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• U.S. (7 U.S.C. 136, 110 Stat 1613) and international regulations require that certain chemicals be tested 
to detect activity that could potentially affect the function of the estrogen, androgen, and thyroid hormone 
pathways. As many as 30,000 chemicals may require such testing, with several hundred new chemicals 
being added to this total each year (EPA 2011).

• The U.S. Environmental Protection Agency (EPA) ToxCast chemical research program (Dix et al. 2007; 
Judson et al. 2010) and the Tox21 U.S. federal partnership (Tice et al. 2013) include multiple in vitro 
high-throughput screening (HTS) assays that measure the effects of chemicals on endocrine hormone 
pathways.

• Following an approach used to model the estrogen receptor pathway (EPA and NICEATM 2014), we 
constructed a mathematical model to predict chemically induced androgen receptor (AR) activity based on 
nine ToxCast/Tox21 HTS assays that map to the AR pathway. 

• We used this model to train and test quantitative structure–activity relationship (QSAR) models for both 
binary classification and potency prediction for putative AR antagonists. We then made AR activity 
predictions for a larger chemical set.

Introduction

• We evaluated the performance of the regression models by examining the correlation between the 
experimental and calculated values for both training and test sets, using R2 (coefficient of determination) 
and RMSE (root mean squared error).

• R2 for the training set improved continuously with increasing feature number.

• R2 for the test set initially increased, attained a maximum at a medium number of variables, and then 
gradually decreased (Figure 7).

– The best MLR model had an R2 of 0.320 and RMSE of 0.0619 for the test set (n= 35 variables).

– The best PLSR model had an R2 of 0.349 and an RMSE of 0.0541 (n=25 variables). 

• Figure 8 is a scatter plot of predicted versus actual AR antagonist potency (based on AR pathway model 
AUC) values from PLSR modeling.

Figure 7. Effect of Model Complexity on Coefficient of Determination

Abbreviations: MLR = multiple linear regression; PLSR = partial least squares regression; R-squared = 
coefficient of determination.

Figure 8. Comparison of Predicted and Actual AR Antagonist Potency by PLSR

Abbreviations: AR = androgen receptor (antagonism); PLSR = partial least squares regression; R2 = coefficient 
of determination.

Regression Model Validation
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Training and Test Sets
• There are 225 active chemicals in the ToxCast data set with MOE descriptors available.

• To develop a model for prediction of AR antagonist potency, we split these into training and test sets with 
150 and 75 chemicals, respectively.

• A principal component analysis (PCA) based on structural descriptors indicated that the chemicals in the 
test set are representative of the chemicals in the training set, and thus the predictions for the test set 
using the developed models are reliable (Figure 6).

Figure 6. Principal Component Analysis of the AR Potency Model 
Training and Test Sets 

Variable Selection
• To optimize potency model construction and avoid overfitting, we performed variable selection using 

genetic algorithm (GA), a popular algorithm well-suited for regression models.

• GA is an efficient stochastic optimization tool and randomized search technique. GA analysis is conducted 
in five steps: (1) encoding the descriptors as chromosomes, (2) generating the initial population of 
chromosomes, (3) evaluating the fitness function, (4) creating the next generation of chromosomes, (5) 
terminating the process. 

• The initial population was assigned to 200 chromosomes. The crossover probability and mutation rate 
were set to 50% and 1%, respectively. The coefficient of determination was taken as the fitness score of 
each chromosome. A series of variables from 10 to 60 were selected from GA.

Regression Models
• We used two approaches to develop models of antagonist potency, multiple linear regression (MLR) and 

partial least squares regression (PLSR).

• MLR produced a linear model describing the relationship between the variables (molecular descriptors) 
and antagonist potency. The contribution coefficients for each descriptor are determined by regression 
analysis.

• PLSR employs a set of orthogonal latent variables or principal components (PCs) that are generated 
through a linear combination of the original molecular descriptors. The PCs are new variables used to 
build regression models to predict the response variable, i.e., the potency. The optimal number of PCs 
was determined by 10-fold cross-validation.

Regression Analysis for the Prediction of AR 
Potency

• The molecular structures of the chemicals were represented in SMILES (Simplified Molecular Input Line-
Entry System) format.

• SMILES strings were converted into three-dimensional (3D) structures using Molecular Operating 
Environment (MOE). 

• 188 molecular descriptors were obtained from MOE.

Molecular Descriptors and Structural 
Fingerprints

• Nine AR pathway assays (Table 1) were used to generate data on 1855 chemicals during ToxCast
Phases I and II.

• All concentration–response assay data were analyzed using the ToxCast data analysis pipeline 
(http://actor.epa.gov), which automates the processes of baseline correction, normalization, curve-fitting, 
hit-calling, and AC50 (half-maximal activity) determination, and detects a variety of potential confounders 
(annotated as “caution flags”).

Table 1. Assays Used in the AR Pathway Model

High-Throughput Screening Data

• The activity of a chemical against the AR pathway is represented by a simple linear model that calculates 
area under the curve (AUC).

• Figure 3 is a calibration curve to aid interpretation of the AUC distributions, showing for example that an 
AUC of 0.1 is equivalent to an AC50 against the AR pathway at ~100 µM.

• The AR pathway model AUC scores were previously shown to be 96% predictive against a set of 23 
reference chemicals, and correctly identified environmental compounds with known anti-androgenic activity 
in vivo (Kleinstreuer et al. 2015).

Figure 3. Calibration Curve for AR Pathway Model Scores

Activity of ToxCast Chemicals in the 
AR Pathway Model

• Figure 1 presents a model of the AR pathway and shows how the assays listed in Table 1 map to the 
pathway. The model is based on the molecular events that typically occur in a receptor-mediated 
response. The assays listed in Table 1 are represented in Figure 1 as white stars.

• The model assumes that a chemical that interacts with the AR will bind in either or both of the agonist or 
antagonist conformations, triggering activity in the appropriate pathway.

• The agonist pathway starts at the interaction of a chemical with a nuclear AR (receptor node R1), and 
continues through dimerization (node N1), translocation, co-factor recruitment (N2), DNA binding (N3), 
mRNA transcription (N4), and protein translation (N5). The antagonist pathway is similarly represented by 
receptor node R2 and nodes N7, N8, N9, and N10. Dimerization and DNA binding are the only processes 
not assessed by one or more of the assays listed in Table 1.

• Potential assay interference pathways are shown in Figure 1 as “pseudo-receptors” (gray arrow nodes). 

Figure 1. AR Pathway Model

AR Pathway Model

Abbreviations: AR = androgen receptor

Colored arrow nodes (R1/R2) represent “receptors” with which a chemical can directly interact. Colored circles represent intermediate biological 
processes that are not directly observable. White stars represent the assays that measure activity at the biological nodes. Arrows represent transfer 
of information. Grey arrow nodes represent biological interference pathways (R3-R7) or technology-specific interference (one example shown, A1).

ID Assay Name Source Gene Species Type

A1 NVS human AR Novascreen AR Homo sapiens Cell-free biochemical radioligand
receptor binding

A2 NVS chimpanzee AR Novascreen AR P. troglodytes Cell-free biochemical radioligand
receptor binding

A3 OT_AR_ARSRC1_0480 Odyssey Thera AR;SRC Homo sapiens AR-SRC1 cofactor recruitment

A4 OT_AR_ARSRC1_0960 Odyssey Thera AR;SRC Homo sapiens AR-SRC1 cofactor recruitment

A5 ATG_AR_TRANS Attagene AR Homo sapiens RNA TA reporter gene

A6 Tox21_AR_BLA_Agonist_ratio NCGC AR Homo sapiens Beta-lactamase TA reporter gene

A7 Tox21_AR_LUC_MDAKB2_Agonist NCGC AR Homo sapiens Luciferase TA reporter gene

A8 Tox21_AR_BLA_Antagonist_ratio NCGC AR Homo sapiens Beta-lactamase TA reporter gene

A9 Tox21_AR_LUC_MDAKB2_Antagonist NCGC AR Homo sapiens Luciferase TA reporter gene

• Examples of how a specific chemical may interact with the AR pathway are shown in Figure 2, in which 
pink highlighting represents the expected activity from a true agonist (Figure 2a), a true antagonist 
(Figure 2b), or a chemical causing assay interference (Figure 2c).

Figure 2. Examples of Chemical Interactions with AR Pathway Model

Chemical Interactions with AR Pathway Model

Abbreviations: AR = androgen receptor

Abbreviations: AC50 = half maximal activity concentration; AR = androgen receptor; AUC = area under the curve.

Abbreviations: AR = androgen receptor; NCGC = National Institutes of Health Chemical Genomics Center; SRC = c-Src tyrosine kinase; 
TA = transactivation.

• We focused on building QSAR models for AR antagonism because anti-androgenic activity is the 
response of highest environmental relevance and concern.

• For construction of the QSAR models, chemicals with an AUC antagonist score greater than or equal to 
0.01 (~AC50 ≤ 1mM) were considered positives (Table 2, color-coded amber), and chemicals with AUC 
antagonist scores less than 0.01 were considered negatives (Table 2, color-coded blue).

Table 2. Data Set Used for the QSAR Model

• The chemicals in each score class in Table 2 were partitioned into a training set containing 1243 
chemicals (67%) and a test set containing 612 chemicals (33%) to build the models and validate their 
predictive power, respectively. 

• Training and test sets were randomly selected from the larger chemical set while maintaining the 
distribution of positives and negatives.

QSAR Predictions of AR Antagonist Activity 

Variable Selection
• An algorithm called recursive feature elimination (RFE) is used for variable/feature selection. RFE selects 

model variables by repeatedly considering smaller and smaller sets of molecular descriptors and 
evaluating cross-validated binary prediction performance against the training set. 

• Figure 4 depicts the relationship between the number of variables (molecular descriptors) and the 
cross-validation accuracy. The optimal subset of molecular descriptors is 41, the number of descriptors 
yielding the highest accuracy (0.873).

Figure 4. Feature Selection of MOE Descriptors

Classification Modeling and Performance
• We developed a series of binary QSAR models to classify the chemicals as active or inactive according to 

their anti-androgenic activity. Random forest (RF) and support vector machine (SVM) approaches were 
used to classify the chemicals based on the most significant molecular descriptors from RFE.

• We investigated the influence of various methods for handling the imbalanced data:

– Cost-sensitive algorithm (considers misclassification costs based on the data distribution) 

– Oversampling (repeat sampling of positives) 

– Undersampling (sub-sampling of negatives)

• An ideal classification model should maximize accuracy on both sides of the active and inactive classes. 
G-mean, the geometric mean of sensitivity and specificity, was used to emphasize the joint performance 
of sensitivity and specificity. 

• Table 3 lists the classification results according to the four performance metrics, i.e., sensitivity, 
specificity, accuracy, and G-mean.  

Table 3. Prediction Performance from SVM and RF Models

Abbreviation: FN = false negative; FP = false positive; RF = random forest; SE = sensitivity; SP = specificity; SVM = support vector machines; TN = 
true negative; TP = true positive.

• A receiver operating characteristic (ROC) curve can help visualize the performance of a classifier by 
providing a graphical representation of the trade-off between the true positive rate (y-axis) and the false 
positive rate (x-axis). Figure 5 shows the ROC curves for SVM classifier models based on cost-sensitive 
modeling, oversampling, and undersampling. 

• The best binary classification model was used to make predictions for ~30,000 chemicals in the broader 
chemical universe eligible for assessment in the EPA Endocrine Disruptor Screening Program. Based on 
this preliminary model, 20.60% (6475/31428) of these chemicals were predicted to have some AR 
antagonist activity. However, this initial result is very likely an overestimate that may be confounded by 
very weak activity or cytotoxicity. Further refinement of the model should improve specificity.

Figure 5. ROC Curves for SVM Classifier Models of AR Activity

Abbreviations: AR = androgen receptor (antagonism); AUC = area under the curve; ROC = receiver operating characteristic; SVM = support vector 
machines.

Binary Classification for AR Data

AUC Antagonist Score AUC ≥  0.1 0.1 > AUC ≥ 0.01 0.01 > AUC > 0 AUC = 0

Number of chemicals 132 96 34 1593

Model Imbalance 
Handling Data Set

Active Chemicals Inactive Chemicals
Accuracy (%) G-mean (%)

TP FN SE (%) TN FP SP (%)

SVM

Cost-sensitive
Training 139 12 92.1 834 220 79.1 80.7 85.4

Test 60 15 80.0 390 140 73.6 74.4 76.7

Undersampling
Training 142 9 94.0 142 9 94.0 94.0 94.0

Test 61 14 81.3 378 152 71.3 72.6 76.1

Oversampling
Training 995 59 94.4 834 220 79.1 80.0 86.4

Test 60 15 80.0 388 142 73.2 74.1 76.5

RF

Cost-sensitive
Training 149 2 98.7 1054 0 100 99.8 99.3

Test 10 65 13.3 523 7 98.7 88.1 36.2

Undersampling
Training 151 0 100 151 0 100 100 100

Test 62 13 82.7 362 168 68.3 70.1 75.2

Oversampling
Training 1054 0 100 1052 2 99.8 99.9 99.9

Test 20 55 26.7 504 26 95.1 86.6 50.4

• The AR pathway model provides a biologically based mathematical approach to distinguish assay 
interference from true agonist or antagonist activity and to prioritize large numbers of environmental 
chemicals for their potential androgenic or anti-androgenic activity.

• Because the AR pathway model correctly classified AR reference chemicals and identified environmental 
chemicals with known anti-androgenic activity, it was used to train QSAR models for hazard classification 
and potency prediction.

• The best performing classification model was obtained using SVM in combination with a subset of 
descriptors identified via the RFE algorithm (sensitivity = 80.0%; specificity = 73.6% for test set).

• The classification model was used to predict AR antagonist activity for the Endocrine Disruptor Screening 
Program universe of 30,000 chemicals, predicting that 20.6% (6475/31428) of these chemicals may have 
AR antagonist activity. This initial result that is certainly an overestimate confounded by very weak activity 
or cytotoxicity. Further refinement of the model should improve specificity. 

• For AR potency prediction, the PLSR regression model had reasonable accuracy with an R2 of 0.451 for 
the training set and an R2 of 0.349 for the test set. Further work will be conducted to expand molecular 
descriptor libraries for use in the regression model and to use this model to predict activities of chemicals 
in a broader universe.

Conclusions
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