
Results

• Enzymes can transform chemicals that enter the body into metabolites.
• Enzyme activity varies across human populations due to genetic variability, making some populations 

potentially more sensitive to effects from parent chemicals or metabolites.
• Physiologically-based kinetic (PB-K) models can help inform risk assessments for parent chemicals and 

metabolites, but current methods do not fully capture the effects of pathway-related population variability.
• This poster develops and describes a generalized modular workflow (Figure 1) we developed to 

incorporate pathway-related variability for a range of enzymes across human populations into PB-K 
models.

• We present the workflow, describe data sources, and provide a case study demonstration.

Introduction
• The workflow integrates metabolite predictions, population variability, QSAR parameter 

prediction, and high-throughput PB-K models.

• The approach is modular and applicable to multiple rounds of metabolism.

• The case study demonstrates how both parent chemical and metabolite kinetics impact 
internal concentration.

• Metabolite 3 (42% yield) resulted in Cmax only 1% greater than Metabolite 2 (27% 
yield) due to clearance differences.

• Parameter predictions for morpholine and metabolites were within the applicability 
domain of OPERA models, but confidence index was low for OPERA Clint 
predictions for metabolites (< 0.5), and lowest for Metabolite 3 (0.34).

• The case study was limited to a small set of CYP enzymes to correspond with metabolite 
prediction capabilities.

• Variability within the case study was considered across all demographics.

• The workflow facilitates analysis of subpopulations by modifying enzyme CV inputs to 
represent a demographic subset.

• Quantifying the range of tissue concentrations resulting from metabolic pathway variability 
facilitates more health-protective risk assessment for susceptible population groups.

• This workflow will be implemented for a set of approximately 1 million parent chemicals 
and their metabolites. The predictions will be integrated into the Integrated Chemical 
Environment (ICE; https://ice.ntp.niehs.nih.gov).
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1. Parent chemical dose is established.
2. Generalized PB-K models from the U.S. Environmental Protection Agency’s httk R package (Pearce et 

al. 2017) are parameterized using measured data and/or predicted data from quantitative structure-
activity relationship (QSAR) models.

3. Information on predicted metabolites, which enzymes contribute to metabolism, and percent yield for 
each metabolite are obtained from SimulationsPlus ADMET Predictor® (www.simulations-plus.com).

4. Enzyme variability data are obtained from literature reports published by the European Food Safety 
Agency (EFSA; Darney et al. 2019, 2021).

5. Enzyme variability is integrated into the PB-K model by adjusting the clearance parameters. Monte 
Carlo sampling (n=10,000) is performed on a lognormal distribution of clearance with coefficient of 
variation (CV) defined by enzyme CVs from EFSA reports. These enzyme CVs are scaled by relative 
contribution to metabolism and combined to create a representative value. 

6. The amount of parent chemical metabolized is used to create an intravenous dosing time series for 
each metabolite that is scaled by the metabolite’s percent yield.

7. QSAR models predict metabolite PB-K parameters; metabolite PB-K simulations are conducted using 
the dosing time series as inputs.

8. Parent and metabolite results can be analyzed across the Monte Carlo runs to evaluate the effects of 
genetic pathway-based variability.

Workflow
• The NTP Interagency Center for the Evaluation of Alternative Toxicological 

Methods (NICEATM) has developed a workflow to integrate metabolite 
predictions and enzyme pathway variability into PB-K models.

• The workflow is modular, producing both parent chemical and metabolite 
tissue predictions.

• Tissue concentration variability can inform risk assessments to be 
protectives of susceptible population groups.
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• We used the workflow to evaluate 
metabolism of morpholine 
(CAS# 61356-09-0) and its metabolites.

• We simulated one round of metabolism from 
the CYP1A2, CYP2C19, CYP2C9, CYP2D6, 
and CYP3A4 enzyme suite in the ADMET 
Predictor database.

• We assumed an exposure of 1 mg/kg oral 
dose; PB-K input parameters for morpholine 
and four first round metabolites (M1 through 
M4 in Figure 3) were predicted with OPERA 
v2.8 (Mansouri et al. 2018).

• Monte Carlo simulation (n=10,000) was used 
to estimate effects of population variability 
using EFSA data; analyses focused on the 
95% range of results.

• PB-K models were used to predict plasma 
profiles and maximum concentration (Cmax) 
distributions.

Abbreviations:
• Clint: intrinsic clearance (uL/min/106 hepatocytes)
• fu: fraction of chemical unbound to plasma protein
• LogP: octanol–water partition coefficient
• pKa: acid/base dissociation constant
• LogHL: Henry’s Law
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Results Summary:
• All four metabolites maintained tissue 

concentrations well below morpholine.

• Metabolite 1 had the lowest percent yield 
and lowest plasma concentrations.

• Metabolite 3 had the highest percent yield, 
but metabolites 2, 3, and 4 had similar 
predicted plasma profiles.

• Higher clearance of Metabolite 3 than other 
metabolites prevented Metabolite 3 from 
reaching higher concentrations, despite 
having the largest input dose.

Figure 4: Plasma profiles for morpholine and four metabolites. Black lines show PB-K simulations with OPERA-predicted 
parameters, colored lines show predicted effects of population variability. 

Figure 5: Summary of Monte Carlo results for morpholine and four metabolites using Cmax. Boxplots show minimum, 
maximum, interquartile range, and median, while circles show results predicted using OPERA parameters. Gray bar plot on top 
shows percent yield for each metabolite.
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Figure 2: Example workflow for a single run for a parent chemical and metabolite.  
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Figure 1: Generalized modular workflow. Numbers correspond to descriptions in Workflow section below.
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Units: 
• Clearance: uL/min/106

hepatocytes
• PB-K profile: mg/L
• Amount metabolized 

and input: mg 

Visit ICE
https://ice.ntp.niehs.nih.gov/

Figure 3: Population clearance distribution for morpholine and 
physiochemical parameters for morpholine and its four metabolites.
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