Alternative methods for acute systemic toxicity testing

Rabea Graepel,
Systems Toxicology Unit
EURL ECVAM

www.ec.europa.eu/jrc
Use of *in vitro* methods – pharmaceutical industry

- 7 UK companies
- Number of *in vitro* tests carried out
- Genotoxicity, ADME & safety pharmacology

Introduction – *In vitro* methods for acute systemic toxicity testing

Toxicokinetics
(3 protocols)

Specific target organs
(18 protocols)

Basal cytotoxicity
(4 protocols)
Research efforts into alternative methods for acute systemic toxicity testing

- MEIC programme
- Halle's Registry of cytotoxicity
- EURL ECVAM 3T3 NRU validation study
- NICEATM & ECVAM NRU validation study
- ACuteTox

1989 - 2013
EURL ECVAM strategy paper - 2014

- **3Rs** in acute systemic toxicity testing
- **Aim 1**: reduction & replacement of animal testing
- **Aim 2**: refinement of animal studies
3T3 Neutral Red Uptake (NRU) test method

- BALB/c 3T3 cells + Neutral Red Uptake (fixation of red dye)
- Validated on 56 industrial chemicals
- High sensitivity (92-96%) for identification of non-classified (oral LD$_{50} > 2000$mg/kg)
- Take home – 3T3 NRU as part of WoE/ ITS to identify non-classified chemicals
EURL ECVAM strategy – Aim 1 - Reduction

3T3/NRU basal cytotoxicity assay

Positives

- TP: Suspected specific MoA
 - How to improve the prediction of the true CLP toxicity category?
 - Increased probability for TP

- FP: Low bioavailability in vivo (e.g. poor gastrointestinal absorption)
 - Suspected detoxification

Negatives

- FN: Suspected bioactivation in vivo
 - Suspected specific MoA and/or detection of acute organ-specific toxicity
 - Nominal concentration >>> free intracellular concentration (e.g. using Virtual Cell Based Assay)
 - Increased probability for TN

- TN: Evidence of lack of bioactivation
 - Exclude specific MoA indicative of acute organ-specific toxicity
 - Nominal and free intracellular concentration is similar (e.g. using Virtual Cell Based Assay)
Increasing confidence - 3T3 NRU + QSAR methods

- 3T3 NRU & LD$_{50}$ data for 181 chemicals
- Threshold POS/NEG: LD$_{50}$=2000mg/kg
- 5 false negatives results
- "correction" for metabolism

Thanks to Julien Burton
Increasing confidence - 3T3 NRU + QSAR methods

<table>
<thead>
<tr>
<th>Compound name</th>
<th>Nb unique metabolites</th>
<th>Min predicted LD50 (mg/kg)</th>
<th>Max predicted LD50 (mg/kg)</th>
<th>Avg predicted LD50 (mg/kg)</th>
<th>Oral cat1 <5</th>
<th>Oral cat2 <50</th>
<th>Oral cat3 <300</th>
<th>Oral cat4 <2000</th>
<th>Oral cat5 <5000</th>
<th>In vivo LD50 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digoxin</td>
<td>777</td>
<td>30.11</td>
<td>1429.32</td>
<td>294.47</td>
<td>0</td>
<td>114</td>
<td>362</td>
<td>301</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Aconitine</td>
<td>677</td>
<td>23.55</td>
<td>9218.3</td>
<td>325.24</td>
<td>0</td>
<td>119</td>
<td>297</td>
<td>243</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Benzylbenzoate</td>
<td>69</td>
<td>815.43</td>
<td>6511.15</td>
<td>2257.27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>31</td>
<td>1990</td>
</tr>
<tr>
<td>5,5-Diphenylhydantoin</td>
<td>25</td>
<td>1088.63</td>
<td>3620.21</td>
<td>1783.76</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>7</td>
<td>1360</td>
</tr>
<tr>
<td>Disopyramide</td>
<td>188</td>
<td>266.83</td>
<td>6960.22</td>
<td>1393.25</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>159</td>
<td>25</td>
<td>333</td>
</tr>
</tbody>
</table>

- Extended to all negatives (automated process)
- Limitations - QSAR on oral for rats
 - Metabolites generated “in situ” (oral model accounts for ingestion of the chemical)

Thanks to Julien Burton
Reduction – use of existing repeated-dose toxicity data

- Analysis of New Chemical Database – relation 28 day oral NOAEL & oral LD$_{50}$ (Bulgheroni et al., 2009)

 - NOAEL \geq 200mg/kg bw - LD$_{50}$$>2000$mg/kg bw (63% correct, n=1436)

- European Chemicals Agency (ECHA) – REACH registration dossiers
 - 28 day oral LOAEL & oral LD$_{50}$
 - Klimisch scores 1 & 2
 - Rat & oral gavage

- 96 chemicals
Reduction – use of existing repeated-dose toxicity data

<table>
<thead>
<tr>
<th>LOAEL (mg/kg b.w./day)</th>
<th>EU CLP categories (LD50 mg/kg b.w.)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 – 50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50 – 300</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300 – 2000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>>2000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOAEL (mg/kg b.w.)</th>
<th>LD50 (mg/kg b.w.)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 2000</td>
<td>>2000</td>
</tr>
<tr>
<td><200</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>≥200</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>47</td>
</tr>
</tbody>
</table>

- poor **direct** correlation between the two data sets

- correctly predict **85% non-classified** substances
3T3 NRU dataset - mechanism mapping

- Lack of mechanistic knowledge for acute systemic toxicity
- **Data rich** set of 181 chemicals
 - IC$_{50}$ values; oral LD$_{50}$ values & functional information
 - 99 industrial chemicals & 82 "others" ie biocides, pharmaceutical
 - 66 non-classified & 115 "toxic"

- 8 target organs:
 - cardiovascular system
 - nervous system
 - lungs
 - immune system
 - blood
 - liver
 - kidneys
 - gastrointestinal tract

- **Aim:** Complement 3T3 NRU results with mechanistically relevant information
3T3 NRU dataset - mechanism mapping

How often are the 8 organs the SINGLE targets of toxicity?

- *in vitro* methods for target organ toxicity
- brain aggregates for neurotoxicity
Conclusions & summary

- *In vitro* methods are relevant and useful in safety assessment

- **3T3 NRU** method could form valuable part of an integrated testing strategy to identify non-classified compounds

 - QSAR modelling of metabolism

 - Existing *in vivo* **LOAEL** data from repeated-dose studies

 - Mechanistic data on specific target organs
Thanks
3T3 NRU dataset - mechanism mapping

![Bar chart showing acute toxic categories]

- Cat 1: 8 chemicals
- Cat 2: 19 chemicals
- Cat 3: 26 chemicals
- Cat 4: 62 chemicals
- N.C.: 66 chemicals

Number of chemicals
26 of these chemicals were identified to have a mechanism of general cytotoxicity.
3T3 NRU dataset - mechanism mapping

Blood

- **Organ**: Blood
- **Effect**: Hypoxia
- **Mechanism**:
 - Lysis of cells:
 1. Binding to cell (antigen) triggers immune-mediated destruction. Rifampicin
 2. Direct destruction of cells via oxidative damage to cell wall (non-immune mediated destruction).
 3. Chemicals reacting directly with iron of cytochrome oxidase in mitochondria. Potassium Cyanide
- **Cell type(s)**: Erythrocytes, immune cells

- **Effect**: Haemorrhage
- **Mechanism**:
 - Lysis of cells:
 1. Binding to cell (antigen) triggers immune-mediated destruction.
 2. Direct destruction of cells via oxidative damage to cell wall (non-immune mediated destruction).
 3. Copper sulfate pentahydrate.
- **Cell type(s)**: Thrombocytes; immune cells; Erythrocytes; Copper sulfate pentahydrate

- **Effect**: Infection
- **Mechanism**: Inhibition of normal function such as phagocytosis.
- **Cell type(s)**: Leukocytes

European Commission
Increasing confidence - 3T3 NRU + QSAR methods

Simulations for all 19 true negatives

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No.</th>
<th>N° of unique metabolites</th>
<th>Min predicted LD$_{50}$ (mg/kg)</th>
<th>Max predicted LD$_{50}$ (mg/kg)</th>
<th>Avg predicted LD$_{50}$ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloromethane</td>
<td>75-09-2</td>
<td>4</td>
<td>106</td>
<td>567</td>
<td>289</td>
</tr>
<tr>
<td>*1,2-Dichlorobenzene</td>
<td>95-50-1</td>
<td>4</td>
<td>248</td>
<td>578</td>
<td>413</td>
</tr>
<tr>
<td>Gibberelic acid</td>
<td>77-06-5</td>
<td>5</td>
<td>264</td>
<td>553</td>
<td>418</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>71-55-6</td>
<td>5</td>
<td>263</td>
<td>906</td>
<td>469</td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
<td>5</td>
<td>536</td>
<td>1219</td>
<td>994</td>
</tr>
<tr>
<td>*Ethylene glycol</td>
<td>107-21-1</td>
<td>3</td>
<td>585</td>
<td>2065</td>
<td>1185</td>
</tr>
<tr>
<td>*2,6-Diethylaniline</td>
<td>579-66-8</td>
<td>8</td>
<td>1311</td>
<td>2624</td>
<td>1804</td>
</tr>
<tr>
<td>2-Ethylhexyl acrylate</td>
<td>103-11-7</td>
<td>4</td>
<td>685</td>
<td>4200</td>
<td>2586</td>
</tr>
<tr>
<td>Tris(nonylphenyl)phosphate</td>
<td>26523-78-4</td>
<td>13</td>
<td>374</td>
<td>3699</td>
<td>2950</td>
</tr>
<tr>
<td>Glycerol</td>
<td>56-81-5</td>
<td>3</td>
<td>2705</td>
<td>4634</td>
<td>3436</td>
</tr>
<tr>
<td>Glycerol triacetate</td>
<td>102-76-1</td>
<td>8</td>
<td>752</td>
<td>5720</td>
<td>3744</td>
</tr>
<tr>
<td>Tripotassium Citrate</td>
<td>866-84-2</td>
<td>1</td>
<td>3837</td>
<td>3837</td>
<td>3837</td>
</tr>
<tr>
<td>1,2-Benzenedicarboxylic Acid</td>
<td>68515-48-0</td>
<td>6</td>
<td>2715</td>
<td>5620</td>
<td>3901</td>
</tr>
<tr>
<td>Di-"Isodecyl" phthalate</td>
<td>26761-40-0</td>
<td>6</td>
<td>2976</td>
<td>6145</td>
<td>4226</td>
</tr>
<tr>
<td>Tween 20</td>
<td>9005-64-5</td>
<td>16</td>
<td>752</td>
<td>8970</td>
<td>4759</td>
</tr>
<tr>
<td>2-(2-Butoxyethoxy)ethanol</td>
<td>112-34-5</td>
<td>15</td>
<td>752</td>
<td>7389</td>
<td>4854</td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>102-71-6</td>
<td>1</td>
<td>9307</td>
<td>9307</td>
<td>9307</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td>144-55-8</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Urea</td>
<td>57-13-6</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>