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A HUMAN PATHWAY-BASED APPROACH TO DISEASE AND MEDICINE 
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White  Paper  

“We have moved away from studying human disease in 
humans… The problem is that it hasn’t worked, and it’s time 
we stopped dancing around the problem… We need to 
refocus and adopt new methodologies for use in humans to 

understand disease biology in humans.” [1] 

— Elias Zerhouni, MD 

Former Director 

U.S. National Institutes of Health 
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Summary 

The objective of this workshop is to explore existing systems biology projects and approaches 

and how these projects might be better coordinated to optimally improve disease 

understanding and interventions. 

Despite investment of billions of dollars over the past few decades, development of new drugs 

and other potential disease interventions remain elusive and immensely expensive. The 

average pre-approval cost of research and development for a successful drug is estimated to 

be US$2.6 billion [2] and the number of new drugs approved per billion US dollars spent has 

halved roughly every 9 years since 1950, decreasing around 80-fold in inflation-adjusted terms 

[3]. More than 90% of compounds entering clinical trials fail to gain regulatory approval, 

mainly as a result of insufficient efficacy and/or unacceptable toxicity, because of the limited 

predictive value of preclinical studies [4]. There is a growing recognition that, to increase the 

success rate, a stronger focus on human-relevant data is needed [1, 5]. 

In fact, the realization of similar limitations of existing methods for evaluating chemical safety 

has led the National Institutes of Health, the US Environmental Protection Agency, the US 

Department of Defense (Defense Advanced Research Projects Agency), as well as the 

European Commission and European industry, to invest hundreds of millions of dollars to 

develop more relevant, efficient methods to understand chemical toxicity - based on 

understanding and functionalizing human biological pathways [6-8] 

Fundamental to these new approaches is the concept of using knowledge of biological 

pathways or networks (systems biology) to improve our understanding of toxicity and disease. 

Data-driven pathways approaches infer pathways from molecular associations, whilst curated 

pathway frameworks are assembled and assessed manually from data sources including 

published literature. The curated pathway framework concept is being developed and 

implemented in toxicology as “Adverse Outcome Pathways” (AOPs). A collaboration 

between the European Commission, the US Environmental Protection Agency and the 

Organization for Economic Coordination and Development (OECD) is developing the 

necessary software and databases to generate an “AOP Knowledgebase” [9]. The goal of the 

AOP Wiki project is to create a highly-curated knowledgebase of interlinking networks of 

biological information relating to toxicological outcomes – a systems biology knowledgebase 

for predicting adverse effects caused by chemical exposure [10]. These are the same biological 

networks that are involved in disease and are affected by drugs. 
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Significant investment is also being made in systems biology approaches to medicine and 

disease [11-16]. These approaches are focused on mining existing literature, building 

associative biological networks from ‘omics data (e.g. genomics, proteomics, metabolomics) 

and pre-clinical and clinical data and in using these data to develop computational and 

mathematical models. These projects are making great strides in developing data mining and 

bioinformatics capability to collect and organize data and in creating experimental approaches 

and technologies that facilitate systems biology research. Both fields, chemical safety 

toxicology and drug discovery, which are in fact highly interrelated, could benefit greatly from 

coordinating resources and linking or combining data- and knowledge-bases such as the AOP 

Wiki. 

This workshop is intended to bring representatives from several of these projects to a single 

venue to identify barriers and opportunities and make recommendations regarding what is 

needed to achieve the goal of fully implementing a human systems-biology platform for 

understanding disease and improving interventions. 
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1. Setting the stage: what is needed and why? 

The 21st century has seen many pivotal advances in science and technology. Together, they 

offer the possibility of gaining a dynamic, systems-level and human-specific understanding of 

the causes and pathophysiologies of diseases, including those conditions that represent 

previously intractable public health challenges to our society [17]. This mechanistic 

understanding is a vital need, in view of ongoing translational difficulties in many areas of health 

research and drug discovery [3, 18-20]. 

Potential societal benefits that could arise from a refined, mechanistic understanding of human 

disease include an abbreviated critical path to new, and more effective, therapeutic 

interventions. Drug discovery is costly, time-consuming and complex, taking around 15 years 

to move from concept to product and costing over 2 billion USD [21]. It is apparent that 

changes are long overdue as the traditional process appears to be stagnating, in terms of 

investment and outputs. The total R&D expenditures for the top 10 pharma companies has 

not changed since 2011 and 2012. Recent estimates suggest that the overall likelihood of 

approval is around 9% [22]. With respect to the FDA, only 22 drugs were approved in 2016, 

the lowest number since 2010 [23]. Drugs fail in clinical trials for a number of reasons, but a 

great majority of failures are a result of insufficient efficacy and/or unacceptable toxicity, 

because of the limited predictive value of preclinical studies [4]. In addition, the industry halts 

development of many clinical candidates every year, due to toxicology findings in animals. It 

is unknown how many of these would in fact have been safe and efficacious in humans. 

Emerging technologies that allow the study of rodent and human tissues under physiological 

conditions may allow some of these discarded molecules to proceed under alternate 

development paths. 

To date, preclinical discovery and development of new drugs have relied heavily on models in 

animals, mainly rodents, which may recapitulate only selected aspects of human physiology or 

disease [1,2]. The failure of animal studies to predict drug efficacy and toxicity in humans has 

several causes, including experimental design flaws and bias, but species variations are also 

significant [6]. The concordance of animal to human toxicity also varies greatly per organ, 

ranging from slightly less than 40% for skin, up to 90% for hematopoietic toxicities, and about 

50% for hepatotoxicity [24]. Equally, preclinical toxicity prediction for human adverse events 

is also greatly dependent on the species and study duration [24]. There is a growing 
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recognition that, to increase the success rate, a stronger focus on human-relevant data is 

needed [7,8]. 

Common human diseases such as cancer, diabetes, autoimmune conditions, 

neurodegenerative, respiratory and cardiovascular diseases are caused by a complicated 

interplay of multiple genetic and environmental factors [25]. Diseases may be envisaged as the 

combined outcome of environment, microenvironment, phenotype, genotype, time, and other 

external and internal influences [26] interacting at multiple levels. Application of a pathways-

based approach might allow dissection of these factors and thereby more accurate prediction 

of the effects of intervention within the pathway. 

Identification of network(s) linking extrinsic and intrinsic factors to an adverse outcome 

provides a potential strategy for targeted therapeutic intervention and disease prevention. 

For example, a mechanistic understanding of the complex interactions between infectious 

pathogens and environmental toxins in the complex pathophysiology of liver cancer have 

informed vaccination strategies [27]. 

Recent studies from US (SARP, severe asthma research programme) and Europe (U-

BIOPRED, Unbiased biomarkers for the prediction of respiratory disease outcomes) 

examining severe asthma illustrate the promise of this approach. These groups have used a 

combination of deep clinical phenotyping along with multi-omic analysis to define subsets of 

patients with asthma. SARP has focussed on transcriptomics and DNA methylation whereas 

U-BIOPRED has used transcriptomics, proteomics, lipidomics and metabolomics. These 

groups have highlighted the importance of type 2 asthma [28] as well as the that of subsets of 

non-type 2 asthma including inflammasome-associated asthma, metabolic dysfunction and IL-

6-driven asthma [29-32]. Further analysis of these datasets will derive increased subgroups 

of asthmatic patients with specific disease-driving mechanisms which are not discernible from 

clinical features alone [33]. 

Systems biology approaches in cancer research have led to significant insight with regards to 

the heterogeneity of the tumor microenvironment and how it contributes to disease 

progression and drug resistance. For example, statistical modeling of unbiased proteomic 

data led to the identification of a new type of cell-cell communication, termed ‘reciprocal 

signaling’, between stromal fibroblasts and tumor cells that offers insight into drug resistance 

in pancreatic cancer [34]. Another recent analysis discovered drug regimens that exploit 

dynamic tumor sensitivities to treat acute lymphoblastic leukemia through quantification of 
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clonal evolution and prediction of cell fate using stochastic mathematical modeling [35]. 

Finally, systems biology-based pathway analysis approaches effectively identified master 

regulators of prostate cancer malignancy through cross-species computational analysis that 

effectively integrated experimental findings from mouse models and human cancer [36]. 

This workshop will consider the question of whether a general framework that links molecular 

initiating events in disease pathways and networks with adverse outcomes would provide a 

more predictive and effective rubric for understanding disease pathophysiology, and for 

targeting and evaluating new interventions. 

Questions for consideration; Breakout Group Discussions Session 1 

The global community has been aware of the shortcomings of current approaches to disease 

models and drug development for some time, including a lack of understanding of human 

biology (“normal” and diseased), a heavy reliance on animal studies that modestly translate to 

human biology, heavy expense and extended timelines. What is needed to solve the problem? 

• What data are currently available and who can access these data? 

• What is the role and impact of precompetitive data sharing ? 

• What additional types of information and processes are needed for acquiring human 

data in the future? 

• What are the major barriers to the pursuit of a human biology-based approach in 

health research, e.g., funding opportunities, journal or reviewer conservatism/bias, 

etc.? 
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2. Big Data: turning information into knowledge and knowledge into action 

Much of biomedical research has a seen a recent shift away from individuals studying single 

end-points to multi-disciplinary teams gathering simultaneous multi-parameter data on gene, 

protein, and metabolite expression, cell behaviors, and organ and organism phenotypes. 

Multiscale data are beginning to be integrated and interpreted via systems biology tools [37]. 

For example, the NIH-funded eMERGE network extracts data from electronic medical 

records to compare whole genome scans with clinical phenotypes. It is clear that the future 

success and wider implementation and application of metadata from open access sources will 

require two basic principles: standardized data representation and straightforward techniques 

or software for data element mapping, along with more rigorous quality control and curation 

of the data. 

The first phase of the trans-NIH initiative Big Data to Knowledge [14] spanned 2014-2017 

and saw investment of around 200 million USD to address major data science challenges and 

stimulate data-driven discovery. The second phase from 2018 to 2021 focuses on access and 

aims to examine whether multiple datasets and computational tools can be made available for 

remote access by numerous individuals, utilizing the FAIR priniciples [38]. 

One of the recent successes of the BD2K initiative was nextstrain.org - the winner of the 

2017 OpenScience Prize. This prototypic system ingests viral genome sequence data and 

produces phylogentic trees for display on an interactive public website. The major advantage 

of the program is the accelerated epidemic tracking that this approach allows. Traditionally, 

sequencing pathogen genomes, analyzing the data and publishing the results could take years, 

may require access to several disparate databases of genomic sequences and was unlikely to 

happen until after the epidemic had passed. The value of nextstrain.org is the almost realtime 

availability of these data, in a publicly accessible format. 

The Library of Integrated Network-based Cellular Signatures project [7] intends to build a 

new, network-based understanding of human health and disease via a catalogue of so-called 

cellular signatures. These are the patterns of changing gene expression, proteins and other 

cellular processes that occur in different cells and tissues following a genetic, chemical, or 

environmental change. The program hypothesis is that definition of such cellular responses 

will lead to understanding of their mechanisms and thereby to cellular-level disease causality. 

The LINCS datasets provide multiple assay results for cell lines and human primary cells 

following treatment with ‘perturbagens’ such as growth factors, cytokines and genetic 
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alterations. Interrogation of the impact of a perturbagen on multiple cell types, at multiple 

time points and for multiple doses is possible. The curation of a huge dataset of gene 

expression data in the LINCS Centre for Transcriptomics includes a search facility that allows 

for comparison of experimental gene expression signatures of relevance to disease with the 

collated data from thousands of perturbagens. 

A recent success story from the LINCS project examined the role of synovial fibroblasts in 

rheumatoid arthritis (RA), using primary human cells, stimulated with various perturbagens 

and measuring protein biomarkers released [39]. The study generated three datasets of 

increasing complexity, with the third and final dataset made up of 50,000 data points. They 

assessed the effects of ten perturbagens (cytokines, growth factors and toll-like receptor 

ligands), in the presence and absence of ten different kinase inhibitors and using healthy and 

RA-derived fibroblasts, to show that the efficacy of kinase inhibition in reducing the pro-

inflammatory phenotype (i.e. disrupting the cellular signature) was related to the activating 

ligand and not the disease status. 

The study emphasizes the importance of context-dependent drug effects and the need to 

understand signaling networks in order to guide further drug discovery. The experimental 

and analytical framework for perturbation profiling is likely to have value in other disease 

states and whilst this is not a high throughput approach, it could allow optimization and 

validation of lead compounds – accelerating drug discovery. 

Comprehensive integration of diverse data sets from disease names and clinical symptoms to 

cell types and pathways to genes, mutations, and drugs would allow the identification of novel 

relationships among diseases and identification of new intervention opportunities. This is the 

vision of the Biomedical Data Translator program (Translator), launched by NCATS in 2016 

and currently in its pilot phase [40]. 
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Questions for consideration; Breakout Group Discussions Session 2 

There are several large-scale initiatives underway to mine existing data from the literature, 

create ontologies for curation and retrieval of this information, and to use this information to 

improve predictive modeling. At the same time, there is increasing awareness that much of 

the data is of questionable quality or relevance. 

• Is the right information being captured? And how is quality of data captured or 

assessed? 

• How best to link the output from big data projects to human information from large-

scale sequencing, ‘omics projects and other large data sources? 

• How do we integrate new data types, such as single-cell sequencing and/or imaging, 

with existing data at different scales? 

• Who are the users and how can the data be most effectively presented for use? 

• What are we missing? 
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3: Current tools to support pathway-based approaches: what have we learned so 

far, and what existing projects/tools/information can we build from? 

New technologies allow fuller, more unbiased data gathering for the creation of pathway 

based approaches. High-throughput screening using combinations of dozens or hundreds of 

cell-based assays, advanced human-specific cell and tissue based models [41] and sophisticated 

data assessment tools could advance the correlation of individual genetic variants with gene 

expression patterns, disease pathways, and phenotypic outcomes [42]. Human induced 

pluripotent stem cell technology offers unique access to develop cellular models of healthy, 

patient and disease-specific states [43]. Models derived from human stem cells have enhanced 

research into autism spectrum disorders [44], cardiovascular disease [45], Alzheimer’s disease 

[46], and many other illnesses. In some instances, insights about molecular disease mechanisms 

and drug effects have emerged from human stem cell systems that were previously missed in 

nonhuman models [44]. There are, however, significant limitations that are still to be 

addressed, including: that most in vitro systems do not account for metabolism or other in vivo 

functions, and even collections of in vitro assays cannot simulate in vivo conditions; cell lines 

may be difficult to access and may not be as advertised; limited sourcing of primary cells and 

tissues; the fact that culture systems derived from iPSCs do not fully represent adult biology 

or disease manifestations; and the cost of developing and implementing these new systems. 

For pathway based approaches to be implemented, it may not be necessary to fully 

recapitulate in vivo conditions for all situations, and some of these issues are surmountable by 

improved technology or the application of sufficient resources, while some are basic 

limitations of biology, but all will need to be addressed at some level. 

Large-scale, high-throughput in vitro assays: Tox21 

Toxicology in the 21st Century [5] is a federal collaboration among EPA, NIH, including 

National Center for Advancing Translational Sciences and the National Toxicology Program 

at the National Institute of Environmental Health Sciences, and the Food and Drug 

Administration [47]. Using a high-throughput robotic screening system housed at NCATS and 

diverse assay platforms accessed by EPA and NTP, researchers are testing thousands of 

environmental chemicals in hundreds of cell-based assays for their potential to disrupt 

biological pathways that may result in toxicity. To date, the high-throughput screening effort 

has produced almost a hundred million experimental data points: all of these data have been 

made freely available to the public. Screening results give a profile of potential biological 
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activity of each chemical and relative activities can be used to prioritize chemicals for further 

in-depth investigation. Screening results can also be used to inform biological pathways 

involved in different types of toxicities. As examples of its utility, ToxCast data have been 

used to effectively screen chemicals for estrogenic activity [48], and have been combined with 

high-throughput modeling to prioritize chemicals for risk assessment [49]. 

Reconstructed tissues: organs-on-chips 

Human organ-on-a-chip [50-52] culture systems provide the opportunity to develop the 

complexity that is currently absent from standard cell culture models. These microengineered, 

so-called microphysiological systems (MPS) contain cultures of human cells with dynamic fluid 

flow that recreates nutritional delivery, mechanical forces, and biomolecular gradients such as 

those experienced in vivo, and aim to emulate biological processes at a microscopic scale. 

Recent advances have seen the addition of mechanical coupling to recreate blood flow, the 

formation of bile canaliculi, and dynamic airflow, for models of the brain, liver and lungs, 

respectively [53-55]. The organ-on-a-chip approach addresses many of the shortfalls of 2D, 

and even some of the issues with 3D, models [56]. However, the initial start-up costs of 

setting up microengineered systems, the variety of device designs and culture parameters that 

may affect reproducibility between labs, and, thus far, the lack of validation of any devices or 

methodology represent future challenges [57]. 

The potential of the organ-on-a-chip approach, over and above ‘macroscopic’ cell culture, is 

apparent and is growing. Lung chip technology developed by the Wyss Institute at Harvard 

University as part of the Human-on-a-Chip project funded by the Defense Advanced Research 

Projects Agency (DARPA), FDA, and NIH combines design, engineering, and biology to allow 

the Chips to recreate the 3D living microenvironment required to obtain organ-level function. 

The lung-chip can replicate the function of human alveolar tissue that includes functioning 

immune cells, response to inflammation, and blood clot formation. The system can be used 

to provide lung-like tissue from healthy or diseased humans and other species for chemical 

testing [58]. As part of the requirements and measures of success of the DARPA project, the 

organs-on-chips technology platform developed by the Wyss Institite at Harvard, has been 

spun-out into a commercial entitity, Emulate, Inc. Emulate combines design, engineering, and 

biology to continue the development of new Organ-Chips systems, disease models, as well as 

the instrumentation and software that support the platform in collaboration with industry, 

acemia, and government agencies. Emulate and the Food and Drug Administration have 
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recently entered a Cooperative Research and Development Agreement (CRADA) to evaluate 

and qualify the use of Emulate’s Organs-on-Chips technology as a platform for toxicology 

testing to meet regulatory evaluation criteria for products – including foods, dietary 

supplements, and cosmetics. 

Mapping Biological Complexity to better understand disease 

Well-characterized chemicals or drugs can be used to identify cellular response “fingerprints” 

that identify mechanisms of action [59] [60]. The BioMAP approach taken by DiscoverX 

combines signatures from panels of primary human cell-based assay to create phenotypic assay 

models that can be used to screen drugs for potential MoAs for both efficacy and safety. This 

can be applied to prioritize lead or hit compounds identified from phenotypic drug screens, 

selecting for the required dose and activity, and discarding cytotoxic compounds. Importantly, 

these phenotypic models were shown to be effective for investigating secondary activities and 

could be used to automatically classify toxicity mechanisms. Traditionally, target 

deconvolution, or molecular target identification, employs techniques, such as biochemical 

target-based assays or affinity-binding chromatography, that are decoupled from the biological 

mechanism of action and fail to differentiate off-target binding from specific activity. In 

contrast, these human-based phenotypic models, by enabling compound categorisation in 

specific mechanism classes, permit identification of off-target toxicity mechanisms and enable 

effective deconvolution of targets derived from phenotypic drug discovery. 

In terms of complexity, cancer presents a truly heterogeneous challenge. Understanding the 

dynamic, multifactorial nature of this condition requires thinking and methodology from 

outside the traditional biological tools, needs multidisciplinary collaborations and collection, 

analysis and interpretation of shared data sets. A recent workshop held in April 2016 [61] 

brought together established and emerging researchers to showcase the potential impact of 

a systems biology and network mapping approach in understanding and controlling cancer. 

There is a pressing need for better translation of pre-clinical data to the clinic for cancer in 

particular, as the majority of targeted agents for oncotherapy are ineffective [62] despite 

promising activity in in vitro, in vivo, or pre-clinical trials [63]. The evolution of sub-clonal 

tumor cell populations during disease progression in cancer patients has considerable impact 

on treatment efficacy but is currently poorly understood. However, an –omics-based mapping 

of various breast cancer cell lines against primary tumor tissue has enabled pairing of cell line 

to primary tissue, with potential implications for the identification of tumor vulnerability [61], 
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although this approach does not take into account the tumor microenvironment. However, 

this may be addressed with recent advances in single-cell analysis. An in-depth immune 

profiling of renal cell carcinoma used cytometry to reveal distinct populations of immune cells 

that may be useful in categorizing or characterizing the tumor microenvironment [64]. Single 

cell RNA sequencing of cell populations extracted from melanoma has indicated impressive 

heterogeneity, including inter- and intra-cellular, genomic and functional - suggestive of distinct 

micro-environments - and revealed the presence of a drug-resistant population [65]. Systems 

biology approaches are vital in understanding the incredible breadth of data that arises as 

measurements move towards the single cell level. There is also a significant open question 

regarding how useful data at that depth will be for clinical use and drug development. 

Mapping Pathways: Adverse Outcome Pathways as one approach 

There are a number of different ways to approach the mapping of biological pathways. 

Pathways are associative, with some derived empirically through large-scale data generation 

and mapping (e.g. gene ontology networks). Others are literally drawn from historical 

knowledge (e.g. those in the KEGG database). The ‘adverse outcome pathway’ (AOP)-based 

concept (Figure 1) evolved from the concept of mode-of-action as it relates to chemical 

toxicity [66]. 

Figure 1. Simplified representation of key features of an AOP, linking two anchors – the 

‘molecular initiating event’ (MIE) and the ‘adverse outcome’ at the level of an individual or 

population – together with intermediate ‘key events’. Image reprinted from [67]. 

An AOP provides a framework for gathering, organizing, and evaluating biological data related 

to the sequence of causal relationships between a molecular initiating event (e.g., a chemical 
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binding a cellular receptor) and adverse outcomes connected by key events at the molecular, 

cellular, organ, organism, and population levels. The Organization for Economic Coordination 

and Development (OECD) has developed guidance for creating and evaluating AOPs [68]. 

OECD is also coordinating international efforts that are developing databases and knowledge-

bases (curated, relational databases) to collect and document this information (the AO Wiki: 

https://aopwiki.org/) and that provide the basis for predictive modeling (Effectopedia: 

https://www.effectopedia.org/). 

AOPs can be used to support weight-of-evidence evaluations of data or to design efficient 

testing strategies to obtain information needed for regulatory decisions [69]. OECD is 

developing a framework and guidance for the use of AOPs to support integrated approaches 

to testing and assessment (IATA) for regulatory application [70]. AOPs can also be used to 

improve predictive modeling for chemical safety assessment [71]. 

AOPs are more than associative; they provide the opportunity to substantiate causal 

relationships and represent the current state of knowledge for any pathway at any given time. 

Inclusion of a key event in the pathway indicates that it is required to achieve the phenotypic 

response. However, initiation of one or more of the key events may not result in the 

organism-level effect. Thus, an AOP defines necessity, but not sufficiency, of the key events 

in the progression to an adverse outcome. This supports predictive modeling that is based on 

the best available understanding at a given time, and, as the biological network and quantitative 

information continue to accumulate, the AOPs can support decisions and predictive models 

that have increasing greater predictive accuracy with less uncertainty. The downsides of this 

approach are the labor-intensive nature of the approach, that the focus is currently toxicology 

and regulatory applications, and that ontologies are not yet well defined to facilitate data-

mining. A benefit of this framework is that it is a way for all available biological knowledge to 

be used to improve predictive modeling, and this could be true for any perturbation, whether 

it be by industrial chemicals (where it’s currently being used), drugs, or disease. Another 

major advantage of developing AOP frameworks, is that these frameworks in themselves 

describe the key assay endpoints that may be used to test for chemical effect. While AOPs 

were developed originally to assist in evaluation of chemical safety in normal conditions, their 

biological underpinning supports their utility in identifying potential therapeutic targets as well. 
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Associative Network Mapping 

Network representations have recently made the leap from social sciences, where they have 

been applied for decades, to systems biology. Network mappings can provide a picture of the 

interaction between molecules, represent the relative abundance of those molecules, and 

provide a molecular insight into the organization of signaling pathways, protein-protein 

interactions, or metabolism that would not be possible from studying individual proteins or 

genes. An important finding in many network analyses is that associative networks can 

elucidate relationships that cannot be seen when comparing single or small sets of genes, 

proteins or other components. 

Network analysis can be applied to address how to distinguish subtle differences in mode of 

action [59] and for the de novo prediction of genome-wide targets. DeMAND (Detecting 

Mechanism of Action by Network Dysregulation), is a hybrid computational and experimental 

approach. This provides a network-based methodology for determining MoA and for 

predicting the MoA of unknown compounds and identified known and novel genome targets 

of vincristine and mitomycin C, and further experimentally validated these targets using human 

lymphoma cells [72]. 

Network analysis has huge potential for drug discovery and has been used to identify possible 

opportunities for drug repurposing [73]. For example, a network map was constructed using 

3,665 FDA approved or investigational drugs, connected to their binding targets via activity 

profiles and then the network was interrogated using chemical structures of known drugs, to 

generate a score for structural similarity. This approach identified several novel relationships, 

one of which was later confirmed to have the predicted activity in vivo [74]. There is great 

potential to exploit this approach for complex diseases characterized by dysfunction of 

multiple pathways – drug network interrogation could reveal potential targets that are not 

obviously linked at the pathway level, enabling repurposing with reduced development time 

and accelerating the route to clinic. For example, a drug that has passed safety testing but 

failed efficacy may be repositioned via network mapping and is likely to reach the patient in a 

more timely and cost-effective manner. The limitations of this approach include the labour 

intensive nature of the work, there may be some restriction towards identification of high-

affinity binding targets, and often many hypotheses are generated and only a few are tested 

experimentally. In some cases, other approaches (high throughput profiling in target-based 

assays) may have produced equivalent results. 
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There is inherent uncertainty in translating between pre-clinical models and humans for drug 

safety testing, but recent advances in -omics-base associative network modeling provides a 

mechanism to reduce this uncertainty. Sutherland et al. (2017) employed open-source 

databases of changes in rat liver gene expression in response to drugs to derive co-expression 

networks of gene sets with correlated expression patterns (‘modules’) [75]. Module scores 

for gene-sets, indicative of induction or repression of expression, were mapped to thirty-six 

toxicity phenotypes, derived from standard pathological assessment of liver injury – i.e. 

histology and biochemistry assays - and showed that pathogenic mechanisms of liver injury 

were associated with changes in gene expression. Importantly, analysis of the relationships 

between toxicity phenotype and module scores for single drug doses within the first 24 hours 

showed that module-phenotype associations actually preceded liver injury. This approach, 

when compared to in vivo data from rat bile duct ligation, was shown to have more 

discriminatory power, identifying six-fold more genes than the animal models, indicating the 

potential to map phenotype-gene interactions that precede liver injury and suggesting that, 

with the incorporation of gene-set analysis, 1-day safety studies could be employed to predict 

adverse outcomes. The application of rat data has the potential to reduce animal use, and may 

also aid in predicting human outcomes; rat-derived coexpression networks were recently 

shown to have predictive capacity for the identification of diagnostic gene markers for human 

liver disease [75]. 

Quantitative Systems Pharmacology (QSP) uses mathematical computer models to 

characterize biological systems, disease processes and drug pharmacology and facilitate 

greater understanding of pharmacodynamics and pharmacokinetics [76]. QSP can be used to 

generate biological/pharmacological hypotheses in silico to aid in the design of non-clinical and 

clinical research in order to yield more meaningful data. QSP models form useful tools for 

integration of prior knowledge for target identification. These are particularly important in 

the transition from pre-clinical studies to first-in-humans, in the move from healthy individual 

to the relevant patient group and in shifting from an adult to a pediatric patient population. 

An advance in the utility of QSP models, and evidence for their likely expansion beyond basic 

research, occurred in the FDA’s review of the recombinant parathyroid hormone dosing 

regime for hypoparathyroidism, which used an open-source version of QSP models to 

evaluate alternative dosing strategies, the first time that QSP has been used in the regulatory 

arena [77]. To progress such applications, QSP models for therapeutic areas and targets that 

are relatively more advanced are being evaluated to understand how they might be 
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characterized and validated for regulatory purposes. One area that may be evolved to that 

point is insulin-glucose homeostasis in relationship to therapeutic targets for type 2 diabetes 

mellitus [78, 79] 

Questions for consideration: Breakout group discussions session 3 

Omics approaches have been generating an unlimited array of human data that can be 

leveraged to better understand biology and disease. Likewise, advanced tissue culture 

combined with materials science is allowing the construction of human-like tissues. 

“Knowledge-bases” are being created to combine all information to better describe biological 

understanding and support decisions as well as predictive models. How can these advanced 

technologies be best leveraged to improving human health? 

• What is the best method for incorporating human-based -omics data into a collective 

knowledge-base for improved understanding of disease and better predictions for drug 

safety and efficacy? 

• What are the pros and cons of combining medical data with the toxicological data in 

a platform like the OECD AOP Wiki? 

• How do you integrate clinical systems biology/disease pathway knowledge into novel 

predictive modelling platforms? 

• How can we broaden stakeholder participation (esp. to basic biological researchers)? 

• What are the three main challenges for implementing systems biology understanding 

as a tool find practical solutions for human disease? 

If there is time: 

• How will we evaluate the utility of microfluidic-based systems for predicting human 

safety? Current approaches are anectodal and publications do not compare to simpler 

approaches [e.g. calculated logP and daily dose as predictors of DILI (Chen, M., Borlak, 

J. and Tong, W. (2013), High lipophilicity and high daily dose of oral medications are 

associated with significant risk for drug-induced liver injury. Hepatology, 58: 388–396. 

doi:10.1002/hep.26208)] 
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4: Coordination and support: how to make this work. 

In 2015, a similar workshop discussed what might be needed to achieve fully implement 

mechanistic understanding of human biology to improve disease understanding and drug 

discovery [80]. Those workshop participants agreed that an increased reliance on human 

disease pathway understanding is a promising way to improve clinical efficacy of new 

interventions and that an adapted AOP-like approach would have great value in biomedical 

research [80]. Selected recommendations are listed in Figure 3. 

Selected recommendations 
➢ A 21st-century roadmap for biomedical research and/or a roadmap for each disease area need to be 

designed, to provide a strategic approach for utilising human-specific models and innovative 

technologies. 

➢ One or two research roadmaps could be developed as prototypes, using existing knowledge and 

making full use of human-specific models. 

➢ The sharing of ideas, expertise, and concepts between various research communities and clinicians 

needs ongoing facilitation. 21st-century tools often draw on multiple disciplines and there is frequently 

a disconnect between research and clinical data, which could be bridged by means of disease 

pathways. 

➢ Systems biology approaches, including new bioinformatics and mathematical tools, need further 

support. They will help integrate multiscale data, generate better clinical disease classifications, enable 

disease-associated pathways to be investigated, and suggest new research directions. 

➢ New databases are needed to integrate and share information. 

➢ These developments require dedicated funding and policy support. Funding agreements could specify 

that relevant research findings are to be input into a common global knowledge base, such as the AOP 

Knowledge Base, and other shared, open-source platforms. 

➢ Effective strategies are required to collect human biological material and clinical information from 

large patient cohorts and healthy individuals, to increase understanding of human diseases and assist 

the validation of new human-specific models in vitro and in silico. 

➢ Effective data mining will be improved by harmonised standards of patient anonymisation and data 

protection, because this has significant implications for health research. 

➢ Overarching strategic frameworks are essential to direct policy initiatives and funding programmes to 

essential areas that need further development and to coordinate related activities. These frameworks 

would ideally be coordinated among the EU, USA, and other key innovation economies, through a 

process of dialogue among all stakeholders. 

➢ To advance 21st-century human-specific scientific progress, funding should be focussed strategically 

on acquiring critical human information and on developing and validating the necessary new tools, 

rather than on further developing animal models. 

Figure 3: Excerpted recommendations from Langley et al. 2016 [80]. 
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Questions for consideration: Group Discussions session 4: 

Adequate funding and coordination of projects are critical for success of any large-scale 

endeavor. In this case: 

• At what level(s) should this coordination occur? And who should be the “organizing 

body”? 

• What can be done to redirect research efforts toward human biology-based 

approaches? 

• What would incentivize industry to contribute data to populate AOP/pathway 

knowledge bases, etc.? How do we promote collaboration in the private sector and 

between the private sector and government? 

• In light of emerging technologies and conceptual thinking, should there be an 

overarching strategic review of health research and funding frameworks and roadmap 

for incorporating new approaches most effectively? 
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