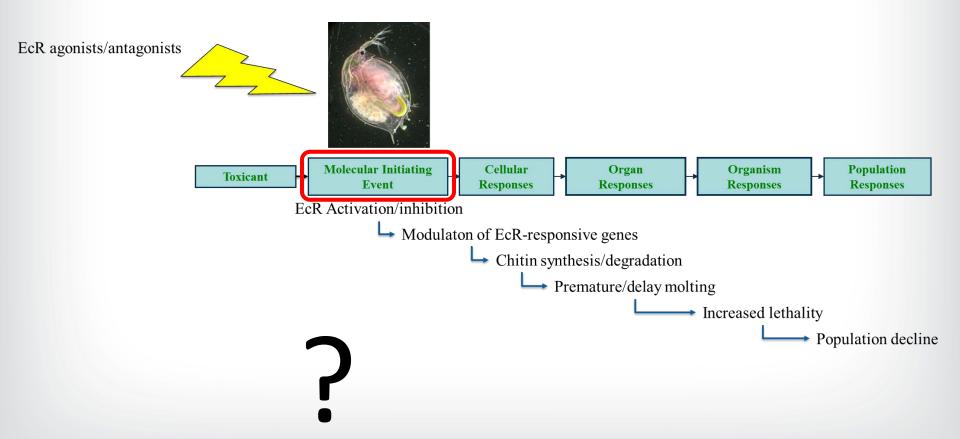
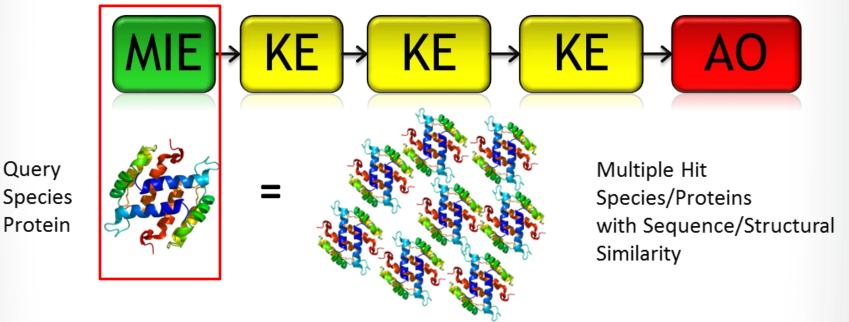


UNIVERSITY OF MINNESOTA


Cross-species Extrapolation of an Adverse Outcome Pathway for Ecdysteroid Receptor Activation

Carlie A. LaLone University of Minnesota Water Resources Center

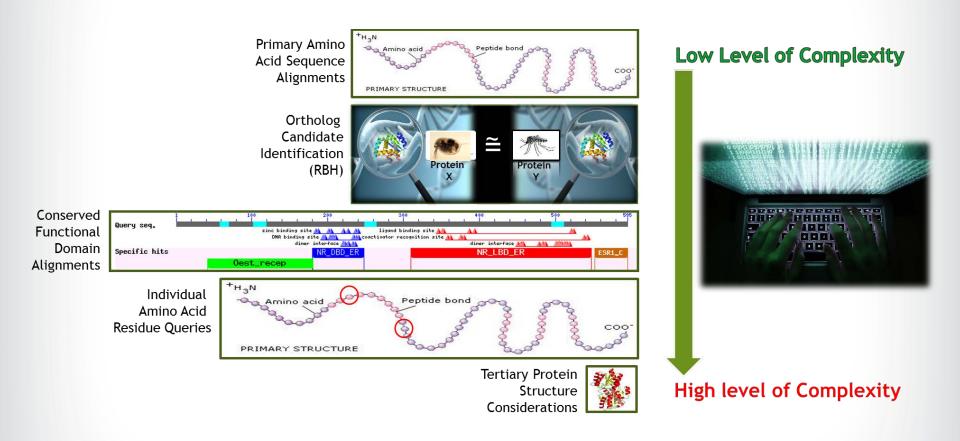
UN ESOTA Define the taxonomic domain of applicability Adverse outcome pathway development – Ecdysteroid receptor (EcR) activation


leading to mortality

AOP extrapolation across taxa

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

SEPA



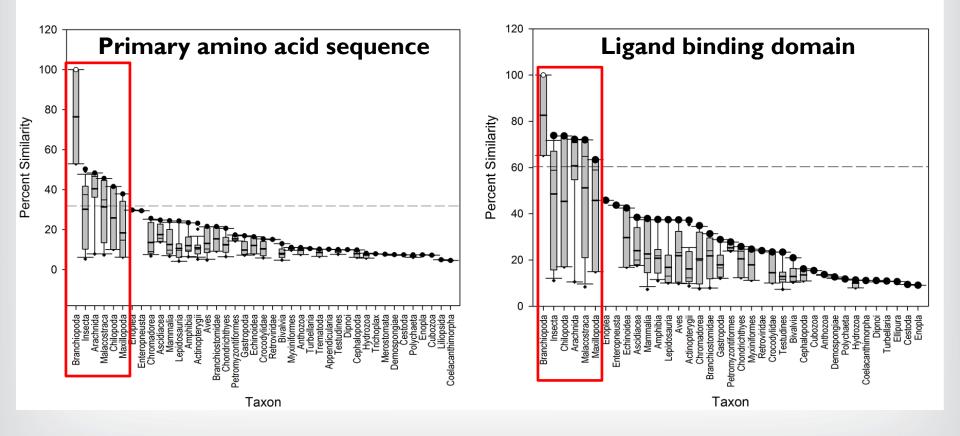
Sequence based approach to predict relative intrinsic susceptibility

- Receptor/enzyme available for the chemical to act upon
- Conservation of MIE: Extrapolate MIE across taxa

Facilitates a Strategic Approach for Assessing Protein Similarity Across Species

Conservation of molecular target: Line-of-evidence that MIE may be relevant

SeqAPASS Query

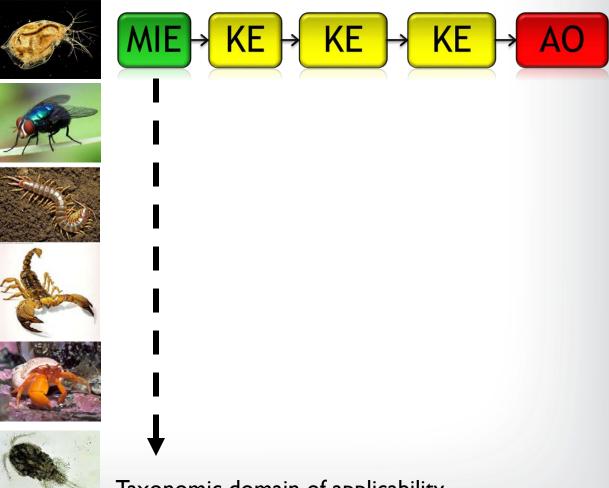

Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

Home	Request Sec	qAPASS Run	View SeqAPASS Reports	Susceptibility Cutoff Formulas	
Request SeqA	APASS Run				
	Choose Sea	irch Type By Spe	cies 🗸		
	Query Species	s Search Daph	nnia magna		
Add Qu	uery Species				
	Selected Query	Species			
	Query Protei		r Protein		
	Selected Query Species Query Protein Search Query Proteins		w.ncbi.nlm.nih.gov/protein		
			steroid Receptor	62 ≫ ≪	
	Query	Proteins		4 44	
Final Query F	Protein(s) for SeqAP	ASS Run	All Pro	otein Sequences in th	he NCBI protein database

SeqAPASS Results Across Taxa

Query Daphnia magna ecdysteroid receptor

Key amino acid residues


• Collaborators developed homology model to identify key residues

Scientific Name	Common Name	Class Name	Protein Name	D384	T415	T418	R455	A470	Y480	N573
Daphnia magna	crustaceans	Branchiopoda	ecdysteroid receptor	D	Т	Т	R	А	Y	Ν
Daphnia pulex	common water flea	Branchiopoda	hypothetical protein DAPPUDRAFT_319648	D	Т	Т	R	А	Y	-
Monochamus alternatus	Japanese pine sawyer	Insecta	ecdysone receptor isoform A	E	Т	Т	R	V	Y	N
Pediculus humanus corporis	human body louse	Insecta	Ecdysone receptor, putative	E	Т	Т	R	А	Y	Ν
Locusta migratoria	migratory locust	Insecta	ecdysone receptor	E	Т	Т	R	А	Y	Ν
Lithobius peregrinus	centipedes	Chilopoda	ecdysone receptor, isoform S	E	Т	Т	R	A	Y	N
Liocheles australasiae	scorpions	Arachnida	ecdysone receptor	E	Т	Т	R	A	Y	N
Amblyomma americanum	Lone Star tick	Arachnida	AamEcRA1	Е	Т	Т	R	А	Y	Ν
Ornithodoros moubata	mites & ticks	Arachnida	nuclear receptor	Е	Т	Т	R	А	Y	Ν
Ixodes scapularis	black-legged tick	Arachnida	AamEcRA1, putative	Е	Т	Т	R	А	Y	Ν
Agelena silvatica	spiders	Arachnida	ecdysone receptor	Е	Т	Т	R	А	Y	Ν
Crangon crangon	Atlantic sand fiddler crab	Malacostraca	ecdysteroid receptor isoform 1	E	Т	Т	R	G	Y	N
Celuca pugilator	American lobster	Malacostraca	ecdysteroid receptor	Е	Т	Т	R	G	Y	Ν
Homarus americanus	crustaceans	Malacostraca	ecdysteroid receptor splice variant	Е	Т	Т	R	G	Y	Ν
Marsupenaeus japonicus	green crab	Malacostraca	ecdysone receptor	Е	Т	Т	R	G	Y	Ν
Carcinus maenas	blackback land crab	Malacostraca	ecdysteroid receptor	Е	Т	Т	R	G	Y	Ν
Tigriopus japonicus	crustaceans	Maxillopoda	ecdysone receptor	E	Т	Т	R	А	Y	N
Amphiascus tenuiremis	crustaceans	Maxillopoda	ecdysone receptor isoform 2	E	Т	Т	R	А	Y	Ν
Trichinella spiralis	nematodes	Enoplea	ecdysone receptor	D	Т	N	ĸ	G	Y	н
Saccoglossus kowalevskii	hemichordates	Enteropneusta	liver X-like nuclear receptor	E	Т	Т	R	G	L	Н
Strongylocentrotus purpuratus	purple sea urchin	Echinoidea	Ecr/Fxr protein	E	Т	Т	R	G	L	Н
Ciona intestinalis	tunicates	Ascidiacea	nuclear receptor	Q	A	Ι	R	L	F	н
Macaca mulatta	Rhesus monkey	Mammalia	hypothetical protein EGK_06297		A	S	E	L	-	Н
Ailuropoda melanoleuca	giant panda	Mammalia	hypothetical protein PANDA_010593	-	Α	S	Е	L	-	н
Cricetulus griseus	Chinese hamster	Mammalia	Oxysterols receptor LXR-alpha	-	Α	S	Е	L	-	н
Loxodonta africana	African savanna elephant	Mammalia	oxysterols receptor LXR-alpha-like isoform 1	-	А	S	Е	L	-	н

€PA

SeqAPASS

- EcR sequence and structural conservation: MIE likely relevant
 - Branchiopoda
 - Insecta
 - Chilopoda
 - **Arachnida**
 - Malacostraca
 - Maxillopoda

Taxonomic domain of applicability

Acknowledgments

- U.S. Environmental Protection Agency
 - Daniel Villeneuve
 - Gerald Ankley
- Computer Sciences Corporation
 - Henry Helgen
 - Steve Walata
 - Derek Lane
- Norwegian Institute for Water Research (NIVA)
 - Knut Erik Tollefsen
 - You Song
 - Tore Høgåsen
- Universitetet I Tromsø, The Arctic University of Norway
 - Ingebrigt Sylte
 - Kurt Kristiansen