

Collaborative modeling efforts for the AcuteTox endpoints

Kamel Mansouri

Predictive Models for Acute Oral Systemic Toxicity Workshop April 11-12, 2018

Disclaimer: ILS and ScitoVation staff provide technical support for NICEATM, but do not represent NIEHS, NTP, or the official positions of any federal agency.

Agency for Toxic Substances and Disease Registry • Consumer Product Safety Commission • Department of Agriculture Department of Defense • Department of Energy • Department of the Interior • Department of Transportation Environmental Protection Agency • Food and Drug Administration • National Institute for Occupational Safety and Health National Institutes of Health • National Cancer Institute • National Institute of Environmental Health Sciences National Library of Medicine • Occupational Safety and Health Administration

Outline:

Preparation for modeling

- Available data overview
- Chemical structures standardization and processing
- Training set/evaluation set split
- Prediction set preparation

Modeling efforts

- Participants
- Submissions
- Evaluation
- Analysis

• Consensus

- Analysis
- Combining predictions
- Analysis of the consensus predictions
- Implementation of the consensus models to screen new chemicals
- Conclusions

Available data for modeling

15,688 chemicals total 21,200 LD50 values

- Very toxic: 11886
- Nontoxic: 11871
- EPA: 11755
- GHS: 11845
- LD50: 8908

QSAR-ready standardization workflow

Training set/evaluation set split

- The same training and test chemicals across all endpoints
- Split into training (75%) and evaluation (25%)
- Similar distributions and variability for values and categories
- Similar distribution of chemical structures sources

Training set: 9888 chemicals

Evaluation set: 2888 chemicals

Similar distribution of values and variability (LD50)

뇌 Histogram View - 2:232 - Histogram (TrainingSel

4281/0 8 0 6421/0 2 0 8561 /0 856 10771

8095

6615

5880

5145

2940

Replicates distribution between training and test set

1.926] (1.926 2.14Mis..ng_value

Histogram View - 2:234 - Histogram (TestSet)

[0 0.214] (0.214 0.428] (0.428 0.642] (0.642 0.856] (0.856 1.07] (1.07 1.284] Missing_values

LD50 values distribution between training and test set

Similar distribution for true and false (NT, VT)

VT classes distribution between training and test set

Similar distribution of categories (EPA, GHS)

EPA categories distribution between training and test set

GHS categories distribution between training and test set

Prediction set

Lists:

- ToxCast/Tox21
- EDSP

After QSAR-ready standardization: 48137 structures to be predicted

- TSCA
- Substances on the market (EPA Dashboard list)

Modeling efforts, participants

Group ID	Group_short	Affiliation	Location
1	UNIMIB	Università degli Studi di Milano - Bicocca	Italy
2	USAFSAM	Henry M Jackson Foundation at USAFSAM	USA
3	UNIBARI	Università degli Studi di Bari	Italy
4	ECUST	East China University of Science and Technology	China
5	LSINC	Leadscope, Inc.	USA
6	UNISTRA	Universite de Strasbourg	France
7	USEPA_NRMRL	US EPA NRMRL	USA
8	IRCCS_1	IRCCS – Istituto di Ricerche Farmacologiche Mario Negri	Italy
9	IRCCS_2	IRCCS - Istituto di Ricerche Farmacologiche Mario Negri	Italy
10	IRCCS_3	IRCCS - Istituto di Ricerche Farmacologiche Mario Negri	Italy
11	IRCCS_4	IRCCS - Istituto di Ricerche Farmacologiche Mario Negri	Italy
12	UNICAMB	University of Cambridge	UK
13	IRCCS_5	IRCCS - Istituto di Ricerche Farmacologiche Mario Negri	Italy
14	NCSTATE	North Carolina State University	USA
15	COLPHA	Collaborations Pharmaceuticals, Inc.	USA
16	LOREAL	L'OREAL Research and Innovation	France
17	UNC	University of North Carolina	USA
18	PNNL	Pacific Northwest National Laboratory	USA
19	UL	Underwriters Laboratories	USA
20	RUTC	Rutgers University-Camden	USA
21	HZM	Helmholtz Zentrum München	Germany
22	SIMPLUS	Simulations Plus Inc	USA
23	NCATS	National Center for Advancing Translational Sciences (No	USA
24	KU	Kyoto University	Japan
25	FUG	Federal University of Goias	Brazil
26	RUT	Rutgers University	USA
27	DOW	Dow Chemical Company	USA
28	USEPA_NCCT	US EPA NCCT	USA
29	MSU	Michigan State University	USA
30	DOW_AGRO	Dow Agrosciences	USA
31	ROSETTAC	Rosettastein Consulting	Germany
32	DUT	Dalian University of Technology	China

Previous collaborations:

Collaborative Estrogen Receptor Activity Prediction Project

Mansouri et al. (http://ehp.niehs.nih.gov/15-10267/)

Mansouri et al. (DOI: 10.13140/RG.2.2.19612.80009)

Participant groups locations

Received models

- Very Toxic: 31 models
- Non-toxic: 32 models
- EPA categories: 24 models
- GHS categories: 21 models
- LD50: 24 models

Total: 132 models

Evaluation procedure:

Qualitative evaluation:

- Documentation
- Defined endpoint
- Unambiguous algorithm
- Availability of code

- Applicability domain definition
- Availability of data used for modeling
- Mechanistic interpretation

Quantitative evaluation:

- Goodness of fit: training statistics
- Evaluation set predictivity: statistics on the evaluation set
- Robustness: balance between (Goodness of fit) & (Test set predictivity)

S = 0.3 * (Goodness of fit) + 0.45 * (Test set predictivity) + 0.25 * (Robustness)

Categorical models (binary and multi-class):

Goodness of fit = $0.7 * (BA_{Tr}) + 0.3 * (1 - |Sn_{Tr} - Sp_{Tr}|)$ Test set predictivity = $0.7 * (BA_{Tst}) + 0.3 * (1 - |Sn_{Tst} - Sp_{Tst}|)$ Robustness = $1 - |BA_{Tr} - BA_{Tst}|$ Continuous models:

Goodness of fit = R_{Tr}^2 Test set predictivity = R_{Tst}^2 Robustness = $1 - |R_{Tr}^2 - R_{Tst}^2|$

Evaluation results

Evaluation scores

Evaluation of the VT and NT models

Evaluation scores

Evaluation of the EPA and GHS models

Evaluation scores

Evaluation of the LD50 models

Evaluation scores

LD50

Consensus

<u>Categorical models:</u>

Weighted majority rule

• <u>Continuous models:</u>

Weighted average

The predicted consensus value (C) of the chemical *i* is calculated as:

$$C_i = \sum_{j=1}^n w_j \cdot P_j$$

where *n* is the number of models that provided predictions for the chemical i, and P_j is the prediction of each one of them. The weight (*w*) of each model *j* is calculated as:

$$w_j = S_j \Big/ \sum_{k=1}^n S_k$$

So that the sum of weights is equal to 1.

For each chemical of the prediction set, the weights and consensus are calculated based on predictions within the AD only.

Consensus results: Binary and LD50

	VT Train	VT Test	NT Train	NT Test
Sn	0.87	0.67	0.93	0.70
Sp	0.94	0.96	0.96	0.88
BA	0.93	0.81	0.94	0.79

The balanced accuracy of the replicate animal data for predicting VT and NT categories was 81% and 89%, respectively. The reproducibility of the replicate animal data for predicting LD50 had R2 of 0.8 and RMSE of 0.42.

R2

RMSE

LD50

Train

0.84

0.32

LD50

Test

0.64

0.51

Consensus results: EPA and GHS

Sn Sp

	EPA	EPA	GHS	GHS
	Train	Test	Train	Test
Median Sn	0.73	0.5	0.63	0.45
Median Sp	0.96	0.91	0.91	0.92
BA	0.83	0.71	0.77	0.68

		EPA	EPA	EPA	EP.	EPA		PA	EPA	EPA	EPA
		Train	Train	Trai	n Tra	Train		est	Test	Test	Test
		Cat 1	Cat 2	Cat	3 Cat	:4	Cat 1		Cat 2	Cat 3	Cat 4
S	n	0.55	0.83 0.92		2 0.6	0.65		45	0.54	0.80	0.38
S	р	1	0.94	0.75	6 0.9	0.98		98	0.86	0.59	0.96
						-					
	GHS	GHS	GHS	GHS	GHS			GHS	GHS	GHS	GHS
	Train	Train	Train	Train	Train			Test	: Test	: Test	Test
	Cat 1	Cat 2	Cat 3	Cat 4	Cat 5	Ca	t 1	Cat 2	2 Cat 3	Cat 4	Cat 5
	0.34	0.48	0.63	0.91	0.69	0.2	18	0.43	0.44	0.76	0.53
	1	1	0.95	0.71	0.98	1	1	0.96	6 0.91	0.61	0.92

The accuracy of the animal data for predicting EPA and GHS categories was 78% and 74%, respectively.

Model concordance

Model concordance

Discordance analysis

<70% concordance • VT: 1374 191 • NT: 12778 🔄 6665 • EPA: 27364 5845 4135 14410 9494 • GHS: 24659 12585 • LD50: 21043

Structural similarity to the training set

Most disconcordant (<0.7) 4135 chemicals

Most concordant (>0.7) 7525 chemicals

Coverage and BA of VT models Vs the Consensus

Coverage and BA of NT models Vs the Consensus

Coverage BA

Coverage and BA of EPA models Vs the Consensus

Coverage and BA of GHS models Vs the Consensus

Coverage and R2 of LD50 models Vs the Consensus

Consensus implementation

>=85% concordance

- VT: 44523
- NT: 21659
- >=75% concordance
- EPA: 16959
- GHS: 20215

• LD50: 22738

Implementation for regulatory use:

- A defined endpoint
- An unambiguous algorithm
- A defined domain of applicability
- Appropriate measures of goodness-offit, robustness and predictivity
- Mechanistic interpretation, if possible

OPERA and the EPA CompTox dashboard

Intrinsic And Predicted Properties

- 🗆 Molecular Formula 🚺
- Average Mass 1
- Monoisotopic Mass
- OPERA Model Predictions 1
- TEST Model Predictions ①

Metadata

OPERA is a suite of property predictions from the National Center for Computational Toxicology at the US Environmental Protection Agency. OPERA was derived from curated data (An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling).

ITN ANTIBIOTIC L

KEMI List of Subst

Mansouri et al. OPERA models (https://link.springer.com/article/10.1186/s13321-018-0263-1)

OPERA prediction report

SEPA United States Environmental Protection	Home Advanced Search Batch Search Li	ats Predictions Downloads						20	182	٩
Chemistry Dashboa	rd								Aa 🔻 🗛	Aa 🔺
Bisphenol A		OPERA Models	s: LogP	Octanol-W	/ater					
80-05-7 DTXSID7020182									🖪 Saw	PDF
	Model Results	Model Performance								
H ₃ C CH ₃	Predioted value: 3.35 Global applicability domain: Inside © Local applicability domain index: 0.88 © Confidence level: 0.75 ©	Calculation Result for a chemical					Model Performance with full QMRF			
но он			Weighted KNN m				model GMRF			
				6-fold CV (75%)		Training (76%)		Test (26%)		
				Q2	RMSE	R2	RMSE	R2	RMSE	
				0.85	0.69	0.86	0.67	0.86	0.78	
Nearest Neighbors from the Training	Set									
HyC CHy HO CHy Bisphenol A Measured: 3.32	HyC, OH OH HyC O	Flutbiprofien Massured: 4.16	Mea	anylpropionic acid sured: 2.69	Measur	LYL)HEXANOIC ACID		Nearest Ne from Train		
Predioted: 3.35	Predioted: 3.45	Predioted: 3.83	Pre	dioted: 2.93	Prediot	ed: 3.68				
	٢	Discover. About/Disclaimer Accessibility		A	Connect. ICToR VSSTax		Ask. Contact Help			

Desktop and online Predictions:

https://github.com/kmansouri/OPERA

Standalone app: batch mode for new chemicals

EPA Comptox dashboard: batch mode download or drawing

Summary

- Generated high quality data and models that can be used prospectively to screen the chemical universe
- Screened tens of thousands of chemicals in a fast accurate and economic way.
- Free & open-source code and workflows
- Consensus models being implemented for future use to help with regulatory process
- Data and predictions will be soon available via the EPA's CompTox dashboard and the NICEATM Integrated Chemical Environment

Acknowledgments

- All collaborating groups
- EPA/NCCT
 - Grace Patlewicz
 - Jeremy Fitzpatrick
 - Prachi Pradeep

• ILS/NICEATM

- Dave Allen
- Shannon Bell
- Agnes Karmaus
- Patricia Ceger
- Judy Strickland
- NTP/NICEATM
 - Nicole Kleinstreuer
 - Warren Casey

