
• The Tox21 and ToxCast high-throughput screening (HTS) programs have provided an abundance of in vitro 
assay data. 

• Chemicals evaluated in these HTS assays are evaluated for occurrences of "cytotoxicity burst." This is a 
change in activity at a concentration threshold where cytotoxicity and generalized cell stress are likely to 
impact measured assay activity and confound hazard estimates.

• Evaluating cytotoxicity for burst activity provides additional 
context when interpreting bioactivity data by highlighting 
assay results of questionable validity. 

• Bioactivity data in HTS assays is often expressed as AC50:
the concentration of test chemical that induces 50% of
the maximum assay activity. The range of AC50s 
observed for a given chemical could be impacted by 
assay design or physicochemical characteristics of the 
tested chemical. 

• The parameters that are associated with heightened 
cytotoxicity could be used to improve predictions 
of cytotoxicity burst activity. 

• The final model predicted assay hit calls for both the training and test datasets with accuracy of 95%, 
sensitivity of 74%, and specificity of 98%.

• Variable importance was measured by the gain in prediction accuracy achieved by introducing a split on that 
variable in a decision tree. 

• Among the ten variables with the highest gain, the first nine were OPERA-predicted variables and the tenth 
was the assay timepoint.

• The final model comprised 1000 individual decision tree models, each using different combinations of 
parameters and splitting decision rules. 

• A summary of the split decisions shows that most splits were performed with chemical property parameters.
• Although the assay design parameters have lower importance than the chemical property parameters, 998 

individual decision trees used at least one assay design parameter to split the data. 

Model Results

Introduction

• We trained an extreme gradient-boosted tree model for logistic regression using 13 OPERA-predicted 
chemical properties and nine assay design parameters.

• When using data with low missingness, the extreme gradient boosted tree predicts chemical-assay cytotoxicity 
hit calls with high accuracy for both the training and test data.

• Evaluation of variable importance and representative tree diagrams show that most decision tree splits are 
performed on chemical property variables and that the inclusion of assay design parameters can help to further 
discretize chemical-assay pair predictions.

• Visualization of the data shows how the splitting decisions attempt to maximize accuracy.

Conclusion
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• Cytotoxicity assay data were obtained from the U.S. EPA’s invitrodb.v3.4 using the tcpl R package.
• The selected cytotoxicity assays were reviewed by subject matter experts to include only the data where the 

AC50s were derived from endpoints analyzed in the expected direction. 
• Quantitative structure-activity relationship predictions for 13 chemical properties generated by OPERA 

(https://ntp.niehs.nih.gov/go/opera) were obtained from the Integrated Chemical Environment 
(ICE, https://ice.ntp.niehs.nih.gov/).
o Missing data for pH-dependent lipid-aqueous partition coefficients and acid dissociation constants were 

imputed with “20.”
• Nine assay design parameters were obtained from tcpl.

o Missing data for key assay reagent type and cell growth mode were imputed with “N/A” and treated as 
unique categories for the given variable.

• Data were removed if any of the following conditions were met:
o Flag indicating data were of questionable quality.
o For a negative hit call, the highest tested concentration was less than 1.9 log(µM). 
o Fewer than 500 chemicals were tested using an assay (all data for that assay removed).
o Chemicals were tested in fewer than 90% of remaining assays (all data for that chemical removed).
o Chemicals had no available property data (experimental or predicted by OPERA, see below).

• After filtering, there were 90,715 remaining assay results for 1,078 chemicals, spanning 89 unique 
assay endpoints. 

Data Selection and Processing

• Based on the accuracy of this proof-of-concept model, an extreme gradient-boosted tree model will be trained 
with less stringent filtering criteria on the cytotoxicity assays using the full HTS database.

• In order to characterize cytotoxic ranges, future model development will include consideration of tested 
concentrations by using individual chemical-assay data points and/or points of departure. 

• Additional assay design parameters will be identified for inclusion in the model to broaden coverage for assays 
without paired cytotoxicity data and to assure coverage in cases where assays have a high frequency of 
missing metadata.

Future Directions

• The 90,715 cytotoxicity assay results were split 
into training and test sets using an 80/20 split.

• An extreme gradient-boosted tree model for 
predicting assay hit calls was tuned using the 
training data. 

• The final model was selected by evaluating the 
test set accuracy.

• Results from the trained model were used to 
identify parameters that could distinguish 
between positive or negative hit calls. 

• Splitting decisions for the variables with the 
highest importance were visualized to evaluate 
the association of split locations with positive 
and negative hit calls. 
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Assay Design Parameter OPERA Chemical Property Prediction

• Cell growth mode
• Content readout type
• Detection technology type
• Key assay reagent type
• Maximum tested 

concentration
• Minimum tested 

concentration
• Organism
• Timepoint (hour)
• Tissue

• Boiling point
• Henry’s Law constant
• Melting point
• Molecular weight
• Negative log of acid dissociation constant:

• Number of ionizations (pKa ionizations)
• Strongest acidic pKa (pKa acidic)
• Strongest basic pKa (pKa basic)

• K(OA): octanol-air partition coefficient
• Octanol-water distribution coefficient (LogD) 

at pH 5.5
• Octanol-water distribution coefficient (LogD) 

at pH 7.4
• LogP: octanol-water partition coefficient
• Vapor pressure
• Water solubility
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Visualizing Splitting Decisions

• Use machine learning to identify variables, including assay design parameters and physicochemical 
characteristics, that could inform on predicting cytotoxicity which would ultimately provide additional context for 
evaluating data validity when analyzing HTS data.

• As a proof of concept, a limited data set comprising data rich chemicals and assays were used to fit an 
ensemble tree model for predicting positive or negative hit calls.

• By using chemicals that have a low frequency of missing data, the parameters that maximize accuracy will 
provide context for future model development.

Objectives
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• The scatterplot shows the 
proportion of positive hit calls per 
chemical, with each point plotted by 
the given chemical’s K(OA) and 
water solubility. 

• The horizontal axis is annotated by 
the distribution of splitting decisions 
made with K(OA) across all trees in 
the model. The median split is 
indicated by a red vertical line.

• The vertical axis is annotated by 
the distribution of splitting decisions 
made with water solubility across 
all trees in the model. The median 
split is indicated by a blue 
horizontal line.

• Chemicals with lower K(OA) and 
water solubility have higher 
proportion of negative hit calls. 

• The ranges of split locations for 
K(OA) and water solubility show 
how decision tree splits maximize 
prediction accuracy, but additional 
parameters can provide more 
information for characterizing 
cytotoxicity. 
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