Appendix B

Breakout Group Objectives and Questions
BREAKOUT GROUP 1

KEY PATHWAYS FOR ACUTE SYSTEMIC TOXICITY

Co-chairs: Daniel Acosta, Ph.D. (University of Cincinnati, U.S.) and Frank Paloucek, Pharm.D., D.A.B.A.T., FASHP (University of Illinois College of Pharmacy, U.S.)

Breakout Group 1 Objectives

1. Discuss the current understanding of key pathways for *in vivo* acute systemic toxicity and identify the knowledge gaps that exist, especially for
 - *In vivo* pathways, and
 - Chemicals and products tested for acute systemic toxicity (Workshop Objective 1)
2. Identify and prioritize future research initiatives that would address these knowledge gaps and that are considered necessary to advance the development and validation of *in vitro* methods for assessing acute systemic toxicity. (Workshop Objective 2)
3. Review molecular, cellular, tissue, or other physiological, and clinical biomarkers that are or could be measured or observed during *in vivo* acute systemic toxicity testing and discuss their potential usefulness for indicating key pathways of acute systemic toxicity. (Workshop Objective 3)

Breakout Group 1 Questions

1. What are the key toxicity pathways for acute human poisonings?
2. Which *in vivo* test observations/measurements and data have been most helpful for diagnosis and treatment of human poisonings?
3. What are the knowledge gaps associated with diagnosis and/or treatment of human poisoning?
4. What toxicological observations and measurements would address these knowledge gaps and improve the information available for the diagnosis and/or treatment of human poisoning (e.g., how might *in vivo* mechanistic data be helpful for diagnosis and treatment of human poisonings?)?
5. Prioritize research and development activities. Discuss how these activities might best be implemented.
BREAKOUT GROUP 2
CURRENT ACUTE SYSTEMIC TOXICITY INJURY AND TOXICITY ASSESSMENTS

Breakout Group 2 Objectives

1. Discuss and identify observations and quantitative, objective measurements that could or should be included in the current in vivo acute systemic toxicity tests to elucidate key toxicity pathways that would support the future development and validation of predictive in vitro methods. (Workshop Objective 5)

Breakout Group 2 Questions

1. What are the pathways involved in acute systemic toxicity that will need to be modeled using in vitro test systems?
2. What biomarkers might be used to provide more information on in vivo pathophysiological effects and mechanisms of acute systemic toxicity? For example:
 − Histopathology findings
 − Gross pathology findings
 − Clinical biochemistry data
 − Hematology data
 − Body weight and food/water consumption
 − Detailed clinical observations
 − Functional measurements (e.g., heart rate, electrocardiogram, respiratory rate, respiratory volume, body temperature, functional observational battery for neurotoxicity)
3. How might the timing of these measurements/observations impact on their interpretation?
4. Identify which data should be routinely considered for collection and which data should be considered desirable, but optional.
5. What would be the optimal way to measure these suggested biomarkers as part of the current acute systemic toxicity tests?
 − To what extent should there be a standardized format for reporting biomarker data?
 − What biomarkers have standardized methods?
 − What biomarkers are in need of standardized methods?
6. How might the protocols for current acute systemic toxicity tests (i.e., the Up-and-Down Procedure, the Acute Toxic Class method, and the FDP) be modified to collect additional data while minimizing interference with the standard test procedures and interpretation?
7. Suggest and prioritize research and development activities for obtaining more information on key toxicity pathways from the current in vivo acute systemic toxicity tests (e.g., should imaging techniques be further explored?). Discuss how to implement these activities.
BREAKOUT GROUP 3
IDENTIFYING EARLIER HUMANE ENDPOINTS FOR ACUTE SYSTEMIC TOXICITY TESTING

Breakout Group 3 Objectives
1. Discuss what in vivo data collected to elucidate key toxicity pathways might lead to the identification and validation of more humane endpoints for acute systemic toxicity testing, and what data should be a priority for collection to aid in identifying earlier more humane endpoints. (Workshop Objective 7)

Breakout Group 3 Questions
1. Are there other objective biomarkers that are sufficiently predictive of lethality that they should be collected and used as routine humane endpoints (e.g., body temperature measurements)?
2. Should clinical signs and observations for pain and distress be routinely recorded?
3. Would the use of humane endpoints interfere with the collection and interpretation of mechanistic data?
4. Conversely, to what extent might the collection of mechanistic data lead to incorporating more humane endpoints for acute systemic toxicity testing?
5. Are there additional data that are recommended for routine collection during future animal studies that might aid in identifying earlier more humane endpoints (e.g., before an animal reaches moribund condition) for acute toxicity testing?
6. What considerations should be made for data collection for inhalation exposures (e.g., nose only and/or whole body exposure)?
7. What are the knowledge gaps associated with predictive early humane endpoints that should be addressed in research, development, and validation efforts?
8. What are the most effective ways to implement the recommended activities?
BREAKOUT GROUP 4

APPLICATION OF IN VIVO MODE OF ACTION AND MECHANISTIC INFORMATION TO THE DEVELOPMENT AND VALIDATION OF IN VITRO METHODS FOR ASSESSING ACUTE SYSTEMIC TOXICITY

Co-Chairs: Melvin Andersen, Ph.D., D.A.B.T. (The Hamner Institutes for Health Sciences, U.S.), and Eugene Elmore, Ph.D. (University of California-Irvine, U.S.)

Breakout Group 4 Objectives

1. Discuss how the key toxicity pathways indicated by these in vivo measurements (molecular, cellular, tissue, or other physiological and clinical biomarkers [see Workshop Objective 3]) and observations are currently or could be modeled using alternative in vitro test methods. (Workshop Objective 4)

2. Identify and prioritize research, development, and validation activities for in vitro test methods that model the key in vivo toxicity pathways and more accurately predict acute systemic toxicity hazard categories. (Workshop Objective 6)

Breakout Group 4 Questions

1. To what extent do the current and proposed in vitro test methods adequately model the key toxicity pathways associated with acute systemic toxicity?

2. What are the knowledge gaps between the planned activities and the activities necessary to accurately predict acute systemic toxicity using in vitro methods?

3. What are the priorities for research, development, and validation activities for in vitro systems?

4. How might in vitro tests be incorporated into testing currently being conducted to meet regulatory testing requirements?

5. How might in vivo mode of action and mechanistic information be used to further improve in vitro testing?

6. How might the timing of observations be adjusted to differentiate the initial pathway effects from downstream effects?

7. Discuss how to implement the recommended activities.
BREAKOUT GROUP 5
INDUSTRY INVOLVEMENT IN TEST METHOD DEVELOPMENT,
VALIDATION, AND USE

Breakout Group 5 Objectives
1. Discuss how to promote the collection and submission of \textit{in vitro} and \textit{in vivo} toxicity test data to ICCVAM in order to advance the development and validation of more predictive \textit{in vitro} test methods and earlier more humane endpoints for acute systemic toxicity testing. (Workshop Objective 8)

Breakout Group 5 Questions
1. How can industry be effectively encouraged to collect and submit mechanistic observations and measurements from animals used in acute systemic toxicity studies?
2. What can be done to increase the use of adequately validated \textit{in vitro} cytotoxicity test methods for reducing the use of animals in acute systemic toxicity tests?
3. How can test method users be encouraged to submit concurrent \textit{in vitro/in vivo} toxicity test data to ICCVAM to advance the development and validation of alternative \textit{in vitro} test methods for acute systemic toxicity?
4. What are the impediments to data collection and how can they be overcome?