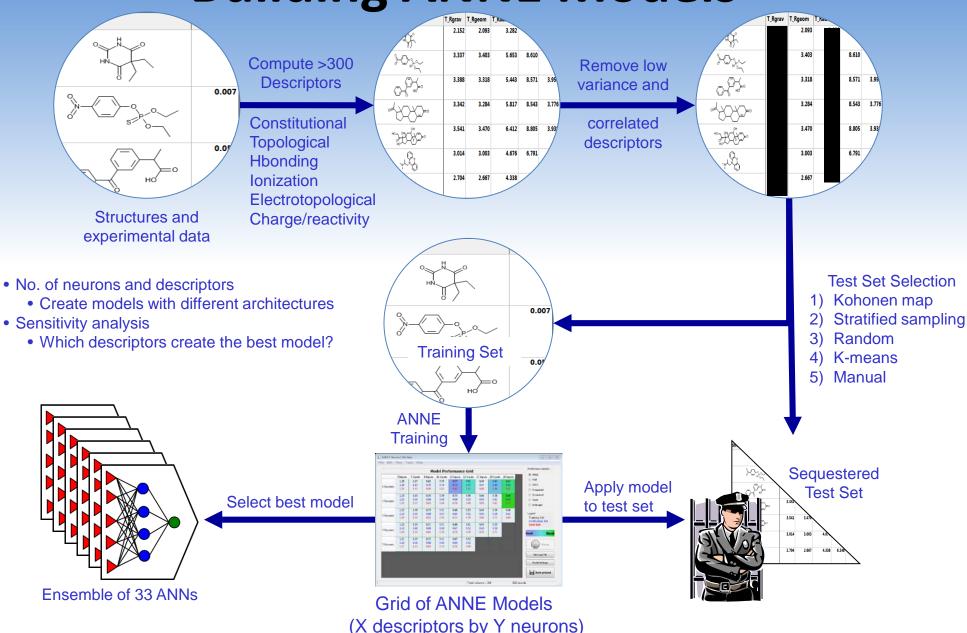
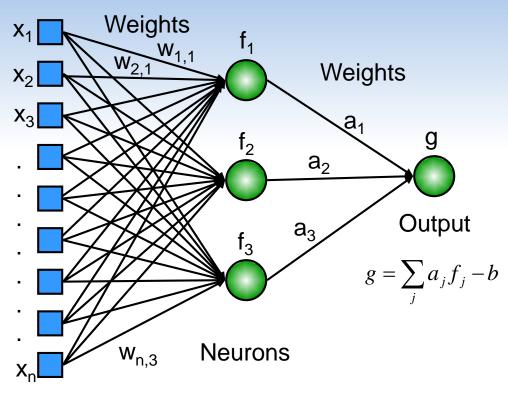
Predicting Five Rat Acute Toxicity Endpoints with ANNE Models


Michael Lawless, Pankaj R. Daga, Marvin Waldman, Robert Fraczkiewicz, Robert D. Clark, John DiBella, and Michael B. Bolger

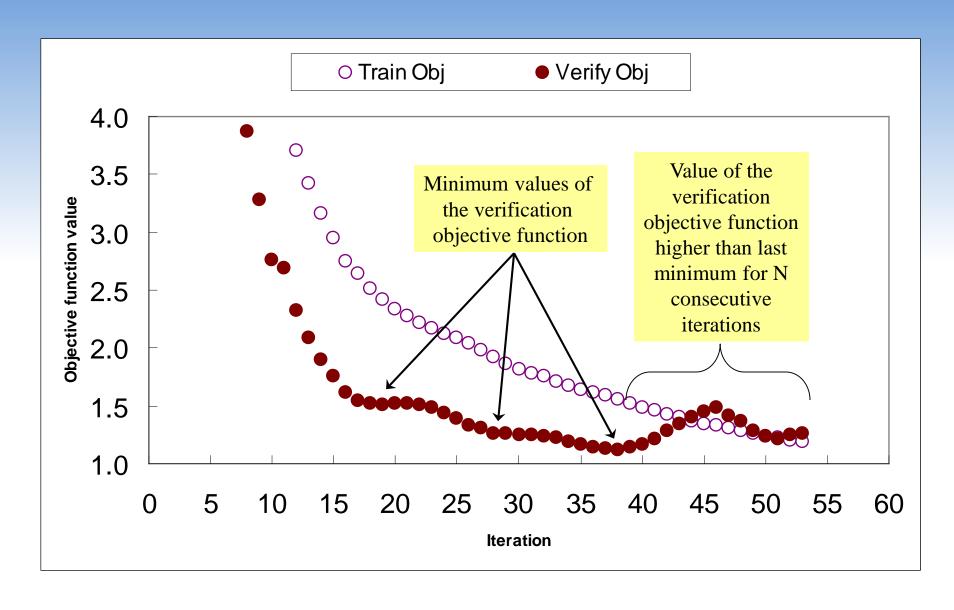
Rat Acute Toxicity ANNE Models


- ANNE methodology
 - Regression, binary classification, and multiclass models
- Data set curation
- Results
- Summary

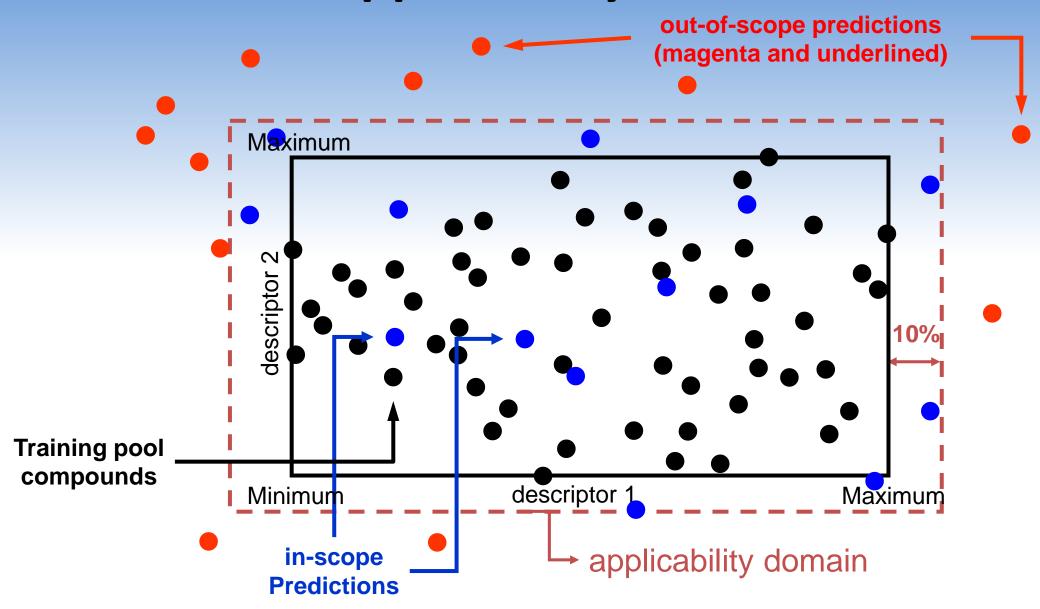
Building ANNE Models

Regression Neural Network

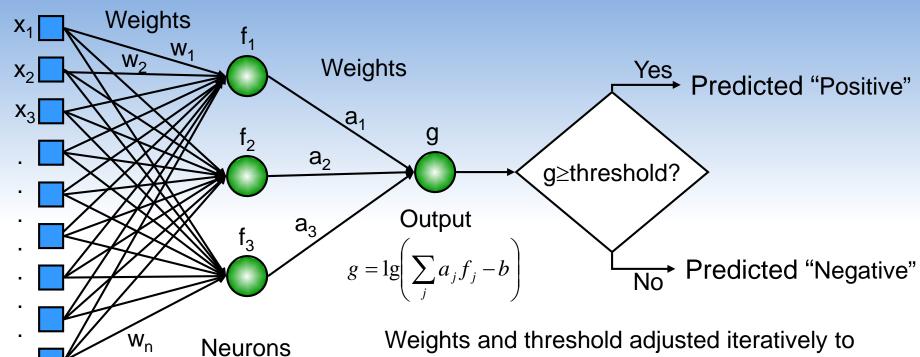
Descriptors: x_i Normalized to range 0.0-1.0


$$f_j = \tanh\left(\sum_i w_{ij} x_i - t_j\right)$$

Weights are adjusted iteratively to optimize model performance on the training set


$$Obj = \sum_{k=1}^{n} (y_k - g(k))^2$$

where y_k is the observed value for observation k

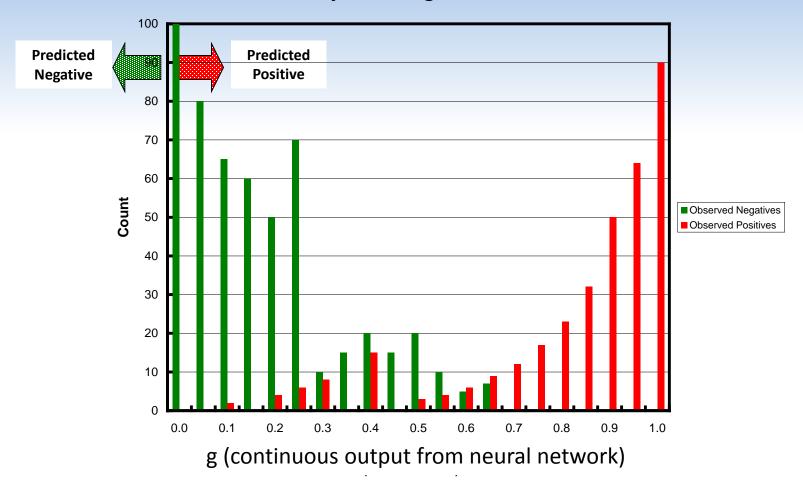

Early Stopping Prevents Overtraining

Applicability Domains

Binary Classification Neural Network

Descriptors: X_i Normalized to range 0.0-1.0 $f_j = \tanh\left(\sum_i w_{ij} x_i - t_j\right)$

Weights and threshold adjusted iteratively to optimize model performance on the training set.

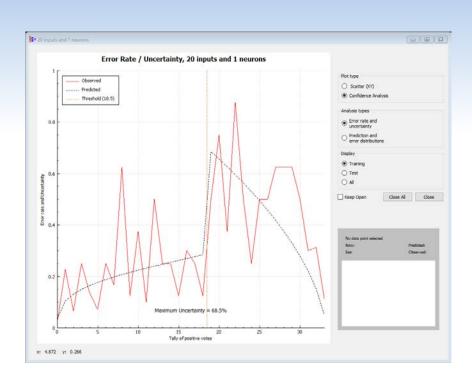

$$Obj = \sum_{k=1}^{n} w_0 (1 - c(k))(g(k))^2 + w_1 c(k)(1 - g(k))^2$$

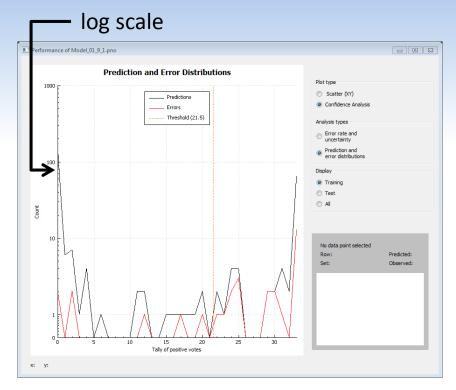
where c(k) is 0 if observation k is in the negative class and 1 if observation *k* is in the positive class.

Threshold Adjustment

The neural network outputs a continuous value (g) between 0 and 1 for each compound. The graph below illustrates a possible distribution plot of the observed negatives (green bars) and positives (red bars) of these values.

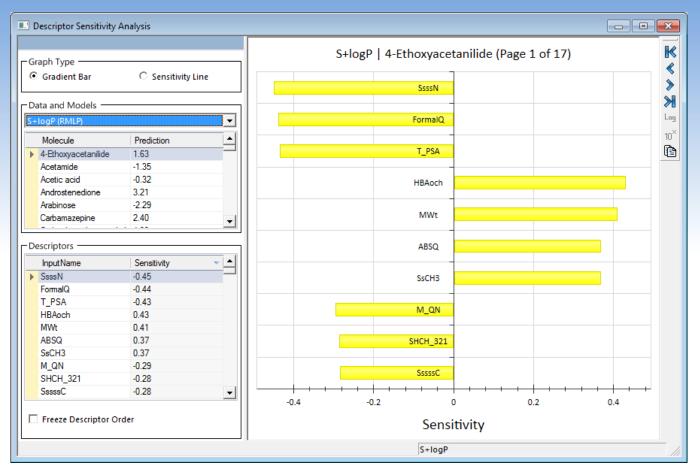
A threshold value is adjusted to give the best classification statistics


Confidence Estimates


	Structure	Identifier	VeryTox Model2	VeryTox Model6
21		Allopurinol, 1-[benzoyloxymethyl]-	FALSE (99%)	FALSE (99%)
22	CI CI CI	Aroclor 1260	FALSE (99%)	FALSE (97%)
23	>-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	Atrazine	FALSE (99%)	FALSE (99%)
24		Azinphos ethyl	TRUE (57%)	TRUE (62%)
25		Bendroflumethiazide	FALSE (89%)	FALSE (90%)

Confidence estimates are computed for binary classification predictions.
These are displayed in parenthesis next to the binary prediction.

Confidence Analysis


Prediction uncertainty is based on the degree of concordance among individual neural networks in an ensemble.

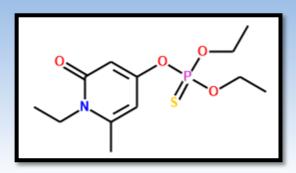
- Continuity correction for natural error rate
- Observed distributions of experimental positives and negatives are fitted to separate beta binomial distributions

Removing "Black-Box" Stigma with ANN

- Descriptor Sensitivity Analysis (DSA) shows the predicted effect of changing each model descriptor on the corresponding property for the selected molecule.
 - This provides guidance to the medicinal chemists as to how they may improve a property by changing some structural feature(s) of the molecule

Data Set Curation

- Standardize functional groups and tautomers
- Exclude molecules that contain atoms other than H, C, N,
 O, P, S, F, Cl, Br, or I
- Find and analyze duplicate structures and neighbors
 - Remove compounds with widely varying endpoint values

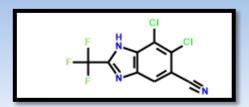

Matched Molecular Pair Analysis

	GHS=1	GHS=5	
1			
2	X OH OH	OH OH OH	
3	S NH ₂	S N H	
4	NH ₂	NH ₂	
5	P 0	HO	

9 pairs of compounds have a single heavy atom modification that converts the compound from GHS=1 to GHS=5. These pairs represent "activity cliffs". A small structural change results in a large change in biological activity.

	GHS=1	GHS=5
6	F	o c
7	OH	OH NH ₂
8	OH	ОН
9	O S F	o s

Widely Varying LD₅₀ of Similar Compounds



22787-58-2

All the close analogs have single digit LD50 values while this compound has a very high LD50.

	Structure	Identifier	LD50_mgkg
1		22787-58-2	7070
2		21327-31-1	9.75
3		22787-59-3	1.62
4		21409-78-9	5.97
5		22620-72-0	2.46
6		26662-09-9	3.34
7		22787-53-7	2.91

Widely Varying LD₅₀ of Similar Compounds

89427-25-8

 $LD_{50} = 3,955 \text{ mg/kg}$

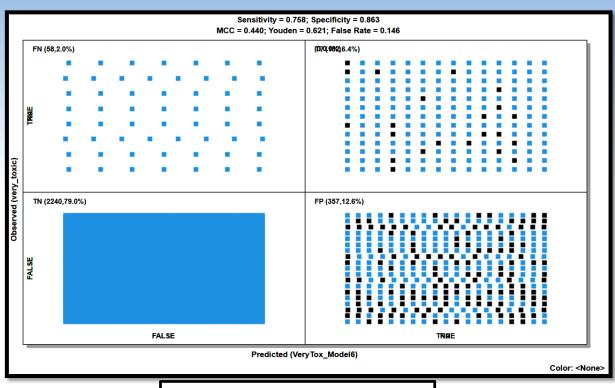
- 31 most similar structures
 - Tanimoto > 0.8
 - LD₅₀ range is 0.245 to 77 mg/kg

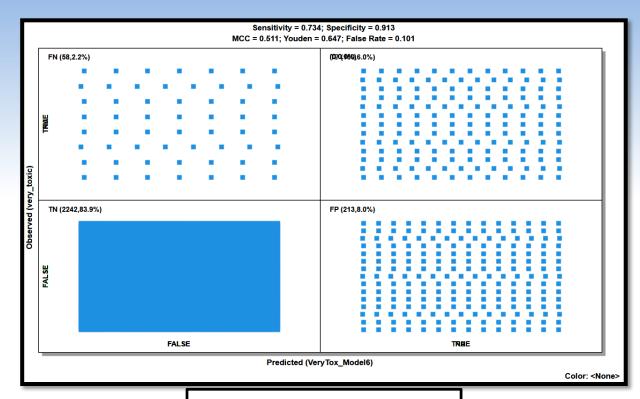
	_					
Structure 1	Structure 2	Identifier 1	Identifier 2	Mismatches	Sim. Score	Change(LD50_mgkg)
F	F F N CI	89427-25-8	4228-99-3	4		-3936.714
F T CI	F CI	89427-25-8	2338-27-4	4	0.889	-3953.481
F F CI	F H CI	89427-25-8	14863-40-2	4	0.886	-3900.000
F H N CI	F	89427-25-8	3671-61-2	4	0.886	-3950.589
F H C C C C C C C C C C C C C C C C C C	F N N CI	89427-25-8	18225-94-0	6	0.842	-3952.614
F F CI	F F N CI	89427-25-8	2338-29-6	6	0.842	-3954.755
F F CI	F H CI	89427-25-8	4228-93-7	6		-3950.878
F CI CI	F H CI	89427-25-8	89427-26-9	6	0.842	-3954.153
		89427-25-8	89427-36-1	6	0.842	-3948.512

Submitted Models

Endpoint	Type	Training set size	Test set size
EPA class (1-4)	Multiclass	6,531	1,633
GHS class (1-5)	Multiclass	6,951	1,648
LD ₅₀	Regression	5,037	1,209
LD50 > 2,000 mg/kg	Binary	7,059	1,246
LD50 ≤ 50 mg/kg	Binary	6,699	1,675

 LD_{50} data set is smaller than the others because qualitative values, e.g., >2,000 mg/kg were not included. Submitted 2 models from each endpoint


External Validation (Test) Set Predictions


Model	Endpoint	Data Size	Outside AD (%)	Performance stat ¹
EPACat_1	EPA class (1-4)	2812	50 (1.8%)	0.696
EPACat_2	EPA class (1-4)	2812	51 (1.8%)	0.691
GHSCat_1	GHS class (1-5)	2882	51 (1.8%)	0.666
GHSCat_2	GHS class (1-5)	2882	51 (1.8%)	0.671
LD50_1	LD ₅₀	2172	41 (1.8%)	0.638
LD50_2	LD ₅₀	2172	41 (1.8%)	0.605
NonTox_1	LD50 > 2,000 mg/kg	2887	54 (1.9%)	0.750
NonTox_2	LD50 > 2,000 mg/kg	2887	55 (1.9%)	0.748
VeryTox_1	LD50 ≤ 50 mg/kg	2891	52+166 with low confidence (7.5%)	0.873
VeryTox_2	LD50 ≤ 50 mg/kg	2891	53+185 with low confidence (8.2%)	0.825

 $^{^{1}}$ TST_BA (test set balanced accuracy) for EPA, GHS, NT, and VT. TST_RMSE for LD $_{50}$

Using Confidence Estimates for VeryTox Model

External Prediction (Test) Set

Sn = 0.76; Sp = 0.86

Sn = 0.73; Sp = 0.91

Black points have low confidence (<28%)
Eliminating them decreases sensitivity (Sn) and increases specificity (Sp)

Summary

- Used ANNE technology to develop regression and classification models
- Curation identified activity cliffs and questionable LD₅₀ values
- Model applicability domain is defined by the minimum and maximum descriptor values in the training set
- Confidence estimates are included in binary classification models
- Submitted two models for each of the five endpoints