2
Mean cell hemoglobin (pg)	20.2 ± 0.1	20.1 ± 0.2	20.5 ± 0.2
Mean cell hemoglobin concentration (g/dL)	37.8 ± 0.3	37.9 ± 0.2	38.1 ± 0.3
Leukocytes $(10^3/\mu L)$	5.45 ± 0.26	5.25 ± 0.26	5.95 ± 0.26
Segmented neutrophils (10 ³ /µL)	1.64 ± 0.19	1.64 ± 0.25	1.73 ± 0.11
Lymphocytes $(10^3/\mu L)$	3.70 ± 0.17	3.50 ± 0.17	4.11 ± 0.17
Monocytes $(10^3/\mu L)$	0.04 ± 0.02	0.01 ± 0.01	0.04 ± 0.02
Eosinophils $(10^3/\mu L)$	0.09 ± 0.02	0.10 ± 0.03	0.08 ± 0.03
Nucleated erythrocytes $(10^3/\mu L)$	0.07 ± 0.04	0.08 ± 0.03	0.07 ± 0.03
Clinical Chemistry			
Urea nitrogen (mg/dL)	22.5 ± 1.1	23.0 ± 0.5	22.6 ± 1.0
Creatinine (mg/dL)	0.55 ± 0.03	0.56 ± 0.03	0.51 ± 0.02
Alkaline phosphatase (IU/L)	213 ± 8	237 ± 11	$247 \pm 12^*$
Sorbitol dehydrogenase (IU/L)	21 ± 0	19 ± 1	19 ± 1

TABLE G1

Hematology and Clinical Chemistry Data for Rats at the 15-Month Interim Evaluation

Significantly different (P \leq 0.05) from the control group by Dunn's or Shirley's test Mean \pm standard error *

a

. . .

Hematology and Clinical Chemistry

or Diethylphthalate.		· · ·	· · ·	
	0 µL	7.5 μL ·	15 μL	30 µL
Male		<u> </u>		
n	10	9	10	9
Hematocrit (%)	43.2 ± 0.9	41.7 ± 0.5	42.6 ± 1.1	42.9 ± 0.7
Hemoglobin (g/dL)	14.8 ± 0.4	14.2 ± 0.2	14.6 ± 0.4	14.7 ± 0.3
Erythrocytes (10 ⁶ /µL)	9.32 ± 0.19	8.96 ± 0.11	9.18 ± 0.25	9.30 ± 0.21
Mean cell volume (fL)	46.3 ± 0.2	46.6 ± 0.2	46.5 ± 0.2	46.2 ± 0.4
Mean cell hemoglobin (pg)	15.9 ± 0.1	15.8 ± 0.1	15.9 ± 0.1	15.8 ± 0.2
Mean cell hemoglobin	•			
concentration (g/dL)	34.2 ± 0.2	34.0 ± 0.1	34.2 ± 0.2	34.1 ± 0.2
Leukocytes $(10^3/\mu L)$	6.20 ± 0.38	5.11 ± 0.33	6.04 ± 0.24	5.42 ± 0.48
Segmented neutrophils $(10^3/\mu L)$	1.42 ± 0.26	1.28 ± 0.18	1.61 ± 0.15	1.28 ± 0.27
Lymphocytes $(10^3/\mu L)$	4.60 ± 0.28	3.68 ± 0.25	4.33 ± 0.18	4.08 ± 0.29
Monocytes (10 ³ /µL)	0.09 ± 0.03	0.04 ± 0.02	0.03 ± 0.02	0.00 ± 0.00 **
Eosinophils $(10^3/\mu L)$	0.09 ± 0.03	0.12 ± 0.04	0.06 ± 0.03	0.07 ± 0.02
Female				· ·
n	10	9	10	10
Hematocrit (%)	40.6 ± 0.8	40.9 ± 0.8	40.5 ± 0.9	40.4 ± 0.7
Hemoglobin (g/dL)	13.8 ± 0.3	13.9 ± 0.3	13.7 ± 0.4	14.0 ± 0.4
Erythrocytes $(10^6/\mu L)$	8.69 ± 0.18	8.73 ± 0.20	8.68 ± 0.22	8.69 ± 0.19
Mean cell volume (fL)	46.7 ± 0.2	46.9 ± 0.2	46.7 ± 0.2	46.6 ± 0.4
Mean cell hemoglobin (pg)	15.9 ± 0.1	15.9 ± 0.1	15.8 ± 0.1	16.1 ± 0.2
Mean cell hemoglobin				
concentration (g/dL)	34.1 ± 0.1	33.9 ± 0.1	33.9 ± 0.2	34.5 ± 0.6
Leukocytes $(10^3/\mu L)$	4.30 ± 0.41	4.42 ± 0.37	4.34 ± 0.32	4.22 ± 0.55^{b}
Segmented neutrophils $(10^3/\mu L)$	0.96 ± 0.12	1.08 ± 0.21	0.90 ± 0.14	1.18 ± 0.24
Lymphocytes $(10^3/\mu L)$	3.15 ± 0.31	3.24 ± 0.20	3.31 ± 0.26	3.17 ± 0.39^{b}
Monocytes $(10^3/\mu L)$	0.05 ± 0.03	0.02 ± 0.02	0.03 ± 0.02	0.03 ± 0.02^{b}
Eosinophils $(10^3/\mu L)$	0.14 ± 0.05	0.07 ± 0.03	0.07 ± 0.03	$0.03 \pm 0.02^*$

TABLE G2

Hematology Data for Micé at the 15-Month Interim Evaluation in the 2-Year Dermal Study of Diethylphthalate^a

* Significantly different (P≤0.05) from the control group by Dunn's or Shirley's test

** P≤0.01

Mean \pm standard error

^b n=9

249
APPENDIX H CHEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES

PROCUREME	NT AND CHARACTERIZATION	252
Preparation	n and Analysis of Dose Formulations	255
Figure H1	Infrared Absorption Spectrum of Diethylphthalate	257
FIGURE H2	Nuclear Magnetic Resonance Spectrum of Diethylphthalate	258
FIGURE H3	Infrared Absorption Spectrum of Dimethylphthalate	259
FIGURE H4	Nuclear Magnetic Resonance Spectrum of Dimethylphthalate	260
FIGURE H5	Infrared Absorption Spectrum of 7,12-Dimethylbenz(a)anthracene	261
Figure H6	Nuclear Magnetic Resonance Spectrum of 7,12-Dimethylbenz(a)anthracene	262
Figure H7	Nuclear Magnetic Resonance Spectrum of 12-O-Tetradecanoylphorbol-13-Acetate	263
Table H1	Preparation and Storage of Dose Formulations in the Dermal Studies	
	of Diethylphthalate and Dimethylphthalate	264
Table H2	Results of Analysis of Dose Formulations Administered to Mice	
	in the 2-Year Dermal Study of Diethylphthalate	265
Table H3	Results of Analysis of Dose Formulations Administered to Mice	
		267
Table H4	Results of Referee Analysis of Dose Formulations Administered to Mice	
	in the 1-Year Dermal Study of Diethylphthalate and Dimethylphthalate	
	and in the 2-Year Dermal Study of Diethylphthalate	268

CHEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES

PROCUREMENT AND CHARACTERIZATION Diethylphthalate

Diethylphthalate was obtained from Tennessee Eastman Company (Kingsport, TN) in one lot (84117), which was used throughout the 4-week dermal studies, 1-year dermal study in male mice, and 2-year dermal studies. Identity, purity, and stability analyses were conducted by the analytical chemistry. laboratory, Midwest Research Institute (Kansas City, MO). Reports on analyses performed in support of the diethylphthalate studies are on file at the National Institute of Environmental Health Sciences (NIEHS).

The chemical, a clear colorless liquid, was identified as diethylphthalate by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. All spectra were consistent with the literature spectra (*Sadtler Standard Spectra*) of diethylphthalate (Figures H1 and H2).

The purity was determined by elemental analyses, Karl Fischer water analysis, titration of free acid, ester titration, thin-layer chromatography, and gas chromatography. For free acid titration, samples were dissolved in ethanol, titrated with 0.05 N aqueous sodium hydroxide, and monitored potentiometrically with an electrode filled with 3 M potassium chloride. For ester titration, samples were hydrolyzed with 1.0 N potassium hydroxide, shaken for 16 hours, and titrated with 0.5 N hydrochloric acid. Ester titration was monitored potentiometrically with an electrode filled with 3 M potassium chloride filled with 3 M potassium chloride. Thin-layer chromatography was performed on Silica Gel 60 F-254 plates with two solvent systems: 1) hexane:ethyl acetate (80:20), and 2) methylene chloride:acetone (95:5). Dicyclohexyl phthalate was used as a reference standard. Plates were examined under 254 nm ultraviolet light and a spray of resorcinol-zinc chloride-sulfuric acid. Gas chromatography was performed using a flame ionization detector with a nitrogen carrier gas at a flow rate of 70 mL/minute. Two systems were used:

- A) 3% SP-2100 on 100/120 Supelcoport, with an oven temperature program of 50° C for 5 minutes, then 50° to 250° C at 10° C per minute, and
- B) 10% Carbowax 20M-TPA on 80/100 Chromosorb W(AW), with an oven temperature program of 60° C for 6 minutes, then 60° to 200° C at 10° C per minute.

Elemental analyses for carbon and hydrogen were in agreement with the theoretical values for diethylphthalate. Karl Fischer water analysis indicated $0.083\% \pm 0.003\%$ water. Free acid titration indicated less than 0.00006 mEq acid per gram of sample. Ester titration indicated a purity of $100.9\% \pm 0.3\%$. Thin-layer chromatography by each system indicated only a major spot. Gas chromatography indicated one major peak and no impurities with areas greater than 0.1% relative to the major peak using either system. The overall purity was determined to be greater than 99%.

Stability studies were performed by the analytical chemistry laboratory. Gas chromatography was performed using system A, except with an isothermal oven temperature of 170° C and 0.2% (w/v) tetradecane added as an internal standard. These studies indicated that diethylphthalate was stable as bulk chemical for at least 2 weeks when stored protected from light at temperatures up to 60° C. The stability of the bulk chemical was monitored periodically by the study laboratory using gas chromatography and free acid titration methods similar to those described above. No degradation of the bulk chemical was observed.

Chemical Characterization and Dose Formulation

Dimethylphthalate

Dimethylphthalate was obtained from Chemical Technical Industries (Orlando, FL) in one lot (C122883), which was used during the 1-year dermal study in male mice. Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory, Midwest Research Institute. Reports on analyses performed in support of the dimethylphthalate studies are on file at the National Institute of Environmental Health Sciences.

The chemical, a clear colorless liquid, was identified as dimethylphthalate by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. All spectra were consistent with the literature spectra (*Sadtler Standard Spectra*) of dimethylphthalate (Figures H3 and H4).

The purity was determined by elemental analyses, Karl Fischer water analysis, titration of free acid, ester titration, thin-layer chromatography, and gas chromatography. For free acid titration, samples were dissolved in methanol, titrated with 0.01 N aqueous sodium hydroxide, and monitored potentiometrically with an electrode filled with 3 M potassium chloride. For ester titration, samples were hydrolyzed with 0.5 N potassium hydroxide, refluxed for 2 hours, and titrated with 0.5 N hydrochloric acid. Ester titration was monitored potentiometrically with an electrode filled with 3 M potassium chloride filled with 3 M potassium chloride. Thin-layer chromatography was performed on Silica Gel 60 F-254 plates with two solvent systems: 1) hexane:ethyl acetate (80:20), and 2) methylene chloride:acetone (95:5). Dimethylterephthalate was used as a reference standard. Plates were examined under 254 nm and 366 nm ultraviolet light and a spray of resorcinol-zinc chloride-sulfuric acid. Gas chromatography was performed using systems A and B as described in the diethylphthalate purity analysis.

Elemental analyses for carbon and hydrogen were in agreement with the theoretical values for dimethylphthalate. Karl Fischer water analysis indicated $0.039\% \pm 0.002\%$ water. Free acid titration indicated 0.00060 ± 0.00004 mEq of acid per g of sample. Ester titration indicated a purity of $99.2\% \pm 0.8\%$. Thin-layer chromatography by each system indicated only a major spot. Gas chromatography indicated one major peak and no impurities with areas greater than 0.1% relative to the major peak using both systems. The overall purity was determined to be equal to or greater than 99%.

Stability studies were performed with gas chromatography using system B described previously, except with an isothermal oven temperature of 200° C and 0.1% (w/v) nonadecane added as an internal standard. These studies indicated that dimethylphthalate was stable as bulk chemical for at least 2 weeks when stored protected from light at temperatures up to 60° C. The stability of the bulk chemical was monitored periodically by the study laboratory using gas chromatography and ester titration methods similar to those described previously. No degradation of the bulk chemical was observed.

7,12-Dimethylbenz(a)anthracene

7,12-Dimethylbenz(a)anthracene was obtained from the Eastman Kodak Company (Rochester, NY) in one lot (K-4). The lot was purified by the analytical chemistry laboratory, Midwest Research Institute. The chemical was dissolved in benzene and then passed through a neutral alumina column. The chemical was crystallized from isopropanol. The purified material was assigned lot number M111384 and was used throughout the 1-year study. Reports on the identity, purity, and stability analyses performed by the analytical chemistry laboratory in support of the 1-year study are on file at the NIEHS.

The chemical, a light yellow powder, was identified as 7,12-dimethylbenz(a)anthracene by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. All spectra were consistent with the literature spectra (*Sadtler Standard Spectra*) of 7,12-dimethylbenz(a)anthracene (Figures H5 and H6).

The purity was determined by elemental analyses, Karl Fischer water analysis, thin-layer chromatography, and gas chromatography. Thin-layer chromatography was performed on Silica Gel 60 F-254 plates with two solvent systems: 1) toluene:hexane (60:40) and 2) hexane:chloroform (78:22). Plates were examined

Diethylphthalate/Dimethylphthalate, NTP TR 429

under 254 nm and 366 nm ultraviolet light and a spray of 5% (w/v) potassium dichromate in 40% sulfuric acid. Gas chromatography was performed using a flame ionization detector with a nitrogen carrier gas at a flow rate of 70 mL/minute. Two systems were used:

- A) 3% Dexsil 400 on 80/100 Chromosorb W(AW), with an oven temperature program of 50° C for 5 minutes, then 50° to 300° C at 10° C per minute, and
- B) 3% SP-2100 on 100/120 Supelcoport, with an oven temperature program of 75° C for 1 minute, then 75° to 275° C at 10° C per minute.

Elemental analyses for carbon and hydrogen were in agreement with the theoretical values for 7,12-dimethylbenz(a)anthracene. Karl Fischer water analysis indicated less than 0.4% water. Thin-layer chromatography by system 1 indicated one major spot and one trace spot, and system 2 indicated only a major spot. Gas chromatography using both systems indicated one major peak and no impurities with peaks greater than 0.1% relative to the major peak area. The overall purity was determined to be greater than 99%.

Stability studies were performed with gas chromatography system A described above except with an isothermal oven temperature of 300° C and 2.3 mg/mL octacosane added as an internal standard. These studies indicated that 7,12-dimethylbenz(a)anthracene was stable as bulk chemical for at least 2 weeks when stored protected from light at temperatures up to 60° C. The stability of the bulk chemical was monitored periodically by the study laboratory using ultraviolet spectroscopy and gas chromatography. No degradation of the bulk chemical was observed.

12-O-Tetradecanoylphorbol-13-acetate

12-O-Tetradecanoylphorbol-13-acetate in sealed vials containing 5 or 10 mg of chemical was obtained from Consolidated Midland Corporation (Brewster, NY) in one lot (031), from Pharmacia PL Biochemical (Milwaukee, WI) in three lots (UN2811, 411999, and OE511999), and from L.C. Services Corporation (Woburn, MA) in one lot (F-121). All five lots were used during the 1-year study. Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory, Midwest Research Institute. Reports on analyses performed in support of the 1-year study are on file at the NIEHS.

Each lot of the chemical was identified as 12-O-tetradecanoylphorbol-13-acetate by nuclear magnetic resonance spectroscopy and mass spectrometry. All spectra were consistent with the literature spectra (Sadtler Standard Spectra) of 12-O-tetradecanoylphorbol-13-acetate (Figure H7).

The purity of the five lots was determined by thin-layer chromatography and high-performance liquid chromatography. Thin-layer chromatography was performed on Silica Gel 60 F-254 plates using two solvent systems: 1) anhydrous diethyl ether (100%), and 2) ethyl acetate:chloroform (60:40). Visualization was at 254 nm (and 366 nm for lot 411999) with a spray of 1% (w/v) vanillin in concentrated sulfuric acid, followed by heating at 120° C for 10 to 20 minutes. High-performance liquid chromatography was performed with a DuPont Zorbax ODS column, with a flow rate of 1 mL per minute, detection at 229 nm, and a solvent system of water:acetonitrile (10:90).

Thin-layer chromatography for lots UN2811, OE511999, and F-121 revealed only one major spot using each system. Thin-layer chromatography for lot 411999 revealed only one major spot using system 1 and one major spot and one very slight trace impurity using system 2. Thin-layer chromatography of lot 031 using the first system revealed one major spot, one trace impurity, and one very slight trace impurity, while system 2 revealed one major spot, one trace impurity, one slight trace impurity, and two very slight trace impurities. High-performance liquid chromatography of lot 031 revealed one major peak and 11 impurities with areas greater than or equal to 0.1% of the major peak area and a combined area of 3.1% relative to the major peak area. High-performance liquid chromatography of lot UN2811 indicated

Chemical Characterization and Dose Formulation

one major peak and seven impurities with areas greater than or equal to 0.1% of the major peak area and a combined area of 2.9% relative to the major peak area. For lot 411999, high-performance liquid chromatography indicated one major peak and three impurities with areas greater than or equal to 0.1% of the major peak area and a combined area of 0.6% relative to the major peak. High-performance liquid chromatography of lot OE511999 indicated one major peak and five impurities with areas greater than or equal to 0.1% of the major peak area and a combined area of 1.0% relative to the major peak area. For lot F-121, high-performance liquid chromatography indicated one major peak area of 1.0% relative to the major peak area. For lot F-121, high-performance liquid chromatography indicated one major peak and two impurities with areas greater than or equal to 0.1% of the major peak area and a combined area and a combined area of 1.0% relative to the major peak area. For lot F-121, high-performance liquid chromatography indicated one major peak and two impurities with areas greater than or equal to 0.1% of the major peak area and a combined area and a combined area of 0.8% relative to the major peak area. The overall purity was determined to be 99% for lots F-121, OE511999, and 411999 and 97% for lots 031 and UN2811.

The stability of the chemical was determined using high-performance liquid chromatography system described in the purity analysis. The study indicated that no decomposition had occurred in samples exposed to air and light at ambient temperature for up to 6 days. The study laboratory stored the chemical in sealed vials at -20° C.

PREPARATION AND ANALYSIS OF DOSE FORMULATIONS

Diethylphthalate

In the 4-week studies, 1-year mouse study, and 2-year rat study, the diethylphthalate was applied neat. In the 2-year mouse study, the dose formulations were prepared by mixing diethylphthalate and acetone to give the required concentration (Table H1). The dose formulations were prepared and stored in amber glass bottles at room temperature until 12 December 1986 after which dose formulations were stored in amber glass bottles and refrigerated at 4° C. Dose formulations were discarded 3 weeks after the date of preparation.

Dose formulation stability studies were performed by the analytical chemistry laboratory. Aliquots of the 40 mg/mL formulation of diethylphthalate were mixed with 5 mL of valerophenone (10 mg/mL in water:acetonitrile (40:60, v/v)) and further diluted with water:acetonitrile (40:60, v/v). High-performance liquid chromatography was performed using a Waters μ Bondapak C₁₈ column, with a flow rate of 1 mL/minute, a mobile phase of water:acetonitrile (40:60, v/v), with valerophenone added as an internal standard, and detection at 254 nm. The stability of the diethylphthalate dose formulations was confirmed for at least 3 weeks at room temperature when stored in the dark, and for at least 3 hours when exposed to light and air.

Periodic analyses of the dose formulations of diethylphthalate were conducted by the study laboratory and analytical chemistry laboratory using reverse-phase high-performance liquid chromatography. During the 2-year mouse study, the dose formulations were analyzed at least once every 8 weeks (Table H2). In the 2-year mouse study 91% (52/57) of the dose formulations analyzed were within 10% of the target concentrations. Results of the periodic referee analyses performed by the analytical chemistry laboratory were in agreement with the results obtained by the study laboratory (Table H4).

Dimethylphthalate

Dimethylphthalate was applied neat in the 1-year mouse study.

7,12-Dimethylbenz-(a)anthracene

In the 1-year mouse study, the dose formulation was prepared by dissolving 7,12-dimethylbenz-(a)anthracene and acetone (w/v) to give the required concentration (Table H1). The dose formulation was stored frozen protected from light, and discarded 3 weeks after preparation.

Stability analyses of the 0.1 mg/mL and 0.0025 mg/mL dose formulations were performed by the analytical chemistry laboratory. Aliquots were diluted with acetone, then mixed with 2 mL of the internal standard

Diethylphthalate/Dimethylphthalate, NTP TR 429

solution, anthracene (50 μ g/mL in 85:15, v/v acetonitrile:water), and further diluted with acetonitrile:water (85:15, v/v). High-performance liquid chromatography was performed using a Brownlee RP-18 column, with a flow rate of 1 mL/minute, an a mobile phase of acetonitrile:water (85:15, v/v), with anthracene added as an internal standard, and detection at 365 nm. The stability of the dose formulations was confirmed for up to 3 weeks at room temperature when stored in the dark, and for less than 3 hours when exposed to light and air.

Analysis of the dose formulation of 7,12-dimethylbenz(a)anthracene was conducted by the study laboratory and analytical chemistry laboratory using ultraviolet spectroscopy at 363 nm. During the 1-year male mouse study, the dose formulation was analyzed prior to the beginning of the study and was within 10% of the target concentrations (Table H3). Results of referee analysis performed by the analytical chemistry laboratory indicated good agreement with the results obtained by the study laboratory (Table H4).

12-O-Tetradecanoylphorbol-13-acetate

The dose formulations were prepared by mixing 12-O-tetradecanoylphorbol-13-acetate and acetone to give the required concentrations (Table H1). Dose formulations were prepared every 2 weeks. The dose formulations were refrigerated in amber glass bottles and were discarded 3 weeks after the date of preparation.

Stability analyses of the acetone solutions were conducted by the analytical chemistry laboratory, using the high-performance liquid chromatography system used in the bulk chemical analyses of 12-O-tetradecanoyl-phorbol-13-acetate except with a Burdick & Jackson C_{18} column and a solvent ratio of 7:93. Stability of the formulation was established for at least 3 weeks when stored at 4° C in amber glass bottles.

Periodic analyses of the dose formulations of 12-O-tetradecanoylphorbol-13-acetate were conducted by the study laboratory and by the analytical chemistry laboratory with the same high-performance liquid chromatography method as that used in the stability study except that a solvent ratio of 10:90 was also used. In the study, only 54% (7/13) of the formulations analyzed were within 10% of the target concentrations but with no formulation greater than 26% from the target (Table H3). Results of periodic referee analyses performed by the analytical chemistry laboratory indicated reasonable agreement with the results obtained by the study laboratory (Table H4).

257

Chemical Characterization and Dose Formulation

Diethylphthalate/Dimethylphthalate, NTP TR 429

FIGURE H2 Nuclear Magnetic Resonance Spectrum of Diethylphthalate

. .

260

Diethylphthalate/Dimethylphthalate, NTP TR 429

FIGURE H5 Infrared Absorption Spectrum of 7,12-Dimethylbenz(a)anthracene **Chemical Characterization and Dose Formulation**

Diethylphthalate/Dimethylphthalate, NTP TR 429

196N 12-0-Tetradecanoylphorbol-13-acetate				
Lot No.: 31	Assignments (8 ppm)	J	Observed	Theoretical
Batch No.: 05				
MRI Task No.: BS-1435	(a) 0.92	J _{a-c} = 7 Hz	2.97	3
Project No.: 8403-05	(b) 1.05-1.42 \	2.0	27.48	4
				. 22
Instrument: Jeol 300-MHz FT-NMR	(c) 1.30		2.89	3
Solvent: Deuterated benzene	(d) 1.38		5.95	7
Nucleus: Proton	(e) 1.49-1.65		2.97	3
Internal Reference: Benzene	(f) 1.75	1	1.98	2
Sample Temperature: Ambient	(g) 2.19	J _{c-g} ≃ 7 Hz		
Date: 1/31/85	(h) 2.38-2.54 \		2.89	1
	(i) 2.50 J			2
One-Pulse Sequence	(j) 2.76		0.99	1
P2 = 7.00 USEC	(k) 3.41-3.50		1.98	2
D5 = 10.00 SEC	(1) 3.80		1.98	2 2 1
NA = 32	(m) 5.74		0.99	
Size = 16384	(n) 5.88-5.98		1.98	2
AT = 2.05 SEC	(0) 7.45		0.99	1
QPD On = 1	(6) 7.45			
ABC On	(p) 0.65, impurity		0.28	
Butterworth Filter On	(g) 7.15, solvent		_	
DB ATT. = 3	(4) 7.13, Solven			
ADC = 12 Bits				
			1	1
Al = 4	(k) (b)			
SW = +/- 2000.00	(k) (h) CH ₂ OH		1	
DW = 250		OH ⁽ⁿ⁾	\$	
RG = 10 USEC		OH('')		
DE = 250 USEC	(m)// Y	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		17
TL High Power On	a a	1		
F2 = 300.05720	(e)H ₃ C (b)			{ V .
BB Modulation On		(o) CH ₃ (d)	ł	111
OF = 1283.73			1	
SF = 300.054496	(n) Ch3)	3 1 1
PA = 144.8		CCH ₂ (CH ₂) ₁₁ CH ₃ (g) (c) (a)		131
PB = 89.1	CH3C=0	(g) (c) (a)		NI
	(f) 0			
			/	
				[[[h]
				(((((()
			1, 11	
			al 13	(12 1 11) - al
		1 1 1	. W. A./	
ม หล				

.

FIGURE HI7 Nuclear Magnetic Resonance Spectrum of 12-0-Tetradecanoylphorbol-13-acctate

Diethylphthalate/Dimethylphthalate, NTP TR 429

TABLE H1

Preparation and Storage of Dose Formulations in the Dermal Studies of Diethylphthalate and Dimethylphthalate

Diethylphthalate and Dimethylphthalate	7,12-Dimethylbenz(a)anthracene	12-O-Tetradecanoylphorbol- 13-acetate
		13-acețate
Preparation		
Diethylphthalate: Diethylphthalate was applied neat in the 4-week studies, 1-year mouse study, and 2-year rat study. In the 2-year mouse study, the appropriate amount of diethylphthalate was weighed and then mixed with acetone in a graduated cylinder. Acetone was added to obtain a solution with the appropriate diethylphthalate concentration.	The appropriate amount of 7,12-dimethylbenz(a)anthracene was weighed onto weighing paper and then transferred to a graduated cylinder. Residual chemical on the paper was rinsed with acetone and rinses were transferred to the graduated cylinder. Acetone was added to obtain a solution with the appropriate 7,12-dimethylbenz(a)- anthracene concentration.	Vials containing 12-O-tetradecanoyl- phorbol-13-acetate were filled with acetone and agitated. The mixture was transferred to a graduated cylinder and each vial was rinsed with acetone. The rinses were transferred to the graduated cylinder. Acetone was added to obtain a solution with the appropriate concentration of 12-O-tetradecanoylphorbol- 13-acetate/mL acetone.
Dimethylphthalate: Dimethylphthalate was applied neat n the 1-year mouse study.		
Chemical Lot Number Diethylphthalate: 84117 Dimethylphthalate: C122883	M111384	031, 411999, UN2811, OE511999, and F-121
Maximum Storage Time 3 weeks	3 weeks	3 weeks
Storage Conditions Stored at room temperaure in an umber glass bottle until 12 December 1986 and then at 4° C n an amber glass bottle	Stored at 4° C in an amber glass bottle	Stored at 4° C in an ambèr glass bottle
Study Laboratory Hazleton Laboratories Rockville, MD)	Hazleton Laboratories (Rockville, MD)	Hazleton Laboratories (Rockville, MD)
Referee Laboratory Midwest Research Institute Kansas City, MO)	Midwest Research Institute (Kansas City, MO)	Midwest Research Institute (Kansas City, MO)
		· · · ·
	ч. •	

Chemical Characterization and Dose Formulation

. ·

TABLE H2

Results of Analysis of Dose Formulations Administered to Mice in the 2-Year Dermal Study of Diethylphthalate

Date Prepared	Date Analyzed	Target Concentration (mg/mL) ^a	Determined Concentration ^b (mg/mL)	% Difference from Target
15 December 1986	17 December 1986	84.0	84.7	+1
	1. 1900011011 1900	168	165	-2
		336	360	+7
	31 December 1986 ^c	84.0	96.1	+14
, T		168	183	+9
		336	401	+19
February 1987	13 February 1987	84.0	82.5	-2
A		168	165	-2
		336	337	0
5 April 1987	9 April 1987	84.0	82.8	-1
	-	168	160	-5
		336	321	4
l June 1987	4 June 1987	84.0	82.6	-2
		168	165	-2
		336	328	-2
	18 June 1987 ^c	84.0	83.5	-1
		168 -	168	. 0
		336	329	-2
27 July 1987	29 July 1987	84.0	82.6	-2
· · ·		168	169	+1
		336	327	-3
21 September 1987	23 September 1987	84.0	81.6	-3
	* <	168	159	·5
		336	314	-7
16 November 1987	20 November 1987	84.0	86.2	+3
		168	170	+1
	· · · ·	336	340	+1
	7 December 1987 ^c	84.0	102	+21
		168	204	+21
		336	400	+19
11 January 1988	13 January 1988	84.0	85.3	+2
		168	170	+1
		336	338	+1
7 March 1988	8 March 1988	84.0	84.7	+1
		168	166	-1
		336	331	-1

TABLE H2

Results of Analysis of Dose Formulations Administered to Mice in the 2-Year Dermal Study of Diethylphthalate (continued)

Date Prepared	Date Analyzed	Target Concentration (mg/mL)	Determined Concentration (mg/mL)	% Difference from Target
2 May 1988	4 May 1988	84.0	86.3	+3
		168	168	0
		336	. 335	0
v	17 May 1988 ^c	84.0	91.0	+8
	27 1.129 2700	168	180	+7
		336	356	+6
27 June 1988	29 June 1988	84.0	83.0	-1
27 June 1966	25 June 1965	168	167	-1
		336	334	-1
22 August 1988	23 August 1988	84.0	85.8	+2
		168	167	-1
	· · ·	336	344	+2
17 October 1988	20 October 1988	84.0	84.3	0
		168	168	0
		336	333	-1
	2 November 1988 ^c	84.0	88.0	+5
		168	173	+3
		336	344	: +2
12 December 1988	14 December 1988	84.0	83.1	
		168	167	-1
	•	336	334	-1

Dosing volume = 0.1 mL; 84.0 mg/mL = 7.5 μ L/0.1 mL; 168 mg/mL = 15 μ L/0.1 mL; 336 mg/mL = 30 μ L/0.1 mL a

b Results of duplicate analyses Animal room samples

c

Chemical Characterization and Dose Formulation

TABLE H3

Results of Analysis of Dose Formulations Administered to Mice in the 1-Year Dermal Study of Diethylphthalate and Dimethylphthalate

Date Prepared	Date Analyzed	Target Concentration ^a (mg/mL)	Determined Concentration ^b (mg/mL)	% Difference from Target
7,12-Dimethylbenz(a)	anthracene		······································	······································
31 July 1985	31 July 1985	0.5	0.524	+5
12-O-Tetradecanoylpl	horbol-13-acetate			
7 August 1985	7 August 1985 ^c	0.05	0.059	+18
8 August 1985	8 August 1985	0.05	0.0506	+1
	26 August 1985 ^d	0.05	0.0491	-2
30 September 1985	1 October 1985	0.05	0.0483	-3
9 December 1985	12 December 1985	0.025	0.0263	+5
3 February 1986	6 February 1986 ^e	0.025	0.0314	+26
	19 February 1986	0.025	0.0289	+16
7 April 1986	9 April 1986	0.025	0.0216	14 ^f
14 April 1986	15 April 1986 ^g	0.025	0.0273	+9
9 June 1986	12 June 1986	0.025	0.0242	-3
4 August 1986	5 August 1986	0.025	0.0206	-18 ^f
6 August 1986	6 August 1986 ^g	0.025	0.0201	-20 ^h
	12 August 1986 ⁱ	0.025	0.0242	-3

^a Dosing volume = 0.1 mL

^b Results of duplicate analyses

^c Volume of solution was adjusted to the appropriate concentration and resubmitted for analysis.

^d Sample of the adjusted formulation of 7 August 1985

^e At the time of analysis the sample was calculated to be within target. On 12 February 1986, a calculation error was discovered resulting in the percent target exceeding 10%.

f Sample remixed

^g Result of remix

^h Sample reanalyzed

ⁱ Result of reanalysis

TABLE H4

Results of Referee Analysis of Dose Formulations Administered to Mice in the 1-Year Dermal Study of Diethylphthalate and Dimethylphthalate and in the 2-Year Dermal Study of Diethylphthalate

، بالارد رواند (۲۹۹ ماری) رواند (۲۹۹ ماری)	Target Concentration	<u></u>
Date Mixed	(mg/mL) ^a	Laboratory ^b Laboratory
1-Year Study		
7,12-Dimethylbenz(a)a	nthracene	
31 July 1985	0.5	0.524 0.515 ± 0.003
12-O-Tetradecanoylpho	orbol-13-acetate	이가 있는 것이 있는 것을 하는 것은 것을 가지 않는 것을 가지 않는 것을 가지 않는다. 같은 사람들은 것이 같은 것을 알았는 것을 다 동안에 가을 다 같이 있는 것이 같은 것을 것을 수 있다.
8 August 1985 3 February 1986 6 August 1986	0.05 0.025 0.025	0.0506 0.0472 ± 0.0001 0.0314 0.0280 ± 0.0001 0.0201 0.0214 ± 0.0002
2-Year Studies		
Diethylphthalate		
15 December 1986 1 June 1987 16 November 1987 2 May 1988 17 October 1988	168 84 336 84 168	165 166 ± 2 83.5 82.4 ± 0.1 340 341 ± 4 86.3 87.2 ± 0.3 168 168 ± 0.0

a Dosing volume (diethylphthalate only) = 0.1 mL; 84.0 mg/mL = 7.5 μ L/0.1 mL; 168 mg/mL = 15 μ L/0.1 mL; 336 mg/mL = $30 \,\mu L/0.1 \,mL$ b

Results of duplicate analyses

APPENDIX I INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH-07 RAT AND MOUSE RATION

TABLE II	Ingredients of NIH-07 Rat and Mouse Ration	270
TABLE I2	Vitamins and Minerals in NIH-07 Rat and Mouse Ration	270
TABLE I3	Nutrient Composition of NIH-07 Rat and Mouse Ration	271
TABLE I4	Contaminant Levels in NIH-07 Rat and Mouse Ration	272

. . . .

Ingredients ^b		Pe	rcent by Weight		ç
Ground #2 yellow shelled corn			24.50		
Ground hard winter wheat			23.00		
Soybean meal (49% protein)			12.00		;
Fish meal (60% protein)			10.00		
Wheat middlings			10.00	•	
Dried skim milk			5.00		
Alfalfa meal (dehydrated, 17% protein)			4.00	•	 · ·
Corn gluten meal (60% protein)			3.00		·
Soy oil	• · · ·		2.50		ъ.,
Dried brewer's yeast	e		2.00		. '
Dry molasses	• · · · ·	· · · · ·	1.50		
Dicalcium phosphate			1.25		· · ·
Ground limestone	* <i>y</i>	*	0.50		
Salt			0.50		
Premixes (vitamin and mineral)			0.25		1 × 1

.

TABLE I1

Ingredients of NIH-07 Rat and Mouse Ration^a

a

NCI, 1976; NIH, 1978 Ingredients were ground to pass through a U.S. Standard Screen No. 16 before being mixed. b

TABLE I2 Vitamins and Minerals in NIH-07 Rat and Mouse Ration^a

4 - 4 - 3 - 4	Amount	Source	
Vitamins			•••
A	5,500,000 IU	Stabilized vitamin A palmitate or acetate	
D ₃	4,600,000 IU	D-activated animal sterol	
K ₃	2.8 g	Menadione	
d-a-Tocopheryl acetate	20,000 IU	`	
Choline	560.0 g	Choline chloride	· ·
Folic acid	2.2 g		
Niacin	30.0 g		
d-Pantothenic acid	18.0 g	d-Calcium pantothenate	
Riboflavin	3.4 g	· · · · · · · · · · · · · · · · · · ·	•
Thiamine	10.0 g	Thiamine mononitrate	
B ₁₂	4,000 µg	· · · · · · · · · · · · · · · · · · ·	
Pyridoxine	1.7 g	Pyridoxine hydrochloride	
Biotin	140.0 mg	d-Biotin	
Diothi			
Minerals		×	
Iron	120.0 g	Iron sulfate	
	60.0 g	Manganous oxide	
Manganese Zinc	Ũ	Zinc oxide	
	16.0 g		
Copper	4.0 g	Copper sulfate Calcium iodate	
Iodine	1.4 g		
Cobalt	0.4 g	Cobalt carbonate	×
		 A second sec second second sec	

^a Per ton (2,000 lb) of finished product

Feed Analyses

TABLE I3

. .

Nutrient Composition of NIH-07 Rat and Mouse Ration

	Mean ± Standard		
Nutrient	Deviation	Range	Number of Samples
Protein (% by weight)	22.40 ± 0.82	21.10 - 24.40	30
Crude Fat (% by weight)	5.52 ± 0.37	4.70 - 6.40	30
Crude Fiber (% by weight)	3.42 ± 0.22	3.00 - 3.90	30
Ash (% by weight)	6.67 ± 0.33	6.16 - 7.27	30
Amino Acids (% of total diet)			
Arginine	1.287 ± 0.084	1.100 - 1.390	10
Cystine	0.306 ± 0.075	0.181 - 0.400	10
Glycine	1.160 ± 0.050	1.060 - 1.220	10
Histidine	0.580 ± 0.024	0.531 - 0.608	10
Isoleucine	0.917 ± 0.034	0.867 - 0.965	10
Leucine	1.972 ± 0.052	1.850 - 2.040	10
Lysine	1.273 ± 0.051	1.200 - 1.370	10
Methionine	0.437 ± 0.115	0.306 - 0.699	10
Phenylalanine	0.994 ± 0.125	0.665 - 1.110	10
Threonine	0.896 ± 0.055	0.824 - 0.985	. 10
Tryptophan	0.223 ± 0.160	0.107 - 0.671	10
Tyrosine	0.677 ± 0.105	0.564 - 0.794	10
Valine	1.089 ± 0.057	0.962 - 1.170	10
Essential Fatty Acids (% of total	diet)		
Linoleic	2.389 ± 0.233	1.830 - 2.570	9
Linolenic	0.277 ± 0.036	0.210 - 0.320	9
Vitamins			
Vitamin A (IU/kg)	$7,514 \pm 2,140$	4,700 - 13,000	30
Vitamin D (IU/kg)	$4,450 \pm 1,382$	3,000 - 6,300	4
a-Tocopherol (ppm)	36.92 ± 9.32	22.5 - 48.9	9
Thiamine (ppm)	20.33 ± 2.56	15.0 - 25.0	30
Riboflavin (ppm)	7.92 ± 0.93	6.10 - 9.00	10
Niacin (ppm)	100.95 ± 25.92	65.0 - 150.0	9
Pantothenic acid (ppm)	30.30 ± 3.60	23.0 - 34.6	10
Pyridoxine (ppm)	9.25 ± 2.62	5.60 - 14.0	10
Folic acid (ppm)	2.51 ± 0.64	1.80 - 3.70	10
Biotin (ppm)	0.267 ± 0.049	0.19 - 0.35	10
Vitamin B ₁₂ (ppb)	40.14 ± 20.04	10.6 - 65.0	10
Choline (ppm)	$3,608 \pm 314$	2,400 – 3,430	9
Minerals			
Calcium (%)	1.17 ± 0.11	1.00 - 1.40	17
Phosphorus (%)	0.93 ± 0.03	0.87 - 1.00	17
Potassium (%)	0.887 ± 0.067	0.772 - 0.971	8
Chloride (%)	0.526 ± 0.092	0.380 - 0.635	8
Sodium (%)	0.315 ± 0.344	0.258 - 0.370	10
Magnesium (%)	0.168 ± 0.008	0.151 - 0.180	10
Sulfur (%)	0.274 ± 0.063	0.208 - 0.420	10
Iron (ppm)	356.2 ± 90.0	255.0 - 523.0	10
Manganese (ppm)	92.24 ± 5.35	81.70 - 99.40	10
Zinc (ppm)	58.14 ± 9.91	46.10 - 81.60	10
Copper (ppm)	11.50 ± 2.40	8.090 - 15.39	10
Iodine (ppm)	3.70 ± 1.14	1.52 - 5.83	10
Chromium (ppm)	1.71 ± 0.45	0.85 - 2.09	9
Cobalt (ppm)	0.797 ± 0.23	0.490 - 1.150	6

TABLE I4

	Mean ± Standard		
	Deviation ^a	Range	Number of Samples
Contaminants	، مرجع میں این ایک میں کر بر کر کری ہوت کر ایک میں ایک کری ہوت کر ایک کر کر کر کر کر میں کر میں کر میں کر میں ک	······································	
	0.53 ± 0.30	0.05 - 1.07	30
Arsenic (ppm)	<0.10	0.05 = 1.07	30
Cadmium (ppm)	0.40 ± 0.29	0.05 - 1.32	30
Lead (ppm) Mercury (ppm) ^b	0.40 ± 0.29 0.05 ± 0.01	0.05 - 0.08	30
Selenium (ppm)	0.05 ± 0.01 0.34 ± 0.10	0.03 = 0.08 0.17 = 0.60	30
Aflatoxins (ppb)	<5.0	0.17 - 0.00	30
	17.34 ± 7.80	0.30 - 33.0	30
Nitrate nitrogen (ppm) ^c Nitrite nitrogen (ppm) ^c	0.39 ± 0.67	<0.10 - 2.60	30
PLIA (ppm)d	2.93 ± 3.70	<2.00 - 22.0	30
BHA (ppm) ^d BHT (ppm) ^d	1.43 ± 0.90	<1.00 - 4.00	30
Aerobic plate count (CFU/g) ^e	1.45 ± 0.50 167,036 \pm 268,205	3,400 - 1,200,000	30
Coliform (MPN/g) ^f	$107,030 \pm 203,203$ 101 ± 218	<3.00 - 1,100	30
<i>E. coli</i> (MPN/g) ^g	3.03 ± 0.18	<3.00 - 4.00	30
Total nitrosoamines (ppb) ^h	8.97 ± 3.83	3.80 - 19.40	30
<i>N</i> -Nitrosodimethylamine (ppb) ^h	7.25 ± 3.32	2.80 - 15.00	30
N-Nitrosopyrrolidine (ppb) ^h	1.72 ± 0.32 1.72 ± 1.32	1.00 - 5.40	30
•			
Pesticides (ppm)			
α-BHC ⁱ	< 0.01		30
B-BHC	< 0.02		30
γ-BHC	< 0.01		30
δ-BHC	< 0.01		. 30
Heptachlor	< 0.01		30
Aldrin	< 0.01		30
Heptachlor epoxide	< 0.01		30
DDE	< 0.01		30
DDD	<0.01		30
DDT	< 0.01		30
HCB	<0.01		30
Mirex	< 0.01		30
Methoxychlor	< 0.05		30 30
Dieldrin	< 0.01		30
Endrin	< 0.01		30
Telodrin	< 0.01		30
Chlordane	< 0.05		30
Toxaphene	<0.1		30
Estimated PCBs	<0.2		30
Ronnel	< 0.01		30
Ethion	<0.02		30
Trithion	< 0.05		30
Diazinon	<0.1		30
Methyl parathion	<0.02 <0.02		30
Ethyl parathion	< 0.02 0.10 ± 0.09	0.05 - 0.37	30
Malathion		0.00 ~ 0.07	30
Endosulfan I	< 0.01		30
Endosulfan II	< 0.01		30
Endosulfan sulfate	< 0.03		24

. .

、 ·

,

-

Feed Analyses

TABLE I4

Contaminant Levels in NIH-07 Rat and Mouse Ration (continued)

^a For values less than the limit of detection, the detection limit is given as the mean.

^b One lot milled 3 September 1986 contained 0.08 ppm; all other lots were less than or equal to the detection limit.

^c Sources of contamination: alfalfa, grains, and fish meal

^d Sources of contamination: soy oil and fish meal

^e CFU = colony forming unit

 f MPN = most probable number

^g One lot milled 4 April 1988 contained 4.0 MPN; all other lots were less than or equal to the detection limit.

h All values were corrected for percent recovery.
 i BUC is hereable required by the percent recovery.

BHC is hexachlorocyclohexane or benzene hexachloride

APPENDIX J SENTINEL ANIMAL PROGRAM

METHODS	*****	276
TABLE J1	Murine Virus Antibody Determinations for Swiss (CD-1 [®]) Mice	
	in the 1-Year Initiation/Promotion Study of Diethylphthalate/Dimethylphthalate	
	and for B6C3F, Mice in the 2-Year Dermal Study of Dicthylphthalate	278

SENTINEL ANIMAL PROGRAM

Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via serology on sera from extra (sentinel) animals in the study rooms. These animals are untreated, and these animals and the study animals are subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Rats

During the 2-year study, 15 male and 15 female F344/N rats were maintained with the study animals to serve as sentinel animals. Samples for viral screening were collected from five male and five female sentinel rats at 6, 12, and 18 months into the study. Samples for the 24-month screening were collected from five male and five female treated rats. These samples were processed appropriately and submitted to Microbiological Associates, Inc. (Bethesda, MD) for determination of antibody titers. The following tests were performed:

Method	of	Analysi	5
FLISA			-

Time of Analysis

LLIDA	
CARB (cilia-associated respiratory	bacillus) 18 months
Mycoplasma arthritidis	6, 12, 18, and 24 months
Mycoplasma pulmonis	6, 12, 18, and 24 months
PVM (pneumonia virus of mice)	6, 12, 18, and 24 months
RCV/SDA (rat coronavirus/	6, 12, 18, and 24 months
sialodacryoadenitis virus)	
Sendai	6, 12, 18, and 24 months
анан алан алан алан алан алан алан алан	
Hemagglutination Inhibition	
H-1 (Toolan's H-1 virus)	6, 12, 18, and 24 months
KRV (Kilham rat virus)	6, 12, 18, and 24 months

All test results for rats were negative.

Mice

For the 1-year initiation/promotion study, 10 male Swiss (CD-1[®]) mice were maintained with the study animals to serve as sentinel animals. Serum samples for viral screening were collected from five sentinel mice at 6 and 12 months. Blood from each collection was processed appropriately, shipped to Microbiological Associates, Inc., and screened for the following:

Method of Analysis

Time of Analysis

Complement Fixation

LCM (lymphocytic choriomeningitis virus)

6 and 12 months

Method of Analysis (continued)	Time of Analysis (continued)		
ELISA			
CARB	12 months		
Ectromelia virus	6 and 12 months		
GDVII (mouse encephalomyelitis virus)	6 and 12 months		
M. arthritidis	6 and 12 months		
M. pulmonis	6 and 12 months		
MHV (mouse hepatitis virus)	6 and 12 months		
Mouse adenoma virus	6 and 12 months		
PVM	6 and 12 months		
Reovirus 3	6 and 12 months		
Sendai	6 and 12 months		
Hemagglutination Inhibition			
K (papovavirus)	6 and 12 months		
MVM (minute virus of mice)	6 and 12 months		
Polyoma virus	6 and 12 months		
Immunofluorescent Antibody			
EDIM (epizootic diarrhea of infant mice)	6 and 12 months		
Mouse adenoma virus	12 months		

During the 2-year study, 15 male and 15 female $B6C3F_1$ mice were maintained with the study animals to serve as sentinel animals. Samples for viral screening were collected from five male and five female sentinel mice at 6, 12, and 18 months into the study. Samples for the 24-month screening were obtained from five male and five female treated mice. Blood from each collection was processed appropriately and submitted to Microbiological Associates to be screened for the following:

Method of Analysis	Time of Analysis
ELISA	
Ectromelia virus	6, 12, 18, and 24 months
GDVII	6, 12, 18, and 24 months
LCM	6, 12, and 18 months
M. arthritidis	24 months
M. pulmonis	24 months
MHV	6, 12, 18, and 24 months
Mouse adenoma virus	6, 12, 18, and 24 months
MVM	6, 12, 18, and 24 months
PVM	6, 12, 18, and 24 months
Reovirus 3	6, 12, 18, and 24 months
Sendai	6, 12, 18, and 24 months
Hemagglutination Inhibition	
ĸ	6, 12, 18, and 24 months
Polyoma virus	6, 12, 18, and 24 months
Immunofluorescent Antibody	
EDIM	6, 12, 18, and 24 months
LCM	24 months
Reovirus 3	18 months

Test results are presented in Table J1.

TABLE J1

Murine Virus Antibody Determinations for Swiss (CD-1^{*}) Mice in the 1-Year Initiation/Promotion Study of Diethylphthalate/Dimethylphthalate and for $B6C3F_1$ Mice in the 2-Year Dermal Study of Diethylphthalate

	Interval (months)	Incidence of Antibody in Sentinel Animals	Positive Serologic Reaction for
1-Year Study			۵۰۰۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰
Swiss (CD-1®) Males	6 months	0/5	None positive
. ,	12 months	1/5	Mouse adenoma virus
		3/5	M. arthritidis
		1/5	EDIM
2-Year Study			
B6C3F, Males	6 months	0/5	None positive
L	12 months	2/5	EDIM
	18 months	4/5	EDIM
	24 months	5/5	EDIM
B6C3F ₁ Females	6 months	0/5	None positive
•	12 months	3/5	EDIM
	18 months	1/5	EDIM
		2/5	Reovirus 3
	24 months	1/5	EDIM

•

,

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS PRINTED AS OF MAY 1995

TR No. CHEMICAL

201 2,3,7,8-Tetrachlorodibenzo-p-dioxin (Dermal) 206 1,2-Dibromo-3-chloropropane 207 Cytembena 208 FD & C Yellow No. 6 209 2,3,7,8-Tetrachlorodibenzo-p-dioxin (Gavage) 210 1,2-Dibromoethane 211 C.I. Acid Orange 10 212 Di(2-ethylhexyl)adipate 213 Butyl Benzyl Phthalate 214 Caprolactam 215 Bisphenol A 216 11-Aminoundecanoic Acid 217 Di(2-ethylhexyl)phthalate 219 2,6-Dichloro-p-phenylenediamine 220 C.I. Acid Red 14 221 Locust Bean Gum 222 C.I. Disperse Yellow 3 223 Eugenol 224 Tara Gum 225 D & C Red No. 9 226 C.I. Solvent Yellow 14 227 Gum Arabic 228 Vinylidene Chloride 229 Guar Gum 230 Agar 231 Stannous Chloride 232 Pentachloroethane 233 2-Biphenylamine Hydrochloride 234 Allyl Isothiocyanate 235 Zearalenone 236 D-Mannitol 237 1,1,1,2-Tetrachloroethane 238 Ziram 239 Bis(2-chloro-1-methylethyl)ether 240 Propyl Gallate 242 Diallyl Phthalate (Mice) 243 Trichlorethylene (Rats and Mice) 244 Polybrominated Biphenyl Mixture 245 Melamine 246 Chrysotile Asbestos (Hamsters) 247 L-Ascorbic Acid 248 4,4'-Methylenedianiline Dihydrochloride 249 Amosite Asbestos (Hamsters) 250 Benzyl Acetate 251 2,4- & 2,6-Toluene Diisocyanate 252 Geranyl Acetate 253 Allyl Isovalerate 254 Dichloromethane (Methylene Chloride) 255 1,2-Dichlorobenzene 257 Diglycidyl Resorcinol Ether 259 Ethyl Acrylate 261 Chlorobenzene 263 1,2-Dichloropropane 266 Monuron 267 1,2-Propylene Oxide 269 Telone II® (1,3-Dichloropropene) 271 HC Blue No. 1 272 Propylene

TR No. CHEMICAL

273	Trichloroethylene (Four Rat Strains)
274	Tris(2-ethylhexyl)phosphate
275	2-Chloroethanol
276	8-Hydroxyquinoline
277	Tremolite
278	2,6-Xylidine
279	Amosite Asbestos
280	Crocidolite Asbestos
281	HC Red No. 3
282	Chlorodibromomethane
284	Diallylphthalate (Rats)
285	C.I. Basic Red 9 Monohydrochloride
287	Dimethyl Hydrogen Phosphite
288	1.3-Butadiene
289	Benzene
291	Isophorone
293	HC Blue No. 2
294	Chlorinated Trisodium Phosphate
295	Chrysotile Asbestos (Rats)
296	Tetrakis(hydroxymethyl)phosphonium Sulfate &
	Tetrakis(hydroxymethyl)phosphonium Chloride
298	Dimethyl Morpholinophosphoramidate
299	C.I. Disperse Blue 1
300	3-Chloro-2-methylpropene
301	
	o-Phenylphenol
303	4-Vinylcyclohexene
304	Chlorendic Acid
305	Chlorinated Paraffins (C_{23} , 43% chlorine)
306	Dichloromethane (Methylene Chloride)
307	Ephedrine Sulfate
308	Chlorinated Paraffins (C_{12} , 60% chlorine)
309	Decabromodiphenyl Oxide
310	Marine Diesel Fuel and JP-5 Navy Fuel
311	Tetrachloroethylene (Inhalation)
312	n-Butyl Chloride
313	Mirex
314	Methyl Methacrylate
315	Oxytetracycline Hydrochloride
316	1-Chloro-2-methylpropene
317	Chlorpheniramine Maleate
318	Ampicillin Trihydrate
319	1,4-Dichlorobenzene
320	Rotenone
321	Bromodichloromethane
322	Phenylephrine Hydrochloride
323	Dimethyl Methylphosphonate
324	Boric Acid
325	Pentachloronitrobenzene
326	Ethylene Oxide
327	Xylenes (Mixed)
328	Methyl Carbamate
329	1,2-Epoxybutane
330	4-Hexylresorcinol
331	Malonaldehyde, Sodium Salt
332	2-Mercaptobenzothiazole
333	N-Phenyl-2-naphthylamine
334	2-Amino-5-nitrophenol

335 C.I. Acid Orange 3

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS PRINTED AS OF MAY 1995 (CONT.)

TR No. CHEMICAL

336	Penicillin VK
337	Nitrofurazone
338	Erythromycin Stearate
339	2-Amino-4-nitrophenol
340	Iodinated Glycerol
341	Nitrofurantoin
342	Dichlorvos
343	Benzyl Alcohol
344	Tetracycline Hydrochloride
345	Roxarsone
346	Chloroethane
347	D-Limonene
348	α-Methyldopa Sesquihydrate
349	Pentachlorophenol
350	Tribromomethane
351	<i>p</i> -Chloroaniline Hydrochloride
352	N-Methylolacrylamide
353	2,4-Dichlorophenol
354	Dimethoxane
355	Diphenhydramine Hydrochloride
356	Furosemide
357	
358	Hydrochlorothiazide
359	Ochratoxin A
360	8-Methoxypsoralen
361	N,N-Dimethylaniline
362	Hexachloroethane
	4-Vinyl-1-cyclohexene Diepoxide
363	Bromoethane (Ethyl Bromide)
364	Rhodamine 6G (C.I. Basic Red 1)
365	Pentaerythritol Tetranitrate
366	Hydroquinone
367	Phenylbutazone
368	Nalidixic Acid
369	a-Methylbenzyl Alcohol
370	Benzofuran
371	Toluene
372	3,3-Dimethoxybenzidine Dihydrochloride
373	Succinic Anhydride
374	Glycidol
375	Vinyl Toluene
376	Allyl Glycidyl Ether
377	o-Chlorobenzalmalononitrile
378	Benzaldehyde
379	2-Chloroacetophenone
380	Epinephrine Hydrochloride
381	d-Carvone
382	Furfural
384	1,2,3-Trichloropropane
385	Methyl Bromide
386	Tetranitromethane

387 Amphetamine Sulfate

104.4

TR No. CHEMICAL

388	Ethylene Thiourea
389	Sodium Azide
390	3,3'-Dimethylbenzidine Dihydrochloride
391	Tris(2-chloroethyl) Phosphate
392	Chlorinated Water and Chloraminated Water
393	Sodium Fluoride
394	Acetaminophen
395	Probenecid
396	Monochloroacetic Acid
397	C.I. Direct Blue 15
398	Polybrominated Biphenyls
399	Titanocene Dichloride
400	2,3-Dibromo-1-propanol
401	2,4-Diaminophenol Dihydrochloride
402	Furan
403	Resorcinol
404	5,5-Diphenylhydantoin
405	C.J. Acid Red 114
406	y-Butyrolactone
407	C.I. Pigment Red 3
408	Mercuric Chloride
409	Quercetin
410	Naphthalene
411	C.I. Pigment Red 23
412	4,4-Diamino-2,2-stilbenedisulfonic Acid
413	Ethylene Glycol
414	Pentachloroanisole
415	Polysorbate 80
416	o-Nitroanisole
417	p-Nitrophenol
418	<i>p</i> -Nitroaniline
419	HC Yellow 4
420	Triamterene
421	Talc
422	Coumarin
423	Dihydrocoumarin
424	o-Benzyl-p-chlorophenol
425	Promethazine Hydrochloride
426	Corn Oil, Safflower Oil, and Tricaprylin
427	Turmeric Oleoresin
428	Manganese (II) Sulfate Monohydrate
430	C.I. Direct Blue 218

- Benzyl Acetate
- Barium Chloride Dihydrate
- Tricresyl Phosphate
- 1,3-Butadiene
- 4,4'-Thiobis(6-t-butyl-m-cresol)
- Hexachlorocyclopentadiene
- Ozone and Ozone/NNK
- 442 p-Nitrobenzoic Acid
- 443 Oxazepam

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Central Data Management, NIEHS, P.O. Box 12233, MD A0-01, Research Triangle Park, NC 27709.

DEPARTMENT OF HEALTH & HUMAN SERVICES

 α

Public Health Service National Toxicology Program Central Data Management P.O. Box 12233, MD A0-01 Research Triangle Park, NC 27709

Official Business

Ś

د. رونها

Penalty for Private Use - \$300

SPECIAL FOURTH-CLASS RATE POSTAGE AND FEES PAID DHHS/NIH Permit No. G-763

0

NIH Publication No. 95-3356 May 1995