Quantitative Weight of Evidence Model for Assessing Adverse Outcome Pathways

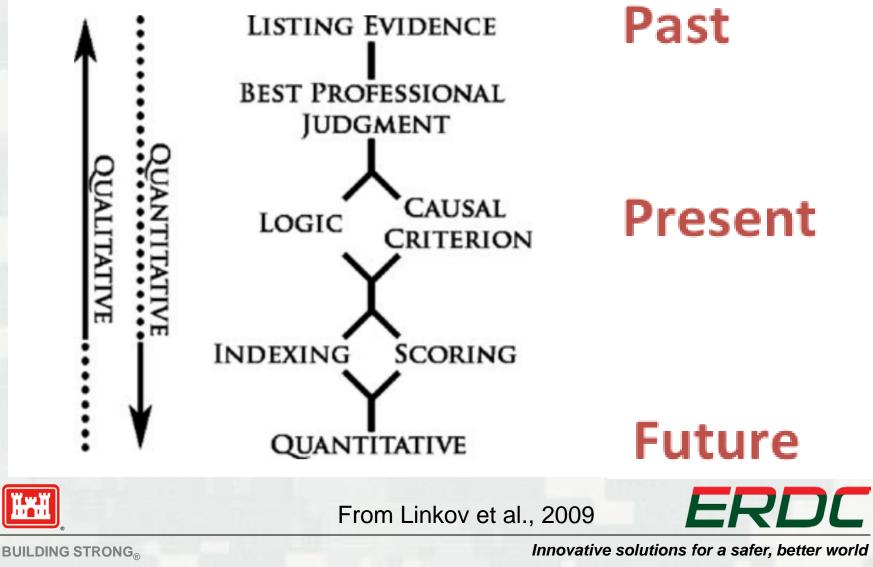
Dasha Agoulnik^{1,3}, Olivia Massey^{2,3}, Christy Foran³ Dan Villaneuve⁴, Gary Ankley⁴, Natalia Garcia-Reyero Vinas³, Ed Perkins³, and Igor Linkov³

¹University of Massachusetts Amherst, ²Massachusetts Institute of Technology, ³US Army Engineer Research and Development Center, ⁴US Environmental Protection Agency

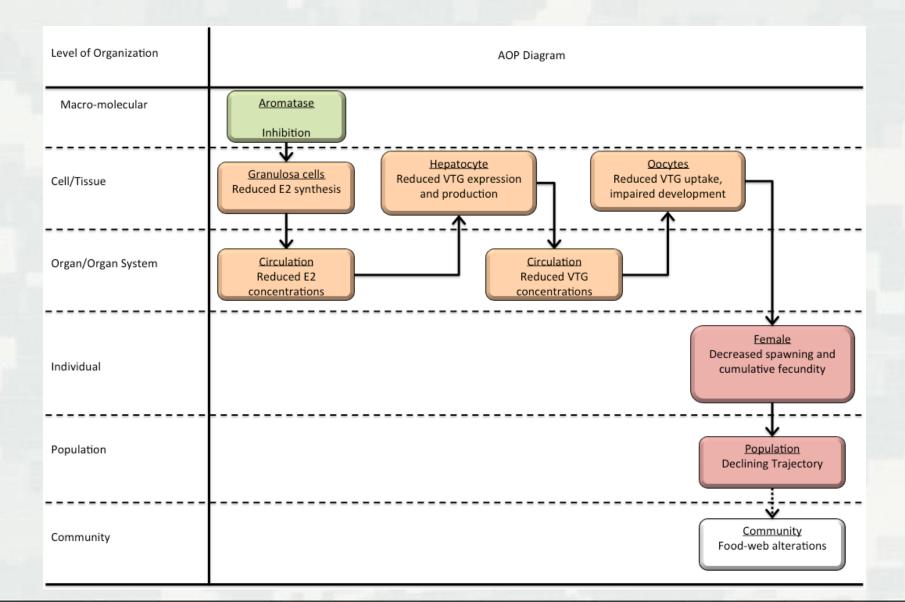
Igor.Linkov@usace.army.mil

US Army Corps of Engineers.

ERDC Engineer Research and Development Center


Summary

- Majority of WoE frameworks have been qualitative in nature.
- We propose a quantitative WoE framework that utilizes MCDA methodology for integrating evidence underpinning KER within an AOP.
- We developed a prototype model that was parameterized by input from a few mode of action studies and judgments of individual experts.



Comparing WoE Approaches

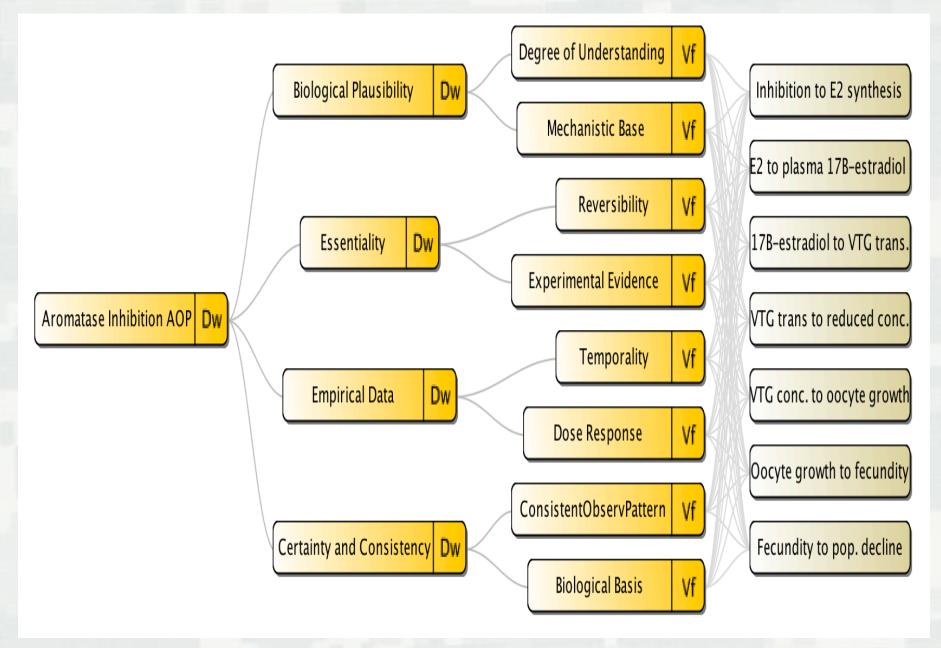
Linkov et al (in review)

Case Study: Aromatase inhibition leading to fish reproductive dysfunction

Logic Model Output

Key Event (upstream)	Key Event (downstream)	Weight-of-evidence for link
Aromatase inhibition	Ovarian (granulosa cell) E2	Strong
	synthesis (reduction)	
Ovarian (granulosa cell) E2	Plasma 17β-estradiol	Strong
synthesis (reduction)	concentrations (reduction)	
Plasma 17β-estradiol	Transcription and translation of	Strong
concentrations (reduction)	vitellogenin (reduction)	
Transcription and translation of	Plasma vitellogenin	Strong
vitellogenin (reduction)	concentrations (reduction)	
Plasma vitellogenin	Vitellogenin uptake, impaired	Moderate
concentrations (reduction)	oocyte development (reduction)	
Vitellogenin uptake, impaired	Spawning and cumulative	Moderate
oocyte development (reduction)	fecundity (reduction)	
Spawning and cumulative	Population trajectory (declining)	Moderate
fecundity (reduction)		

Innovative solutions for a safer, better world


Steps of MCDA Methodology

- 1. Define KERs as alternatives for which relative confidence is unknown and needs to be prioritized
- 2. Map out the criteria and metrics based on BH considerations and KERs as a value tree
- 3. Assign weights for importance of each of the criteria and metrics associated with each criterion.
- Score each KER based on each metric (In this case, Strong=3, Moderate=2, Weak=1)
- 5. Integrate scores and weights for each KER to assess overall confidence level
- 6. Conduct sensitivity analysis

MCDA Model

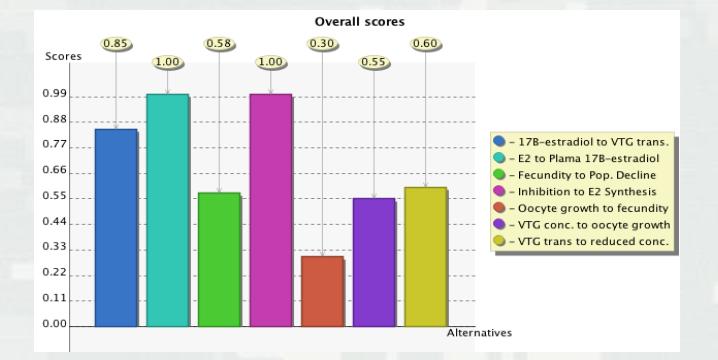
Criteria Weights and Key Event Scores

Direct weighting - Empirical Data

Set weights directly			
Criterion	Weight		
Temporality	0.500	0.500	
Dose Response	0.500	0.500	

Set weights directly				
Criterion	Weight			
Biological Plausibility	D.400	0.400		
Essentiality	0.300	0.300		
Empirical Data	0.200	0.200		
Certainty and Consistency	0.100	0.100		

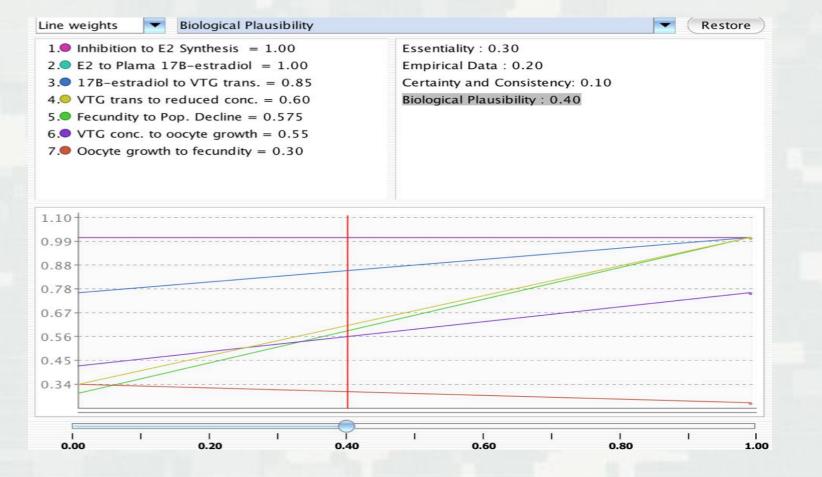
Scores Value function		
	Set scores directly	
Alternatives performances and sco	res	(
Alternative	Current	Score
Inhibition to E2 Synthesis	3.000	1.000
E2 to Plama 17B-estradiol	3.000	1.000
17B-estradiol to VTG trans.	3.000	1.000
VTG trans to reduced conc.	3.000	1.000
VTG conc. to oocyte growth	3.000	1.000
Oocyte growth to fecundity	2.000	0.000
Fecundity to Pop. Decline	3.000	1.000



Innovative solutions for a safer, better world

BUILDING STRONG®

Confidence Assessment Scores



Innovative solutions for a safer, better world

Sensitivity Analysis

ERDC

Innovative solutions for a safer, better world

BUILDING STRONG_®

Conclusions

- Quantitative WoE frameworks provide an objective and transparent mean to assess AOPs
- MCDA strengthens WoE logic by adding visual effect of a mapped decision structure as well as quantitative weighing of LOE
- Restricts expert inputs to weighing evidence
- Allows for incorporation of inputs from multiple experts

References

- Linkov, I., Welle, P., Loney, D., Tkachuk, A., Canis, L., Kim, J., Bridges, T. (2011). The use of Multi-Criteria Decision Analysis Methods to Support Weight of Evidence Evaluation in Risk Assessment. *Risk Analysis* 31:1211-1225.
- Linkov, I., Loney, D., Cormier, S., Satterstrom, K.S., Bridges, T. (2009). Weight-of-Evidence Evaluation in Environmental Management: Review of Qualitative and Quantitative Approaches. Science of the Total Environment. 407: 5201-5207.
- Linkov, I., Moberg, E. (2012). Multi-Criteria Decision Analysis: Environmental Applications and Case Studies. CRC Press.
- Hristozov, D., Zabeo, A., Foran, C., Critto, A., Marcomini, A., Linkov, I. (2014). A weight of evidence approach for hazard screening of engineered nanomaterials. *Nanotoxicology* 8:78-87.

BUILDING STRONG®

FRDL