Characterizing, Navigating, and Modeling the Chemical Space Using Next-Generation Cheminformatics Methods

Denis Fourches, PhD
Department of Chemistry, Bioinformatics Research Center, North Carolina State University, USA
www.fourches-laboratory.com
LIPITOR (atorvastatin) World's best-selling drug of all time ($125 billion over 15 years)

Competitive inhibitor of HMG-CoA reductase in liver

Lower blood cholesterol

PDB code = 1HWK
Cheminformatics is becoming an essential element in the chemist’s toolbox

- Characterizing molecules’ structural properties
- Navigating the chemical space
- Building predictive models
- Screening virtual libraries
- Prioritizing new compounds to be tested experimentally
Thousands of molecular descriptors are available for organic compounds:
- constitutional, topological, structural, quantum mechanics based, fragmental, steric, pharmacophoric, geometrical, thermodynamical, conformational, etc.

- **Building of models**
 - using machine learning methods (NN, SVM, RF)

- **Validation of models**
 - according to numerous statistical procedures, and their applicability domains.

Thousands of molecular descriptors are available for organic compounds constitutional, topological, structural, quantum mechanics based, fragmental, steric, pharmacophoric, geometrical.

With m molecules and n descriptors

- Validation of models according to numerous statistical procedures, and their applicability domains.

Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively.

Curation of Chemogenomics Data

Can any QSAR model, even if well validated, be applied to any molecule?

QSPR Models

Test compound

Prediction Performance

Robustness of QSPR models
- Descriptors type;
- Descriptors selection;
- Machine-learning methods;
- Validation of models.

Applicability domain of models
Is a test compound similar to the training set compounds?
Applicability Domain of a given QSAR model

The new compound will be predicted by the model, only if:

\[D_i \leq <D_k> + Z \times s_k \]

with \(Z \), an empirical parameter (0.5 by default)

AD parameter of applicability domain

\[AD_i = \frac{D_i}{(<D_k> + Z \times s_k) \times 100} \]

AD \(i \) \(\leq 100 \% \)

Will be predicted by the model

AD \(i \) \(> 100 \% \)

Will not be predicted by the model
Development of New Computational Tools Adapted to Hyper-Dimensional HTS data to Analyze Drugs’ Polypharmacology

Visualizing and comparing chemical datasets using the ADDAGRA approach

ADDAGRA for Dataset Fingerprints
(based on distribution of vertex degrees)

ADDAGRA for the analysis of prediction outliers

Many prediction outliers also correspond to outliers in the descriptor space.
ADDAGRA for the analysis of prediction outliers

But still, some large outliers cannot be identified in the chemical space only.
Hybrid modeling using both chemical and biological descriptors

Environ Health Perspect. 2011, 119(3):364-70

In Silico models

CHEMICAL DESCRIPTORS

Molecular weight, compositions and geometrical parameters, physico-chemical properties (acidic, basic, neutral, amphi- or lipophilic etc.)

BIOLOGICAL DESCRIPTORS

Toxicity testing

High Throughput Screening

Human health risk
Chemical Neighbors

Biological Neighbors

Compound 19

Fourches et al. JCIM, 2016, In Preparation

KINASE BIOPROFILES Structural Descriptors

Low et al. CRT. 2013, 26(8):1199

Integrative Chemical Biological Read Across CBRA

CBRA Radial Plots

Low et al. CRT. 2013, 26(8):1199

Fourches et al. JCIM, 2016, In Preparation
Compound 19

Chemical Neighbors

Structural Descriptors

Biological Neighbors

GPCR BIOPROFILES

Integrative Chemical Biological Read Across CBRA

CBRA Radial Plots

Low et al. CRT. 2013, 26(8):1199

Fourches et al. JCIM, 2016, In Preparation
Cheminformatics Approaches To Analyze the Similarity and the Effects of Environmental Chemical Mixtures

NEIGHBORS based on CHILDREN's EXPOSURE SIMILARITY

PCB194

NEIGHBORS based on STRUCTURAL SIMILARITY

PCB153
PCB170
PCB180
PCB187
PCB194
PCB199

Tanimoto Similarity

0.9
0.8
0.7
0.6
0.5
Cheminformatics Approaches To Analyze the Similarity and the Effects of Environmental Chemical Mixtures

CBRA Radial Plots Based on Both Chemical and Children's Exposures Similarity

DDE

PBDE47

PBDE99

PBDE100

PCB74

PCB99

PCB105

PCB118

PCB146
Concept of Quantitative Structure-Exposure-Toxicity Relationships (QSETR)

Need to develop new modeling workflow ...
Molecular Docking of ERK2 Inhibitors

ERK2 – Bad results with Glide 2015-1

Model Set
ρ = 0.74

Model Set
ρ = 0.65

CSAR Blind Set
ρ = 0.43

CSAR Blind Set
ρ = 0.51
GPU-accelerated molecular dynamics simulations

Example: 1 ns simulation of ERK2 using Desmond 65Å*90Å*70Å, 42k atoms, explicit solvent (TIP3P water), step= 1 femtosecond

Up to 1 µs per day on high-end GPU workstations!
New MD-QSAR modeling approach

~10^3 Compounds

~10^3 3D Descriptors

~10^6 Time Steps

MD-based Descriptor Matrix

Deep Learning

Hyper-Predictive QSAR models
Computation of MD Descriptors

• 3D descriptors computed for all conformations sampled along ligand MD simulations

• MD descriptors were constructed by taking the mean and standard deviation of each 3D descriptor distribution for each ligand:

\[
\bar{x}_i = \frac{\sum_{j=1}^{n} x_{ij}}{n}
\]

\[
s_i = \sqrt{\frac{\sum_{j=1}^{n} (x_{ij} - \bar{x})^2}{n - 1}}
\]
Chemical Descriptors Associated with Ligand Activity

Dataset: 87 ERK2 kinase inhibitors; pKi ranging from 4.6 to 9

Atomic Masses Weighted WV

Cohen's $D = 1.1$

Mean of 3D descriptor distribution
For the 3D and MD descriptors, a clear difference in the profiles of active and inactive compounds.

- Compounds were classified as:
 - Active: $pKi \geq 7.5$
 - Inactive: $pKi < 7.5$

- For MACCS and 2D descriptors, the difference in active and inactive profiles is less apparent.
Hierarchical Clustering of ERK2 Ligands Using 2D and MD Fingerprints

Ash and Fourches. JCIM 2017. Under Review
Characterizing the MD Chemical Space of ERK2 Inhibitor Conformations
QNAR Modeling of Carbon Nanotubes

In 2008, Zhou et al. published *in vitro* protein binding, acute toxicity and immune toxicity assays for 84 Carbon NanoTubes (CNTs) decorated with different surface modifiers.

Zhou et al. Nano Lett., Vol. 8, No. 3, 2008
Computer-aided design of novel carbon nanotubes with desired biological properties
(in collaboration with Dr. Bing Yan, St. Jude Children's Research Hospital)

Fourches et al. Nanotoxicology 2016 In Press.
Computer-aided design of novel carbon nanotubes with desired biological properties
(in collaboration with Dr. Bing Yan, St. Jude Children's Research Hospital)

All rationally prioritized, synthesized, and tested CNTs predicted as non-toxic were confirmed experimentally.

6 out of 10 rationally prioritized, synthesized, and tested CNTs predicted as toxic were confirmed experimentally.

Fourches et al. Nanotoxicology 2016 In Press.
QNAR models for the enhanced set of f-CNTs

Classification Models (LOO)

<table>
<thead>
<tr>
<th>Cytotoxicity</th>
<th>Threshold</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Forest</td>
<td>0.45</td>
<td>79.25%</td>
<td>62.00%</td>
<td>70.87%</td>
</tr>
<tr>
<td>SVM-C Model</td>
<td>0.45</td>
<td>74.40%</td>
<td>56.00%</td>
<td>66.99%</td>
</tr>
</tbody>
</table>

Continuous Models (LOO)
HLA-induced drug adverse effects

Small molecule drugs bind specifically to certain type of HLA proteins.

- Binding pocket of HLA proteins is slightly modified
- Range of “self” peptides able to bind the given HLA type is modified
- Immune reaction

HLA proteins as important off-targets

Need predictive models to assess HLA-induced ADR
Clozapine-induced agranulocytosis is associated with rare HLA-DQB1 and HLA-B alleles.

Homology model of HLA-B39

GWAS + Docking
Molecular Docking Study at HLA-B*57:01

Develop a virtual screening model using molecular docking at the HLA-B*57:01 variant using three X-ray crystals of abacavir bound to HLA-B*57:01.

Cheminformatics is becoming mandatory in all projects involving the curation, integration, characterization, analysis, testing, modeling, visualization, screening of chemicals.

The skyrocketing amount of freely-available data in the public domain is boosting the development of new cheminformatics approaches to fully exploit that data, especially when it comes to chemical risk assessment and *in silico* toxicity predictions.

New methods such as MD-QSAR or QSETR are poised to boost the prediction performances of cheminformatics predictors.

Structure-based docking and pan-target screening have never been so relevant for chemical risk assessment, especially for key targets such as ER, AhR, or HLA.
Acknowledgements

Lab members
George Van Den Driessche
Jeremy Ash
Melaine Kuenemann, PhD
Ryan Lougee
Phyo Phyo Kyaw Zin
Bethany Cook

Funding
NCSU CFEP Program
RISF
CMI