Peroxisome proliferator-activated receptors (PPARs) activation leading to reproductive toxicity in rodents

Małgorzata Nepelska

www.jrc.ec.europa.eu

Adverse Outcome Pathways:
From Research to Regulation
September 3-5, 2014

Serving society
Stimulating innovation
Supporting legislation

DISCLAIMER: This presentation and its contents do not constitute an official position of the European Commission or any of its services. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this presentation or its contents
At the beginning

- We had an AIM

To develop a strategy for building a MoA based chemical category

\[f(\text{chemical structure}) = \text{toxicity} \]

\[f(\text{MoA}) = \text{toxicity} \]

How?
Building MoA-based chemical category for toxicity prediction

STEP 1. Chose endocrine active, data rich chemicals

STEP 2. MoA matrix display of experimental data

STEP 3. Mechanistic "blueprint" of phthalates

STEP 4. Search for mechanistic analogues (other chemicals that have similar MoA)
PPAR activation leading to reproductive toxicity in rodents

AOP-linked chemical initiators

MIE KE Adverse Outcome

PPAR activation → cholesterol transport → Hormone synthesis → Hormone levels → Reproductive toxicity
PPARs peroxisome proliferator-activated receptors

- family comprises the types α, γ and β/δ
- are nuclear receptor superfamily of transcription factors that respond to specific ligands
- regulate lipid and carbohydrate metabolism
- embryonic and foetal development
- cholesterol uptake and transport
- represent a potential molecular link between reproductive function and carbohydrate and lipid metabolism
PPAR activation: evidence

<table>
<thead>
<tr>
<th>Chemical initiator</th>
<th>In vitro binding</th>
<th>In vitro transactivation</th>
<th>Knock-out/inhibition/increased expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP</td>
<td>-</td>
<td>+</td>
<td>Experiments with PPARα-null mice indicate involvement of the receptor in reproductive toxicity of phthalates</td>
</tr>
<tr>
<td>MEHP</td>
<td>+</td>
<td>+</td>
<td>Inhibition studies</td>
</tr>
<tr>
<td>BBP</td>
<td>+/-</td>
<td>+</td>
<td>To be verified</td>
</tr>
<tr>
<td>DBP</td>
<td>+/-</td>
<td>+</td>
<td>To be verified</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>-</td>
<td>+</td>
<td>Increased expression PPARγ</td>
</tr>
<tr>
<td>Butylparaben</td>
<td>-</td>
<td>+</td>
<td>Increased expression PPARγ</td>
</tr>
</tbody>
</table>
Altered steroidogenic pathway

Chemical initiator

- Chemical initiator
- PPAR binding & activation
- TSPO
- cholesterol
- StAR
- pregnenolone
- P450scc
- cholesterol
- androstenedione
- aromatase
- estradiol
- aromatase
- estrone
- progesterone
- 3β-HSD-III
- 17β-HSD IV
- testosterone
- estradiol
- aromatase

KE
<table>
<thead>
<tr>
<th>Chemical Initiator</th>
<th>Decreased testosterone levels</th>
<th>Malformation of reproductive organs</th>
<th>Testicular toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP</td>
<td>+ (Howdeshell et al., 2008)</td>
<td>+ (Gray et al., 2000)</td>
<td>+ (Kwack et al., 2009)</td>
</tr>
<tr>
<td>BBP</td>
<td>+ (Howdeshell et al., 2008)</td>
<td>+ (Gray et al., 2000)</td>
<td>+ (Gray et al., 2000)</td>
</tr>
<tr>
<td>DBP</td>
<td>+ (Howdeshell et al., 2008)</td>
<td>+ (Barlow et al., 2003)</td>
<td>+ (Mylchreest, 2000)</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>+ (Tanaka et al., 2006)</td>
<td>+/- (Takagi et al., 2004)</td>
<td>+ (Talsness et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>(Nakamura et al., 2010)</td>
<td>(Kobayashi et al., 2002)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Talsness et al., 2000)</td>
<td>(Talsness et al., 2000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tinwell et al. 2002)</td>
<td></td>
</tr>
<tr>
<td>Butyl paraben</td>
<td>+ (Zhang et al., 2014)</td>
<td>+ (Zhang et al., 2014)</td>
<td>+ (Oishi et al., 2001)</td>
</tr>
</tbody>
</table>

+ effect present
/ no change
? no information
*testosterone production
PPAR activation leading to reproductive toxicity in rodents

MIE KE Adverse Outcome

- PPAR activation
 - cholesterol transport to mitochondria
 - Hormone synthesis
 - Hormone levels
 - Reproductive toxicity

- Malformation of reproductive organs
- Decreased AGD
- Hypospadias
- Altered oestrus cycle
- Decreased ovary weight
PPAR activation leading to reproductive toxicity in rodents

AOP 1
- PPAR activation
- Cholesterol transport to mitochondria
- Estradiol synthesis
- Hormone levels
- Reproductive toxicity

AOP 2
- PPAR activation
- Cholesterol transport to mitochondria
- Testosterone synthesis
- Hormone levels
- Reproductive malformations

AOP 3
- PPAR activation
- Cholesterol transport to mitochondria
- Estradiol synthesis
- Hormone levels
- Altered estrus cycle

- PPAR activation
- Cholesterol transport to mitochondria
- Testosterone synthesis
- Hormone levels
- Testicular toxicity
PPAR activation leading to reproductive toxicity in rodents

- **PPAR activation**
 - **Cholesterol transport to mitochondria**
 - Testosterone synthesis
 - Estradiol synthesis
 - Testosterone synthesis
 - Estradiol synthesis
 - Hormone levels (Male)
 - Malformations Reproductive organs
 - Hormone levels (Female)
 - Altered estrus cycle
 - Hormone levels (Male)
 - Testicular toxicity
PPARα activation leading to reproductive tract malformations in males upon *in utero* exposure

MIE

- PPARα activation
- Cholesterol transport to mitochondria

KE

- Testosterone synthesis
- Testosterone levels

Adverse Outcome

- Malformation Reproductive organs
 - Decreased AGD
 - Hypospadias
PPARα activation leading to reproductive tract malformations in males upon *in utero* exposure

<table>
<thead>
<tr>
<th>Key Events</th>
<th>Experimental Support</th>
<th>Strength of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Initiating Event: Binding to and activation to PPARα</td>
<td>DEHP/MEHP, BBP, DBP binding to PPARα in vitro, in silico
PPARα transactivation by DEHP/MEHP, BBP, DBP, butylparaben
Experiments with PPARα-null mice indicate involvement of the receptor in reproductive toxicity of phthalates</td>
<td>Moderate</td>
</tr>
<tr>
<td>Key Event: Impaired steroidogenesis</td>
<td>Impaired transport of cholesterol to mitochondria
decreased gene expression of SR-B1, TSPO (PBR), StAR
decreased gene expression of P450scc, 3β-HSD, 17β-HSD</td>
<td>Moderate</td>
</tr>
<tr>
<td>Key Event: Decreased testosterone levels</td>
<td>Decreased testosterone levels measured in plasma
Decreased testosterone production measured ex-vivo</td>
<td>Strong</td>
</tr>
<tr>
<td>Adverse Outcomes: Reproductive tract malformations</td>
<td>DEHP, DBP,BBP, butylparaben, decreased AGD
DEHP, DBP,BBP, Hypospadias</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Challenges for these AOPs

Data mining

 Literature organisation and structural capturing of the biological events
Challenges for these AOPs cd.

Data mining
- Literature organisation and structural capturing of the biological events
- **Quality and quantity of data in literature**
 - (PPAR α or/and γ), dose levels, more mechanisms involved

Relevance for humans
- **Mode of action**
 - PPAR expression
 - Steroidogenesis is conserved
- **Adversity**
 - TDS- Testicular Dysgenesis Syndrome in humans
Future plans

- To insert quantitative data into the OECD AOP-Knowledge Base
- To further substantiate AOP with evidence from other chemicals
- To develop other pathways interconnected with the current ones aiming at AOP network
- To further develop the database for capturing the literature and provide a template for structured data gathering
Acknowledgment

Brigitte Landesmann
Edward Carney
Sharon Munn
Andrew Worth
Julien Burton
Alfonso Lostia

Thank you

for coming questions