

NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF

RIDDELLIINE (CAS NO. 23246-96-0) IN F344/N RATS AND B6C3F₁ MICE (GAVAGE STUDIES)

NTP TR 508

MAY 2003

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF RIDDELLIINE

(CAS NO. 23246-96-0)

IN F344/N RATS AND B6C3F1 MICE

(GAVAGE STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

May 2003

NTP TR 508

NIH Publication No. 03-4442

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

FOREWORD

The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation.

The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease.

The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. The prechronic and chronic studies were conducted in compliance with Food and Drug Administration (FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjected to retrospective quality assurance audits before being presented for public review.

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. The interpretive conclusions presented in this Technical Report are based only on the results of these NTP studies. Extrapolation of these results to other species and quantitative risk analyses for humans require wider analyses beyond the purview of these studies. Selection *per se* is not an indicator of a chemical's carcinogenic potential.

Details about ongoing and completed NTP studies are available at the NTP's World Wide Web site: http://ntp-server.niehs.nih.gov. Abstracts of all NTP Technical Reports and full versions of the most recent reports and other publications are available from the NIEHS' Environmental Health Perspectives (EHP) http://ehp.niehs.nih.gov (866-541-3841 or 919-653-2590). In addition, printed copies of these reports are available from EHP as supplies last. A listing of all the NTP Technical Reports printed since 1982 appears on the inside back cover.

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF RIDDELLIINE

(CAS NO. 23246-96-0)

IN F344/N RATS AND B6C3F₁ MICE

(GAVAGE STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

May 2003

NTP TR 508

NIH Publication No. 03-4442

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

CONTRIBUTORS

National Toxicology Program

Evaluated and interpreted results and reported findings

P.C. Chan, Ph.D., Study Scientist
D.W. Bristol, Ph.D.
J.R. Bucher, Ph.D.
J.R. Hailey, D.V.M.
J.K. Haseman, Ph.D.
R.A. Herbert, D.V.M., Ph.D.
R.R. Maronpot, D.V.M.
A. Nyska, D.V.M.
S.D. Peddada, Ph.D.
G.N. Rao, D.V.M., Ph.D.
J.H. Roycroft, Ph.D.
C.S. Smith, Ph.D.
G.S. Travlos, D.V.M.
K.L. Witt, M.S., ILS, Inc.

Southern Research Institute

Conducted studies and evaluated pathology findings

J.D. Prejean, Ph.D., Principal Investigator W.R. Richter, D.V.M., M.S., Principal Investigator D.R. Farnell, D.V.M. J.E. Heath, D.V.M.

National Center for Toxicological Research, Food and Drug Administration

Conducted DNA adduct characterization studies

M.W. Chou, Ph.D., Principal Investigator P.P. Fu, Ph.D., Principal Investigator R.D. Beger, Ph.D. D.R. Doerge, Ph.D. J. Nichols, B.S. Q. Xia, Ph.D. J. Yan, M.S. Y.-C. Yang, Ph.D.

Experimental Pathology Laboratories, Inc.

Provided pathology quality assurance

J.F. Hardisty, D.V.M., Principal Investigator S.A.M. Chandra, B.V.Sc., Ph.D.

Analytical Sciences, Inc.

Provided statistical analyses

P.W. Crockett, Ph.D., Principal Investigator L.J. Betz, M.S. K.P. McGowan, M.B.A. J.T. Scott, M.S.

NTP Pathology Working Group

Evaluated slides and prepared pathology report on rats (September 14, 2000) M.P. Jokinen, D.V.M., Chairperson

Pathology Associates International S.A.M. Chandra, B.V.Sc., Ph.D. Experimental Pathology Laboratories, Inc. G.P. Flake, M.D. National Toxicology Program J.E. Heath, D.V.M. Southern Research Institute R.A. Herbert, D.V.M., Ph.D. National Toxicology Program P.W. Mellick, D.V.M., Ph.D., Observer Pathology Associates International A. Nyska, D.V.M. National Toxicology Program K. Ozaki, D.V.M., Ph.D. National Toxicology Program H.G. Wall, D.V.M., Ph.D.

Glaxo Wellcome, Inc.

Evaluated slides and prepared pathology report on mice (August 22, 2000)J.B. Nold, D.V.M., Ph.D., Chairperson Pathology Associates International

S.A.M. Chandra, B.V.Sc., Ph.D. Experimental Pathology Laboratories, Inc.
G.P. Flake, M.D. National Toxicology Program
J.R. Hailey, D.V.M. National Toxicology Program
R.A. Herbert, D.V.M., Ph.D. National Toxicology Program
P.N. Long, D.V.M., Ph.D. Pathology Associates International
A. Nyska, D.V.M. National Toxicology Program
K. Ozaki, D.V.M., Ph.D., Observer National Toxicology Program

H.G. Wall, D.V.M., Ph.D. Glaxo Wellcome, Inc.

Dynamac Corporation

Prepared quality assurance audits S. Brecher, Ph.D., Principal Investigator

Biotechnical Services, Inc.

Prepared Technical Report S.R. Gunnels, M.A., Principal Investigator L.M. Harper, B.S. E.S. Paal, M.S.J. D.C. Serbus, Ph.D. W.D. Sharp, B.A., B.S.

CONTENTS

ABSTRACT .		5
EXPLANATIO	N OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	9
TECHNICAL F	REPORTS REVIEW SUBCOMMITTEE	10
SUMMARY OI	F TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS	11
INTRODUCTI	ON	13
MATERIALS A	AND METHODS	19
RESULTS		27
DISCUSSION A	AND CONCLUSIONS	55
REFERENCES		63
Appendix A	Summary of Lesions in Male Rats in the 2-Year Gavage Study of Riddelliine	69
Appendix B	Summary of Lesions in Female Rats in the 2-Year Gavage Study of Riddelliine	93
Appendix C	Summary of Lesions in Male Mice in the 2-Year Gavage Study of Riddelliine	139
Appendix D	Summary of Lesions in Female Mice in the 2-Year Gavage Study of Riddelliine	183
Appendix E	Genetic Toxicology	211
Appendix F	Chemical Characterization and Dose Formulation Studies	225
Appendix G	Ingredients, Nutrient Composition, and Contaminant Levels in NTP-2000 Rat and Mouse Ration	237
Appendix H	Sentinel Animal Program	241
Appendix I	DNA Adduct Characterization Studies	245

SUMMARY

Background

Riddelliine is a naturally occurring alkaloid found in certain plants in the western United States rangeland. Traces of riddelline have been found in the meat of animals grazing on these plants, and cattle, horses, and sheep have died from such exposure.

Methods

We deposited solutions of riddelliine through a tube directly into the stomachs of male and female rats and mice five days per week for two years. Male and female rats received concentrations of 1 milligram of riddelliine per kilogram of body weight, and male and female mice received concentrations of 3 milligrams of riddelliine per kilogram of body weight. Other groups of female rats and male mice also received 1/3, 1/10, or 1/30 as much as the highest concentration.

Results

Of 100 rats receiving 1 mg/kg, all but three died before the end of the study. Liver tumors were the cause of death for most of these animals; the incidences of mononuclear cell leukemia were also increased in exposed rats. Over half the male and female mice receiving 3 mg/kg also died before the end of the study. Male mice had more liver tumors and female mice more lung tumors than did animals not exposed to the chemical.

Conclusions

We conclude that riddelliine caused liver neoplasms in male and female rats and male mice and lung neoplasms in female mice, and also leukemia in male and female rats.

ABSTRACT

RIDDELLIINE

CAS No. 23246-96-0

Chemical Formula: C₁₈H₂₃NO₆ Molecular Weight: 349.4

Synonyms: 13,19-Didehydro-12,18-dihydroxy senecionan-11,16-dione; 3-ethylidine-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-6-(hydroxymethyl)-5-methylene(1,6)di-oxacyclododecino(2,3,4-gh)-pyrrolizidine-2,7-dione; *trans*-15-ethylidine-12b-hydroxy-12ahydroxymethyl-13-methylenesenec-1-enine

Riddelliine belongs to a class of toxic pyrrolizidine alkaloids and is isolated from plants of the genera Crotalaria, Amsinckia, and Senecio that grow in the western United States. Cattle, horses, and sheep that ingest these plants succumb to their toxic effects. Riddelliine residues have been found in meat, milk, and honey, and the plants may contaminate human food sources. Riddelliine was nominated for study by the Food and Drug Administration because of its potential for human exposure and its economic impact on the livestock industry and because the toxicity of other pyrrolizidine alkaloids suggests riddelliine may be car-Male and female F344/N rats and cinogenic. B6C3F, mice received riddelliine (approximately 92%) pure) by gavage. Female rats and male and female mice were dosed for 2 years; due to high mortality, the study in male rats was terminated at week 72. In vitro genetic toxicology studies were conducted in Salmonella typhimurium and in cultured Chinese hamster ovary (CHO) cells. In addition, riddelliine was evaluated in vivo for induction of micronuclei in mouse bone marrow and peripheral blood erythrocytes and for induction of S-phase DNA synthesis and unscheduled DNA synthesis in the liver of rats and mice. Riddelliine-induced DNA adduct levels were determined in liver tissue

obtained from female rats administered riddelliine for 3 or 6 months.

2-YEAR STUDY IN RATS

Groups of 50 male and 50 female rats were administered 0 or 1 mg riddelliine/kg body weight in sodium phosphate buffer by gavage 5 days per week; additional groups of 50 female rats received 0.01, 0.033, 0.1, or 0.33 mg/kg. A wide dose range was used in female rats to better characterize the dose-response curve. Females were dosed for 105 weeks; due to high mortality, male rats were terminated at week 72.

All but three 1 mg/kg males died before week 70, and all 1 mg/kg females died before week 97. Mean body weights of 1 mg/kg males and females were less than those of the vehicle controls throughout most of the study. The only clinical finding related to riddelliine administration was a general debilitation of the animals prior to death.

Hemangiosarcomas were present in the liver of 86% of males and 76% of females in the 1 mg/kg groups, and this neoplasm was considered the cause of the large

number of early deaths in these groups. The incidences of hepatocellular adenoma and mononuclear cell leukemia in 1 mg/kg males and females were significantly increased. Nonneoplastic lesions related to riddelliine treatment occurred in the liver and kidney of males and females.

Analyses of liver tissue from female rats treated with riddelliine for 3 or 6 months yielded eight DNA adducts; these were the same as DNA adducts formed *in vitro* by the metabolism of riddelliine by human liver microsomes in the presence of calf thymus DNA.

2-YEAR STUDY IN MICE

Groups of 50 male and 50 female mice were administered riddelliine in sodium phosphate buffer by gavage at doses of 0 or 3 mg/kg, 5 days per week, for 105 weeks; additional groups of 50 male mice received 0.1, 0.3, or 1 mg/kg for 105 weeks. A wide dose range was used in male mice to better characterize the dose-response curve.

Survival of males and females administered 3 mg/kg was significantly less than that of the vehicle controls. Mean body weights of 3 mg/kg mice were less than those of the vehicle controls throughout most of the study.

Hemangiosarcomas of the liver were present in 62% of males in the 3 mg/kg group. The incidences of hepatocellular neoplasms occurred with negative trends in male mice and were significantly decreased in 3 mg/kg females. The incidences of alveolar/bronchiolar neoplasms in 3 mg/kg females were significantly increased. Nonneoplastic lesions related to riddelliine administration occurred in the liver and kidney of males and females and in the lung and arteries (multiple tissues) of females.

GENETIC TOXICOLOGY

Riddelliine was mutagenic in *S. typhimurium* strain TA100 with, but not without, S9 activation; no significant mutagenic activity was detected in strain TA98 or TA1535, with or without S9. A small, dose-related

increase in mutant colonies seen in strain TA97 with S9 was judged to be equivocal. Riddelliine induced sister chromatid exchanges in cultured CHO cells with and without S9. Chromosomal aberrations were induced in CHO cells only in the presence of S9. Following 4 or 13 weeks of daily gavage treatment with riddelliine, no increases in the frequency of micronucleated erythrocytes were noted in the peripheral blood of male or female B6C3F₁ mice. Use of a single intraperitoneal injection protocol, however, produced a small but significant increase in the frequency of micronucleated erythrocytes in peripheral blood of male Swiss mice 48 hours after injection; bone marrow analysis 24 hours after injection demonstrated a small but insignificant increase in the frequency of micronuclei. Unscheduled DNA synthesis was detected in cultured hepatocytes from male and female rats and mice following 5 or 30 days of riddelliine treatment by gavage. In addition, an S-phase DNA synthesis was observed in cultured hepatocytes of male and female rats treated for either time period.

CONCLUSIONS

Under the conditions of these studies, there was *clear* evidence of carcinogenic activity* of riddelliine in male and female F344/N rats based on increased incidences of hemangiosarcoma in the liver. The increased incidences of hepatocellular adenoma and mononuclear cell leukemia in male and female rats were also considered to be treatment related. There was *clear evidence of carcinogenic activity* of riddelliine in male B6C3F₁ mice based on increased incidences of hemangiosarcoma in the liver. There was *clear evidence of carcinogenic activity* in female B6C3F₁ mice based on increased incidences of alveolar/bronchiolar neoplasms.

Administration of riddelliine by gavage resulted in nonneoplastic lesions in the liver and kidney of male and female rats; the liver and kidney of male and female mice; and the lung and arteries (multiple tissues) of female mice.

Decreased incidences of hepatocellular neoplasms in male and female mice were related to riddelliine administration.

^{*} Explanation of Levels of Evidence of Carcinogenic Activity is on page 9. A summary of the Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appears on page 11.

	Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female B6C3F ₁ Mice
Doses in sodium phosphate buffer by gavage	Vehicle control or 1 mg/kg	Vehicle control, 0.01, 0.033, 0.1, 0.33, or 1 mg/kg	Vehicle control, 0.1, 0.3, 1, or 3 mg/kg	Vehicle control or 3 mg/kg
Body weights	1 mg/kg group less than the vehicle control group	1 mg/kg group less than the vehicle control group	3 mg/kg group less than the vehicle control group	3 mg/kg group less than the vehicle control group
Survival rates	49/50, 3/50	33/50, 22/50, 28/50, 22/50, 29/50, 0/50	39/50, 41/50, 40/50, 38/50, 20/50	34/50, 17/50
Nonneoplastic effects	Liver: regenerative hepatocyte hyperplasia (0/50, 49/50); hepatocyte cytomegaly (0/50, 32/50); focal necrosis (0/50, 23/50); eosinophilic focus (3/50, 15/50); mixed cell focus (3/50, 7/50); hemorrhage (0/50, 4/50) <u>Kidney</u> : renal tubule necrosis (0/50, 6/50)	Liver: regenerative hepatocyte hyperplasia (0/50, 0/50, 0/50, 0/50, 8/50, 50/50); hepatocyte cytomegaly (0/50, 0/50, 7/50, 23/50, 32/50, 29/50); focal necrosis (4/50, 2/50, 3/50, 4/50, 4/50, 15/50); eosinophilic focus (1/50, 2/50, 6/50, 4/50, 12/50, 13/50); mixed cell focus (8/50, 10/50, 10/50, 11/50, 23/50, 5/50); clear cell focus (9/50, 8/50, 9/50, 13/50, 22/50, 2/50); bile duct hyperplasia (2/50, 1/50, 4/50, 4/50, 3/50, 10/50); hemorrhage (0/50, 0/50, 2/50, 0/50, 1/50, 7/50) Kidney: renal tubule necrosis (0/50, 0/50, 0/50, 1/50, 1/50, 6/50); transitional epithelium hyperplasia (1/50, 1/50, 1/50, 1/50, 0/50, 5/50)	Liver: hepatocyte cytomegaly (4/50, 4/50, 16/50, 33/50, 43/50); hepatocyte karyomegaly (4/50, 4/50, 15/50, 33/50, 43/50); centrilobular hepatocyte necrosis (0/50, 1/50, 3/50, 4/50, 10/50) hemorrhage focal (0/50, 2/50, 1/50, 6/50, 21/50); severity of focal hepatocyte necrosis (1.3, 1.3, 1.8, 2.2, 2.6) <u>Kidney</u> : severity of nephropathy (1.3, 1.5, 1.8, 2.1, 2.8); glomerulosclerosis (0/49, 1/49, 0/50, 42/50, 41/50); renal tubule karyomegaly (0/49, 0/49, 0/50, 0/50, 12/50); renal tubule dilatation (16/49, 17/49, 24/50, 29/50, 22/50)	Liver: hepatocyte cytomegaly (0/49, 49/50) hepatocyte karyomegaly (0/49, 49/50); bile duct hyperplasia (0/49, 28/50); mixed cellular infiltration (29/49, 41/50) <u>Kidney</u> : nephropathy (18/49, 47/50); severity o nephropathy (1.3, 3.4); glomerulosclerosis (0/49, 40/50); renal tubule hyaline droplet accumulation (2/49, 14/50); renal tubule pigmentation (2/49, 27/50) <u>Lung</u> : alveolar epithelial hyperplasia (1/50, 6/50) <u>Arteries, chronic arterial</u> inflammation (includes focal): small intestine (duodenum) (0/47, 13/46); large intestine (cecum) (0/48, 18/47); kidney (1/49, 16/50); mesentery (1/23, 19/29); ovary (0/49, 26/48); spleen (0/49, 6/50); uteru (0/49, 21/50)

Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of Riddelliine

	Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female B6C3F ₁ Mice		
Neoplastic effects	Liver: hemangiosarcoma (0/50, 43/50); hepatocellular adenoma (0/50, 4/50) <u>Mononuclear cell</u> <u>leukemia (all organs)</u> : (2/50, 9/50)	Liver: hemangiosarcoma (0/50, 0/50, 0/50, 0/50, 3/50, 38/50); hepatocellular adenoma (1/50, 0/50, 0/50, 0/50, 1/50, 7/50) Mononuclear cell leukemia (all organs): (12/50, 8/50, 13/50, 18/50, 18/50, 14/50)	<u>Liver</u> : hemangiosarcoma (2/50, 1/50, 0/50, 2/50, 31/50)	Lung: alveolar/bronchiolar adenoma (1/50, 9/50); alveolar/bronchiolar carcinoma (1/50, 4/50); alveolar/bronchiolar adenoma or carcinoma (2/50, 13/50)		
Decreased incidences	None	None	Liver: hepatocellular adenoma (16/50, 18/50, 14/50, 5/50, 0/50); hepatocellular carcinoma (23/50, 21/50, 19/50, 20/50, 3/50); hepatocellular adenoma or carcinoma (36/50, 39/50, 33/50, 23/50, 3/50)	Liver: hepatocellular adenoma (9/49, 0/50); hepatocellular carcinoma (8/49, 0/50); hepatocellular adenoma or carcinoma (16/49, 0/50)		
Level of evidence of carcinogenic activity	Clear evidence	Clear evidence	Clear evidence	Clear evidence		
Genetic toxicology						
Salmonella typhimurium g			ith rat and hamster S9, negative vith and without S9; negative			
Sister chromatid exchange Cultured Chinese hamste Chromosomal aberrations		Positive with and without S	59			
Cultured Chinese hamste Micronucleus test in mice:		Positive with S9, negative v	without S9			
Single injection study, bu Single injection study, per 4-week gavage study, per 13-week gavage study, p Unscheduled DNA synthe	one marrow eripheral blood ripheral blood eripheral blood	Negative Positive, but not confirmed Negative Negative	with a repeat test			
5-day gavage study 30-day gavage study S-Phase DNA synthesis	212	Positive in male and female Positive in male rats and m	e rats and mice ale and female mice; negative	e in female rats		
5-day gavage study 30-day gavage study		Positive in male and female rats; negative in male and female mice Positive in male and female rats and male mice; negative in female mice				

Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of Riddelliine

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence, including animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results (clear evidence and some evidence); one category for uncertain findings (equivocal evidence); one category for no observable effects (no evidence); and one category for experiments that cannot be evaluated because of major flaws (inadequate study). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Report series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following five categories is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to potency or mechanism.

- Clear evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a chemical-related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemical related.
- No evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing no chemical-related increases in malignant or benign neoplasms.
- **Inadequate study** of carcinogenic activity is demonstrated by studies that, because of major qualitative or quantitative limitations, cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

For studies showing multiple chemical-related neoplastic effects that if considered individually would be assigned to different levels of evidence categories, the following convention has been adopted to convey completely the study results. In a study with clear evidence of carcinogenic activity at some tissue sites, other responses that alone might be deemed some evidence are indicated as "were also related" to chemical exposure. In studies with clear or some evidence of carcinogenic activity, other responses that alone might be termed equivocal evidence are indicated as "may have been" related to chemical exposure.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. Such consideration should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- adequacy of the experimental design and conduct;
- · occurrence of common versus uncommon neoplasia;
- progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to
 identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign
 neoplasms of those types have the potential to become malignant;
- · combining benign and malignant tumor incidence known or thought to represent stages of progression in the same organ or tissue;
- · latency in tumor induction;
- multiplicity in site-specific neoplasia;
- · metastases;
- supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- presence or absence of dose relationships;
- · statistical significance of the observed tumor increase;
- · concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- · survival-adjusted analyses and false positive or false negative concerns;
- · structure-activity correlations; and
- in some cases, genetic toxicology.

NATIONAL TOXICOLOGY PROGRAM BOARD OF SCIENTIFIC COUNSELORS TECHNICAL REPORTS REVIEW SUBCOMMITTEE

The members of the Technical Reports Review Subcommittee who evaluated the draft NTP Technical Report on riddelliine on October 18, 2001, are listed below. Subcommittee members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, subcommittee members have five major responsibilities in reviewing the NTP studies:

- · to ascertain that all relevant literature data have been adequately cited and interpreted,
- to determine if the design and conditions of the NTP studies were appropriate,
- · to ensure that the Technical Report presents the experimental results and conclusions fully and clearly,
- to judge the significance of the experimental results by scientific criteria, and
- · to assess the evaluation of the evidence of carcinogenic activity and other observed toxic responses.

Stephen S. Hecht, Ph.D., Chairperson University of Minnesota Cancer Centers Minneapolis, MN

Linda A. Chatman, D.V.M.* Pfizer, Inc. Groton, CT

Harold Davis, D.V.M., Ph.D.* Preclinical Safety Assessment Amgen, Inc. Thousand Oaks, CA

Yvonne P. Dragan, Ph.D.* School of Public Health Ohio State University Columbus, OH

Norman R. Drinkwater, Ph.D., Principal Reviewer McArdle Laboratory for Cancer Research University of Wisconsin-Madison Madison, WI

James E. Klaunig, Ph.D.* Division of Toxicology Department of Pharmacology and Toxicology Indiana University/Purdue University at Indianapolis Indianapolis, IN

* Did not attend

David E. Malarkey, D.V.M., Ph.D.

Department of Microbiology, Pathology, and Parasitology College of Veterinary Medicine North Carolina State University Raleigh, NC

Michele Medinsky, Ph.D., Principal Reviewer Durham, NC

Walter W. Piegorsch, Ph.D., Principal Reviewer Department of Statistics University of South Carolina Columbia, SC

Mary Anna Thrall, D.V.M.

Department of Pathology College of Veterinary Medicine and Biomedical Sciences Colorado State University Fort Collins, CO

SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS

On October 18, 2001, the draft Technical Report on the toxicology and carcinogenesis studies of riddelliine received public review by the National Toxicology Program's Board of Scientific Counselors' Technical Reports Review Subcommittee. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, NC.

Dr. P.C. Chan, NIEHS, introduced the toxicology and carcinogenesis studies of riddelliine by describing the structure and occurrence of the chemical, the results of the previously published 13-week studies, and the design of the present 2-year studies. He discussed the survival and body weight effects and the chemical-related neoplasms observed in the exposed animals. The proposed conclusions were *clear evidence of carcinogenic activity* in male and female F344/N rats and B6C3F₁ mice.

Dr. M.W. Chou, NCTR, described companion studies to characterize the metabolism of riddelliine by rat and human liver microsomes and the DNA adducts formed in both systems.

Dr. Drinkwater, a principal reviewer, expressed reservations about the unbalanced study design, with male rats and female mice each having just one dosed group. He also questioned whether the hepatocellular neoplasms and leukemia in the male and female rats could definitely be attributed to chemical exposure.

Dr. Piegorsch, the second principal reviewer, also questioned the unbalanced study design but did not feel that any neoplastic effects went undetected in these studies. He noted the potential benefits for risk assessment from the multiple-dose studies in female rats and male mice.

Dr. Medinsky, the third principal reviewer, agreed with the proposed conclusions and noted the importance of the DNA adduct studies in characterizing the genotoxic mechanism for this chemical.

Dr. J.R. Bucher, NIEHS, explained the rationale for use of the unbalanced dosing scheme. In preliminary 13-week studies, riddelliine caused liver neoplasms in female mice. Because the amount of test material was limited and the carcinogenicity of the chemical was already established, the NTP decided to use several lower dose concentrations in one sex for each rodent species to try to determine dose-response relationships or no-observed-effect levels.

Dr. J.K. Haseman, NIEHS, explained that the hepatocellular adenomas and leukemia in female rats were not part of the "*clear evidence*" conclusion but were still considered attributable to chemical administration and by themselves would have constituted "*some evidence*" of carcinogenic activity. The increase in leukemia incidence was deemed more significant after survivaladjusted analyses, reflecting the early deaths of many animals. Dr. J.R. Hailey, NIEHS, added that mononuclear cell leukemia normally occurs after 18 months in Fischer rats, while most of the female rats in the top dose group had already died by that time.

Dr. Medinsky moved that the conclusions be accepted as written, and Dr. Drinkwater seconded the motion, which was accepted unanimously with five votes.

INTRODUCTION

RIDDELLIINE

CAS No. 23246-96-0

Chemical Formula: C₁₈H₂₃NO₆ Molecular Weight: 349.4

Synonyms: 13,19-Didehydro-12,18-dihydroxy senecionan-11,16-dione; 3-ethylidine-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-6-(hydroxymethyl)-5-methylene(1,6)di-oxacyclododecino(2,3,4-gh)-pyrrolizidine-2,7-dione; *trans*-15-ethylidine-12b-hydroxy-12ahydroxymethyl-13-methylenesenec-1-enine

CHEMICAL AND PHYSICAL PROPERTIES

Riddelliine, a crystalline solid, is a macrocyclic diester of retronecine (an unsaturated alcohol) and riddelliic acid (an oxygenated, branched, dicarboxylic acid). Riddelliine has a melting point of 198° C, is soluble in water as the hydrochloride and in chloroform, is slightly soluble in acetone and in ethanol, and is sparingly soluble in water. The solid is stable at room temperature in diffuse light for at least 1 year (Cheeke, 1979). Alcoholic and aqueous solutions of riddelliine are stable at room temperature when protected from light.

PRODUCTION, USE, AND HUMAN EXPOSURE

Riddelliine is produced commercially only as a reference standard and as a research material for laboratories and clinics. Accurate production data for riddelliine are not available.

Riddelliine is isolated from plants of the genera *Crotalaria*, *Amsinckia*, and *Senecio*. Structurally, rid-delliine belongs to a class of toxic pyrrolizidine alkaloids

that are esters of unsaturated basic alcohols (necines) and of a necic acid produced by plants growing in climates ranging from temperate to tropical. The plants are unrelated taxonomically, but a characteristic they share is the production of pyrrolizidine alkaloids. The alkaloids occur in different parts of the plants; the highest content is in the seeds and flowering tops. The quantity of the alkaloids varies, depending on the season, climate, and soil constitution (Fu *et al.*, 2001).

The plants from which riddelliine and other pyrrolizidine alkaloids are isolated are found in the rangelands of the western United States (Fu *et al.*, 2001). Cattle, horses, and, less commonly, sheep that ingest these plants succumb to their toxic effects. Riddelliine residues have been found in meat, milk, and honey (Food and Drug Administration, unpublished data). The plants may contaminate human food sources as intact plants, and their seeds may contaminate commercial grains (Fu *et al.*, 2001).

In India, the root of *Crotalaria juncea* is taken as a hemoptysis remedy, and the plant is used to treat impetigo and psoriasis and as an emmenagogue. The "bush tea" used in Jamaica to treat children for a cold and an herbal tea that is popular in the American Southwest, gordolobo yerba, may contain riddelliine (Huxtable, 1980).

ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION Experimental Animals

Little is known about the disposition of riddelliine. However, other pyrrolizidine alkaloids have been studied extensively, and results of these studies serve as a background for riddelliine. Studies of [3H]-monocrotaline (Hayashi, 1966), [14C]-lasiocarpine (Culvenor et al., 1969), [14C]-senecionine, and [14C]-seneciphylline (Eastman et al., 1982) showed that 80% of the ingested pyrrolizidine alkaloids are rapidly excreted unchanged in urine and feces, with urine being the more prevalent route. Carbon dioxide expiration is a minor route, accounting for about 10% of the dose excreted. The ingested alkaloids are found mainly in the liver and kidney. Low concentrations of radioactivity are found in other tissues, including the lungs. The metabolism of senecionine shows there are three principal metabolic pathways: hydrolysis of the ester functional groups; oxidation of the necine bases to the corresponding necine-N-oxides; and hydroxylation of the necine base, particularly at the C-8 position, to form 8-hydroxynecine derivatives, followed by dehydration to form the corresponding dehydropyrrolizidine (pyrrolic) derivatives (Mattocks, 1968; IARC, 1976). Metabolism is mainly catalyzed by the cytochrome P450 isozymes (Williams et al., 1989; Miranda et al., 1991). The rate of metabolism is higher with liver microsomes of rats pretreated with phenobarbital than with those from untreated rats (Huxtable and Wild, 1994). Hydrolysis can be catalyzed by cytosolic esterases (Dueker et al., 1992). Pretreatment of the animal with phenobarbital increases the rate of metabolic conversion, while chloramphenicol or SKF 525A reduces it (Allen et al., 1972; White et al., 1983).

The pyrrole metabolites (dehydropyrrolizidines) resulting from hydroxylation followed by dehydration have been found to be strong alkylating agents responsible for most of the genotoxic activities of the parent pyrrolizidine alkaloids (Schoch *et al.*, 2000). However, although dehydropyrrolizidines are considered reactive metabolites, the mechanisms by which pyrrolizidine alkaloids induce genotoxicity and carcinogenicity are not clear.

Humans

No information on the absorption, distribution, metabolism, or excretion of riddelliine in humans was found in the literature.

In an NTP study, human liver microsomes were incubated *in vitro* with riddelliine for 30 minutes (Appendix I). The metabolism products contained in the supernatant were separated and analyzed by reverse-phase high-performance liquid chromatography. The metabolites contained in chromatographic peaks eluting at 25.4 and 30.1 minutes were identified as dehydroretronecine and riddelliine-*N*-oxide.

MITOTIC INHIBITION

The pyrrolizidine alkaloids, as well as their metabolites and synthetic analogues, are potent antimitotic compounds. Administration of heliotrine, lasiocarpine, or lasiocarpine-*N*-oxide reduced mitosis by more than 50% in regenerating rat liver following partial hepatectomy (Peterson, 1965; Downing and Peterson, 1968). Heliotridine added to leukocyte cultures depressed mitosis (Bick *et al.*, 1975). Hincks *et al.* (1991) showed that riddelliine and four other pyrrolizidine alkaloids inhibited colony formation by cultured bovine kidney epithelial cells. The pyrrolizidine alkaloids were not lethal to the cultured cells and only inhibited mitosis. McGrath *et al.* (1975) noted renal glomerular lesions in pigs fed *Crotalaria* seeds and suggested that the primary cause was mitotic inhibition.

Because of the antimitotic property of pyrrolizidine alkaloids, indicine-N-oxide was used as a chemotherapeutic agent for cancer (Letendre et al., 1981, 1984). The relationship between the antimitotic activity and tumorigenic activity of the pyrrolizidine alkaloids is not clear. It has been noted that more tumors developed following the cessation of pyrrolizidine alkaloid intake than with continued dosing (Svoboda and Reddy, 1972; Allen et al., 1975). Higher tumor yields were observed in rats fed Petasites japonicus maxim or Symphytum officinale intermittently than in rats fed continuously (Hirono et al., 1973, 1978). Pyrrolizidine alkaloids allow the cells to go through DNA synthesis and the cell cycle to repeat without undergoing cell division, resulting in megalocyte development (Samuel and Jago, 1975; Mattocks, 1986). Hincks et al. (1991) postulated that the antimitotic activity of pyrrolizidine alkaloids is related to their ability to cross-link DNA and thereby inactivate the section of genome that codes for the proteins involved in division (Samuel and Jago, 1975).

TOXICITY

Experimental Animals

No information on the LD₅₀ of riddelliine was available in the literature. Most of the documentation of pyrrolizidine toxicity is found in the literature of veterinary medicine and animal husbandry. A few common animal diseases related to pyrrolizidine alkaloid exposure are Missouri River bottom disease of horses, Pictou disease of cattle (Canada), Winton disease of cattle and horses (New Zealand), Schweinsberger disease of horses (Germany), Molteno cattle sickness (South Africa), and various chronic cirrhotic diseases of range animals worldwide. The knowledge among stockmen that pyrrolizidine alkaloid-containing plants such as Crotalaria and Senecio species are common toxic agents in animal diseases was verified by studies in which the plants were fed whole to cattle and horses (Mattocks, 1986). Clinical findings in poisoned animals include neurological, gastrointestinal (diarrhea), and hematologic (increased blood ammonia, hemolysis) effects. Ascites is often observed.

In studies conducted by the National Toxicology Program (1993), groups of five male and five female F344/N rats and B6C3F1 mice received riddelliine in 0.1 M phosphate buffer by gavage at doses of 0, 0.33, 1.0, 3.3, 10, or 25 mg per kg body weight, 5 days per week, for 2 weeks. Four of five male rats administered 25 mg/kg died or were killed moribund before the end of the study; mean body weight gains of male rats in the 10 and 25 mg/kg groups were depressed. Dose-related increased incidences of hemorrhagic centrilobular hepatic necrosis, hepatocytic karyomegaly and cytologic alterations, pulmonary hemorrhage and edema, splenic extramedullary hematopoiesis, and pancreatic edema occurred in male rats administered 1.0 mg/kg or greater. No early deaths or body weight effects were observed in female rats or male or female mice. Cytologic alteration of the liver, hemorrhage and edema of the lung, and splenic hematopoiesis were also observed in female rats administered 3.3 mg/kg or greater but were generally slightly less severe than in male rats. In mice, the only treatment-related findings included increased liver weights and increased incidences of hepatic cytomegaly in males and females.

The NTP (1993) also conducted 13-week studies in which groups of 20 male and 20 female F344/N rats received 0, 0.1, 0.33, 1.0, 3.3, or 10 mg/kg and B6C3F₁ mice received 0, 0.33, 1.0, 3.3, 10, or 25 mg/kg riddelliine in 0.1 M phosphate buffer by gavage, 5 days per week, for 13 weeks. Ten male and ten female rats and

mice were evaluated at 13 weeks, five male and five female rats and mice were evaluated after 7 weeks of recovery, and the remaining animals were evaluated after 14 weeks of recovery. In the rat study, 19 of 20 males in the 10 mg/kg group died during the dosing period, and five 10 mg/kg females died during the recovery period. Body weights of rats decreased with increasing dose at 13 weeks, but those of all groups except the 1.0 and 3.3 mg/kg females had returned to values similar to those of the vehicle controls by the end of the recovery period. At 13 weeks, lung and spleen weights of dosed males and females and brain and liver weights of dosed females were increased and heart and liver weights of males were decreased. Clinical pathology findings were indicative of liver damage and erythrocyte and platelet sequestration and included increases in reticulocyte counts and decreases in platelet counts in males and females, increased serum alkaline phosphatase activities in males, and increased sorbitol dehydrogenase activities The most significant treatment-related in females. lesions were observed in the liver of dosed males and females at 13 weeks or after the recovery period and included hepatocyte cytomegaly and karyomegaly, cytoplasmic vacuolization, centrilobular necrosis, mixed inflammatory cell infiltration, foci of cytologic alteration, hyperplastic hepatocytes, and bile duct hyperplasia. Liver lesions initially observed after 13 weeks of dosing often persisted or progressed in severity during the recovery period, particularly in 10 mg/kg female rats. Treatment-related lesions were also observed in the bone marrow, gastrointestinal tract, heart, kidney, lung, lymph nodes, pancreas, and spleen.

No treatment-related deaths occurred in mice in the 13-week NTP (1993) study. Depressed body weight gains of 10 and 25 mg/kg mice (males, 9% and 17% less than those of the vehicle controls; females, 16% and 21% less, respectively) were noted at the end of the dosing period and persisted throughout the recovery period. Dose-related increases in erythrocyte counts in males and reticulocyte counts in females were observed. Centrilobular cytomegaly in the liver of 25 mg/kg mice and forestomach epithelial hyperplasia in the 10 and 25 mg/kg groups were noted after 13 weeks of dosing; the forestomach lesions became less severe during the 14-week recovery period, but cytomegaly in the liver persisted. Bile duct hyperplasia was observed in the liver of 25 mg/kg females at the end of the recovery period.

Molyneux *et al.* (1991) reported that calves fed *Senecio riddellii*, which contains only riddelliine and its *N*-oxide,

for 20 days exhibited weight loss, signs of depression, reduced feed consumption, ataxia of hind limbs, ascites, and edema before death. Microscopic examination revealed hepatocellular necrosis and collapse of lobules, increased numbers of fibroblasts and collagen, portal edema, anisokaryosis of hepatocyte nuclei with some cytomegaly, and bile duct proliferation.

Two stages of reactions are associated with pyrrolizidine poisoning. The first is a primary reaction in which the pyrrolizidine alkaloid or its metabolites act on the liver tissue, inducing acute necrosis and/or a marked enlargement of hepatocytes (megalocytosis). This process takes place even after a single exposure to the pyrrolizidine alkaloid. The second stage develops in response to the initial stage; responses include development of liver fibrosis accentuated by stromal collapse and endothelial cell damage. The latter may lead to thrombosis and occlusion of central veins; eventually, cirrhosis develops. Chronic exposure to pyrrolizidine alkaloids also gives rise to proliferation of bile ductule cells and nodular hyperplasia. The functional capacity of the liver deteriorates; death results from hepatic failure (Schoental, 1976; Peterson and Culvenor, 1983). The toxic metabolites from the liver may affect the heart and lungs. Huxtable (1979) reviewed the toxicity of the pyrrolizidine alkaloids and described the following sequelae of cardiopulmonary damage: endothelial proliferation in the heart and lung, arterial hypertrophy, pulmonary arterial hypertension, right ventricular hypertrophy, and cor pulmonale.

While large single doses of monocrotaline can damage the liver, chronic exposure to lower doses causes pulmonary damage in the absence of hepatotoxicity. Gillis et al. (1978) reported that ingestion of 0.4 mg monocrotaline per day by young rats (45 to 50 g) for 21 days led to pulmonary toxicity, manifested by increased lung-tobody-weight ratios and lung protein levels and reduced 5-hydroxytryptamine and noradrenaline removal and metabolism, in the absence of hepatotoxicity. The rats also developed pulmonary hypertension and right ventricular hypertrophy. The reduced ability of monocrotaline-damaged lung endothelial cells to remove 5-hydroxytryptamine probably allowed circulating levels of this and other vasoconstrictors to increase, resulting in increased pulmonary arterial pressure; compensatory hypertrophy of the right ventricular wall developed as the heart attempted to overcome the elevated pulmonary arterial pressure. Monthly doses of monocrotaline administered to young Macaca monkeys resulted in significant ultrastructural changes in the right ventricle (Raczniak *et al.*, 1978). These changes, which included mitochondrial hypertrophy, streaming and clumping of Z-band material, degeneration of myofibrils, changes in ribosomes, and proliferation of intercellular collagen fibers, were considered to be indicative of compensation to hypertensive heart disease.

Swick *et al.* (1982) reported that dietary intake of *Senecio* plant material modified mineral metabolism in rats. Copper and iron levels in the liver were markedly increased, even in the absence of supplemental copper. When copper was added to the diet of the rats, an even greater accumulation of copper was observed. Impairment of hematopoiesis and accelerated erythrocyte destruction were also noted.

Humans

No epidemiology studies or reports of health effects related to riddelliine exposure in humans were found in the literature.

REPRODUCTIVE

AND DEVELOPMENTAL TOXICITY Experimental Animals

In the studies conducted by the NTP (1993), the length of the estrous cycle was increased in 10 mg/kg female rats and 25 mg/kg female mice. In mating trials in which F344/N rats and B6C3F₁ mice received riddelliine in corn oil by gavage for 10 weeks (rats) or 10.5 weeks (mice), pups from rat dams administered 1.0 mg/kg and mouse dams administered 25 mg/kg weighed less at birth and during suckling than did those from control dams; the average live litter size, number of pups born alive, and pup survival through day 14 were reduced in the 25 mg/kg mouse group (NTP, 1993; Chan *et al.*, 1994).

Results of studies by Peterson and Jago (1980) indicate that pyrrolizidine alkaloids and their metabolites can cross the placenta. Heliotrine and dehydroheliotridine injected into rat dams on the fourteenth day of pregnancy were recovered in the fetuses. The pyrrolizidine alkaloids induced growth retardation and fetal mortality. Administration of heliotrine to pregnant rats during organogenesis led to fetal growth retardation and musculoskeletal defects, mainly in rib development. Hypoplasia of the lower jaw and cleft palate were common findings; however, there was no liver damage (Green and Christie, 1961). Intraperitoneal administration of fulvine to rat dams on days 9 through 12 of gestation induced exencephaly, cleft palate, microphthalmia, limb and tail abnormalities, and other defects in offspring (Persaud and Hoyte, 1974).

Schoental (1959) reported that retrorsine administered to lactating rats caused liver lesions in the pups. Pups dying at 18 to 30 days of age had hydropic or fatty vacuolation of liver cells. Weanling rats that died or were killed between 1 and 6 months of age had hemorrhagic necrosis, increased hepatic centrilobular reticulin, thickening of centrilobular veins, hyperplastic nodules, and bile duct proliferation. The occurrence of hepatic lesions only after birth and not in fetuses was probably due to the inability of embryonic liver to activate pyrrolizidine alkaloids (Mattocks, 1986).

Humans

No information on the reproductive or developmental toxicity of riddelliine in humans was found in the literature.

CARCINOGENICITY

Experimental Animals

Two reports on the carcinogenicity of riddelliine were found in the literature. Liver nodules were observed in all four male and five of 12 female Wistar rats given 0.02 mg/mL riddelliine in drinking water twice weekly for 6 months, followed by three intraperitoneal injections of 25 mg/kg each during the seventh month or by a single intraperitoneal injection of 30 mg/kg one year after initial riddelliine exposure (Schoental and Head, 1957). The International Agency for Research on Cancer (1976) considered the study inconclusive.

In the rat study conducted by the NTP (1993), adenomas were observed in the liver of two 10 mg/kg females after 13 weeks of dosing and in one additional female after 14 weeks of recovery; two of the three females had multiple neoplasms. No adenomas were observed in vehicle control females.

The toxicity and carcinogenicity of many other pyrrolizidine alkaloids have been studied (WHO, 1988). Harris and Chen (1970) reported malignant liver tumors in rats fed 0.5% dried *Senecio longilobus L*. every other week for 1 year. Newberne and Rogers (1973) demonstrated that monocrotaline given intragastrically once weekly for 55 weeks or longer induced liver cell carcinoma in rats. Male and female rats fed 7, 15, or 30 ppm lasiocarpine developed liver angiosarcoma, hepatocellu-

lar adenoma, and hepatocellular carcinoma. Female rats also developed hematopoietic neoplasms (NCI, 1978).

In drinking water studies, hepatomas were induced in rats administered 0.03 g/L retrorsine or isatidine 3 days per week (Schoental *et al.*, 1954). Hemangioendothelial sarcoma and hepatic adenoma were induced in rats exposed to 0.01% petasitenine (Hirono *et al.*, 1977). Clivorine administered at a concentration of 0.05 g/L for 340 days induced liver tumors, hemangioendothelial sarcomas, and neoplastic nodules in rats (Kuhara *et al.*, 1980).

Young male Sprague-Dawley rats administered subcutaneous injections of dehydroretronecine every other week for 12 months developed rhabdomyosarcomas at the site of injection (Allen *et al.*, 1975). Peterson *et al.* (1983) reported that rats receiving intraperitoneal injections of dehydroheliotridine developed tumors in the liver, lungs, intestines, and other organs.

Humans

No epidemiology studies of riddelliine exposure in humans were found in the literature.

GENETIC TOXICOLOGY

Riddelliine has demonstrated genotoxic activity in vitro and in vivo in some assays under certain testing conditions. Riddelliine induced mutations in Salmonella typhimurium strain TA100 when tested with 30% rat or hamster liver S9 activation enzymes (Zeiger et al., 1988); no mutation induction was seen in the absence of S9 or with 10% S9, indicating a specific requirement for metabolic activation. Riddelliine induced sister chromatid exchanges and chromosomal aberrations in cultured Chinese hamster ovary cells in the presence of S9 (Galloway et al., 1987); sister chromatid exchanges were also significantly increased in the absence of S9. Additional positive results for riddelliine were reported in several abstracts, including induction of mutations in mouse lymphoma L5178Y cells (Rudd et al., 1983), unscheduled DNA synthesis in Fischer 344 rat hepatocytes in vitro (Mirsalis et al., 1983), and S-phase and unscheduled DNA synthesis in vivo (Mirsalis, 1987). Metabolism, cytotoxicity, and DNA and protein binding studies performed with other pyrrolizidine alkaloids have shown that these compounds are metabolized to reactive pyrroles that covalently bind to liver proteins and DNA (Eastman et al., 1981, 1982) and are potent hepatotoxins (Green et al., 1981; Griffin and Segall, 1986). The liver's apparent sensitivity to the genotoxic action of riddelliine is supported by the observation that riddelliine induced a significant increase in unscheduled DNA synthesis in hepatocytes of rats treated by gavage *in vivo* (Mirsalis, 1987).

In contrast to the effects observed in rat liver *in vivo*, administration of up to 25 mg/kg riddelliine by gavage for 4 or 13 weeks did not result in increased frequencies of micronucleated erythrocytes in peripheral blood of male or female B6C3F₁ mice (Witt *et al.*, 2000). Additional studies of the bone marrow erythrocytes of mice in the 4-week study confirmed the absence of an effect (Mirsalis *et al.*, 1993). A small but significant increase in the frequency of micronucleated erythrocytes was observed in male Swiss mice 48 hours after administration of a single intraperitoneal injection of 150 mg/kg riddelliine (MacGregor *et al.*, 1985).

Riddelliine caused DNA cross-linking, DNA-protein cross-linking, and a dose-dependent inhibition of colony formation and megalocytosis in cultured bovine kidney epithelial cells (Hincks *et al.*, 1991; Kim *et al.*, 1993, 1995).

STUDY RATIONALE

Riddelliine was nominated by the FDA for toxicity and carcinogenicity testing because of its potential for human exposure and its economic impact on the livestock industry and because the toxicity of other pyrrolizidine alkaloids suggests riddelliine may be carcinogenic. Gavage in phosphate buffer was chosen as the route of administration because the oral route is the major route of exposure in humans and because the quantity of riddelliine available for study was limited. Based on the findings of hepatocellular neoplasms in female rats in the 13-week studies (NTP, 1993), it was considered important to use a large number and broad range of doses to better characterize the shape of the dose-response curve for carcinogenicity rather than focus on the identification of a carcinogenic response. This would also allow for a more complete comparison of neoplastic responses in relation to the anticipated nonneoplastic effects resulting from the known toxicity of riddelliine. Due to the limited amount of riddelliine available for study, five dosed groups of female rats and only one dosed group of male rats were used, instead of an equal number of dose groups in each sex. The female rats were considered more suitable than male rats for the investigation of low-dose effects, as hepatocellular adenomas were found in female rats in the 13-week studies. The male dosed group, at a dose equal to the highest dose in females, was added for comparison. Because female rats were selected for the investigation of lowdose effects of riddelliine, male mice were used as the counterpart for female rats. Four dosed groups of male mice and one dosed group of female mice, at a dose equal to the highest dose in males, were used. The doses selected for the 2-year studies were 0 and 1 mg/kg for male rats; 0, 0.01, 0.033, 0.1, 0.33, and 1 mg/kg for female rats; 0, 0.1, 0.3, 1, and 3 mg/kg for male mice, and 0 and 3 mg/kg for female mice. The highest doses of 1 mg/kg for rats and 3 mg/kg for mice were selected because in the 13-week studies, no effects on body weights, survival, or histopathology were observed in animals administered these doses. The lower dose levels were selected because the FDA was interested in low-dose effects. Liver tissue from additional groups of female rats that received the same doses of riddelliine as the core study animals for 3 or 6 months was analyzed to identify DNA adducts.

MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF RIDDELLIINE

Riddelliine was obtained from the Food and Drug Administration (Rockville, MD) in one lot (8194-110-01). Identity and purity analyses were conducted by the analytical chemistry laboratory, Research Triangle Institute (Research Triangle Park, NC), and the study laboratory. Reports on analyses performed in support of the riddelliine studies are on file at the National Institute of Environmental Health Sciences.

The chemical, a white, crystalline solid, was identified as riddelliine by infrared, ultraviolet/visible, and proton nuclear magnetic resonance spectroscopy and by lowresolution mass spectrometry (MS). The purity of lot 8194-110-01 was determined by the analytical chemistry laboratory using high-performance liquid chromatography (HPLC) and gas chromatographic water analysis. Elemental analyses were performed by Galbraith Laboratories (Knoxville, TN). Purity was confirmed by the study laboratory using HPLC. Elemental analyses for carbon, hydrogen, nitrogen, and oxygen were in agreement with the theoretical values for riddelliine. HPLC revealed a major peak and five minor peaks accounting for 6.3% of the total integrated area by one system and one major peak and two minor peaks accounting for 8.0% of the total integrated area by a second system. By both systems, only one impurity peak was present at greater than 1% of the total peak area. This component was identified by HPLC/MS as retrorsine. Gas chromatography indicated less than 0.1% water. The overall purity determined by the analytical chemistry laboratory was approximately 92%. The study laboratory confirmed a purity of 92.6% using HPLC.

Stability studies were performed by Midwest Research Institute (Kansas City, MO) using HPLC. These studies indicated that riddelliine is stable as a bulk chemical for at least 2 weeks when stored protected from light at temperatures up to 60° C. To ensure stability, the bulk chemical was stored at approximately 5° C, protected from light. Stability was monitored during the 2-year studies using HPLC. No degradation of the bulk chemical was detected.

PREPARATION AND ANALYSIS OF DOSE FORMULATIONS

The dose formulations were prepared every 4 weeks by mixing riddelliine with 0.1 M sodium phosphate buffer (pH 6.0) (EM Science, Gibbstown, NJ; Fischer Scientific, Fairlawn, NJ) (Table F2). Homogeneity studies of the 0.0020 and 0.30 mg/mL dose formulations were performed by the study laboratory using HPLC. Stability studies of a 0.00204 mg/mL dose formulation were performed by the analytical chemistry laboratory using HPLC. Homogeneity was confirmed, and the stability of the dose formulation was confirmed for at least 35 days at 1° to 3° C or at room temperature when stored in sealed glass containers. Dose formulations were stored at 5° C in amber glass bottles for up to 35 days.

Periodic analyses of the dose formulations of riddelliine were conducted at the study laboratory using HPLC. The formulations were analyzed every 8 to 12 weeks (Table F3). Of the dose formulations used during the 2-year studies, all were within 10% of the target concentrations, with no value greater than 105% (rats) or 109% (mice) of the target concentration; 18 of 20 animal room samples for rats and all 16 animal room samples for mice also were within 10% of the target concentrations.

2-YEAR STUDIES

Study Design

Groups of 50 male and 50 female rats were administered riddelliine in sodium phosphate buffer by gavage at doses of 0 or 1 mg riddelliine/kg body weight 5 days per week; additional groups of 50 female rats received 0.01, 0.033, 0.1, or 0.33 mg/kg. Females were dosed for 105 weeks; due to high mortality, male rats were terminated at week 72. Groups of 50 male and 50 female mice were administered 0 or 3 mg/kg riddelliine in sodium phosphate buffer 5 days per week for 105 weeks; additional groups of 50 male mice received 0.1, 0.3, or 1 mg/kg for 105 weeks. The dose ranges for female rats and male mice were selected based on the no-observed-adverse-effect levels (NOAELs) of 0.1 mg/kg for rats and 3.3 mg/kg for mice estimated from the results of the 13-week riddelliine studies (NTP,

1993). Lower dose groups were added to ensure that NOAELs were reached for each species.

Source and Specification of Animals

Male and female F344/N rats and $B6C3F_1$ mice were obtained from Taconic Laboratory Animals and Services (Germantown, NY) for use in the 2-year studies. Rats and mice were quarantined for 12 or 13 days, respectively, before the beginning of the studies. Five male and five female rats and mice were randomly selected for parasite evaluation and gross observation of disease. Rats and mice were 5 to 6 weeks old at the beginning of the studies. The health of the animals was monitored during the studies according to the protocols of the NTP Sentinel Animal Program (Appendix H).

Animal Maintenance

Rats were housed up to three (males) or five (females) per cage. Male mice were housed individually, and female mice were housed five per cage. Feed and water were available *ad libitum*. Animals were given nonirradiated feed from the beginning of the studies until July 21, 1996, and were given irradiated feed thereafter to reduce potential microbial contamination. Cages and racks were rotated every 2 weeks. Further details of animal maintenance are given in Table 1. Information on feed composition and contaminants is in Appendix G.

Clinical Examinations and Pathology

All animals were observed twice daily. Clinical findings were recorded every 4 weeks. Animals were weighed initially, during week 5, and every 4 weeks thereafter.

Complete necropsies and microscopic examinations were performed on all rats and mice. At necropsy, all organs and tissues were examined for grossly visible lesions, and all major tissues were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned to a thickness of approximately 5 μ m, and stained with hematoxylin and eosin for microscopic examination. For all paired organs (e.g., adrenal gland, kidney, ovary), samples from each organ were examined. Tissues examined microscopically are listed in Table 1.

Microscopic evaluations were completed by the study laboratory pathologist, and the pathology data were entered into the Toxicology Data Management System. The slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were evaluated by an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy, the slide and tissue counts were verified, and the histotechnique was evaluated. A quality assessment pathologist evaluated slides from all tumors and all potential target organs, which included the bone marrow, glandular stomach, kidney, liver, lung, mediastinal and mesenteric lymph nodes, spleen, thymus (males only), and thyroid gland (females only) of rats, and the kidney, liver, lung (females only), and spleen of mice.

To gain more information about the morphological characteristics of the glomerulosclerosis observed in dosed mice, a total of 18 kidneys were selected from the male and female vehicle controls, 1 mg/kg males, and 3 mg/kg males and females and stained with Congo red, Masson's trichrome, and periodic acid-Schiff histochemical stains. In addition, each kidney was stained for the presence of immunoglobulin, complement 3, and albumin by immunohistochemistry.

The quality assessment report and the reviewed slides were submitted to the NTP Pathology Working Group (PWG) chairperson, who reviewed the selected tissues and addressed any inconsistencies in the diagnoses made by the laboratory and quality assessment pathologists. Representative histopathology slides containing examples of lesions related to chemical administration, examples of disagreements in diagnoses between the laboratory and quality assessment pathologists, or lesions of general interest were presented by the chairperson to the PWG for review. The PWG consisted of the quality assessment pathologist and other pathologists experienced in rodent toxicologic pathology. This group examined the tissues without any knowledge of dose groups or previously rendered diagnoses. When the PWG consensus differed from the opinion of the laboratory pathologist, the diagnosis was changed. Final diagnoses for reviewed lesions represent a consensus between the laboratory pathologist, reviewing pathologist(s), and the PWG. Details of these review procedures have been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). For subsequent analyses of the pathology data, the decision of whether to evaluate the diagnosed lesions for each tissue type separately or combined was generally based on the guidelines of McConnell et al. (1986).

Liver tissue from additional groups of female F344/N rats administered riddelliine in sodium phosphate buffer by gavage at doses of 0, 0.01, 0.033, 0.1, 0.33, or 1 mg/kg daily for 3 or 6 months was collected and sent to the National Center for Toxicological Research (Jefferson, AR) for analysis of DNA adducts. These studies are described in Appendix I.

TABLE 1 Experimental Design and Materials and Methods in the 2-Year Gavage Studies of Riddelliine

Study Laboratory

Southern Research Institute (Birmingham, AL)

Strain and Species F344/N rats B6C3F₁ mice

Animal Source Taconic Laboratory Animals and Services (Germantown, NY)

Time Held Before Studies Rats: 12 days Mice: 13 days

Average Age When Studies Began 5-6 weeks

Date of First Dose

Rats: March 6, 1996 Mice: March 20, 1996

Duration of Dosing

5 days/week for 72 weeks (male rats) or 105 weeks (mice and female rats)

Date of Last Dose

Rats: July 14-15, 1997 (males), or March 3-5, 1998 (females) Mice: March 17-23, 1998

Necropsy Dates

Rats: July 15-16, 1997 (males), or March 4-6, 1998 (females) Mice: March 18-24, 1998

Average Age at Necropsy

Rats: 77 weeks (males) or 110 weeks (females) Mice: 110-111 weeks

Size of Study Groups 50 males and 50 females

Method of Distribution

Animals were distributed randomly into groups of approximately equal initial mean body weights.

Animals per Cage

Rats: up to 3 (males) or 5 (females) Mice: 1 (males) or 5 (females)

Method of Animal Identification

Tail tattoo

Diet

NTP-2000 open formula pelleted diet (Zeigler Brothers, Inc., Gardners, PA), available *ad libitum*. Animals received nonirradiated feed from the beginning of the studies through July 21, 1996, and irradiated feed thereafter.

TABLE 1

Experimental Design and Materials and Methods in the 2-Year Gavage Studies of Riddelliine

Water

Tap water (Birmingham municipal supply) via automatic watering system (Edstrom Industries, Waterford, WI), available ad libitum

Cages

Polycarbonate (Lab Products, Maywood, NJ), changed at least once (male mice) or twice (rats and female mice) weekly

Bedding

Sani-Chips® (P.J. Murphy Forest Products Corp.; Montville, NJ); nonirradiated prior to July 18, 1996, and irradiated thereafter

Cage Filters

Reemay® (Andico, Birmingham, AL), changed every two weeks

Racks

Stainless steel (Lab Products, Maywood, NJ), changed and rotated every two weeks

Animal Room Environment

Temperature: $72^{\circ} \pm 3^{\circ}$ F Relative humidity: $50\% \pm 15\%$ Room fluorescent light: 12 hours/day Room air changes: at least 10/hour

Doses

Rats: 0 or 1 mg/kg per day (males); 0, 0.01, 0.033, 0.1, 0.33, or 1 mg/kg (females). Doses were prepared in 0.1 M sodium phosphate buffer and administered at a volume of 5 mL/kg.

Mice: 0, 0.1, 0.3, 1, or 3 mg/kg per day (males); 0 or 3 mg/kg (females). Doses prepared in 0.1 M sodium phosphate buffer and administered at a volume of 10 mL/kg.

Type and Frequency of Observation

Observed twice daily; animals were weighed initially, during week 4, and every four weeks thereafter; clinical findings were recorded every 4 weeks.

Method of Sacrifice

Carbon dioxide asphyxiation

Necropsy

Necropsies were performed on all animals.

Histopathology

Complete histopathology was performed on all rats and mice. In addition to gross lesions and tissue masses, the following tissues were examined: adrenal gland, bone with marrow, brain, clitoral gland, esophagus, gallbladder (mice only), heart, large intestine (cecum, colon, rectum), small intestine (duodenum, jejunum, ileum), kidney, liver, lung, lymph nodes (mandibular and mesenteric), mammary gland (except male mice), nose, ovary, pancreas, pancreatic islets, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, skin, spleen, stomach (forestomach and glandular), testis with epididymis and seminal vesicle, thymus, thyroid gland, trachea, urinary bladder, and uterus.

DNA Adduct Characterization

Additional groups of female F344/N rats that had been obtained from Taconic Laboratory Animals and Services received daily gavage doses of 0, 0.01, 0.033, 0.1, 0.33, or 1 mg/kg of riddelliine in sodium phosphate buffer for 3 or 6 months. Six animals from each dose group were sacrificed at each time point, and liver tissue from these animals was collected and sent to the National Center for Toxicological Research for analysis of DNA adducts. These studies are described in Appendix I.

STATISTICAL METHODS

Survival Analyses

The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals found dead of other than natural causes were censored from the survival analyses; animals dying from natural causes were not censored. Statistical analyses for possible doserelated effects on survival used Cox's (1972) method for testing two groups for equality and Tarone's (1975) life table test to identify dose-related trends. All reported P values for the survival analyses are two sided.

Calculation of Incidence

The incidences of neoplasms or nonneoplastic lesions are presented in Tables A1, A5, B1, B5, C1, C5, D1, and D5 as the numbers of animals bearing such lesions at a specific anatomic site and the numbers of animals with that site examined microscopically. For calculation of statistical significance, the incidences of most neoplasms (Tables A3, B3, C3, and D3) and all nonneoplastic lesions are given as the numbers of animals affected at each site examined microscopically. However, when macroscopic examination was required to detect neoplasms in certain tissues (e.g., harderian gland, intestine, mammary gland, and skin) before microscopic evaluation, or when neoplasms had multiple potential sites of occurrence (e.g., leukemia or lymphoma), the denominators consist of the number of animals on which a necropsy was performed. Tables A3, B3, C3, and D3 also give the survival-adjusted neoplasm rate for each group and each site-specific neoplasm. This survivaladjusted rate (based on the Poly-3 method described below) accounts for differential mortality by assigning a reduced risk of neoplasm, proportional to the third power of the fraction of time on study, to animals that do not reach terminal sacrifice.

Analysis of Neoplasm and Nonneoplastic Lesion Incidences

The Poly-k test (Bailer and Portier, 1988; Portier and Bailer, 1989; Piegorsch and Bailer, 1997) was used to assess neoplasm and nonneoplastic lesion prevalence. This test is a survival-adjusted quantal-response procedure that modifies the Cochran-Armitage linear trend test to take survival differences into account. More specifically, this method modifies the denominator in the quantal estimate of lesion incidence to approximate more closely the total number of animal years at risk. For analysis of a given site, each animal is assigned a risk weight. This value is one if the animal had a lesion at that site or if it survived until terminal sacrifice; if the animal died prior to terminal sacrifice and did not have a lesion at that site, its risk weight is the fraction of the entire study time that it survived, raised to the kth power.

This method yields a lesion prevalence rate that depends only upon the choice of a shape parameter for a Weibull hazard function describing cumulative lesion incidence over time (Bailer and Portier, 1988). Unless otherwise specified, a value of k=3 was used in the analysis of sitespecific lesions. This value was recommended by Bailer and Portier (1988) following an evaluation of neoplasm onset time distributions for a variety of site-specific neoplasms in control F344 rats and B6C3F, mice (Portier et al., 1986). Bailer and Portier (1988) showed that the Poly-3 test gave valid results if the true value of k was anywhere in the range from 1 to 5. A further advantage of the Poly-3 method is that it does not require lesion lethality assumptions. Variation introduced by the use of risk weights, which reflect differential mortality, was accommodated by adjusting the variance of the Poly-3 statistic as recommended by Bieler and Williams (1993).

Tests of significance included pairwise comparisons of each dosed group with controls and a test for an overall dose-related trend. Continuity-corrected Poly-3 tests were used in the analysis of lesion incidence, and reported P values are one sided. The significance of lower incidences or decreasing trends in lesions is represented as 1-P with the letter N added (e.g., P=0.99 is presented as P=0.01N).

Analysis of Continuous Variables

Average severity values were analyzed for significance with the Mann-Whitney U test (Hollander and Wolfe, 1973).

Historical Control Data

The concurrent control group represents the most valid comparison to the treated groups and is the only control group analyzed statistically in NTP bioassays. However, historical control data are often helpful in interpreting potential treatment-related effects, particularly for uncommon or rare neoplasm types. For meaningful comparisons, the conditions for studies in the historical database must be generally similar. Until recently, the NTP historical control database consisted of animals fed the NIH-07 diet. In 1995, the NTP changed the diet fed to animals used in toxicity and carcinogenesis studies conducted by the NTP. This new diet (NTP-2000) contains less protein and more fiber and fat than the NIH-07 diet previously used (Rao, 1996, 1997). This dietary change was instituted primarily to increase longevity and decrease the incidence and/or severity of some spontaneous neoplastic and nonneoplastic lesions in the rats and mice used in NTP studies. These studies of riddelline are among the first in which the animals on study were fed the NTP-2000 diet. Because the incidence of some neoplastic and nonneoplastic lesions may be affected by the dietary change, use of the existing historical control database (NIH-07 diet) may not be appropriate for all neoplasm types.

Currently, the database includes 11 (10 for male rats) studies by various routes in which the NTP-2000 diet was used. Based on the extensive NTP historical database using the NIH-07 diet, incidences of the vast majority of spontaneous neoplasms are similar among control groups regardless of the route of administration. There is no reason to expect this to be different with the NTP-2000 diet. For example, control animals from dosed feed and dosed water studies are treated no differently and no differences in incidence of neoplasms are expected. Exceptions exist for some neoplasms/routes, and if comparisons are necessary for these neoplasm types, only studies with similar routes of administration will be used.

QUALITY ASSURANCE METHODS

The 2-year studies were conducted in compliance with Food and Drug Administration Good Laboratory Practice Regulations (21 CFR, Part 58). In addition, as records from the 2-year studies were submitted to the NTP Archives, these studies were audited retrospectively by an independent quality assurance contractor. Separate audits covered completeness and accuracy of the pathology data, pathology specimens, final pathology tables, and a draft of this NTP Technical Report. Audit procedures and findings are presented in the reports and are on file at NIEHS. The audit findings were reviewed and assessed by NTP staff, and all comments were resolved or otherwise addressed during the preparation of this Technical Report.

GENETIC TOXICOLOGY

The genetic toxicity of riddelliine was assessed by testing the ability of the chemical to induce mutations in various strains of *Salmonella typhimurium*, sister chromatid exchanges and chromosomal aberrations in cultured Chinese hamster ovary cells, micronucleated erythrocytes in rat/mouse bone marrow, increases in the frequency of micronucleated erythrocytes in mouse peripheral blood, and unscheduled DNA synthesis and S-phase DNA synthesis. The protocols for these studies and the results are given in Appendix E.

The genetic toxicity studies have evolved from an earlier effort by the NTP to develop a comprehensive database permitting a critical anticipation of a chemical's carcinogenicity in experimental animals based on numerous considerations, including the molecular structure of the chemical and its observed effects in short-term *in vitro* and *in vivo* genetic toxicity tests (structure-activity relationships). The short-term tests were originally developed to clarify proposed mechanisms of chemicalinduced DNA damage based on the relationship between electrophilicity and mutagenicity (Miller and Miller, 1977) and the somatic mutation theory of cancer (Straus, 1981; Crawford, 1985). However, it should be noted that not all cancers arise through genotoxic mechanisms.

DNA reactivity combined with *Salmonella* mutagenicity is highly correlated with induction of carcinogenicity in multiple species/sexes of rodents and at multiple tissue sites (Ashby and Tennant, 1991). A positive response in the *Salmonella* test was shown to be the most predictive *in vitro* indicator for rodent carcinogenicity (89% of the *Salmonella* mutagens are rodent carcinogens) (Tennant *et al.*, 1987; Zeiger *et al.*, 1990). Additionally, no battery of tests that included the *Salmonella* test improved the predictivity of the *Salmonella* test alone. However, these other tests can provide useful information on the types of DNA and chromosomal damage induced by the chemical under investigation.

The predictivity for carcinogenicity of a positive response in acute *in vivo* bone marrow chromosome aberration or micronucleus tests appears to be less than that in the *Salmonella* test (Shelby *et al.*, 1993; Shelby and Witt, 1995). However, clearly positive results in long-term peripheral blood micronucleus tests have high predictivity for rodent carcinogenicity (Witt *et al.*, 2000); negative results in this assay do not correlate well with either negative or positive results in rodent carcinogenicity studies. Because of the theoretical and observed associations between induced genetic damage and adverse effects in somatic and germ cells, the determination of *in vivo* genetic effects is important to the

overall understanding of the risks associated with exposure to a particular chemical. Most organic chemicals that are identified by the International Agency for Research on Cancer as human carcinogens, other than hormones, are genotoxic. The vast majority of these are detected by both the *Salmonella* assay and rodent bone marrow cytogenetics tests (Shelby, 1988; Shelby and Zeiger, 1990).

RESULTS

RATS

Survival

Estimates of 2-year survival probabilities for male and female rats are shown in Table 2 and in the Kaplan-Meier survival curves (Figure 1). All but three 1 mg/kg males died before week 70; due to high mortality in the

dosed group, the male rat study was terminated at week 72. All 1 mg/kg females died before week 97 of the study; survival of all other dosed groups of females was similar to that of the vehicle control group.

TABLE 2 Survival of Rats in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
Male						
Animals initially in study	50					50
Accidental deaths ^a	0					2
Moribund	1					9
Natural deaths	0					36
Animals surviving to study termination	. b 49					3
Percent probability of survival at end of stud	ly 98					6
Mean survival (days) ^c	496					401
Survival analysis ^d						P<0.001
Female						
Animals initially in study	50	50	50	50	50	50
Accidental deaths ^a	2	6	3	2	3	0
Moribund	9	11	13	14	16	19
Natural deaths	6	11	6	12	2	31
Animals surviving to study termination	33	22	28	22	29	0
Percent probability of survival at end of stud		51	61	46	63	0
Mean survival (days)	683	666	678	666	681	505
Survival analysis	P<0.001	P=0.166	P=0.513	P=0.063	P=0.641	P<0.001

a Censored from survival analyses b Kaplan Major determinations

Kaplan-Meier determinations

^d Mean of all deaths (uncensored, censored, and terminal sacrifice)

^d The result of the life table trend test (Tarone, 1975) is in the vehicle control column (females only), and the results of the life table pairwise comparisons (Cox, 1972) with the vehicle controls are in the dosed group columns.

FIGURE 1 Kaplan-Meier Survival Curves for Male and Female Rats Administered Riddelliine by Gavage for 2 Years

Body Weights and Clinical Findings

Mean body weights of 1 mg/kg males and females were less than those of the vehicle controls throughout most of the study (Tables 3 and 4; Figure 2). The only clinical

finding related to riddelliine administration was a general debilitation, including thinness in males and females, prior to death.

 TABLE 3

 Mean Body Weights and Survival of Male Rats in the 2-Year Gavage Study of Riddelliine

Weeks	Vehic	le Control		1 mg/kg	
on	Av. Wt.	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors
1	120	50	120	100	50
5	244	50	240	98	50
9	316	50	307	97	50
13	361	50	349	97	50
17	393	50	375	95	50
21	418	50	397	95	50
25	435	50	405	93	50
29	449	50	419	93	50
33	465	50	431	93	49
37	475	50	440	93	49
41	487	50	449	92	48
45	492	50	452	92	46
49	501	50	454	91	42
53	507	50	457	90	40
57	509	50	453	89	36
61	510	50	438	86	16
65	513	50	424	83	9
69	520	49	412	79	5
ean for weeks					
13	260		254	98	
-53	462		428	93	
-69	513		432	84	

TABLE 4

Mean Body Weights and Survival of Female Rats in the 2-Year Gavage Study of Riddelliine

Weeks	Vehicle	Control		0.01 mg/kg			0.033 mg/kg	
on	Av. Wt.	No. of	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	Survivors	(g)	controls)	Survivors	(g)	controls)	Survivors
1	95	50	95	100	50	96	101	50
5	155	50	154	99	50	155	100	50
9	182	50	183	100	50	182	100	50
13	196	50	195	99	50	197	100	50
17	203	50	204	101	50	205	101	50
21	214	50	216	101	50	215	100	50
25	218	50	219	100	50	219	101	50
29	226	50	228	101	50	228	101	50
33	233	50	235	101	50	236	101	50
37	238	50	240	101	50	240	101	50
41	247	50	249	101	50	248	100	50
45	251	50	252	100	50	253	101	50
49	259	50	260	100	49	260	100	50
53	268	50	271	101	49	269	100	50
57	277	49	277	100	49	277	100	50
61	281	49	287	102	48	284	101	50
65	292	48	296	101	48	293	101	48
69	304	47	306	101	48	301	99	48
73	307	45	308	101	48	303	99	48
77	309	45	311	101	45	306	99	46
81	310	44	311	100	44	309	99	45
85	315	44	316	100	43	311	99	43
89	316	42	318	101	39	319	101	39
93	319	39	318	100	32	322	101	37
97	320	37	320	100	29	317	99	32
101	322	35	318	99	26	320	99	30
Mean for w								
1-13	157		157	100		158	101	
14-53	236		237	100		237	100	
54-101	306		307	100		305	100	

TABLE 4

Mean Body Weights and Survival of Female Rats in the 2-Year Gavage Study of Riddelliine

Weeks		0.1 mg/kg			0.33 mg/kg			1 mg/kg		
on Study	Av. Wt. (g)	Wt. (% of controls)	No. of Survivors	Av. Wt. (g)	Wt. (% of controls)	No. of Survivors	Av. Wt. (g)	Wt. (% of controls)	No. of Survivors	
1	95	100	50	95	100	50	95	100	50	
5	153	98	50	153	99	50	153	99	50	
9	179	98	50	181	100	50	178	98	50	
13	194	99	50	195	99	50	189	96	50	
17	202	100	50	203	100	50	197	97	50	
21	212	99	50	217	101	50	206	96	50	
25	217	100	50	219	100	50	208	95	50	
29	223	99	50	224	99	50	212	94	50	
33	233	100	50	232	100	50	220	94	50	
37	236	99	49	236	99	50	224	94	50	
41	246	100	49	245	99	50	232	94	50	
45	251	100	47	248	99	50	233	93	50	
49	255	98	47	256	99	50	239	92	50	
53	266	99	47	264	99	50	246	92	48	
57	273	98	47	271	98	50	251	91	47	
61	279	99	47	277	98	50	254	91	44	
65	288	99	46	282	97	50	260	89	39	
69	296	97	46	294	97	48	272	90	29	
73	300	98	46	297	97	48	270	88	25	
77	302	98	46	301	98	47	268	87	18	
81	305	98	44	299	97	47	264	85	10	
85	310	98	44	304	96	42	285	90	4	
89	312	99	43	304	96	41	289	92	2	
93	310	97	39	308	96	39	262	82	2	
97	312	98	33	309	97	33				
101	316	98	28	313	97	29				
Mean for										
1-13	155	99		156	99		154	98		
14-53	234	99		234	99		222	94		
54-101	300	98		297	97		268	88		

FIGURE 2 Growth Curves for Male and Female Rats Administered Riddelliine by Gavage for 2 Years

Pathology and Statistical Analyses

This section describes the statistically significant or biologically noteworthy changes in the incidences of mononuclear cell leukemia and neoplasms and/or nonneoplastic lesions of the liver, thyroid gland, mammary gland, spleen, bone marrow, kidney, lung, glandular stomach, and mediastinal and mesenteric lymph nodes. Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one animal group, and historical incidences for the neoplasms mentioned in this section are presented in Appendix A for male rats and Appendix B for female rats.

Liver: The incidences of hemangiosarcoma in 1 mg/kg males and females were significantly greater than those in the vehicle controls; three 0.33 mg/kg females also had this neoplasm (Tables 5, A3, and B3). No neoplasms of this type have been noted in controls (all routes) given NTP-2000 diet or in water gavage controls given NIH-07 diet in NTP studies (Tables A4a and B4a) for 2 years. Hemangiosarcoma was considered the cause of death of 37 males and 32 females administered 1 mg/kg that died early or were sacrificed moribund. Hemangiosarcomas were single or multiple neoplastic masses generally ranging from 0.5 to 1.0 cm or more in diameter, although some of these neoplasms were smaller than 0.5 cm. Most of the hemangiosarcomas consisted of a large central cavity filled with blood and fibrin and surrounded by a variably sized rim of neoplastic tissue (Plate 1). The central portions of the large hemangiosarcomas apparently underwent necrosis and inflammation as the neoplasms grew, leaving a large, blood-filled cavity. The smaller neoplasms often consisted of irregular masses of neoplastic cells without a central cavity. The hemangiosarcomas were generally anaplastic and were composed of elongated, flattened, spindle-shaped, or polyhedral endothelial cells that lined vascular spaces and frequently formed solid sheets (Plate 2). The cells varied considerably in size and had small to abundant amounts of eosinophylic cytoplasm with indistinct borders and variably sized, round to ovoid vesicular nuclei with one or more prominent nucleoli. Invasion and destruction of the hepatic parenchyma, frequently accompanied by prominent necrosis and hemorrhage, were common. In 1 mg/kg rats, approximately half of the hepatic hemangiosarcomas in males and one third of those in females metastasized to the lung (male: 26/50; female, 17/50); metastases also occurred in the mediastinal lymph node (male: 3/50; female: 2/50) and mesentery (male: 4/50; female: 2/50), and in the pancreas (2/50) and spleen

(1/50) of males (Tables A1 and B1). Hemangiosarcoma in one 0.33 mg/kg female metastasized to the lung. The metastatic lesions were morphologically similar to the primary neoplasms. A primary hemangiosarcoma was observed in the lung of a single 1 mg/kg female.

The incidences of hepatocellular adenoma in 1 mg/kg males and females and of hepatocellular adenoma or carcinoma (combined) in 1 mg/kg females were significantly greater than those in the vehicle controls (Tables 5, A3, and B3). The incidences of hepatocellular adenoma in 1 mg/kg males and females and of hepatocellular adenoma or carcinoma (combined) in 0.33 and 1 mg/kg females exceeded the historical ranges in controls (all routes) given NTP-2000 diet and in water gavage controls given NIH-07 diet (Tables 5, A4a, and B4a). Hepatocellular adenomas were typically discrete proliferations of hepatocytes that compressed adjacent tissue. There was loss of normal lobular architecture, and the plates of the neoplastic hepatocytes intersected the surrounding normal hepatocytes at sharp angles rather than merging with them as in the regenerative nodules. Criteria for hepatocellular carcinoma included distinct variable growth pattern (solid, trabecular, or glandular), increased number of mitotic figures, cellular atypia and nuclear pleomorphism, and irregular borders with invasion and/or metastasis.

The incidences of diffuse hepatocytic regenerative hyperplasia were significantly increased in 1 mg/kg males and in 0.33 and 1 mg/kg females (Tables 5, A5, and B5); the toxicity that led to regenerative hyperplasia was the primary cause of death in one male and four female 1 mg/kg rats. These nodules are thought to represent a regenerative response, probably secondary to hepatic damage caused by riddelliine exposure. This lesion consisted of the presence of small to large nodular proliferations of hepatocytes (Plate 3). In severely affected livers, most or all of the parenchyma was involved. The nodules contained increased numbers of small hepatocytes or decreased numbers of large, hypertrophic hepatocytes arranged in normal to irregular hepatic cords. Some of the nodules were large and caused some compression of adjacent parenchyma, but the nodules generally blended with the adjacent parenchyma. Proliferation of the bile ducts and of small oval basophilic cells that resembled oval cells were occasionally seen, especially in the larger nodules.

The incidences of several other nonneoplastic lesions of the liver in 1 mg/kg males and in 0.033 mg/kg or greater females were significantly greater than those in the vehicle controls (Tables 5, A5, and B5). Hepatocyte
	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
Male						
Number Examined						
Microscopically	50					50
Hepatocyte, Hyperplasia,						h
Regenerative ^a	0					49** (3.6) ^b
Hepatocyte, Cytomegaly	0					32** (2.3)
Necrosis, Focal	0					23** (3.2)
Eosinophilic Focus	3					15**
Mixed Cell Focus	3					7*
Basophilic Focus	32					21
Hemorrhage	0					4* (3.5)
Hemangiosarcoma, Multiple	e 0					24**
Hemangiosarcoma (include	s multiple) ^c					
Overall rate	0/50 (0%)					43/50 (86%)
Adjusted rate f	0.0%					92.5%
Terminal rate	0/49 (0%) h					1/3 (33%)
First incidence (days)						307
Poly-3 test ^g						P<0.001
Hepatocellular Adenoma,	0					
Multiple	0					1
Hepatocellular Adenoma (in	ncludes multiple) ^c					
Overall rate	0/50 (0%)					4/50 (8%)
Adjusted rate	0.0%					13.7%
Terminal rate	0/49 (0%)					0/3 (0%)
First incidence (days)	_ ` `					398
Poly-3 test						P=0.033
Female						
Number Examined						
Microscopically	50	50	50	50	50	50
Hepatocyte, Hyperplasia						
Regenerative	0	0	0	0	8** (2.8)	50** (3.6)
Hepatocyte, Cytomegaly	0	0	7** (1.1)	23** (1.2)	32** (1.9)	29** (2.3)
Necrosis, Focal	4 (1.8)	2 (1.5)	3 (2.3)	4 (1.5)	4 (1.8)	15** (2.7)
Eosinophilic Focus	1	2	6	4	12**	13**
Mixed Cell Focus	8	10	10	11	23**	5
Clear Cell Focus	9	8	9	13	22**	2
Basophilic Focus	45	46	44	42	40	20*
Bile Duct, Hyperplasia	2 (1.0)	1 (1.0)	4 (1.8)	4 (1.5)	3 (2.0)	10** (1.7)
Hemorrhage	0	0	2 (3.5)	0	1 (4.0)	7** (3.0)

TABLE 5Incidences of Neoplasms and Nonneoplastic Lesions of the Liver in Ratsin the 2-Year Gavage Study of Riddelliine

	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
emale (continued)						
Hemangiosarcoma, Multiple	0	0	0	0	0	13**
Hemangiosarcoma (includes	multiple) ⁱ					
Overall rate	0/50 (0%)	0/50 (0%)	0/50 (0%)	0/50 (0%)	3/50 (6%)	38/50 (76%)
Adjusted rate	0.0%	0.0%	0.0%	0.0%	7.0%	89.7%
Terminal rate	0/33 (0%)	0/22 (0%)	0/28 (0%)	0/22 (0%)	1/29 (3%)	0/0
First incidence (days)	_ ` `	—.	_ `	_ ` `	524	350
Poly-3 test	P<0.001	j	—	_	P=0.118	P<0.001
Hepatocellular Adenoma,						
Multiple	0	0	0	0	1	0
Hepatocellular Adenoma (inc	cludes multiple) ^k					
Overall rate	1/50 (2%)	0/50 (0%)	0/50 (0%)	0/50 (0%)	1/50 (2%)	7/50 (14%)
Adjusted rate	2.3%	0.0%	0.0%	0.0%	2.4%	32.3%
Terminal rate	1/33 (3%)	0/22 (0%)	0/28 (0%)	0/22 (0%)	1/29 (3%)	0/0
First incidence (days)	729 (T)	_ ` `	_ `	_ ` `	729 (T)	426
Poly-3 test	P<0.001	P=0.514N	P=0.506N	P=0.510N	P=0.756	P=0.002
Hepatocellular Carcinoma	0	0	0	0	1	1
Hepatocellular Adenoma or O	Carcinoma ^k					
Overall rate	1/50 (2%)	0/50 (0%)	0/50 (0%)	0/50 (0%)	2/50 (4%)	8/50 (16%)
Adjusted rate	2.3%	0.0%	0.0%	0.0%	4.8%	36.1%
Terminal rate	1/33 (3%)	0/22 (0%)	0/28 (0%)	0/22 (0%)	2/29 (7%)	0/0
First incidence (days)	729 (T)	_ ` ´	_ ` ´	_ `´´	729 (T)	426
Poly-3 test	P<0.001	P=0.514N	P=0.506N	P=0.510N	P=0.493	P<0.001

TABLE 5Incidences of Neoplasms and Nonneoplastic Lesions of the Liver in Ratsin the 2-Year Gavage Study of Riddelliine

(T)Terminal sacrifice

* Significantly different (P≤0.05) from the vehicle control group by the Poly-3 test

** P≤0.01

b Number of animals with lesion

^b Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

^c No comparable historical control incidence available because male rats were sacrificed at 72 weeks

Number of animals with neoplasm per number of animals with liver examined microscopically e Paly 2 activated receiver insidence after adjustment for interpretent monthlity.

e Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality

¹ Observed incidence at terminal kill

^g Beneath the vehicle control group incidence (females only) is the P value associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the vehicle controls and that dosed group. The Poly-3 test accounts for the differential mortality in animals that do not reach terminal sacrifice. A lower incidence in a dosed group is indicated by N.

h Not applicable; no neoplasms in animal group

Historical incidence for 2-year studies with controls given NTP-2000 diet: 0/659

^j Value of statistic cannot be computed. k Uistorical incidence for NTP 2000 dis

^k Historical incidence for NTP-2000 diet (mean \pm standard deviation): 4/659 (0.7% \pm 1.0%), range 0%-2%

cytomegaly consisted of enlarged hepatocytes that had increased amounts of eosinophilic cytoplasm and variably sized, enlarged nuclei (karyomegaly) (Plate 4); these cells were distributed randomly in the hepatic parenchyma or within the areas of hepatic parenchyma between the nodules of regeneration. Increased incidences and severities of focal necrosis were noted in 1 mg/kg males and females. Necrosis was minimal to moderate and consisted of few to many irregular focal areas of coagulative hepatocyte necrosis. The hepatocytes had uniform eosinophilic cytoplasm and pyknotic, fragmented, or lytic nuclei. The necrosis was mostly present in livers in which hemangiosarcoma was also observed, suggesting it was secondary to the presence of these neoplasms. However, a direct effect of riddelliine cannot be excluded. In the 13-week NTP (1993) study, hepatocytic necrosis was noted only in animals receiving 10 mg/kg per day. The incidences of eosinophilic focus in 1 mg/kg males and females and 0.33 mg/kg females, mixed cell focus in 1 mg/kg males and 0.33 mg/kg females, and clear cell focus in 0.33 mg/kg females were significantly increased. The incidences of bile duct hyperplasia in 1 mg/kg females and hemorrhage in 1 mg/kg males and females were also increased.

The incidences of basophilic focus of the liver in 1 mg/kg males and females and of mixed cell focus and clear cell focus in 1 mg/kg females were decreased, and the decrease in the incidence of basophilic focus in 1 mg/kg females was significant (Tables 5, A5, and B5). The low incidences of foci in the 1 mg/kg groups may have been related to the diffuse involvement of the liver with regenerative hyperplasia and neoplasms as well as to the decreased survival in those groups. The foci ranged from small to moderately large lesions composed of hepatocytes arranged in normal hepatic cords that merged imperceptibly with the surrounding normal hepatocytes. The foci usually caused little or no compression of the surrounding tissue and had eosinophilic, basophilic, clear, or mixed cytoplasmic staining.

Mononuclear Cell Leukemia: Mononuclear cell leukemia is one of the most common neoplasms found in F344/N rats. It is a rapidly progressive, lethal, neoplastic disease that develops in the spleen with infiltrates of neoplastic cells occurring in the liver, lung, lymph nodes, bone marrow, and most other organs. The incidences of mononuclear cell leukemia in all dosed groups of rats except the 0.01 mg/kg females were increased; the increases were significant in the 1 mg/kg males and females (Tables 6, A3, and B3). The incidences of

mononuclear cell leukemia in the female dosed groups were within or less than the historical ranges in controls (all routes) given NTP-2000 diet and in water gavage controls given NIH-07 diet (Tables 6 and B4b). Because the male rat study was terminated at week 72, the mononuclear cell leukemia incidence in this study cannot be compared directly to the 2-year historical control rate. However, data from recent NTP studies show that the observed vehicle control mononuclear cell leukemia incidence in male rats is similar to the rates observed in comparably aged male control F344/N rats sacrificed at approximately 15 months (11/488; Tables 6 and A4b). Moreover, although the observed neoplasm incidence in 1 mg/kg females was similar to that in the vehicle controls, when survival differences are taken into account, the Poly-3 adjusted leukemia incidences are significantly different, and the overall trend is highly significant. Therefore, the increased incidences of mononuclear cell leukemia in male and female rats were considered to be chemical related.

Thyroid Gland (C-cell): The incidence of thyroid gland (C-cell) adenoma was significantly increased in 0.33 mg/kg females (vehicle control, 2/49; 0.01 mg/kg, 4/50; 0.033 mg/kg, 4/49; 0.1 mg/kg, 6/49; 0.33 mg/kg, 11/50; 1 mg/kg, 0/50; Table B3). However, the incidence in the vehicle controls was below the average historical control incidence (12%) in animals given NTP-2000 diet (Table B4c), and the adenoma incidence in 0.33 mg/kg females (22%) was just outside the historical control range of 4% to 21%. No adenomas were seen in 1 mg/kg females; however, survival in this group was reduced, and many deaths occurred fairly early in the study. Hyperplasia, adenoma, and carcinoma of the thyroid gland (C-cell) represent a morphologic and biologic continuum in the F344/N rat, and there was no increase in the incidence of carcinoma or hyperplasia in 0.33 mg/kg females (Tables B1 and B5). The only carcinoma observed in female rats was in a vehicle control animal, bringing the total C-cell neoplasm incidence in that group to 3/49. In addition, the incidence of hyperplasia was not significantly increased in any dosed group (22/49, 9/50, 24/49, 15/49, 20/50, 10/50; Table B5). Because there was no increase in the incidence of malignant neoplasms or hyperplasia, and the significantly increased incidence of adenoma was due, in part, to the low incidence in the vehicle control group, the increase was not considered related to riddelliine administration.

Mammary Gland: The incidence of mammary gland fibroadenoma was significantly decreased in 1 mg/kg

	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
Male						
Mononuclear Çell Leukemi	a All Organs ^a					
Overall rate	2/50 (4%)					9/50 (18%)
Adjusted rate	4.0%					28.5%
Terminal rate ^d	2/49 (4%)					0/3 (0%)
First incidence (days)	497 (T)					204
Poly-3 test ^e						P=0.004
Female						
Mononuclear Cell Leukemi	a, All Organs ^f					
Overall rate	12/50 (24%)	8/50 (16%)	13/50 (26%)	18/50 (36%)	18/50 (36%)	14/50 (28%)
Adjusted rate	27.0%	18.9%	29.9%	40.3%	39.0%	51.6%
Terminal rate	8/33 (24%)	1/22 (5%)	7/28 (25%)	6/22 (27%)	6/29 (21%)	0/0
First incidence (days)	393	513	532	451	463	352
Poly-3 test	P=0.009	P=0.262N	P=0.475	P=0.132	P=0.158	P=0.033

TABLE 6 Incidences of Mononuclear Cell Leukemia in Rats in the 2-Year Gavage Study of Riddelliine

(T)Terminal sacrifice

^a Historical incidence for 2-year studies (all routes except corn oil gavage) with controls given NIH-07 diet that had scheduled sacrifices at approximately 15 months: (mean \pm standard deviation): 11/488 (2.2% \pm 6.3%), range 0%-33%

^b Number of animals with neoplasm per number of animals necropsied

Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality

^d Observed incidence at terminal kill

Beneath the vehicle control group incidence (females only) is the P value associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the vehicle controls and that dosed group. The Poly-3 test
 accounts for the differential mortality in animals that do not reach terminal sacrifice. A lower incidence in a dosed group is indicated by N.

f Historical incidence for 2-year studies with controls given NTP-2000 diet (mean ± standard deviation): 185/659 (29.1% ± 8.4%), range 16%-42%

females (28/50, 21/50, 26/50, 24/50, 23/50, 3/50; Table B3). There is evidence that the incidence of mammary gland fibroadenoma in female F344/N rats is strongly correlated with body weight (Haseman *et al.*, 1997), and 1 mg/kg females had reduced body weights (Table 4). Thus the decreased incidence of fibroadenoma is likely due to a combination of reduced survival and reduced body weight, and possibly other factors.

Other Organs: The incidences of nonneoplastic lesions of the kidney, spleen, bone marrow, lung, glandular stomach, and mediastinal and mesenteric lymph nodes were increased in 1 mg/kg males and/or females (Tables 7, A5, and B5).

Minimal to moderate renal tubule necrosis of the kidney consisted of multiple scattered renal tubules lined by epithelial cells that had undergone coagulative necrosis and were sometimes filled with protein and cell debris. Hyperplasia of the transitional epithelium occurred in the kidney of 1 mg/kg females.

Congestion of the spleen in the 1 mg/kg males and females was considered to be a terminal change related to early death. The incidences of hematopoietic cell proliferation of the spleen were increased in 1 mg/kg males and females. Bone marrow hyperplasia in 1 mg/kg males and females was characterized by an increase in the amount of hematopoietic tissue (both erythroid and myeloid). The changes in the bone marrow and spleen are suggestive of increased hematopoiesis secondary to chemical-related erythrocytic and platelet sequestration as was seen in the 13-week NTP (1993) study of riddelliine.

	Vehicle	Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
Male							
Kidney ^a Renal Tubule, Necrosis	50 0 ^b						50 6** (2.2) ^c
Spleen	50						49
Congestion	0						24** (2.7)
Hematopoietic Cell Proliferat	ion 1	(1.0)					23** (2.8)
Bone Marrow	50						49
Hyperplasia	1	(3.0)					36** (3.0)
Lung	50						50
Hemorrhage	1	(1.0)					21** (3.1)
Edema	0						5* (3.2)
Stomach, Glandular	50						50
Erosion	0						10** (2.5)
Ulcer	0						6** (2.8)
Lymph Node, Mediastinal	50						50
Hemorrhage	3	(2.3)					20** (3.6)
Pigmentation	10	(1.4)					20** (2.8)
Lymph Node, Mesenteric	50						50
Hemorrhage	1	(1.0)					8** (2.3)

TABLE 7

Incidences of Selected Nonneoplastic Lesions in Rats in the 2-Year Gavage Study of Riddelliine

	1		8 1								
	Vehicle	Control	0.01	mg/kg	0.033	mg/kg	0.1	mg/kg	0.33	mg/kg	1 mg/kg
Female											
Kidney	50		50		50		50		50		50
Renal Tubule, Necrosis Transitional Epithelium,	0		0		0		1	(3.0)	1	(2.0)	6** (2.3)
Hyperplasia	1	(1.0)	1	(3.0)	1	(2.0)	1	(1.0)	0		5* (1.4)
Spleen	50		50		50		50		50		50
Congestion	0		0		0		1	(2.0)	3	(2.3)	7** (2.6)
Hematopoietic Cell Proliferati	on 24	(1.8)	33*	(1.5)	25	(2.0)	26	(2.0)	27	(1.9)	34** (2.9)
Bone Marrow	50		50		50		50		50		50
Hyperplasia	6	(2.5)	3	(2.7)	8	(2.9)	7	(2.9)	10	(2.2)	32** (2.6)
Lung	50		50		50		50		50		50
Hemorrhage	4	(3.3)	7	(2.6)	1	(2.0)	3	(3.0)	5	(3.4)	19** (2.5)
Stomach, Glandular	50		50		50		49		49		50
Erosion	0		0		0		2	(2.0)	1	(1.0)	9** (1.9)
Ulcer	0		0		0		2	(2.5)	0		7** (2.9)
Lymph Node, Mediastinal	50		50		50		50		50		50
Hemorrhage	5	(2.2)	8	(2.1)	9	(2.4)	5	(2.0)	7	(2.1)	25** (3.0)
Pigmentation	23	(1.9)	22	(2.2)	32*	(2.1)	15	(2.0)	16	(2.0)	31** (2.1)
Lymph Node, Mesenteric	50		50		50		47		49		49
Hemorrhage	1	(1.0)	2	(1.5)	3	(2.7)	4	(2.3)	0		6** (1.8)

TABLE 7
Incidences of Selected Nonneoplastic Lesions in Rats in the 2-Year Gavage Study of Riddelliine

* Significantly different (P≤0.05) from the vehicle control group by the Poly-3 test

** P≤0.01

^a Number of animals with tissue examined microscopically except mediastinal lymph node is number of animals necropsied

Number of animals with lesion

^c Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

Hemorrhage of the lung in 1 mg/kg males and females was characterized by alveolar spaces filled with free red blood cells, and edema in 1 mg/kg males was determined by the presence of alveolar spaces filled with homogenous, eosinophilic, proteinaceous fluid. This change was considered related to the presence of metastatic hemangiosarcomas in the lung. Males and females administered 1 mg/kg had increased incidences of focal or multifocal mucosal erosion and ulceration in the glandular stomach.

Hemorrhage in the mediastinal and mesenteric lymph nodes consisted of free red blood cells within the medullary and subcapsular sinuses and was considered to represent a terminal change in 1 mg/kg rats that died early; mediastinal lymph node hemorrhage was secondary to the metastatic hemangiosarcomas in the lung. Pigmentation in the mediastinal lymph node was identified by the presence of brown granular material, apparently hemosiderin, within the macrophages and was considered secondary to the increased incidence of hemorrhage in this organ. However, an association between hemorrhage and pigmentation was not seen in dosed females.

DNA Adducts

Analyses of liver tissue from female rats treated with riddelline for 3 or 6 months yielded eight DNA adducts; these were the same as DNA adducts formed *in vitro* by the metabolism of riddelline by human liver microsomes in the presence of calf thymus DNA (Appendix I).

MICE

Survival

Estimates of 2-year survival probabilities for male and female mice are shown in Table 8 and in the Kaplan-Meier survival curves (Figure 3). Survival of 3 mg/kg male and female mice was significantly decreased compared to their respective vehicle control groups.

Body Weights and Clinical Findings

Mean body weights of 3 mg/kg males and females were less than those of the vehicle controls throughout most of the study and were 19% (males) and 33% (females) less by the end of the study (Tables 9 and 10; Figure 4). The mean body weights of 1 mg/kg males were less than those of the vehicle controls from week 93, and were 6% less at the end of the study. No clinical findings were attributed to riddelliine administration.

 TABLE 8

 Survival of Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Male					
Animals initially in study	50	50	50	50	50
Accidental death ^a	1	0	0	0	0
Moribund	4	6	3	6	13
Natural deaths	6	3	7	6	17 20 ^e
Animals surviving to study termination	39	41	40	38	20
Percent probability of survival at end of study	80	82	80	76	40
Mean survival (days) ^c	696	705	716	701	667
Survival analysis ^d	P<0.001	P=0.989N	P=1.000N	P=0.819	P<0.001
Female					
Animals initially in study	50				50
Accidental deaths ^a	4				0
Moribund	9				25
Natural deaths	3				8,
Animals surviving to study termination	34				8 17
Percent probability of survival at end of study	75				34
Mean survival (days)	670				678
Survival analysis					P<0.001

b Censored from survival analyses

Kaplan-Meier determinations

Mean of all deaths (uncensored, censored, and terminal sacrifice)

^a The result of the life table trend test (Tarone, 1975) is in the vehicle control column (males only), and the results of the life table pairwise comparisons (Cox, 1972) with the vehicle controls are in the dosed group columns. A lower mortality in a dosed group is indicated by **N**. Includes two animals that died during the last week of the study

f Includes one animal that died during the last week of the study

FIGURE 3 Kaplan-Meier Survival Curves for Male and Female Mice Administered Riddelliine by Gavage for 2 Years

 TABLE 9

 Mean Body Weights and Survival of Male Mice in the 2-Year Gavage Study of Riddelliine

Weeks	Vehicle	Control		0.1 mg/kg			0.3 mg/kg	
on Study	Av. Wt. (g)	No. of Survivors	Av. Wt. (g)	Wt. (% of controls)	No. of Survivors	Av. Wt. (g)	Wt. (% of controls)	No. of Survivors
Stady	(8/	Survivorio	(8/		Survivors	(8/		Survivors
1	21.7	50	21.7	100	50	21.7	100	50
5	27.4	50	27.7	101	50	27.5	100	50
9	31.5	50	31.9	101	50	32.0	102	50
13	36.3	50	36.6	101	50	36.8	101	50
17	40.6	50	41.2	102	50	40.9	101	50
21	43.3	50	43.4	100	50	43.1	100	50
25	45.8	50	46.0	100	50	45.6	100	50
29	48.4	49	48.4	100	50	48.2	100	50
33	49.9	49	49.6	99	50	49.3	99	50
37	50.1	49	49.4	99	50	49.6	99	50
41	50.2	49	50.2	100	50	49.9	99	50
45	50.1	49	49.9	100	50	49.6	99	50
49	51.4	49	51.2	100	50	50.5	98	50
53	51.3	49	51.1	100	50	50.5	98	50
57	50.6	49	50.2	99	50	49.8	98	50
61	50.5	49	50.3	100	50	49.3	98	50
65	50.4	49	50.1	99	49	49.3	98	50
69	50.2	48	50.2	100	49	49.6	99	50
73	49.3	47	49.0	99	49	47.9	97	50
77	49.2	47	48.1	98	49	47.9	97	50
81	48.4	46	47.1	97	48	46.7	97	50
85	50.1	46	48.9	98	46	48.0	96	49
89	49.9	45	48.5	97	45	48.7	98	47
93	49.8	43	48.3	97	43	48.5	97	46
97	48.8	43	46.8	96	43	47.0	96	45
101	48.3	42	46.3	96	41	45.8	95	44
Mean for w	aalia							
			20.5	101		20.5	101	
1-13	29.2		29.5	101		29.5	101	
14-53	48.1		48.0	100		47.7	99	
54-101	49.6		48.7	98		48.2	97	

Weeks		1 mg/kg			3 mg/kg	
on	Av. Wt.	Wt. (% of	No. of	Av. Wt.	Wt. (% of	No. of
Study	(g)	controls)	Survivors	(g)	controls)	Survivors
1	21.7	100	50	21.5	99	50
5	27.4	100	50	27.1	99	50
9	31.5	100	50	31.0	98	50
13	36.1	99	50	34.9	96	50
17	40.0	99	50	38.0	94	50
21	42.0	97	50	39.4	91	50
25	44.3	97	50	41.8	91	50
26	46.9	97	50	44.0	91	50
33	48.3	97	50	45.6	91	50
37	48.6	97	50	45.7	91	50
41	49.0	98	50	46.0	92	50
45	49.0	98	50	46.1	92	50
49	50.1	98	50	46.9	91	50
53	49.8	97	50	46.7	91	49
57	49.1	97	50	45.8	91	49
61	48.6	96	50	45.6	90	49
65	49.0	97	50	45.5	90	49
69	49.1	98	50	45.8	91	49
73	47.6	97	50	44.4	90	49
77	47.1	96	48	42.7	87	49
81	45.9	95	46	41.8	86	47
85	47.5	95	44	43.0	86	42
89	47.4	95	44	43.7	88	36
93	46.3	93	43	41.9	84	33
97	45.5	93	41	41.3	85	28
101	45.4	94	40	39.2	81	25
ean for weeks						
3	29.2	100		28.6	98	
.53	46.8	97		44.0	91	
-101	47.4	96		43.4	88	

TABLE 9
Mean Body Weights and Survival of Male Mice in the 2-Year Gavage Study of Riddelliine

TABLE 10

Mean Body Weights and Survival of Female Mice in the 2-Year Gavage Study of Riddelliine

Weeks	Vehic	le Control		3 mg/kg		
on	Av. Wt.	No. of	Av. Wt.	Wt. (% of	No. of	
Study	(g)	Survivors	(g)	controls)	Survivors	
1	18.8	50	18.9	101	50	
5	22.5	49	22.2	99	50	
9	26.7	49	26.1	98	50	
13	29.7	49	28.6	96	50	
17	34.6	49	31.5	91	50	
21	37.6	49	34.1	91	50	
25	41.6	49	36.7	88	50	
29	45.8	49	39.3	86	50	
33	49.3	49	40.7	83	50	
37	52.1	49	40.5	78	50	
41	53.9	49	42.2	78	50	
45	55.2	49	42.9	78	50	
49	56.4	49	44.5	79	50	
53	57.3	49	45.0	79	50	
57	57.5	49	44.8	78	50	
61	58.4	48	44.6	76	50	
65	59.1	48	45.8	78	49	
69	58.7	47	45.2	77	49	
73	59.5	46	45.2	76	47	
77	58.3	45	43.4	74	45	
81	57.9	41	42.6	74	45	
85	58.2	39	42.2	73	44	
89	58.1	39	42.4	73	42	
93	58.0	39	42.4	73	39	
97	56.9	38	40.1	71	36	
101	56.3	36	37.7	67	27	
lean for weeks	24.4		24.0	0.0		
-13	24.4		24.0	98 82		
4-53	48.4		39.7	82		
4-101	58.1		43.0	74		

FIGURE 4 Growth Curves for Male and Female Mice Administered Riddelliine by Gavage for 2 Years

Pathology and Statistical Analyses

This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplasms and/or nonneoplastic lesions of the liver, lung, kidney, artery, adrenal gland, small (duodenum) and large (cecum) intestines, spleen, and skin. Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one animal group, and historical incidences for the neoplasms mentioned in this section are presented in Appendix C for male mice and Appendix D for female mice.

Liver: The incidences of hemangiosarcoma and of multiple hemangiosarcoma of the liver in 3 mg/kg male mice were significantly greater than those in the vehicle controls and exceeded the historical ranges in controls (all routes) given NTP-2000 diet and in water gavage controls given NIH-07 diet (Tables 11, C3, and C4). Liver hemangiosarcoma was the primary cause of death in 22 of the 3 mg/kg male mice. Histologically, hemangiosarcoma was characterized by elongated, flattened, spindle-shaped, or pleomorphic cells that formed irregular vascular spaces or solid masses. Large areas of hemorrhage, thrombosis, and necrosis often occurred within the lesions (Plates 5 and 6). One male each in the 1 and 3 mg/kg groups had endothelial cell hyperplasia (Tables 11 and C5), which is considered to be a preneoplastic change. This lesion consisted of increased numbers of flattened to plump endothelial cells forming irregular trabeculae between hepatocytes (Plate 7). Although most hemangiosarcomas occurred in the liver of male mice, hemangiosarcomas also occurred in the bone marrow, epididymis, kidney, mesentery, mesenteric lymph node, and spleen of males (Table C1). These sporadic incidences of hemangiosarcoma were similar to those in the vehicle controls, were within the historical range in controls given NTP-2000 diet (NTP, 2001), or occurred in only one animal in a dosed group; therefore, hemangiosarcomas in tissues other than the liver were not considered to be chemical related. Metastases of the liver hemangiosarcomas were seen in the lung of five

3 mg/kg males. Hemangiosarcoma was also noted in one 3 mg/kg female (Tables 11 and D1). Sporadic incidences of this lesion appear in historical data for controls (all routes) given NTP-2000 diet [3/655 ($0.5\% \pm 1.2\%$), range 0%-4%], and therefore the single case in females was not considered treatment related. One 3 mg/kg female had a cholangioma.

The incidences of hepatocellular neoplasms occurred with a negative trend in males, and the incidence was significantly decreased in 3 mg/kg females; the incidences in the 3 mg/kg male and female groups were less than the historical ranges in controls (all routes) given NTP-2000 diet and in water gavage controls given NIH-07 diet (Tables 11, C3, C4, D3, and D4a).

Incidences of hepatocyte cytomegaly and karyomegaly in males administered 0.3 mg/kg or greater and females given 3 mg/kg were significantly greater than those in the vehicle controls; the severities of these lesions were also increased in the 3 mg/kg groups (Tables 11, C5, and D5). Cytomegaly was characterized by hepatocytes with increased cytoplasmic volume, and karyomegaly was characterized by enlarged nuclei with marginated chromatin. Incidences of minimal to mild bile duct hyperplasia were slightly increased in 3 mg/kg males and significantly increased in 3 mg/kg females (Plate 8). In 3 mg/kg males, the incidence of centrilobular necrosis of hepatocytes was significantly increased, and the incidence of focal hepatocyte coagulative necrosis was slightly increased; the severity of the focal necrosis increased with increasing dose. The necrosis was mostly present in livers that exhibited other lesions, especially hemangiosarcomas. In the 13-week study, administration of doses of up to 25 mg/kg per day was not associated with hepatocellular necrosis (NTP, 1993). Incidences of focal hemorrhage, which was usually concomitant with hemangiosarcoma, were significantly increased in males administered 1 or 3 mg/kg. The incidence of mixed cell cellular infiltration was significantly increased in 3 mg/kg females. A dose-related decrease in the incidence of syncytial (multinucleated) cell alteration was noted in the 3 mg/kg males.

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Male					
Number Examined Microscopically	50	50	50	50	50
Endothelial Cell, Hyperplasia ^a	0	0	0	$1 (2.0)^{0}$	1 (2.0)
Hepatocyte, Cytomegaly	4 (1.5)	4 (1.8)	16** (1.7)	33** (1.7)	43** (2.5)
Hepatocyte, Karyomegaly	4 (1.5)	4 (1.8)	15** (1.7)	33** (1.8)	43** (2.5)
Bile Duct, Hyperplasia	2 (2.0)	0	1 (1.0)	3 (1.7)	6 (2.3)
Hepatocyte, Centrilobular, Necrosis	0	1 (3.0)	3 (3.3)	4 (3.3)	10** (3.0)
Hepatocyte, Necrosis, Focal	18 (1.3)	9* (1.3)	5** (1.8)	6** (2.2)	21 (2.6)
Hemorrhage, Focal	0	2 (2.5)	1 (3.0)	6* (2.3)	21** (2.8)
Syncytial Alteration, Focal	38 (1.2)	30 (1.2)	31 (1.2)	27* (1.0)	0**
Hemangiosarcoma, Multiple	0	0	0	0	17**
Hemangiosarcoma (includes multiple	e^{c}				
Overall rate ^d	2/50 (4%)	1/50 (2%)	0/50 (0%)	2/50 (4%)	31/50 (62%)
Adjusted rate	4.4%	2.2%	0.0%	4.4%	66.7%
Terminal rate ^T	2/39 (5%)	1/41 (2%)	0/40 (0%)	2/38 (5%)	8/20 (40%)
First incidence (days)	729 (T)	729 (T)	n	729 (T)	550
Poly-3 test ^g	P<0.001	P=0.495	P=0.227N	P=0.694	P<0.001
Hepatocellular Adenoma, Multiple	3	8	2	0	0
Hepatocellular Adenoma					
(includes multiple)	16	18	14	5**	0**
Hepatocellular Carcinoma, Multiple	16	10	9	5**	0**
Hepatocellular Carcinoma					
(includes multiple)	23	21	19	20	3**
Hepatocellular Adenoma or Carcinor	na ⁱ				
Overall rate	36/50 (72%)	39/50 (78%)	33/50 (66%)	23/50 (46%)	3/50 (6%)
Adjusted rate	73.4%	80.0%	66.0%	49.2%	7.5%
Terminal rate	26/39 (67%)	32/41 (78%)	24/40 (60%)	19/38 (50%)	2/20 (10%)
First incidence (days)	475	542	567	566	590
Poly-3 test	P<0.001N	P=0.299	P=0.281N	P=0.011N	P<0.001N

TABLE 11Incidences of Neoplasms and Nonneoplastic Lesions of the Liver in Micein the 2-Year Gavage Study of Riddelliine

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Female					
Number Examined Microscopically	49				50
Hepatocyte, Cytomegaly	0				49** (2.3)
Hepatocyte, Karyomegaly	0				49** (2.3)
Bile Duct, Hyperplasia	0				28** (1.9)
Infiltration Cellular, Mixed Cell	29 (1.4)				41** (1.8)
Cholangioma ^j	0				1
Hemangiosarcoma ^k	0				1
Hepatocellular Adenoma, Multiple	2				0
Hepatocellular Adenoma					
(includes multiple)	9				0**
Hepatocellular Carcinoma, Multiple	1				0
Hepatocellular Carcinoma					
(includes multiple)	8				0**
Hepatocellular Adenoma or Carcinor	na				
Overall rate	16/49 (33%)				0/50 (0%)
Adjusted rate	36.9%				0.0%
Terminal rate	11/34 (32%)				0/17 (0%)
First incidence (days)	419				_ ` ´
Poly-3 test					P<0.001N

TABLE 11 Incidences of Neoplasms and Nonneoplastic Lesions of the Liver in Mice in the 2-Year Gavage Study of Riddelliine

(T)Terminal sacrifice

* Significantly different (P \le 0.05) from the vehicle control group by the Poly-3 test

** P≤0.01

^a Number of animals with lesion

Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

Historical incidence for 2-year studies with controls given NTP-2000 diet (mean \pm standard deviation): 20/659 (3.1% \pm 1.1%), range 2%-4%

- ^d Number of animals with neoplasm per number of animals with liver examined microscopically
- Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality
- ¹ Observed incidence at terminal kill

^B Beneath the vehicle control incidence (males only) is the P value associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the vehicle controls and that dosed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in a dosed group is indicated by **N**.

h Not applicable; no neoplasms in animal group

¹ Historical incidence for NTP-2000 diet: $304/659 (47.8\% \pm 12.9\%)$, range 28%-72%

Historical incidence for NTP-2000 diet: 0/655

Historical incidence for NTP-2000 diet: $3/655 (0.5\% \pm 1.2\%)$, range 0%-4%

¹ Historical incidence for NTP-2000 diet: 143/655 (22.8% \pm 9.6%), range 12%-40%

Lung: Compared to those in the vehicle controls, the incidences of alveolar/bronchiolar adenoma and adenoma or carcinoma (combined) were significantly increased in 3 mg/kg females, and the incidence of alveolar/bronchiolar carcinoma in this group was increased (Tables 12 and D3). The incidences of these neoplasms in this group exceeded the historical ranges in controls (all routes) given NTP-2000 diet and in water gavage controls given NIH-07 diet (Tables 12 and D4b).

Alveolar/bronchiolar adenomas were well demarcated and, histologically, had solid, papillary, or mixed growth patterns. The tumor cells were cuboidal, round, or polygonal with scant intervening fibrous stroma. Alveolar/bronchiolar carcinomas were larger than adenomas and had irregular growth, foci of necrosis, and extensive invasion of the surrounding parenchyma. Neoplastic cells exhibited pleomorphism and nuclear atypia and formed papillary or tubular structures, solid

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Male					
Number Examined Microscopically Alveolar/bronchiolar Adenoma,	50	50	50	50	50
Multiple ^a Alveolar/bronchiolar Adenoma	4	1	1	3	0
(includes multiple) Alveolar/bronchiolar Carcinoma,	12	10	11	8	12
Multiple Alveolar/bronchiolar Carcinoma	4	2	4	1	4
(includes multiple)	7	8	6	1*	5
Alveolar/bronchiolar Adenoma or C Overall rate Adjusted rate	Carcinoma 18/50 (36%) 39.1%	16/50 (32%) 34.7%	15/50 (30%) 31.1%	9/50 (18%) 19.7%	17/50 (34%) 39.7%
Adjusted rate ^d Terminal rate First incidence (days)	15/39 (39%) 599	16/41 (39%) 729 (T)	13/40 (33%) 567	7/38 (18%) 689	8/20 (40%) 559
Poly-3 test ^e	P=0.424	P=0.413N	P=0.276N	P=0.033N	P=0.564
Female					
Number Examined Microscopically Alveolar Epithelium, Hyperplasia					50 6 (1.5)
Alveolar/bronchiolar Adenoma ^g Alveolar/bronchiolar Carcinoma,	1				9**
Multiple Alveolar/bronchiolar Carcinoma	1				1
(includes multiple)	1				4
Alveolar/bronchiolar Adenoma or C					12/50 (2(0/))
Overall rate Adjusted rate	2/50 (4%) 4.7%				13/50 (26%) 30.5%
Terminal rate	1/34 (3%)				6/17 (35%)
First incidence (days) Poly-3 test	419				587 P<0.001

TABLE 12Incidences of Neoplasms and Nonneoplastic Lesions of the Lung in Micein the 2-Year Gavage Study of Riddelliine

(T)Terminal sacrifice

* Significantly different ($P \le 0.05$) from the vehicle control group by the Poly-3 test

** P≤0.01

^a Number of animals with lesion

Number of animals with neoplasm per number of animals with lung examined microscopically

Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality

d Observed incidence at terminal kill

^e Beneath the vehicle control incidence (males only) is the P value associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the vehicle controls and that dosed group. The Poly-3 test accounts for differential control incidence in a dosed group is indicated by N.

f Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

^g Historical incidence for 2-year studies with controls given NTP-2000 diet (mean \pm standard deviation): 37/654 (5.4% \pm 4.0%), range 0%-12%

h Historical incidence for NTP-2000 diet: 53/654 (7.6% ± 4.7%), range 0%-12%

sheets of cells, or a combination of the patterns (Plate 9). Except in the 1 mg/kg group, which had significantly decreased incidences of alveolar/bronchiolar carcinoma and alveolar/bronchiolar adenoma or carcinoma (combined), the incidences of alveolar/bronchiolar neoplasms in dosed males were similar to those in the vehicle controls. In 3 mg/kg females, the incidence of alveolar epithelial hyperplasia was slightly increased.

Kidney: Increased severity of common, age-related nephropathy was observed in 3 mg/kg males and females, and the incidence of this lesion in 3 mg/kg females was significantly greater than that in the vehicle controls (Tables 13, C5, and D5). Nephropathy was considered the primary cause of death in one male and 19 females in the 3 mg/kg groups. The lesions were similar to background nephropathy and included thick-ening of the tubular basement membranes, glomerular hypercellularity and basement membrane thickening, protein tubular casts, tubular dilation and regeneration, and interstitial inflammation. The incidences of glomerulosclerosis in 1 mg/kg males and 3 mg/kg males

and females were significantly increased; the severities of this lesion were also increased. Glomerulosclerosis was characterized by thickening of the glomeruli due to mild to marked deposition of pale, eosinophilic, and somewhat hyaline but faintly fibrillar intercellular material in the tufts, often with complete sclerosis. Masson's trichrome (a connective tissue stain) was used to assess the amount of collagen in the glomeruli. Compared to those of the vehicle controls, the glomeruli from dosed mice had increased amounts of collagen, which was consistent with fibrosis or sclerosis of the glomeruli. Periodic acid-Schiff staining demonstrated increased positivity in the dosed mice, which indicated the presence of carbohydrate-containing substances (plasma glycoproteins or basement membranes). These findings are expected in sclerotic glomeruli. The material did not stain consistently for amyloid (Congo red stain). Immunohistochemical staining with antibodies for albumin, mouse IgG, and C3 suggested that immunecomplex-mediated glomerulosclerosis was not the primary mechanism for the accumulation of hyaline material within the glomeruli of the riddelliine-treated mice.

 TABLE 13

 Incidences of Nonneoplastic Lesions of the Kidney in Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle	Control	0.1	mg/kg	0.3	mg/kg	1 m	g/kg	3 m	g/kg
Male										
Number Examined Microscopically	49		49		50		50		50	
Nephropathy ^a	46	$(1.3)^{b}$	48	(1.5)	48	(1.8)	50	(2.1)	50	(2.8)
Glomerulus, Glomerulosclerosis Renal Tubule, Accumulation,	0		1	(1.0)	0		42**	(1.8)	41**	(2.5)
Hyaline Droplet	0		2	(3.0)	1	(3.0)	1	(3.0)	3	(3.0)
Renal Tubule, Karyomegaly	0		0		0		0		12**	(1.4)
Renal Tubule, Dilatation	16	(1.2)	17	(1.1)	24	(1.3)	29**	(1.5)	22	(1.9)
Female										
Number Examined Microscopically	49								50	
Nephropathy	18	(1.3)							47**	(3.4)
Glomerulus, Glomerulosclerosis Renal Tubule, Accumulation,	0								40**	(2.7)
Hyaline Droplet	2	(2.5)							14**	(2.6)
Renal Tubule, Pigmentation	2	(2.0)							27**	(2.8)
Renal Tubule, Karyomegaly	0								1	(2.0)

** Significantly different (P<0.01) from the vehicle control group by the Poly-3 test

^a Number of animals with lesion

Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

The incidences of renal tubule hyaline droplet accumulation and granular, brown pigment were significantly increased in 3 mg/kg females; the incidence of hyaline droplet accumulation was slightly increased in 3 mg/kg males (Tables 13, C5, and D5). These increased incidences appeared to parallel the increased incidences and/or severity of nephropathy. The hyaline droplets ranged from punctate granules to large droplets located in the cortex and corticomedullary tubules and were bright red with Mallory's Heidenhain stain. The pigment was Prussian blue positive, indicating its hemosiderin nature (Plate 10).

The incidence of renal tubule karyomegaly was significantly increased in 3 mg/kg males, and the incidence of renal tubule dilatation was significantly increased in 1 mg/kg males; mild karyomegaly was observed in one 3 mg/kg female. Karyomegaly was characterized by enlarged hyperchromatic nuclei with marginated or stippled chromatin. Artery: The incidence of chronic inflammation, confined to the arteries (arteritis), was significantly increased in 3 mg/kg females. Organs most frequently affected were the small (duodenum) and large (cecum) intestines, kidney, mesentery, ovary, spleen, and uterus (Tables 14 and D5). In dosed females, this lesion was also observed sporadically in the meninges of the brain, liver, lung (mediastinum), mesenteric lymph node, pancreas, salivary gland, thymus, urinary bladder, and the subcutis and blood vessels near the spinal ganglion (Table D5). Sporadic cases of chronic arterial inflammation were also observed in the duodenum, heart, kidney, and spleen of dosed males (Table C5). The vascular changes were characterized by all or some of the following features: partial to complete obliteration of the vessel lumina; thickening (hyalinization) or fibrinoid necrosis of the vessel wall; thrombosis; subintimal, transmural, or adventitial infiltrates of mixed inflammatory cells; perivascular fibrosis; and, occasionally, hemorrhage (Plates 11 through 15).

TABLE 14

Selected Incidences of Chronic Arterial Inflammation in Female Mice
in the 2-Year Gavage Study of Riddelliine

	Vehicl	e Control	3 mg/kg	5
Small Intestine (Duodenum) ^a Artery, Inflammation, Chronic ^b	47		46	C
Artery, Inflammation, Chronic	0		13** (1.9)°
Large Intestine (Cecum)	48		47	
Artery, Inflammation, Chronic, Focal	0		18** (1.7	7)
Kidney	49		50	
Artery, Inflammation, Chronic	1	(4.0)	16** (2.1	.)
Mesentery	23		29	
Artery, Inflammation, Chronic, Focal	1	(3.0)	19** (2.5	5)
Ovary	49		48	
Artery, Inflammation, Chronic	0		26** (2.6	5)
Spleen	49		50	
Artery, Inflammation, Chronic, Focal	0		6* (2.0))
Uterus	49		50	
Artery, Inflammation, Chronic, Focal	0		21** (2.4	•)

* Significantly different (P≤0.05) from the vehicle control group by the Poly-3 test

** $P \le 0.01$

^a Number of animals with tissue examined microscopically

^b Number of animals with lesion

Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

Other Organs: The incidence and severity of focal cytoplasmic alteration in the adrenal cortex were increased in 3 mg/kg females (Tables 15 and D5). This lesion was characterized by well-demarcated cortical zona fasciculata foci composed of hypertrophied cells with pale or vacuolated cytoplasm.

Edema, hemorrhage, mucosal erosion of the epithelium, and/or necrosis in the cecum and duodenum were observed in 3 mg/kg females (Tables 15 and D5). These changes were thought to be secondary to the primary submucosal vascular changes. The incidences and severities of hematopoietic cell proliferation of the spleen in males increased with increasing dose, and the incidences in 3 mg/kg males and females were significantly increased (Tables 15, C5, and D5). Hematopoietic cell proliferation was characterized by accumulation of myeloid and erythroid precursors in varying proportions admixed with megakaryocytes within the red pulp. This change was considered to be secondary to the doserelated hemorrhage observed in the liver, cecum, and duodenum.

Chemical-related, generalized, subcutaneous edema of the skin was noted in 0.3 mg/kg or greater males, and the incidences in the 1 and 3 mg/kg groups were significantly greater than that in the vehicle controls (Tables 15 and C5). Most mice that exhibited subcutaneous edema also had malignant neoplasms, usually hemangiosarcoma. A single 3 mg/kg female also had subcutaneous edema. Various mechanisms are known to result in edema, including decreased plasma osmotic pressure

 TABLE 15

 Incidences of Selected Nonneoplastic Lesions in Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle Co	ntrol 0	.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Male						
Spleen ^a	49	4	9	50	50	49
Hematopoietic Cell Proliferation ^b	18 (2.	$(3)^{c}$ 1	6 (2.6)	19 (2.6)	20 (2.7)	33** (2.8)
Skin (Subcutaneous Tissue)	50	5	0	50	50	49
Edema	0		0	2 (2.0)	5* (2.0)	25** (2.0)
Female						
Adrenal Cortex	50					50
Cytoplasmic Alteration, Focal	1 (1.	0)				25** (2.0)
Large Intestine (Cecum)	48					47
Edema	0					5* (3.0)
Hemorrhage, Focal	0					6* (2.3)
Epithelium, Erosion, Focal	0					6* (1.8)
Small Intestine (Duodenum)	47					46
Hemorrhage, Focal	0					2 (2.5)
Necrosis, Focal	0					2 (3.0)
Spleen	49					50
Hematopoietic Cell Proliferation	32 (2.	6)				43* (3.1)
Skin (Subcutaneous Tissue)	50					50
Edema	0					1 (3.0)

* Significantly different (P≤0.05) from the vehicle control group by the Poly-3 test

** P≤0.01

Number of animals with tissue examined microscopically

^b Number of animals with lesion

Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

resulting from hypoproteinemia. This state may be due to renal disease or to decreased synthesis of plasma proteins caused by liver disease, both of which were seen in mice given riddelliine. In addition, hemangiosarcomas may have caused a loss of blood volume, eventually contributing to the development of congestive heart failure with further development of edema (Jones *et al.*, 1996).

GENETIC TOXICOLOGY

Riddelliine (100 to 5,000 µg/plate) was mutagenic in Salmonella typhimurium strain TA100 in the presence of 30% induced rat or hamster liver S9 (Table E1; Zeiger et al., 1988); it was not mutagenic with 10% S9, and results of mutagenicity testing were negative in strains TA98 and TA1535 with and without S9 activation. The small, dose-related increase in mutant colonies observed with strain TA97 in the presence of 30% rat S9 was judged to be equivocal. Riddelliine induced sister chromatid exchanges (SCEs) in cultured Chinese hamster ovary (CHO) cells with and without S9; the response observed in the presence of S9 was very strong (Table E2; Galloway et al., 1987). In the test conducted with S9, only three cells were counted at the highest scorable dose ($30 \mu g/mL$) because of the extremely high number of induced SCEs. Riddelliine also induced highly significant increases in aberrations in cultured CHO cells in the presence of S9 at all three doses scored (Table E3; Galloway et al., 1987). No increase in aberrations was observed in the absence of S9.

In single-dose studies in which riddelliine, administered via intraperitoneal injection, was tested for induction of micronucleated erythrocytes in Swiss mice, the increase seen in bone marrow erythrocytes was not dose related and was of insufficient magnitude to be considered positive (Table E4). However, a small but significant doserelated increase in the frequency of micronucleated polychromatic erythrocytes was seen in peripheral blood (Table E5). These single-dose studies were not replicated to confirm the positive response; therefore, these results cannot be considered conclusive. In 4- and 13-week gavage studies, riddelliine did not induce micronucleated erythrocytes in peripheral blood of $B6C3F_1$ mice (Tables E6 and E7; Witt *et al.*, 2000). Several protocol differences between the 4- and 13-week studies and the single-dose study may be implicated in the contrasting test results, including the higher doses used in the single-dose study, differences in riddelliine metabolism arising from the different routes of adminis-

tration, and the different strains of mice that were used.

In tests to measure unscheduled DNA synthesis (UDS), a measure of DNA damage and repair, and S-phase DNA synthesis in cultured hepatocytes from F344/N rats and B6C3F1 mice following 5 or 30 days of treatment by gavage with riddelliine, an increase in UDS was observed at both time points in at least one dose group each in male rats and in male and female mice (Tables E8 and E9). UDS was only observed in female rats following 5 days of treatment. An increase in S-phase DNA synthesis, an indication of DNA replication, was observed at both time points in at least one group in male and female rats. There was no increase in S-phase synthesis in male or female mice following 5 days of treatment; an increase occurred in only a single dose group (3.3 mg/kg) in male mice following 30 days of treatment. In female mice treated for 5 or 30 days, S-phase synthesis appeared inhibited (i.e., less than vehicle control values) at the highest doses (day 5: 25 mg/kg; day 30: 10 and 25 mg/kg). These data suggest that the hepatotoxicity of riddelliine may be due, in part, to an antimitogenic effect at higher doses, which inhibits compensatory cell proliferation that occurs in response to toxicity. However, the high variability in S-phase DNA synthesis in control female mice confounded interpretation of the results.

Liver hemangiosarcoma in a female rat administered 1 mg/kg riddelliine by gavage for 2 years. Multiple hemorrhagic cavities are surrounded by a variably sized rim of neoplastic tissue (arrows). H&E; $6.6x\Box$

PLATE 2

Liver hemangiosarcoma in a male rat administered 1 mg/kg riddelliine in the 2-year gavage study. Irregular vascular spaces are lined by pleomorphic endothelial cells. H&E; $66 \times \Box$

PLATE 3

Hepatocellular regenerative hyperplasia in a male rat administered 1 mg/kg riddelliine in the 2-year gavage study. Note the presence of multiple discrete nodules of hepatocytes (arrows). H&E; $13.2x\Box$

PLATE 4

Hepatocytic enlargement (cytomegaly) associated with enlarged nuclei (karyomegaly) (arrows) in a male rat administered 1 mg/kg riddelliine in the 2-year gavage study. H&E; $66x\Box$

Liver hemangiosarcoma in a male mouse administered 3 mg/kg riddelliine by gavage for 2 years. There are scattered hemorrhagic-neoplastic areas. H&E; $5x\square$

PLATE 6

Liver hemangiosarcoma in a male mouse administered 3 mg/kg riddelliine in the 2-year gavage study. There are irregular vascular spaces (arrows) lined by pleomorphic endothelial cells. H&E; $40x\Box$

PLATE 7

Liver endothelial hyperplasia in a male mouse administered 3 mg/kg riddelliine in the 2-year gavage study. There is an increased number of flattened to plump endothelial cells, forming irregular trabeculae (arrows) between hepatocytes. H&E; 66x

PLATE 8

Liver bile duct hyperplasia in a female mouse administered 3 mg/kg riddelliine in the 2-year gavage study. Some of the ducts are dilated and contain mucoid material (arrows). H&E; $80X\Box$

Pulmonary alveolar/bronchiolar carcinoma in a female mouse administered 3 mg/kg riddelliine in the 2-year gavage study. Note the invasion into the surrounding parenchyma (arrow). H&E; $16x\Box$

PLATE 10

Renal cortical tubular pigmentation in a female mouse administered 3 mg/kg riddelliine by gavage for 2 years. The granular brown pigment is Prussian blue positive (arrows), indicating its hemosiderin nature. H&E; $66x \square$

PLATE 11

Chronic arteritis in the kidney of a female mouse administered 3 mg/kg riddelliine in the 2-year gavage study. The glomerular afferent artery lesion is characterized by obliteration of the vessel lumina, thickening of the vessel wall, and adventitial and perivascular fibrosis (arrows). The glomerulus is sclerotic (arrow head). H&E; $66x^{\Box}$

PLATE 12

Chronic arteritis in the ovary of a female mouse administered 3 mg/kg riddelliine in the 2-year gavage study. The vascular region is characterized by obliteration of the vessel lumina and thickening of the vessel wall (arrows). H&E; $20x\Box$

Chronic arteritis in the uterus of a mouse administered 3 mg/kg riddelliine by gavage for 2 years. The vascular lesion is characterized by obliteration of the vessel lumina, thickening of the vessel wall, and adventitial and perivascular fibrosis (arrows). H&E; $25x\Box$

PLATE 14

Chronic arteritis in the submucosa of the cecum of a female mouse administered 3 mg/kg riddelliine by gavage for 2 years. The vascular lesion is characterized by obliteration of the vessel lumina and perivascular inflammation fibrosis (arrows). H&E; 25x

PLATE 15

Chronic arteritis in the mesentery (arrow) of a female mouse administered 3 mg/kg riddelliine by gavage for 2 years. The vascular lesion is characterized by prominent transmural and perivascular mononuclear cell infiltration. H&E; $20x^{\Box}$

DISCUSSION AND CONCLUSIONS

In the current studies, five groups of female rats were administered riddelliine by gavage at doses of 0.01, 0.033, 0.1, 0.33, or 1 mg riddelliine/kg body weight; four groups of male mice received gavage doses of 0.1, 0.3, 1, or 3 mg/kg. The dose ranges were selected based on the results of 13-week studies reported earlier (NTP, 1993). One dose concentration was selected for male rats and female mice to match the highest dose of the other sex in each species. This study design was chosen to permit a fuller examination of the dose-response relationship for chronic toxicity and the anticipated carcinogenicity in each species and the DNA adduct formation in rats. Judging from the nonneoplastic lesions induced, the lowest dose levels selected for female rats and male mice were very close to their respective no-observedadverse-effect levels. Neoplasms and nonneoplastic lesions were seen in animals in the higher dose groups.

Administration of riddelliine for 2 years caused hemangiosarcomas (neoplasms of the endothelial cells) in the liver of 1 mg/kg male rats, 0.33 and 1 mg/kg female rats, and 3 mg/kg male mice. No hemangiosarcomas were observed in male or female vehicle control rats or female vehicle control mice. Metastases of the hemangiosarcomas were seen in the lung, mediastinal lymph node, and mesentery of male and female rats and in the pancreas and spleen of male rats. Multiple hemangiosarcomas were observed in the 3 mg/kg male mice; metastases of the liver hemangiosarcomas were seen in the lung of five 3 mg/kg male mice.

The hemangiosarcoma response is consistent with the toxicity of pyrrolizidine alkaloids that has been well described in the literature. The alkaloids are activated by the hepatic P450 enzymes (Mattocks, 1986; Williams *et al.*, 1989; Miranda *et al.*, 1991). The active metabolites cause damage to the endothelial cells. Monocrotaline induces cytotoxicity specifically to endothelial cells (Taylor *et al.*, 1997). Schraufnagel (1990) and Jones and Rabinovitch (1996) also showed that monocrotaline induced endothelial cell apoptosis preceding proliferation of smooth muscle cells in the blood vessels. The right ventricle increased in weight in rats fed crotalaria. In the large muscular pulmonary

arteries, the medial and adventitial thickness was increased. The labeling indices of the endothelial cells and the smooth muscle cells in the hilar pulmonary artery were also increased. The data indicated that crotalaria induced endothelial cell injury followed by regeneration (Meyrick and Reid, 1982). Platelet plugs were formed following crotalaria administration, and thrombin activation of platelets caused the release of vascular endothelial growth factor and basic fibroblast growth factor (Verheul and Pinedo, 1998; Waltham et al., 2000) leading to angiogenesis. Hemangiosarcomas have also been observed following the administration of pyrrolizidine alkaloids such as clivorine (Kuhara et al., 1980), lasiocarpine (Svoboda and Reddy, 1972; Rao and Reddy, 1978), petasitenine (Hirono et al., 1977), seneciphylline (Harris and Chen, 1970; Hirono et al., 1983), and senkirkine (Hirono et al., 1979).

The current 2-year studies demonstrated that, like other pyrrolizidine alkaloids, riddelliine was activated by the hepatic P450 enzymes. The active metabolites may cause damage to the endothelial cells, as accumulations of intravascular macrophages were observed in many organs in the 13-week NTP (1993) studies. The macrophages were probably attracted to the intravascular sites to remove damaged or dead endothelial cells in the vascular lesions.

Although the incidence of hemangiosarcoma in 3 mg/kg female mice was not significantly increased, the toxic effects of riddelliine were likely exerted on the arterial walls of female mice. These effects were evidenced by the arteritis seen in multiple organs; one hemangiosarcoma and one cholangioma were also observed in the liver of 3 mg/kg females. Whether the arteritis lesions are reactive or preneoplastic has been debated. According to Fetsch and Weiss (1991) these lesions are not preneoplastic, but arise on a reactive basis, probably secondarily to damage and repair of an artery or vein. The presence of one hemangiosarcoma and one cholangioma may suggest the carcinogenic potential of the toxic effects of riddelliine on the endothelial cells of female mice. The reason for the difference in sensitivity between 3 mg/kg male and female mice may be related

to a sex specificity of P450 isozymes as described by Williams *et al.* (1989) in the metabolism of senecionine by male and female Sprague-Dawley rats.

In the 2-year rat study, hepatocellular neoplasms were also induced in the liver of 1 mg/kg males and females. The incidences of hepatocellular adenoma and of hepatocellular adenoma or carcinoma (combined) occurred with a positive trend in female rats. Dose-response relationships were also seen in the incidences of some nonneoplastic lesions in female rats, i.e. hepatocyte regenerative hyperplasia, hepatocyte cytomegaly, and eosinophilic foci. The hepatocellular regenerative hyperplasia consisted of varying degrees of diffuse to nodular hepatocellular proliferation along with hepatocellular cytomegaly and karyomegaly. There were variable numbers of small basophilic cells resembling oval cells, which are believed to represent stem cells capable of differentiation into hepatocytes or bile duct epithelium. The incidences and severities of hepatic focal necrosis were increased in 1 mg/kg male and female rats. It is unclear whether the necrosis is a primary riddelliineinduced effect or is secondary to the hyperplastic and neoplastic changes in the liver. In the 13-week studies of riddelliine (NTP, 1993), hepatocyte karyomegaly developed in males and females receiving 0.33 mg/kg or greater and cytomegaly developed in males administered 3.3 mg/kg or greater and in 10 mg/kg females. The lesions persisted during the 7- and 14-week recovery periods. The involvement of cytomegaly, karomegaly, focal necrosis, and atypical hyperplasia in hepatocellular neoplasm development is not clearly established (Boorman et al., 1990).

In the 2-year mouse study, riddelliine administration induced dose-related increases in the incidences of hepatocyte cytomegaly, karyomegaly, and centrilobular necrosis in males. Riddelliine administered at 3 mg/kg also induced similar incidences of hepatocyte cytomegaly and karyomegaly in female mice, but a dose-response relationship could not be established in female mice because only one dose concentration was used in the study. In the 13-week studies, liver centrilobular cytomegaly was observed in male and female mice administered 25 mg/kg but not in those administered 3.3 or 10 mg/kg (NTP, 1993). The lesions persisted in the 7-week and 14-week recovery periods in female mice. Cytomegaly apparently developed early when riddelliine was administered at high dose levels; the lesion took longer to develop at low dose levels in male and female mice. The incidence of bile duct hyperplasia was significantly increased in 3 mg/kg female mice but not in

3 mg/kg male mice. Bile duct hyperplasia was also observed in the 7- and 14-week recovery periods in the 13-week studies in females but not in males. Female mice appeared to be more sensitive to the development of bile duct hyperplasia than male mice. In the current study, the incidences of hepatocellular adenoma and of hepatocellular carcinoma occurred with negative trends in male mice, and the incidences of these lesions were significantly decreased in 3 mg/kg female mice. Hepatocellular neoplasms are commonly found in B6C3F, mice, and the incidences increase with age. The reason for the negative trend in the incidences of hepatocellular neoplasms in the dosed mice is unclear. The known ability of pyrrolizidine alkaloids to inhibit division of hepatocytes may be a contributing factor. The relationship of cytomegaly, karomegaly, centrilobular necrosis, focal necrosis, and bile duct hyperplasia in hepatocellular neoplasm development in mice is also unclear (Maronpot, 1999).

In the current study, significant increases in the incidences of mononuclear cell leukemia (all organs) occurred in male and female rats administered 1 mg/kg (males, P=0.004; females, P=0.033) despite the significant early mortality from liver toxicity in these animals. Mononuclear cell leukemia occurs commonly with increasing incidence in aging F344/N rats. Because the male rat study was terminated at week 72, the incidence of this lesion cannot be compared directly to the 2-year historical control rate. However, the incidence of this lesion in the male vehicle controls was similar to the rate observed in comparably-aged male control F344/N rats sacrificed at approximately 15 months in previous NTP studies. The increased incidences of mononuclear cell leukemia in male and female rats were therefore considered related to riddelliine treatment.

Increased incidences of alveolar/bronchiolar adenoma and of alveolar/bronchiolar adenoma or carcinoma (combined) were noted in the lung of 3 mg/kg female mice in the 2-year study. The incidences of these lesions were high in male vehicle controls, and riddelliine administration at doses ranging from 0.1 to 3 mg/kg did not enhance the development of these neoplasms in male mice. The reason for the sex difference in response may be related to the sex specificity of P450 isozymes in riddelliine metabolism as found in the metabolism of senecionine in Sprague-Dawley rats (Williams *et al.*, 1989).

In the current studies, administration of riddelliine induced renal tubule necrosis in 1 mg/kg rats and

glomerulosclerosis in 1 mg/kg male mice and 3 mg/kg male and female mice. Administration of riddelliine also induced a collection of renal tubule lesions consistent with nephropathy in male and female mice. Glomerulosclerosis in mice was considered a possible response to antigenic factors produced by the liver neoplasms. However, results of immunohistochemical staining of samples of kidney lesions from male and female mice suggested that the primary mechanism for this change was not immune mediated. The presence of increased collagen indicated a chronic scarring process. The pyrrolizidine alkaloid monocrotaline was specifically toxic to the glomerular mesangium and endothelium (Kurozumi et al., 1983). Three weeks after intraperitoneal injection of 50 mg/kg monocrotaline to rats, renal changes consisted of increased glomerular size, increased matrix in the glomerular tuft, thickening of the capillary wall, mesangial hypercellularity, and the presence of exudate in the subendothelial spaces of the capillaries and mesangium. Riddelliine may also exert a direct toxic effect on the glomeruli in mice, leading to glomerulosclerosis.

Other lesions observed in the 1 mg/kg male and female rats included splenic congestion and hematopoietic cell proliferation, bone marrow hyperplasia, lung hemorrhage, glandular stomach erosions and ulcer, and lymph node hemorrhage and pigmentation. These lesions were considered secondary effects. The increased incidence of splenic congestion in riddelliine-treated rats reflected passive pooling of blood in the splenic sinusoids secondary to hepatotoxicity and impaired perfusion of blood within the liver. The increased incidences of bone marrow hyperplasia and splenic hematopoietic cell proliferation were considered responses to the liver neoplasms and associated hemorrhage and necrosis. Lung hemorrhage and edema were primarily associated with metastatic liver tumors. Free red blood cells accompanied by macrophages containing phagocytosed red blood cells were observed in the subcapsular and medullary sinuses of lymph nodes. These changes resulted from increased drainage to the lymph nodes from areas of hemorrhage outside the lymph nodes. Other changes observed in the dosed rats were considered secondary to the hemangiosarcoma burden, including thymus hemorrhage, lymph node hemorrhage and pigmentation, liver Kupffer cell pigmentation, and renal tubular pigmentation. Stomach erosions and ulcers were considered to be nonspecific responses to stress and moribundity resulting from liver neoplasms and toxicity.

In mice, sex-related differences in response to riddelliine administration were observed in the incidences of skin edema, focal cytoplasmic alteration in the adrenal cortex, and focal hemorrhage of the large intestine. On the other hand, there were no sex-related differences in the incidences of other lesions including liver cytomegaly, hepatocellular adenoma and carcinoma, kidney nephropathy, and splenic hematopoietic cell proliferation. Sex-related differences in susceptibility to pyrrolizidine alkaloid activation may be related to sex specificity of P450 isozymes (Mattocks, 1986). Williams et al. (1989) indicated that P4502C11 is male specific and P4503A1 is female specific in Sprague-Dawley rats. The enzymes activated senecionine at different rates. Other factors such as DNA repair and the rate of progression from initiated cells to neoplasms may play a role.

In an NTP study, Yang *et al.* (2001) demonstrated that riddelline incubated aerobically with rat liver microsomes is converted to dehydroretronecine and riddelline-*N*-oxide (Figure 5). The metabolism rate by microsomes from phenobarbital-treated rats was 3.5 times that of microsomes from untreated rats. Because phenobarbital induces CYP2A1, CYP2A2, CYP2B and CYP3A isozymes, the results suggest the isozymes are involved in riddelline metabolism. In the presence of calf thymus DNA, metabolism of riddelliine *in vitro* resulted in eight DNA adducts. Two of these adducts were identified as epimers of dehydroretronecine-modified 7-deoxyguano-sine- N^2 -yl adducts; the structures of the other six were not characterized.

Analyses by ³²P-postlabeling/high performance liquid chromatography of DNA adducts from the liver of female F344/N rats treated with riddelliine for 3 or 6 months also yielded the same eight DNA adducts (Appendix I). These data suggest that the eight dehydroretronecine-derived DNA adducts may be responsible in part for development of liver neoplasms in female rats. The mechanisms by which riddelliine induces hepatic hemangiosarcoma and hepatocellular adenoma and carcinoma were further investigated. Metabolism of riddelliine by liver microsomes of F344/N female rats in vitro generated riddelliine-N-oxide and dehydroretronecine (DHR) as major metabolites. DHR was capable of binding to DNA, 3'-dGMP, 5'-dGMP, and 3'-dAMP, which suggested that DHR was an activated metabolite.

A dose-response relationship was obtained between the dose administered to the female rats and the level of the total (eight) DHR-related adducts formed at both time points. A dose-response relationship was also found between the dose administered to the rats and the level of

Riddelliine-N-oxide

FIGURE 5 Metabolism of Riddelliine and Riddelliine-N-oxide by Rat Liver Microsomes (Yang *et al.*, 2001)

the DHR-3'-dGMP adducts (Figures I15 and I16). The DHR-derived DNA adducts were formed to a higher extent and persisted longer in the target tissues (liver) than in the nontarget tissues (lung and kidney) (data not shown). Thus, the data indicated that the adduct levels were a better reflection of the exposure level than the ultimate neoplasm response in the liver and that the nontarget tissues appeared to be able to remove the adducts faster than the target tissues.

The data suggested that metabolism of riddelliine catalyzed by CYP isozymes first provided 8-hydroxyriddelliine and/or 3-hydroxyriddelliine as the primary metabolites, which upon enzymatic or spontaneous dehydration produced the unstable dehydroriddelliine (Figure 5). Dehydroriddelliine was metabolized by esterase and/or other hepatic enzymes to dehydroretronecine. Both dehydroriddelliine and DHR could covalently bind to DNA for the formation of the eight DHR-derived DNA adducts (Figure 6). The eight DHRderived DNA adducts, if not repaired prior to DNA synthesis, might produce replication errors and eventually resulted in the development of neoplasms in the dosed rats.

The level of the total DHR-related adducts determined in the liver (Figure I16) represented adducts of both endothelial cells and hepatocytes. Correlation could not be made between the total adduct levels and the liver neoplasm incidences, i.e., hemangiosarcoma and/or hepatocellular adenoma, suggesting other factors were involved, such as DNA repair, cell proliferation, apoptosis, and the rate of progression from initiated cells to neoplasms.

In associated studies, an attempt was made to determine the DHR-derived DNA adduct levels in parenchymal cells and nonparenchymal cells by digesting the liver tissues in collagenase and separating the liver cells in Percoll density gradients (data not shown). Liver tissues were obtained from female rats after 2 weeks of riddelliine administration. It was found that the DHR-derived DNA adduct levels in liver endothelial cells were higher than those in the parenchymal cells, correlating well with the higher incidence of liver hemangiosarcoma than that of hepatocellular adenoma or carcinoma in the male and female F344/N rats. These results suggest that the riddelliine-induced liver hemangioscarcoma and hepatocellular neoplasms in male and female rats involve the formation of the DHR-derived DNA adducts. Metabolism of riddelliine by human liver microsomes resulted in the formation of DHR and riddelliine-*N*oxide (Appendix I). The same set of eight DHR-derived DNA adducts was found from metabolism of riddelliine by human male and female liver microsomes in the presence of calf thymus DNA. These results indicate that the same metabolism profile and metabolic activation pathways formed in experimental animals also occur in human liver.

These overall results suggest that riddelliine induces liver neoplasms in rats through a genotoxic mechanism and the eight DHR-derived adducts are responsible in part, if not entirely, for the liver neoplasm development. Hydroxylation of pyrrolizidine alkaloids at the necine base, particularly at the C-8 and C-3 positions to form 8and 3-hydroxynecine derivatives, followed by dehydration to form the corresponding dehydropyrrolizidine (pyrrolic) derivatives, is a general metabolism pathway (Bull et al., 1968; Mattocks, 1986). Thus, metabolism of riddelliine catalyzed by CYP isozymes first provides 8-hydroxyriddelliine and/or 3-hydroxyriddelliine as the primary metabolites, which upon enzymatic dehydration produced the dehydroriddelliine. Two possible pathways lead to DHR-derived DNA adducts. The first pathway is that dehydroriddelliine, a potent electrophile, covalently binds to cellular DNA (Figure 6) to form dehydroriddelliine-derived DNA adducts, which are subsequently hydrolyzed to DHR-derived DNA adducts. The second pathway is that dehydroriddelliine, like the other dehydropyrrolizidine alkaloids, is unstable and easily hydrolyzed by esterases and/or other hepatic enzymes to form DHR (Mattocks, 1968, 1986; Kim et al., 1999), which subsequently binds to DNA. At present, it is not known from which pathway the eight DHR-derived DNA adducts are formed. Since dehydropyrrolizidine alkaloids (pyrroles) are highly unstable and DHR is the most stable pyrrolic compound (Galloway et al., 1987; Huxtable et al., 1996), more binding should occur through DHR than through dehydroriddelliine.

The data support the hypothesis that riddelliine is metabolically activated by hepatic CYP isozymes. The active metabolites interact with cellular DNA, forming adducts and leading to DNA damage, cytotoxicity, and cellular regeneration. In the process, the unrepaired mutated endothelial cells and hepatocytes eventually develop into neoplasms. Endothelial cells appeared to be more prone to the riddelliine-induced carcinogenic action than

FIGURE 6 Proposed Riddelliine-Derived DNA Adducts

hepatocytes. The early histopathologic changes in the endothelial cells and hepatocytes and the DNA adducts described could be considered as biomarkers of riddelliine toxicity and carcinogenicity. Since other pyrrolizidine alkaloids are likely metabolized and activated by a similar pathway as riddelliine, DNA adduct levels as determined by the process described in the present studies could be useful for assessing the exposure to other pyrrolizidine alkaloids.

CONCLUSIONS

Under the conditions of these studies, there was *clear evidence of carcinogenic activity** of riddelliine in male and female F344/N rats based on increased incidences of hemangiosarcoma in the liver. The increased incidences of hepatocellular adenoma and mononuclear cell

leukemia in male and female rats were also considered to be treatment related. There was *clear evidence of carcinogenic activity* of riddelliine in male $B6C3F_1$ mice based on increased incidences of hemangiosarcoma in the liver. There was *clear evidence of carcinogenic activity* in female $B6C3F_1$ mice based on increased incidences of alveolar/bronchiolar neoplasms.

Administration of riddelliine by gavage resulted in nonneoplastic lesions in the liver and kidney of male and female rats; the liver and kidney of male and female mice; and the lung and arteries (multiple tissues) of female mice.

Decreased incidences of hepatocellular neoplasms in male and female mice were related to riddelliine administration.

^{*} Explanation of Levels of Evidence of Carcinogenic Activity is on page 9. A summary of the Technical Reports Review Subcommittee comments and the public discussion on this Technical Report appears on page 11.

REFERENCES

Allen, J.R., Chesney, C.F., and Frazee, W.J. (1972). Modifications of pyrrolizidine alkaloid intoxication resulting from altered microsomal enzymes. *Toxicol. Appl. Pharmacol.* **23**, 470-479.

Allen, J.R., Hsu, I.-C., and Carstens, L.A. (1975). Dehydroretronecine-induced rhabdomyosarcomas in rats. *Cancer Res.* **35**, 997-1002.

Ashby, J., and Tennant, R.W. (1991). Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. *Mutat. Res.* **257**, 229-306.

Bailer, A.J., and Portier, C.J. (1988). Effects of treatment-induced mortality and tumor-induced mortality on tests for carcinogenicity in small samples. *Biometrics* **44**, 417-431.

Bick, Y.A.E., Culvenor, C.C.J., and Jago, M.V. (1975). Comparative effects of pyrrolizidine alkaloids and related compounds on leucocyte cultures from *Potorous tridactylus*. *Cytobios* **14**, 151-160.

Bieler, G.S., and Williams, R.L. (1993). Ratio estimates, the delta method, and quantal response tests for increased carcinogenicity. *Biometrics* **49**, 793-801.

Boorman, G.A., Montgomery, C.A., Jr., Eustis, S.L., Wolfe, M.J., McConnell, E.E., and Hardisty, J.F. (1985). Quality assurance in pathology for rodent carcinogenicity studies. In *Handbook of Carcinogen Testing* (H.A. Milman and E.K. Weisburger, Eds.), pp. 345-357. Noyes Publications, Park Ridge, NJ.

Boorman, G.A., Eustis, S.L., Elwell, M.R., Montgomery, C.A., Jr., and MacKenzie, W.F., Eds. (1990). *Pathology of the Fischer Rat. Reference and Atlas.* Academic Press, Inc., San Diego.

Bull, L.B., Culvenor, C.C.J., and Dick, A.J. (1968). *The Pyrrolizidine Alkaloids. Their Chemistry, Pathogenicity and other Biological Properties.* North-Holland, Amsterdam. Chan, P.C., Mahler, J., Bucher, J.R., Travlos, G.S., and Reid, J.B. (1994). Toxicity and carcinogenicity of riddelliine following 13 weeks of treatment to rats and mice. *Toxicon* **32**, 891-908.

Cheeke, P.R. (1979). Symposium on pyrrolizidine (Senecio) alkaloids, toxicity, metabolism, and poisonous plant control measures. Proceedings of a symposium held 23-24 February 1979 at Oregon State University (OSU), Corvallis, OR. The Nutritional Research Institute, OSU.

Code of Federal Regulations (CFR) 21, Part 58.

Cox, D.R. (1972). Regression models and life-tables. *J. R. Stat. Soc.* **B34**, 187-220.

Crawford, B.D. (1985). Perspectives on the somatic mutation model of carcinogenesis. In *Advances in Modern Environmental Toxicology. Mechanisms and Toxicity of Chemical Carcinogens and Mutagens* (M.A. Mehlman, W.G. Flamm, and R.J. Lorentzen, Eds.), pp. 13-59. Princeton Scientific Publishing Co., Inc., Princeton, NJ.

Culvenor, C.C.J., Downing, D.T., Edgar, J.A., and Jago, M.V. (1969). Pyrrolizidine alkaloids as alkylating and antimitotic agents. *Ann. N.Y. Acad. Sci.* **163**, 837-847.

Downing, D.T., and Peterson, J.E. (1968). Quantitative assessment of the persistent antimitotic effect of certain hepatotoxic pyrrolizidine alkaloids on rat liver. *Aust. J. Exp. Biol. Med. Sci.* **46**, 493-502.

Dueker, S.R., Lame, M.W., Morin, D., Wilson, D.W., and Segall, H.J. (1992). Guinea pig and rat hepatic microsomal metabolism of monocrotaline. *Drug Metab. Dispos.* **20**, 275-280.

Eastman, D.F., Dimenna, G.P., and Segall, H.J. (1981). Tissue distribution and covalent binding to DNA and protein by senecionine. *Toxicologist* **1**, 89-90 (Abstr.).

Eastman, D.F., Dimenna, G.P., and Segall, H.J. (1982). Covalent binding of two pyrrolizidine alkaloids, senecionine and seneciphylline, to hepatic macromolecules and their distribution, excretion, and transfer into milk of lactating mice. *Drug Metab. Dispos.* **10**, 236-240.

Fetsch, J.F., and Weiss, S.W. (1991). Observations concerning the pathogenesis of epithelioid hemangioma (angiolymphoid hyperplasia). *Mod. Pathol.* **4**, 449-455.

Fu, P.P., Chou, M.W., Xia, Q., Yang, Y.C., Yan, J., Doerge, D.R., and Chan, P.C. (2001). Environmental genotoxic pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides – Mechanisms leading to DNA adduct formation and tumorigenicity. *Environ. Carcinog. Ecotoxicol. Rev.* **19**, 353-386.

Galloway, S.M., Armstrong, M.J., Reuben, C., Colman, S., Brown, B., Cannon, C., Bloom, A.D., Nakamura, F., Ahmed, M., Duk, S., Rimpo, J., Margolin, B.H., Resnick, M.A., Anderson, B., and Zeiger, E. (1987). Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. *Environ. Mol. Mutagen.* **10** (Suppl. 10), 1-175.

Gillis, C.N., Huxtable, R.J., and Roth, R.A. (1978). Effects of monocrotaline pretreatment of rats on removal of 5-hydroxytryptamine and noradrenaline by perfused lung. *Br. J. Pharmacol.* **63**, 435-443.

Green, C.E., Segall, H.J., and Byard, J.L. (1981). Metabolism, cytotoxicity, and genotoxicity of the pyrrolizidine alkaloid senecionine in primary cultures of rat hepatocytes. *Toxicol. Appl. Pharmacol.* **60**, 176-185.

Green, C.R., and Christie, G.S. (1961). Malformations in foetal rats induced by the pyrrolizidine alkaloid, heliotrine. *Br. J. Exp. Pathol.* **42**, 369-378.

Griffin, D.S., and Segall, H.J. (1986). Genotoxicity and cytotoxicity of selected pyrrolizidine alkaloids, a possible alkenal metabolite of the alkaloids, and related alkenals. *Toxicol. Appl. Pharmacol.* **86**, 227-234.

Hamilton, C.M., and Mirsalis, J.C. (1987). Factors that affect the sensitivity of the in vivo-in vitro hepatocyte DNA repair assay in the male rat. *Mutat. Res.* **189**, 341-347.

Harris, P.N., and Chen, K.K. (1970). Development of hepatic tumors in rats following ingestion of *Senecio longilobus*. *Cancer Res.* **30**, 2881-2886.

Haseman, J.K., Young, E., Eustis, S.L., and Hailey, J.R. (1997). Body weight-tumor incidence correlations in long-term rodent carcinogenicity studies. *Toxicol. Pathol.* **25**, 256-263.

Hayashi, Y. (1966). Excretion and alteration of monocrotaline in rats after a subcutaneous injection. *Fed. Proc.* **25**, 688 (Abstr.).

Hincks, J.R., Kim, H.Y., Segall, H.J., Molyneux, R.J., Stermitz, F.R., and Coulombe, R.A., Jr. (1991). DNA cross-linking in mammalian cells by pyrrolizidine alkaloids: Structure-activity relationships. *Toxicol. Appl. Pharmacol.* **111**, 90-98.

Hirono, I., Shimizu, M., Fushimi, K., Mori, H., and Kato, K (1973). Carcinogenic activity of *Petasites japonicus maxim*, a kind of coltsfoot. *Jpn. J. Cancer Res.* 64, 527-528.

Hirono, I., Mori, H., Yamada, K., Hirata, Y., Haga, M., Tatematsu, H., and Kanie, S. (1977). Brief communications: Carcinogenic activity of petasitenine, a new pyrrolizidine alkaloid isolated from *Petasites japonicus* maxim. *J. Natl. Cancer Inst.* **58**, 1155-1157.

Hirono, I., Mori, H., and Haga, M. (1978). Carcinogenic activity of *Symphytum officinale*. *JNCI* **61**, 865-869.

Hirono, I., Haga, M., Fujii, M., Matsuura, S., Matsubara, N., Nakayama, M., Furuya, T., Hikichi, M., Takanashi, H., Uchida, E., Hosaka, S., and Ueno, I. (1979). Induction of hepatic tumors in rats by senkirkine and symphytine. *JNCI* **63**, 469-472.

Hirono, I., Ueno, I., Aiso, S., Yamaji, T., and Haga, M. (1983). Carcinogenic activity of *Farfugium japonicum* and *Senecio canabifolius*. *Cancer Lett.* **20**, 191-198.

Hollander, M., and Wolfe, D.A. (1973). *Nonparametric Statistical Methods*, pp. 120-123. John Wiley and Sons, New York.

Huxtable, R.J. (1979). New aspects of the toxicology and pharmacology of pyrrolizine alkaloids. *Gen. Pharmacol.* **10**, 159-167.

Huxtable, R.J. (1980). Herbal teas and toxins: Novel aspects of pyrrolizidine poisoning in the United States. *Perspect. Biol. Med.* **24**, 1-14.

Huxtable R.J., and Wild S.L. (1994). Relationship between in vitro metabolism of pyrrolizidine alkaloids and extrahepatic toxicity in vivo. *Proc. West. Pharmacol.* **37**, 109-111.

Huxtable, R.J., Yan, C.C., Wild, S., Maxwell, S., and Cooper, R. (1996). Physicochemical and metabolic basis for the differing neurotoxicity of the pyrrolizidine alkaloids, trichodesmine and monocrotaline. *Neurochem. Res.* **21**, 141-146.

Integrated Laboratory Systems (ILS) (1990). Micronucleus Data Management and Statistical Analysis Software, Version 1.4. ILS, P.O. Box 13501, Research Triangle Park, NC 27707.

International Agency for Research on Cancer (IARC) (1976). Pyrrolizidine alkaloids. In *IARC Monographs* on the Evaluation of Carcinogenic Risk of Chemicals to Man: Some Naturally Occurring Substances, Vol. 10, p. 313. IARC, Lyon, France.

Jones, P.L., and Rabinovitch, M. (1996). Tenascin-C is induced with progressive pulmonary vascular disease in rats and is functionally related to increased smooth muscle cell proliferation. *Circ. Res.* **79**, 1131-1142.

Jones, T.C., Hunt, R.D., and King, N.W. (1996). Disturbances of circulation. In *Veterinary Pathology*, 6th ed., pp. 159-176. Williams and Wilkins, Philadelphia, PA.

Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. *J. Am. Stat. Assoc.* **53**, 457-481.

Kastenbaum, M.A., and Bowman, K.O. (1970). Tables for determining the statistical significance of mutation frequencies. *Mutat. Res.* **9**, 527-549.

Kim, H.-Y., Stermitz, F.R., Molyneux, R.J., Wilson, D.W., Taylor, D., and Coulombe, R.A., Jr. (1993). Structural influences on pyrrolizidine alkaloid-induced cytopathology. *Toxicol. Appl. Pharmacol.* **122**, 61-69.

Kim, H.Y., Stermitz, F.R., and Coulombe, R.A., Jr. (1995). Pyrrolizidine alkaloid-induced DNA-protein cross-links. *Carcinogenesis* **16**, 2691-2697.

Kim, H.Y., Stermitz, F.R., Li, K.-K.J., and Coulombe, R.A., Jr. (1999). Comparative DNA crosslinking by activated pyrrolizidine alkaloids. *Food Chem. Toxicol.* **37**, 619-625.

Kuhara, K., Takanashi, H., Hirono, I., Furuya, T., and Asada, Y. (1980). Carcinogenic activity of clivorine, a pyrrolizidine alkaloid isolated from *Ligularia dentata*. *Cancer Lett.* **10**, 117-122.

Kurozumi, T., Tanaka, K., Kido, M., and Shoyama, Y. (1983). Monocrotaline-induced renal lesions. *Exp. Mol. Pathol.* **39**, 377-386.

Letendre, L., Smithson, W.A., Gilchrist, G.S., Burgert, E.O., Jr., Hoagland, C.H., Ames, M.M., Powis, G., and Kovach, J.S. (1981). Activity of indicine N-oxide in refractory acute leukemia. *Cancer* **47**, 437-441.

Letendre, L., Ludwig, J., Perrault, J., Smithson, W.A., and Kovach, J.S. (1984). Hepatocellular toxicity during the treatment of refractory acute leukemia with indicine N-oxide. *Cancer* **54**, 1256-1259.

McConnell, E.E., Solleveld, H.A., Swenberg, J.A., and Boorman, G.A. (1986). Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. *JNCI* **76**, 283-289.

McGrath, J.P.M., Duncan, J.R., and Munnell, J.F. (1975). *Crotalaria spectabilis* toxicity in swine: Characterization of the renal glomerular lesion. *J. Comp. Pathol.* **85**, 185-194.

MacGregor, J.T., Wehr, C.M., and Langlois, R.G. (1983). A simple fluorescent staining procedure for micronuclei and RNA in erythrocytes using Hoescht 33258 and pyronin Y. *Mutat. Res.* **120**, 269-275.

MacGregor, J.T., Henika, P.R., and Roitman, J.N. (1985). Induction of micronuclei in peripheral blood erythrocytes of adult and fetal Swiss mice by pyrrolizidine alkaloids. *Environ. Mutagen.* **7** (Suppl. 3), 68 (Abstr.).

Maronpot, R.R., Ed. (1999). *Pathology of the Mouse*. Cache River Press, Vienna, IL.

Maronpot, R.R., and Boorman, G.A. (1982). Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. *Toxicol. Pathol.* **10**, 71-80.
Mattocks, A.R. (1968). Toxicology of pyrrolizidine alkaloids. *Nature* **217**, 723-728.

Mattocks, A.R. (1986). *Chemistry and Toxicology of Pyrrolizidine Alkaloids*. Academic Press, New York.

Meyrick, B.O., and Reid, L.Y. (1982). Crotalariainduced pulmonary hypertension. Uptake of 3H-thymidine by the cells of the pulmonary circulation and alveolar walls. *Am. J. Pathol.* **106**, 84-94.

Midwest Research Institute (MRI) (1982). Chemical Characterization Report. Riddelliine. MRI, Kansas City, MO.

Midwest Research Institute (MRI) (1983). Reprocurement Report. Analysis of Riddelliine. MRI Project No. 7094-C., MRI, Kansas City, MO.

Miller, J.A., and Miller, E.C. (1977). Ultimate chemical carcinogens as reactive mutagenic electrophiles. In *Origins of Human Cancer* (H.H. Hiatt, J.D. Watson, and J.A. Winsten, Eds.), pp. 605-627. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Miranda, C.L., Reed, R.L., Guengerich, F.P., and Buhler, D.R. (1991). Role of cytochrome P450IIIA4 in the metabolism of the pyrrolizidine alkaloid senecionine in human liver. *Carcinogenesis* **12**, 515-519.

Mirsalis, J. (1987). *In vivo* measurement of unscheduled DNA synthesis and S-phase synthesis as an indicator of hepatocarcinogenesis in rodents. *Cell Biol. Toxicol.* **3**, 165-173.

Mirsalis, J., Tyson, K., Beck, J., Loh, F., Steinmetz, K., Contreras, C., Auster, L., Markin, S., and Spalding, J. (1983). Induction of unscheduled DNA synthesis (UDS) in hepatocytes following <u>in vitro</u> and <u>in vivo</u> treatment. *Environ. Mutagen.* **5**, 482 (Abstr.).

Mirsalis, J.C., Steinmetz, K.L., Blazak, W.F., and Spalding, J.W. (1993). Evaluation of the potential of riddelliine to induce unscheduled DNA synthesis, S-phase synthesis, or micronuclei following in vivo treatment with multiple doses. *Environ. Mol. Mutagen.* **21**, 265-271.

Molyneux, R.J., Johnson, A.E., Olsen, J.D., and Baker, D.C. (1991). Toxicity of pyrrolizidine alkaloids from Riddel groundsel (*Senecio riddellii*) to cattle. *Am. J. Vet. Res.* **52**, 146-151.

National Cancer Institute (NCI) (1978). Bioassay of Lasiocarpine for Possible Carcinogenicity (CAS No. 303-34-4). Technical Report Series No. 39. NIH Publication No. 78-839. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

National Toxicology Program (NTP) (1993). NTP Technical Report on Toxicity Studies of Riddelliine (CAS No. 23246-96-0) Administered by Gavage to F344/N Rats and B6C3F₁ Mice. Toxicity Report Series No. 27. NIH Publication No. 94-3350. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.

National Toxicology Program (NTP) (2001). Testing Information and Study Results. NTP Special Reports. Retrieved 13 June 2001 from the World Wide Web: http://ntp-server.niehs.nih.gov>.

Newberne, P.M., and Rogers, A.E. (1973). Nutrition, monocrotaline, and aflatoxin B_1 in liver carcinogenesis. *Plant Foods Man.*, **1**, 23-31.

Persaud, T.V.N., and Hoyte, D.A.N. (1974). Pregnancy and progeny in rats treated with the pyrrolizidine alkaloid fulvine. *Exp. Pathol.* **9**, 59-63.

Peterson, J.E. (1965). Effects of the pyrrolizidine alkaloid, lasiocarpine *N*-oxide, on nuclear and cell division in the liver of rats. *J. Pathol. Bacteriol.* **89**, 153-171.

Peterson, J.E., and Culvenor, C.C.J. (1983). Hepatotoxic pyrrolizidine alkaloids. In *Handbook of Natural Toxins* (R.F. Keeler and A.T. Tu, Eds.), Vol. 1, pp. 637-671. Marcel Dekker, Inc., New York.

Peterson, J.E., and Jago, M.V. (1980). Comparison of the toxic effects of dehydroheliotridine and heliotrine in pregnant rats and their embryos. *J. Pathol.* **131**, 339-355.

Peterson, J.E., Jago, M.V., Reddy, J.K., and Jarrett, R.G. (1983). Neoplasia and chronic disease associated with the prolonged administration of dehydroheliotridine to rats. *JNCI* **70**, 381-386.

Piegorsch, W.W., and Bailer, A.J. (1997). *Statistics for Environmental Biology and Toxicology*, Section 6.3.2. Chapman and Hall, London.

Portier, C.J., and Bailer, A.J. (1989). Testing for increased carcinogenicity using a survival-adjusted quantal response test. *Fundam. Appl. Toxicol.* **12**, 731-737.

Portier, C.J., Hedges, J.C., and Hoel, D.G. (1986). Agespecific models of mortality and tumor onset for historical control animals in the National Toxicology Program's carcinogenicity experiments. *Cancer Res.* **46**, 4372-4378.

Raczniak, T.J., Chesney, C.F., and Allen, J.R. (1978). Ultrastructure of the right ventricle after monocrotalineinduced cor pulmonale in the nonhuman primate (*Macaca arctoides*). *Exp. Mol. Pathol.* **28**, 107-118.

Rao, G.N. (1996). New diet (NTP-2000) for rats in the National Toxicology Program toxicity and carcinogenicity studies. *Fundam. Appl. Toxicol.* **32**, 102-108.

Rao, G.N. (1997). New nonpurified diet (NTP-2000) for rodents in the National Toxicology Program's toxicology and carcinogenesis studies. *J. Nutr.* **127**, 842s-846s.

Rao, M.S., and Reddy, J.K. (1978). Malignant neoplasms in rats fed lasiocarpine. *Br. J. Cancer* **37**, 289-293.

Rudd, C.J., Mitchell, A.D., and Spalding, J. (1983). L5178Y mouse lymphoma cell mutagenesis assay of coded chemicals incorporating analyses of the colony size distributions. *Environ. Mutagen.* **5**, 419 (Abstr.).

Samuel, A., and Jago, M.V. (1975). Localization in the cell cycle of the antimitotic action of the pyrrolizidine alkaloid lasiocarpine and of its metabolite, dehydroheliotridine. *Chem. Biol. Interact.* **10**, 185-197.

Schmid, W. (1976). The micronucleus test for cytogenetic analysis. In *Chemical Mutagens. Principles and Methods for their Detection* (A. Hollaender, Ed.), Vol. 4, pp. 31-53. Plenum Press, New York.

Schoch, T.K., Gardner, D.R., and Stegelmeier, B.L. (2000). GC/MS/MS detection of pyrrolic metabolites in animals poisoned with the pyrrolizidine alkaloid riddelliine. *J. Nat. Toxins* **9**, 197-206.

Schoental, R. (1959). Liver lesions in young rats suckled by mothers treated with the pyrrolizidine (Senecio) alkaloids, lasiocarpine and retrorsine. *J. Pathol. Bacteriol.* **77**, 485-495.

Schoental, R. (1976). Carcinogens in plants and microorganisms. In *Chemical Carcinogens* (C.E. Searle, Ed.). ACS Monograph 173, pp. 626-689. American Chemical Society, Washington, D.C.

Schoental, R., and Head, M. (1957). Progression of liver lesions produced in rats by temporary treatment with pyrrolizidine *(Senecio)* alkaloids, and the effects of betaine and high casein diet. *Br. J. Cancer* **11**, 535-544.

Schoental, R., Head, M.A., and Peacock, P.R. (1954). Senecio alkaloids: Primary liver tumours in rats as a result of treatment with (1) a mixture of alkaloids from *S. jacobaea* lin.; (2) retrorsine; (3) isatidine. *Br. J. Cancer* **8**, 458-465.

Schraufnagel, D.E. (1990). Monocrotaline-induced angiogenesis. Differences in the bronchial and pulmonary vasculature. *Am. J. Pathol.* **137**, 1083-1090.

Shelby, M.D. (1988). The genetic toxicity of human carcinogens and its implications. *Mutat. Res.* **204**, 3-15.

Shelby, M.D., and Witt, K.L. (1995). Comparison of results from mouse bone marrow chromosome aberration and micronucleus tests. *Environ. Mol. Mutagen.* **25**, 302-313.

Shelby, M.D., and Zeiger, E. (1990). Activity of human carcinogens in the Salmonella and rodent bone-marrow cytogenetics tests. *Mutat. Res.* **234**, 257-261.

Shelby, M.D., Erexson, G.L., Hook, G.J., and Tice, R.R. (1993). Evaluation of a three-exposure mouse bone marrow micronucleus protocol: Results with 49 chemicals. *Environ. Mol. Mutagen.* **21**, 160-179.

Straus, D.S. (1981). Somatic mutation, cellular differentiation, and cancer causation. *JNCI* **67**, 233-241.

Svoboda, D.J., and Reddy, J.K. (1972). Malignant tumors in rats given lasiocarpine. *Cancer Res.* **32**, 908-912.

Swick, R.A., Cheeke, P.R., Miranda, C.L., and Buhler, D.R. (1982). The effect of consumption of the pyrrolizidine alkaloid-containing plant *Senecio jacobaea* on iron and copper metabolism in the rats. *J. Toxicol. Environ. Health* **10**, 757-768.

Tarone, R.E. (1975). Tests for trend in life table analysis. *Biometrika* **62**, 679-682.

Taylor, D.W., Wilson, D.W., Lame, M.W., Dunston, S.D., Jones, A.D., and Segall, H.J. (1997). Comparative cytotoxicity of monocrotaline and its metabolites in cultured pulmonary artery endothelial cells. *Toxicol. Appl. Pharmacol.* **143**, 196-204.

Tennant, R.W., Margolin, B.H., Shelby, M.D., Zeiger, E., Haseman, J.K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R. (1987). Prediction of chemical carcinogenicity in rodents from *in vitro* genetic toxicity assays. *Science* **236**, 933-941.

Verheul, H.M., and Pinedo, H.M. (1998). Tumor growth: A putative role for platelets? *Oncologist* **3**, 2.

Waltham, M., Burnand, K.G., Collins, M., and Smith, A. (2000). Vascular endothelial growth factor and basic fibroblast growth factor are found in resolving venous thrombi. *J. Vasc. Surg.* **32**, 988-996.

White, R.D., Swick, R.A., and Cheeke, P.R. (1983). Effects of microsomal enzyme induction on the toxicity of pyrrolizidine *(Senecio)* alkaloids. *J. Toxicol. Environ. Health* **12**, 633-640.

Williams, D.E., Reed, R.L., Kedzieski, B., Dannan, G.A., Guengerich, F.P., and Buhler, D.R. (1989). Bioactivation and detoxification of the pyrrolizidine alkaloid senecionine by cytochrome P-450 enzymes in rat liver. *Drug Metab. Dispos.* **17**, 387-392.

Witt, K.L., Knapton, A., Wehr, C.M., Hook, G.J., Mirsalis, J., Shelby, M.D., and MacGregor, J.T. (2000). Micronucleated erythrocyte frequency in peripheral blood of B6C3F₁ mice from short-term, prechronic, and chronic studies of the NTP Carcinogenesis Bioassay Program. *Environ. Mol. Mutagen.* **36**, 163-194.

World Health Organization (WHO) (1988). Pyrrolizidine alkaloids. In *International Programme on Chemical Safety, Environmental Health Criteria*, Vol. 80, p. 337. WHO, Geneva.

Yang, Y.-C., Yan, J., Doerge, D.R., Chan, P.C., Fu, P.P., and Chou, M.W. (2001). Metabolic activation of the tumorigenic pyrrolizidine alkaloid, riddelliine, leading to DNA adduct formation in vivo. *Chem. Res. Toxicol.* **14**, 101-109.

Zeiger, E., Anderson, B., Haworth, S., Lawlor, T., and Mortelmans, K. (1988). Salmonella mutagenicity tests. IV. Results from the testing of 300 chemicals. *Environ. Mol. Mutagen.* **11**, 1-158.

Zeiger, E., Haseman, J.K., Shelby, M.D., Margolin, H., and Tennant, R.W. (1990). Evaluation of four in vitro genetic toxicity tests for predicting rodent carcinogenicity: Confirmation of earlier results with 41 additional chemicals. *Environ. Mol. Mutagen.* **16** (Suppl. 18), 1-14.

APPENDIX A SUMMARY OF LESIONS IN MALE RATS IN THE 2-YEAR GAVAGE STUDY OF RIDDELLIINE

Summary of the Incidence of Neoplasms in Male Rats	
in the 2-Year Gavage Study of Riddelliine	71
Individual Animal Tumor Pathology of Male Rats	
in the 2-Year Gavage Study of Riddelliine	74
Statistical Analysis of Primary Neoplasms in Male Rats	
in the 2-Year Gavage Study of Riddelliine	84
Historical Incidence of Liver Neoplasms in Control Male F344/N Rats	86
Historical Incidence of Mononuclear Cell Leukemia	
in Control Male F344/N Rats	87
Summary of the Incidence of Nonneoplastic Lesions in Male Rats	
in the 2-Year Gavage Study of Riddelliine	88
	in the 2-Year Gavage Study of Riddelliine Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Riddelliine Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Riddelliine Historical Incidence of Liver Neoplasms in Control Male F344/N Rats Historical Incidence of Mononuclear Cell Leukemia in Control Male F344/N Rats Summary of the Incidence of Nonneoplastic Lesions in Male Rats

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Gavage Study of Riddelliine^a

	Vehicle Control	1 mg/kg	
Disposition Summary			
Animals initially in study	50	50	
Early deaths			
Accidental deaths		2	
Moribund	1	9	
Natural deaths		36	
Survivors Terminal sacrifice	49	3	
Animals examined microscopically	50	50	
Alimentary System			
Liver	(50)	(50)	
Hemangiosarcoma		19 (38%)	
Hemangiosarcoma, multiple		24 (48%)	
Hepatocellular adenoma		3 (6%)	
Hepatocellular adenoma, multiple		1 (2%)	
Hepatocholangiocarcinoma		1 (2%)	
Mesentery	(8)	(9)	
Chordoma, metastatic, mesentery		1 (11%)	
Hemangiosarcoma, metastatic, liver		4 (44%)	
Pancreas	(50)	(50)	
Hemangiosarcoma, metastatic, liver	1 (20())	2 (4%)	
Acinus, adenoma	1 (2%) (50)	1 (2%) (50)	
Salivary glands	(50)	(50)	
Cardiovascular System			
Heart	(50)	(50)	
Endocrine System			
Adrenal cortex	(49)	(50)	
Adrenal medulla	(49)	(50)	
Pheochromocytoma benign	2 (4%)	2 (4%)	
Pituitary gland	(50)	(49)	
Pars distalis, adenoma	11 (22%)	2 (4%)	
Pars distalis, carcinoma	1 (2%)		
Thyroid gland	(50)	(50)	
C-cell, adenoma C-cell, carcinoma	3 (6%) 1 (2%)	3 (6%)	
General Body System			
Peritoneum	(4)	(3)	
Genital System			
Epididymis	(50)	(50)	
Preputial gland	(50)	(50)	
Adenoma	2 (4%)		
Carcinoma		1 (2%)	
Seminal vesicle	(50)	(50)	
Testes	(50)	(50)	
Bilateral, interstitial cell, adenoma	18 (36%)		
Interstitial cell, adenoma	21 (42%)	7 (14%)	

TABLE	A1
-------	----

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	1 mg/kg	
Hematopoietic System			
Bone marrow	(50)	(49)	
Lymph node	(13)	(39)	
Mediastinal, hemangiosarcoma, metastatic, liver		3 (8%)	
Lymph node, mandibular	(50)	(50)	
Lymph node, mesenteric	(50)	(50)	
Spleen	(50)	(49)	
Hemangiosarcoma, metastatic, liver		1 (2%)	
Thymus	(49)	(49)	
Thymoma benign	1 (2%)		
Integumentary System			
Skin	(50)	(50)	
Keratoacanthoma	2 (4%)	1 (2%)	
Squamous cell papilloma	1 (2%)		
Subcutaneous tissue, fibroma	2 (4%)		
Musculoskeletal System			
Bone	(50)	(50)	
Osteosarcoma	(33)	1 (2%)	
Skeletal muscle	(1)	(5)	
Nervous System			
Brain	(50)	(50)	
Respiratory System			
Lung	(50)	(50)	
Alveolar/bronchiolar adenoma	(00)	3 (6%)	
Alveolar/bronchiolar carcinoma	1 (2%)		
Chordoma, metastatic, mesentery		1 (2%)	
Hemangiosarcoma, metastatic, liver		26 (52%)	
Hepatocholangiocarcinoma, metastatic, liver		1 (2%)	
Special Senses System			
Ear	(1)	(1)	
Neural crest tumor	(-)	1 (100%)	
Urinary System			
Kidney	(50)	(50)	
Urinary bladder	(50)	(50)	
	(**)		
Systemic Lesions	(50)	(50)	
Multiple organs ^b	(50)	(50)	
Leukemia mononuclear	2 (4%)	9 (18%)	
Lymphoma malignant	4 (00/>	2 (4%)	
Mesothelioma malignant	4 (8%)	3 (6%)	

	Vehicle Control	1 mg/kg	
Neoplasm Summary			
Total animals with primary neoplasms ^c	47	49	
Total primary neoplasms	73	85	
Total animals with benign neoplasms	47	15	
Total benign neoplasms	64	23	
Total animals with malignant neoplasms	9	47	
Total malignant neoplasms	9	60	
Total animals with metastatic neoplasms	1	30	
Total metastatic neoplasms	4	39	
Total animals with uncertain neoplasms-			
benign or malignant		1	
Total uncertain neoplasms		2	

Summary of the Incidence of Neoplasms in Male Rats in the 2-Year Gavage Study of Riddelliine

a b Number of animals examined microscopically at the site and the number of animals with neoplasm

Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms с

	-		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4		•	4
Number of Days on Study	6		9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9)	-
	8	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	8	8	8	8	8	3	8
	0	0	0	0	0	0			0					0	0	0	0	0	0	0	0)	
Carcass ID Number	4 5	0 1	0 2	0 3	0 4	0 5	0 6	0 7	0 8		1 0	1 1		1 3		1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2		2 3	
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	ł	+
Intestine large, colon	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	$^+$	$^+$	+	+	$^+$	+	+	-	F	+
Intestine large, rectum	+	+	+	+	+	$^+$	$^+$	+	+	+	+	+	М	+	+	+	$^+$	+	$^+$	+	+	+	+	+	ł	+
Intestine large, cecum	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	$^+$	$^+$	+	+	$^+$	+	+	-	F	+
Intestine small, duodenum	+	$^+$	+	+	+	+	$^+$	+	+	+	+	+	$^+$	+	+	+	$^+$	$^+$	+	$^+$	$^+$	+	+	-	ł	+
ntestine small, jejunum	+	+	+	+	+	$^+$	$^+$	+	+	+	+	+	$^+$	+	+	+	$^+$	$^+$	+	$^+$	$^+$	+	+	-	F	+
ntestine small, ileum	+	+	+	+	+	$^+$	$^+$	$^+$	+	М	$^+$	+	+	+	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	+	+	-	ł	+
Liver Mesothelioma malignant, metastatic,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	ł	+
peritoneum	Х																									
Aesentery	+	$^+$		$^+$	$^+$			$^+$															+			+
ancreas	+	$^+$	+	+	+	+	$^+$	+	+	+	+	+	$^+$	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	-	ł	+
Acinus, adenoma																							Х			
alivary glands	+	$^+$	+	$^+$	+	$^+$	$^+$	$^+$	+	+	$^+$	+	$^+$	+	+	$^+$	$^+$	$^+$	$^+$	+	$^+$	+	+	- +	ł	+
stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	ł	+
tomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	ł	+
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		ł	+
Endocrine System																										
Adrenal cortex	+	+	+	+	+	$^+$	+	+	+					М		+	$^+$	+	+	+	+	+	+	-	ł	+
Adrenal medulla	+	+	+	+	+	+	+	+	+	+		+	+	М	+	+	+	+	+	+	+	+	+	-	ł	+
Pheochromocytoma benign											Х															
Islets, pancreatic		+	+	+	+	+			+					+	+	+	+	+	+	+	+	+	+	-	ł	+
Parathyroid gland	+	+	+	+	+		Μ				+		+	+	+	+		+	+	+	+	+	+	-	ł	+
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+		+		+	+	+	+		+	+
Pars distalis, adenoma										Х				Х			Х		Х	Х		Х		Σ	ľ	
Pars distalis, carcinoma																										
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	ł	+
C-cell, adenoma											Х							Х								
C-cell, carcinoma																										
General Body System																										
Peritoneum	+					+													$^+$			+				

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	Δ	4	4	4	
Number of Days on Study	9	9		9	9	9	9	9	9	9	9	9		9	9	9	9	9	9	9	9	9	9		9	
Number of Duys on Study	8	~			8																			8		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Tota
Carcass ID Number	2 5	2 6	2 7	2 8	2 9	3 0	3 1	3 2	3 3	3 4	3 5	3 6	3 7	3 8	3 9	4 0	4 1	4 2	4 3	4 4	4 6	4 7	4 8	4 9	5 0	sues
Alimentary System																										
Esophagus	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	5
Intestine large, colon	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	5
Intestine large, rectum	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	Ι	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	4
Intestine large, cecum	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	5
Intestine small, duodenum	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	5
Intestine small, jejunum	+	$^+$	+	+	+	$^+$	+	+	$^+$	$^+$	+	+	+	+	+	$^+$	$^+$	+	+	$^+$	+	+	+	+	+	5
Intestine small, ileum	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	4
Liver	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	5
Mesothelioma malignant, metastatic, peritoneum																										
Mesentery																								+		:
Pancreas	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Acinus, adenoma																										
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Pheochromocytoma benign															Х											
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Parathyroid gland	+	+	+	+	+	+	+	+	Μ	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Pituitary gland Pars distalis, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		$^+_{\rm X}$	+	$^+_{\rm X}$	+	+	+	$^+$ X	+	5 1
Pars distalis, carcinoma								Х																		
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
C-cell, adenoma															Х											
C-cell, carcinoma						Х																				
General Body System																										

Number of Days on Study	4 6 8	-	4 9 7	4 9 7	-	4 9 7	4 9 7		4 9 7	-	-	~		4 9 7		4 9 7				4 9 8			~	9	-
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carcass ID Number	4 5	0 1		0 3	0 4		0 6																		
Genital System																									
Epididymis Mesothelioma malignant, metastatic,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
peritoneum Preputial gland	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+				+	+	+	+	+	+
Seminal vesicle Mesothelioma malignant, metastatic, peritoneum	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Festes Bilateral, interstitial cell, adenoma		+	+	+	$^+_{\rm X}$	+	+	+	+	+	+		$^+_{\rm X}$	+	+	+	+	$^+_{\rm X}$	+	+	+	+	$^+_{\rm X}$	+	$^+$ X
Interstitial cell, adenoma	Х			Х		Х	Х	Х	Х	Х		Х		Х	Х	Х			Х		Х				
Iematopoietic System	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
.ymph node .ymph node, mandibular	+	+	+ +	+	+	+ +	+ +	+	+	+	+	+	+ +	+	+	+ +	+ +	+	+ +	+	+	+	+++	+	+
Lymph node, mesenteric Spleen	++++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +
Thymus Thymoma benign	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$ X	+	+	+	+
ntegumentary System																									
Mammary gland Skin Keratoacanthoma	++	+ +	+ +	+ +	+ +	+ +			+ + X			+ +	+ +	+ +	+	+	+ +	+ +	++	+ +	++	+	+	+ +	
Squamous cell papilloma Subcutaneous tissue, fibroma			х						л																Х
Musculoskeletal System																									
Sone Skeletal muscle	+++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Mesothelioma malignant, metastatic, peritoneum	Х																								
Nervous System							+		+		+		+	+		+				+					
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Respiratory System ung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Alveolar/bronchiolar carcinoma Nose	+	+	+	+	+	+		+		+		+	+	+	+	+	+	+	+	+	+	+	+	+	+
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Special Senses System Ear					+																				

Individual Animal Tumor Patholog		-				-						8-			-									-		-	
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4		
Number of Days on Study	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9		
	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Tota
Carcass ID Number	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5		Tissue
	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	6	7	8	9	0		Tumor
Genital System																											
Epididymis	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	$^+$	$^+$	$^+$	$^+$	+	+	+	+	+	+	+	+		5
Mesothelioma malignant, metastatic, peritoneum																											
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+		5
Adenoma																					Х						
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+		+		5
Seminal vesicle Mesothelioma malignant, metastatic, peritoneum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		5
Festes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		5
Bilateral, interstitial cell, adenoma			x		'	x			x			x			x				x				X		x		1
Interstitial cell, adenoma					Х		Х			Х				Х		Х	Х				Х						2
Iematopoietic System																											
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+		-
.ymph node .ymph node, mandibular	+	+	+	++	+	+	+	+	+	-	++	-	+	+	+	+	++	+	+	+	+	-	-	+	++		1
ymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		4
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		4
Thymus	+	+	+	+	+	+	+	+	+	Ι	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		2
Thymoma benign																											
ntegumentary System																											
Mammary gland	+	+	+	+	M +							M +		Μ				++									4
Skin Keratoacanthoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X		5
Squamous cell papilloma								Х																	Λ		
Subcutaneous tissue, fibroma																											
Musculoskeletal System																											
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		5
Skeletal muscle																											
Mesothelioma malignant, metastatic, peritoneum																											
Nervous System																,											-
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		5
Respiratory System	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		5
Alveolar/bronchiolar carcinoma	т	1	1	1	1	'		1	'	1	1	1	1	1	1	1	'		1	'			1	1			
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		5
Frachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		5
Special Senses System																											
Ear																											

TABLE A2 Individual Anin

Individual Animal Tumor Patholog				.5 1		inc	-	10		0.		50,		143	01		uu			••					/1101
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Number of Days on Study	6	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
	8	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	8	8	8	8	8	8
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carcass ID Number	4	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2
	5	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4
Urinary System																									
Kidney	+	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	+	$^+$	$^+$	$^+$	+	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	+
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Systemic Lesions																									
Multiple organs Leukemia mononuclear	+	+	+	+	+	+	+	$^+$ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Mesothelioma malignant	х					х		л											х			х			

Individual Animal Tumor Pathology	of Ma	le	Ra	ts i	in t	the	2-	Yea	ar	Ga	va	ge	Stu	idy	01		100	iell	un	e:	Ve	ehi	cle	C	ontrol	
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
Number of Days on Study	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	
	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Tota
Carcass ID Number	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	Tissues
	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	6	7	8	9	0	Tumors
Urinary System																										
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Systemic Lesions																										
Multiple organs	+	+	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	+	$^+$	+	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	+	50
Leukemia mononuclear Mesothelioma malignant																	Х									2

 TABLE A2

 Individual Animal Tumor Pathology of Male Rats in the 2-Year Gavage Study of Riddelliine: Vehicle Control

mber of Days on Study	2 0	2	2	3	2	2	2	-	-																
mber of Days on Study	0				3	3	3		3		3			3		3	3	4	4	4	4	4	4		4
	4	6 6	9 7	0 7	1 4	1 8	2 1	2 7	4 2		7 3		7 5	8 8	9 7	9 7	9 8	0 0		0 2	0 2	0 3	0 7	0 7	0 8
	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
rcass ID Number	0 6	0 7	0 6	0 6	0 6		0 8		0 7		0 7	8	1 0	5	0 5		0 9	0 8	0 8	0 5	0 9	0 5	0 9		0 7
								6	4	5														9	
mentary System																									
pphagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
stine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
stine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
stine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
estine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
estine small, jejunum estine small, ileum	+	+	+	+	+	+	+	+	++	++	++	+	++	A +	++	+ +	+ +	++	++	A	+	+	+	+	+
er	+	++	++	++	++	++	+	++	++		++	++			++		++			A +	++	++	++	++	+
er Hemangiosarcoma	+	Ŧ	Ŧ	Ŧ	-		+ X	-	+ X	-				+ X			7"	+ X	T	-	+ X	т	+ X		т
Hemangiosarcoma, multiple				Х	Х	Л	Λ	Х		Х	л	Λ	Λ	л	Λ		X X	л		Х	Л	Х			Х
Hepatocellular adenoma Hepatocellular adenoma, multiple																	л		v				Х		
Iepatocholangiocarcinoma sentery															+				X +			+			
hordoma, metastatic, mesentery			+ X												+				+			+			
emangiosarcoma, metastatic, liver			л																			Х			
reas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+
mangiosarcoma, metastatic, liver inus, adenoma	1	'						I	1		1			1	1	1	1			1		1			
vary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ich, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
diovascular System																									
rt	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
locrine System enal cortex	-	-	+	+	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
renal medulla	+	+	-r +	+	+	+	+	+	+	++	+		+		++	+	++	+	+	+	+	+	+	+	+
heochromocytoma benign	ſ	'			1			'				1	1						ſ	1		1	1.	1.	1.
s, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
tary gland	+	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	+	+	+	+	+	+	+	+	$^+$	+
ars distalis, adenoma																									
oid gland	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	+	+	+	+	+	+	+	+	$^+$	+
cell, adenoma				Х																					
eral Body System								+											+						
								'											'						
nital System																									
didymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+		+	+	+	+	+	+
utial gland arcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		$^+_{\rm X}$	+	+	+	+	+	+	+	+
state	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+
inal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+		+	+	+	+	+		+
es	+	$^+$	+	+	+	+	+	+	+	+	+	+			+			+		+			+		+

Individual Animal Tumor Patholog	gy of Ma	le	па	15 1	шı	ne	2 -	1 82		Ga	va	ge	511	luy	01	K	luu	en		e:	11	ing	/ Kg	;		
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-	4	
Number of Days on Study	1	1		1 4	1 4	1 5	1 5		1 9				3	4	4	4	4		6	6	7	8 3	9 7	9 7		
	0	1	2	4	4	5	5	0	9	2	4	3	/	0	0	0	9	/	2	3	/	3	/	/	/	
	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	-	Tot
Carcass ID Number	7 6	9 7	8 8	6 5	7 8		9 6		7 0		9 3			8 4	9 0		7 7					6 9	5 2	5 4		Tissue Tumo
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
ntestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
ntestine large, rectum	+	+	+	+	+	+	+	+	+	+	Ι	+	+	+	+	+	+	+	+	+	+	+	+	+	Ι	4
ntestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	А	+	+	+	4
ntestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Intestine small, jejunum	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+	+	+	+	+	4
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	-
Hemangiosarcoma	37	v	v	v	v	v	v	v	v	v	v	Х	v	Х	Х	Х	Х	v	Х	v	Х	v	v			1
Hemangiosarcoma, multiple	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х				v	Х		Х		Х	Х			2
Hepatocellular adenoma Hepatocellular adenoma, multiple																	Х				Х					
Hepatocholangiocarcinoma Mesentery		+			+		+										+				+					
		Ŧ			Ŧ		т										т				Ŧ					
Chordoma, metastatic, mesentery					v		v														v					
Hemangiosarcoma, metastatic, liver Pancreas	+	+	+	+	X +	+	X +	+	+	-	+	+	+	+	+	-	-	-	-	+	X +	+	-	+	+	
Hemangiosarcoma, metastatic, liver	T	Т	т	Ŧ	т	Ŧ	т	т	т	Ŧ	T	т	т	Х	т	Ŧ	т	Ŧ	Х	T	Ŧ	т	т	т	т	
Acinus, adenoma														Λ					Λ						Х	
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	л +	5
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	5
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+		+				+			+	+	+	+	+	5
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	4
Pheochromocytoma benign				Х														Х								
slets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Parathyroid gland	+			М				+				+							+	+		+				4
Pituitary gland	+	+	+		+	+	+	+	+	+	+	Μ	+	+	+	+	+	+		+	+	+	+	+	+	2
Pars distalis, adenoma				Х															Х							
Thyroid gland C-cell, adenoma	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	4
General Body System																										
Peritoneum																				+						
Genital System	.1	<u>т</u>	_L	_L	_L	_L	4	+	_L	_L	-L	_L	_L	_L	+	+	+	+	+	_L_	_L	_L	_L	_L	+	:
Epididymis Proputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	т _	
Preputial gland Carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
						J	L	_						5	_	_	_	_	L	J	J	J			+	4
Prostate Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	4
Testes	+	+ +	т _	+ +	+	+	+	+	+	+	+	+	+	+	+		+	+	+	++	+	+	+	+	+	4
Interstitial cell, adenoma	т	т	т	т	Г	т Х	Г	ſ	Г	т	Г	Г	Г	Г	ſ	1-	ſ	1-	т Х	Г	Г	Т	Г	Х	v	
mersuuai cen, auchoina						Λ													Λ			Λ		Λ	Λ	

Individual Animal Tumor Pathology of	1 1/10											, 		v								0			
	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4
Number of Days on Study	0				1						7		7							0	0	0	0	0	
	4	6	7	7	4	8	1	7	2	4	3	3	5	8	7	7	8	0	0	2	2	3	7	7	8
	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Carcass ID Number	6	7												5						5				9	
														1							2	5			
Iematopoietic System Bone marrow	+	+	+	+	+	+	٨	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymph node	+		+	+	+		+	'	+	+	+	+		+	+	+		+	+	+	+	+	+		+
Mediastinal, hemangiosarcoma, metastatic, liver										X															
ymph node, mandibular	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymph node, mesenteric	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Spleen	+	+	+	+	+	+	А	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+
Hemangiosarcoma, metastatic, liver																		Х							
ĥymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+
ntegumentary System																									
Aammary gland Skin	+	+	+	+	M	М			+	+	+ +	+	+	+	+		М			+	+	+	+	+	
kin Keratoacanthoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+ X	+	+	+	+	+
Iusculoskeletal System																									
Sone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Osteosarcoma																								Х	
xeletal muscle			+											+											+
Vervous System																									
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
eripheral nerve			+		+					+															
pinal cord			+		+					+															
Respiratory System																									
ung Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Chordoma, metastatic, mesentery			Х																						
Hemangiosarcoma, metastatic, liver				Х				Х	Х	Х	Х			Х	Х		Х	Х			Х	Х	Х		
Hepatocholangiocarcinoma, metastatic, liver																			Х						
lose	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	т	T	T	Ŧ	T	Ŧ	Ŧ	+	T	Ŧ	Ŧ	T	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ
rachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Special Senses System														-											
Neural crest tumor														+ X											
Jrinary System																									
Cidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Jrinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Systemic Lesions																									
Aultiple organs	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear	Х								Х																
Lymphoma malignant			Х					v											v						
Mesothelioma malignant								Х											Х						

Individual Animal Tumor Pathology	DI IVI	ale	Ka	ts	in 1	tne	Z-	Y ea	ar	Ga	iva	ge	Sti	uay	0	I K	100	ien	lin	e:	1	mg	/K	5		
	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
Number of Days on Study	1	1	1	1	1	1	1	1	1	2	2		3		4	4	4		6	6	7			9		
	0	1	2	4	4	5	5	8	9	2	4	3	7	0	0	6	9	7	2	3	7	3	7	7	7	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Tota
arcass ID Number	7 6			6 5				7 5		6 3				8 4	9 0		7 7			7 1				5 4	9 8	Tissues Tumors
ematopoietic System																										
one marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
mph node	+	+	+			+	+		+	+	+	+	+	+	+	+	+	+	+	+		+	+		+	39
Mediastinal, hemangiosarcoma, metastatic, liver										Х								Х								3
mph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
mph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
lleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Hemangiosarcoma, metastatic, liver nymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 49
tegumentary System																										
ammary gland	+	Μ	Μ	+	М	+	+	М	+	М	М	М	+	+	+	+	+	+	М	+	+	+	+	+	М	38
tin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Keratoacanthoma																										1
usculoskeletal System																										
one	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Osteosarcoma eletal muscle						+									+											1 5
ervous System																										
ain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ripheral nerve inal cord															+ +									+ +		5 5
espiratory System																										
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma Chordoma, metastatic, mesentery						Х										Х						Х				3
Hemangiosarcoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver	Х		Х	Х	Х		Х	Х		Х	Х		Х		Х			Х	Х			Х	Х			26 1
ose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
achea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ecial Senses System r																										1
Neural crest tumor																										1
rinary System																										
idney rinary bladder	++	+ +	50 50																							
vstemic Lesions																										
ultiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear					Х				Х	Х		Х					Х	Х				Х				9
Lymphoma malignant Mesothelioma malignant															Х					х						23
wesomenoma mangnant																				л						3

TABLE	A3

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	1 mg/kg
Liver: Hemangiosarcoma		
Overall rate	0/50 (0%)	43/50 (86%)
Overall rate ^a Adjusted rate ^b	0.0%	92.5%
Ferminal rate ^c	0/49 (0%)	1/3 (33%)
First incidence (days)	e	307
oly-3 test ^d		P<0.001
liver: Hepatocellular Adenoma		
Overall rate	0/50 (0%)	4/50 (8%)
djusted rate	0.0%	13.7%
erminal rate	0/49 (0%)	0/3 (0%)
irst incidence (days)	—	398
oly-3 test		P=0.033
ung: Alveolar/bronchiolar Adenoma		
Overall rate	0/50 (0%)	3/50 (6%)
Adjusted rate	0.0%	10.5%
Ferminal rate	0/49 (0%)	0/3 (0%)
irst incidence (days)	—	415
Poly-3 test		P=0.088
Lung: Alveolar/bronchiolar Adenoma or C		
Overall rate	1/50 (2%)	3/50 (6%)
djusted rate	2.0%	10.5%
erminal rate	1/49 (2%)	0/3 (0%)
irst incidence (days)	497 (T)	415
Poly-3 test		P=0.211
Pituitary Gland (Pars Distalis): Adenoma		
Overall rate	11/50 (22%)	2/49 (4%)
adjusted rate	22.1%	7.2%
erminal rate	11/49 (22%)	0/3 (0%)
irst incidence (days)	497 (T)	414
oly-3 test		P=0.128N
Pituitary Gland (Pars Distalis): Adenoma		
Overall rate	12/50 (24%)	2/49 (4%)
Adjusted rate	24.1%	7.2%
erminal rate	12/49 (25%) 497 (T)	0/3 (0%) 414
irst incidence (days) oly-3 test	497 (T)	414 P=0.094N
skin: Squamous Cell Papilloma or Kerato	acanthoma	
Overall rate	3/50 (6%)	1/50 (2%)
Adjusted rate	6.0%	3.5%
erminal rate	3/49 (6%)	0/3 (0%)
irst incidence (days)	497 (T)	402
oly-3 test	~ (-)	P=0.613N
Sestes: Adenoma		
Overall rate	39/50 (78%)	7/50 (14%)
djusted rate	78.0%	23.6%
erminal rate	38/49 (78%)	2/3 (67%)
irst incidence (days)	468	342
Poly-3 test		P<0.001N

TABLE	A3
-------	----

Statistical Analysis of Primary Neoplasms in Male Rats in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	1 mg/kg
Thyroid Gland (C-cell): Adenoma		
Overall rate	3/50 (6%)	3/50 (6%)
Adjusted rate	6.0%	10.3%
Terminal rate	3/49 (6%)	1/3 (33%)
First incidence (days)	497 (T)	307
oly-3 test	497 (1)	P=0.479
Thyroid Gland (C-cell): Adenoma or (Carcinoma	
Overall rate	4/50 (8%)	3/50 (6%)
Adjusted rate	8.0%	10.3%
erminal rate	4/49 (8%)	1/3 (33%)
irst incidence (days)	497 (T)	307
Poly-3 test		P=0.592
All Organs: Mononuclear Cell Leuken	nia	
Dverall rate	2/50 (4%)	9/50 (18%)
Adjusted rate	4.0%	28.5%
Ferminal rate	2/49 (4%)	0/3 (0%)
irst incidence (days)	497 (T)	204
oly-3 test		P=0.004
All Organs: Malignant Mesothelioma		
Overall rate	4/50 (8%)	3/50 (6%)
Adjusted rate	8.0%	10.3%
erminal rate	3/49 (6%)	0/3 (0%)
First incidence (days)	468	327
Poly-3 test		P=0.593
All Organs: Benign Neoplasms		
Overall rate	47/50 (94%)	15/50 (30%)
Adjusted rate	94.0%	45.9%
erminal rate	46/49 (94%)	2/3 (67%)
First incidence (days)	468	307
Poly-3 test		P<0.001N
All Organs: Malignant Neoplasms		
Overall rate	9/50 (18%)	47/50 (94%)
Adjusted rate	18.0%	95.6%
erminal rate	8/49 (16%)	1/3 (33%)
irst incidence (days)	468	204
oly-3 test		P<0.001
All Organs: Benign or Malignant Neo		
Overall rate	47/50 (94%)	49/50 (98%)
Adjusted rate	94.0%	99.7%
erminal rate	46/49 (94%)	3/3 (100%)
First incidence (days)	468	204
Poly-3 test		P=0.144

(T)Terminal sacrifice

^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for liver, lung, pituitary gland, testes, and thyroid gland; for other tissues, denominator is number of animals necropsied.

b Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality

C Observed incidence at terminal kill

Beneath the dosed group incidence is the P value corresponding to a pairwise comparison between the vehicle controls and the dosed group. The Poly-3 test accounts for the differential mortality in animals that do not reach terminal sacrifice. A lower incidence in the dosed group is indicated by N.

e Not applicable; no neoplasms in animal group

	Inciden	ce in Controls	
Study	Hemangiosarcoma	Hepatocellular Adenoma	
Historical Incidence in Controls Given NTP-200	0 Diet ^a		
Citral (feed)	0/100	0/100	
<i>p</i> , <i>p</i> '-Dichlorodiphenyl sulfone (feed)	0/50	0/50	
Indium phosphide (inhalation)	0/50	0/50	
60-Hz Magnetic fields (whole body exposure)	0/100	1/100	
Methacrylonitrile (gavage)	0/50	1/50	
Naphthalene (inhalation)	0/49	1/49	
o-Nitrotoluene (feed)	0/60	2/60	
<i>p</i> -Nitrotoluene (feed)	0/50	0/50	
Sodium nitrite (drinking water)	0/50	0/50	
Vanadium pentoxide (inhalation)	0/50	0/50	
Overall Historical Incidence in Controls Given N	TP-2000 Diet		
Total (%)	0/609	5/609 (0.8%)	
Mean \pm standard deviation		$0.8\% \pm 1.2\%$	
Range		0%-3%	
Overall Historical Incidence in Water Gavage C	ontrols Given NIH-07 Diet ^b		
Total (%)	0/50	1/50 (2.0%)	

TABLE A4a Historical Incidence of Liver Neoplasms in Control Male F344/N Rats

a b

Data as of January 17, 2001 Data as of December 21, 1999

Study	Incidence in Controls
Historical Incidence in Controls Given NTP-2000 Diet ^a	
Citral (feed)	68/100
<i>v</i> , <i>p</i> '-Dichlorodiphenyl sulfone (feed)	27/50
Indium phosphide (inhalation)	16/50
60-Hz Magnetic fields (whole body exposure)	50/100
Methacrylonitrile (gavage)	20/50
Naphthalene (inhalation)	26/49
<i>p</i> -Nitrotoluene (feed)	30/60
v-Nitrotoluene (feed)	24/50
Sodium nitrite (drinking water)	17/50
Vanadium pentoxide (inhalation)	22/50
Overall Historical Incidence in Controls Given NTP-2000 I	Diet
Total (%)	300/609 (49.3%)
Mean \pm standard deviation	$47.3\% \pm 10.5\%$
Range	32%-68%
Overall Historical Incidence in Water Gavage Controls Giv	ven NIH-07 Diet ^b
Total (%)	33/50 (66.0%)
Overall Historical Incidence for 2-Year Studies (All Routes that had Scheduled Sacrifices at Approximately 15 Months	Except Corn Oil Gavage) with Controls Given NIH-07 Diet
Total (%)	11/488 (2.2%)
Mean \pm standard deviation	$2.2\% \pm 6.3\%$
Range	0%-33%

TABLE A4b Historical Incidence of Mononuclear Cell Leukemia in Control Male F344/N Rats

a b Data as of January 17, 2001; includes data for lymphocytic, monocytic, and undifferentiated leukemia

Data as of December 21, 1999; includes data for lymphocytic, monocytic, and undifferentiated leukemia Data as of August 29, 2001; includes data for lymphocytic, monocytic, and undifferentiated leukemia

с

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Riddelliine^a

	Vehicle Control	1 mg/kg
Disposition Summary		
Animals initially in study	50	50
	50	50
Early deaths Accidental deaths		2
Moribund	1	2 9
Natural deaths	1	
		36
Survivors	40	2
Terminal sacrifice	49	3
Animals examined microscopically	50	50
Alimentary System		
Esophagus	(50)	(50)
Perforation		1 (2%)
Intestine large, cecum	(50)	(49)
Edema	1 (2%)	3 (6%)
Intestine small, duodenum	(50)	(50)
Hemorrhage	()	1 (2%)
Necrosis		1 (2%)
Liver	(50)	(50)
Basophilic focus	32 (64%)	21 (42%)
Clear cell focus	3 (6%)	5 (10%)
Degeneration, cystic	1 (2%)	3 (6%)
Eosinophilic focus		15 (30%)
	3 (6%)	
Hematopoietic cell proliferation		2 (4%)
Hemorrhage	4 (00/)	4 (8%)
Hepatodiaphragmatic nodule	4 (8%)	4 (8%)
Infiltration cellular, mixed cell	8 (16%)	
Metaplasia, osseous		1 (2%)
Mixed cell focus	3 (6%)	7 (14%)
Necrosis, focal		23 (46%)
Bile duct, hyperplasia	48 (96%)	37 (74%)
Hepatocyte, cytomegaly		32 (64%)
Hepatocyte, hyperplasia, atypical		1 (2%)
Hepatocyte, hyperplasia, regenerative		49 (98%)
Hepatocyte, vacuolization cytoplasmic	30 (60%)	5 (10%)
Kupffer cell, pigmentation		1 (2%)
Mesentery	(8)	(9)
Accessory spleen	1 (13%)	1 (11%)
Fat, necrosis	7 (88%)	3 (33%)
Pancreas	(50)	(50)
Atrophy	7 (14%)	7 (14%)
Acinus, cytoplasmic alteration	1 (2%)	
Acinus, hyperplasia, focal	- (-/)	1 (2%)
Salivary glands	(50)	(50)
Atrophy	(00)	1 (2%)
Necrosis		2 (4%)
Stomach, forestomach	(50)	(50)
Edema	(50)	2 (4%)
Ulcer		3 (6%)
	(50)	
Stomach, glandular	(50)	(50)
Erosion		10 (20%)
Hemorrhage		1 (2%)
Ulcer		6 (12%)

^a Number of animals examined microscopically at the site and the number of animals with lesion

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Riddelliine

	Vehicle	Control	1 n	ng/kg	
Cardiovascular System					
Heart	(50)		(50)		
Cardiomyopathy		(64%)		(56%)	
Myocardium, hemorrhage			1	(2%)	
Endocrine System					
Adrenal cortex	(49)		(50)		
Accessory adrenal cortical nodule	8	(16%)	1	(2%)	
Degeneration, fatty	5	(10%)		(8%)	
Hyperplasia, diffuse				(2%)	
Hyperplasia, focal		(6%)	1	(2%)	
Hypertrophy	1	(2%)	1	(20/)	
Necrosis	(50)			(2%)	
Pituitary gland	(50)	(8%)	(49)	(1%)	
Pars distalis, cyst Pars distalis, hyperplasia, focal		(8%) (10%)		(4%) (8%)	
Thyroid gland	(50)	(1070)	(50)	(070)	
Ultimobranchial cyst	(50)			(2%)	
C-cell, hyperplasia	4	(8%)		(2%)	
Follicle, cyst		(2%)		(270)	
General Body System None					
Genital System	(50)		(50)		
Epididymis Atypia cellular	(50)	(18%)	(50)	(18%)	
Preputial gland	(50)	(1070)	(50)	(1070)	
Inflammation, chronic		(48%)		(32%)	
Prostate	(50)	(10,0)	(50)	(5270)	
Inflammation, chronic		(36%)		(30%)	
Testes	(50)		(50)		
Atrophy	3	(6%)	6	(12%)	
Interstitial cell, hyperplasia	22	(44%)	12	(24%)	
Hematopoietic System					
Bone marrow	(50)		(49)		
Done marrow				(720())	
	1	(2%)		(75%)	
Hyperplasia Myelofibrosis	1	(2%)	36	(73%) (2%)	
Hyperplasia Myelofibrosis Lymph node	1 (13)	(2%)	36		
Hyperplasia Myelofibrosis Lymph node Bronchial, hemorrhage		(2%)	36 1 (39) 1	(2%) (3%)	
Hyperplasia Myelofibrosis Lymph node Bronchial, hemorrhage Bronchial, pigmentation		(2%)	36 1 (39) 1 1	(2%) (3%) (3%)	
Hyperplasia Myelofibrosis Lymph node Bronchial, hemorrhage Bronchial, pigmentation Iliac, necrosis	(13)		36 1 (39) 1 1 1	(2%) (3%) (3%) (3%)	
Hyperplasia Myelofibrosis Lymph node Bronchial, hemorrhage Bronchial, pigmentation Iliac, necrosis Mediastinal, congestion	(13)	(23%)	36 1 (39) 1 1 1 1	(2%) (3%) (3%) (3%) (28%)	
Hyperplasia Myelofibrosis Lymph node Bronchial, hemorrhage Bronchial, pigmentation Iliac, necrosis Mediastinal, congestion Mediastinal, hemorrhage	(13) 3 3	(23%) (23%)	36 1 (39) 1 1 1 1	(2%) (3%) (3%) (3%)	
Hyperplasia Myelofibrosis Lymph node Bronchial, hemorrhage Bronchial, pigmentation Iliac, necrosis Mediastinal, congestion Mediastinal, hemorrhage Mediastinal, hyperplasia	(13) 3 3	(23%)	36 1 (39) 1 1 1 1 11 20	(2%) (3%) (3%) (3%) (28%) (51%)	
Hyperplasia Myelofibrosis Lymph node Bronchial, hemorrhage Bronchial, pigmentation Iliac, necrosis Mediastinal, congestion Mediastinal, hemorrhage Mediastinal, hyperplasia Mediastinal, necrosis	(13) 3 1	(23%) (23%) (8%)	36 1 (39) 1 1 1 1 1 20	 (2%) (3%) (3%) (28%) (51%) (3%) 	
Hyperplasia Myelofibrosis Lymph node Bronchial, hemorrhage Bronchial, pigmentation Iliac, necrosis Mediastinal, congestion Mediastinal, hemorrhage Mediastinal, hyperplasia Mediastinal, necrosis Mediastinal, pigmentation	(13) 3 1	(23%) (23%)	36 1 (39) 1 1 1 1 1 20	 (2%) (3%) (3%) (28%) (51%) (3%) (51%) 	
Hyperplasia Myelofibrosis Lymph node Bronchial, hemorrhage Bronchial, pigmentation Iliac, necrosis Mediastinal, congestion Mediastinal, hemorrhage Mediastinal, hyperplasia Mediastinal, necrosis Mediastinal, pigmentation Pancreatic, hemorrhage	(13) 3 1	(23%) (23%) (8%)	36 1 (39) 1 1 1 1 1 20 2	 (2%) (3%) (3%) (28%) (51%) (3%) (51%) (5%) 	
Hyperplasia Myelofibrosis Lymph node Bronchial, hemorrhage Bronchial, pigmentation Iliac, necrosis Mediastinal, congestion Mediastinal, hemorrhage Mediastinal, hyperplasia Mediastinal, necrosis Mediastinal, pigmentation Pancreatic, hemorrhage Pancreatic, pigmentation	(13) 3 1	(23%) (23%) (8%)	36 1 (39) 1 1 1 1 1 20 2 2 2	 (2%) (3%) (3%) (28%) (51%) (3%) (51%) (5%) (5%) 	
Hyperplasia Myelofibrosis Lymph node Bronchial, hemorrhage Bronchial, pigmentation Iliac, necrosis Mediastinal, congestion Mediastinal, hemorrhage Mediastinal, hyperplasia Mediastinal, necrosis Mediastinal, pigmentation Pancreatic, hemorrhage	(13) 3 1	(23%) (23%) (8%)	36 1 (39) 1 1 1 1 1 20 2 2 2 3	 (2%) (3%) (3%) (28%) (51%) (3%) (51%) (5%) 	

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	1 mg/kg	
Hematopoietic System (continued)			
Lymph node, mandibular	(50)	(50)	
Congestion		1 (2%)	
Hemorrhage	2 (4%)	1 (2%)	
Pigmentation	1 (2%)	1 (2%)	
Lymph node, mesenteric	(50)	(50)	
Congestion	()	4 (8%)	
Hemorrhage	1 (2%)	8 (16%)	
Pigmentation	- (-//)	1 (2%)	
Spleen	(50)	(49)	
Congestion	(50)	24 (49%)	
Fibrosis	1 (2%)	1 (2%)	
Hematopoietic cell proliferation	1 (2%) 1 (2%)	23 (47%)	
Hyperplasia, reticulum cell	1 (270)	1 (2%)	
Necrosis			
	(40)	1 (2%)	
Thymus	(49)	(49)	
Hemorrhage		4 (8%)	
Integumentary System			
Mammary gland	(42)	(38)	
Cyst	1 (2%)	1 (3%)	
Hyperplasia	5 (12%)	2 (5%)	
Skin	(50)	(50)	
Cyst epithelial inclusion	1 (2%)	1 (2%)	
Hyperkeratosis	1 (2%)		
Subcutaneous tissue, fibrosis	1 (2%)		
Musculoskeletal System	(70)	(50)	
Bone	(50)	(50)	
Femur, osteopetrosis		2 (4%)	
Skeletal muscle	(1)	(5)	
Hemorrhage		3 (60%)	
Narvaus System			
Nervous System	(50)	(50)	
Brain	(50)	(50)	
Compression	2 (4%)		
Hydrocephalus	1 (2%)		
		(5)	
Spinal cord			
Spinal cord Hemorrhage		1 (20%) 1 (20%)	

TABLE A5	
----------	--

Summary of the Incidence of Nonneoplastic Lesions in Male Rats in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	1 mg/kg	
Respiratory System			
Lung	(50)	(50)	
Edema		5 (10%)	
Hemorrhage	1 (2%)	21 (42%)	
Infiltration cellular, polymorphonuclear		1 (2%)	
Infiltration cellular, histiocyte	42 (84%)	32 (64%)	
Metaplasia, osseous	2 (4%)	1 (2%)	
Alveolar epithelium, hyperplasia	3 (6%)	1 (2%)	
Nose	(50)	(50)	
Foreign body	5 (10%)	5 (10%)	
Hemorrhage	1 (2%)	2 (4%)	
Inflammation, chronic	7 (14%)	5 (10%)	
Respiratory epithelium, hyperplasia	7 (14%)	6 (12%)	
Special Senses System None			
None			
None Urinary System			
None Urinary System Kidney	(50)	(50)	
None Urinary System	(50)	(50) 1 (2%)	
None Urinary System Kidney Glomerulosclerosis Hydronephrosis	(50)	1 (2%) 2 (4%)	
None Urinary System Kidney Glomerulosclerosis Hydronephrosis Infarct	(50)	1 (2%) 2 (4%) 1 (2%)	
None Urinary System Kidney Glomerulosclerosis Hydronephrosis Infarct Inflammation, suppurative		$ \begin{array}{c} 1 (2\%) \\ 2 (4\%) \\ 1 (2\%) \\ 1 (2\%) \end{array} $	
None Urinary System Kidney Glomerulosclerosis Hydronephrosis Infarct Inflammation, suppurative Nephropathy	47 (94%)	1 (2%) 2 (4%) 1 (2%) 1 (2%) 38 (76%)	
None Urinary System Kidney Glomerulosclerosis Hydronephrosis Infarct Inflammation, suppurative Nephropathy Renal tubule, hyaline droplet		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
None Urinary System Kidney Glomerulosclerosis Hydronephrosis Infarct Inflammation, suppurative Nephropathy Renal tubule, hyaline droplet Renal tubule, necrosis	47 (94%) 1 (2%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
None Urinary System Kidney Glomerulosclerosis Hydronephrosis Infarct Inflammation, suppurative Nephropathy Renal tubule, hyaline droplet Renal tubule, necrosis Renal tubule, pigmentation	47 (94%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
None Urinary System Kidney Glomerulosclerosis Hydronephrosis Infarct Inflammation, suppurative Nephropathy Renal tubule, hyaline droplet Renal tubule, necrosis Renal tubule, pigmentation Transitional epithelium, hyperplasia	47 (94%) 1 (2%) 1 (2%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
None Urinary System Kidney Glomerulosclerosis Hydronephrosis Infarct Inflammation, suppurative Nephropathy Renal tubule, hyaline droplet Renal tubule, necrosis Renal tubule, pigmentation Transitional epithelium, hyperplasia Urinary bladder	47 (94%) 1 (2%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
None Urinary System Kidney Glomerulosclerosis Hydronephrosis Infarct Inflammation, suppurative Nephropathy Renal tubule, hyaline droplet Renal tubule, necrosis Renal tubule, pigmentation Transitional epithelium, hyperplasia	47 (94%) 1 (2%) 1 (2%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

APPENDIX B SUMMARY OF LESIONS IN FEMALE RATS IN THE 2-YEAR GAVAGE STUDY OF RIDDELLIINE

Summary of the Incidence of Neoplasms in Female Rats	
in the 2-Year Gavage Study of Riddelliine	94
Individual Animal Tumor Pathology of Female Rats	
in the 2-Year Gavage Study of Riddelliine	98
Statistical Analysis of Primary Neoplasms in Female Rats	
in the 2-Year Gavage Study of Riddelliine	126
Historical Incidence of Liver Neoplasms in Control Female F344/N Rats	131
Historical Incidence of Mononuclear Cell Leukemia	
in Control Female F344/N Rats	132
Historical Incidence of Thyroid Gland (C-cell) Neoplasms	
in Control Female F344/N Rats	133
Summary of the Incidence of Nonneoplastic Lesions in Female Rats	
in the 2-Year Gavage Study of Riddelliine	134
	in the 2-Year Gavage Study of Riddelliine Individual Animal Tumor Pathology of Female Rats in the 2-Year Gavage Study of Riddelliine Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Gavage Study of Riddelliine Historical Incidence of Liver Neoplasms in Control Female F344/N Rats Historical Incidence of Mononuclear Cell Leukemia in Control Female F344/N Rats Historical Incidence of Thyroid Gland (C-cell) Neoplasms in Control Female F344/N Rats Summary of the Incidence of Nonneoplastic Lesions in Female Rats

TABLE B1

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Gavage Study of Riddelliine^a

	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
Disposition Summary						
Animals initially in study	50	50	50	50	50	50
Early deaths						
Accidental deaths	2	6	3	2	3	
Moribund	9	11	13	14	16	19
Natural deaths	6	11	6	12	2	31
Survivors						
Terminal sacrifice	33	22	28	22	29	
Animals examined microscopically	50	50	50	50	50	50
Alimentary System						
Intestine large, colon	(49)	(50)	(50)	(47)	(50)	(50)
Lipoma	(10)	2 (4%)			(10)	
intestine large, rectum	(49)	(50)	(49)	(48)	(48)	(49)
Polyp adenomatous	1 (2%)	(50)	(10)	(17)	(50)	(50)
intestine large, cecum	(50)	(50)	(48)	(47)	(50)	(50)
ntestine small, jejunum	(50)	(43)	(47)	(43)	(50)	(49)
Polyp adenomatous Liver	(50)	(50)	1 (2%) (50)	(50)	(50)	(50)
Cholangiocarcinoma	()	()			1 (2%)	(0.0)
Hemangiosarcoma					3 (6%)	25 (50%
Hemangiosarcoma, multiple					×/	13 (26%
Hepatocellular carcinoma					1 (2%)	1 (2%)
Hepatocellular adenoma	1 (2%)					7 (14%
Hepatocellular adenoma, multiple					1 (2%)	
Mesentery	(10)	(10)	(18)	(14)	(13)	(5)
Hemangiosarcoma, metastatic, liver						2 (40%
Sarcoma stromal, metastatic, uterus					1 (8%)	
Dral mucosa				(2)		
Squamous cell carcinoma				1 (50%)		
Squamous cell papilloma				1 (50%)		
ancreas	(50)	(50)	(50)	(46)	(50)	(50)
Acinus, adenoma	1 (2%)					
Stomach, forestomach	(50)	(50)	(50)	(49)	(49)	(50)
Stomach, glandular	(50)	(50)	(50)	(49)	(49)	(50)
Fongue			(2)			
Squamous cell papilloma			2 (100%)			
Cardiovascular System	(20)	(50)	(50)	(50)	(70)	(50)
Heart	(50)	(50)	(50)	(50)	(50)	(50)
Endocrine System						
Adrenal cortex	(50)	(50)	(50)	(50)	(50)	(50)
Adenoma	1 (2%)	1 (2%)		1 (2%)	1 (2%)	
Carcinoma	(50)	1 (2%)	(50)	(50)	(50)	(FA)
Adrenal medulla	(50)	(49)	(50)	(50)	(50)	(50)
Pheochromocytoma malignant	1 (2%)		1 (2%)			
Pheochromocytoma benign	1 (2%)	5 (10%)	2 (4%)	1 (2%)	3 (6%)	1 (2%)
slets, pancreatic	(50)	(50)	(50)	(46)	(50)	(50)
Adenoma	2 (4%)	2 (4%)	4 (8%)		1 (2%)	
Carcinoma			1 (2%)			

TABLE B1

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Gavage Study of Riddelliine

	Vehicle	e Control	0.01	mg/kg	0.033	3 mg/kg	0.1	mg/kg	0.33	mg/kg	1 n	ng/kg
Endocrine System (continued)												
Pituitary gland	(50)		(48)		(50)		(49)		(50)		(49)	
Pars distalis, adenoma		(52%)		(44%)		(42%)		(35%)		(48%)		(14%)
Pars distalis, adenoma, multiple	1	(2%)	1	(2%)								
Pars intermedia, adenoma							1	(2%)			1	(2%)
Thyroid gland	(49)		(50)		(49)		(49)		(50)		(50)	
Bilateral, C-cell, adenoma	1	(2%)										
C-cell, adenoma	1	(2%)	4	(8%)	4	(8%)	6	(12%)	11	(22%)		
C-cell, carcinoma	1	(2%)										
Follicular cell, carcinoma			1	(2%)							1	(2%)
General Body System												
Peritoneum							(1)					
Genital System												
Clitoral gland	(49)		(49)		(49)		(48)		(49)		(50)	
Adenoma	5	(10%)	6	(12%)	8	(16%)	9	(19%)	3	(6%)		(4%)
Carcinoma	3	(6%)	2	(4%)	4	(8%)	3	(6%)	2	(4%)		
Bilateral, adenoma	2	(4%)	1	(2%)			1	(2%)	1	(2%)		
Dvary	(50)		(49)		(50)		(50)		(50)		(50)	
Granulosa cell tumor malignant			1	(2%)	1	(2%)	1	(2%)				
Luteoma	1	(2%)		. ,				. ,				
Jterus	(50)		(50)		(50)		(50)		(50)		(50)	
Carcinoma	1	(2%)										
Deciduoma benign					1	(2%)						
Leiomyoma	1	(2%)										
Leiomyosarcoma		. ,	1	(2%)								
Polyp stromal	9	(18%)	14	(28%)	15	(30%)	11	(22%)	9	(18%)	5	(10%)
Polyp stromal, multiple	2	(4%)		. /		. ,	1	(2%)		. ,		
Sarcoma stromal					2	(4%)	4	(8%)	2	(4%)		
Vagina	(2)		(3)		(3)		(4)		(5)			
Leiomyoma				(33%)	. /		. /					
Sarcoma stromal, metastatic, uterus							1	(25%)				
Hematopoietic System												
Bone marrow	(50)		(50)		(50)		(50)		(50)		(50)	
Lymph node	(26)		(24)		(36)		(19)		(21)		(40)	
Mediastinal, hemangiosarcoma, metastatic, liver	· · ·		(= -)		(2.5)		(->)		(-1)			(5%)
Lymph node, mandibular	(50)		(49)		(48)		(50)		(50)		(50)	(-, •)
ymph node, mesenteric	(50)		(50)		(50)		(47)		(49)		(49)	
spleen	(50)		(50)		(50)		(50)		(50)		(50)	
Thymus	(48)		(48)		(46)		(48)		(50)		(49)	
Thymoma benign	(40)			(2%)	(01)		(01)		(50)		(17)	
Thymoma malignant	1	(2%)	1	(-/)								

TABLE	B1
-------	-----------

Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
Integumentary System						
Mammary gland	(50)	(50)	(50)	(50)	(49)	(49)
Adenoma	1 (2%)	1 (2%)	1 (2%)	1 (2%)	1 (2%)	
Carcinoma	2 (4%)	3 (6%)	2 (4%)	15 (2.40/)	4 (8%)	1 (2%)
Fibroadenoma	16 (32%)	17 (34%)	22 (44%)	17 (34%)	18 (37%)	3 (6%)
Fibroadenoma, multiple	12 (24%)	4 (8%)	4 (8%)	7 (14%)	5 (10%)	(50)
Skin Basal cell adenoma	(50)	(50)	(49)	(50)	(50)	(50)
Basal cell carcinoma	1 (20/)	1 (2%)	1 (2%)			
Keratoacanthoma	1 (2%)	1 (2%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
Myxosarcoma	1 (2%)	1 (270)	1 (270)			
Schwannoma malignant	1 (2%) 1 (2%)					
Squamous cell papilloma	1 (270)	1 (2%)				
Subcutaneous tissue, fibroma	1 (2%)	1(2/0)	5 (10%)	3 (6%)		1 (2%)
Subcutaneous tissue, fibrosarcoma	1 (2%)		5 (1070)	5 (070)		1 (270)
Subcutaneous tissue, lipoma	1 (2%)					
Subcutaneous tissue, nponia	1 (270)					
Musculoskeletal System						
Skeletal muscle		(1)	(1)	(2)		(6)
Rhabdomyosarcoma			1 (100%)			
Nervous System						
Brain	(50)	(50)	(50)	(50)	(50)	(50)
Glioma malignant				1 (2%)		
Granular cell tumor malignant			1 (2%)			
Respiratory System						
Lung	(50)	(50)	(50)	(50)	(50)	(50)
Alveolar/bronchiolar adenoma	2 (4%)	(50)	(50)	3 (6%)	2 (4%)	(50)
Alveolar/bronchiolar carcinoma	2 (470)			5 (070)	1 (2%)	
Hemangiosarcoma					1 (270)	1 (2%)
Hemangiosarcoma, metastatic, liver					1 (2%)	17 (34%)
Hepatocellular carcinoma, metastatic,					- (-,*)	((()))
uncertain primary site		1 (2%)				
Special Senses System						
Zymbal's gland		(1)				
Carcinoma		1 (100%)				
Urinary System						
Kidney	(50)	(50)	(50)	(50)	(50)	(50)
Urinary bladder	(50)	(50)	(50)	(48)	(50)	(50)
Papilloma	1 (2%)		(00)	()		
Systemic Lesions						
Multiple organs	(50)	(50)	(50)	(50)	(50)	(50)
Leukemia mononuclear	(50) 12 (24%)	(50) 8 (16%)	(50) 13 (26%)	(50) 18 (36%)	(50) 18 (36%)	(50) 14 (28%)
Lymphoma malignant	12 (2470)	0 (10%)	13 (20%)	10 (30%)	18 (36%) 1 (2%)	
Mesothelioma malignant				1 (2%)	1 (270)	1 (2%)
wiesouienoma mangilant				1 12701		

	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
Neoplasm Summary						
Total animals with primary neoplasms ^c	47	47	48	47	50	50
Total primary neoplasms	115	102	119	109	113	84
Total animals with benign neoplasms	45	42	45	41	45	22
Total benign neoplasms	90	84	92	80	80	27
Total animals with malignant neoplasms	20	16	21	28	28	47
Total malignant neoplasms	25	18	27	29	33	57
Total animals with metastatic neoplasms		1		2	2	17
Total metastatic neoplasms		1		3	2	21
Total animals with malignant neoplasms						
of uncertain primary site		1				

TABLE B1 Summary of the Incidence of Neoplasms in Female Rats in the 2-Year Gavage Study of Riddelliine

a b Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms

c

TABLE B2

	2	4	4	4	4	~	~	~	~	~	~	~		~		7	7	7	7	7	7	7	7	7	7
Number of Days on Study	3 9	4		4 8		5 4		0 1				6 5			0 9	1	7 2	7 2	2	2	2	3	2	3	7 3
Tumber of Days on Study						5																0	0		0
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Carcass ID Number	4			4	1	4	4		1			0		1		4						0		0	
	6					2																			
Alimentary System																									
Esophagus	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	Ι	+	+	+	+	+	+	+	+	+	+	+
Polyp adenomatous						,				,				,	,	,	,			Х					
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ntestine small, ileum Liver	+	+	+	+	+	++	++	A +	+	+	++	++	+	+	+	+	+	+	+	+	+	+	+	+	+
Hepatocellular adenoma	+	+	+	+	+	+	Ŧ	Ŧ	Ŧ	+	+	+	+	+	Ŧ	+	+	Ŧ	+	+	+	+	+	+	+
Mesentery							+									+	+	+							+
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Acinus, adenoma	I				'			'		1							1		'					X	
alivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
tomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
tomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Cardiovascular System																									
Blood vessel			$^+$																						
Ieart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Endocrine System																									
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma								Х																	
drenal medulla Pheochromocytoma malignant	+	+	+	+	+	+	+	$^+$ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pheochromocytoma benign								11																	
slets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma																									
arathyroid gland	+	+	М	+	$^+$	+	+	+	+	$^+$	+	$^+$	+	+	+	$^+$	$^+$	+	+	$^+$	+	+	+	+	+
ituitary gland	+	$^+$	+	+	$^+$	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	$^+$	$^+$	+	$^+$	$^+$	+	+	+	$^+$	+
Pars distalis, adenoma						Х	Х	Х			Х		Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	
Pars distalis, adenoma, multiple																									
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Bilateral, C-cell, adenoma																									Х
C-cell, adenoma																									

General Body System

None

+: Tissue examined microscopically A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined TABLE **B2** Individual Anir

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Total
Carcass ID Number	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	3 2	3 4	3 5	4 7	4 8	4 9	5 0	0 6	0 7	0 8	0 9	1 0	1 3	3 6	3 7	3 9	4 0	Tissues/ Tumors
Alimentary System																										
Esophagus	+	Μ	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	М	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	48
Intestine large, colon	+	+	+	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	М	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	+	49
Intestine large, rectum	+	+	+	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	+	49
Polyp adenomatous																										1
Intestine large, cecum	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatocellular adenoma									Х																	1
Mesentery						+		+									+					+		+		10
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Acinus, adenoma																										1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach Stomach, glandular	+	++	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	++	+	+	++	+	+	+	+	+ +	50 50
Cardiovascular System																										
Blood vessel																										1
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System Adrenal cortex		+	-	-	-	-	1	-	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+	-	-	50
Adenoma	Т	T	т	т	т	Ŧ	Ŧ	т	Ŧ	т	т	т	т	т	т	т	T	т	т	Ŧ	т	Ŧ	Ŧ	т	т	1
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma malignant								'																		1
Pheochromocytoma benign																							Х			1
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma												Х						Х								2
Parathyroid gland	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	М	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	48
Pituitary gland	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	50
Pars distalis, adenoma		Х		Х	Х			Х	Х			Х		Х		Х		Х			Х				Х	26
Pars distalis, adenoma, multiple																							Х			1
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	49
Bilateral, C-cell, adenoma																										1
C-cell, adenoma																				Х						1
C-cell, carcinoma							Х																			1

TABLE B2

	3	4	4	4	4	5	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7
Number of Days on Study	9	3	6	8	9	4	1	1	2	3	4	5	7	7	9	1	2	2	2	2	2	3	3	3	3
· · ·	3	7	8	3	8	5	1	1	6	6	0	4	2	8	3	0	0	9	9	9	9	0	0	0	0
		1	- 1	1	1	1				1	1	1	1	1	1	1	1	1	1			1			
Carcass ID Number	4		1	1 4	1	1 4	1			1				1											
Carcass ID Number	4				1	4	4																		
	0	2	2	3	4	2	1	5	2	1	0	4	5	0	1	4	5	/	0	,	0	1	5	5	1
Genital System																									
Clitoral gland	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+
Adenoma																							Х		Х
Carcinoma		Х																		Х					
Bilateral, adenoma																									
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Luteoma																									
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma																									
Leiomyoma Bolym stromal					v					v		v						v		v					
Polyp stromal Polyp stromal multiple					Х					Х		Х				х		Х		Х					
Polyp stromal, multiple													+			л									
Vagina													7"												
Hematopoietic System																									
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
.ymph node	+	+		+		+		+	+			+	+	+	+	+	+	+			+			+	+
ymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Thymus Thymoma malignant	+	+	+	+	Ι	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Thymoma manghant																									
Integumentary System																									
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma							v																37	Х	
Carcinoma Fibroadenoma							Х	х					х			х				х		Х	Х		
Fibroadenoma, multiple								Λ					л			л	Х		х	л		л		x	х
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+		+	+	+	+	л +	
Basal cell carcinoma																									
Myxosarcoma					Х																				
Schwannoma malignant								Х																	
Subcutaneous tissue, fibroma				Х				-																	
Subcutaneous tissue, fibrosarcoma																									
Subcutaneous tissue, lipoma																Х									
Musculoskeletal System																									
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Nervous System																									
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Peripheral nerve	+														+										
Spinal cord	+														+										

TABLE B2

Individual Animal Tumor Patholog	gy of Fe	ma	le l	Rat	s i	n tł	1e î	2-\	lea	r (Gar	vag	ge S	Stu	dy	of	Ri	dd	elli	iin	e:	Ve	ehio	cle	Co	ntrol	
Number of Days on Study	7 3 0	3	7 3 0	7 3 1																							
Carcass ID Number	1 2 3	2	1 2 5	1 2 6	1 2 7	1 2 8	1 2 9	1 3 0	1 3 2	1 3 4	1 3 5	1 4 7	1 4 8	1 4 9	5	1 0 6	1 0 7	1 0 8	1 0 9	1 1 0	1 1 3	1 3 6	1 3 7	1 3 9	1 4 0		Total Tissues/ Tumors
Genital System																											
Clitoral gland Adenoma Carcinoma	+	+	\mathbf{x}^+	+	\mathbf{x}^+		+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+_{\rm X}$		49 5 3
Bilateral, adenoma Dvary	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	X +	+	+	+	+	+	+	+	+	+	+		2 50
Luteoma Jterus Carcinoma	+	+	$^+_{\rm X}$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+		1 50 1
Leiomyoma Polyp stromal Polyp stromal, multiple ⁄agina	Х			X +	x			x				x										х					1 9 2 2
Iematopoietic System																											
Sone marrow ymph node	+	+	+	+++	+	+ +	+ +	+	+ +	+	+	+	+++	+ +	+	+	+ +	+	+ +	+ +	+	+++	+	+	+		50 26
ymph node, mandibular ymph node, mesenteric	+++++++++++++++++++++++++++++++++++++++	++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++		50 50 50
pleen 'hymus Thymoma malignant	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+ X		+		48
ntegumentary System																											
fammary gland Adenoma Carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50 1 2
Fibroadenoma Fibroadenoma, multiple		х			х		Х			Х		Х		Х	х		х			Х	Х		х				16 12
kin Basal cell carcinoma Myxosarcoma Schwannoma malignant	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50 1 1 1
Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, lipoma					X																						1 1 1
Musculoskeletal System Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Vervous System																											
Brain Peripheral nerve Spinal cord	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50 2 2
TABLE B2

Individual Animal Tumor Patho	logy of re	па		xai	5 1				L Ca		Ja	ag	, e	, u	uy	01	I	uu							Contro
	3	4	4	4	4	5	6	6	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7
Number of Days on Study	9	3	6	8	9	4	1	1	2	3	4	5	7	7	9	1	2	2	2	2	2	3	3	3	3
	3	7	8	3	8	5	1	1	6	6	0	4	2	8	3	0	0	9	9	9	9	0	0	0	0
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Carcass ID Number	4	2	0	4	1	4	4	4	1	1	3	0	1	1	3	4	3	1	1	1	2	0	0	0	2
	6	2	2	3	4	2	1	5	2	1	8	4	5	6	1	4	3	7	8	9	0	1	3	5	1
Respiratory System																									
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Alveolar/bronchiolar adenoma																									
Nose	+	+	+	+	$^+$	$^+$	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	+
Frachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Special Senses System Lacrimal gland																									
Urinary System																									
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Urinary bladder Papilloma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Systemic Lesions																									
Multiple organs	+	+	+	+	+	+	+	+	$^+$	$^+$	+	+	+		+	+	+	+	$^+$	+	+	+	+	+	+
Leukemia mononuclear	Х							Х					Х		Х			Х				Х			

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tota
Carcass ID Number	2	2	2	2	2	2	2	3	3	3	3	4	4	4	5	0	0	0	0	1	1	3	3	3	4	Tissues
	3	4	5	6	7	8	9	0	2	4	5	7	8	9	0	6	7	8	9	0	3	6	7	9	0	Tumors
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma											Х				Х											2
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Special Senses System																										
Lacrimal gland																+										1
Urinary System																										
Kidney	+	+	+	+	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	+	$^+$	+	+	+	$^+$	$^+$	$^+$	$^+$	+	+	+	+	+	50
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Papilloma				Х																						1
Systemic Lesions																										
Multiple organs	+	+	+	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	$^+$	$^+$	$^+$	+	+	+	+	+	+	+	50
Leukemia mononuclear		Х	X		Х				Х				Х				Х									12

	-		-	-	_	~	~	~	/	,				~	,	,		~					-	-	_
	3	4		5	5		5							6											
Number of Days on Study	2					4																			
	8	1	3	9	0	1	3	0	5	2	3	1	6	6	8	3	4	1	0	2	5	9	3	8	5
Carcass ID Number	1 9	1 8	1 6	1 9	1 5	1 8	1 6	1 7		1 8				1 9		1 7					1 7				1 6
	7	-				5																			
Alimentary System																									
Esophagus	+	+	$^+$	$^+$	$^+$	+	+	$^+$	+	+	+	$^+$	+	$^+$	+	+	+	+	$^+$	+	+	+	+	+	+
ntestine large, colon Lipoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ntestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ntestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ntestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+		+		+	+	+	+	+	+	+	+	+	+
ntestine small, jejunum	+	+	+	А	+	+		А		+		А				+	+		Α	+	+	+	+	+	+
ntestine small, ileum	+	+	+	А	А	+	+		+	+	+	+	+	+	+	+	+	+	А	+		+			+
iver Aesentery	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	+ +	+	+	+ +	++	+	+	+	+	+
ancreas	+	+	+	+	$^+$	+	+	$^+$	+	+	+	$^+$	$^+$	+	+	+	$^+$	+	$^+$	+	+	+	+	+	+
alivary glands	+	+	+	+	$^+$	+	+	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	+	+	$^+$	+	$^+$	+	+	+	+
omach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+
omach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ardiovascular System art	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
cart	I	'			1			1	1			1	1		1	'	'		1	1			1		
idocrine System																									
drenal cortex Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma																							Х		
Irenal medulla	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pheochromocytoma benign ets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +
Adenoma																									
arathyroid gland tuitary gland	+++	+ +		+ +				+										M +							
Pars distalis, adenoma Pars distalis, adenoma, multiple					Х			Х				Х		Х	Х										
hyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
C-cell, adenoma											Х													Х	
Follicular cell, carcinoma																									
eneral Body System																									
Genital System litoral gland	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma	т	т т	т	Г	Г	111	Г	Г	Г	Г	Г	Г	Г	Г	Г	ſ	ſ	Г	Г	т	т	7"	7"	Ŧ	т
Carcinoma Bilateral, adenoma		Х																							
vary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Granulosa cell tumor malignant terus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leiomyosarcoma																					Х				
Polyp stromal Vagina	Х				Х		X M	Х							Х				Х	+					X +
																				+					+

gy of Fel	II a		vai	5 11	1 11			u		Ju	••5	U L	Tu	uy	01	INI	uu				•••		6		8	
7 1 8	1	7 2 5	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1				
5	5	9	6	6	8	8	9	9	5	5	5	5	6	6	6	6	7				1 7 8	1 8 2				Tota Tissue Tumo
++	+ +	++	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	+ +	+ +	++	+	· +	-	5 5
++++	+++	+++	+ +	+++		+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+++	++	++	++		-	4
+ A	+ +	+ A	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	++	++		-	2
++	+ +	+ +	+++	+++	+ +	+ +	+ +	++++++	+ +	+ +	+ +	+ + +	+ +	+ +	+ +	++++++	+ +	++++++	+ +	++	+	++	++		-	4
++	+ +	+ +	+++	+++	++	+ +	++	+++	+ +	+ +	+ +	+++	+ +	+ +	+ +	+ +	+ +	+++	+ +	++	++	++	+	-	-	1
+ +	+	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +										+ +	+	+	++	+		-	5
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	-	:
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	• - +	-	:
+	+	+	+	+	$^+_{\rm X}$	+	+	+	$^+_{\rm X}$	+	+	+	+	$^+_{\rm X}$	+	+	+	$^+_{\rm X}$	+	+	+	+	+	-	-	
+	+	+	+	+		+	+	+	+	+		+	+	+	+	+						Х	Х	-		
+ + X	+	+	+ + X	+ + X			+	+			+	+	+	+	+	+	+	+	+	+					-	
+		+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+			-	
	л										л			Х												
				1			1							1								1				2
Ŧ	Х	т	т	T	т Х	Ŧ	T	X	т	Ŧ	т	T	т	Ŧ	Х	т	Х	т	Ŧ	т	т	X	X			2
+	+	X +	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+		+	+	+	+	+		-	2
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	х +	+	+	+	+	+		-	4
Х				+					Х		Х							Х	Х	Х			Х			1
	7 1 8 1 5 6 + + + + + + + + + + + + + + + + + +	$\begin{array}{c} - \\ \hline \\ & 7 & 7 \\ 1 & 1 \\ 8 & 9 \\ \hline \\ & 1 & 1 \\ 5 & 5 \\ 6 & 2 \\ \hline \\ & + & + \\ +$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \hline \\ \hline $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \hline \\ \hline $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \hline \\ \hline $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \hline \\ \hline$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 7	1 7	1 1 7	1 1	1 7	1 1	7 7	1 1	1 1	1 1 2 2 3

	3	4	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	7
Number of Days on Study	2	0	1	1	2	4	7	0	0	1	1	3	3	3	3	4	4	4	5	7	7	7	9	9	1
	8	7	3	9	0	1	3	0	5	2	3	1	6	6	8	3	4	7	0	2	5	9	3	8	5
									_																
																								1	
Carcass ID Number	9			9					0															7	
	7	4	9	8	4	5	1	3	0	1	3	2	3	4	8	6	0	6	3	4	9	3	1	7	5
ematopoietic System																									
one marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
mph node			+				+	+			+		+	+		+		+	+					+	
mph node, mandibular	+	+	+	М	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	$^+$	+	$^+$	+	$^+$
mph node, mesenteric	+	$^+$	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	$^+$	+	$^+$	$^+$
leen	+	$^+$	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	$^+$	+	$^+$	$^+$
lymus	+	$^+$	$^+$	$^+$	+	+	+	+	+	$^+$	М	+	+	$^+$	+	+	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
Thymoma benign																									
tegumentary System																									
mmary gland Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma					Х															Х					
Fibroadenoma			Х			Х							Х			Х		Х	х			Х			
ibroadenoma, multiple																									
× 1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
asal cell adenoma																							Х		
eratoacanthoma																		Х							
uamous cell papilloma																									
sculoskeletal System																									
ne	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
etal muscle																								+	
vous System																									
in	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
bheral nerve																								+	
l cord																								+	
piratory System																									
g Iepatocellular carcinoma, metastatic,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
uncertain primary site													Х												
se	+	$^+$	$^+$	$^+$	+	+	+	+	+	$^+$	+	+	+	$^+$	+	+	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
nea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
cial Senses System																									
ibal's gland																	+								
rcinoma																	Х								
nary System																									
Iney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
nary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
•																									
temic Lesions																									
	+	+	+ X	+	+	+	+ X	+	$^+_{\rm X}$	+	+	+	+	+	+	+	+	$^+_{\rm X}$	+	+ X	+	+	+ X		+ X

TABLE **B2** Individual Anii

Number of Days on Study 1 1 1 2 2 3 <th></th> <th>7</th> <th>,</th> <th>7</th> <th></th>		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	,	7	
Carcass ID Number 1	Number of Days on Study	1	1	2				-	3				-			3		-	-				3	3		3	3	
Carcass ID Number 5 5 5 6 6 6 7 7 7 7 8 9 9 0 T Hematopoietic System Boe marrow + <		8	9	5	9	9	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	
6 2 1 2 4 7 9 0 5 7 8 9 0 1 2 5 8 2 6 9 T Hematopoietic System Bone marrow +		-	-	1	1	1	1	1	-	-		1	1	1	1	1	1	1	1	1	1	1	1	1	1			Total
Bone marrow + + + + + + + + + + + + + + + + + + +	Carcass ID Number																											Tissues/ Tumors
Bone marrow + + + + + + + + + + + + + + + + + + +	Hematopoietic System																											
Lymph node, mandibular + + + + + + + + + + + + + + + + + + +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Lymph node, mesenteric + <td>Lymph node</td> <td></td> <td></td> <td>+</td> <td>+</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>+</td> <td>+</td> <td></td> <td>+</td> <td>+</td> <td></td> <td>+</td> <td>+</td> <td></td> <td>+</td> <td>+</td> <td>+</td> <td></td> <td>+</td> <td>24</td>	Lymph node			+	+	+					+			+	+		+	+		+	+		+	+	+		+	24
Splen + + + + + + + + + + + + + + + + + + +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	49
Thymas + <td></td> <td>+</td> <td></td> <td></td> <td>50</td>		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			50
Thymona benign X Integumentary System Mammary gland + <		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			50
Mammary gland + + + + + + + + + + + + + + + + + + +		+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	· 1	М	48 1
Mammary gland + + + + + + + + + + + + + + + + + + +	Integumentary System																											
Carcinoma X	Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+		+	50
Fibroadenoma X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>x</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>л</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>										x											л							1
Fibroadenoma, multiple X <td></td> <td>x</td> <td></td> <td></td> <td>x</td> <td></td> <td></td> <td>x</td> <td>x</td> <td>л</td> <td></td> <td>x</td> <td></td> <td></td> <td></td> <td>x</td> <td></td> <td></td> <td></td> <td>x</td> <td></td> <td>x</td> <td></td> <td></td> <td>x</td> <td></td> <td>X</td> <td>17</td>		x			x			x	x	л		x				x				x		x			x		X	17
Skin +		21					Х		11	Х																		4
Keratoacanthoma Squamous cell papilloma X Musculoskeletal System Bone Skeletal muscle + + + + + + + + + + + + + + + + + + +		+			+	+		+	+		+	+	+	+	+	+	+	+	+	+			+	+	+		+	50
Squamous cell papilloma X Musculoskeletal System Bone + + + + + + + + + + + + + + + + + + +	Basal cell adenoma																											1
Bone + + + + + + + + + + + + + + + + + + +																						х						1 1
Bone + + + + + + + + + + + + + + + + + + +	Musculoskeletal System																											
Nervous System + + + + + + + + + + + + + + + + + + +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Brain + + + + + + + + + + + + + + + + + + +	Skeletal muscle																											1
Peripheral nerve Spinal cord Respiratory System Lung + + + + + + + + + + + + + + + + + + +																												
Spinal cord Respiratory System Lung + + + + + + + + + + + + + + + + + + +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Respiratory System Lung + <td></td> <td>1</td>																												1
Lung + + + + + + + + + + + + + + + + + + +	Spinal cord																											1
Hepatocellular carcinoma, metastatic, uncertain primary site Nose Nose Trachea $+ + + + + + + + + + + + + + + + + + + $		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Nose + + + + + + + + + + + + + + + + + + +	Hepatocellular carcinoma, metastatic,	'											'	'		'	'											
Trachea + + + + + + + + + + + + + + + + + + +																												1
Zymbal's gland Carcinoma Urinary System Kidney + + + + + + + + + + + + + + + + + + +		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50 50
Zymbal's gland Carcinoma Urinary System Kidney + + + + + + + + + + + + + + + + + + +	Special Senses System																											
Kidney + + + + + + + + + + + + + + + + + + +	Zymbal's gland																											1 1
Urinary bladder + + + + + + + + + + + + + + + + + + +	Urinary System																											
Systemic Lesions		+++	++	+++	+++	+ +	+ +	+ +	+ +	+ +	+++					+ +	+++				++	++	++	++	++		+ +	50 50
																												20
Multiple organs +	Multiple organs	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50 8

Individual Animal Tumor Patholo	5 0110		-								J a	vag	, c .	Jiu	uy	01	111								5/ **E
	4	4	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	6	7	7	7	7	7
Number of Days on Study	3	4	1	3	6	7	7	9	9	1	1	4	4	4	5	5	7	7	8	9	1	1	2	2	2
	7	4	8	2	2	1	2	1	1	6	7	7	7	7	4	8	1	5	8	4	5	5	9	9	9
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Carcass ID Number	4	3	3	3	2	2				2		0						0				3	0	1	2
	3	8	0	7	9	1	4	4	1	2	3	6	7	2	5	9	4	2	8	2	5	5	9	0	3
limentary System																									
Esophagus	+	Μ	+	+	$^+$	+	+	+	+	$^+$	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+
ntestine large, colon	+	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	$^+$	$^+$	$^+$	$^+$	+	+
ntestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ι		+	+	+	+	+	+	+
ntestine large, cecum	+	+	+	+	+				+	+	+		+	+	+	+	+		А		+	+	+	+	+
ntestine small, duodenum	+	+	+	+	+	+	+		+	+	+	+	+	+	+		+		+	+	+	+	+	+	+
ntestine small, jejunum	+	+	+	+	+	А	+	+	+	А	+	+	+	+	+	+	+	+	А	+	+	+			+
Polyp adenomatous									,				,		,	,							X		
ntestine small, ileum				++		A +						++								+	+	+	+	++	+
iver Aesentery	+	+	++	+	+	++	+ +	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+
ancreas	+	+	+	+	+			+	+	+	+	+	+	+	+		+	+	+	+	+	τ +	+	+	+
alivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
tomach, forestomach	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
tomach, glandular	+	+	+	+	+	+			+		+			+				+	+	+	+	+	+	+	+
ongue														•			÷.			ŕ	+				
Squamous cell papilloma																					Х				
ardiovascular System																									
art	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ndocrine System																									
irenal cortex	+	$^+$	+	+	$^+$			+		+		+					+		+	+	+	+	+	+	+
lrenal medulla	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	$^+$	$^+$	$^+$	$^+$	+	+
Pheochromocytoma malignant							Х																		
Pheochromocytoma benign																									
slets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+		+
Adenoma																					Х			Х	
Carcinoma		м				ъr				ъr															
arathyroid gland						M +							+			+	+		+	+	+	+	++	+	+
ituitary gland Pars distalis, adenoma	+	+	+ X	+	+		+ X		+	+	+	+	+	+	+ X	Ŧ	Ŧ	Ŧ	+ X			+	+ X		Ŧ
hyroid gland	+	м		+	+	л +			+	+	+	+	+	+		+	+	+				+			+
C-cell, adenoma	т	141			1	'		'	1	'	,	Х	'	,	'	'	'	Х	,	'	,	1	1	I	
General Body System																									
Genital System																									
litoral gland	1	_L_	_L	_L_	<u>ـــ</u>	Ι	+	+		<u>ـــ</u>	_L_	_L	1	<u>ــــ</u>	+	+	+	+	+	+	<u>ـــ</u>	<u>ــــــــــــــــــــــــــــــــــــ</u>	_L_	_L_	+
Adenoma	+	+	+	+ X	+	1	Ŧ	Ŧ	+	+	+	+	+	+	Ŧ	Ŧ	Ŧ	+ X	Ŧ	Ŧ	+	+ X	+	+	Ŧ
Carcinoma				л	Х													л				Λ		Х	
vary	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		
Granulosa cell tumor malignant	т	1		Х									'						1	1	1	ſ	1	'	
terus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Deciduoma benign	1	x													·		·			Ċ.					
Polyp stromal			Х		Х						Х					Х		Х							Х
	V																							Х	
Sarcoma stromal	Х																								

Individual Animal Tumor Pathol																											-
Normalian of David an Standar	7		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		7	
Number of Days on Study	2 9	3 0	3 1	3 1	3 1	3 1	3 1	3 1				3 1															
	2		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		2	-	2	Tota
Carcass ID Number	2 5	3 6	3 9	4 0	4 4	4 6	4 7	4 8	5 0		1 1				4 1	4 5	0 1	0 3	1 6	1 7	1 9	2 0			2		Tissue: Tumoi
Alimentary System																											
Esophagus	+	+	+	+	+	+	+	М		+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +		+	4
ntestine large, colon ntestine large, rectum	+	+	+	+	+	+	+	+ +	+	++	++	++	++	++	++	++	++	++	+	+	+	+	- +	- +		+	5
ntestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	+		+	4
ntestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +		+	5
ntestine small, jejunum	+	$^+$	+	+	$^+$	+	+	$^+$	+	$^+$	+	+	+	+	$^+$	$^+$	$^+$	+	$^+$	$^+$	+	+	- +	- +		+	4
Polyp adenomatous																											
ntestine small, ileum	+	+	+	+	+	+	Μ		+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +	-	+	4
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +		+	5
Aesentery Pancreas	1	+	++			++	++	+	+		+	+	++	+	++	+	++	+	+		+	+	- + - +	- - +		+ +	1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +			+ +	5
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +		+	5
stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +		+	5
ongue																	$^+$										
Squamous cell papilloma																	Х										
Cardiovascular System																											
Ieart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +	-	+	5
Endocrine System																											
drenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +	-	+	5
Adrenal medulla Pheochromocytoma malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +		+	5
Pheochromocytoma benign						Х				Х																	
slets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +	-	+	4
Adenoma							Х			Х																	
Carcinoma			X +																								
arathyroid gland ituitary gland	+ +	++		++	++	++	++	+ +	++	++	++	++	++	++	++	++	++	++	++	++	++	+	- + - +	- + - +		+ +	4
Pars distalis, adenoma	X			x	'	'	X	'	'	'	X	'		X	'	'		X				X		Χ			2
Thyroid gland	+		+		+	+		+	+	+		+		+	+	+		+								+	2
C-cell, adenoma		Х																								Х	
General Body System																											
Genital System																											
Clitoral gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +			+	2
Adenoma	I		X		'		X					X		X	'	'	'			1			'	1		x	-
Carcinoma				Х			-					-		-										χ			
Dvary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +	-	+	4
Granulosa cell tumor malignant																											
Jterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	- +	-	+	4
Deciduoma benign				v	v				v				v		v	v		v			v					v	
Polyp stromal Sarcoma stromal				А	Х				Х				Х		Х	Х		Х			Х				-	Х	1
Vagina					+																						

Individual Animal Tumor Patho	logy of I	UI.										Ja	vag	ge S	stu	ay	01		uu	em	III	с.		.05	-	mş	g/kg
		4	4	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	6	7	,	7	7	7	7
Number of Days on Study								7							4							1				2	
		7	4	8	2	2	1	2	1	1	6	7	7	7	7	4	8	1	5	8	4	5	-	5	9	9	9
		2	2			2	2		2				2			2			2				2			2	
Carcass ID Number		4	3	3	3										1											1	
		3	8	0	7	9	1	4	4	1	2	3	6	7	2	5	9	4	2	8	2	5		5	9	0	3
Iematopoietic System																											
Bone marrow		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+ -	+	+	+
Lymph node			+	$^+$	+	+				+			+		+	+		+	+	+		+	-	+ -	+	+	+
Lymph node, mandibular		+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+ ·	+	+	+
-ymph node, mesenteric		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+ ·	+	+	+
Spleen		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+ •	+		+
Гhymus		+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	-	+ •	+	+	+
Integumentary System																											
Mammary gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+ ·	+	+	+
Adenoma Carcinoma																								x			
Fibroadenoma						x	Х	x							Х	x			Х	x			1		x	х	x
Fibroadenoma, multiple						Λ	Λ	Λ	Х						21	21			1	1						1	
kin		+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	-	+ -	+	+	+
Basal cell adenoma																											Х
Basal cell carcinoma																											
Keratoacanthoma																											
Subcutaneous tissue, fibroma														Х		Х											
Iusculoskeletal System																											
Bone		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+ -	+	+	+
Skeletal muscle										+																	
Rhabdomyosarcoma										Х																	
Nervous System																											
Brain		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+ ·	+	+	+
Granular cell tumor malignant																											
Peripheral nerve																					+						
Spinal cord																					+						
Respiratory System																											
Lung				+	+	+	+	+	+	+	+	+	+	+	+	+	+		+			+	-	+ ·	+	+	
Nose		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+ •	+		+
··· - 1		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+ ·	+	+	+
rachea																											
Frachea Special Senses System None																											
Special Senses System																											
Special Senses System None Urinary System		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+ -	+	+	+
Special Senses System None U rinary System Kidney		+++	++++	+++	+++	+++	++	+++	+++	+++	+++	+++	+++	++++	+ +	+ +	++	+++	+++	+++	++	+++		+ +	+ +	+++	+ +
Special Senses System None U rinary System Kidney Jrinary bladder		+++	+++	+++	+++	+++	+++	++	+ +	+ +	+ +			+ +			+ +	+ +	+ +	+ +	++	+ +		+ +	+ +	+ +	+ +
Special Senses System None U rinary System Kidney		+++++	+ + +	+ + +	++++	+ + +	++++	++++	++++		+	+		++++++	+				++++++		+ + +	++++++		+ ·	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++

	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Number of Days on Study	7	7	7	7	7	7 2	7 2	7 2	7 2	7	7 3	7	7 3	7	7	7 3	7 3	7 3	7	7	73	7	7	7 3	7 3	
Number of Days on Study	9	9	9	9	9	9	9	9	9	0	0	0	0	0		0	1	1	1	1	1	1	1	1		
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	Total
Carcass ID Number	2	3	3	4	4	4	4	4	5	0	1	1	3	3	4	4	0	0	1	1	1	2	2		2	Tissues/
	5	6	9	0	4	6	7	8	0	8	1	3	2	4	1	5	1	3	6	7	9	0	6	7	8	Tumors
Hematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node	+	+	+	+	+	+	+	+	+	+		+		+	+		+	+	+	+		+	+		+	36
Lymph node, mandibular	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	48
Lymph node, mesenteric Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 50
Thymus	+	+	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M		46
Integumentary System																										
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma Carcinoma																		X X								1
Fibroadenoma		v	Х	x		v	Х		Х					х			Х	Λ	Х			x	Х	v		22
Fibroadenoma, multiple	Х	Λ	Λ	Λ		Λ	Λ		Λ					Λ			Λ	Х	Λ	Х		Λ	Λ	Λ		4
Skin	+	+	Ι	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Basal cell adenoma																										1
Basal cell carcinoma											Х															1
Keratoacanthoma Subcutaneous tissue, fibroma					Х								Х			Х							Х			1 5
Musculoskeletal System																										
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	50
Skeletal muscle Rhabdomyosarcoma																										1 1
Nervous System																										
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Granular cell tumor malignant									Х																	1
Peripheral nerve Spinal cord																										1
Respiratory System																										
Lung									+															+	+	50
Nose Trachea	++	+ +	+ +	++	+ +	+ +	+ +		+ +		+ +			+ +		+ +			+ +			+ +		+ +		50 50
Special Senses System None																										
Urinary System																										
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Systemic Lesions								,	,	,	,		,	,			,		,							50
Multiple organs Leukemia mononuclear	+	+	+	+		+ X	+	+	+	+	+	+	+	$^+$ X	+	+	+	+ X	+	+	+	+	+	+	+ X	50 13

TABLE **B2** Individual Animal Tu

	0	•	2		~	-	~	1	~	~	~	~	~	~	~	1	~	~	~	1	~	~	-	-	-
about of David on Standay			3											6											
nber of Days on Study	5	9			5									5										0	
	2	3	1	1	2	1	8	8	8	2	6	0	1	8	0	4	8	8	8	0	2	1	1	7	0
cass ID Number	2 8	2 8	2		3 0									2										2	
					0																				
entary System																									
agus	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
ine large, colon	+	А	$^+$	+	А	$^+$	+	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	$^+$	М	+	+	$^+$	$^+$	$^+$	+	$^+$	$^+$
ine large, rectum	+	А	$^+$	$^+$	А	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
ine large, cecum	+	А	$^+$	$^+$	А	$^+$	$^+$	$^+$	$^+$	А	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
ine small, duodenum	+	А	$^+$	+	А	$^+$	+	$^+$	$^+$	А	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
ne small, jejunum	+	А	+	+	А	+	+	+	$^+$	А	А	+	+	+	+	+	+	А	+	$^+$	$^+$	+	+	+	+
ne small, ileum	+	А	$^+$	+	А	$^+$							$^+$	$^+$	$^+$	А	+	А	$^+$	$^+$	$^+$	А	$^+$	$^+$	$^+$
	+	$^+$	$^+$	+	$^+$	$^+$	+	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
tery									$^+$				$^+$		$^+$		$^+$				$^+$				$^+$
nucosa																									
amous cell carcinoma																									
amous cell papilloma																									
as	+	А	М	+	А	+	+	+	$^+$	М	+	+	+	+	+	$^+$	+	+	+	$^+$	$^+$	+	+	$^+$	+
y glands	+	$^+$	$^+$	+	+	+	+	+	$^+$	$^+$	+	+	+	+	+	$^+$	+	+	+	$^+$	$^+$	+	+	$^+$	+
ch, forestomach	+	$^+$	Ι	+	+	+	+	+	$^+$	$^+$	+	+	+	+	+	$^+$	+	+	+	$^+$	$^+$	+	+	$^+$	+
ch, glandular	+	А	+	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	$^+$	$^+$	+	+	+	+
, 6																									
ovascular System	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
crine System	,				,			,				,							,						
al cortex				,	,	+	+	+	+	+	+	,	+		+	+	+	+	+	+					
	+	+	+	+	+	Ŧ	+	Ŧ	+	+	+	+	+	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	+	+	+	+
noma		J	5	5	J	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	.1	+	
al medulla	+	+	+	+	+	Ŧ	+	Ŧ	+	+	+	+	+	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	+	+	+	+
ochromocytoma benign			м							١¢															
pancreatic	+				Α												+		++		++	+	+	+	+
vroid gland	+				+					+				М			+			+		+	+		+
ry gland	+	+	+	+	М		+	+	+	+	+	+	+	+			+			+	+			+	+
distalis, adenoma						Х									Х	Ă		Х	А			Х	Х		
s intermedia, adenoma																									
id gland cell, adenoma	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+
ral Body System																									

TABLE **B2** Individual Anim

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		7	
Number of Days on Study	1	1	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3		3	
	5	8	6	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	I	1	1	I	1	
	2		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	_	Tota
Carcass ID Number	6 5	5 8	8 9	5 2	5 3	5 4	5 5	5 6	5 7	6 0	8 1	8 3	6 3	6 4	6 6	6 7	6 8	7 0	7 1	7 3	9 1	9 2	9 3	9 4		Tissues/ Tumors
Alimentary System																										
Esophagus	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	$^+$	+	50
Intestine large, colon	+	$^+$	+	+	+	$^+$	+	$^+$	$^+$	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	+	+	+	47
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	$^+$	$^+$	+	+	+	+	+	48
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	$^+$	$^+$	+	+	+	+	+	47
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine small, jejunum	А	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	$^+$	+	+	+	+	+	43
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	43
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Mesentery									+				+	+	+		+		+	+					+	14
Oral mucosa										+										+						2
Squamous cell carcinoma										Х																1
Squamous cell papilloma																				Х						1
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Tooth					,					+		,							,							1
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System Adrenal cortex	+		+	+	+				+										+							5(
	Ŧ	Ŧ	Ŧ		т	Ŧ	Ŧ	Ŧ	т	т	Ŧ	т	т	т	т	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	50
Adenoma				X	.1		+					.1		.1	J	+	+	5	+	5						1 50
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pheochromocytoma benign	+						+	+	X +	+	+	+		+		+	+								+	1 46
Islets, pancreatic	+	+	+	+	++	+	++	++			+		+		++	++	++	++	++	++	++	+	+	+		
Parathyroid gland	+	++	++	+	++	++			+	+	+	M +		++		++			++		++	+	M +			46
Pituitary gland	+		+					+	+	+	+	+	+	+	+		+	+		+	+			+	+	49
Pars distalis, adenoma		Х		Λ	Х	Λ	Λ								Λ	Х			Х		v	Å	Х			17
Pars intermedia, adenoma Thyroid gland			+		.1	+	+	+			+	+	+	+	+	+	+	+	+	+	X +	+				1 49
	+	+	+		+	+	+	+			+	+	+	+		+	+		+	+	+	+	+	+	+	
C-cell, adenoma				Х					Х	Х					Х			Х								6

Individual Animal Tumor Patholog	y of Fei	na	le I	Rat	s i	n tl	1e	2-\	Yea	ar (Gav	vag	ge S	Stu	dy	of	Ri	dd	elli	iin	e:	0.1	m	∖g/l	(g
umber of Days on Study	2 5 2	9	3 0 7					3		4	4		5	5	6	6	6	7	7		8		0	7 0 7	1
Carcass ID Number	2 8 6		2 6 9																					2 9 5	
Genital System																									
Clitoral gland Adenoma Carcinoma	+	+	М	+	+	+	+	+	+	+	+	+	$^+_{\rm X}$	+	+	+	М	+	+	+	+	$^+_{\rm X}$		+	+
Bilateral, adenoma Ovary Granulosa cell tumor malignant Mesothelioma malignant, metastatic,	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
peritoneum Uterus Polyp stromal	+	+	X +	+	+	+ X	+	+	+	+	+ X	+	+ X	+	+	+	+	+	+	+	$^+$ X	+	+	+	+
Polyp stromal, multiple Sarcoma stromal Vagina Sarcoma stromal, metastatic, uterus			+						+		X								+		X + X			x	
Hematopoietic System																									
Bone marrow Jymph node Jymph node, mandibular Jymph node, mesenteric	+++++++++++++++++++++++++++++++++++++++	++	++++++	+ + +	+ + + A	++++++	+ + + +	++++++	+ + +	+ + M	++++++	++++++	+ + + +	+ + + +	+++++	++++++	++++++	++++++	+++++	+++++	+++++	++++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++++++++++++++++++++++++++++++++++
Spleen Fhymus	+++	A + +	++	++	A + +	+	+		+	+	+		+	+	+	+	+	+	+	++	++	++	+ M	++	
I ntegumentary System Mammary gland Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+
Fibroadenoma Fibroadenoma, multiple Skin	+	+	+	+	+	+	+		Х	+	X +	Х	+	+	+	X +	X +	+	+	+	X +	Х		X +	X +
Subcutaneous tissue, fibroma Musculoskeletal System								Х																	
Bone Skeletal muscle Mesothelioma malignant, metastatic,	+	+	+ +	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
peritoneum			Х																						
Nervous System Brain Glioma malignant	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Respiratory System	I	.1			J	J	J	J				_	J	L		J				.1			.1	.1	T
Lung Alveolar/bronchiolar adenoma Nose	+	+	+	+	+ A	+	+	+	+	+	+	+	+	+ X +	+	+	+	+	++	+	+	+	+	+	+ X +
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

TABLE **B2** Individual Animal Tu

	7	7	7	7	-	7	-	-	-	- ,	- ,				-	7	7	7	-	7	7	7	7	7	
Number of Days on Study	7	1	2	2	2	2	2	2	2	2	/ 2 1	2	33	33	3	3	3	3	3	3	3	3	3	3	
and of Days on Study	5	8		9	9				9			9 (-		-	-	0	0		1	1			
	2	2	2	2	2	2	2	2	2	2	2 2	2 2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	Total
Carcass ID Number	6	5	8	5	5							8 (7	7	9	9	9	9	9	Tissues
	5	8	9	2	3	4	5	6	7	0	1 .	3 3	3 4			8	0	1	3	1	2	3	4	7	Tumors
Genital System																									
Clitoral gland	+	+	+	+	+				+ ·	+ -	+ -	+ -	+ +	+ +	+	+	+	+	+	+	+	+	+	+	48
Adenoma				Х	Х			Х		2	X					Х							Х		9
Carcinoma	Х						Х		Х																3
Bilateral, adenoma		X +						+ -																	1
Ovary Granulasa call tumor malignant	+	+	+	$^+$ X	+	+	+	+ ·	+ ·	+ -	+ -	+ -	+ 1	- +	+	+	+	+	+	+	+	+	+	+	50 1
Granulosa cell tumor malignant Mesothelioma malignant, metastatic, peritoneum				л																					1
Iterus	+	+	+	+	+	+	+	+ ·	+ •	+ -	+ -	+ -	+ +	+ +	+	+	+	+	+	+	+	+	+	+	50
Polyp stromal				Х						2			хэ	ζ				Х						Х	11
Polyp stromal, multiple																			Х						1
Sarcoma stromal						Х																			4
agina Sarcoma stromal, metastatic, uterus	М																								4 1
Iematopoietic System																									
Bone marrow	+	+	+	+	+	+	+	+ ·	+ ·	+ -	+ -	+ -	+ +	+ +	+	+	+	+	+	+	+	+	+	+	50
ymph node		+	+	+					+		+	-	+	+					+			+	+	+	19
ymph node, mandibular	+	+	+	+	+	+	+	+ ·	+ ·	+ -	+ -	+ -	+ +	+ +	• +	+	+	+	+	+	+	+	+	+	50
ymph node, mesenteric	+	+	+	+	+	+	+	+ ·	+ •	+ -	+ -	+ -	+ +	+ +	· +	+	+	+	+	+	+	+	+	+	47 50
pleen 'hymus	+	+	+	+	+	+	+	+	+ •	+ -	+ -	+ -	+ +	- +	+	+	+	+	+	+	+	+	+	+	48
ntegumentary System																									
Aammary gland	+	+	+	+	+	+	+	+ ·	+ ·	+ -	+ -	+ -	+ +	+ +	+	+	+	+	+	+	+	+	+	+	50
Adenoma Eilans dan sure	v	v				v	v	v				v		7	v		v		v				v		1
Fibroadenoma Fibroadenoma, multiple	А	Х				Х	л	л			x	X	Z		Х	Х	Х	Х	Х				Х		17 7
kin	+	+	+	+	+	+	+	+ -	+ •			+ -	+ +	+ +	+	+		+	+	+	+	+	+	+	, 50
Subcutaneous tissue, fibroma	X						X																		3
Ausculoskeletal System																									-
Bone	+	+	+	+	+	+	+	+ ·	+ ·	+ -	+ -	+ -	+ +	+ +	+	+	+	+	+	+	+	+	+	+	50
keletal muscle Mesothelioma malignant, metastatic, peritoneum																									2
Vervous System																									
Brain Glioma malignant	+	+	+	+	+	+	+	+ ·	+ •	+ -	+ -	+ -	+ +	+ +	+	+	+	+	+	+	+	+	+	+	50 1
Respiratory System																									
ung	+	+	+	+	+	+	+		+ ·	+ -	+ -	+ -	+ +	+ +	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma									X																3
Nose	+	+	+	+	+	+	+	+ ·	+ •	+ -	+ -	+ -	+ +	⊢ +	· +	+	+	+	+	+	+	+	+	+	49 50
Trachea	+	+	+	+	+	+	+	+ ·	+ ·	+ -	+ -	+ -	+ +	+ +	+	+	+	+	+	+	+	+	+	+	

TABLE B2

	2	2	3	4	5	5	6	6	6	6				6	6	6	6	6	6	6	6	6	7	7	7
Number of Days on Study	5	9	0	5	5	6	1	3	3	4	4	5	5	5	6	6	6	7	7	8	8	9	0	0	1
	2	3	7	1	2	1	8	8	8	2	6	0	1	8	0	4	8	8	8	0	2	1	7	7	0
	2	2	2	2	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Carcass ID Number	8	8	6	7	0	8	7	7	9	7	7	8	7	9	7	5	6	8	9	9	8	6	5	9	8
	6	2	9	8	0	0	7	5	0	6	2	4	4	8	9	9	2	7	6	9	8	1	1	5	5
pecial Senses System																									
Urinary System																									
Kidney	+	+	+	+	+	$^+$	$^+$	$^+$	$^+$	+	$^+$	+	+	+	+	+	+	+	$^+$	$^+$	$^+$	+	+	$^+$	$^+$
Jrinary bladder	+	A	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Systemic Lesions																									
Multiple organs	+	+	+	+	+	$^+$	$^+$	$^+$	+	+	$^+$	+	+	+	+	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
winnple organs						37	37	37	37	37			Х	v			v	Х		х			Х		
Leukemia mononuclear				Х		Х	Х	Х	Å	Х			л	Λ			Λ	Λ		л			Λ		

TABLE **B2** Individual Anin

Individual Animal Tumor Path	ology of Fel	па		1 a	5 1	11 U	ne	4 - 1	1.00		Ja	vaş	se .	5 tu	uy	UI	N	uu	em			0.1		.g/r	•s	
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	1	1	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	
······································	5	8	6	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	1	1	1	1	1	
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	Tota
Carcass ID Number	6	5	8	5	5	5	5	5	5	6	8	8	6	6	6	6	6	7	7	7	9	9	9	9	9	Tissues
	5	8	9	2	3	4	5	6	7	0	1	3	3	4	6	7	8	0	1	3	1	2	3	4	7	Tumors
Special Senses System None																										
Urinary System																										
Kidney	+	+	+	+	+	$^+$	$^+$	+	$^+$	+	+	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	+	+	+	+	50
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Systemic Lesions																										
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear Mesothelioma malignant					Х				Х		Х						Х					Х			Х	18

Individual Animal Tumor Patholog	gy of Fe	ma	le l	Rat	s ii	n tl	1e	2-\	lea	ar (Ga	vaş	ge S	Stu	dy	of	Ri	dd	elli	ine	e:	0.3	33 1	mg	/kg
Number of Days on Study	5	4 6 3	2		7	8	8	9	0	1	3	5	5	6 5 6	5	5	7	8	8	8	6 9 7			7 2 9	2
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Carcass ID Number	1 2	3 5		0 7	2 9	2 6		0 9						4 2							2 1			1 3	
Alimentary System																									
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+				+		+			+	+	+	+	+	+
Intestine large, rectum	+	+	+	+	Ι	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, jejunum Intestine small, ileum	+	+	+	+	+	+	+	+	++	++	++			++	++		+ +	++	++	+	+	+	+	+	+
Liver	+	+	+	+	+	+	+	+	+	+	+				+				+	+	+	+	+	+	+
Cholangiocarcinoma	I	'				'	1	'	'				'	'		'	·		'	'				'	
Hemangiosarcoma			Х														х								
Hepatocellular carcinoma Hepatocellular adenoma, multiple																									
Mesentery		+			+		+		+	+								+	+		+			$^+$	
Sarcoma stromal, metastatic, uterus																								Х	
Pancreas	+	+	+	+	+	+	+	+	+	+	+		+		+	+	+	+	+	+	+	+	+	+	
Salivary glands	+	+	+	+	+	+	+		+	+	+						+		+		+	+		+	
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+		+	+	+				+	+	+	+		M	
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+
Cardiovascular System																									
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Endocrine System																									
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma																									
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+
Pheochromocytoma benign																	Х			Х					
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma																									
Parathyroid gland	+	+	+	+	+	+	+		+	+	+			+			+		+	+	+	+		+	
Pituitary gland	+	+				+	+				+	+		+		+	+	+	+						
Pars distalis, adenoma Thyroid gland	1	_		X +		_L_	7		X +		<u>т</u>	<u>т</u>		X +			+	+	+		X +			X +	
C-cell, adenoma	+	т	т	+ X	T	+ X	T	T	-	т	т	т	+ X			+ X	T	T	-	-	-	-	т	т	17
General Body System																									
Genital System																									
Clitoral gland	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma																			Х						
Carcinoma																									
Bilateral, adenoma																									
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Polyp stromal Sarcoma stromal		Х	Х						Х											Х			Х		
	1	X +					+			+														X +	
Vagina	т	Τ'					Г			т														Т	

Individual Animal Tumor Patholog	gy of Fel	na	le i	Cal	S II	n u	ne .	2-1	ea	ar	Ga	vag	ge :	Stu	ay	01	KI	aa	em		e:	0.3	51	ng	кд	
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	1	1	1	1	1	1	
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Tota
Carcass ID Number	1	2	2	3	3	3	3	4	4	4	4	0	0	0	1	3	3	4	4	1	1	1	2	2		Tissues
	5	7	8	0		3	4		7			2						0			7			3		Tumor
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, rectum	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	Ι	$^+$	$^+$	$^+$	+	48
Intestine large, cecum	+	$^+$	$^+$	+	$^+$	$^+$	+	+	$^+$	$^+$	+	+	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	50
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cholangiocarcinoma																Х						v				1
Hemangiosarcoma																					Х	Х				3
Hepatocellular carcinoma Hepatocellular adenoma, multiple										Х											л					1
Mesentery			+					+		Λ			+										+			13
Sarcoma stromal, metastatic, uterus																										1.
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	+	49
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma																	X									1
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign Islets, pancreatic	1	+	+	-	-	-	+	+	-	+	-	-	+	+	-	+	+	+	+	+	X +	+	+	+	+	3 5(
Adenoma	Т	Т	т	Ŧ	т	Ŧ	Ŧ	т	Ŧ	т	T	т	-	т	Ŧ	т	Ŧ	т	Ŧ	т	т	т	т	т	X]
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pituitary gland	+	+	+	+	+	+		+	+	+	+			+	+	+	+		+	+	+	+	+		+	50
Pars distalis, adenoma						Х			X			Х		Х				Х							X	24
Thyroid gland	+	+	+	+	+		+	+			+	+	+		+				+	+	+	+	+	+	+	50
C-cell, adenoma		Х		Х			Х			Х											Х				Х	11
General Body System None																										
Genital System																										
Clitoral gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenoma		37		Х	37																			Х		3
Carcinoma Dilataral a faranza		Х			Х					37																2
Bilateral, adenoma						,	,	,		X							,	,]
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5(
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Polyp stromal											Х	Х		Х	Х									Х		9
Sarcoma stromal																										2
Vagina																										4

Individual Animal Tumor Patholog	gy of Fe	ma	le l	Rat	s iı	n tl	he 2	2-\	lea	ır (Ga	vag	ge S	Stu	dy	of	Ri	dd	elli	ine	e:	0.3	3 r	ng/	kg
Number of Days on Study	5		2		5 7 6		8	9	0	1	3	5	5	6 5 6	5	5	7	8	8	8	6 9 7			7 2 9	2
Carcass ID Number	3 1 2	3	3 0 1	3 0 7	3 2 9	3 2 6	3 0 5	0		4		3 0 4	4		2	3		3 3 1			3 2 1			3 1 3	1
Hematopoietic System																									
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+
Lymph node	+			+			+	+	+	+									+	+	+	+	+	+	
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ι	+	+
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Integumentary System																									
Mammary gland Adenoma	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma																				Х					
Fibroadenoma				x	х			Х				Х			Х			Х		Л					Х
Fibroadenoma, multiple				Λ	1			1				1		Х	1			11		1					2 x
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	л +	+	+	+	+	+	+	+	+	+	+	+
Musaulaskalatal System																									
Musculoskeletal System																									
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Nervous System																									
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Peripheral nerve	+			+																					
Spinal cord	+			+																					
Respiratory System																									
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Alveolar/bronchiolar adenoma																									
Alveolar/bronchiolar carcinoma																									
Hemangiosarcoma, metastatic, liver			Х																						
Nose	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Special Senses System None																									
Urinary System																									
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Ureter		+				·	·											•							
Urinary bladder	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Systemic Lesions																									
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leukemia mononuclear	+	+ X		Ŧ	Ŧ	+ X		7				+ X		Ŧ	7		+ X				+ X		Ŧ	Ŧ	1
Leukemia mononuclear Lymphoma malignant	Х					л	л		л	л	л	л	л				л		Λ	л	л	л			
Lymphoma manghant	Λ																								

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	7 2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	3 0	3 0	3 0	3 0	3 0	3 0	3 0	/ 3 0	/ 3 1	3 1	3 1	3 1	3 1	7 3 1	
	3	3	2	2	3			3	3	3	2	2	2	2	2	2	2	2	3	2	2			2	2	Tota
Carcass ID Number	1 5	2	3 2 8	3 3 0	3 2	3 3 3	3 3 4	4	3 4 7	4	3 4 9		3 0 3		1		3 3 9	4	4	1		3 1 8	2	3 2 3	2	Tissues
Hematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node		+						+		+					+	+		+					+	+	+	21
Lymph node, mandibular Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 49
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Integumentary System																										
Mammary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenoma														Х												1
Carcinoma					•••	•••	Х	•••					•••	Х	•••	•••					Х		•••	•••		4
Fibroadenoma Fibroadenoma, multiple	Х		Х		Х	Х		Х	Х		х		Х		Х	Х			х		Х		Х	Х		18 5
Skin	+	+	л +		+	+	+	+		+	л +	+	+	+	+	+	+	+	л +	+	+	+	+	+	+	50
Musculoskeletal System																										
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Nervous System																										
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Peripheral nerve Spinal cord																										2 2
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma								Х							Х			Х								2 1
Hemangiosarcoma, metastatic, liver																										1
Nose Trachea	++	++	++	++	++	++	++	++	++	++	++	+ +	+ +	++	+ +	++	++	++	++	+ +	++	++	+ +	+ +	+ +	50 50
Special Senses System None																										
Urinary System																										
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Ureter																ŕ	ŕ				,			,		1
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Systemic Lesions																										
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear Lymphoma malignant					Х	Х			Х	Х							Х									18

tine large, colon		2	2	2	А	А	А	А	4	4	4	А	4	Λ	Λ	Λ	Λ	Λ	л	А	л	А	4	4	_	E
0 2 3 0 5 7 3 6 4 0 7 9 0 1 1 9 0 2 5 6 8 7 8 3	mber of Days on Study																	-				4	4 8	4 0		
cass ID Number 6 7 6 6 7 7 8 7 7 8 5 6 5 8 8 9 5 7 9 8 5 6 5 8 8 9 5 7 9 8 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 5 8 8 9 5 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 8 7 7	niber of Days on Study																									
cass ID Number 6 7 6 8 7 7 8 5 6 5 8 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 5 8 8 9 5 7 7 8 5 6 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 8 7 7		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
8 3 3 5 6 5 8 8 9 9 5 4 2 5 1 0 1 6 8 6 1 7 9 nentary System hagus + + + + + + + + + + + + + + + + + + +	rcass ID Number																						8	5		
hagus + + + + + + + + + + + + + + + + + + +																										
hagus + + + + + + + + + + + + + + + + + + +	nentary System																									
tine large, colon	phagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
tine large, eccum	tine large, colon	+	+	+	+	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	$^+$	+
ine small, duodenum + + + + + + + + + + + + + + + + + + +	ine large, rectum	+	+	+	+	+	+	+	А	$^+$	+	$^+$	$^+$	$^+$	+	+	$^+$	$^+$	+	$^+$	$^+$	+	+	+	$^+$	+
time small, jejunum+++	tine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
tine small, ileumM++ </td <td>stine small, duodenum</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td></td> <td></td> <td></td> <td>+</td>	stine small, duodenum	+	+	+	+	+	+	+	+	+				+	+	+	+	+	+	+	+	+	+	+	+	+
t +	stine small, jejunum	+	+	+	+	+	+										+	+	+	+	+	+	+	+	+	+
managiosarcoma X	stine small, ileum			+	+	+											+	+	+	+	+	+	+	+	+	+
emangiosarcoma, multiple X<	er	+			+	+	• +	+				+	+		+		+		+			+				
$\begin{array}{c} \text{patocellular carcinoma} \\ \text{spatocellular adenoma} & X \\ \text{intery} \\ \text{emargiosarcoma, metastatic, liver } \\ \text{reas} & + + + + + + + + + + + + + + + + + + $					-	•	-			Х	Х			Х		Х	37	Х		Х	Х		Х	Х		
Separate X emangiosarcoma, metastatic, liver reas reas + + + + + + + + + + + + + + + + + + +		Х		Х	-	Х		Х							Х		Х								Х	
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$									v																	
$\begin{array}{r} \text{mangiosarcoma, metastatic, liver} \\ \text{reas} \\ \text{treas} \\ \text{treas} \\ \text{treas} \\ \text{ary glands} \\ \text{treas} \\ \text{treas} \\ \text{ach, forestomach} \\ \text{ach, glandular} \\ \text{treas} \\ \text{treas}$									Λ																	
reas+ + + + + + + + + + + + + + + + + + +																										
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
the initial system + + + + + + + + + + + + + + + + + + +		+	+	+	. +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ach, glandular + + + + + + + + + + + + + + + + + + +		+	+	+	· +	· +	· +	+	+	+	+	+	+	+	+	+		+	+		+	+	+	+	+	+
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
acrine System al cortex + + + + + + + + + + + + + + + + + + +	iovascular System																									
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$		+	+	+	• +	• +	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	ocrine System																									
neochromocytoma benign X s, pancreatic $+ + + + + + + + + + + + + + + + + + + $		+	+	+	• +	• +	• +	+	+	+	+	+	+	+	+						+	+	+	+	+	+
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$		+	+	+	+	• +	• +	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+
hyroid gland + + + + + + + + + + + + + + + + + + +		_L	-	1				+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		+	+	+		+	- +	M															+	+	+	+
urs distalis, adenoma X urs intermedia, adenoma X oid gland + + + + + + + + + + + + + + + + + + +		+	+	+	. +	. +	· +																+	+		
urs intermedia, adenomaXoid gland $+ + + + + + + + + + + + + + + + + + + $		1												·		·										
oid gland + + + + + + + + + + + + + + + + + + +																						Х				
ceral Body System X ceral Body System C ceral System C ral gland + + + + + + + + + + + + + + + + + + +		+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+			+	+	+
tal System al gland + + + + + + + + + + + + + + + + + + +													Х													
ital System ral gland + + + + + + + + + + + + + + + + + + +	eral Body System																									
ral gland + + + + + + + + + + + + + + + + + + +	e																									
	nital System																									
	oral gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
																,				,					X	
	denoma												+	+	+	+	+	+	+	+	+	+	+	+	+	+
us + + + + + + + + + + + + + + + + + + +	ry	+	+	+	• +	• +	• +		- T	- -	т ,	т ,			÷		÷	, i	÷		÷					+

	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	
Number of Days on Study	0	1 6	2 2 2	2 7	2 8	2 8	2	4	4 2	4	5 2	5 2	5	5 2	5 6	6 9	7 3	8 1	8 7	8 7	9 1	0	1 8		6	
															-								-	-	-	
Carcass ID Number	3 9 0	3 8 0	3 6 0	3 6 9	3 5 4	3 7 2	3 8 7	3 5 9	3 8 5	3 9 2	3 5 2	3 8 3	3 8 4	3 9 4	3 9 7	3 9 3	3 6 4	3 5 3	3 6 1	4 0 0	3 7 7	3 7 1	3 7 6	3 9 8	3 6 7	Tota Tissues Tumor
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	А	+	+	+	+	+	+	+	+	+	49
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma				Х		Х			Х		Х	Х			Х	Х	Х	Х	Х			Х	Х			25
Hemangiosarcoma, multiple	Х	Х			Х			Х												Х				Х		13
Hepatocellular carcinoma																	Х									1
Hepatocellular adenoma		Х	Х						Х							Х					Х		Х			7
Mesentery			+					+			+			+						+						4
Hemangiosarcoma, metastatic, liver											Х									Х						2
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pheochromocytoma benign																										1
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+			М		+	+	+	+	+	+	+	+	+	48
Pituitary gland	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Pars distalis, adenoma									Х			Х		Х			Х					Х			Х	
Pars intermedia, adenoma																										1
Thyroid gland Follicular cell, carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
General Body System None																										
Genital System																										
Clitoral gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma																								Х		1
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Polyp stromal									Х		Х													Х		-

Individual Animal Tumor Patholog	y of Fer	11a)	• •	\at	5 11	1 11		<u> </u>	l Ca	li (Ja	vag	,e .:	ιu	uy	01	П	uu	em		c.	11	ng	/ ng	,
Number of Days on Study	3 5 0		3 9 3			4 0 7											4 7 0								5 0 6
Carcass ID Number	3 6 8	3 7 3			9	9		7	9		7	7		5	6	5			9	6				3 5 7	7
Hematopoietic System																									
Bone marrow Lymph node Mediastinal, hemangiosarcoma, metastatic, liver	+	+ +	+ +	+	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +	+	+	+	++	++	+ +	+ +
Lymph node, mandibular Lymph node, mesenteric Spleen	+++++++	+ + +	+ M +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Integumentary System Mammary gland Carcinoma	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+
Fibroadenoma Skin Subcutaneous tissue, fibroma	+	+	+	+	+	+	+	+	+	+	+ X	+	+	X +	+	+	+	+	+	+	+	+	+	+	+
Musculoskeletal System Bone Skeletal muscle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+++	+	+	+++	+	+++	+++		+
Nervous System Brain Peripheral nerve Spinal cord	+	+	+	+	+		+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	+	+	+	+	+ + +	+	+	+	+	+	+	+
Respiratory System	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hemangiosarcoma Hemangiosarcoma, metastatic, liver Nose Irachea	++	X + +	+++	+++	X + +	++	X + +	+++	X + +		+++	+++	X + +	+++	+++	+++	+++	+++	+++	+++	+++	+++	X + +		
Special Senses System Eve																			+						
U rinary System Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Systemic Lesions Multiple organs Leukemia mononuclear Lymphoma malignant	+	+ X	+	+ X		$^+_{\rm X}$	+	$^+_{\rm X}$	+	+	+		$^+_{\rm X}$	+	+	$^+_{\rm X}$	+	$^+_{\rm X}$	+	+	+	+	+	+	+

TABLE B2 Individual Ar

	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	6	6	6	6	
Number of Days on Study	0 9	1 6	2	2	2 8	2 8	2 8		4 2	4 8	5	5	5 2	5 2	5 6	6 9	7 3	8 1	8 7	8 7	9	0 8	1 8	5 8	6 8	
Carcass ID Number	3	3	3	3	3	3 7	38	3	3	3	3	3 8	38	3	3	3	3	3	3	4	37	3 7	37	3	3	Total Tissues/
	0	0	0	9	4	2	7	9	5	2	2	3	4	4	7	3	4	3	1	0	7	1	6	8	7	Tumors
Hematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node	+	+		+	+	+	+	+		+	+	+	+			+	+	+	+	+	+	+	+	+	+	40
Mediastinal, hemangiosarcoma, metastatic, liver						Х																				2
Lymph node, mandibular	+	+	+	+	+	+	$^+$	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	+	$^+$	+	$^+$	+	+	+	50
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	49
Integumentary System																										40
Mammary gland Carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	I	+	+	+	49
Fibroadenoma							v						л	v												1
Skin	+	+	+	+	+	+	X +	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	50
Subcutaneous tissue, fibroma	1	,					'		'	'	1	'	1	'	'	'	'	1		1	'	'		'	I	1
Musculoskeletal System																										
Bone	+	+	+	+	+	+	+	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	+	+	$^+$	+	+	+	+	50
Skeletal muscle								+				+														6
Nervous System																										
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Peripheral nerve Spinal cord				++														+ +								5 5
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma										Х																1
Hemangiosarcoma, metastatic, liver		Х		Х	Х	Х					Х								Х	Х		Х	Х			17
Nose	+	+	+	+	$^+$	+	$^+$	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	50
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Special Senses System																										
Eye																										1
Urinary System																										
Kidney Urinary bladder	++	+ +	50 50																							
Systemic Lesions																										
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Leukemia mononuclear					Х	Х	х				х			х											Х	14
Lymphoma malignant				Х																						1

	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
Adrenal Medulla: Benign Pheoch	romocvtoma					
Overall rate ^a	1/50 (2%)	5/49 (10%)	2/50 (4%)	1/50 (2%)	3/50 (6%)	1/50 (2%)
Adjusted rate	2.3%	12.7%	4.8%	2.5%	7.1%	5.5%
Ferminal rate ^c	1/33 (3%)	4/22 (18%)	2/28 (7%)	1/22 (5%)	1/29 (3%)	0/0
First incidence (days)	729 (T)	715	729 (T)	729 (T)	671	472
oly-3 test	P=0.538	P=0.082	P=0.490	P=0.750	P=0.301	P=0.552
Adrenal Medulla: Benign or Mali	gnant Pheochromo	cytoma				
Overall rate	2/50 (4%)	5/49 (10%)	3/50 (6%)	1/50 (2%)	3/50 (6%)	1/50 (2%)
djusted rate	4.6%	12.7%	7.1%	2.5%	7.1%	5.5%
erminal rate	1/33 (3%)	4/22 (18%)	2/28 (7%)	1/22 (5%)	1/29 (3%)	0/0
irst incidence (days)	611	715	572	729 (T)	671	472
oly-3 test	P=0.469N	P=0.178	P=0.488	P=0.521N	P=0.490	P=0.666
Clitoral Gland: Adenoma						
Overall rate	7/49 (14%)	7/49 (14%)	8/49 (16%)	10/48 (21%)	4/49 (8%)	2/50 (4%)
djusted rate	16.7%	17.7%	19.1%	24.7%	9.6%	10.8%
erminal rate	7/33 (21%)	5/22 (23%)	5/28 (18%)	7/22 (32%)	3/29 (10%)	0/0
irst incidence (days)	729 (T)	719	532	651	686	503
oly-3 test	P=0.149N	P=0.569	P=0.501	P=0.263	P=0.263N	P=0.430N
Clitoral Gland: Carcinoma						
Overall rate	3/49 (6%)	2/49 (4%)	4/49 (8%)	3/48 (6%)	2/49 (4%)	0/50 (0%)
djusted rate	7.0%	5.0%	9.6%	7.5%	4.8%	0.0%
erminal rate	2/33 (6%)	1/22 (5%)	3/28 (11%)	2/22 (9%)	2/29 (7%)	0/0
first incidence (days)	437	407	562	715	729 (T)	e
oly-3 test	P=0.220N	P=0.526N	P=0.486	P=0.632	P=0.514N	P=0.341N
Clitoral Gland: Adenoma or Caro	cinoma					
Overall rate	10/49 (20%)	9/49 (18%)	12/49 (24%)	13/48 (27%)	6/49 (12%)	2/50 (4%)
djusted rate	23.4%	22.3%	28.2%	32.1%	14.4%	10.8%
erminal rate	9/33 (27%)	6/22 (27%)	8/28 (29%)	9/22 (41%)	5/29 (17%)	0/0
irst incidence (days)	437	407	532	651	686	503
oly-3 test	P=0.072N	P=0.555N	P=0.397	P=0.258	P=0.218N	P=0.245N
iver: Hemangiosarcoma						
Overall rate	0/50 (0%)	0/50 (0%)	0/50 (0%)	0/50 (0%)	3/50 (6%)	38/50 (76%
djusted rate	0.0%	0.0%	0.0%	0.0%	7.0%	89.7%
erminal rate	0/33 (0%)	0/22 (0%)	0/28 (0%)	0/22 (0%)	1/29 (3%)	0/0
irst incidence (days)	_ `				524	350
oly-3 test	P<0.001	f	—	—	P=0.118	P<0.001
iver: Hepatocellular Adenoma						
Overall rate	1/50 (2%)	0/50 (0%)	0/50 (0%)	0/50 (0%)	1/50 (2%)	7/50 (14%)
djusted rate	2.3%	0.0%	0.0%	0.0%	2.4%	32.3%
erminal rate	1/33 (3%)	0/22 (0%)	0/28 (0%)	0/22 (0%)	1/29 (3%)	0/0
irst incidence (days)	729 (T)	_ `	_ `	_ `	729 (T)	426
oly-3 test	P<0.001	P=0.514N	P=0.506N	P=0.510N	P=0.756	P=0.002
iver: Hepatocellular Adenoma o	r Carcinoma					
Overall rate	1/50 (2%)	0/50 (0%)	0/50 (0%)	0/50 (0%)	2/50 (4%)	8/50 (16%)
djusted rate	2.3%	0.0%	0.0%	0.0%	4.8%	36.1%
erminal rate	1/33 (3%)	0/22 (0%)	0/28 (0%)	0/22 (0%)	2/29 (7%)	0/0
First incidence (days)	729 (T)				729 (T)	426
					·=- (*)	

	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
Lung: Alveolar/bronchiolar	Adenoma					
Overall rate	2/50 (4%)	0/50 (0%)	0/50 (0%)	3/50 (6%)	2/50 (4%)	0/50 (0%)
Adjusted rate	4.7%	0.0%	0.0%	7.3%	4.8%	0.0%
Terminal rate	2/33 (6%)	0/22 (0%)	0/28 (0%)	1/22 (5%)	2/29 (7%)	0/0
First incidence (days)	729 (T)	0/22 (070)	0/28 (0/0)	658	729 (T)	0/0
Poly-3 test	P=0.538	 P=0.253N	 P=0.244N	P=0.481	P=0.687	 P=0.457N
Lung: Alveolar/bronchiolar	Adenoma or Carcinoma					
Overall rate	2/50 (4%)	0/50 (0%)	0/50 (0%)	3/50 (6%)	3/50 (6%)	0/50 (0%)
Adjusted rate	4.7%	0.0%	0.0%	7.3%	7.2%	0.0%
Ferminal rate	2/33 (6%)	0/22 (0%)	0/28 (0%)	1/22 (5%)	3/29 (10%)	0/0
First incidence (days)	729 (T)			658	729 (T)	
Poly-3 test	P=0.383	P=0.253N	P=0.244N	P=0.481	P=0.490	P=0.457N
Jammary Gland: Fibroade Dverall rate	28/50 (56%)	21/50 (42%)	26/50 (52%)	24/50 (48%)	23/50 (46%)	3/50 (6%)
Adjusted rate	64.2%	49.2%	58.3%	55.7%	51.5%	15.4%
Ferminal rate	24/33 (73%)	12/22 (55%)	18/28 (64%)	12/22 (55%)	15/29 (52%)	0/0
First incidence (days)	611	513	562	638	570	461
Poly-3 test	P=0.006N	P=0.105N	P=0.358N	P=0.269N	P=0.151N	P<0.001N
Mammary Gland: Fibroade	noma or Adenoma					
Overall rate	28/50 (56%)	21/50 (42%)	26/50 (52%)	24/50 (48%)	24/50 (48%)	3/50 (6%)
Adjusted rate	64.2%	49.2%	58.3%	55.7%	53.7%	15.4%
Terminal rate	24/33 (73%)	12/22 (55%)	18/28 (64%)	12/22 (55%)	16/29 (55%)	0/0
First incidence (days)	611	513	562	638	570	461
Poly-3 test	P=0.009N	P=0.105N	P=0.358N	P=0.269N	P=0.208N	P<0.001N
ory-5 test	1-0.00914	1-0.1051	1-0.5561	1-0.2091	1-0.2001	1 <0.00110
Mammary Gland: Carcinon		- / / // //	- / / / / / /			
Overall rate	2/50 (4%)	3/50 (6%)	2/50 (4%)	0/50 (0%)	4/50 (8%)	1/50 (2%)
Adjusted rate	4.6%	7.4%	4.8%	0.0%	9.5%	5.5%
Terminal rate	1/33 (3%)	1/22 (5%)	1/28 (4%)	0/22 (0%)	3/29 (10%)	0/0
First incidence (days)	611	520	715	_	686	552
Poly-3 test	P=0.334	P=0.473	P=0.681	P=0.250N	P=0.324	P=0.664
Mammary Gland: Adenoma	a or Carcinoma					
Overall rate	3/50 (6%)	4/50 (8%)	2/50 (4%)	1/50 (2%)	4/50 (8%)	1/50 (2%)
Adjusted rate	6.9%	9.8%	4.8%	2.4%	9.5%	5.5%
Ferminal rate	2/33 (6%)	2/22 (9%)	1/28 (4%)	0/22 (0%)	3/29 (10%)	0/0
First incidence (days)	611	520	715	691	686	552
Poly-3 test	P=0.497	P=0.468	P=0.517N	P=0.325N	P=0.486	P=0.619N
Mammary Gland: Fibroade	noma, Adenoma. or Carc	inoma				
Overall rate	30/50 (60%)	23/50 (46%)	27/50 (54%)	24/50 (48%)	25/50 (50%)	4/50 (8%)
Adjusted rate	68.2%	52.8%	60.5%	55.7%	56.0%	19.9%
Ferminal rate	25/33 (76%)	12/22 (55%)	18/28 (64%)	12/22 (55%)	17/29 (59%)	0/0
First incidence (days)	611	513	562	638	570	461
Poly-3 test	P=0.008N	P=0.094N	P=0.289N	038 P=0.153N	P=0.157N	401 P<0.001N
•	1 -0.0001	1 0.0711	1 0.2071	1 0.13311	1 0.13/11	1 -0.0011
Pancreatic Islets: Adenoma Dverall rate	2/50 (40/)	2/50 (404)	4/50 (80/)	0/46 (00/)	1/50 (2%)	0/50 (00/)
	2/50 (4%)	2/50 (4%)	4/50 (8%)	0/46 (0%)	1/50 (2%)	0/50 (0%)
Adjusted rate	4.7%	5.0%	9.6%	0.0%	2.4%	0.0%
Ferminal rate	2/33 (6%)	2/22 (9%)	3/28 (11%)	0/22 (0%)	1/29 (3%)	0/0
First incidence (days)	729 (T)	729 (T)	715 D=0.222	 D0.255NI	729 (T) D=0.507N	
Poly-3 test	P=0.168N	P=0.669	P=0.323	P=0.255N	P=0.507N	P=0.457N

	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
Pancreatic Islets: Adenoma or	Carcinoma					
Overall rate	2/50 (4%)	2/50 (4%)	5/50 (10%)	0/46 (0%)	1/50 (2%)	0/50 (0%)
Adjusted rate	4.7%	5.0%	12.0%	0.0%	2.4%	0.0%
Ferminal rate	2/33 (6%)	2/22 (9%)	4/28 (14%)	0/22 (0%)	1/29 (3%)	0/0
First incidence (days)	729 (T)	729 (T)	715	_	729 (T)	_
Poly-3 test	P=0.140N	P=0.669	P=0.203	P=0.255N	P=0.507N	P=0.457N
Pituitary Gland (Pars Distalis):	Adenoma					
Overall rate	27/50 (54%)	22/48 (46%)	21/50 (42%)	17/49 (35%)	24/50 (48%)	7/49 (14%)
Adjusted rate	59.7%	54.5%	47.3%	40.4%	53.5%	33.5%
Cerminal rate	18/33 (55%)	16/21 (76%)	13/28 (46%)	9/22 (41%)	16/29 (55%)	0/0
First incidence (days)	545	520	518	561	524	434
oly-3 test	P=0.150N	P=0.393N	P=0.163N	P=0.051N	P=0.349N	P=0.049N
skin: Squamous Cell Papilloma	a, Keratoacanthoma, B	Basal Cell Aden	oma, or Basal Ce	ll Carcinoma		
Overall rate	1/50 (2%)	3/50 (6%)	3/50 (6%)	0/50 (0%)	0/50 (0%)	0/50 (0%)
Adjusted rate	2.3%	7.4%	7.2%	0.0%	0.0%	0.0%
Ferminal rate	1/33 (3%)	1/22 (5%)	3/28 (11%)	0/22 (0%)	0/29 (0%)	0/0
First incidence (days)	729 (T)	647	729 (T)			
Poly-3 test	P=0.099N	P=0.284	P=0.294	P=0.510N	P=0.504N	P=0.650N
Skin (Subcutaneous Tissue): Fi	broma					
Overall rate	1/50 (2%)	0/50 (0%)	5/50 (10%)	3/50 (6%)	0/50 (0%)	1/50 (2%)
Adjusted rate	2.3%	0.0%	11.9%	7.3%	0.0%	5.4%
erminal rate	0/33 (0%)	0/22 (0%)	3/28 (11%)	1/22 (5%)	0/29 (0%)	0/0
First incidence (days)	483		647	638		447
Poly-3 test	P=0.369N	P=0.517N	P=0.093	P=0.285	P=0.507N	P=0.549
Skin (Subcutaneous Tissue): Fi	broma, Fibrosarcoma	, or Myxosarco	ma			
Overall rate	3/50 (6%)	0/50 (0%)	5/50 (10%)	3/50 (6%)	0/50 (0%)	1/50 (2%)
Adjusted rate	6.8%	0.0%	11.9%	7.3%	0.0%	5.4%
Cerminal rate	1/33 (3%)	0/22 (0%)	3/28 (11%)	1/22 (5%)	0/29 (0%)	0/0
First incidence (days)	483		647	638		447
Poly-3 test	P=0.239N	P=0.138N	P=0.330	P=0.629	P=0.128N	P=0.622N
Chyroid Gland (C-cell): Adeno	ma					
Overall rate	2/49 (4%)	4/50 (8%)	4/49 (8%)	6/49 (12%)	11/50 (22%)	0/50 (0%)
Adjusted rate	4.8%	9.9%	9.6%	14.7%	25.1%	0.0%
Ferminal rate	2/32 (6%)	1/22 (5%)	2/28 (7%)	5/22 (23%)	6/29 (21%)	0/0
First incidence (days)	729 (T)	613	647	682	570	_
Poly-3 test	P=0.169	P=0.321	P=0.337	P=0.123	P=0.008	P=0.452N
Thyroid Gland (C-cell): Adeno	ma or Carcinoma					
Overall rate	3/49 (6%)	4/50 (8%)	4/49 (8%)	6/49 (12%)	11/50 (22%)	0/50 (0%)
Adjusted rate	7.2%	9.9%	9.6%	14.7%	25.1%	0.0%
Ferminal rate	3/32 (9%)	1/22 (5%)	2/28 (7%)	5/22 (23%)	6/29 (21%)	0/0
First incidence (days)	729 (T)	613	647	682	570	_
Poly-3 test	P=0.212	P=0.482	P=0.500	P=0.228	P=0.023	P=0.336N
Uterus: Stromal Polyp						
Overall rate	11/50 (22%)	14/50 (28%)	15/50 (30%)	12/50 (24%)	9/50 (18%)	5/50 (10%)
Adjusted rate	24.9%	32.4%	34.4%	28.5%	20.8%	24.4%
Terminal rate	7/33 (21%)	6/22 (27%)	10/28 (36%)	8/22 (36%)	6/29 (21%)	0/0
First incidence (days)	498	328	518	561	524	447
Poly-3 test	P=0.207N	P=0.291	P=0.227	P=0.445	P=0.423N	P=0.593N

	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
Uterus: Stromal Sarcoma						
Overall rate	0/50 (0%)	0/50 (0%)	2/50 (4%)	4/50 (8%)	2/50 (4%)	0/50 (0%)
Adjusted rate	0.0%	0.0%	4.7%	9.7%	4.7%	0.0%
Terminal rate	0/33 (0%)	0/22 (0%)	1/28 (4%)	1/22 (5%)	1/29 (3%)	0/0
First incidence (days)	_	_	437	646	463	_
Poly-3 test	P=0.504	_	P=0.234	P=0.055	P=0.236	—
Uterus: Stromal Polyp or Strom	al Sarcoma					
Overall rate	11/50 (22%)	14/50 (28%)	17/50 (34%)	14/50 (28%)	11/50 (22%)	5/50 (10%)
Adjusted rate	24.9%	32.4%	38.3%	33.2%	25.0%	24.4%
Terminal rate	7/33 (21%)	6/22 (27%)	11/28 (39%)	9/22 (41%)	7/29 (24%)	0/0
First incidence (days)	498	328	437	561	463	447
Poly-3 test	P=0.234N	P=0.291	P=0.126	P=0.268	P=0.591	P=0.593N
All Organs: Hemangiosarcoma						
Overall rate	0/50 (0%)	0/50 (0%)	0/50 (0%)	0/50 (0%)	3/50 (6%)	39/50 (78%)
Adjusted rate	0.0%	0.0%	0.0%	0.0%	7.0%	90.9%
Terminal rate	0/33 (0%)	0/22 (0%)	0/28 (0%)	0/22 (0%)	1/29 (3%)	0/0
First incidence (days)		_	_	_	524	350
Poly-3 test	P<0.001	—	—	—	P=0.118	P<0.001
All Organs: Mononuclear Cell I	Leukemia					
Overall rate	12/50 (24%)	8/50 (16%)	13/50 (26%)	18/50 (36%)	18/50 (36%)	14/50 (28%)
Adjusted rate	27.0%	18.9%	29.9%	40.3%	39.0%	51.6%
Terminal rate	8/33 (24%)	1/22 (5%)	7/28 (25%)	6/22 (27%)	6/29 (21%)	0/0
First incidence (days)	393	513	532	451	463	352
Poly-3 test	P=0.009	P=0.262N	P=0.475	P=0.132	P=0.158	P=0.033
All Organs: Benign Neoplasms						
Overall rate	45/50 (90%)	42/50 (84%)	45/50 (90%)	41/50 (82%)	45/50 (90%)	22/50 (44%)
Adjusted rate	95.2%	89.4%	93.5%	91.2%	95.2%	72.0%
Terminal rate	32/33 (97%)	21/22 (96%)	27/28 (96%)	22/22 (100%)	29/29 (100%)	0/0
First incidence (days)	483	328	444	561	524	426
Poly-3 test	P<0.001N	P=0.218N	P=0.538N	P=0.342N	P=0.727N	P<0.001N
All Organs: Malignant Neoplasi	ms					
Overall rate	20/50 (40%)	17/50 (34%)	21/50 (42%)	28/50 (56%)	28/50 (56%)	47/50 (94%)
Adjusted rate	43.1%	38.2%	46.4%	59.3%	58.9%	97.8%
Terminal rate	13/33 (39%)	5/22 (23%)	12/28 (43%)	10/22 (46%)	14/29 (48%)	0/0
First incidence (days)	393	407	437	252	451	350
Poly-3 test	P<0.001	P=0.392N	P=0.460	P=0.083	P=0.088	P<0.001

	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
All Organs: Benign or Malig	gnant Neoplasms					
Overall rate	47/50 (94%)	47/50 (94%)	48/50 (96%)	47/50 (94%)	50/50 (100%)	50/50 (100%)
Adjusted rate	96.1%	96.0%	96.8%	96.9%	100.0%	100.0%
Terminal rate	32/33 (97%)	21/22 (96%)	27/28 (96%)	22/22 (100%)	29/29 (100%)	0/0
First incidence (days)	393	328	437	252	451	350
Poly-3 test	P=0.080	P=0.710N	P=0.658	P=0.645	P=0.222	P=0.222

TABLE B3 Statistical Analysis of Primary Neoplasms in Female Rats in the 2-Year Gavage Study of Riddelliine

(T)Terminal sacrifice

^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, clitoral gland, liver, lung, pancreatic islets, pituitary gland, and thyroid gland; for other tissues, denominator is number of animals necropsied.

Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the vehicle control incidence is the P value associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the vehicle controls and that dosed group. The Poly-3 test accounts for the differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in a dosed group is indicated by **N**.

e Not applicable; no neoplasms in animal group

f Value of statistic cannot be computed.

TABLE B4a Historical Incidence of Liver Neoplasms in Control Female F344/N Rats

		Incident	ce in Controls	
Study	Hemangiosarcoma	Hepatocellular Adenoma	Hepatocellular Carcinoma	Hepatocellular Adenoma or Carcinoma
Historical Incidence in Controls Given NTP-2000	Diet ^a			
Citral (feed)	0/100	0/100	0/100	0/100
<i>p</i> , <i>p</i> '-Dichlorodiphenyl sulfone (feed)	0/50	0/50	0/50	0/50
Indium phosphide (inhalation)	0/50	0/50	0/50	0/50
60-Hz Magnetic fields (whole body exposure)	0/100	0/100	0/100	0/100
Methacrylonitrile (gavage)	0/50	1/50	0/50	1/50
Naphthalene (inhalation)	0/49	0/49	0/49	0/49
o-Nitrotoluene (feed)	0/60	1/60	0/60	1/60
<i>p</i> -Nitrotoluene (feed)	0/50	0/50	0/50	0/50
Riddelliine (gavage)	0/50	1/50	0/50	1/50
Sodium nitrite (drinking water)	0/50	0/50	0/50	0/50
Vanadium pentoxide (inhalation)	0/50	1/50	0/50	1/50
Overall Historical Incidence in Controls Given NT	P-2000 Diet			
Total (%)	0/659	4/659 (0.6%)	0/659	4/659 (0.6%)
Mean \pm standard deviation	0,009	$0.7\% \pm 1.0\%$	0,000	$0.7\% \pm 1.0\%$
Range		0%-2%		0%-2%
Overall Historical Incidence in Water Gavage Cor	ntrols Given NIH-07 Diet ^b			
Total (%)	0/50	1/50 (2.0%)	0/50	1/50 (2.0%)

a b Data as of January 17, 2001 Data as of December 21, 1999

Study	Incidence in Controls	
Historical Incidence in Controls Given NTP-2000 Diet ^a		
Citral (feed)	24/100	
p,p'-Dichlorodiphenyl sulfone (feed)	8/50	
Indium phosphide (inhalation)	14/50	
60-Hz Magnetic fields (whole body exposure)	20/100	
Methacrylonitrile (gavage)	21/50	
Naphthalene (inhalation)	16/49	
o-Nitrotoluene (feed)	21/60	
<i>p</i> -Nitrotoluene (feed)	13/50	
Riddelliine (gavage)	12/50	
Sodium nitrite (drinking water)	15/50	
Vanadium pentoxide (inhalation)	21/50	
Overall Historical Incidence in Controls Given NTP-2000 Di	et	
Total (%)	185/659 (28.1%)	
Mean \pm standard deviation	$29.1\% \pm 8.4\%$	
Range	16%-42%	
Overall Historical Incidence in Water Gavage Controls Give	en NIH-07 Diet ^b	
Total (%)	20/50 (40.0%)	

TABLE B4b Historical Incidence of Mononuclear Cell Leukemia in Control Female F344/N Rats

a b Data as of January 17, 2001; includes data for lymphocytic, monocytic, and undifferentiated leukemia Data as of December 21, 1999; includes data for lymphocytic, monocytic, and undifferentiated leukemia

Historical Incidence of Thyroid Gland (C-cell) Neoplasms in Control Female F344/N Rats

Study		Incidence in Control	ols
·	Adenoma	Carcinoma	Adenoma or Carcinoma
Historical Incidence in Controls Given NTP-2000 I	Diet ^a		
Citral (feed)			
Untreated controls	8/50	0/50	8/50
Vehicle controls	13/50	0/50	13/50
<i>p</i> , <i>p</i> '-Dichlorodiphenyl sulfone (feed)	5/50	2/50	7/50
Indium phosphide (inhalation)	6/47	3/47	8/47
60-Hz Magnetic fields (whole body exposure)	15/100	5/100	19/100
Methacrylonitrile (gavage)	3/50	2/50	5/50
Naphthalene (inhalation)	4/47	3/47	7/47
o-Nitrotoluene (feed)	9/60	1/60	10/60
<i>p</i> -Nitrotoluene (feed)	6/50	0/50	6/50
Riddelliine (gavage)	2/49	1/49	3/49
Sodium nitrite (drinking water)	7/50	2/50	9/50
Vanadium pentoxide (inhalation)	2/50	1/50	3/50
Overall Historical Incidence in Controls Given NT	P-2000 Diet		
Total (%)	80/653 (12.3%)	20/653 (3.1%)	98/653 (15.0%)
Mean \pm standard deviation	$11.1\% \pm 5.2\%$	$3.2\% \pm 2.3\%$	$14.1\% \pm 5.0\%$
Range	4%-21%	0%-6%	6%-26%
Overall Historical Incidence in Water Gavage Con	trols Given NIH-07 Diet ^b		
Total (%)	3/50 (6.0%)	2/50 (4.0%)	5/50 (10.0%)

a b

Data as of January 17, 2001 Data as of December 21, 1999

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Gavage Study of Riddelliine^a

	Vehicle	e Control	0.01	mg/kg	0.033	3 mg/kg	0.1	mg/kg	0.33	mg/kg	1 n	ng/kg
Disposition Summary												
Animals initially in study		50		50		50		50		50		50
Early deaths		50		50		50		50		50		50
Accidental deaths		2		6		3		2		3		
Moribund		9		11		13		14		16		19
Natural deaths		6		11		6		12		2		31
Survivors		-				-				-		
Terminal sacrifice		33		22		28		22		29		
Animals examined microscopically		50		50		50		50		50		50
Alimentary System												
Esophagus	(48)		(50)		(48)		(50)		(49)		(50)	
Inflammation, chronic	(13)			(4%)	(10)		(00)		(12)		(30)	
Perforation			2	()	1	(2%)						
Intestine large, colon	(49)		(50)		(50)		(47)		(50)		(50)	
Diverticulum		(2%)	()		()				()		()	
Intestine large, cecum	(50)		(50)		(48)		(47)		(50)		(50)	
Edema			· · /		· · ·		· · ·			(2%)		
Liver	(50)		(50)		(50)		(50)		(50)		(50)	
Angiectasis	2	(4%)		(2%)	2	(4%)			5	(10%)		(2%)
Basophilic focus	45	(90%)	46	(92%)	44	(88%)	42	(84%)	40	(80%)	20	(40%)
Clear cell focus	9	(18%)	8	(16%)	9	(18%)	13	(26%)	22	(44%)	2	(4%)
Cyst	1	(2%)										
Degeneration, cystic					1	(2%)			1	(2%)		
Eosinophilic focus	1	(2%)	2	(4%)	6	(12%)	4	(8%)	12	(24%)	13	(26%)
Hematopoietic cell proliferation	2	(4%)	1	(2%)	4	(8%)			1	(2%)	3	(6%)
Hemorrhage					2	(4%)			1	(2%)	7	(14%)
Hepatodiaphragmatic nodule	13	(26%)	8	(16%)	9	(18%)	6	(12%)	4	(8%)	5	(10%)
Infiltration cellular, mixed cell	9	(18%)	7	(14%)	9	(18%)	8	(16%)	15	(30%)	3	(6%)
Mixed cell focus	8	(16%)	10	(20%)	10	(20%)		(22%)	23	(46%)	5	(10%)
Necrosis, focal	4	(8%)		(4%)		(6%)		(8%)		(8%)		(30%)
Bile duct, hyperplasia	2	(4%)	1	(2%)	4	(8%)	4	(8%)	3	(6%)	10	(20%)
Hepatocyte, cytomegaly					7	(14%)	23	(46%)		(64%)	29	(58%)
Hepatocyte, hyperplasia, atypical									1	(2%)		
Hepatocyte, hyperplasia, focal	1	(2%)										
Hepatocyte, hyperplasia, regenerative										(16%)		(100%)
Hepatocyte, vacuolization cytoplasmic	4	(8%)	5	< / /		(14%)	4	(8%)		(6%)		(10%)
Kupffer cell, pigmentation			2	(4%)		(6%)		(4%)		(12%)		(8%)
Mesentery	(10)		(10)		(18)		(14)		(13)		(5)	
Accessory spleen		(20%)				(6%)		(14%)		(8%)		
Fat, necrosis		(80%)		(100%)		(100%)		(86%)		(69%)		(60%)
Pancreas	(50)		(50)		(50)		(46)		(50)		(50)	
Atrophy		(20%)		(6%)	9	(18%)	8	(17%)		(8%)	4	(8%)
Acinus, hyperplasia, focal		(6%)	1	(2%)			/= ~:			(2%)	. =	
Salivary glands	(50)		(50)		(50)		(50)	(20)	(50)		(50)	(40.1)
Atrophy	1-01		(=0)		(=0)			(2%)				(4%)
Stomach, forestomach	(50)		(50)		(50)	(10)	(49)		(49)		(50)	
Ulcer				(20)		(4%)		(20/)		(20)	~	((0))
Epithelium, hyperplasia			1	(2%)	5	(10%)	1	(2%)	1	(2%)	3	(6%)

^a Number of animals examined microscopically at the site and the number of animals with lesion

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	0.01 mg/kg	0.033 mg/kg	0.1 mg/kg	0.33 mg/kg	1 mg/kg
Alimentary System (continued)	(50)	(50)	(50)	(10)	(10)	(50)
Stomach, glandular Erosion Hemorrhage	(50)	(50)	(50)	(49) 2 (4%)	(49) 1 (2%)	(50) 9 (18%) 1 (2%)
Mineralization Ulcer				2 (4%)		1 (2%) 7 (14%)
Tooth				(1)		(1.70)
Malformation				1 (100%)		
Cardiovascular System						
Heart	(50)	(50)	(50)	(50)	(50)	(50)
Cardiomyopathy	12 (24%)	15 (30%)	8 (16%)	13 (26%)	8 (16%)	6 (12%)
Thrombosis		1 (2%)	1 (2%)			
Endocrine System						
Adrenal cortex	(50)	(50)	(50)	(50)	(50)	(50)
Accessory adrenal cortical nodule	6 (12%)	2 (4%)	6 (12%)	4 (8%)	2 (4%)	7 (14%)
Atrophy	0 (100/)	0 (100/)	10 (0.40/)	0 (1(0))	1 (2%)	2 ((0))
Degeneration, fatty	9 (18%)	9 (18%)	12 (24%)	8 (16%)	13 (26%)	3 (6%)
Hyperplasia, diffuse Hyperplasia, focal	4 (8%)	5 (10%)	3 (6%) 6 (12%)	1 (2%) 4 (8%)	9 (18%)	3 (6%)
Hypertrophy	4 (070)	5 (1070)	1 (2%)	1 (2%)	9 (1870)	5 (070)
Hypertrophy, focal Necrosis	9 (18%)	5 (10%)	7 (14%)	2 (4%)	4 (8%) 1 (2%)	2 (4%)
Adrenal medulla	(50)	(49)	(50)	(50)	(50)	(50)
Hyperplasia	1 (2%)	3 (6%)	(50)	3 (6%)	3 (6%)	(50)
Pituitary gland	(50)	(48)	(50)	(49)	(50)	(49)
Pars distalis, angiectasis	6 (12%)	6 (13%)	8 (16%)	8 (16%)	9 (18%)	7 (14%)
Pars distalis, cyst	16 (32%)	11 (23%)	19 (38%)	16 (33%)	17 (34%)	19 (39%)
Pars distalis, hyperplasia	1 (2%)	1 (2%)				
Pars distalis, hyperplasia, focal	10 (20%)	8 (17%)	9 (18%)	11 (22%)	7 (14%)	6 (12%)
Pars intermedia, angiectasis	1 (2%)			1 (2%)	1 (2%)	
Pars intermedia, cyst	1 (2%)	(50)	1 (2%)	(40)	(50)	(50)
Thyroid gland Ultimobranchial cyst	(49) 1 (2%)	(50) 2 (4%)	(49)	(49)	(50) 1 (2%)	(50)
C-cell, hyperplasia	22 (45%)	2 (4%) 9 (18%)	24 (49%)	15 (31%)	1 (2%) 20 (40%)	2 (4%) 10 (20%)
Follicle, cyst	1 (2%)	1 (2%)	1 (2%)	15 (5170)	20 (4070)	10 (2070)
General Body System None						
Genital System						
Clitoral gland	(49)	(49)	(49)	(48)	(49)	(50)
Cyst	5 (10%)	2 (4%)	3 (6%)	1 (2%)	4 (8%)	3 (6%)
Hyperplasia	3 (6%)	5 (10%)	4 (8%)	2 (4%)	2 (4%)	
Inflammation, chronic	4 (8%)	5 (10%)	4 (8%)	3 (6%)	4 (8%)	
Ovary	(50)	(49)	(50)	(50)	(50)	(50)
Cyst	11 (22%)	7 (14%)	8 (16%)	9 (18%)	6 (12%)	9 (18%)
Infiltration cellular, mixed cell	1 (2%)	(50)	(50)	(50)	(50)	(50)
Uterus Hydrometra	(50) 5 (10%)	(50) 7 (14%)	(50)	(50) 6 (12%)	(50) 6 (12%)	(50) 6 (12%)
Hyperplasia, cystic	4 (8%)	3 (6%)	7 (14%)	5 (10%)	2 (4%)	9 (18%)
Inflammation, chronic	. (370)	- (0,0)	2 (4%)	- (10/0)	1 (2%)	(10/0)

TABLE	B5
-------	-----------

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Gavage Study of Riddelliine

	Vehicle Control		0.01 mg/kg		0.033 mg/kg		0.1 mg/kg		0.33 mg/kg		1 mg/kg	
Hematopoietic System												
Bone marrow	(50)		(50)		(50)		(50)		(50)		(50)	
Hyperplasia	6	(12%)	3	(6%)	8	(16%)	7	(14%)	10	(20%)	32	(64%)
Inflammation, granulomatous					1	(2%)						
Myelofibrosis			1	(2%)			1	(2%)	1	(2%)	1	(2%)
Lymph node	(26)		(24)		(36)		(19)		(21)		(40)	
Iliac, pigmentation			1	(4%)								
Mediastinal, congestion		(15%)	3	(13%)		(8%)	3	(16%)		(5%)	9	· /
Mediastinal, hemorrhage Mediastinal, infiltration cellular,		(19%)	8	(33%)	9	(25%)	5	(26%)	7	(33%)	25	(63%)
histiocyte		(4%)	22	(020/)	22	(000/)	1.5	(700/)	16	$(\mathbf{\pi}(0))$	21	(700/)
Mediastinal, pigmentation Pancreatic, hemorrhage	23	(88%)		(92%)		(89%)	15	(79%)	16	(76%)		(78%) (5%)
Pancreatic, hyperplasia, histiocytic				(4%)		(3%)				·		
Pancreatic, hyperplasia, lymphoid	1	(4%)		(4%)		(3%)				(5%)	-	(20)
Pancreatic, pigmentation			1	(4%)		(6%)				(19%)		(3%)
Renal, pigmentation	(50)		(40)			(6%)	(50)			(10%)		(3%)
Lymph node, mandibular Ectasia	(50)		(49)		(48)		(50) 3	(6%)	(50)		(50)	
Hemorrhage		(2%)	1	(2%)	1	(2%)			1	(2%)		
Hyperplasia, lymphoid		(4%)	3	(6%)		(2%)	5	(10%)		(10%)		
Pigmentation	5	(10%)	2	(4%)	2	(4%)		(22%)		(6%)		
Lymph node, mesenteric	(50)		(50)		(50)		(47)		(49)		(49)	
Congestion							1	(2%)				(2%)
Hemorrhage	1	(2%)	2	(4%)	3	(6%)	4	(9%)			6	(12%)
Hyperplasia									1	(2%)		
Inflammation, granulomatous		(2%)	1	(20)	2	(40/)	2	(40/)	2	((0))	2	(40/)
Pigmentation		(6%)		(2%)		(4%)		(4%)		(6%)		(4%)
Spleen	(50)		(50)		(50)		(50)	(20/)	(50)	$\langle (0) \rangle$	(50)	(1.407)
Congestion	1	(20/)	1	(20/)	2	(40/)	1	(2%)		(6%)	/	(14%)
Fibrosis		(2%)		(2%)		(4%)	26	(520/)		(4%)	24	((00/)
Hematopoietic cell proliferation	24	(48%)	33	(66%)	25	(50%)	20	(52%)		(54%)	54	(68%)
Hyperplasia, stromal Necrosis							1	(2%)	1	(2%)		
Pigmentation	37	(74%)	41	(82%)	35	(70%)	1	(2%)	35	(70%)	20	(58%)
Thymus	(48)	(7470)	(48)	(0270)	(46)	(7070)	(48)	(08%)	(50)	(70%)	(49)	(38%)
Cyst	(40)		(40)		(40)		(40)		~ /	(2%)	(49)	
Hemorrhage			2	(4%)					1	(270)	2	(4%)
Hyperplasia				(1%)							2	(170)
Integrimentary System												
Integumentary System	(50)		(50)		(50)		(50)		(49)		(49)	
Mammary gland Hyperplasia		(96%)		(92%)		(92%)		(90%)		(90%)		(88%)
Skin	(50)	(90/0)	(50)	(92/0)	(49)	(92/0)	(50)	(9070)	(50)	(3070)	(50)	(0070)
Cyst epithelial inclusion	(50)		(50)		(47)		(30)			(2%)	(30)	
Hemorrhage			1	(2%)					1	(2/0)		
Hyperkeratosis			1	(270)	1	(2%)						
Inflammation, chronic			1	(2%)	1	(=)						
Ulcer				(2%)								
Epidermis, hyperplasia				(2%)								
Subcutaneous tissue, edema			1	(=)			2	(4%)				

TABLE	B5
-------	-----------

Summary of the Incidence of Nonneoplastic Lesions in Female Rats in the 2-Year Gavage Study of Riddelliine

	Vehicle	e Control	0.01	mg/kg	0.033 mg/kg		0.1 mg/kg		0.33 mg/kg		1 mg/kg	
Musculoskeletal System												
Bone	(50)		(50)		(50)		(50)		(50)		(50)	
Cranium, osteopetrosis		(20%)		(20%)		(24%)		(12%)		(14%)		
Femur, osteopetrosis	12	(24%)		(14%)		(18%)		(30%)	14	(28%)		(18%)
Skeletal muscle			(1)		(1)		(2)				(6)	((70/)
Hemorrhage											4	(67%)
Nervous System												
Brain	(50)		(50)		(50)		(50)		(50)		(50)	
Compression	9	(18%)	11	(22%)	15	(30%)	6	(12%)	12	(24%)	2	(4%)
Hemorrhage		(2%)		(2%)				(6%)				
Hydrocephalus	3	(6%)	4	(8%)	8	(16%)	1	(2%)	10	(20%)	3	(6%)
Respiratory System												
Lung	(50)		(50)		(50)		(50)		(50)		(50)	
Congestion	· · ·	(8%)	· · ·	(14%)		(4%)	<pre> /</pre>	(16%)	~ /	(2%)		(2%)
Edema									1	(2%)	2	(4%)
Hemorrhage	4	(8%)	7	(14%)	1	(2%)		(6%)		(10%)	19	(38%)
Infiltration cellular, histiocyte	46	(92%)	41	(82%)		(96%)	44	(88%)	49	(98%)	42	(84%)
Inflammation, chronic					1	(2%)						
Inflammation, granulomatous	1	(2%)										
Metaplasia, osseous	_			(4%)					_			
Alveolar epithelium, hyperplasia		(10%)		(8%)		(20%)		(10%)		(10%)		(14%)
Nose	(50)	(40/)	(50)		(50)	(20)	(49)	(20)	(50)		(50)	(20())
Foreign body		(4%)			1	(2%)		(2%)				(2%)
Inflammation, chronic	3	(6%)			1	(20/)		(4%)			1	(2%)
Olfactory epithelium, degeneration Respiratory epithelium, hyperplasia	1	(2%)				(2%) (2%)	1	(2%)			3	(6%)
Special Senses System												
Eye											(1)	
Cataract											(1)	(100%
											1	(10070
Urinary System												
Kidney	(50)	(20)	(50)		(50)		(50)		(50)	(20/)	(50)	
Cyst	1	(2%)			1	(20/)				(2%)		
Hydronephrosis			1	(20%)	1	(2%)				(2%)		
Infarct Inflammation, chronic				(2%) (2%)					1	(2%)		
Nephropathy	20	(64%)		(2%) (64%)	22	(66%)	30	(60%)	20	(76%)	20	(56%)
Papilla, fibrosis, focal	52	(0770)	32	(0770)		(00%)	50	(0070)	30	(1070)	20	(3070)
Pelvis, mineralization	1	(2%)			1	(2/0)						
Renal tubule, cytoplasmic alteration	1	(2/0)	1	(2%)			1	(2%)				
Renal tubule, dilatation				(2%)	2	(4%)	1	(=)	2	(4%)	1	(2%)
Renal tubule, hyaline droplet	33	(66%)		(46%)		(60%)	26	(52%)		(52%)		(18%)
Renal tubule, mineralization		. /					-		-			(2%)
Renal tubule, necrosis							1	(2%)	1	(2%)		(12%)
Renal tubule, pigmentation	38	(76%)	28	(56%)	31	(62%)		(62%)		(82%)		(46%)
Transitional epithelium, hyperplasia		(2%)	1	(2%)	1	(2%)	1	(2%)				(10%)
Urinary bladder	(50)		(50)		(50)		(48)		(50)		(50)	
Edema			1	(2%)	1	(2%)						
L'actina										(2%)		
APPENDIX C SUMMARY OF LESIONS IN MALE MICE IN THE 2-YEAR GAVAGE STUDY OF RIDDELLIINE

TABLE C1	Summary of the Incidence of Neoplasms in Male Mice	
	in the 2-Year Gavage Study of Riddelliine	140
TABLE C2	Individual Animal Tumor Pathology of Male Mice	
	in the 2-Year Gavage Study of Riddelliine	144
TABLE C3	Statistical Analysis of Primary Neoplasms in Male Mice	
	in the 2-Year Gavage Study of Riddelliine	174
TABLE C4	Historical Incidence of Liver Neoplasms in Control Male B6C3F ₁ Mice	177
TABLE C5	Summary of the Incidence of Nonneoplastic Lesions in Male Mice	
	in the 2-Year Gavage Study of Riddelliine	178

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Gavage Study of Riddelliine^a

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Disposition Summary					
Animals initially in study	50	50	50	50	50
Early deaths					
Accidental death	1				
Moribund	4	6	3	6	13
Natural deaths	6	3	7	6	17
Survivors					
Died last week of study	20	41	40	20	2
Terminal sacrifice	39	41	40	38	18
Animals examined microscopically	50	50	50	50	50
Alimentary System					
Esophagus	(50)	(50)	(50)	(50)	(50)
Gallbladder	(44)	(43)	(36)	(41)	(38)
Histiocytic sarcoma	(17)	1 (2%)	(50)	(11)	(30)
Intestine large, cecum	(44)	(47)	(44)	(48)	(39)
Carcinoma		()	1 (2%)	(10)	
Histiocytic sarcoma				1 (2%)	
Serosa, hepatoblastoma, metastatic, liver				1 (2%)	
Intestine small, duodenum	(45)	(48)	(47)	(47)	(40)
Polyp adenomatous				1 (2%)	
Intestine small, jejunum	(45)	(47)	(44)	(47)	(39)
Carcinoma			1 (2%)	2 (4%)	
Intestine small, ileum	(44)	(49)	(44)	(47)	(41)
Histiocytic sarcoma		1 (2%)			
Liver	(50)	(50)	(50)	(50)	(50)
Hemangiosarcoma	2 (4%)	1 (2%)		2 (4%)	14 (28%)
Hemangiosarcoma, multiple					17 (34%)
Hepatoblastoma	3 (6%)	2 (4%)		1 (2%)	
Hepatocellular carcinoma	7 (14%)	11 (22%)		15 (30%)	3 (6%)
Hepatocellular carcinoma, multiple	16 (32%)	10 (20%)		5 (10%)	
Hepatocellular adenoma	13 (26%)	10 (20%)		5 (10%)	
Hepatocellular adenoma, multiple	3 (6%)	8 (16%)			
Histiocytic sarcoma		3 (6%)	2 (4%)	3 (6%)	
Leiomyosarcoma			1 (2%)		1 (20())
Sarcoma, metastatic, skeletal muscle	(12)	(10)		(14)	1 (2%)
Mesentery	(12)	(10)	(9)	(14)	(6) (179()
Hemangiosarcoma	1 (80/)				1 (17%)
Hemangiosarcoma, metastatic, liver Hepatoblastoma, metastatic, liver	1 (8%)			1 (7%)	
Hepatocellular carcinoma, metastatic, liver				2 (14%)	
Histiocytic sarcoma		2 (20%)		3 (21%)	
Leiomyosarcoma		2 (2070)	1 (11%)	5 (2170)	
Sarcoma, metastatic, skeletal muscle			1 (1170)		1 (17%)
Pancreas	(49)	(50)	(50)	(50)	(48)
Hepatoblastoma, metastatic, liver	()	(20)	(00)	1 (2%)	()
Histiocytic sarcoma		3 (6%)		1 (2%)	
Leiomyosarcoma		- (0,0)	1 (2%)	- (-/)	
Salivary glands	(50)	(50)	(50)	(50)	(50)
Stomach, forestomach	(49)	(50)	(50)	(50)	(49)
Leiomyosarcoma	~ /		1 (2%)	~ /	× /
Squamous cell papilloma	1 (2%)			1 (2%)	

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Alimentary System (continued)					
Stomach, glandular	(47)	(48)	(49)	(49)	(46)
Leiomyosarcoma Tooth	(24)	(15)	1 (2%) (18)	(4)	(4)
Peridontal tissue, fibrosarcoma		(10)	1 (6%)	(1)	(1)
Cardiovascular System					
Heart	(50)	(50)	(50)	(50)	(50)
Hepatoblastoma, metastatic, liver Histiocytic sarcoma				1 (2%) 1 (2%)	
Endocrine System					
Adrenal cortex	(49)	(49)	(50)	(50)	(49)
Adenoma			1 (2%)	1 (2%)	1 (2%)
Adenoma, multiple Carcinoma				1 (2%) 1 (2%)	
Carcinoma Hepatoblastoma, metastatic, liver				1 (2%) 1 (2%)	
Histiocytic sarcoma		1 (2%)		1 (2%) 1 (2%)	
Capsule, adenoma	3 (6%)	7 (14%)	3 (6%)	1 (2%)	1 (2%)
Capsule, leiomyosarcoma		()	1 (2%)	- (_,,,)	- (-,-,
Adrenal medulla	(49)	(49)	(49)	(50)	(48)
Pheochromocytoma malignant	1 (2%)				
Pheochromocytoma benign					1 (2%)
slets, pancreatic	(49)	(50)	(50)	(50)	(48)
Adenoma	3 (6%)				
Pituitary gland	(49)	(47)	(48)	(46)	(47)
Pars distalis, adenoma	1 (2%)	1 (20/)			1 (2%)
Pars intermedia, adenoma	(40)	1 (2%) (50)	(40)	(50)	(50)
Fhyroid gland Follicular cell, adenoma	(49)	2 (4%)	(49) 2 (4%)	(50) 1 (2%)	(50)
Foniculai cen, adenonia		2 (476)	2 (470)	1 (270)	
G eneral Body System Tissue NOS				(1)	(1)
		(2)		(1)	(1)
Genital System				(1)	
Coagulating gland				(1)	
Histiocytic sarcoma	(50)	(50)	(50)	1 (100%)	(50)
Epididymis Hemangiosarcoma	(50)	(50)	(50)	(50)	(50)
Histiocytic sarcoma			1 (270)	1 (2%)	
Preputial gland	(50)	(50)	(50)	(50)	(50)
Adenoma	1 (2%)	<u> </u>	X 7	X 2	x- 1)
Prostate	(50)	(50)	(50)	(50)	(50)
Histiocytic sarcoma				1 (2%)	
Testes	(50)	(50)	(50)	(50)	(50)
Interstitial cell, adenoma					2 (4%)

TABLE	C 1
-------	------------

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Hematopoietic System					
Bone marrow	(50)	(50)	(50)	(50)	(50)
Hemangiosarcoma	1 (2%)				1 (2%)
Histiocytic sarcoma				2 (4%)	
Sarcoma		1 (2%)			
Lymph node	(2)	(3)	(4)	(7)	(4)
Bronchial, alveolar/bronchiolar carcinoma,					
metastatic, lung					1 (25%)
Bronchial, hepatoblastoma, metastatic, liver				1 (14%)	
Inguinal, histiocytic sarcoma		1 (33%)			
Mediastinal, histiocytic sarcoma		2 (67%)		1 (14%)	
Renal, histiocytic sarcoma		2 (67%)		1 (14%)	
Lymph node, mandibular	(49)	(48)	(49)	(49)	(44)
Histiocytic sarcoma		(10)	(10)	1 (2%)	(= a)
Lymph node, mesenteric	(49)	(48)	(48)	(50)	(50)
Hemangiosarcoma		1 (2%)			
Hepatoblastoma, metastatic, liver				1 (2%)	
Histiocytic sarcoma		3 (6%)	1 (201)	4 (8%)	
Leiomyosarcoma		(10)	1 (2%)	(50)	(10)
Spleen	(49)	(49)	(50)	(50)	(49)
Hemangiosarcoma	1 (2%)	2 (40/)	3 (6%)	1 (2%)	2 (4%)
Histiocytic sarcoma	(42)	2 (4%)	1 (2%)	2 (4%)	(12)
Thymus Histiocytic sarcoma	(42)	(46) 1 (2%)	(45) 1 (2%)	(43)	(43)
histocytic sarcolla		1 (270)	1 (270)		
Integumentary System Skin Subcutaneous tissue, fibrosarcoma, multiple Subcutaneous tissue, sarcoma Subcutaneous tissue, sarcoma, metastatic,	(50)	(50) 1 (2%)	(50) 1 (2%)	(50)	(49)
skeletal muscle					1 (2%)
Musculoskeletal System					
Skeletal muscle				(2)	(1)
Hemangiosarcoma				1 (50%)	
Sarcoma, multiple					1 (100%
Nervous System					
Brain	(50)	(50)	(50)	(50)	(50)
Meninges, histiocytic sarcoma	(23)	1 (2%)	(23)		
Respiratory System					
Lung	(50)	(50)	(50)	(50)	(50)
Alveolar/bronchiolar adenoma	8 (16%)	9 (18%)	10 (20%)	5 (10%)	12 (24%)
Alveolar/bronchiolar adenoma, multiple	4 (8%)	1 (2%)	1 (2%)	3 (6%)	-= (2.70)
Alveolar/bronchiolar carcinoma	3 (6%)	6 (12%)	2(4%)	- (0/0)	1 (2%)
Alveolar/bronchiolar carcinoma, multiple	4 (8%)	2 (4%)	4 (8%)	1 (2%)	4 (8%)
· 1	2 (4%)	= ()	(0,0)	- (=,,,)	. (0,0)
Carcinoma, metastatic, harderian gland	- (
Carcinoma, metastatic, harderian gland Carcinoma, metastatic, uncertain primary site			1 (2%)		
Carcinoma, metastatic, harderian gland Carcinoma, metastatic, uncertain primary site Fibrosarcoma, metastatic, uncertain primary site			1 (2%)		1 (2%)

Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Respiratory System (continued)					
Lung (continued)	(50)	(50)	(50)	(50)	(50)
Hepatoblastoma, metastatic, liver				1 (2%)	
Hepatocellular carcinoma, metastatic, liver	6 (12%)	6 (12%)	4 (8%)	8 (16%)	
Histiocytic sarcoma		2 (4%)	1 (2%)	2 (4%)	
Sarcoma, metastatic, skeletal muscle		1 (20)		1 (201)	1 (2%)
Mediastinum, histiocytic sarcoma	(50)	1 (2%)	(50)	1 (2%)	(50)
Nose	(50)	(50)	(50)	(50)	(50)
Histiocytic sarcoma				1 (2%)	
Special Senses System					
Harderian gland	(6)	(1)	(7)	(8)	(3)
Adenoma	4 (67%)	1 (100%)	6 (86%)	8 (100%)	2 (67%
Carcinoma	2 (33%)		1 (14%)	1 (13%)	1 (33%
Urinary System					
Xidney	(49)	(49)	(50)	(50)	(50)
Carcinoma					1 (2%)
Hepatoblastoma, metastatic, liver				1 (2%)	
Hepatocellular carcinoma, metastatic, liver	1 (2%)			~ /	
Histiocytic sarcoma		1 (2%)	1 (2%)	4 (8%)	
Capsule, hemangiosarcoma		× /			1 (2%)
Renal tubule, adenoma	1 (2%)				
Jrinary bladder	(50)	(50)	(50)	(50)	(50)
Systemic Lesions					
Multiple organs	(50)	(50)	(50)	(50)	(50)
Histiocytic sarcoma	~ /	3 (6%)	3 (6%)	4 (8%)	~ /
Lymphoma malignant	3 (6%)	2 (4%)	1 (2%)	3 (6%)	2 (4%)
Neoplasm Summary					
Fotal animals with primary neoplasms ^c	44	45	47	42	47
Total primary neoplasms	85	45 79	82	42 64	69
Total animals with benign neoplasms	32	27	28	23	17
Total benign neoplasms	42	39	37	27	20
otal animals with malignant neoplasms	29	31	30	33	41
Total malignant neoplasms	43	40	45	37	49
fotal animals with metastatic neoplasms	8	6	5	10	7
Total metastatic neoplasms	10	6	5	20	11
fotal animals with malignant neoplasms		-			
of uncertain primary site			1		1

a b Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically

с

Primary neoplasms: all neoplasms except metastatic neoplasms

Individual Animal Tumor Patholog	y of Mal	le I	Mie	ce i	in 1	the	2-	Ye	ar	Ga	ava	ige	St	ud	y o	f R	ido	lel	liin	e:	V	ehi	cle	C	ontrol
Number of Days on Study	8	4 7 5	8	5 6 1	9	6 3 3	6 3 7	6 7 5	7 0 6	7 1 3	7 1 3	7 2 9													
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carcass ID Number	4	2	3	1	3	1	4	3	4	0	2	0	0	0 9	1	1	1	2	2	2	3	3	4	4	4
Alimentary System																									
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Gallbladder	+	А	+	А	А	М	+	+	+	+	М	+	+	+	М	+	+	+	+	+	+	+	+	+	+
Intestine large, colon								+				+	+		+		+	+	+	+	+	+	+	+	+
Intestine large, rectum								+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, cecum								+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, duodenum								+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, jejunum								+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine small, ileum								+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Liver								+				+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hemangiosarcoma Hepatoblastoma									Х														х	Х	
Hepatocellular carcinoma			Х	Х	Х		Х							Х							Х				
Hepatocellular carcinoma, multiple						Х		Х	Х		Х	Х				Х								Х	
Hepatocellular adenoma Hepatocellular adenoma, multiple		Х		Х						Х		Х	Х		Х		Х		Х				Х		
Mesentery													+	+		+					+	+			
Hemangiosarcoma, metastatic, liver																									
Pancreas	+	А	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	+
Salivary glands	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+
Stomach, forestomach	+	А	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+
Squamous cell papilloma																									
Stomach, glandular	+	А	$^+$	+	$^+$	А	А	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+
Tooth									+	+				+				+	+	+		+	+		+
Cardiovascular System																									
Blood vessel Heart	1	-	_		5	+	+	+	+	+	+	+		+	+	+	+	5	5	+	+	J	J	J	1
ncan	+	т	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	т
Endocrine System																									
Adrenal cortex	+	+	+	+	М	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+
Capsule, adenoma																					Х		Х		
Adrenal medulla Pheochromocytoma malignant	+	+	+	+	М	+	$^+_{\rm X}$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Islets, pancreatic Adenoma	+	А	+	+	+	+	$^+_{\rm X}$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Parathyroid gland	+	Μ	$^+$	$^+$	$^+$	М	А	$^+$	М	$^+$	$^+$	+	$^+$	$^+$	$^+$	М	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+
Pituitary gland Pars distalis, adenoma														+											
Thyroid gland	+	+	+	+	+	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
General Body System None																									

+: Tissue examined microscopically

A: Autolysis precludes examination

M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined

Individual Animal Tumor Patholog	gy of Ma	Ie	VII	ce	In	tne	2-	· r e	ar	G	iva	ige	31	ua	y o	IR		uer		ie:	V	eni	cie		ontr	01
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	9	9	0	0	0	0	0							1		4	4	4	4	4	4	4	4	4		
		ĺ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	0	1	1	1	1	1	<u> </u>								·	<u> </u>		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Tota
Carcass ID Number	4	4	0	0	1	1	2	3	3	0	1	1	3	4	0	0	1	2	2	2	2	3	3	4	5	Tissues
	8	9	1	3	4	8	6	7	8	2	1	5	1	4	5	7	7	1	3	4	7	4	6	3	0	Tumor
Alimentary System																										
Esophagus	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	+	+	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	5
Gallbladder	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	4
ntestine large, colon	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	Μ	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	4
ntestine large, rectum	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	4
ntestine large, cecum	+	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	М	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	4
ntestine small, duodenum	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	+	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	4
ntestine small, jejunum	+	+	+	+	+	+	$^+$	+	+	+	$^+$	+	$^+$	+	+	+	$^+$	+	+	$^+$	+	+	+	+	+	4
ntestine small, ileum	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	$^+$	+	+	+	+	+	5
Hemangiosarcoma											Х		Х													
Hepatoblastoma																										
Hepatocellular carcinoma			Х																							
Hepatocellular carcinoma, multiple						Х					Х	Х	Х					Х			х	Х	Х		Х	1
Hepatocellular adenoma	Х				Х						Х			Х		Х										1
Hepatocellular adenoma, multiple										Х							Х									
Mesentery											+	+	+						+	+	+	+				1
Hemangiosarcoma, metastatic, liver													X													-
Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Squamous cell papilloma																Х										
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Footh		+	+	+	+	+		+	+		+	+		+	+	+			+	+			+			2
Cardiovascular System																										
Blood vessel												+														
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Capsule, adenoma			X																							
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Pheochromocytoma malignant																										
slets, pancreatic Adenoma	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	4
Parathyroid gland	+	+	+	+	+	+	+							+								+	M	+	+	4
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	4
Pars distalis, adenoma																Х										
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
General Body System																										
None																										

Individual Animal Tumor Pathology (of Ma	le	Mi	ce i	in 1	the	2-	Ye	ar	G٤	iva	ge	Sti	udy	/ 01	f R	idd	lell	iin	e:	V	ehi	cle	C	ontro
	1	4	4	5	5	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Number of Days on Study	8	7	8	6	9	3	3	7	0	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	8	5	6	1	9	3	7	5	6	3	3	9	9	9	9	9	9	9	9	9	9	9	9	9	9
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carcass ID Number	4					1																			
	6					3																			
Genital System																									
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma																					Х				
Prostate	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
estes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Iematopoietic System																									
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hemangiosarcoma ymph node																									
ymph node, mandibular	+	+	+	+	+	+	$^+$	$^+$	+	$^+$	+	+	$^+$	+	+	+	+	+	М	+	$^+$	+	$^+$	+	+
ymph node, mesenteric	+	А	+	+	+	+	$^+$	$^+$	+	$^+$	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+
bleen	+	А	+	+	+	+	$^+$	$^+$	+	$^+$	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+
Hemangiosarcoma																									
ymus	+	+	+	+	+	Μ	Μ	Μ	+	Ι	+	+	+	+	+	+	+	+	+	+	+	+	М	Μ	М
tegumentary System																									
fammary gland						М																			
cin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Iusculoskeletal System																									
one	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Iervous System																									
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Respiratory System	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Alveolar/bronchiolar adenoma	r				'	'	'		X	'		'								1	1	X	'	X	
Alveolar/bronchiolar adenoma, multiple									- 1			Х			Х							- 1			
Alveolar/bronchiolar carcinoma														Х											
Alveolar/bronchiolar carcinoma, multiple					Х					Х						Х									
Carcinoma, metastatic, harderian gland					-						Х					-									
Hepatocellular carcinoma, metastatic, liver					х		Х	Х			х			Х											
ose	+	+	+	+	+	+	+		+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+
rachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
pecial Senses System																									
Harderian gland											+														+
Adenoma																									Х
Carcinoma											Х														
Zymbal's gland																									

TABLE C2 Individual

Individual Animal Tumor Pathology	of Ma	le	Mi	ce	in [·]	the	2-	Ye	ar	Ga	va	ge	Sti	udy	y 0 1	f R	ide	del	liir	le:	V	ehi	cle	C	ontrol	
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	9	9	0	0	0	0	0	0	0	1	1	1	1	1	4	4	4	4	4	4	4	4	4	4	4	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Tota
Carcass ID Number	4	4	0	0		1				0			3		0	0	1	2	2	2	2	3	3	4	5	Tissues
	8	9	1	3	4	8	6	7	8	2	1	5	1	4	5	7	7	1	3	4	7	4	6	3	0	Tumor
Genital System																										
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Adenoma																										-
Prostate Seminal vesicle	+	+	+	+	+	+	+	++	+	+	++	++	++	++	++	++	++	++	++	+	+	+	+	+	+	5 5
lestes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Iematopoietic System																										
Bone marrow Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+_{\rm X}$	+	+	5
ymph node			+						+																	
Lymph node, mandibular	+	+	+	+	+	+	$^+$	+	$^+$	+	+	+	$^+$	+	$^+$	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	+	+	+	4
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	4
Hemangiosarcoma Fhymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	X +	+	+	4
ntegumentary System																										
Mammary gland	М	Μ	Μ	Μ	М	М	Μ	М	Μ	М	Μ	М	Μ	Μ	М	Μ	М	М	Μ	Μ	$^+$	М	М	М	М	
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Musculoskeletal System																										_
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Nervous System Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Respiratory System																										
Jung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Alveolar/bronchiolar adenoma	X						X								Х		X									0
Alveolar/bronchiolar adenoma, multiple					Х							Х														
Alveolar/bronchiolar carcinoma																			Х			Х				
Alveolar/bronchiolar carcinoma, multiple												Х														
Carcinoma, metastatic, harderian gland																			Х		•••					
Hepatocellular carcinoma, metastatic, liver																					Х					-
Nose Frachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+ +	5 5
Special Senses System																										
Harderian gland						+													+				+			
Adenoma						Х																	Х	Х		
Carcinoma																			Х							
Zymbal's gland																									+	

TABLE C2

Number of Days on Study	1 8	4	4 8	5	5 9	6 3	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
umber of Days on Study	8	5	8 6	6 1	9	3 3	3 7	5	0 6	3	3	2 9													
Second ID Number	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Carcass ID Number	4 6	-	3 9	1 9	3	1 3	4 0	3 2	4 5	0 4	2 5	0 6	0 8	0 9	1 0	1	1 6	2	2	2 8	3 0	3 5	4 1	4 2	-
Jrinary System																									
Kidney Hepatocellular carcinoma, metastatic, liver	+	А	+	+	$^+_{\rm X}$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Renal tubule, adenoma Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+
Systemic Lesions																									
Multiple organs Lymphoma malignant	+	$^+$ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Individual Animal Tumor Pathology	of Ma	le	Mi	ce	in 1	the	2-	Ye	ar	G	iva	ge	St	udy	y O	f R	lido	del	liir	e:	V	ehi	icle	e C	ontrol	
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	9	9	0	0	0	0	0	0	0	1	1	1	1	1	4	4	4	4	4	4	4	4	4	4	4	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Tota
Carcass ID Number	4	4	0	0	1	1	2	3	3	0	1	1	3	4	0	0	1	2	2	2	2	3	3	4	5	Tissues
	8	9	1	3	4	8	6	7	8	2	1	5	1	4	5	7	7	1	3	4	7	4	6	3	0	Tumors
Urinary System																										
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Hepatocellular carcinoma, metastatic, liver Renal tubule, adenoma																										1
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Systemic Lesions																										
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymphoma malignant					Х				Х																	3

umber of Days on Study	4	5 4	5 6	5 8	5 9	6 3	6 3	6 8	6 9	7 2	7 3	7 3	7 3	7 3		7 3									
mber of Days on Study	4	4	6	8 7	9 6		3 4	8 1	9 6	2 9		2 9		2 9	2 9	2 9	2 9	2 9	2 9	3 0	5 0	5 0	0 0		0 0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
cass ID Number	8 8	8 4	7 9	6 0	5 8	9 2	8 6	5 9	9 7	5 4		6 3			7 3	8 0	8 5	8 9	9 0	6 8	7 0	7 7			9 1
entary System																									
nagus	+	$^+$	+	+				+				+	+	+	+	+	+	+	+	+	+	+	+	+	+
ladder	+	+	А	А	+	+	А	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
stiocytic sarcoma																									
stine large, colon	+	+	A		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
tine large, rectum	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
tine large, cecum tine small, duodenum	+	+		A		+	A	++	+	+	++	++	++	++	+	+	+	++	+	+	+	+	+	+	+
tine small, duodenum tine small, jejunum	+	+		+	+	+	A A		++	++	++	++	+	++	+	+	+	+	+	+	+	+	+	+	+
tine small, jejunum	+++	++				++		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
stiocytic sarcoma	7"	Г	А	Г	Х	T	T	Т	Т	т	Г	ſ	ſ	1-	1-	1	1-	ſ	ſ	Г	Г	Τ'	Τ,	Τ.	Τ'
r	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
mangiosarcoma		,											Ť					-							
patoblastoma																	Х								
patocellular carcinoma		Х	Х	Х		Х											-						Х		Х
patocellular carcinoma, multiple		-	-	-		-	Х		Х		Х						Х		Х						
patocellular adenoma								Х		Х			Х								Х	Х		Х	
patocellular adenoma, multiple								-		-		Х	-		Х	Х					-				
tiocytic sarcoma					Х			Х																	
ntery	+						+	+										+							
tiocytic sarcoma								Х																	
nucosa								+																	
eas	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	+	+	+
stiocytic sarcoma					Х			Х																	
ary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	$^+$	+	+	+	+
ach, forestomach	+	$^+$	+	$^+$	+	$^+$	$^+$	+	$^+$	+	$^+$	+	+	+	+	$^+$	$^+$	+	+	$^+$	$^+$	+	+	+	+
ach, glandular	+	+	А	А	+	$^+$	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	$^+$	+	+	+	+
			+			+						+		+			+		+		+	+			
diovascular System	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
		,											·						ŕ						
ocrine System																									
nal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	[+	+
tiocytic sarcoma										_			_								_				
osule, adenoma										Х			Х								Х			X	
al medulla	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	Μ	[+	
pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
yroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ry gland	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pars intermedia, adenoma vroid gland Follicular cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+

Individual Animal Tumor Patholo	87 01 1110											0											-	-		
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	1	1	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Tot
Carcass ID Number	5	5	5	6	7	7	7	8	9	0		5	6	6	6		7	7	7	8	9	9	9	9	9	Tissue
	2	5	7	1	2	4	5	2	6	0	1	3			5				8	7	3	4	5	8	9	Tumo
Alimentary System																										
sophagus	+	+	+	+	+	+	$^+$	+	+	$^+$	+	+	+	+	+	$^+$	+	+	$^+$	+	$^+$	+	+	$^+$	+	
allbladder	+	+	М	+	+	+	+	+	Ι	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	
Histiocytic sarcoma													Х													
ntestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ntestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ntestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ntestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ntestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ntestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Histiocytic sarcoma iver	+	-	+	-	+	+	-	+	+	+	+	+	+	+	+	-	+	-	-	-	+	-	-	-	+	
Hemangiosarcoma	т	T	т	Ŧ	т	т	Ŧ	т	т	т	Ŧ	т	т	т	т	Ŧ	T	Ŧ	Ŧ	т	Х	T	т	Ŧ	т	
Hepatoblastoma													Х								Λ					
Hepatocellular carcinoma							Х						11		Х	х				Х					Х	
Hepatocellular carcinoma, multiple			Х	Х					Х												х	Х				
Hepatocellular adenoma	Х										Х								Х				Х			
Hepatocellular adenoma, multiple		Х			Х					Х		Х						Х								
Histiocytic sarcoma													Х													
lesentery					$^+$		$^+$					$^+$	$^+$	$^+$		$^+$										
Histiocytic sarcoma													Х													
Oral mucosa																										
ancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Histiocytic sarcoma													Х													
alivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
tomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
tomach, glandular Tooth	+ +	+	+	+	+	+ +	+	+	+	+	+	+	+ +	+ +	+ +	+	+ +	+	+	+	+ +	+	+	+	+	
Cardiovascular System																										
Ieart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Indocrine System																										
drenal cortex	+	$^+$	+	+	$^+$	$^+$	$^+$	+	$^+$	$^+$	+	+	$^+$	$^+$	$^+$	$^+$	+	+	$^+$	+	$^+$	+	$^+$	$^+$	+	
Histiocytic sarcoma													Х													
Capsule, adenoma				Х												Х	Х									
drenal medulla	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	+	+	$^+$	$^+$	+	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	
slets, pancreatic	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	+	+	$^+$	$^+$	+	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	
arathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	
Pars intermedia, adenoma																										
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Follicular cell, adenoma																			Х		Х					
General Body System																										
Tissue NOS																		$^+$			+					

TABLE C2 Individual Animal Tu

Individual Animal Tumor Pathology	UI IVIA	ie.	IVII	ce		ine	2-	re	ar	G	iva	ge	50	ua	y 01	I K	100	iei	1110	ie:	U.	11	ng/	кg	
Number of Days on Study	4	5 4		5 8		6 3	6 3		6 9	7 2	7 3	7 3	7 3	7 3	7 3	7 3									
	4					3										9	9	9	9	0		0	0		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carcass ID Number	8		7	-		9																	8	8	
	8		9			2																			
enital System																									
pididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
reputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ostate	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+
minal vesicle stes	+ +	++	++	++	++	++	++	++	++	++	+++	++	++	++	++	++	++	++	++	++	++	++	++	++	++
					,			,				1	'		,				'	'		,	,		
ematopoietic System one marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Sarcoma																									
ymph node					+			$^+$ X										+							
Inguinal, histiocytic sarcoma Mediastinal, histiocytic sarcoma					х			X X																	
Renal, histiocytic sarcoma					Х			Х																	
nph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	Μ	+	+	+	+	+	+	+	+	+	+
nph node, mesenteric	+	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ι	+	+
emangiosarcoma					х			х																	
istiocytic sarcoma en	+	+	А	+		+	+	л +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
listiocytic sarcoma					x			x	·							·			,						
nus istiocytic sarcoma	+	+	+	+	+	+	+	$^+_{\rm X}$	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+
egumentary System																									
immary gland	М	М	Μ	Μ	М	М	М	М	Μ	М	Μ	М	М	Μ	Μ	Μ	М	Μ	М	М	Μ	Μ	М	Μ	М
1 ubcutaneous tissue, sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
sculoskeletal System																									
ne	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
rvous System																									
ain Maninana histirartir sanaana	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Meninges, histiocytic sarcoma ripheral nerve	+																								
nal cord	+																								
spiratory System																									
g	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Alveolar/bronchiolar adenoma											Х	Х								Х	Х				Х
Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma													Х												
Alveolar/bronchiolar carcinoma, multiple						37			77							Х	17								Х
Hepatocellular carcinoma, metastatic, liver Histiocytic sarcoma						Х		Х	Х								Х								
Mediastinum, histiocytic sarcoma ose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
															1										

												-			-		ido									
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		7	
Number of Days on Study	3 1	3 4	3 4	3 4	3 4	3 4	3 4	3 4																		
Carcass ID Number	0 5	0 5	0 5	0 6	0 7	0 7	0 7	0 8	0 9	1 0	0	0	0	0	0	0	0 7	0 7	$ 0 \\ 7 $	0 8	0 9	0 9	0 9	0 9	0 9	Tota Tissues
	2	5	7	1	2	4	5		6	0							1					4	5	8	-	Tumor
Genital System																										
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Seminal vesicle Testes	+	+	+	+	+	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	+	+	+	++	+	50 50
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Sarcoma													Х													
Lymph node Inguinal, histiocytic sarcoma																										-
Mediastinal, histiocytic sarcoma																										-
Renal, histiocytic sarcoma																										
Lymph node, mandibular	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	М	$^+$	+	+	+	+	48
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	48
Hemangiosarcoma																	Х									
Histiocytic sarcoma													Х													
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Histiocytic sarcoma Thymus	т	+	+	м	+	+	+	+	+	+	+	+	+	+	+	I	+	+	+	+	+	+	+	+	+	40
Histiocytic sarcoma	1			141	'							'			'	1				'					1	-
Integumentary System																										
Mammary gland	М	Μ	Μ	Μ	М	М	М	Μ	Μ	Μ	Μ	М	М	Μ	Μ	Μ	Μ	Μ	М	Μ	Μ	Μ	Μ	Μ	М	
Skin	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	50
Subcutaneous tissue, sarcoma													Х													
Musculoskeletal System																										
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Nervous System																										
Brain	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	50
Meninges, histiocytic sarcoma													Х													
Peripheral nerve Spinal cord																										-
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma								Х			Х					Х		Х								Ģ
Alveolar/bronchiolar adenoma, multiple										•••		Х												•••		
Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma, multiple									Х	Х		Х								Х				Х		(
Hepatocellular carcinoma, metastatic, liver			Х																		х				Х	2
Histiocytic sarcoma			Λ										Х								~				21	
Mediastinum, histiocytic sarcoma													Х													
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50

154

	4	5	5	5	5	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Number of Days on Study	3	4	6	8	9	3	3	8	9	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
	4	2	6	7	6	3	4	1	6	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carcass ID Number	8	8	7	6	5	9	8	5	9	5	5	6	6	6	7	8	8	8	9	6	7	7	8	8	9
	8	4	9	0	8	2	6	9	7	4	6	3	6	9	3	0	5	9	0	8	0	7	1	3	1
ecial Senses System																									
2	+																								
rderian gland									+																
Adenoma									Х																
inary System																									
idney	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Histiocytic sarcoma																									
rinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ystemic Lesions																									
Iultiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+
Histiocytic sarcoma					Х			Х																	

TABLE C2 Individual Anir

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	1	1	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Total
Carcass ID Number	5	5	5	6	7	7	7	8	9	0	5	5	6	6	6	6	7	7	7	8	9	9	9	9	9	Tissues
	2	5	7	1	2	4	5	2	6	0	1	3	2	4	5	7	1	6	8	7	3	4	5	8	9	Tumors
Special Senses System Eye Harderian gland Adenoma																										1 1 1
Urinary System																										
Kidney	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	$^+$	49
Histiocytic sarcoma													Х													1
Jrinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Systemic Lesions																										
Multiple organs	+	+	+	+	+	$^+$	$^+$	+	+	$^+$	$^+$	+	+	+	+	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	+	$^+$	50
Histiocytic sarcoma													Х													3
Lymphoma malignant																							Х			2

Individual Animal Tumor Pathology	UI 1716			~~			-			50	~ 1 61	·5·	51		, 0						•••		-5/	5	
	5	5	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Number of Days on Study	6	9	1	1	5	0	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3
	7	2	4	9	7	0	3	0	2	8	9	9	9	9	9	9	9	9	9	9	9	9	0	0	0
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Carcass ID Number	2	0	1	3	1	4	3	0	4	3	0	0	0	1	1	2	2	3	3	3	4	4	0	1	1
	2	2	1	7	0	2	4	6	8	9	3	5	7	3	8	0	5	0	1	5	4	5	8	7	9
Alimentary System																									
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Gallbladder	А	А	А	М	+	М	А	А	$^+$	А	+	+	$^+$	+	Ι	$^+$	$^+$	+	+	+	+	$^+$	$^+$	М	+
intestine large, colon	+	+				$^+$	$^+$		$^+$	+	+	+	$^+$	+	$^+$	$^+$	$^+$	+	+	+	+	$^+$	$^+$	+	+
intestine large, rectum	А	+	А	$^+$	+	$^+$	$^+$	+	$^+$	+	+	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	+	+	+	$^+$	+	$^+$	+
Intestine large, cecum					+		А		+	А	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma																									
Intestine small, duodenum					+			+		+	+	$^+$	$^+$	+	+	$^+$	$^+$	+	+	+	+	+	+	$^+$	+
Intestine small, jejunum	А	А	А	А	+	$^+$	А	+	$^+$	А	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	$^+$	+
Carcinoma																Х									
ntestine small, ileum					+		А		+	А	+	+	+	+		+	+	+	+	+	+	+	+	+	+
iver	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+
Hepatocellular carcinoma		37		Х	Х	Х	37	17		Х							Х	37					Х		
Hepatocellular carcinoma, multiple	37	Х	Х				Х	Х				v		v				Х		v				v	
Hepatocellular adenoma Hepatocellular adenoma, multiple	Х											Х		Х					Х	Х				Х	Х
Histiocytic sarcoma					Х		Х												л						Λ
Leiomyosarcoma			Х		Λ		л																		
lesentery			+			+		+			+					+			+						
Leiomyosarcoma			x																						
ancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leiomyosarcoma			Х																						
Salivary glands	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
stomach, forestomach	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
Leiomyosarcoma			Х																						
Stomach, glandular	+	$^+$	+	$^+$	$^+$	$^+$	А	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
Leiomyosarcoma			Х																						
Tooth		+	+				+			+				+	+		+	+			+				
Peridontal tissue, fibrosarcoma																									
Cardiovascular System									,							,		,			,				
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Indocrine System																									
drenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma																									
Capsule, adenoma																					Х				
Capsule, leiomyosarcoma			X					,	,							,		,			۱,4				
drenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+
slets, pancreatic arathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	++	++	++	+	+	+	+
	+	+ M	+	+	+	+	+ A	+	++	++	++	M +	++	++	++	++	+	+	+	+	+	+	+	+	+
		IVI	T	T	-T	-	А	-	T	Ŧ	т	Ŧ	Ŧ	-	T		T	-	-	-17	-1"	T	-	Ŧ	-
Pituitary gland Fhyroid gland	- -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

None

156

TABLE C2 Individual Anim

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	7 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	7 3	
	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4	4	4	4	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Tota
Carcass ID Number	2 1	2 3	2 4	4 3	0 4	0 9	1 2	1 5	2 6	2 8	2 9	3 6	4 0	4 7	5 0	0 1	1 4	1 6	2 7	3 2	3 3	3 8	4 1	4 6	4 9	Tissues. Tumors
Alimentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Gallbladder	+	+	+	+	+	+	+	+	М	М	+	+	М	+	+	+	+	+	+	+	+	+	+	М	+	36
Intestine large, colon	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	49
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	48
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Carcinoma			Х																							
Intestine small, duodenum	+	+	+	+	+	+	$^+$	+	$^+$	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
Carcinoma																										1
Intestine small, ileum	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	44
Liver	+	+	+	+	+	+	+	$^+$	$^+$	+	+	$^+$	$^+$	+	+	+	$^+$	+	+	+	+	+	+	$^+$	+	50
Hepatocellular carcinoma						Х	Х	Х	Х																	10
Hepatocellular carcinoma, multiple													Х	Х		Х					Х					ç
Hepatocellular adenoma		Х									Х	Х						Х	Х				Х	Х		12
Hepatocellular adenoma, multiple																										2
Histiocytic sarcoma																										2
Leiomyosarcoma																										1
Mesentery												$^+$					$^+$						$^+$			ç
Leiomyosarcoma																										1
Pancreas	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	50
Leiomyosarcoma																										1
Salivary glands	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	50
Stomach, forestomach	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	50
Leiomyosarcoma																										1
Stomach, glandular	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	49
Leiomyosarcoma																										1
Tooth	+				$^+$						$^+$		$^+$				$^+$				$^+$	$^+$	$^+$	$^+$		18
Peridontal tissue, fibrosarcoma																	Х									1
Cardiovascular System																										51
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adenoma																					Х					1
Capsule, adenoma																						Х			Х	3
Capsule, leiomyosarcoma																										1
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Parathyroid gland	+	М	М	М	+	+	+	+	+	+	+	+	М	+	+	+	+	+	М	+	+	+	+	+	+	44
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Thyroid gland Follicular cell, adenoma	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	49

None

Individual Animal Tumor Pathology o	I IVIA	ne	1711			inc	4-	10	ai	Ga	iva	ge	50	uuy	0		Iut	lei		ic.	0.	51	ng/	пg	
Number of Doug on Study		5	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Number of Days on Study	6 7	9 2	1 4	1 9	5 7	0 0	1 3	2 0	2 2	2 8	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	2 9	3 0	3 0	3 0
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1
arcass ID Number	2 2	0 2	1 1	3 7	1 0	4 2	3 4			3 9		0 5		1 3	1 8		2 5	3 0	3 1	3 5	4 4	4 5		1 7	
enital System																									
pididymis Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+_{\rm X}$	+	+	+	+	+	+	+	+	+	+	+
putial gland state	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
ninal vesicle tes	+ +	+ +	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+ +	+
e matopoietic System ne marrow	+	-	-	-	-	+	-	т.	-	-	+	+	+	+	+	т.	+	-	-	-	-	-	-	-	-
mph node mph node, mandibular	+++	+	+	+	+	+	+	+	+	+	+	+	+++	+	+	+	+	+	+	+	+	+	+	+	+
nph node, mesenteric Leiomyosarcoma	+	+	+ X	Å	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
een Hemangiosarcoma	+	$^+_{\rm X}$		+	+	+	+	$^+_{\rm X}$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Histiocytic sarcoma /mus	+	М	+	+	X M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Histiocytic sarcoma													Х												
tegumentary System														M +											
n Subcutaneous tissue, fibrosarcoma, multiple	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
isculoskeletal System	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
rvous System																									
ain ripheral nerve	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
spiratory System _{ynx}																									
g Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+_{\rm X}$	+	+	+
lveolar/bronchiolar adenoma, multiple lveolar/bronchiolar carcinoma									Х																
Alveolar/bronchiolar carcinoma, multiple Carcinoma, metastatic, uncertain primary site Iepatocellular carcinoma, metastatic, liver	Х			x						х								х					Х		
Histiocytic sarcoma se	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
achea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

TABLE C2 Individual Anii

Individual Animal Tumor Pathology of	1.1.10											0		•												
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3 0	3 0	3 0	3 1	3 1	3	3	3 1	3	3	3	3	3 1	3	3 4										
	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4	4	4	4	
		1		1	1	1			1						1	1	1			1		1	1	-	1	Tota
Carcass ID Number	2 1	2 3	2 4	4 3	0 4	0 9	1 2	1 5	2 6	2 8	2 9	3 6	4 0	4 7	5 0	0 1	1 4	1 6	2 7		3 3	3 8	4 1	4 6	4 9	Tissues Tumor
Genital System																										
Epididymis Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
reputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Seminal vesicle Testes	++	+ +	+ +	++	+ +	++	+ +	++	+ +	+ +	5 5															
Hematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+++	+	+	+	+	+	+	+	+	+	+++	+	+	+	+	5
Lymph node Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	4
Lymph node, maintroutai Leiomyosarcoma	+	+	+	İ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		4
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Hemangiosarcoma Histiocytic sarcoma					X																					-
Thymus Histiocytic sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Ι	+	+	+	М	+	+	Ι	+	+	4
Integumentary System																										
Mammary gland	Μ	Μ	Μ	Μ	М	Μ	М	Μ	М	М	Μ	М	Μ	М	Μ	Μ	М	Μ	М	Μ	Μ	М	Μ	Μ	М	
Skin	+	+		+	+	+	+	+	+	+	+	+	+	+	$^+$	+	$^+$	+	+	+	+	+	+	+	+	5
Subcutaneous tissue, fibrosarcoma, multiple			Х																							
Musculoskeletal System ^{30ne}	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Nervous System Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Peripheral nerve					'			1							1				'			M		'		5
Respiratory System																										
Larynx					+																					-
Lung Alveolar/bronchiolar adenoma	+	+	+ V	+ X	+	+	+ X	+	+	+	+	+ X	+	+	+ V	+ X	+	+	+	+ V	+ X	+	+ X	+	+	5 1
Alveolar/bronchiolar adenoma, multiple		Х		Λ			л					Λ			л	л				л	л		л			1
Alveolar/bronchiolar carcinoma																							Х			
Alveolar/bronchiolar carcinoma, multiple														Х	_						Х					
Carcinoma, metastatic, uncertain primary site Hepatocellular carcinoma, metastatic, liver									Х						Х											
Histiocytic sarcoma Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Trachea	í.																'							'		5

TABLE C2

Individual Animal Tumor Patho	ology of Ma	ale	Mi	ce	in 1	the	2-	Ye	ar	G٤	iva	ge	Stı	ıdy	/ 0 1	f R	ido	lel	liiı	1e:	: ().3	n	ng/	kg	
	5	5	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Number of Days on Study	6	9	1	1	5	0	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3
	7	2	4	9	7	0	3	0	2	8	9	9	9	9	9	9	9	9	9	9	9)	9	0	0	0
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	L	1	1	1	1
Carcass ID Number	2	0	1	3	1	4	3	0	4	3	0	0	0	1	1	2	2	3	3	3	4	1	4	0	1	1
	2	2	1	7	0	2	4	6	8	9	3	5	7	3	8	0	5	0	1	5	4	1	5	8	7	9
Special Senses System																										
Eye																								+		
Harderian gland			+													+					+	F				
Adenoma Carcinoma			Х													Х					2	ζ				
Urinary System																										
Kidney	+	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+	F	+	+	+	+
Histiocytic sarcoma					Х																					
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	F	+	+	+	+
Systemic Lesions																										
Multiple organs	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	- +	F	+	+	+	+
Histiocytic sarcoma					Х		Х						Х													
Lymphoma malignant																									Х	

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	,	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	;	
	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4	4	4	4	ļ	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		Tota
Carcass ID Number	2	2	2	4	0	0	1	1	2	2	2	3	4	4	5	0	1	1	2	3	3	3	4	4	4	Ļ	Tissues
	1	3	4	3	4	9	2	5	6	8	9	6	0	7	0	1	4	6	7	2	3	8	1	6	9)	Tumor
Special Senses System																											
Eye																											
Harderian gland	+				$^+$											$^+$				$^+$							
Adenoma					Х											Х				Х							
Carcinoma	Х																										
Urinary System																											
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	5
Histiocytic sarcoma																											
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	5
Systemic Lesions																											
Multiple organs	+	+	+	+	+	+	$^+$	+	$^+$	+	$^+$	+	$^+$	+	+	$^+$	+	+	+	$^+$	+	+	+	+	+	-	5
Histiocytic sarcoma																											

	5	5	5	5	5	5	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Number of Days on Study	0	3		5	6	8	3		6	8	0	2	2	2	2	2	2	2	2	2	2	3	3		3
tumber of Days on Study	7		2					1			7	0		9		9	9	9	9		9	0	0	0	
	1	1	1	1	1	1	1		1	1	1	1		-				1		1				1	
Carcass ID Number	5	8	9	5	7	6	5	6	9	8	5	8	5	5		6	7	8	8	9	9	6	6	-	9
arcass ID Number	5 9	8 7	9 7	5 5	8	6 8	5 7		9 4	8 8				5 4		0 2	2		8 4			0		6	
limentary System																									
sophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+
allbladder	+	А	А	+	+	А		А	+	+	+	+	+	+	+	+	М	+	+	+	М	+	+	+	+
testine large, colon	+	+	+	+	+	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ntestine large, rectum	+	+	+	+	+	+	А		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ntestine large, cecum	+	А	+	+	+		А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Histiocytic sarcoma						Х																			
Serosa, hepatoblastoma, metastatic, liver			Х																						
estine small, duodenum Polyp adenomatous	+	А	+	+	+	А	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
estine small, jejunum	+	А	$^+$	$^+$	$^+$	А	А	+	$^+$	$^+$	+	+	$^+$	+	$^+$	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+
Carcinoma																Х								Х	
estine small, ileum	+	А	$^+$	$^+$	$^+$	А	А	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
er	+	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$
Hemangiosarcoma Hepatoblastoma			Х																Х						
Hepatocellular carcinoma							Х	х					Х				Х		Х		х				
Hepatocellular carcinoma, multiple					Х					Х				Х				Х							Х
Hepatocellular adenoma					Х																				
Histiocytic sarcoma	Х					Х			Х																
sentery		$^+$	+				+		$^+$	+		+				+	+	+					$^+$		
Hepatoblastoma, metastatic, liver			Х																						
Hepatocellular carcinoma, metastatic, liver							Х			Х															
Histiocytic sarcoma						Х			Х														Х		
ncreas	+	$^+$	$^+$	$^+$	+	$^+$	+	+	$^+$	+	+	+	$^+$	+	$^+$	$^+$	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	+
Hepatoblastoma, metastatic, liver			Х																						
Histiocytic sarcoma																							Х		
ivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
omach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Squamous cell papilloma																								Х	
mach, glandular	+	+	+	+	+	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+
oth									+															+	
ardiovascular System																									
eart	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hepatoblastoma, metastatic, liver			Х																						
Histiocytic sarcoma																							Х		

TABLE C2 Individual Animal Tr

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	0	0	0	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Total
Carcass ID Number	9 2	9 6	0 0	5 2	5 3	6 6	7 4	7 5	8 5	8 9	9 9	6 1	6 3	6 7	6 9	7 0	7 1		7 7		8 1	8 2	8 3	9 3	9 5	Tissues/ Tumors
Alimentary System																										
Esophagus	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	50
Gallbladder	+	$^+$	+	$^+$	+	М	+	+	$^+$	$^+$	$^+$	М	$^+$	$^+$	+	$^+$	+	+	$^+$	$^+$	$^+$	+	$^+$	$^+$	+	41
Intestine large, colon	+	$^+$	+	$^+$	+	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	+	+	$^+$	$^+$	$^+$	+	+	$^+$	+	49
Intestine large, rectum	+	$^+$	+	$^+$	+	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	+	+	$^+$	$^+$	$^+$	+	+	$^+$	+	49
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Histiocytic sarcoma																										1
Serosa, hepatoblastoma, metastatic, liver																										1
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Polyp adenomatous										Х																1
Intestine small, jejunum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Carcinoma																										2
Intestine small, ileum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hemangiosarcoma															Х											2
Hepatoblastoma																										1
Hepatocellular carcinoma				Х		Х		Х			Х					Х					Х		Х	Х	Х	15
Hepatocellular carcinoma, multiple		37																								4
Hepatocellular adenoma		Х		Х											Х			Х								5
Histiocytic sarcoma								+																		3
Mesentery			+					+																	+	14
Hepatoblastoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver																										1
Histiocytic sarcoma																										2
Pancreas	+	-	+	+	+	+	+	+	+	+	+	-	-	-	+	+	+	+	-	+	+	-	-	-	+	5(
Hepatoblastoma, metastatic, liver	T	Ŧ	т	т	т	T	т	т	Ŧ	т	т	т	Ŧ	Ŧ	т	т	T	т	т	-	т	т	т	T	T	1
Histiocytic sarcoma																										1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Squamous cell papilloma			-								-			-							-		-	-		1
Stomach, glandular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Tooth												+							+							4
Cardiovascular System																										
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Hepatoblastoma, metastatic, liver Histiocytic sarcoma																										1

	5	5	5	5	5	5	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Number of Days on Study	0 7	3 1	5	5 4	6 6	8 2	3 9			8 9	0 7	2 0	/ 2 9	7 2 9	2 9	2 9	/ 2 9	2 9	/ 2 9	/ 2 9	/ 2 9	3 0	3 0		3
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Carcass ID Number	5 9	8 7	9 7	5 5	7 8	6 8	5 7	6 5	9 4	8 8	5 6	8 6		5 4	5 8	6 2	7 2	8 0	8 4	9 0	9 8	6 0	6 4		9 1
Endocrine System																									
Adrenal cortex Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma, multiple Carcinoma											Х			х											
Hepatoblastoma, metastatic, liver Histiocytic sarcoma			Х			Х																			
Capsule, adenoma Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+
Pituitary gland	+	M	+	++	+	++	+	+++	+	+++	++	++	++	++	++	++	++	+ +	++	+	+	+	+	++	+
hyroid gland Follicular cell, adenoma	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Several Dady System																									
eneral Body System												+													
G enital System Coagulating gland																							+		
Histiocytic sarcoma																							X		
pididymis	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Histiocytic sarcoma																							Х		
reputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+
rostate Histiocytic sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$ X	+	+
Seminal vesicle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Testes	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Iematopoietic System																									
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Histiocytic sarcoma	Х					Х																			
ymph node Bronchial, hepatoblastoma, metastatic, liver Mediastinal, histiocytic sarcoma			$^+$ X									+											+ X		
Renal, histiocytic sarcoma		L	-	ц	Т	4	ц	м	ц	Ц	ц	<i>д</i>	–	+	-L	-L	Д.	<i>_</i> ⊥	д	Д.	ц	ц	Х	+	-L
ymph node, mandibular Histiocytic sarcoma	+	т	Ŧ	-	Ŧ	Ŧ	-	11/1	Ŧ	-	-	-	-	-	7"	7"	7"	7"	7	7"	-	-	+ X	-	T
ymph node, mesenteric	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hepatoblastoma, metastatic, liver			Х			v			v														37		
Histiocytic sarcoma pleen	X +	+	+	+	+	Х +	+	+	Х +	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+
Hemangiosarcoma	F	1	'	1	'	1	1	1	1		X	1	1	1				'	1		1	'		1	'
Histiocytic sarcoma	Х								Х																
hymus	+	+	+	+	+	Μ	+	+	+	+	Μ	+	+	М	+	Ι	+	+	+	+	+	+	+	+	+
ntegumentary System																									
Mammary gland			М																						
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Individual Animal Tumor Pathology	of Ma	le	Mi	ice	in	the	2-	Ye	ar	Ga	ava	ige	St	ud	y o	f R	lid	del	liir	ne:	1	mş	g/k	g		
Number of Days on Study	7 3 0	7 3 0	7 3 0	7 3 1	7 3 4		7 3 4																			
Carcass ID Number	1 9 2	1 9 6	0	1 5 2	1 5 3	1 6 6	1 7 4	7	8		9		1 6 3	1 6 7	6	1 7 0	1 7 1	7		7	1 8 1	8	1 8 3	1 9 3	9	Total Tissues, Tumors
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$ X	50
Adenoma Adenoma, multiple Carcinoma Hepatoblastoma, metastatic, liver																									х	1 1 1 1
Histiocytic sarcoma																										
Capsule, adenoma				.1		J	J	5		.1	+	+	+	X +	+	+	.1	.1			.1	. 1		.1	J]
Adrenal medulla Islets, pancreatic	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	++	50 50
Parathyroid gland	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	4
Pituitary gland	+	+	Ι	+	+	+	+	+	+	Μ		+	+	+	+	+	+	+	+	+	+	+	+	Μ		40
Thyroid gland Follicular cell, adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
General Body System Tissue NOS																										
Genital System																										
Coagulating gland Histiocytic sarcoma																										
Epididymis Histiocytic sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Histiocytic sarcoma																										
Seminal vesicle Festes	++	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	++	++	++	++	+ +	+ +	++	+ +	+ +	++	+ +	+ +	51
Hematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Histiocytic sarcoma Lymph node			+		+			+								+										
Bronchial, hepatoblastoma, metastatic, liver Mediastinal, histiocytic sarcoma Renal, histiocytic sarcoma																										
Lymph node, mandibular Histiocytic sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Jymph node, mesenteric Hepatoblastoma, metastatic, liver Histiocytic sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Spleen Hemangiosarcoma Histiocytic sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5(
Thymus	М	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	43
Integumentary System																										
Mammary gland														М												1
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50

Individual Animal Tumor Pathology	oi Ma	le .	VII	ce i		ne	2-	re	ar	G	iva	ge	511	uay	0		Iuc	Ien		le:	1	Шį	<u>у</u> к	g	
	5	5	5	5	5	5	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Number of Days on Study	0	3	5	5	6	8	3	6	6	8	0	2	2	2	2	2	2	2	2	2	2	3	3	3	3
	7	1	2	4	6	2	9	1	1	9	7	0	9	9	9	9	9	9	9	9	9	0	0	0	0
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Carcass ID Number	5	8	9	5	7	6	5	6	9			8			5		7	8	8	9	9	6	6	7	9
	9	7	7	5	8	8	7	5	4	8	6	6	1	4	8	2	2	0	4	0	8	0	4	6	1
Musculoskeletal System																									
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Skeletal muscle											+														
Hemangiosarcoma											Х														
Nervous System																									
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Peripheral nerve Spinal cord												+ +													
Respiratory System																									
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Alveolar/bronchiolar adenoma															Х							Х			
Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma, multiple										Х	Х									Х					
Hemangiosarcoma, metastatic, liver																			Х						
Hepatoblastoma, metastatic, liver			Х																						
Hepatocellular carcinoma, metastatic, liver					Х					Х				Х				Х	Х						
Histiocytic sarcoma Mediastinum, histiocytic sarcoma	Х					Х																	Х		
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Histiocytic sarcoma						Х																			
rachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Special Senses System				+						+		+				+									
Harderian gland Adenoma				т Х						т Х		т Х				х									
Carcinoma				Λ					Λ	Λ		~				Λ									
Jrinary System																									
Lidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hepatoblastoma, metastatic, liver			Х																						
Histiocytic sarcoma	Х					Х			Х														Х		
Jrinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Systemic Lesions								,																	
Multiple organs	+	+	+	+	+	+ V	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Histiocytic sarcoma Lymphoma malignant	Х					Х			Х			х											Х		

Individual Animal Tumor Pathology	of Ma	le	Mi	ice	in	the	2-	Ye	ar	G	ava	ige	St	ud	y o	f R	lid	del	liir	ie:	1	m	g/k	g		
Number of Days on Study	7 3 0	3	7 3 0	7 3 1	3	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 4														
Carcass ID Number	9	1 9 6	0	5	1 5 3	6	7	1 7 5	8	8	9	6	6	6	6	7	7	7	7	7	8	8	8	1 9 3	9	Tota issues umors
Musculoskeletal System																										
Bone Skeletal muscle Hemangiosarcoma	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 2 1
Nervous System Brain Peripheral nerve Spinal cord	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5(
Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma, multiple Hemangiosarcoma, metastatic, liver	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+ X	+	+ X	+ X	+	+	+	+	+	+	+	50
Hepatoblastoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver Histiocytic sarcoma Mediastinum, histiocytic sarcoma																х					х			Х		
Nose Histiocytic sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Trachea Special Senses System	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Harderian gland Adenoma Carcinoma								$^+_{\rm X}$											+ X X		+ X					8 8 1
Urinary System Kidney Hepatoblastoma, metastatic, liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Histiocytic sarcoma Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Systemic Lesions																										<i></i>
Multiple organs Histiocytic sarcoma Lymphoma malignant	+	+	+ X	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 2 3

	~	~	~	~	~	~	~	~	-	-	~	~		~	~	~	~		~	~		,	,	,	/
umber of Days on Study			5 5			5 7								6 1										6 8	
mber of Days on Study	6													4											
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
rcass ID Number	0				1		2			2	3	2			1		4			1		0		1	
														5											
ientary System																									
hagus	+	+	+	+	+	$^+$	+							+						+	+	+	+	+	+
ladder	+		А			+								А							+	+	+	А	
ne large, colon	+	+												Α									+	Α	
tine large, rectum	+	+		+										A							+	+	+	A	
tine large, cecum	+	+												A										A	
tine small, duodenum tine small, jejunum	+ +	++		++										A A										A A	
stine small, ileum	+	+												A											
	+	+		+										+											
emangiosarcoma						x				x								x		X	,	X			
mangiosarcoma, multiple patocellular carcinoma		Х							Х		Х	Х	Х	Х		Х	Х				Х		Х	Х	Х
coma, metastatic, skeletal muscle	Х																								
ntery	+				+				+						+										
mangiosarcoma					Х																				
coma, metastatic, skeletal muscle	Х																								
as	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ry glands	+	+	+	++	++	++	++	+	++	++	++	++	++	+ +	++		++	++	++	+	+	+	+	+	+
ach, forestomach ach, glandular	+	+	+											+ A					+	+	+	+	+	+	+
n, grandular	,		Λ			Π			1		1	'		Α	'	1		1	1			1	1	1	
iovascular System																									
od vessel rt																									
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
crine System al cortex	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
lenoma							101									·	·			X					
psule, adenoma																									
al medulla	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
eochromocytoma benign												,	,												
s, pancreatic	+ +	+	A	++	+	++	+ M	+	++	+	+	+	+	++	++	++	++	+	++	+	+	+	+	+ 1 1	+
hyroid gland ary gland	+	+ +	+	++	+++				++				++		++		++	++	++	++	++	+	+	M +	
rs distalis, adenoma	-	Г	т	т	Т	111	Х	Т	т	111	Г	ſ	Г	r	17	17	17	1-	1	ſ	Г	Т	т	т	т
d gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
eral Body System																									
e NOS															+										
ital System																									
idymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
tial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	$^+$	$^+$	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+
state																									
ate nal vesicle s	+	+	+	+	+	+	+	+	++	++++	+ +	++	+++++++++++++++++++++++++++++++++++++++	+++	+++	+++	+++	++	+ +	+	+	++	++	+	++

Individual Animal Tumor Patholog	J											0			,											
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	0	0	1	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	
	5	5	6	0	7	9	9	9	9	9	9	9	0	0	0	1	1	1	1	1	4	4	4	4	4	
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	To
Carcass ID Number	0	3	4	4	0	1	2	2	2	3	4	4	1	1	4	0	1	1	3	3	0	1	2	2	4	Tissu
	9	2	4	8	2	9	2	4	8	1	5	7	0	5	2		6	8	0	5	5	7	0	3	6	Tumo
limentary System																										
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Gallbladder	+	А	Μ	+	А	+	+	+	+	$^+$	$^+$	+	$^+$	$^+$	$^+$	А	$^+$	$^+$	$^+$	+	+	$^+$	$^+$	$^+$	+	
ntestine large, colon	+	А	$^+$	+	$^+$	+	+	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	+	$^+$	+	+	$^+$	$^+$	+	
ntestine large, rectum	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ntestine large, cecum	А	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ntestine small, duodenum	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ntestine small, jejunum	A		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ntestine small, ileum	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	
Hemangiosarcoma	Х		Х	Х	Х	v		Х	Х			v				Х							Х	Х	Х	
Hemangiosarcoma, multiple Hepatocellular carcinoma Sarcoma, metastatic, skeletal muscle		л	л			Х		Λ		Х		Х			Х								Λ			
Aesentery			+				+																			
Hemangiosarcoma																										
Sarcoma, metastatic, skeletal muscle																										
Pancreas	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
stomach, forestomach	+	А	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	$^+$	+	+	+	+	+	+	+	+	+	
Stomach, glandular	+	А	$^+$	$^+$	$^+$	$^+$	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	
Footh						+								+				+					+			
Cardiovascular System																										
Blood vessel Heart	+	-	+	+	-	+	+	-	+	+	+	-	+	+	+	+	-	-	-	-	+	+	+	-	-	
	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	
Endocrine System Adrenal cortex	1	-	-	+	-	-	+	+	-	-	-	-	_	-	-	+	+	_	+	-	+	-	-	-	-	
Adenoma	т	Ŧ	Ŧ	Ŧ	т	т	т	т	т	т	т	т	Ŧ	Ŧ	т	Ŧ	т	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	т	Ŧ	
Capsule, adenoma																				Х						
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		м	+	+	+	+	
Pheochromocytoma benign								'								'		X			111		'			
slets, pancreatic	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	
Parathyroid gland								М	+	+	+	М	+	+	+	+	М	+	+	+	+	+	+	+	+	
Pituitary gland	М	+	+	+	$^+$	+	+	+	+	+	+	$^+$	$^+$	$^+$	+	+	+	+	+	+	+	+	$^+$	$^+$	+	
Pars distalis, adenoma																										
hyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
eneral Body System																										
ïssue NOS																										
Genital System																										
Epididymis	+	+	+	+	+	+	+		+			+			+		+		+	+	+	+	+	+	+	
	+	+	+	+	+	+	+	+	+	+	++	+		+		+	+		+	+	+	+	+	+	+	
				-	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	-	+	+	
Prostate	+	+		т ,														÷.				;	T			
Preputial gland Prostate Seminal vesicle Festes	++	+	+	+	+	+++	+++		+++	+++	+++	+++	+++	+++		+			+	+++	+	+++	+		+	

TABLE C2

Individual Animal Tumor Pathology of	Ma	le	Mi	ce	in 1	the	2-	Ye	ar	Ga	iva	ge	Stu	udy	y of	f R	ido	lel	liin	e:	3	mg	g/kg	g	
	3	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Number of Days on Study					6		7							1									7		
														4											
Conserve ID Normali on	2		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Carcass ID Number	0 6				1 1									2 5											
Hematopoietic System Bone marrow	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	1	-	+	+	+	+	+
Hemangiosarcoma	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т Х	т
Lymph node			+												+						+			л	
Bronchial, alveolar/bronchiolar carcinoma,															'						'				
metastatic, lung																					Х				
Lymph node, mandibular	+	+	+	+	+	+	+	М	+	+	+	+	М	+	+	+	+	+	М	+	+	+	+	+	+
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Spleen	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Hemangiosarcoma																								Х	
Гhymus	+	+	+	+	+	М	+	+	+	+	+	Μ	+	+	+	+	+	+	М	+	М	+	+	+	+
Integumentary System																									
Mammary gland														М											
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+
Subcutaneous tissue, sarcoma, metastatic, skeletal muscle	Х																								
Musculoskeletal System																									
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	$^+$	+	+	$^+$	+
Skeletal muscle	+																								
Sarcoma, multiple	Х																								
Nervous System																									
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Peripheral nerve										+															
Spinal cord										+															
Respiratory System																									
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+
Alveolar/bronchiolar adenoma			Х							Х	Х	Х				Х							Х		
Alveolar/bronchiolar carcinoma								v													v				
Alveolar/bronchiolar carcinoma, multiple	х							Х													Х				
Fibrosarcoma, metastatic, uncertain primary site Hemangiosarcoma, metastatic, liver	л	х															Х						Х		
Sarcoma, metastatic, skeletal muscle	Х	л															Λ						л		
Nose	л +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Frachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
														,			·	•			•				
Special Senses System _{Ear}			+																						
Eye																									
Harderian gland																			+						
Adenoma																									
Carcinoma																			Х						

Individual Animal Tumor Pathology of	IVIA	Ie .		u		une		10	ai	G	iva	ige	SI	uu	y U.		Iut	uei		ic.	5	mę	5/ N	5			
		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	,	7		
Number of Days on Study	0 5	0 5	1 6	2 0	2 7	2 9	3 0	3 0	3 0	3 1	3 1	3 1	3 1	3 1	3 4	3 4	3 4	3 4	3 4								
Carcass ID Number	2 0	2	2 4	2 4	2 0	2 1	2 2	2	2 2	2	2 4	2 4	2 1	2	2 4	2	2	2 1	2	2	2	2 1	2 2	2	2 4	T Tiss	Tota sues
	9	2	4	8	2									5										3			mors
Hematopoietic System																											
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Hemangiosarcoma Lymph node																							+				1
Bronchial, alveolar/bronchiolar, carcinoma,																											
metastatic, lung																											1
Lymph node, mandibular	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	М	Ι	+	+	+	+	+	+	+	+	+		44
Lymph node, mesenteric	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+		49
Hemangiosarcoma Thymus	+	+	+	+	+	+	+	М	+	+	+	+	+	л +	М	+	+	+	+	+	+	+	М	+	+		43
Integumentary System																											
Mammary gland	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	М	Μ	Μ	Μ	М	Μ	Μ	Μ	Μ	Μ	М	Μ	Μ	М		1
Skin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		49
Subcutaneous tissue, sarcoma, metastatic, skeletal muscle																											1
Musculoskeletal System																											
Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Skeletal muscle																											1
Sarcoma, multiple																											1
Nervous System																											
Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Peripheral nerve																											1
Spinal cord																											1
Respiratory System Lung																	+	+							+		50
Alveolar/bronchiolar adenoma	т	X	т	т	Ŧ	Т	X	т	т	T	Х	Ŧ	X	т	т	$^+$ X	Ŧ	т	т	т	т	т	т	-	Х		12
Alveolar/bronchiolar carcinoma		21					21				11		21			11							Х		1		12
Alveolar/bronchiolar carcinoma, multiple						Х		Х																			2
Fibrosarcoma, metastatic, uncertain primary site																											1
Hemangiosarcoma, metastatic, liver												Х				Х											5
Sarcoma, metastatic, skeletal muscle Nose												+				+											1 5(
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		50
Special Senses System																											
Ear																											1
Eye																					+						1
Harderian gland																		+			+						2
Adenoma Carcinoma																		Х			Х						2

TABLE C2

Individual Animal Tumor Pathology	of M	ale	e N	Лie	ce i	in 1	the	2-	Ye	ar	Ga	iva	ge	St	udy	y oi	f R	ido	lell	liin	e:	3	mg	g/kg	3		
		3	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	
Number of Days on Study		5	5	5	6	6	7	7	8	9	9	0	0	0	1	3	3	4	4	5	6	6	6	7	8	8	
		5	0	9	6	8	2	7	7	0	8	3	3	5	4	3	9	4	7	2	0	1	4	5	1	5	
		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Carcass ID Number	() (0	4	3	1	2	3	0	4	2	3	3	3	2	1	0	4	2	3	1	5	0	2	1	4	
		5	8	1	7	1	6	6	1	9	9	3	4	9	5	2	3	0	1	8	4	0	4	7	3	3	
Urinary System																											
Kidney		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Carcinoma																											
Capsule, hemangiosarcoma																											
Urinary bladder		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Santania I asiana																											
Systemic Lesions																										1	
Multiple organs Lymphoma malignant		+	Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	Ŧ	
Lymphonia mangham																л											

TABLE C2 Individual Animal Tr

Individual Animal Tumor Patho	ology of Ma	le	M	ice	in	the	e 2-	Ye	ear	G٤	iva	ge	Sti	udy	0	f R	lid	del	liir	ne:	3	m	g/k	g			
	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	,	7	
Number of Days on Study	0	0	1	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3		3	
	5	5	6	0	7	9	9	9	9	9	9	9	0	0	0	1	1	1	1	1	4	4	4	4		4	
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		2	Tota
Carcass ID Number	0	3	4	4	0	1	2	2	2	3	4	4	1	1	4	0	1	1	3	3	0	1	2	2		4	Tissues
	9	2	4	8	2	9	2	4	8	1	5	7	0	5	2	7	6	8	0	5	5	7	0	3		6	Tumors
Urinary System																											
Kidney	+	+	+	+	+	+	+	$^+$	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Carcinoma																Х											1
Capsule, hemangiosarcoma											Х																1
Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	50
Systemic Lesions																											
Multiple organs	+	+	+	+	+	+	$^+$	+	$^+$	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+		+	50
Lymphoma malignant													Х														2
TABLE C3 Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Gavage Study of Riddelliine

Adrenal Cortex: Adenoma Dverall rate ^a b Adjusted rate Ferminal rate First incidence (days) Poly-3 test Harderian Gland: Adenoma Dverall rate Adjusted rate Ferminal rate First incidence (days) Poly-3 test	3/49 (6%) 6.7% 3/39 (8%) 729 (T) P=0.207N 4/50 (8%) 8.8% 4/39 (10%) 729 (T) P=0.510N	7/49 (14%) 15.5% 7/40 (18%) 729 (T) P=0.159 1/50 (2%) 2.2% 0/41 (0%) 696	4/50 (8%) 8.4% 4/40 (10%) 729 (T) P=0.532 6/50 (12%) 12.5% 5/40 (13%)	3/50 (6%) 6.6% 2/38 (5%) 707 P=0.656N 8/50 (16%) 17.2%	2/49 (4%) 5.1% 1/20 (5%) 660 P=0.560N 2/50 (4%)
Dverall rate ^a b Adjusted rate ^c Ferminal rate ^c First incidence (days) Poly-3 test ^d Harderian Gland: Adenoma Dverall rate Adjusted rate Ferminal rate First incidence (days)	6.7% 3/39 (8%) 729 (T) P=0.207N 4/50 (8%) 8.8% 4/39 (10%) 729 (T)	15.5% 7/40 (18%) 729 (T) P=0.159 1/50 (2%) 2.2% 0/41 (0%) 696	8.4% 4/40 (10%) 729 (T) P=0.532 6/50 (12%) 12.5%	6.6% 2/38 (5%) 707 P=0.656N 8/50 (16%)	5.1% 1/20 (5%) 660 P=0.560N 2/50 (4%)
Adjusted rate Ferminal rate First incidence (days) Poly-3 test Harderian Gland: Adenoma Dverall rate Adjusted rate Ferminal rate First incidence (days)	6.7% 3/39 (8%) 729 (T) P=0.207N 4/50 (8%) 8.8% 4/39 (10%) 729 (T)	15.5% 7/40 (18%) 729 (T) P=0.159 1/50 (2%) 2.2% 0/41 (0%) 696	8.4% 4/40 (10%) 729 (T) P=0.532 6/50 (12%) 12.5%	6.6% 2/38 (5%) 707 P=0.656N 8/50 (16%)	5.1% 1/20 (5%) 660 P=0.560N 2/50 (4%)
Ferminal rate ^C First incidence (days) Poly-3 test ^C Harderian Gland: Adenoma Dverall rate Adjusted rate Ferminal rate First incidence (days)	3/39 (8%) 729 (T) P=0.207N 4/50 (8%) 8.8% 4/39 (10%) 729 (T)	7/40 (18%) 729 (T) P=0.159 1/50 (2%) 2.2% 0/41 (0%) 696	4/40 (10%) 729 (T) P=0.532 6/50 (12%) 12.5%	2/38 (5%) 707 P=0.656N 8/50 (16%)	1/20 (5%) 660 P=0.560N 2/50 (4%)
First incidence (days) Poly-3 test Harderian Gland: Adenoma Dverall rate Adjusted rate Ferminal rate First incidence (days)	729 (T) P=0.207N 4/50 (8%) 8.8% 4/39 (10%) 729 (T)	729 (T) P=0.159 1/50 (2%) 2.2% 0/41 (0%) 696	729 (T) P=0.532 6/50 (12%) 12.5%	707 P=0.656N 8/50 (16%)	660 P=0.560N 2/50 (4%)
Poly-3 test ^a Harderian Gland: Adenoma Dverall rate Adjusted rate Ferminal rate First incidence (days)	P=0.207N 4/50 (8%) 8.8% 4/39 (10%) 729 (T)	P=0.159 1/50 (2%) 2.2% 0/41 (0%) 696	P=0.532 6/50 (12%) 12.5%	P=0.656N 8/50 (16%)	P=0.560N 2/50 (4%)
Dverall rate Adjusted rate Ferminal rate First incidence (days)	8.8% 4/39 (10%) 729 (T)	2.2% 0/41 (0%) 696	12.5%		()
Adjusted rate Ferminal rate First incidence (days)	8.8% 4/39 (10%) 729 (T)	2.2% 0/41 (0%) 696	12.5%		()
Ferminal rate First incidence (days)	4/39 (10%) 729 (T)	0/41 (0%) 696		17.2%	
First incidence (days)	729 (T)	696	5/40 (13%)		5.0%
				4/38 (11%)	2/20 (10%)
Poly-3 test			614	554	729 (T)
		P=0.173N	P=0.405	P=0.187	P=0.402N
Iarderian Gland: Adenoma or Carcino	oma				
Overall rate	6/50 (12%)	1/50 (2%)	7/50 (14%)	8/50 (16%)	3/50 (6%)
Adjusted rate	13.2%	2.2%	14.6%	17.2%	7.5%
Ferminal rate	5/39 (13%)	0/41 (0%)	6/40 (15%)	4/38 (11%)	2/20 (10%)
First incidence (days)	713	696	614	554	652
Poly-3 test	P=0.499N	P=0.053N	P=0.542	P=0.402	P=0.311N
Liver: Hemangiosarcoma					
Overall rate	2/50 (4%)	1/50 (2%)	0/50 (0%)	2/50 (4%)	31/50 (62%
Adjusted rate	4.4%	2.2%	0.0%	4.4%	66.7%
Ferminal rate	2/39 (5%)	1/41 (2%)	0/40 (0%)	2/38 (5%)	8/20 (40%)
First incidence (days)	729 (T)	729 (T)	e	729 (T)	550
Poly-3 test	P<0.001	P=0.495N	P=0.227N	P=0.694	P<0.001
Liver: Hepatocellular Adenoma					
Overall rate	16/50 (32%)	18/50 (36%)	14/50 (28%)	5/50 (10%)	0/50 (0%)
Adjusted rate	34.2%	38.8%	29.0%	10.9%	0.0%
Cerminal rate	13/39 (33%)	17/41 (42%)	13/40 (33%)	4/38 (11%)	0/20 (0%)
First incidence (days)	475	681	567	566	_ ` `
Poly-3 test	P<0.001N	P=0.400	P=0.375N	P=0.006N	P<0.001N
Liver: Hepatocellular Carcinoma					
Overall rate	23/50 (46%)	21/50 (42%)	19/50 (38%)	20/50 (40%)	3/50 (6%)
Adjusted rate	47.7%	43.2%	38.4%	42.8%	7.5%
Ferminal rate	15/39 (39%)	15/41 (37%)	11/40 (28%)	16/38 (42%)	2/20 (10%)
First incidence (days)	486	542	592	566	590
Poly-3 test	P<0.001N	P=0.407N	P=0.237N	P=0.393N	P<0.001N
Liver: Hepatocellular Adenoma or Caro	cinoma				
Overall rate	36/50 (72%)	39/50 (78%)	33/50 (66%)	23/50 (46%)	3/50 (6%)
Adjusted rate	73.4%	80.0%	66.0%	49.2%	7.5%
Ferminal rate	26/39 (67%)	32/41 (78%)	24/40 (60%)	19/38 (50%)	2/20 (10%)
irst incidence (days)	475	542	567	566	590
Poly-3 test	P<0.001N	P=0.299	P=0.281N	P=0.011N	P<0.001N
Liver: Hepatoblastoma					
Overall rate	3/50 (6%)	2/50 (4%)	0/50 (0%)	1/50 (2%)	0/50 (0%)
Adjusted rate	6.6%	4.3%	0.0%	2.2%	0.0%
Ferminal rate	2/39 (5%)	2/41 (5%)	0/40 (0%)	0/38 (0%)	0/20 (0%)
First incidence (days)	706	729 (T)		552	
Poly-3 test	P=0.151N	P=0.494N	P=0.111N	P=0.302N	P=0.146N

TABLE C3 Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Liver: Hepatocellular Carcinoma or	Henatoblastoma				
Overall rate	24/50 (48%)	22/50 (44%)	19/50 (38%)	21/50 (42%)	3/50 (6%)
Adjusted rate	49.8%	45.3%	38.4%	44.4%	7.5%
Terminal rate	16/39 (41%)	16/41 (39%)	11/40 (28%)	16/38 (42%)	2/20 (10%)
First incidence (days)	486	542	592	552	590
Poly-3 test	P<0.001N	P=0.407N	P=0.178N	P=0.375N	P<0.001N
Liver: Hepatocellular Adenoma, He	patocellular Carcinoma, (or Hepatoblastom	a		
Overall rate	36/50 (72%)	40/50 (80%)	33/50 (66%)	24/50 (48%)	3/50 (6%)
Adjusted rate	73.4%	82.0%	66.0%	50.8%	7.5%
Terminal rate	26/39 (67%)	33/41 (81%)	24/40 (60%)	19/38 (50%)	2/20 (10%)
First incidence (days)	475	542	567	552	590
Poly-3 test	473 P<0.001N	P=0.218	P=0.281N	P=0.016N	990 P<0.001N
ory-5 test	1 <0.0011N	1-0.218	1-0.2811	1-0.010IN	1 <0.0011
Lung: Alveolar/bronchiolar Adenon		10/50 (200/)	11/50 (220/)	8/50 (1(0/)	12/50 (240/)
Overall rate	12/50 (24%)	10/50 (20%)	11/50 (22%)	8/50 (16%)	12/50 (24%)
Adjusted rate	26.3%	21.7%	23.1%	17.5%	28.5%
Ferminal rate	11/39 (28%)	10/41 (24%)	11/40 (28%)	6/38 (16%)	5/20 (25%)
First incidence (days)	706	729 (T)	729 (T)	689	559
Poly-3 test	P=0.356	P=0.391N	P=0.450N	P=0.222N	P=0.505
Lung: Alveolar/bronchiolar Carcino	oma				
Overall rate	7/50 (14%)	8/50 (16%)	6/50 (12%)	1/50 (2%)	5/50 (10%)
Adjusted rate	15.2%	17.3%	12.4%	2.2%	12.4%
Ferminal rate	5/39 (13%)	8/41 (20%)	4/40 (10%)	1/38 (3%)	3/20 (15%)
First incidence (days)	599	729 (T)	567	729 (T)	587
Poly-3 test	P=0.289N	P=0.503	P=0.463N	P=0.031N	P=0.473N
Lung: Alveolar/bronchiolar Adenon	na or Carcinoma				
Overall rate	18/50 (36%)	16/50 (32%)	15/50 (30%)	9/50 (18%)	17/50 (34%)
Adjusted rate	39.1%	34.7%	31.1%	19.7%	39.7%
Ferminal rate	15/39 (39%)	16/41 (39%)	13/40 (33%)	7/38 (18%)	8/20 (40%)
First incidence (days)	599	729 (T)	567	689	559
Poly-3 test	P=0.424	P=0.413N	P=0.276N	P=0.033N	P=0.564
-ory-s test	r=0.424	r=0.415N	r=0.2701N	r=0.0551N	r=0.304
Pancreatic Islets: Adenoma	2/40 ((0/)	0/50 (00/)	0/50 (00/)	0/50 (00/)	0/40 (00/)
Overall rate	3/49 (6%)	0/50 (0%)	0/50 (0%)	0/50 (0%)	0/48 (0%)
Adjusted rate	6.6%	0.0%	0.0%	0.0%	0.0%
Ferminal rate	2/39 (5%)	0/41 (0%)	0/40 (0%)	0/38 (0%)	0/20 (0%)
First incidence (days)	637	—	—	—	—
Poly-3 test	P=0.202N	P=0.116N	P=0.111N	P=0.119N	P=0.153N
Spleen: Hemangiosarcoma					
Overall rate	1/49 (2%)	0/49 (0%)	3/50 (6%)	1/50 (2%)	2/49 (4%)
Adjusted rate	2.2%	0.0%	6.2%	2.2%	5.1%
Ferminal rate	1/39 (3%)	0/41 (0%)	1/40 (3%)	0/38 (0%)	1/20 (5%)
First incidence (days)	729 (T)		592	707	681
Poly-3 test	P=0.339	P=0.498N	P=0.329	P=0.759N	P=0.452
All Organs: Hemangiosarcoma					
Overall rate	3/50 (6%)	2/50 (4%)	4/50 (8%)	3/50 (6%)	33/50 (66%)
Adjusted rate	6.6%	4.3%	8.3%	6.6%	71.0%
Ferminal rate					
	3/39 (8%) 720 (T)	2/41 (5%) 720 (T)	2/40 (5%)	2/38 (5%)	10/20 (50%)
First incidence (days)	729 (T) D <0 001	729 (T) P=0.402N	592 D=0.521	707 D-0 ((2))	550 B ≤0.001
Poly-3 test	P<0.001	P=0.493N	P=0.531	P=0.662N	P<0.001

TABLE C3

Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3.0 mg/kg
All Organs: Histiocytic Sarcoma					
Overall rate	0/50 (0%)	3/50 (6%)	3/50 (6%)	4/50 (8%)	0/50 (0%)
Adjusted rate	0.0%	6.4%	6.3%	8.5%	0.0%
Ferminal rate	0/39 (0%)	1/41 (2%)	1/40 (3%)	1/38 (3%)	0/20 (0%)
First incidence (days)		596	657	507	—
Poly-3 test	P=0.302N	P=0.124	P=0.129	P=0.064	f
All Organs: Malignant Lymphoma					
Overall rate	3/50 (6%)	2/50 (4%)	1/50 (2%)	3/50 (6%)	2/50 (4%)
Adjusted rate	6.5%	4.3%	2.1%	6.6%	5.0%
Ferminal rate	2/39 (5%)	1/41 (2%)	1/40 (3%)	2/38 (5%)	1/20 (5%)
First incidence (days)	475	634	729 (T)	720	633
Poly-3 test	P=0.540	P=0.497N	P=0.294N	P=0.655	P=0.565N
All Organs: Benign Neoplasms					
Overall rate	32/50 (64%)	27/50 (54%)	28/50 (56%)	23/50 (46%)	17/50 (34%)
Adjusted rate	67.7%	58.1%	57.6%	48.2%	39.6%
Terminal rate	27/39 (69%)	25/41 (61%)	26/40 (65%)	16/38 (42%)	8/20 (40%)
First incidence (days)	475	681	567	507	559
Poly-3 test	P=0.006N	P=0.222N	P=0.205N	P=0.039N	P=0.004N
All Organs: Malignant Neoplasms					
Overall rate	29/50 (58%)	31/50 (62%)	31/50 (62%)	33/50 (66%)	41/50 (82%)
Adjusted rate	59.2%	63.0%	62.0%	67.6%	83.8%
Terminal rate	19/39 (49%)	23/41 (56%)	21/40 (53%)	23/38 (61%)	13/20 (65%)
First incidence (days)	475	542	567	507	356
Poly-3 test	P=0.003	P=0.428	P=0.467	P=0.257	P=0.005
All Organs: Benign or Malignant Neo	plasms				
Overall rate	44/50 (88%)	45/50 (90%)	47/50 (94%)	42/50 (84%)	47/50 (94%)
Adjusted rate	89.8%	91.4%	94.0%	85.0%	94.0%
Terminal rate	34/39 (87%)	37/41 (90%)	37/40 (93%)	31/38 (82%)	17/20 (85%)
First incidence (days)	475	542	567	507	356
Poly-3 test	P=0.396	P=0.524	P=0.344	P=0.344N	P=0.344

(T)Terminal sacrifice

^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, liver, lung, pancreatic islets, and spleen; for other tissues, denominator is number of animals necropsied.

^b Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^a Beneath the vehicle control incidence is the P value associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between the vehicle controls and that dosed group. The Poly-3 test accounts for the differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in a dosed group is indicated by N.

e Not applicable; no neoplasms in animal group

f Not applicable; no neoplasms in anima Value of statistic cannot be computed.

TABLE C4 Historical Incidence of Liver Neoplasms in Control Male ${\rm B6C3F}_1$ Mice

	Incidence in Controls								
Study	Hemangiosarcoma	Hepatocellular Adenoma	Hepatocellular Carcinoma	Hepatocellular Adenoma or Carcinoma	Hepatoblastoma				
Historical Incidence in Controls Given	NTP-2000 Diet ^a								
Acrylonitrile (gavage)	2/50	23/50	14/50	32/50	0/50				
Citral (feed)	2/100	20/100	13/100	28/100	0/100				
<i>p</i> , <i>p</i> '-Dichlorodiphenyl sulfone (feed)	2/50	6/50	9/50	15/50	0/50				
Indium phosphide (inhalation)	2/50	17/50	11/50	26/50	0/50				
60-Hz Magnetic fields (whole body exposure)	4/100	30/100	19/100	46/100	2/100				
Methacrylonitrile (gavage)	1/49	17/49	13/49	24/49	1/49				
o-Nitrotoluene (feed)	1/60	18/60	12/60	27/60	1/60				
<i>p</i> -Nitrotoluene (feed)	1/50	14/50	8/50	20/50	0/50				
Riddelliine (gavage)	2/50	16/50	23/50	36/50	3/50				
Sodium nitrite (drinking water)	2/50	19/50	9/50	24/50	5/50				
Vanadium pentoxide (inhalation)	1/50	15/50	14/50	26/50	0/50				
Overall Historical Incidence in Contro	ls Given NTP-2000 I	Diet							
Total (%)	20/659 (3.0%)	195/659 (29.6%)	145/659 (22.0%)	304/659 (46.1%)	12/659 (1.8%)				
Mean \pm standard deviation	$3.1\% \pm 1.1\%$	$30.4\% \pm 8.9\%$	$23.1\% \pm 9.0\%$	$47.8\% \pm 12.9\%$	$2.0\% \pm 3.2\%$				
Range	2%-4%	12%-46%	13%-46%	28%-72%	0%-10%				
Overall Historical Incidence in Water	Gavage Controls Giv	ven NIH-07 Diet ^b							
Total (%)	0/50	26/50 (52.0%)	6/50 (12.0%)	30/50 (60.0%)	0/50				

a Data as of December 20, 2000 Data as of December 23, 1999

TABLE	C5
-------	-----------

Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Gavage Study of Riddelliine^a

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Disposition Summary					
Animals initially in study	50	50	50	50	50
Early deaths	20	00	00	20	00
Accidental death	1				
Moribund	4	6	3	6	13
Natural deaths	6	3	7	6	17
Survivors					
Died last week of study					2
Terminal sacrifice	39	41	40	38	18
Animals examined microscopically	50	50	50	50	50
Alimentary System					
Gallbladder	(44)	(43)	(36)	(41)	(38)
Cyst	(44)	(+3)	(50)	(+1)	(30)
Intestine large, cecum	(44)	(47)	(44)	(48)	(39)
Diverticulum	(++)	1 (2%)	(++)	(40)	(37)
Edema		1 (2%)	1 (2%)		1 (3%)
Hemorrhage, focal		1 (270)	1 (270)		1 (3%)
Intestine small, duodenum	(45)	(48)	(47)	(47)	(40)
Artery, inflammation, chronic	(10)	(10)	(.,)	()	1 (3%)
Intestine small, jejunum	(45)	(47)	(44)	(47)	(39)
Inflammation, focal			1 (2%)		
Peyer's patch, hyperplasia, lymphoid			1 (2%)		
Intestine small, ileum	(44)	(49)	(44)	(47)	(41)
Inflammation		1 (2%)		~ /	
Peyer's patch, hyperplasia, lymphoid	1 (2%)	2 (4%)			
Liver	(50)	(50)	(50)	(50)	(50)
Angiectasis				6 (12%)	3 (6%)
Atrophy, focal	1 (2%)	1 (2%)			
Clear cell focus	7 (14%)	5 (10%)	4 (8%)	1 (2%)	
Congestion			1 (2%)		
Congestion, focal		3 (6%)	2 (4%)	4 (8%)	
Cyst	1 (2%)				
Eosinophilic focus	6 (12%)	6 (12%)	2 (4%)	1 (2%)	
Fibrosis, focal	1 (2%)				5 (10%)
Hematopoietic cell proliferation				2 (4%)	
Hemorrhage, focal		2 (4%)	1 (2%)	6 (12%)	21 (42%)
Infarct	1 (2%)	2 (4%)	3 (6%)		
Infiltration cellular, mixed cell	33 (66%)	25 (50%)	14 (28%)	14 (28%)	32 (64%)
Inflammation, chronic				1 (2%)	
Inflammation, chronic, focal, suppurative		1 (2%)			
Karyomegaly			1 (2%)	1 (20)	
Metaplasia, focal, lipocyte	2 (201)			1 (2%)	
Mixed cell focus	3 (6%)			1 (20.1)	
Thrombosis	2 (10/)		1 (20/)	1 (2%)	5 (10%)
Bile duct, hyperplasia	2 (4%)		1 (2%)	3 (6%)	6 (12%)
Endothelial cell, hyperplasia				1 (2%)	1 (2%)
Endothelial cell, hyperplasia, focal				2 (4%)	

^a Number of animals examined microscopically at the site and the number of animals with lesion

TABLE	C5
-------	-----------

	Vehicle	e Control	0.1	mg/kg	0.3	mg/kg	1 n	ng/kg	3 n	ng/kg
Alimentary System (continued)										
Liver (continued)	(50)		(50)		(50)		(50)		(50)	
Hepatocyte, basophilic focus				(2%)	. ,					
Hepatocyte, cytomegaly	4	(8%)	4	(8%)	16	(32%)	33	(66%)	43	(86%)
Hepatocyte, eosinophilic focus	2	(4%)	1	(2%)	1	(2%)				
Hepatocyte, karyomegaly	4	(8%)	4	(8%)	15	(30%)	33	(66%)	43	(86%)
Hepatocyte, mixed cell focus				. ,	1	(2%)				
Hepatocyte, necrosis, focal	18	(36%)	9	(18%)	5	(10%)	6	(12%)	21	(42%)
Hepatocyte, syncytial alteration, focal	38	(76%)	30	(60%)		(62%)	27	(54%)		
Hepatocyte, vacuolization cytoplasmic, diffuse	3	(6%)		. ,		· /		. ,		
Hepatocyte, vacuolization cytoplasmic, focal	18	(36%)	7	(14%)	3	(6%)	5	(10%)	1	(2%)
Hepatocyte, periportal, vacuolization cytoplasmic						(2%)				(2%)
Hepatocyte, centrilobular, necrosis			1	(2%)		(6%)	4	(8%)		(20%)
Hepatocyte, centrilobular, vacuolization cytoplasmic								(2%)		(6%)
Hepatocyte, midzonal, vacuolization cytoplasmic	8	(16%)	14	(28%)	8	(16%)		(4%)		()
Serosa, fibrosis									1	(2%)
Sinusoid, dilatation, diffuse							1	(2%)		()
Mesentery	(12)		(10)		(9)		(14)	(_,,,)	(6)	
Angiectasis	· · ·	(8%)		(10%)	(-)		()		(*)	
Inflammation, chronic	-	(2,2)	-	()	1	(11%)				
Artery, inflammation, chronic, focal	2	(17%)	1	(10%)		()	2	(14%)	1	(17%)
Fat. necrosis		(75%)		(70%)	8	(89%)		(21%)		(33%)
Pancreas	(49)	(,,,,,)	(50)	(/0/0)	(50)	(0) (0)	(50)		(48)	(5570
Fibrosis, focal	· · · ·	(2%)	(2.5)		()		()		()	
Necrosis, focal		(2%)								
Acinus, atrophy, focal	-	(_,,)							1	(2%)
Stomach, forestomach	(49)		(50)		(50)		(50)		(49)	(_,,)
Diverticulum	()		(00)			(2%)	(00)		()	
Erosion	1	(2%)	1	(2%)	-	(=, *)				
Inflammation, focal		(4%)		(2%)	2	(4%)				
Ulcer		(2%)	-	(=,*)		(2%)				
Epithelium, hyperplasia		(4%)	2	(4%)		(4%)				
Stomach, glandular	(47)	(1/0)	(48)	(170)	(49)	(170)	(49)		(46)	
Pigmentation, focal	· · ·	(2%)	()		()			(2%)	()	
Glands, degeneration, cystic, focal	-	(2,0)			1	(2%)		(2%)		
Tongue			(1)		-	(270)	-	(2,0)		
Epithelium, hyperplasia, focal			1							
Tooth	(24)		(15)		(18)		(4)		(4)	
Malformation	· · ·	(54%)	· · ·	(20%)	~ /	(44%)	(.)			(50%)
Peridontal tissue, inflammation, chronic		(67%)		(80%)		(67%)	4	(100%)		· · · · · ·
		((****)		((((((((((((((((((((((((((((((((((((((((((,,,,))		()		(,,,,,,
Cardiovascular System	(1)								(1)	
Blood vessel	(1)	(1000/)							(1)	
Inflammation, chronic		(100%)	(50)		(50)		(50)		(50)	
Heart	(50)	(40/)	(50)	$\langle \langle 0 \rangle \rangle$	(50)	((0))	(50)	$\langle \langle 0 \rangle \rangle$	(50)	(CDI)
Infiltration cellular, mixed cell	2	(4%)	3	(6%)		(6%)	3	(6%)	3	(6%)
Inflammation, chronic, focal					1	(2%)		(20)		(00)
Mineralization, focal			_			(*** ()		(2%)	4	(8%)
Artery, inflammation, chronic			2	(4%)	1	(2%)	2	(4%)		

TABLE	C5
-------	----

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Endocrine System					
Adrenal cortex	(49)	(49)	(50)	(50)	(49)
Accessory adrenal cortical nodule		3 (6%)	1 (2%)	1 (2%)	2 (4%)
Angiectasis		1 (2%)	1 (2%)		
Cyst		2 (4%)	1 (2%)		
Cytoplasmic alteration				2 (4%)	
Cytoplasmic alteration, focal	18 (37%)	7 (14%)	8 (16%)	12 (24%)	18 (37%)
Fibrosis	10 (3770)	/ (11/0)	0 (10/0)	12 (21/0)	1 (2%)
Hemorrhage				1 (2%)	1 (270)
Hyperplasia	1 (2%)			1 (270)	
Hyperplasia, focal	1 (2%) 1 (2%)		1 (2%)		
Hypertrophy	1 (270)		1 (270)	2 (4%)	
Inflammation, chronic, focal				2 (470)	1 (2%)
				1 (20/)	1 (270)
Bilateral, capsule, fibrosis			1 (20/)	1 (2%)	
Capsule, fibrosis, focal	5 (100/)	7 (140/)	1 (2%)	1 (20/)	
Capsule, hyperplasia, focal	5 (10%)	7 (14%)	6 (12%)	1 (2%)	(45)
Parathyroid gland	(41)	(50)	(44)	(47)	(45)
Angiectasis				1 (2%)	
Cyst	1 (2%)		(10)	1 (2%)	2 (4%)
Pituitary gland	(49)	(47)	(48)	(46)	(47)
Pars distalis, cyst	5 (10%)	4 (9%)	2 (4%)	2 (4%)	3 (6%)
Pars distalis, cytoplasmic alteration, focal	2 (4%)	2 (4%)	1 (2%)	1 (2%)	1 (2%)
Pars distalis, hyperplasia, focal			2 (4%)		
Pars intermedia, cyst			1 (2%)		
Thyroid gland	(49)	(50)	(49)	(50)	(50)
Degeneration, cystic, focal	8 (16%)	8 (16%)	12 (24%)	7 (14%)	7 (14%)
Follicle, cyst			1 (2%)		
Follicular cell, hyperplasia	1 (2%)				
General Body System					
Tissue NOS		(2)		(1)	(1)
Pelvic, hemorrhage		1 (50%)		(-)	(-)
		. ,			
Genital System	(50)	(50)	(50)	(50)	(50)
Epididymis	(50)	(50)	(50)	(50)	(50)
Inflammation, chronic	(50)	(=0)	(50)	(=0)	1 (2%)
Preputial gland	(50)	(50)	(50)	(50)	(50)
Atrophy	1 (2%)	10 (2004)	16 (2004)	21 (120))	10 (200)
Degeneration, cystic	19 (38%)	19 (38%)	16 (32%)	21 (42%)	19 (38%)
Inflammation, chronic		2 (4%)	1 (2%)	2 (4%)	1 (2%)
Prostate	(50)	(50)	(50)	(50)	(50)
Inflammation, chronic			2 (4%)		
Epithelium, hyperplasia, focal	1 (2%)	1 (2%)			
Seminal vesicle	(50)	(50)	(50)	(50)	(50)
Dilatation	15 (30%)	13 (26%)	8 (16%)	2 (4%)	1 (2%)
Inflammation, chronic	2 (4%)				
Hematopoietic System					
Bone marrow	(50)	(50)	(50)	(50)	(50)
Hyperplasia	1 (2%)	2 (4%)	()	()	1 (2%)
Lymph node	(2) (2)	(3)	(4)	(7)	(4)
Bronchial, hyperplasia, lymphoid	(=)		(.)		1 (25%)
Bronchial, hyperplasia, plasma cell			1 (25%)		1 (2570
Iliac, hemorrhage			1 (2370)		1 (25%)
mue, nemormage					1 (2370

TABLE C5

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Hematopoietic System (continued)					
Lymph node (continued)	(2)	(3)	(4)	(7)	(4)
Inguinal, inflammation, chronic, focal			1 (25%)		
Mediastinal, hyperplasia, lymphoid				1 (14%)	
Mediastinal, hyperplasia, plasma cell			1 (25%)		
Pancreatic, hyperplasia, lymphoid	1 (50%)			1 (14%)	
Pancreatic, hyperplasia, plasma cell	1 (50%)				
.ymph node, mandibular	(49)	(48)	(49)	(49)	(44)
Hemorrhage		1 (20/)	1 (2%)		1 (20()
Hyperplasia, lymphoid		1 (2%)	1 (2%)	2 (40/)	1 (2%)
Hyperplasia, plasma cell	(40)	1 (2%)	1 (2%)	2 (4%)	(50)
Lymph node, mesenteric	(49)	(48)	(48)	(50)	(50)
Congestion			1 (2%)		2 (40/)
Hematopoietic cell proliferation			1 (20/)		2 (4%)
Hemorrhage Hyperplasia, lymphoid	3 (6%)	2 (4%)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 (4%)	2 (4%) 4 (8%)
Hyperplasia, plasma cell	2 (4%)	2 (4%) 3 (6%)	4 (8%)		4 (8%)
Infiltration cellular, polymorphonuclear	2 (470)	3 (0%)	1 (2%)	1 (270)	
Inflammation, chronic			1 (270)		1 (2%)
Inflammation, focal, suppurative			1 (2%)		1 (270)
Inflammation, granulomatous			1 (270)		1 (2%)
Spleen	(49)	(49)	(50)	(50)	(49)
Angiectasis	(12)	(12)	(50)	(50)	1 (2%)
Hematopoietic cell proliferation	18 (37%)	16 (33%)	19 (38%)	20 (40%)	33 (67%
Hyperplasia, lymphoid	10 (5770)	2 (4%)	3 (6%)	3 (6%)	00 (0774
Hyperplasia, plasma cell	1 (2%)				
Necrosis, focal					1 (2%)
Artery, inflammation, chronic, focal				1 (2%)	· · · ·
Гhymus	(42)	(46)	(45)	(43)	(43)
Cyst	6 (14%)	5 (11%)	4 (9%)	1 (2%)	3 (7%)
Hyperplasia, lymphoid		1 (2%)			
Integumentary System					
Skin	(50)	(50)	(50)	(50)	(49)
Cyst epithelial inclusion		1 (2%)			
Ulcer				1 (2%)	
Subcutaneous tissue, edema			2 (4%)	5 (10%)	25 (51%
Subcutaneous tissue, lip, hyperplasia, lymphoid		1 (2%)			
Musculoskeletal System					
Bone	(50)	(50)	(50)	(50)	(50)
Cranium, hyperostosis	1 (2%)				
Vertebra, hyperostosis, focal	37 (74%)	36 (72%)	37 (74%)	24 (48%)	27 (54%
Nervous System					
Brain	(50)	(50)	(50)	(50)	(50)
Angiectasis, focal			1 (2%)		
Atrophy, focal					1 (2%)
Hemorrhage, focal				1 (2%)	
Pigmentation, focal			1 (2%)		

TABLE	C5
-------	-----------

	Vehicle Control	0.1 mg/kg	0.3 mg/kg	1 mg/kg	3 mg/kg
Respiratory System					
Lung	(50)	(50)	(50)	(50)	(50)
Congestion		1 (2%)	1 (2%)	2 (4%)	2 (4%)
Hemorrhage		1 (2%)		8 (16%)	3 (6%)
Hyperplasia, focal, histiocytic	1 (2%)			1 (2%)	
Hyperplasia, histiocytic	1 (2%)		4 (8%)	1 (2%)	
Infiltration cellular, mixed cell			1 (2%)		4 (8%)
Metaplasia, focal, osseous				1 (2%)	
Pigmentation, focal				2 (4%)	
Thrombosis					1 (2%)
Alveolar epithelium, hyperplasia	1 (2%)	3 (6%)	3 (6%)	6 (12%)	3 (6%)
Interstitium, edema	1 (2%)				
Mediastinum, inflammation, chronic	1 (2%)				
Nose	(50)	(50)	(50)	(50)	(50)
Inflammation, suppurative		1 (2%)	1 (2%)		
Sinus, foreign body		1 (2%)	1 (2%)		
Sinus, inflammation, chronic, suppurative			1 (2%)		
Special Senses System Ear					(1)
Hemorrhage, focal	(1)				1 (100%
Zymbal's gland	(1)				
Cyst, squamous	1 (100%)				
Urinary System					
Kidney	(49)	(49)	(50)	(50)	(50)
Atrophy, focal			1 (2%)		
Congestion			5 (10%)	3 (6%)	1 (2%)
Cyst	8 (16%)	4 (8%)	6 (12%)	7 (14%)	4 (8%)
Cyst, multiple					1 (2%)
Hyperplasia, lymphoid			1 (2%)		
Infarct		1 (2%)			
Inflammation, chronic, focal	1 (2%)		1 (2%)		
Metaplasia, focal, osseous	3 (6%)	3 (6%)		10 (20%)	4 (8%)
Nephropathy	46 (94%)	48 (98%)	48 (96%)	50 (100%)	50 (100%
Artery, inflammation, chronic			2 (4%)		2 (4%)
Capsule, fibrosis					1 (2%)
Glomerulus, glomerulosclerosis		1 (2%)		42 (84%)	41 (82%)
Papilla, necrosis				1 (2%)	
Pelvis, dilatation		1 (2%)	1 (2%)		1 (2%)
Renal tubule, accumulation, hyaline droplet		2 (4%)	1 (2%)	1 (2%)	3 (6%)
Renal tubule, dilatation	16 (33%)	17 (35%)	24 (48%)	29 (58%)	22 (44%)
Renal tubule, karyomegaly					12 (24%)
Renal tubule, necrosis, focal				1 (2%)	
Renal tubule, pigmentation	2 (4%)		1 (2%)		2 (4%)
Renal tubule, vacuolization cytoplasmic		1 (2%)			
Urinary bladder	(50)	(50)	(50)	(50)	(50)
			1 (2%)		

APPENDIX D SUMMARY OF LESIONS IN FEMALE MICE IN THE 2-YEAR GAVAGE STUDY OF RIDDELLIINE

TABLE D1	Summary of the Incidence of Neoplasms in Female Mice	
	in the 2-Year Gavage Study of Riddelliine	184
TABLE D2	Individual Animal Tumor Pathology of Female Mice	
	in the 2-Year Gavage Study of Riddelliine	188
TABLE D3	Statistical Analysis of Primary Neoplasms in Female Mice	
	in the 2-Year Gavage Study of Riddelliine	200
TABLE D4a	Historical Incidence of Liver Neoplasms in Control Female B6C3F ₁ Mice	203
TABLE D4b	Historical Incidence of Alveolar/bronchiolar Neoplasms	
	in Control Female B6C3F ₁ Mice	204
TABLE D5	Summary of the Incidence of Nonneoplastic Lesions in Female Mice	
	in the 2-Year Gavage Study of Riddelliine	205

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Gavage Study of Riddelliine^a

	Vehicle	Control	3 n	ıg/kg	
Disposition Summary					
Animals initially in study	50			50	
Early deaths	50				
Accidental deaths	4				
Moribund	9		,	25	
Natural deaths	3			8	
Survivors	5			8	
Died last week of study				1	
Terminal sacrifice	34			.6	
Terminal sacrifice	54			.0	
Animals examined microscopically	50		:	50	
Alimentary System					
Gallbladder	(45)		(45)		
Histiocytic sarcoma		(2%)	(10)		
Sarcoma		(2%)			
intestine large, colon	(49)	(2,0)	(47)		
ntestine large, cecum	(48)		(47)		
Histiocytic sarcoma		(2%)		(2%)	
ntestine small, jejunum	(43)	(2,0)	(45)	(270)	
Histiocytic sarcoma		(2%)	(10)		
Intestine small, ileum	(46)	(2,0)	(46)		
Liver	(49)		(50)		
Cholangioma	(1)			(2%)	
Hemangiosarcoma				(2%)	
Hepatocellular carcinoma	7 ((14%)	1	(270)	
Hepatocellular carcinoma, multiple		(2%)			
Hepatocellular adenoma		(14%)			
Hepatocellular adenoma, multiple		(4%)			
Histiocytic sarcoma		(2%)	2	(4%)	
Sarcoma, multiple		(2%)	2	(470)	
Mesentery	(23)	270)	(29)		
Carcinoma, metastatic, kidney	(23)			(3%)	
Hemangioma				(3%)	
Histiocytic sarcoma	1 /	(4%)		(3%)	
Sarcoma	1 (470)		(3%)	
Sarcoma, multiple	1 /	(40/)	1	(378)	
Pancreas	(49)	(4%)	(50)		
		(20/.)	(50)	(20/.)	
Histiocytic sarcoma		(2%)	1	(2%)	
Sarcoma, multiple		(2%)	(50)		
Salivary glands Stomach, forostomach	(50)		(50)		
Stomach, forestomach	(49)		(49)		
Stomach, glandular	(49)		(48)	(20/.)	
Histiocytic sarcoma			1	(2%)	
Cardiovascular System					
Heart	(50)		(50)		

	Vehicle Control	3 mg/kg	
Endocrine System			
Adrenal cortex	(50)	(50)	
Histiocytic sarcoma	1 (2%)	(30)	
Adrenal medulla	(49)	(49)	
Pituitary gland	(48)	(49)	
Adenoma	(10)	1 (2%)	
Pars distalis, adenoma	5 (10%)	1 (2%) 1 (2%)	
Thyroid gland	(49)	(50)	
General Body System			
None			
Genital System			
Clitoral gland	(49)	(49)	
Duct, carcinoma	1 (2%)		
Ovary	(49)	(48)	
Cystadenoma	1 (2%)		
Granulosa cell tumor benign		1 (2%)	
Luteoma		1 (2%)	
Uterus	(49)	(50)	
Hemangioma		1 (2%)	
Histiocytic sarcoma		1 (2%)	
Leiomyosarcoma		1 (2%)	
Endometrium, adenoma	1 (2%)		
Endometrium, polyp stromal		1 (2%)	
Vagina		(2)	
Sarcoma		1 (50%)	
Hematopoietic System			
Bone marrow	(50)	(50)	
Carcinoma, metastatic, kidney		1 (2%)	
Histiocytic sarcoma		1 (2%)	
Lymph node	(7)	(15)	
Iliac, histiocytic sarcoma	1 (14%)	1 (70.1)	
Mediastinal, histiocytic sarcoma	1 (14%)	1 (7%)	
Pancreatic, histiocytic sarcoma	1 (14%)		
Pancreatic, sarcoma	1 (14%)		
Renal, histiocytic sarcoma	(14%)	(17)	
Lymph node, mandibular	(48) (20()	(47)	
Histiocytic sarcoma	1 (2%)	(40)	
Lymph node, mesenteric	(48) (20%)	(49) 1 (2%)	
Histiocytic sarcoma	1 (2%)	1 (2%)	
Spleen Hemangiosarcoma	(49)	(50) 1 (2%)	
	1 (20/)		
Histiocytic sarcoma Plasma cell tumor malignant	1 (2%)	1 (2%) 1 (2%)	
Thymus	(40)		
5	(49)	(39) (39)	
Histiocytic sarcoma		1 (3%)	

	Vehicle Control	3 mg/kg	
Integumentary System			
Mammary gland	(49)	(50)	
Adenoma		1 (2%)	
Carcinoma		2 (4%)	
Skin	(50)	(50)	
Subcutaneous tissue, sarcoma	3 (6%)	2 (4%)	
Subcutaneous tissue, sarcoma, multiple		1 (2%)	
Musculoskeletal System			
Bone	(50)	(50)	
Cranium, carcinoma, metastatic,			
harderian gland	1 (2%)		
Skeletal muscle	(1)	(3)	
Histiocytic sarcoma		1 (33%)	
Sarcoma, multiple	1 (100%)		
Nervous System			
Brain	(50)	(50)	
Respiratory System			
Lung	(50)	(50)	
Alveolar/bronchiolar adenoma	1 (2%)	9 (18%)	
Alveolar/bronchiolar carcinoma		3 (6%)	
Alveolar/bronchiolar carcinoma, multiple	1 (2%)	1 (2%)	
Carcinoma, metastatic, harderian gland	1 (2%)		
Histiocytic sarcoma	1 (2%)	1 (2%)	
Sarcoma, metastatic, skin		1 (2%)	
Sarcoma, metastatic, uncertain primary site	1 (2%)		
Mediastinum, carcinoma, metastatic, kidney	(50)	1 (2%)	
Nose	(50)	(50)	
Special Senses System			
Harderian gland	(4)	(5)	
Adenoma	2 (50%)	3 (60%)	
Carcinoma	2 (50%)	1 (20%)	
Urinary System			
Kidney	(49)	(50)	
Carcinoma, metastatic, mammary gland		1 (2%)	
Histiocytic sarcoma	1 (2%)	2 (4%)	
Osteosarcoma		1 (2%)	
Ureter			
Carcinoma, metastatic, kidney		1 (100%)	
Urinary bladder	(50) (20())	(48)	
Sarcoma	1 (2%)		

Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Gavage Study of Riddelliine

1			
	Vehicle Control	3 mg/kg	
Systemic Lesions			
Multiple organs ^b	(50)	(50)	
Histiocytic sarcoma	1 (2%)	2 (4%)	
Lymphoma malignant	7 (14%)	9 (18%)	
Neoplasm Summary Total animals with primary neoplasms ^c Total primary neoplasms Total animals with benign neoplasms	31 49 15	33 49 17	
Total benign neoplasms	19	21	
Total animals with malignant neoplasms	21	20	
Total malignant neoplasms	30	28	
Total animals with metastatic neoplasms	2	3	
Total metastatic neoplasms	3	6	
Total animals with malignant neoplasms			
of uncertain primary site	1		

 ^a Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically
 ^c Primary neoplasms: all neoplasms except metastatic neoplasms а

	0	4	4	4	5	5	5	5			5 6		6	7	7	7	7	7	7	7	7	7	7	7
Number of Days on Study	2	1	7	8	2	4	4	4	4		7 5		9	0	2	3	3	3	3	3	3	3		3
	7	9	5	2	4	5	5	5	5	6	77	5	6	9	5	5	5	5	5	5	5	5	5	5
	2	2	2	2	2	2	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	2	2	2	2
Carcass ID Number	6	6	5	8		8	8				7 5			7	6	5		5	5	5	6	6	-	-
											6 7												6	
limentary System																								
Esophagus	+	+	+	+	+	+	+	+	+	+	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+
Gallbladder	+	+	Δ	+	+	+	+	Δ	Δ	Δ	+ +	- +		+	+	+	+	+	+	+	+	+	+	+
Histiocytic sarcoma			11					11	11	11		X												
Sarcoma											Х													
Intestine large, colon	+	+	А	+	+	+	+	+	+		+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+
ntestine large, rectum	+	+	A	+	+	+	+	+			+ +	- +	+	+	A	+	+	+	+	+	+	+	+	+
ntestine large, cecum	+	+	A	+	+	+	+	+			+ +			+	A				+	+	+	+	+	+
Histiocytic sarcoma												Х			-									
ntestine small, duodenum	+	+	А	+	+	+	+	+	А	+	+ +			+	А	+	+	+	+	+	+	+	+	+
ntestine small, jejunum	+	$^+$	А	+	$^+$	М	А				+ +			$^+$	А	$^+$	+	+	+	+	$^+$	+	+	+
Histiocytic sarcoma												Х												
ntestine small, ileum	+	$^+$	А	$^+$	$^+$	$^+$	$^+$	+	+	А	+ +	- +	+	$^+$	А	$^+$	+	+	+	$^+$	$^+$	$^+$	+	+
iver	+	$^+$	А	$^+$	$^+$	$^+$	$^+$	+	+	+	+ +	+	+	$^+$	$^+$	$^+$	+	+	$^+$	$^+$	$^+$	$^+$	$^+$	+
Hepatocellular carcinoma												Х		Х										
Hepatocellular carcinoma, multiple																						Х		
Hepatocellular adenoma		Х									Х				Х								Х	
Hepatocellular adenoma, multiple																		Х						
Histiocytic sarcoma												Х												
Sarcoma, multiple											Х													
lesentery		$^+$	$^+$				+	+			+	+		$^+$	$^+$	$^+$				+		$^+$		+
Histiocytic sarcoma												Х												
Sarcoma, multiple											Х													
ancreas	+	+	А	+	+	+	+	+	+	+	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+
Histiocytic sarcoma												Х												
Sanaama multinla											Х													
Sarcoma, multiple		+		+	+	+	$^+$	+	+	+	+ +	- +	+	+	+	+	+	+	+	+	+	+	+	+
alivary glands	+		+									- +	+	+	+	+	+	+	+	$^+$			1	+
alivary glands tomach, forestomach	++	+	+ A	+	+	+	+	+	+	+	T										+	+	T	
alivary glands tomach, forestomach tomach, glandular	+++++	+ +	+ A A	+ +	+ +	+ +	+ +	+ +	+ +	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+
alivary glands tomach, forestomach tomach, glandular	+ + +	+ +	+ A A +	+ +	++	+ +	+ +	+ +	+ +	+	+ +	- +	+ +	+	+ +	+	+	+	+	+	+	+	+	+
Salivary glands Stomach, forestomach Stomach, glandular Footh C ardiovascular System	+ + +	++						++	+	+	+ +		+		+					+	+	+	+	+
salivary glands stomach, forestomach stomach, glandular ooth Cardiovascular System	+++++++++++++++++++++++++++++++++++++++	++++		+ +				+++	+++	++++	+ +		+		+		+		+	+	++	+ +	++	+
alivary glands tomach, forestomach tomach, glandular ooth Cardiovascular System eart ndocrine System	+ + +	+ + +						+ + +	+++	+ + +		- +	++	+	+					+ +	+ + +	+ + +	++	+ +
alivary glands tomach, forestomach tomach, glandular both ardiovascular System eart ndocrine System drenal cortex	+ + +	+ + +						+++++++++++++++++++++++++++++++++++++++	++++++	+ + +	+ + +	- +	+++++		+					+++++	+ + +	+ + +	++++++	+ + +
alivary glands tomach, forestomach tomach, glandular ooth Cardiovascular System eart ndocrine System drenal cortex Histiocytic sarcoma	+ + + +	+ + +						+ + +	+	+	+ +	+ + X	++++	+	+++++	+	+	+	+	++++	+ + +	+ + +	++++	+ + +
alivary glands tomach, forestomach tomach, glandular ooth Cardiovascular System teart Cndocrine System drenal cortex Histiocytic sarcoma drenal medulla	+ + + + + + + + + + + + + + + + + + + +	+++++	+ + +	++++++	+ + +	+ + +	+ + +	+	+	+	+ +	+ + X +	++++++	+++++	+++++++	+ + +	+ + +	+ + +	+ + +	+	+	+ + + + + + + + + + + + + + + + + + + +	+ + + +	+ + +
alivary glands tomach, forestomach tomach, glandular ooth Cardiovascular System eart Indocrine System drenal cortex Histiocytic sarcoma drenal medulla elets, pancreatic	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + A	++++++	+ + + +	+ + + + +	+ + + + +	++++++	++++++	+ + +	+ + + + + +	+ + X + +	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+ + + +	+ + + + + +	+ + + + + + + + + + + + + + + + + + + +	+++++	+++++	+ + + + + + + + + + + + + + + + + + + +		+
alivary glands tomach, forestomach tomach, glandular ooth Cardiovascular System leart Cndocrine System drenal cortex Histiocytic sarcoma drenal medulla slets, pancreatic arathyroid gland	+ + + + + + + + + + + + + + + + + + + +	+++++	+ + + A	++++++	+ + + +	+ + + + + +	+ + + + + + + + + + + + + + + + + + + +	+++++++	++++++	+++++++	+ + + + + +	+ + X + + +	+ + + + + + +	+ + + + + +	+ + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+++++	+	+ + + + + + + + + + + + + + + + + + + +	+	+ M
Salivary glands Stomach, forestomach Stomach, glandular Footh Cardiovascular System Heart Endocrine System Adrenal cortex Histiocytic sarcoma Adrenal medulla slets, pancreatic Parathyroid gland Pituitary gland	+ + + + + + + + + + + + + + + + + + + +	+++++	+ + + A	++++++	+ + + +	+ + + + +	+ + + + + + + + + + + + + + + + + + + +	+++++++	++++++	+ + +	+ + + + + +	+ + X + + +	+ + + + + + +	+ + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+++++	+++++	+ + + + + + + + + + + + + + + + + + + +		+ M
Salivary glands Stomach, forestomach Stomach, glandular Stoth Cardiovascular System Heart Endocrine System Adrenal cortex Histiocytic sarcoma Adrenal medulla slets, pancreatic Parathyroid gland	+ + + + + + + + + + + + + + + + + + + +	+++++	+ + + A + +	++++++	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + +	+ + + + +	+ + + M	+ + + + + +	+ + X + + +	+ + + + + + + +	+ + + + + +	+ + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + +	+++++	+ + + + + + + + + + + + + + + + + + + +	+	+ M I

None

+: Tissue examined microscopically A: Autolysis precludes examination M: Missing tissue

I: Insufficient tissue

X: Lesion present Blank: Not examined TABLE D2 Individual Anim

7 3 5 2 6 8 + + +	7 3 5 2 6 9 +++	+	7 3 5 2 7 1	7 3 5 2 7 3	7 3 5 2 7 5	7 3 5 2 7 7	2 7	7 3 5 2 7	7 3 5 2 8	7 3 5 2 8	2	2	7 3 5 2	7 3 5 2	7 3 5 2	7 3 5		7 3 5		7 3 5	7 3 5	7 3 5	7 3 5		
5 2 6	5 2 6 9 +	5 2 7 0 +	5 2 7	5 2 7	5 2 7	5 2 7	5 2 7	5	5 2	5 2	5	5 2	5	5	5	5	5	5	5	5	-	-		5	
2 6	2 6 9	2 7 0	2 7	2 7	2 7	2 7	2 7	2	2	2	2	2	-					-			2 	2	<u> </u>		
6	6 9 +	0 +		7	7	7	7						2	2	2	2	2	•	2	2	2				
	9 +	0 +						7	8	8	-				-	2	2	2	2	2	2	2	2	3	Tota
8 + + +	+	+	1	3	5	7					8	8	8	9	9	9	9	9	9	9	9	9	9	0	Tissue
+++++	++	+					8	9	0	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	Tumor
++++	+ +	+																							
+	+		+	+	$^+$	$^+$	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	$^+$	$^+$	+	5
+		+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
+																									
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
+	+	+	+	+	+	+	+	+	+		'	+	+	+		+	+	+	+	+	+	+	+		4
+	+	+	+	+	+	+	+	+	+	+	+	+	+	IVI	+	+	+	+	+	+	+	+	+	M	2
+	+	+	+	+	+	+	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	2
+	+	+	+	+	+	+	+	+	+					+			+	+	+	+	+	+	+	+	-
			x									'							'			'			
								11							11										
												Х	Х	Х											
															Х										
	+				$^+$			+			+	$^+$	+		+		+			+		$^+$	$^+$		2
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	2
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+		+	+		+	2
+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+			+	+	+	÷	2
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
							,		,																-
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
14					5	5	_	_	L	-	+	_	+	_	_	_	-	_	_	Ц			.1	+	2
1 VI ⊥	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+		+	+	+	+	2
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+	+		+	+	+		2
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+		+			+	+	+		2
1	x						·	·	1															x	
+		+	+	+	+	+	+	+	+	+	+	+	+	+	+		+		+	+	+	+	+		2
	+ + M + + +	+ + + + + + + + + + M + + + + + X	$\begin{array}{c} + & + & + \\ + & + & + \\ + & + & + \\ + & + &$	$\begin{array}{c} + & + & + & + \\ + & + & + & + \\ + & + &$	$\begin{array}{c} + & + & + & + & + \\ + & + & + & + & + \\ + & + &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	<pre>+ + + + + + + + + + + + + + + + + + +</pre>	<pre>+ + + + + + + + + + + + + + + + + + +</pre>	+ + + + + + + + + + + + + + + + + + +	<pre>+ + + + + + + + + + + + + + + + + + +</pre>

		4	4	5	5	5					6				7	7	7	7	7	7	7	7	7	7
7	9	5	2	4	5	5	5	5	6	7	7	5	6	9	5	5	5	5	5	5	5	5	5	5
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
6	6	5	8	5	8	8	8	8	6	7	5	7	5	7	6	5	5	5	5	5	6	6	6	6
1	0	2	1	1	2	3	4	5	5	6	7	2	6	4	4	3	4	5	8	9	2	3	6	7
+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
			Х																					
+	+	А	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
										,		,												
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+
+									+	+					+									
										x		Λ												
												х												
+	+	+	М	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+
												Х												
+	+	А	+	+	+	+	+	Ι	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+
												Х												
+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
												Х												
+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
		14								,	,	,		,										1
+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+			+	+	+	+	+	+		+	+		+	Ŧ	+	+	+	+	+	+	+	+	T
		л								л			л											
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
										+														
										Х														
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	• •																							
	Х																							
												v												
										v		л												
+	+	+	+	+	+	+	+	+	+	л +	+	+	+	+	+	+	+	+	+	+	+	+	+	+
											1			1	- E				- E					
	2 7 2 6 1 + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 7 8 2 4 4 4 4 6 7 5 7 7 9 5 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 7 8 2 4 5 5 5 5 6 7 7 5 6 9 5 2	2 1 7 8 2 4 5 5 5 5 6 7 7 7 5 6 9 0 2 3 7 9 5 2 4 5 5 5 5 6 7 7 7 5 6 9 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 7 8 2 4 4 5 5 5 5 6 7 7 7 5 7 9 0 2 3 3 7 9 5 2 4 5 5 5 5 5 6 7 7 7 5 6 9 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 7 8 2 4 4 4 4 4 6 7 5 7 9 0 2 3 3 3 7 9 5 2 4 5 5 5 5 6 7 7 5 7 5 7 6 9 5 5 5 5 1 0 2 1 1 2 3 4 5 5 6 7 5 7 5 7 5 7 6 5 5 5 1 0 2 1 1 2 3 4 5 5 6 7 2 6 4 4 3 4 5 + + + + + + + + + + + + + + + + + +	2 1 7 8 2 4 4 5 5 5 6 7 7 7 5 7 9 0 2 3 3 3 3 3 7 9 5 2 4 5 5 5 5 5 6 7 7 5 7 5 7 6 5 5 5 5 5 1 0 2 1 1 2 3 4 5 5 6 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 7 8 2 4 4 4 4 6 7 5 7 9 0 2 3 3 3 3 3 3 7 9 5 2 2 4 5 5 5 6 7 7 5 6 9 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 7 8 2 4 4 4 4 6 7 5 7 9 0 2 3 3 3 3 3 3 3 3 3 7 9 5 2 2 4 5 5 5 6 7 7 5 6 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 1 7 8 2 4 4 4 4 6 7 5 7 9 0 2 3 3 3 3 3 3 3 3 3 3 7 9 5 2 4 5 5 5 5 6 7 7 5 7 9 0 2 2 3 3 3 3 3 3 3 3 3 3 6 6 5 8 5 8 8 8 8 8 6 7 5 7 5 7 6 5 5 5 5 5 5 5 5 6 6 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 7 8 2 4 4 4 4 6 7 5 7 9 0 2 3 3 3 3 3 3 3 3 3 3 3 7 9 5 2 4 5 5 5 5 6 7 7 5 6 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Individual Animal Tumor Pathology	of Fei	na	le l	Mie	ce i	n t	he	2-`	Yea	ar	Ga	va	ge	Stı	ıdy	7 01	F R	idd	lell	iin	e:	Ve	hi	cle	Cont	rol
Number of Days on Study	7 3 5																									
Carcass ID Number	2 6 8	2 6 9		2 7 1		2 7 5	2 7 7	2 7 8	2 7 9	2 8 0				2 8 9				2 9 3	2 9 4	2 9 5	2 9 6	2 9 7	2 9 8		3 0 0	Tota Tissues Tumors
Genital System																										
Clitoral gland Duct, carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Ovary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Cystadenoma	Х																									
Uterus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Endometrium, adenoma															Х											1
Hematopoietic System																										
Bone marrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Lymph node Iliac, histiocytic sarcoma Mediastinal, histiocytic sarcoma Pancreatic, histiocytic sarcoma Pancreatic, sarcoma Renal, histiocytic sarcoma												+				+										1 1 1 1
Lymph node, mandibular	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	43
Histiocytic sarcoma																+										4
Lymph node, mesenteric Histiocytic sarcoma	т	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т	т	т	Ŧ	Ŧ	т	т	Ŧ	Ŧ	т	т	т	т	т	т	Ŧ	4
Spleen	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Histiocytic sarcoma Thymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	т	49
Thymus	1	'		'	1	'	1	1	1	'		1	'		1	'	'		'	'	'	1	'	'		т ,
Integumentary System																										
Mammary gland	+	+	+	+	+	+	+	+	++	+	++	++	+	++	+	++	+	+	+	+	+	+	+	+	+	49
Skin Subcutaneous tissue, sarcoma	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	+	Ŧ	+	+	+	+	+	Ŧ	Ŧ	Ŧ	т	50
Musculoskeletal System Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Cranium, carcinoma, metastatic,					'							'			'							'				
harderian gland Skeletal muscle Sarcoma, multiple																							Х			1 1 1
Nervous System Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
																										-
Respiratory System	,			,	,			,	,		,	,			,							,	,			
Lung Alveolar/bronchiolar adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	51
Alveolar/bronchiolar carcinoma, multiple Carcinoma, metastatic, harderian gland Histiocytic sarcoma Sarcoma, metastatic, uncertain primary site																							X			
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	5
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	50

TABLE D2 Individual Anim

					_	_	_	_	_	_	_				_	_	_	_	_	_	_	_	_	_	_
	0	4	4	4	5	5	5	5	5	5	5	6	6	6	7	7	7	7	7	7	7	7	7	7	7
Number of Days on Study	2	1	7	8	2	4	4	4	4	6	7	5	7	9	0	2	3	3	3	3	3	3	3	-	3
	7	9	5	2	4	5	5	5	5	6	7	7	5	6	9	5	5	5	5	5	5	5	5	5	5
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Carcass ID Number	6	6	5	8	5	8	8	8	8	6	7	5	7	5	7	6	5	5	5	5	5	6	6	6	6
	1	0	2	1	1	2	3	4	5	5	6	7	2	6	4	4	3	4	5	8	9	2	3	6	7
Special Senses System																									
Eye																									
Harderian gland																	+							+	
Adenoma																								Х	
Carcinoma																	Х								
Urinary System																									
Kidney	+	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Histiocytic sarcoma													Х												
Urinary bladder	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+
Sarcoma											Х														
Systemic Lesions																									
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Histiocytic sarcoma													Х												
Lymphoma malignant										Х						Х		Х							

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	4	5	
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		3	Total
Carcass ID Number	6	6	7	7	7	7	7	7	7	8	8	8	8	8	9	9	9	9	9	9	9	9	9	9	()	Tissues/
	8	9	0	1	3	5	7	8	9	0	6	7	8	9	0	1	2	3	4	5	6	7	8	9	()	Tumors
Special Senses System																											
Eye																							+				1
Harderian gland																$^+$							+				4
Adenoma																Х											2
Carcinoma																							Х				2
Urinary System																											
Kidney	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	F	49
Histiocytic sarcoma																											1
Urinary bladder Sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	F	50 1
Systemic Lesions																											
Multiple organs	+	+	$^+$	+	+	+	+	+	$^+$	$^+$	+	+	+	+	+	+	$^+$	+	$^+$	+	+	+	+	+	+	F	50
Histiocytic sarcoma																											1
Lymphoma malignant	Х					Х						Х				Х											7

44555555666666666666677899000 <th< th=""><th>ber of Days on Study $\begin{array}{ccccccccccccccccccccccccccccccccccc$</th></th<>	ber of Days on Study $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
4 9 4 0 2 7 1 6 8 7 7 6 0 9 9 9 arcass ID Number 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
arcass ID Number 5 3 0 3 2 4 2 2 0 0 4 3 1 1 2 3 4 0 1	ass ID Number 5 3 0 3 2 4 2 1 3 4 2 2 0 0 4 3 1 1 2 3 4 0 1 1 adder +
0 3 2 8 6 8 9 4 7 5 9 0 2 6 4 4 9 6 5 3 7 0 7 3 8 imentary System +	0 3 2 8 6 8 9 4 7 5 9 0 2 6 4 4 9 6 5 3 7 0 7 3 8 entary System magus +
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$ \begin{array}{c} + + + + + + + + + + + + + + + + + + +$
bladder + + + + + + + + + + + + + + + + + + +	adder +
stine large, colon + A +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
stine large, cretum $+ A + + + + A + + + + + + + + + + + + +$	$ \begin{array}{c} he large, rectum \\ \text{ he large, cecum \\ \text{ he large, cecum \\ \text{ he large, cecum \\ \text{ ha large, large
stine large, ccum + A + + + + + + + + + + + + + + + + +	ine large, eccum + A +
XUsing sardoma X estine small, duodenum A <	thiceyric sarcoma X ine small, duodenum + A + A + A +
estine small, duodenum + A + A + <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
estine small, jejunum + A + A +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
estine small, ileum + A + A + + + + + + + + + + + + + + + + + + +	ine small, lieum + A +
rer +	H H
Cholangioma Hemangiosarcoma Histiocytic sarcoma Kisoteytic sarcoma Kis	Delangioma mangiosarcoma sitis in the second of the second
Hemangiosarcoma X X X Bisticoytic sarcoma X X sentery +	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
entery + <td>thery +</td>	thery +
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
X X	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
istico_vtic sarcoma X arcoma + + + + + + + + + + + + + + + + + + +	strice_vice sarcoma X coma eas + <td< td=""></td<>
arcoma reas + <t< td=""><td>The contract of the contract o</td></t<>	The contract of the contract o
treas++ <td>eas +</td>	eas +
stiocytic sarcoma X ary glands + <t< td=""><td>Attrice X rry glands +</td></t<>	Attrice X rry glands +
rary glands + <t< td=""><td>Here y glands + <</td></t<>	Here y glands + <
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	the formular + <
Isitiocytic sarcoma X rdiovascular System + <td>stribute X bioascular System +</td>	stribute X bioascular System +
rdiovascular System bd vessel rt $+$ <td>Horascular System $vessel$ $+$ /td>	Horascular System $vessel$ $+$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ +
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ + + + + + + + + + + + + + + + + + +
docrine System renal cortex + + + + + + + + + + + + + + + + + + +	becking System ial cortex $+ + + + + + + + + + + + + + + + + + + $
anal cortex + + + + + + + + + + + + + + + + + + +	$ \begin{array}{c} + + + + + + + + + + + + + + + + + + +$
enal cortex + + + + + + + + + + + + + + + + + + +	$ \begin{array}{c} + + + + + + + + + + + + + + + + + + +$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	xial medulla X pancreatic + + + + + + + + + + + + + + + + + + +
nal medulla + + + + + + + + + + + + + + + + + + +	al medulla + + + + + + + + + + + + + + + + + + +
s, pancreatic + + + + + + + + + + + + + + + + + + +	pancreatic + + + + + + + + + + + + + + + + + + +
thyroid gland + + + + + + + + + + + + + + + + + + +	yroid gland $+$
tary gland + + + + + + + + + + + + + + + + + + +	rry gland + + + + + + + + + + + + + + + + + + +
denoma X ars distalis, adenoma	enoma X
ars distalis, adenoma	
+ + + + + + + + + + + + + + + + + + +	id gland + + + + + + + + + + + + + + + + + + +

TABLE D2 Individual Anim

Number of Days on Study	7 0	7 0	7 1	7 1	7 2	7 3																				
	9	9	3	6		0	2			9	9	9	9	9	0	0	0	1	4				5	5		
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Total
Carcass ID Number	3 6	4 2	4 7	1 0	0 8	3 0	1 9	4 3	1 1	1 2	1 4	2 8	4 1	4 6	0 5	0 9	2 7	3 2	4 5	0 1	0 3	2 1	2 5	3 1	3 4	Tissues, Tumors
Alimentary System																										
Esophagus	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	50
Gallbladder	+	$^+$	А	А	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	А	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	45
Intestine large, colon	+	$^+$	А	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	47
Intestine large, rectum	+	$^+$	А	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	47
Intestine large, cecum	+	$^+$	А	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	47
Histiocytic sarcoma																										1
Intestine small, duodenum	+	$^+$	А	$^+$	$^+$	$^+$	+	+	$^+$	+	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	+	+	$^+$	$^+$	$^+$	+	$^+$	+	46
Intestine small, jejunum	+	$^+$	А	$^+$	$^+$	+	$^+$	$^+$	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	45
Intestine small, ileum	+	$^+$	А	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	46
Liver	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	+	$^+$	$^+$	50
Cholangioma											Х															1
Hemangiosarcoma	Х																									1
Histiocytic sarcoma																										2
Mesentery	+	$^+$			$^+$	$^+$	$^+$	$^+$				$^+$				$^+$					$^+$		$^+$		+	29
Carcinoma, metastatic, kidney																										1
Hemangioma																										1
Histiocytic sarcoma																										1
Sarcoma																Х										1
Pancreas	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	50
Histiocytic sarcoma																										1
Salivary glands	+	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	50
Stomach, forestomach	+	$^+$	А	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	$^+$	49
Stomach, glandular Histiocytic sarcoma	+	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 1
Cardiovascular System																										
Blood vessel																										2
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Endocrine System																										
Adrenal cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Histiocytic sarcoma																										1
Adrenal medulla	+	+	+	+	+	+	+	+	+	+	+	+	Ι	+	+	+	+	+	+	+	+	+	+	+	+	49
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Parathyroid gland	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	46
Pituitary gland Adenoma	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	49
Pars distalis, adenoma																							Х			1
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
General Body System																										

Individual Animal Tumor Pathology	of Fen	nal	le N	Mic	ce i	n t	he	2-`	Ye	ar	Ga	vaş	ge (Stu	ıdy	of	R	idd	lell	iin	e:	3 1	mg	/kg	Ş
Number of Days on Study	4 3 4		5 0 4																			9		0	
Carcass ID Number	3 5 0	3 3 3	3 0 2	3 3 8	2	4	2	2	1	3 3 5	4	2	2	0	0	4	3	1	1	2	3	4	0	3 1 3	1
Genital System																									
Clitoral gland Ovary Granulosa cell tumor benign Luteoma	++	I +	+ I	++	+ +	++	+ +	+ +	++	+ +	++	++	++	++	++	++	+ + X	++	+ +	+ +	++	++	++	++	+ +
Uterus Hemangioma Histiocytic sarcoma	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Leiomyosarcoma Endometrium, polyp stromal Vagina Sarcoma																									+
Hematopoietic System																									
Bone marrow Carcinoma, metastatic, kidney Histiocytic sarcoma	+	+	+	+ X	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymph node Mediastinal, histiocytic sarcoma		+	+			+		+		+	+	+		+							+		+	+	
Lymph node, mandibular Lymph node, mesenteric Histiocytic sarcoma	+ +		M +	+				+ +	+ +	+ +	M +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
Spleen Hemangiosarcoma Histiocytic sarcoma	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+
Plasma cell tumor malignant Thymus Histiocytic sarcoma	+	Ι	+	+ X	+	Ι	+	X I		+	+	+	М	+	+	+	+	+	+	+	+	М	+	+	М
Integumentary System Mammary gland Adenoma	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma Skin Subcutaneous tissue, sarcoma	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Subcutaneous tissue, sarcoma, multiple																								Х	
Musculoskeletal System Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Skeletal muscle Histiocytic sarcoma	+			+ X																					
Nervous System Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Peripheral nerve Spinal cord	+ +																						+ +		

	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	
Number of Days on Study	0 9	, 0 9	1 3	1 6	2 0	2 0	2 2 2	2 2 2	2 9	2 9	2 9	2 9	, 2 9	2 9	3 0	3 0	, 3 0	3 1	3 4	3 5	3 5	3 5		3		3	
Carcass ID Number	3 3 6	3 4 2	3 4 7	3 1 0	3 0 8	3 3 0	3 1 9	3 4 3	3 1 1	3 1 2	3 1 4	3 2 8	3 4 1	3 4 6	3 0 5	3 0 9	3 2 7	3 3 2	3 4 5	3 0 1	3 0 3				3 3 1		Total Tissues/ Tumors
Genital System																											
Clitoral gland Ovary Granulosa cell tumor benign Luteoma	+ +	+ +	+ I	+ +	+ +	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	+	· +	+ +	+	+ +	49 48 1 1							
Uterus Hemangioma Histiocytic sarcoma	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	F	+	50 1 1
Leiomyosarcoma Endometrium, polyp stromal Vagina Sarcoma														X		+ X						Х	L				1 1 2 1
Hematopoietic System																											
Bone marrow Carcinoma, metastatic, kidney Histiocytic sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +	+	F	+	50 1 1
Lymph node Mediastinal, histiocytic sarcoma															+	+					+						15 1
Lymph node, mandibular Lymph node, mesenteric Histiocytic sarcoma	+ +	+ M	+ +	+ +	+ +	+ +	+ +	+ +	+ +	· +	+ +	F	+ +	47 49 1													
Spleen Hemangiosarcoma Histiocytic sarcoma Plasma cell tumor malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	F	+	50 1 1
Thymus Histiocytic sarcoma	+	+	М	+	+	+	М	+	+	Ι	+	+	+	+	Ι	+	+	+	Ι	+	+	+	+	+	F	+	39 1
Integumentary System Mammary gland Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	F	+	50 1
Carcinoma Skin Subcutaneous tissue, sarcoma Subcutaneous tissue, sarcoma, multiple	+	+	+	+	+	+	+	+	+	X +	+	X +	+	+	+	$^+_{\rm X}$	+	+	+	+	+	+	• +	+	F	+	2 50 2 1
Musculoskeletal System Bone Skeletal muscle Histiocytic sarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+	+	+	+	F	+	50 3 1
Nervous System Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	• +		F	+	50

Individual Animal Tumor Pathology			-	-	-		-									-			-			-		0	8
	4	4	5	5	5	5	5	5	6	6	6	6	6	6	6	6	6	6	6		6	6 6	7	7 7	7
Number of Days on Study	3	8	0	3	3	8	9	9	1	3	3	5	6	6	7	7	8	9	9	9	9	9	() 0	0
	4	9																2	6	6	6	6	() 9	9
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	; 3	2	2 3	3
Carcass ID Number	5	3	0	3	2	4	2	2	1	3	4	2	2	0	0	4	3	1	1	2					1
Carcass ID Number	0	3		8	6		9		7			0			4	4			5	3		y 0			8
Respiratory System																									
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +		+ +	+
Alveolar/bronchiolar adenoma																				Х		Х		Х	X
Alveolar/bronchiolar carcinoma																	Х								
Alveolar/bronchiolar carcinoma, multiple						Х																			
Histiocytic sarcoma				Х																					
Sarcoma, metastatic, skin											Х														
Mediastinum, carcinoma, metastatic, kidney								Х																	
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +		+ +	+
Pleura		+																							
Yrachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +		+ +	+
Special Senses System																									
Eye																									
Harderian gland																									
Adenoma																									
Carcinoma																									
Urinary System																									
Kidney	+	+	+	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	+	+	- +		+ +	+
Carcinoma, metastatic, mammary gland																									
Histiocytic sarcoma				Х				Х																	
Osteosarcoma																									
Ureter								+																	
Carcinoma, metastatic, kidney								Х																	
Urinary bladder	+	+	+	+	+	+	Α	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +		+ +	+
Systemic Lesions																									
Multiple organs	+	+	+	+	$^+$	+	+	+	+	+	+	+	+	+	+	+	$^+$	+	+	+	+	- +		+ +	+
Histiocytic sarcoma				Х				Х																	
Lymphoma malignant										Х				Х			Х						Σ	ζ	

	7	7	-	7	7	7	-	7	-	7	7	-	7	7	7	-	7	7	7	7	7	-	7	7	7	
Number of Days on Study	7 0	0	1	1	2	2	2	2	2	2	2	2	2	2	2	3	2	2	2	2	2	2	3	3	7 3	
Number of Days on Study	9	9	1 3	1 6	2 0	2 0	2 2		2 9	2 9	2 9	2 9	2 9	2 9	3 0	3 0	3 0	3 1	3 4	3 5	3 5	3 5	0	3 5		
	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Total
Carcass ID Number	3 6	4 2	4 7	1 0	0 8	3 0	1 9		1 1	1 2	1 4	2 8	4 1	4 6	0 5	0 9	2 7	3 2	4 5	0 1	0 3	2 1	2 5	3 1	3 4	Tissues/ Tumors
Respiratory System																										
Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma, multiple Histiocytic sarcoma Sarcoma, metastatic, skin				х					х		х	X						х			x		Х			9 2 1 1 1
Mediastinum, carcinoma, metastatic, kidney																										1
Nose	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Pleura																										1
Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Special Senses System																										
Eye																		+							+	2
Harderian gland Adenoma												\mathbf{v}^+	+ X	+ v		+									+	5
Carcinoma												Λ	Λ	Λ											Х	1
Urinary System																										
Kidney Carcinoma, metastatic, mammary gland Histiocytic sarcoma	+	+	+	+	+	+	+	+	+	+	+	$^+_{\rm X}$	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 2
Osteosarcoma							Х																			2
Ureter							21																			1
Carcinoma, metastatic, kidney																										1
Urinary bladder	+	+	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Systemic Lesions																										
Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Histiocytic sarcoma																										2
Lymphoma malignant											Х				Х	Х				Х	Х					9

ТА	BLE	D3

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	3 mg/kg
Harderian Gland: Adenoma		
Overall rate ^a Adjusted rate	2/50 (4%)	3/50 (6%)
Adjusted rate	4.8%	7.2%
Terminal rate ^c	2/34 (6%)	3/17 (18%)
First incidence (days)	729 (T)	729 (T)
Poly-3 test		P=0.495
Harderian Gland: Adenoma or Carcinoma		
Overall rate	4/50 (8%)	4/50 (8%)
Adjusted rate	9.5%	9.7%
Ferminal rate	4/34 (12%)	4/17 (24%)
First incidence (days)	729 (T)	729 (T)
Poly-3 test		P=0.637
Liver: Hepatocellular Adenoma		
Overall rate	9/49 (18%)	0/50 (0%)
Adjusted rate	20.9%	0.0%
Ferminal rate	6/34 (18%)	0/17 (0%)
First incidence (days)	419	e
Poly-3 test		P=0.002N
Liver: Hepatocellular Carcinoma		
Overall rate	8/49 (16%)	0/50 (0%)
Adjusted rate	19.0%	0.0%
Ferminal rate	6/34 (18%)	0/17 (0%)
First incidence (days)	675	—
Poly-3 test		P=0.004N
Liver: Hepatocellular Adenoma or Carcinor	na	
Overall rate	16/49 (33%)	0/50 (0%)
Adjusted rate	36.9%	0.0%
Ferminal rate	11/34 (32%)	0/17 (0%)
First incidence (days)	419	—
Poly-3 test		P<0.001N
Lung: Alveolar/bronchiolar Adenoma		
Overall rate	1/50 (2%)	9/50 (18%)
Adjusted rate	2.4%	21.5%
Ferminal rate	1/34 (3%)	4/17 (24%)
First incidence (days)	729 (T)	696
Poly-3 test		P=0.007
Lung: Alveolar/bronchiolar Carcinoma		
Overall rate	1/50 (2%)	4/50 (8%)
Adjusted rate	2.3%	9.5%
Ferminal rate	0/34 (0%)	2/17 (12%)
First incidence (days)	419	587
Poly-3 test		P=0.174
Lung: Alveolar/bronchiolar Adenoma or Ca	rcinoma	
Overall rate	2/50 (4%)	13/50 (26%)
Adjusted rate	4.7%	30.5%
Ferminal rate	1/34 (3%)	6/17 (35%)
First incidence (days)	419	587
Poly-3 test		P<0.001

TABLE	D3
-------	----

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	3 mg/kg
Mammary Gland: Adenoma or Carcino	oma	
Overall rate	0/50 (0%)	3/50 (6%)
Adjusted rate	0.0%	7.2%
Ferminal rate	0/34 (0%)	2/17 (12%)
First incidence (days)	_	656
oly-3 test		P=0.117
Pituitary Gland (Pars Distalis or Unspec	tified Site): Adenoma	
Overall rate	5/48 (10%)	2/49 (4%)
Adjusted rate	12.3%	4.9%
erminal rate	4/33 (12%)	1/17 (6%)
irst incidence (days)	725	532
oly-3 test		P=0.208N
kin (Subcutaneous Tissue): Sarcoma		
Overall rate	3/50 (6%)	3/50 (6%)
Adjusted rate	6.9%	7.2%
erminal rate	0/34 (0%)	1/17 (6%)
irst incidence (days)	475	637
ply-3 test		P=0.649
All Organs: Hemangioma or Hemangio	sarcoma	
Overall rate	0/50 (0%)	4/50 (8%)
djusted rate	0.0%	9.5%
erminal rate	0/34 (0%)	0/17 (0%)
irst incidence (days)	_	656
oly-3 test		P=0.059
All Organs: Malignant Lymphoma		
Overall rate	7/50 (14%)	9/50 (18%)
djusted rate	16.4%	21.3%
erminal rate	5/34 (15%)	5/17 (29%)
irst incidence (days)	566	637
oly-3 test		P=0.385
Il Organs: Benign Neoplasms		
Overall rate	15/50 (30%)	17/50 (34%)
djusted rate	34.6%	39.5%
erminal rate	12/34 (35%)	7/17 (41%)
irst incidence (days)	419	532
oly-3 test		P=0.401
ll Organs: Malignant Neoplasms		
overall rate	21/50 (42%)	20/50 (40%)
djusted rate	45.9%	45.1%
erminal rate	12/34 (35%)	9/17 (53%)
irst incidence (days)	419	530
Poly-3 test		P=0.555N

TABLE D3

Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle Control	3 mg/kg
All Organs: Benign or Malignant Neo	olasms	
Overall rate	31/50 (62%)	33/50 (66%)
Adjusted rate	67.7%	72.2%
Terminal rate	22/34 (65%)	14/17 (82%)
First incidence (days)	419	530
Poly-3 test		P=0.404
•		

(T)Terminal sacrifice

^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for liver, lung, and pituitary gland; for other tissues, denominator is number of animals necropsied.

Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality

^c Observed incidence at terminal kill

^d Beneath the dosed group incidence is the P value corresponding to a pairwise comparison between the vehicle controls and the dosed group. The Poly-3 test accounts for the differential mortality in animals that do not reach terminal sacrifice. A lower incidence in the dosed group is indicated by N.

e Not applicable; no neoplasms in animal group

TABLE D4a Historical Incidence of Liver Neoplasms in Control Female $B6C3F_1$ Mice

		Incid	ence in Controls		
Study	Cholangioma	Hemangiosarcoma	Hepatocellular Adenoma	Hepatocellular Carcinoma	Hepatocellular Adenoma or Carcinoma
Historical Incidence in Controls Given N	TP-2000 Diet ^a				
Acrylonitrile (gavage)	0/50	2/50	14/50	7/50	20/50
Citral (feed)	0/99	0/99	8/99	4/99	12/99
<i>p</i> , <i>p</i> '-Dichlorodiphenyl sulfone (feed)	0/50	0/50	4/50	3/50	6/50
Indium phosphide (inhalation)	0/50	0/50	12/50	6/50	18/50
60-Hz Magnetic fields (whole body exposure)	0/98	1/98	17/98	6/98	22/98
Methacrylonitrile (gavage)	0/50	0/50	9/50	2/50	10/50
p-Nitrotoluene (feed)	0/60	0/60	7/60	2/60	9/60
p-Nitrotoluene (feed)	0/49	0/49	6/49	3/49	8/49
Riddelliine (gavage)	0/49	0/49	9/49	8/49	16/49
Sodium nitrite (drinking water)	0/50	0/50	9/50	2/50	10/50
Vanadium pentoxide (inhalation)	0/50	0/50	6/50	6/50	12/50
Overall Historical Incidence in Controls	Given NTP-2000) Diet			
Total (%)	0/655	3/655 (0.5%)	101/655 (15.4%)	49/655 (7.5%)	143/655 (21.8%)
Mean \pm standard deviation		$(0.5\% \pm 1.2\%)$	$16.0\% \pm 6.3\%$	$8.0\% \pm 4.7\%$	$22.8\% \pm 9.6\%$
Range		0%-4%	8%-28%	3%-16%	12%-40%
Overall Historical Incidence in Water G	avage Controls (0/51	Given NIH-07 Diet ^b	15/51 (29.4%)	8/51 (15.7%)	22/51 (43.1%)

a b

Data as of December 20, 2000 Data as of December 23, 1999

TABLE D4b

Historical Incidence of Alveolar/bronchiolar Neoplasms in Control Female $B6C3F_1$ Mice

	Incidence in Controls					
Study	Adenoma	Carcinoma	Adenoma or Carcinoma			
Historical Incidence in Controls Given NTP-20	000 Diet ^a					
Acrylonitrile (gavage)	4/50	2/50	6/50			
Citral (feed)	5/99	6/99	11/99			
<i>p</i> , <i>p</i> '-Dichlorodiphenyl sulfone (feed)	0/50	0/50	0/50			
Indium phosphide (inhalation)	3/50	1/50	4/50			
60-Hz Magnetic fields (whole body exposure)	9/95	2/95	11/95			
Methacrylonitrile (gavage)	6/50	1/50	6/50			
o-Nitrotoluene (feed)	2/60	3/60	5/60			
<i>p</i> -Nitrotoluene (feed)	5/50	1/50	6/50			
Riddelliine (gavage)	1/50	1/50	2/50			
Sodium nitrite (drinking water)	1/50	0/50	1/50			
Vanadium pentoxide (inhalation)	1/50	0/50	1/50			
Overall Historical Incidence in Controls Given	NTP-2000 Diet					
Total (%)	37/654 (5.7%)	17/654 (2.6%)	53/654 (8.1%)			
Mean \pm standard deviation	$5.4\% \pm 4.0\%$	$2.3\% \pm 2.0\%$	$7.6\% \pm 4.7\%$			
Range	0%-12%	0%-6%	0%-12%			
Overall Historical Incidence in Water Gavage	Controls Given NIH-07 Diet	0				
Total (%)	3/51 (5.9%)	1/51 (2.0%)	4/51 (7.8%)			

a b Data as of December 20, 2000 Data as of December 23, 1999

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Riddelliine^a

	Vehicle	Control	3 mg/kg		
Disposition Summary					
Animals initially in study	50			50	
Early deaths	30			30	
Accidental deaths	4				
Moribund	9		,	25	
Natural deaths	3			8	
Survivors	5			0	
Died last week of study				1	
Terminal sacrifice	34			16	
Terminal saernice	57			10	
Animals examined microscopically	50		:	50	
Alimentary System					
Gallbladder	(45)		(45)		
Cyst		(2%)		(4%)	
Epithelium, cytoplasmic alteration				(2%)	
Intestine large, colon	(49)		(47)		
Epithelium, hyperplasia, focal				(2%)	
Intestine large, rectum	(48)		(47)	(_,,,)	
Inflammation, chronic, focal	(10)			(2%)	
ntestine large, cecum	(48)		(47)		
Edema				(11%)	
Fibrosis	1	(2%)			
Hemorrhage, focal			6	(13%)	
Artery, inflammation, chronic, focal				(38%)	
Epithelium, erosion, focal				(13%)	
ntestine small, duodenum	(47)		(46)		
Hemorrhage, focal				(4%)	
Necrosis, focal				(4%)	
Artery, inflammation, chronic				(28%)	
ntestine small, ileum	(46)		(46)		
Epithelium, cyst		(2%)			
Peyer's patch, hyperplasia, lymphoid			1	(2%)	
liver	(49)		(50)		
Angiectasis		(4%)		(4%)	
Clear cell focus		(2%)			
Congestion, focal			1	(2%)	
Cyst				(2%)	
Eosinophilic focus	2	(4%)			
Fibrosis, focal		× /	2	(4%)	
Hemorrhage, focal				(4%)	
Hyperplasia, focal, lymphoid	2	(4%)			
Infarct			1	(2%)	
Infiltration cellular, mixed cell	29	(59%)		(82%)	
Inflammation, focal, suppurative		(2%)			
Mineralization, focal		(2%)			
Pigmentation, focal			1	(2%)	
Thrombosis				(2%)	
Artery, inflammation, chronic				(2%)	
Bile duct, hyperplasia				(56%)	
Endothelial cell, hyperplasia, focal				(2%)	

^a Number of animals examined microscopically at the site and the number of animals with lesion

TABLE	D5
-------	-----------

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle Control		3 n	ıg/kg		
Alimontom (resting d)						
Alimentary System (continued) Liver (continued)	(40)		(50)			
	(49)		(50)	(98%)		
Hepatocyte, cytomegaly						
Hepatocyte, karyomegaly	1	(20/)	49	(98%)		
Hepatocyte, mixed cell focus		(2%)	10	(200/)		
Hepatocyte, necrosis, focal		(24%)		(38%)		
Hepatocyte, vacuolization cytoplasmic, diffuse		(16%)	1	(2%)		
Hepatocyte, vacuolization cytoplasmic, focal	3	(6%)				
Hepatocyte, centrilobular, necrosis				(2%)		
Hepatocyte, centrilobular, vacuolization cytoplasmic				(6%)		
Hepatocyte, midzonal, vacuolization cytoplasmic		(2%)		(6%)		
Mesentery	(23)		(29)			
Fibrosis, focal				(7%)		
Hemorrhage				(3%)		
Inflammation, chronic				(7%)		
Inflammation, chronic, focal, suppurative			1	(3%)		
Inflammation, suppurative			1	(3%)		
Artery, inflammation, chronic, focal	1	(4%)	19	(66%)		
Artery, mineralization, focal			1	(3%)		
Fat, necrosis	19	(83%)		(7%)		
Pancreas	(49)		(50)			
Amyloid deposition		(2%)				
Atrophy, focal		(2%)				
Fibrosis, focal			1	(2%)		
Necrosis, focal				(2%)		
Acinus, atrophy, diffuse				(2%)		
Acinus, atrophy, focal				(2%)		
Artery, inflammation, chronic				(6%)		
Salivary glands	(50)		(50)	(0,0)		
Artery, inflammation, chronic		(2%)	· · ·	(4%)		
Stomach, forestomach	(49)	(270)	(49)	(470)		
	· · ·	(40/)	(49)			
Inflammation, focal		(4%)				
Ulcer		(2%)				
Epithelium, cyst		(2%)				
Epithelium, hyperplasia		(2%)	(40)			
Stomach, glandular	(49)		(48)			
Cyst			2	(4%)		
Tooth	(7)					
Malformation		(14%)				
Peridontal tissue, inflammation, chronic	6	(86%)				
Cardiovascular System						
Blood vessel			(2)			
Inflammation, chronic				(50%)		
,						
Aorta, mineralization	(50)			(50%)		
Heart	(50)	(0)	(50)	(120/)		
Infiltration cellular, mixed cell	3	(6%)		(12%)		
Inflammation, chronic, focal				(4%)		
Mineralization, focal				(8%)		
Epicardium, infiltration cellular, mixed cell			1	(2%)		

	Vehicle Control		3 n	ıg/kg	
Endocrine System					
Adrenal cortex	(50)		(50)		
Accessory adrenal cortical nodule				(4%)	
Angiectasis			1	(2%)	
Cyst	1	(2%)			
Cytoplasmic alteration				(2%)	
Cytoplasmic alteration, focal	1	(2%)		(50%)	
Inflammation, chronic, focal				(12%)	
Thrombosis			1	(2%)	
Bilateral, hypertrophy, focal	1	(2%)			
Capsule, fibrosis, focal				(2%)	
Adrenal medulla	(49)		(49)		
Atypia cellular	1	(2%)			
Hyperplasia			1	(2%)	
Parathyroid gland	(47)		(46)		
Cyst	1	(2%)	1	(2%)	
Pituitary gland	(48)		(49)		
Angiectasis	4	(8%)	1	(2%)	
Pars distalis, cytoplasmic alteration, focal	3	(6%)	3	(6%)	
Pars distalis, hemorrhage, focal			1	(2%)	
Pars distalis, hyperplasia, focal	1	(2%)			
Rathke's cleft, cyst	1	(2%)			
Thyroid gland	(49)		(50)		
Degeneration, cystic, focal	13	(27%)		(42%)	
Inflammation, chronic, focal	1	(2%)		(4%)	
Follicle, cyst	1	(2%)			
Follicular cell, cytoplasmic alteration,					
diffuse			1	(2%)	
Follicular cell, hyperplasia	1	(2%)			
General Body System					
Tissue NOS			(1)		
Abdominal, inflammation				(100%)	
Genital System	(10)		(10)		
Clitoral gland	(49)		(49)	(40/)	
Degeneration, cystic		(20.1)	2	(4%)	
Inflammation, chronic		(2%)	(10)		
Ovary	(49)		(48)	(20)()	
Angiectasis		(6%)		(2%)	
Cyst	15	(31%)		(31%)	
Cyst, multiple		(20)		(4%)	
Hemorrhage	1	(2%)		(2%)	
Inflammation, suppurative		(20)	1	(2%)	
Mineralization		(2%)			
Pigmentation, focal	1	(2%)		(a a))	
Thrombosis				(2%)	
Artery, inflammation, chronic				(54%)	
Bilateral, cyst		(2%)		(4%)	
Interstitial cell, hyperplasia	1	(2%)	1	(2%)	

	Vehicle Control		3 n	ng/kg
Genital System (continued)				
Uterus	(49)		(50)	
Angiectasis		(2%)		(4%)
Cyst	1	(270)		(476) (2%)
Hemorrhage				(2%)
Hydrometra	27	(55%)		(276) (38%)
Inflammation, suppurative		(4%)	19	(3870)
Artery, inflammation	2	(470)	2	(4%)
Artery, inflammation, chronic, focal				(42%)
Endometrium, hyperplasia, cystic	13	(88%)		(82%)
Endometrum, nyperplasia, cystic	+3	(8876)	41	(6270)
Hematopoietic System				
Bone marrow	(50)		(50)	
Hyperplasia		(4%)		(12%)
Lymph node	(7)	× /	(15)	
Hemorrhage	(1)			(7%)
Hyperplasia, histiocytic				(7%)
Hyperplasia, lymphoid	1	(14%)		
Bronchial, hyperplasia, lymphoid	-	× /	1	(7%)
Bronchial, hyperplasia, plasma cell				(7%)
Deep cervical, hyperplasia, lymphoid				(7%)
Iliac, hemorrhage	1	(14%)	-	
Iliac, hyperplasia, plasma cell	-	(11)0)	1	(7%)
Mediastinal, hyperplasia, lymphoid	1	(14%)		(7%)
Mediastinal, hyperplasia, plasma cell	1	(1470)		(13%)
Renal, angiectasis				(7%)
Renal, hemorrhage				(13%)
Renal, hyperplasia, plasma cell				(7%)
Renal, inflammation, suppurative				(7%)
ymph node, mandibular	(48)		(47)	(778)
Fibrosis	(40)			(2%)
Hyperplasia, lymphoid	2	(4%)		(2%)
		· /		
Hyperplasia, plasma cell		(2%)		(2%)
ymph node, mesenteric	(48)		(49)	$(20/\mathbf{)}$
Angiectasis				(2%)
Fibrosis				(2%)
Hematopoietic cell proliferation				(8%)
Hemorrhage				(8%)
Hyperplasia, histiocytic	2	(40/)		(4%)
Hyperplasia, lymphoid		(4%)		(4%)
Hyperplasia, plasma cell	3	(6%)		(2%)
Artery, inflammation, chronic	(10)			(2%)
pleen	(49)		(50)	
Fibrosis, focal		((50))		(2%)
Hematopoietic cell proliferation		(65%)		(86%)
Hyperplasia, lymphoid		(18%)	4	(8%)
Hyperplasia, plasma cell		(2%)		
Pigmentation	1	(2%)	-	
Artery, inflammation, chronic, focal				(12%)
^T hymus	(49)	(20.1)	(39)	
Angiectasis	1	(2%)		
Atrophy				(5%)
Cyst				(3%)
Hyperplasia, histiocytic			1	(3%)
Hyperplasia, lymphoid	3	(6%)		
Artery, inflammation, chronic			1	(3%)

	Vehicle Control	3 mg/kg		
Integumentary System				
Mammary gland	(49)	(50)		
Ectasia		2 (4%)		
Skin	(50)	(50)		
Inflammation, chronic, focal	1 (2%)			
Artery, subcutaneous tissue, inflammation, chronic		1 (2%)		
Dermis, edema, focal Subcutaneous tissue, edema		1 (2%) 1 (2%)		
Subcutaneous tissue, inflammation, focal, suppurat	ive 1 (2%)	1 (270)		
Musculoskeletal System				
Bone	(50)	(50)		
Cranium, fibrous osteodystrophy Vertebra, hyperostosis, focal	41 (82%)	1 (2%) 33 (66%)		
vercora, hyperoscosis, rocar	TI (02/0)	55 (0070)		
Nervous System				
Brain	(50)	(50)		
Atrophy, focal		1 (2%)		
Gliosis		1 (2%)		
Hemorrhage, focal		4 (8%)		
Artery, meninges, inflammation, chronic Peripheral nerve		(2%)		
Spinal, ganglion, inflammation, chronic		1 (17%)		
Spinal cord		(6)		
Hemorrhage, focal		1 (17%)		
Meninges, inflammation, chronic		1 (17%)		
Respiratory System				
Lung	(50)	(50)		
Congestion	3 (6%)	2 (4%)		
Foreign body	4 (8%)			
Hemorrhage	1 (2%)	4 (8%)		
Hyperplasia, focal, mast cell		1 (2%)		
Hyperplasia, histiocytic	2 (4%)	9 (18%)		
Hyperplasia, lymphoid Infiltration cellular, mixed cell	2 (4%)	3 (6%)		
Pigmentation, focal	1 (2%)	5 (070)		
Alveolar epithelium, hyperplasia	1 (2%) 1 (2%)	6 (12%)		
Artery, mediastinum, inflammation, chronic	- (-,0)	2 (4%)		
Interstitium, edema	1 (2%)	× /		
Mediastinum, inflammation, chronic		1 (2%)		
Mediastinum, inflammation, suppurative		1 (2%)		
Nose	(50)	(50)		
Nasolacrimal duct, inflammation	2 (4%)	1 (2%)		
Pleura Inflammation, suppurative		(1) 1 (100%)		
Special Senses System	(1)	(2)		
Special Senses System Eye Atrophy	(1) 1 (100%)	(2) 1 (50%)		
TABLE	D5			
-------	-----------			
-------	-----------			

Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Gavage Study of Riddelliine

	Vehicle	Control	3 n	ng/kg
Urinary System				
Kidney	(49)		(50)	
Atrophy	1	(2%)		
Cyst	3	(6%)	2	(4%)
Inflammation, chronic			1	(2%)
Metaplasia, focal, osseous	1	(2%)	8	(16%)
Mineralization, focal	1	(2%)	1	(2%)
Nephropathy	18	(37%)	47	(94%)
Artery, inflammation, chronic	1	(2%)	16	(32%)
Artery, mineralization			1	(2%)
Glomerulus, glomerulosclerosis			40	(80%)
Pelvis, dilatation			1	(2%)
Renal tubule, accumulation, hyaline droplet	2	(4%)	14	(28%)
Renal tubule, casts protein	2	(4%)		
Renal tubule, dilatation	2	(4%)	2	(4%)
Renal tubule, hemorrhage	1	(2%)		
Renal tubule, karyomegaly			1	(2%)
Renal tubule, necrosis	1	(2%)		
Renal tubule, pigmentation	2	(4%)	27	(54%)
Urinary bladder	(50)		(48)	
Edema	1	(2%)		
Artery, inflammation, chronic			1	(2%)

APPENDIX E GENETIC TOXICOLOGY

SALMONELL	A TYPHIMURIUM MUTAGENICITY TEST PROTOCOL	212
CHINESE H	AMSTER OVARY CELL CYTOGENETICS PROTOCOLS	212
MOUSE BO	NE MARROW AND PERIPHERAL BLOOD MICRONUCLEUS TEST PROTOCOLS	213
UNSCHEDUI	LED DNA SYNTHESIS AND S-PHASE DNA SYNTHESIS TEST PROTOCOLS	214
EVALUATIO	N PROTOCOL	214
RESULTS		214
TABLE E1	Mutagenicity of Riddelliine in Salmonella typhimurium	216
TABLE E2	Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells	
	by Riddelliine	217
TABLE E3	Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells	
	by Riddelliine	218
TABLE E4	Induction of Micronuclei in Bone Marrow Polychromatic Erythrocytes	
	of Male Swiss Mice Following a Single Intraperitoneal Injection	
	of Riddelliine	219
TABLE E5	Frequency of Micronuclei in Peripheral Blood Polychromatic Erythrocytes	
	of Male Swiss Mice Following a Single Intraperitoneal Injection	
	of Riddelliine	219
TABLE E6	Frequency of Micronuclei in Peripheral Blood Erythrocytes of B6C3F ₁ Mice	
	Following Treatment with Riddelliine by Gavage for 4 Weeks	220
TABLE E7	Frequency of Micronuclei in Peripheral Blood Erythrocytes of B6C3F ₁ Mice	
	Following Treatment with Riddelliine by Gavage for 13 Weeks	221
TABLE E8	Induction of Unscheduled DNA Synthesis and S-Phase DNA Synthesis	
	in the Hepatocytes of F344/N Rats Following Treatment with Riddelliine	
	by Gavage for 5 or 30 Days	222
TABLE E9	Induction of Unscheduled DNA Synthesis and S-Phase DNA Synthesis	
	in the Hepatocytes of B6C3F ₁ Mice Following Treatment with Riddelliine	
	by Gavage for 5 or 30 Days	223

GENETIC TOXICOLOGY

SALMONELLA TYPHIMURIUM MUTAGENICITY TEST PROTOCOL

Testing was performed as reported by Zeiger *et al.* (1988). Riddelliine was sent to the laboratory as a coded aliquot from Radian Corporation (Austin, TX). It was incubated with the *Salmonella typhimurium* tester strains TA97, TA98, TA100, and TA1535 either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver) for 20 minutes at 37° C. Top agar supplemented with L-histidine and d-biotin was added, and the contents of the tubes were mixed and poured onto the surfaces of minimal glucose agar plates. Histidine-independent mutant colonies arising on these plates were counted following incubation for 2 days at 37° C.

Each trial consisted of triplicate plates of concurrent positive and negative controls and five doses of riddelliine. The high dose was limited by toxicity. All positive trials were repeated under the conditions that elicited the positive response.

In this assay, a positive response is defined as a reproducible, dose-related increase in histidine-independent (revertant) colonies in any one strain/activation combination. An equivocal response is defined as an increase in revertants that is not dose related, is not reproducible, or is not of sufficient magnitude to support a determination of mutagenicity. A negative response is obtained when no increase in revertant colonies is observed following chemical treatment. There is no minimum percentage or fold increase required for a chemical to be judged positive or weakly positive.

CHINESE HAMSTER OVARY CELL CYTOGENETICS PROTOCOLS

Testing was performed as reported by Galloway *et al.* (1987). Riddelliine was sent to the laboratory as a coded aliquot by Radian Corporation. It was tested in cultured Chinese hamster ovary (CHO) cells for induction of sister chromatid exchanges (SCEs) and chromosomal aberrations (Abs), both in the presence and absence of Aroclor 1254-induced male Sprague-Dawley rat liver S9 and cofactor mix. Cultures were handled under gold lights to prevent photolysis of bromodeoxyuridine-substituted DNA. Each test consisted of concurrent solvent and positive controls and of at least three doses of riddelliine. The highest dose was limited by toxicity to 600 µg/mL. A single flask per dose was used.

Sister Chromatid Exchange Test: In the SCE test without S9, CHO cells were incubated for 26 hours with riddelliine in supplemented McCoy's 5A medium. Bromodeoxyuridine (BrdU) was added 2.5 hours after culture initiation. After 26 hours, the medium containing riddelliine was removed and replaced with fresh medium plus BrdU and Colcemid, and incubation was continued for 2 hours. Cells were then harvested by mitotic shake-off, fixed, and stained with Hoechst 33258 and Giemsa. In the SCE test with S9, cells were incubated with riddelliine, serum-free medium, and S9 for 2 hours. The medium was then removed and replaced with medium containing serum and BrdU and no riddelliine. Incubation proceeded for an additional 26 hours, with Colcemid present for the final 2 hours. Harvesting and staining were the same as for cells treated without S9. All slides were scored blind, and those from a single test were read by the same person. Up to 50 second-division metaphase cells were scored for frequency of SCEs/cell from each dose level. Because the 100 μg/mL dose induced significant cell cycle delay in the presence of S9, incubation time was lengthened in an attempt to obtain a sufficient number of scorable (second-division metaphase) cells; however, this dose was completely cytostatic, and no cells were scored.

Statistical analyses were conducted on the slopes of the dose-response curves and the individual dose points (Galloway *et al.*, 1987). An SCE frequency 20% above the concurrent solvent control value was chosen as a statistically conservative positive response. The probability of this level of difference occurring by chance at one dose point is less than 0.01; the probability for such a chance occurrence at two dose points is less than 0.001. An increase of 20% or greater at any single dose was considered weak evidence of activity; increases at two or more doses resulted in a determination that the trial was positive. A statistically significant trend (P<0.005) in the absence of any responses reaching 20% above background led to a call of equivocal.

Chromosomal Aberrations Test: In the Abs test without S9, cells were incubated in McCoy's 5A medium with riddelliine for 8.5 hours; Colcemid was added and incubation continued for 2 hours. The cells were then harvested by mitotic shake-off, fixed,

and stained with Giemsa. For the Abs test with S9, cells were treated with riddelline and S9 for 2 hours, after which the treatment medium was removed and the cells were incubated for 18.5 hours in fresh medium, with Colcemid present for the final 2 hours. Cells were harvested in the same manner as for the treatment without S9. The harvest time for the Abs test was based on the cell cycle information obtained in the SCE test: if cell cycle delay was anticipated, the incubation period was extended.

Cells were selected for scoring on the basis of good morphology and completeness of karyotype $(21 \pm 2 \text{ chromosomes})$. All slides were scored blind, and those from a single test were read by the same person. One hundred first-division metaphase cells were scored at each dose level in the absence of S9; with S9, fewer cells were scored because of the extremely high numbers of aberrations observed. Classes of aberrations included simple (breaks and terminal deletions), complex (rearrangements and translocations), and other (pulverized cells, despiralized chromosomes, and cells containing 10 or more aberrations).

Chromosomal aberration data are presented as percentage of cells with aberrations. To arrive at a statistical call for a trial, analyses were conducted on both the dose response curve and individual dose points. For a single trial, a statistically significant ($P \le 0.05$) difference for one dose point and a significant trend ($P \le 0.015$) were considered weak evidence for a positive response; significant differences for two or more doses indicated the trial was positive. A positive trend test in the absence of a statistically significant increase at any one dose resulted in an equivocal call (Galloway *et al.*, 1987). Ultimately, the trial calls were based on a consideration of the statistical analyses as well as the biological information available to the reviewers.

MOUSE BONE MARROW AND PERIPHERAL BLOOD MICRONUCLEUS TEST PROTOCOLS

Single-Dose Peripheral Blood and Bone Marrow Studies: Preliminary range-finding studies were performed. Factors affecting dose selection included chemical solubility and toxicity and the extent of cell cycle delay induced by riddelliine. Male Swiss mice received a single intraperitoneal injection of riddelliine dissolved in sodium phosphate buffer. Solvent control animals received buffer only. The positive control animals received an injection of urethane. Bone marrow smears were prepared 24 hours after treatment; peripheral blood smears were prepared 48 hours after treatment. Blood was obtained from the tail vein, and bone marrow was extracted from the femurs. Air-dried smears were fixed and stained; 2,000 polychromatic erythrocytes (PCEs) were scored for the frequency of micronucleated cells in each of up to eight animals per dose group, per tissue. In addition, the percentage of PCEs among the total erythrocyte population was scored for each dose group as a measure of toxicity.

The results were tabulated as the mean of the pooled results from all animals within a treatment group plus or minus the standard error of the mean. The frequency of micronucleated cells among PCEs was analyzed by the Cochran armitage trend test, and individual dose groups were compared to the concurrent solvent control by Kastenbaum-Bowman's (Kastenbaum and Bowman, 1970) binomial test. The percentage of PCEs among total erythrocytes was analyzed by an analysis of variance on ranks and individual dose groups were compared with the concurrent solvent control using a *t*-test on ranks.

4- and 13-Week Peripheral Blood Studies: A detailed discussion of this assay is presented by Witt *et al.* (2000). Riddelliine, dissolved in sodium phosphate buffer, was administered by gavage to male and female mice 5 days per week for 4 or 13 weeks. Peripheral blood samples were obtained at the end of the studies. Smears were immediately prepared and fixed in absolute methanol. The methanol-fixed slides were stained with a chromatin-specific fluorescent dye mixture of Hoechst 33258/ pyronin Y (MacGregor *et al.*, 1983) and coded. Slides were scanned to determine the frequency of micronuclei in 2,000 PCEs (13-week study only) and 10,000 normochromatic erythrocytes (NCEs) in each of up to 5 (4-week study) or 10 (13-week study) animals per dose group. The criteria of Schmid (1976) were used in defining micronuclei, with the additional requirement that micronuclei exhibit the characteristic fluorescent emissions of DNA (blue with 360 nm illumination and orange with 540 nm ultraviolet illumination); the minimum size limit was approximately one-twentieth the diameter of the NCE. In addition, the percentage of PCEs among the total erythrocyte population was determined.

The frequency of micronucleated cells among NCEs and PCEs was analyzed by a statistical software package that tested for increasing trend over dose groups with a one-tailed Cochran-Armitage trend test, followed by pairwise comparisons between each dosed group and the control group (ILS, 1990). In the presence of excess binomial variation, as detected by a binomial dispersion test, the binomial variance of the Cochran-Armitage test was adjusted upward in proportion to the excess variation. In

the micronucleus test, an individual trial is considered positive if the trend test P value is less than or equal to 0.025 or if the P value for any single dosed group is less than or equal to 0.025 divided by the number of dosed groups. A final call of positive for micronucleus induction is preferably based on reproducibly positive trials (as noted above). Results of the 13-week study were accepted without repeat tests, because additional test data could not be obtained. Ultimately, the final call is determined by the scientific staff after considering the results of statistical analyses, the reproducibility of any effects observed, and the magnitudes of those effects.

UNSCHEDULED DNA SYNTHESIS AND S-PHASE DNA SYNTHESIS TEST PROTOCOLS

Livers from male and female F344/N rats (0 to 3.3 mg/kg) and B6C3F₁ mice (0 to 25.0 mg/kg) administered riddelliine by gavage for 5 or 30 days were perfused *in situ*, and a single cell suspension of hepatocytes was obtained using collagenase. Cells were collected by centrifugation, resuspended in cold medium, and seeded into 6-well culture plates containing 25 mm round Thermanox[®] coverslips (Bio-Labs, Northbrook, IL) in Williams' Medium E supplemented with 2 mM *l*-glutamine, 50 μ g/mL gentamycin sulfate (Sigma Chemical Co. St. Louis, MO), and 10% fetal bovine serum. After 1.5 to 2.0 hours of incubation in a humidified, 5% CO₂ atmosphere at 37° C, cultures were washed and then incubated in Williams' Medium E (without serum) containing 10 μ Ci/mL [³H]-methyl thymidine (specific activity approximately 80 Ci/mmole) for 4 hours at 37° C and 5% CO₂, followed by 14 to 18 hours in Williams' Medium E containing 0.25 mM unlabeled thymidine. Cultures were washed and fixed, and autoradiography was performed as described by Hamilton and Mirsalis (1987). Thirty morphologically unaltered hepatocytes on a randomly selected area of each slide were examined. The highest grain count from two nucleus-sized areas over the most heavily labeled cytoplasmic areas adjacent to the nucleus was subtracted from the nuclear count to give the net grains per nucleus. Three slides were scored for each animal, for a total of 90 cells per animal.

Hepatocytes undergoing DNA replication have jet-black nuclei as a result of the large number of silver grains and are easily distinguished from nonreplicating cells in autoradiographic preparations. Approximately 1,000 cells were counted from a randomly selected area of each slide and classified as "S-phase" (undergoing replicative DNA synthesis) or "non-S-phase." Three slides were scored for each animal, for a total of approximately 3,000 cells per animal. The percentage of cells in S-phase was calculated for each dose group.

EVALUATION PROTOCOL

These are the basic guidelines for arriving at an overall assay result for assays performed by the National Toxicology Program. Statistical as well as biological factors are considered. For an individual assay, the statistical procedures for data analysis have been described in the preceding protocols. There have been instances, however, in which multiple aliquots of a chemical were tested in the same assay, and different results were obtained among aliquots and/or among laboratories. Results from more than one aliquot or from more than one laboratory are not simply combined into an overall result. Rather, all the data are critically evaluated, particularly with regard to pertinent protocol variations, in determining the weight of evidence for an overall conclusion of chemical activity in an assay. In addition to multiple aliquots, the *in vitro* assays have another variable that must be considered in arriving at an overall test result. *In vitro* assays are conducted with and without exogenous metabolic activation. Results obtained in the absence of activation are not combined with results obtained in the presence of activation; each testing condition is evaluated separately. The summary table in the Abstract of this Technical Report presents a result that represents a scientific judgement of the overall evidence for activity of the chemical in an assay.

RESULTS

Riddelliine (100 to 5,000 μ g/plate) was mutagenic in *S. typhimurium* strain TA100 in the presence of 30% induced rat or hamster liver S9 (Table E1; Zeiger *et al.*, 1988); it was not mutagenic with 10% S9, and results of mutagenicity testing were negative in strains TA98 and TA1535 with and without S9 activation. The small, dose-related increase in mutant colonies observed with strain TA97 in the presence of 30% rat S9 was judged to be equivocal. Riddelliine induced SCEs in cultured CHO cells with and without S9; the response observed in the presence of S9 was very strong (Table E2; Galloway *et al.*, 1987). In the test conducted with S9, only three cells were counted at the highest scorable dose (30 μ g/mL) because of the extremely high number of induced SCEs. Riddelliine also induced highly significant increases in Abs in cultured CHO cells in the presence of S9 at all three doses scored (Table E3; Galloway *et al.*, 1987). No increase in Abs was observed in the absence of S9.

In single-dose studies in which riddelliine, administered via intraperitoneal injection, was tested for induction of micronucleated erythrocytes in Swiss mice, the increase seen in bone marrow erythrocytes was not dose related and was of insufficient magnitude to be considered positive (Table E4). However, a small but significant dose-related increase in the frequency of micronucleated PCEs was seen in peripheral blood (Table E5). These single-dose studies were not replicated to confirm the positive response; therefore, these results cannot be considered conclusive. In 4- and 13-week gavage studies, riddelliine did not induce micronucleated erythrocytes in peripheral blood of B6C3F₁ mice (Tables E6 and E7; Witt *et al.*, 2000). Several protocol differences between the 4- and 13-week studies and the single-dose study may be implicated in the contrasting test results, including the higher doses used in the single-dose study, differences in riddelliine metabolism arising from the different routes of administration, and the different strains of mice that were used.

In tests to measure unscheduled DNA synthesis (UDS), a measure of DNA damage and repair, and S-phase DNA synthesis in cultured hepatocytes from F344/N rats and B6C3F₁ mice following 5 or 30 days of treatment by gavage with riddelliine, an increase in UDS was observed at both time points in at least one dose group each in male rats and in male and female mice (Tables E8 and E9). UDS was only observed in female rats following 5 days of treatment. An increase in S-phase DNA synthesis, an indication of DNA replication, was observed at both time points in at least one group in male and female rats. There was no increase in S-phase synthesis in male or female mice following 5 days of treatment; an increase occurred in only a single dose group (3.3 mg/kg) in male mice following 30 days of treatment. In female mice treated for 5 or 30 days, S-phase synthesis appeared inhibited (i.e., less than vehicle control values) at the highest doses (day 5: 25 mg/kg; day 30: 10 and 25 mg/kg). These data suggest that the hepatotoxicity of riddelliine may be due, in part, to an antimitogenic effect at higher doses, which inhibits compensatory cell proliferation that occurs in response to toxicity. However, the high variability in S-phase DNA synthesis in control female mice confounded interpretation of the results.

				Re	vertants/Plate ^b					
Strain	Dose	-S9			+ hamster S9			+ rat S 9		
	(µg/plate)	Trial 1	Trial 2	10%	30%	30%	10%	30%	30%	
TA100	0	156 ± 8.4	155 ± 4.4	160 ± 7.4	117 ± 2.1	113 ± 5.2	175 ± 6.8	124 ± 3.8	159 ± 7.1	
	100	134 ± 3.2	112 ± 1.5	120 ± 7.0	127 ± 11.8	122 ± 11.2	174 ± 12.5	190 ± 5.8	198 ± 0.6	
	333	124 ± 1.2	115 ± 3.6	144 ± 3.5	118 ± 4.5	173 ± 9.7	164 ± 11.1	240 ± 5.6	263 ± 10.3	
	1,000	136 ± 4.4	129 ± 4.2	153 ± 4.0	209 ± 13.5	218 ± 11.1	186 ± 7.2	331 ± 15.5	326 ± 12.8	
	3,333	147 ± 12.7	176 ± 6.7	166 ± 9.8	291 ± 13.5	315 ± 12.7	186 ± 3.5	$355 \pm 14.9^{\circ}$	370 ± 6.2	
	5,000	150 ± 3.0	188 ± 7.8	196 ± 4.6	342 ± 15.1	305 ± 26.4	185 ± 7.4	363 ± 2.1^{c}	381 ± 7.3	
Trial	summary ive control ^d	Negative	Negative	Negative	Positive	Positive	Negative	Positive	Positive	
Posit	ive control ^a	$1{,}499\pm63.7$	$1,\!484\pm24.8$	$2,\!108\pm55.9$	$1{,}009\pm33.8$	889 ± 9.2	$2,\!373\pm38.2$	863 ± 24.8	738 ± 44.4	
ГА153		42 ± 1.8	38 ± 3.8	32 ± 4.3	13 ± 2.9		32 ± 2.1	13 ± 3.0		
	100	35 ± 1.2	26 ± 4.6	22 ± 3.2	9 ± 1.5		22 ± 3.9	14 ± 2.7		
	333	34 ± 2.7	32 ± 5.0	21 ± 0.3	12 ± 2.7		23 ± 3.1	13 ± 4.2		
	1,000	34 ± 6.2	29 ± 5.0	20 ± 2.4	13 ± 1.5		20 ± 1.7	8 ± 2.0		
	3,333	30 ± 3.6	27 ± 2.2	19 ± 1.0	7 ± 0.7		16 ± 0.9	$6 \pm 0.6^{\circ}_{\circ}$		
	5,000	32 ± 3.8	23 ± 3.5	23 ± 3.8	5 ± 1.2^{c}		17 ± 1.7	8 ± 1.2^{c}		
	summary	Negative	Negative	Negative	Negative		Negative	Negative		
Posit	ive control	$1,379 \pm 17.9$	983 ± 19.6	153 ± 6.1	258 ± 7.9		171 ± 7.5	119 ± 5.0		
ГА97	0	107 ± 5.7	78 ± 4.6	150 ± 6.1	161 ± 3.8		140 ± 6.1	171 ± 4.4	152 ± 2.2	
	100	107 ± 9.0	73 ± 9.8	140 ± 8.8	150 ± 0.6		143 ± 7.4	205 ± 3.7	177 ± 13.4	
	333	106 ± 6.7	85 ± 0.9	139 ± 3.5	160 ± 11.0		133 ± 5.8	184 ± 6.4	184 ± 11.5	
	1,000	110 ± 5.6	5 ± 1.5	152 ± 7.2	159 ± 5.0		132 ± 5.8	212 ± 4.9	208 ± 20.8	
	3,333	103 ± 2.6	8 ± 0.3	140 ± 1.5	163 ± 2.9		120 ± 7.9	232 ± 13.3^{c}	177 ± 17.9	
	5,000	97 ± 3.7	10 ± 1.0^{c}	141 ± 4.7	$168 \pm 10.5^{\circ}$		147 ± 4.9	248 ± 20.3^{c}	$209 \pm 3.5^{\circ}$	
	summary	Negative	Negative	Negative	Negative		Negative	Equivocal	Equivocal	
Posit	ive control	$1,009 \pm 80.5$	698 ± 36.0	$1,395 \pm 54.8$	573 ± 19.4		1,636 ± 62.9	429 ± 3.8	732 ± 2.5	
ГА98	0	13 ± 0.7	20 ± 3.5	24 ± 2.1	29 ± 1.2		29 ± 1.7	28 ± 2.3		
	100	16 ± 2.8	15 ± 1.0	28 ± 0.7	27 ± 2.6		29 ± 2.1	31 ± 2.7		
	333	16 ± 2.0	16 ± 3.5	32 ± 2.5	31 ± 2.3		39 ± 2.3	25 ± 2.0		
	1,000	20 ± 4.3	22 ± 2.3	32 ± 2.1	29 ± 1.3		30 ± 2.1	27 ± 1.9		
	3,333	16 ± 3.1	20 ± 5.5	29 ± 2.7	31 ± 4.3		26 ± 0.9	$26 \pm 2.8^{c}_{c}$		
	5,000	16 ± 0.7	18 ± 6.1	31 ± 2.0	24 ± 1.8		32 ± 4.7	$20 \pm 5.2^{\circ}$		
Trial	summary	Negative	Negative	Negative	Negative		Negative	Negative		
Posit	ive control	$1,913 \pm 86.1$	$1,392 \pm 19.9$	$1,076 \pm 37.1$	715 ± 22.8		$1,731 \pm 26.0$	419 ± 5.0		

TABLE E1 Mutagenicity of Riddelliine in Salmonella typhimurium^a

^a Study was performed at Microbiological Associates, Inc. The detailed protocol and these data are presented by Zeiger *et al.* (1988). 0 μg/plate was the solvent control.
 ^b Durative to a presented on the solvent control.

^b Revertants are presented as mean \pm standard error from three plates.

c Slight toxicity

^d The positive controls in the absence of metabolic activation were sodium azide (TA100 and TA1535), 9-aminoacridine (TA97), and 4-nitroo-phenylenediamine (TA98). The positive control for metabolic activation with all strains was 2-aminoanthracene.

TABLE E2
Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells by Riddelliine ^a

Compound	Dose (µg/mL)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hrs in BrdU	Relative Change of SCEs/ Chromosome ^b (%)
- S9 Summary: Positive								
Dimethylsulfoxide ^c		50	1,031	432	0.41	8.6	25.5	
Riddelliine	30 100 300	50 50 50	1,028 1,040 1,036	538 702 1,224	0.52 0.67 1.18	10.8 14.0 24.5	25.5 25.5 25.5	24.90* 61.09* 181.96*
					P<0.001 ^d			
Mitomycin-C ^e	0.001 0.01	50 5	1,022 105	671 240	0.65 2.28	13.4 48.0	25.5 25.5	56.69 445.50
+ S9 Summary: Positive								
Dimethylsulfoxide		50	1,018	432	0.42	8.6	26.0	
Riddelliine	3 10 30 100	50 20 3 0	1,017 408 63	1,537 1,539 441	1.51 3.77 7.00	30.7 77.0 147.0	26.0 26.0 26.0 35.0 ^f	256.14* 788.88* 1,549.54*
					P<0.001			
Cyclophosphamide ^e	0.3 2	50 5	1,009 101	538 141	0.53 1.39	10.8 28.2	26.0 26.0	25.65 228.97

* a

Positive response (>20% increase over solvent control) Study was performed at Litton Bionetics, Inc. The detailed protocol and these data are presented by Galloway *et al.* (1987). SCE=sister chromatid exchange; BrdU=bromodeoxyuridine b

SCEs/chromosome in treated cells versus SCEs/chromosome in solvent control cells с

Solvent control

d Significance of SCEs/chromosome tested by the linear regression trend test versus log of the dose

e Positive control \mathbf{f}

Due to cell cycle delay, harvest time was extended to maximize the number of second-division metaphase cells available for analysis; no suitable cells were found.

TABLE E3

Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells by Riddelliine^a

Compound	Dose (µg/mL)	Total Cells Scored	Number of Aberrations	Aberrations/ Cell	Cells with Aberrations (%)
-89					
Harvest time: 10.5 hours Summary: Negative					
Dimethylsulfoxide ^b		100	1	0.01	1.0
Riddelliine	402	100	0	0.00	0.0
	498	100	1	0.01	1.0
	600	100	2	0.02	2.0
					P=0.186 ^c
Mitomycin-C ^d	1	50	14	0.28	18.0
+S9					
Harvest time: 20.5 hours ^e Summary: Positive					
Dimethylsulfoxide		100	3	0.03	3.0
Riddelliine	300	25	73	2.92	92.0*
	400	25	64	2.56	76.0*
		25	73	2.92	96.0*
	$\begin{array}{c} 498\\ 600^{\mathrm{f}}\end{array}$	0			
					P<0.001
Cyclophosphamide ^d	15	50	9	0.18	16.0

* a Positive response (P \leq 0.05) versus the solvent control

Study was performed at Litton Bionetics, Inc. The detailed protocol and these data are presented by Galloway et al. (1987). b

Solvent control c

Significance of percent cells with aberrations tested by the linear regression trend test versus log of the dose d

Positive control

e Due to cell cycle delay, harvest time was extended to maximize the number of first-division metaphase cells available for analysis. Not scored due to poor chromosome morphology f

TABLE E4
Induction of Micronuclei in Bone Marrow Polychromatic Erythrocytes of Male Swiss Mice
Following a Single Intraperitoneal Injection of Riddelliine ^a

Compound	Dose (mg/kg)	Number of Mice with Erythrocytes Scored	Micronucleated PCES/1,000 PCEs ^b	PCEs (%) ^b
Sodium phosphate buffer ^c		8	1.88 ± 0.30	59.50 ± 1.24
Riddelliine	75	8	3.00 ± 0.42	56.63 ± 2.08
	150	8	2.00 ± 0.38	$51.38 \pm 2.72 **$
	270	8	$3.43 \pm 0.57*$	$48.14 \pm 2.43 **$
	300	1	4.00	61.00
			P=0.071 ^d	P=0.006 ^e
Urethane ^f	200		16.38 ± 0.60	54.88 ± 1.44

* Significantly different (P \leq 0.05) from the solvent control by a *t*-test on ranks

** Significantly different ($P \le 0.01$) from the solvent control by Kastenbaum-Bowman's binomial test a Significantly different ($P \le 0.01$) from the solvent control by Kastenbaum-Bowman's binomial test

^a Study was performed at Western Regional Research Center, U.S. Department of Agriculture. The detailed protocol is presented by MacGregor *et al.* (1985).
 ^b PCE=polychromatic erythrocyte

Mean \pm standard error

c Solvent control

^a Significance of micronucleated PCEs/1,000 PCEs tested by a Cochran-Armitage linear regression of proportions

e Significance of percent PCEs tested by analysis of variance on ranks

Positive control

TABLE E5 Frequency of Micronuclei in Peripheral Blood Polychromatic Erythrocytes of Male Swiss Mice Following a Single Intraperitoneal Injection of Riddelliine^a

Compound	Dose (mg/kg)	Number of Mice with Erythrocytes Scored	Micronucleated PCES/1,000 PCEs ^b	PCEs (%) ^b
Sodium phosphate buffer ^c		8	1.65 ± 0.41	3.55 ± 0.30
Riddelliine	75 150 300	8 8 0	$\begin{array}{c} 2.40 \pm 0.49 \\ 3.62 \pm 0.75^{**} \end{array}$	$\begin{array}{c} 3.17 \pm 0.34 \\ 2.38 \pm 0.42 * \end{array}$
			P=0.005 ^d	P=0.105 ^e
Urethane ^f	200		14.93 ± 1.53	2.71 ± 0.32

* Significantly different (P \le 0.05) from the solvent control by a *t*-test on ranks

** Significantly different (P≤0.01) from the solvent control by Kastenbaum-Bowman's binomial test

^a Study was performed at Western Regional Research Center, U.S. Department of Agriculture. The detailed protocol is presented by MacGregor *et al.* (1985).
 ^b PCE=polychromatic erythrocyte

^b Mean \pm standard error

d Solvent control

^d Significance of micronucleated PCEs/1,000 PCEs tested by a Cochran-Armitage linear regression of proportions

^e Significance of percent PCEs tested by analysis of variance on ranks

¹ Positive control

TABLE E6 Frequency of Micronuclei in Peripheral Blood Erythrocytes of B6C3F₁ Mice Following Treatment with Riddelliine by Gavage for 4 Weeks^a

Compound	Dose (mg/kg)	Number of Mice with Erythrocytes Scored	Micronucleated NCEs/1,000 NCEs ^b	PCEs (%) ^b
Male				
Sodium phosphate buffer ^c		5	1.44 ± 0.08	1.62 ± 0.06
Riddelliine	3.3	4	1.95 ± 0.28	2.14 ± 0.33
	10.0	4	1.91 ± 0.19	1.71 ± 0.41
	25.0	4	1.45 ± 0.30	2.10 ± 0.14
			P=0.649 ^d	P=0.269 ^e
Female				
Sodium phosphate buffer		4	1.69 ± 0.36	2.25 ± 0.47
Riddelliine	3.3	5	1.15 ± 0.20	2.36 ± 0.20
	10.0	5	1.01 ± 0.27	2.19 ± 0.22
	25.0	4	1.46 ± 0.36	2.05 ± 0.09
			P=0.543	P=0.711

а Study was performed at Western Regional Research Center, U.S. Department of Agriculture. The detailed protocol and these data are presented by Witt *et al.* (2000). NCE=normochromatic erythrocyte; PCE=polychromatic erythrocyte b

Mean \pm standard error

с Vehicle control

d Significance tested by the one-tailed trend test, significant at $P{\leq}0.025~(ILS,\,1990)$ e

Analysis of variance, significant at $P \le 0.025$

TABLE E7Frequency of Micronuclei in Peripheral Blood Erythrocytes of B6C3F1 Mice Following Treatmentwith Riddelliine by Gavage for 13 Weeksa

		Number of Mice	Micronucleated C	Cells/1,000 Cells ^b	
Compound	Dose (mg/kg)	with Erythrocytes Scored	PCEs	NCEs	PCEs (%)
Male					
Sodium phosphate buffer ^c		10	2.24 ± 0.50	1.33 ± 0.10	2.33 ± 0.13
Riddelliine	10	10	2.42 ± 0.42	1.58 ± 0.13	2.46 ± 0.08
	25	9	1.42 ± 0.15	1.55 ± 0.09	2.13 ± 0.14
			P=0.910 ^d	P=0.086 ^d	P=0.226 ^e
Female					
Sodium phosphate buffer		8	1.09 ± 0.13	1.14 ± 0.08	1.98 ± 0.11
Riddelliine	10	10	1.04 ± 0.10	1.15 ± 0.06	2.14 ± 0.13
	25	10	1.88 ± 0.35	1.28 ± 0.07	2.69 ± 0.55
			P=0.043	P=0.150	P=0.457

^a Study was performed at Western Regional Research Center, U.S. Department of Agriculture. NCE=normochromatic; PCE=polychromatic erythrocyte. The detailed protocol and these data are presented by Witt *et al.* (2000).

b Mean \pm standard error

c Vehicle control

d Significance tested by the one-tailed trend test, significant at $P \le 0.025$ (ILS, 1990)

^e Analysis of variance, significant at $P \le 0.025$

		Number of Animals	Cells	(%)
	Dose (mg/kg)	with Hepatocytes Scored	Unscheduled DNA Synthesis	S-Phase Synthesis
5 Days				
Male				
	0 0.33 1.0 3.3	5 5 5 5	$\begin{array}{l} 1.10 \pm 0.49 \\ 2.66 \pm 1.35 \\ 4.18 \pm 1.25 {}^{*\mathrm{b}} \\ 2.20 \pm 0.60 \end{array}$	$\begin{array}{c} 0.99 \pm 0.09 \\ 6.08 \pm 0.82^{**} \\ 2.90 \pm 0.47 \\ 2.33 \pm 0.29 \end{array}$
Female				
	0 0.33 1.0 3.3	5 5 5 5	0.66 ± 0.27 1.98 ± 0.54 $4.22 \pm 0.83**$ $7.56 \pm 3.50**$	0.49 ± 0.04 $2.25 \pm 0.68**$ $4.77 \pm 1.22**$ $9.06 \pm 1.56**$
30 Days				
Male				
	0 0.33 1.0 3.3	5 5 5 4	0.22 ± 0.22 0.66 ± 0.27 0.66 ± 0.44 $2.20 \pm 0.64*$	$\begin{array}{c} 0.52 \pm 0.09 \\ 1.84 \pm 0.21 ** \\ 2.42 \pm 0.49 ** \\ 1.24 \pm 0.29 * \end{array}$
Female				
	0 0.33 1.0 3.3	5 5 5 5	$\begin{array}{c} 0.22 \pm 0.22 \\ 0.22 \pm 0.22 \\ 0.88 \pm 0.41 \\ 1.10 \pm 0.70 \end{array}$	0.52 ± 0.12 0.82 ± 0.27 $1.86 \pm 0.30^{**}$ $1.15 \pm 0.15^{*}$

TABLE E8 Induction of Unscheduled DNA Synthesis and S-Phase DNA Synthesis in the Hepatocytes of F344/N Rats Following Treatment with Riddelliine by Gavage for 5 or 30 Days^a

* Significantly different from the control group ($P \le 0.05$) by Shirley's test

** Significantly different from the control group ($P \le 0.01$) by Dunn's or Shirley's test a Study was performed at SRI International. Data are presented as mean \pm standard error. b n=3

n=3

		Number of Animals	Cells	(%)	
	Dose (mg/kg)	with Hepatocytes Scored	Unscheduled DNA Synthesis	S-Phase Synthesis	
5 Days					
Male					
	0 3.3 10.0 25.0	5 5 5 5	$\begin{array}{c} 1.10 \pm 0.49 \\ 0.66 \pm 0.44 \\ 3.34 \pm 0.80 \\ 11.10 \pm 3.27 ** \end{array}$	$\begin{array}{c} 0.26 \pm 0.04 \\ 0.49 \pm 0.18 \\ 0.39 \pm 0.06 \\ 0.32 \pm 0.07 \end{array}$	
Female					
	0 3.3 10.0 25.0	5 5 4 5	$\begin{array}{l} 0.44 \pm 0.27 \\ 1.54 \pm 0.82 \\ 3.60 \pm 1.46 * \\ 4.88 \pm 1.71 * * \end{array}$	$\begin{array}{c} 2.54 \pm 1.14 \\ 4.30 \pm 1.36 \\ 4.46 \pm 1.51 \\ 1.35 \pm 0.52 \end{array}$	
30 Days					
Male					
	0 3.3 10.0 25.0	5 5 5 4	$\begin{array}{c} 1.10 \pm 0.60 \\ 0.00 \pm 0.00 \\ 3.76 \pm 1.04 \\ 21.65 \pm 4.89^{**} \end{array}$	0.87 ± 0.29 $1.75 \pm 0.19^*$ 1.26 ± 0.26 1.07 ± 0.16	
Female					
	0 3.3 10.0 25.0	4 5 5 5	$\begin{array}{c} 0.55 \pm 0.55 \\ 3.78 \pm 1.98 \\ 2.66 \pm 1.30 \\ 24.90 \pm 3.54^{**} \end{array}$	5.15 ± 2.05 20.99 ± 5.31 0.98 ± 0.45 0.66 ± 0.13	

TABLE E9 Induction of Unscheduled DNA Synthesis and S-Phase DNA Synthesis in the Hepatocytes of $B6C3F_1$ Mice Following Treatment with Riddelliine by Gavage for 5 or 30 Days^a

* Significantly different from the control group (P \leq 0.05) by Dunn's or Shirley's test ** Significantly different from the control group (P \leq 0.01) by Shirley's test a Study was performed at SRI International. Data are presented as mean \pm standard error.

APPENDIX F CHEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES

PROCUREME	NT AND CHARACTERIZATION OF RIDDELLIINE	226
PREPARATIO	N AND ANALYSIS OF DOSE FORMULATIONS	226
FIGURE F1	Infrared Absorption Spectrum of Riddelliine	228
FIGURE F2	Nuclear Magnetic Resonance Spectrum of Riddelliine	229
TABLE F1	High-Performance Liquid Chromatography Systems	
	Used in the 2-Year Gavage Studies of Riddelliine	230
TABLE F2	Preparation and Storage of Dose Formulations	
	in the 2-Year Gavage Studies of Riddelliine	231
TABLE F3	Results of Analyses of Dose Formulations Administered to Rats and Mice	
	in the 2-Year Gavage Studies of Riddelliine	232

CHEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES

PROCUREMENT AND CHARACTERIZATION OF RIDDELLIINE

Riddelliine was obtained from the U.S. Food and Drug Administration (Rockville, MD) in one lot (8194-110-01). Identity and purity analyses were conducted by the analytical chemistry laboratory, Research Triangle Institute (Research Triangle Park, NC), and the study laboratory. Reports on analyses performed in support of the riddelliine studies are on file at the National Institute of Environmental Health Sciences.

The chemical, a white, crystalline solid, was identified as riddelliine by infrared, ultraviolet/visible, and proton nuclear magnetic resonance spectroscopy and by low-resolution mass spectrometry (MS). All spectra were consistent with the literature spectra (MRI, 1983) or with the structure of riddelliine. The infrared and nuclear magnetic resonance spectra are presented in Figures F1 and F2. The melting point of 189° to 193° C was in agreement with literature values (MRI, 1982).

The purity of lot 8194-110-01 was determined by the analytical chemistry laboratory using high-performance liquid chromatography (HPLC) by systems A and B (Table E1) and gas chromatographic water analysis. Elemental analyses were performed by Galbraith Laboratories (Knoxville, TN). The analytical chemistry laboratory performed additional analyses using HPLC/MS by system C to identify and quantify impurities detected by systems A and B. Gas chromatographic water analysis was performed with a Varian 3700 gas chromatograph (Varian, Inc., Palo Alto, CA) and an 80/100 Poropak QS column (6 ft \times 0.4 mm). The temperature program was 40° C for 1 minute and then 40° to 120° C at 15° C/minute; the carrier gas was helium at 100 mL/minute. The study laboratory confirmed the purity using HPLC by system D.

Elemental analyses for carbon, hydrogen, nitrogen, and oxygen were in agreement with the theoretical values for riddelliine. Gas chromatography indicated less than 0.1% water. HPLC by system A indicated one major peak and five minor peaks accounting for 6.3% of the total integrated area; HPLC by system B indicated one major peak and two minor peaks accounting for 8.0% of the total integrated area. By both systems, only one impurity peak was present at greater than 1% of the total peak area. This component was identified as retrorsine by HPLC/MS; the identity of an early eluting impurity with a molecular weight of 367 was not determined. The overall purity of lot 8194-110-01 was determined to be approximately 92%. HPLC by system D indicated one major peak and two impurities with a combined area of 6.4% relative to the major peak area. One impurity peak was negligible; the other was identified as retrorsine by comparison to the spectrum of a retrorsine sample obtained from Aldrich Chemical Company, Inc. (Milwaukee, WI). The study laboratory confirmed a purity of 92.6% for lot 8194-110-01.

The stability of of riddelliine (lot U101981, not used in the current studies) was tested by Midwest Research Institute (Kansas City, MO) using HPLC by system E. The results indicated that riddelliine is stable as a bulk chemical for at least 2 weeks when stored protected from light at temperatures up to 60° C. To ensure stability, the bulk chemical was stored at approximately 5° C, protected from light. Stability was monitored during the 2-year studies with HPLC by system D. No degradation of the bulk chemical was detected.

PREPARATION AND ANALYSIS OF DOSE FORMULATIONS

The dose formulations were prepared every 4 weeks by mixing riddelliine with 0.1 M sodium phosphate buffer (pH 6.0) (EM Science, Gibbstown, NJ; Fischer Scientific, Fairlawn, NJ) (Table F2). The dose formulations were stored at 5° C in amber glass bottles for up to 35 days.

Stability studies of a 0.00204 mg/mL formulation were performed by the analytical chemistry laboratory using HPLC by system A with β -hydroxyethyltheophylline added as an internal standard. Homogeneity studies of the

0.0020 and 0.30 mg/mL dose formulations were performed by the study laboratory with HPLC by system D. Homogeneity was confirmed, and stability was confirmed by the analytical chemistry laboratory for at least 35 days for dose formulations stored in sealed glass containers refrigerated at 1° to 3° C or at room temperature.

Periodic analyses of the dose formulations of riddelliine were conducted by the study laboratory using HPLC by system D. The dose formulations were analyzed every 8 to 12 weeks (Table F3). Of the dose formulations analyzed for rats, 51 of 54 were within 10% of the target concentrations; 18 of 20 animal room samples were within 10% of the target concentrations. The three dose formulations that were not within specifications were remixed and reanalyzed; the remixes were found to be within 10% of the target concentrations. Of the dose formulations analyzed for mice, all 44 were within 10% of the target concentrations, with no value greater than 109% of the target concentration; all 16 animal room samples also were within 10% of the target concentrations.

FIGURE F1 Infrared Absorption Spectrum of Riddelliine

FIGURE F2 Nuclear Magnetic Resonance Spectrum of Riddelliine

TABLE F1

High-Performance Liquid Chromatography Systems Used in the 2-Year Gavage Studies of Riddelliine^a

Detection System	Column	Solvent System
System A		
Ultraviolet (215 nm) light	Phenomenex Primesphere 5 C18-HC 15 cm × 3.2 mm, (Phenomenex, Torrance, CA)	A) Acetonitrile and B) water containing 0.1 M phosphate buffer (pH 6); 10% A:90% B, isocratic, or 10% A:90% B for 5 minutes, then 10% A:90% B to 50% A:50% B in 10 minutes, held 20 minutes; flow rate 0.5 mL/minute
System B		
Ultraviolet (215 nm) light	Hamilton PRP-1, 15 cm × 4.1 mm	A) Acetonitrile and B) water containing 0.049 M ammonium hydroxide (pH 10); 26% A:74% B, isocratic, or 10% A:90% B to 90% A:10% B in 15 minutes, held 30 minutes; flow rate 1.0 mL/minute
System C		
Mass spectrometry with electrospray interface	Hamilton PRP-1, 15 cm × 4.1 mm	 A) Acetonitrile and B) water containing 0.005 M ammonium hydroxide (26% A:74% B), flow rate 1.0 mL/minute, split 10:1 prior to mass spectrometry; propionic acid:isopropyl alcohol (75:25), flow rate 100 μL/minute, added post column
System D		
Ultraviolet light (200 to 350 nm or 215 nm)	Phenomenex Primesphere 5 C18-HC, $15 \text{ cm} \times 3.2 \text{ mm}$	0.1 M phosphate buffer (pH 6):acetonitrile (90:10), isocratic; flow rate 0.5 mL/minute
System E		
Ultraviolet (215 nm) light	Altex Ultrasphere Octyl (C_8), 250 mm × 4.6 mm, (Beckman Coulter, Inc., Fullerton, CA)	Aqueous 0.067 M phosphate buffer (pH 6.4): methanol (57:43); flow rate 1.0 mL/minute; xylene sulfonic acid as an internal standard

^a High-performance liquid chromatographs were manufactured by Waters Corp. (Milford, MA) (systems A, B, C, and E) and Hewlett-Packard (Palo Alto, CA) (system D).

TABLE F2 Preparation and Storage of Dose Formulations in the 2-Year Gavage Studies of Riddelliine

Preparation

The required amount of riddelliine was added to 0.1 M sodium phosphate buffer (pH 6.0) and stirred with a magnetic stirrer until a homogeneous preparation was obtained. The doses were prepared every 4 weeks.

Chemical Lot Number 8194-110-01

Maximum Storage Time 35 days

Storage Conditions Stored in sealed amber glass at 5° C

Study Laboratory

Southern Research Institute (Birmingham, AL)

Date Prepared	Date Analyzed	Target Concentration (mg/mL)	Determined Concentration ^a (mg/mL)	Difference from Target (%)
Rats				
February 29-March 1, 1996	March 1-2, 1996	0.00200	0.00199	0
1001uuly 29 11uloli 1, 1990		0.00660	0.00647	-2
		0.0200	0.0192 _b	_4
		0.0660	0.0994 ^b	+51
		0.200	0.191	-4
March 4, 1996	March 4, 1996	0.0660	0.0630 ^c	-5
	April 3-4, 1996 ^d	0.00200	0.00182	-9
		0.00660	0.00613	-7
		0.0200	0.0191	-4
		0.0660	0.0640	-3
		0.200	0.191	-4
May 22, 1996	May 23-24, 1996	0.00200	0.00191	-4
		0.00660	0.00628	-5
		0.0200	0.0193	-3
		0.0660	0.0634	-4
		0.200	0.193	-3
August 15, 1996	August 15-16, 1996	0.00200	0.00171 ^b	-14
0	C ,	0.00660	0.00617	-7
		0.0200	0.0192	-4
		0.0660	0.0641	-3
		0.200	0.199	0
August 20, 1996	August 20, 1996	0.00200	0.00195 ^c	-2
November 7, 1996	November 8-9, 1996	0.00200	0.00197	-1
		0.00660	0.00634	-4
		0.0200	0.02000	0
		0.0660	0.0679	+3
		0.200	0.202	+1
	December 11-12, 1996 ^d	0.00200	0.00211	+6
		0.00660	0.00658	0
		0.0200	0.0188	-6
		0.0660	0.0646	-2
		0.200	0.197	-1
January 2, 1997	January 3-4, 1997	0.00200	0.00184	-8
		0.00660	0.00650	-2
		0.0200	0.0196	-2
		0.0660	0.0648	-2
		0.200	0.197	-1

TABLE F3Results of Analyses of Dose Formulations Administered to Rats and Micein the 2-Year Gavage Studies of Riddelliine

TABLE F3Results of Analyses of Dose Formulations Administered to Rats and Micein the 2-Year Gavage Studies of Riddelliine

Date Prepared	Date Analyzed	Target Concentration (mg/mL)	Determined Concentration (mg/mL)	Difference from Target (%)
Rats (continued)				
March 27, 1997	March 27-28, 1997	0.00200	0.00207	+4
March 27, 1997	March 27 20, 1997	0.00660	0.00646	-2
		0.0200	0.0197	-1
		0.0660	0.0648	-2
		0.200	0.196	-2
May 22, 1997	May 22-23, 1997	0.00200	0.00198	-1
•	•	0.00660	0.0064	-3
		0.0200	0.0202	+1
		0.0660	0.0665	+1
		0.200	0.198	-1
	June 25-26, 1997 ^d	0.00200	0.00177	-11
		0.00660	0.00626	-5
		0.0200	0.0198	-1
		0.0660	0.0666	+1
		0.200	0.203	+2
August 14, 1997	August 14-16, 1997	0.00200	0.00180	-10
		0.00660	0.00631	-4
		0.0200	0.0184	-8
		0.0660	0.0662	0
		0.200	0.194	-3
October 9, 1997	October 10-11, 1997	0.00200	0.00194	-3
		0.00660	0.00652	-1
		0.0200	0.0194	-3
		0.0660	0.0667	+1
		0.200	0.205	+3
December 4, 1997	December 4-6, 1997	0.00200	0.00184	-8
·	<i>,</i>	0.00660	0.00668	+1
		0.0200	0.0204	+2
		0.0660	0.0677	+3
		0.200	0.213	+7
	January 7-9, 1998 ^d	0.00200	0.00173	-13
		0.00660	0.00598	-9
		0.0200	0.0192	-4
		0.0660	0.0639	-3
		0.200	0.210	+5
February 26, 1998	February 27-28, 1998	0.00200	0.00280 ^b	+40
		0.00660	0.00602	-9
		0.0200	0.0196	-2
		0.0660	0.0663	0
March 3, 1998	March 3, 1998	0.00200	0.00238 ^{c,b} 0.00210 ^c	+19
		0.00200	0.00230	+5

Date Prepared	Date Analyzed	Target Concentration (mg/mL)	Determined Concentration (mg/mL)	Difference from Target (%)
Mice				
February 29-March 1, 1996	March 1-2, 1996	0.0100	0.0101	+1
1001uuly 29 11uloii 1, 1990		0.0300	0.0300	0
		0.100	0.0974	-3
		0.300	0.285	-5
	April 3-4, 1996 ^d	0.0100	0.00969 ^e	-3
	April 5-4, 1996	0.0300	0.00989	
		0.100	0.0288	-4 -5
		0.300		5 6
		0.500	0.282	-0
May 22, 1996	May 23-24, 1996	0.0100	0.0100	0
		0.0300	0.0289	-4
		0.100	0.0961	-4
		0.300	0.289	-4
August 15, 1996	August 15-16, 1996	0.0100	0.00925	-7
		0.0300	0.0289	-4
		0.100	0.0980	-2
		0.300	0.298	-1
November 7, 1996	November 8-9, 1996	0.0100	0.00980	-2
November 7, 1990	November 8-9, 1990	0.0300	0.0307	-2 +2
		0.100	0.0973	-3
		0.300	0.307	+2
	December 11-12, 1996 ^d	0.0100	0.000/0	2
	December 11-12, 1996	0.0100	0.00969	-3
		0.0300	0.0301	0
		0.100	0.0998	0
		0.300	0.293	-2
January 2, 1997	January 3-4, 1997	0.0100	0.00991	-1
		0.0300	0.0294	-2
		0.100	0.0973	-3
		0.300	0.294	-2
March 27, 1997	March 27-28, 1997	0.0100	0.00946	-5
*	,	0.0300	0.0291	-3
		0.100	0.0987	-1
		0.300	0.294	-2
May 22, 1997	May 22-23, 1997	0.0100	0.0102	+2
iviay 22, 1997	iviay 22-23, 1991	0.0300	0.0299	$+2 \\ 0$
		0.100	0.0299	-1
		0.300	0.298	-1
	d			
	June 25-26, 1997 ^d	0.0100	0.00986	-1
		0.0300	0.0320	+7
		0.100	0.0967	-3
		0.300	0.310	+3

TABLE F3Results of Analyses of Dose Formulations Administered to Rats and Micein the 2-Year Gavage Studies of Riddelliine

Date Prepared	Date Analyzed	Target Concentration (mg/mL)	Determined Concentration (mg/mL)	Difference from Target (%)
Mice (continued)				
August 14, 1997	August 14-16, 1997	0.0100 0.0300 0.100	0.0101 0.0303 0.0962	+1 +1 -4
		0.300	0.0902	4 1
October 9, 1997	October 10-11, 1997	0.0100	0.0105	+5
		0.0300 0.100	0.0297 0.0974	$-1 \\ -3$
		0.300	0.302	+1
December 4, 1997	December 4-6, 1997	0.0100	0.0102	+2
		0.0300 0.100	0.0327 0.101	$^{+9}_{+1}$
		0.300	0.301	0
	January 7-9, 1998 ^d	0.0100	0.0108 ^e	+8
		0.0300	0.0312	+4
		0.100 0.300	0.101 0.292	$^{+1}_{-3}$
February 26, 1998	February 27-28, 1998	0.0100	0.00973	-3
		0.0300	0.0288	-4
		0.100 0.300	0.0994 0.311	-1 + 4

TABLE F3 Results of Analyses of Dose Formulations Administered to Rats and Mice

а Results of duplicate analyses. For rats, 0.00200 mg/mL=0.01 mg/kg; 0.00660 mg/mL=0.033 mg/kg; 0.0200 mg/mL=0.1 mg/kg; 0.0660 mg/mL=0.33 mg/kg; 0.200 mg/mL=1 mg/kg. For mice, 0.0100 mg/mL=0.1 mg/kg; 0.0300 mg/mL=0.3 mg/kg; 0.100 mg/mL=1 mg/kg; 0.300 mg/mL=3 mg/kg. Remixed; not used in study

b с

d Results of remix

Animal room samples e

Result of single analysis due to insufficient volume of sample

APPENDIX G INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NTP-2000 RAT AND MOUSE RATION

TABLE G1	Ingredients of NTP-2000 Rat and Mouse Ration	238
TABLE G2	Vitamins and Minerals in NTP-2000 Rat and Mouse Ration	238
TABLE G3	Nutrient Composition of NTP-2000 Rat and Mouse Ration	239
TABLE G4	Contaminant Levels in NTP-2000 Rat and Mouse Ration	240

Ingredients	Percent by Weight		
Ground hard winter wheat	22.26		
Ground #2 yellow shelled corn	22.18		
Wheat middlings	15.0		
Oat hulls	8.5		
Alfalfa meal (dehydrated, 17% protein)	7.5		
Purified cellulose	5.5		
Soybean meal (49% protein)	5.0		
Fish meal (60% protein)	4.0		
Corn oil (without preservatives)	3.0		
Soy oil (without preservatives)	3.0		
Dried brewer's yeast	1.0		
Calcium carbonate (USP)	0.9		
Vitamin premix ^a	0.5		
Mineral premix ^b	0.5		
Calcium phosphate, dibasic (USP)	0.4		
Sodium chloride	0.3		
Choline chloride (70% choline)	0.26		
Methionine	0.2		

TABLE G1 **Ingredients of NTP-2000 Rat and Mouse Ration**

a Wheat middlings as carrier Calcium carbonate as carrier

	Amount	Source
Vitamins		
А	4,000 IU	Stabilized vitamin A palmitate or acetate
D	1,000 IU	D-activated animal sterol
K	1.0 mg	Menadione sodium bisulfite complex
∝-Tocopheryl acetate	100 IU	_
Niacin	23 mg	
Folic acid	1.1 mg	
d-Pantothenic acid	10 mg	d-Calcium pantothenate
Riboflavin	3.3 mg	
Thiamine	4 mg	Thiamine mononitrate
B ₁₂	52 µg	
Pyridoxine	6.3 mg	Pyridoxine hydrochloride
Biotin	0.2 mg	<i>d</i> -Biotin
Minerals		
Magnesium	514 mg	Magnesium oxide
Iron	35 mg	Iron sulfate
Zinc	12 mg	Zinc oxide
Manganese	10 mg	Manganese oxide
Copper	2.0 mg	Copper sulfate
Iodine	0.2 mg	Calcium iodate
Chromium	0.2 mg	Chromium acetate

TABLE G2 Vitamins and Minerals in NTP-2000 Rat and Mouse Ration^a

^a Per kg of finished product

TABLE G3 Nutrient Composition of NTP-2000 Rat and Mouse Ration

	Mean ± Standard		
Nutrient	Deviation	Range	Number of Samples
Protein (% by weight)	13.5 ± 0.53	12.5 - 14.7	24
Crude fat (% by weight)	8.1 ± 0.30	7.5 - 8.7	24
Crude fiber (% by weight)	9.6 ± 0.45	8.5 - 10.3	24
Ash (% by weight)	5.0 ± 0.16	4.8 - 5.4	24
Amino Acids (% of total diet)			
Arginine	0.731 ± 0.050	0.670 - 0.800	8
Cystine	0.224 ± 0.012	0.210 - 0.240	8
lycine	0.684 ± 0.041	0.620 - 0.740	8
listidine	0.333 ± 0.018	0.310 - 0.350	8
soleucine	0.524 ± 0.046	0.430 - 0.590	8
eucine	1.061 ± 0.061	0.960 - 1.130	8
ysine	0.708 ± 0.056	0.620 - 0.790	8
Aethionine	0.401 ± 0.035	0.350 - 0.460	8
Phenylalanine	0.598 ± 0.036	0.540 - 0.640	8
Threonine	0.596 ± 0.056 0.501 ± 0.051	0.430 - 0.590	8
ryptophan	0.126 ± 0.014	0.430 = 0.350 0.110 = 0.150	8
Syrosine	0.120 ± 0.014 0.390 ± 0.056	0.110 = 0.150 0.280 = 0.460	8
/aline	0.640 ± 0.049	0.280 - 0.400 0.550 - 0.690	8
Essential Fatty Acids (% of total diet))		
Linoleic	3.97 ± 0.284	3.59 - 4.54	8
inolenic	0.30 ± 0.042	0.21 - 0.35	8
Vitamins			
Vitamin A (IU/kg)	$4,570 \pm 1,223$	2,780 - 8,140	24
/itamin D (IU/kg)	1,000 ^a	_,,	
X-Tocopherol (ppm)	82.2 ± 14.08	62.2 - 107.0	8
Thiamine (ppm) ^b	8.0 ± 1.09	6.0 - 10.3	24
Riboflavin (ppm)	5.6 ± 1.12	4.20 - 7.70	8
Jiacin (ppm)	74.3 ± 5.94	66.4 - 85.8	8
Pantothenic acid (ppm)	22.5 ± 3.96	17.4 - 29.1	8
byridoxine (ppm) ^b	9.04 ± 2.37	6.4 - 12.4	8
olic acid (ppm)		1.26 - 2.32	8
Biotin (ppm)	1.64 ± 0.38 0.333 + 0.15	0.225 - 0.704	8 8
/itamin B ₁₂ (ppb)	$\begin{array}{c} 0.333 \pm 0.15 \\ 68.7 \pm 63.0 \end{array}$	0.223 = 0.704 18.3 - 174.0	8 8
Choline (ppm) ^b			8 8
nomie (ppm)	3,155 ± 325	2,700 - 3,790	δ
Ainerals	0.062 + 0.047	0.867 - 1.050	24
Calcium (%)	0.963 ± 0.047		24
Phosphorus (%)	0.567 ± 0.025	0.496 - 0.620	24
Potassium (%)	0.659 ± 0.022	0.627 - 0.691	8
Chloride (%)	0.357 ± 0.027	0.300 - 0.392	8
odium (%)	0.189 ± 0.019	0.160 - 0.212	8
Aagnesium (%)	0.199 ± 0.009	0.185 - 0.213	8
ulfur (%)	0.178 ± 0.021	0.153 - 0.209	8
ron (ppm)	160 ± 14.7	135 – 177	8
Aanganese (ppm)	50.3 ± 4.82	42.1 - 56.0	8
Cinc (ppm)	50.7 ± 6.59	43.3 - 61.1	8
Copper (ppm)	6.29 ± 0.828	5.08 - 7.59	8
odine (ppm)	0.461 ± 0.187	0.233 - 0.843	8
Chromium (ppm)	0.542 ± 0.128	0.330 - 0.707	7
Cobalt (ppm)	0.23 ± 0.049	0.20 - 0.30	7

^a From formulationAs hydrochloride (thiamine and pyridoxine) or chloride (choline)

	Mean ± Standard Deviation ^b	Range	Number of Samples
Contaminants			
Arsenic (ppm)	0.24 ± 0.126	0.10 - 0.50	24
Cadmium (ppm)	0.05 ± 0.014	0.04 - 0.10	24
Lead (ppm)	0.09 ± 0.028	0.06 - 0.17	24
Mercury (ppm)	< 0.02		24
Selenium (ppm)	0.16 ± 0.032	0.11 - 0.26	24
Aflatoxins (ppb)	<5.00		24
Vitrate nitrogen (ppm)	16.6 ± 7.55	9.04 - 39.6	24
Vitrite nitrogen (ppm) ^c	0.73 ± 0.39	0.61 - 2.00	24
BHA (ppm) ^d _d	1.1 ± 0.37	1.0 - 2.5	24
BHT (ppm) ^d	1.1 ± 0.21	1.0 - 1.8	24
Aerobic plate count (CFU/g) ^e	$283,250 \pm 477,839$	41,000 - 1,000,000	4
Coliform (MPN/g)	1.2 ± 2.7	-9	24
Escherichia coli (MPN/g)	(-1.2 ± 2.7)	0 - 9	24 24
Salmonella (MPN/g)			24
Fotal nitrosoamines (ppb) ^f	Negative 5.3 ± 3.75	2.1 - 20.9	24 24
V Nitrogo dimethyloming (mh) ^f	2.3 ± 1.69	2.1 - 20.9 1.0 - 6.4	24 24
V-Nitrosodimethylamine (ppb) ^f			
V-Nitrosopyrrolidine (ppb) ^I	3.0 ± 2.8	1.0 - 14.5	24
Pesticides (ppm)			
x-BHC	< 0.01		24
3-BHC	< 0.02		24
/-BHC	< 0.01		24
5-BHC	< 0.01		24
Ieptachlor	< 0.01		24
Aldrin	< 0.01		24
Ieptachlor epoxide	< 0.01		24
DDE	< 0.01		24
DDD	< 0.01		24
DDT	< 0.01		24
ICB	< 0.01		24
Airex	< 0.01		24
Aethoxychlor	<0.05		24
Dieldrin	<0.01		24
Endrin	<0.01		24
Telodrin	<0.01		24
Chlordane	<0.05		24
Toxaphene	<0.10		24
Estimated PCBs	<0.20		24
Ronnel	<0.20		24
Ethion	<0.02		24
rithion	<0.02		24
Diazinon	<0.05		24
fethyl chlorpyrifos	<0.10 0.079 ± 0.061	0.020 - 0.217	24 24
Aethyl parathion		0.020 - 0.21 /	
2 I	<0.02		24
thyl parathion	<0.02	0.000 0.010	24
Aalathion	0.263 ± 0.570	0.020 - 2.810	24
Endosulfan I	<0.01		24
Endosulfan II	<0.01		24
Endosulfan sulfate	< 0.03		24

TABLE G4 Contaminant Levels in NTP-2000 Rat and Mouse Ration^a

a CFU=colony-forming units; MPN=most probable number; BHC=hexachlorocyclohexane or benzene hexachloride
 b For values less than the limit of detection, the detection limit is given as the mean.
 c Sources of contamination: alfalfa, grains, and fish meal
 c Sources of contamination: soy oil and fish meal
 c Sources of contamination: alfalfa, grains, and fish meal

 e_{f} Nonirradiated samples; microbial counts for 20 irradiated samples were below the detection limit. f

All values were corrected for percent recovery.

APPENDIX H SENTINEL ANIMAL PROGRAM

Methods	 42
Results	 43

SENTINEL ANIMAL PROGRAM

METHODS

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via serology on sera from extra (sentinel) animals in the study rooms. These animals and the study animals are subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Serum samples were collected from randomly selected rats and mice during the 2-year studies. Blood from each animal was collected and allowed to clot, and the serum was separated. The samples were processed appropriately and sent to Microbiological Associates, Inc. (Rockville, MD), for determination of antibody titers. The laboratory serology methods and viral agents for which testing was performed are tabulated below; the times at which blood was collected during the studies are also listed. At 18 months, live mice were shipped to Microbiological Associates, Inc. for evaluation of viral serology and bacterial profile, including *Helicobacter hepaticus*.

Method and Test	Time of Analysis
RATS	
ELISA	
Mycoplasma arthritidis	6 months and study termination
Mycoplasma pulmonis	6 months and study termination
PVM (pneumonia virus of mice)	6, 12, and 18 months, study termination
RCV/SDA	
(rat coronavirus/sialodacryoadenitis virus)	6, 12, and 18 months, study termination
Sendai	6, 12, and 18 months, study termination
Immunofluorescence Assay	
M. arthritidis	Study termination
Parvovirus	Study termination
Hemagglutination Inhibition	
H-1 (Toolan's H-1 virus)	6, 12, and 18 months
KRV (Kilham rat virus)	6, 12, and 18 months

Method and Test MICE

Bacterial Assays Oral Fecal

ELISA

Ectromelia virus EDIM (epizootic diarrhea of infant mice) GDVII (mouse encephalomyelitis virus) LCM (lymphocytic choriomeningitis virus) Mouse adenoma virus-FL MHV (mouse hepatitis virus) *M. arthritidis M. pulmonis* PVM Reovirus 3 Sendai

Immunofluorescence Assay Ectromelia virus GDVII *Helicobacter spp.* Mouse adenoma virus-FL MCMV (mouse cytomegalovirus) Parvovirus

Hemagglutination Inhibition K (papovavirus) MVM (minute virus of mice) Polyoma virus

<u>Time of Analysis</u>

18 months18 months

6, 12, and 18 months, study termination 6, 12, and 18 months, study termination 6, 12, and 18 months, study termination 6, 12, and 18 months, study termination 6, 12, and 18 months, study termination 6, 12, and 18 months, study termination 12 and 18 months, study termination 12 and 18 months, study termination 6, 12, and 18 months, study termination

12 months 12 and 18 months 18 months Study termination 12 and 18 months, study termination Study termination

6, 12, and 18 months 6, 12, and 18 months 6, 12, and 18 months

RESULTS

For the 2-year study in rats, all serology tests were negative. Bacterial profiles of sentinel mice at 18 months indicated *Enterococcus faecalis* in five males. These had no impact on the study results. Two mice had positive titers for *M. arthritidis* at 12 months. Further evaluation of the samples positive for *M. arthritidis* by immunoblot and Western blot procedures indicated that the positive titers may have been due to cross reaction with antibodies of nonpathogenic *Mycoplasma* or other agents. Only sporadic samples were positive and there were no clinical findings or histopathologic changes of *M. arthritidis* infection in animals with positive titers. Accordingly, *M. arthritidis*-positive titers were considered false positives.

APPENDIX I DNA ADDUCT CHARACTERIZATION STUDIES

INTRODUCTI	ION	247
MATERIALS	AND METHODS	247
RESULTS		252
DISCUSSION		257
REFERENCES	S	258
FIGURE I1	Reversed-Phase HPLC Analysis of Riddelliine Metabolites	
	Formed from Metabolism of Riddelliine by PB-Microsomes	261
TABLE I1	In vitro Metabolism of Riddelliine by Liver Microsomes from Female F344/N Rats	261
FIGURE I2	Reversed-Phase HPLC Purification	
	of the Synthetically Prepared DHR-3'-dGMP Adducts I and II	262
FIGURE I3	(A) Ultraviolet-Visible Absorption Spectra and (B) CD Spectra	
	of the Synthetically Prepared Epimeric DHR-3'-dGMP Adducts I and II	
	Obtained from HPLC Purification	263
FIGURE I4	Negative Ion Electrospray Mass Spectra	
	of Synthetically Prepared DHR-3'-dGMP Adducts I (A) and II (B)	264
FIGURE I5	Proton NMR Spectrum (500 MHz) of the Synthetically Prepared	
	DNA Adduct Standards Identified as the Mixture of DHR-3'-dGMP Adducts I and II	265
TABLE I2	500 MHz ¹ H NMR Spectral Data	
	of DHR, 3'-dGMP, DHR-3'-dGMP, 5'-dGMP, and DHR-5'-dGMP	266
FIGURE I6	HPLC Purification of DHR-5'-dGMP	267
FIGURE I7	Negative Ion Electrospray Mass Spectrum of DHR-5'-dGMP	267
FIGURE I8	HPLC Separation of DHR-3',5'-dG-bisphosphate Adducts Formed from the Reaction	
	of DHR-3'-dGMP with Cold ATP Catalyzed by Cloned T4 PNK Following HPLC	268
FIGURE I9	Negative Ion Electrospray Mass Spectrum of DHR-3',5'-dG-bisphosphate	269
FIGURE I10	HPLC Separation of DHR-3'-dAMP	270
FIGURE I11	Negative Ion Electrospray Mass Spectra of Four Isomeric DHR-3'-dAMP Adducts	
	Prepared from Reaction of DHR and 3'-dAMP Followed by HPLC Purification	271
FIGURE I12	Effect of Micrococcal Nuclease (MN) and Spleen Phosphodiesterase (SPD) Concentration	
	on ³² P-Postlabeling/HPLC Analysis of DHR-Modified DNA Adducts Contained	
	in DNA from Reaction of DHR and Calf Thymus DNA	272
FIGURE I13	Effect of Micrococcal Nuclease (MN) and Spleen Phosphodiesterase (SPD) Concentration	
	on ³² P-Postlabeling/HPLC Analysis of a Mixture of 8.3 fmol of DHR-3'-dGMP	
	and 20 fmol of DHR-3'-dAMP Adducts	273
	³² P-Postlabeling/HPLC Analysis of DHR-Derived DNA Adducts	274
TABLE I3	³² P-Postlabeling/HPLC Quantitation of Riddelliine-Derived DNA Adducts in Liver DNA	
	of Female F344/N Rats Administered Riddelliine by Gavage for 3 Months	275
TABLE I4	³² P-Postlabeling/HPLC Quantitation of Riddelliine-Derived DNA Adducts in Liver DNA	
	of Female F344/N Rats Administered Riddelliine by Gavage for 6 Months	275
FIGURE I15	Formation of DHR-3'-dGMP Adducts I and II Contained in Liver DNA	
	of Female F344/N Rats Administered Riddeliine by Gavage for 3 or 6 Months	276
FIGURE I16	Total Riddelliine-Derived DNA Adduct Formation in Liver DNA	
	of Female F344/N Rats Administered Riddeliine by Gavage for 3 or 6 Months	277
FIGURE I17	Reversed-Phase HPLC Analysis of Riddelliine Metabolites Formed	
------------	---	-----
	from Metabolism of Riddelliine by Human Liver Microsomes	278
TABLE I5	³² P-Postlabeling/HPLC Quantitation of Total DHR-Derived DNA Adducts	
	Formed from Rat and Human Liver Microsomal Metabolism of Riddelliine	
	in the Presence of Calf Thymus DNA	278
FIGURE I18	Total DHR-Derived DNA Adducts Formed from Metabolism of Riddelliine	
	by Rat or Human Liver Microsomes in the Presence of Calf Thymus DNA	279
FIGURE I19	³² P-Postlabeling/HPLC Analysis of DHR-Derived Adducts Formed	
	from Metabolism of Riddelliine by Liver Microsomes	280

DNA ADDUCT CHARACTERIZATION STUDIES

INTRODUCTION

The mechanistic studies reported here include metabolic activation of riddelliine and identification of activated metabolites, development and validation of a ³²P-postlabeling/HPLC method for identification of riddelliinederived DNA adducts, detection and quantitation of these adducts in livers of female F344/N rats orally gavaged with riddelliine for 3 or 6 months, and determination of metabolic activation of riddelliine mediated by human liver microsomes and riddelliine-DNA adduct formation *in vitro* to determine the relevance of the interspecies mechanistic data.

MATERIALS AND METHODS

Riddelliine was obtained from the NTP (Research Triangle Park, NC). Phenobarbital (sodium salt), calf thymus DNA (sodium salt, type I), 2'-deoxyguanosine-3'-monophosphate (sodium salt) (3'-dGMP), 2'-deoxyguanosine-5'-monophosphate (free acid) (5'-dGMP), adenosine 5'-triphosphate (disodium salt) (ATP), glucose-6-phosphate, glucose-6-phosphate dehydrogenase, nicotinamide adenine dinucleotide phosphate (NADP⁺), nuclease P1, micrococcal nuclease (MN), spleen phosphodiesterase (SPD), bicine, spermidine, and dithiothreitol were purchased from Sigma Chemical Co. (St. Louis, MO). Monocrotaline, *o*-bromanil, and barium hydroxide octahydrate were purchased from Aldrich Chemical Co. (Milwaukee, WI). Cloned T4 polynucleotide kinase (PNK) was obtained from U.S. Biochemical Corp. (Cleveland, OH). [γ -³²P]-Adenosine-5'-triphosphate ([γ -³²P]-ATP; specific activity of at least 7,000 Ci/mmol) was obtained from ICN Biomedicals, Inc. (Costa Mesa, CA). All other reagents were obtained through commercial sources and were the highest grade available. All solvents used were high-performance liquid chromatography (HPLC) grade.

Retronecine was prepared from barium hydroxide-catalyzed hydrolysis of monocrotaline by the procedure of Hoskins and Crout (1977). A solution of monocrotaline (1 gram, 3.1 mmol) and barium hydroxide octahydrate (2 grams, 6.3 mmol) in water (10 mL) was heated at reflux for 2 hours. The solution was cooled, treated with carbon dioxide (dry ice), filtered, acidified with 1 N hydrochloric acid to adjust the pH to 3 to 4, and then extracted repeatedly with ethyl ether. The aqueous phase was collected and concentrated under reduced pressure. The residue was then passed through a column of AG 1-X8 ion-exchange resin (20 grams, hydroxide form, 200-400 mesh; Bio-Rad Laboratories, Hercules, CA) and eluted with water until the eluate was neutral. The combined eluates were evaporated and extracted three times with hot acetone. After filtration to remove the precipitate, the filtrate was collected and the solvent was removed under reduced pressure. The resulting residue was crystallized from acetone to give 392 mg retronecine in 81% yield.

As reported by Christie *et al.* (1949) and Mattocks *et al.* (1989), DHR can be prepared either by dehydrogenation of retronecine or dehydration of retronecine-*N*-oxide. Dehydrogenation of retronecine was chosen for the DHR preparation. Briefly, to a solution of retronecine (100 mg, 650 μ mol) in chloroform (CHCl₃) (30 mL) in an ice bath was added *o*-bromanil (300 mg, 708 μ mol) in CHCl₃ (6 mL) dropwise with stirring, in 2 minutes. The hydroquinone by-product was removed by extraction with anion exchange AG 1-X8 resin (200-400 mesh, hydroxide form). The organic phase was separated and concentrated under reduced pressure, providing practically pure DHR, which was recrystallized from light petroleum ether giving pure DHR as white prisms in 40% yield.

Riddelliine-*N*-oxide was synthesized by oxidation of riddelliine (350 mg, 1 mmol) in hot alcohol (5 mL) with 30% hydrogen peroxide (0.1 mL, 1 mmol) at 60° C for 4 hours (Christie *et al.*, 1949). Upon removal of solvent under reduced pressure, the residue was partitioned between water and CHCl₃. The aqueous phase was collected and concentrated under reduced pressure, providing crude riddelliine-*N*-oxide in 85% yield. Pure riddelliine-*N*-oxide was obtained by recrystallization from ethanol; mass m/z 365 (M⁺).

Metabolism of Riddelliine Leading to Activated Metabolites

For the studies of microsomal metabolism of riddelliine, female F344/N rats were obtained from the breeding colony of the National Center for Toxicological Research (NCTR) as weanlings. Liver microsomes of female F344/N rats treated with phenobarbital (PB-microsomes) were prepared according to published procedures (Chou *et al.*, 1987). The rats were intraperitoneally injected once daily with 75 mg phenobarbital/kg body weight in 0.5 mL water for three consecutive days. Twenty-four hours after the final injection, rats were sacrificed by carbon dioxide asphyxiation. The livers were perfused with cold 1.15% potassium chloride via the portal vein and immediately stored at -78° C. The liver microsomes were prepared from the thawed livers by differential centrifugation methods (Chou *et al.*, 1987) and stored at -78° C prior to use. Liver microsomes of untreated female F344/N rats (control microsomes) were prepared similarly. Protein concentrations were determined using a protein assay based on the Bradford method using a Bio-Rad protein detection kit (Bio-Rad Laboratories, Hercules, CA).

Metabolism of riddelliine by PB-microsomes was performed in a 1.0 mL incubation volume containing 100 mM sodium phosphate buffer (pH 7.6), 5 mM magnesium chloride, 1 mM NADP⁺, 8 mM glucose 6-phosphate, 2 units glucose-6-phosphate dehydrogenase, 4 mg PB-microsomes, and riddelliine (2 μ mol in 50 μ L DMSO) at 37° C for 30 minutes. The incubation mixture was centrifuged at 105,000 g for 30 minutes at 4° C to remove microsomal proteins. The supernatant was collected and the metabolite mixture was separated by reversed-phase HPLC employing a Prodigy 5 μ m ODS column (4.6 mm x 250 mm, Phenomenex, Torrance, CA) eluted isocratically with 20 mM ammonium acetate (NH₄OAc) buffer (pH 7) at 1 mL/minute for 10 minutes followed by a 40-minute linear gradient from 20 mM NH₄OAc buffer (pH 7) to 50% methanol in the buffer. The metabolite mixture was subsequently analyzed by liquid chromatography/mass spectrometry (LC/MS).

Metabolism of riddelliine by control-microsomes was similarly conducted and the metabolites were analyzed by HPLC and LC/MS.

Development of a ³²P-Postlabeling/HPLC Method for Detection of DHR-Derived DNA Adducts *In vivo* and *In vitro*:

Synthesis of 3'-monophosphate-7-(deoxyguanosin- N^2 -yl)dehydrosupinidine (DHR-3'-dGMP) adducts was performed by purging a solution of 3'-dGMP (20 mg, 60 µmol) in 4 mL of 20 mM K₂CO₃ buffer (pH 8.0) with argon for 5 minutes. DHR (18 mg, 120 µmol) was added, and the resulting solution was stirred anaerobically at 60° C for 6 hours. The reaction mixture was then filtered through a 0.22 µm Millipore filter. The filtrate was concentrated to half of the volume under reduced pressure and the adducts were purified by HPLC on a Whatman Partisil ODS-3 (4.6 mm × 250 mm; Whatman, Maidstone, Kent, England) column eluted with 20 mM K₂CO₃ buffer (pH 8.0) isocratically at a flow rate of 1 mL/minute, and monitored at 254 and 220 nm. The DHR-3'-dGMP adducts were further purified on an analytical Prodigy 5 µm ODS column (4.6 mm × 250 mm; Phenomenex) eluted isocratically with 10% methanol in 20 mM NH₄OAc buffer (pH 7.0) at flow rate of 1 mL/minute. The synthesis was repeated on a larger scale so that a greater quantity of DHR-3'-dGMP adducts was obtained for structural determination and for use as external standards for ³²P-postlabeling/HPLC.

Synthesis of DHR-2'-deoxyguanosine-3',5'-bisphosphate (DHR-dG 3',5'-bisphosphate) adducts was performed by incubating a solution of 10 nmol DHR-3'-dGMP in 50 μ L water with a 50 μ L reaction mix containing 0.4 μ mol ATP, 150 units PNK, 40 mM bicine-NaOH (pH 9.5), 20 mM magnesium chloride, 2 mM spermidine, and 20 mM dithiothreitol (DTT) at 37° C for 40 minutes. The resulting products were separated by HPLC using a Prodigy 5 μ m ODS column (4.6 mm × 250 mm; Phenomenex), eluted isocratically with 10% methanol in 20 mM NH₄OAc buffer at 1 mL/minute, and monitored at 254 nm with a Waters 996 photodiode array detector (Waters, Milford, MA).

Synthesis of DHR-2'-deoxyguanosine-5'-monophosphate (DHR-5'-dGMP) adducts was performed following the procedure of Wickramanayake *et al.* (1985). DHR-5'-dGMP was synthesized by reaction of DHR (18 mg, 120 μ mol) with 5'-dGMP (64 mg, 180 μ mol) in aqueous K₂CO₃ buffer at pH 7.4 at 60° C for 6 hours. The

Riddelliine, NTP TR 508

precipitate was removed by filtration and the products in the filtrate were separated by semipreparative HPLC. The crude DHR-5'-dGMP adducts were isolated using a Prodigy 5 μ ODS column (10 mm × 250 mm; Phenomenex) equilibrated with 20 mM NH₄OAc buffer (pH 7.0). After applying the sample, the column was eluted with a 40-minute linear gradient from 20 mM NH₄OAc buffer to 50% methanol in 20 mM NH₄OAc buffer with a flow rate of 2 mL/minute. The adducts were further purified on an analytical Prodigy 5 μ ODS column (4.6 mm × 250 mm; Phenomenex) eluted isocratically with 20% methanol in 8 mM NH₄OAc buffer (pH 7.0) at flow rate of 1 mL/minute. The collected fractions were lyophilized and stored at -70° C until use.

Synthesis of 3'-monophosphate-7-(deoxyadenosin- N^6 -yl)dehydrosupinidine (DHR-3'-dAMP) adducts was performed in a manner similar to the synthesis of DHR-3'-dGMP. DHR-3'-dAMP was prepared by reaction of 3'-dAMP (43.2 mg, 130 µmol) in 8 mL of 20 mM K₂CO₃ buffer (pH 8.0) with DHR (40 mg, 261 µmol) at 60° C for 40 hours. The resulting products were separated by HPLC using a Prodigy 5 µ ODS column (4.6 mm × 250 mm; Phenomenex) eluted at 1.0 mL/minute by a 40-minute linear gradient from 20 mM NH₄OAc to 50% methanol in 20 mM NH₄OAc buffer. The collected adducts were further purified by reversed-phase HPLC using the same conditions for the purification of DHR-3'-dGMP.

To achieve chemical reaction of DHR with calf thymus DNA, purified calf thymus DNA (2.5 mg, 7.5 μ mol) in 2.5 mL 20 mM K₂CO₃ buffer (pH 7.5) was reacted with 64 nmol of DHR at 37° C for 40 minutes. After incubation, the reaction mixture was extracted twice with 2.5 mL of chloroform/isoamyl alcohol (24/1). The DNA in the aqueous phase was precipitated by adding 250 μ L of 3 M sodium acetate followed by an equal volume of cold isopropanol and washed with 70% ethanol. After redissolving in 20 mM K₂CO₃ buffer (pH 7.5), the DNA concentration and purity were analyzed spectrophotometrically. The DNA was stored at -78° C prior to ³²P-postlabeling/HPLC analysis.

Initially, conventional ³²P-postlabeling enzymatic digestion procedures were employed for analysis of DHR-3'-dGMP and DHR-3'-dAMP adducts (Reddy and Randerath, 1986). Briefly, 10 μ g of DNA (in 10 μ L distilled water) from reaction of DHR and calf thymus DNA was enzymatically hydrolyzed to the corresponding 2'-deoxyribonucleoside-3'-monophosphates at 37° C for 4 hours by 1.25 units of MN and 62 milliunits of SPD contained in a 20 μ L solution of 20 mM sodium succinate and 10 mM of calcium chloride (pH 6.0). Two enrichment methods, nuclease P1 treatment and *n*-butanol extraction, were employed. For the nuclease P1 method, the MN/SPD digested DNA solutions were incubated at 37° C for 40 minutes with nuclease P1 (8 μ g, in 4 μ L of buffer containing 0.24 M sodium acetate and 2 mM zinc chloride at pH 5.0) to remove normal 3'-monophosphate-2'-deoxyribonucleosides. The resulting incubation mixture was then evaporated to dryness under reduced pressure and redissolved in 10 μ L of distilled water for ³²P-postlabeling. For enrichment by *n*-butanol extraction, the incubation mixture (30 μ L) was extracted with water-saturated *n*-butanol (2 × 100 μ L) in the presence of the phase-transfer agent, tetrabutylammonium chloride. A buffer solution (4 μ L) containing 50 mM bicine (pH 9.0) and 0.1 M DTT (2:1) was added, and the *n*-butanol was removed under reduced pressure. The samples were redissolved in 25 μ L of water for ³²P-postlabeling.

To determine optimal conditions for DNA digestion and adduct enrichment, enzymatic digestion of DNA from reaction of DHR and calf thymus DNA was also conducted with different quantities of digestion enzymes, including using 1/4, 1/8, 1/16, and 1/32 of the MN and SPD quantities employed above. To determine whether or not MN and SPD enzymes would affect the yield of DHR-derived DNA adducts, incubation of the synthetically prepared DHR-3'-dGMP and DHR-3'-dAMP adducts (30-60 fmol) with MN/SPD was compared.

Each MN/SPD-digested DNA sample was dissolved in 10 μ L of distilled water and ³²P-phosphorylated by incubating with 10 μ L of PNK mix containing 100 μ Ci of [γ -³²P]-ATP (specific activity of at least 7,000 Ci/mmol), 12 units of PNK, and 2 μ L of 10X PNK buffer (200 mM bicine-NaOH, pH 9.6, 100 mM DTT, 100 mM MgCl₂, and 10 mM spermidine) at 37° C for 40 minutes. The labeled mixture was injected onto a Prodigy 5 μ ODS column (4.6 mm × 250 mm; Phenomenex) and eluted isocratically with 20 mM NaH₂PO₄ buffer (pH 4.5) for 10 minutes, followed by a 60-minute linear gradient of 20 mM NaH₂PO₄ (pH 4.5) to 15% methanol in 20 mM NaH₂PO₄ buffer. The HPLC flow rate was 1.0 mL/minute, and the scintillation fluid flow rate was 3.0 mL/minute.

To avoid interference by the high radioactivity of the free ³²P and the unreacted [γ -³²P]-ATP, the on-line FLO-ONE radioactivity detector (Radiomatic Instruments, Tampa, FL) was equipped with a diverter, and the eluent from the first 40 minutes was diverted away from the radioactivity detector.

Besides using 10 μ g of DNA, ³²P-postlabeling/HPLC analysis of DHR-3'-dGMP was also conducted with 5, 3, 1, and 0.5 μ g of DNA under conditions similar to those described above.

An aliquot containing 10 µg DNA from reaction of DHR and calf thymus DNA was digested by MN/SPD, enriched by nuclease P1, and ³²P-postlabeled as described above. As a control experiment, 8.3 fmol of the synthetic DHR-3'-dGMP was also ³²P-postlabeled in parallel under the same conditions. To analyze the [³²P]-DHR-3',5'-dG-bisphosphate adducts, the labeled mixture was applied onto 10 cm × 10 cm polyethyleneimine (PEI) cellulose plates (Macherey-Nagel, Düren, Germany) and a two-dimensional development as previously described (Reddy and Randerath, 1986; Gupta, 1993) was carried out. Autoradiography was performed on DuPont Cronex (DuPont Corp., Wilmington, DE) films and the radioactivity on the thin-layer chromatography (TLC) spots was quantitated by Cerenkov counting.

The labeled mixture containing [³²P]-DHR-3',5'-dG-bisphosphate adducts obtained above was adjusted to pH 5.0 with 4 μ L of 0.4 M acetic acid and then 3'-dephosphorylated with 17.5 μ g of nuclease P1 (5 μ g/ μ L in 0.42 M sodium acetate and 2 mM ZnCl₂) at 37° C for 5 hours. The dephosphorylated mixture was then subjected to NaH₂PO₄/methanol elution HPLC analysis under conditions described above.

³²P-Postlabeling/HPLC Analysis of DHR-Derived DNA Adducts in NTP Female F344/N Rat Liver Samples

A DNA sample that served as a negative control was prepared by reaction of purified calf thymus DNA (2.5 mg, 7.5 μ mol, dissolved in 2.5 mL distilled water) with riddelline (64 nmol) at 37° C for 40 minutes. After incubation, the reaction mixture was extracted twice with 10 mL of CHCl₃ (24:1). The DNA in the aqueous phase was precipitated by adding 250 μ L of 3 M sodium acetate followed by an equal volume of cold isopropanol and washed with 70% ethanol. After being dissolved in 20 mM K₂CO₃ buffer (pH 7.5), the DNA concentration and purity were analyzed spectrophotometrically. The DNA was stored at -78° C prior to ³²P-postlabeling/HPLC analysis.

In the 2-year NTP gavage study, groups of 6 female F344/N rats were administered riddelliine (5 days/week) in 0.1 M sodium phosphate buffer at doses of 0, 0.01, 0.033, 0.1, 0.33, or 1.0 mg/kg per day until terminal sacrifice at 3 or 6 months. After sacrifice, liver tissue was collected, stored at -78° C, and shipped to NCTR for DNA adduct analysis. Following extraction using RecoverEase DNA Isolation Kit (Stratagene, Cedar Creek, TX), DHR-derived DNA adducts contained in the liver samples were analyzed according to the developed ³²P-postlabeling/HPLC methodology described above.

To identify the DHR-derived DNA adducts in the NTP liver samples, DNA from reaction of DHR and calf thymus DNA was ³²P-postlabeled and analyzed by HPLC in parallel. For quantitation of each sample, the two epimeric DHR-3'-dGMP synthetic standards, in amounts that closely matched the range of modification in the liver DNA samples, were also analyzed in parallel. To provide a negative control, DNA from the chemical reaction of riddelliine with calf thymus DNA was also ³²P-postlabeled and subjected to HPLC analysis.

The levels of adducts *in vivo* were compared by a two-way analysis of variance (ANOVA) combined with Dunnett's test with dose and time as factors and total and individual adducts as the dependent variable (Sigmastat, version 2.0, SPSS, Inc., Chicago, IL). Separate analyses to compare individual adducts were performed using Student's *t*-test.

Human Liver Microsome-Mediated DHR-Derived DNA Adduct Formation

Human livers were obtained from organ donor samples through a gift from Dr. Fred F. Kadlubar. Four male (#4886, 80-year-old; #9504, 62-year-old; #9603, 57-year-old; and #9310, 50-year-old) and four female (#5807, 69-year-old; #C055G, 52-year-old; #9603, 50-year-old, and #9502, 30-year-old) liver samples were used for study. Donor #9502 was African; all other donors were Caucasian.

Human liver microsomes were prepared and stored as described by Culp *et al.* (1997). Protein concentrations were determined using the Bio-Rad protein detection kit described earlier (Bio-Rad Laboratories). For comparison, liver microsomes of female F344/N rats obtained from the NCTR breeding colony were similarly prepared.

The metabolism of riddelliine by human liver microsomes was first conducted in a 2.0 mL incubation volume containing 100 mM sodium phosphate buffer (pH 7.6), 5 mM MgCl₂, 2 mM NADP⁺, 8 mM glucose-6-phosphate, 4 units glucose-6-phosphate dehydrogenase, riddelliine (3.0 mM in 40 μ L DMSO), and 7.0 mg microsomal protein at 37° C for 30 minutes. After incubation, the incubation mixture was centrifuged at 105,000 × g for 30 minutes at 4° C to remove microsomal proteins. The supernatant was collected and the metabolite mixture was separated by reversed-phase HPLC employing a Prodigy 5 μ ODS column (10 mm × 250 mm; Phenomenex) eluted isocratically with 20 mM NH₄OAc buffer (pH 7.0) to 50% methanol in the buffer.

The metabolism of riddelliine by human liver microsomes in the presence of calf thymus DNA was conducted in a 0.5 mL incubation volume containing 100 mM sodium phosphate buffer (pH 7.6), 5 mM magnesium chloride, 1 mM NADPH, 0.1 mg microsomal protein, and calf thymus DNA (1 mg/mL) at 37° C for 5 minutes. After riddelliine (0.01, 0.025, 0.05, 0.1, or 0.25 μ M) was added, incubation was continued for 30 minutes. After incubation, the reaction was terminated by cooling with ice water, and sequentially extracted with 0.5 mL phenol, twice with 0.5 mL phenol:chloroform:isoamyl alcohol (25:24:1), and 0.5 mL chloroform:isoamyl alcohol (24:1). The DNA in the aqueous phase was precipitated by adding 0.05 mL 5 M sodium chloride followed by an equal volume of cold ethanol and three washes with 70% ethanol. After being dissolved in 300 μ L distilled water, the DNA concentration and purity were analyzed spectrophotometrically. The DNA was stored at -78° C prior to ³²P-postlabeling/HPLC analysis.

A Waters HPLC system (Waters, Inc.), consisting of a Model 600 controller, a Model 996 photodiode array detector, and a pump, was used for the separation and purification of DHR-derived DNA adducts. Electrospray (ES) mass spectrometry was performed using a Platform II single quadrupole instrument (Micromass, Inc., Altrincham, England). ES tandem mass spectrometry was performed using a Quattro LC (Micromass, Inc.). Separate MS functions were used to acquire full-scan data at a low and a high cone voltage in a single chromatographic run (e.g., 20 and 40 V, respectively, for m/z 100-600). ES tandem mass spectrometry was performed using the negative and/or positive ion mode with a source temperature of 80° C for infusion with a syringe pump. Product ion scans were obtained from collisional-induced dissociation of selected ions using a cone voltage between 37 and 40, and collision energies between 24 and 31 eV. The collision gas was argon at pressures between 2×10^{-3} and 4×10^{-3} mbar. LC/MS samples (5 μ L injection volume) were introduced into the ES probe following separation with a Prodigy 5 µ ODS column (4.6 mm × 250 mm; Phenomenex), eluting with the conditions previously described, and split to approximately 0.2 mL/minute entering the probe. The ¹H nuclear magnetic resonance (NMR) experiments were carried out on a Bruker AM 500 MHz spectrometer (Bruker Instruments, Billerica, MA) at 301 K. Samples were dissolved in 0.6 mL deuterated water (D₂O). The D₂O peak was assigned a resonance of 4.7 ppm. Typical NMR spectral acquisition parameters were as follows: data size, 32K; flip angle, 90 degrees; sweep width, 6,000 Hz; and relaxation delay, 1 second. Nuclear Overhauser enhancement (NOE) difference and homonuclear coupling NMR experiments were conducted to assist in proton resonance assignment. Circular dichroism (CD) spectra of DHR-3'-dGMP adducts were determined with a quartz cell of 1 cm path length at ambient temperature on a Jasco 500A spectropolarimeter (Jasco, Inc., Easton, MD). CD spectra are expressed by ellipticity (in millidegrees) for 20 mM NH₂OAc solutions that read 1.0 absorbance in an ultraviolet (UV)-visible spectrophotometer at the wavelength of maximum absorption in a quartz cell of 1-cm path length.

RESULTS

Metabolism of Riddelliine Leading to Activated Metabolites

Riddelliine was incubated aerobically with PB-microsomes for 30 minutes. Upon removal of microsomal protein by ultracentrifugation, the metabolism products contained in the supernatant were separated and analyzed by reversed-phase HPLC (Figure I1). The chromatographic peak eluting at 43 to 48 minutes contained the recovered substrate, riddelliine. By comparison of the HPLC retention times, UV-visible absorption, and mass spectral data (not shown) with those of the synthetically prepared standards, the metabolites contained in chromatographic peaks eluting at 28.3 and 35.2 minutes were identified as DHR and riddelliine-*N*-oxide. Because the chromatographic peaks eluted prior to 26 minutes were also detected from a control incubation to which riddelliine was not added, they were not metabolites. Mass spectral analysis of the materials contained in these peaks (data not shown) confirmed that no metabolites were present.

Metabolism of riddelliine by liver microsomes of untreated rats (control-microsomes) was conducted under similar conditions. Based on comparison of HPLC peak area and UV-visible absorption intensity of the riddelliine-*N*-oxide and DHR metabolites, the rate of metabolism of riddelliine by PB-microsomes was 3.5-fold greater than that by control-microsomes (Table I1).

Development of a ³²P-Postlabeling/HPLC Method for Detection of DHR-derived DNA Adducts *In vivo* and *In vitro*:

Retronecine was prepared from barium hydroxide-catalyzed hydrolysis of monocrotaline by the procedure of Hoskins and Crout (1977). DHR was synthesized by dehydrogenation of retronecine with *o*-bromanil in CHCl₃ (Mattocks *et al.*, 1989). Its structure was confirmed by ¹H NMR spectral analysis: (DMSO-*d*₆): δ 6.53 (d, *J*_{2,3} = 2.5 Hz, 1, H₃), 6.01 (d, *J*_{2,3} = 2.5 Hz, 1, H₂), 4.99 (m, 1, H₇), 4.90 (d, 1, OH₇), 4.36 (m, 1, H₉), 4.32 (m, 1, H₉), 3.97 (m, 1, H₅), 3.77 (m, 1, H₅), 2.61 (m, 1, H₆), 2.17 (m, 1, H₆). The NMR chemical shift assignment of DHR was determined by NOE difference experiments, homonuclear coupling experiments, peak splitting, and peak integration.

DHR-3'-dGMP adducts were synthesized by reaction of DHR with 3'-dGMP. The resulting reaction products were purified by HPLC, first onto a Whatman ODS-3 column to remove most of the excess 3'-dGMP (data not shown) and further purified with a Prodigy 5 μ ODS column (Figure I2). The materials contained in the chromatographic peaks eluted at 21.9 and 25.5 minutes showed a baseline separation and exhibited identical UV-visible absorption spectra (Figure I3a) that were identical to that of DHR-5'-dGMP reported by Wickramanayake *et al.* (1985). These products were also characterized from the ES/MS negative product ion spectra, which were identical (Figure I4). The spectrum included the deprotonated molecule (M-H)⁻ m/z 481, and product ions corresponding to the deprotonated base (m/z 285), deoxyribose-monophosphate (m/z 195), deoxyribose-monophosphate-H₂O (m/z 177), and ions derived from phosphate ion (m/z 97 and 79). The positive ion product spectrum (not shown) contained the protonated molecule (M+H)⁺ of m/z 483, loss of H₂O (m/z 465), the protonated DHR-guanine (m/z 269), dGMP (m/z 348), guanine (m/z 152), and DHR-H₂O (m/z 136). These data suggested that the materials contained in the chromatographic peaks at 21.9 and 25.5 minutes shown in Figure I2 were epimeric DHR-3'-dGMP adducts.

The CD spectra of both adducts were determined (Figure I3b). The CD Cotton effects of the first adduct were a mirror image of those of the second adduct, indicating that these two adducts were a pair of epimers. These CD spectra also had Cotton effects similar to those of 7-(deoxyguanosin-*N*²-yl)dehydrosupinidine previously reported by Wickramanayake *et al.* (1985). The ¹H NMR spectrum of the adduct mixture was determined by NMR decoupling and NOE techniques as well as by comparison of the NMR data of DHR and 3'-dGMP measured under identical conditions (Figure I5 and Table I2). Consequently, based on mass, CD, and NMR spectral analysis, the structures of these two products were characterized as a pair of epimeric DHR-3'-dGMP adducts.

Based on the analysis by proton NMR using an internal standard (1,4-dioxane), the quantity of these adducts obtained from organic reaction followed by repeated purification was 0.91 mg. Using the UV-visible absorbance measurement in water, the molar extinction coefficient of DHR-3'-dGMP adducts at 254 nm was determined to be $4.7 \times 10^4 \text{ M}^{-1}\text{cm}^{-1}$.

Reactions of DHR and 3'-dGMP were carried out three times, with DHR:3'-dGMP in 1:1, 2:1, and 3:1 molar ratio. The reaction with a ratio of 2:1 provided the highest yield (2.5 %).

Similar to the synthesis and HPLC purification of DHR-3'-dGMP, DHR-5'-dGMP was prepared by reaction of DHR with 5'-dGMP followed by two HPLC separations. The HPLC profile of the second HPLC purification provided a baseline separation of the DHR-5'-dGMP adducts (Figure I6). Negative ion ES mass spectral analysis showed that both of these adducts had product ion spectra that were identical to the DHR-3'-dGMP adducts (Figure I7). The positive ion product spectrum (not shown) contained the protonated molecule (M+H)⁺ of m/z 483, loss of H₂O (m/z 465), the protonated DHR-guanine (m/z 269), dGMP (m/z 348), guanine (m/z 152), and DHR-H₂O (m/z 136).

The ¹H NMR spectrum was assigned by NOE difference experiments, homonuclear coupling experiments, peak splitting, and peak integration. H1' (6.35 ppm) to H5' (4.04 ppm) and H8 (8.77 ppm) were assigned by NOE techniques. The chemical shift and coupling constant assignments are shown in Table I2.

There was a very strong similarity between the chemical shifts of 3'-dGMP and DHR-3'-dGMP, and between 5'-dGMP and DHR-5'-dGMP. The biggest difference between the 3'-dGMP and 5'-dGMP chemical shifts was seen along the backbone H3', H5', and H5'' NMR chemical shifts. There was a very strong similarity between the DHR NMR chemical shifts of DHR-3'-dGMP and the DHR-5'-dGMP.

These adducts had the UV-visible absorption spectra identical to those of the DHR-5'-dG reported by Wickramanayake *et al.* (1985). Thus, based on UV-visible absorption, mass, and NMR spectral analysis, the compounds contained in chromatographic peaks eluted at 25.1 and 27.7 minutes in Figure I6 were identified as DHR-5'-dGMP adducts, respectively. The reaction yield was 0.9%.

DHR-3',5'-dG-bisphosphate was synthesized by 5'-phosphorylation of the synthetically prepared epimeric DHR-3'-dGMP adducts with cold (nonradioactive) ATP catalyzed by PNK. The resulting reaction mixture was purified by reversed-phase HPLC (Figure I8). The chromatographic peaks eluted at 19.2 and 23.8 minutes contained the two recovered substrates, epimeric DHR-3'-dGMP adduct I and adduct II, respectively. The materials contained in chromatographic peaks eluted at 6.2 and at 7.3 minutes, respectively had UV-visible absorption spectra similar to that of DHR-3'-dGMP (Figure I3a). These materials were characterized by analysis of their identical negative ion ES mass spectra (Figure I9). The deprotonated molecule, (M-H)⁻, was m/z 561 and product ions corresponding to loss of H₂O (m/z 543), loss of one H₃PO₄ (m/z 463), loss of the DHR moiety (m/z 426), loss of two H₃PO₄ (m/z 365), the ribose-3',5'-bisphosphate ion (m/z 275), loss of H₂O from the ribose-3',5'-bisphosphate ion (m/z 97), and PO₃⁻ (m/z 79). Based on UV-visible absorption and mass spectral analysis, the structures of these two reaction products were identified as DHR-3',5'-dG-bisphosphate adduct I and DHR-3',5'-dG-bisphosphate adduct II, respectively.

Similar to the synthesis of DHR-3'-dGMP, DHR-3'-dAMP was prepared by reaction of DHR with 3'-dAMP followed HPLC separations. The profile of HPLC purification is shown in Figure 110. The chromatographic peak eluted at 18.2 minutes contained the recovered substrate, DHR. The materials contained in the chromatographic peaks eluted at 13.2, 15, 20.5, and 23.5 minutes were analyzed using LC-ES/MS. As shown in Figures 11A through 11D, these four products had identical mass spectra with (M-H)⁻ ion (m/z 465), M-deoxyribose-PO₄⁻ (m/z 269), deoxyribose-PO₄⁻ (m/z 195), and H₂PO₄⁻ (m/z 97). Thus, based on mass spectral analysis, they were all DHR-3'-dAMP adducts.

³²P-Postlabeling methodology was selected to detect and quantify DHR-modified DNA adducts *in vitro* and *in vivo*. The synthesized epimeric DHR-3'-dGMP adducts with a specific quantity ranging from 1 to 60 fmol were first employed to develop optimal conditions for the entire process, including DNA enzyme digestion, adduct enrichment, ³²P-postlabeling, and HPLC separation. To confirm the ³²P-postlabeling products, [³²P]-DHR-3',5'-dG-bisphosphate, and the cold synthetically prepared DHR-3',5'-dG-bisphosphate adducts I and II were co-chromatographed by HPLC with the ³²P-postlabeling reaction product mixture.

To examine the effect of MN/SPD on ³²P-postlabeling of DHR-3'-dGMP and DHR-3'-dAMP, 10 µg of DNA from reaction of DHR and calf thymus DNA was digested with 1.25 units of MN and 62 mU of SPD, quantities commonly reported for enzyme digestion (Reddy and Randerath, 1986; Gupta, 1993; Nath and Chung, 1994; Chung et al., 1996). No DHR-3',5'-dG-bisphosphate adducts were detected by HPLC (Figure 112a). With a concern that the digestion enzymes may interact with DHR-3'-dGMP and/or [32P]-DHR-3',5'-dG-bisphosphate adducts, optimal quantities of MN and SPD and digestion time were then pursued. Digestion of DNA was repeated by using 312 mU MN and 16 mU SPD; 156 mU MN and 8 mU SPD;, 78 mU MN and 4 mU SPD; and 39 mU MN and 2 mU SPD, respectively (Figures I12b through I12e). As shown in Figures I12c and I12d, the eight chromatographic peaks eluted at 47.6, 48.3, 51.4, 53.9, 55.3, 60.1, 61.0, and 62.6 minutes are designated as P1 through P8, respectively. These chromatographic peaks were not detected from ³²P-postlabeling/HPLC analysis of the untreated calf thymus DNA (Figure I12f) or from incubation of riddelliine with calf thymus DNA in the absence of rat liver microsomes (data not shown). Thus, the eight chromatographic peaks P1 through P8 are all DHR-derived DNA adducts. As compared with the HPLC profile from ³²P-postlabeling/HPLC analysis of the synthetically prepared DHR-3'-dGMP adducts (Figure I13a), the DNA adducts designated as P4 and P6 are [³²P]-DHR-3',5'-dG-bisphosphate adducts derived from DHR-3'-dGMP adduct I and adduct II, respectively (each indicated with an arrow in Figures I12a through I12e). Thus, the results shown in Figure I12 clearly indicate that the use of 78 mU MN and 4 mU SPD provided the highest yield of DHR-3',5'-dG-bisphosphate adducts (Figure I12d).

The conditions for analysis of DHR-3'-dAMP adducts by ³²P-postlabeling were then pursued using different amounts of MN and SPD and different incubation times. As shown in Figures I13a through I13e, similar to DHR-3'-dGMP adducts, the optimal conditions for analysis of DHR-3'-dAMP adducts were also the use of 78 mU MN and 4 mU SPD. These were also the optimal conditions for ³²P-postlabeling a mixture of DHR-3'-dGMP and DHR-3'-dAMP adducts (Figures I14a through I14e).

To measure the enrichment of DHR-3'-dGMP adducts by nuclease P1 incubation, DNA was extracted from the livers of F344/N female rats treated with riddelliine, and 10 µg aliquots were enzymatically digested under optimal conditions (same conditions described in Figure I12d); and the resulting DHR-3'-monophosphate deoxyribonucleosides were enriched by various amounts of nuclease P1 using incubation times ranging from 20 to 40 minutes. The use of 8 µg of nuclease P1 and 20 minutes of incubation at 37° C provided the best enrichment.

Enrichment by *n*-butanol was similarly studied. Following the conventional procedure (Gupta, 1993), the DHR-3'-monophosphate deoxyribonucleosides formed from enzymatic digestion of DNA were fortified with the phasetransfer agent tetrabutylammonium chloride and then extracted four times with *n*-butanol. The adducts collected from the pooled *n*-butanol fractions were ³²P-postlabeled followed by HPLC analysis (data not shown). Based on three trials, the yields of [³²P]-DHR-3',5'-deoxyribonucleoside-bisphosphate were erratic and much lower than those by nuclease P1 enrichment. Therefore, this approach was found to be less satisfactory than nuclease P1 enrichment.

After the synthetically prepared DHR-3'-dGMP adducts, combined synthetically prepared DHR-3'-dGMP and DHR-3'-dAMP adducts, and DNA from reaction of DHR and calf thymus DNA were ³²P-postlabeled under the optimal conditions described above, the resulting [³²P]-DHR-3',5'-deoxyribonucleoside-bisphosphate adducts were separated by HPLC. After a number of trials using different HPLC columns, solvent systems, and elution profiles (data not shown), optimal conditions for separation of the DHR-3',5'-bisphosphate adducts were developed. The developed HPLC profile for separation of the two epimeric DHR-3',5'-dG-bisphosphate adducts is shown in

Figure I13a. The optimal HPLC conditions for separation of the mixture of DHR-3',5'-dG-bisphosphate and DHR-3',5'-dA-bisphosphate adducts are those shown in Figure I13d. Similarly, the optimal HPLC conditions for separation of the DNA adducts from reaction of DHR and calf thymus DNA are those shown in Figure I12d.

Based on experience in employing or developing ³²P-postlabeling/HPLC methodologies for detection of carcinogen-modified DNA adducts (Gupta, 1993), attempts were made to establish reliable conditions for validating interexperimental reproducibility. However, the DNA enzyme digestion products (e.g., DHR-3'-dGMP) and/or ³²P-postlabeling products (e.g., DHR-3',5'-dG-bisphosphate) are highly unstable to the DNA digestion enzymes, incubation media, and experimental conditions. As shown in Figure I12, the yield of ³²P-postlabeling is dependent on the amount of the MN and SPD enzymes employed. It was also found that the storage of DNA, the use of [γ -³²P]-ATP from different batches or the same batch but on a different day, and repreparation of the buffer media can all result in poor interexperimental reproducibility (data not shown). Consequently, it was decided to develop a ³²P-postlabeling/HPLC methodology that allowed the detection and quantitation of up to 30 samples of DNA adducts on the same day.

Thus, intra-experimental reproducibility was determined using the synthetic DHR-3'-dGMP adduct standards and DNA sample from reaction of DHR with calf thymus DNA for ³²P-postlabeling/HPLC analysis. Triplicate DNA samples were concurrently enzymatically digested, adduct enriched (by nuclease P1), and ³²P-postlabeled. The levels of modification of the DNA from reaction of DHR with calf thymus DNA were 615.6, 577.4, and 578.0 adducts/10⁸ nucleotides (mean \pm standard deviation = 590.4 \pm 21.6; 4% relative standard deviation). Among these adducts, the amounts of the two enantiomeric DHR-3',5'-dG-bisphosphate adducts I (P4) and II (P6) were 33.7 \pm 2.1 and 23.9 \pm 1.2 adducts/10⁸ nucleotides, respectively.

Attempts were made to enzymatically 3'-dephosphorylate [³²P]-DHR-3',5'-dG-bisphosphate adducts to the corresponding [³²P]-DHR-5'-dGMP adducts followed by HPLC analysis. However, based on comparison of the HPLC retention time of the synthetic DHR-5'-dGMP standard, no DHR-5'-dGMP was detected (data not shown).

³²P-Postlabeling/TLC analysis of DHR-3'-dGMP adducts was performed. After ³²P-postlabeling of the DHR-3'-dGMP adducts as described above, the resulting [³²P]-DHR-3',5'-dG-bisphosphate adducts were separated using TLC on PEI cellulose plates (Reddy and Randerath, 1986; Gupta, 1993). Comparison of the autoradiography results with those from controls indicated no adducts were detected (data not shown).

³²P-Postlabeling/HPLC Analysis of DHR-Derived DNA Adducts in NTP Female F344/N Rat Liver Samples

Two control ³²P-Postlabeling/HPLC profiles of DHR-derived DNA adduct standards were developed to analyze DHR-derived DNA adducts in the liver of rats chronically exposed to riddelliine. The first profile was obtained from analysis of a mixture of synthetically prepared DHR-3'-dGMP and DHR-3'-dAMP adducts, and the second profile was modified DNA from reaction of DHR with calf thymus DNA. A negative control was obtained from the ³²P-postlabeling/HPLC of DNA obtained from incubation of riddelliine with calf thymus DNA. These HPLC profiles are shown in Figures I14a, 114b, and I14c, respectively. As shown in Figure I14a, the HPLC retention times of DHR-3',5'-dG-bisphosphate adducts I and II are 53.9 and 60.1 minutes. Identical to previously presented data, ³²P-postlabeling of adducts from reaction of DHR and calf thymus DNA resulted in eight DHR-derived DNA adducts (Figure I14b), which were not formed in the control experiment using DNA obtained from incubation of riddelliine with calf thymus DNA (Figure I14c).

The eight DHR-derived DNA adducts contained in the chromatographic peaks eluted at 47.6, 48.3, 51.4, 53.9, 55.3, 60.1, 61.0, and 62.6 minutes are designated as P1 through P8 (Figure I14). The DNA adducts designated as P4 and P6 are DHR-3'-dGMP adduct I and adduct II. Due to lack of synthetic standards, the structures of the other six DHR-derived adducts (P1, P2, P3, P5, P7 and P8) were not characterized.

The levels of riddelliine-modified DNA adducts contained in the DNA of the female rat liver samples were analyzed by ³²P-postlabeling/HPLC. It has been previously established that the ³²P-postlabeling methodology has a high intra-experimental reproducibility, but the interexperimental reproducibility was much less satisfactory. Thus,

to conduct the experiment on the same day, four liver DNA samples from each of six groups were analyzed simultaneously. For identification and quantification of the modified 3',5'-bisphosphate adduct, external standards were also analyzed in parallel with the biological samples. The standards are DHR-3'-dGMP containing a known level of adducts (8.3 fmol, equal to 9.6 adducts/10⁸ nucleotides) that corresponded closely to the modification level expected in each DNA sample. In order to verify the two chromatographic peaks of [³²P]-DHR-3',5'-dG-bisphosphate, an unlabeled synthetic standard of DHR-3',5'-dG-bisphosphate was co-chromatographed as a UV marker with the first two DNA samples from the liver samples. Verification of the chromatographic peaks of the other six DHR-derived DNA adducts was based on comparison of their HPLC retention times with those from DHR-modified calf thymus DNA (Figure 114b). The lack of [³²P]-DHR 3',5'-dA-bisphosphate adducts was based on comparison of HPLC retention times with those of the synthetic DHR-3',5'-dA-bisphosphate samples (Figure 114a).

The DNA samples from liver of untreated rats and rats administered riddelliine at concentrations of 0.01, 0.033, 0.1, 0.33, or 1.0 mg/kg per day, 5 days per week beginning at 5 to 6 weeks of age and continuing until sacrifice at 3 months were ³²P-postlabeled and analyzed by HPLC. The HPLC profiles of these samples (Figures I14d through I14i) are identical to that from reaction of DHR and calf thymus DNA (Figure I14b), albeit with different amounts of adducts). This comparison confirms that in the livers of rats chronically exposed to riddelliine, all eight DHR-derived DNA adducts (P1 through P8) were formed; among these eight DNA adducts, two were the epimeric [³²P]-DHR-3',5'-dG-bisphosphate adducts I and II; and that no DHR-3',5'-dADP adducts were detected. As shown in Figure I14d, these eight DHR-derived DNA adducts were not detected in the livers of untreated rats.

Because the DHR-3'-dGMP standard containing 8.3 fmol (equal to 9.6 adducts/10⁸ nucleotides) was ³²P-postlabeled in parallel, the quantities of the two [³²P]-DHR-3',5'-dG-bisphosphate adducts I and II (P4 and P6) in each of the liver samples were determined based on comparison of the radioactivity contained in the chromatographic peaks and in the peaks from the synthetic DHR-3'-dGMP standards. However, since the structures of the other six DNA adducts (P1, P2, P3, P5, P7, and P8) are not known and therefore no synthetic standards of known level of modification can be used for quantitation, the quantities of these six DNA adducts were estimated by comparison of their radioactivity contained in the chromatographic peak and the DHR-3'-dGMP adduct synthetic standard of known quantity (8.3 fmol). The total quantity of DHR-derived DNA adduct formation that includes these six adducts and the two DHR-3'-dGMP adducts I and II (which are also designated as P4 and P6, respectively) are listed in Table I3.

The DNA samples from liver of untreated rats and rats exposed to riddelliine and sacrificed at 6 months were similarly ³²P-postlabeled and analyzed by HPLC. The HPLC profile (figure not shown) was closely similar to that of rats sacrificed at 3 months, and the quantities of each adduct peak are tabulated in Table I4.

The data presented in Tables I3 and I4 indicated a positive dose-response trend for DHR-3'-dGMP adducts I and II in the liver of rats exposed to riddelline for 3 or 6 months.

Statistical analysis of the data shown in Tables I3 and I4 by two-way ANOVA combined with Dunnett's test indicate that compared with the animals exposed to the same dose of riddelliine, the levels of DNA adducts formed in the liver of rats exposed for 6 months are higher than those exposed for 3 months (P<0.05), and also that in all the liver DNA from the riddelliine-treated rats, the yield of adduct I was higher than that of adduct II (P<0.05). The data shown in Figure I16 indicate a positive dose-response trend for the total DHR-derived DNA adducts from the liver of rats exposed to riddelliine for 3 or 6 months. The total DNA adduct formation of the 6-month group was greater than that of the 3-month group, and total adduct formation in all exposed groups except the 0.01 and 0.033 mg/kg groups of rats exposed for 3 months was significantly greater than that of the control groups (P<0.05).

To verify that optimal conditions were used for ³²P-postlabeling, analyses were repeated using different amounts of the digestion enzymes MN and SPD. Results clearly confirmed that the use of 78 mU MN and 4 mU SPD provided the highest yield of DHR-3',5'-dG-bisphosphate adducts (data not shown).

Human Liver Microsome-Mediated DHR-Derived DNA Adduct Formation

Riddelliine was incubated aerobically with liver microsomes from a 62-year-old male human for 30 minutes. Upon removal of microsomal protein by ultracentrifugation, the metabolism products contained in the supernatant were separated and analyzed by reversed-phase HPLC (Figure I17). The chromatographic peak eluting at 35.7 to 39.2 minutes contained the recovered substrate, riddelliine. By comparison of HPLC retention times and the UV-visible absorption spectrum (not shown) with those of synthetically prepared standards, the metabolites contained in chromatographic peaks eluting at 25.4 and 30.1 minutes were identified as DHR and riddelliine-*N*-oxide, respectively (Figure I17).

To determine the relevance of the mechanistic study in rodents to humans, DHR-derived DNA adduct formation mediated by human liver microsomes was studied and the results compared with those obtained from female F344/N rat liver microsomal metabolism of riddelliine in the presence of calf thymus DNA. The substrate (riddelliine) concentration-dependent formation of the total set of eight DHR-derived DNA adducts from female rat microsomal incubation was first determined (Table I5 and Figure I18a). Metabolism of riddelliine by liver microsomes from two female humans and one male human in the presence of calf thymus DNA was subsequently studied. Comparison of the DNA adduct formation profile with that from rat liver microsomal incubation (Figure I19) showed that the same set of eight DHR-derived DNA adducts were formed from all the human liver microsomal incubations. The substrate concentration-dependent formation of DHR-derived DNA adducts from these three human liver microsomal incubations was subsequently determined (Table I5 and Figures I18b through I18d). These results indicate that metabolism of riddelliine by human liver microsomes in the presence of calf thymus DNA produces the same set of eight DHR-derived DNA adducts formed from female F344/N rat microsomal metabolism, and that the levels of DHR-derived DNA adducts formed from human liver microsomal metabolism were at least five times lower than those from rat liver microsomal metabolism.

DISCUSSION

As reported earlier in this Technical Report, the 2-year carcinogenicity study of riddelliine found that riddelliine induced hemangiosarcoma in the liver of male and female rats and male mice and hepatocellular adenoma in male and female rats. This study describes the mechanisms by which riddelliine induces tumors in rats and mice. A study of the metabolic activation of riddelline by female F344/N rat liver microsomes determined that DHR is one of the major metabolites. DHR was found to be able to bind with DNA, 3'-dGMP, and 5'-dAMP, which indicates that it is a potential activated metabolite. A ³²P-postlabeling/HPLC method for detection and quantitation of DHR-derived DNA adducts in vivo and in vitro was developed, and liver samples from female F344/N rats exposed to riddelliine at five different doses for 3 or 6 months were analyzed for DNA content and identity. A dose-response relationship was obtained between the dose and level of total DNA adducts, which are all derived from DHR (Tables I3 and I4). The DNA from reaction of riddelliine and calf thymus DNA was similarly analyzed by ³²P-postlabeling/HPLC. In this case, no DHR-derived DNA adducts were formed (Figure I14c), indicating that riddelline cannot bind with DNA in the absence of metabolism. Thus, these combined results suggest that riddelliine induces liver tumors in rats through a genotoxic mechanism. Eight DHR-derived DNA adducts were detected in all the liver samples of rats treated with riddelliine, of which two adducts had their structures fully characterized as epimeric DHR-3'-dGMP (Figure I16). Because a dose relationship exists, these eight DHRderived DNA adducts may be responsible in part for development of liver tumors in the female rats exposed to riddelliine. In the current study, microsomal metabolism of riddelliine generated riddelliine-N-oxide and DHR. The formation of these metabolites is also in agreement with the *in vitro* metabolism pattern reported for other pyrrolizidine alkaloids (Mattocks, 1986).

The CYP3A1 and CYP2C11 isozymes are the metabolizing enzymes responsible for pyrrolizidine alkaloid metabolism (Buhler and Kedzierski, 1986; Williams *et al.*, 1989; Chu *et al.*, 1993; Chung *et al.*, 1995; Kasahara *et al.*, 1997; Reid *et al.*, 1998). In the current study, the rate of riddelliine metabolism was higher with PB-microsomes than with control microsomes. Because phenobarbital induces both CYP2B1 and CYP3A1 isozymes (Omiecinski *et al.*, 1999), these results suggest that CYP2B1 and/or CPY3A1 isozymes are the major metabolizing enzymes responsible for riddelliine metabolism and that these results are consistent with those reported in the literature.

The same set of eight DHR-derived DNA adducts found in rat livers was found from metabolism of riddelliine by human liver microsomes in the presence of calf thymus DNA. These results strongly suggest that the use of rodents for studying the mechanisms of liver tumor induction by riddelliine is highly relevant to humans.

Overall, these results suggest that riddelliine induces liver tumors in rats gavaged with riddelliine through a genotoxic mechanism, and the eight DHR-derived adducts are responsible in part for the liver tumor development. It is known that hydroxylation of pyrrolizidine alkaloids at the necine base, particularly at the C-8 and C-3 positions, to form 8- and 3-hydroxynecine derivatives, followed by dehydration to form the corresponding dehydropyrrolizidine (pyrrolic) derivatives, is a general metabolic pathway for these alkaloids (Bull et al., 1968; Mattocks, 1986). Therefore, metabolism of riddelliine catalyzed by CYP isozymes may first provide 8-hydroxyriddelliine and/or 3-hydroxyriddelliine as the primary metabolites, which upon enzymatic dehydration produce dehydroriddelliine. Two possible pathways may lead to DHR-derived DNA adducts. The first pathway is that dehydroriddelliine, a potent electrophile, covalently binds to cellular DNA to form dehydroriddelliine-derived DNA adducts (Figure 6), which are subsequently hydrolyzed to DHR-derived DNA adducts. The second pathway is that dehydroriddelliine, like the other dehydropyrrolizidine alkaloids, is unstable and easily hydrolyzed by esterases and/or other hepatic enzymes to form DHR (Mattocks, 1968, 1986; Kim et al., 1999), which subsequently binds to DNA. At present, the pathway from which these eight DHR-derived DNA adducts are formed is unknown. Dehydropyrrolizidine alkaloids (pyrroles) are highly unstable and DHR is the most stable pyrrolic compound (Galloway et al., 1987; Huxtable et al., 1996); therefore more binding should occur through DHR than through dehydroriddelliine.

Although pyrrolizidine alkaloids are a class of naturally occurring phytochemicals and a number of pyrrolizidine alkaloids have been found to induce tumors in experimental animals (Schoental *et al.*, 1954; Schoental and Head, 1957; Mattocks, 1968; Svoboda and Reddy, 1972; Newbern and Rogers, 1973; NCI, 1978; Juhara *et al.*, 1980; NTP, 1993; Chan *et al.*, 1994), the mechanisms that lead to tumorigenicity are not clear. This study is the first to establish a mechanism by which a pyrrolizidine alkaloid (riddelliine) induces liver tumors; it is a genotoxic mechanism mediated by a set of eight DHR-derived DNA adducts. This set of DHR-derived DNA adducts is expected to be formed *in vivo* and *in vitro* when exposure occurs to other genotoxic pyrrolizidine alkaloids. ³²P-Postlabeling methodology is a highly sensitive method for detection and quantitation of carcinogen-modified DNA adducts *in vivo* and *in vitro*. The ³²P-postlabeling/HPLC methodology developed for these studies can serve as a sensitive and reliable technique to identify and quantify the DHR-derived DNA adducts formed *in vivo* and *in vitro* and *in vitro* and a quantify the DHR-derived DNA adducts formed *in vivo* and *in vivo* and *in vitro* and serve as a sensitive and reliable technique to identify and quantify the DHR-derived DNA adducts formed *in vivo* and *in vitro* and *in vitro* after exposure to genotoxic pyrrolizidine alkaloids.

REFERENCES

Buhler, D.R., and Kedzierski, B. (1986). Biological reactive intermediates of pyrrolizidine alkaloids. *Adv. Exp. Med. Biol.* **197**, 611-620.

Bull, L.B., Culvenor, C.C.J., and Dick, A.J. (1968). *The Pyrrolizidine Alkaloids. Their Chemistry, Pathogenicity and other Biological Properties.* North-Holland, Amsterdam.

Chan, P.C., Mahler, J., Bucher, J.R., Travlos, G.S., and Reid, J.B. (1994). Toxicity and carcinogenicity of riddelliine following 13 weeks of treatment to rats and mice. *Toxicon* **32**, 891-908.

Chou, M.W., Wang, B., Von Tungeln, L.S., Beland, F.A., and Fu, P.P. (1987). Induction of rat hepatic cytochromes P-450 by environmental nitropolycyclic aromatic hydrocarbons. *Biochem. Pharmacol.* **36**, 2449-2454.

Christie, M.H., Kropman, M., Leisegang, E.C., and Warren, F.L. (1949). The Senecio Alkaloids. Part III. The structure of retrorsine and isatidine, and the isomerism of retronecic acid and isatinecic acid. *J. Chem. Soc.*, 1700-1702.

Chu, P.S., Lame, M.W., and Segall, H.J. (1993). *In vivo* metabolism of retrorsine and retrorsine-N-oxide. *Arch. Toxicol.* **67**, 39-43.

Chung, F.-L., Chen, H.-Y.C., and Nath, R.G. (1996). Lipid peroxidation as a potential endogenous source for the formation of exocyclic DNA adducts. *Carcinogenesis* **17**, 2105-2111.

Chung, W.-G., Miranda, C.L., and Buhler, D.R. (1995). A cytochrome P4502B form is the major bioactivation enzyme for the pyrrolizidine alkaloid senecionine in guinea pig. *Xenobiotica* **25**, 929-939.

Culp, S.J., Roberts, D.W., Talaska, G., Lang, N.P., Fu, P.P., Lay, J.O., Teitel, C.H., Snawder, J.E., Von Tungeln, L.S., and Kadlubar, F.F. (1997). Immunochemical, ³²P-postlabeling, and GC/MS detection of 4-aminobiphenyl-DNA adducts in human peripheral lung in relation to metabolic activation pathways involving pulmonary N-oxidation, conjugation, and peroxidation. *Mutat. Res.* **378**, 97-112.

Galloway, S.M., Armstrong, M.J., Reuben, C., Colman, S., Brown, B., Cannon, C., Bloom, A.D., Nakamura, F., Ahmed, M., Duk, S., Rimpo, J., Margolin, B.H., Resnick, M.A., Anderson, B., and Zeiger, E. (1987). Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. *Environ. Mol. Mutagen.* **10** (Suppl.10), 1-175.

Gupta, R.C. (1993). ³²P-Postlabelling analysis of bulky aromatic adducts. In *Postlabelling Methods for Detection of DNA Adducts* (D.P. Phillips, M. Castegnaro, and H. Bartsch, Eds.), pp. 11-23. International Agency for Research on Cancer, Lyon, France.

Hoskins, W.M., and Crout, D.H.G. (1977). Pyrrolizidine alkaloid analogues. Preparation of semisynthetic esters of retronecine. *J. Chem. Soc. [Perkin I]* **5**, 538-543.

Huxtable, R.J., Yan, C.C., Wild, S., Maxwell, S., and Cooper, R. (1996). Physicochemical and metabolic basis for the differing neurotoxicity of the pyrrolizidine alkaloids, trichodesmine and monocrotaline. *Neurochem. Res.* **21**, 141-146.

Juhara, K., Takanashi, H., Hirono, I., Furuya, T., and Asada, Y. (1980). Carcinogenic activity of clivorine, a pyrrolizidine alkaloid isolated from *Ligularia dentata*. *Cancer Lett.* **10**, 117-122.

Kasahara, Y., Kiyatake, K., Tatsumi, K., Sugito, K., Kakusaka, I., Yamagata, S.-I., Ohmori, S., Kitada, M., and Kuriyama, T. (1997). Bioactivation of monocrotaline by P450 3A in rat liver. *J. Cardiovasc. Pharmacol.* **30**, 124-129.

Kim, H.Y., Stermitz, F.R., Li, K.-K.J., and Coulombe, R.A., Jr. (1999). Comparative DNA cross-linking by activated pyrrolizidine alkaloids. *Food Chem. Toxicol.* **37**, 619-625.

Mattocks, A.R. (1968). Toxicology of pyrrolizidine alkaloids. Nature 217, 723-728.

Mattocks, A.R. (1986). Chemistry and Toxicology of Pyrrolizidine Alkaloids. Academic Press, New York.

Mattocks, A.R., Jukes, R., and Brown, J. (1989). Simple procedures for preparing putative toxic metabolites of pyrrolizidine alkaloids. *Toxicon* 27, 561-569.

Nath, R.G., and Chung, F.-L. (1994). Detection of exocyclic 1,*N*²-propanodeoxyguanosine adducts as common DNA lesions in rodents and humans. *Proc. Natl. Acad. Sci. USA* **91**, 7491-7495.

National Cancer Institute (NCI) (1978). Bioassay of Lasiocarpine for Possible Carcinogenicity (CAS No. 303-34-4). Technical Report Series No. 39. NIH Publication No. 78-839. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

National Toxicology Program (NTP) (1993). NTP Technical Report on Toxicity Studies of Riddelliine (CAS No. 23246-96-0) Administered by Gavage to F344/N Rats and B6C3F₁ Mice. Toxicity Report Series No. 27. NIH Publication No. 94-3350. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.

Newberne, P.N., and Rogers, A.E. (1973). Nutrition, monocrotaline and aflatoxin B1 in liver carcinogenesis. *Plant Foods Man* **1**, 23-31.

Omiecinski, C., Remmel, R.P., and Hosagrahara, V.P. (1999). Concise review of the cytochrome P450s and their roles in toxicity. *Toxicol. Sci.* 48, 151-156.

Reddy, M.V., and Randerath, K. (1986). Nuclease P1-mediated enhancement of sensitivity of ³²P-postlabelling test for structurally diverse DNA adducts. *Carcinogenesis* **7**, 1543-1551.

Reid, M.J., Lame, M.W., Morin, D., Wilson, D.W., and Segall, H.J. (1998). Involvement of cytochrome P450 3A in the metabolism and covalent binding of ¹⁴C-monocrotaline in rat liver microsomes. *J. Biochem. Mol. Toxicol.* **12**, 157-166.

Schoental, R., and Head, M. (1957). Progression of liver lesions produced in rats by temporary treatment with pyrrolizidine (*Senecio*) alkaloids, and the effects of betaine and high casein diet. *Br. J. Cancer* **11**, 535-544

Schoental, R., Head, M.A., and Peacock, P.R. (1954). *Senecio* alkaloids: primary liver tumors in rats as a result of treatment with (i) a mixture of alkaloids from *S. jacobaea linn.*, (ii) retrorsine, (iii) isatidine. *Brit. J. Cancer* **8**, 458-465.

Svoboda, D.J., and Reddy, J.K. (1972). Malignant tumors in rats given lasiocarpine. Cancer Res. 32, 908-913.

Wickramanayake, P.P., Arbogast, B.L., Buhler, D.R., Deinzer, M.L., and Burlingame, A.L. (1985). Alkylation of nucleosides and nucleotides by dehydroretronecine; Characterization of covalent adducts by liquid secondary ion mass spectrometry. *J. Am. Chem. Soc.* **107**, 2485-2488.

Williams, D.E., Reed, R.L., Kedzierski, B., Dannan, G.A., Guengerich, F.P., and Buhler, D. (1989). Bioactivation and detoxication of the pyrrolizidine alkaloid senecionine by cytochrome P-450 enzymes in rat liver. *Drug Metab. Dispos.* **17**, 387-392.

FIGURE I1 Reversed-Phase HPLC Analysis of Riddelliine Metabolites Formed from Metabolism of Riddelliine by PB-Microsomes

TABLE I1
In vitro Metabolism of Riddelliine by Liver Microsomes from Female F344/N Rats ^a

Microsomes	Metabolites ^b		
	Dehydroretronecine	Riddelliine-N-oxide	-
Control	8.3 ± 0.7	14.7 ± 1.1	
Phenobarbital-induced	31.1 ± 1.5	50.0 ± 1.7	
Phenobarbital-induced/control ratio	3.8	3.4	

^a Data presented as mean \pm standard deviation (n=3)

nmol metabolite formed/mg microsomal protein/30 minutes

FIGURE I2 Reversed-Phase HPLC Purification of the Synthetically Prepared DHR-3'-dGMP Adducts I and II

90064084

FIGURE I3 (A) Ultraviolet-Visible Absorption Spectra and (B) CD Spectra of the Synthetically Prepared Epimeric DHR-3'-dGMP Adducts I and II Obtained from HPLC Purification

FIGURE I4 Negative Ion Electrospray Mass Spectra of Synthetically Prepared DHR-3'-dGMP Adducts I (A) and II (B)

TABLE I2

			Chemical Shift (ppm))	
	DHR	3'-dGMP	DHR-3'-dGMP	5'-dGMP	DHR-5'-dGMP
H2	6.01		6.29		6.31
H3	6.53		6.76		6.73
Н5	3.97		4.13		4.17
Н5	3.77		3.99		4.15
H6	2.61		2.96		3.02
H6	2.17		2.51		2.59
H7	4.99		5.56		5.57
H9	4.36		4.41		4.71
H9	4.32		4.36		4.24
OH7	4.90				
H8		7.97	8.01	8.77	8.14
H1′		6.27	6.41	6.35	6.46
H2′		2.62	2.88	2.72	2.87
H2′		2.74	2.59	2.60	2.59
H3′		4.82	4.75	4.63	4.77
H4′		4.21	4.25	4.25	4.24
H5′		3.76	3.83	4.04	4.49
H5′		3.77	3.83	4.09	4.49
J		(Coupling Constant (Hz	z)	
1',2'		7.0		7.0	
2,3	2.5		2.5		2.5
9,9			12.1		

500 MHz ¹H NMR Spectral Data of DHR, 3'-dGMP, DHR-3'-dGMP, 5'-dGMP, and DHR-5'-dGMP

FIGURE I6 HPLC Purification of DHR-5'-dGMP

FIGURE I7 Negative Ion Electrospray Mass Spectrum of DHR-5'-dGMP

FIGURE I8 HPLC Separation of DHR-3',5'-dG-bisphosphate Adducts Formed from the Reaction of DHR-3'-dGMP with Cold ATP Catalyzed by Cloned T4 PNK Following HPLC

FIGURE I9 Negative Ion Electrospray Mass Spectrum of DHR-3',5'-dG-bisphospate

FIGURE I10 HPLC Separation of DHR-3'-dAMP

Negative Ion Electrospray Mass Spectra of Four Isomeric DHR-3'-dAMP Adducts Prepared from Reaction of DHR and 3'-dAMP Followed by HPLC Purification

Effect of Micrococcal Nuclease (MN) and Spleen Phosphodiesterase (SPD) Concentration on ³²P-Postlabeling/HPLC Analysis of DHR-Modified DNA Adducts Contained in DNA from Reaction of DHR and Calf Thymus DNA

Effect of Micrococcal Nuclease (MN) and Spleen Phosphodiesterase (SPD) Concentration on ³²P-Postlabeling/HPLC Analysis of a Mixture of 8.3 fmol of DHR-3'-dGMP and 20 fmol of DHR-3'-dAMP Adducts

³²P-Postlabeling/HPLC Analysis of DHR-Derived DNA Adducts

The adducts are contained in (A) a mixture of synthetically prepared DHR-3'-dGMP and DHR-3'-dAMP adducts; (B) modified DNA from reaction of DHR with calf thymus DNA; (C) DNA obtained from chemical reaction of riddelliine with calf thymus DNA; and (D through I) livers of rats treated by gavage with one of six doses of riddelliine 5 days per week for 3 months.

Dose (mg/kg)	P1 + P2		ΡV	Adducts/10 ⁷ Nucleotides	des			
		P3	P4 (Adduct I)	PS	P6 (Adduct II)	P7	P8	Total
Vehicle Control	0	0	0	0	0	0	0	0
0.01	2.0 ± 0.8	2.4 ± 1.5	0.3 ± 0.1	0.7 ± 0.3	0.1 ± 0.03	0.3 ± 0.1	0.2 ± 0.7	6.0 ± 2.9
0.033	2.3 ± 0.5	3.4 ± 0.3	0.3 ± 0.01	0.8 ± 1.0	0.1 ± 0.2	0.36 ± 0.01	0.2 ± 0.01	7.4 ± 0.9
0.1	4.8 ± 0.4	5.7 ± 0.3	0.4 ± 0.03	1.1 ± 1.0	0.14 ± 0.01	0.51 ± 0.02	0.28 ± 0.02	12.0 ± 0.9
0.33	13.4 ± 2.8	12.8 ± 2.6	0.6 ± 0.02	4.2 ± 1.9	0.23 ± 0.04	0.86 ± 0.1	0.42 ± 0.05	32.6 ± 7.4
1.0°	20.0 ± 3.1	18.7 ± 1.5	0.8 ± 0.1	6.4 ± 0.8	0.32 ± 0.03	1.07 ± 0.23	0.6 ± 0.1	47.8 ± 4.9
				Adducts/10 ⁷ Nucleotides	des			
Dose (mg/kg)	P1 + P2	P3	P4 (Adduct I)	P5	P6 (Adduct II)	P7	P8	Total
Vehicle Control	0	0	0	0	0	0	0	0
0.01	8.9 ± 3.7	15.6 ± 4.0	0.55 ± 0.1	5.65 ± 2.1	0.2 ± 0.04	0.9 ± 0.2	0.65 ± 0.06	32.4 ± 10.2
0.033	15.8 ± 6.3	24.6 ± 5.3	0.74 ± 0.1	9.9 ± 3.5	0.35 ± 0.1	2.2 ± 0.6	1.03 ± 0.1	54.7 ± 15.9
0.1	23.8 ± 5.9	35.4 ± 4.9	1.3 ± 0.7	14.1 ± 3.2	0.4 ± 0.02	3.7 ± 0.5	2.4 ± 0.4	81.0 ± 15.5
0.33	41.1 ± 8.9	51.9 ± 4.2	2.2 ± 0.24	22.7 ± 2.8	0.7 ± 0.07	5.5 ± 0.3	3.8 ± 0.3	129.0 ± 15.8

^a Data presented as mean \pm standard deviation (n=4). P1 to P8 represent the chromatographic fractions from ³²P-postlabeling/HPLC assays. ^b n=3

Formation of DHR-3'-dGMP Adducts I and II Contained in Liver DNA of Female F344/N Rats Administered Riddelliine by Gavage for 3 or 6 Months

FIGURE I17 Reversed-Phase HPLC Analysis of Riddelliine Metabolites Formed from Metabolism of Riddelliine by Human Liver Microsomes

TABLE I5

³²P-Postlabeling/HPLC Quantitation of Total DHR-Derived DNA Adducts Formed from Rat and Human Liver Microsomal Metabolism of Riddelliine in the Presence of Calf Thymus DNA

	Total DNA Adducts ^a				
Riddelliine (mM)	Female F344/N Rat ^b	Human Female ^b (52-year-old white)	Human Male ^c (80-year-old white)	Human Female ^c (69-year-old white)	
0.0025	105 ± 5				
0.004	181 ± 28.5				
0.0065	288 ± 12				
0.01	505 ± 32.3	59 ± 2		115 ± 2.1	
0.02				258 ± 4.1	
0.025	719 ± 85.1	98 ± 1	138 ± 14		
0.05		202 ± 2	156 ± 20.3		
0.08				720 ± 12.3	
0.1		389 ± 2	407 ± 46.3		
0.16				$1,188 \pm 17.2$	
0.25		530 ± 2	536 ± 113.5		

^a Data presented as adducts/ 10^8 nucleotides (mean \pm standard deviation)

b Results of duplicate analyses

c Results of triplicate analyses

FIGURE 118 Total DHR-Derived DNA Adducts Formed from Metabolism of Riddelliine by Rat or Human Liver Microsomes in the Presence of Calf Thymus DNA The microsomes were from (A) female F344/N rats or (B through D) male or female humans

³²P-Postlabeling/HPLC Analysis of DHR-Derived Adducts Formed from Metabolism of Riddelliine by Liver Microsomes

The liver microsomes were from female F344/N rats or male or female humans.

Chemical	TR No.	Chemical	TR No.
Ethylbenzene	466	p-Nitrobenzoic Acid	442
Ethylene Glycol	413	Nitrofurantoin	341
Ethylene Glycol Monobutyl Ether	484	Nitrofurazone	337
Ethylene Oxide	326	Nitromethane	461
Ethylene Thiourea	388	<i>p</i> -Nitrophenol	417
Eugenol	223	o-Nitrotoluene	504
FD&C Yellow No. 6	208	<i>p</i> -Nitrotoluene	498
Fumonisin B ₁	496	Ochratoxin A	358
Furan	402	Oleic Acid Diethanolamine Condensate	481
Furfural	382	Oxazepam (Mice)	443
Furfuryl Alcohol	482	Oxazepam (Rats)	468
Furosemide	356	Oxymetholone	485
Gallium Arsenide	492	Oxytetracycline Hydrochloride	315
Geranyl Acetate	252	Ozone and Ozone/NNK	440
Glutaraldehyde	490	Penicillin VK	336
Glycidol	374	Pentachloroanisole	414
Guar Gum	229	Pentachloroethane	232
Gum Arabic	227	Pentachloronitrobenzene	325
HC Blue 1	271	Pentachlorophenol, Purified	483
HC Blue 2	293	Pentachlorophenol, Technical Grade	349
HC Red 3	281	Pentaerythritol Tetranitrate	365
HC Yellow 4	419	Phenolphthalein	465
Hexachlorocyclopentadiene	437	Phenylbutazone	367
Hexachloroethane	361	Phenylephrine Hydrochloride	322
4-Hexylresorcinol	330	N-Phenyl-2-Naphthylamine	333
Hydrochlorothiazide	357	o-Phenylphenol	301
Hydroquinone	366	Polybrominated Biphenyl Mixture (Firemaster FF-1) (Gavage)	244
8-Hydroxyquinoline	276	Polybrominated Biphenyl Mixture (Firemaster FF-1) (Feed)	398
Indium Phosphide	499	Polysorbate 80 (Glycol)	415
Iodinated Glycerol	340	Polyvinyl Alcohol	474
Isobutene	487	Primidone	476
Isobutyl Nitrite	448	Probenecid	395
Isobutyraldehyde	472	Promethazine Hydrochloride	425
Isophorone	291	Propylene	272
Isoprene	486	1,2-Propylene Oxide	267
Lauric Acid Diethanolamine Condensate	480	Propyl Gallate	240
d-Limonene	347	Pyridine	470
Locust Bean Gum	221	Quercetin	409
60-Hz Magnetic Fields	488	Riddelliine	508
Magnetic Field Promotion	489	Resorcinol	403
Malonaldehyde, Sodium Salt	331	Rhodamine 6G	364
Manganese Sulfate Monohydrate	428	Rotenone	320
D-Mannitol	236	Roxarsone	345
Marine Diesel Fuel and JP-5 Navy Fuel	310	Salicylazosulfapyridine	457
Melamine	245	Scopolamine Hydrobromide Trihydrate	445
2-Mercaptobenzothiazole	332	Sodium Azide	389
Mercuric Chloride	408	Sodium Fluoride	393
Methacrylonitrile	497	Sodium Nitrite	495
8-Methoxypsoralen	359	Sodium Xylenesulfonate	464
α -Methylbenzyl Alcohol	369	Stannous Chloride	231
Methyl Bromide	385	Succinic Anhydride	373
Methyl Carbamate	328	Talc	421
Methyldopa Sesquihydrate	348	Tara Gum	224
Methylene Chloride	306	2,3,7,8-Tetrachlorodibenzo- <i>p</i> -Dioxin (Dermal)	201
4,4'-Methylenedianiline Dihydrochloride	248	2,3,7,8-Tetrachlorodibenzo- <i>p</i> -Dioxin (Gavage)	209
Methyleugenol	491	1,1,1,2-Tetrachloroethane	237
Methyl Methacrylate	314	Tetrachloroethylene	311
N-Methylolacrylamide	352	Tetracycline Hydrochloride	344
Methylphenidate Hydrochloride	439	Tetrafluoroethylene	450
Mirex	313	1-Trans-Delta ⁹ -Tetrahydrocannabinol	446
Molybdenum Trioxide	462	Tetrahydrofuran	475
Monochloroacetic Acid	396 266	Tetrakis(Hydroxymethyl)Phosphonium Sulfate	296 296
Monuron Nalidizio Acid	266 368	Tetrakis(Hydroxymethyl)Phosphonium Chloride Tetranitromethane	296 386
Nalidixic Acid	368		
Naphthalene (Mice)	410	Theophylline	473 435
Naphthalene (Rats)	500 451	4,4-Thiobis(6-t-Butyl-m-Cresol)	435 399
Nickel (II) Oxide		Titanocene Dichloride	
Nickel Sulfate Hexahydrate	454	Toluene	371 251
Nickel Subsulfide <i>p</i> -Nitroaniline	453 418	2,4- & 2,6-Toluene Diisocyanate Triamterene	420
<i>p</i> -Nitroaniine <i>o</i> -Nitroanisole	418 416	Tribromomethane	420 350
o ranoumore	10	moromomenture	550

Chemical	TR No.	Chemical	TR No.
Trichloroethylene	243	4-Vinylcyclohexene	303
Trichloroethylene	273	4-Vinyl-1-Cyclohexene Diepoxide	362
1,2,3-Trichloropropane	384	Vinylidene Chloride	228
Tricresyl Phosphate	433	Vinyl Toluene	375
Triethanolamine	449	Xylenes (Mixed)	327
Tris(2-Chloroethyl) Phosphate	391	2,6-Xylidine	278
Tris(2-Ethylhexyl) Phosphate	274	Zearalenone	235
Turmeric Oleoresin (Curcumin)	427	Ziram	238
Vanadium Pentoxide	507		

National Toxicology Program National Institute of Environmental Health Sciences

National Institute of Environmental Health Sciences National Institutes of Health P.O. Box 12233, MD K2-05 Durham, NC 27709 Tel: 984-287-3211 ntpwebrequest@niehs.nih.gov

https://ntp.niehs.nih.gov

ISSN 2378-8925