

Peroxisome proliferator-activated receptors (PPARs) activation leading to reproductive toxicity in rodents

Małgorzata Nepelska

www.jrc.ec.europa.eu

Adverse Outcome Pathways: From Research to Regulation September 3-5, 2014

Serving society Stimulating innovation Supporting legislation

DISCLAIMER: This presentation and its contents do not constitute an official position of the European Commission or any of its services. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this presentation or its contents

Joint Research Centre

At the beginning

We had an AIM

To develop a strategy for building a MoA based chemical category

Building MoA-based chemical category for toxicity prediction

STEP 1. Chose endocrine active, data rich chemicals

STEP 2. MoA matrix display of experimental data

MIE										AO				
Phthalates	ER	PPAR	AR	AhR	Sertoli cells	spermato genesis	Leydig cells	Decreased testosterone	stereodo genesis	oestrus cycle	Male reproductive tract	Sperm parameters	Decreased AGD	
DEP	0		1				1	1	0		0	/	0	
DiBP	1	1			1	1	1	1	1		1		1	
DPP	0				1	1		1	1		1	1	1	
DCHP	0	0			1	1	1	1	1	1	1	1	1	
DHP	0		/		1	1	1	1	1		1	1	1	
DINP	0		0	0	1	1	1	1	1		0	1	/	
DIDP	0		0	1				0	0		/	1	0	
DnOP	0	1								0	0	/		
BBP	1	1	1	1		1	1	1	1		1	1	1	
DprP											1	1	1	
MEHP		1	1		1	1	1	1	1		1	1	1	
DEHP	/	1	/	1	1	1	1	1		1	1	1	1	

STEP 3. Mechanistic "blueprint" of phthalates

STEP 4. Search for mechanistic analogues (other chemicals that have similar MoA)

PPARs peroxisome proliferator-activated receptors

- family comprises the types a, γ and β/δ
- are nuclear receptor superfamily of transcription factors that respond to specific ligands
- regulate lipid and carbohydrate metabolism
- embryonic and foetal development
- cholesterol uptake and transport
- represent a potential molecular link between reproductive function and carbohydrate and lipid metabolism

inflammatory responses

PPAR activation: evidence

MIE

Chemical initiator	In vitro binding	in vitro transactivation	Knock-out/inhibition/increased expression
DEHP	_	+	Experiments with PPARa-null mice indicate involvement of the receptor in reproductive toxicity of phthalates
МЕНР	+	+	Inhibition studies
BBP	+/-	+	To be verified
DBP	+/-	+	To be verified
Bisphenol A	-	+	Increased expression PPARy
Butylparaben	-	+	Increased expression PPARγ

Chemical Initiator	Decreased testosterone levels	Malformation of reproductive organs	Testicular toxicity
DEHP	+ (Howdeshell et al., 2008)	+ (Gray et al., 2000) (Parks, 2000)	+ (Kwack et al., 2009)
BBP	+ (Howdeshell et al., 2008)	+ (Gray et al., 2000) (Nagao et al., 2000)	+ (Gray et al., 2000)
DBP	+ (Howdeshell et al., 2008) (Barlow et al., 2003) (Mylchreest, 2000)	+ (Barlow et al., 2003) (Mylchreest, 2000)	+ (Mylchreest, 2000)
Bisphenol A	+ (Tanaka et al., 2006) (Nakamura et al., 2010) (Talsness et al., 2000)	+/- (Takagi et al., 2004) (Kobayashi et al., 2002) (Talsness et al., 2000) (Tinwell et al. 2002)	+ (Talsness et al., 2000)
Butyl paraben	+ (Zhang et al., 2014)	+ (Zhang et al., 2014)	+ (Oishi et al., 2001)

+ effect present

AO

/ no change ? no information

*testosterone production

PPARa activation leading to reproductive tract malformations in males upon *in utero* exposure

PPARa activation leading to reproductive tract malformations in males upon *in utero* exposure

Key Events	Experimental Support	Strength of Evidence	
Molecular Initiating Event: Binding to and activation to PPARα	 DEHP/MEHP, BBP, DBP binding to PPARα in vitro, in silico PPARα transactivation by DEHP/MEHP, BBP, DBP, butylparaben Experiments with PPARα-null mice indicate involvement of the receptor in reproductive toxicity of phthalates 	Moderate	Weak
Key Event: Impaired steroidogenesis	 Impaired transport of cholesterol to mitochondria decreased gene expression of SR-B1, TSPO (PBR), StAR decreased gene expression of P450scc, 3β-HSD, 17β-HSD 	Moderate	Moderate
Key Event: Decreased testosterone levels	 Decreased testosterone levels measured in plasma Decreased testosterone production measured ex-vivo 	Strong	Strong
Adverse Outcomes: Reproductive tract malformations	 DEHP, DBP, BBP, butylparaben, decreased AGD DEHP, DBP, BBP, Hypospadias 	Strong	

Challenges for these AOPs

Data mining

Literature organisation and structural capturing of the biological events

Paste	Cut Copy Format Painte	Filter	Start Start Start Start Start	✓ Selection × ✓ Advanced × rt ✓ Toggle Filter	Refresh		celling Find	al _{ac} Replace ⇒ Go To * k Select * B I 1	<u>u</u> <u>A</u> * ^a	• 11 V • 🌆	· E E E	- 18 N	>¶ - ₩ -				
1		Fa	Sort & Fi	ilter	Re	cords		Find		Text For	matting		l'a				
- Constraints	Chemica -	species, *	organisn •	treatment	• treatm •	Event i •	Level of .	Event destription -	Dose -	unit •	Effect effect	Effr .	study type/assay t 🗸	Endpoint -	Endpoint details	relevant to 👻	
1 Lovek 3 amp- Swan_ 2003	MEHP	granulosa cell	1.7	48h	ex vivo, in vitro		cellular	transcriptional regulation	50	μM			Q-PCR	increased mRNA epoxide hydrolase (17beta- hydrolase VI)	increased mRNA levels	steroidogene sis	(
1 Lovek 4 amp- Swan_ 2003		granulosa cell	rat	48h	ex vivo, in vitro	KE	cellular	transcriptional regulation	50	μM			Q-PCR	increased mRNA Heart fatty acid binding protein (H-FABP)	increased mRNA levels	steroidogene sis	U
1 Kwintk 5 iewicz _2010		KGN ovarian granulosa -like tumor cell line	human	48h	in vitro	KE	cellular	transcriptional regulation	60–100	μM			Q-PCR	mRNA aromatase decrease	down-regulation of FSH- induced aromatase mRNA expression in a dose- dependent , reducing its expression to the level of control at the highest (60-100 µM)	steroidogene sis	(
1 Kwintk 6 iewicz _2010		KGN ovarian granulosa -like tumor cell line	human	48h	in vitro	KE	cellular	estradiol production	80-100	μM			Q-PCR	decreased estradiol synthesis		steroidogene sis	l

Challenges for these AOPs cd.

Data mining

- Literature organisation and structural capturing of the biological events
- Quality and quantity of data in literature
 - \bigcirc (PPAR α or/and γ), dose levels, more mechanisms involved

Relevance for humans

- Mode of action
 - PPAR expression
 - Steroidogenesis is conserved

Adversity

TDS- Testicular Dysgenesis Syndrome in humans

Future plans

- **To insert quantitative data into the OECD AOP-Knowledge Base**
- To further substantiate AOP with evidence from other chemicals
- To develop other pathways interconnected with the current ones aiming at AOP network
- To further develop the database for capturing the literature and provide a template for structured data gathering

Acknowledgment

Brigitte Landesmann Edward Carney Sharon Munn Andrew Worth Julien Burton Alfonso Lostia

Thank you

for coming questions

