A Conceptual Model that Enables Quantitative Integration of Data into an AOP

Edward J Perkins, Philipp Antczak, Lyle Burgoon, Francesco Falciani, Steve Gutsell, Geoff Hodges, Aude Kienzler, Dries Knapen, Mary McBride, Catherine Willett and Natalia Garcia-Reyero

September 3-5, 2014

The Issue

Risk assessors (regulatory or otherwise) need to:

- use many different kinds of data to make decisions
- weigh data in terms of relevance and reliability
- assess and document confidence in data and assumptions
- acknowledge uncertainties surrounding the assessment

A problematic element in regulatory toxicology and risk assessment is understanding the amount of uncertainty associated with a decision or a process.

→ To be useful in risk assessment, an AOP should demonstrably increase confidence in a decision

AOPs can increase certainty by:

Providing biological plausibility for a decision

- Qualitative assessment
- Hypothesis testing
- Providing transparent communication
- Providing a framework that allows valuing or quantifying the data input
 - strengths of relationships within an AOP can be used to weigh data
 - WoE assessment is improved vs. a "naïve" approach where all evidence is considered with equal weight

Allowing computational modeling of pathway elements with probabilistic outcomes

AOPs and regulatory use:

Context of application for AOPs

A. Chemical categories

B. Hazard identification

Prioritization

C. Integrated strategy design

D. Quantitative risk assessment

E. Predictive system for toxicology

A Qualitative AOP

composed of a MIE, KE_A, KE_B, and an AO

- assign a semi-quantitative value of weak, adequate or strong evidence to KERs
 - → *Linkage Strength:* measure of confidence between events
 - ★ → Inference Strength is the ability of an event to infer the likelihood of an AO

Adverse Outcome Pathways: From Research to Regulation

NIH, Bethesda, Marvland, USA

A Quantitative AOP

- Location
- Linkage strength
- Inference strength

- * Location Value:
- * KEs closer to the AO are likely to provide more predictive information
- less chance of interference by connecting pathway
 - * \rightarrow Location Value is equal to the position in the pathway (MIE =1)
- * Linkage Strength: between each event
- weak, adequate or strong => values of one, two, or three
- * Inference Strength:
- quantitative or statistical prediction that KE leads to AO
- i.e. the probability that an event (MIE or KE) will correctly infer the AO

NIH, Bethesda, Maryland, USA

Objective Decision Formula

$$KE_{Score} = \frac{Position_{KE}}{AOPLength} * \left(Inferability_{KE} + \sum_{i=Position_{KE}}^{AOPLength} Linkages_i \right)$$

for quantifying the value or weight of an event within an AOP

a score for each KE can be calculated based on

- Location
- Linkage Strength
- Inference Strength
- \rightarrow Weighting score for each KE

identify which KE will provide the most valuable information with respect to the probability of the AO occurring

Application of the ODF

Calculation of KE weights is based on position of event within the AOP and empirical data according to the ODF:

$$KE_{Score} = \frac{Position_{KE}}{AOPLength} * \left(Inferability_{KE} + \sum_{i=Position_{KE}}^{AOPLength} Linkages_i \right)$$

Adverse Outcome Pathways: From Research to Regulation

NIH, Bethesda, Maryland, USA

Mitochondrial Fatty Acid Beta-Oxidation Inhibition Leading to Steatosis as an example AOP structure

- Consider all possible circumstances:
- Linkage strength varied from 1, 2, 3, 4, 5
- **Inference strength** varied from **0%**, **0.1%**, **0.4%**, **0.7%**, **0.85%**, **0.95**%
 - \rightarrow 30 possible combinations for each event
 - → over 24 million possible scenarios based on this structure

ODF Analysis; a hypothetical case

- * An analysis of the distribution of scores shows:
- that KE 3 is most often the most informative
- early KEs reach high scores in situations of low accuracy and linkage weights of downstream events
- scores of KEs closer to the AO are similar indicating that there may be several choices of KE's to query at that end of the pathway

Adverse Outcome Pathways: From Research to Regulation

NIH, Bethesda, Maryland, USA

In summary

Derivation of a KE weight allows:

- reduced uncertainty by weighting input in a weight-ofevidence assessment
- choice the most appropriate/valuable tests to use for assessment
- increase efficiency of chemical assessment and reduced animal use

More advanced techniques are available that may provide a more accurate and better incorporation of the data; however, *the simplicity of our ODF means that it can be easily calculated for any given AOP that is currently available.*

Acknowledgements

Edward J Perkins Lyle Burgoon Francesco Falciani Steve Gutsell Geoff Hodges Aude Kienzler Dries Knapen Mary McBride Catherine Willett Natalia Garcia-Reyero

US Army Corps of Engineers

UNIVERSITY OF