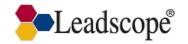
Leadscope predictive models for acute oral systemic toxicity

Glenn J. Myatt,

Leadscope Inc., 1393 Dublin Road, Columbus, Ohio 43215 Email: gmyatt@leadscope.com

Agenda

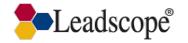
- How the models were built
- Model results
- In silico toxicology protocol project
 - Acute toxicity in silico protocol



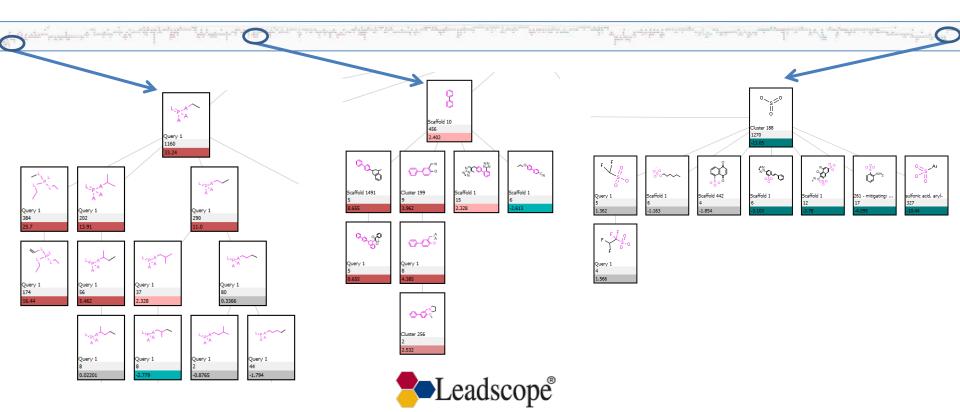
HOW THE MODELS WERE BUILT

Approach to modelling data

- Structure-based classification
- Developed a series of QSAR models and alerts
- Integrated results to generate final endpoints



Structure classification-830 structural classes organized hierarchically

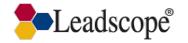


QSAR and alert models Built

- -log(LD50) QSAR: Negative log of the LD50 point estimate
- EPA
 - **EPA 1 QSAR**: 1 for all EPA hazard category 1, 0 for all other categories
 - EPA 1 2 QSAR: 1 for all EPA hazard category 1 or 2, 0 for all other categories
 - **EPA 1 2 3 QSAR**: 1 for all EPA hazard category 1 or 2 or 3, 0 for all other categories
- GHS
 - **GHS 1 QSAR**: 1 for all GHS hazard category 1, 0 for all other categories
 - **GHS 1 2 QSAR**: 1 for all GHS hazard category 1 or 2, 0 for all other categories
 - **GHS 1 Alerts**: 1 for all GHS hazard category 1, 0 for all other categories
 - GHS 1 2 Alerts: 1 for all GHS hazard category 1 or 2, 0 for all other categories
 - GHS 1 2 3 QSAR: 1 for all GHS hazard category 1 or 2 or 3, 0 for all other categories
 - GHS 1 2 3 4 QSAR: 1 for all GHS hazard category 1 or 2 or 3, 0 for all other categories
- Very_toxic QSAR: 1 for TRUE and 0 for FALSE
- Nontoxic QSAR: 1 for TRUE and 0 for FALSE

QSAR descriptors

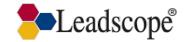
- Leadscope pre-defined features
- 830 structural classes
- Calculated phys-chem properties



QSAR modelling approaches

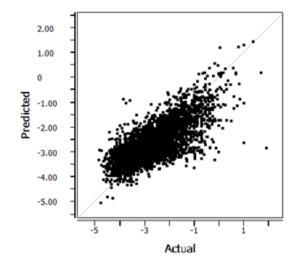
- Features selection
- Continuous prediction partial least squares (PLS) regression
- Close to balanced classification partial logistic regression
- Imbalanced classification average of a series of balanced partial logistic regression (PLR) models
- No optimization of the models

MODEL RESULTS



-log(LD50) QSAR

Training Set



R-Square: 0.5404

Press: 2268.0

Model results

Models/Endpoin	t Cross-validated Performance	Models/En	dpoint Cross-validated Performance	Models/Endpoin	t Cross-validated Performance
EPA 1 QSAR	Concordance: 88.3	GHS 1 QSA	Concordance: 96.7	GHS 1 Alerts	Concordance: 97.6
	Sensitivity: 75.0		Sensitivity: 70.3		Sensitivity: 53.8
	Specificity: 89.6		Specificity: 97.2		Specificity: 98.4
	Positive Predictivity: 39.9		Positive Predictivity: 31.1		Positive Predictivity: 39.6
	Negative Predictivity: 97.5		Negative Predictivity: 99.5		Negative Predictivity: 99.1
EPA 1 2 QSAR	Concordance: 79.0	GHS 1 2 QS	AR Concordance: 88.6		(Not cross-validated)
	Sensitivity: 76.1		Sensitivity: 73.0	GHS 1 2 Alerts	Concordance: 93.7
	Specificity: 80.2		Specificity: 90.1		Sensitivity: 42.5
	Positive Predictivity: 62.3		Positive Predictivity: 40.2		Specificity: 98.4
	Negative Predictivity: 88.7		Negative Predictivity: 97.3		Positive Predictivity: 61.4
EPA 1 2 3 QSAR	Concordance: 78.7	GHS 1 2 3 C	SAR Concordance: 81.9		Negative Predictivity: 95.5
	Sensitivity: 79.4		Sensitivity: 75.3		(Not cross-validated)
	Specificity: 75.8		Specificity: 83.7		
	Positive Predictivity: 93.2		Positive Predictivity: 56.5	Models/Endpoin	t Cross-validated Performance
	Negative Predictivity: 46.9		Negative Predictivity: 92.4	Very_toxic QSAR	
		GHS 1 2 3 4	QSAR Concordance: 74.1	/	Sensitivity: 73.4
			Sensitivity: 78.6		Specificity: 90.2
			Specificity: 67.9		Positive Predictivity: 40.6

Leadscope

Positive Predictivity: 77.0

Negative Predictivity: 69.9

Negative Predictivity: 97.4

Positive Predictivity: 68.6

Negative Predictivity: 82.4

Concordance: 76.9 Sensitivity: 72.3 Specificity: 79.7

Nontoxic QSAR

Endpoint Calculation

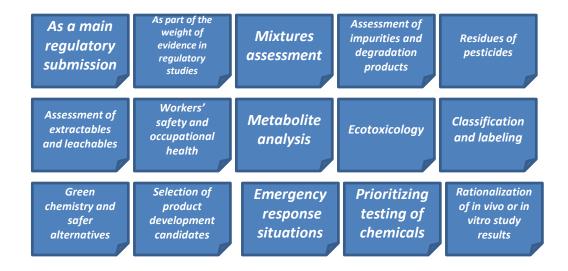
he Very_Toxic QSAR result is within the applicability domain and the probability is greater than 0.6, a TRUE value						
eturned, if the probability is less than 0.4 a FALSE value is returned, if the probability is between 0.4 and 0.6,						
en no result is returned.						
he Nontoxic QSAR result is within the applicability domain and the probability is greater than 0.5, a TRUE value						
eturned, if the probability is less than 0.3 a FALSE value is returned, if the probability is between 0.3 and 0.5,						
then no result is returned.						
he result is within the applicability domain of the model, the -log(LD50) QSAR model prediction is used to						
culate the LD50, using the inverse log of the prediction multiplied by -1						
prediction will only be made as long as the all the EPA QSAR models are in domain. If the EPA 1 QSAR probability						
is greater than 0.6 then an EPA category of 1 is given. If the EPA 1 2 QSAR probability is greater than 0.6 then an						
A category of 2 is given. IF the EPA 1 2 3 QSAR probability is greater than 0.6 then a EPA category of 3 is given,						
nerwise an EPA category of 4 is given.						
prediction will only be made as long as the all the GHS QSAR models are in domain. If the GHS 1 QSAR probability						
greater than 0.6 or the GHS 1 Alerts are positive or indeterminate then a GHS category of 1 is given. If the GHS 1						
QSAR probability is greater than 0.6 or the GHS 1 2 Alerts are positive or indeterminate then a GHS category of 2						
given. IF the GHS 1 2 3 QSAR probability is greater than 0.6 then a GHS category of 3 is given. IF the GHS 1 2 3 4						
AR probability is greater than 0.6 then a GHS category of 4 is given, otherwise a GHS category of 5 is given.						

GHS Model Results

		Predicted						
		1	2	3	4	5		
	1	35	13	2	4	3		
	2	53	72	19	20	10		
Actual	3	21	99	56	139	36		
	4	8	73	90	560	200		
	5	7	66	48	387	654		

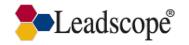
IN SILICO TOXICOLOGY PROTOCOLS

Applications that currently can benefit from *in silico* methods



In silico toxicology project

- The standardization of *in silico* tool use and interpretation
- Reduce the burden on both industry and regulators to provide justification for the use of these methods
- Results can be generated, recorded, communicated, and archived in a uniform, consistent and reproducible manner
- Incorporating these principles routinely into the use of *in silico* methods will support a more transparent analysis of the results and mitigate "black box" concerns
- Provides an important step towards a quality-driven science for *in silico* toxicology

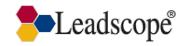


Status of in silico toxicology project

- Completed the overall strategy
- Initial drafts for the genetic toxicity protocol completed
- Forming subgroups to develop the protocols for:
 - Skin/respiratory/oral sensitization, Carcinogenicity, Reproductive/developmental toxicity, Acute toxicity/lethality, Endocrine disruption, Liver toxicity, Cardiac toxicity, Neurotoxicity, Repeated dose, Bone marrow toxicity, Renal toxicity, Brain/CNS toxicity, Gastrointestinal toxicity, Respiratory system toxicity, Skin/eye irritation/corrosion, Physical hazards, Ecotoxicity, Photosensitization/phototoxicity, Physical chemical parameters, Immunotoxicity

Conclusion

- *In silico* toxicology
 - Fast and inexpensive approach to support toxicological assessments
 - Support the principles of the 3Rs
 - Accepted as part of regulatory submissions
- Protocols provide support for implementation of *in silico* toxicology across many applications



Acknowledgements

Organizers of Workshop: Predictive Models for Acute Oral Systemic Toxicity

All the coauthors of the *in silico* toxicology paper as well as collaborators in the *in silico* toxicology protocol project

Leadscope scientists: Dave Bower, Kevin Cross, Candice Johnson, Scott Miller, Pat Quigley

Research reported in this presentation was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number R44ES026909. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Thank you!

Glenn J. Myatt gmyatt@leadscope.com Leadscope, Inc.

