Peroxisome proliferator-activated receptors (PPARs) activation leading to reproductive toxicity in rodents

Małgorzata Nepelska

Adverse Outcome Pathways: From Research to Regulation
September 3-5, 2014
At the beginning

- We had an AIM

To develop a strategy for building a MoA based chemical category

\[f(\text{chemical structure}) = \text{toxicity} \]

\[f(MoA) = \text{toxicity} \]

- How?
Building MoA-based chemical category for toxicity prediction

STEP 1. Chose endocrine active, data rich chemicals

STEP 2. MoA matrix display of experimental data

<table>
<thead>
<tr>
<th>Phthalates</th>
<th>ER</th>
<th>PPAR</th>
<th>AR</th>
<th>AhR</th>
<th>Sertoli cells</th>
<th>spermatogenesis</th>
<th>Leydig cells</th>
<th>Decreased testosterone</th>
<th>stereoidogenesis</th>
<th>oestrus cycle</th>
<th>Male reproductive tract</th>
<th>Sperm parameters</th>
<th>Decreased AGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DiBP</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPP</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCHP</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHP</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>/</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DINP</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIDP</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DnOP</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBP</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DprP</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEHP</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP</td>
<td>/</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEP 3. Mechanistic "blueprint" of phthalates

STEP 4. Search for mechanistic analogues (other chemicals that have similar MoA)
PPAR activation leading to reproductive toxicity in rodents

MIE KE Adverse Outcome

AOP-linked chemical initiators

PPAR activation cholesterol transport Hormone synthesis Hormone levels Reproductive toxicity
PPARs peroxisome proliferator-activated receptors

- family comprises the types α, γ and β/δ
- are nuclear receptor superfamily of transcription factors that respond to specific ligands
- regulate lipid and carbohydrate metabolism
- embryonic and foetal development
- cholesterol uptake and transport
- represent a potential molecular link between reproductive function and carbohydrate and lipid metabolism
PPAR activation: evidence

<table>
<thead>
<tr>
<th>Chemical initiator</th>
<th>In vitro binding</th>
<th>in vitro transactivation</th>
<th>Knock-out/inhibition/increased expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP</td>
<td>-</td>
<td>+</td>
<td>Experiments with PPARa-null mice indicate involvement of the receptor in reproductive toxicity of phthalates</td>
</tr>
<tr>
<td>MEHP</td>
<td>+</td>
<td>+</td>
<td>Inhibition studies</td>
</tr>
<tr>
<td>BBP</td>
<td>+/-</td>
<td>+</td>
<td>To be verified</td>
</tr>
<tr>
<td>DBP</td>
<td>+/-</td>
<td>+</td>
<td>To be verified</td>
</tr>
<tr>
<td>Bisphenol A</td>
<td>-</td>
<td>+</td>
<td>Increased expression PPARγ</td>
</tr>
<tr>
<td>Butylparaben</td>
<td>-</td>
<td>+</td>
<td>Increased expression PPARγ</td>
</tr>
</tbody>
</table>
Altered steroidogenic pathway

Chemical initiator

PPAR
binding & activation

pregnenolone

P450scc

cholesterol

StAR

cholesterol

TSPO

3β-HSD-III

progesterone

androstenedione

aromatase

estrone

17β-HSD IV

testosterone

estradiol

aromatase
<table>
<thead>
<tr>
<th>Chemical Initiator</th>
<th>Decreased testosterone levels</th>
<th>Malformation of reproductive organs</th>
<th>Testicular toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP</td>
<td>+ (Howdeshell et al., 2008)</td>
<td>+ (Gray et al., 2000) (Parks, 2000)</td>
<td>+ (Kwack et al., 2009)</td>
</tr>
<tr>
<td>BBP</td>
<td>+ (Howdeshell et al., 2008)</td>
<td>+ (Gray et al., 2000) (Nagao et al., 2000)</td>
<td>+ (Gray et al., 2000)</td>
</tr>
<tr>
<td>DBP</td>
<td>+ (Howdeshell et al., 2008) (Barlow et al., 2003) (Mylchreest, 2000)</td>
<td>+ (Barlow et al., 2003) (Mylchreest, 2000)</td>
<td>+ (Mylchreest, 2000)</td>
</tr>
<tr>
<td>Butyl paraben</td>
<td>+ (Zhang et al., 2014)</td>
<td>+ (Zhang et al., 2014)</td>
<td>+ (Oishi et al., 2001)</td>
</tr>
</tbody>
</table>

+ effect present
/ no change
? no information
*testosterone production
PPAR activation leading to reproductive toxicity in rodents

- **MIE**
 - PPAR activation

- **KE**
 - Cholesterol transport to mitochondria
 - Hormone synthesis
 - Hormone levels

- **Adverse Outcome**
 - Reproductive toxicity
 - Altered oestrus cycle
 - Decreased ovary weight
 - Malformation of reproductive organs
 - Decreased AGD
 - Hypospadias
PPAR activation leading to reproductive toxicity in rodents

AOP 1
- PPAR activation
- Cholesterol transport to mitochondria
- Estradiol synthesis
- Hormone levels
- Reproductive toxicity

AOP 2
- PPAR activation
- Cholesterol transport to mitochondria
- Testosterone synthesis
- Hormone levels
- Reproductive malformations

AOP 3
- PPAR activation
- Cholesterol transport to mitochondria
- Estradiol synthesis
- Hormone levels
- Altered estrus cycle

- PPAR activation
- Cholesterol transport to mitochondria
- Testosterone synthesis
- Hormone levels
- Testicular toxicity
PPAR activation leading to reproductive toxicity in rodents

- **PPAR activation**
 - Cholesterol transport to mitochondria
 - **Testosterone** synthesis → Hormone levels → Malformations Reproductive organs
 - **Estradiol** synthesis → Hormone levels → Altered estrus cycle
 - **Testosterone** synthesis → Hormone levels → Testicular toxicity
PPARα activation leading to reproductive tract malformations in males upon *in utero* exposure

MIE
- PPARα activation

KE
- Cholesterol transport to mitochondria
- Testosterone synthesis
- Testosterone levels

Adverse Outcome
- Malformation Reproductive organs
- Decreased AGD
- Hypospadias

AOP-linked chemical initiators
PPARα activation leading to reproductive tract malformations in males upon *in utero* exposure

<table>
<thead>
<tr>
<th>Key Events</th>
<th>Experimental Support</th>
<th>Strength of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Initiating Event: Binding to and activation to PPARα</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEHP/MEHP, BBP, DBP binding to PPARα in vitro, in silico</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>PPARα transactivation by DEHP/MEHP, BBP, DBP, butylparaben</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiments with PPARα-null mice indicate involvement of the receptor in reproductive toxicity of phthalates</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Event: Impaired steroidogenesis		
	Impaired transport of cholesterol to mitochondria	Moderate
	decreased gene expression of SR-B1, TSPO (PBR), StAR	
	decreased gene expression of P450scc, 3β-HSD, 17β-HSD	

Key Event: Decreased testosterone levels		
	Decreased testosterone levels measured in plasma	Strong
	Decreased testosterone production measured ex-vivo	

Adverse Outcomes: Reproductive tract malformations		
	DEHP, DBP, BBP, butylparaben, decreased AGD	Strong
	DEHP, DBP, BBP, Hypospadias	
Challenges for these AOPs

Data mining

- Literature organisation and structural capturing of the biological events
Challenges for these AOPs cd.

Data mining
- Literature organisation and structural capturing of the biological events
- Quality and quantity of data in literature
 - (PPAR α or/and γ), dose levels, more mechanisms involved

Relevance for humans
- Mode of action
 - PPAR expression
 - Steroidogenesis is conserved

- Adversity
 - TDS- Testicular Dysgenesis Syndrome in humans
Future plans

- To insert quantitative data into the OECD AOP-Knowledge Base
- To further substantiate AOP with evidence from other chemicals
- To develop other pathways interconnected with the current ones aiming at AOP network
- To further develop the database for capturing the literature and provide a template for structured data gathering
Acknowledgment

Brigitte Landesmann
Edward Carney
Sharon Munn
Andrew Worth
Julien Burton
Alfonso Lostia

Thank you

for coming questions