From QSAR to Big Data: Developing Mechanism-Driven Predictive Models for Animal Toxicity

Hao Zhu

Department of Chemistry
The Rutgers Center for Computational and Integrative Biology
Rutgers University-Camden
Email: hao.zhu99@rutgers.edu

September 24, 2015
Acknowledgements

Rutgers:
- PhD students: **Marlene Kim, Wenyi Wang**, Daniel Russo, Linlin Zhao
- Master students: Kathryn Ribay, Joe Hess
- Visiting Scholar: **Dr. Aleck Sedykh, Dr. Jun Zhang**

John Hopkins University:
- Dr. Thomas Hartung

Shandong University:
- Dr. Bing Yan

NCATS:
- **Dr. Menghang Xia, Dr. Ruili Huang**

ICCVAM:
- Dr. Judy Strickland

Funding resource:
- National Institute of Health: 1R15ES023148
- Society of Toxicology: Colgate-Palmolive Grant for Alternative Research
Toxicity evaluation today

Principles of QSAR modeling

Quantitative Structure Activity Relationships

Slide Courtesy of Dr. Fourches
Principles of QSAR modeling

With m molecules and n descriptors

$f:\begin{bmatrix}
1 \\
1 \\
\vdots \\
1 \\
m
\end{bmatrix}$

Pattern matrix

$= \text{PROPERTY}(i)$
The “similar” compounds that have “dissimilar” toxicity profiles

<table>
<thead>
<tr>
<th>NOTES:</th>
<th>IN VIVO ASSAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: non-toxic/inactive</td>
<td>MOUSE_KIDNEY</td>
</tr>
<tr>
<td>1: toxic/active</td>
<td>0</td>
</tr>
<tr>
<td>-: not tested</td>
<td></td>
</tr>
<tr>
<td>NN: Nearest Neighbor</td>
<td></td>
</tr>
</tbody>
</table>

METOLACHLOR	1	1	1	1
NN2-ALACHLOR	-	0	-	-
NN1-ACETOCHLOR	1	1	1	1
NN3-METALAXYL	0	1	1	0
PubChem data in 2014

- >700,000 bioassays
- >200,000,000 bioactivity outcomes
- >1,200,000,000 data points
- >2,800,000 small molecule samples
- >1,900,000 chemical structures
- >108,000 RNAi reagents

Chemical-in vitro-in vivo profiles in big data era

Chem. Res. Tox. 2014; (27) 1643-1651
Before the ToxCast project, data already existed

Obtained from PubChem on Aug. 1, 2013, before the ToxCast phase II data was released.
The current question is:

• What can we do if we have limited in-house data available for the compounds of interest?
Antioxidant Response Element β-lactamase reporter gene assay (ARE-\textit{bla})

- Recognized by the Tox21 program as one of the most important toxicity assays
- ARE genes play a role in alleviating oxidative stress

Reactive Oxygen Species (ROS)

- Oxygen \(\text{O}_2 \)
- Superoxide anion \(\cdot \text{O}_2^- \)
- Peroxide \(\cdot \text{O}_2^{-2} \)
- Hydrogen Peroxide \(\text{H}_2\text{O}_2 \)
- Hydroxyl radical \(\cdot \text{OH} \)
- Hydroxyl ion \(\text{OH}^- \)

Liver damage
Workflow for profiling liver toxicants

1. **BIG DATA**
 - Liver Damage
 - ~1,300 compounds
 - qHTS ARE-bla
 - ~10,000 compounds
 - Relevant Assays

2. qHTS ARE-bla QSAR model

3. Mechanism Analysis & Compound Prioritization
 - ARE
 - 0
 - 1
 - TP
 - TN
 - Non-toxic
 - Toxic
 - IIC
 - FN
 - FP
 - TN
 - Non-toxic
 - Toxic

<table>
<thead>
<tr>
<th>Compound</th>
<th>Liver Tox</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>n</th>
<th>ARE</th>
<th>IIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>FN</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>FP</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>TP</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>TN</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>6</td>
<td>Untested compounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Toxic</td>
</tr>
</tbody>
</table>
Profiling target compounds with biological responses using automated tool

- **Input – target compounds:**
 1. qHTS ARE-\textit{bla} dataset (10,928 compounds)
 2. FDA liver damage dataset (1,314 compounds)

- **Output – assays related to:**
 1. qHTS ARE-\textit{bla} activation (1,819 assays)
 2. Liver damage (1,159 assays)
Criteria for filtering inadequate and finding relevant assays

- Initial number of assays retrieved: 2,978
- Must appear in both groups (qHTS ARE-bla and liver damage): 958
- Contained >10 true positive responses: 20
- Correlation was better than random (CCR >50%): 14
- In vitro assay: 4
- Evidence supported by reliable literature: 4
Individual assays showed poor IIC, but the combined response using RA > 0.25 show statistical significance.

<table>
<thead>
<tr>
<th>Bioassay</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver damage activity</td>
<td>--</td>
</tr>
<tr>
<td>686978</td>
<td>0.59</td>
</tr>
<tr>
<td>743067</td>
<td>0.42</td>
</tr>
<tr>
<td>743140</td>
<td>0.24</td>
</tr>
<tr>
<td>(ARE-bla) 743202</td>
<td>0.31</td>
</tr>
<tr>
<td>Combined</td>
<td>4.25x10^{-4}</td>
</tr>
</tbody>
</table>

Active or toxic
Inconclusive or untested
Inactive or non-toxic

Rate of actives (RA)

\[
RA = \frac{A}{A + I}
\]

A = no. of active responses
I = no. in active responses
Modeling qHTS ARE-\textit{bla} activation using QSAR approaches: 5-fold cross validation for all individual models.
Evaluating In vitro-In vivo Correlations (IICs)

- Focused on compounds that were active in qHTS ARE-\(bla\) and liver toxic
- Searched for common chemical features
- Evaluated IICs (sensitivity, specificity, CCR, and \(\chi^2\))
IIC between qHTS ARE-\textit{bla} activation and liver damage for overlapping compounds containing the toxicophores

\begin{align*}
\text{A) } & \quad \text{ARE-bla} & & \text{ARE-bla} + \text{QSAR} \\
& \quad \text{CCR} = 0.64 & & \text{CCR} = 0.60 \\
\text{B) } & \quad \text{ARE-bla} & & \text{ARE-bla} + \text{QSAR} \\
& \quad \text{CCR} = 0.61 & & \text{CCR} = 0.57
\end{align*}
3-D plot of Tox21 phase II modeling set vs FDA liver damage dataset using principal components analysis
Liver toxicity mechanism analysis involving ARE pathway perturbations
Conclusions

• Developed a workflow
 – Profiles biological responses from big data
 – Incorporates QSAR models to fill-in missing data
 – Evaluates the chemical IIC

• Identified toxicophores and assays that can be used to assess liver damage induced by oxidative stress

• Workflow can be adapted to model or assess other complex animal toxicity endpoints

Take home message

- Reliable information exists, but it is difficult to locate
- Good data may not guarantee good decisions